
Language-Conditional Imitation Learning

Julian Skirzyński, School of Computer Science

McGill University, Montreal

August, 2020

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

c©Julian Skirzyński, 26.08.2020

Abstract

The thesis explores interactions between language use and behavior learning. The core

idea is that multiple high-level behaviors can be learned by the agent using linguistic cues

in the form of sentences and that learning a language model may allow the agent to fol-

low new sets of instructions unseen in training. To implement this idea, we introduce the

Language-Conditional Imitation Learning algorithm which auto-encodes input language

sequences and uses the resulting context representation to condition input physical states.

To do so successfully, the algorithm optimizes two loss functions where one corresponds

to behavioral cloning, and the other one is a reconstruction loss for word sequences. Con-

ducted experiments indicate that our method manages to retain quality performance on

the behaviors it was trained on, and despite slightly worse numerical results, it manages

to imitate the set of training behaviors in rollouts. Moreover, our algorithm seems to be

robust to new words in the sentences and to increasing sentences’ length. Nonetheless,

the results are not straightforward for testing generalization. Although our method does

well on an ambiguous task of imitating an unseen behavior which was not included in

the training set (quantitatively and qualitatively), so does the simplest baseline of our

algorithm, behavioral cloning. We perform an analysis of our algorithm and find it is

likely to generalize due to its ability to discover the proper similarity between train and

test sentences. We conclude that this research may be stimulating to the field of Human-

Computer Interaction. It is proposed, however, that future work clarifies the issue of gen-

eralization, by performing a more complex experiment where behavioral cloning does

i

not do well, and information encoded in the state is not sufficient to clone the unseen

behavior.

ii

Abrégé

La thèse explore les interactions entre l’utilisation du langage et l’apprentissage du com-

portement. L’idée centrale est que l’agent peut apprendre plusieurs comportements de

haut niveau en utilisant des indices linguistiques sous forme de phrases et que l’appren-

tissage d’un modèle de langage peut permettre à l’agent de suivre de nouveaux ensem-

bles d’instructions invisibles pendant la formation. Pour implémenter cette idée, nous in-

troduisons l’algorithme Language-Conditional Imitation Learning qui code automatique-

ment les séquences de langue d’entrée et utilise la représentation contextuelle résultante

pour conditionner les états physiques d’entrée. Pour réussir, l’algorithme optimise deux

fonctions de perte où l’une correspond au clonage comportemental et l’autre est une perte

de reconstruction pour les séquences de mots. Les expériences menées indiquent que

notre méthode parvient à conserver des performances de qualité sur les comportements

sur lesquels elle a été entraı̂née, et malgré des résultats numériques légèrement moins

bons, elle parvient même à imiter l’ensemble des comportements d’entraı̂nement dans

les déploiements. De plus, notre algorithme semble robuste aux nouveaux mots dans les

phrases et à l’augmentation de la longueur des phrases. Néanmoins, les résultats ne sont

pas simples pour tester la généralisation. Bien que notre méthode fonctionne bien sur

une tâche ambiguë consistant à imiter un comportement invisible qui n’a pas été inclus

dans l’ensemble d’apprentissage (quantitativement et qualitativement), il en va de même

pour la ligne de base la plus simple de notre algorithme, le clonage comportemental.

Nous effectuons une analyse de notre algorithme et constatons qu’il est susceptible de se

généraliser en raison de sa capacité à découvrir la similitude appropriée entre les phrases

iii

de train et de test. Nous concluons que cette recherche peut être stimulante dans le do-

maine de l’interaction homme-machine. Il est proposé, cependant, que les travaux futurs

clarifient la question de la généralisation, en effectuant une expérience plus complexe où

le clonage comportemental ne fonctionne pas bien et où les informations encodées dans

l’état ne sont pas suffisantes pour cloner le comportement invisible.

iv

Acknowledgements

I would like to thank Prof David Meger for his guidance in conducting the research pre-

sented in this thesis, numerous critical remarks given during the writing process, and

for funding I received through his grants. I would also like to thank my wife, Sara, for

putting up with my ever-lasting process of graduation, continuous emotional support

and her help in creating some of the figures.

v

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Figures . ix

List of Tables . x

1 Introduction 1

I Technical Foundations and Related Work 5

2 Theoretical Framework 6

2.1 Markov Decision Process . 6

2.2 Reinforcement Learning . 7

2.3 Imitation Learning . 9

2.4 Inverse Reinforcement Learning . 10

2.5 Behavioral Cloning . 12

2.6 Conditional Imitation Learning . 14

3 Related work on Imitation Learning 16

3.1 Inverse Reinforcement Learning . 16

3.2 Behavioral Cloning . 18

3.2.1 Traditional Approaches . 18

vi

3.2.2 Deep Learning Approaches . 19

3.2.3 Accumulation of Error . 20

3.2.4 Embodiment . 21

3.3 Conditional Imitation Learning . 21

3.4 Multi-task Learning . 23

4 Related Work on Language in Imitation or Reinforcement Learning 24

4.1 Language use in Historical Perspective . 25

4.2 Grounding . 25

4.2.1 NLP . 26

4.2.2 Beyond NLP . 27

4.3 Conditioning . 27

4.3.1 Language in State-Action Space . 28

4.3.2 Reward Shaping . 28

4.3.3 Instruction Following . 30

4.3.4 Technical Realization of Conditioning 31

4.4 Summary . 32

5 Action-Based Language Acquisition Theory 33

5.1 Support for Conditioning: Psychology & Neuroscience 34

5.1.1 Psychology . 35

5.1.2 Neurosciences . 36

5.2 Support for L-CIL: Action-Based Language Acquisition Theory 38

II Technical Contributions 41

6 Language-Conditional Imitation Learning 42

6.1 Overview and Technical Specification . 43

6.2 Implementation . 45

vii

6.3 Open Questions . 47

7 Experimental Setup 50

7.1 Environment . 50

7.2 Dataset Definitions . 51

7.2.1 Behaviors . 52

7.2.2 Language . 53

7.2.3 Training and Testing Demonstrations 56

7.3 Baselines . 58

7.3.1 Behavioral Cloning . 58

7.3.2 Conditional Imitation Learning . 59

7.3.3 Encoder Language-Conditional Imitation Learning 59

8 Results 60

8.1 Quantitative Results . 60

8.1.1 Experiment 1: Multi-confusion . 61

8.1.2 Experiment 2: Composite-confusion 63

8.1.3 Experiment 3: Composite-ambiguous 65

8.1.4 Summary of Action Prediction Results 69

8.1.5 Language Encoding and Decoding Analysis 72

8.2 Qualitative Results . 77

9 Discussion 83

9.1 Addressing Open Questions . 84

9.2 Broader Comments on the Results . 85

9.3 Ideas for the Future . 87

9.3.1 Improvements . 88

9.3.2 Possible Extensions . 89

10 Conclusion 90

viii

List of Figures

1 Desired performance of Language-Conditional Imitation Learning 3

2 Sample ABL model . 39

3 Sketch of L-CIL . 47

4 Sketch of GRU . 48

5 Monicar’s sample . 51

6 Map for the experiments . 54

7 Plots for Experiment 1 and 2 . 62

8 Plots for Experiment 3 and 4 . 64

9 Plots for Experiment 5 . 66

10 Results for the Composite-ambiguous experiment for frozen L-CIL, frozen

EL-CIL and BC. 67

11 Plots for Experiment 6 . 68

12 Plot with decoding’s performance . 73

13 Sentence embeddings . 74

14 Sentence embeddings 2 . 75

15 Sample rollouts – multi-behavior setting . 78

16 Sample rollout – the longest behavior . 80

17 Sample rollouts – ambiguous setting . 81

ix

List of Tables

6.1 Setup and hyperparameters of the L-CIL network. 48

7.1 Table with Experiments . 56

7.2 Sample sentences . 57

8.1 Error table . 70

x

Chapter 1

Introduction

Imitation learning (IL) is one of the major tools used in robotics and fields for which it is

easier for humans to convey information by showing what to do rather than to express it

on a different level of generality. The simplest formulation assumes that we present an

agent with a set of state-action pairs and hope it will learn how to approximate the func-

tion that generated this data, and thus, master the general set of presented skills. Such

an approach, however, is limited because it assumes that all the necessary information is

included in the representation of the state. Note that with traditional methods of IL, learn-

ing multiple distinct behaviors that are shown by the same user in a single dataset may

prove impossible since similar sensory readings could lead to drastically different actions.

It has been already shown that if we make the process of imitation learning to depend on

additional factors informative to decision-making, i.e. if we condition it, then the agent

begins to ingest more than one behavior ([19, 22, 54]). Although the main strength of IL

still relies on showing, these findings suggest that conditioning on additional information

could increase the accuracy of the method and supply it with new capabilities.

The main contribution of this work is extending the framework of Conditional Im-

itation Learning (CIL) [22] through adding language as the conditioning information.

The cited work proposed a supervised learning problem where instead of state-action

pairs, we use state-context-action triples and condition states on contexts. In this and in

1

other works that consider imitating multiple behaviors at once [19, 54], a conditioning

vector is based on or derived from a fixed (and usually small) set of possible settings.

For self-driving cars, which served as the main focus for all the aforementioned stud-

ies, the settings may include driving modes (e.g. following a car), high-level behaviors

(e.g. turning right) or even affordances of the perceived scene (e.g. distance to the side-

walk). Language, on the other hand, exhibits Chomskian infinite variety property and

enables to create thousands of distinct sentences that describe the same high-level behav-

ior. Moreover, it allows forming new sentences that relate to trajectories the expert did

not demonstrate. Since language is compositional (the meaning of an expression is de-

termined by its structure and the meaning of its constituents), understanding sentences

for a number of high-level behaviors allows understanding sentences for a behavior that

was not presented by the expert, but was constructed similarly. For humans then, com-

positionality entails generalization to new expressions. For artificial agents, however, the

effects of compositionality are unclear. The major motivation for this study is to investi-

gate the problem of language in conditional imitation learning and test whether its inher-

ent generalization quality is transferable. Our central hypothesis is that when added to

the CIL framework as context, language will (a) enable imitating training behaviors inde-

pendent of the particular language description (generalization over unseen context) and

(b) enable executing new behaviors (generalization over unseen behaviors, see zero-shot

learning [67]). See Figure 1 for an overview of this research agenda.

In this thesis, we introduce Language-Conditional Imitation Learning algorithm (L-

CIL). Our algorithm conditions states on decodable representations of input sentences,

thereby grounding action in language and grounding language in action. The idea un-

derlying L-CIL is that sentences can be projected onto a latent space, which preserves

their common meaning and gives a sensible nearness relation as sentences and behav-

iors change. The concept of a latent space has been already used in general studies on

conditioning behavior on linguistic input [13, 15, 16, 21, 57, 94]. Nevertheless, the author

is unfamiliar with works that use the latent space to learn multiple behaviors at once,

2

Figure 1: Trajectories generated by the agent (the car) when cued by language (black-

colored text commands) and a hypothetical reference trajectory (blue arrow) described

by language (blue-colored text command). A successful language-conditional imitation

learning algorithm would train on a single dataset containing both behaviors described

by the black sentences. During test time it could differentiate between them cued by

sentences synonymous to those used in training. Ideally, it could be also queried on

sentences that describe a new behavior, if this description used known expressions (see

the blue sentence), and perform the described behavior despite not seeing it explicitly.

3

and at the same time, force it to capture hidden variables defining the meaning of a sen-

tence. L-CIL addresses both of those issues by defining a modified learning task. On

top of predicting the action based on a state and a hidden representation of context, it

aims to use the hidden representation to predict the context itself. In our experiments,

we show that L-CIL overcomes the advantage of Conditional Imitation Learning which

uses simple, explicit hidden vectors and report quantitatively and qualitatively compara-

ble performance in standard multiple-behavior learning scenarios. Our tests also indicate

that the algorithm is able to follow an unseen behavior, once again quantitatively and

qualitatively. The analysis we performed revealed that it infers the similarity of condi-

tioning vectors to the extent that allows it to do so. We believe, however, that further

research is needed to corroborate this supposition. The current experimental setup also

allowed behavior cloning to imitate the unseen behavior well, although this approach did

not have access to the external information.

The thesis is constructed the following way. The first chapter sets up the theoretical

framework for the work and covers seemingly all the relevant themes that are connected

to the presented research, i.e. basic definition of Markov Decision Processes, background

in reinforcement learning, imitation learning, its types, and conditional imitation learn-

ing. Chapters 3, 4 and 5 focus on related work in the field of imitation learning (Chapter

3), language in machine learning (Chapter 4) and related work in psychology and neuro-

sciences (Chapter 5). Language-Conditional Imitation Learning algorithm is described in

Chapter 6. Chapter 7 details the experimental setup and Chapter 8 describes experimen-

tal results including the general performance and generalization capabilities of the algo-

rithm. The last chapter provides comments on the results and tries to sketch a roadmap

for the future.

4

Part I

Technical Foundations and Related Work

5

Chapter 2

Theoretical Framework

This chapter introduces notions and approaches relevant to the work at hand. The most

general definitions are on Markov decision processes (MDPs) and on Imitation Learning

(IL) and can be found in the first two sections. Then, given that the introduced algorithm

is a version of behavioral cloning (BC), ensuing sections describe it and its alternative

in the world of IL, inverse reinforcement learning (IRL). The last section acquaints the

reader with the setting used throughout this thesis, and details the problem of conditional

imitation learning.

2.1 Markov Decision Process

The notion of a Markov Decision Process underlies all the subsequent definitions. It is a

formal tool that represents problems that involve agents that interact with some environ-

ment, i.e. observe states and take actions. Let’s define a Markov chain first.

Definition 1 (Markov Chain). A stochastic process X = {Xn : n ≥ 0} on set S is a Markov

Chain if, for any i, j ∈ S and n ≥ 0,

P(Xn+1 = j | X0, ..., Xn) = P(Xn+1 = j | Xn), (2.1)

P(Xn+1 = j | Xn = i) = pij. (2.2)

6

Condition 2.1 defines the Markov property. It means that the next state Xn+1 for any

given n is conditionally independent of the history of previous transitions X0, ..., Xn−1

given the present state Xn.

Definition 2 (Markov Decision Process). A Markov decision process (MDP) is a process that

satisfies the Markov property. It is represented by a tuple (S,A, T ,R, γ) where S is a set of states;

A is a set of actions; T (s, a, s′) = P(st+1 = s′ | st = s, at = a) is a state transition function;

γ ∈ (0, 1) is a discount factor;R : S −→ R is a reward function.

Note that R could be also represented as a function dependent on state-action pairs

R : S ×A −→ R. Policy π : S −→ A denotes a deterministic function that controls agent’s

behavior in an MDP and a nondeterministic π : S −→ Prob(A) defines a probability

distribution over the actions.

2.2 Reinforcement Learning

A class of methods that learn policy π through trial and error optimization process is

called reinforcement learning (RL).

Definition 3 (Expected Reward). We denote

J (π) = E

[
∞∑
t=0

γtrt|π

]
(2.3)

as the expected reward of policy π accumulated over infinite time horizon t. rt = R(st, at) is a

measure of quality of the state or the state-action pair and γ is a discount factor that controls the

importance of short-term rewards over long-term ones.

The goal of RL is to map the state of the system st to action at that affects and changes

that state to st+1 so as to maximize expected reward J (π):

π∗ = arg max
π

J (π). (2.4)

7

Two common algorithms for finding π∗ are value iteration which is a solver for known

finite MDPs and Q-learning, an RL method that explores an unknown finite MDP.

Definition 4 (Value Function). The value function maps states s ∈ S to expected rewards

obtained by starting in state s and navigating the state-space according to policy π:

V π(s) = E

[
∞∑
t=0

γt R(st, π(st)) | s0 = s

]
. (2.5)

Definition 5 (Action-value Function). The action-value function maps state-action pairs s, a ∈

S × A to expected rewards obtained by starting in state s, executing action a and navigating the

state-space according to policy π:

Qπ(s, a) = E

[
R(s0, a0) +

∞∑
t=1

γt R(st, π(st)) | s0 = s, a0 = a

]
. (2.6)

Definition 6 (Bellman Equations). The Bellman equation expresses the relationship between

the value of a state and the value of a successor state:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′). (2.7)

The Bellman optimality equation is the Bellman equation for the optimal policy:

V π∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, π∗(s), s′)V π∗(s′)

]
. (2.8)

Value iteration iterates over the value function Nε times and ∀s ∈ S updates function

V using the Bellman optimality equation:

Vk(s) = max
a∈A

∑
s′∈S

T (s, a, s′) (R(s′ | s, a) + γVk−1(s′)) (2.9)

8

for k = 0, ..., Nε. Nε is determined so that ∀s ∈ S, |Vk(s) − Vk−1(s)| ≤ ε and V0(·) is

initialized randomly. This algorithm enables evaluating and updating the policy in one

sweep through the state space. It can be shown that sequence {Vk} converges to V π∗ [91].

Q-learning generates episodes of transitions (st, at, st+1, rt), t = 0, ..., Ti where sTi is a

terminal state for i = 0, ..., N . It uses a policy derived from the action-value function Q to

update

Q(st, at) = Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)−Q(st, at)

)
(2.10)

with α as a learning rate. If all state-action pairs continue to be updated with sufficient

frequency, Q-learning is guaranteed to converge to the optimal solution [91].

Intuitively, value iteration bootstraps the approximation of V using its own predic-

tions until they become stable, and Q-learning bootstraps the value of a state-action pair

based on the Q-value of the next state. For more detailed information about RL refer

to [91].

2.3 Imitation Learning

Imitation learning is the problem of finding a policy mimicking transitions provided in a

dataset of trajectories τi = [φ0, ..., φN−1]. Trajectories are sequences of features φ that en-

code encountered characteristics of the environment, stand for state-action pairs or even

correspond to single pixels of an input image. Their interpretation depends on a particu-

lar problem. In our case:

Definition 7 (Trajectory). A trajectory τ = [φ0, ..., φN−1] is a sequence of of lengthN containing

state-action pairs where φi = (si, ai) for si ∈ S, ai ∈ A, i = 0, ..., N − 1.

Sometimes demonstrations are enhanced with an additional context parameter cτ that

describes conditions under which these demonstrations were gathered. Context may be

used to modulate proper behavior. We will omit this notion in the general problem state-

ment but it will become a formalism for conditional imitation learning. Similarly, we will

9

omit reward signals which could also be collected (see BatchRL [48]) and used in imi-

tation (see [81]). Having a dataset D = {τ1, ..., τM}, an imitation learning agent tries to

optimize policy π∗ that satisfies:

π∗ = arg minL(q(φ), p(φ)), (2.11)

where q and p are distributions of features under agent’s and expert’s policies and L

denotes a similarity measure for distributions. In other words, IL searches for a policy

that provides the same state visitation as the expert.

Strategies used for optimizing equation (2.11) vary, similarly to the mode in which

the set D is gathered (offline, online, being enhanced with data from a simulator, etc.)

