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ABSTRACT

The discrete element method is a powerful numerical tool in simulating the behaviour of granular materials. It bridges the
gap between continuum mechanics and physical modeling investigations. In spite of the significant achievements to
date, some major problems still need to be solved including the development of realistic microscopic models and the lack
of efficient algorithms to generate the initial conditions similar to those used in physical models. This paper introduces an
effective computational method to generate the initial packing of particles with a pre-defined grain size distribution in 3D

space. The method is implemented into the open-source code (YADE).

Specimen properties obtained (i.e. porosity,

coordinate number, radial distribution) are compared to other existing results in the literature.

RESUME

1 INTRODUCTION

Since the first discrete element method code was first
introduced (Cundall and Strack, 1979), it has been used
extensively to investigate various engineering problems
(Jensen et al., 1999; Zeghal and Edil, 2002). One of the
most important steps in a simulation using DEM is to
generate a specimen (particle packing), consisting of
entities, in a form that represents realistic conditions.

Particle packing has been long investigated by
researchers and can be classified into two main types
based on the spatial pattern of particle location: ordered
packing and random packing. Ordered packing is
performed by placing particles systematically in to periodic
positions (O’Sullivan et al., 2004). On the other hand
random packing is done using a sequence of packing
events that result in particles not correlated with one
another with respect to their locations in the matrix (e.g.
Feng et al,. 2003; Bagi, 2005).

In this study, the properties of the specimens
generated using the dynamic packing method are
intensively investigated. A new method to generate
particles with a pre-defined grain size distribution is
developed and implemented into a computer code. A
parametric study is then conducted to examine the effects
of dynamic variables and the total number of particles on
the packing properties.

2 LITERATURE REVIEW

Several methods are currently available to generate
particle packing. These methods can be divided into 3
main categories: geometric methods, sedimentation
method and dynamic method. A brief review of these
methods is given in the following section.

2.1 Geometric methods

In these methods, a specimen is generated using purely
geometric calculation without simulating the dynamics of
particle motion. Stoyan (1998) gave a summary of
algorithms used to generate spheres starting from a set of
randomly located points. The set of points is generated
randomly employing the Poisson process (see
Molchanov, 1993). Then a set of grains are shifted such
that they coincide with the points as in Boolean model
(Molchanov and Stoyan, 1994). As discussed in their
paper, the points are allowed to grow until the
corresponding sphere has first contact with one of the
faces of the Voronoi cell corresponding to that point
(Stienen model) or the growth process is stopped when it
comes in contact with another sphere (lily-pond model).
The sphere radii are dependent on the position of the
points as located by the random generator. The particle
size distribution cannot be directly prescribed in the above
two methods.

An attempt to solve this shortcoming is introduced by
Evans (1993) where a system called the Simple
Sequential Inhibition model (SSI model) is developed. In
the SSI model, spheres are placed sequentially and
randomly in a given region. If a new sphere is placed so
that it intersects a sphere already in place, then the new
sphere is rejected. The placing process of spheres is
usually stopped when it is impossible to place any new
sphere. The method can be used with a user-defined
grain size distribution. Improved versions of SSI model
were proposed by Chib and Greenberg (1995); To and
Zbigniew (2004). In these methods, an initial random
arrangement of spheres is generated then the next stage
is to insert, delete or relocate existing spheres with user
defined probabilities for each action to succeed.

Another geometric method was suggested by Cui and
O’Sullivan (2003) for 2D and 3D assemblies of
circular/spherical grains based on the triangulation
approach. The concept of this approach is to triangulate a



system of points within the domain of interest, creating a
mesh of triangles/tetrahedrons. Then the particles are
inseted as the incircles/inspheres of these
triangles/tetrahedrons.

The above methods; however, generate a relatively
loose packing specimen. An improved method to generate
a dense random packing in 2D was proposed by Feng et
al. (2003). In this method (advancing front approach),
three initial disks which form an initial front are generated
and placed at the center of the domain. With this initial
front established, a new disk is generated to fill the space
by incrementally advancing the front until it completely
covers the original domain. While the method produces a
relatively dense packing, large gaps may remain at the
edge of the domain in the case of general grain size
distribution. Consequently, the inward packing method
(Bagi, 2005) was developed to generate a packing where
the boundary grains exactly touch the walls. The initial
front is created by placing the disk with maximum radius
into the upper left corner, touching two walls then the next
disk is attached to the left wall and to the previous
particle. These methods; however, are only applicable to
2D problems, the extension to 3D encountered a lot of
difficulties.

