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Abstract 

Sustainable mining production is increasingly challenging based on declining global resources 

of clean ores and current trends in the rates, sizes and grades of new discoveries. This is further 

compounded by evolving global economics and commodity markets, as well as complex socio-

environmental and geopolitical factors. Moreover, ore deposits are subject to wide ranges of 

geological variability driven by spatio-temporal changes in deposit characteristics, 

geometallurgical considerations and exploration implications. To improve efficiencies and remain 

competitive, these operations must adapt their control strategies by optimizing the coordination of 

inputs and outputs both within and between corresponding process streams. While there are many 

areas of research and related tool development, pathways for how or when to integrate novel 

control strategies into existing operating strategies are not clear. 

Discrete event simulation (DES) is a computational tool capable of simulating the interplay 

of important variables and processes within complex mining systems subject to geological 

uncertainty. Alternate modes of operation are key to the development of effective DES frameworks 

to model and monitor system performance in response to unexpected changes, e.g. ore feed 

attributes. The decision to switch between modes is governed by operational policy and is triggered 

as critical thresholds are crossed, i.e. discrete events. Hundreds of operating days can be simulated 

to identify potential deficiencies, bottlenecks, or other operational risks. DES is thus useful to 

support strategic decision-making in the design, development and sustained operation of any 

mining system. 

The current research is focused on the incorporation of a variety of quantitative methods into 

a DES framework in order to test novel control strategies along the mine-to-plant profile, with a 

unifying focus on readjustment phases of the mining life cycle. A series of case studies show the 

utility of a novel flexible and generalizable DES framework towards the evaluation of a broad 

spectrum of mining system problems spanning commodity markets, operation scales, integration 

scopes and mine life cycle timing. Common threads between these problems have motivated this 

research to generalize concepts underlying the integration of mining and downstream processes, 

to help drive the development of suitable evaluation tools currently lacking in the industry. 
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Regardless of the data processing technique driving the characterization of ore feeds, the 

current DES framework acts as a wrapper for the integrated management of downstream processes 

based on the defined geological variability. For example, Section 4.1 explores the integration of 

the turning bands geostatistical method for the evaluation of tailings retreatment applications; 

poorly documented tailings of mixed origin are assessed as a substitute for the clay portion in 

cement clinker production. Section 4.2 incorporates predictive partial least squares regression 

modelling to gauge system response for the extraction of bitumen from variably chloride-rich oil 

sands. A regionalized framework strategy for the processing of low and high-arsenic porphyry 

copper sulfide ores is developed using Monte Carlo simulation in the Chilean context in Section 

4.3. Finally, Section 4.4 integrates multilayer perceptron regression modelling for the regional 

development of underdeveloped refractory gold systems. In each case, effective control strategies 

and related operational policies were successfully developed using alternate modes of operation 

coupled with a combination of stockpiling and blending practices to stabilize/enhance overall plant 

performance in response to significant levels of uncertainty caused by geological and/or 

geometallurgical controls. 
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Résumé 

La production durable minière devient plus difficile en raison du déclin des ressources 

mondiales de minerais propres et des tendances des taux, tailles et teneurs des nouvelles 

découvertes. Cette situation est aggravée par l'évolution de l'économie mondiale et des marchés 

des produits de base, ainsi que par des facteurs socio-environnementaux et géopolitiques. Les 

gisements de minerai sont soumis à de larges variabilités géologiques entraînées par des 

changements spatio-temporels dans les gisements ainsi que des aspects géométallurgiques. Afin 

d'améliorer leur efficacité, ces opérations doivent adapter leurs stratégies de contrôle en optimisant 

la coordination des processus. Bien qu'il existe de nombreux domaines de recherche, l’intégration 

de nouvelles stratégies de contrôle dans les stratégies d'exploitation ne sont pas claires. 

La simulation d'événements discrets (SED) est un outil informatique capable de simuler 

l'interaction de variables et de processus dans les systèmes miniers complexes soumis à 

l'incertitude géologique. Les modes d’opération alternatives sont fondamentaux pour le 

développement de cadres SED pour modéliser et surveiller les performances du système suite à 

des changements inattendus, par ex. les attributs d'alimentation en minerai. La décision de changer 

entre les modes est régie par la politique opérationnelle et est déclenchée lorsque des seuils 

critiques sont franchis, c.-à-d. des événements discrets. Avec la méthode SED, des centaines de 

jours d’opération peuvent être simulés pour identifier les carences potentielles, les goulots 

d'étranglement ou d'autres risques opérationnels. La SED est donc utile pour supporter la prise de 

décision stratégique dans la conception, le développement et l'opération soutenue de tout système 

minier. 

La recherche actuelle se concentre sur l'intégration d'une variété de méthodes quantitatives 

dans un cadre SED afin de tester de nouvelles stratégies de contrôle le long du profil de la mine à 

l’usine, avec un accent unifié sur les phases de réajustement du cycle de vie minier. Une série 

d'études de cas montre l'utilité du nouveau cadre SED flexible et généralisable présenté ici pour 

l'évaluation d'un large éventail de problèmes de système minier couvrant les marchés des produits 

de base, les échelles d'exploitation, les portées d'intégration et la synchronisation du cycle de vie 

de la mine. Les points communs entre ces problèmes ont motivé cette recherche à généraliser les 
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concepts sous-jacents à l'intégration des processus miniers et traitements ultérieurs, afin de 

contribuer au développement d'outils d'évaluation appropriés qui manquent présentement. 

Indépendamment de la technique de traitement des données pour la caractérisation des charges 

de minerai, le cadre SED actuel est un emballage pour la gestion intégrée des processus en aval en 

fonction de la variabilité géologique. Par ex., la section 4.1 explore l'intégration de la méthode 

géostatistique des bandes tournantes pour l'évaluation des applications de retraitement des résidus. 

La section 4.2 intègre un modèle de régression prédictif des moindres carrés partiels pour évaluer 

la réponse du système pour l'extraction de bitume à partir de sables bitumineux à teneur variable 

en chlorure. Une stratégie-cadre régionalisée pour le traitement des minerais de sulfure de cuivre 

porphyrique à faible et haute teneur en arsenic est développée à l'aide d'une simulation Monte 

Carlo dans le contexte Chilien à la section 4.3. Enfin, la section 4.4 intègre la modélisation de 

régression du perceptron multicouche pour le développement régional des systèmes aurifères 

réfractaires sous-développés. Dans chaque cas, des stratégies de contrôle efficaces et des politiques 

opérationnelles ont été élaborées avec succès en utilisant des modes d’opération alternatives 

associés à une combinaison de pratiques de stockage et de mélange pour stabiliser la performance 

globale de l'usine en réponse à des niveaux importants d'incertitude. 
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Chapter 1 

Introduction 

1.1 Background 

With many of the near surface, high-grade ore deposits already identified across most of the 

easily accessible regions of the world, mining companies are now faced with increasingly 

challenging prospects. This fact is only magnified by evolving global economics and commodity 

markets, as well as complex socio-environmental and geopolitical factors. Moreover, mining 

trends indicate declining rates, sizes and grades of new discoveries among many of the metal 

sectors; however, this is partly due to companies focusing on brownfields and advanced stage 

exploration projects, as well as new technologies that have improved the feasibility of processing 

lower grade material from large-scale open-pit operations (Darling, 2011). Additionally, mining 

projects are facing increasingly longer start-up timelines related to administrative hurdles, such as 

obtaining the required approvals and permits from government agencies. Higher levels of 

undesirable impurities are also being reported from certain ore types, e.g. arsenic in porphyry 

copper or refractory gold systems; not only are these deleterious elements more difficult (and 

therefore expensive) to safely dispose of, but they also pose significant health hazards and 

environmental risks (Perez, et al., 2021). 

This collection of trends is causing many mining companies to focus on process optimization 

and related efficiencies in order to remain competitive. In addition to traditional econometric 

drivers, there is also a paradigm shift underway to improve energy efficiencies and reduce overall 

environmental footprints in industrial settings as a matter of importance to community 

stakeholders and the greater population at large. While there have been rapid advances in 

technological research and development to meet these goals in the mining industry, equivalent 

computational tools are lagging behind despite exponential increases in computing power over the 

past two decades. Indeed, a variety of computational research areas do exist (e.g. Figure 1.1.1); 

however, pathways on how or when to integrate them with existing control strategies are not clear, 

and bridges need to be built between academia, government and industry partners. 
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Figure 1.1.1. Venn diagram showing an interpretation of the relationships between various interconnected fields of study at the 

forefront of process optimization, risk management and automation within industrial and mining system applications. 

1.2 Computational Tools for Mining Systems 

Mining projects are subject to significant spatio-temporal variability, which can evolve during 

the course of exploitation or as new characterization data is acquired. As a result, effective control 

strategies are fundamental to optimize the coordination of inputs and outputs both within and 

between various process streams, thereby improving overall system efficiencies. However, 

suitable computational tools are necessary to test new or modified strategies in order to assess the 

potential effects on system performance prior to implementation, especially for complex industrial 

systems. The main difference between mining and other industrial systems is the introduction of 

geological uncertainty, i.e. the random natural variability associated with the abundance and 

distribution of host-rock mineral assemblages in a given orebody. 

System dynamics, often considered a descriptive branch of operations research, is a set of 

tools and techniques for developing mathematical models of complex systems. The general 

methodology is useful to identify and quantify causal relationships between variables via 

simulation modelling to establish critical processes, decision points and parameters within 

dynamic systems (O'Regan & Moles, 2006; Alpagut & Çelebi, 2003). The approach is thus rather 

effective in the design and testing of alternative operational policies, relative tradeoffs and 

resultant system impacts (Alpagut & Çelebi, 2003). 



3 

 

Discrete event simulation (DES) is an important computer-based modelling tool in the 

implementation of a systems approach because it can simulate the interactions between key 

processes and parameters in complex systems. Moreover, DES supports the incorporation of 

random distributions, i.e. it is a form of Monte Carlo simulation (Altiok & Melamed, 2007), and 

thus can be used to evaluate the system-wide response and sensitivity to unexpected changes in 

material flows (e.g. ore feed attributes). This is especially useful to mining systems which are 

commonly subject to significant levels of geological uncertainty; by understanding the potential 

ranges of variability in upcoming ore feeds, appropriate control strategies can be devised or 

modified according to the anticipated compositions. As a result, the tradeoffs between available 

operational policies can be evaluated, as well as the thresholds that prompt the timing of their 

execution (Navarra, et al., 2019; Saldaña, et al., 2019; Wilson, et al., 2021a). The simulation of 

extended operating periods allows for the identification of potential deficiencies, such as 

bottlenecks or other operational risks, in the coordination of unit processes within the target 

system. DES models are thus useful risk assessment and decision-making tools in the context of 

any mining system. Moreover, the integration of geostatistical simulations or advanced 

quantitative methods, such as predictive models built from geometallurgical data collected earlier 

in the value chain, can further streamline these planning processes. 

Given this research falls under the scope of mining engineering practices, it is important to 

connect the development of novel control strategies along the mine-to-plant profile using DES, as 

discussed in this thesis, to classical control theory and related automatic control. In some cases, 

such as mining systems designed around heterogeneous orebodies, it can be difficult (or even 

impossible) to procure a mathematical dynamical model from physical laws. As a result, internal 

system state and external input-output relations (i.e. mass balance) are often used to describe the 

dynamical behaviour of such types of systems (d’Andréa-Novel & De Lara, 2013). In this work, 

the system state is dictated by different set points (i.e. critical thresholds) for each operational 

mode, each of which is governed by its own set of operational policies. However, contrary to 

classical control theory (see d’Andréa-Novel & De Lara, 2013; Evans, 2010), the input-output 

relations described for the mining systems in this research are not controlled by underlying 

differential equations but rather by the geological uncertainty inherent to a given orebody. 

Consequently, these relations cannot be governed by continuously modulated control mechanisms, 
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such as those used by proportional-integral-derivative (PID) controllers (see Bubnicki, 2005). 

Instead, system control is thus managed through decision-making logic as defined by the assigned 

operational policies and related control strategies, e.g. operational buffers such as blending and 

stockpiling, in response to natural (i.e. stochastic) changes in ore feed attributes, as detected by the 

system. 

The general approach is most suitably compared to modern automatic control theory as 

described for intelligent agent systems. As shown in Figure 1.2.1, an agent system comprises an 

agent and its environment; the agent receives stimuli (via sensors) from the environment and 

executes corresponding actions (via actuators), as necessary (Poole & Mackworth, 2017). The 

agent is made up of a body and a controller; the body includes transducers that convert stimuli into 

percepts, and commands into actions, meanwhile the controller receives and sends the 

corresponding signals from and to the body based on the current system state, operational policy, 

and/or set goals based on past history, i.e. memories (Poole & Mackworth, 2017). Similarly, when 

the current DES framework detects a threshold crossing (i.e. a discrete event) for one of the defined 

control variables, the model decision-making logic is programmed to switch operational modes at 

the next planned shutdown, or implement a recourse action to provide temporary relief for the 

stress being experienced by the system (see Section 3.4 for further details). Moreover, both 

intelligent systems and the current framework can be assembled into hierarchies with the 

uppermost layers focused on strategic and tactical objectives or goals, with the lowermost layers 

focused on operational decision-making processes (Quelopana & Navarra, 2021; Poole & 

Mackworth, 2017). 

 

Figure 1.2.1. Schematic diagram showing the relationship of an intelligent agent with its surrounding environment. Similar to the 

stimuli perceived and actions executed by an automatic control agent, the current DES framework can detect discrete events (i.e. 

threshold crossings), and implement responsive mode or configuration rate changes in order to achieve a goal (system stability), as 

governed by the established operational policies (modified after Poole & Mackworth, 2017). 
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1.3 Research Objectives and Thesis Structure 

The key objective of this work is to develop a generalizable methodology to test novel control 

strategies using integrated DES frameworks. The main advantage of the current approach is the 

flexibility of the framework to incorporate a variety of data types, quantitative methods, or more 

detailed models and submodels, as necessary. By breaking down interdisciplinary barriers, this 

integrated technique is capable of connecting geological attributes (and related uncertainty) to 

target downstream process parameters for the development of effective operating policies and 

control strategies. Such a systems approach can lead to improved overall efficiency and/or 

stability, and thus project sustainability. 

In a broader context, there is increasing research interest in ML-assisted operational decision-

making processes within industrial systems. However, it is remarkable that there is currently no 

emerging, unified approach responding to this need within the mining space, particularly for 

integrated mine-to-mill strategies. There are indeed some excellent highly customized studies that 

could be better suited to specific functions, but these techniques are often limited by a lack of 

flexibility. Trying to adapt such methods to new contexts can thus result in a difficult negotiation 

with the simulation model, rather than fitting the framework around the problem at hand. 

To highlight the power of a flexible and generalizable integrated DES framework towards 

modelling complex mining system dynamics, this research adapts the approach to a broad selection 

of contexts across the value chain. The remainder of the thesis begins with a high level literature 

review of the structural controls inherent to mining systems, the general methods used in this 

research and their scope of applications within the mining sector (Chapter 2). Detailed descriptions 

of the specific algorithms for each of the integrated quantitative methods, as well as model logic 

and implementation considerations for the current DES framework, are then provided in Chapter 

3. Subsequently, a total of four case studies are developed in Chapter 4; this collection of work 

focuses on testing novel control strategies along the mine-to-mill (or smelter) profile, with 

emphasis on the readjustment phases of the mining life cycle. A general discussion draws from the 

case studies to relate integrated DES frameworks to sustainable mining development within the 

vein of modern research and development trends, and considerations for future work are also 
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presented in Chapter 5. Finally, this research work is rounded out with a summary and final 

conclusions given in Chapter 6. The overall thesis structure is summarized in Figure 1.3.1. 

 

Figure 1.3.1. Schematic flow chart of overall thesis structure. 

1.4 Contribution to Original Knowledge 

The current thesis has made a number of contributions to original knowledge through the 

development of a series of case studies focused on the integration of mining (i.e. ore feed supply) 

and downstream mineral processing. Following earlier work by Navarra et al. (2019): 

1. The DES framework was extended to accept different data types, include additional ore 

types, and stabilize the return to normal mining conditions (i.e. rates) following a required 

mining surge as a recourse action to ore stockouts. 

2. The developed methodology has bridged different data processing techniques with the 

DES framework in a way not previously reported in the mining literature. Similar 

architectures have been reported in the manufacturing industry, but this work represents 

a significant extension; by crossing interdisciplinary barriers, the current approach links 

the richness of geological descriptions with downstream process management. In this 

regard, the framework acts as a wrapper that can integrate any selected quantitative 

method for the characterization of ore feeds and related geological uncertainty. 

3. This approach has shown the utility of a flexible and generalizable framework towards 

addressing a variety of ore supply problems across the mining spectrum, which fills a 

particular void cited in the literature as key to supporting future innovation, especially for 

processes driven by artificial intelligence and machine learning. The advantage of an 

extensible framework also allows for hierarchical detailing, with the capability to 
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incorporate more detailed models and submodels, as the project advances along the 

development pipeline. 

4. To the best of the author’s knowledge, this work represents a first for the incorporation 

of geostatistical methods (e.g. turning bands) or advanced predictive modelling tools, 

such as partial least squares or multilayer perceptron regression, into DES in a mining 

context. This is of high impact to the industry as it allows for the identification of potential 

downstream processing issues related to supply of distinct ore feed types caused by the 

significant geological uncertainty inherent to many types of ore deposits. 

5. This research also demonstrates a pathway for the development of simulation-based 

digital twins, which are becoming increasingly important in the age of Industry 4.0 and 

related Internet-of-Things systems. The current framework is shown to represent a digital 

model intended primarily for offline use during the design and implementation stages of 

project development; however, with sufficient data, testing and validation, the framework 

can be integrated into an online control system. 

The overall methodological contribution of the present research is developed and expanded 

upon in Chapter 3 of this thesis. The approach is then validated in Chapter 4 through the 

development of novel or improved control strategies along the mine-to-plant profile for a variety 

of mining problems that span commodity markets, operation scales, integration scopes and mine 

life cycle timing. 
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Chapter 2 

Literature Review 

2.1 Structural Controls of Mining Systems 

It is well-known that the incorporation of geological uncertainty is critical to the development 

of advanced modelling and optimization techniques. However, in order to establish suitable 

distributions for a given mineralized body, it is important to understand some of the main 

contributing factors that can drive this variability. Only then can an evaluation tool be used with 

sufficient confidence to develop and implement robust control strategies capable of stabilizing 

(and maximizing) system performance in response to unexpected changes. There are a number of 

structural controls inherent to mining systems and related business development models that can 

significantly affect how and when ore is mined and processed; this overview is focused specifically 

on geological and geometallurgical controls. 

Geological controls are fundamental to the formation, distribution and ultimately the quality 

of mineralization in mining systems, and can be determined from the district scale down to 

individual orebodies and even local mineralized zones. Ore deposits can be characterized in a 

variety of ways, and improving our understanding of them can help better predict potential spatio-

temporal changes in ore feed attributes. Deposit morphology, such as inclination, thickness, depth 

and geometry, can help in the selection of suitable mining methods (Nelson, 2011). Orebodies can 

be flat, inclined or steep; mineralization can be massive, tabular, or irregular, and; systems can be 

hundreds of meters wide, or follow along narrow vein sets (Herrington, 2011). Regardless of the 

mineralization style, these factors directly affect the planning and scheduling of mine development 

and production, as well as downstream processing parameters. 

The genetic model and deformation history of a deposit are critical to understand the expected 

composition and location of mineral assemblages, as well as the geotechnical attributes of the host 

rocks. They also provide clues as to the types and degrees of spatial variation that can be expected 

within and between mineralized zones, as well as the potential for new discoveries. For example, 

volcanogenic massive sulfide (VMS) deposits typically form in extensional settings at or 

immediately beneath the seafloor. Mineralizing fluids ascends along synvolcanic fault systems 
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from a magmatic heat source at depth, and precipitate metals in predictable zonation patterns based 

on differing solubilities as the fluids cool (Shanks & Thurston, 2012). In general, higher 

temperature metals such as copper ± gold drop out of solution first in the core of the hydrothermal 

system, and lower temperature metals such as zinc, lead and iron precipitate later in more distal 

areas to the fluid flow. However, these patterns can be obscured and/or altered by later stage 

alteration and mineralization events as the hydrothermal fluids evolve over time. Long-lived 

magmatic systems can also produce stacked ore lenses over tens of thousands of year following 

periods of quiescence and sedimentation that bury each mineralization episode, e.g. the Noranda 

VMS base metal ± gold camp, Quebec, Canada; see (Franklin, et al., 2005). 

Similarly, the distribution and variation of ore deposits are strongly affected by mineralization 

controls, i.e. fluid conduits and conditions that allow for the accumulation and/or concentration of 

ore minerals.  For instance, mineralized zones can follow along stratigraphic bedding planes, e.g. 

the Red Dog sedimentary exhalative (SEDEX) Pb-Zn(-Ag) deposit, Alaska, USA (Leach, et al., 

2005); concentrate within structural traps such as regional faults and folds, e.g. the Timmins gold 

camp, Ontario, Canada (Bateman, et al., 2008); or even be transported by post-mineralization 

processes such as faulting and debris flows, e.g. the Buchans VMS base metal camp, 

Newfoundland, Canada (Binney, 1987). Chemistry and dynamics of the host rocks and 

mineralizing fluids are also important to understand mineralogical variation and delimit different 

mineralized domains for a given deposit type. As an example, oxidation-reduction (a.k.a. redox) 

fronts are ultimately responsible for the supergene enrichment and related mineralogical variation 

observed in the world-class porphyry deposits of the Andean copper province (further described 

in Section 4.3). Similar weathering processes alter the mineralogical assemblages and concentrate 

metals in the important lateritic nickel ± cobalt class of deposits that form under warm and humid 

conditions in the tropical regions of the world (Freyssinet, et al., 2005). 

From a geometallurgical perspective, there are various factors that can significantly impact 

operating parameters and related policies for downstream processing, particularly for a 

heterogeneous ore deposit subject to geological and mineralogical complexities. While some 

deposits may contain single target ore minerals, e.g. orogenic lode-gold (Dubé, et al., 2017), others 

can be polymetallic in nature (e.g. base metal deposits). Moreover, complex ores often contain 



10 

 

multiple different mineral phases containing the same target element(s), each with different 

stoichiometries, crystal structures and/or redox states (i.e. mineral groups) that could drastically 

affect ore beneficiation process streams based on differing ore characteristics and thus 

metallurgical responses. As a result, the attributes of the deposit and contained minerals should 

ultimately dictate the extraction process and related parameters (Grammatikopoulos, 2018). In 

other words, deposits can exhibit large variations in terms of mineral speciation, abundances, grain 

sizes and textures, in addition to the liberation characteristics of the target mineral(s), all of which 

can directly influence final recoveries and product grades. Evaluation of mineral liberation vs. 

particle size is particularly important for determining the grinding energy (i.e. comminution 

parameters and related costs) required for beneficiation, flotation or gravity (Grammatikopoulos 

& Downing, 2020). For instance, certain coarser-grained minerals with particular textures may be 

well-liberated and exposed through typical comminution practices, but the same parameters 

applied to fine-grained target minerals, or those with more complex textures, may have little 

success. In addition to poor recoveries, this latter scenario may also result in undesirable 

entrainment of gangue minerals that effectively dilute the final concentrate grade (Meng, et al., 

2017; Grammatikopoulos & Downing, 2020). 

Appropriate mineral speciation and elemental deportment testwork plays a crucial role in 

helping determine the recovery potential of different ore domains (Grammatikopoulos & 

Downing, 2020), which is necessary for effective flowsheet development as well as the 

establishment of robust operational modes and associated policies. For example, in the case of a 

system with multiple valuable minerals, ideal grade-recovery of the first valuable mineral may 

require partial to complete rejection of a secondary target mineral (Jordens, et al., 2016; 

Grammatikopoulos & Downing, 2020). This has clear implications for flowsheet design and 

related process parameters, such as the potential need for secondary circuits, additional reagents, 

modified operating conditions, or the like. Moreover, such a scenario would likely have a negative 

impact on overall plant performance in response to unexpected changes in ore feed attributes 

caused by geological uncertainty; this underscores the importance of incorporating process 

mineralogy data into the design of suitable control strategies along the mine-to-plant profile. 



11 

 

While some ores benefit from multiple payable elements, others suffer from high levels of 

deleterious elements (i.e. impurities), such as arsenic, antimony or mercury, which can be 

detrimental to both health and the environment. This has significant implications not only for 

offgas emissions, capture/handling and tailings storage, but also for mining projects that float 

concentrates with the intention of shipping their product to international smelters and refineries. 

Because impurities are most often intimately linked to the target valuable minerals, operational 

risks here include high penalty element costs, or the rejection of the concentrate altogether. Recent 

reviews have stressed the increasing importance of these issues for global supply and demand 

chains in the context of the copper industry due to projected increases in arsenic levels associated 

with a trend towards complex sulfide-rich ores, especially from the Andean Copper Province 

(Perez, et al., 2021; Flores, et al., 2020). Similar processing challenges associated with arsenic-

enriched systems are also abound in the gold sector, particularly with respect to sediment-hosted 

refractory ores, e.g. (Asamoah, 2021; Wang, et al., 2019; Thella, 2018). 

This research will expand on several examples that highlight the effect of ore variability 

caused by geological and geometallurgical controls on downstream processing, including poorly 

documented and complex tailings of mixed origin, variable chloride content in oil sands, and 

complex As-rich copper and refractory gold ores. However, the same concepts hold true across 

many deposit types and commodity sectors, as indicated by the following (non-exhaustive) review 

of various recent studies. Peña-Graf et al. (2021) stress the importance of using process mineralogy 

to delineate chromite ore domains for the development of effective operational modes, particularly 

with trends towards depletion of high-grade deposits, continued deterioration of ore quality and 

increasing metallurgical complexities. Due to the variable characteristics of low-grade chromite 

ores caused by elemental substitutions (e.g. Cr:Fe ratio) and increased silicate gangue minerals, 

the additional grinding energy required for liberation results in poorer recoveries owing to excess 

ultrafine particles that report to the tailings stream. 

Zhu et al. (2020) show that process mineralogy is critical to the beneficiation of spodumene, 

an important Li-bearing pyroxene mineral common to (± pegmatitic) granitoid rare earth element 

(REE) deposits. Results indicate the variable effects of transition metal (e.g. Fe, Mn, Cr) 

substitutions on crystal surfaces affecting response to froth flotation with sodium oleate (NaOL) 
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in ores from the Koktokay Mine, Xinjiang, China; this is notable for ore domain classifications 

given the high potential variability of elemental distributions in REE deposits (Van Gosen, et al., 

2017). Similarly, recent work by (Jordens, et al., 2016) couples automated mineralogy 

(QEMSCAN), geochemistry (ICP-MS) and first-order kinetic modelling with lab-scale flotation 

testwork to show a spectrum of flotation behaviours for a complex suite of target rare earth 

minerals in preconcentrated ore from the Nechalacho REE deposit, N.W.T., Canada. 

Xie et al. (2022) report on a related class of deposits with a geochronological and geochemical 

characterization study of the Baishitouwa quartz-wolframite vein-type deposit, Southern Great 

Xing’an Range tungsten (W) belt, NE China. The work indicates two distinct stages of wolframite 

mineralization resulting from different crystallochemical substitution mechanisms as the 

hydrothermal ore-forming fluids evolved during fractionation of the underlying W-rich granitoid 

source rocks. The ore types are variably mixed throughout the deposit, but can be distinguished 

based on trace element compositions: wolframite (I) contains notably higher Nb, Ta, Sc, Zr, Hf, 

Pb and Eu concentrations, but is depleted in Ti, Sn, Cr and Th compared to wolframite (II). Using 

process mineralogy to delimit ore domains will be especially important for flowsheet development 

due to the fine-grained nature of wolframite (II) requiring increased grinding for liberation; micro-

flotation tests have shown that flotation of fine wolframite and quartz particles can be problematic 

with activated quartz reporting to, and thus diluting, the concentrate grade (Meng, et al., 2017). 

With the proliferation of Industry 4.0 and the clean energy transition, market demand for a 

number of rare critical metals is increasing at unprecedented rates. As many of these metals are 

sourced as by-products from complex polymetallic deposits (e.g. ~70% of global cobalt production 

is sourced from stratiform sediment-hosted As-bearing copper ores of the Central African 

Copperbelt; U.S. Geological Survey, 2021), there is an abundance of additional examples that 

could have been described. The key here is that as ‘easier’ near-surface and giant/world-class 

deposits of all types continue to be depleted, or as rarer commodities are sought, the industry will 

be increasingly challenged to source ores from more difficult and complex mineralized systems in 

order to meet global demand. In addition to technological advancements, it is clear from these 

recent examples that suitable computational tools are needed to address these issues and help with 
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project evaluation, as well as the design and implementation of effective control strategies along 

the mine-to-plant profile in response to geological uncertainty. 

2.2 Monte Carlo Methods via Random Number Generation 

Random Number Generation (RNG) and related simulation methods (i.e., Monte Carlo) have 

grown in importance for many scientific fields over the past two decades with explosive advances 

in computing power and technological frameworks. The generation of random numbers is central 

to a multitude of statistical and computer-based simulation methods. The most primitive of 

examples of RNG might include the physical actions of flipping a coin (binary) or rolling a set of 

dice (combinatorial). However, such methods would be much too cumbersome when large sets of 

random numbers are required or for the purpose of modelling uncertainty in complex systems. 

There are two main types of RNG: 1) those based on physical phenomena (i.e., (sub-)atomic 

interactions) and linked to entropy derived from the effects of quantum physics (e.g., radioactive 

decay, electromagnetic noise, etc.), and; 2) those derived from computer-based algorithms 

(L'Ecuyer, 2017; Knuth, 1998). The former physical type is considered truly random (TRNG) 

because it depends on natural, fully stochastic processes (in theory) but typically requires a 

transducer, amplifier and digital converter in order to record the signal. Not only is such a setup 

highly inconvenient and time-consuming for most practical purposes but the equipment used to 

capture the data could introduce their own systemic form of bias (L'Ecuyer, 2017). The latter 

computational form of number generation is considered pseudo-random (PRNG) because it is 

actually deterministic in nature and generates sequences of pseudo-random numbers that emulate 

a uniform distribution of independent random variables over the unit interval (0, 1) (L'Ecuyer, 

2015; Gentle, 2003). It is from these basic sequences that pseudo-random numbers are derived for 

other types of distributions (e.g., Poisson, Weibull, etc.) (Gentle, 2003). 

Probability theory is a subdivision of mathematics that defines random variables with respect 

to probability spaces which assign probability measures (between 0 and 1) to sets of outcomes 

termed sample spaces (L'Ecuyer, 2015). This concept is fairly abstract and therefore the coding of 

truly random (definite and exact) realizations on a computer has never been clear (L'Ecuyer, 2015), 

hence the deterministic approach which has been suitable for most applications (Knuth, 1998). 
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The implementation of RNG is integral to Monte Carlo simulation (and other probabilistic 

algorithms), which can be loosely defined as a set of methods that use a series of random number 

‘experiments’ to evaluate and approximate the behaviour of systems. As the experimental units 

are generated at random, there is a strong requirement in the literature that these input data are 

strictly reproducible given the same initial conditions (Gentle, 2003). 

In the mining context, Monte Carlo methods are often used for numerical experimentation 

with the key goals of performing a sensitivity analysis to validate a model, optimize parameters 

and/or evaluate risk indicators within a real-world process or system (Kleijnen, 2012). The 

methods produce output probability distributions, and associated target statistics are calculated to 

analyze and better understand specific systems. 

The application of Monte Carlo simulations in combination with geological sampling 

campaigns is especially useful in the evaluation of complex mining systems because of the high 

degree of uncertainty inherent to mineral deposits (geological uncertainty), economic conditions 

(volatile commodity markets) and potentially unforeseen future cost factors. While conventional 

methods involve the creation of models that simply evaluate best- and worst-case scenarios, the 

Monte Carlo approach allows for the analysis of many (e.g. tens or hundreds) equiprobable 

scenarios that span the entire spectrum of possible feasible outcomes. This allows for the 

evaluation of the system-wide effects caused by uncertainty via monitoring of key performance 

indicators (KPIs), such as net present value (NPV) or internal rate of return (IRR); confidence 

intervals can then be built from the resultant distributions for target variables of interest (Guarnera 

& Martin, 2011). Monte Carlo simulation can thus be regarded as a form of stochastic analysis in 

that risks can be weighed, and decisions made based on a robust model that describes the process 

or system as a whole. This is of particular significance to the development of quantitative 

frameworks that incorporate geostatistical and/or geometallurgical attributes into strategic 

planning and decision-making pathways. 

2.3 Geostatistical Estimation and Simulation 

Geostatistics is a subclass of statistics that describes and estimates unknown values based on 

spatial ± temporal characteristics. The development of geostatistical methods and tools originated 

in the mining industry in the 1950s to early 1960s, particularly to estimate the distribution of ore 
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in the gold sector of South Africa (Pawar, 2003; Abzalov, 2016). While these methods are based 

purely on statistical principles and have been applied across many scientific disciplines, the 

techniques are termed ‘geostatistical’ due to their early and widespread implementation in geology 

(Pawar, 2003). Geostatistical methods have wide-reaching applications in mining, including 

mineral resource estimation, evaluation of model uncertainty, risk quantification, and 

determination of optimal spatial patterns, such as drillhole and sample spacings (Abzalov, 2016; 

Wackernagel, 2003). 

In the context of resource estimation, an unknown value is assumed to be a random variable 

with the probability of having a certain value given by the cumulative distribution function at that 

particular location (Pawar, 2003). Linear univariate geostatistical estimators, such as the popular 

kriging methods (Krige, 1951; Krige, 1952), model the spatial continuities of regionalized 

variables and integrate these parameters (e.g. covariance) into regression techniques used for 

spatial interpolation between sample locations (Abzalov, 2016). Equivalent multivariate 

techniques, e.g. co-kriging, are used when there are multiple variables of interest to be estimated 

at each location in order to amalgamate the different data types into a single coherent model 

(Abzalov, 2016; Wackernagel, 2003). 

Initial project evaluations are typically based on geologic block models produced via kriging 

(or its variants) of the target variable(s) of interest from sparsely distributed sample data collected 

during exploration or early infill drilling campaigns. However, while a necessary starting point, 

these localized resource estimates are deterministic in nature and only provide the best estimate 

(in a least squares sense) from a single set of data points. Similar to other weighted average-based 

estimators, this results in smoothing effects whereby small values are overestimated and large 

values are underestimated, a consequence of the information effect (Vann, et al., 2002; Journel & 

Huijbregts, 1978). In other words, the estimated variance is reduced to below that of the true value, 

and neither the variogram nor the histogram are exactly reproduced (Yamamoto, 2005). Moreover, 

geological uncertainty cannot be properly assessed as kriging variance is strongly controlled by 

sampling patterns without taking into account the magnitude of measured values that inform the 

estimated values (Ortiz, 2020). 
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To mitigate these issues, a variety of geostatistical simulation methods have been developed 

that provide probability maps for the variable(s) of interest. The primary aim of these stochastic 

techniques is to generate a series of equiprobable statistical realizations from which a distribution 

of possible values can be randomly drawn for the target variable(s) at each unknown location, i.e. 

they are a form of Monte Carlo simulation. Each realization is either accepted or rejected based on 

its ability to honour the original sample data values and geological interpretations, and to reproduce 

the histogram (basic statistics) and variogram (spatial variability) from the measured dataset (Ortiz, 

2020). Unlike the estimation methods which aim to reduce overall residual error, this definition of 

quality results in a set of plausible realizations that cover a range between optimistic and 

pessimistic scenarios. Therefore, confidence intervals can be built to quantify the geological 

uncertainty that may be experienced in downstream operating processes in order to conduct 

appropriate risk assessments. 

In practice, implementation of geostatistical simulation requires the specification of a 

stochastic model, i.e. a random field model that describes the spatial distribution of the 

regionalized (or co-regionalized in the multivariate case) variable(s) of interest, and an algorithm 

(Paravarzar, et al., 2015; Chilès & Delfiner, 2012). There are a number of different families of 

simulation algorithms from which to choose, mainly depending on the nature of the variable(s) 

under investigation (Ortiz, 2020; Abzalov, 2016; Vann, et al., 2002): 

1. Continuous variables (e.g. ore grades, deleterious element concentrations, unit 

thickness) are typically simulated using Gaussian-based methods such as sequential 

Gaussian simulation (SGS) or the turning bands method; 

2. Categorical variables (e.g. geologic units/structures, faults) are most often modeled 

using non-parametric methods such as sequential indicator simulation (SIS), and; 

3. Object-based variables i.e. defined by location, shape and orientation (e.g. mineral 

grains) are usually handled using point processes or Boolean methods. 

This simplified list is by no means exhaustive as there are many other relevant and emerging 

simulation approaches that can be applied depending on the specific context; there are a number 

of great references available in the literature that review the details of the most pertinent and well-
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established methodologies in the mining sector, e.g. (Chilès & Delfiner, 2012; Chilès & 

Lantuéjoul, 2005; Lantuéjoul, 2002). 

It is noteworthy that simulation algorithms can also be distinguished based on conditioning to 

the existing measured data points. A realization is said to be ‘conditional’ if it reproduces the 

original sample values at the sample locations (Ortiz, 2020). However, there is a key distinction 

between methods with built-in conditioning (e.g. sequential methods) and those that require an 

additional step to condition the simulated estimates to the sample values (e.g. turning bands) 

(Vann, et al., 2002; Emery, 2008). Further details on the SGS and turning bands methods for the 

simulation of continuous variables are provided in Sections 3.1.1 and 3.1.2, respectively. 

Given the high risk nature of mining projects, it becomes increasingly important to understand 

the technical, operational, and financial deviations that can result from geological uncertainty as a 

project progresses from early evaluation towards detailed planning and development (similarly for 

continuous improvement and reengineering projects). As a result, geostatistical simulation can be 

an invaluable risk assessment tool by improving the representation of potential variability that 

might be expected from ore feeds upon extraction. This can have far-reaching implications for ore 

block classifications and strategic mine planning, as well as other decision-making processes such 

as development of suitable operational policies and related process control strategies. 

2.4 Multivariate Regression Methods 

Multivariate statistics is a branch of statistics dealing with methods that examine the 

simultaneous effect of multiple variables, and which are traditionally classified based on the notion 

of (co-)dependency between variables (Marinković, 2008). Similar to many other computational-

based fields, this area of research has expanded greatly over the past few decades due in large part 

to significant technological advances in computing power and data frameworks. Unlike univariate 

and bivariate analyses, which usually focus on simple population estimators (e.g., mean, variance, 

etc.) or the pairwise relationship between two variables, multivariate techniques are centered 

around the analysis of covariances (or correlations) that reflect the extent of relationships between 

three or more variables, as well as similarities indicated by relative distances in 𝑛-dimensional 

space (Marinković, 2008). 
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There are two main types of multivariate statistical methods (Marinković, 2008): 

1. Dependence methods, which aim to explain or predict one or more dependent 

(response) variables from a set of independent (predictor) variables (e.g. multiple 

linear regression), and; 

2. Interdependence methods, which are less prediction-oriented and seek to provide 

information about the underlying data structures by simplifying through data reduction 

and developing taxonomical classifications (e.g. principal component analysis). 