Scientists differentiate between two main approaches, however: inverse reinforcement

learning (IRL), which tries to establish a reward function that drives the exhibited behav-

ior, and behavioral cloning (BC), which explicitly imitates this behavior. We shall discuss

both approaches in the sections below, putting more emphasis on behavioral cloning,

which served as the basis for models presented in this work.

2.4 Inverse Reinforcement Learning

In IRL, having only the access to demonstration set D, we assume that training trajecto-

ries were generated by following policy π∗ that maximized some unknown reward func-

tion rπ∗ . In order to approximate π∗, an IRL agent tries to recover the mentioned reward

function, and act according to its valuations in an iterative manner until it finds a stable

solution. It should be noted however, that finding the reward function is an ill-posed

problem since one policy can be optimal to many reward functions. To show a general

algorithm for solving IRL, we introduce three more definitions.

10

Definition 8 (State Visitation Frequency). ψπ(s) is a state-visitation frequency if it measures

how often a state will be visited during the execution of policy π and is defined as

ψπ(s) = γ
∑
s′∈S

T (s, π(s), s′)ψπ(s′). (2.12)

Definition 9 (State-action Visitation Frequency). µ(a, s) is a state-action distribution if it

measures how often a state-action pair will be generated during the execution of policy π and is

defined as

µ(a, s) = ψπ(s)π(a | s). (2.13)

Definition 10 (Linear Reward). We say a reward is linear in ω if there exist features φi such

that

Rω(s, a) =
∑
i

ωiφi(s, a) = ω>φ. (2.14)

The state distribution and state-action distribution regard visitation frequencies that

were estimated from a set of data. The most common way of approximating π∗ is pre-

sented in Algorithm 1 box (taken from [65]). Note step 7 where optimizing for ω is accom-

plished with the use of reinforcement learning methods. This shows that IRL intermixes

methods of standard optimization with RL.

One advantage of IRL is that by learning the reward, we can analyze it to better un-

derstand the expert’s behavior. Moreover, the reward can be transferred to a different en-

vironment and improved through interactions alone, not requiring new demonstrations.

However, the biggest drawback of IRL besides its ill-posedness, lies in the computation-

ally costly need to solve an MDP.

11

Algorithm 1: Abstract version of inverse reinforcement learning
1: Input: Expert trajectories D = {τi}Ni=1

2: Initialize the reward function and policy parameters ω, θ;

3: repeat

4: Evaluate the state-action visitation frequency µ of the current policy πθ;

5: Evaluate the objective function L and its derivative ∇ωL by comparing µ and

the state-action distribution implied by D;

6: Update the reward function parameter ω;

7: Update the policy parameter θ with a reinforcement learning method;

8: until

9: return optimized policy parameters θ and reward function parameter ω

2.5 Behavioral Cloning

We use the term behavioral cloning to describe all methods which approximate mappings

from state or state and context sets to the set of actions (or trajectories) via supervised

learning on imitation data. The context set contains any information relevant to action-

taking which is not included in the current state observed by the agent – for instance the

initial state. In contrast to IRL, in this setting it is possible to perform all the learning

steps without resorting to RL. For the sake of the contents of this work let’s consider the

state-action type of BC. Formally, for finding policy π∗ which generated demonstration

data D = {(si, ai)}Ni=0 we set up a supervised regression problem of the form:

minimize
θ

L

(∑
t

πθ(st; θ), at

)
(2.15)

for st, at ∈ D = {(si, ai)}Ni=0, a function approximator πθ defined with parameters θ, and

a loss function L. Note that we simplified the notation used in the previous sections and

explicitly wrote D as a set of state-action pairs instead of separate trajectories to accentu-

ate we are solving a supervised learning problem. Algorithm 2 box presents an abstract

formulation of behavioral cloning (taken from [65]).

12

Algorithm 2: Abstract version of behavioral cloning

1: Collect a set of trajectories demonstrated by the expert D;

2: Select a policy representation π;

3: Parametrize π with parameters θ;

4: Select an objective function L;

5: Optimize L w.r.t. the policy parameters θ using D;

6: return optimized policy parameters θ

First we gather the set of trajectories. Then, depending on whether we predict actions

or whole trajectories at once we establish an appropriate policy representation, for in-

stance a function π : S −→ Prob(A). Thereafter, we choose parameters which encode the

policy and which we shall optimize. Finally, we start the optimization process by min-

imizing loss L. The loss acts as a metric which measures the difference between agent-

and expert-generated behavior presented in the demonstration set D. Candidate losses

may be the following:

Definition 11 (Sample forms of L).

L(x1, x2) = (x1 − x2)>(x1 − x2) (2.16)

L(x1, x2) = (x1 − x2)>W(x1 − x2) (2.17)

L(x1, x2) =
∑
i

|x1,i − x2,i| (2.18)

L(x1, x2) = −
∑
i

x1,i lnx2,i (2.19)

where x1, x2 ∈ Rn, xi,j is j-th element of vector xi and W is a weight matrix.

In this thesis we shall focus on the most common case of BC: supervised behavioral

cloning with quadratic loss (2.16). The main task of mastering a number of behaviors will

require a slightly enriched version of imitation learning that also accounts for the context.

A framework for that type of IL is detailed in the next section.

13

2.6 Conditional Imitation Learning

The Conditional Imitation Learning (CIL) framework addresses one of main limitations

of imitation learning that prevents this method from having widespread use in many

practical domains. It tackles the assumption that proper behavior can be inferred from

perceptual input only. That is, from the representation of the environment in which the

expert is taking actions. As an example in which this assumption is not met the authors

of conditional imitation learning, Codevilla et al. [22], refer to self-driving:

Consider a driver approaching an intersection. The driver’s subsequent ac-

tions are not explained by the observations, but are additionally affected by

the driver’s internal state, such as the intended destination. The same observa-

tions could lead to different actions, depending on this latent state. This could

be modeled as stochasticity, but a stochastic formulation misses the underly-

ing causes of the behavior. Moreover, even if a controller trained to imitate

demonstrations of urban driving did learn to make turns and avoid collisions,

it would still not constitute a useful driving system. It would wander the

streets, making arbitrary decisions at intersections.

The solution the authors propose resides in the world of behavioral cloning. Codev-

illa et al. [22] suggest modelling latent information that additionally explains the expert’s

actions by vector h and expose the learner to this possibly over-complex representation

through command c = c(h). The original optimization problem from equation (2.15)

changes to

minimize
θ

L

(∑
t

πθ(st, ct; θ), at

)
. (2.20)

The variable c could be an actual command issued in natural language or a form of a

signal associated with some behavior (e.g. command “right” or car’s blinking light can

be both associated with turning). The information carried by c enables the method to

14

distinguish between two or more different behaviors that occur in the same area of the

environment’s state-space, and at test time gives the possibility to query it to perform

them. This property is crucial for testing zero-shot learning, when we indeed set up c

to correspond to spoken language sentences and want to be able to query the algorithm

with virtually any expression defined by our vocabulary.

15

Chapter 3

Related work on Imitation Learning

The main theme for this chapter is to survey a non-exhaustive list of related topics. The

primary focus turns from establishing mathematical foundations to showing important

works done by other authors that build on these foundations.

In more detail, we provide an overview of existing ideas that are similar to the setting

used in this thesis. IRL is mentioned in the first section to show alternative approaches

to the problem of imitation. Sample works that justify the use of neural networks in

behavioral cloning and point out its weaknesses are discussed in Section 3.2. To grasp the

limitations and differences between existing models and the contributions of this thesis,

the third section focuses on state-of-the-art works from the area of conditional imitation

learning. Finally, learning a language, or more concretely, auto-encoding sentences on top

of action prediction can be considered an auxiliary task. Since adding auxiliary tasks to

improve performance is the leading idea of multi-task learning (MTL), MTL is mentioned

in the last section.

3.1 Inverse Reinforcement Learning

In this section we survey several important and influential works in the area of Inverse

Reinforcement Learning. A more detailed discussion can be found in [65].

16

In a seminal work by Abbeel et al. [1] the authors generated a set of M trajectories

for helicopter aerobatics denoted as {[y0
0, y

0
1, ..., y

0
N0−1], ..., [yM−1

0 , yM−1
1 , ..., yM−1

NM−1−1]} where

τi = [yij | j = 0, ..., Ni − 1], i = 0, ...,M − 1 is a sample trajectory and yij = (sij, a
i
j) is a state-

action pair. They assumed there exists a target trajectory z = [zj | j = 0, ..., T − 1] and

that each τj is its imperfect demonstration. Formally, it was assumed that ykj = zτkj + ωj

where τ kj is temporally aligned index that matches observed and desired states, and ωj is

Gaussian noise. The authors also introduced helicopter dynamics f(·), set zt = f(zt−1)+ωt

and computed a linear approximation of this model. To solve for the right policy, Abbeel

et al. [1] used a special case of an MDP – linear quadratic regulator [91], and solved its

optimal with iterated application of dynamic programming.

Ng and Russell [62] proposed to write the reward function R(s) = α1φ1(s) + ... +

αnφn(s) as a combination of bounded basis functions φi(s) : S −→ R and solve a se-

quence of linear programs (LPs) in search for the weights of this combination. The main

constraints |αi| ≤ 1 ∀i enforced that subsequent empirical state-valuations derived from

R were greater than state-valuations for the optimal policy after LP-optimization, i.e.

V πk(s0) ≥ V πk−1(s0) where V πk(s0) = α1V
πk

1 (s0) + αdV
πk
d (s0) is an α-weighted average

over empirical returns V πk
i = φi(s0) + γφ1(s0) + ... + γnφn(s0). The optimal policy itself

was found using standard RL value iteration algorithm.

Ziebart et al. [98] used maximum entropy principle and implemented Algorithm 1 by

optimizing cost parameters θ. They assumed the reward function can be expressed in

linear form (c.f. (2.14)) and for trajectory τ defined cθ(τ) =
∑
s∈τ

θ>fs. In each iteration,

the authors solved for the optimal policy with respect to cθ via value iteration. Their loss

function was L = 1
M

∑
τd∈D

fτd +
∑
s

µ(a, s)fs where µ(a, s) is state visitation frequency from

equation (2.12).

Wulfmeier et al. [95] computed the same set of unknowns as Ziebart et al. [98] making

use of a neural network with maximum entropy objective function L(θ) = logP(D | R) +

logP(θ). This function maximizes the entropy of state-action visitations while minimizing

the distance to expert’s state-action visitations.

17

Finn et al. [28] relaxed the problem even more and learned a sample-based approxi-

mation of maximum entropy IRL through gradient descent. Concretely, the authors at-

tempted to functionally approximate cθ(τ) in the guided cost learning framework with

objective function LCGL = 1
M

∑
τd∈D

cθ(τd) + ln Z, where M is the number of samples τ and

Z =
∫

exp(−cθ(τ))dθ. Their approach was to interchangeably update the cost function

based on samples from the demonstrations and the policy being learned with updating

the policy with newly computed cθ.

Ramachandran and Amir [75] decomposed the probability of generating any expert

trajectory according to the Bayes rule, i.e. P(R | D) = P(D|R)P(R)
P(D)

. They approximated each

state-action probability PD((si, ai) | R) = 1
Zi

exp [α Q(si, ai;R)] with normalizing factor Zi.

This enabled them to represent P(τ |R) for trajectory τ , and in consequence compute the

posterior P(R|τ).

Ho and Ermon [40] took yet another approach to find the optimal policy and used the

principles of trust-region policy optimization and generative adversarial networks. Other

approaches to IRL can be also found in [9, 44].

3.2 Behavioral Cloning

In this section we shall focus on behavioral cloning implemented in neural networks and

mainly analyze the structure of resulting models. The goal is to show the robustness

neural networks offer and justify their use in the model instantiating L-CIL. Additionally,

we will discuss non-standard approaches that try to address the accumulation of error

problem and the embodiment problem, because these are imperfections of BC that our

method naturally inherited.

3.2.1 Traditional Approaches

Algorithms that implement the sketch from Algorithm 2 are rather homogeneous in their

design but for small variations in the choice of the loss function and the decision to exer-

18

cise the structure of the training environment (model-based vs. model-free distinction).

The most common combination is quadratic loss `2 (2.16) for least squares regression and

environment-agnostic scheme that only strives to match the expert behavior in the train-

ing states with the highest possible accuracy. This approach is for instance considered in

Sammut et al. [84] with decision trees used for imitation, and in the historically important

ALVINN system for vehicle navigation [74]. Following this early use of neural networks

and the resurgence in the field, the most of the current research considers approaches that

utilize deep learning.

3.2.2 Deep Learning Approaches

In a work by Duan et al. [27] the authors introduced one-shot supervised IL setting with a

soft attention component. Their network is constructed of a demonstration network that

embeds the trajectory {(si, ai)}ni=0 into a hidden representation h, a context network that

compiles the embedding h and the current state (sk, ak) into a joint representation r, and

an action network which predicts the action based on r.

Silver et al. [85] in their seminal paper on the Go game used imitation learning as a

starting point in the creation of AlphaGo. The network the authors utilized had 13 layers

which alternated between convolutional layers and rectifier nonlinearity layers with a

softmax layer at the end. Its loss function considered merely the likelihood of expert

demonstrations log πθ(at | st) where θ denoted the parameters of the model, and (st, at) ∈

D stood for the members of the demonstration set.

Zhang et al. [97] taught a robot to perform complex manipulation tasks (reaching,

grasping, pushing, placing) through recordings made with the use of a virtual reality

teleoperator. Their method, similarly to the previously mentioned ones, assumed having

a dataset of trajectories of state-action pairsD = {(s(i)
t , a

(i)
t)} and a neural network that ap-

proximated desired policy with πθ(at | st). The optimized loss consisted of a combination

of `1, `2, sigmoid cross-entropy, alignment a>t πθ(st)

‖a>t ‖‖πθ(st)‖
and auxiliary task losses.

19

Chung et al. [20] developed a variational version of a recurrent neural network and

used it to imitate handwriting styles. Many more examples are mentioned in an excellent

overview paper by Osa et al. [65].

3.2.3 Accumulation of Error

In this section we consider a variety of methods that have been proposed to deal with er-

ror accumulation. The titular problem occurs when numerous operations are performed

consecutively before outputting the result, and each bears a small numerical error. Be-

cause these operations depend on one another, the final error is said to accumulate.

In the SEARN paper by Daumé III et al. [24] the agent learns a mixture of policies

iteratively. The algorithm starts with a policy that imitates the expert’s behavior, then

generates cost-sensitive training examples, sets up a new policy, and finally interpolates

it with the previous one. A procedure constructed in this way allows to walk the learner

through the search space of policies and tackle the most problematic states.

Ross and Bagnell [80] (SMILe) proposed to iterate over imitating trajectories of a pol-

icy learned in the previous iteration, and mix those policies in a similar manner as Daumé

et al [24]. After learning policy π̂n on trajectories from policy πn the algorithm sets πn =

πn−1 + α(1 − α)n−1(π̂n − π0), where π0 is the initially learned expert-imitating policy. As

the authors put it themselves “this update is interpreted as adding probability α(1−α)n−1

to executing policy π̂n at any step and removing the same probability of executing the

queried expert’s action” [80]. If the algorithm is stopped at iteration N , it returns a nor-

malized policy π̂N = πN−(1−α)Nπ0
1−(1−α)N

which does not rely on the expert anymore.

It seems that one of the most acknowledged papers that sought to ameliorate BC’s per-

formance with the discussed concern in mind is Dataset Aggregation (DAgger) [82]. The

main assumption for DAgger is to help the agent recover from mistakes it could make. Af-

ter each iteration the expert gathers information about agent’s state visitations, enhances

trajectories with examples of successful recoveries, and lets the policy train using the ag-

gregated dataset. Formally, DAgger assumes having a sequence of policies π1:N , surrogate

20

loss `(s, π) being minimized for policy π in state s, distribution of states dπ incurred by π, a

true loss of the best policy defined as εN = minπ∈Π
1
N

N∑
i=1

Es∼dπi l(s, π), and the regret being

1
N

N∑
i=1

li(πi)−min
π∈Π

1
N

N∑
i=1

li(π) for a general loss of policy `(π). The major finding of DAgger

is that if N = Õ(T) there exists πi, i = 1, ..., N such that Es∼dπi `(s, πi) ≤ εN + O(1/T). In

other words, with the ability to obtain targeted information about the expert in desired

states, DAgger gives stronger guarantees on regret.

3.2.4 Embodiment

In some cases, especially in robotics, imitation learning encounters an important problem

of embodiment. The so called correspondence problem [8] arises when the system that is

supposed to imitate the behaviors differs from the presenter. A standard method for

solving the correspondence is to learn the forward dynamics model and then using this

model, plan the trajectory that matches the expert. This is done through straightforward

supervised learning setup or with probabilistic techniques like Gaussian mixture models,

e.g. [60, 64].

3.3 Conditional Imitation Learning

The purpose of this section is to provide an overview of existing implementations of con-

ditional imitation learning algorithms. We will outline the strengths and weaknesses of

each previous approach in order to justify and motivate decisions made in this thesis. We

discuss the three most relevant papers.

Codevilla et al. [22] attempted learning a finite set of behaviors using a demonstration

set that included all of them. They considered a branched version of a feed-forward neu-

ral network where context modulated which branch of the network would be utilized to

predict the action (steering angle and acceleration). Technically, the authors conditioned

input data on one-hot encodings c(h) which corresponded to behavior types h. This en-

21

abled the network to navigate to goal positions with high accuracy in simulation as well

as in real-world driving tests. Note however, that a branched architecture may not easily

generalize to settings with a larger number of behaviors. The main reason is that one-

hot vectors lose information on similarity between the behaviors they stand for and the

network cannot branch indefinitely.

Mehta et al. [54] enlarged the command vector with visual affordances – quantitative

statistics computed from the visual scene that served as the main input to the learning

algorithm. Affordances along with action primitives were firstly used as auxiliary tasks

that needed to be computed based on the state alone, and then their predictions c(h)

conditioned the action module of the network. The experiments the authors conducted

involved self-driving cars once again and reported high accuracy for imitation in simu-

lation. Predicting affordances however, might be understood as projecting the original

state-space onto a more meaningful feature space. It should be noted that those features

must be hand-crafted before CIL is used, which might not be always feasible.

Chowdhuri et al. [19] applied principles of conditioning to teach a fleet of model cars

to drive in different behavioral modes. Information about the mode was encoded in a

form of a binary tensor c(h) that was concatenated with the current image of the envi-

ronment before being passed to an intermediate layer of a convolutional neural network.

In this case, the results also favored the conditional IL algorithm. The authors restrained

from using a branched architecture yet still conditioned on one-hot vectors which do not

preserve possible synergies between the behaviors, severely limiting generalization or

transfer.

Interestingly, Babes et al., [6] addressed similar concerns about imitation learning and

suggested to use IRL to alleviate them. The authors computed different reward functions

for unlabeled demonstrations and used them for clustering. This work had its continua-

tion/extensions e.g. in [26, 35, 46, 52].