2.2 Sedimentation methods

In order to generate more dense arrangement than most
of the geometric methods, several authors (Han et al.,
2005; Fu and Dekelbab, 2003; Tory et al., 1968; Visscher
and Bosterli, 1972) have been developed a so-called
sedimentation techniques. The required domain is filled
up by placing discs/spheres following the user-defined
size distribution into the domain and translates it
downwards, until it collides with an already existing
disc/sphere in the system. Then the new disc/sphere is
further moved just as if rolling down along the contacting
sphere until it reaches a stable position by being
supported by two discs (or three previous spheres).

Anisotropy in the loose packing generated using the
sedimentation methods was observed by Jodrey and Tory
(1985). The packing fraction (1-n) obtained was found to
be approximately 0.582 which is close to the dense
packing density.

It is worth noting that the translation of discs/spheres is
determined based on purely geometric calculation, without
analyzing the dynamics of the system. This leads to
unrealistic packing structure in terms of radial distribution
function (Jullien et al., 1996) and mean coordination
number (Liu et al., 1999).

2.3 Dynamic methods

Dynamic packing process; however, involves various
forces in addition to gravity (i.e. contact forces due to
collision and friction among particles, inter-element forces
such as the Van Der Waals or electrostatic forces). These
forces can affect the packing structure either individually
or simultaneously depending on the packing condition.
These phenomena, which can only be simulated using the
DEM itself, are not considered in the purely geometric
packing algorithms.

A typical approach in dynamic packing method is to
place a required number of particles into a large domain
whose walls are slowly moved inwards until the required
density is reached. Another possibility is to simulate
gravitational deposition where particles fall down into the
domain, and their equilibrium position is established under
the effect of gravity (Kong and Lannutti, 2000).

Liu et al. (1999) proposed a method to generate
packing by imposing an assumed centripetal force on
particles randomly generated in a spherical space.

The above methods are considered to satisfactorily
simulate the dynamics of forming a packing and produce
more realistic structural information (Liu et al., 1999).
These methods; however, require a huge amount of
calculation and therefore they are considered to be very
time-consuming.

3 DISCRETE ELEMENT SIMULATION
3.1 Governing equation and force description

This simulation was carried out using the Open Source
code YADE (Kozicki and Donze, 2008). The code is
designed using dynamic libraries to facilitate the addition
of user-defined models. The centered second order finite
difference scheme is employed such that the position
(orientation) of each particle remains unchanged during
each time step and the forces are calculated from the
force-displacement relationship. When all forces acting on
a particle i, either from other particles or the boundaries,
are known, the problem is reduced to the integration of
Newton’s equations of motion for the translation and the
rotational degrees of freedom
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and
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where mi, , are the mass, the vector of position

and the vector of orientation in space of particle i,
respectively. li is the moment of inertia of particle | and is
defined as:

h = gmyidyny" 3)

where di is the diameter of particle i and qi is the
dimensionless shape factor.

Interactions are short range and active on contact
only, so that the total force (torque) on particle i is

EmElf0L mTd where the sum runs over all
contacts c of particle i. The torque i.’: K2 is related

to the force  via the branch vector from the particle
center to the contact point. The damping coefficients are
applied to forces and moments for computational
purposes. Hence the problems can be solved if all forces
acting on the contact (see



Figure 1) are determined. The procedure to calculate
the contact forces is discussed below.

3.1.1 Contact forces

The contact forces are calculated based on the penalty
method which means that the contact forces are
evaluated from the volume overlap of two interacting
spheres.

Sphere a ks

Sphere b

Figure 1. The force-displacement law

3.1.2 Normal forces

The normal forces are calculated as follow:
T = ki 4)

where is the normal force at contact c of particle i,
kn is the normal stiffness at the contact, is the relative
normal displacement between two particles and is the

branch vector from the contact point to the particle center.
3.1.3 Shear force

The shear forces are calculated incrementally (Hart et al.
1988):

&, =k Au; ®)

where £ is the incremental shear force, ks is the
tangential stiffness and . is the incremental tangential
displacement.