Parts of this research touch mainly on the former class of methods, with emphasis on regression 

techniques. Specifically, multivariate regression analysis aims to predict values of one or more 

response variables from a set of predictor variable values, and can also be used to assess the relative 

importance of each independent variable on the resultant predictions (Johnson & Wichern, 2007). 

In the case of continuous variables, there is a variety of regression methods from which to choose, 

both linear and non-linear (e.g. polynomial); this overview only deals with the linear methods. 

Depending on the nature and number of variables under investigation, as well as the primary 

objective of the analysis, there are several linear methods that can be applied such as multiple 

linear regression, partial least squares, and canonical correlation analysis. Regardless of the 

selected approach, all of these variations belong to the family of least squares (LS) methods, which 

likely represents the most well-established and popular set of techniques in modern classical 

statistics. Initially developed at the dawn of the 19th century, the LS methods are now commonly 

used to estimate the numerical values of the parameters to fit a function to a set of data and 

characterize the statistical moments of these estimates (Abdi, 2010a). The simplest version is 

known as ordinary least squares (OLS), from which a number of extensions have been derived 

including weighted, alternating and partial LS variants. 

Multiple linear regression (MLR) is based on OLS, which relies on the normal equations to 

estimate the free parameters (i.e. the intercept and regression coefficients) of the line or plane of 

best fit, meanwhile respecting a particular set of constraints. The optimal solution (in a least 

squares sense) is that which minimizes a target metric such as the sum of squared errors, i.e. the 

residual distances from the regression line or plane. The methodology can be interpreted from a 

geometrical perspective as an orthogonal projection of the data vector(s) onto the space defined by 
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the independent variable(s) (Abdi, 2010a). Because MLR is a straightforward extension of simple 

linear regression, it is relatively easy to understand and implement; as such, the approach has a 

long history of successful applications across many scientific disciplines. 

In the earth sciences alone, MLR has been applied to many varied contexts, such as evaluation 

of landslide potential from remote sensing imagery (Zhang, et al., 2012), soil characterization 

studies (Ataee, et al., 2018; Egbe, et al., 2017), water quality assessment (Chenini & Khemiri, 

2009), hydrogeologic basic characterization (Lystrom, et al., 1978), land and water use studies 

(Stokes, et al., 2017), among others. Specific to geology and mining, a number of recent studies 

highlight the potential for MLR applications across the mineral value chain, including: 

• Development of geophysical-based exploration models (Feizi, et al., 2021); 

• Hydrocarbon reservoir characterization (Almeida & Carrasquilla, 2017; Eskandari, et al., 

2004) and production potential (Niu, et al., 2021); 

• Prediction of geomechanical properties (Hu, et al., 2010) and rock fragmentation 

(Enayatollahi, et al., 2013); 

• Blasting dust assessment in coal operations (Roy, et al., 2011); 

• Modelling of semiautogenous grinding (SAG) systems (Villanueva, et al., 2020); 

• Prediction of geometallurgical ball mill throughputs (Both & Dimitrakopoulos, 2021); 

• Analysis of operating parameters and chromite flotation performance (Deniz, 2020); 

• Estimation of gold recovery from cyanide leaching (Azizi, et al., 2012), and; 

• Metal extraction efficiency through IoT systems (Maheswari, et al., 2020). 

However, the implementation of MLR is not without its limitations as it maintains a strong 

set of statistical properties and related constraints. For instance, the assumption of linearity alone 

can make it a poor choice for modelling many complex systems, particularly in the mining space 

where extracted ores undergo a number of sequential unit separation processes, each with their 

own set of parameters. Nonetheless, an overview of the MLR approach is important to better 

understand the basis of, and extension to, partial least squares (PLS) regression which is developed 

in detail for the oil sands case study presented in Section 4.2. Further details on the mathematical 

basis of MLR models, related implementation considerations, and alternative approaches are 

provided in Section 3.2. 
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2.5 Machine Learning Approaches 

2.5.1 General Overview 

Artificial intelligence (AI) is a branch of computer science focused on the development of 

‘intelligent agents’, i.e. systems that are capable of perceiving their environment and acting in such 

a way that maximizes the probability of achieving a set of goals (Poole, et al., 1998). Machine 

learning (ML) is a division of AI concerned with the design of algorithms that aim to optimize the 

performance of a specific task by learning from examples and/or past history (Alpaydin, 2014). In 

other words, machine learning comprises a set of techniques that can be used to solve specific 

problems within a given system. With digitalization and automation trends (e.g. Industry 4.0), 

coupled with significant improvements in computing power, the increasing availability of large 

datasets (i.e. ‘big data’) has driven a recent surge in ML algorithm research and development. As 

a result, ML approaches are now successfully applied to a variety of classification, regression, 

clustering, and dimensionality reduction tasks (Schmidt, et al., 2019; Marsland, 2015). In 

particular, ML techniques are capable of extracting hidden relationships from large multivariate 

datasets accumulated in complex and dynamic environments (e.g. industrial systems) (Schmidt, et 

al., 2019; Wuest, et al., 2016). A key advantage of ML algorithms over classic statistical methods, 

such as multiple linear regression, is the ability to model and learn non-linear relationships. This 

is particularly important to industrial systems, wherein the final system outputs are usually 

produced from the initial inputs via a series of coordinated unit processes, each with their own 

specific operating policies and related parameters. 

Machine learning tasks can be divided into three main categories, including supervised, 

unsupervised, and reinforcement learning techniques (Figure 2.5.1). Supervised learning involves 

model training with paired data for both input and target output variables (i.e. labeled examples) 

in order to map relationships between the two spaces; the derived function is then used to classify 

the example, or predict a continuous value (regression). In unsupervised learning, model training 

is carried out on unlabeled examples, i.e. input data have no corresponding target output value(s). 

Unsupervised methods can also be further subdivided into clustering and association tasks. 

Whereas clustering entails the grouping of examples based on similarities (distance in the sample 

space), an association rule determines relationships between variables such as the likelihood that 
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the value of a particular feature can be predicted given that of another feature (Chaudhary, et al., 

2020). Reinforcement learning falls somewhere between supervised and unsupervised learning as 

the algorithm is told when the answer is wrong, but not how to correct it (Marsland, 2015); the 

technique explores multiple different sequences in order to maximize a reward by combination of 

optimal or sufficiently good individual actions (Schmidt, et al., 2019). There are also a number of 

hybrid or ensemble ML methods that combine elements from any of these base model approaches. 

 

Figure 2.5.1. General classification scheme for different machine learning approaches. 

Compared to other industries, the mining sector has been relatively slow to adopt machine 

learning approaches in common practice (Narendran & Weinelt, 2017; Ali & Frimpong, 2020). 

Regardless, a recent surge in research and development over the last few years has shown that ML 

techniques can be successfully applied to a broad spectrum of the mineral value chain, from 

greenfield exploration through to production, mine closure, and site reclamation. There are a 

number of review papers available that summarize a variety of ML applications in the mining 

space, e.g. (Ali & Frimpong, 2020; Jung & Choi, 2021; Dumakor-Dupey & Arya, 2021; McCoy 

& Auret, 2019; Jang & Topal, 2014), including mineral exploration and resource evaluation, 

strategic mine planning, machine operations and related automation, drilling and blasting 

optimization, and ore beneficiation, among others. 

However, there is little published work related to the integration of ML techniques into mine-

to-plant DES framework strategies. This research intends to employ an artificial neural network, a 

type of supervised ML algorithm, for the classification of gold ores based on predicted 

metallurgical response to standard cyanidation and recovery practices from geological data. These 
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predicted proportions of conventional and refractory ores will then be fed into the current DES 

framework to evaluate system response to the significant geological uncertainty expected from 

varied ore sources (see Section 4.4). As discussed above, a specific advantage of this approach 

over the predictive PLS regression algorithm used in Section 4.3 is the ability to map non-linear 

relationships, as would be expected for sequential unit separation processes, between the predictor 

and response variable sample spaces. 

2.5.2 Artificial Neural Networks 

According to recent reviews, artificial neural networks (ANNs) are among the most popular 

ML approaches used in many industries, such as manufacturing (Fahle, et al., 2020), maintenance 

(Carvalho, et al., 2019), solid-state materials (Schmidt, et al., 2019), and mining (Ali & Frimpong, 

2020; Jung & Choi, 2021). The underlying concept for ANN models is based on the functioning 

of the human brain, wherein activated neurons (cell structures) ‘fire’ to transfer electrical signals 

(i.e. information) to other parts of the brain via synaptic connections. The term ‘ANN’ actually 

refers to a broad umbrella of models that determine mappings between inputs and outputs by 

composing differentiable functions into any number of directed acyclic graphs (Murphy, 2022). 

The simplest of these arrangements is a chain called a feed-forward neural network or multilayer 

perceptron (MLP), which is one of the most suitable ML techniques for structured or tabular data 

as it assumes the input is a fixed-dimensional vector (Murphy, 2022). Moreover, as a supervised 

ML technique, MLPs can be applied to a wide variety of classification and regression tasks. 

Research into ANN applications in the mining industry has exploded across the entire value 

chain over the past two decades. Recent reviews have shown that neural networks and deep 

learning models account for ~25% of all ML approaches used in the mining space, with support 

vector machines (23%) and ensemble methods (22%) close behind (Jung & Choi, 2021). ANNs 

have been especially useful in mineral resource estimation, e.g. (Jalloh, et al., 2016; Kaplan & 

Topal, 2020; Abuntori, et al., 2021), comprising ~46% of the ML techniques used in this area 

(Dumakor-Dupey & Arya, 2021). Other prominent applications include mineral prospecting and 

mapping (Leite & de Souza Filho, 2009; Oh & Lee, 2010), geophysics and remote sensing (Du, et 

al., 2018; Yadav, et al., 2021), ore classification (Xiao, et al., 2019; Yang, et al., 2020), drilling 

and blasting operations (Lashari, et al., 2019; Al-Bakri & Sazid, 2021), mining method selection, 
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equipment utilization and production planning (Baek & Choi, 2019; Pham & Phan, 2016), ore 

beneficiation and mineral recovery (Wang & Han, 2015; Nie, et al., 2021), and mine site 

reclamation (Amato, et al., 2015; Abaidoo, et al., 2019), among others. 

To elaborate from that discussed in the previous section, a case study focused on the regional 

coordination of refractory gold sources incorporates predictive MLP regression modelling into the 

current DES framework to evaluate system response to geological uncertainty caused by varied 

ore sources (see Section 4.4). In this work, gold recoveries predicted from geochemical and 

mineralogical data are used to classify ores into free-milling and refractory types based on expected 

metallurgical response. The resultant proportions are then fed into the DES portion of the model 

for the development of robust operational policies and related control strategies to stabilize plant 

performance against unexpected changes in ore feed attributes. 

2.6 System Dynamics via Discrete Event Simulation 

System dynamics (SD) is an approach to conceptualize and quantify causal relationships 

between variables through model development and subsequent simulations to capture key decision 

processes within dynamic systems (O'Regan & Moles, 2006; Alpagut & Çelebi, 2003). The 

methodology is particularly useful in the design and testing of alternative operational policies, 

associated tradeoffs and resultant short to long-term impacts (Alpagut & Çelebi, 2003). Developed 

in the 1950s, SD has been applied in many areas of research, including business, medicine, energy 

and environment, and industrial engineering applications. Despite the many interrelated variables, 

complex information-feedback cycles within systems, and high degree of uncertainty inherent to 

any mining operation, SD modelling techniques have not been widely implemented across the 

mining sector; there have nonetheless been certain niche applications related to production 

planning and conveyance process capacities (Alpagut & Çelebi, 2003). Some of the earlier 

research in mining system dynamics dates back to the 1980s in the coal industry and focused on 

the allocation of manpower and equipment availability to optimize these managerial policies 

(Alpagut & Çelebi, 2003; Wolstenholme & Holmes, 1985). 

The flexibility of discrete event simulation (DES) frameworks is valuable to a system 

dynamics approach because it allows for the simulation of interactions between critical parameters 

and processes in response to random variations, e.g. geological uncertainty. Computer-based DES 
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models are capable of optimizing tradeoffs between available operational policies, and the 

thresholds that control timing of their implementation (Navarra, et al., 2019; Navarra, et al., 2017b; 

Saldaña, et al., 2019). A powerful aspect of DES is the ability to assess risk by simulating hundreds 

or thousands of operating days to identify potential deficiencies or bottlenecks. Strategic decisions 

can then be made to introduce operational buffers in order to mitigate the identified risk factors. 

DES frameworks are critical tools to streamline and support decision-making processes in the 

design, development and production stages of industrial systems. The distinguishing feature 

between mining and other industrial systems is the introduction of geological uncertainty, i.e. the 

natural (random) variability associated with the abundance and distribution of host-rock mineral 

assemblages in an orebody. DES supports the incorporation of random distributions, i.e. it is a 

form of Monte Carlo simulation (Altiok & Melamed, 2007), and thus can be used to observe the 

potential effects of geological uncertainty on mining system dynamics. 

Key performance indicators (KPIs) can be monitored within a DES model to simulate and 

optimize system-wide response to, for example, unexpected trends in the mineral feed 

characteristics. Sets of testing or validation data can also be simulated in order to build confidence 

intervals and support strategic decision-making, e.g. changes in operating practices or the 

installation of new equipment. The key to developing appropriate DES frameworks to model 

mining system dynamics is the establishment of alternate modes of operation that can be employed 

under changing conditions or as critical thresholds are crossed (Navarra, et al., 2018; Navarra, et 

al., 2017a). Distinct geometallurgical domains or units are then defined according to how the 

various classified mining blocks are expected to behave under each of the available modes 

(Navarra, et al., 2018; Alruiz, et al., 2009; Suazo, et al., 2010). 

Though well-established in many industrial engineering practices, the use of DES frameworks 

in mining remains in its infancy, with earlier implementations mostly focused on material 

management (Vagenas, 1999), equipment selection (Awuah-Offei, et al., 2012) and availability 

(Gbadam, et al., 2015), transport logistics (Greberg, et al., 2016), refuge station planning (Tarshizi, 

2015) and continuous mine system simulation (Shishvan & Benndorf, 2014). Some of the earliest 

mine-to-mill modelling efforts using DES include the coupling of solar radiation with a semi-



25 

 

autogenous grinding (SAG) mill (Pamparana, et al., 2017) and spectral ore type imaging 

applications (Nageshwaraniyer, et al., 2018). 

Recent work focused on concentrator and smelter dynamics has stressed the importance of 

coupling alternate modes of operation and mass balance with DES in order to develop a robust 

framework under changing conditions, or as critical thresholds are crossed (Navarra, et al., 2019; 

Navarra, et al., 2017a; Navarra, et al., 2017b). The versatility of this approach is further 

underscored by a number of recent DES studies dealing with heap leach processes (Saldaña, et al., 

2019), smelter data acquisition modernization (Navarra, et al., 2020), tailings retreatment (Wilson, 

et al., 2021a), oil sands processing (Wilson, et al., 2021b), gold extraction reagent control 

(Órdenes, et al., 2021), rougher flotation cell dynamics (Saldaña, et al., 2021), mine-to-smelter 

integration for regionalized copper systems (Wilson, et al., 2021c), and mine-to-mill integration 

for regional development of refractory gold systems (Wilson, et al., 2022a). 
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Chapter 3 

Integrated DES Frameworks 

Mining project development carries a substantial level of risk compared to many other 

industrial systems due to the significant geological uncertainty inherent to all orebodies formed 

through natural processes. As a result, this uncertainty must be captured by modelling efforts in 

order to support all levels of decision-making as a project progresses from early scoping through 

to detailed feasibility level studies, system design and implementation; this is equally critical for 

continuous improvement and re-engineering of active operations. There are a variety of ways to 

represent geological uncertainty, including geostatistical simulations as well as other multivariate 

analytical techniques (via classical statistics or ML algorithms) coupled with Monte Carlo 

simulation. Regardless of the selected approach, the key is to ensure the resulting probability 

distributions are properly integrated with system process models such that suitable risk assessment 

can be undertaken by monitoring system performance in response to deviations from the expected 

ore feed attributes. 

To highlight the concept, this chapter first provides detailed summaries of select geostatistical 

simulation methods, multivariate regression analysis, multilayer perceptron modelling, and finally 

discrete event simulation. An ensuing discussion identifies how this research embodies the 

importance of generalizable and flexible frameworks that can integrate advanced quantitative 

methods into a DES framework to support the development of novel control strategies in the mine-

to-mill (or smelter) profile through a series of developed case studies. 

3.1 Geostatistical Simulation 

Spatial uncertainty within a model can be evaluated using geostatistical simulation methods 

that generate a set of equiprobable realizations of the spatial variability of each variable, as well 

as relationships between variables (Emery, et al., 2016; Emery, 2008; Emery & Lantuéjoul, 2006). 

To simulate these stochastic realizations, practitioners require a random field model and an 

algorithm (Chilès & Lantuéjoul, 2005). The most straightforward and commonly used is the 

Gaussian random field model, which is characterized by multivariate normal distributions (Emery, 
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2008). There is a multitude of proposed algorithms from which to choose; however, many of these 

options have limitations on either the number of locations or the spatial configuration of the 

locations where these random fields can be simulated (Emery, 2008; Emery & Lantuéjoul, 2006). 

One way of overcoming these limitations is to use an approximate algorithm (Paravarzar, et 

al., 2015; Emery, et al., 2016); two of the most suitable such approaches for continuous variables 

include sequential gaussian simulation (SGS) (Deutsch & Journel, 1998) and the turning bands 

method (Matheron, 1973). These techniques use random number generation to generate the 

statistical scenarios independently of each other, and thus are considered a type of Monte Carlo 

simulation. Both approaches fall within the category of conditional simulation, which implies that 

each simulated realization preserves the local spatial averages and variances of the original dataset 

(Navarra, et al., 2018). However, a key difference is that unlike SGS, the turning bands method 

applies non-conditional simulation as a step towards conditional simulation. 

Both the SGS and turning bands algorithms can be used to simulate either regionalized 

(univariate) or co-regionalized (multivariate) variables of interest. However, a problem with joint 

simulation (co-regionalized variables) is the need to determine cross-covariance functions that 

model the relationships between these variables (Emery, 2008). Considering a stationary vector 

random field, 𝐘 = {𝐘(𝐱): 𝐱 ∈ 𝐃}, where 𝐃 is the defined sample domain and 𝐱 is a generic location 

within 𝐃, and assuming random values are mean-centered and multivariate normal, these 

distributions are described by the matrix of direct and cross-covariances of the components of 𝐘 

for a given separation vector 𝐡 (Paravarzar, et al., 2015; Emery, et al., 2016): 

 𝐂(𝐡) = 𝔼{𝐘(𝐱)𝐘(𝐱 + 𝐡)𝐓}, (3.1.1) 

in which 𝔼 is the expected stochastic value operator. There are many methods to model simple and 

cross-covariances, but for simplicity purposes this description considers only the linear model of 

co-regionalization of the form (Emery, 2008; Wackernagel, 2003): 

 

𝐂(𝐡) =  ∑ 𝐁𝒏𝜌𝑛(𝐡)

𝑵

𝒏=𝟏

, (3.1.2) 

in which {ρn, n = 1,…,N} represents a set of nested covariance functions, {Bn, n = 1,…,N} denotes 

a set of symmetric co-regionalization matrices, and h is the lag separation distance between points. 
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The stationarity hypothesis can also be weakened to consider generalized covariances instead of 

ordinary covariances (Emery, 2008). 

3.1.1 Sequential Gaussian Simulation (SGS) 

Developed by Journel and his graduate students at Stanford in the early 1990s (Deutsch & 

Journel, 1992; Gómez-Hernández & Journel, 1993; Verly, 1993), SGS has since become one of 

the most widely used algorithms for conditional simulation. As a natural extension of (co-)kriging 

estimation methods, the technique has gained popularity owing to its relative simplicity and 

straightforward implementation (Paravarzar, et al., 2015). In short, SGS aims to generate a series 

of equiprobable statistical realizations by reproducing the spatial attributes that relate multiple 

locations as identified by simple kriging. In other words, simulated values are drawn from the local 

Gaussian probability distribution defined by the expected (kriging) mean and variance for each 

random variable (Egaña & Ortiz, 2013). Spatial correlation is imposed via Bayesian principles by 

sequentially conditioning the probability distribution at a given location (i.e. node) on the 

previously simulated values at other locations (Egaña & Ortiz, 2013; Deutsch & Journel, 1998). 

Considering a sample domain 𝐃 composed of 𝑚 locations, the SGS algorithm simulates the 

vector random field 𝐘 at each successive location 𝐱𝑖 (with 𝑖 = 1, … , 𝑚), as follows (Paravarzar, et 

al., 2015): 

 𝐘(𝐱𝑖) = 𝐘𝑆𝐶𝐾(𝐱𝑖) + √𝚺𝑆𝐶𝐾(𝐱𝑖) 𝐔𝑖, (3.1.3) 

in which 𝐘𝑆𝐶𝐾(𝐱𝑖) is the simple co-kriged estimate for 𝐘(𝐱𝑖) acquired using the pre-existing data 

in addition to the simulated values from previously visited sample nodes, i.e. 𝐘(𝐱1), … , 𝐘(𝐱𝑖−1), 

as conditioning data; 𝚺𝑆𝐶𝐾(𝐱𝑖) is the variance-covariance matrix of the associated co-kriging 

errors, and; 𝐔𝑖 is a standard Gaussian vector with independent components. 

The overall implementation can be summarized as follows (Egaña & Ortiz, 2013): 

1. Decluster sample data to obtain a representative distribution (where applicable); 

2. Transform the sample data to a standard normal distribution (i.e. normal or 𝑧-scores); 

3. Compute the experimental variogram(s) of normal scores and fit a model; 

4. Verify that the multi-Gaussian assumption is reasonable; 
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5. Proceed with the simulation (as defined above) by: 

a. Defining a grid and visiting each of the nodes in a random path; 

b. At each node, simple kriging is performed using the sample data and simulated 

values from previously visited nodes within a defined search space; 

c. A new simulated value for the current node is randomly generated by drawing 

from the Gaussian distribution established by the previous kriging step; 

d. Similarly, this new value is used to condition all subsequent nodes, and; 

6. Back-transform the simulated values to the original sample space (i.e. distribution). 

Despite the clear advantages of a straightforward implementation and successful applications 

across the mining spectrum, a couple important drawbacks of the sequential approach include a 

high computational cost and potential accuracy issues. A number of variants have been developed 

to address the computational aspect, e.g. (± collocated) co-kriging in a moving neighbourhood. 

Such an approach restricts the use of sample and conditioning data to a space defined by a maximal 

search radius around the target node, as well as a maximum number of data and simulated values 

to be used for conditioning (Paravarzar, et al., 2015). However, it has been shown that appropriate 

selection of these parameters is critical to the accuracy and performance of the simulation model 

(Emery & Peláez, 2011). Other recent studies have also proposed using a constant multigrid path 

with increased neighbourhood size for generating all realizations in order to accelerate sequential 

simulation times (Nussbaumer, et al., 2018). 

Another alternative is to use a different simulation technique altogether; some studies have 

shown other methods (e.g. continuous spectral or turning bands) to perform better in terms of 

accurately reproducing the variogram or covariance matrix, in addition to reducing computational 

cost and improving numerical stability (Emery & Peláez, 2011; Nazari Ostad, et al., 2018). 

3.1.2 Turning Bands Method 

Introduced by Matheron (1973) and developed by Journel (1974; 1978), the turning bands 

method generates simulation results for a d-dimensional random field through a series of one-

dimensional (1D) simulations along lines that span ℝd space (Emery, 2008; Emery & Lantuéjoul, 

2006). Unlike its exact algorithm counterparts, there are no restrictions on the number of random 

fields to simulate, the number of structures in the co-regionalization model, or the number and 
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configuration of the locations in the simulation space (Emery, 2008). Some critics dislike the 

potential for banding artifacts along the 1D lines, but this can be minimized with appropriate 

selection of the line simulation algorithm and line distribution (Emery, 2008). 

Despite being one of the earliest multidimensional simulation techniques, the use of the 

turning bands method is not widespread in geostatistics and most software packages that do exist 

are limited in terms of dimensionality (≤2D) or the number of 1D simulation lines that can be 

used. These factors have motivated the creation of Matlab programs for the conditional simulation 

of regionalized (Emery & Lantuéjoul, 2006) and co-regionalized (Emery, 2008) models in ℝ3 

using the turning bands method. 

Non-conditional simulations are carried out by decomposing each co-regionalization matrix, 

𝐁𝒏, as follows (Emery, 2008; Paravarzar, et al., 2015): 

 𝐁𝒏 = 𝐀𝒏𝐀𝒏
𝐓 =  𝐐𝒏∆𝒏𝐐𝒏

𝐓, (3.1.4) 

where 𝐐𝒏 is an orthogonal matrix of eigenvectors, ∆𝒏 is a diagonal matrix of eigenvalues, and 

𝐀𝒏 = 𝐐𝒏(∆𝒏)
1

2⁄ . 

Given a Gaussian vector random field, Xn, with 𝑀 independent components (each with 

covariance function 𝜌𝑛), the random field 𝐘 can be expressed as follows (Emery, 2008; Paravarzar, 

et al., 2015): 

 

∀𝐱 ∈  ℝ𝑑 , 𝐘(𝐱) =  ∑ 𝐀𝒏𝐗𝒏(𝐱).

𝑵

𝒏=𝟏

 

(3.1.5) 

As a result, the simulation of a Gaussian vector random field with cross-correlated 

components, 𝐘, can be summarized as a set of independent scalar Gaussian random fields in which 

the 𝑁 matrix components 𝐗1, … , 𝐗𝑁 are used to predict the 𝑀 independent random values 

𝐘1, … , 𝐘𝑀 (Emery, 2008; Paravarzar, et al., 2015). This decomposition is actually the basis of 

factorial kriging analysis (Goovaerts, 1997; Wackernagel, 2003; Emery, 2008). 

An additional step is required in order to generate realizations conditioned to a set of pre-

existing data. The realizations obtained by the turning bands (non-conditional) simulation can be 
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further processed by co-kriging the difference between the simulated values and the actual data 

values at the corresponding data locations (Emery, 2008; Paravarzar, et al., 2015): 

 ∀𝐱 ∈  ℝ𝑑 , 𝑌𝐶𝑆(𝐱) = 𝑌𝑆(𝐱) + [𝑌(𝐱) − 𝑌𝑆(𝐱)]∗, (3.1.6) 

in which the subscripts S and CS denote non-conditional and conditional simulation, respectively, 

and the asterisk specifies the co-kriging weights (Emery, 2008). 

Theoretical simulation aspects aside, implementation of the turning bands method requires a 

similar series of steps as the SGS algorithm, including: 

1. Declustering of sample data (where applicable); 

2. Transformation of the sample data into normal scores; 

3. Calculation of the experimental variogram(s) and model fitting; 

4. Verification of the multi-Gaussian assumption; 

5. Administration of the simulation algorithm (as defined above), and; 

6. Back-transformation of the simulated values to the original sample space. 

A key feature of the turning bands simulation algorithm is the ability to parallelize simulations. 

All variables are simulated simultaneously at each location (irrespective of simulations at other 

locations), and conditioned by means of a single co-kriging system (Emery, 2008). This results in 

significant computational savings compared to sequential algorithms, which simulate values in 

succession conditionally to previously simulated values. As previously described, some studies 

have also shown the turning bands method to produce more accurate results for a variety of 

scenarios compared to its sequential counterparts (Paravarzar, et al., 2015). 

Potential drawbacks of the approach are mainly related to restrictions caused by the selection 

of the Gaussian random field model, i.e. the assumption of multivariate normal distributions. 

Moreover, the fitting of a linear model of co-regionalization to the direct and cross-variograms is 

common in spatial analysis; however, this simplification may be insufficient for certain temporal 

or spatio-temporal datasets as no delayed correlation effects are represented (Emery, 2008). 

Sample computations for the turning bands method are provided in Section 4.1 as part of a 

case study focused on development of tailings retreatment applications using an integrated DES 

framework to evaluate system performance. 
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3.2 Multiple Linear Regression 

3.2.1 Fundamentals and Implementation 

Multiple linear regression is a widely used multivariate statistical technique owing to its 

relatively straightforward implementation as a generalization of simple linear regression. To 

accommodate multiple independent variables within a single model, each predictor is given a 

separate slope coefficient. For a system with 𝑝 distinct predictor variables, the MLR model takes 

the following form for a single response variable (James, et al., 2013): 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜖𝑖, (3.2.1) 

in which 𝑌𝑖 is the 𝑖th observation of the response variable (with 𝑖 = 1, … , 𝑛), 𝑋𝑖𝑗 is the 𝑖th 

observation of the 𝑗th predictor variable (with 𝑗 = 1, … , 𝑝), 𝛽0 denotes the intercept (bias term), 𝛽𝑗 

quantifies the association between each variable and the response (i.e. the parameters to be 

estimated), and 𝜖 is the error term (function of the residual distances) for the model. 

In the case of multiple response variables sharing the same set of explanatory variables, the 

MLR model can be further generalized, as follows: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖1 + 𝛽2𝑗𝑋𝑖2 + ⋯ + 𝛽𝑝𝑗𝑋𝑖𝑝 + 𝜖𝑖𝑗, (3.2.2) 

with observations indexed as 𝑖 = 1, … , 𝑛 and response variables as 𝑗 = 1, … , 𝑚. 

To estimate the parameters (i.e. regression coefficients), MLR uses the principles of OLS to 

minimize the sum of squared residuals via the normal equations, such that in matrix form: 

 𝛽̂ = (𝑋T𝑋)−1𝑋T𝑌, (3.2.3) 

in which 𝛽̂ denotes the matrix of estimated regression coefficients, 𝑋 is the 𝑛 × 𝑝 design matrix of 

independent variables, 𝑌 is the 𝑛 × 𝑚 matrix of dependent variables, and the superscript T denotes 

the transpose of a matrix. 

Proof that the obtained matrix of coefficients, 𝛽̂, indeed represents a local minimum is given 

by the Gauss-Markov theorem, which states that the OLS estimator gives the best estimate of the 

linear unbiased class of estimators. However, for the theorem to hold true (in which case the 
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estimates are also maximum likelihood estimates), a number of strict statistical conditions must be 

met, including (Abdi, 2010a): 

1. The data constitutes a random sample from a well-defined population; 

2. The population data model is in fact linear; 

3. The expected error has a value of zero; 

4. The predictor variables are indeed linearly independent, and; 

5. The model error is normally distributed and uncorrelated with the predictor variables 

(i.e. homoscedasticity). 

The Gauss-Markov theorem is a well-established cornerstone of linear regression techniques; as 

such, the reader is referred to any of a great number of references on classical modern statistics, 

e.g. (Johnson & Wichern, 2007), for details on the mathematical proof and related set of conditions. 

However, it is notable that when the Gauss-Markov conditions hold, OLS estimates are also 

equivalent to maximum likelihood estimates (Abdi, 2010a). 

3.2.2 Alternative Approaches 

Despite its relative simplicity and straightforward implementation, there are indeed some 

well-known issues with MLR. As with all LS methods, MLR is highly sensitive to extreme outliers 

due to the exaggeration of the magnitude of differences giving more importance to these 

observations. Moreover, a key requirement of MLR is that the predictor variables are linearly 

independent; when there are a large number of predictors compared to the number of observations, 

the design matrix (i.e. predictor data) is likely to be singular and ordinary regression is no longer 

feasible due to multicollinearity (Abdi, 2003). In this case, either correlated variables must be 

removed in order to reduce information overlap and improve the accuracy of regression coefficient 

determinations, or an alternative approach must be employed. 

One possibility is to use principal component analysis (PCA) on the predictor data and use the 

determined orthogonal components as regressors on the response variable(s), thereby eliminating 

the multicollinearity issue; however, selection of the optimum subset of predictors remains a 

problem (Abdi, 2003). Or better yet, other methods such as partial least squares can be used to 
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identify orthogonal components from the predictor data matrix that are also relevant for the 

response variable(s). 

Partial least squares (PLS) regression is somewhat of a hybrid method as it generalizes 

features from multiple linear regression, with the objective of predicting a set of dependent 

variables from a potentially large set of independent variables (Abdi, 2003; Abdi, 2010b). The 

technique was pioneered in the 1960s by Herman Wold for use in the social sciences (economics) 

but, with recent and rapid advances in computational frameworks and power, has since gained 

traction in a variety of fields, including chemometrics, sensory evaluation, neuroimaging and now 

the engineering sciences (Abdi, 2003; Abdi, 2010b; Hoskuldsson, 1988; Tenenhaus, 1998). 

PLS regression is a well-established multivariate statistical technique in many research fields, 

including economics, chemometrics, sensory evaluation and medical imaging sciences (Abdi, 

2003; Abdi, 2010b; Hoskuldsson, 1988; Tenenhaus, 1998). It has also gained recent interest in the 

bio-environmental sciences with a variety of studies in soil and microbial ecology (Ekblad, 2005; 

Allen, 2005), biodiversity (Maestre, 2004; Palomino & Carrascal, 2007), paleoclimatological 

reconstruction (Seppa, 2004), and ecotoxicology (Sonesten, 2003; Spanos, 2008). To the best of 

the authors’ knowledge, there has been very little work done using PLS regression in the areas of 

mining and system dynamics research to date. The most relatable study successfully developed a 

predictive model for the amount of kaolinite (clay mineral) in a deposit by linking earlier collected 

NIR spectroscopic data to confirmatory geochemical data (Huerta, et al., 2019). 

Additional details on the fundamentals and implementation of the PLS algorithm are provided 

in Section 4.2 within the context of a case study focused on bitumen extraction from Canada’s oil 

sands region using an integrated DES framework to model system response. 

3.3 Predictive Multilayer Perceptron Modelling 

3.3.1 General Overview 

There are many great resources that cover the mathematical and probabilistic underpinnings 

of the MLP algorithm, e.g. (Marsland, 2015; Murphy, 2022; Goodfellow, et al., 2016); as such, 

this description is presented from more of an applied perspective. At a high level, an MLP can be 

defined as any feed-forward network comprising at least three layers: the input layer, the hidden 
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layer(s), and the output layer. While the classification of MLPs is somewhat arbitrary, most 

practitioners consider networks with just one hidden layer as ‘shallow’, and those with two or more 

as ‘deep learning’ models. Each hidden layer in an MLP is fully connected to the preceding and 

proceeding layers via a series of nodes, or neurons, as shown in Figure 3.3.1a. The nodes in the 

input and output layers correspond to the column-wise features in the dataset and the target 

variable(s) for classification or regression, respectively. Each neuron in the hidden layer(s) acts as 

an individual perceptron, a local function of its inputs, 𝑥𝑗, and connection weights, 𝑤𝑗 (Alpaydin, 

2014). Analogous to neurons ‘firing’ in the brain, the decision to activate an artificial neuron is 

based on the weighted sum of all inputs (+ a fixed nonzero bias term, 𝑏0), which is then fed through 

an activation (i.e. threshold) function to determine the output, 𝑦𝑖 (Alpaydin, 2014; Marsland, 2015) 

(Figure 3.3.2b; modified after Emmert-Streib et al. (2020)). 

 

Figure 3.3.1. Schematic diagrams of a feed-forward artificial neural network at the (a) model architecture and (b) neuron levels 

(modified after Emmert-Streib et al. (2020)). 

In general, MLPs can use either linear or non-linear activation functions (Goodfellow, et al., 

2016). However, because the final target output is a linear combination of the basis function values 

computed by the hidden perceptron units, the hidden layers would not be useful if their 

intermediate outputs were also linear (Alpaydin, 2014). In other words, the hidden units can be 

thought of as making a non-linear transformation of the initial sample inputs, which are then 

linearly combined by the final output layer. The basic functioning of the MLP algorithm can be 

summarized as follows (after Marsland (2015)): 
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1. A vector of structured data is fed into the nodes of the input layer; 

2. The inputs are propagated forward through the network, i.e. there are no cyclic connections 

that allow direct feedback to current or preceding layers; 

3. The inputs and weights to each layer are used to determine whether each node will be 

activated or not, following the artificial neuron model described above; 

4. The final network outputs are used to compute an error metric with respect to the known 

(labeled) target data; 

5. This error is propagated backwards through the network to successively update the weights 

of each preceding layer prior to the next iteration of sample data processing. 

The last step in this sequence, known as backpropagation, is fundamental to the training of the 

neural network, i.e. it is how the model ‘learns’. Backpropagation is an optimization algorithm that 

aims to minimize a selected loss function by approximating the gradient of the error resulting from 

the network outputs via the chain rule, and following it downslope (Marsland, 2015; Murphy, 

2022). Essentially, a model is said to have ‘converged’ to a solution once the loss has settled within 

an acceptable error range, i.e. further training will not improve model performance. 

3.3.2 Optimization Approaches 

While steepest gradient descent is generally an effective approach to optimization problems, 

it can only guarantee finding a local minimum. As a result, variations of the algorithm have been 

developed to help avoid getting stuck in local optima. MLPs were originally designed as a batch 

algorithm, in which all of the training samples are passed through the network prior to computing 

the average error; weight updates are thus only carried out once per epoch, defined as one iteration 

through the entire training set (Marsland, 2015). Alternatively, stochastic gradient descent (SGD) 

sequentially calculates the error and updates weights accordingly following each individual 

training sample. Though not as efficient as the batch method, SGD is better at avoiding local 

minima due to a higher degree of error inherent to each gradient estimate being based on a single 

input vector (Marsland, 2015). SGD is also not as computationally expensive as the batch 

approach, which is a consideration for larger datasets. A balanced approach between these two 
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extremes is to use mini-batches, wherein error computations and weight updates occur following 

the iterative passing of randomly selected training sample subsets of pre-determined size. 

In the basic SGD algorithm, learning rate, 𝛼, is essentially the only hyperparameter that can 

be ‘tuned’ to improve model performance. The learning rate, i.e. step size, is an important term 

(generally in the range of 0 to 1) in the weight update rule that controls how fast the network learns. 

Whereas an overly large learning rate can lead to model instability, an overly small rate can result 

in underfitting; in either case, the model is likely to fail to converge (Murphy, 2022). A simple 

approach to select a static learning rate is to begin with a small value (e.g. 0.00001) and increase 

it by order of magnitude, meanwhile evaluating performance in terms of overall model loss. Once 

a reasonable range has been established, smaller increments can be tested to identify an ‘optimal’ 

value with the lowest loss. However, the learning rate does not need to remain constant; more 

elaborate methods also implement scheduled or adaptive learning rate approaches (Murphy, 2022). 