22

3.4 Multi-task Learning

There is a close connection between conditional imitation learning and multi task learning

(MTL) [12]. In the former case, we provide the learning agent with information crucial to

the imitated problem which are otherwise not included in the environmental signal alone.

In MTL one uses auxiliary tasks that are connected to the central task and are supposed to

increase the effectiveness of learning. Training signals for those tasks provide inductive

bias for the learner and this in turn improves its generalization. Multi-task learning may

be hence viewed as a form of implicit conditioning in which the conditioning informa-

tion is encoded in the parameters used for optimization, for instance weights of a neural

network. Conversely, conditioning methods sometimes adopt an auxiliary task, e.g. as al-

ready mentioned Mehta et al. [54], who besides choosing the right action, made the agent

to label visual input with proper affordances and predict action primitives. Thus, such

a training scheme does not only condition on vectors c(h) but also performs multi-task

learning with two tasks: clone the behavior and predict the proper c(h).

There are numerous examples of multi-task setups in imitation learning, e.g [19, 26,

35, 52, 54]. Apart from that, MTL shows promise in areas going beyond IL, e.g. in robotic

manipulation [25, 29] or natural language processing, broadly construed [83]. One of

the best examples, which might additionally serve as an introduction to the section on

language in RL, is the Policy Sketches paper by Andreas et al. [4]. Sketches are vectorized

descriptions of a sequence of actions that needs to be taken in order to achieve some

goal. In the cited paper they are implemented as one-hot vectors that choose between

competing low-level policies represented by actor-critic neural networks [58]. On one

hand, such a setup enables for generalization and sketches not seen during training are

executed with success during testing. On the other hand, the meta-policy which switches

between different subpolicies learns which one to choose after receiving a signal external

to the environment – a sketch. Finally, sketches might be thought of as an oversimplified

language channel with which the teacher communicates her goal to the agent.

23

Chapter 4

Related Work on Language in Imitation

or Reinforcement Learning

The computational study of language data is known as natural language processing (or

NLP for short). Nevertheless, this field mostly regards issues connected to understanding,

translating or generating phrases in isolation from other representations. Technological

and ideological advancements cause growing interests in introducing language to agent

learning settings like imitation learning or, maybe more generally, reinforcement learn-

ing. Here, scientists may use the impressive toolbox offered by the NLP community to

intertwine language with other tasks which may have been previously lacking that com-

ponent. This section aims to shed some light on works related to the one presented in

this thesis and familiarize the reader with other existing techniques that put language

somewhere in the learning loop.

The first section is an overview of history of language outside the strict NLP area.

The section on grounding helps to relate algorithms which learn denotations of linguistic

concepts in the environment to our method of language-conditional imitation learning

which grounds language in action. In the section on conditioning, we review a number of

papers that conditioned on language, mainly to show the strength of this approach and

discuss existing implementations.

24

4.1 Language use in Historical Perspective

Many historical papers that concerned using language in machine learning focused on

robot navigation, either in small-scale environments like a room [89] or in large-scale

environments of a whole building [86]. In both cited papers language was parsed into

a program of logical form that was later executed by a robot using in-built primitives.

Similarly, in MacMahon et al.’s paper from 2006 [51] action primitives were called upon

after parsing a command into a tree, transforming it into a table, and extracting out a

predicate-like program.

Kollar et al.’s paper [45] presented a system that follows natural language directions

by changing them to a sequence of spatial description clauses. Co-occurrence statistics

computed based on a database of tagged images enabled their agent to ground nouns

serving as landmarks in the command. To set up a correct route, they also represented

the quality of candidate routes by forming a path that is spatially congruent with the

command, and modeled actions as the amount of change in the orientation of those paths.

Branavan et al. [10] proposed an RL method that transforms high-level descriptions of

actions to low-level commands, and used an agent that interacts with the Windows op-

erating system environment. They collected a history of state transitions and iteratively,

based on look-ahead features, computed the best-performing policy until convergence.

Artzi and Zettlemoyer [5] employed combinatorial context grammars. They defined a

learning algorithm that scores both the resulting lambda-calculus expressions and possi-

ble executions of the task created with primitive actions.

4.2 Grounding

Besides typical RL papers, it also is valuable to mention works that come from the field of

natural language processing but offer insights on how language can be inserted into an IL

scheme. More precisely, relevant approaches show language grounding, that is learning

the correspondence between language and features of the environment.

25

4.2.1 NLP

Yu et al. [96] presented a model of autonomous navigation where the agent is shown a

visual representation of the world and, given natural language commands, must answer

questions. The authors proposed an alternative method of grounding linguistic entities

existing in images and treated the image vector representation as a matrix encoding some

number of entities. They used word embeddings [56] to detect whether entities from

the sentence are in fact encoded in the image, where detection was implemented as a

mapping that slides through an image and provides response values. Finally, actions

were learned through an action-critic architecture [58].

Sinha et al. [88] considered the same kind of problem. The model they proposed fused

knowledge encoded in the image and input sentence to then train a modified actor-critic

network. Images were turned into latent tensor representations. Sentences encoded as

one-hot vectors were transformed by a GRU [17], and then decoupled to some number of

vectors to serve as attention filters. Results of navigation in a 2D world implemented by

the authors showed good behavior, outperforming other methods which differed only in

how the vision and language vectors were aggregated. Moreover, due to properly learned

word vectors, decoders trained on one language of instruction were able to translate sen-

tences provided in another language of instruction.

Hermmann et al. [39] grounded language in a simulated 3D environment by a com-

bination of several neural network modules and objective functions, drawing from the

works on multi-task learning. In their implementation, visual data along with an LSTM-

transformed [41] sequence of words was used as an input to language prediction model. It

utilized the A3C algorithm [58] and predicated how well the text described the state the

agent was currently in. The authors also experimented with additional auxiliary tasks

such as reward prediction.

26

4.2.2 Beyond NLP

It is worth mentioning methods which have been inspired by the above-mentioned ideas

on grounding but go beyond mere NLP. Narasimhan et al. [61] let their agent play a mod-

erately complicated grid world game by specifying a set of descriptions of the current

state of the environment. The agent learned directly through the interaction with this

environment using deep RL techniques. A deep Q-network implemented value iteration

which relied on information extracted from the scene. This information was represented

as a tensor of object- and LSTM-transformed description-embeddings which may in fact

be interpreted as some form of conditioning the state space. Narisimhan et al.’s work fo-

cused more on transfer and it is shown in the paper how the agent generalized over new

sets of environments thanks to language.

Similar ideas were researched in Janner et al.’s [43] paper where grounding was again

understood as conditioning. LSTM module transformed language descriptions into vec-

tors that were multiplied by object-embedding tensor, and outputted a text-conditioned

representation. A convolutional neural network took that representation as an input and

predicted a value-map that the agent used when making decisions. This model also ex-

hibited transfer capabilities.

4.3 Conditioning

In a recent survey paper of language in reinforcement learning, Luketina et al. [49] dis-

tinguishes between two categories of language-enhanced algorithms, namely language-

conditional and language-assisted RL. For the latter category of algorithms language is

not crucial for proper performance and most often comes in an unstructured and descrip-

tive format (instead of an instructive one). We shall omit this topic due to its lesser rele-

vance to the problem considered in this work. Language-conditioned algorithms, on the

other hand, connect ideas presented in the previous sections and consider language as one

of the key ingredients. To make descriptions of representative examples more structured,

27

we may divide them after Luketina et al. [49] into three categories: those with language in

state-action space, with reward shaping or, most importantly, with instruction following.

4.3.1 Language in State-Action Space

For the first aforementioned category, the authors of the survey rightfully point out that:

Environments that use natural language as a first-class citizen for driving the

interaction with the agent present a strong challenge for RL algorithms. Using

natural language requires common sense, world knowledge, and context to

resolve ambiguity and cheaply encode information. [49]

One paper worth mentioning here is by Andreas, Klein and Levine [3] who set up

an approach called learning with latent language. They firstly created a language inter-

pretation model that “maps from descriptions to predictors”, i.e. a model that outputs

probability of a text matching some input image. At the same time, they taught the agent

concepts when the algorithm searched over natural language strings to minimize the loss

incurred by a language interpreter. After that, their model could be evaluated on a new

set of inputs. Formally, they introduced a proposal model q that computes a distribution

over language strings, and a prediction module f that solves the task at hand. Drawing

from q and selecting the hypothesis w that obtains the lowest loss, the algorithm used

f(x; η, w) for encoded state representation x to make predictions. In this way Andreas

with colleagues were teaching the agent to specify the problem in natural language terms

by itself and then solve it using this description. Other interesting works that seem to be

researching scientific questions in this area are on dialogue or question-answering sys-

tems (see for instance [88, 96]).

4.3.2 Reward Shaping

Another way that language can be incorporated into the learning scenarios is closely tied

to reinforcement learning. Namely, there is a growing number of studies that use in-

28

structions given to the agent to specify which reward function it should optimize. This

could be done directly, by forming a reward function from linguistic input alone, or in an

indirect way.

In the former situation we are dealing with meta-learning setting, for instance as in

Co-Reyes et al. [21]. In the cited paper the authors restrained from using RL or IL what-

soever and expected the agent to perform given tasks based solely on linguistic input

provided in the beginning of the training. They achieved this goal in active learning set-

ting similar to DAgger. After each policy rollout, they specified language corrections and

sent them to the agent. Those corrections conveyed information necessary to succeed in

the task starting in the state the agent found itself in after the execution of the policy. A

growing dataset of traversed trajectories and obtained corrections were used to compute

the mean representation of the agent’s performance. This vector was concatenated to the

instruction representation computed by a convolutional network and the state itself to be-

come an input to an RL algorithm. By doing that, the agent was conditioned on historical

transitions, corrections and the current command.

Indirect methods, on the other hand, are often influenced by inverse reinforcement

learning literature. A common architecture is a union of two modules, where the reward-

learning module grounds language in a segment of a state or a trajectory, and the policy-

learning module acts in an environment and receives rewards that are based on this

grounding, e.g [37, 50, 94]. To show an example that follows the delineated scheme, Fu

et al. [30] computed maximum entropy IRL update to recover the reward function. The

main change was that the standard input was conditioned by computing a product of

itself and a language description embedded with the use of LSTM gates. The authors

showed performance of this algorithm in navigation tasks in simulated room environ-

ments.

For another example, Goyal, Niekum and Mooney [37] assigned rewards based on the

correspondence between language instruction and taken actions. In more detail, their al-

gorithm computed action frequency vectors, encoded the linguistic command, and fused

29

these two sources of information to predict the probability of a trajectory being related

or unrelated to a given description. Under a special formula that takes into account the

temporal aspect of action making, these probabilities shaped the original reward function

(that always existed in their experiments) and favorably affected the final accuracy.

Bahdanau et al. [7] showed a method inspired by an adversarial mode of training

instead of IRL, and jointly trained the policy and reward models. Concretely, the pol-

icy acted conditioned on the instruction and was optimized under the reward model,

whereas the reward model itself was trained as a discriminator. It distinguished between

instruction-goal-state pairs generated by the expert and instruction-state pairs retrieved

from agent’s trajectories. A similar adversarial approach was used by Agrawal et al. [2].

More examples revolving around reward shaping can be found in mentioned Luketina et

al.’s review [49].

4.3.3 Instruction Following

The last category of algorithms which contain the models presented in this thesis regards

instruction following. By no means is this category disjoint with others. We have already

described a number of methods that set following commands as their main goal, c.f. [2,3,7,

19,21,22,54]. Their common elements are in having even a primitive sort of language from

which commands are generated and in conditioning the agent’s observations through

computing representations of those commands.

Earlier approaches relied on object representations and exploited the structure of an

instruction to correspond it to the entities in the world. The result of this procedure, as we

noted at the beginning of this section, was a formal language that described which actions

to take. Chen and Mooney for instance [15], made use of an established NLP machinery

to transform navigation instructions into executable formal plans.

Later methods started to draw from the successes of deep learning and applied con-

ditioning directly by computing language and state representations end-to-end. Misra,

Langford and Artzi [57] applied LSTM layers to language input and alongside a history

30

of previous states and actions, conditioned vanilla policy gradient algorithm [91] to per-

form the desired high-level actions.

Wang et al. [94] encoded language with LSTMs and multiplying it by attention matri-

ces conditioned an action module to take appropriate actions. Their algorithm learned

through standard RL mechanisms but besides environment-dependent reward, the agent

also received numeric signal from a matching critic that computed alignment between the

command and the generated trajectory.

In the paper by Chen et al. [16], the authors considered language-conditioned image

reconstruction problem to teach a robot navigation in real-life visual urban environment.

Instructions transformed into a coherent representation by an LSTM network were con-

catenated to the output of intermediate layers within an encoder-decoder architecture.

This data was used to ultimately predict the distribution over the location of a queried

item.

Yet another paper that focused on visual processing and that incorporated instruction

following is by Chaplot et al. [13]. Therein, to arrive at the final state representation,

linguistic information was encoded and mixed with an input image by a fusion model.

Specifically, the authors were using Gated-Attention units, and A3C algorithm for policy

learning [58].

For even more references, the reader is advised to consult Luketina et al.’s survey [49].

4.3.4 Technical Realization of Conditioning

For state-of-the-art methods reviewed so far, the function approximators that predict ac-

tions based on states and context (language) are most often, if not always, neural net-

works. Depending on the whole setup for imitation learning, the practical implementa-

tion of conditioning may thus differ. In this work, as well as the majority of papers that

revolve around CIL, the conditioning vector is somehow concatenated with the state vec-

tor or feature vector to produce predictions about the actions. There are, however, other

approaches, seemingly the most general one being so-called Feature-wise linear modu-

31

lation (FiLM) modulation [71] which advocates the use of FiLM layers instead. Feature-

wise linear modulation layers are parts of a neural network that take context (command)

information as an input and to condition the computations compute two vectors: α and

β. This is accomplished through mapping the output of the i-th layer in the network fi

to a number produced by the affine transformation αfi + β. This approach can be eas-

ily generalized to the tensor case when each dimension is transformed separately and

proves especially effective in visual question answering, as reported by the creators of

FiLM themselves.

4.4 Summary

As we mentioned in the introduction to this work, language serves as a great tool for con-

veying information that cannot be obtained by the agent through the interaction with the

environment alone: the context. Like we have seen, the context can be grounded, used

to learn the language-based reward or used to condition the computations (which could

be thought of as grounding language in action). Contemporary researchers investigate if

and how each of these methods could enable the transfer of knowledge from language

corpora into learning tasks and the transfer of policies between environments. This thesis

focuses on a part of the first open problem. We consider language generalization ca-

pabilities in an imitation scenario with multiple presented behaviors, and among other

questions ask: does language enable learning behaviors unseen during training through

imitation?

32

Chapter 5

Action-Based Language Acquisition

Theory

Psychological literature concerned with language acquisition proposes a plethora of ex-

planations on how humans develop their language competency. One important expla-

nation, to which the model presented in this work conforms to, is the Action-Based Lan-

guage Acquisition theory (ABL) introduced by Arthur Glenberg and Vittorio Gallese [36].

Generally, the authors adopt a view of ecological psychology which sees people as indi-

viduals constantly interacting with the self-contained environment. In their formulation

motor control plays a key role in language, and its learning, understanding, and produc-

tion come from the situated interaction with the world.

In this chapter, we show the correspondence between Language-Conditional Imitation

Learning algorithm and Action-Based Language Acquisition theory. The overall congru-

ence that the algorithm presents with respect to this theory proves its substantial repre-

sentational power. Hence, here presented discussion aims to convince the reader of the

value of L-CIL in isolation from its empirical, test performance presented in experimental

section of the work.

Because both ABL and L-CIL rely on the notion of conditioning, we begin with re-

viewing psychological and neuroscientific evidence for conditioning in general. Works in

33

both of these areas are clearly important to ABL as a psychological theory. For L-CIL they

provide support in two of its aspects: theoretical and technical. Psychological findings

substantiate the use of conditioning as a statistical method to achieve dependency of one

set of data on another. Our discussion will not relate to L-CIL in particular but shall rather

show how its conceptualization is rooted in studies on human cognition. The existence

and realization of conditioning in neurosciences supports the structure of L-CIL, which

as we will discuss in the second part of the thesis, is implemented though artificial neu-

ral networks. The presented review will mostly focus on how conditioning information

affects human processing stream, a mode that we reflect in our method. We close the

chapter by moving to the description of ABL and its comparison with L-CIL.

5.1 Support for Conditioning: Psychology & Neuroscience

For the sake of clarity of this section, let’s point out that postulating the dependence on

context entails the act of conditioning. Empirical findings rarely inquire how additional

information technically affects the processing stream, however, in studies that do con-

cern modelling, context is indeed understood as extra action-dependent information. Ex-

amples include Srivastava & Schrater [90] who use Bayesian inference to model choice

conditioning on history of options; or Rigoli et al. [76, 77] who adopt the same formalism

and model valuation of choices via a Bayesian network that encodes context variables

computing expected reward. Thus, findings suggesting dependency on the context at the

same time support the existence of conditioning. This becomes even more evident under

neuroscientific point of view. Chawla and Miyapuram [14] state the following:

Broadly context modulation can be defined by the interaction between 2 dif-

ferent kinds of inputs: first consists of the feed-forward connections from the

earlier areas in the preprocessing stream and second consists of the modula-

tory system that controls the system response to the driving inputs.

34

Such a description does not only agree with the general understanding of conditioning

but is even compatible with the proposed L-CIL’s implementation.

5.1.1 Psychology

In general, ample psychological evidence suggests that the context in which the data is

acquired affects human reasoning processes. In the visual perception domain, for exam-

ple, it has been shown that information of surrounding objects modulates how the target

object is perceived [14]. Inspecting a handful of illusions, like Ebbinghaus illusion or

Titchener circles [79], provides evidence that attributes of observed objects (color, shape,

size, etc.) despite staying objectively the same, are regarded as different. Thus, extraneous

perceptual data (context) that does not regard the target, heavily impacts what judgement

is being made. Similar findings about vision being context-dependent are found in [92]

where additional information determines interpretation of perceptual data or in a work

by Otten, Seth and Pinto [66] who identify social information as another component mod-

ulating behavior.

In the field of decision-making, and that is how we could categorize imitation learning,

so-called context effect is ubiquitous. A representative example includes Moore [59] who

presented a psychological study in which participants were asked to judge the quality of

options they had to chose from. With two special options where one was superficially

worse but was in fact normatively superior and a second one was only superficially bet-

ter, the results differed significantly depending on which one of those was rated first. If

that was the superficially attractive option, reported preferences for both options were

higher than in the case of a different ordering. Modulating information was in this case

the valuation order. Other studies investigated context through a similar approach by

focusing on economics [42, 73, 87] or by exploring the use of cognitive functions [53].