The shear force is truncated if its absolute value is
larger than the maximum value given by Mohr—Coulomb
criterion:

™= | xangy (6)

where s the internal friction coefficient.

3.1.4 Macro-micro relationship

The strain energy stored in a given interaction cannot be
assumed to be independent of the size of the interacting
elements. Therefore interaction stiffnesses are not
identical over the sample, but follow a certain distribution
that depends on the shape and size of the pair of particles
interacting. “Macro-micro” relations are then needed to

derive the local stiffnesses from the macroscopic elastic
properties and from the size of the interacting elements.
The hypothesis of best fit (Liao et al., 1997; Hentz et al.,
2004) is employed to fit the relationship between the
Young’s modulus E, Poisson’s ratio u and the
dimensionless value of ks/kn:
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where I is the initial distance between two
interacting elements a and b, coefficients LR ar are
the fitted values and ¢is an “interaction surface”:
Ban = Timin (i) ()

These relations are simply inverted to obtain the local
(micro) stiffnesses at contact level.

Material properties used in the simulation are provided
in Error! Reference source not found..

3.2 PACKING METHOD
3.2.1 Requirement of a specimen generation algorithm

It is important to clearly define the requirement of a
specimen generation algorithm for granular problems. The
specimens generated should be in equilibrium under
gravitational loading and consequently will have realistic
properties (porosity, grain size distribution, fabric tensor).

As the geometric and sedimentation algorithms
become very complicated when dealing with particles of
different shapes, the specimens generated by the above
methods need to be compressed (or shaked) using a
DEM simulator in order to acquire a dense packing.
Moreover, since the specimens is generated once and
then used various times in a specific application, the
ability to reflect the real condition of the specimen is of
more important than the performance in terms of the
computational cost of the algorithm itself.

Motivated by the fact that dynamic methods can
satisfactorily simulate the dynamics of forming a packing
and produce more realistic structural information, an
algorithm to generate a specimen with realistic properties
(compared to samples generated experimentally) is
developed. The packing method is described in the
following section.

Table 1 Material properties

Parameter Value
Particle density (kg/m?) 2600
Young’s modulus (Pa) 15000000
Poisson’s ratio 0.5
Friction degree (degrees) 18



Box’s Poisson’s ratio 0.2

Box’s friction degree 0
Force damping coefficient 0.2
Moment damping coefficient 0.2

3.2.2 The packing technique

A number of spheres are first generated without
overlap in a predefined rectangular space (1 in width, 0.3
in depth). This step is similar to the SSI model. The
positions and the space dimensions can be changed
during the simulation by controlling the input parameters.
The particles were then assigned a gravity force to settle
down under gravity conditions, they would have
interaction with neighbouring particles. Additional particles
were generated after a predefined time interval. This
process continued until a specific number of particles or a
specimen height is reached.

The DEM computational process is kept running until a
stable condition is obtained. The specimen is considered
to be stable if the ratio of the unbalanced force to the total
force is less than a predefine value. In this study, stability
value was taken as 0.01

t=nn£-illlll (10)

where fi is the resultant force on the body and fnci is the
force acting at the contact.

3.2.3 Generating spheres with a predefined grain size
distribution

In the DEM simulation, sphere radii are generated
randomly according to a given sieve analysis test results.
The sieve analysis test generally provides the percentage
of aggregates passing through a series of sieves. It is
worth noting that in DEM, only the percentage of sphere
numbers can be controlled, thus the percentage passing
by weight should be converted to a percentage number of
spheres (see Table 2). A random number generator is
used to generate pseudo number distributed over the
interval [0,1]. The radius of particle i is then calculated
using the following equation in order to generate a
population of aggregates consistent with the sieve
analysis result:

0 =D, + ORAM, X 100- R )% D, -0, Vi - (1)

where is the radius of particle i, Rayt are the
percentage number of total grain calculated from the
percentage volume passing through sieves S1 and S2,
respectively. D1 and D2 are the diameters of sieves S1
and S2, respectively. E is the ith random number
generated for particle i. Sieves S1 and S2 are determined
by comparing E with the sieve analysis percentage
passing results. Note that

RAM, 3> P oamd BAM, 3 100 « . A representative set
of parameters used to generate spheres based on sieve
analysis results is provided in Table 2.