There are also a number of stochastic optimization variants that can increase the likelihood of 

finding the global minimum, in addition to accelerating the rate of convergence. One of the most 

important advances in SGD formulation is the inclusion of a momentum term, 𝛽. By analogy, a 

rolling object is less likely to run out of energy and get stuck in a small valley (i.e. a local 

minimum) with the extra weight needed to generate enough momentum to get over the next hill. 

This concept is implemented into the neural network by including a portion from the previous 

weight change (commonly by a factor of 0.9) to the current update. Not only is the object now less 

prone to getting trapped in local minima, but it is more likely to find the global optimum by moving 

more directly to the ‘valley bottom’ (Marsland, 2015). As shown in Figure 3.3.2, this can stabilize 

the optimization pathway by reducing the effect of oscillations, thereby improving and accelerating 

overall convergence. 
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Figure 3.3.2. Schematic gradient contour map comparing SGD without (blue dotted line) and with (green solid line) momentum. 

Note the reduction in oscillations in the second case, which helps avoid local minima by taking a more direct path to the valley 

bottom, thus improving and accelerating convergence. 

Other well-known extensions to SGD include the adaptive gradient (AdaGrad) (Duchi, et al., 

2011), root mean squared propagation (RMSProp) (Tieleman & Hinton, 2012), and adaptive 

moment estimation (Adam) (Kingma & Ba, 2015) optimization algorithms. Unlike momentum-

assisted SGD, which relies on first moment gradient estimates, these methods utilize second 

moment estimates of the gradients coupled with adaptive learning rates (AdaGrad) and decay rates 

(RMSProp) to handle sparse data features and speed up convergence, respectively (Kingma & Ba, 

2015). The Adam optimizer combines these approaches by using both first and second moment 

gradient estimates to implement momentum, adaptive learning rates and decay rates; as such, 

Adam is one of the most popular ML optimization algorithms in use today (Norouzi & Ebrahimi, 

n.d.). However, while adaptive optimizers have been a recent area of research interest to accelerate 

model training, they do not generalize as well as momentum-assisted SGD, and may even fail to 

converge due to certain instabilities and extreme learning rates (Landro, et al., 2021). 

3.3.3 Implementation Considerations 

There are also a number of other factors to consider in the design and implementation of any 

MLP. Network architecture, which includes the number of hidden layers and associated hidden 

nodes, is critical to building a valid and generalizable model. It has been shown that an MLP with 

just one hidden layer can approximate any continuous function to any target level of accuracy, 

provided a sufficient number of hidden nodes; this is called the universal approximation theorem 

(Murphy, 2022; Hornik, 1991). However, there are a variety of studies that show deep networks 

work better than shallow ones because the deeper layers can take advantage of features already 

learned by shallow layers (Murphy, 2022). There is no steadfast rule to guide depth selection, but 
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very complex problems may require deeper networks; nonetheless, Occam’s razor tells us that we 

should prefer the simplest model capable of learning the problem set and approximating a solution. 

Unnecessarily deep networks can actually lead to overfitting of the training data, wherein the 

model also ‘learns’ from background noise and therefore becomes poorly generalizable to new 

data. In terms of model width, i.e. the number of hidden nodes, there is no real theory to guide this 

selection; there are several rules of thumb in practice (e.g. ~2 3⁄  between the number of inputs and 

outputs), but ultimately the choice comes down to trial and error and observing the effect on model 

performance. 

An MLP with a single hidden layer contains (𝐿 + 1) × 𝑀 + (𝑀 + 1) × 𝑁 weights, where 

𝐿, 𝑀, 𝑁 are the number of nodes in the input, hidden and output layers, respectively (Marsland, 

2015). Depending on the problem set, this can result in an exponentially large number of weights; 

as such, the importance of weight initialization and choice of activation function cannot be 

overstated. There are a number of non-linear activation functions that can be used in the hidden 

layers of an MLP, including logistic (sigmoid), hyperbolic tangent (tanh), and rectified linear unit 

(ReLU) functions. However, the sigmoid and tanh functions are often subject to the ‘vanishing 

gradient’ problem. This occurs because the error is propagated through a series of layers which 

sequentially diminish the gradients towards zero, thereby saturating the weights and causing 

improper weight updates (Murphy, 2022; Datta, 2020), i.e. the model does not get properly trained, 

resulting in poor performance. 

ReLU addresses this issue by effectively turning off negative inputs and only passing 

unchanged positive values (Murphy, 2022); it has also been shown to perform significantly faster 

(Datta, 2020), and is thus the most commonly employed activation function in neural networks. A 

limitation can occur when a large portion of the inputs are forced to zero, thereby rendering the 

corresponding neurons inactive, which means a significant portion of the input may not contribute 

to network training; this is known as the ‘dead ReLU’ problem. Variants, such as leaky ReLU 

(LReLU) or parametric ReLU (PreLU), have been devised in response (Murphy, 2022; Datta, 

2020). Before training a neural network, the weights must also be initialized to small random 

values; to this end, there are two methods that are widely used in practice, including Xavier 

initialization (Bengio & Glorot, 2010) and He (or Kaiming) initialization (He, et al., 2015). Both 
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approaches can be implemented using either normal or uniform distributions, and have been shown 

as effective weight initialization techniques for training shallow neural networks. However, He 

initialization was developed specifically for use with non-linear ReLU activation functions, and is 

particularly suitable for deeper networks (Datta, 2020; He, et al., 2015). 

As noted above, overfitting is a major concern for training any type of neural network. Aside 

from appropriate model architecture, there are several tools available to limit the effects of 

statistical noise in training data and improve overall model generalization. Weight regularization 

is likely the most commonly used approach to control excessive gradient fluctuations. There are 

two main techniques, namely L1 and L2 regularization, a.k.a. lasso and ridge regression, 

respectively. In lasso regression, the L1-norm (absolute values) of the weights is added as a penalty 

term to the error function; in ridge regression, the penalty term is replaced by the L2-norm (squared 

values) of the weights (Murphy, 2022). In either case, a rate constant, 𝜆, is multiplied by the penalty 

term, and acts as a hyperparameter that can be tuned by the user to adjust the regularization effect. 

In practice, lasso regression tends to force the weight coefficients of some features to zero, and is 

therefore useful for feature selection; ridge regression diminishes the coefficients towards (close 

to but not exactly) zero more evenly among features, and is thus useful for problems dealing with 

multicollinear input variables (Murphy, 2022). Moreover, these ‘weight decay’ methods can also 

help mitigate the effects of the ‘exploding gradient’ problem, wherein similar to vanishing 

gradients, the propagation of error through several layers can amplify the size of gradients to levels 

that cause numerical instabilities or simply fail to converge (Murphy, 2022). 

Another form of regularization common to neural networks is known as ‘dropout’. In this 

technique, nodes and their connections are randomly dropped (i.e. deactivated) from the network 

during training, which helps prevent co-adaptation (Murphy, 2022; Srivastava, et al., 2014). A 

tuning hyperparameter allows the user to specify the probability with which outputs are dropped 

from each layer. As a result, the model learns from a number of thinned networks (akin to sub-

sampling), thereby reducing the effects of overfitting to training data noise. The approach has been 

shown to yield significant improvements over other types of regularization, with state-of-the-art 

results obtained on many benchmark datasets (Srivastava, et al., 2014). 
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Finally, training length is also an important consideration to combat overfitting. Neural 

network training typically involves the splitting of available labeled data into training and 

validation subsets. These splits should be selected at random, but can also be stratified for datasets 

with constraints imposed by different sample types. In practice, 80–20 training–validation splits 

are common, but other techniques, such as 𝑘-fold cross-validation, are also widely used to further 

minimize bias. The training set is used for fitting the model, i.e. learning, meanwhile the validation 

set is retained for model selection. Training and validation losses are then tracked for each epoch 

during training. The model continues to learn as long as training loss is decreasing across epochs. 

Validation loss should follow a similar trend; however, a reversal is a strong indicator that the 

model is beginning to overfit the training data. It is at this point that the training should be stopped, 

and the selected model should include the maximum number of training epochs prior to the change 

in validation loss sign. This final model can then be applied to unseen test sets, keeping the model 

completely blind to the target output variable labels to evaluate future performance and 

generalization, or newly generated data altogether. 

An example implementation of the MLP algorithm is provided in Section 4.4 as part of a case 

study centered on development of control strategies for the regional coordination of refractory gold 

systems using an integrated DES framework. 

3.4 Discrete Event Simulation 

3.4.1 General Overview 

Discrete event simulation (DES) is a computer-based method to develop dynamic quantitative 

frameworks capable of simulating the interactions between important variables and processes 

within complex systems. The main difference between mining and other industrial systems is the 

concept of geological uncertainty, i.e. the random natural variability intrinsic to orebodies and their 

host geological formations. The flexibility of DES to introduce random distributions thus makes it 

particularly suitable for a wide variety of mining applications across the entire value chain. 

As previously described, the use of DES frameworks in the mining industry has been fairly 

limited apart from early work focused mainly on equipment and transport logistics. However, 

recent work has shown the implementation of alternate modes of operation using mass balance 

and DES modelling as an effective technique to monitor mineral processing system performance, 
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particularly for concentrator and smelter dynamics (Navarra, et al., 2017b; Navarra, et al., 2019; 

Navarra, et al., 2020). Moreover, an increasing number of studies have applied a similar approach 

to other contexts along the mining value chain, e.g. tailings retreatment applications (Wilson, et 

al., 2021a) and rougher flotation cell dynamics (Saldaña, et al., 2021). 

DES modelling is especially useful in the design and evaluation of alternative operational 

policies and related tradeoffs, and can be applied to any phase of the mining lifecycle. The 

introduction of alternate operating modes, each with multiple possible configuration rates, allows 

for adjustments to be made that can stabilize system performance in response to unexpected 

changes, e.g. ore feed characteristics, caused by geological uncertainty (Navarra, et al., 2019). The 

timing for switching between configuration rates and/or modes, which is triggered by set threshold 

crossings (i.e. discrete events), is governed by operational policy. Moreover, key performance 

indicators (KPIs) can be tracked to optimize the system-wide response by modifying the available 

operational policies and related thresholds. 

DES frameworks are powerful risk assessment tools as they can simulate extended periods of 

operation in order to identify potential deficiencies, bottlenecks, or other operational risks inherent 

to mining systems. The key to using DES for modelling continuous processes is to ensure that the 

number and frequency of discrete events are detected over long time variations; this allows realistic 

distributions to be captured for appropriate risk assessment. Provided adequate testing and 

validation, confidence intervals can be generated that support decision-making processes such as 

modified operating practices that mitigate the identified risk factor, i.e. the implementation of 

operational buffers (Navarra, et al., 2019; Wilson, et al., 2021a), or the installation of new 

technologies (Navarra, et al., 2020). 

Indeed, there are other approaches to multiobjective optimization in mining systems, e.g. 

reinforcement learning and bandit algorithms for sequential decision-making (Koch & 

Rosenkranz, 2020), or integrated sequential mine block selection and smelter feed dopant control 

using local optimization constraints (Qaeze, et al., 2015). These techniques are no doubt important 

to their specific applications; however, they do not have the appropriate time resolution to capture 

the frequency of critical threshold crossings required by the framework strategy presented here. 
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Instead, the current DES model uses arbitrary time-stepping controlled by system processes in 

response to geological uncertainty of the ore feeds. 

3.4.2 Framework Development 

Navarra et al. (2019) identify the notable comparison between a two-mode mining system 

model and the RQ problem from inventory theory (Winstin & Goldberg, 2004). When an inventory 

(ore stockpile) level drops below an established ‘re-order point’, R (critical ore level), a 

replenishment order of quantity, Q, is issued before the inventory is completely depleted 

(stockout). In the mining context, the critical ore level is directly related to the expected rate of ore 

consumption and the lead time required to replenish stockpile levels. In practice, however, these 

factors are both subject to potential random variation. Geological uncertainty of the ore supply 

could result in shortfalls, requiring a greater than expected consumption rate. Similarly, mining 

logistics (e.g. a failed stope) could affect the lead time to replenish the ore supply. In either case, 

there is a risk of stockout. This operational risk can be mitigated by raising the critical ore level, 

but it is important to note that larger stockpiles typically involve increased operating costs (time 

and handling) and capital costs (larger equipment and storage areas). The concept of the two-mode 

framework is therefore fundamental to both risk management (e.g. ore feed stockout) and 

multiobjective optimization, e.g. balancing throughput vs. stockpile management. 

This type of framework can be developed using commercial DES software in order to simulate 

hundreds of days of operation and evaluate the system-wide response to varied stockpile 

management strategies. This allows for the monitoring of select KPIs while varying control 

parameters, such as the critical ore and target stockpile levels. Mode A represents a phase of ore 

consumption meanwhile Mode B represents a phase of replenishment. Though the consumption 

mode is typically more profitable in terms of short-term production metrics, it is not sustainable 

without the application of an alternate replenishment mode due to the risk of stockout (Navarra, et 

al., 2019). The periodicity of switching between modes is controlled by the operational policy 

which sets the critical ore level. The replenishment mode is triggered once this threshold is crossed, 

but it may not be feasible to implement until the next planned shutdown in practice. 

It is important to note that when the critical ore level is raised to provide an appropriate 

security stock, this threshold does not represent a true minimum. In a stochastic mining context, 
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the ore stock level may continue to decrease even with the onset of the replenishment mode 

(Navarra, et al., 2019). This can lead to stockout in the event ore levels are insufficient to last 

through to the next planned shutdown, and highlights the importance of factoring recourse actions 

into the model, i.e. system flexibility. The current framework incorporates blending practices in 

response to the geological uncertainty of stockpiles which commonly affects the supply of ore. 

Two ore types (1 and 2) are blended and processed according to different set proportions under 

each of the two modes, thereby better controlling the consistency of production feed. This blending 

allows for the implementation of contingency modes in the case of stockout by adjusting the 

proportion of ore feed types until the next planned shutdown is reached. At this point in time, 

operational policy dictates whether to revert to the original mode or switch to the alternate mode. 

The current framework considers two control variables in the decision-making process: 1) the 

critical ore threshold, and; 2) the target total stockpile level, determined as the sum of ore types 1 

and 2. A negative threshold crossing for either of these variables represents a discrete event, and 

triggers a decision (response) in the system. Figure 3.4.1 illustrates the decision-making logic that 

dictates timing of operational mode changes and loading of new mining parcels following 

depletion of the previous block. Each simulation run begins in Mode A as it is considered the more 

productive of the operational modes based on its higher proportion of the more economic ore. Each 

parcel is described by grade and tonnage attributes, which are implemented as dynamic state 

variables in the DES model (Peña-Graf et al., 2022). In a mining context, these parcels actually 

represent the conjunction of mine plans and geological uncertainty, the latter of which is 

determined through either geostatistical simulation, or Monte Carlo simulation with variability 

controlled via adjustments to the standard deviation applied during random number generation. 

When available, the sequencing of the mining parcels can be derived from the geostatistical 

simulation data (e.g. Taltal tailings rehabilitation case study; see Section 4.1.2); otherwise, the 

parcel sequence may not necessarily represent a true ‘mine plan’ in the context of a conceptual 

mining system. However, this information can be readily obtained from mining partners and 

incorporated into the framework as part of more detailed case studies. 
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Figure 3.4.1. Generalized flow chart of the DES framework showing decision-making logic for operational mode changes and 

parcel (i.e. mining block) termination. 

The framework also has built-in recourse actions in the event one of the ore types is entirely 

depleted during a production campaign, i.e. the target total stockpile level decreases below the set 

quantity prior to a planned shutdown. These actions include contingency modes, which represent 

a change in configuration rate under the active operational mode, and mining surges. Figure 3.4.2 

depicts the decision-making logic for these responses when the system is stressed by inadequate 

stockpile availability of either ore type. Under Mode A, a total depletion of the critical ore triggers 

a contingency mode, wherein the configuration rate is reduced and only the available ore type is 

processed for a period of 1 day to allow the depleted ore to temporarily build back up. On the other 

hand, a depletion of the non-critical ore calls for a mining surge such that total available ore 

increases above the target level and is fed directly to the processing plant. These recourse actions 

are interchanged when corresponding depletions occur during Mode B operation. Regardless, these 

system responses are undesirable as they can result in significantly reduced production 

throughputs. Sufficiently high levels must be set for these variables to minimize the occurrence of 

such events, meanwhile balancing this risk against the elevated infrastructure, equipment and 

operating costs associated with larger stockpiles (Navarra, et al., 2019; Wilson, et al., 2021a). 
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Figure 3.4.2. Generalized flow chart of the DES framework showing decision-making logic for configuration rate changes and 

mining surges triggered by total depletion of either ore type. 

The framework is implemented using commercial DES software (Rockwell Arena©) with 

Visual Basic for Applications (VBA). Model verification has been carried out by a combination 

of event checking and debugging, as well as sensitivity analysis through testing a wide range of 

values for model inputs and parameters. The use of fixed mass balances to assess potential plant 

performance is standard practice in the mineral processing sector; this work represents a valid 

extension beyond static modelling by incorporating pragmatic fluctuations in mass and 

composition flows, i.e. dynamic imbalances, that would be expected from source orebodies. 

Though the case studies presented in this research are mainly conceptual in nature, similar 

techniques have been successfully applied to Chilean smelter operations using real operational 

data, thus validating the general approach. The framework is calibrated using typical operating 

parameter values depending on the context, obtained from time-averaged publicly available data; 

this ensure suitable and valid ranges are used. In practice, operational data would be available to 

further validate the model and make necessary adjustments to the control parameters. 

3.5 Flexible DES Frameworks for Mining Systems 

Artificial intelligence (AI), machine learning and other advanced quantitative methods 

represent the state of the art in research and development trends toward technological advancement 

and related process automation. Recent reviews specific to mining highlight the current scope of 

applications in a variety of areas across the spectrum, from exploration to mine planning, 
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operations and downstream processing. However, these studies also identify a number of key gaps 

that should be addressed by the industry to support future innovation, including: 

1. Development of generalizable models that can be adapted to different problems or 

contexts (Ali & Frimpong, 2020); 

2. Proper integration of ML-acquired data (e.g. soft sensors) into quantitative frameworks 

that can make use of it (McCoy & Auret, 2019), and; 

3. Hierarchical model detailing to improve system performance (Cisternas, et al., 2019). 

It is thus clear that a flexible and integrated framework approach to test novel control strategies 

for operational decision-making along the mine-to-mill (or smelter) profile would be a strong 

contribution to this void in the mining literature. 

3.5.1 Incorporation of Quantitative Methods into DES 

The current framework has the capability to incorporate uncertainty using a variety of 

advanced quantitative methods to characterize mining parcels (i.e. ore blocks) based on expected 

metallurgical or petrochemical response from geological data collected early in the value chain. 

The generated distribution of these classified blocks are then fed into the DES portion of the model 

to analyze system response to potential unexpected changes caused by geological uncertainty. 

From a broader industrial perspective, there have been other studies that use similar framework 

architectures, particularly in manufacturing, e.g. (Lidberg, et al., 2020), and food processing, e.g. 

(Sobottka, et al., 2019). However, the distinction here is that these contexts are not subject to nearly 

the same degree of variability inherent to natural systems, such as mineralized orebodies, and 

therefore the resultant formulations do not consider the likes of geological uncertainty. 

With geostatistical simulation tools, or other advanced quantitative methods (e.g. machine 

learning algorithms), acting as the engine driving the characterization of ore feeds, the current DES 

framework essentially acts as a wrapper (i.e. vessel) for the integrated management of downstream 

processes based on the defined geological variability (Figure 3.5.1). By incorporating geological 

uncertainty via stochastic simulation of measured or predicted ore characteristics into a DES 

framework, one can properly evaluate system response to a range of potential scenarios and 

develop appropriate operational policies and related control strategies. The inclusion of a 
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mechanism to introduce uncertainty into a framework is one approach towards improving model 

generalizability (Shen, et al., 2021). The key is to ensure that file types common to most database 

systems (e.g. comma-separated values or text files) are supported by the framework either directly, 

or through suitable interfacing. 

 

Figure 3.5.1. Schematic diagram illustrating the incorporation of uncertainty via stochastic (i.e. Monte Carlo) simulation of 

measured or predicted data generated by a variety of advanced quantitative methods into a DES framework to assess system-wide 

response to unexpected changes in geological attributes. The current framework effectively acts as a wrapper around the selected 

data processing technique for the integrated management of downstream processes based on the defined geological variability. 

Integrated frameworks can benefit from combining state-of-the-art data-driven (i.e. bottom-

up) models with process models derived through domain knowledge and physicochemical 

principles (i.e. top-down approach). However, the development of effective models requires the 

breaking down of interdisciplinary barriers and improved data sharing, which has been cited as a 

critical step towards accelerating innovation in the age of big data within the industrial sector 

(Kusiak, 2017). It is all too common at modern mining operations for geologists, engineers, and 

operators alike to collect all kinds of vast datasets that are infrequently put to proper use as each 

department works within their own operational unit. As an example, one might hypothesize 

through years of experience as to how to connect these geological attributes with those 

metallurgical process parameters to increase the competitivity of a given mining project. However, 

it would remain unclear how a proposed new or modified strategy might affect ongoing operations 

without appropriate testing using an integrated simulation platform that mirrors the mine-to-plant 

profile (Peña-Graf, et al., 2022). It is clear that both knowledge and data inputs from all involved 
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disciplines are critical to develop an accurate and robust framework capable of providing support 

to the necessary decision-making processes. 

3.5.2 Model Extensibility and Adaptability 

To deal with changes in mining systems, whether expected (e.g. new feed sources) or 

otherwise (i.e. geological uncertainty), it is crucial that the resulting frameworks are extensible to 

handle varying levels of complexity depending on the project scope. This allows for a multi-phase 

approach in order to improve confidence and justify the next level of investment towards updating 

control strategies. As the project evolves, so too does the framework as it integrates increasingly 

detailed models and submodels. By incorporating the incoming data, the effects on system-wide 

metrics can be assessed, and the necessary adjustments to operating policies and/or related controls 

can be made to maintain an overall mass balance, thereby improving system stability. This is the 

key to developing advanced control strategies, driven by the balancing of opportunities and risks 

towards a sustainable mining system. As shown in Figure 3.5.2, the overall process is by no means 

unidirectional, with multiple feedback cycles commonly required during model conceptualization, 

design, testing/validation and optimization stages. Moreover, continuous system monitoring is 

critical upon implementation of any new or modified strategies, and may indicate the need for 

further adjustments to the process models and/or operational policies. 

 

Figure 3.5.2. Generalized flowchart illustrating the importance of a cyclic design and implementation approach to effective 

development of new or modified process control strategies. 

A flexible quantitative framework should also have the capability of being adapted to a range 

of problem sets and/or temporal scales. Recent system modelling studies have stressed the 

importance of flexibility towards easy scenario analysis and reusability over the course of mine 

life for a given project (Upadhyay & Askari-Nasab, 2018). However, this work further extends the 

concept by proposing that a flexible framework should also be adaptable to a broad spectrum of 

problems across the mining value chain. By applying the discussed methods to a variety of 
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different contexts, this research validates the approach of a generalized concept, and highlights its 

power as a viable tool to plan and evaluate mining system dynamics with a unifying focus on the 

readjustment phases of the mining life cycle. As shown in Figure 3.5.3, the current methodology 

is not only useful for initial development planning and design, but also particularly effective 

towards continuous improvement, re-engineering and post-mine life projects. 

 

Figure 3.5.3. Schematic diagram of the overall mining life cycle for a given project. The flexible and integrated approach adopted 

in this research is not only useful for initial development planning and design, but also especially effective towards continuous 

improvement, re-engineering and post-mine life projects. 

The remainder of this thesis is focused on four contexts that adapt a generalized approach to 

a variety of mining system problems through a series of detailed case studies, including: 

1. Tailings retreatment applications (Section 4.1); 

2. Predictive modelling of bitumen extraction from oil sands (Section 4.2); 

3. Mine-to-smelter integration of regionalized porphyry copper (Section 4.3), and; 

4. Mine-to-mill integration for regional development of refractory gold (Section 4.4). 

The various contexts were driven by particular needs from research partners and collaborators, but 

the collection of works is tied together via the unifying principle to integrate advanced quantitative 

methods into a flexible DES framework to test novel control strategies, evaluate operational risk, 

and develop suitable operational policies to stabilize system performance. Figure 3.5.4 highlights 

the adaptability of the current integrated framework by illustrating the breadth of these case studies 

across the mining spectrum, including commodity type, mine life cycle timing, scope of 

integration, and implemented data process type. 
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Figure 3.5.4. Schematic diagram highlighting the flexibility and adaptability of the current integrated DES framework to model a 

broad spectrum of mining contexts and incorporate a variety of data processing techniques by virtue of a series of case studies 

(numbers correspond to the above case study list) undertaken as part of this research. 
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Chapter 4 

Selected Mining System Applications 

4.1 Tailings Retreatment 

Mining is fundamental to the development and sustainability of modern society, particularly 

with respect to the high standards of living that much of the developed world has grown 

accustomed to. Unfortunately, it is also one of the most detrimental human activities with the 

potential to cause severe negative impacts on health, safety, and the environment. At the crux of 

many of these potential side effects is the management strategy, or lack thereof, for waste material 

and associated tailings residues that result from mining. Mine tailings represent the waste stream 

following extractive metallurgical processing and are typically stored in tailings dams. As with 

any structure, these storage facilities have been known to fail over time, causing irreparable 

damage to human life and communities, fauna and flora, waterbodies and drainage systems, and 

ecosystems as a whole. Additional risks inherent to tailings storage facilities include the presence 

of chemical residues and heavy metals, potential acid rock drainage (ARD) and resultant 

contamination of the surrounding environment, sometimes adjacent to human settlements (Wang, 

et al., 2014). 

Recent estimates for global tailings volumes total over 44.5 billion m3 in nearly 2,000 storage 

facilities, and projections total over 55.8 billion m3 by the year 2025 (GRID-Arendal, 2019). These 

figures do not include legacy mines which have been abandoned by former companies that were 

financially incapable, or simply unwilling, to accept the environmental responsibility of 

appropriate site remediation. Thankfully, increasing environmental awareness and the 

implementation of stringent mining legislation in most developed nations have limited the 

conception of new legacy sites. Regardless, these abandoned sites are abundant in mining 

jurisdictions worldwide, often with little available information; in Canada alone, there are nearly 

19,000 orphaned sites of varying scales that have been compiled (NOAMI, 2004). In addition, 

there is a substantial amount of artisanal mining that is widespread in developing regions, including 

Africa, Asia, Central and South America, and Oceania (Carvalho, 2017). Artisanal mining 

activities are small-scale, non-industrial operations typically conducted illegally by large numbers 
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of people in poverty-stricken rural areas (Carvalho, 2017). These operations are inherently poorly 

controlled, and tend to leave environmental footprints with waste materials and chemicals 

haphazardly discarded (Carvalho, 2017). Furthermore, with many of the near surface, high-grade 

ore deposits already exploited across much of the accessible world, the mining industry is currently 

geared towards gigantic low-grade, high-tonnage projects that take advantage of recent advances 

in mechanization and automation (Darling, 2011). These types of operations produce significantly 

more waste streams and will require increasingly large tailings structures as a result. 

Overall, it is clear that appropriate control strategies are needed in order to manage increasing 

tailings accumulations worldwide. One such strategy that has been gaining traction in recent years 

is the potential for secondary mining applications. There are currently two main areas of research 

focused on potential uses for tailings residues: 1) secondary processing for the recovery of metals 

or elements of interest, and; 2) incorporation into the production of industrial materials. The 

secondary recovery of metals has long been a consideration, but is inevitably sensitive to market 

conditions and subject to geological uncertainty; however, there is renewed interest related to the 

recovery of REEs and increasing demand from the technology sector (Tunsu, et al., 2019). The 

use of tailings in the fabrication of construction materials (e.g. cement) is a newer concept, but has 

many potential benefits in terms of site reclamation, in addition to offsetting production costs. 

The concept for the current study is focused on the use of tailings for the production of 

industrial cement. Portland cement is a complex mixture typically made from limestone and clay, 

thus its primary constituents include CaO (lime) and SiO2 (silica), with variable amounts of Al2O3 

and Fe2O3, and other minor phases, i.e. MgO, K2O and Na2O (Young, 2001; Hurley & Pritchard, 

2005). The raw materials are normally ground and heated together in a kiln to a temperature of 

~1,400-1,500 oC to form what is called clinker (Hurley & Pritchard, 2005). This pyroprocessing 

step forms the hydraulic calcium silicates that are the active agents in cement (Young, 2001). The 

clinker is then ground with gypsum (CaSO4) to a fine powder to achieve the desired setting and 

strength qualities (Hurley & Pritchard, 2005). Since production costs are strongly associated with 

the fuel consumption necessary to sustain kiln temperatures (Aitcin, 2016), energy-efficient 

alternatives are highly beneficial to the overall process, and help reduce CO2 emissions (Gou, et 

al., 2019). Recent work has shown the ability to use mine tailings as a (partial) replacement for the 
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aluminosilicate clay component in cement (Gou, et al., 2019; Luo, et al., 2016; Wang, et al., 2019; 

Qiu, et al., 2011). 

The chemical composition of tailings differs greatly across ore deposit types, geological 

settings, and geographic locations. As a result, not all tailings are suitable for the cement 

production process, and must be discarded or subjected to additional pretreatment. Examples 

include those laden with appreciable quantities of metals (potential for ARD), toxic compounds 

(health and environmental hazards), or elements with deleterious effects on cement quality, for 

instance, excessive MgO causes disruptive expansion in the hardened paste (Young, 2001). It is 

therefore important to carry out appropriate chemical characterization of tailings deposits for the 

potential incorporation into industrial materials (Tripodi, et al., 2019). However, studies have 

shown that many mine tailings have chemical compositions dominated by SiO2, Al2O3, Fe2O3, and 

CaO, consistent with the natural clay component of most cements (Gou, et al., 2019; Luo, et al., 

2016). Moreover, with recent advances in grinding technology for the liberation of primary ore 

minerals, tailings streams now have a higher proportion of clay-sized minerals. 

The vast availability, implied cost efficiencies, and clear environmental implications make the 

use of tailings an attractive alternative to replace the clay component in cement production 

operations. However, it is critical to develop models to assess potential risk factors associated with 

these secondary mining applications. This work introduces a framework capable of integrating 

geostatistical variability data into discrete event simulation (DES) for the evaluation of system-

wide response to geological uncertainty. A case study, using data derived from the Taltal tailings 

(northern Chile), is presented for a conceptual cement production operation. 

4.1.1 Case Study: Taltal Tailings Rehabilitation 

The city of Taltal is located along the northern coast of Chile, within the Antofagasta region 

(Figure 4.1.1). The area has a rich history of mining dating back to the mid-1800s (ancient red 

ochre, i.e. iron oxide quarries aside). Early mining activities were focused on copper and potassium 

nitrate deposits (IMT, 2013), but appreciable quantities of gold, silver, nickel and iron have since 

also been exploited (Tripodi, et al., 2019). 
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As in many parts of the world, abandoned tailings in Chile continue to pose a threat to human 

health and safety, as well as the environment. Tracking of these sites was initiated in 2006 by the 

Servicio Nacional de Geologia y Mineria (SERNAGEOMIN, the Chilean Geological Survey), and 

recent tallies indicate a total of 740 tailings dams in Chile, 170 of which are abandoned (Tripodi, 

et al., 2019; SERNAGEOMIN, 2018). More specifically, the Taltal mining district contains the 

largest number of tailings structures in the Antofagasta region with a total of 24 sites, 10 of which 

are orphaned (Tripodi, et al., 2019; SERNAGEOMIN, 2018). 

Two of these abandoned structures are located along the beach in proximity to both the coast 

and the surrounding city of Taltal (Tripodi, et al., 2019). This raises concern related to coastal 

erosion rates and the potential for environmental contamination, as well as health hazards posed 

by the propagation of fine particulate matter to the nearby population. The present research is based 

on a conceptual solution to recycle the tailings as a raw material for the production of cement 

clinker, meanwhile offsetting costs as a tradeoff to replacing a portion of the required natural 

materials. 

 

Figure 4.1.1. Location map of case study area, showing Taltal situated in the southern portion of the Antofagasta region.  Inset 

map shows the position of the region relative to Chile. (Map data sources: Esri, HERE, Garmin, FAO, NOAA, USGS, 

©OpenStreetMap contributors, and the GIS User Community, Michael Bauer Research GmbH, Instituto Nacional de Estadísticas) 
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A recent study demonstrated the ability to use iron ore tailings (~45 wt.% SiO2, ~11 wt.% 

Fe2O3) with minor quartz sand additive to completely replace the natural clay component in a 

cement clinker (~17% of the raw meal mixture) (Luo, et al., 2016). These iron ore tailings actually 

increased the burnability and reactivity of the mixture, and promoted the sintering process, 

resulting in improved cement grindability (Luo, et al., 2016). This acceleration could potentially 

reduce overall energy consumption and related costs. 

Recent mineralogical characterization of the Taltal tailings by Tripodi et al. (2019) indicates 

high aluminosilicate content (quartz-feldspar-mica-clay) with elevated iron oxides (~8% 

magnetite-hematite-limonite). Coupled with a particle size distribution dominated by clays and 

silts (Tripodi, et al., 2019), the tailings appear similar in composition to those used in the iron ore 

tailing study of Luo et al. (2016). This may support the Taltal tailings as a viable replacement for 

the natural clay portion in the production of cement clinker. It should be noted, however, that 

appreciable amounts of gold (~0.25-0.5 g/t) and copper (~0.25-0.5%) were identified, as well as 

minor contaminants such as arsenic and mercury (Tripodi, et al., 2019). Additional pre-processing 

may be worthwhile to recover the payable elements and remove the contaminants prior to cement 

production. 

Tailings are complex mixtures of varied mineral and chemical compositions. In the context of 

potential retreatment applications, it is thus critical to evaluate the operational risks associated with 

ore feed in relation to geological uncertainty. The current study integrates geostatistical variability 

data into a DES framework in order to observe the system response to deviations from the expected 

ore feed. The geostatistical data being used was derived from a database compiled following a drill 

program completed at the Taltal tailings in 2016 as a collective effort between CSIRO Chile, 

Universidad de Antofagasta and Chilean state partners. Due to the high variability of the Taltal 

dataset, the adapted framework implements an alternate mode of operation with select recourse 

actions in order to improve stockpile management strategies. The primary goal of the model is to 

maximize throughput to a conceptual cement production facility, meanwhile minimizing total 

stockpile levels, and mitigating stockout risk. Due to the hypothetical nature of the current study, 

the process model remains deterministic as no process data could be acquired to assess the system 

with randomness for pertinent uncontrolled variables, such as tailings deposition, settling and 
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weathering processes. However, the framework is extensible and submodels can be developed to 

handle downstream modeling, depending on a given project scope. 

4.1.2 Geostatistical Modeling and Simulation 

The dataset was compiled from a total of 53 composite samples in 18 holes drilled within an 

approximate volume of 140m × 70m × 4m (the larger of the 2 tailings structures). Compositional 

data was acquired by a number of analytical techniques, including x-ray fluorescence (XRF), 

induced coupled plasma optical emission spectrometry (ICP-OES), and x-ray diffraction (XRD). 

The study was carried out using 12 variables (elemental concentrations) of interest, including Al, 

As, Ca, Cu, Fe, K, Na, Mg, Si, Au, Pb, and Hg. For the analysis, the sample volume was divided 

into 23 nearly equal sized mining parcels. The sparse sampling coupled with spatial heterogeneity 

imply a high uncertainty in the concentrations at unsampled locations in the volume of the tailings 

(hereafter referred to as ‘geological uncertainty’), which will be modeled through the generation 

of simulated scenarios (realizations), as explained hereunder. 

The methodology begins by computing basic descriptive statistics to summarize the original 

raw dataset (Table 4.1.1). A variety of tools can be generated to better understand the distribution 

of each individual variable (Figure 4.1.2) and correlation matrices can also be computed to provide 

early information on the relationships between variables. The analysis proceeds by transforming 

the original data of each variable into normal scores, i.e. data with a standard Gaussian distribution. 

Declustering of the data is unnecessary in this case due to a regular drill pattern, and because the 

tailings are being considered as a single lithology. An empirical transformation is obtained by 

associating each original data (grade) with the Gaussian value having the same cumulative 

frequency. This empirical transformation is then interpolated by a piecewise linear model within 

the range of the data values and extrapolated by exponential functions beyond the extreme values, 

following the approach described in Emery and Lantuéjoul (2006) (Figure 4.1.3). 
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Table 4.1.1. Descriptive statistics for 12 variables of interest from Taltal tailings data (n=53 data). 

Element Mean (%) Variance (%2) Min (%) Max (%) 

Al 2.44400 0.28350 0.88650 3.70370 

As 0.00270 0.00000 0.00101 0.01192 

Ca 2.19224 0.81994 0.70930 5.48920 

Cu 0.28339 0.02729 0.08507 0.87400 

Fe 5.22434 0.99435 3.53050 7.34580 

K 0.18597 0.02076 0.06504 0.68490 

Mg 1.90226 0.20609 0.60930 3.35710 

Na 0.10502 0.00800 0.01000 0.51200 

Pb 0.00590 0.00003 0.00150 0.02721 

Hg 0.00031 0.00000 0.00001 0.00322 

Au 0.00003 0.00000 0.00001 0.00014 

Si 87.49 4.49 82.55 93.22 

 

Figure 4.1.2. Histograms and cumulative distribution function plots of Taltal tailings data for (a) Si, and; (b) Fe. 
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Figure 4.1.3. Gaussian transformation functions relating the original data values (vertical axis) and the normal scores (horizontal 

axis) for (a) Si, (b) Fe, (c) Ca, and (d) Cu variables. 

The experimental direct and cross-variograms (Wackernagel, 2003) are then calculated for the 

transformed (normal scores) data and fitted with a linear model of coregionalization. Only two 

directions (horizontal and vertical) were considered for the current study due to the small sample 

size, as well as the geometry of the tailings structure and the orientation of drilling. Parameters 

selected for the experimental variography included azimuth and dip tolerances of 90o and 20o, 

respectively; lag tolerance was set to 10m in the horizontal direction, and 0.3m in the vertical 

direction. A nugget effect and one spherical variogram model were used to fit the experimental 

variograms, using a least-square fitting algorithm ensuring the mathematical consistency of the 

fitted model (Goulard & Voltz, 1992). Examples of direct variograms for Si and Fe are presented 

in Figure 4.1.4, and both direct and cross-variograms for Ca and Cu are given in Figure 4.1.5. 
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Figure 4.1.4. Representative direct variograms in the horizontal direction for (a) Si, and; (b) Fe. 

 

Figure 4.1.5. Representative direct and cross-variograms in the vertical direction for Ca and Cu. The scattered nature of limited 

data points in the above variography modeling could lead to elevated fitting errors; however, the primary intent at this stage is to 

identify important spatial features for the attribute, not to perfectly fit the model to the data (Li, et al., 2018; Goovaerts, 1997). 