Trueblood et al. [93] showed that context effects, besides being strongly present in

high-level decision-making research, are present even in simple perceptual tasks. In

their experiments, participants were shown rectangular stimuli that differed in height

35

and width and were asked to select the one with the highest area. Objects were pre-

sented alongside decoy objects which invoked one of the three effects. The attraction

effect occurred when two choice options {X, Y } were enhanced with an additional X- or

Y -similar option that was in all aspects inferior to other ones, and increased preference for

the option implied by the decoy. In the similarity effect, X- or Y -similar decoy increased

the probability for the dissimilar option to be selected. The compromise effect happened

when a compromise option was introduced to the set, and eventually was regarded as the

best one. In each of those cases, a decision was conditioned on the added element rather

than made based on the whole set of options.

5.1.2 Neurosciences

A significant amount of accumulated data shows that conditioning is also a part of human

neurological system. We start with the domain of perception, and then move closer to

action taking and conditioning in general.

Meng, Cheria and Sinha [55] focused on face processing. They proved that the right

fusiform area encodes neural responses to seeing faces and that the encodings depend on

the category/context information. Other study by Petro, Paton and Muckli [72] discussed

the connections of auditory brain areas to early visual cortex suggesting that sound may

additionally modulate perception. Functional cortical connectivity seems to be affected

by context also according to Galindo-Leon et al. [31].

In decision-making, neuronal correlates were identified independently by Breiter et

al. [11] and Nieuwenhuis et al. [63] when studying simple gambles. The first group

found that responses in the amygdala and nucleus accumbens seem to depend on context,

whereas the second group identified reward-dependent regions (striatum, prefrontal cor-

tex, posterior cingulate) as context-dependent.

Through the paper by Palmer and Kristan Jr. [68] we may bridge the gap between con-

ditional imitation learning algorithms and neuroscience even more. In the cited paper,

the authors gathered a plethora of sources for contextual data that affect action making

36

in animals, and partially brought upon how their localization in the brain. The authors

discussed external context in the form of season changes, physical environment charac-

teristics, social conditions, internal context encoding the behavior the agent is performing

(running, walking, feeding, etc.), and importantly for language, task-related context. The

authors linked task-related conditioning with the correlation of noise between spiking

neurons [23] and sign inversion in the connection between secondary somatosensory cor-

tex and prefrontal cortex [18].

A recent, fascinating study by Kumano, Suda and Uka [47] performed an even deeper

analysis of task-related context and showed that neurons in the lateral intraparietal area

(LIP) “accumulate relevant information preferentially”. In the experiment, the scientists

investigated brains of monkeys who performed switching between tasks on discriminat-

ing direction and depth. The analysis of LIP’s activity was conducted based on the pro-

vided context, and it turned out that the activity only occurs when the presented stimulus

is congruent with the assigned task. In this way, the authors concluded that the LIP area,

that was believed to guide monkey’s eye movements in the task, is a brain region mod-

ulated by contextual data. In this way, Kumano with colleagues extended the findings

of Palmer and Kristan Jr. [68] by identifying a whole area neuronally dependent on the

perceived context.

In the last paper we can read that:

A hallmark of human cognition is the flexibility to select an appropriate ac-

tion in response to identical sensory events depending on the environment or

context. [47]

This opinion strongly supports the basis for using conditioning in learning algorithms.

The results of this and other cited papers strengthen such methods even more as they

indicate that conditioning is a part of our cognition stream in practice. On top of that,

the previous section discussed that conditioning on context is also a psychological pro-

cess. Since cognitive processes may involve higher cognition and since the most obvious

37

example of high-level context provider is semantic information, the discussed evidence

seems to warrant our Language-Conditional Imitation Learning algorithm well. There is

however more evidence in favor of the method introduced in this thesis, and we touch

upon it in the next section.

5.2 Support for L-CIL: Action-Based Language Acquisition

Theory

Action-Based Language Acquisition Theory (ABL) is a language-acquisition theory in the

paradigm of ecological psychology. It assumes that interaction within an environment

cognitively couples language with motor control and that these two areas make up for

one synergetical system. In this section, we analyze ABL with respect to our Language-

Conditional Imitation Learning algorithm to show how that it is explicitly grounded in

research on cognition.

Formally, action-based language model makes use of MOSAIC and HMOSAIC the-

ories of action control [38]. The fundamental entities in those theories are controllers

(sometimes referred to as backward or inverse models) and predictors (forward models).

A controller is a mechanism whose goal is to compute context-sensitive motor commands

poised to satisfy some goal. Predictors, on the other hand, are used to predict effects of

actions. In the nomenclature of imitation learning, controllers can be thought of as al-

gorithms that learn proper behavior through IRL or BC, and predictors are models of

forward dynamics. The action-based language acquisition theory assumes that when un-

derstanding a sentence, people associate controllers for articulation with controllers for

performing a series of actions, and predictions for articulation with predictions for tak-

ing a series of actions. A synergy between both of those associations leads to grounding

words in actions and vice-versa, actions in words. Consider Figure 2 which illustrates

this idea by giving the word “drink” as an example. Glenberg and Gallese explain it the

following way:

38

Figure 2: The ABL model for understanding the verb “to drink”. Taken from [36].

The overlap between the speech articulation and action control is meant to

imply that the act of articulation primes the associated motor actions and that

performing the actions primes the articulation. That is, we tend to do what

we say, and we tend to say (or at least covertly verbalize) what we do. Fur-

thermore, when listening to speech, bottom-up processing activates the speech

controller, which in turn activates the action controller, thereby grounding the

meaning of the speech signal in action. [36]

Note, that Language-Conditional Imitation Learning actually supports this construc-

tion under a specific set of assumptions and simplifications. Firstly, linguistic input in

form of a sentence that was added to the expert’s demonstration set does not have a

particular modality. We might thus assume that sequences of word-vectors represent-

ing those sequences are in fact encodings of heard speech. In this setting, the controller

39

for speech articulation might be understood as the module encoding the input sequence,

and the controller for action taking as the module imitating the action. Since encoding

of the sentence is the “produced speech”, decoding the sequence implements the func-

tioning of the predictor. Finally, the second predictor for actions’ results is unnecessary

as in behavioral cloning the world’s dynamics are given to the agent per se in the set of

demonstrations. Hence, we might say that action predictors are implicitly included in

L-CIL. Other elements in the graph from Figure 2 are social environment, bodily action

and perceptions, and physical environment – these are all representations of the state

the agent is in which exactly corresponds to data used in imitation learning in general.

Gain and efference copy pertain to gain control mechanisms that strengthen or inhibit

certain processes when the system has to deal with concepts not present in the physical

environment. Since imitation through cloning does not assume such scenarios, provided

discussion shows that L-CIL implements Glenberg and Gallese’s theory and due to that,

is strongly grounded in psychology and philosophy of language.

Importantly, ABL is also supported by neurophysiological findings. The authors focus

on the existence of mirror neurons that send electrical spikes whenever an object-related

action is performed or observed [34]. Later research proved the existence of mirror neu-

rons systems that do not only encode goals of acts, but also retain information on their

intention. Moreover, it turned out that such systems can be activated by auditory inputs

related to actions or even verbal descriptions [32, 33, 78]. This evidence is also supportive

of the L-CIL algorithm. Like we pointed out above, the sentence accompanying a state

may be indeed understood as an input of another modality, and it becomes particularly

congruent with ABL if it is assumed to represent speech.

40

Part II

Technical Contributions

41

Chapter 6

Language-Conditional Imitation

Learning

In this work we are considering the setting described in Codevilla et al.’s paper [22], that

is imitation learning through behavioral cloning. However, instead of using simple in-

dicators as conditioning information, we will develop a new method that conditions on

natural, written language. The title of this chapter corresponds to the algorithm that im-

plements the idea behind this type of conditioning.

In the first section, we describe L-CIL at a high level and provide its formal descrip-

tion. The second section focuses on the implementation of L-CIL as a neural-network.

The chapter ends by listing questions worthy of careful analysis, with the major one be-

ing: if we use the method to teach the agent behaviors A1, ..., An described with sentences

sA1 , ..., sAn , will that at the same time teach it a similar behavior B for which sentence sB

is composed of words or expressions from the sAis? Put differently, can the method learn

ambiguous behaviors so long as the language descriptions are available?

42

6.1 Overview and Technical Specification

Recall that any trajectory τ = 〈o0, a0, o1, a1, . . . , ot, at〉 is a sequence of observation-action

pairs over time t. The input to the algorithm consists of a sum ofN sets ofM expert trajec-

tories, each generated for a different behavior: D̂ = {τ ji | i = 1, ..., N, j = 1, ...,M} and N

sets of sentences describing those behaviors, say Si = {s1
i , ..., s

K
i },∀i = 1, ..., N and some

K ∈ N. Especially, we have that the number of fully formed natural language sentences

in any Si satisfies K � M . This means that there are multiple ways in which each be-

havior can be described, which reflects the ambiguous nature of natural language. Then,

since we work in the paradigm of conditional imitation learning, appropriate sentences

are randomly divided between trajectories so that each τ ji is paired with one, distinct sρ(j)
i

where ρ : [M] −→ [K] is an injection into the set of indices [K]. Ultimately, this procedure

results in a dataset

D = {(ot, st, at)}Tt=1 (6.1)

of observation, descriptive sentence and action triples where T =
N∑
i=1

M∑
j=1

|τ ij | is the total

length of all the trajectories and st = s
ρ(j)
i if (ot, at) ∈ τ ji . In this way, we expose the agent

to the context embedded in a complex sentence st. Note, that the number of datapoints

may be in fact much larger than the number of sentences – each trajectory could contain

a significant number of observation-action pairs resulting in T > NK.

Our algorithm starts by creating a language model to represent words as vectors. It

uses word2vec [56] to construct representations of words based on similarities between

their neighborhoods. Sentences are then turned into sequences of vectors obtained using

this technique. If vφ is a function approximation for word2vec, and si = 〈w1
si
, ..., w

lsi
si 〉 is a

sentence of length lsi then it is transformed into

vφ(si) := 〈vφ(w1
si

), ..., vφ(w
lsi
si)〉, (6.2)

43

and in consequence

D = {(ot, vφ(st), at)}Tt=1. (6.3)

With this data in the set D the algorithm begins the optimization process. Let O be

the state space, S the discrete sentence space and A the actions space. Additionally,

let `a(x1, x2), ells(x1, x2) be loss functions that compare actions and sentences represen-

tations, respectively and let πi(x) denote a projection of vector x on its i-th dimension.

Finally, let F (·, ·; θ) be a mapping approximating transformation (ot, vφ(st)) 7→
θ

(at, vφ(st))

through parameters θ, where ot ∈ O, at ∈ A, st ∈ S, t ∈ [T]. In mathematical terms,

instead of using supervised CIL learning objective from equation (2.20), the algorithm

uses:

minimize
θ

∑
t

`a (π1 (F (ot, vφ(st); θ)) , at) +
∑
t

`2 (π2(F (ot, vφ(st); θ)), vφ(st)) . (6.4)

Using the sentence decoding as an auxiliary task to imitation relies on the low-level

idea about the latent space. Namely, a space that enables to do both should focus hidden

representations to map points standing for similar mixtures of behaviors to representa-

tions that are close to one another. Let’s call this the similarity property. For example,

driving behaviors represented by sentences s1 = “Go straight and turn right on the next

intersection”, s2 = “Drive straight and turn right on the upcoming intersection”, and

s3 = “Go straight and turn left on the intersection” compose of high-level behaviors “go

straight”, “turn right on the next intersection”, and “turn left on the next intersection”.

The latent variables for those sentences should all lie relatively close to each other but

d(vφ(s1), vφ(s2)) < d(vφ(si), vφ(s3)), i = 1, 2, where d is a distance metric, should numer-

ically preserve that s1 and s2 correspond to the same composite behavior. The similarity

property property should allow mapping similar state-sentence pairs to similar actions,

and in consequence, learn behavior B mentioned in the introduction, knowing only be-

haviors A1, ..., An.

44

Mapping F is a composition of three modules: a representation module R that maps

input to context vectors (ot, vφ(st)) 7→
θR
rt, a language decoder module L that decodes the

context to input sentence rt 7→
θL
vφ(st) and an action module A that maps the observation

conditioned on the context to an action (ot, rt) 7→
θA

at. All of the modules are function

approximators whose parameters θR, θL, θA make up θ.

With that, F can be finally re-written as:

F (ot, vφ(st); θ) = (A (ot, R (ot, vφ(st); θR) ; θA) , L (R (ot, vφ(st)) ; θR) ; θL) . (6.5)

The pseudocode for L-CIL created to retrace the steps of Algorithm 2 can be found in

Algorithm 3 box.

Algorithm 3: Pseudocode for Language-Conditional Imitation Learning

1: Collect trajectories and sentences describing them in D = {(ot, st, at)}Tt=1;

2: For st = 〈w1
st , ..., w

lst
st 〉 compute vφ(st) for all t ∈ [T];

3: Choose policy representation as π : S −→ A;

4: Parametrize π with an approximator F : O × S −→
θ
A× S dependent on θ;

5: Set L =
∑

t `a (π1 (F (ot, vφ(st);θ)) , at) + `2 (π2(F (ot, vφ(st);θ)), vφ(st));

6: Optimize L w.r.t. the policy parameters θ using D;

7: return optimized policy parameters θ

6.2 Implementation

We refer to networks consisting of an encoder that projects the input data onto a space of

smaller dimensionality, and a decoder that retrieves the original input from that space, as

autoencoders. In the simplest linear case, given an input data X = [x1, ..., xN]> consisting

of N vectors of k dimensions xi ∈ Rk we have the following definition.

45

Definition 12. A linear autoencoder is a neural network with parameters θ =

 W

Ŵ

 where

W ∈ Rh×k is a projection matrix onto the latent space H ∈ Rh×N , and Ŵ ∈ Rk×h is the inverse

projection that results in X̂ ∈ Rk×N where ||X − X̂ ||2 = ||X − ŴWX ||2 is minimized.

The 2-norm || · ||2 is a generalization of `2 MSE loss to the matrix case, i.e. `2 norm.

We obtain dimensionality reduction by having h < k. In general, autoencoder consists

of encoder network fθ1 and decoder network gθ2 with the learning objective such that

`(x, f(g(x)) was minimized.

Now, L-CIL was implemented as a composition of a feed-forward neural network

and an autoencoder. Let ⊕ denote vector concatenation. In our case, the encoder net-

work implemented the representational module R, the decoder network implemented

the language module L, and the sum of the modules R
⊔
L made for the autoencoder.

Feed-forward layers operating on a concatenation of o ⊕ r, o ∈ O, r = R(o, vφ(s); θR) for

some s ∈ S implemented the action module A. The general structure of L-CIL is de-

picted in Figure 3. The particular structure of the autoencoder network was based on

uni-directional Gated Recurrent Unit [17] and is further detailed in Figure 4.

Parameter-wise, all the feed-forward layers were of size 128, whereas the embedding

layer had 32 dimensions. A mini-batch contained 128 elements, the learning rate was

set to 3e−5 and the weights were updated based on the Adam optimizer. The training

time was set to 100 or 200 epochs since preliminary hand-run experiments in a simpler,

yet similar environment, revealed that after that limit the algorithm begins to overfit.

The same runs also indicated that the architectural setup is sufficient to achieve CIL-

comparable performance with our algorithm. Due to limited time resources, a complete

hyperparameter search on the final model was not performed. For more details on the

hyperparameters and their respective values consult Table 6.1.

46

Figure 3: Network architecture for Language-Conditional Imitation Learning. The

encoder-GRU implementing the representational module R transforms the input se-

quence s into an embedding vector r which is passed to the action module A. There,

it is concatenated with the state o and after being turned to a continuous representation,

predicts the action a. At the same time, the compressed vector r from the embedding

layer serves as the starting point of the decoding procedure where the goal is to output a

sequence of vectors identical to the input sequence, i.e. s. In this way L-CIL grounds ac-

tion in language and conversely, language in action, similarly to the assumptions present

in action-based theory of language acquisition. The procedure of encoding and decoding

s to itself follows the scheme from Cho et al. [17].

6.3 Open Questions

The purpose of this section is to list scientific questions that motivated research in lan-

guage in imitation learning and eventually led to the creation of L-CIL. Note that the

first two questions directly correspond to the hypotheses introduced in the Introduction,

namely, asking if L-CIL will be able to generalize over unseen context and over unseen

behaviors.

47

Figure 4: Scheme of data processing for the autoencoder network from Cho et al. [17].

The input sequence is transformed by a GRU cell to a context vector. During decoding

another GRU cell accepts the computed context, the hidden state from the previous itera-

tion and the previous word of the sentence (or the start-sentence token if none) as input

and outputs the most probable next token. Note that one could extract the previous word

from the input sequence directly or use the token predicted by GRU in the previous step.

For each step of the decoding one of those methods is chosen randomly (i.e. teacher-forcing

method is used).

Parameter Value
Feed-forward hidden layers size 128
GRU hidden layer size 32
Mini-batch size 128
word2vec vector’s size 8
Layers’ initialization N (0.1, 0.01), bias 0
Activation function ReLU
Batch normalization Yes
Learning rate 3e−5
Optimizer Adam
Optimizer’s parameters β1 = 0.9, β2 = 0.999
Teacher forcing ratio 0.5
Epochs 100/200
Loss function mixture of MSE and cross-entropy loss (eq. 6.4)
Programming language Python 2.7
Library pytorch

Table 6.1: Setup and hyperparameters of the L-CIL network.

48

Does it work? Firstly, CIL proved to offer strong performance in tasks with multiple

high-level behaviors. The previous studies however, used a hand-made conditioning

vector representation. It is thus natural to ask if conditioning on real language, in which

divisions between the behaviors are more complex to extract, will be similarly successful.

Does it enable generalization? Secondly, language is general. L-CIL tries to address

the question, “Does this inherent property increase the imitation algorithm’s transfer

capabilities?” Specifically, we try to check if learning a set of behaviors will enable the

algorithm to follow unseen commands that use similar sentences but correspond to dif-

ferent behaviors. We also check how it performs with sentences containing unseen words.

Why does it do what it does? Thirdly, we elaborate on reasons for presented L-CIL’s

performance trying to understand its strengths, weaknesses and bottlenecks.

What are the limits of using it on its own? Finally, imitation learning methods are

rarely employed for practical tasks autonomously, and are rather used as subcomponents.

Our work seeks to discover the limits of Language-Conditional Imitation Learning as a

standalone technique and based on that assess if it shows promise for industry-based

applications where agents posses some form of a communication channel.

49

Chapter 7

Experimental Setup

In this chapter, we cover setup for experiments on the use of Language-Conditional Imita-

tion Learning. The first section describes a simple car simulator that was used as the main

testbed for measuring efficacy of L-CIL. The next section provides information on the task

specification, testing conditions, and describes the data used for learning. The last section

presents other methods which were used as a baseline for comparison purposes.