Table 2 Typical conversion from percentage by weight to
percentage by number of spheres

Sieve Percent Percent
Sieve ID  diameter passing passing
(in) (weight) (number)
#200 0.0029 0 0
#100 0.0059 0 0
#50 0.0117 0 0
#30 0.0232 20 82.25
#16 0.049 50 98.07
#8 0.097 80 99.86
#4 0.185 100 100

An algorithm was implemented to generate arbitrary
grain size distribution; however, only two different values
of radii were considered in the present study in order to
examine the effects of grain size ratio.

3.3 Variables considered

The variables examined in this study can be classified into
two groups: the first group of variables are related to the
particles size ratio whereas the second group of variables
are related to the dynamic properties, i.e. the total number
of spheres in the simulation, the number of spheres
generated each time interval, the dimensions and position
of the box (in which spheres are generated), mean sphere
radius and sphere radius distribution. The ranges
assigned to these variables are given in Table 3. Both
groups were examined using 1000 to 20000 particles.
Unless otherwise stated, the effect of each variable on the
packing was examined while other variables were kept
constant.

3.3.1 Porosity

Porosity is the most accessible parameter in defining
macroscopically a packing and thus has been studied
widely in engineering practice. It describes the fraction of
void space in the material and is defined by the ratio:

pm % (12)
where is the volume occupied by void and is the
total volume of material including soil and void

components

Table 3 Simulation parameters

Base .
Parameter value Varying range
Total number of particles 5000 [1000,20000]
Particle mean radius 0.0153  [0.009-0.026]

Dropping height 4 [1.4]
Number of particles 2 [1-20]



generated each time
(percent)

Sphere generation rate

(time step) 5000

[200-5000]

3.3.2 Coordination number

Coordination number is the number of spheres in contact
with a considered sphere. It varies with the definition of
contact, i.e. the minimal or cut off distance between two
spheres by which they are regarded to be in contact. In
the present work, the critical distance was set to 1d.

3.3.3 Radial distribution function (RDF)

Radial distribution function RDF is the probability of
finding one particle center at a given distance r from the
center of a given particle and is defined by

MR
13
mm (13)
where N(r) is the number of sphere centers situated at
a distance between r and r+Ar from the center of a given
sphere. In this study, RDF was averaged for spheres
within the specimen and Ar is set to 0.001.

3.3.4 Fabric tensor Fj

In soil mechanics, the term fabric is used to refer to the
arrangement of particles, particle groups and pore
spaces. Typically, quantitative measures of fabric are
considered; however, fabric can be quantified using the
fabric tensor (e.g, Cambou, 1998). The contact fabric
(second rank) can be expressed as:

RAX

where Nc¢ is a number of contacts, and ni and n; are
contact normals in the | and j directions, respectively.

(14)

4 RESULTS AND DISCUSSION

A set of parameters (see Table 3) have been prepared
for evaluation. Results in terms of represented volume
were also investigated. Only a limited number of results;
however, are presented due to space limitation. The first
series is the results from the packing of mono-sized
spheres and the second is the result from the packing of
spheres of two different radius values.

4.1 Overall porosity

The overall porosity is determined using the calculated
average volume of the specimen as:

¥ ubha.Xd (15)

where have is the average height of the specimen and
A is the surface area of the specimen.

To study the effect of the number of spheres
generated each time increment (Not), five packing of 5000
spheres were generated with five different number of
particle generated each time increment, i.e. 1, 2, 5, 10
and 20 percents of total number of spheres. The results
shown in Figure 2 are consistent with the simulation
results of Zhang (2001). Generally, porosity increased as
the number of spheres generated each time increased.
For example, with 1 percent of spheres generated, the
porosity is 0.418 while a value of 0.443 was obtained
when the 20 percents of spheres are generated each time
increment. This indicates that a denser packing can be
achieved by generating a small percentage of spheres
each time. When Not increased from 1 to 5 percent, a
significant increase in the porosity was calculated;
however, when Nt is larger than 5 percents, the rate of
increase is less significant. This can be explained by the
arching or bridge phenomenon that results from the
simultaneous dropping of spheres at a relatively close
distance.