The variables were finally jointly simulated using the turning bands co-simulation program of 

Emery (2008) with one thousand turning lines. The program takes the normal scores data and the 

fitted coregionalization model as inputs to compute conditional realizations of the elemental 

concentrations over a user-defined grid. Data conditioning is performed by ordinary co-kriging, 

and the supplied transformation functions are used to back-transform the realizations for each 

variable to its original units (Emery, 2008). A total of 100 realizations were constructed for each 

variable, which reflect the spatial variability within the volume of the tailings dam as well as the 

cross-correlations between elemental concentrations. Figures 4.1.6a and 4.1.6b provide examples 

of the average concentration and variance maps for Fe over all of the realizations. Probability 

statistics and maps can then be calculated to assess the likelihood that a given variable meets or 
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crosses critical thresholds, as in Figure 4.1.6c. As discussed in Section 3.4.2, the mining parcels 

and related sequencing were generated as part of the overall geostatistical simulation process. 

Figure 4.1.6. Average elemental concentration, variance, and probability maps for Fe derived from the consolidated Taltal tailings 

dataset using the turning bands co-simulation method: (a) local mean distribution map; (b) local variance distribution map, and; (c) 

probability distribution map of Fe meeting a minimum threshold of 5%. Each image represents a horizontal surface map of the 

sampled tailings dam, corresponding to an area of 120m (horizontal axis) x 50m (vertical axis). Data have been averaged over 

5x5x1m block units, as indicated by individual image pixels. 

As described in Section 4.1.1, recent studies have successfully replaced the natural clay 

component (~17%) in cement clinker with iron ore tailings, and noted the added benefit of 

increasing burnability and reactivity which promotes the sintering process (Luo, et al., 2016). This 

could potentially lead to increased energy efficiencies and related cost reductions in the production 

of industrial cement. Mineralogical and chemical characterization of the Taltal tailings indicate a 

similar overall composition as the iron ore tailings, with high aluminosilicate content and elevated 

iron oxides (Tripodi, et al., 2019). As a result, Fe was selected as the primary variable of interest 

for integration into DES to evaluate the potential system response to geological uncertainty. The 

framework aims to maximize throughput, enhance stockpile management and mitigate stockout 

risk for a conceptual tailings pretreatment circuit at a cement production operation. 

(a) 

7.0 

5.2 

3.4 
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0.6 

0.0 

(c) 

1.0 

0.5 

0.0 



62 

 

4.1.3 Discrete Event Simulations 

For the DES portion of the study, three material types have been classified according to the 

geostatistical simulations: 1) ore type 1 (>5% Fe); 2) ore type 2 (between 4-5% Fe), and; 3) waste 

(<4%). Similar to Navarra et al. (2019), two modes of operation (A and B) are under consideration 

to balance stockpile levels against ‘cement production rates’ (akin to milling rates) and incoming 

ore feed from mining. Despite an overall composition for the tailings deposit estimated at an 

average blend of 60-30-10 for ore type 1, ore type 2 and waste (respectively), high-level mine 

planning suggests that the bulk of early excavations could be limited to areas with slightly higher 

ore type 2 content. As a result, operational Mode A will consist of an approximate 45-55 blend of 

ores 1 and 2. Longer term forecasts suggest significant distribution variability with a mixture of 

areas dominated by ore types 1 and 2. Because ore type 2 is generally in shorter supply, a second 

operational Mode B, consisting of a 90-10 blend of ores 1 and 2, is needed in order to avoid an 

ultimate shortage. This will allow for seamless production scheduling, stable feed balances and the 

selection and consistent utilization of mining equipment, all of which can result in decreased 

operating and capital costs. 

Under this conceptual framework, both modes are assumed to exhibit similar downstream 

performance in the production of industrial cement, except that Mode B requires additional 

grinding in order to break down the coarser mineral grains associated with ore type 1. Cement 

production rates under Mode B are therefore set at 80% of those under Mode A. Parameter details 

for each of the modes are summarized in Table 4.1.2, along with conventions for their algebraic 

notation. Though Mode A is clearly more productive, its continuous application will inevitably 

lead to stockouts as the weight fraction of ore type 2 (w2A) is much greater than that of the deposit 

(w2D). Contingency modes for each of Mode A and Mode B are also included in the event a 

stockout occurs prior to a planned shutdown. 
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Table 4.1.2. Description of operational modes in relation to deposit forecast. 

    Throughput (t/h) Ore 1 in feed (%) Ore 2 in feed (%) 

Algebraic Notation: rA,ACont,B,BCont w1A,1ACont,1B,1BCont w2A,2ACont,2B,2BCont 

Mode A Regular 25 45 55 

 
Contingency 16.25 100 0 

Mode B Regular 20 90 10 

 
Contingency 10 0 100 

Deposit 
 

- 65 35 

A deterministic analysis to balance the respective weight fractions (w1A,2A,1B,2B) and rates of 

throughput (rA,B) against the geological forecast (w1D,2D) for the two-mode model has been carried 

out using the following equations (Navarra, et al., 2019): 

 (
𝑡A

𝑡B
) =  (

𝑤2B𝑤1D− 𝑤1B𝑤2D

−𝑤2A𝑤1D+ 𝑤1A𝑤2D
) (

𝑟B

𝑟A
), (4.1.1) 

in which tA and tB represent the time devoted to Mode A and Mode B, respectively. The average 

throughput is then determined as follows (Navarra, et al., 2019): 

 
𝑟 =  (

𝑤1A𝑤2B − 𝑤2A𝑤1B

(𝑤2B(
𝑟B
𝑟A

) − 𝑤2A)𝑤1D − (𝑤1B(
𝑟B
𝑟A

) − 𝑤1A)𝑤2D

) 𝑟B. 
(4.1.2) 

Similar equations can also be derived in order to balance throughputs between each of the regular 

modes and their corresponding contingency modes (refer to Navarra et al., 2019, for additional 

details). 

Barring the risk of stockout, Eqs. (4.1.1) and (4.1.2) indicate a 50-50 split between modes A 

and B, with a corresponding average throughput of 22.41 t/h. The objective of the framework is to 

maximize throughput meanwhile minimizing the target size of stockpiles in order to reduce overall 

costs. Larger stockpiles require larger storage pads and handling equipment, as well as increased 

operating costs to manage the lifting and moving of material. In any case, the adoption of an 

additional mode will likely require certain upgrades to infrastructure and stockpiling equipment. 

The framework operates under the assumption that mining rates exceed plant capacity. With 

the plant thus acting as a bottleneck, stockpiles are required to maintain consistent ore feed. As a 

result, ore will be mined at 25 t/h under Mode A and 20 t/h under Mode B to sustain the target 

total stockpile level. Despite a constant total stockpile level, the proportion of ore types 1 and 2 is 
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expected to fluctuate depending on the mode of operation. Mode A should cause an increase in the 

proportion of Ore 1 relative to Ore 2, with the reverse effect expected under Mode B. The mode 

of operation is selected based on individual stockpile levels at the end of a production campaign 

during planned shutdowns every 5 weeks. 

A naïve analysis determines that Mode B should only be selected when the stockpile level for 

ore type 2 is below a critical threshold of 3,910 t. For the present scenario (Table 2), the Ore 2 

stockpile level is expected to decrease by 115 t/day under Mode A. With a production campaign 

length of 34 days, the critical level for Ore 2 is computed as 115 t/day x 34 days = 3,910 t (recall 

that the ‘re-order point’ is directly proportional to the expected rate of consumption and the lead 

time to replenish the stockpile levels). This deterministic calculation does not take geological 

uncertainty into account, nor the related stockout risk. Specifically, if the actual proportion of a 

given ore type is lower than expected under a particular mode of operation, there is a real 

possibility of stockout towards the end of a production campaign (Navarra, et al., 2019). It must 

therefore be considered whether to raise the threshold for the critical ore type and/or the target 

total stockpile level (and to what extents) in order to mitigate the potential stockout risk. 

If stockout occurs during a production campaign, a contingency mode is implemented wherein 

only the available ore type is consumed to allow the depleted ore type to build back up before 

reverting back to the regular mode. For the current scenario, Contingency Mode A only consumes 

Ore 1, whereas Contingency Mode B only consumes Ore 2 (Table 4.1.2). Because the contingency 

modes are far less productive than their regular counterparts, the duration of contingency mode 

segments has been set to 1 day which causes the plant to alternate between regular and contingency 

until the next planned shutdown. The time segment parameters for production campaigns, planned 

shutdowns and contingency mode segments are summarized in Table 4.1.3. If the critical ore level 

remains below the selected threshold at the end of a production campaign, the plant will then 

switch to the alternate mode of operation in order to re-balance the stockpiles. 
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Table 4.1.3. Summary of time segment parameters. 

Segment type 
 

Duration (days) 

Production campaign 
 

34 

Planned shutdown 
 

1 

Contingency modes 
 

1 

Regular modes 
 

Indeterminate 

The current framework was implemented, and subsequent computational results (Figures 

4.1.7–4.1.9) generated, using commercial DES software (Rockwell Arena©) with Visual Basic for 

Applications (VBA). The framework can simulate hundreds of days of operation to evaluate the 

system-wide response to geological uncertainty while varying the critical ore and target stockpile 

levels as control variables. As previously described, the primary objective of the model is to 

maximize throughput while minimizing stockpile levels. It should be noted that the simulation 

model currently assumes that ore is mined to completion from a single parcel at a time. 

The framework has the flexibility to incorporate geological uncertainty by reading data from 

varied external source files. As previously described, the present study integrates geological 

variability data loosely based on a case study of the Taltal tailings in northern Chile. The model of 

Navarra et al. (2019) has been scaled down to reflect a tonnage more in line with the Taltal tailings 

site. The framework has been configured such that 480,000 t of ore are processed within each 

replica, corresponding to approximately 1,000 days of operation. The model has also been adjusted 

to handle a third material type as waste. Unlike the ore stockpile levels, this reject material 

accumulates solely as a function of the mining rate and thus does not take plant production rates 

into account. A rate of waste accumulation (‘rejectput’) is calculated in addition to the standard 

ore feed throughputs. 

To assess the effects of the set control variable levels on the system-wide response to 

geological uncertainty, a series of simulations were run to monitor throughputs and potential 

stockout risk. The first set of simulations were conducted by holding the critical Ore 2 level 

constant at 3,910 kt, and varying the total stockpile target levels. Five scenarios were considered 

with total stockpile levels corresponding to 1x, 1.5x, 2x, 3x, and 5x the selected critical Ore 2 

level. Simulated results for each scenario are summarized in Table 4.1.4. 
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Table 4.1.4. Distribution of time spent in each mode type under varied target total stockpile levels. 

Scenario: 1 2 3 4 5 

  Replications: 1 1 1 100 1 1 

Critical Ore 2 Level (t): 3,910 3,910 3,910 3,910 3,910 3,910 

Target Total Stockpile Level (t): 3910 (1x) 5865 (1.5x) 7,820 (2x) 7,820 (2x) 11,730 (3x) 19,550 (5x) 

    Portion of time (%) 

Mode A Regular 0 48 59 58 59 58 

  Contingency 0 3 1 1 1 1 

Mode B Regular 61 39 37 36 37 38 

  Contingency 36 7 0 2 0 0 

Shutdown   3 3 3 3 3 3 

Throughput (t/h) 16.16 21.53 22.92 22.51 22.90 22.90 

Rejectput (t/h)  1.10 1.59 1.67 2.12 1.65 1.74 

Replications with stockouts  - - - 66 - - 

Consistent with findings by Navarra et al. (2019), the first scenario shows that naïve selection 

of the critical ore level using the deterministic result, when the total stockpile is also low, causes 

the simulation to run strictly in Mode B with an average throughput of only 16.16 t/h. Not only is 

this result significantly lower than the deterministic value of 22.41 t/h computed from Eq. (4.1.2), 

but the operation also suffered from chronic shortages of ore type 1, as shown in Figure 4.1.7a. 

Increasing the target total stockpile level by just 1.5x already shows marked improvement in the 

overall system response. This second scenario produced a near even split between Modes A and 

B (51-46, respectively), and an average throughput of 21.53 t/h, which are in general agreement 

with both Eqs. (4.1.1) and (4.1.2), i.e. within 5%. The portion of time spent in contingency modes 

(10%), however, may still be considered a little too high and suggests the risk of stockout could 

be further mitigated. Doubling the total stockpile target (Scenario 3) continues to show slight 

improvement with an average throughput of 22.92 t/h caused by a higher portion of time spent in 

the more productive Mode A (60%). The overall system response to geological uncertainty was 

also much smoother with only 1% of the time partitioned to contingency mode segments, as in 

Figure 4.1.7b. Subsequent increases to the stockpile targets (Scenarios 4 and 5) did not identify 

any significant changes to the simulated data. This suggests that the total stockpile target is best 

maintained at levels in the range of twice the selected critical ore threshold value in order to 

maximize throughput, and mitigate the risk of ore stockout. 
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Figure 4.1.7. Simulated operational dynamics of Taltal tailings data in response to geological uncertainty, applying a constant 

critical Ore 2 level of 3,910 t (deterministic result), and total stockpile target levels of (a) 3,910 t under Scenario 1, and; (b) 7,920 

t under Scenario 3. Contingency modes are indicated by the fine jagged saw-tooth pattern resulting from short contingency segment 

durations of 1 day (Table 4.1.3); note the significant proportion of contingency mode segments in (a) relative to (b). 

Based on these findings, the framework was then configured using the parameter values from 

Scenario 3 to run through 100 replications, corresponding to nearly 100,000 simulated days of 

operation. The simulated results from this test were nearly identical to the single replication 

scenario (Table 4.1.4), except that approximately 2/3 of the replications experienced stockouts. 

This elevated risk of stockout was not apparent in the single replication scenario, and points to the 

high variability of the source geostatistical data. Some of the stockout periods were relatively 

frequent and sustained, requiring the implementation of mining surges as a recourse action to 

supply ore feed directly to the plant to maintain production. A mechanism was built into the 

framework to decrease mining rates by 25-50% following a surge in order to allow for a smoother 

transition back to normal mining conditions, as shown in Figure 4.1.8a. Greater reductions to the 

mining rate cause punctuated mining episodes (Figure 4.1.8b), which are neither conducive to 

planning nor sustainable for a typical mining operation. 

Figure 4.1.8. Simulated mining surges caused by high variability of Taltal tailings data in response to geological uncertainty, 

applying mining rate reductions of (a) 25%, and; (b) 75%. Surges are indicated when the level of one of the ore types increases 

above the total ore stockpile target level to provide feed directly to the plant in response to a sustained stockout of the other ore 

type (~480-510 day range in both images). Mining rate reductions of greater than ~50% following a surge cause multiple punctuated 

mining episodes in order to sustain plant production, as in (b). 
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To mitigate the high risk of stockout identified (66% of replications), a second set of 

simulations were carried out to evaluate the effect of increasing the critical Ore 2 threshold value. 

Three scenarios were considered with critical ore levels corresponding to 1.5x, 2x, and 3x the 

deterministic value (3,910 t). Consistent with the above findings, total ore stockpile target levels 

were set at 2x the selected critical ore value. Simulated results for each scenario are summarized 

in Table 4.1.5. 

Table 4.1.5. Distribution of time spent in each mode type under varied critical ore levels. 

Scenario: 6 
 

7 
 

8 

  Replications: 1 100 
 

1 100 
 

1 100 

Critical Ore 2 Level (t): 5,865 (1.5x) 5,865 (1.5x) 
 

7,820 

(2x) 

7,820 

(2x) 
 

11,730 (3x) 11,730 (3x) 

Target Total Stockpile Level (t): 11,730 11,730 
 

15,640 15,640 
 

23,460 23,460 

    Portion of time (%) 

Mode A Regular 56 60 
 

56 61 
 

56 61 

  Contingency 0 1 
 

0 0 
 

0 0 

Mode B Regular 40 35 
 

41 35 
 

41 36 

  Contingency 1 1 
 

0 1 
 

0 0 

Shutdown   3 3 
 

3 3 
 

3 3 

Throughput (t/h) 22.78 24.00 
 

22.82 24.08 
 

22.82 24.19 

Rejectput (t/h)   1.65 2.40 
 

1.56 2.39 
 

1.64 2.48 

Replications with stockouts - 40 
 

- 9 
 

- 2 

These results indicate that adjusting the critical ore threshold had no significant effect on 

throughput rates; however, important decreases in the number of stockout periods were noted when 

the framework was configured for 100 replications (~100,000 operating days). By doubling the 

critical Ore 2 threshold value, the number of simulated replications that suffered from ore shortages 

was reduced to less than 10% (Table 4.1.5). Tripling the critical value decreased the number of 

replications with stockout periods down to only 2%. This significantly reduces the risk factor for 

stockouts, but one must also account for the increasing stockpile levels, and related costs, in the 

decision-making process. 

Figure 4.1.9 depicts the time-averaged distribution of operational modes in response to 

geological uncertainty for 2 different scenarios. Figure 4.1.9a is based on the same data from 

Scenario 3 over 100 replications (Table 4.1.4), which was configured using a naïve deterministic 

critical Ore 2 level of 3,910 t. Though a similar analysis concludes a deterministic total ore 
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stockpile target of 3,952.5 t, early simulation trials indicated nearly chronic ore shortages under 

such a scenario, and highlighted the high variability of the geostatistical dataset. As a result, the 

‘naïve’ configuration in Figure 4.1.9a used a total stockpile target level set at 2x that of the critical 

ore level, i.e. 7,820 t. Figure 4.1.9b represents an enhanced framework configuration, making use 

of conclusions from the first 2 sets of simulations described above. This enhanced operational 

policy is also based on 100 replications, and used a critical Ore 2 threshold of 7,500 t (nearly 2x 

the deterministic value) with a total stockpile target of 16,875 t (2.25x the critical value). The 

distribution of operational modes between the two scenarios is similar, but the enhanced 

configuration applies Mode A 3% more frequently, and does not include any contingency modes; 

overall, this results in a slightly more productive operation. Despite similar distributions, both 

framework applications benefit from the ability to switch between modes relatively freely due to 

the data variability, and timing for extraction of each mining parcel. The key difference between 

the two scenarios lies in the potential exposure to stockout risk. The ‘naïve’ setup is highly 

sensitive to stockout risk with ore shortages observed in ~2/3 of the simulated replications (Table 

4.1.4), whereas the enhanced configuration only identified stockout risk in 3% of trials. 

 

Figure 4.1.9. Time-averaged distribution of operational modes in response to geostatistical variability data from the Taltal tailings 

in northern Chile, for (a) ‘naïve’ framework application using a critical Ore 2 threshold of 3,910 t and target total stockpile level of 

7,820 t (2x), and; (b) enhanced configuration using a critical value of 7,500 t and target total stockpile level of 16,875 t (2.5x). 

4.1.4 Conclusions 

The overall results of these simulation studies support the flexibility of the current DES 

framework to integrate geostatistical variability data in order to evaluate the system-wide response 

to geological uncertainty. The simulation model is an extension of recent conceptual work by 
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Navarra et al. (2019) and incorporates a third material type as waste throughput (i.e. ‘rejectput’). 

A case study loosely based on the Taltal tailings site in northern Chile demonstrates how the 

framework can be adapted to assess risk factors associated with potential secondary mining 

applications. Simulations using this high variability data indicate the likelihood of ore stockouts at 

the Taltal site, but the framework provides the means to analyze the effect of adjusting critical 

parameters and assist with decision-making. Equipment size selection and potential infrastructure 

upgrades can then be weighed against the additional capital and operating costs associated with 

larger stockpiles. Such costs could potentially be offset by implementing alternate modes of 

operation in order to achieve higher throughputs and mitigate the risk of stockouts. 

The Taltal data proved to be highly heterogeneous, which points to the fact that tailings 

deposits are sometimes the result of processing different ore types over different time periods, as 

was the case here (Tripodi, et al., 2019). This makes the definition of different geometallurgical 

units especially difficult, and highlights the additional challenges faced by tailings deposits in the 

context of secondary mining applications. Abandoned tailings deposits are usually poorly 

documented and require complete mineralogical and chemical characterization, with carefully 

planned sampling protocols appropriate to the intended end use. 

In order to drive and further promote the concept of using tailings as a partial substitution of 

raw materials in the production of cement clinker, more case studies are required to generate 

realistic flow sheets and determine the most critical parameters affecting system-wide metrics 

(Suazo, et al., 2010). In the case of abandoned tailings, wherein the responsibility for site 

remediation generally falls on the state, synergistic efforts from academic, government and 

industry partners are likely needed to generate sufficient interest and opportunities for centralized, 

regional cement production plants. 

4.2 Bitumen Extraction from Canadian Oil Sands 

With conventional oil and gas reservoirs being gradually depleted worldwide, activity in the 

research and exploitation of unconventional resources has grown exponentially over the past two 

decades. Global estimates of in-place bitumen and heavy oil resources are on the order of 5.9 

trillion barrels (938 billion m3), over 80% of which are concentrated in Canada, Venezuela and the 

United States (Bata, et al., 2019). Boasting the largest collection of these deposits globally with 
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approximately 1.7 trillion barrels (270 billion m3) of in-place resources (Bata, et al., 2019), Canada 

is strategically positioned as an important source of unconventional petroleum products. Of this 

total, roughly 165 billion barrels (26.3 billion m3) are considered technically recoverable, and thus 

correspond to Canada’s estimated remaining established reserves (Bata, et al., 2019). Unlike 

traditional light oil well drilling which will decline over time, forecasts show an overall 12% 

increase in unconventional petroleum production over the next 30 years, with peak rates reached 

in 2039 (CER, 2020). 

Bitumen and heavy oil reservoirs typically occur in unlithified sand deposits (also called 

‘bituminous’, ‘tar’ or ‘oil’ sands); however, heavy oil is also found within porous siliciclastic and 

carbonate host-rock successions due to its relative mobility (Bata, et al., 2019). These reservoirs 

are generally heterogeneous, containing a variety of different hydrocarbons across the American 

Petroleum Institute (API) gravity spectrum (from light oil to bitumen). By definition, heavy oil is 

marginally less dense than water (0.920 g/mL) and corresponds to API gravities in the range of 

10–20°; conversely, bitumen and extra-heavy oils are denser than water with API gravities of less 

than 10° (Bata, et al., 2019; Hein, 2006). Crude bitumen and heavy oil resources are lacking in 

terms of lighter distillates, which significantly reduces their market value; consequently, both must 

undergo upgrading to increase commercial value and marketability. Upgrading to synthetic crude 

oil products (~20–40° API) involves the addition of hydrogen in order to attain H:C ratios similar 

to those of conventional crudes, as well as the removal of impurities such as nitrogen, sulphur, 

oxygen and heavy metals (Bata, et al., 2019). 

The current study is concerned with processes specific to the exploitation of oil sand deposits. 

Typically, economical oil sands contain on the order of 9–13% bitumen (soluble organic matter), 

3–7% water, and 80–85% mineral solids and insoluble organic matter (Hein, 2006; Gray, et al., 

2009). Generally, 15–30% of the total solids are fines (mainly clays), less than 44 µm in diameter 

(Gray, et al., 2009). Most deposits are comprised of unconsolidated sand ‘bound’ by a matrix of 

bitumen, with or without secondary cements and clays (Hein, 2006). Despite broad acceptance of 

the origin and emplacement of bitumen reservoirs, oil sand deposits are subject to substantial levels 

of geological uncertainty in terms of host formation characteristics, ore composition, grade, and 

overall processability. All of these process variables are strongly influenced by variable and 
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complex host-formation and hydrocarbon depositional histories, in addition to post-depositional 

alteration processes such as biodegradation and in situ natural water washing (Algeer, et al., 2016; 

Fustic, et al., 2015). Each of these contributing factors can lead to significant variability in ore feed 

particle size distributions, host-formation mineralogy and hydrocarbon chemistry and quality, all 

of which have direct impacts on downstream processing. 

As with many types of mining projects, there are a variety of processes along the oil sands 

value chain; each of these streams may serve a particular function, but also require coordination 

of inputs and outputs with both up- and down-stream processes. This coordination can be difficult 

to maintain at times even for systems that receive relatively stable ore feeds, but is exponentially 

problematic for projects dealing with heterogeneous ores. For example, blending strategies are 

common in mining for grade control or to minimize undesirable impurities in ore feeds; however, 

oil sand operations must also consider factors such as grain size distribution and mineral chemistry 

in order to regulate the transfer of intermediate products (e.g. slurries or froths) within 

hydrotransport pipelines. Furthermore, some complex ores may require additional treatment prior 

to, or between, conventional processing methods. For instance, heavy gas oil phases partitioned 

by distillation during upgrading are fed to fluid cokers and hydrocrackers to increase H:C ratios 

and break down long chain molecules (Masliyah, et al., 2011). Similarly, problematic high chloride 

oil sands, often with elevated clay contents, could require ancillary control strategies (e.g. water 

content reduction, additives/inhibitors, and blending) to reduce corrosive effects or blockages (i.e. 

ammonium chloride) related to hydrolysis reactions in downstream processes (Gray, et al., 2008; 

Kaur, et al., 2012; Li, et al., 2018; Londono, et al., 2009). 

Improper process control strategies that do not suitably incorporate the geometallurgical 

profile of source ore feeds can result in major bottlenecks in mining and processing operations, 

ultimately leading to increased operating costs, decreased efficiencies, and even potentially 

important reductions in project life. Several authors have emphasized the importance of 

establishing alternate modes of operation for mineral processing facilities (Navarra, et al., 2018; 

Navarra, et al., 2017a). Alternate modes are designed using mass balance and mathematical 

programming, and the operational decision to switch between modes is triggered by changing 

conditions or as critical thresholds are crossed (Navarra, et al., 2018; Navarra, et al., 2017a). The 
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approach is particularly effective for complex mining systems dealing with heterogeneous ore feed 

and process variables, as demonstrated by recent studies (Navarra, et al., 2020; Navarra, et al., 

2019; Saldaña, et al., 2019; Wilson, et al., 2021a). Continuous online material and system process 

monitoring notwithstanding, a natural and powerful extension is to couple the development of 

operational modes with robust predictive models that benefit from earlier systematic sampling 

protocols. This type of integrated approach can lead to improved planning and fine-tuning earlier 

in the value chain, rather than being forced to make continual reactive adjustments based on 

process outputs (e.g. bitumen recoveries). 

Given the high degree of variability inherent to oil sands mining and processing operations, it 

is evident that appropriate quantitative frameworks are needed in order to monitor system 

performance and response under changing conditions. One such computational intelligence tool is 

the digital twin, which is an integrated multidisciplinary probabilistic simulation of a system that 

uses the best available data models, updates, and history to mimic the operational life of the 

corresponding physical system (Boschert & Rosen, 2016; Glaessgen & Stargel, 2012). The 

development of digital twins using discrete event simulation (DES) is an effective approach 

because it allows for the simulation of interactions between critical parameters and processes with 

respect to random natural variations, e.g. geological uncertainty. Furthermore, DES models can 

also optimize tradeoffs between available operational policies, as well as the limits that dictate the 

timing of their execution (Navarra, et al., 2019; Saldaña, et al., 2019; Wilson, et al., 2021a). By 

simulating extended operating periods, potential deficiencies or bottlenecks in the coordination of 

system processes can be identified; strategic decisions can then be made to adjust operational 

policies accordingly, thereby pre-emptively assessing and managing risk factors. The drive to 

improve overall system efficiencies is further amplified by increasingly stringent environmental 

regulations, industry best practices, and pressure from community stakeholders. 

This work introduces an extended framework capable of integrating predictive modelling 

using partial least squares (PLS) regression incorporated within a digital twin, for the evaluation 

of system response to geological uncertainty. A case study using data derived from Canada’s oil 

sands is presented for a conceptual surface mining operation to assess the effect of implementing 
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potential new ore blending schemes. The initial dataset was kindly acquired through partnerships 

with the National Research Council Canada and Syncrude Canada Ltd. 

4.2.1 Geology and Petrochemical Processing 

Canada’s vast oil sand resources are located almost exclusively in northeastern Alberta, within 

three core areas, namely the Peace River, Athabasca and Cold Lake deposit regions (Figure 4.2.1) 

(Masliyah, et al., 2011; Kaminsky, 2008). Collectively, these accumulations span an area of 

approximately 142,000 km2 (Masliyah, et al., 2011; ERCB, 2009), the largest of which is the 

Athabasca region, containing ~75% of provincial reserves (Kaminsky, 2008; Zhao, et al., 2001). 

 

Figure 4.2.1. Location map of the Alberta Oil Sands Region (AOSR), showing the relative positions of the Peace River, Athabasca 

and Cold Lake oil sand deposit areas. 

Generally, the Alberta oil sands have a thin overburden and the deposits are concentrated 

within the early Cretaceous McMurray Formation (Mannville Group), which has variable 

thickness related to an original depositional surface defined by karstic features in underlying 

Devonian carbonates (Hein, 2006; Gray, et al., 2009). The present-day low API oils are the result 
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of degraded Exshaw Shale sourced hydrocarbons (Hein, 2006; Barson, et al., 2001; Fowler & 

Riediger, 2000). Ores hosted within the McMurray Formation are subject to heterogeneities and 

related geological uncertainty, at both regional and individual reservoir scales. Key factors that 

affect the distribution and chemistry of bitumen include physical reservoir characteristics, 

mineralogy and mineral chemistry, and fluid distribution and chemistry; these attributes are the 

result of dynamic host-formation and hydrocarbon depositional histories, as well as complex post-

depositional alteration processes (Fustic, et al., 2015). For example, though the predominant host 

successions are thought to have been deposited in estuarine settings, reservoirs have also been 

identified in fluvial and shallow marine settings, each with differing host porosities and 

permeabilities, mineral compositions, grain size distributions, and related bitumen qualities (Hein, 

2006; Fustic, et al., 2015; Hein, et al., 2001; Hein, et al., 2000). Moreover, even broadly mappable 

geologic sequences (e.g. estuarine settings of the Middle McMurray Formation) may actually 

consist of multiple events overlapping in space and time, with each contributing several 

hierarchical heterogeneities (Fustic, et al., 2015; Wightman & Pemberton, 1997). Microbial 

degradation has been strongly linked to the quality of petroleum, having destroyed important 

proportions of originally emplaced conventional oil through the removal of lighter distillates 

(Gray, et al., 2009; Fustic, et al., 2015). In situ water washing, which removes the more water 

soluble distillates through contact with formation waters, is considered the second most important 

post-depositional alteration process that affects the geochemistry, quality and bulk physical 

characteristics of petroleum accumulations (Bata, et al., 2019; Algeer, et al., 2016). 

Open-pit mining has traditionally been the dominant method implemented in the Alberta Oil 

Sands Region (AOSR), but in situ production first surpassed surface mining in 2012 and continued 

this trend into 2013 (Bata, et al., 2019; AER, 2015). For aging open-pit mines to remain 

competitive with the newer in-situ operations, they must be ready to implement changes to their 

process and thus adapt to their forecasted feeds. In oil sands surface mining, overburden is stripped 

and conventional truck-and-shovel methods are used to excavate the ore, followed by a series of 

treatments to liberate the bitumen from the mineral grains for subsequent recovery and cleaning. 

First, the ore is crushed and mixed with water and additives to create a slurry, which is then pumped 

to the extraction facilities via hydrotransport pipelines (Masliyah, et al., 2011; Kaminsky, 2008). 

Upon exit, the slurry is subject to water addition and gravity-settling separation processes, which 
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produces a bitumen froth, a middlings stream and a first round of tailings. The aerated bitumen 

froth (comprising ~60% bitumen, 30% water and 10% fine solid particles) rises to the top of the 

separation vessel, meanwhile flotation cells are used to recover bitumen from the middlings 

(Masliyah, et al., 2011). The separated froth is deaerated and then sent to the froth treatment plant, 

where the addition of a light hydrocarbon solvent helps reduce the viscosity of the bitumen; this 

allows for more effective separation of any remaining impurities by centrifugation and inclined 

plate (gravity) settlers. The final product of this froth treatment process is called diluted bitumen 

(also referred to as ‘dilbit’), and is accompanied by another tailings stream. 

Depending on the choice of hydrocarbon solvent, the generated dilbit can require further 

upgrading (typical for naphthenic treatment), or head straight to the refinery market (possible with 

paraffinic treatment); in either case, the diluent is removed prior to further processing. Lighter 

hydrocarbon solvents yield cleaner dilbit products by reducing the viscosity of the emulsion, which 

allows for gravity-based removal of water and solids. Paraffinic solvents promote asphaltene 

(impurity) precipitation, whereas naphtha cannot do this at practical dilution rates. Upgrading 

converts viscous, hydrogen-deficient hydrocarbon with elevated impurity levels into high-quality 

synthetic crude oil products with density and viscosity attributes similar to those of conventional 

light sweet crude oil (Masliyah, et al., 2011). The process first splits the bitumen into hydrocarbon 

streams (i.e. light and heavy gas oil) in a vacuum distillation unit. The lighter distillates (‘tops’) 

are fed into hydrotreaters for stabilization and impurity removal (e.g. sulphur), meanwhile the 

heavier phases (‘bottoms’) are sent to fluid cokers (thermal conversion units) to remove carbon, 

and to hydrocrackers where hydrogen is added and long chain molecules are broken down 

(Masliyah, et al., 2011). 

4.2.2 Overview of Partial Least Squares (PLS) Regression 

Multivariate statistics is a branch of statistics dealing with methods that examine the 

simultaneous effect of multiple variables (Marinković, 2008). Multivariate techniques extend the 

approach of univariate and bivariate investigations to include the analysis of covariances (or 

correlations) that reflect the extent of relationships between three or more variables, as well as 

similarities indicated by relative distances in 𝑛-dimensional space (Marinković, 2008). This area 
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of research has expanded greatly over the past few decades due to significant technological 

advances in computing power and data frameworks. 

Partial least squares (PLS) regression is a multivariate statistical method that combines and 

generalizes features from principal component analysis and multiple linear regression, with the 

objective of predicting a set of dependent variables from a potentially large set of independent 

variables (Abdi, 2003; Abdi, 2010b). The technique was pioneered in the 1960s by Herman Wold 

for use in the social sciences but has since gained traction in a variety of fields, including 

chemometrics, sensory evaluation and neuroimaging (Abdi, 2003; Abdi, 2010b; Hoskuldsson, 

1988; Tenenhaus, 1998). It is also becoming popular in the biological and environmental sciences 

with applications in soil and microbial ecology (Ekblad, 2005; Allen, 2005), biodiversity (Maestre, 

2004; Palomino & Carrascal, 2007), paleo-climatological reconstruction (Seppa, 2004), and 

ecotoxicology (Sonesten, 2003; Spanos, 2008). 

The main underlying computation for PLS is the singular value decomposition (SVD) of a 

matrix, which gives the best reconstruction (in a least squares sense) of the original data matrix by 

a matrix of lower rank (dimension reduction) while limiting the loss of significance (Abdi & 

Williams, 2013). The SVD is closely related to the well-known eigen-decomposition for non-

symmetric matrices (Abdi, 2007). As a matter of notation, matrices are denoted by upper case bold 

letters, column vectors by lower case bold letters, and the superscript “𝐓” is used to indicate 

transposition of either. Formally, the SVD of a given matrix, 𝐑, decomposes it into three matrices, 

comprising the left singular vectors, the singular values and the right singular vectors, as follows: 

𝐑 = 𝐔𝚫𝐕𝐓 =  ∑ 𝐮ℓδℓ𝐯ℓ
𝐓

𝐿

ℓ

 (4.2.1) 

where 𝐑 is the 𝐽 × 𝐾 correlation matrix derived from the cross-product of the two original data 

tables, i.e. the transpose 𝑚 × 𝑛 matrix of the independent variables, 𝐗𝐓, and the 𝑛 × 𝑝 matrix of 

the dependent variables, 𝐘, as: 

∑ 𝐱𝑖𝑘
𝐓 𝐲𝑘𝑗

𝑛

𝑘=1

 (4.2.2) 
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𝐔 is the 𝐽 × 𝐿 matrix of the left singular vectors (𝐿 corresponds to the rank of 𝐑), 𝚫 is the 

𝐿 × 𝐿 diagonal matrix of the singular values, 𝐕 is the 𝐾 × 𝐿 matrix of the right singular vectors, 

and 𝐮ℓ, δℓ, and 𝐯ℓ
𝐓 are the ℓth left singular vector, singular value and right singular vector, 

respectively (Abdi & Williams, 2013). The non-negative singular values are sorted in decreasing 

order and represent the maximum covariance between each respective set of left and right singular 

vectors (Melzer, 2004). Note that both original sets of data are typically made comparable through 

statistical preprocessing (i.e. mean centering and rescaling each variable). 

It is useful to explain the SVD from a geometric perspective as a series of orthogonal axis 

rotations and scaling of unit matrices about the origin. As shown in the simplified interpretation 

for a 2 × 2 matrix (Figure 4.2.2; after (Hern & Long, 1991; Strang, 1993)), the SVD can be 

summarized as a linear transformation composed of three fundamental actions. These actions 

include: 1) rotation of the right singular vectors {𝐯𝟏, 𝐯𝟐} of matrix 𝐕𝐓 within the original unit 

sphere; 2) scaling by the singular values {δ1, δ2} of matrix 𝚫, which correspond to the length of 

the principal semiaxes of the new hyperellipse, and; 3) rotation of the left singular vectors {𝐮𝟏, 𝐮𝟐} 

of matrix 𝐔, oriented along the same principal semiaxes (Strang, 1993; Trefethen & Bau III, 1997). 

 

Figure 4.2.2. Geometric interpretation of the Singular Value Decomposition (SVD) for a 2 × 2 matrix showing the linear 

transformation induced by matrix 𝑅 decomposed into three actions: a rotation, a scaling and another rotation (after (Hern & Long, 

1991; Strang, 1993)). 

The functional basis of PLS is to relate the information in two data tables that gather 

measurements on the same set of observations (i.e. samples). The method works by deriving linear 

combinations of the original variables through the SVD of a correlation matrix, such that 

covariance is maximized between each pair of the defining latent vectors (implied orthogonality) 

(Abdi & Williams, 2013). These combined variables are also referred to as latent variables, 
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dimensions or components. In PLS regression, the SVD simultaneously decomposes matrices 𝐗 

and 𝐘 (by virtue of the correlation matrix 𝐑) and iteratively computes sets of orthogonal latent 

variables and the corresponding regression weights (Abdi & Williams, 2013). 

Generally, this entire process is first carried out on subsets of training and validation data (i.e. 

measured values exist for both independent and dependent variables) to build and evaluate a 

regression model. The selection of training and validation splits is dependent on a number of 

factors, including sample population size, the nature and variability of the data, and the scope of 

the prediction problem. Sample splits should generally be selected at random, but can also be 

stratified when there are constraints imposed by different sample types (e.g. rock type); 80–20 

training-validation splits are common in practice. Other techniques, such as 𝑘-fold cross-

validation, are also widely popular to further minimize bias; one of these approaches is further 

detailed in Section 4.2.4. The final regression coefficients are then subsequently applied to a test 

dataset (i.e. for which data are only available for the independent variables) in order to predict the 

entire set of dependent variables. 