7.1 Environment

Monicar1 is an autonomous-car simulator [70] written on top of Python’s pygame pack-

age. It uses a 4-dimensional observation- and a 2-dimensional action space, where obser-

vations stand for the car’s global position on the map expressed in 〈x, y,Θ, v〉 coordinates

of horizontal position, vertical position, angle and speed, and action is a 〈a, Θ̇〉 vector

of linear and angular acceleration. Ranges for the horizontal and vertical positions of

the moving car depend on a particular environment, Θ ranges from −π to π and v takes

values in the [0, 20] interval. Both of the actions are limited to lie between −1 and 1.

Monicar allows for introducing multiple agents on the road with pre-specified behav-

iors and offers a range of maps appropriate for different styles of driving (roundabout,

1Named after its creator Monica Patel.

50

Figure 5: A sample visual output of the Monicar’s environment.

intersection, one-lane, two-lane, merging, etc.) Moreover, there is also a possibility of

specifying a custom feature function for state abstraction. A sample image of the simu-

lator is shown in Figure 5. For the purposes of this study the only non-default element

used in setting up the Monicar environment was the map constructed based on available

examples. Even though a state representation different from the default 〈x, y,Θ, v〉 tuple

could have yielded more flexible experiment construction, technical difficulties prevented

its use. Specifically, preliminary tests with beam state representation that measured dis-

tance to the edges of the road with 8 evenly distributed beams (one every 45◦) resulted

in a very poor quantitative performance despite hyperparameter search. Due to time

limitations this feature function was not eventually used.

7.2 Dataset Definitions

The input to L-CIL consists of two components: observations and sentences. In this sec-

tion we describe the experiments that were conducted manipulating these inputs and list

51

behaviors and sentences used in them. We will also outline the approach for creating train

and test sets that combined the two.

7.2.1 Behaviors

Let’s define two disjoint collections of behaviors. The multi-behavior collection contains

6 relatively short driving behaviors which are as follows:

• go straight until a roundabout;

• turn right and go straight until the next intersection;

• turn left and go straight until the next intersection;

• make a u-turn;

• take the first exit on a roundabout and drive straight ahead;

• take the second exit on a roundabout.

The composite-behavior collection includes 2 longer driving behaviors:

• go straight until the last intersection turn left, go straight until the next intersection,

turn left again and drive forwards until the roundabout;

• go straight until the second intersection, turn right and go straight;

Let’s also introduce a third longer behavior with a trajectory fully made out of partial tra-

jectories for composite behaviors. This is the ambiguous behavior and may be described

the following way:

• go straight until the second intersection, turn left and drive forward until the round-

about.

An experiment, in this context, is formed by defining train and test sets. The precise

method for selecting behaviors for each of these sets allows one to study a variety of

attributes in each algorithm. We have created three experiments in this way:

52

1. The Multi-confusion experiment where the train set and the test set both contain

the same mix of 6 behaviors from the multi-behavior collection. The question of

interest for this experiment is whether a single method can learn to replicate the

full variety of behaviors shown, without confusing between these, only cued by the

provided sentences.

2. The Composite-confusion experiment where the train set and the test set both con-

tain 2 behaviors from the composite-behavior collection. This experiment con-

cerns the same problem as the Multi-confusion experiment but uses behaviors with

longer trajectories.

3. The Composite-ambiguous experiment where the test set contains the ambiguous

behavior and the train set comprises 2 behaviors from the composite-behavior col-

lection. Here, the algorithms can only be expected to succeed if sufficient informa-

tion can be extracted from the language given as context to enable a never-before-

seen behavior to be executed.

To see the map used to perform the experiments with overlaid reference trajectories

of the behaviors, refer to Figure 6. The actual trajectories used to establish the train and

test sets according to the above specification were generated using a hand-made con-

troller. Each behavior started at a point given by a uniform distribution of pixel values

in {−20, ..., 20} over the middle of the lane and a random offset in {0, ..., 150} added to

the vertical starting position (x = 1 or y = 1, depending on the direction of the move-

ment). Then the controller took a state-dependent fixed set of actions, and approximately

followed one of the trajectories shown in Figure 6.

7.2.2 Language

Along with the trajectories there were more than 32 000 sentences that described the be-

haviors in the multi-behavior collection and over 600 000 sentences for the composite-

behavior collection and the ambiguous behavior combined. All descriptions were gener-

53

Figure 6: Monicar’s map for the experiments. Arrows denote sample trajectories gen-

erated by the expert and colors separate different behavior collections. Street names are

written in the middle of the roads. The trajectory with the yellow glow over it corre-

sponds to the ambiguous behavior.

ated using a context-free grammar (see Grammar 1 and Table 7.2) and a sub-vocabulary

of size 43 and 71, respectively. The sub-vocabularies were samples of the main vocabulary

V that allowed us to create descriptions of every possible trajectory. It comprised 20 ob-

ject words, 22 adjectives, 5 parts of proper names, 12 navigational words, 18 place words

and 12 prepositions. The length of the sentences varied between 11 and 31. The linguistic

input we created in this way followed a particular syntactic structure that did not allow

free expression form as normally found in the speech. Although this could be seen as a

limitation, our setup is actually on par with the most advanced studies on incorporating

language in reinforcement or imitation learning (see Chapter 4). Due to that, we argue it

should be rather seen as an advantage of the presented research.

54

〈AND〉 ::= ‘and’

〈COMMA〉 ::= ‘,’

〈TO〉 ::= ‘to’

〈WITH〉 ::= ‘with’

〈AT〉 ::= ‘at the next’

〈UNTIL YOU〉 ::= ‘until you’

〈UNTIL NEXT〉 ::= ‘until the next’

〈TURN〉 ::= ‘turn’ 〈DIR〉
| ‘make a’ 〈DIR〉 ‘turn’
| ‘go’ 〈DIR〉
| ‘complete a’ 〈DIR〉 ‘turn’
| ‘do a’ 〈DIR〉 ‘turn’

〈DIR〉 ::= ‘left’ | ‘right’

〈STRAIGHT〉 ::= ‘go’ 〈DIR STR〉
| ‘drive’ 〈DIR STR〉
| ‘head’ 〈DIR STR〉

〈DIR STR〉 ::= ‘straight’ | ‘forwards’

〈THROUGH〉 ::= ‘through the’ 〈N〉 | ‘past the’ 〈N〉

〈N〉 ::= ‘next’ | ε

〈REACH〉 ::= ‘reach the’ 〈N〉
| ‘get to the’ 〈N〉
| ‘arrive at the’ 〈N〉
| ‘approach the’ 〈N〉
| ‘are at the’ 〈N〉

〈INTERSECTION〉 ::= ‘intersection’
| ‘crossing’
| ‘junction’
| ‘interchange’
| ‘crossroads’

〈LOCATIONS〉 ::= ‘Swietokrzyska street’
| ‘Marszalkowska street’
| ‘Krucza street’
| ‘Alley of the Independence’

〈ONCE〉 ::= ‘as soon as you’
| ‘once you’
| ‘when you’

〈ROUNDABOUT〉 ::= ‘rounadabout’
| ‘rotary’
| ‘rotonda’
| ‘traffic circle’
| ‘island’

〈FIRST EXIT IT〉 ::= ‘take the first on it’
| ‘leave it through the first exit’
| ‘exit it at the first exit’
| ‘turn right on it’

〈SECOND EXIT IT〉 ::= ‘take the second on it’
| ‘leave it through the second exit’
| ‘exit it at the second exit’
| ‘drive through it’
| ‘pass it’

〈FIRST EXIT〉 ::= ‘leave the’ 〈ROUNDABOUT〉 ‘through the first exit’
| ‘exit the’ 〈ROUNDABOUT〉 ‘through the first exit’
| ‘take the first exit on the’ 〈ROUNDABOUT〉
| ‘turn right at the’ 〈ROUNDABOUT〉
| ‘make a right turn at the’ 〈ROUNDABOUT〉
| ‘go right at the’ 〈ROUNDABOUT〉

〈SECOND EXIT〉 ::= ‘leave the’ 〈ROUNDABOUT〉 ‘through the second exit’
| ‘exit the’ 〈ROUNDABOUT〉 ‘through the second exit’
| ‘take the second exit on the’ 〈ROUNDABOUT〉
| ‘drive through the’ 〈ROUNDABOUT〉
| ‘pass the’ 〈ROUNDABOUT〉

Grammar 1: Context-free grammar used to create the sentences.

The introduction of language allowed us to perform an additional experiment defined

on top of the three others, namely:

4. The Linguistic Generalization experiment. This form of generalization tested if the

algorithms (EL-CIL and L-CIL) once learned on some set of sentences, can imitate

the same behavior described with synonymous sentences that contain words unseen

during training.

For each collection of behaviors, 5 of the object words or adjectives from the vocabulary

were held out to enable creating the set of new-word sentences. If used, they served

only for testing. Otherwise, the algorithms were tested only on sentences that contained

unseen combinations of known words. Note that combining Linguistic Generalization

with the other experiments results in 6 experiments in total. This is shown in Table 7.1.

55

Test Sentences Train→ Test Behaviors

Multi
→
Multi

Composite
→
Composite

Composite
→
Ambiguous

Seen words Multi-confusion Composite-confusion Composite-ambiguous

Unseen words
Multi-confusion

+
Ling. Gen.

Composite-confusion
+

Ling. Gen.

Composite-ambiguous
+

Ling. Gen.

Table 7.1: Classification of the conducted experiments based on the train/test behaviors

specification and the type of test sentences.

7.2.3 Training and Testing Demonstrations

Formally, demonstrations took form of state-action-sentence triples. Let’s denote the set

of training demonstrations as D, the set of testing demonstrations as T and the set of

testing demonstrations accompanied by new-word sentences as N . The procedure for

establishing these sets iterated over all the behaviors defined in an experiment to obtain

behavior-dependent sets Db, Tb and Nb, and then outputted their sum.

In more detail, each behavior was presented in the form of 100 trajectories. Their

lengths differed from 200 to 500 steps for behaviors in the multi-behavior collection, and

from 600 to 1200 steps for those in the composite-behavior collection. The ambiguous

behavior took 700 steps on average. For each behavior b, trajectories were separated in

two setsD′b, T
′
b of 80 and 20 elements, and were accompanied by three sets of sentences: 80

training sentences S(D′b), 20 testing sentences S(T ′b) and 20 new-word testing sentences

N(T ′b). The pairing of S(D′b) with D′b, S(T ′b) with T ′b and N(T ′b) with T ′b followed the pro-

cedure described in Section 6.1 and resulted in the above-mentioned sets Db, Tb and Nb,

respectively. Since the ambiguous behavior received no training, the testing set Tambiguous

was extended to Tambiguous = Tambiguous ∪ Dambiguous, and then reduced to contain only

the state-action pairs from the ambiguous area of the intersection between Swietokrzyska

st. and Marszalkowska st. Therein, both of the training behaviors, whose parts made

56

Sa
m

pl
e

tr
ai

ni
ng

se
nt

en
ce

s

G
o

st
ra

ig
ht

pa
st

th
e

ju
nc

ti
on

w
it

h
K

ru
cz

a
st

re
et

un
ti

ly
ou

re
ac

h
th

e
tr

af
fic

ci
rc

le

G
o

st
ra

ig
ht

ah
ea

d
pa

st
th

e
cr

os
si

ng
w

it
h

K
ru

cz
a

st
re

et
un

ti
ly

ou
re

ac
h

th
e

cr
os

sr
oa

ds
w

it
h

M
ar

sz
al

ko
w

sk
a

st
re

et
,a

nd
m

ak
e

a
ri

gh
tt

ur
n

Pu
ll

a
on

e
ei

gh
ty

w
he

n
yo

u
re

ac
h

th
e

ju
nc

ti
on

w
it

h
K

ru
cz

a
st

re
et

an
d

go
st

ra
ig

ht

Tu
rn

ri
gh

to
n

th
e

ro
un

da
bo

ut
an

d
dr

iv
e

fo
rw

ar
ds

W
he

n
yo

u
re

ac
h

th
e

ro
un

da
bo

ut
le

av
e

it
th

ro
ug

h
th

e
fir

st
ex

it
an

d
go

fo
rw

ar
ds

Le
av

e
th

e
ro

un
da

bo
ut

th
ro

ug
h

th
e

se
co

nd
ex

it

G
o

st
ra

ig
ht

,t
ur

n
le

ft
to

Sw
ie

to
kr

zy
sk

a
st

re
et

,g
o

st
ra

ig
ht

,m
ak

e
a

le
ft

tu
rn

to
M

ar
sz

al
ko

w
sk

a
st

re
et

,a
nd

go
st

ra
ig

ht
ah

ea
d

ti
ll

yo
u

ar
ri

ve
at

th
e

ro
un

da
bo

ut

H
ea

d
st

ra
ig

ht
,d

o
a

le
ft

tu
rn

to
M

ar
sz

al
ko

w
sk

a
st

re
et

,a
nd

dr
iv

e
st

ra
ig

ht
un

til
yo

u
ap

pr
oa

ch
th

e
ro

ta
ry

Sa
m

pl
e

te
st

in
g

se
nt

en
ce

s

G
o

st
ra

ig
ht

ah
ea

d
th

ro
ug

h
th

e
in

te
rs

ec
ti

on
w

it
h

K
ru

cz
a

st
re

et
ti

ll
yo

u
ar

ri
ve

at
th

e
ro

ta
ry

D
o

a
ri

gh
tt

ur
n

to
K

ru
cz

a
st

re
et

an
d

dr
iv

e
fo

rw
ar

ds
un

ti
ly

ou
ge

tt
o

an
in

te
rs

ec
ti

on
w

it
h

Sw
ie

to
kr

zy
sk

a
st

re
et

O
nc

e
yo

u
re

ac
h

th
e

cr
os

si
ng

w
it

h
K

ru
cz

a
st

re
et

,d
o

a
le

ft
tu

rn
an

d
dr

iv
e

st
ra

ig
ht

D
o

a
u-

ey
as

so
on

as
yo

u
re

ac
h

th
e

cr
os

si
ng

w
it

h
K

ru
cz

a
st

re
et

an
d

go
fo

rw
ar

ds

D
o

a
u-

tu
rn

an
d

go
st

ra
ig

ht

O
nc

e
yo

u
ar

ri
ve

at
th

e
ro

un
da

bo
ut

ex
it

it
at

th
e

fir
st

ex
it

,a
nd

dr
iv

e
fo

rw
ar

ds

Tu
rn

ri
gh

ta
tt

he
ro

to
nd

a
an

d
dr

iv
e

st
ra

ig
ht

H
ea

d
fo

rw
ar

ds
an

d
w

he
n

yo
u

re
ac

h
th

e
ro

to
nd

a
ta

ke
th

e
se

co
nd

ex
it

on
it

H
ea

d
st

ra
ig

ht
,m

ak
e

a
le

ft
tu

rn
to

Sw
ie

to
kr

zy
sk

a
st

re
et

,h
ea

d
fo

rw
ar

ds
,c

om
pl

et
e

a
le

ft
tu

rn
to

M
ar

sz
al

ko
w

sk
a

st
re

et
,

an
d

go
st

ra
ig

ht
ah

ea
d

un
ti

ly
ou

ar
ri

ve
at

th
e

ro
ta

ry

G
o

fo
rw

ar
ds

,g
o

le
ft

to
M

ar
sz

al
ko

w
sk

a
st

re
et

,a
nd

dr
iv

e
fo

rw
ar

ds
un

til
yo

u
ge

tt
o

th
e

ro
un

da
bo

ut

Ta
bl

e
7.

2:
Sa

m
pl

es
se

nt
en

ce
s

fo
r

tr
ai

ni
ng

an
d

te
st

in
g

L-
C

IL
.S

en
te

nc
es

fo
r

th
e

am
bi

gu
ou

s
be

ha
vi

or
ar

e
in

it
al

ic
s.

57

up the ambiguous behavior, took very distinctive actions and language could have po-

tentially provided promising impact on action prediction. By reducing Tambiguous to only

the ambiguous area we also remedied unfair comparisons against other methods. Those

methods could reach low average generalization error over the whole trajectory by sim-

ply copying the expert’s actions taken on the point spatially nearest the queried one.

7.3 Baselines

Baselines help to measure performance against known standards. Ablations might pro-

vide valuable insights about this performance by weighting the importance of method’s

components. The following chapter, besides showing performance of L-CIL itself, reports

results obtained using three other algorithms. Given the structure of the presented model

however, all of those methods might be actually considered as ablations. This is because

they all miss at least one aspect present in the original formulation of the algorithm.

7.3.1 Behavioral Cloning

The most straightforward approach to our problem is to use BC itself. Of course, by

gaining simplicity, we lose all the presumed perks connected to language. Since the only

input comes from the observation now, there is no possibility of differentiating between

behaviors in areas of the state space where the behaviors diverge. However, such areas

might be extremely small. Thus, we hypothesize that in the best scenario BC actually

learns to discriminate between the behaviors. In the worst case, it often outputs an action

which is the average across seen actions and fails in the imitation task.

The behavioral cloning network that was used in this study consisted of 1 feed-for-

ward hidden layer of 128 neurons and a ReLU activation function. This architecture was

found to approximate isolated behaviors with high accuracy in the preliminary runs, and

hence was used in the main experiments. Later in the text we will use the name BC only

with respect to the network that implements it.

58

7.3.2 Conditional Imitation Learning

To discriminate between different trajectories residing in the training set one could use the

original CIL approach and assign each trajectory a label (e.g. a one-hot vector) denoting

its behavior. Theoretically, this should endow the method with categorization capabilities

and allow predicting correct actions based on the labels associated with input states. This

would fall short with an unseen behavior coming to the picture however. Without know-

ing the new label a priori, the usable information would come from the state only, turning

CIL to a generic behavioral cloning algorithm. To test whether this is really the case, we

used the vanilla Conditional Imitation Learning as the second ablation.

In technical terms, CIL was represented by a two-layered feed-forward neural net-

work with ReLU activations, batch normalization, and 128 neurons in each layer. Besides

the state alone, the input also included a one-hot conditioning vector that acted as a label.

It was not used in its raw form but after being transformed through a hidden layer of 128

neurons and tanh activation function. Note that this structure was not branched as in the

original paper, mainly due to the simplicity of the environment.

7.3.3 Encoder Language-Conditional Imitation Learning

Finally, we could indeed use language to obtain compositionality but instead of speci-

fying the auxiliary task of decoding sentences, focus on just on the behavioral cloning

part. This approach could posses the same qualities as L-CIL and could offer the same

computational power more directly. To test that hypothesis, we set up one last method

called EL-CIL (Encoder Language-Conditional Imitation Learning). The flowchart and

the hyperparameter specification of the method is nearly identical to this of L-CIL. The

only practical distinction is the lack of the decoding step and sentence outputting, i.e. the

absence of the language module L.

59

Chapter 8

Results

In this chapter, we detail quantitative results of the conducted experiments and preview

how the agent behaves when it is left to produce rollouts of the learned policy. The quanti-

tative results help us to address the first three questions from Section 6.3: how good is the

method, does it generalize and why it does/does not. The qualitative analysis concerns

the fourth question: what are the limits of using our method, L-CIL, on its own.