Figure 3 show the dependence of the overall porosity
on the total number of particles. Obviously, the overall
porosity decreases with increasing the number of
particles. When the numbers of particles increased from
1000 particles to 5000 particles, the porosities decrease
from 0.457 to 0.425; however, further increasing the total
number of particles to 20000 particles results only in a
porosity value of 0.421. As discussed by Jodrey and Tory
(1985), homogeneous packing is possible when the
packing size is large enough. As seen in Figure 3, a
reasonably homogeneous packing can be obtained if the
number of particles is larger than 20000 particles.

Effect of drop height on the overall porosity is shown in
Figure 4. The overall porosity decreases as the drop
height increased. Increasing the drop height implies that
more energy is applied to the particles to rearrange
leading to breaking of the bridge or arching among
particles. Consequently, a denser packing is achieved.
For the range of drop height of 40 to 164 sphere
diameters, the threshold of drop height at which packing
density does not change much as reported by Zhang
(2001) was not found to clearly exist in the present
analysis.

To study the effect of the particle size ratio on the
overall porosity, fifteen packing with particles size ratio of
4:5, 3:5 and 2:4 were generated. As shown in Figure 5,
the overall porosity increases with increasing particle size
ratio. As the number of particles increase to 10 000, the
changed rate in overall porosity significantly decreased.
Note that similar behaviour was observed in the case of
mono-sized sphere packings.
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Figure 2 Variation of porosity with number of spheres
generated each time
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Figure 4 Variation of porosity with sphere drop height
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Figure 5 Variation of porosity with sphere size ratio and
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4.2 Coordination numbers

Figure 6 shows the mean coordination number for
packings constructed using different Not. It can be seen
that increasing Not results in decreasing mean
coordination number. Variation of the coordination
numbers with different value of total number of particles is
shown in Figure 7. It is observed that as the number of

particles increase from 1000 to 5000, the coordination
number increases from 5.07 to 5.14; however, the
coordination change only a small value as the number of
particles increases from 5000 to 2000. It again confirms
that homogenous packing can be obtained if the number
of particles larges is large enough.

From Figure 2, Figure 3, Figure 6 and Figure 7, it
can be seen that decreasing porosity results in an
increase in mean coordination number which is in well
agreement with those observed by Pinson et al. (1998).
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Figure 6 Variation of mean coordination number with
number of total spheres used in the simulation
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Figure 7 Variation of mean coordination number with
total number of spheres used in the simulation

4.3 Radial distribution function

Figure 8 shows four radial distribution functions
corresponding to the packings of 1000, 5000, 10 000 and
20 000 mono-sized spheres obtained by averaging the
RDFs for all the particles. It can be seen that the four
packings demonstrate a common feature of a split second
peak, followed by other peaks. The four radial distribution;
however, do not expose any clear difference in all four
cases.

The positions of the second peaks are in consistent
with the results of Finney (1970). It has been well
established (Zhang et al., 2001 and Liu et al., 1999) that
for a dense random packing, there is a split second peak
in the RDF with its first component at V3d and the second
component at 2d. The split peak phenomenon can be
obtained by a collective but not one-by-one simulation
algorithm.
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Figure 8 Radial distribution functions: (a)1000 particles;
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4.4 Fabric tensor

As the spheres settle down under gravity, the specimens
exhibit a strong anisotropy in the direction of gravity. The
anisotropy in the horizontal plane; however, is relatively
small (see Figure 9). As the number of particles increase
from 1000 to 10 000, the difference decrease to half of the
magnitude (from 0.02 to 0.009). Further increasing
number of particles to 20 000 results in a very small
change (0.009 to 0.00894).

Figure 10 shows the effects of different particle size
ratios on the packing anisotropy. Obviously, packing
become more isotropic when the size ratios decrease and
the numbers of particles increase. The packing is almost
isotropy when the number of particles is 20 000 for all
three particle size ratios.
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Figure 9 Change in second fabric tensors for
monosized sphere packing
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5 CONCLUSIONS AND IMPLICATION

A dynamic method of packing to a specified grain size
distribution was proposed and used to investigate the
properties of mono-sized sphere packings and packings
with different-size ratios. The results obtained are in good
agreement with those reported in the literature.



The packing of uniform spheres is strongly affected by
the dynamic variables, i.e. drop height, number of
particles generated each time.

The particle size ratio has a significant influence on the
packing porosity and packing fabric tensor.

As the number of particles reached a certain value, the
packing exhibited a very small change in all of the
examined properties.
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