By contrast with standard techniques, PLS regression can be used to predict a whole table of 

data and can also handle multicollinearity, thereby eliminating the necessity to remove certain 

predictor variables which may not be linearly independent and would normally cause overfitting 

(Abdi & Williams, 2013). This is particularly important in the context of mining systems wherein 

a significant proportion of the data variables used for ore characterization (e.g. geological, 

geochemical and mineralogical) are intimately linked. For example, ~50% of the variables in the 

present study are strongly correlated (correlation coefficients > 0.75) with one or more other 

variables (Appendix 4.2A). This multicollinearity among independent variables renders the classic 

multiple linear regression (MLR) method inappropriate for predictive modelling in most cases due 

to difficulties in distinguishing the effects of individual variables (Siegel, 2017). This can lead to 

the inflation of standard errors, which may cause incorrect variable significance classifications, 

and/or numerical instabilities related to the inversion of the covariance matrix (𝐗𝐓𝐗) in the 

calculation of regression coefficients (𝐁 = (𝐗𝐓𝐗)−1𝐗𝐓𝐘) (Siegel, 2017). In PLS regression, the 

multicollinearity problem is bypassed by projecting the original variables to latent structures 

(linear combinations) and forcing orthogonality between the new variables (𝐭 and 𝐮). The different 
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approaches of MLR and PLS are conceptualized in Figure 4.2.3. These attributes make PLS 

regression a powerful and highly adaptable tool because unlike other methods, it can be used on 

large datasets with an abundance of variables. 

 

Figure 4.2.3. Simplified schematic comparison of multiple linear regression (MLR) and partial least squares (PLS) regression 

methods. (a) MLR uses all original variables to directly form a linear combination via the normal equations, and; (b) PLS first 

transforms the original variables by projecting to latent structures (linear combinations) that maximize covariance (orthogonality) 

between the new variables (𝐭 and 𝐮) (modified after (Egarievwe, et al., 2016)). 

4.2.3 Case Study: Predictive Process Modelling of Canada’s Oil Sands 

An initial dataset derived from Canada’s oil sands was acquired through partnerships with the 

National Research Council Canada (NRC) and Syncrude Canada Ltd. retrieved from the NRC 

Office of Energy and Research and Development (OERD) database. The set contains elemental, 

mineralogical and ore compositional data for a total of 60 samples collected from multiple sources 

in the AOSR. Of the total number of samples, 40 were sourced from various locations at the 

Syncrude operations, and permission has been graciously granted to include these in the present 

conceptual study. The remaining 20 samples come from a number of miscellaneous sources as part 

of smaller studies and are already available to the public domain. 

Ore compositions (i.e. bitumen, water and solids contents) were analyzed by the standard 

Soxhlet-Dean and Stark method (Bulmer & Starr, 1974). Separately, splits from the original 

sample material were prepared for subsequent analytical determinations using a micronizing 

procedure recently developed at NRC. In this method, ore samples are first homogenized with a 

spatula at room temperature; isopropanol (4 mL) and toluene (6 mL) are then added to an aliquot 

(~2–3 g) and micronized with agate beads in a McCrone micronizing mill. The contents are 

strained into a weighed petri dish (any remainder is carefully rinsed with isopropanol and toluene) 

and allowed to dry for 24 hours in a fume hood prior to weighing. Lastly, the dried mixture is 
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scraped and transferred for further homogenization using a mortar and pestle. Elemental 

compositions were determined by wavelength dispersive X-ray fluorescence (WD-XRF) using a 

fusion-based procedure (Patarachao, et al., 2010), and CHNS measurements by combustion 

technique using an automatic elemental analyzer (Elementar Vario EL Cube) for carbon and 

sulphur. Mineral phase ratios were acquired by X-ray diffraction (XRD) with Rietveld refinement 

carried out on random orientation powder mounts. The mounts were prepared using a zero 

background specimen holder (Si crystal, P-type, B-doped) with a cavity diameter of 20mm and 

thickness of 0.2mm; a glass slide was used to remove excess powder and create a flat surface. Final 

mineralogical compositions were based on the combined XRF, CHNS and XRD results, and 

determined using the NRC-developed quantitative phase analysis (QPA) methodology 

parameterized with singular value decomposition (SVD), collectively termed SVD-QPA 

(Couillard & Mercier, 2016). 

Basic descriptive statistics were computed to summarize the original raw dataset (Tables 4.2.1 

and 4.2.2), which consists of data for 12 elements, 24 mineral phases and compounds, and 4 oil 

sand constituents (bitumen, water, solids, and proportion of fines). 

Table 4.2.1. Summary of descriptive statistics for mineral phases analyzed by X-ray diffraction (XRD) in 60 samples. 

    Mineral phase concentrations (wt.%) 

Mineral  Max  Min*  Median  Mean  Standard 

deviation 
 Variance 

(%2) 

Quartz 

+ silica 
 87.94  33.30  77.43  74.96  11.22  125.82 

Illite  25.63  0.01  5.31  5.89  5.20  27.06 

Kaolinite  24.09  -1.49  2.18  3.90  5.15  26.48 

Chlorite  1.42  -1.09  0.01  0.10  0.37  0.14 

Calcite  3.15  -1.06  0.01  0.09  0.50  0.25 

Dolomite  8.21  -0.03  0.12  0.83  1.69  2.85 

Ankerite  0.98  -0.03  0.01  0.05  0.16  0.03 

Siderite  5.09  0.00  0.61  1.04  1.15  1.33 

Pyrite  1.05  -0.05  0.04  0.16  0.23  0.05 

Zircon  0.44  0.00  0.06  0.09  0.08  0.01 

Rutile  0.62  0.03  0.13  0.15  0.09  0.01 

Anatase  1.13  0.00  0.11  0.26  0.29  0.09 

Ilmenite  0.05  0.00  0.01  0.02  0.01  0.00 

Lepidolite  0.05  0.00  0.01  0.02  0.01  0.00 

Gypsum  0.29  -0.85  0.01  0.01  0.13  0.02 

Bassanite  0.30  -0.90  0.01  0.01  0.14  0.02 

Anorthite  3.65  -7.14  0.12  0.22  1.22  1.49 

K-feldspar  4.16  -0.35  1.06  1.19  0.86  0.74 

Albite  11.38  0.00  0.34  0.96  1.75  3.08 
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Iron oxide 

+ hydroxide 
 5.25  -1.75  0.10  0.19  1.07  1.15 

Apatite  0.49  0.00  0.05  0.10  0.09  0.01 

Cristobalite  0.10  0.00  0.01  0.01  0.02  0.00 

Organic carbon  13.15  0.58  8.24  7.63  3.18  10.09 

Organic sulphur   1.03   -0.17   0.39   0.38   0.27   0.07 

* Negative values are related to the SVD-QPA methodology used for mineralogical composition reconstruction based on 

combined experimental results from elemental concentrations by XRF (Si, Al, K, Mg, Fe, Ti, Zr, Mg, Ca, and P), carbon and 

sulphur contents, and mineral ratios determined by Rietveld analysis of XRD powder patterns (Couillard & Mercier, 2016). The 

vast majority of these are well within tolerance; the anomalous value noted for anorthite (minimum of −7.14) can be linked to a 

specific sample likely containing Ca-bearing smectite, which was excluded in the QPA due to low overall Ca phases in the 

analyzed sample population. 

Table 4.2.2. Summary of descriptive statistics for elemental and ore compositions analyzed by X-ray fluorescence (XRF) and 

Soxhlet-Dean and Stark extraction (respectively) in 60 samples. 

    Elemental compositions (wt.%) 

Element  Max  Min  Median  Mean  Standard 

deviation 
 Variance 

(%2) 

Na  1.00  0.00  0.03  0.08  0.15  0.02 

K  2.00  0.09  0.55  0.64  0.43  0.18 

Si  42.01  26.75  38.42  37.98  2.77  7.69 

Al  9.09  0.00  1.56  2.22  2.09  4.36 

Fe  3.21  0.00  0.54  0.72  0.66  0.44 

Mg  1.09  0.00  0.05  0.12  0.22  0.05 

Ca  3.49  0.03  0.16  0.30  0.56  0.31 

Ti  0.72  0.02  0.20  0.25  0.17  0.03 

Zr  0.22  0.00  0.03  0.04  0.04  0.00 

P  0.09  0.00  0.01  0.02  0.02  0.00 

C  13.29  1.08  8.38  7.86  3.05  9.32 

S   1.31   0.05   0.47   0.47   0.28   0.08 

  Ore compositions (wt.%) 

Phase  Max  Min  Median  Mean  Standard 

deviation 
 Variance 

(%2) 

Bitumen  16.28  0.00  9.53  9.16  4.48  20.04 

Water  19.57  0.41  5.63  6.65  4.37  19.06 

Solids  91.25  76.79  83.97  84.42  2.86  8.16 

Fines   99.46   1.36   24.80   34.22   27.01   729.80 

The data are highly heterogeneous, and reflect ores likely hosted by formations spanning 

mainly estuarine and shallow marine settings, with a small number possibly from fluvial settings. 

Because information on sample provenance was fairly limited, assumptions had to be made in 

order to classify sample points for the sake of this conceptual study. This actually works out 

reasonably well as it highlights the importance of systematic data collection, and demonstrates the 

powerful information that can be gained by integrating properly developed geometallurgical 

profiles into advanced quantitative frameworks, and digital twins. 
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In positing the depositional settings from which the majority of the oil sand samples came, the 

data was sorted based on total clay contents (illite-kaolinite-chlorite) and a cut-off level of 6 wt.% 

was applied; samples with less than this limit were classified as (fluvio-)estuarine, and those with 

greater as marine. A broad inverse relationship is also evident in the data between total clay and 

bitumen contents, consistent with previous studies. Given that bitumen contents are generally 

higher in ores from fluvial and estuarine settings than those from marine settings (Masliyah, et al., 

2011), this relationship could serve as a useful check of the viability of assumed provenances. 

Bitumen contents in the classified (fluvio-)estuarine samples average 11.74 wt.% (standard 

deviation of 2.81 wt.%), which coincides with the stated range of ~9–13% for economic ores 

(Hein, 2006; Gray, et al., 2009). The average bitumen content for marine samples is 6.52 wt.% 

(standard deviation of 4.52 wt.%), consistent with borderline uneconomical ores (Masliyah, et al., 

2011; AER, 2016). Overall, the assumed depositional types appear fairly reasonable compared to 

natural deposit settings and related variations. 

The dataset was also expanded to include postulated bitumen recovery data that was mostly 

unavailable. To this end, batch extraction unit (BEU) test data for 5 estuarine and 5 marine ore 

samples from previous work (Mercier, et al., 2008; Mercier, et al., 2007) were used to calculate 

appropriate bitumen recovery distributions for each depositional type. By applying these 

respective sample population means and standard deviations to a random number generator, 

reasonable spreads of recovery data were inferred for each sample type. This was deemed 

necessary in order to classify ore types based on both depositional setting (clay content) and 

generally related ore processability, for subsequent predictive and system process modelling 

(Sections 4.2.4 and 4.2.5, respectively). It is notable that the effect of fines on bitumen recovery 

can vary considerably depending on the type of fines and water chemistry (Masliyah, et al., 2011); 

studies have shown a depressive effect in the presence of degraded illite or smectitic clays 

(Wallace, et al., 2004), as well as ultrathin illite (Mercier, et al., 2008) and interstratification 

(Omotoso & Mikula, 2003). 

For the purposes of this study, all samples are being treated as though they were sourced from 

a single mining project, with each of 20 mining parcels (i.e. blocks) corresponding to a minimum 

of 3 oil sands samples. The initial concept is to develop effective predictive models using PLS 
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regression such that bitumen recoveries could be estimated with confidence earlier in the value 

chain. Subsequent incorporation of this predicted data into DES frameworks would then expedite 

the evaluation of system response to geological uncertainty caused by heterogeneities in source 

ore feeds. 

To demonstrate the overall concept, the classified ore types are blended according to two 

different schemes established through mass balancing. Each of these schemes corresponds to a 

separate operational mode, whereby the primary blend is considered the productive phase, and the 

secondary blend is considered a replenishment phase. The mining parcel data, classified into 

proportions of each ore type, is then incorporated into a DES framework to simulate system 

response to ore feed availability for a designated tonnage of oil sands to be processed; bottlenecks 

or stockout risk for either ore type can be identified and adjustments made to the potential modes 

of operation (Figure 4.2.4). 

 

Figure 4.2.4. Generalized diagram showing the implementation of discrete event simulations (DES) in the formulation of blending 

control strategies and related operational modes. 

Notably, since fines content is generally linked to geological setting and processability, a 

classification scheme based on depositional setting (and predicted recovery) actually runs in 

parallel to a process recently developed by Syncrude for the control of solids distribution in a 

bitumen froth (Long, et al., 2020). Under this patented methodology, coarse oil sands (which 
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normally produce high bitumen recoveries) are blended with high-fines material prior to extraction 

in order to improve the efficiency of pipeline transport from remote extraction sites to the froth 

treatment plant (Figure 4.2.5) (Long, et al., 2020). As a result, the current framework could help 

quantify the effects of different ore blending strategies on downstream system processes, and better 

guide the implementation of alternate operational modes. 

 

Figure 4.2.5. Generalized flowsheet for the extraction of diluted bitumen (‘dilbit’) from mined oil sands. Blending should occur 

during ore preparation (prior to processing) to improve hydrotransport along pipelines (Long, et al., 2020). Red dotted ellipse 

indicates potential additional point of hydrotransport for remote extraction sites. 

This type of integrated quantitative framework allows for well-planned adjustments to process 

control strategies (e.g. ore blending), thereby streamlining risk-based decision-making, increasing 

efficiencies, and likely extending operational life through improved mine planning. The approach 

requires extensive sampling coupled with detailed analytical work initially, particularly in newly 

discovered or poorly characterized resource areas. With a sufficiently large population of sample 

points, robust predictive models can then be developed and implemented with confidence; at this 

stage, the expensive and time-consuming detailed analyses can be replaced with cheaper and faster 

tests earlier in the planning stages. 

4.2.4 Partial Least Squares (PLS) Regression Model 

For the predictive modelling portion of the study, elemental, mineralogical and ore 

composition data, coupled with depositional type, were retained for a total of 46 independent 

(explanatory) variables including 5 composite variables, e.g. total clays. The depositional setting 

variable was one-hot encoded to map its categorical data to integer values, represented as a binary 
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vector (Potdar, et al., 2017). Total bitumen recovery was reserved as the lone dependent (response) 

variable for the sake of this conceptual study. A PLS regression algorithm was written in Python 

coding, and follows well-established theory after several authors (Abdi & Williams, 2013; Mevik 

& Wehrens, 2007; Pell, et al., 2007). The methodology begins by calculating the SVD of the 

correlation matrix 𝐑, as described for Eqs. (4.2.1) and (4.2.2), and iteratively computing sets of 

orthogonal latent variables with the corresponding regression weights. 

During each successive iteration, the first left and right singular vectors (𝐰ℓ and 𝐜ℓ) are used 

as weight vectors to calculate sets of scores (𝐭ℓ = 𝐗𝐰ℓ and 𝐮ℓ = 𝐘𝐜ℓ) for 𝐗 and 𝐘, respectively; 

loadings are then obtained by regressing 𝐗 and 𝐘 against the same vector 𝐭ℓ (𝐩ℓ = 𝐗𝐓𝐭ℓ and 𝐪ℓ =

𝐘𝐓𝐭ℓ) (Mevik & Wehrens, 2007). The last step of the iteration “deflates” the current data matrices 

(i.e. removes information related to the ℓth latent variable) by subtracting the outer products 𝐭𝐩𝐓 

and 𝐭𝐪𝐓 from 𝐗 and 𝐘, respectively (Mevik & Wehrens, 2007). The next component (or latent 

variable) can then be calculated starting from the SVD of the cross-product of the newly deflated 

matrices (𝐗ℓ+1 and 𝐘ℓ+1). The process continues until 𝐗 is completely decomposed into 𝐿 

components and a null matrix is obtained. After each iteration, vectors 𝐰ℓ, 𝐭ℓ, 𝐩ℓ, and 𝐪ℓ are stored 

as columns in their respective matrices 𝐖, 𝐓, 𝐏 and 𝐐. The matrix of regression coefficients (𝐁𝐏𝐋𝐒) 

can then be calculated as: 

𝐁𝐏𝐋𝐒 = 𝐏(𝐏𝐓𝐏)−𝟏𝐐𝐓 (4.2.3) 

where (𝐏𝐓𝐏)−𝟏 is in fact the Moore-Penrose pseudoinverse for the generalized case of a non-

symmetric matrix (Pell, et al., 2007). Finally, the matrix of regression coefficients (𝐁𝐏𝐋𝐒) is 

multiplied by the original set of independent variables prior to any deflations (matrix 𝐗𝟎) to obtain 

the predictions of the dependent variables (matrix 𝐘̂) (Abdi & Williams, 2013). To better highlight 

the overall programming logic, pseudocode for the PLS regression algorithm developed in Python 

is shown in Figure 4.2.6. The program makes use of the open-source Pandas and NumPy libraries 

for data management and matrix operations, respectively. 
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Figure 4.2.6. Pseudocode for the PLS regression algorithm developed in Python using the Pandas and NumPy libraries for data 

management and matrix operations, respectively. 

A number of criteria can also be calculated to select the appropriate number of components to 

keep while limiting loss of significance, evaluate the quality of prediction and validate the model 

i.e. cross-validation. Validation is critical to the development of robust predictive models; the 

quality of prediction must be assessed and model significance also determined. A common 

measure of prediction quality is called the Residual Estimated Sum of Squares (RESS), and is 

calculated as follows: 

RESS = || 𝐘 −  𝐘̂ ||2 (4.2.4) 

where || ||𝟐 is the squared matrix norm, and decreases as prediction quality improves (Abdi & 

Williams, 2013). However, RESS alone is not the most useful metric as it will continue to decrease 
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until all components are added, i.e. it does not detect overfitting. An improved measure for quality 

of prediction is the Predicted Residual Estimated Sum of Squares (PRESS), computed as follows: 

PRESS = || 𝐘 − 𝐘̃ ||2 (4.2.5) 

where 𝐘̃ represents a predicted set of values generated from cross-validation, and also decreases 

with increasing prediction quality (Abdi & Williams, 2013). The selection of the optimal number 

of components to extract is crucial to avoid overfitting the data. Since prediction quality typically 

first increases then decreases upon successive component addition, a possible approach is to begin 

with the first component and stop as soon as the PRESS reverses direction (Abdi, 2010b). A more 

intricate method is to compute the Q2 criterion for the ℓth component, as follows: 

Qℓ
2 = 1 −

PRESSℓ

RESSℓ−1
 (4.2.6) 

and compare against an arbitrary critical value (e.g. 1 − 0.952 = 0.0975); only components with 

a Qℓ
2 value greater than or equal to this threshold are generally kept in the model (Abdi, 2010b; 

Tenenhaus, 1998). 

Because the available dataset is limited to only 60 samples, it was decided not to split the data 

into separate training and validation sets; instead, leave-one-out cross-validation (LOOCV), also 

called the ‘jackknife’ method, was utilized. In this technique, each observation is iteratively 

dropped from the set and the remaining observations then comprise a training set used to estimate 

the left-out observation. All estimated observations are stored in a final matrix denoted 𝐘̃, which 

then serves as the validation set for subsequent prediction quality metrics (e.g. PRESS and Q2 

criteria) (Abdi, 2010b). 

The PLS regression model was run sequentially, and a series of quality of prediction statistics 

were tabulated for each of 1, 2, 3, 4, 5, and 10 component scenarios (Figure 4.2.7). The Q2 criterion 

indicates that only the first component should be kept in the prediction model, with a value of 0.28, 

as all ensuing trials resulted in values less than zero. However, not only was the coefficient of 

determination (R2) quite low for the 1 component scenario (0.34), but root mean squared error 

(RMSE) and mean absolute residual values were also relatively high. Furthermore, the first 

component alone only accounts for ~88% of the total model variance, as determined by the sum 
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of squares of the singular values. As a result, the behaviour of the PRESS statistic was tracked 

upon successive trials to identify an improved fit; ultimately, a total of 5 components was deemed 

appropriate for building the regression model in relation to the available dataset. This was based 

upon the fact that the PRESS value trended upwards over the first 4 components but dropped 

significantly upon addition of the fifth; this reversal also coincided with a much higher R2 score 

of 0.72, improved (decreased) RMSE and residual values, and an explained variance of 99.65%. 

Further addition of successive components (e.g. 10 components) did not greatly improve 

prediction accuracy or error metrics, resulted in poorer PRESS and Q2 statistics, and would likely 

lead to severe overfitting to the present dataset. It is also noteworthy that residuals were 

consistently greater for marine samples, indicating greater variability in the predicted set for this 

depositional type (as expected). 

 

Figure 4.2.7. Stacked panel line chart for a variety of quality of prediction statistics tabulated for each of 1, 2, 3, 4, 5, and 10 

component scenarios. Abbreviation definitions: RMSE = root mean squared error; RES = mean absolute residual (all samples); 

VAR = percentage of model variance explained; R2 = coefficient of determination (×100); Q2 criterion (as in Eq. (4.2.6)); PRESS 

statistic (as in Eq. (4.2.5)); RESS statistic (as in Eq. (4.2.4)). 
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Predictions from the final 5-component model are shown in Figure 4.2.8, and comparative 

descriptive statistics for the observed and predicted datasets are shown in Table 4.2.3. Estimated 

bitumen recoveries were capped at 100%, and negative values were set to zero as crossing these 

thresholds is impossible in practice. The predicted values are generally quite reasonable, within 

~11% for the (fluvio-)estuarine samples and ~13% for marine samples on average. This level of 

error (RMSE of 16.33) is not surprising on account of the assumptions made to finalize the original 

dataset, in addition to the significant geological variability inherent to oil sands deposits. As 

expected, the variability in marine sample residuals (standard deviation of 9.89%) is nearly double 

that of estuarine samples (standard deviation of 5.27%), and can likely be attributed to 

heterogeneities in clay contents and especially clay types. Overall, the PLS regression model has 

performed as intended, and with a mere total of 60 samples from unknown and/or different mining 

projects altogether. This highlights the importance of rigorous sampling campaigns and 

characterization of appropriate geometallurgical profiles towards the development of robust 

predictive models, particularly for complex operations dealing with multiple and/or heterogeneous 

ore feeds. It is postulated that the predictive power of the present model would be greatly increased 

with these controls in place. 

 

Figure 4.2.8. Plot of predicted vs. observed recoveries from the 5-component regression model. Samples are sorted according to 

ascending observed values to better reflect residual distances; predictions clearly improve in the middle to upper recovery ranges. 
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Table 4.2.3. Summary statistics for observed and predicted bitumen recoveries from PLS regression model (5 components). 

Metric   
Observed 

values (Y) 
  

Predicted 

values (Ŷ) 

Max (%)  98.29  100.00 

Min (%)  1.55  0.00 

Median (%)  78.80  61.27 

Mean (%)  64.91  65.17 

Standard 

Deviation (%) 
 31.14  26.91 

Variance (%2)   969.95   724.18 

Once the regression model has been finalized with the appropriate number of components, 

confidence intervals for the predicted values can be calculated using the ‘bootstrap’ cross-

validation method. This technique involves the random re-sampling of the original observations 

with replacement i.e. each observation can be selected zero or multiple times (Abdi & Williams, 

2013). This is repeated many times (e.g. 1,000 or 10,000), and regression coefficients and 

corresponding predictions are computed for each bootstrapped sample set. The distribution of 

predicted values from all of these iterations is then used to estimate confidence limits for each 

variable; intervals that do not span zero (positive or negative) are considered significant (Abdi & 

Williams, 2013). Similarly, bootstrap ratios can be calculated by dividing the mean of each 

distribution by its standard deviation; akin to a student t-test, if the ratio is greater than a critical 

value (e.g. >2, corresponding to an alpha value of ~0.05), the variable is also considered significant 

(Abdi & Williams, 2013). 

Table 4.2.4 provides statistics computed from the distribution of 10,000 bootstrap sample sets 

generated from the 5-component regression model; variable significance was determined based on 

both bootstrap ratios and 95% confidence intervals. Of the elemental composition variables, only 

Na, Ca, and Mg were deemed insignificant. Corresponding insignificant minerals include albite 

for Na; gypsum, bassanite and anorthite for Ca; chlorite for Mg, and; the carbonates (calcite, 

dolomite and ankerite) for both Ca and Mg. Interestingly, both pyrite and amorphous Fe-

oxides/hydroxides were also considered insignificant (oil sands tend to contain significant heavy 

metals). All remaining elements and mineral phases, in addition to depositional sample type and 

bitumen recovery, were determined as statistically significant. 
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Table 4.2.4. Summary of statistics from 10,000 replications of the bootstrap cross-validation method. 

    Independent (explanatory) variables 

Variable  No. of 

observations 
 Mean 

(wt.%) 
 Standard 

deviation(wt.%) 
 Bootstrap 

ratio 
 Lower CI 

(95%) 
 Upper CI 

(95%) 

Sample type  60000  0.57  0.22  2.54  0.20  1.00 

Na*  60000  0.08  0.05  1.57  0.03  0.21 

K  60000  0.64  0.13  5.12  0.45  0.95 

Si  60000  37.97  0.96  39.70  35.30  39.42 

Al  60000  2.22  0.64  3.48  1.34  3.99 

Fe  60000  0.72  0.24  2.98  0.35  1.42 

Mg  60000  0.12  0.10  1.19  0.02  0.48 

Ca  60000  0.30  0.31  0.99  -0.02  1.53 

Ti  60000  0.25  0.06  3.95  0.15  0.38 

Zr  60000  0.04  0.02  2.41  0.01  0.08 

P  60000  0.02  0.01  2.40  0.01  0.04 

C  60000  7.87  1.00  7.90  5.88  9.67 

S  60000  0.47  0.13  3.64  0.25  0.76 

Bitumen  60000  8.79  1.36  6.46  6.06  11.16 

Water  60000  6.64  1.42  4.69  4.25  9.97 

Solids  60000  84.42  1.11  76.29  82.27  86.83 

Fines  60000  34.27  7.91  4.33  22.22  52.30 

Quartz 

+  silica 
 60000  74.94  3.46  21.64  64.62  79.82 

Illite  60000  5.89  1.66  3.55  3.43  10.21 

Kaolinite  60000  3.90  1.83  2.13  1.08  8.58 

Chlorite  60000  0.10  0.14  0.73  -0.16  0.41 

Calcite (Cal)  60000  0.09  0.28  0.33  -0.24  1.07 

Dolomite (Dol)  60000  0.84  0.82  1.01  -0.03  3.67 

Ankerite (Ank)  60000  0.06  0.07  0.85  -0.05  0.21 

Siderite (Sid)  60000  1.04  0.50  2.07  0.10  2.19 

Pyrite  60000  0.16  0.11  1.40  -0.02  0.46 

Zircon  60000  0.09  0.04  2.41  0.02  0.17 

Rutile (Rut)  60000  0.15  0.04  3.73  0.07  0.22 

Anatase (Ana)  60000  0.26  0.10  2.64  0.12  0.49 

Ilmenite  60000  0.02  0.00  3.74  0.01  0.03 

Lepidolite  60000  0.02  0.00  3.72  0.01  0.03 

Gypsum  60000  0.01  0.06  0.19  -0.12  0.11 

Bassanite  60000  0.01  0.06  0.16  -0.13  0.10 

Anorthite (Ano)  60000  0.22  0.61  0.36  -0.92  1.77 

K-feldspar (Ksp)  60000  1.20  0.38  3.17  0.39  1.96 

Albite (Alb)  60000  0.96  0.61  1.57  0.29  2.36 

Iron oxide/ 

hydroxide (AFE) 
 60000  0.19  0.44  0.42  -0.46  1.55 

Apatite  60000  0.09  0.04  2.34  0.04  0.22 

Cristobalite  60000  0.01  0.00  2.70  0.00  0.02 

Organic carbon  60000  7.63  1.00  7.63  5.61  9.41 

Organic sulphur  60000  0.39  0.13  2.96  0.14  0.67 

Total clays  60000  9.89  3.24  3.05  5.13  19.00 

Sid + AFE  60000  1.22  0.49  2.48  0.45  2.52 

Rut + Ana  60000  0.40  0.11  3.82  0.24  0.63 

Cal + Dol + Ank  60000  0.98  1.01  0.97  -0.05  4.39 

Ano + Ksp + Alb   60000   2.37   0.82   2.91   1.09   4.76 
  Dependent (response) variables 

Variable  No. of 

observations 
 Mean 

(wt.%) 
 Standard 

deviation(wt.%) 
 Bootstrap 

ratio 
 Lower CI 

(95%) 
 Upper CI 

(95%) 

Total Recovery   60000   64.84   28.86   2.25   1.52   109.53 

 * Insignificant variables indicated in red text. 
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The relationships between the independent variables can be observed visually by plotting the 

stored 𝐗-loadings (matrix 𝐏) for the first two components (Figure 4.2.9). Bitumen content is clearly 

most strongly linked to elemental carbon and organic carbon (as expected); it also appears in 

association to silicon (quartz-silica-cristobalite), sulphur (organic sulphur), titanium minerals 

(rutile and ilmenite), and lepidolite (Li-rich mica). The first dimension also opposes the bitumen 

group from the clay minerals, water content, and carbonates (siderite). Notably, anatase 

(metastable form of TiO2) plots opposite the other Ti-bearing phases. In the second dimension, the 

organic-related groups (bitumen, carbon and sulphur) clearly oppose the related silicate and oxide 

minerals; there is also a broad separation between silicates and carbonate + iron-bearing phases. 

 

Figure 4.2.9. Plot of the 𝐗 variable loadings (matrix 𝐏) for the first two components (dimensions 1 and 2). 

Overall, the PLS regression model has proven to be a powerful prediction tool, capable of 

providing additional useful information regarding process variables that can help drive the 

characterization of geometallurgical profiles, sampling methodologies, and other planning 

processes. 

4.2.5 Discrete Event Simulations 

For the DES portion of the study, two ore types were classified according to documented 

depositional setting and predicted bitumen recoveries from the 5-component PLS regression 
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model. Ore type 1 consists entirely of marine samples (generally <75% recovery), and ore type 2 

includes (fluvio-)estuarine samples (>75% recovery) as well as a few of marine type with 

recoveries also greater than 75%. Due to the limited nature of the dataset (only 3 samples per 

mining parcel), natural background noise was added to the relative proportions of ore types 1 and 

2 via random number generation with a standard deviation of 5%. Two modes of operation (A and 

B) are considered here to balance stockpile levels against bitumen extraction rates and incoming 

ore feed from mining. While the conceptual mine has been operating in areas containing 

predominantly ore type 2 (favourable due to higher grades and recoveries) for some time, a large 

expansion of reserves comprising mainly ore type 1 has recently been completed. With the 

expansion, longer term forecasts suggest an overall deposit composition of 55–45% for ore types 

1 and 2, respectively, with increased variability caused by geological heterogeneities; these values 

correspond to the average proportions determined from ore classification based on the predictive 

modelling. 

In order to sustain the availability of ore type 2, and improve the economics of certain portions 

of the newly expanded area, the operation is evaluating possible adjustments to current blending 

strategies, and intends to implement a secondary alternate mode. Based on the geological attributes 

of ore types 1 (high bitumen, low fines) and 2 (high fines), the new strategy will also serve to 

control the distribution of solids in ore feeds to the froth treatment plant, thereby improving 

amenability to transport via pipelines to the upgrader. As a result, operational Mode A will consist 

of an approximate 40-60 blend of ores 1 and 2. Because ore type 2 will generally be in shorter 

supply, a second operational Mode B, consisting of an 80–20 blend of ores 1 and 2, is needed in 

order to avoid stockouts, or an eventual shortage. This will ultimately stabilize feed balances, 

maximize equipment/infrastructure selection and utilization, and allow for improved production 

scheduling; collectively, these factors can lead significant reductions in operating and capital costs. 

Both modes are expected to perform similarly in terms of downstream bitumen recovery 

processes, except that Mode B requires a pretreatment stage to control excess chloride ions related 

to the marine origin and high fines content of ore type 1. Consequently, bitumen extraction rates 

for Mode B are set 10% lower than those for Mode A; modal parameters for each configuration 

are summarized in Table 4.2.5. Despite the fact that Mode A is both more productive and 
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economical, ore stockouts would be inevitable over extended periods of usage because the weight 

fraction of ore type 2 (w2A) is 15% higher than that of the deposit (w2D). To account for the 

possibility of stockouts prior to a planned shutdown, contingency modes with adjusted 

configuration rates have been incorporated for each of Modes A and B. 

Table 4.2.5. Description of operational modes in relation to deposit forecast. 

    Throughput (t/h) Ore 1 in feed (%) Ore 2 in feed (%) 

Algebraic Notation: rA,ACont,B,BCont w1A,1ACont,1B,1BCont w2A,2ACont,2B,2BCont 

Mode A Regular 30,000 40 60 
 Contingency 19,500 100 0 

Mode B Regular 27,000 80 20 

  Contingency 13,500 0 100 

Deposit   - 55 45 

After the approach of Navarra et al. (2019), a deterministic analysis (which ignores the risk of 

stockout) indicates that Mode A should be applied 1.5 times as often as Mode B, with an average 

throughput of 28,800 t/h. The framework aims to simultaneously maximize throughput and 

minimize target stockpile levels, thereby increasing production efficiency and reducing overall 

costs; larger stockpiles necessitate larger storage areas and equipment, as well as increased 

handling costs. 

The current framework is designed such that mining rates exceed plant capacity, hence the 

plant acts as a bottleneck. To ensure stockpiles are adequately supplied to maintain consistent ore 

feed to the plant, ore will be mined at minimum rates of 30 kt/h under Mode A and 27 kt/h under 

Mode B. Target total stockpile level is a control variable that remains constant (except during 

extended stockout periods); however, the relative proportions of ore types 1 and 2 fluctuate 

contingent on the active operational mode. Mode A (productive phase) causes a relative decrease 

in the proportion of ore type 2, meanwhile Mode B (replenishment phase) has the opposite effect. 

The selection of operational mode is based on the stockpile level of the limiting ore type (in this 

case, Ore 2) at the end of a production campaign during planned shutdowns every 4 weeks. 

Under the present framework (Table 4.2.5), a naïve analysis indicates a critical threshold of 

2.916 Mt for ore type 2; this level is computed as a function of campaign length (27 days) and rate 

of change under Mode A (108,000 t/d; plant capacity of 720,000 t/d × w2D of 45% less relative 

critical ore 2 throughput from 40–60 blending strategy). Similarly, the analysis indicates a 
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minimum total target stockpile level (sum of ores 1 and 2) of 4.374 Mt, determined as the 

maximum rate of change between ore stockpiles 1 and 2 as a function of campaign duration (under 

either mode). Unexpected fluctuations in ore feed attributes can indeed cause either overages or 

shortfalls for a given ore type, potentially leading to stockout towards the end of a production 

campaign (Navarra, et al., 2019). To mitigate this risk, an operational buffer can be introduced by 

raising the threshold for the critical (limiting) ore type; a similar control measure would be to raise 

the target total stockpile level. 

Because stockouts are nonetheless a real possibility, recourse actions are built into the digital 

twin to maintain ore feed consistency. As indicated in Table 4.2.5, Contingency Mode A only 

consumes ore type 1, and Contingency Mode B only consumes ore type 2. These contingency 

modes are much less productive than the regular configuration rates (65% for Mode A and 50% 

for Mode B); as a result, the duration of these segments has been limited to 1 day, which causes 

alternations until the next planned shutdown. If the critical ore level remains below the selected 

threshold at the end of a campaign, the plant will employ the alternate mode of operation to re-

equilibrate stockpile levels. Time segment parameters for production campaigns, shutdowns and 

contingency mode duration are summarized in Table 4.2.6. 

Table 4.2.6. Summary of time segment parameters. 

Segment type  Duration (days) 

Production campaign  27 

Planned shutdown  1 

Contingency modes  1 

Regular modes  Indeterminate 

The current framework was implemented, and subsequent computational results (Tables 

4.2.7–4.2.8, Figures 4.2.10–4.2.11) generated, using commercial DES software (Rockwell 

Arena©) with Visual Basic for Applications (VBA). Extended operating periods can be simulated 

to assess system performance in response to geological uncertainty, with adjustments made to the 

critical ore and target stockpile levels as control variables. In its present configuration, the 

simulation model assumes that ore is mined to completion from a single parcel at a time. For the 

purposes of this study, geological uncertainty was introduced through Monte Carlo simulation; the 

proportions of ore types 1 and 2, determined from the classification of mining parcels based on 

depositional setting and predicted recoveries, were used to generate 100 statistical replicas through 
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random number generation with a standard deviation of 5%. The model is configured such that 

792 Mt of ore are processed within each replica, corresponding to approximately 1,200 days of 

operation. 

A series of simulations were run to observe the effects of the selected control variable levels 

on throughput and potential stockout risk, in response to geological uncertainty. The first set of 

trials varied the total stockpile target levels, while holding the critical Ore 2 level constant at 2.916 

Mt (deterministic value). A total of 5 scenarios were considered with total stockpile levels set at 

1x (“one times”), 1.5x, 2x, 3x, and 5x the deterministic value (4.374 Mt); simulated results for 

each are summarized in Table 4.2.7. 

Table 4.2.7. Distribution of time spent in each mode type under varied target total stockpile levels. 

Scenario: 1 2 3 4 5 

Replications: 1 1 1 100 1 1 

Critical Ore 2 Level (Mt): 2.916 2.916 2.916 2.916 2.916 2.916 

Target Total Stockpile Level (Mt): 4.374 (1x) 6.561 (1.5x) 8.748 (2x) 8.748 (2x) 13.122 (3x) 21.870 (5x) 
  Portion of time (%) 

Mode A Regular 45.6 54.8 59.7 60.1 58.4 59.4 
 Contingency 4.9 0.2 1.6 1.4 0.6 0.6 

Mode B Regular 34.8 37.3 35 34.5 37.4 36.4 
 Contingency 11.1 4.2 0.1 0.4 0 0 

Shutdown  3.6 3.5 3.6 3.6 3.6 3.6 

Throughput (kt/h)   26.5 28.1 28.7 28.7 28.8 28.8 

Replications with stockouts - - - 82 - - 

Consistent with Navarra et al. (2019) and Wilson et al. (2021a), the results show that naïve 

selection of the total stockpile target level does not perform well over extended operating periods, 

with Mode A being applied only 1.1x as often as Mode B for an average throughput of 26.5 kt/h. 