8.1 Quantitative Results

We compare the performance of all the algorithms by analyzing sentence embeddings,

decoding accuracy, and learning progress. To ensure reproducible findings, we have run

repeated trials and performed statistical analysis on each outcome. The lack of evidence

against normal distribution of data (p > 0.5), warranted the use of confidence intervals

(CI). The shaded area present in all the plots in this section shows the 95% CI computed

based on 10 independent runs (5 for BC), unless stated otherwise. Assuming Xi is the set

of errors produced in the i-th step of the training iteration, the formula for bounds bi of

the interval was as follows:

bi = Xi ± t.975

√
V ar(Xi)

10
,

60

where t.975 was the 97.5%-th percentile of the t-distribution with 9 degrees of freedom. We

used the t-distribution due to a small sample size.

This section is divided according to the experiments – the Multi-confusion experi-

ment, the Composite-confusion experiment, and the Composite-ambiguous experiment

– to then move to the post-experimental analysis. In each experiment we additionally

measure Linguistic Generalization, for this portion examining only the relevant methods

which in fact depend on the form of sentences: L-CIL and EL-CIL. Notably, to show an

upper-bound of any algorithm’s performance in that scenario, listed figures also present

the vanilla CIL algorithm which conditions on one-hot vectors which do not change be-

tween training and testing. Therefore, we expect CIL’s curve to be identical for both cases.

8.1.1 Experiment 1: Multi-confusion

The Multi-confusion experiment regarded reproducing a set of 6 training behaviors from

the multi-behavior collection – driving straight, turning left or right on the intersection,

turning around and leaving the roundabout on the first or the second exit. It tested how

our algorithm compares to other competing methods and aimed to corroborate that be-

havioral cloning without any support of additional information fails in imitation tasks

extended with conflicting training trajectories.

General Results The plot in Figure 7a reports the mean testing error and confidence

bars for all the studied algorithms. BC visibly fails in the experiment due to its inher-

ent inability to differentiate between the training demonstrations. It achieves the highest

loss that is beyond the confidence intervals of other methods. For conditional algorithms,

we observe that they share a similar performance. Although the results for comparison

between L-CIL and EL-CIL seem to favor EL-CIL, the errors of both methods are largely

encompassed by the errors of already-established CIL algorithm. Moreover, EL-CIL’s low

error is a natural consequence of focusing only on the action loss, whereas CIL’s low error

results from conditioning on simple, discriminative vectors. These two observations indi-

61

(a) Results for the Multi-confusion experiment.

(b) Results for the Multi-confusion experiment paired with Linguistic Generalization.

Figure 7: MSE loss between predicted and expert actions for all algorithms in the Multi-

confusion experiment conducted without Linguistic Generalization (upper) and with it

(lower).

62

cate that our method does not fall short from either EL-CIL or CIL in this non-generalized

task despite being slightly worse in numerical terms.

Linguistic Generalization The results of testing L-CIL and EL-CIL on sentences that

contained new, unseen words are plotted in Figure 7b. For Linguistic Generalization we

see larger error variation than before but very similar learning progress and consequently,

the same relative ordering. Identically to the previous case however, even though EL-CIL

seems to obtain lower loss than our algorithm, both scores are still strongly coinciding

with the confidence intervals for CIL.

8.1.2 Experiment 2: Composite-confusion

The second experiment regarded reproducing 2 long driving behaviors from the com-

posite-behavior collection (see Figure 6). Its purpose was to confirm the findings of the

Multi-confusion experiment and by using more complex train and test sentences check

how well the method we proposed, L-CIL, is adapted to language generalization.

General Results The mean testing errors and confidence intervals presented in Figure

8a indicate that vanilla CIL reaches the lowest error, and the other algorithms render

approximately equivalent results. The key observations are that 1) BC exhibits surpris-

ingly good performance, 2) the confidence regions are much narrower than before. Both

of these effects are most likely related to the error averaged over long trajectories and

the fact that demonstrations showed conflicting actions only in a small area of the map.

Given that the relative error difference of our algorithm with respect to CIL is unchanged

compared to the previous experiment, all this evidence leads to a conclusion that the here

described experiment replicated the findings of the Multi-confusion experiment. In this

way, we note that L-CIL is not only on par with other methods but is also robust to longer

sentences.

63

(a) Results for the Composite-confusion experiment.

(b) Results for the Composite-confusion experiment when paired with Linguistic

Generalization.

Figure 8: MSE loss between predicted and expert actions for all algorithms in the

Composite-confusion experiment conducted without Linguistic Generalization (left)

and with it (right).

64

Linguistic Generalization Similarly, as in the previous case, the Linguistic General-

ization experiment with the composite-behavior collection replicated the results of the

Multi-confusion experiment. EL-CIL and L-CIL showed roughly equivalent performance.

Even though the overall errors were higher than when using sentences with seen words,

both methods seem to deal with the generalization on the level of new words well.

8.1.3 Experiment 3: Composite-ambiguous

Composite-ambiguous experiment measured generalization capabilities of all the tested

algorithms by performing training on 2 long driving behaviors from the composite-be-

havior collection and testing on not fully seen, ambiguous behavior. This behavior fol-

lowed a model driving trajectory that was a mixture of trajectories from the train set (see

Figure 6). As it was mentioned in Section 7.2, errors for this experiment were measured

only at the intersection between Swietokrzyska and Marszlakowska streets where the two

training behaviors diverged. There, the training trajectories showed the most distinctive

actions in approximately the same area of the state space. We hypothesized that the only

source of information to predict correct movements for these states was encoded in the

testing sentences. We assumed that neither CIL nor BC would be able to extract this in-

formation since CIL needs to condition on a new one-hot vector, unrelated to the training

vectors, and BC can only use the representation of the state. The goal of this experiment

was to check if our algorithm, L-CIL, manages to learn the ambiguous behavior, and see

how it performs in comparison to the ablations, especially EL-CIL. Given the results of

our preliminary tests, we decided to double the training time assigned to all the tested

methods. Moreover, to simplify the task of learning the language model, we also in-

troduced two variations of language conditional algorithms: frozen L-CIL (L-CIL f) and

frozen EL-CIL (EL-CIL f). Both algorithms froze the weights of the encoder network to

retain the highest possible quality of the hidden vectors. The former method did so af-

ter observing 3 consecutive increases of the sentence loss associated with the ambiguous

behavior, whereas the latter method froze the weights after a fixed amount of 20 epochs.

65

(a) Results for the Composite-ambiguous experiment.

(b) Results for the Composite-ambiguous experiment – L-CIL, EL-CIL and BC. Note:

expanded form of the image above.

Figure 9: MSE loss between predicted and expert actions for algorithms in the Compos-

ite-ambiguous experiment conducted without Linguistic Generalization.

66

Figure 10: Results for the Composite-ambiguous experiment for frozen L-CIL, frozen

EL-CIL and BC.

General Results In Figures 9a and 9b one can find two MSE learning curve compar-

isons. The first one shows the performance of all the algorithms, but extremely large

errors of CIL, which diverged during learning, hide important data. The second plot dis-

plays errors of only L-CIL, EL-CIL and BC. According to our pessimistic hypothesis, BC

seemed to extract enough information from the state in order to provide very good nu-

merical approximation to the optimal actions. Both EL-CIL and L-CIL performed worse

than BC. To see if we can remedy this unfavorable result, we tested if increasing the qual-

ity of L-CIL’s encodings affects the ordering of the methods. We tried to achieve better

encodings by freezing the encoder network. The plot visible in Figure 10 shows the results

of this manipulation done for both L-CIL and EL-CIL. We can observe that all algorithms

reached equivalent performance and were much more stable than before. Moreover, both

algorithms succeeded in matching BC’s performance despite more challenging optimiza-

tion that also included language. It is even more impressive for L-CIL that needed to

learn the decoding procedure.

67

(a) Results for the Composite-ambiguous experiment paired with Linguistic Gen-

eralization.

(b) Results for the Composite-ambiguous experiment paired with Linguistic Gen-

eralization for frozen L-CIL and frozen EL-CIL.

Figure 11: MSE loss between predicted and expert actions for algorithms in the Compos-

ite-ambiguous experiment conducted with Linguistic Generalization.

68

Linguistic Generalization Results for the task in which both the behaviors and the sen-

tences were ambiguous once again depended on the version of the algorithms. As seen

in Figure 11a, L-CIL was more stable for that task than EL-CIL. Mind that the error of

CIL was as big as in Figure 9, and hence it is not included in the referred plot. However,

after freezing the weights of the encoder to secure high-end sentence encodings, both

methods achieved equivalent performance again (see Figure 11b). The error they eventu-

ally reach, albeit showing more variation during learning, is numerically comparable to

the one obtained without Linguistic Generalization. Hence, here discussed experiment

seems to show that language conditional algorithms are adapted to abstracting language

even when the tested behavior is new. Moreover, the results strengthen the hypothesis

that our algorithm exhibits the similarity property since it was able to follow the ambigu-

ous behavior prompted by a sentence with new words. This could have been achieved

only if to predict the actions, the method used similarity between unseen and training

sentences.

8.1.4 Summary of Action Prediction Results

Table 8.1 summarizes all the mentioned results showing the mean of the error between

predicted and expert actions attained at the end of the training. It was at 200th epoch

for Composite-ambiguous experiments and 100th for all other experiments. The main

information included therein is that our method, when properly modified, offers similar

performance to other benchmark models, despite more challenging optimization scheme

that also accounts for language. There is not enough evidence, however, to state whether

it significantly helps following unseen, ambiguous behaviors. Most likely, this is due to an

underlying issue with the experimental task that we will discuss in detail momentarily.

Still, conditioning on language is superior to conditioning on one-hot vectors when it

comes to ambiguity, as CIL failed in Composite-ambiguous experiment.

It is possible to notice some trends in the data. Firstly, BC is surprisingly accurate in

the Composite-ambiguous experiment. Our hypothesis, which we will explore in the

69

Experiment

Algorithm Multi-confusion Composite-confusion Composite-ambiguous

– Ling. Gen. – Ling. Gen. – Ling. Gen.

BC 0.062* - 0.014* - 0.028 -
CIL 0.021 - 0.008 - 1.064* -
EL-CIL 0.017 0.022 0.016* 0.075* 0.101* 0.116*
L-CIL 0.029* 0.032* 0.015* 0.098* 0.057* 0.069*
EL-CIL f - - 0.014* 0.056 0.034 0.034
L-CIL f - - 0.015* 0.033 0.033 0.038

Table 8.1: Mean error over actions for different experimental settings for all the methods

and behaviors under scrutiny computed after 100 epochs or, for both of the Composite-

ambiguous settings, after 200 epochs. Columns correspond to particular experiments

conducted with (“Ling. Gen.”) or without (“–”) Linguistic Generalization. The value in

bold in each column pinpoints the lowest mean error in an experiment. Asterisks indicate

whether the difference with the lowest mean error was significant (asterisk) or not.

qualitative analysis of the results, is that too much information was included in the state

of the world alone. A likely scenario is that the car was turning one direction earlier than

it did the other direction and BC learned to differentiate samples of separate behaviors

based on that. This was not possible in the Multi-confusion experiment, and hence BC

obtained worse results, because there were many more actions which often occurred in

the same area of the state space.

Secondly, EL-CIL is the best method in the Multi-confusion experiments where our

train and test sets contain the same behaviors, and we test for differentiation between

them. Its difference to CIL is nevertheless not significant. We speculate that EL-CIL is

better than other algorithms because it is allowed to optimize the conditioning vectors

to specifically predict the actions. This stands in contrast to L-CIL which optimizes two

objectives at once, thus making itself more prone to higher errors, or CIL for which the

vectors are fixed.

70

Thirdly, our L-CIL algorithm is significantly worse than the best method in the Multi-

confusion and Composite-confusion experiments conducted without Linguistic Gener-

alization. We have already said that this effect is caused by optimizing two loss functions

and that it is most likely inconsequential in practice in some cases. For instance, error

plots in the Multi-confusion experiment show that the error of both EL-CIL and L-CIL

in large chunks coincides with the confidence interval for vanilla CIL. As a consequence,

it seems reasonable to assume the practical performance will not differ for either of these

algorithms. To elucidate whether the level of accuracy of our method is indeed sufficient,

in the next section we study all the algorithms qualitatively.

Fourthly, both language methods exhibit generalization properties. Adding new words

does not seem to strongly affect their final results, irrespective of the sentence length (the

sentences in the Multi-confusion experiment were rather short in comparison to the sen-

tences in the Composite-confusion experiment). More importantly, language conditional

algorithms succeeded in the Composite-ambiguous experiment with Linguistic Gener-

alization, and reduced the error to similar values as in the simpler version of this exper-

iment. This shows that they are robust not only to changing words in the sentences or

varying their length, but also to modifying their denotation.

Finally, freezing the encoder’s weights seems to greatly affect the performance of lan-

guage conditional methods. Both EL-CIL and L-CIL achieved significantly higher results

after freezing the encoder in Linguistic Generalization experiments, and the standard

Composite-ambiguous experiment. This also allowed them to perform with the same

quality as BC for that experiment. It is valuable to notice, however, that freezing the

weights is implemented robustly only in L-CIL, whereas in EL-CIL it is performed arbi-

trarily. It is unclear how to implement the same procedure for another set of behaviors,

and without freezing the parameters, L-CIL f easily outperforms EL-CIL.

71

8.1.5 Language Encoding and Decoding Analysis

Results presented in the previous subsection seem to show that conditioning on language

is on par with label-conditioning for Confusion experiments and does not do harm in

Composite-ambiguous experiment, this time in contrast to label-conditioning. It is not

clear, however, if our algorithm offers any advantages over EL-CIL (or its frozen version

over EL-CIL f) and if its ability to do well in the Composite-ambiguous experiment comes

from neglecting the language and focusing on the details of the state space (as seemingly

BC) or not. Further analysis shows that this is not the case and L-CIL, in contrary to other

methods, possesses the ability to correctly assess similarity between input sentences.

Initially, we looked at the sentence decoding error. We hypothesized that it was learn-

ing the language model that enabled L-CIL to outperform CIL in the Composite-am-

biguous experiment, and that a better language model available for L-CIL f led to better

performance. Formally, the output of our algorithm was a L-element vector of vectors v

from the latent word2vec space. For n-element input sequence of words s, we defined the

decoding to be a sequence of n first elements of v, say v[:n]. To analyze the quality of this

decoding, we turned it to a sentence s′ by mapping each element v[i] to a word whose

latent representation had the lowest euclidean distance to it. We measured the decod-

ing error using the BLEU score algorithm [69] which numerically captures the quality of

machine translation outputs. Let’s denote M(i) as the number of i-grams (i consecutive

words of a sentence) that are identical between the input sentence s and the auto-encoded

output s′ and let H(i) be the number of i-grams of s. Since in our case s and s′ have the

same length, the BLEU score BLEU(s′, s) was defined as

BLEU(s, s′) =
4∏
i=1

(
M(i)

H(i)

) 1
4

. (8.1)

In this way, BLEU measured the geometric mean over percentages of i-gram matchings

up to 4-grams.

72

(a) BLEU score for L-CIL.

(b) BLEU score for L-CIL f.

Figure 12: BLEU score for the decoded vs target sentences corresponding to the behav-

iors from the Composite-ambiguous experiment computed for the L-CIL and L-CIL f

algorithms. Vertical bars indicate 95 % confidence interval computed over 5 runs.

73

(a) EL-CIL

(b) L-CIL

Figure 13: Test sentence embeddings plotted on a 2D plane produced by trained EL-CIL

(upper) and L-CIL (lower) algorithms. Different colors denote different types of behav-

iors. Light green points correspond to the unseen behavior go straight and turn left and go

straight. Each point denotes a unique sentence.

74

(a) EL-CIL f

(b) L-CIL f

Figure 14: Test sentence embeddings plotted on a 2D plane produced by trained EL-

CIL f (upper) and L-CIL f (lower) algorithms. Different colors denote different types of

behaviors. Light green points correspond to the unseen behavior go straight and turn left

and go straight. Each point denotes a unique sentence.

75

Figure 12a shows the BLEU score for the decoded vs target sentences associated with

the behaviors used in the Composite-ambiguous experiment (2 train and 1 test behavior).

What is striking is that the BLEU score for sentences describing the ambiguous behavior

improves only slightly during training, in contrast to the BLEU score for train sentences

which is clearly increasing. Similar findings relate to the frozen L-CIL algorithm for which

the BLEU score is higher overall, but likewise static (see Figure 12b). This indicates that

learning does occur, but it does not affect the performance of the algorithm evaluated on

unseen data. Due to this finding, we decided to look further to explain L-CIL’s ability to

generalize.

A key enabler of our algorithm’s performance is the quality of its encodings. Fig-

ure 13 shows T-SNE plots for several sentences’ hidden representations produced by two

language-conditional algorithms and projected onto a 2-dimensional plane. The embed-

dings are clustered well in both cases. However, for EL-CIL they are clearly independent,

whereas L-CIL saves some information present in the linguistic cue. Thanks to that, its

embeddings resemble those of the behavior which turns left at the ambiguous area (same

as the ambiguous behavior), which in turn invokes similar actions. Note that CIL’s one-

hot vectors are also unable to generalize since they belong to independent dimensions of

the latent space by definition. The importance of the encodings is replicated for frozen

L-CIL and EL-CIL (Figure 14). Thanks to freezing, EL-CIL f generates embeddings with

similar continuity as L-CIL in Figure 13b. However, they are very distant in the embed-

dings space, contrary to the embeddings found by L-CIL f (Figure 14b).

In total, our insights indicate that language conditional methods generalize thanks to

high-quality language embeddings. The decoding step in L-CIL seems to further improve

this quality and that is the advantage it has over EL-CIL. Although this advantage is not

reflected in the final error either of the frozen method attains, in the next section we tested

if it influences the qualitative performance of the algorithms.

76

8.2 Qualitative Results

To discover the limitations of L-CIL, its comparison to EL-CIL and its applicability at this

stage of maturity we looked at rollouts obtained when running best versions of either of

the algorithms in the training environments. Concretely, the qualitative data for Compos-

ite-ambiguous experiment was gathered using frozen EL-CIL and frozen L-CIL, whereas

we used standard EL-CIL and L-CIL for the two other experiments. We also investi-

gated surprisingly good performance on BC in the Composite-ambiguous experiment to

see whether it averages the error between two conflicting behaviors or recognizes them

based on small differences in the state values, as was our initial intuition.

By and large, our studies revealed that sensible movements are attainable for mod-

erately short behaviors (e.g. used in the Multi-confusion experiment) and break down

when the length of the behavior, and consequently the sentence, is increased. Despite that,

L-CIL f shows promising performance when imitating the ambiguous behavior, whereas

EL-CIL f does not. Hence, smaller differences between the sentence embeddings seem to

cue L-CIL f to take correct actions. Tests for the ambiguous behavior also corroborated

that BC’s ability to reduce the test error comes from the fact it differentiates the states in

which two training algorithms differ extremely well. Overall, by performing compara-

tive analysis we find out that our algorithm offers high quality of the rollouts when not

solicited by other techniques and could offer a valuable extension to existing software.

The best results can be found in Figures 15, 16 and 17. They show visual changes in

the environment caused by the agent’s actions when it was placed in one of the possible

starting positions and given linguistic commands. Notably, all of the data discussed in

this section was gathered using test sentences (without new words) and test states. In the

case of sentences with new words used in the Linguistic Generalization experiments the

errors were higher and behaviors were not as accurate, although one could notice similar

trends.

77

Figure 15: Sample rollouts of the multi-behavior collection generated by a trained L-CIL

network. The image presents movements across multiple time-frames at once. It also

shows sample sentences used to cue the agent, one per every behavior.

78

Results presented in Figure 15 were obtained by running the L-CIL algorithm as this

proved to be the most stable quantitatively. It should be pointed out though, that all of

the conditional imitation learning algorithms followed similar trajectories for the multi-

behavior collection. Despite some variations between their rollouts, overall deviations

in comparison to the training trajectories were scarce and Figure 15 could just as well

correspond to EL-CIL or CIL. Vanilla behavioral cloning, on the other hand, was unable

to perform any sensible behavior, most likely due to too many conflicting datapoints. This

supports quantitative results from the previous section and general findings on BC in this

kind of setting, e.g. found in the original CIL paper [22].

For the composite-behavior collection, trajectories followed by agents irrespective of

which algorithm they were trained with, were not that exact. Error in cloning built up

rapidly and eventually led to a divergence from the model trajectory. Below, we present

a collection of successful runs obtained with our algorithm that despite their overall cor-

rectness, are still far from being perfect, as can be seen in Figure 16 or Figure 17.

Note that the behaviors in the composite-behavior collection were longer and more

complex than other behaviors. Consequently, so were the sentences that described them.

Auto-encoding those sentences and predicting the action with the hidden vector was in

this light a more demanding task than before. Distortion or failure in cloning the trajec-

tories was presumably caused by the offset of this setup in the form of incremental error.

Lengthy sentences affected the learning process directly by creating improper encodings.

These, in turn, led to inaccurate action predictions and incremental changes in visited in

comparison to known states. This might have eventually led the agent to explore previ-

ously unseen areas in which the actions were almost random.

When it comes to the rollouts of the ambiguous behavior, it allowed us to obtain a

clearer picture of the inner workings of each algorithm. For simplicity, we tested this

behavior only in the seemingly ambiguous intersection (see Figure 17). As expected, CIL

failed in replicating the correct motion and was completely stuck in the starting point,

drove backwards or swirled around the map. Interestingly, EL-CIL f behaved sensibly,

79

Figure 16: Rollout of the u-shaped trajectory from the composite-behavior collection per-

formed by a trained L-CIL network. The image presents movements across multiple time-

frames at once. It also shows a sample sentence used to cue the agent.

80

Figure 17: Partial rollouts of the ambiguous behavior performed by each tested algo-

rithm. The image presents movements across multiple time-frames at once. It also shows

a sample sentence used to cue the agent. The correct movement was to turn left at the

intersection which was only completed by BC and frozen L-CIL.

81

but was either able to perfectly mimic the left turn instead of the right turn or it drove

forwards. This points out that huge differences between the embeddings seen in Figure

14a caused the algorithm to wrongly assess the similarity between the unseen and seen

sentences. L-CIL f, on the other hand, whose embeddings were closer to one another, was

always biased to turn the right direction and performed correct turns a number of times.

Finally, BC showcased the most steady qualitative performance, proving that enough cues

were present in the trajectories for this experiment to map almost every state to the correct

action.

In spite of seemingly unfavorable comparison of our algorithm to BC and its poor per-

formance for longer behaviors, it has to be pointed out that imitation learning methods

are known to diverge when not used in a more complex framework. Because the differ-

ences of L-CIL with respect to an already-established algorithm CIL are scarce or even

favor our method (see the above analysis of the ambiguous behavior), we conclude that

our algorithm offers competitive practical performance and does have the potential for

industrial applications.

82

Chapter 9

Discussion

L-CIL enables conditional imitation learning that uses full natural and diverse sentences

as conditioning information with the analysis indicating its particular utility for gener-

alization/transfer purposes. The former characteristic might be compelling for Human-

Computer Interaction (HCI) practitioners since that method of training allows for more

understandable communication on the expert side. Moreover, it also shows great promise

for industry-based applications where users could specify queries to agents trained with

the use of L-CIL algorithm and in return expect sensible behavior. Transfer capabilities

are useful in machine learning as a whole and this work seems to prove that their inher-

ent presence in language is compatible with imitation learning. This observation should

guide future exploration of that area.

In this chapter, we will try answer questions posed in Section 6.3 and to some extent

elucidate the performance of the tested algorithms based on the gathered data. Then

we shall focus on future research in L-CIL, its extension and in IL based on language in

general.

83

9.1 Addressing Open Questions

Does it work? Confusion experiments on the multi-behavior and composite-behavior

collections indicate that L-CIL offers strong performance when imitating diverse behav-

iors. Even though it is not the numerically strongest algorithm, qualitative tests showed

that the reported differences of at most 0.01 with respect to CIL or EL-CIL have no impact

on its practical performance which, as we noted in the text, is indistinguishable from this

of the “winning” algorithms. Thus, yes, L-CIL does work.

Does it enable generalization? The analysis we performed in the Composite-ambigu-

ous experiment and the outcomes of the rollouts that were made, hint that L-CIL assesses

similarity between the sentences properly, in contrary to EL-CIL. Additionally, Linguistic

Generalization applied on top of all three experiments did not pose an increased diffi-

culty for L-CIL. In fact, our algorithm performs roughly as well on new word sentences

as those that only contain the words seen in training. Nevertheless, the experimental

setup contained loopholes that allowed BC to excel in imitating the ambiguous behavior.

This altogether indicates that, yes, L-CIL does enable generalization, but further tests are

needed to measure the limits of this capability.

Why does it do what it does? Subsection 8.1.3 suggested that L-CIL learns well because

it retains similarity between sentences when encoding them into conditioning vectors.

As above, however, this question should be re-addressed in future work with a properly

designed generalization study.

What are the limits of using it on its own? We have considered IL in raw accelera-

tion and steering commands here, without DAgger, to emphasize pure learning capabil-

ity. Qualitative performance of L-CIL in this form points out that it is comparable to

other imitation learning methods and the technical limits are similar for the standard

multiple-behavior learning tasks. It follows the desired short behaviors if they are de-

84

scribed by shorter sentences but diverges with longer behaviors and longer sentences.

After freezing the encoder weights to improve the quality of the sentence embeddings,

it also shows decent qualitative performance for the ambiguous behavior. Practical use

of imitation learning allows to assume that further optimization, modified states, model-

predictive control, and many other approaches could boost the final results and add for

practical deployment.

9.2 Broader Comments on the Results

In this section, we pinpoint the most pressing issues to research and focus on more far-

reaching interpretations of the obtained results. In general, we argue that L-CIL offers

competitive performance in conditional tasks but there should be more studies to deter-

mine if it truly manages to make use of generalization inherent to language, as hinted by

our analysis.

Value of Language-Conditional Algorithms The general idea behind conditioning in-

troduced in the CIL paper was empirically tested to make a difference both in a simulation

and in an embodied agent setup. Qualitative and quantitative results of our experiments

seem to indicate this is also the case when conditioning information has a more com-

plex structure, i.e. natural sentences. In other words, conditioning on sentence vectors

may not fall considerably short from vanilla CIL and the evidence we gathered allows to

conjecture that careful optimization may even lead to beating it.

Further tests on generalization capability After freezing the weights of the encoder

network, L-CIL, EL-CIL and BC all attained comparable performance for the Composite-

ambiguous experiment. Further analysis revealed that for language conditional methods

this was most likely enabled by the high-quality of sentence embeddings. Then, in qual-

itative tests we found that embeddings computed by L-CIL and then L-CIL f are better

than those computed by EL-CIL or EL-CIL f. The reason for that was because the embed-

85

dings for behaviorally similar trajectories were closer to one another. In total, this effect –

caused by adding the decoding procedure absent in the baselines – allowed L-CIL f to re-

duce the error and imitate the unseen behavior well. Although this seems as a convincing

line of reasoning, similarly correct performance of simple BC calls to further investigate

generalization. In particular, all the algorithms should be tested in a more complex set of

behaviors where it is impossible to draw enough data from the representation of the state

alone. This should prevent BC from succeeding in ambiguity experiments and measure

the real extent to which proper language-embedding helps L-CIL. It has to be pointed

out though, that introducing such a set is a challenge in itself. The requirement is that

the behaviors should be compellingly realistic, diverse, compositional to enable creating

new behaviors, and at the same time ambiguous in a non-trivial way for a dynamical

simulator.

Similarity Property As it was hinted in the previous chapter, a likely explanation for

L-CIL’s performance is that it uses similarity between input sentences to produce actions,

and retains that similarity in the embedding space. This would be an exact consequence

of having the similarity property from Section 6.1. To elaborate, an improved version of L-

CIL – frozen L-CIL – performed quantitatively and qualitatively well in the Composite-

ambiguous experiment where we had 2 training behaviors (let’s call them behaviors A

and B) and 1 test, ambiguous behavior. In the problematic intersection area (c.f Figure

6) only behavior A followed the same trajectory as the ambiguous behavior, whereas B

was the confusing behavior. Now, sentences we generated for the ambiguous behavior

were structurally alike the sentences for behavior A with a BLEU score of 0.28 vs.0.04 for

sentences describing behavior B. It seems that L-CIL f’s performance stemmed mainly

from this very fact. The similarity property is also the cause for L-CIL/L-CIL f’s results

in the Linguistic Generalization experiments. New-word sentences were encoded into

less informative vectors on which the conditioning provided less stable outcomes, but

they were mapped onto representations within proper clusters irrespective of the length

86

of a sentence or the type of the behavior it corresponds to (train or test). This is visible in

Figures 7b, 8b and Figure 11. Still, considering the success of standard behavioral cloning,

the full explanation of whether L-CIL does possess similarity property should take place in

further work with more demanding set of behaviors.

L-CIL: Outlook for Performance with Long Trajectories Failure in obtaining very good

qualitative performance in the Composite-behaviors collection provides a great direc-

tion for future work. The most likely explanation is that our sentences and trajectories

were too long, which led to positive feedback cycles in error and worse quality of action-

prediction. Nevertheless, the presented qualitative results of L-CIL allow to assume that

deepening the network, doing further parameter search or choosing a proper set of sen-

tences might enable the algorithm to do a full rollout in that scenario as well.

9.3 Ideas for the Future

Future work should begin with addressing two important drawbacks of our studies.

Firstly, it should introduce a more complex set of behaviors so that the ambiguous behav-

ior was not easily cloned based on the state representations alone. This would present

the real impact of L-CIL’s language decoding in generalization experiments and could

confirm if the insights we gained in this thesis were correct. Secondly, it should focus on

hyperparameter optimization which, as already mentioned in the method chapter, was

not performed exhaustively in this study and could improve both quantitative and qual-

itative performance of the algorithm. Additionally, there are numerous directions that

should be researched to gain more information on the general quality and characteris-

tics of our Language-Conditional Imitation learning algorithm. They include research on

robustness to different forms of sentences, increasing practical usefulness and extended

testing. We also mention one possible extension, namely predicting the world’s dynamics

as an additional auxiliary task.

87

9.3.1 Improvements

The most salient matter seems to regard the robustness of L-CIL to linguistic data. In

the discussed experiments, sentences that described the ambiguous behavior resembled

sentences for one of the behaviors more than they did sentences for the other one. This

eventually affected the final results. As much as this is something expected from the algo-

rithm, it should be pointed out that the similarity of sentences could have been prevented

with a different scheme of their generation. Hence, future studies should investigate two

other scenarios. Namely, 1) how L-CIL works when neither of the behaviors particularly

stands out when it comes to their linguistic description, or 2) when similar sentences de-

scribe both the non-congruent behavior(s) and the ambiguous behavior. Generally, lan-

guage aspect of L-CIL should undergo a careful study from both computer science and

linguistics perspective.

Another valuable step to undertake is in making the discussed method fully appli-

cable to real life environments. Embodied CIL proved effective when coupled with a

self-driving car. Given the dominating topic of this work is also self-driving, it seems like

a natural extension to try this with L-CIL. The main challenge would be in improving

qualitative performance of L-CIL, establishing a proper state representation that would

allow the algorithm to keep its features, and connecting it to a working perception sys-

tem. With that, training the agent could be done in an offline manner. As mentioned

in the introduction to this chapter, a self-driving car (or in fact any other kind of robot)

capable of understanding human language would be very stimulating to the field of HCI

and could offer manifold potential consumer/industry applications.

Besides self-driving, there are various other settings in which language could pos-

itively affect the final performance if not only provide amiable extension that helps hu-

mans to communicate with the agent. For this reason, L-CIL should be additionally tested

in different simulated environments and more challenging expert datasets. In the pre-

sented studies, actions were generated with a hand-made controller. Due to this specifi-

cation, variance of the actions was rather minimal and the problem could be also posed

88

using a discrete action space (even though it was not treated as such in the experiments).

In more realistic scenarios, the action space could have wider continuous distribution and

a stable algorithm should be resistant to these cases as well.

9.3.2 Possible Extensions

Language-Conditional Imitation Learning also entertains room for extensions. Like it was

sketched in the first three chapters of the thesis, it follows a multi-task learning approach,

specifically an auxiliary learning approach. It is not out of the question that additional

tasks may increase the effectiveness of the method. One possible way forward is to better

account for the action-based language acquisition theory mentioned in Chapter 5. For

now, the algorithm is only concerned with the proper sentence decoding but in the orig-

inal psychological formulation, humans supposedly predict each action’s results too. We

said that this element is implicitly contained in the expert’s demonstrations, but the over-

all model of the world’s dynamics is actually not known to the agent. Thus, there is a

possibility that forcing it to learn this model alongside sentence auto-encoding would use

the synergies between these two areas and improve the results even further. This could

also address L-CIL’s embodiment problem (c.f. Subsection 3.2.4).

89

Chapter 10

Conclusion

This work presented a new algorithm from the field of imitation learning called Language-

Conditional Imitation Learning. To prepare for the problem setup we discussed basic

notions in RL and IL as well as related literature that concerned inverse RL, multi-task

learning, language use in imitation or reinforcement learning and the general issue of

conditioning. To motivate this research philosophically we also went through psycholog-

ical basis for L-CIL in the form of action-based language acquisition theory and brought

upon the topic of conditioning in social and neural sciences. The algorithm, eventually

implemented as a neural network, was introduced in Chapter 6. Its main assumption was

to use the standard behavioral cloning loss paired with the reconstruction loss for input

sentences. Experiments shown in Chapter 8 and elaborated further in the text revealed

that L-CIL successfully imitates multiple training behaviors while exhibiting quality per-

formance on the ambiguous one. There was also evidence in favor of the linguistic gen-

eralization in which the test sentences were not only different, but also contained unseen

words. In our standard generalization experiment we surprisingly observed excellent

performance of vanilla behavioral cloning, which was initially expected to fail. Due to

that, we concluded that the major objective for future work should be in addressing the

drawbacks connected to this study so that it became insurmountable for BC. However,

the analysis we performed on L-CIL already elucidated that it succeeds in the generaliza-

90

tion task due to its architectural setup. The auxiliary loss enabled it to capture the proper

similarity between input sentences which, at test time, led it to produce hidden represen-

tations (conditioning vectors) that are similar to those successfully used during training.

Even though further studies should measure the real extent to which L-CIL generalizes in

the face of ambiguity using language, our insights and the qualitative results we obtained

by doing rollouts with our algorithm already show great promise for Human-Computer

Interaction, NLP and robotics research in general.

91

Bibliography

[1] ABBEEL, P., COATES, A., AND NG, A. Y. Autonomous helicopter aerobatics through apprenticeship

learning. The International Journal of Robotics Research 29, 13 (2010), 1608–1639.

[2] AGRAWAL, A., MALINOWSKI, M., HILL, F., ESLAMI, A., VINYALS, O., AND KULKARNI, T. Gener-

ating diverse programs with instruction conditioned reinforced adversarial learning. arXiv preprint

arXiv:1812.00898 (2018).

[3] ANDREAS, J., KLEIN, D., AND LEVINE, S. Learning with latent language. In Annual Conference of the

North American Chapter of the Association for Computational Linguistics (2017).

[4] ANDREAS, J., KLEIN, D., AND LEVINE, S. Modular multitask reinforcement learning with policy

sketches. In Proceedings of the 34th International Conference on Machine Learning (2017), JMLR.org,

pp. 166–175.

[5] ARTZI, Y., AND ZETTLEMOYER, L. Weakly supervised learning of semantic parsers for mapping

instructions to actions. Transactions of the Association for Computational Linguistics 1 (2013), 49–62.

[6] BABES, M., MARIVATE, V., SUBRAMANIAN, K., AND LITTMAN, M. L. Apprenticeship learning about

multiple intentions. In Proceedings of the 28th International Conference on Machine Learning (ICML-11)

(2011), pp. 897–904.

[7] BAHDANAU, D., HILL, F., LEIKE, J., HUGHES, E., HOSSEINI, S. A., KOHLI, P., AND GREFENSTETTE,

E. Learning to understand goal specifications by modelling reward. In International Conference on

Learning Representations (2018).

[8] BILLARD, A., CALINON, S., DILLMANN, R., AND SCHAAL, S. Robot programming by demonstration.

Springer handbook of robotics (2008), 1371–1394.

[9] BOULARIAS, A., KOBER, J., AND PETERS, J. Relative entropy inverse reinforcement learning. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (2011), pp. 182–

189.

[10] BRANAVAN, S., ZETTLEMOYER, L. S., AND BARZILAY, R. Reading between the lines: Learning to

map high-level instructions to commands. In Proceedings of the 48th annual meeting of the association for

computational linguistics (2010), Association for Computational Linguistics, pp. 1268–1277.

92

[11] BREITER, H. C., AHARON, I., KAHNEMAN, D., DALE, A., AND SHIZGAL, P. Functional imaging of

neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 2 (2001),

619–639.

[12] CARUANA, R. Multitask learning. Machine learning 28, 1 (1997), 41–75.

[13] CHAPLOT, D. S., SATHYENDRA, K. M., PASUMARTHI, R. K., RAJAGOPAL, D., AND SALAKHUTDI-

NOV, R. Gated-attention architectures for task-oriented language grounding. In Thirty-Second AAAI

Conference on Artificial Intelligence (2018).

[14] CHAWLA, M., AND MIYAPURAM, K. P. Context-sensitive computational mechanisms of decision

making. Journal of experimental neuroscience 12 (2018), 1179069518809057.

[15] CHEN, D. L., AND MOONEY, R. J. Learning to interpret natural language navigation instructions from

observations. In Twenty-Fifth AAAI Conference on Artificial Intelligence (2011).