This is clearly less productive than the deterministic result of 28.8 kt/h (Mode A applied 1.5x more 

than Mode B), and the simulated operation also suffered from frequent sustained shortages of both 

ore types (Figure 4.2.10a). Increasing the total stockpile level by just 1.5x (Scenario 2) already 

improves overall system response; however, with Mode A applied 1.3x as often as Mode B for an 

average throughput of 28.1 kt/h, this is still worse than expected from the deterministic 

calculations. Scenario 3, which doubled the deterministic total stockpile level to 8.748 Mt, 

produced the best overall results with Mode A applied 1.75x more frequently than Mode B for an 

average throughput of 28.7 kt/h; there was also a drastic reduction in the proportion of time spent 

in contingency modes (Figure 4.2.10b). Successive increases to the stockpile targets (Scenarios 4 
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and 5) did not show any marked changes, and system performance was actually slightly worse for 

both. These results suggest that in order to maximize throughput and mitigate stockout risk, the 

target total stockpile level is best maintained in the range of twice the selected critical ore 

threshold. 

 

Figure 4.2.10. Simulated operational dynamics of Canadian oil sands data in response to geological uncertainty, configured with 

a critical Ore 2 level of 2.916 Mt (deterministic value), and total stockpile target levels of (a) 4.374 Mt under Scenario 1, and; (b) 

8.748 Mt under Scenario 3. Contingency modes are depicted by the fine jagged saw-tooth pattern, and result from short contingency 

segments of 1 day; note the abundance of these ore shortages in (a) compared to (b). 

Using the parameter values established from Scenario 3, the framework was subsequently 

configured to simulate 100 replications, corresponding to approximately 120,000 days of 

operation. Average results from this test mirrored those of the single replication (Table 4.2.7), but 

highlighted repeated ore shortages as a significant operating risk under this scheme, with 82% of 

the replications confronted by stockouts. While not apparent from the single replication simulation, 

this outcome is directly related to the high variability of the dataset, and is entirely possible in the 

context of oil sands mining, particularly when dealing with multiple and/or heterogeneous ore feed 

sources. Frequent and/or sustained stockout periods (especially early in a campaign), require 

additional consideration; as a recourse action, the possibility for mining surges has been 

incorporated into the framework in order to supply ore feed directly to the plant to maintain 

production (Figure 4.2.11). 
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Figure 4.2.11. Simulated mining surge caused by high variability of Canadian oil sands data in response to geological uncertainty. 

Surges are indicated when the level of one of the ore types increases above the total stockpile target, and are required to provide 

feed directly to the plant as recourse to a sustained stockout of the other ore type (e.g. ~1,055-1,065 day range). 

To attenuate the significant stockout risk observed under Scenario 3, a second set of 

simulations were executed in which adjustments were made to the critical ore limit while keeping 

the total stockpile target at 2x this level. Four scenarios were tested with critical ore levels 

designated at 1.5x, 2x, 2.5x, and 3x the deterministic value (2.916 Mt); results for each simulation 

trial are summarized in Table 4.2.8. While variations in the critical ore threshold had no meaningful 

effect on throughput rates or modal proportions, important reductions in the number and frequency 

of stockout periods were observed with the framework configured for 100 replications (~120,000 

operating days). At twice the deterministic value (Scenario 6), the number of replications affected 

by ore shortages was reduced by 20% (cf. Scenario 3); at 2.5x (Scenario 7), this number decreased 

to just 5%. Tripling the critical value eliminated simulated stockout periods altogether; however, 

increased capital and operating costs associated with exceedingly large stockpile levels must be 

weighed against the risk of stockout in the decision-making process. 

Table 4.2.8. Distribution of time spent in each mode type under varied critical ore levels. 

Scenario: 6   7   8 

Replications: 1 100  1 100  1 100 

Critical Ore 2 Level (Mt): 5.832 (2x) 5.832 (2x)  7.290 (2.5x) 7.290 (2.5x)  8.748 (3x) 8.748 (3x) 

Target Total Stockpile Level (Mt): 11.664 11.664   14.580 14.580   17.496 17.496 
    

Mode A Regular 58.7 59.6  58.6 60.0  58.6 60 
 Contingency 0 0.1  0 0.05  0 0 

Mode B Regular 37.3 36.3  37.8 36.3  37.8 36.4 
 Contingency 0.4 0.4  0 0.05  0 0 

Shutdown   3.6 3.6   3.6 3.6   3.6 3.6 

Throughput (kt/h)  28.8 28.8  28.8 28.9  28.8 28.9 

Replications with stockouts - 62   - 5   - 0 
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The time-averaged distribution of operational modes in response to geological uncertainty can 

be useful to evaluate the effects of varied control parameters. Figure 4.2.12a represents the naïve 

approach of Scenario 1, in which the deterministic values for the critical ore level (2.916 Mt) and 

total stockpile target level (4.374 Mt) were applied; Figure 4.2.12b depicts the enhanced 

framework configuration established under Scenario 7 (described above). The latter scheme is a 

significant improvement over the naïve setup, with an 8–9% increase in the proportion of time 

spent under Mode A, a much lower reliance on contingency modes (~15%), and the virtual 

elimination of ore stockouts. All of these factors contribute to improved production efficiencies; 

moreover, the enhanced configuration is also more economical based on higher consumption rates 

for ore type 2, which boasts higher overall grades and bitumen recoveries. Both framework 

applications benefit from the ability to switch between modes relatively freely in response to data 

variability, but the enhanced configuration is much less susceptible to operational risk caused by 

geological heterogeneities. 

 

Figure 4.2.12. Time-averaged distribution of operational modes in response to geological uncertainty in the context of Canada’s 

oil sands, for (a) ‘naïve framework using deterministic critical Ore 2 threshold of 2.916 Mt and target total stockpile level of 4.374 

Mt, and; (b) enhanced configuration using a critical value of 7.290 Mt (2.5x) and target total stockpile level of 14.580 Mt. 

4.2.6 Conclusions 

Overall, the results from this study support the flexibility of DES digital twins to integrate 

predictive modelling data generated through PLS regression in order to assess system-wide 

response to geological uncertainty. This quantitative framework is an extension of recent 

conceptual work by Navarra et al. (2019) and Wilson et al. (2021a), and demonstrates its adaptation 

to evaluate operational risk factors associated with potential processing applications for Canada’s 
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oil sands. Simulations indicate that ore stockouts are a very real possibility due to extreme 

geological heterogeneities inherent to oil sands; however, the current digital twin allows for the 

analysis of potential adjustments to control strategies at an earlier stage, which can help drive 

decision-making and mitigate identified risk factors. The blending control strategies described in 

this study would necessitate significant stockpiling infrastructure and equipment, but these implied 

costs could easily be offset by higher throughputs, minimized downtime, and extended operational 

life achieved through the implementation of alternate modes of operation. 

The current study focused on ore blending strategies and overall feed management through 

the integration of predictive PLS regression models into a DES framework within an oil sands 

context. The results confirm the approach as an effective way to improve and stabilize plant 

throughput, despite challenges with significant geological variation of source ore feeds. Despite a 

small sample population and incomplete characterization (i.e. minimal depositional provenance 

and bitumen recovery data), the integrated quantitative framework made reasonable predictions 

and demonstrated how appropriate mineral and geochemical characterization could positively 

impact process control strategies and decision-making earlier in the value chain. 

As ore compositional data is routinely collected in the industry via the Soxhlet-Dean and Start 

method, bitumen free solids (BFS) are readily available for geochemical and/or mineralogical 

analyses that can be used for predictive modelling. This work proposes that, with adequate 

sampling and characterization, expensive and time-consuming analytical work (e.g. organic-rich 

solids separation) can be replaced by faster and cheaper alternatives, such as WD-XRF and XRD 

executed on BFS streams (Patarachao, et al., 2010). The generation of robust predictive models 

will require extensive systematic sampling and analytical campaigns to properly characterize ore 

feeds and related downstream process responses; the degree of sampling is difficult to anticipate 

in advance, and ultimately depends on data variability as well as the exact problem being 

addressed. Regardless, the ability to integrate reliable predictions of bitumen processability into a 

DES digital twin earlier in the value chain is of key importance to assess the effects of 

heterogeneous ore feeds on system process performance in the design and implementation of any 

new or modified control strategy. 



102 

 

Like other complex mining projects, oil sands operations are host to a variety of treatments 

and processes. From mining to slurry and froth formation, froth treatment, upgrading, and pipeline 

transport (each possibly comprised of multiple sub-systems), there are a large number of moving 

parts requiring both management and coordination. The interaction of these parts can be a major 

source of bottlenecks and generate severe deficiencies, which makes the oil sands context an ideal 

candidate for DES modelling. However, coordinated efforts between academic, government and 

industry partners are required in order to couple recent advances in quantitative methods with 

project-specific problems and data; only then can detailed flowsheets, testing, and full system 

optimization with constraints proceed. 

4.3 Regional Mine-to-Smelter Approaches in the Chilean Context 

The large Andean Copper Province (Figure 4.3.1), characterized by a series of long and 

notably linear metallogenic belts, has been identified as one of the most important sources of 

copper worldwide for over a century (Sillitoe & Perello, 2005). Deposits in the central Andes, 

from southern Peru to central Chile and adjacent Argentina, are dominated by epithermal-porphyry 

copper mineralized systems (Sillitoe & Perello, 2005). These magmatic-hydrothermal deposits, 

which are typified by large tonnages and relatively low ore grades (generally <1% Cu), include 

both sulfide and oxide minerals precipitated from aqueous solutions at elevated temperatures 

(Seedorff, et al., 2005). Characteristic mineralization styles include disseminated ore minerals, 

with lesser vein and fracture-filling formations, within and adjacent to large, altered intrusive 

bodies (Seedorff, et al., 2005). 
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Figure 4.3.1. Map of South America showing the distribution of porphyry Cu tracts (pink) within the elongate, orogen-parallel 

Andean Copper Province spanning the border between Chile and Argentina, and extending northwards along the coast of Peru 

towards Central America. 

Andean porphyry copper deposits exhibit considerable variation in terms of mineralogical and 

metal zonation patterns, but commonly include deeper potassic through sericitic (phyllic) zones to 

overlying advanced argillic lithocaps with propylitic zones (epidote-chlorite) along the margins 

(Sillitoe, 1995; Sillitoe, 2000; Sillitoe & Perello, 2005). As shown in Figure 4.3.2, primary copper 

content is greatest in proximity to the central potassic core, and grades upwards and outwards to 

distal areas with higher contents of auxiliary metals, such as Pb, Zn and Ag (± Au) (Seedorff, et 

al., 2005). Younger assemblages (e.g. sericitic overprinting of earlier potassic zones) may be 

dominantly pyritic and effectively barren, or additionally contain a complex variety of high-

sulfidation Cu-bearing sulfides including chalcopyrite, bornite, chalcocite and covellite (Seedorff, 

et al., 2005; Sillitoe & Perello, 2005). It is notable that sulphosalts (particularly enargite) are 

prevalent in the replacement massive sulfide bodies in the lithocap regions of carbonate-hosted 

deposits (Sillitoe & Perello, 2005). These mineralogical variations are important to understand the 

significant geological uncertainty inherent to porphyry-type ore feeds for downstream processing 

options and related decision-making. 
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Figure 4.3.2. Schematic diagram of an epithermal-porphyry copper mineralized system, showing idealized alteration mineral and 

metal zonation patterns (modified after (Sillitoe, 1995)). 

Chile is the global leader in copper production, and its vast collection of porphyry and related 

deposits within the Andean copper belt maintain approximately 23% of current reserves worldwide 

(U.S. Geological Survey, 2021). As many of the deposits are mined to depth, oxidic copper ores 

from the upper zones that can be processed via conventional hydrometallurgy technology are being 

rapidly depleted. In fact, Chilean estimates suggest a potential statewide decrease in the proportion 

of oxide ores from 31% in 2015 to 12% by 2027 (COCHILCO, 2017; Perez, et al., 2021). A 

concomitant increase in sulfide-rich ores is projected as these zones are accessed from below the 

paleo-watertable; these ores are typically only amenable to milling and pyrometallurgical 

processing (i.e. smelting, converting and anode casting), followed by electrolytic refining. Many 

copper smelter plants around the globe are world-class operations having an excellent 

environmental performance. On the other hand, a number of smelters in Chile are still undergoing 

upgrading to match industry-best standards; outdated technology can contribute significantly to 

environmental liabilities, such as offgas (e.g. SO2) emissions and tailings compositions (Nikolić, 

et al., 2019). 

Moreover, forecasts also indicate a trend towards higher levels of deleterious elements, 

particularly arsenic, from sulphosalt minerals (e.g. enargite) in the sulfide ore assemblages. 

Despite a growing body of research into the sustainable treatment of As-rich copper ores, there are 
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many competing interests, each with their own gaps in knowledge and/or limited track records. 

Even world-class smelters struggle to process so-called ‘dirty’ concentrates (>0.2% As), and either 

impose significant penalties or reject the material altogether. As such, conventional 

pyrometallurgical techniques require that As-rich concentrates first undergo a form of pretreatment 

to reduce arsenic to acceptable levels. Regardless, As-rich concentrates will likely play an 

important role in meeting future global copper demand (Tabelin, et al., 2021). Faced with 

increasingly stringent regulations, as noted, Chile is still in the process of modernizing several of 

its smelters and related treatment strategies to achieve full environmental control, meet future 

planned production increases and improve competitiveness in global markets. 

With an ever-increasing world population and accelerated modernization and automation 

practices (as an example, “Industry 4.0”), continued growth of the global copper industry is 

projected for the foreseeable future. Considered an important crossover material in the clean 

energy transition (World Bank Group, 2020), estimates show that annual copper demand will 

increase by nearly 10 Mt over the next 30 years (Tabelin, et al., 2021). While recycled electrical 

and electronic wastes (‘e-wastes’), which represent one of the fastest accumulating waste streams, 

will be important to help offset this demand, they will not be sufficient to cover the entire gap 

(Forti, et al., 2020; Phengsaart, et al., 2020; Tabelin, et al., 2021). It is crucial that major copper 

producing countries, such as Chile, and others within the world-class Andean Copper Province, 

develop appropriate frameworks to model and test the implementation of new or modified 

strategies to process complex sulfidic ores within the mineral value chain for years to come. 

Discrete event simulation (DES) frameworks are effective computational intelligence tools in 

the mining space because they can simulate the interactions between critical parameters and 

processes in relation to random natural variations, such as geological uncertainty. These types of 

dynamic representations can thus be viewed as extensions of static mass balance models. This is 

particularly important to porphyry-related copper projects as the processing plant will be subject 

to significant variability in ore feed characteristics both between and within mineralized zones; a 

suitable quantitative framework must be able to capture the system-wide effects in response to 

these changing conditions. Moreover, DES models can optimize tradeoffs between available 

operational policies, and the bounds that control the timing of their implementation (Navarra, et 
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al., 2019; Saldaña, et al., 2019; Wilson, et al., 2021a). Deficiencies or bottlenecks in the 

coordination of unit processes within the system can also be identified by simulating extended 

periods of operation. As such, DES frameworks are powerful risk assessment and decision-making 

tools in the design, implementation or modification of any mining system. 

This study proposes an integrated mine-to-smelter framework for the regional development 

of porphyry copper deposits using DES in order to evaluate potential control strategies, such as 

stockpiling and blending practices coupled with alternate modes of operation. A case study based 

on the Chilean context is presented that demonstrates the flexibility of the quantitative framework 

to monitor system-wide response with respect to geological variability and related uncertainty. The 

paper provides an overview of recent advances in copper extractive metallurgy in relation to 

modern processing challenges, followed by descriptions of the regional framework development 

and DES modelling, and finally a set of sample calculations. 

4.3.1 Advances in Copper Extractive Metallurgy 

Pyrometallurgical techniques, in which sulfidic ores are treated at high temperatures to induce 

physical and chemical transformations for the extraction of raw metal content, currently account 

for ~75% of primary copper production worldwide (Price, et al., 2009; Watt & Kapusta, 2019; 

Navarra, et al., 2020). The remainder of primary copper production is typically handled through 

hydrometallurgical processing which involves leaching, often in heaps, solvent extraction and 

electrowinning (Kordosky, 2002; Ochromowicz & Chmielewski, 2011; Navarra, et al., 2020). 

Though pyrometallurgical techniques clearly dominate the copper sulfide landscape, this trend 

could eventually change with intensified efforts to develop hydrometallurgical processes for the 

extraction of copper, particularly for complex ores and concentrates (Hyvarinen & Hamalainen, 

2005; Dreisinger, 2006; Ochromowicz & Chmielewski, 2011; Tabelin, et al., 2021). 

The high pressure leaching process built by FIM (formerly Phelps Dodge) at Morenci, Arizona 

in 2007 is the only large commercial hydrometallurgical plant treating conventional copper sulfide 

concentrates today. The Morenci plant produces of the order of 50,000 t of EW Cu /year by treating 

35-40% Cu concentrates. Other “commercial-ready” hydrometallurgical technologies are 

Glencore’s Albion process (ultrafine grinding and atmospheric sulphate leaching) and Teck 

Resources’ CESL technology (medium-temperature pressure oxidation). Though well-established 
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in the gold sector, the Albion process remains under development for copper, with the first 

industrial-scale facility retrofit to the Sable Zinc Kabwe plant (Zambia) in 2017 with a target 

throughput of 10 kt/y (Glencore Technology, 2018). Similarly, Vale installed a 10 kt/y CESL 

demonstration copper plant in the Carajas region of Brazil in 2008 (Defreyne, et al., 2008; 

Mayhew, et al., 2011). However, given projected mining trends and the current state of smelting 

operations in Chile, the present paper focuses mainly on commercially available and proven 

pyrometallurgical approaches. The goal of the study is to develop suitable frameworks capable of 

modelling system-wide dynamics in response to the implementation of proposed upgrades and/or 

new processes. 

Overview of copper smelter dynamics 

Conventional copper smelter operations target the selective oxidation of Fe and S, which are 

skimmed away as liquid slag and removed as SO2 offgas, respectively; the final product from this 

process is a molten metal product, called blister copper (>98% purity) (Schlesinger, et al., 2011; 

Navarra, et al., 2020). This is achieved via a two-step process, including: 1) smelting of the bone-

dry concentrate by the exothermic reactions controlling the oxygen mass balance, which produces 

an intermediate Cu-Fe-S matte phase, and; 2) converting of this matte phase through secondary 

multi-stage oxidation to produce blister copper. Subsequently, a fire refining step precedes the 

casting of the copper anode product (~99.5% purity), which is then transferred to the 

electrorefinery for production of the copper cathode product for the market (99.99% purity) 

(Navarra, et al., 2020). 

There are two dominant smelting technologies used today that are principally distinguished 

based on the method of oxygen delivery to the concentrate. Flash smelting involves the oxidation 

of concentrate within the refractory-lined reaction shaft of a vertically mounted burner, and 

currently accounts for ~45% of the global copper smelting capacity (Mackey, 2013; Watt & 

Kapusta, 2019; Navarra, et al., 2020). In contrast, bath smelting entails the injection of air into the 

molten bath either via submerged tuyères or by means of a top-submerged lance (or TSL) wherein 

the bath absorbs the added concentrate which is typically as a filter cake material; this method 

accounts for ~50% of the world smelting capacity, and this proportion continues to grow due to 
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new bath smelting technologies recently developed in China (Mackey, 2013; Watt & Kapusta, 

2019; Navarra, et al., 2020). 

Peirce-Smith (PS) converting is the most enduring (>100 years) and broadly used technology 

for matte converting, with ~70% of conventional copper smelters using this process and/or its 

derivatives today (Wang, et al., 2016; Taskinen, et al., 2018; Navarra, et al., 2020). Principal 

reasons for its long-standing success include that is it a well-established and reliable technology, 

it is of relatively simple design, ease of operation, and the ability to melt cold recirculated material 

(Taskinen, et al., 2018). As with all copper smelting operations, the technology typically requires 

skilled operators as the development and implementation of advanced control systems has been 

slow across the industry (Navarra, et al., 2020). Some of the most advanced smelters with excellent 

environmental control employ PS converters, and they have overcome some of the so-called 

deficiencies in the technology such as fluctuations in SO2 offgas concentration and potential 

fugitive emissions if not well designed and controlled (Mackey, 2013). 

More recent continuous converting technologies, such as the Kennecott-Outotec flash 

converting furnace (FCF) or the Noranda Converter (Prevost, et al., 2013), offer the advantage of 

good conversion rates from a single process unit, in addition to significant environmental and 

resource/energy efficiencies (Hanniala, et al., 1991; Taskinen, et al., 2018). In flash converting, 

blister copper and slag are produced via the oxidation and smelting of fine-grained, granulated 

matte feed within a highly oxygenated environment (Taskinen, et al., 2018). This results in 

consistently lower offgas volumes that are also richer in SO2 compared to PS converting; the 

stability of the offgas stream is thus more amenable to both emissions control and sulphuric acid 

generation, which can lead to potentially improved system-wide efficiencies and cost savings in 

the acid plant (Kojo & Storch, 2006; Taskinen, et al., 2018).  

New developments in the continuous converting domain include Glencore’s 

ISACONVERTTM process (Figure 4.3.3; after (Edwards & Alvear, 2007; Alvear, et al., 2014)), 

which uses TSL technology to produce blister copper from solid matte, and represents an extension 

of the commercially successful ISASMELTTM furnace (Nikolic, et al., 2009; Schlesinger, et al., 

2011). This approach remains mostly under development for copper with extensive experimental 
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and pilot plant scale testwork ongoing; a single commercial unit (~175,000 t of ~60% Cu matte/y) 

was installed at the Kansanshi smelter in Zambia in 2019 (Glencore Technology, 2021). 

 

Figure 4.3.3. Schematic flowsheet of copper smelting with ISACONVERTTM for converting (after (Edwards & Alvear, 2007; 

Alvear, et al., 2014)). 

Decoupling of smelting and converting processes 

Smelting and converting are the central processes in conventional smelter operations, but 

together represent a continuous-discrete contrast due to the batch-wise nature of PS systems, which 

can create major bottlenecks and potentially limit overall production (Navarra, et al., 2016; 

Navarra, et al., 2020). The advent of continuous converting technologies in the mid-1990s was a 

major advancement not only in terms of unit smelter operation efficiencies and emissions control, 

but also towards the development of new and/or modified strategies to coordinate individual 

processes within the mine-to-smelter profile. As a result, smelting and converting processes can 

now feasibly be decoupled by means of a matte stockpile replacing the need for a holding furnace, 

with individual smelting and converting furnaces that operate independently of each other. At the 

plant scale, this decoupling is significant in that maintenance downtime is reduced as matte can be 

stored during converter repair and similarly, stockpiled matte can be processed during smelter 
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furnace servicing (Taskinen, et al., 2018). Though latent heat is lost in the granulation and 

stockpiling of matte, efficiencies are gained with respect to acid plant production (Hanniala, et al., 

1991; Kojo, et al., 2009); however, studies have shown these gains are effectively offset by the 

high O2 requirement and related electricity consumption (Coursol, et al., 2010). 

An interesting approach is to implement the decoupling concept at the regional scale, whereby 

individual smelters that produce intermediate matte are located at, or near a collection of, mine 

sites which collectively feed regionalized converting facilities. Matte products that reach Cu 

concentrations of 70–78% are called white metal (Olper, et al., 2008), hence the term ‘white metal 

economy’ can be applied to this type of proposed mine-to-smelter integration. Immediate 

advantages of the regionalized decoupling concept include: 1) elimination of bottlenecks created 

by conventional batch conversion cycles, thereby increasing individual smelter availability; 2) the 

ability to implement control strategies, such as stockpiling and blending practices, in order to 

mitigate operational risk at regionalized converting plants; 3) a reduction in transportation costs 

between mine sites and primary smelting operations due to improved feasibility of small-scale 

plants, and; 4) improved SO2 offgas capture, acid production and overall energy efficiencies. 

Additional benefits could also be garnered by keeping primary smelting facilities and related acid 

plants closer to the source mine sites, particularly when the orebodies are hosted within or proximal 

to carbonate (limestone) successions which can be used as a neutralizing agent (buffer); however, 

depending on location, shipment of acid may be problematic. 

However, prior to implementing any new strategy, appropriate computational tools are 

required to properly evaluate the system-wide response to the proposed changes in smelter 

dynamics and expected changes in ore feed characteristics. Flexible frameworks that can model 

and simulate such uncertainties are critical to support decision-making processes in the design, 

development and implementation of multi-phase reengineering projects (Navarra, et al., 2020). 

Challenges with high-arsenic copper concentrates 

Increasing proportions of deleterious elements in copper concentrates are a growing concern 

for the metallurgical extraction of copper worldwide. Arsenic levels in particular are already 

approaching the limits of currently accepted concentrations within which the majority of smelters 

have elected to function; for instance, Japan recently reported a three-fold increase in As/Cu ratios 
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in concentrate feeds over a 25-year period, and anticipates breeching the 0.3% mark as new high-

As deposits are brought online (Flores, et al., 2020). Similarly, earlier estimates projected total 

arsenic content in global concentrates to increase from ~85 kt in 2010 to ~218 kt in 2020 (Mayhew, 

et al., 2011). Stringent environmental and health regulations have led to lower thresholds for 

arsenic, with concentrates exceeding 0.2% As subject to substantial penalties and those exceeding 

0.5% As susceptible to rejection by most smelters globally (Brook Hunt, 2010; Mayhew, et al., 

2011; Mean, 2011). 

The main cause of increasing arsenic levels in global copper concentrates is the gradual 

depletion of clean high-grade ores (Chen, et al., 2010). This is especially true of Chile where many 

of the giant porphyry Cu orebodies are now being mined to depth and beginning to exploit sulfide-

rich zones from beneath the paleo-watertable; these complex ore zones commonly contain 

abundant As-bearing minerals, such as enargite, luzonite and tennantite-tetrahedrite. Arsenic is a 

challenging impurity for smelter operations to control and properly contain in the environment; 

moreover, earlier methods of handling and disposal (e.g. lime precipitation) are now poorly 

tolerated in most non-arid regions of the world due to the formation of soluble arsenic acid and 

related environmental risks (Riveros, et al., 2001; Mean, 2011). As a result, new control strategies 

must be adopted to process these complex As-bearing ores. 

Research and industry efforts over the past 30 years have focused on a combination of 

selective flotation applications, hydrometallurgical techniques (± solvent extraction and 

electrowinning), roasting methods, stabilization of residues, and vitrification in smelting slags 

(Flores, et al., 2020). A comparison of arsenic levels in ore feeds and concentrates, with current 

treatment strategies, are summarized for a selection of mining projects from Peru, Chile and Serbia 

in Table 4.3.1. Of these technologies, collaborative research in Chile has been dominated by the 

roasting and hydrometallurgical streams. Recent testwork at the pilot plant scale in Chile has 

shown that dearsenifying (partial) roasting of high-As copper concentrates is an effective 

technique to eliminate arsenic (>95%), leaving a calcine composed of bornite, chalcopyrite, 

chalcocite and magnetite (Wilkomirsky, et al., 2020). At temperatures in the range of 600–750°C, 

arsenic partitions to the gas phase and is subsequently oxidized to arsenic oxide dust (Mayhew, et 

al., 2011). This technique has also been successfully commercialized at Codelco’s Ministro Hales 
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mine, where the concentrate may contain on the order of 5–6 wt% As, and produced calcine 

contains in the range of 0.3% As for an elimination factor of ~95% (Caballero, et al., 2016). The 

volatized arsenic is recovered during wet gas cleaning at the acid plant, stabilized with lime to 

calcium arsenate, and sent for disposal treatment (Hedstrom, et al., 2016). 

Table 4.3.1. Arsenic levels and treatment strategies for selected projects (Candente Copper Corp., 2019). 

        Deposit 
 

Concentrate 

Company Project Name Status As Treatment As (ppm) 
 

As (%) 

Nevsun Timok Development Blending, Penalties 1700  1.40 

Codelco Ministro Hales Production Outotec Roaster 1000  4.00 

NEXA Magistral Development - 340  - 

Coro Mining San Jorge Development 
Solvent extraction, 

Electrowinning 
300  - 

Rio Tinto La Granja Development 
Roasting, 

Hydrometallurgy 
250  1.00 

Candente 

Copper 

Canariaco Development Roasting 240  1.00 

Chinalco Toromocho Production Blending (ore) 190  1.00 

Chinalco Galeno Development Blending 166  1.20 

S. Peru Copper Michiquillay Development TBD -  - 

Notable hydrometallurgical advances include pressure oxidation and ferric arsenate 

precipitation (Universidad Catolica del Norte), alkaline leach and As stabilization in ceramics 

(Universidad de Antofagasta/CSIRO), bio-oxidation of Fe(II) and As(III) (Universidad de 

Chile/Ecometales), and UV-oxidation and ferric precipitation of As (Universidad de Tarapaca). 

There is also considerable interest in methods that capture As in the formation of scorodite, a stable 

crystalline form of ferric arsenate (Filippou & Demopoulos, 1997; Nazari, et al., 2017). 

4.3.2 Integrated Mine-to-Smelter Framework Development 

This work is focused on development of a suitable framework capable of modelling and 

simulating system-wide dynamics in order to assess potential operational risks associated with a 

regionalized mine-to-smelter approach loosely based on the Chilean context. The concept is 

predicated on the decoupling of smelting and converting processes, and aims to evaluate the 

coordination of site-specific unit smelter operations that supply regional-based continuous 

converting facilities with granulated intermediate matte or white metal (e.g. Figure 4.3.4). To 

maximize furnace availability and mitigate stockout risk within the individual smelting and 
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converting operations, the tactical decision has been made to implement stockpiling practices for 

both concentrate feed and granulated matte. Similarly, blending control strategies are required in 

response to geological uncertainty caused by varied ore feeds with evolving attributes (i.e. 

increasing As levels). 

 

Figure 4.3.4. Generalized diagram illustrating a mine-to-smelter framework with individual mines and site-specific unit smelter 

operations that supply regional-based continuous converting facilities. 

Given the older condition of some current infrastructure and projected mining trends in Chile, 

this study proposes the following series of upgrades to support the conceptual framework: 1) 

installation of new technology such as the ISASMELTTM at (or proximal to a collection of) mine 

sites; 2) investiture in regionalized Kennecott-Outotec flash converting furnace (FCF) facilities 

that accept granulated matte feed or white metal from the unit smelting plants, and 3) 

commissioning of partial roasting plants at mine sites afflicted with high-As copper ores. 

Glencore’s ISASMELTTM process uses TSL bath smelting technology, first commercialized 

in 1992 at Mount Isa Mines (Glencore, 2015). Compared to other methods, which inject gases into 

the reaction vessel via tuyeres, this technology allows for the design of a stationary furnace 

(Bakker, et al., 2009). The lance is submerged in the slag, which creates a turbulent molten bath 

and permits raw feed materials to quickly react beneath the surface (Glencore, 2015). This 

technology was selected mainly owing to its proven commercial success (combined smelting 

capacity exceeding 10 Mt/y; (Glencore, 2015)), flexibility to handle a wide range of concentrate 

compositions (Burrows, et al., 2012), and scalability (e.g. ~150,000 t/y accepted at the Aurubis 

Lunen smelter, Germany (even if treating copper scrap as feed) vs. ~1.4 Mt/y processed at the 

Vedanta Tuticorin smelter, India (Glencore, 2015)). 
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The many benefits of flash converting systems were described in detail above, but the 

Kennecott-Outotec FCF technology was also chosen here due to its proven track record; the first 

commercial operation was commissioned in 1995 at Kennecott’s Utah smelter, processing over 7 

Mt of copper matte in its existence, and the Xiangguang Copper smelter has produced over 3 Mt 

of copper since its inception in 2007 (Taskinen, et al., 2018). The partial roasting technique was 

selected to deal with high arsenic levels in complex sulfidic ores based on ongoing research in this 

area in Chile, in addition to its successful application at Codelco’s Ministro Hales Mine. 

The exact nature of the selected technological upgrades is not fundamental to the functioning 

of the developed quantitative framework because it is based on the mass balancing of target 

material, energy and/or information flows. The flexibility of the current DES model to handle 

different data types makes it particularly suitable for the evaluation of different control strategies. 

For instance, although this study is focused on pyrometallurgical techniques, the framework could 

easily be adapted to monitor mass flows pertinent to a selected hydrometallurgical approach, or 

similarly to upstream flotation circuit processes. In fact, as new hydrometallurgical arsenic 

pretreatment techniques progress from development to commercialization, it would be highly 

advantageous to adapt the current framework and compare the system response to this roaster-

smelter approach using an appropriate set of KPIs. 

4.3.3 Discrete Event Simulations 

This study extends concepts from recent DES modelling work by Navarra et al. (2019, 2020) 

and Wilson et al. (2021a, 2021b), which implemented alternate modes of operation with multiple 

configuration rates in order to optimize the balancing of plant feed types; adjustments were then 

made to stockpiling and blending practices based on observed system-wide response. The current 

framework has been adapted to evaluate system performance for a conceptual regionalized mine-

to-smelter profile (loosely based on the Chilean context) that involves the decoupling of smelting 

and converting processes. The concept is to replace aging conventional smelter infrastructure with 

smaller scale TSL smelting furnaces and modern roasters for the pretreatment of high As feeds. In 

general, it would be unclear where within the logistical network to place these furnaces and 

roasters, considering that they may be fed by one or several mines. The resulting slag and white 

metal could be granulated using novel heat transfer technology following the concept established 
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by Mucciardi (Navarra, et al., 2016); the high-grade heat could be cycled to assist in roasting. 

Moreover, the acid could be utilized for the leaching of nearby oxides, while the slag is locally 

processed as construction and backfill material. Nonetheless the white metal could be shipped to 

a centralized facility for conversion ultimately into copper anodes; depending on the local energy 

economy, this larger facility may be integrated with an electrorefinery to produce cathodes. 

The current set of calculations focuses on a single roaster-TSL-granulation assembly, i.e. a 

mini-smelter, designed to accommodate a blend of 60% low- and 40% high-arsenic sulfide 

concentrates; the low- and high- As concentrates are abbreviated as LAC and HAC, respectively. 

Moreover, the mini-smelter is integrated with a mine known as “Mine I” that is expected to yield 

a balance of 70% low- and 30% high-arsenic feed over the foreseeable future, and is subject to 

geological uncertainty, as described below. Meanwhile, the nearby Mine II has abundant access to 

high-arsenic ore, and prioritizes sending the resulting high-arsenic concentrate to the mini-smelter 

whenever it can be accommodated; the overall concept is summarized in Figure 4.3.5. 

 

Figure 4.3.5. Diagram illustrating the overall concept for the current set of sample calculations; the red outline highlights the 

system processes considered by the framework, subject to geological uncertainty. 

There are thus two operational modes: 

• Mode A: The smelter receives 300 t/d of concentrate from Mine I, and 0 from Mine II 

• Mode B: The smelter receives 200 t/d of concentrate from Mine I and 100 from Mine II. 

Noting that only high-arsenic concentrate is received from Mine II. The resulting mass balance is 

described in Table 4.3.2, in which Mode A is expected to diminish the HAC stockpile by 30 t/d 

but Mode B is expected to replenish the HAC by 40 t/d. The decision to commit to Mode A or 

Mode B occurs at the end of 5-week production campaigns, and involves a retooling of key 

equipment which can only be accomplished during the one-day shutdown; having less than 1500 
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t of stockpiled HAC at the moment of shutdown indicates an opportunity to accommodate HAC 

from Mine II, through the application of Mode B. 

Table 4.3.2. Stockpile balance of low- and high-arsenic concentrate, ignoring geological uncertainty. 

 Low-Arsenic Concentrate High-Arsenic Concentrate 

Mode From Mine I Into Smelter Balance From Mine I From Mine II Into Smelter Balance 

A 210 180 +30 90 0 120 -30 

B 140 180 -40 60 100 120 +40 

The framework was implemented using commercial DES software (Rockwell Arena©) with 

Visual Basic for Applications (VBA). As previously noted, model verification has been carried 

out by a combination of event checking and debugging, in addition to sensitivity analysis by 

varying model inputs and parameters. The model was calibrated based on typical values in the 

Chilean context, obtained from time-averaged publicly available data, e.g. (Pradenas, et al., 2006; 

Perez, et al., 2021), to ensure suitable and valid ranges were used. In practice, operational data 

would be available to further validate the model and make adjustments to the control parameters. 

Figure 4.3.6 illustrates the fluctuations in feed stockpiles over 500 days of operation under the 

present case study, assuming critical ore and target total stockpile levels of 1500 t and 3000 t, 

respectively. Deterministic values for these variables were determined following the approach of 

Navarra et al. (2019), and adjustments were made based on the observed system response. Mode 

A is in application over the periods in which the HAC stockpile is diminishing and the LAC are 

increasing. Conversely, Mode B is in application over the periods in which the LAC is diminishing 

and HAC is diminishing. The alternation of these modes allows the stable functioning of the 

smelter with its optimal design configuration of a 60-40 blend of the two feeds, even though Mine 

I is not currently accessing the optimal amount of high-As ore; this presents opportunities for Mine 

II to periodically offload some of its HAC in the periods of Mode B. 
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Figure 4.3.6. Graphical output from the DES framework, demonstrating 500 days of operation. 

Moreover, Figure 4.3.6 represents the geological uncertainty confronted at Mine I, which is 

evident by the jagged nature of the line segments. In general, the framework can incorporate 

geostatistical models (Wilson, et al., 2021a), or other advanced methods such as machine learning 

algorithms, to classify and determine relative ore type proportions. However, the current set of 

calculations consider the following simplified Monte-Carlo approach which determines the 

tonnage of ore, and the portion of ore that is HAC: 

• Mine I excavates one parcel at a time; upon completion of the parcel, a subsequent parcel is 

generated; 

• The new parcel contains between 1500 and 2500 t of ore, according to a uniform distribution; 

• There is 70% chance that the new parcel is of the same facies as the previous parcel; 

• If the new parcel is of the same facies, then the percentage of HAC is within ±1% of that of 

the previous parcel, according to a uniform distribution; 

• Otherwise, if the new parcel is of a new facies, the percentage of HAC is randomly generated 

according to a Gaussian distribution with mean of 30% and standard deviation of 1%. 

The 30% mean is indicative of the 70-30 portions of low- versus high-arsenic ore. Moreover, 

the potential dissimilarity of two subsequent parcels (i.e. if they belong to two different facies) 

approximates either the geological discontinuities or the operational decisions to excavate different 

regions of the mine. In a more elaborate computation, geological uncertainty could also have been 

represented within Mine II; or more broadly, the framework could represent a network of mines 

each confronting operational and geological uncertainties, which feed into a network of smelters. 
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4.3.4 Conclusions 

As previously discussed, a number of Chilean copper smelters, which together produce 

approximately 8% of world smelted copper today, are implementing projects to modernize the 

plants to best-in-class standards. At the same time, copper ores in South America are more and 

more complex with mining ore bodies at depth, thus adding to the burden at the copper smelting 

stage. As part of mine-to-smelter strategies, the concept of a given plant producing white metal for 

shipping to a second finishing smelter was discussed in the present paper as one economic 

approach in the modernization process. This was examined using a dynamic DES model, 

illustrating its utility for coordinating production beyond a single mine. 

It was noted that copper demand is expected to grow, driven in large part by great interest in 

new renewable energy sources and electric vehicles. Studies show that growth in copper demand 

will be led by China which in 2020 accounted for about 55% of global refined copper consumption. 

Given that about 80% of refined copper in China is produced by processing imported concentrates 

– in large part shipped from Chile and Peru at present, and likely with additional material from 

Africa in the future – the quality of the concentrate shipped will be important moving forward. The 

present study listed as an example six major copper deposits in Chile and Peru containing elevated 

levels of arsenic in ore, which based on present technology for milling and flotation, are projected 

to produce copper concentrates containing of the order of 1% As content. A number of arsenic 

control strategies to reduce this level for shipping or for handling at a nearby smelter were 

identified, including roasting (as presently practiced at the Ministro Hales plant in Chile) and 

hydrometallurgical options. In all cases, the nature of the material expected to be shipped will 

change – possibly representing a calcine material or a copper residue of some nature. 

This work explored a number of mine-to-smelter strategies. Estimates derived from sample 

calculations loosely based on the Chilean context represent interesting cases for further study of 

such strategies. The current framework is primarily intended for the design, implementation and 

monitoring of new or modified control strategies in an ‘offline’ setting. However, future work 

focused on the incorporation of machine learning algorithms could allow the DES model to be 

eventually brought ‘online’ by integration with a mine control system, following suitable 

validation of its ability to mimic responses of the corresponding physical system. It can also be 
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seen based on the above that research and development efforts by the copper industry need to be 

strengthened if the targets for expected future copper demand are to be safely met. 

4.4 Regional Coordination of Refractory Gold Systems 

The rate of new gold discoveries has decreased over the past three decades despite increased 

exploration spending amidst periods of record gold prices (S&P Global, 2021). This is in part due 

to companies focusing on brownfields and advanced stage exploration prospects (i.e. known 

deposits). One must also consider that most of the near surface high-grade gold deposits in easily 

accessible regions of the world have likely already been found. This notion is reflected in the 

severe lack of recent world-class gold discoveries, classified as those containing at least 100 metric 

tons (3.2 Moz) gold. Reports indicate that less than 10% of all gold identified since 1990 can be 

attributed to major discoveries made over the past decade (S&P Global, 2021). Moreover, average 

head grades for sizable primary gold deposits (>1 Moz Au) have plummeted from over 10 g/t Au 

in the 1970s (Schodde, 2011; Mudd, 2007) to less than 1.5 g/t Au at present (Metals Focus, 2020). 

This significant decrease, however, is partly driven by elevated gold prices and new technologies 

that have allowed for large-scale open-pit operations, both of which have made mining and 

processing of lower grade material economically feasible. 

Declining trends in rates, sizes and grades of gold discoveries means that new mining projects 

being brought online are not replacing estimated gold production figures. This assertion is only 

compounded by volatile market fluctuations, geopolitical and socio-environmental aspects, and 

related administrative hurdles (e.g. permitting). Furthermore, mining project development 

pipelines are now facing increased start-up timelines; the average length of time from discovery 

to commissioning more than doubled between 1995 and 2013 (from 8 to 18 years), and continues 

to increase (Adams, 2016). While recycling of jewelry and electrical/electronic wastes (a.k.a. e-

wastes) will continue to play an increasing role in the supply of gold (World Gold Council, 2021; 

Tabelin, et al., 2021; Forti, et al., 2020), the reality is that there could be significant imbalance in 

the supply and demand for gold in the relatively near future. As a result, research and development 

need to continue exploring options to process more complex and refractory ore types, and tools 

need to be made available that can improve understanding of potential system-wide effects caused 

by varied ore feeds and related decision-making processes. 
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Gold ores can be classified based on their metallurgical response to different processing 

techniques. Conventional ores are typically considered ‘free-milling’, meaning they are amenable 

to direct cyanidation and recovery via carbon-in-pulp/carbon-in-leach processes (Adams, 2016). 

Certain low-grade or oxide ores have similar characteristics but are only economic by heap 

leaching as gold tenors are insufficient to justify tank cyanidation. Conversely, refractory ores are 

not amenable to standard cyanidation practices (or sale of concentrate) and require additional 

pretreatment prior to leaching and recovery (Adams, 2016). 

Refractory gold sources occur in a variety of geological environments, but are most often 

linked to sediment-hosted deposits with a close association to As-rich sulfide minerals. Though 

found in many regions of the world, prime examples include the large, disseminated orebodies 

within the Carlin Trend of Nevada, U.S.A., and along the margins of the Yangtze craton in China. 

There are three main causes of refractory gold: 1) preg-robbing, which implies adsorption of gold 

cyanide complexes by carbonaceous material or other minerals in the ore, leading to gold losses 

that would otherwise bind to activated carbon in the pregnant leach solution (Ng, et al., 2020; 

Marsden & House, 2006); 2) variably locked or encapsulated gold grains (i.e. inclusions) requiring 

further particle size reduction in order to liberate and expose the gold to the leaching solution 

(Baron, et al., 2016), and; 3) ‘invisible’ gold, which can occur as sub-micron native particles (Au0) 

and/or structurally-bound in solid solution (Au+1) within host minerals, most commonly arsenian 

pyrite and arsenopyrite (Kusebauch, et al., 2019; Reich, et al., 2005). Some severely refractory 

ores can be afflicted by both preg-robbing and invisible gold, and are thus called ‘double 

refractory’. The strong association of refractory gold with As-rich sulfides and arsenides (or 

tellurides, antimonides and selenides) also poses additional challenges due to elevated impurity 

levels and related environmental considerations. 

There are a variety of processing options currently available for refractory gold, depending on 

the nature and level of refractoriness of the ore. Physically-locked gold can be further liberated by 

fine or ultra-fine mechanical grinding prior to leaching; however, the increased energy costs for 

this size reduction usually necessitate concentrated ore feeds (e.g. Kalgoorlie CGM, Australia) 

(Baron, et al., 2016). Oxidative processes are the most common approach to pre-treating sulfidic 

refractory ores in the industry. Traditionally, high-temperature roasting was used to oxidize iron 
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sulfides to hematite (Fe2O3), the porous nature of which allows for the penetration of leaching 

solutions (Baron, et al., 2016). Increased environmental awareness and regulations have since led 

many companies to shift focus to newer technologies due to concerns over offgas (i.e. SO2) 

emissions and volatilization of impurities (e.g. As2O3) caused by roasting. Pressure oxidation 

(POX) is now one of the main methods applied to improve recovery by oxidizing iron sulfides to 

ferric sulfate or other oxides, thereby exposing the gold for leaching (Baron, et al., 2016). 

Biological oxidation (BIOX) is another leading method, wherein bacteria catalyze the conversion 

of iron sulfides to soluble ferric iron and sulfur to sulfate and ultimately sulfuric acid (Baron, et 

al., 2016; Afidenyo, 2008). Both POX and BIOX have limitations when treating carbonaceous 

sulfidic ores affected by preg-robbing; roasting thus remains the most effective pretreatment option 

for double refractory ores (Baron, et al., 2016). However, research and development are highly 

active in this area and new processes continue to emerge, such as oxidation followed by thiosulfate 

leaching; the first commercial installation of which was commissioned at Nevada Gold Mines’ 

Goldstrike deposit in 2014 (Adams, 2016; Baron, et al., 2016). 

Regardless of the processing route, refractory ores contribute significantly to world gold 

production; for instance, estimates have shown refractory ore sources to generate on the order of 

25% of global production (Adams, 2016). Moreover, refractory gold currently accounts for ~24% 

of classified ore reserves and ~22% of known resources worldwide (McKinsey & Company, 

2021). However, the processing of refractory ore requires large capital investments with increased 

operating costs, often making substantially sizable operations an absolute must. The required 

installation of infrastructure and equipment to pre-treat the ore presents significant cost barriers to 

smaller mining projects or companies with less financial liquidity. To this end, there are many 

companies evaluating newer preconcentration developments in order to improve project valuation. 

In particular, sensor-based ore sorting has gained considerable interest in the mining space 

over the past two decades with many pilot plant and full-scale commercial installations worldwide. 

Most systems are based on individual particle sorting, and use a combination of sensors to 

physically separate (accept/reject) material from heterogenous feeds; the approach has also been 

extended recently to include bulk sorting applications (Wotruba & Robben, 2020). Examples of 

common diagnostic properties and sensor types include colour, reflection/transparency, X-ray 
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transmission (atomic density), short-wave or near infrared radiation (mineral detection), and X-

ray fluorescence (elemental detection) (Wotruba & Robben, 2020; Robben & Wotruba, 2019; 

Kern, et al., 2019). The technology is not exactly new to the minerals industry with the earliest and 

most widespread use in the concentration of diamonds spanning a period of more than 70 years, 

but most of this development was completed in-house (Wotruba & Robben, 2020). With a lack of 

confidence towards mineral applications, interest in the technology for other commodity markets 

did not gain support until the 1990s for industrial materials and the 2000s for base and precious 

metals (Wotruba & Robben, 2020; Robben & Wotruba, 2019). In the gold sector, many companies 

report potential mass reductions in the range of 30–60% coupled with 1.5 to 2-fold grade increases 

and high gold recoveries (>90%) from ore sorting testwork (Tomra Sorting GmbH, 2021; 

GlobeNewswire, 2021; International Mining, 2021), including sulfidic refractory sources, e.g. 

(Gowest Gold Ltd, 2015). 

This preconcentration of run-of-mine can have a number of benefits, including 1) increased 

productivity through debottlenecking of milling processes and the potential to raise mining rates 

equivalent to the amount of ejected waste; 2) reduced mining cut-off grades, which can extend 

productive mine life or create opportunities to re-process old waste dumps or tailings; 3) decreased 

tailings generation, which has both economic and environmental implications due to reduced 

processing and storage of waste materials; 4) decreased capital and operating costs related to 

equipment and material handling and transportation, and; 5) increased process efficiencies, thereby 

reducing the environmental footprint through decreased water, energy and reagent consumption 

rates (Robben & Wotruba, 2019). Such considerations may be less pertinent to certain large-scale 

operations, but can be especially important to the evaluation of smaller deposits with marginal 

economics. Regardless, there will likely be a shift towards such pre-concentration technologies in 

the future by all scales of mining projects due to socio-environmental factors driving the 

development of more responsible and sustainable approaches to mining. 

There are many instances of untapped refractory ores left in the ground, particularly in 

proximity to active mining operations or processing facilities. Sometimes this is due to the 

existence of better prospects for project development, but it can also be related to a lack of 

appropriate tools to evaluate system design, or the effects on existing system processes. 
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Unfortunately, the latter is all too common among historic or mature mining projects where it 

could have made sense to extract the material concurrently along with other conventional reserves 

but would no longer be economical to process on their own. However, there could be opportunities 

for companies to consolidate these resources within mining camps and process the ore from 

centralized facilities, or similarly to reprocess waste dumps or tailings to recover initial gold losses 

from mildly to moderately refractory ores. With recent advances in computing power, the 

necessary tools can be developed to assess mining system dynamics in relation to proposed new 

or modified control strategies that can handle varied ore sources, such as refractory gold. 

The integration of predictive machine learning (ML) algorithms into DES frameworks can 

help with decision-making earlier in the value chain; however, it is important to ensure appropriate 

ore characterization (e.g. gold deportment) is carried out prior to implementing any type of 

predictive model. This has also been shown as an effective approach towards the development of 

online, i.e. real-time, simulation-based digital twin models (Atreya & Sridhar, 2019; Greasley, 

2020; Lektauers, et al., 2021). A digital twin is a multidisciplinary virtual representation that uses 

both historic and updated data models to simulate the operational life of the corresponding physical 

system (Glaessgen & Stargel, 2012; Boschert & Rosen, 2016); such tools are becoming 

increasingly popular in the age of Industry 4.0 and related internet of things (IoT) systems. 

This work proposes an integrated artificial neural network (ANN) and DES framework for the 

regional coordination of conventional and refractory gold ores feeding centralized processing 

facilities. In addition to evaluating potential control strategies, such as stockpiling and blending 

practices using alternate modes of operation, a conceptual case study is presented that also 

considers the implementation of site-based ore sorting as a form of preconcentration for more distal 

satellite orebodies. The remainder of this study describes the implemented methods, followed by 

an overview of the framework development, and finally a set of sample calculations for a 

conceptual case study. 

4.4.1 Materials and Methods 

Dataset Generation 

In order to develop the framework, a set of geochemical, mineralogical and metallurgical data 

(𝑛 = 750 samples) was generated for a conceptual new satellite deposit, reflective of a sediment-
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hosted, structurally-controlled orebody. Data ranges for gold and arsenic assays, geochemical 

elements, mineral phases and potential recoveries were estimated based on data from several 

studies, e.g. (Patterson & Muntean, 2011; Christiansen, et al., 2011; Li & Peters, 1998; Bao, 2001), 

in addition to author experience. The geochemistry and assay data were populated via random 

number generation using normal distributions centered around a suitable mean value for each 

element. Variability was controlled using standard deviations of 1.0, 0.1 and 0.01 for major, minor 

and trace elements, respectively, depending on typical detection limits. Mineral phase abundances 

for a selection of hydrothermal alteration and sulfide minerals common to sediment-hosted gold 

systems were estimated from whole-rock major element data using the ‘MINSQ’ least squares 

fitting method after Hermann and Berry, 2002 (Hermann & Berry, 2002). 

Finally, for the gold recoveries, data were sorted according to Au:As ratio and an arbitrary 

cutoff of 0.02 was applied; values were randomly assigned using a uniform distribution from 80–

100% for samples above this level, and from 30–85% for those below. The 0.02 threshold was 

selected as an extension of the molar solubility limit for solid solution gold contained in As-rich 

pyrite, as reported by Reich et al. (2005) (Reich, et al., 2005). In practice, bulk metallurgical 

testwork is an expensive endeavor; instead, recovery data could be acquired via cheaper and faster 

alternatives, such as shaker table or bottle roll tests, e.g. (Órdenes, et al., 2021), to determine 

expected metallurgical response to standard cyanide leaching, i.e. level of refractoriness. 

A series of basic descriptive statistics were calculated to summarize the original raw dataset, 

which consists of data for 16 major elements (Table 4.4.1), 50 minor and trace elements (Table 

4.4.2), 15 mineral phases and 7 gold-related variables (Table 4.4.3). Of the total 750 samples, 300 

were used for training and validation of the ANN model, meanwhile the remaining 450 samples 

were set aside as an unseen test set to gauge future performance and generalization. 
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Table 4.4.1. Summary of descriptive statistics for major elemental compositions in 750 samples. 

  Elemental Compositions (wt.%) 

Element Min Max Median Mean Std. Dev. 

SiO2 39.80 87.30 62.70 61.60 8.25 

TiO2 0.02 1.56 0.59 0.61 0.35 

Al2O3 1.43 27.74 14.85 14.26 4.28 

Fe2O3 0.02 14.76 4.82 5.30 2.92 

MnO 0.01 0.82 0.14 0.19 0.17 

MgO 0.21 7.08 2.07 2.29 1.22 

CaO 0.02 14.09 3.80 4.31 2.62 

Na2O 0.17 6.63 1.51 1.71 0.96 

K2O 0.11 4.80 2.63 2.60 0.95 

P2O5 0.01 0.51 0.11 0.13 0.09 

Cr2O3 0.00 0.12 0.02 0.03 0.03 

BaO 0.01 0.17 0.06 0.06 0.04 

SrO 0.01 0.13 0.04 0.04 0.03 

LOI 0.05 21.30 6.41 6.99 4.26 

Total C 0.02 4.49 1.09 1.36 1.02 

Total S 0.10 6.60 1.41 1.55 0.92 

Table 4.4.2. Summary of descriptive statistics for minor and trace elemental compositions in 750 samples. 

  Elemental Compositions (ppm)     Elemental Compositions (ppm) 

Element Min Max Median Mean Std. Dev.  Element Min Max Median Mean Std. Dev. 

Ag 0.01 53.33 1.24 4.38 9.00  Nd 0.25 72.15 17.97 19.76 12.18 

Ba (%) 0.00 0.17 0.06 0.06 0.04  Ni 11.92 199.69 91.40 94.79 47.04 

Bi 0.01 2.63 0.58 0.71 0.61  Pb 0.25 254.12 9.59 15.95 38.33 

Cd 0.25 2.90 0.25 0.35 0.42  Pr 0.45 18.89 4.56 5.06 3.14 

Ce 0.05 148.40 35.62 39.79 25.55  Rb 1.89 141.50 87.29 81.92 30.97 

Co 2 80 22 23 12  Re 0.00 0.01 0.00 0.00 0.00 

Cr 18 665 161 178 118  Sb 0.02 101.87 11.13 19.14 21.65 

Cs 0.3 28.2 13.9 13.3 6.0  Sc 0.25 43.04 13.26 14.23 8.36 

Cu (%) 0.00 0.32 0.01 0.02 0.02  Se 0.0 1.4 0.2 0.3 0.3 

Dy 0.13 13.28 2.21 2.47 1.85  Sm 0.15 10.64 3.43 3.61 1.67 

Er 0.03 8.12 1.26 1.40 1.13  Sn 0.24 2.56 1.01 1.00 0.37 

Eu 0.05 2.32 0.81 0.88 0.45  Sr (%) 0.005 0.062 0.034 0.035 0.011 

Fe3+ (%) 0.01 15.59 3.64 4.18 3.40  Ta 0.05 1.32 0.36 0.38 0.28 

Ga 0.5 33.2 20.4 19.5 5.6  Tb 0.01 1.89 0.43 0.47 0.35 

Gd 0.87 8.35 2.80 2.96 1.21  Te 0.01 4.33 0.31 0.66 0.88 

Ge 2.50 2.50 2.50 2.50 0.00  Th 0.005 6.070 2.882 2.820 1.354 
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Hf 0.05 4.69 3.23 3.02 0.96  Tl 0.005 0.137 0.039 0.042 0.028 

Hg 0.00 0.34 0.01 0.03 0.05  Tm 0.01 1.44 0.17 0.26 0.29 

Ho 0.02 2.82 0.51 0.55 0.43  U 0.01 2.00 0.83 0.80 0.45 

In 0.00 0.13 0.02 0.03 0.03  V 2.8 319.5 109.3 117.5 63.3 

La 0.20 67.08 18.29 18.84 11.75  W 1.00 48.26 13.55 15.21 9.12 

Li 5.1 130.7 43.1 48.5 26.5  Y 1.00 81.01 12.16 13.51 10.74 

Lu 0.01 1.13 0.15 0.23 0.26  Yb 0.01 5.29 1.14 1.22 0.81 

Mo 0.25 28.12 1.06 2.14 4.24  Zn 1.0 1120.5 70.4 179.2 235.3 

Nb 1.01 7.24 4.58 4.45 1.22   Zr 2.9 175.6 122.1 115.2 35.9 

Table 4.4.3. Summary of descriptive statistics for mineral phase abundances, determined using the MINSQ least squares fitting 

method, and an assortment of gold-related variables in 750 samples. 

  Mineral Phase Abundances (wt.%) 

Mineral Min Max Median Mean Std. Dev. 

Quartz 4.80 80.82 39.43 39.23 11.00 

K feldspar 0.00 27.54 5.48 6.74 6.77 

Albite 0.00 48.98 0.00 1.97 6.06 

Muscovite 0.00 39.43 11.24 12.99 11.62 

Paragonite 0.00 48.81 19.32 19.31 8.94 

Fe Chlorite 0.00 22.89 1.37 3.36 4.64 

Mg Chlorite 0.00 20.43 0.24 2.18 3.43 

Calcite 0.00 20.49 1.28 2.98 3.97 

Ankerite 0.00 41.48 2.32 4.59 6.47 

Dolomite 0.00 30.86 3.33 4.67 5.34 

Rutile 0.00 1.54 0.58 0.60 0.35 

Pyrite 0.00 11.55 2.21 2.44 1.74 

Arsenopyrite 0.00 3.64 0.33 0.79 0.91 

Chalcopyrite 0.00 0.93 0.05 0.06 0.06 

Sphalerite 0.00 0.49 0.04 0.07 0.07 

Variable Min Max Median Mean Std. Dev. 

Sulfide_Obs (wt.%) 1 14 5 6 3 

Sulfide_Calc (wt.%) 0.1 13.8 3.3 3.4 1.9 

Au (ppm) 1.0 43.0 5.6 9.3 10.7 

As (ppm) 50 16950 1557 3822 4288 

Au:As Ratio 0.00 0.52 0.00 0.03 0.06 

Au Grain Size (µm) 0.1 18.7 4.7 5.3 4.9 

Au Recovery (%) 31.5 99.8 71.9 72.3 15.7 
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Artificial Neural Network Modelling 

For the first portion of the study, a feed-forward neural network, a.k.a. multilayer perceptron 

(MLP), was developed for predictive regression modelling. The algorithm was written in Python 

programming language using the PyTorch machine learning library. The elemental, mineralogical 

and all but one of the gold-related variables were retained for a total of 87 input features for the 

predictive model; gold recovery was reserved as the lone target output variable. Data preparation 

consisted of mean centering and rescaling each variable to unit variance (i.e. standardization); this 

step is critical to make the data comparable and reduce the effects of artificially inflated feature 

importance caused by large values and/or ranges. This form of data preprocessing also helps deal 

with any missing values, and can significantly accelerate model convergence. 

As noted above, 300 samples were retained for training and model selection, of which 60 

samples (20%) were selected via random shuffling for validation purposes. By convention, target 

labels (i.e. recovery data) were available for both the training and validation subsets; however, the 

labels are withheld for the validation samples and simply used for metric calculations following 

prediction. Conversely, though recoveries were generated in building the test dataset (𝑛 = 450 

samples), these were set aside prior to data import to ensure the model was completely blind to 

testing labels. This allowed for the subsequent calculation of generalization error metrics to better 

evaluate how the model might perform on new datasets. 

A number of model architectures were trialed, but ultimately a fully connected single hidden 

layer MLP was selected based on correlation and error performance metrics for each of the 

training, validation and test sets. As shown in Figure 4.4.1, the hidden layer (72 nodes) was 

arranged sequentially between the linear input (87 features) and output (1 target) layers, and used 

the rectified linear unit (ReLU) activation function to incorporate an aspect of non-linearity. 

Accordingly, model weights were initialized using the He (a.k.a. Kaiming) method with a uniform 

distribution. 
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Figure 4.4.1. Schematic representation of the final selected MLP architecture, consisting of one hidden layer (72 nodes) arranged 

sequentially between the input (87 feature nodes) and output (1 target node) layers. 

The loss function used to calculate error and update model weights after each sample batch 

was based on mean squared error (MSE), which is common for ML regression tasks. Minimization 

of the loss function was carried out using the Adam optimizer with an initial learning rate of 0.001; 

this approach is an extension of stochastic gradient descent that uses adaptive learning rates and 

decay rates. Mini-batches of size 1, 2, 4, 8, 16, and 32 samples were attempted, but it was found 

the best performance was achieved using single samples. Each training sample ‘batch’ was 

randomly selected and loaded into the model via shuffling, which helps reduce overfitting. 

While there are many regularization approaches to further prevent overfitting, the current 

model implements early stopping, whereby the model is automatically stopped when validation 

loss shows no significant improvement (or begins to increase) over a set number (i.e. 10) of epochs. 

Dropout with a probability of 0.2 was also used on the hidden layer as an additional regularization 

control technique. 

Discrete Event Simulations 

The DES modelling portion of the study was executed using commercial software (Rockwell 

Arena©) with Visual Basic for Applications (VBA). The model has been verified via event 

checking and debugging, as well as sensitivity analysis through testing a wide range of values for 

model inputs and parameters. The use of fixed mass balances to assess potential plant performance 

is standard practice in the mineral processing sector; this work represents a valid extension beyond 
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static modelling by incorporating pragmatic fluctuations in mass and composition flows, i.e. 

dynamic imbalances, that would be expected from multiple mining projects. 

Though the current set of calculations is conceptual in nature, similar techniques have been 

successfully applied to Chilean smelter operations using real operational data, e.g. (Navarra, et al., 

2017b), thus validating the general approach. The framework was calibrated using values typical 

of small to medium-sized underground gold mining and milling operations obtained from publicly 

available sources to establish realistic and valid data ranges. However, operational data would be 

available to further validate the model and make necessary modifications to the operational 

policies in practice. Specifics regarding framework development and related assumptions are 

further detailed in the context of the present study in Sections 4.4.2 and 4.4.3. 

4.4.2 Integrated Mine-to-Mill Framework Strategy 

The current framework has been extended to evaluate system performance for a conceptual 

regionalized mine-to-mill profile in the context of marginal underground gold mining operations. 

The concept is based on the possible installation of an autoclave (or similar technology) at an 

existing integrated gold processing facility for the oxidative pretreatment of refractory gold ores. 

This customization would thereby allow the plant to receive a combination of conventional, i.e. 

free-milling, and refractory ore feeds from multiple sources in the general area. The framework 

also considers the notion of installing ore sorting technology at, or near a collection of, satellite 

orebodies; the intent would be to pre-concentrate classified refractory ores prior to transport to the 

processing facility. The resultant increase in head grades and waste elimination could render the 

refractory ore more economical through reduced handling and transportation costs, and increased 

processing efficiencies, e.g. lower energy and water consumption. The general concept for the 

study is shown in Figure 4.4.2. For the purposes of this work, pretreatment of the refractory ore is 

assumed to consist of ore sorting, ultrafine (UF) grinding, and pressure oxidation (POX). 
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Figure 4.4.2. Schematic flow chart showing the developed regionalized framework strategy for handling conventional and 

refractory gold ore sources at a central processing facility. Abbreviations: UF = ultrafine, POX = pressure oxidation. 

The overall framework is such that geometallurgical attributes are used to develop an MLP 

model capable of predicting recoveries from geochemical and mineralogical data collected early 

in the value chain in order to classify extracted ore into two feed types. These predicted proportions 

are then fed into the DES model to establish effective operational policies and related control 

strategies using mass balance. To maximize plant throughput and mitigate stockout risk, the 

tactical decision has been made to implement both stockpiling and blending practices in response 

to geological uncertainty caused by the varied ore feeds. The general architecture and data flows 

for the quantitative framework are depicted in Figure 4.4.3. As previously noted, this integrative 

approach can be used in the development of simulation-based digital twins. Similar to recent work 

by Wilson et al. (2021b), the proposed framework is currently intended for offline design and/or 

early implementation purposes, and can thus be termed a ‘digital model’, a subtype of the digital 

twin paradigm (Resman, et al., 2021; Singh, et al., 2021). However, it would be possible to 

integrate the models into a mine control system, whereby the framework could be gradually 

migrated to an online state. 
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Figure 4.4.3. Flow chart showing the architecture and data flows for the developed quantitative framework (modified after 

(Wilson, et al., 2021b)). 

The current set of calculations focuses on a conceptual integrated gold mill originally designed 

for the processing of free-milling gold ores via conventional cyanide leaching. The underground 

mining operation is relatively small, providing on the order of 692.2 kt @ 4.5 g/t Au for 100 koz 

of gold production per annum. With reserves in decline year over year, the mine is only forecasted 

to remain in production for another ~5 years. However, recent definition of a sizable satellite 

orebody (15.55 Mt @ 4.5 g/t Au for 2.25 Moz) has significantly increased the resource base of the 

current operator. The company is thus considering upgrades to the current plant infrastructure to 

increase throughput and extend its operating life by bringing the new deposit online. 

A potential limiting drawback is the mixed nature of the new resources; gold here occurs as 

native free grains in quartz-carbonate vein sets, coarse to fine inclusions in disseminated pyrite, 

and both physically and chemically locked in disseminated fine-grained arsenian pyrite and 

arsenopyrite. The ore is mainly concentrated within a series of evenly spaced parallel subvertical 

structures within and adjacent to a broad shear zone spanning a major regional contact zone 

between mafic volcanic and sedimentary rock units. Detailed mineralogical, gold deportment and 

metallurgical testwork indicate that ~70% of the ore is refractory, with recoveries ranging from 30 

to 99% by standard cyanidation. However, further testing has shown improved recoveries (>97%) 
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for the refractory ore using a combination of concentrate flotation, ultrafine grinding and pressure 

oxidation. 

Distal to the contact zone, the nature of gold mineralization is clear; whereas ore hosted within 

the mafic volcanics is generally free-milling, sediment-hosted refractory gold is strongly 

associated with As-bearing sulfides and related minerals. Unfortunately, the vast majority of the 

deposit occurs within the sedimentary units to the west of the main lithologic contact. Conventional 

and refractory ores are thus best delineated using mineral distributions and geochemical signatures 

that can define irregular domains of arsenic enrichment that are not clear upon visual inspection, 

i.e. ore type and grade calls are extremely difficult for the mine geologist. It would be both 

unproductive and unsustainable to perform expensive and time-consuming characterization 

testwork at the stope face following each round of blasting. Instead, the company has opted to 

undertake a major ore characterization program using drill core samples for geochemical, 

mineralogical and corresponding metallurgical response determinations. This data could then be 

used for predictive modelling of future ore block recoveries using data collected from drill core 

samples during routine definition drilling programs; this would allow for expedited decision-

making earlier in the value chain, thereby improving mine planning. 

However, given the high capital costs to upgrade the metallurgical plant, it remains unclear 

how the processing facility will respond to the varied ore types from multiple sources. Moreover, 

the operator is considering an ore sorting pre-concentration step for the refractory ore prior to 

transport, which adds further complexity to the overall mass balance. There are also questions as 

to how to effectively design operating policies that will stabilize plant throughput against the 

significant potential for geological variability both within and between mining blocks from the 

new heterogenous orebody. The overall concept for the calculations is summarized in Figure 4.4.4; 

average ore compositions expected at the central mill facility include a 40–60% mass pull for 

refractory type ore resulting from the sorting process (see details in Section 4.4.4). For the sake of 

clarity, the producing mine and new satellite deposit are herein referred to as Mines I and II, 

respectively. 
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Figure 4.4.4. Diagram illustrating the problem concept for the current set of sample calculations. Mine I refers to the producing 

mine with which the mill is currently integrated; Mine II refers to the satellite deposit under consideration. Expected ore 

compositions are only approximate, and do not account for geological uncertainty. 

This work implements stockpiling and blending practices using alternate modes of operation 

that can balance the ore feeds from the two mines in response to geological uncertainty. Ore type 

proportions for mining blocks from Mine II are based on predictive ML modelling of gold 

recoveries (using MLP regression), which are then combined with extracted ore from Mine I and 

fed into the DES portion of the framework to simulate system response. Adjustments can then be 

made to the available operational policies and related control strategies to maximize throughput 

and mitigate identified operational risks, e.g. ore stockouts. 

4.4.3 Multilayer Perceptron Regression Modelling 

With the selected model architecture and hyperparameter tuning (see Section 4.4.1), the model 

yielded its best performance with a training length on the order of 500 epochs, i.e. iterations 

through the entire training (𝑛 = 240 samples) and validation (𝑛 = 60 samples) sets. Plots of 

coefficient of determination (R2 score) and root mean squared error (RMSE) values show 

diminishing returns or reversals around this point for both training and validation subsets (Figure 

4.4.5). Overall, the extremely high R2 scores (>99%) and low RMSE values (<1.0) indicate that 

the model has performed very well on the current dataset. Moreover, the agreement between the 

training and validation metrics suggests that it is not overfitting to statistical noise, and should thus 

generalize well to new data. 
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Figure 4.4.5. MLP regression model performance metrics for training and validation subsets, including (a) coefficients of 

determination (R2) and (b) root mean squared error (RMSE) values. Note the reversal at 500 epochs for both metrics. 

The model also performed quite well on the testing set, with R2 and RMSE values of 0.82 and 

7.07, respectively. This indicates reasonable generalization to unseen datasets derived from similar 

geological environments and sampling protocols. Predictions from the final model (training length 

of 500 epochs) are shown with respect to the withheld observed (i.e. labeled) recoveries in Figure 

4.4.6, and comparative descriptive statistics are summarized in Table 4.4.4. The predictive power 

of the model appears best in the mid to upper recovery ranges (~65–95%), which is positive as the 

most difficult and critical ore type classifications would occur in this span. 

 

Figure 4.4.6. Plot of predicted vs. labeled recoveries from MLP regression on the unseen test set. Samples are sorted based on the 

target labels to highlight residual distances; predictive power appears best in the mid to upper recovery ranges (~65–95%). 
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Table 4.4.4. Comparison of summary statistics for labeled and predicted gold recoveries from MLP regression (500 epochs) on the 

test set (𝑛 = 450 samples). 

Metric Labeled Values 

(Y) 

Predicted Values 

(Ŷ) Min (%) 31.54 34.45 

Max (%) 99.51 100.00 

Median (%) 71.80 72.24 

Mean (%) 72.11 73.42 

St. Dev. (%) 16.19 13.87 

The decreased accuracy and higher error observed for the test set is not surprising, especially 

considering the relatively small training set size; in practice, a robust predictive model should be 

built on much larger datasets to improve confidence, particularly with the significant variability 

inherent to geological-based data. However, this exercise has shown the powerful predictive 

capability of MLP regression models for structured datasets common to the mining industry. 

Regardless, the exact nature of the ML model is not what is important here. The key is that the 

presented model, despite performing rather well on the generated datasets, can be modified or 

replaced within the flexible DES framework to suit the needs or scope of the specific problem. 

It is critical for any sort of predictive modelling tool that appropriate ore characterization is 

established prior to implementation. This will often require an upfront surplus of sampling and 

analyses in order to adequately understand the nature of ore feeds; however, with sufficient time 

and validation of a robust predictive model, sampling frequency can likely be significantly 

reduced, in addition to more targeted analyses, both of which can result in long-term cost savings. 

Furthermore, with coupled analytical streams (e.g. geochemistry and mineralogy), additional 

savings may eventually be seen by employing other tools that could eliminate an analysis type 

altogether. For instance, with sufficient characterization, normative mineral phase calculations 

from geochemical data could possibly replace the need for mineralogical studies entirely. 

In this study, the outputs of the MLP model, i.e. predicted recoveries, are used to determine 

relative proportions of conventional and refractory ore within each mining block from the new 

satellite deposit (Mine II). These proportions then serve as inputs for the DES framework in order 

to evaluate system-wide response to the varied ore feeds from both mines, under geological 

uncertainty. 
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4.4.4 Discrete Event Simulations 

Ore type classifications for Mine II were based on the predicted recoveries made on the test 

set (𝑛 = 450 samples). Ore with >90% recovery was deemed free-milling, whereas lower recovery 

rates were considered of the refractory type; these are herein abbreviated as FMO and RTO, 

respectively. In the context of this study, the test set also corresponds to the first 150 mining blocks 

(~3 years of production) forecasted for extraction from Mine II, allowing for a minimum of 3 

samples per block. In practice, a much greater number of samples would be required for 

appropriate ore characterization; however, this setup was deemed sufficient for demonstrative 

purposes. Due to the limited number of samples available for ore characterization, natural 

background noise, i.e. geological uncertainty, was added to the relative proportions of FMO and 

RTO via random number generation using a normal distribution with a standard deviation of 3%. 

Simplified mid-range mine plans were generated for each of Mines I and II, corresponding to 

~3 years of operations. Both mines are expected to produce similar ore tonnages, on the order of 

500 kt/y, from similarly sized stopes averaging ~10 kt each. According to these rates, each mine 

plan comprises 150 mining blocks; tonnages were randomly assigned using a uniform distribution 

between 5 and 15 kt. For Mine I, all ore was assumed to be free-milling; for Mine II, the relative 

proportions of FMO and RTO were determined as above. Moreover, the portion of RTO from 

Mine II was subject to a random mass pull in the range of 40–60% (with an assumed two-fold 

grade increase) by also applying a uniform distribution. 

Additionally, a total of 100 of these mine plans, i.e. statistical scenarios, were created for each 

of the mines in order to evaluate system-wide effects in response to a range of potential 

distributions. This approach is critical to proper risk assessment and to improve confidence in the 

design of robust operational policies and practices under geological uncertainty. Finally, the two 

sets of mine plans were then combined using weighted averages to reflect the overall ore feed that 

would be received at the central processing plant, assuming similar production rates at Mines I and 

II. In this manner, a 70–30 tonnage split of FMO and RTO (recall Figure 4.4.4) is expected as ore 

feed at the mill on average, bearing in mind that the refractory type ore has already undergone pre-

concentration via ore sorting. The proposed mining rates allow for a ~25% reduction in corporate 

guidance levels for Mine I, thereby extending operating life and providing more time to replace 
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reserves through planned exploration. With the new production from Mine II, however, the result 

would be an approximate 50% increase in overall plant output to ~150 koz/y. 

To handle the varied ore feeds, the proposed framework implements blending and stockpiling 

practices to mitigate the effects of unexpected changes in ore characteristics caused by geological 

uncertainty. These control strategies are described by two distinct operational modes, each 

governed by its own set of operating policies. Under Mode A, the mill receives 1,245 t/d of ore 

from Mine I and 755 t/d of ore from Mine II; under Mode B, the mill receives 1,370 t/d of ore from 

Mine I and 830 t/d of ore from Mine II. As summarized in Table 4.4.5, the overall mass balance is 

such that Mode A is anticipated to deplete the RTO stockpile by 100 t/d, whereas Mode B is 

expected to replenish RTO by 220 t/d. Though Mode B achieves a higher overall throughput, Mode 

A is generally the preferred plant configuration as it produces an additional ~10 koz Au/y based 

on increased grades associated with a higher proportion of ore-sorted, i.e. pre-concentrated, RTO. 

However, it is not sustainable to operate in Mode A indefinitely due to the rapid depletion of RTO 

using its assigned configuration rates. The decision to switch between modes is made at the end of 

4-week production campaigns, and is based on a determined threshold. When stockpiled RTO 

drops below this critical level at the end of a campaign, the planned one-day shutdown provides 

an opportunity for the necessary retooling of key equipment to apply Mode B, which acts as a 

replenishment phase. 

Table 4.4.5. Summary of the overall mass balance of FMO and RTO expected at the processing plant (expressed in t/d) under the 

available operational modes, ignoring geological uncertainty. 

  FMO (Deposit Grade)   RTO (Upgraded) 

Mode Mine I Mine II Into Mill Balance  Mine I Mine II Into Mill Balance 

A 1245 155 1300 100  0 600 700 -100 

B 1370 170 1760 -220   0 660 440 220 

Plant configuration rates for each mode, i.e. the absolute and relative proportions of FMO and 

RTO, are assessed with respect to geological forecasts of the combined ore feed from the two 

mines using mass balancing. Following the approach of Navarra et al. (2019), a deterministic 

analysis of the proposed configuration rates indicates that Mode A should be applied 2.2 times as 

frequently as Mode B, for an average throughput of 2,062.5 t/d. However, this naïve approach 

ignores the risk of stockout caused by geological uncertainty. The primary aim of the framework 
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is to simultaneously maximize throughput and minimize target stockpile levels, meanwhile 

ensuring stable ore feed streams to mitigate stockout risk and avoid the disruption of continuous 

plant production. It is important to minimize stockpile levels as much as possible to reduce costs 

associated with excessive material handling and storage. 