[16] CHEN, H., SUHR, A., MISRA, D., SNAVELY, N., AND ARTZI, Y. Touchdown: Natural language nav-

igation and spatial reasoning in visual street environments. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2019), pp. 12538–12547.

[17] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., BAHDANAU, D., BOUGARES, F., SCHWENK, H.,

AND BENGIO, Y. Learning phrase representations using rnn encoder-decoder for statistical machine

translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(2014), pp. 1724–1734.

[18] CHOW, S. S., ROMO, R., AND BRODY, C. D. Context-dependent modulation of functional connec-

tivity: secondary somatosensory cortex to prefrontal cortex connections in two-stimulus-interval dis-

crimination tasks. Journal of Neuroscience 29, 22 (2009), 7238–7245.

[19] CHOWDHURI, S., PANKAJ, T., AND ZIPSER, K. Multinet: Multi-modal multi-task learning for au-

tonomous driving. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (2019),

IEEE, pp. 1496–1504.

[20] CHUNG, J., KASTNER, K., DINH, L., GOEL, K., COURVILLE, A. C., AND BENGIO, Y. A recurrent

latent variable model for sequential data. In Advances in neural information processing systems (2015),

pp. 2980–2988.

[21] CO-REYES, J. D., GUPTA, A., SANJEEV, S., ALTIERI, N., ANDREAS, J., DENERO, J., ABBEEL, P., AND

LEVINE, S. Guiding policies with language via meta-learning. In International Conference on Learning

Representations (2018).

[22] CODEVILLA, F., MIILLER, M., LÓPEZ, A., KOLTUN, V., AND DOSOVITSKIY, A. End-to-end driving via

conditional imitation learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA)

(2018), IEEE, pp. 1–9.

93

[23] COHEN, M. R., AND NEWSOME, W. T. Context-dependent changes in functional circuitry in visual

area mt. Neuron 60, 1 (2008), 162–173.

[24] DAUMÉ, H., LANGFORD, J., AND MARCU, D. Search-based structured prediction. Machine learning

75, 3 (2009), 297–325.

[25] DEISENROTH, M. P., ENGLERT, P., PETERS, J., AND FOX, D. Multi-task policy search for robotics. In

2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), IEEE, pp. 3876–3881.

[26] DIMITRAKAKIS, C., AND ROTHKOPF, C. A. Bayesian multitask inverse reinforcement learning. In

European workshop on reinforcement learning (2011), Springer, pp. 273–284.

[27] DUAN, Y., ANDRYCHOWICZ, M., STADIE, B., HO, O. J., SCHNEIDER, J., SUTSKEVER, I., ABBEEL, P.,

AND ZAREMBA, W. One-shot imitation learning. In Advances in neural information processing systems

(2017), pp. 1087–1098.

[28] FINN, C., LEVINE, S., AND ABBEEL, P. Guided cost learning: Deep inverse optimal control via policy

optimization. In International Conference on Machine Learning (2016), pp. 49–58.

[29] FOX, R., BERENSTEIN, R., STOICA, I., AND GOLDBERG, K. Multi-task hierarchical imitation learning

for home automation. In 2019 IEEE 15th International Conference on Automation Science and Engineering

(CASE) (2019), IEEE, pp. 1–8.

[30] FU, J., KORATTIKARA, A., LEVINE, S., AND GUADARRAMA, S. From language to goals: Inverse

reinforcement learning for vision-based instruction following. In International Conference on Learning

Representations (2019).

[31] GALINDO-LEON, E. E., STITT, I., PIEPER, F., STIEGLITZ, T., ENGLER, G., AND ENGEL, A. K. Context-

specific modulation of intrinsic coupling modes shapes multisensory processing. Science advances 5, 4

(2019), eaar7633.

[32] GALLESE, V. Before and below ‘theory of mind’: embodied simulation and the neural correlates of

social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 1480 (2007),

659–669.

[33] GALLESE, V. Mirror neurons and the social nature of language: The neural exploitation hypothesis.

Social neuroscience 3, 3-4 (2008), 317–333.

[34] GALLESE, V., AND GOLDMAN, A. Mirror neurons and the simulation theory of mind-reading. Trends

in cognitive sciences 2, 12 (1998), 493–501.

[35] GLEAVE, A., AND HABRYKA, O. Multi-task maximum entropy inverse reinforcement learning. arXiv

preprint arXiv:1805.08882 (2018).

[36] GLENBERG, A. M., AND GALLESE, V. Action-based language: A theory of language acquisition,

comprehension, and production. cortex 48, 7 (2012), 905–922.

94

[37] GOYAL, P., NIEKUM, S., AND MOONEY, R. J. Using natural language for reward shaping in reinforce-

ment learning. In International Joint Conferences on Artificial Intelligence (2019).

[38] HARUNO, M., WOLPERT, D. M., AND KAWATO, M. Hierarchical mosaic for movement generation. In

International congress series (2003), vol. 1250, Elsevier, pp. 575–590.

[39] HERMANN, K. M., HILL, F., GREEN, S., WANG, F., FAULKNER, R., SOYER, H., SZEPESVARI, D.,

CZARNECKI, W. M., JADERBERG, M., TEPLYASHIN, D., ET AL. Grounded language learning in a

simulated 3d world. arXiv preprint arXiv:1706.06551 (2017).

[40] HO, J., AND ERMON, S. Generative adversarial imitation learning. In Advances in neural information

processing systems (2016), pp. 4565–4573.

[41] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural computation 9, 8 (1997),

1735–1780.

[42] HUBER, J., PAYNE, J. W., AND PUTO, C. Adding asymmetrically dominated alternatives: Violations

of regularity and the similarity hypothesis. Journal of consumer research 9, 1 (1982), 90–98.

[43] JANNER, M., NARASIMHAN, K., AND BARZILAY, R. Representation learning for grounded spatial

reasoning. Transactions of the Association for Computational Linguistics 6 (2018), 49–61.

[44] KALAKRISHNAN, M., PASTOR, P., RIGHETTI, L., AND SCHAAL, S. Learning objective functions for

manipulation. In 2013 IEEE International Conference on Robotics and Automation (2013), IEEE, pp. 1331–

1336.

[45] KOLLAR, T., TELLEX, S., ROY, D., AND ROY, N. Toward understanding natural language directions.

In Proceedings of the 5th ACM/IEEE international conference on Human-robot interaction (2010), IEEE Press,

pp. 259–266.

[46] KUDERER, M., GULATI, S., AND BURGARD, W. Learning driving styles for autonomous vehicles from

demonstration. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015), IEEE,

pp. 2641–2646.

[47] KUMANO, H., SUDA, Y., AND UKA, T. Context-dependent accumulation of sensory evidence in the

parietal cortex underlies flexible task switching. Journal of Neuroscience 36, 48 (2016), 12192–12202.

[48] LANGE, S., GABEL, T., AND RIEDMILLER, M. Batch reinforcement learning. In Reinforcement learning.

Springer, 2012, pp. 45–73.

[49] LUKETINA, J., NARDELLI, N., FARQUHAR, G., FOERSTER, J., ANDREAS, J., GREFENSTETTE, E.,

WHITESON, S., AND ROCKTÄSCHEL, T. A survey of reinforcement learning informed by natural

language. In International Joint Conferences on Artificial Intelligence (2019).

[50] MACGLASHAN, J., BABES-VROMAN, M., DESJARDINS, M., LITTMAN, M. L., MURESAN, S., SQUIRE,

S., TELLEX, S., ARUMUGAM, D., AND YANG, L. Grounding english commands to reward functions.

In Robotics: Science and Systems (2015).

95

[51] MACMAHON, M., STANKIEWICZ, B., AND KUIPERS, B. Walk the talk: Connecting language, knowl-

edge, and action in route instructions. Def 2, 6 (2006), 4.

[52] MANGIN, O., AND OUEDEYER, P.-Y. Feature learning for multi-task inverse reinforcement learning.

[53] MAYLOR, E. A., AND ROBERTS, M. A. Similarity and attraction effects in episodic memory judgments.

Cognition 105, 3 (2007), 715–723.

[54] MEHTA, A., SUBRAMANIAN, A., AND SUBRAMANIAN, A. Learning end-to-end autonomous driving

using guided auxiliary supervision. arXiv preprint arXiv:1808.10393 (2018).

[55] MENG, M., CHERIAN, T., AND SINHA, P. Neural basis of contextual modulation on categorical face

perception. Journal of Vision 9, 8 (2009), 456–456.

[56] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND DEAN, J. Distributed representations

of words and phrases and their compositionality. In Advances in neural information processing systems

(2013), pp. 3111–3119.

[57] MISRA, D., LANGFORD, J., AND ARTZI, Y. Mapping instructions and visual observations to actions

with reinforcement learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-

guage Processing (2017), pp. 1004–1015.

[58] MNIH, V., BADIA, A. P., MIRZA, M., GRAVES, A., LILLICRAP, T., HARLEY, T., SILVER, D., AND

KAVUKCUOGLU, K. Asynchronous methods for deep reinforcement learning. In International confer-

ence on machine learning (2016), pp. 1928–1937.

[59] MOORE, D. A. Order effects in preference judgments: Evidence for context dependence in the gener-

ation of preferences. Organizational Behavior and Human Decision Processes 78, 2 (1999), 146–165.

[60] NAIR, A., CHEN, D., AGRAWAL, P., ISOLA, P., ABBEEL, P., MALIK, J., AND LEVINE, S. Combining

self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE International

Conference on Robotics and Automation (ICRA) (2017), IEEE, pp. 2146–2153.

[61] NARASIMHAN, K., BARZILAY, R., AND JAAKKOLA, T. Grounding language for transfer in deep rein-

forcement learning. Journal of Artificial Intelligence Research 63 (2018), 849–874.

[62] NG, A. Y., RUSSELL, S. J., ET AL. Algorithms for inverse reinforcement learning. In Icml (2000), vol. 1,

p. 2.

[63] NIEUWENHUIS, S., HESLENFELD, D. J., VON GEUSAU, N. J. A., MARS, R. B., HOLROYD, C. B., AND

YEUNG, N. Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage

25, 4 (2005), 1302–1309.

[64] OH, J., GUO, X., LEE, H., LEWIS, R. L., AND SINGH, S. Action-conditional video prediction using

deep networks in atari games. In Advances in neural information processing systems (2015), pp. 2863–2871.

[65] OSA, T., PAJARINEN, J., NEUMANN, G., BAGNELL, J. A., ABBEEL, P., PETERS, J., ET AL. An algorith-

mic perspective on imitation learning. Foundations and Trends R© in Robotics 7, 1-2 (2018), 1–179.

96

[66] OTTEN, M., SETH, A. K., AND PINTO, Y. A social bayesian brain: How social knowledge can shape

visual perception. Brain and Cognition 112 (2017), 69–77.

[67] PALATUCCI, M., POMERLEAU, D., HINTON, G. E., AND MITCHELL, T. M. Zero-shot learning with

semantic output codes. In Advances in neural information processing systems (2009), pp. 1410–1418.

[68] PALMER, C. R., AND KRISTAN JR, W. B. Contextual modulation of behavioral choice. Current Opinion

in Neurobiology 21, 4 (2011), 520–526.

[69] PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W.-J. Bleu: a method for automatic evaluation of

machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics

(2002), Association for Computational Linguistics, pp. 311–318.

[70] PATEL, M. Active preference learning using trajectory segmentation. Master’s thesis, McGill Univer-

sity, Retrieved from http://digitool.library.mcgill.ca, 2019.

[71] PEREZ, E., STRUB, F., DE VRIES, H., DUMOULIN, V., AND COURVILLE, A. Film: Visual reasoning

with a general conditioning layer. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).

[72] PETRO, L., PATON, A., AND MUCKLI, L. Contextual modulation of primary visual cortex by auditory

signals. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1714 (2017), 20160104.

[73] PETTIBONE, J. C., AND WEDELL, D. H. Examining models of nondominated decoy effects across

judgment and choice. Organizational behavior and human decision processes 81, 2 (2000), 300–328.

[74] POMERLEAU, D. A. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural

information processing systems (1989), pp. 305–313.

[75] RAMACHANDRAN, D., AND AMIR, E. Bayesian inverse reinforcement learning. In IJCAI (2007), vol. 7,

pp. 2586–2591.

[76] RIGOLI, F., FRISTON, K. J., MARTINELLI, C., SELAKOVIĆ, M., SHERGILL, S. S., AND DOLAN, R. J. A

bayesian model of context-sensitive value attribution. ELife 5 (2016), e16127.

[77] RIGOLI, F., MATHYS, C., FRISTON, K. J., AND DOLAN, R. J. A unifying bayesian account of contextual

effects in value-based choice. PLoS computational biology 13, 10 (2017), e1005769.

[78] RIZZOLATTI, G., AND CRAIGHERO, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 (2004),

169–192.

[79] ROBERTS, B., HARRIS, M. G., AND YATES, T. A. The roles of inducer size and distance in the ebbing-

haus illusion (titchener circles). Perception 34, 7 (2005), 847–856.

[80] ROSS, S., AND BAGNELL, D. Efficient reductions for imitation learning. In Proceedings of the thirteenth

international conference on artificial intelligence and statistics (2010), pp. 661–668.

[81] ROSS, S., AND BAGNELL, J. A. Reinforcement and imitation learning via interactive no-regret learn-

ing. arXiv preprint arXiv:1406.5979 (2014).

97

[82] ROSS, S., GORDON, G., AND BAGNELL, D. A reduction of imitation learning and structured prediction

to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence

and statistics (2011), pp. 627–635.

[83] RUDER, S. An overview of multi-task learning in deep neural networks. arXiv preprint

arXiv:1706.05098 (2017).

[84] SAMMUT, C., HURST, S., KEDZIER, D., AND MICHIE, D. Learning to fly. In Machine Learning Proceed-

ings 1992. Elsevier, 1992, pp. 385–393.

[85] SILVER, D., SCHRITTWIESER, J., SIMONYAN, K., ANTONOGLOU, I., HUANG, A., GUEZ, A., HUBERT,

T., BAKER, L., LAI, M., BOLTON, A., ET AL. Mastering the game of go without human knowledge.

Nature 550, 7676 (2017), 354.

[86] SIMMONS, R. G., GOLDBERG, D., GOODE, A. P., MONTEMERLO, M., ROY, N., SELLNER, B., URMSON,

C., SCHULTZ, A. C., ABRAMSON, M., ADAMS, W., ATRASH, A., BUGAJSKA, M. D., COBLENZ, M. J.,

MACMAHON, M., PERZANOWSKI, D., HORSWILL, I., ZUBEK, R., KORTENKAMP, D., WOLFE, B.,

MILAM, T., AND MAXWELL, B. A. Grace: An autonomous robot for the aaai robot challenge. AI

Magazine 24 (2002), 51–72.

[87] SIMONSON, I. Choice based on reasons: The case of attraction and compromise effects. Journal of

consumer research 16, 2 (1989), 158–174.

[88] SINHA, A., AKILESH, B., SARKAR, M., AND KRISHNAMURTHY, B. Attention based natural language

grounding by navigating virtual environment. In 2019 IEEE Winter Conference on Applications of Com-

puter Vision (WACV) (2019), IEEE, pp. 236–244.

[89] SKUBIC, M., PERZANOWSKI, D., BLISARD, S., SCHULTZ, A., ADAMS, W., BUGAJSKA, M., AND

BROCK, D. Spatial language for human-robot dialogs. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part C (Applications and Reviews) 34, 2 (2004), 154–167.

[90] SRIVASTAVA, N., AND SCHRATER, P. Learning what to want: context-sensitive preference learning.

PloS one 10, 10 (2015), e0141129.

[91] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction. MIT press, 2018.

[92] TRAPP, S., AND BAR, M. Prediction, context, and competition in visual recognition. Annals of the New

York Academy of Sciences 1339, 1 (2015), 190–198.

[93] TRUEBLOOD, J. S., BROWN, S. D., HEATHCOTE, A., AND BUSEMEYER, J. R. Not just for consumers:

Context effects are fundamental to decision making. Psychological science 24, 6 (2013), 901–908.

[94] WANG, X., HUANG, Q., CELIKYILMAZ, A., GAO, J., SHEN, D., WANG, Y.-F., WANG, W. Y., AND

ZHANG, L. Reinforced cross-modal matching and self-supervised imitation learning for vision-

language navigation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(2019), pp. 6629–6638.

98

[95] WULFMEIER, M., ONDRUSKA, P., AND POSNER, I. Maximum entropy deep inverse reinforcement

learning. arXiv preprint arXiv:1507.04888 (2016).

[96] YU, H., ZHANG, H., AND XU, W. Interactive grounded language acquisition and generalization in a

2d world. In International Conference on Learning Representations (2018).

[97] ZHANG, T., MCCARTHY, Z., JOW, O., LEE, D., CHEN, X., GOLDBERG, K., AND ABBEEL, P. Deep

imitation learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE

International Conference on Robotics and Automation (ICRA) (2018), IEEE, pp. 1–8.

[98] ZIEBART, B. D., MAAS, A., BAGNELL, J. A., AND DEY, A. K. Maximum entropy inverse reinforce-

ment learning. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3 (2008),

AAAI’08, AAAI Press, pp. 1433–1438.

99

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	I Technical Foundations and Related Work
	Theoretical Framework
	Markov Decision Process
	Reinforcement Learning
	Imitation Learning
	Inverse Reinforcement Learning
	Behavioral Cloning
	Conditional Imitation Learning

	Related work on Imitation Learning
	Inverse Reinforcement Learning
	Behavioral Cloning
	Traditional Approaches
	Deep Learning Approaches
	Accumulation of Error
	Embodiment

	Conditional Imitation Learning
	Multi-task Learning

	Related Work on Language in Imitation or Reinforcement Learning
	Language use in Historical Perspective
	Grounding
	NLP
	Beyond NLP

	Conditioning
	Language in State-Action Space
	Reward Shaping
	Instruction Following
	Technical Realization of Conditioning

	Summary

	Action-Based Language Acquisition Theory
	Support for Conditioning: Psychology & Neuroscience
	Psychology
	Neurosciences

	Support for L-CIL: Action-Based Language Acquisition Theory

	II Technical Contributions
	Language-Conditional Imitation Learning
	Overview and Technical Specification
	Implementation
	Open Questions

	Experimental Setup
	Environment
	Dataset Definitions
	Behaviors
	Language
	Training and Testing Demonstrations

	Baselines
	Behavioral Cloning
	Conditional Imitation Learning
	Encoder Language-Conditional Imitation Learning

	Results
	Quantitative Results
	Experiment 1: Multi-confusion
	Experiment 2: Composite-confusion
	Experiment 3: Composite-ambiguous
	Summary of Action Prediction Results
	Language Encoding and Decoding Analysis

	Qualitative Results

	Discussion
	Addressing Open Questions
	Broader Comments on the Results
	Ideas for the Future
	Improvements
	Possible Extensions

	Conclusion