Similar to the previous case studies, the framework implements two control variables in the 

decision-making process, including a critical RTO level and the target total stockpile level, 

computed as the sum of available FMO and RTO. Deterministic calculations indicate minimum 

threshold values of 2,700 t and 5,940 t for these variables, respectively. The critical ore level is 

determined as a function of campaign length (27 days) and rate of change under Mode A (−100 

t/d); target total stockpile level is determined as the maximum rate of change between available 

FMO and RTO under either mode (−220 t/d), also as a function of campaign duration. A negative 

threshold crossing for either of these variables represents a discrete event, which elicits a decision 

in the framework. Depending on the observed system response during simulations, these control 

variables can be adjusted by raising the threshold values as a form of operational buffer against 

geological uncertainty. Each simulation trial begins in Mode A as it is the more productive of the 

available operational modes; it is assumed that each combined ore feed block is processed to 

completion prior to loading the next parcel. 

Representative graphical outputs from the DES framework are shown in Figure 4.4.7, 

demonstrating the fluctuations in FMO and RTO feed stockpiles over operating periods of 500 

days (Figure 4.4.7a) and 250 days (Figure 4.4.7b). The application of Mode A is indicated when 

FMO levels are increasing and RTO levels are decreasing; Mode B is reflected by increasing RTO 

levels and diminishing FMO levels. The alternation of these modes is key to the stable functioning 

of the processing plant by providing relief to the system before it comes under stress via suitably 

selected threshold values (e.g. Figure 4.4.7a). When these critical levels are set too low, the system 

is repeatedly stressed by inadequate ore availability, thus requiring immediate recourse actions 

which are both less productive and unsustainable. Figure 4.4.7b illustrates a mine surging event 

caused by total depletion of FMO under Mode A (t ≅ 300 days), wherein the additional ore is fed 

directly to the plant, in addition to three contingency mode segments caused by depletion of RTO 
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also under Mode A (t ≅ 360, 420, 480 days). The jagged nature of the line segments in both plots 

is indicative of the significant geological uncertainty in combined ore feeds from both mines. 

 

Figure 4.4.7. Representative graphical outputs from the DES framework, showing (a) stable plant operation with alternation 

between Modes A (green) and B (blue) over 500 operating days (critical RTO level = 8,100 t; target total ore level = 24,300 t), and; 

(b) system under stress with one mine surging event (red ‘S’) and three contingency modes (green ‘C’) triggered by inadequate 

FMO and RTO levels, respectively, over 250 operating days (critical RTO level = 2,700 t; target total ore level = 8,100 t). 

To select appropriate values for the two control variables, a series of simulations were run 

with varied combinations of RTO and target total ore levels attempted. Data from an initial set of 

6 simulations are summarized in Table 4.4.6; for these trials, the critical RTO level was held 

constant at 2,700 t (deterministic result) and the target total ore level was varied between 5,940 t 

and 12,150 t. This first pass was carried out on a single replication, i.e. one statistical realization 

or ‘mine plan’, in order to find a reasonable ore ratio range for further testing. In terms of 

throughput, it is clear that simulations 2, 3 and 4, corresponding to FMO:RTO ratios of 1.5, 2 and 

2.5 (respectively), performed the best. Despite a decrease in throughput, simulation 5 (3:1 ore 

ratio) was also retained based on a lower stockout risk. While simulation 6 did not experience any 

stockouts, it was ignored from further trials as stockpile levels would become unmanageably large 

as the critical ore level is raised. It is also notable that in general, the proportion of time spent in 

the more productive Mode A appears to vary directly with the FMO:RTO ratio. 
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Table 4.4.6. Summary of modal time proportions, throughput rates and number of stockout events for simulations with varied ore 

type ratios using a constant critical RTO level of 2,700 t (deterministic result). 

Sim 

# 

Reps 

Crit Ore 

Level (t) 

Total 

Ore (t) 

Ore 

Ratio 

Mode 

A (%) 

Mode A 

Cont (%) 

Mode 

B (%) 

Mode B 

Cont (%) 

Shutdown 

(%) 

Through-

put (t/d) 

No. of 

Stockouts 

1 1 2700 5940 1.2 57.14 1.99 35.52 1.83 3.51 2046.30 15 

2 1 2700 6750 1.5 58.21 1.18 35.59 1.50 3.52 2055.13 13 

3 1 2700 8100 2 62.88 1.28 32.09 0.22 3.52 2054.61 7 

4 1 2700 9450 2.5 64.49 1.06 30.82 0.10 3.52 2054.49 5 

5 1 2700 10800 3 64.08 2.15 30.23 0.04 3.51 2044.59 4 

6 1 2700 12150 3.5 64.27 2.03 30.19 0.00 3.51 2045.74 0 

A second round of simulations then focused on raising the critical RTO level by factors of 

2, 3 and 4 for each of the retained ore type ratios, i.e. FMO:RTO values of 1.5, 2, 2.5 and 3. These 

trials were executed using all 100 statistical replications in order to better gauge throughput rates 

and operational stockout risk over a range of distributions; the resulting data are summarized in 

Figures 8 and 9. Throughputs for all of the ore ratio configurations appear to stabilize at a minimum 

critical RTO level of 8,100 t (Figure 4.4.8a), and target total ore levels in the range of 20–30 kt 

(Figure 4.4.8b). While all of the ratios reached similar throughput rates, notably higher than the 

deterministic result of 2,062.5 t/d, the two lowest ratios managed these levels with substantially 

smaller total ore stockpiles (on the order of 5–10 kt). 

 

Figure 4.4.8. Plots of throughput rates (t/d) versus (a) critical RTO level, and (b) target total ore level for a variety of simulated 

ore type ratios over 100 statistical replications. 

Considering the total tonnage from all 100 replications (~238.7 Mt) and the simulated average 

throughput rates, the resulting absolute numbers of operating days and ore stockout events were 

used to calculate the frequency of stockouts for each ore ratio. From these, monthly stockout 

probabilities were computed for each scenario, as shown in Figure 4.4.9. These trends show that a 
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2:1 ratio of FMO and RTO generally reduces operational stockout risk (on a monthly basis) to near 

zero with the smallest ore feed stockpile levels. As a result, the final selected model for this study 

implements threshold values of 8,100 t and 24,300 t for the critical RTO and target total ore control 

variables, respectively. 

 
Figure 4.4.9. Plots of monthly stockout probability (%) versus (a) critical RTO level, and (b) target total ore level for a variety of 

simulated ore type ratios over 100 statistical replications. 

A histogram of modal time proportions (Figure 4.4.10) compares the average performance of 

the final enhanced model vs. a naïve model that uses the deterministic values for both critical RTO 

(2,700 t) and target total ore (5,940 t) levels over 100 replications. It is evident that the enhanced 

model processes more ore under the more productive Mode A; moreover, this scenario results in 

less system stress resulting from ore feed depletions as evidenced by negligible application of 

contingency segments under either mode. 

 

Figure 4.4.10. Histogram showing the relative modal time proportions of the final enhanced model vs. a naïve model that uses the 

deterministic values for critical RTO (2,700 t) and target total ore (5,940 t) levels over 100 replications. 
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The stability of the final model allows for the efficient processing of 447.5 koz of gold 

(averaged over the 100 statistical replications) in ~3.15 years, which is just under the target annual 

guidance level of 150 koz. By comparison, the naïve scenario would take an additional ~2 weeks 

to process a similar number of ounces, and would effectively be unsustainable due to chronic ore 

feed shortages. Armed with the confidence of stable system functioning using alternate modes of 

operation and the selected operational policies, a company is much better positioned to proceed 

with detailed project evaluation. 

For demonstrative purposes, a high-level economic analysis using pre-tax net present value 

(NPV) was conducted to assess the value of bringing the new satellite deposit (Mine II) online. 

Under Option 1, the company simply continues to process the remaining ~500 koz of gold reserves 

at Mine I at a target annual guidance level of 100 koz; barring a significant resource expansion 

through underground exploration, the mine is thus projected to shut down in ~5 years. Under 

Option 2, guidance levels at Mine I are reduced to 75 koz Au/y, and Mine II is put into production 

at an equal guidance level for a target total of 150 koz Au/y. This would extend mine life at Mine 

I to just under 7 years, which also provides more opportunity to replace reserves. Once Mine I is 

fully depleted, guidance levels for Mine II would be increased to at least 150 koz Au/y to make up 

the difference. 

To compare the two options, NPV was calculated as follows: 

NPV = ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑁

𝑡=0

 (4.4.1) 

where 𝑁 is the number of periods, 𝑡 is the current time period, 𝑅𝑡 is the net cash flow (i.e. revenue 

less costs), and 𝑖 is the discount rate. Various gold prices from US$ 1,200/oz to US$ 1,900/oz were 

used as a form of sensitivity study to observe the relative tradeoff. For Option 1, it was assumed 

that 100 koz Au are produced per annum at an all-in sustaining cost (AISC) of US$ 850/oz. AISC 

is a non-GAAP (‘generally accepted accounting principles’) measure frequently employed in the 

gold sector to improve transparency with stakeholders and provide a better comparative valuation 

scale for companies and/or mining projects. The AISC measure includes all operating costs, 

general and administrative site and corporate expenses, freight, treatment/refining costs, royalties, 
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hedging effects, writedowns, sustaining capital (including near-mine exploration) and reclamation 

costs. The resulting NPV calculations for Option 1 are shown in Table 4.4.7. 

Table 4.4.7. Summary of net present value (NPV) calculations for a range of potential gold prices under Option 1, assuming a 

production rate of 100 koz Au/y and all-in sustaining costs (AISC) of US$ 850/oz. 

   Gold Price (US$/oz) 

Year Metric1 $1,200 $1,300 $1,400 $1,500 $1,600 $1,700 $1,800 $1,900 

1 PV $31.818 $40.909 $50.000 $59.091 $68.182 $77.273 $86.364 $95.455 

2 PV $28.926 $37.190 $45.455 $53.719 $61.983 $70.248 $78.512 $86.777 

3 PV $26.296 $33.809 $41.322 $48.835 $56.349 $63.862 $71.375 $78.888 

4 PV $23.905 $30.736 $37.566 $44.396 $51.226 $58.056 $64.886 $71.716 

5 PV $21.732 $27.941 $34.151 $40.360 $46.569 $52.778 $58.988 $65.197 

Total NPV $132.678 $170.585 $208.493 $246.401 $284.309 $322.217 $360.125 $398.033 

1 Dollar amounts for present value (PV) and NPV are shown in millions. 

To evaluate Option 2, it is necessary to determine an approximate life-of-mine (LOM) for 

Mine II. Advanced deposit definition has identified 15.55 Mt @ 4.5 g/t Au for a total of ~2.25 

Moz of contained gold in reserves and indicated resources. The subvertical mineralized zones are 

expected to be extracted via the longhole stoping mining method. Using Taylor’s Rule (Camm & 

Stebbins, 2020), this corresponds to an estimated mine life of ~12.5 years, assuming recovery and 

dilution factors of 85% and 15%, respectively. However, this option requires significant capital 

investment to increase capacity at the central processing plant, and install an autoclave for the 

oxidative pretreatment of refractory ore. Community, permitting, distal exploration and non-

sustaining capital costs are considered as ‘profit and loss’ (P & L) investments, and are not 

typically included in AISC disclosures. An initial investment of US$ 235M has thus been included 

at time 𝑡 = 0 in the NPV calculations for Option 2, as shown in Table 4.4.8. This amount includes 

US$ 150M for a smaller industrial autoclave, and US$ 85M for the start-up costs at Mine II, in 

line with the upper range of average costs for an underground operation using longhole stoping 

with shaft access (Camm & Stebbins, 2020). In this scenario, both mines are operational for the 

first 7 years and the mill produces 150 koz Au/y at an assumed AISC of US$ 1,050/oz. Following 

depletion of gold reserves at Mine I, guidance levels at Mine II are increased for the remaining 6 

years with the mill continuing to produce 150 koz Au/y at an assumed AISC of US$ 950/oz. 

Payback periods (in years) were also calculated based on cumulative NPV for each gold price. 
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Table 4.4.8. Summary of net present value (NPV) calculations for a range of potential gold prices under Option 2, assuming a 

production rate of 150 koz Au/y, and all-in sustaining costs (AISC) of US$ 1,050/oz for the first 7 years and US$ 950/oz for the 

final 6 years. 

    Gold Price (US$/oz) 

Year Metric1 $1,200 $1,300 $1,400 $1,500 $1,600 $1,700 $1,800 $1,900 

0 PV ($235.000) ($235.000) ($235.000) ($235.000) ($235.000) ($235.000) ($235.000) ($235.000) 

1 PV $20.455 $34.091 $47.727 $61.364 $75.000 $88.636 $102.273 $115.909 

2 PV $18.595 $30.992 $43.388 $55.785 $68.182 $80.579 $92.975 $105.372 

3 PV $16.905 $28.174 $39.444 $50.714 $61.983 $73.253 $84.523 $95.793 

4 PV $15.368 $25.613 $35.858 $46.103 $56.349 $66.594 $76.839 $87.084 

5 PV $13.971 $23.285 $32.598 $41.912 $51.226 $60.540 $69.854 $79.167 

6 PV $12.701 $21.168 $29.635 $38.102 $46.569 $55.036 $63.503 $71.970 

7 PV $11.546 $19.243 $26.941 $34.638 $42.336 $50.033 $57.730 $65.428 

8 PV $17.494 $24.492 $31.489 $38.487 $45.484 $52.482 $59.480 $66.477 

9 PV $15.904 $22.265 $28.627 $34.988 $41.350 $47.711 $54.072 $60.434 

10 PV $14.458 $20.241 $26.024 $31.807 $37.590 $43.374 $49.157 $54.940 

11 PV $13.144 $18.401 $23.658 $28.916 $34.173 $39.431 $44.688 $49.945 

12 PV $11.949 $16.728 $21.508 $26.287 $31.067 $35.846 $40.625 $45.405 

13 PV $10.862 $15.207 $19.552 $23.897 $28.242 $32.587 $36.932 $41.277 

Total NPV ($41.650) $64.900 $171.450 $278.001 $384.551 $491.101 $597.652 $704.202 

Payback (years) n/a 9 6 4 3 2 2 2 
1 Dollar amounts for present value (PV) and NPV are shown in millions. 

Figure 4.4.11 shows the relative tradeoff between Options 1 and 2 over the range of gold 

prices considered for the current study. The breakeven point for bringing Mine II online appears 

to occur at a gold price of ~US$ 1,450/oz, with a payback period of ~5 years. The sensitivity to 

gold price could be further reduced by expanding the resource/reserve base at Mine II, in addition 

to further increases in mill capacity. This economic assessment is fairly crude in nature and relies 

on a number of assumptions; in practice, a much more elaborate evaluation would be completed 

using detailed capital and operating costs, coupled with historic and updated operational data from 

the plant in question. 
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Figure 4.4.11. Plot showing the relative tradeoff between Options 1 and 2 for gold prices ranging from US$ 1,200/oz to US$ 

1900/oz. The breakeven point for bringing Mine II online occurs at a price of ~US$ 1,450/oz, with a payback period of ~5 years 

(data labels). 

4.4.5 Conclusions 

As previously described, declining trends related to new gold discoveries are driving an 

emerging imbalance in the replacement of global gold reserves against forecasted production. 

However, technological advancements are improving not only the economic feasibility, but the 

overall sustainability of processing more complex and refractory ores to help fill the growing gap 

in supply and demand chains. Sensor-based sorting is one such method being evaluated or applied 

in the industry as it allows for the pre-concentration of target minerals based on physicochemical 

heterogeneities between ore and waste streams. This approach is particularly attractive for remote 

projects or satellite orebodies as it can significantly cut down on handling and transportation costs, 

in addition to improving cost and energy efficiencies at the processing plant. Moreover, 

environmental footprints are also greatly reduced by keeping a higher volume of ultimate waste at 

the mine site, thereby minimizing unnecessary tailings accumulations. 

Refractory ore zones are relatively common in many gold mining districts, especially in 

deposits hosted along or proximal to major lithological contacts with sedimentary basins. 

However, often times these zones are cast aside due to the metallurgical implications, and only the 

free-milling ores are extracted for processing. As more efficient methods to improve the recovery 

of refractory gold and handle impurities of concern (e.g. arsenic) are developed, there will be 

increased opportunity to process these zones concurrently with conventional sources. An 
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interesting case could also be made to consolidate these untapped refractory zones from a 

collection of deposits within a mature or historic mining camp for processing at a centralized 

facility. Regardless, a processing plant receiving ores from multiple sources will undoubtedly face 

significant variations in ore feed attributes which must be considered in the design of operational 

policies. Computational intelligence tools are thus needed to assess mining system dynamics with 

respect to proposed new or modified control strategies that could mitigate operational risks 

presented by significant geological uncertainty. 

This work explored a regional-based mine-to-mill strategy for the development of varied gold 

ore types from multiple sources using an integrated ANN and DES framework. In this approach, 

predicted outputs from the ANN model are used to classify ore feeds based on metallurgical 

response to standard cyanidation, which are then fed into the DES model to evaluate the system-

wide response to geological uncertainty. The current quantitative framework provides a pathway 

to evaluate potential mineral processing routes using mass balance and alternate modes of 

operation. Adjustments can then be made to operating practices and parameters towards the 

development of effective operational policies. This study implemented stockpiling and blending 

as control measures to manage ore stockout risk caused by unexpected changes in ore feeds, i.e. 

geological uncertainty. A further level of complexity was also added by introducing uncertainty to 

the tonnages resulting from preconcentration of classified refractory ores (via ore sorting) into the 

mass balance. Results from sample calculations based on a conceptual scenario offer insight into 

the applicability of such a framework within a gold mining context, and warrant further study of 

similar strategies. As an example, computations carried out in parallel with and without 

preconcentration to evaluate system performance with respect to ore stocks and flows (and 

ultimately the resultant NPV) could make for interesting case studies to support or oppose the 

installation of an ore sorter at a given mining project. The real key is that the developed tool can 

improve confidence in stable mining system design, which allows for further detailed project 

evaluation and strategic decision-making. 
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Chapter 5 

Discussion and Future Work 

5.1 Integrated DES Frameworks for Mining System Evaluation 

Geological variability and related uncertainty are inherent to all ore deposit types. These 

heterogeneities can range in intensity, and generally vary both within and between deposits and/or 

mining districts. This can lead to unexpected changes in ore feed attributes (e.g. grade, mineralogy, 

grain size distribution), thereby affecting the mining and extractive processes. All of these factors 

have a direct impact on the interplay of critical variables and integrated coordination of processes 

within the overall system. Given that ore feeds are exploited from complex and heterogeneous 

sources, it is clear that mining systems need to be flexible, with the ability to respond to changes 

and communicate with all related processes (both up and downstream). The availability of alternate 

operational modes, each with its own set of instructions, is crucial to the sustained development of 

most orebodies, particularly as a project matures and evolves. 

Regardless, significant variability in ore feed attributes is likely to be experienced at any 

mineral processing plant, particularly those receiving feeds from multiple or complex ore sources; 

it is thus critical that these variations are considered in the design of effective operational policies. 

As such, computational intelligence tools are needed to assess mining system dynamics with 

respect to proposed new or modified control strategies that could mitigate potential operational 

risks presented by significant geology uncertainty. As previously noted, this research fills a 

particular gap in the mining literature by focusing on generalizable DES framework development 

with the flexibility to incorporate different data types and quantitative methods to test novel control 

strategies in response to geological uncertainty along the mine-to-mill (or smelter) profile. 

Moreover, the integration of predictive models calibrated from geometallurgical 

characterization can further accelerate key decision-making and related planning processes. 

However, the generation of robust predictive models requires extensive (and expensive) systematic 

sampling and analytical campaigns to properly characterize ore feeds and related downstream 

process responses; the degree of sampling is difficult to anticipate in advance, and ultimately 

depends on the variability of the source orebody. Nonetheless, the ability to integrate reliable 
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predictions of processability based on geometallurgical attributes into a DES framework earlier in 

the value chain is of key importance to assess the effects of heterogeneous ore feeds on system-

wide performance. Tactical adjustments can then be made well in advance via new or modified 

operational policies, or the implementation of new control measures, e.g. blending and stockpiling 

practices, in order to mitigate the identified risk factors. 

Mining projects represent complex industrial systems that are host to a variety of treatments 

and processes. From extraction to mineral separation, concentration, metallurgical processing and 

tailings storage/disposal, there are a large number of moving parts requiring both management and 

coordination. The interaction of these parts can be a major source of bottlenecks and cause severe 

deficiencies, making DES an ideal candidate as a modelling and simulation tool for any mining 

system. Results from a series of case studies highlight the power of a flexible and generalizable 

DES framework towards the evaluation of a wide array of mining system contexts across 

commodity markets, operation scales, integration scopes, mine life cycle timing and data process 

techniques. Common threads between these problems have motivated this research to generalize 

concepts underlying the integration of mining and downstream processes, in order to help drive 

the development of appropriate evaluation tools currently lacking in the industry. 

This approach is especially important given current and forecasted global mining trends driven 

largely by technological advancement, climate change concerns and the clean energy transition. 

Various government agencies and international organizations continue to update lists of critical 

minerals year over year based on projected market supply and demand chains. Regardless of the 

source, commodities at the forefront of these compilations are generally geared towards: 

• Electrification (dominated by Cu and Al); 

• Battery production and storage (e.g. Li, Co, Ni, Mn, graphite); 

• Renewable energy technology (e.g. Cs and other REEs for photovoltaic cells); 

• Electronics and medical equipment (e.g. precious metals and REEs), and; 

• Cross-cutting minerals applicable to a wide range of technologies (e.g. Cu, Cr, Mo);       

see World Bank Group (2020) for more details and examples. 

Not only are these critical metals sourced from a wide variety of deposit types, but many are 
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typically extracted from complex ores subject to significant geological uncertainty caused by 

structural controls as described in Section 2.1. In addition to geological and geometallurgical 

controls, there are a number of other factors related to company structures and business models, 

financial health, and corporate asset management strategies that can also give rise to important 

levels of uncertainty. For example, underground deposits are seldom drilled off to completion prior 

to ore production due to high capital drilling costs. Infill drilling and detailed zone definition are 

thus usually completed at staged increments to improve confidence in resources and reserves, as 

well as ore characterization, as necessary to meet corporate guidance targets. This delays the 

acquisition of new information about the ore, which can affect production scheduling and 

downstream control strategies. Moreover, the discovery of new zones can lead to significant 

changes in the morphology of an orebody, re-prioritization of development, and also presents 

geotechnical challenges related to the new host rocks, in addition to unforeseen mineralogical and 

metallurgical considerations. Such timing-related factors are particularly taxing for smaller 

companies with less access to financial liquidity. 

Similarly, other factors such as higher than expected costs, lower revenues, fluctuations in the 

commodity markets, and even investor relations can be strong drivers for derailing the original 

optimized mine plan; i.e. decisions can be made on multiple levels to satisfy different types of 

opportunities and risks in mining systems. This can also mean targeting new or additional 

commodities, ore types and/or materials in response to increased market demand and prices. For 

instance, with emerging technologies taking advantage of previously discarded elements, 

secondary processing streams for by-products are becoming more common across the industry 

(Keller & Anderson, 2018). The same concepts can also create new opportunities such as tailings 

retreatment applications (as detailed in Section 4.1), processing of historic mining waste through 

reclamation efforts (e.g. Hollinger open pit Au mine, Timmins, ON, Canada), and consolidation 

of untapped resources due to metallurgical complexities (as described in Section 4.4). 

The main takeaway here is that information flows and resultant strategic, tactical and/or 

operational goals can quickly change due to a variety of structural controls. While we certainly 

cannot change the nature of the commodities in the ground, or control the current geopolitical, 

economic or socioenvironmental climate, our models and resulting plans must be ready to change 



150 

 

as a function of new incoming data sources. As a result, there is a clear need for computational 

tools that can be quickly adapted to test new approaches or strategies in mining systems in response 

to unexpected changes. The key is to ensure framework extensibility, thereby enabling for the 

subsequent incorporation of increasingly detailed models and submodels as project development, 

continuous improvement or re-engineering efforts progress with increased confidence under a 

multi-phase approach. 

The approach used in this research provides a pathway for dealing with the types of mining-

related issues discussed here. By integrating advanced quantitative methods into a generalized and 

flexible DES framework that can be tailored to meet specific needs and/or problem sets, 

uncertainty (geological or otherwise) in mining systems can be managed through testing and 

development of effective control strategies along the mine-to-plant profile. The methodology is 

demonstrated as a solution to stabilize and enhance plant performance in response to significant 

variability in ore feed attributes for an array of deposit types and related mining system problems, 

including: 1) tailings retreatment applications (Section 4.1); 2) chloride-rich oil sands processing 

(Section 4.2); 3) regionalized strategies for As-rich copper ores (Section 4.3), and; 4) regional 

development of refractory gold systems (Section 4.4). The ensuing discussion has embodied how 

a similar approach could also be applied to a host of other contexts spanning the mining spectrum, 

especially those stemming from current and forecasted mining trends for critical minerals needed 

to support technological advancement and a low-carbon future. 

Several authors (e.g. Grammatikopoulos & Downing, 2020) have highlighted the pressing 

need to incorporate critical geometallurgical information garnered from process mineralogy into 

metallurgical process definition and flowsheet development. The computational tool presented 

here is an ideal candidate for the integration of such data into a simulation framework in order to 

test novel approaches or control strategies for the development of suitable operational policies. By 

simulating extended operating periods, system-wide response to unexpected changes in mass flows 

can be evaluated, and adjustments can be made where necessary. Not only does this improve 

confidence at each stage of design and implementation, but it also cuts down on trial and error 

processes which can translate into important cost and time savings. 
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However, as with any proposed methodology, there are a few areas within the current 

framework that deserve certain considerations for future work in order to further improve its 

flexibility and generalizability. For instance, the framework presently assumes that ore/material is 

mined to completion from a single parcel at a time. This needs to be extended to handle parallel 

inputs, possibly each with its own set of operational modes. This has significant value on multiple 

levels: 1) at the deposit scale, it is feasible that different areas of a mine have entirely different 

geometallurgical characteristics, each with their own ore classes that need to be balanced, and; 2) 

the same concept holds true at the regional scale, as in the described cases of a centralized 

processing facility for copper smelting (Section 4.3), and refractory gold processing (Section 4.4). 

Similarly, each of these regionalized studies only focused on system performance at a single plant 

being fed from multiple ore sources; future work could also consider a whole network of mines 

and processing facilities. An even more elaborate scheme could incorporate geospatial attribute 

data for predictive 3D modelling of distinct geometallurgical units and subsequent ore block 

classifications. As indicated by Navarra et al. (2019), such scenarios could especially benefit from 

a supervisory control framework. 

Moreover, this research has touched on the use of such integrated models as a suitable 

approach to develop dynamic simulation-based digital twins (as described in Sections 4.2 and 4.4). 

Currently intended for design and implementation purposes, the present framework would 

technically be considered a digital model as data flows between the ‘physical’ and virtual realms 

are made manually in an offline state. However, armed with updated ore characterization and 

operational data from an active mining project, the model could eventually evolve into a full digital 

twin (automatic two-way data transfers) by incorporation into a mine control system. This will no 

doubt become increasingly important with modern trends driving advances in mining automation 

in this accelerated age of Industry 4.0 and cloud-based internet of things (IoT) systems. 

5.2 The Evolution of Sustainable Project Development 

The term sustainable development is intended to encompass three main pillars focused on 

economic, social and environmental aspects that can be used to gauge corporate performance and 

responsibility. Though the concept first surfaced in the late 1960s to early 1970s, the term was not 

popularized until the late 1980s to early 1990s, finally gaining broad international recognition at 
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the 1972 UN Conference on the Human Environment held in Stockholm, Sweden (Sustainable 

Development Commission, 2011). However, the approach did not take hold in the mining industry 

until the Mining Association of Canada (MAC) put forth the Towards Sustainable Mining (TSM) 

initiative, now widely recognized as a sustainability standard to help build capacity within the 

global mining industry (Canadian Trade Commissioner Service, 2021). 

In the early going, many major mining companies began to develop sustainable development 

corporate policies, but the primary focus long remained on economic factors to drive managerial 

decision-making. However, there has since been a seismic shift in global socio-environmental and 

geopolitical awareness, particularly over the past decade. This is evidenced by well-developed 

health and safety programs (social) that focus on ‘zero harm’ messaging and initiatives now 

common at most established mining project sites, in addition to operational teams dedicated to 

environmental monitoring and planning tasks. Moreover, increased project start-up trends are 

mostly related to permitting delays as a function of the required environmental testwork and 

transparent community engagement now legislated by many governing bodies; there are certainly 

still lapses in less developed areas of the world, but the overall improvement is undeniable. 

With declining trends in the rates, sizes and grades of new mineral discoveries, this imbalance 

is expected to drive significant increases in energy consumption across the mining sector in order 

to meet future supply targets via processing of more complex and refractory ores. This is especially 

significant given the current state of climate change and related pressure from community 

stakeholders and governing bodies to reduce greenhouse gas emissions and transition away from 

fossil fuels to a clean energy-based economy. The industry has already started to adapt with 

renewable energy supply serving mine sites globally having grown from just 600 MW in 2015 to 

4.9 GW in 2020 (Igogo, et al., 2020; Kirk & Cannon, 2020). Research and development efforts 

have even begun to focus on the notion of using 100% renewables to support operations via a 

combination of wind, solar and geothermal energy sources, as well as battery and process storage 

processes. In addition to the clear environmental benefits of a reduced carbon footprint, this 

approach may prove paramount to the feasibility of smaller remote projects that commonly face 

significant scheduling and cost barriers associated with power grid installation and/or fuel delivery 

limitations (Wilson, et al., 2022b). Collections of remote satellite deposits could even potentially 
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benefit from highly flexible and scalable plant operations with mobilization capabilities, or other 

regional-based strategies. Regardless of the approach or business model, it is clear that energy 

efficiencies will be increasingly pivotal in future decision-making processes for mining systems. 

Moreover, with global mining rates accelerating due to new technologies (e.g. automation) 

and favourable market conditions allowing for large-scale low-grade open pit operations, there 

will undoubtedly be mounting pressure and scrutiny to improve current best practices in waste 

management. Tailings generation and related storage systems are accumulating at record pace, 

which can pose risks to both human health and the environment through dam failures or acid rock 

drainage (ARD) due to potentially harmful by-products from ‘dirtier’ sulfide ore sources. 

Continued research and development of tailings retreatment applications is one approach to help 

curb these effects. Currently, the two end-member goals are for the recovery of metals that were 

initially lost (or not targeted) to tailings streams, and incorporation into the production of industrial 

materials. The case study presented in Section 4.1 focused on the latter direction to highlight the 

potential of substituting tailings residues for the clay component in cement clinker. By integrating 

geostatistical modelling into the proposed DES framework, effective control strategies and related 

operational policies were developed in order to successfully manage the significant uncertainty 

associated with poorly documented abandoned tailings of mixed/unknown origin. 

Another important concern is that of ARD associated with surface waste rock dumps at both 

active and historic mine sites (Vaziri, et al., 2021). However, with many commodities at record 

prices, much of this previously mined rock could potentially meet lowered economic cut-off 

grades. This presents an opportunity for miners to profit from essentially ‘free’ ore as part of the 

site remediation process. Furthermore, there is increasing interest in the strategic domaining and 

segmentation of waste materials for secondary processing, depending on plant and market 

conditions (Peña-Graf, et al., 2021). Similar to collections of satellite orebodies left unexploited 

due to the metallurgical implications associated with complex and/or refractory ores (as detailed 

in Section 4.4), there is also an opportunity for the potential consolidation of abandoned waste 

dump resources in mature or historic mining camps. Although, regionalized strategies similar to 

those described in Sections 4.3 and 4.4 will likely be critical to improve overall efficiencies 

towards the development of sustainable business models. Moreover, technological advancements, 
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such as sensor-based ore sorting, will also likely be necessary to enhance the economics around 

such projects, in addition to the benefits of improved material management (e.g. buffering capacity 

of nearby host-rock successions), reduced transport and smaller environmental footprints. 

Regardless, the added uncertainty to mass and energy flows with the insertion of any pretreatment 

process can make it difficult for miners to properly evaluate potential system-wide performance. 

As such, suitable tools that can simulate the coordination of these inputs and outputs as a function 

of geological variability are critical to the development of effective operational policies that are 

aligned with strategic management goals. 

Ultimately, standard business models in the mining industry must continue to evolve in order 

to maintain the social license to operate (SLO) with not only community stakeholders, but also the 

younger generations of potential investors which place increasingly significant weight on 

sustainable and responsible growth models. While framed in a different context, all of these factors 

remain within the realm of mining system dynamics. As such, the basis of this thesis, i.e. the 

importance of flexible quantitative frameworks for the testing of novel control strategies, still 

holds. In order to develop more holistic/synergistic mining approaches, computational tools will 

need to be increasingly generalizable. 

A systems approach using integrated DES frameworks will be crucial to model and simulate 

the interactions of key processes and variables within an ever growing number of potential 

subsystems, parameters, and KPIs that will need to be closely monitored to measure system-wide 

performance. As highlighted in this thesis, DES is a powerful tool for the development of effective 

operational policies and related control measures that can stabilize system performance against 

significant geological (or other types of) uncertainty, and should thus play a major role in future 

modelling and simulation efforts within the continually evolving mining landscape. 
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Chapter 6 

Summary and Final Conclusions 

6.1 Summary 

The key objective of this research was to develop a generalizable methodology to test novel 

control strategies along the mine-to-plant profile using integrated DES frameworks. The 

fundamental advantages of this approach are the flexibility of the framework to incorporate varied 

data types and quantitative methods, as well as the extensibility to include more detailed models 

and/or submodels as project development progresses. By combining interdisciplinary expertise, 

the technique is capable of assessing potential operational risk factors by coupling dynamic 

geometallurgical attributes with target downstream process parameters for the development of 

effective operating policies and control strategies. As discussed in Chapter 5, this type of systems 

modelling approach can lead to improved overall efficiency and system stability, and therefore 

project sustainability. In a broader context, this thesis responds to a particular need for ML-assisted 

operational decision-making processes in the mining space in order to help drive future innovation. 

The flexibility of the proposed methodology allows for the framework to be molded around a given 

problem set, thus avoiding difficult negotiations with a highly specified simulation model. 

To highlight the utility of a flexible and generalizable integrated DES framework towards 

modelling complex mining system dynamics, this research adapts the approach to a series of four 

case studies that span a variety of contexts across the mineral value chain. Each of these studies 

has been published separately in peer-reviewed journals; refer to the ‘Contribution of Authors’ 

section in the front matter of this thesis for publication details. In Section 4.1, geostatistical 

variability modelling via the turning bands method is integrated into a DES framework to evaluate 

tailings retreatment applications; in this work, the notion of using poorly documented tailings 

residues of mixed origin as a potential substitute for the clay portion in cement clinker production 

is evaluated. Section 4.2 explores the incorporation of predictive modelling of process variables 

using partial least squares (PLS) regression to assess system response for the extraction of bitumen 

from variably chloride-rich oil sands. A regionalized framework strategy for the processing of As-

rich porphyry copper sulfide ores using simplified Monte Carlo simulation is developed in the 
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Chilean context in Section 4.3. Finally, an integrated artificial neural network and discrete event 

simulation framework for the regional development of refractory gold systems is presented in 

Section 4.4; this study uses multilayer perceptron (MLP) regression modelling to predict recovery 

response to standard cyanidation in mixed sulfide-rich gold ores for geometallurgical classification 

(i.e. domaining) purposes. In each case, suitable control strategies and related operational policies 

were developed using a combination of stockpiling and blending practices coupled with alternate 

modes of operation to stabilize and enhance overall plant performance in response to significant 

levels of uncertainty caused by geological and/or geometallurgical controls. 

Following the work of Navarra et al. (2019), the DES framework was extended to accept 

different data types, include additional ore types, track rejected waste material, and stabilize the 

return to normal mining conditions (i.e. mining rates) following a required mining surge as a 

recourse action to ore stockouts. Moreover, the developed methodology has bridged different data 

processing techniques with the DES framework in a way not previously reported in the literation; 

as such, the flexible framework acts as a “wrapper” that can integrate any selected quantitative 

method suitable to the context or problem at hand. This thesis is among the first works to 

incorporate advanced quantitative methods, such as geostatistical modelling, PLS and MLP 

regression, into DES along the mine-to-plant profile. This is of high impact to the industry as it 

allows for the assessment, and importantly the mitigation, of potential operational risk factors 

caused by significant geological and/or geometallurgical controls through development of 

effective control strategies and related operational policies. Furthermore, the proposed framework 

is shown to represent a “digital model”, an initial step along the pathway towards development of 

simulation-based digital twins; these types of advanced computational intelligence tools are 

becoming increasingly important in the age of Industry 4.0 and related Internet-of-Things systems. 

6.2 Final Conclusions 

1. Most mining projects are subject to significant spatio-temporal variability and uncertainty, 

driven by structural controls (e.g. geology, geometallurgy, corporate asset management), 

which can evolve during the course of exploitation as new characterization data is 

acquired, or as strategic goals are modified. 
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2. Declining trends in the rates, sizes and grades of new discoveries across many sectors are 

creating an imbalance in global supply and demand chains that will necessitate the 

exploitation and processing of more complex and/or refractory ore sources. This is 

especially pertinent for minerals critical to technological advancement and the clean 

energy transition. Particular opportunities are gaining traction, such as the consolidation 

of untapped/discarded ore sources due to mineralogical and/or metallurgical complexities, 

especially in mature or historic mining camps. 

3. Process efficiencies and reduced environmental footprints are becoming increasingly 

important not only to the mining industry, but government and community stakeholders at 

large. New and/or modified approaches to mining could play a major role in meeting 

global demand as well as improving best practices towards waste management and site 

remediation, e.g. segmentation of tailings, secondary mining of waste rocks and tailings. 

4. In the age of big data, influxes of information are accelerating in mining systems due to 

instrumentation advances in geology/geophysics, geochemistry, process mineralogy, 

sensor installations, among others. There is a critical need for advanced computational 

tools that can help optimize the coordination of inputs and outputs (i.e.  mass, energy or 

information flows) within and between process streams as a function of updated incoming 

characterization data. 

5. The integration of quantitative methods into extensible and adaptable DES frameworks is 

critical for the design, testing and validation of novel control strategies in the mine-to-

plant profile, and allows for a multiphase approach that can support decision-making in 

the advancement of mining development projects. This generalized approach is 

particularly suitable for complex mining systems in the re-adjustment stages of the mining 

life cycle in order to assess and manage potential operational risks. 

6. The incorporation of ML-assisted operational decision-making into a DES framework 

demonstrates a pathway for the development of dynamic simulation-based digital twins, 

which are quickly gaining interest in the age of Industry 4.0 and related IoT systems. 
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