
Recommendation of Items with
Inter-Dependencies:

A Course Plan Recommender System

Amjad Almahairi

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

2011-07-15

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of Masters of Science

c©Amjad Almahairi, 2011

DEDICATION

To friends and all people of Syria who are struggling for their basic rights of

dignity and freedom, my parents, and my dear wife.

ii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Professor Gregory Dudek,

for his direction, great ideas, support, encouragement, and above all his kindness and

gentle demeanor. He has provided an excellent example of a successful professor and

supervisor. No words that can express the gratitude I feel to my dear parents, who

have sacrificed a lot to help their son be a successful person. Thanks to my beloved

wife. I could not have accomplished so much without her support and patience.

Thanks to my dear sister, who has been always there to support and encourage me.

Finally, I would like to thank everyone in the Mobile Robotics Lab for the enjoyable

time I spent with them, their suggestions especially on the web survey, and the nice

discussions we had throughout our lab meetings.

iii

ABSTRACT

In this thesis we address the problem of recommendation in domains where items

have strong dependency constraints. We apply our work on the academic courses

domain, where dependencies between items are present as explicit prerequisite con-

straints, implicit ordering patterns, and general course consumption restrictions. We

propose a new recommendation approach that combines both ordering patterns of

items learned from data and estimated user interests in providing a personalized

sequence of recommendations that take into account item inter-dependencies. Our

approach is based on modeling the recommendation problem as a Markov Decision

Process (MDP), in which the goal is to find a plan with the maximum total reward.

We have developed an implementation of our approach as a web-based course rec-

ommender system, which recommends academic course course plans to students for

a number of subsequent terms. Experiments on real data collected from students

of McGill University demonstrate that our approach has better performance com-

pared to other simpler models which rely exclusively on student interests or on course

co-occurrence patterns.

iv

ABRÉGÉ

Dans cette thèse, nous abordons le problème de recommandation dans les do-

maines où les éléments ont des fortes contraintes de dépendance. Nous appliquons

notre travail sur le domaine des cours académiques où les dépendances entre les

éléments sont présentes comme contraintes de condition préalable explicites, pat-

tern de l’arrangement implicite, et restrictions générale de la consomption de cours.

Nous proposons une nouvelle approche au problème de recommandation qui combine

l’arrangement des articles appris á partir des données et les intérêts de l’utilisateur,

estimés pour fournir une séquence personnalisée des recommandations, qui prend en

compte les interdépendances des éléments. Notre approche est base sur la modélisation

du problème de recommandation comme processus de décision Markovien (MDP)

dont le but est de trouver un plan á profit totale maximale. Nous avons implémenté

notre approche sur le Web en tant qu’un système qui propose des plans de cours aux

étudiants pour un certain nombre de périodes subséquentes. Nos expériences sur des

données réelles recueillies auprès des élèves de l’Université McGill démontrent que

notre approche est plus performant comparativement aux modles qui ne considèrent

que les intérêts d’étudiant ou les patterns de co-occurrence de cours.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF FIGURES . viii

1 Introduction . 1

2 Related Work . 7

2.1 Traditional Recommendation techniques 9
2.2 Sequence Recommendation . 13
2.3 Course Recommender Systems . 14
2.4 Recommendation with constraints 15
2.5 Temporal Modeling in Recommendations 17
2.6 MDPs in Recommendation . 18

3 Course Plan Recommendation Problem 20

3.1 Notation . 20
3.2 Problem Definition . 22
3.3 Example . 22

4 Course Reward Prediction . 25

4.1 Rewards Based on Transcript Similarity 26
4.2 Rewards Based on Course Description Similarity 28

5 The MDP Course Planner . 30

5.1 MDP Model Components . 30

vi

5.1.1 State space S . 30
5.1.2 Action set As . 32
5.1.3 Transition function Tr(s, a) 32
5.1.4 Reward function RT (s) . 33
5.1.5 Value function V π

T (s) . 33
5.2 Building the Model . 34
5.3 Course Planning as Solving the MDP 34

6 Implementation Details . 36

6.1 Course Plan Recommendation System 36
6.1.1 Recommendation Package 37
6.1.2 Database . 39
6.1.3 Presentation . 41

6.2 Transcripts Survey . 42

7 Experimental Evaluation . 45

7.1 McGill Transcripts Dataset . 45
7.1.1 Data Sparsity and State Pruning 46

7.2 Course Reward Prediction Evaluation 49
7.2.1 Performance Measure . 49
7.2.2 Experimental Procedure 50
7.2.3 Results and Discussion . 51

7.3 Evaluation of Course Plan Recommendations 54
7.3.1 Performance Measures . 54
7.3.2 Experimental Procedure 56
7.3.3 Results and Discussion . 58
7.3.4 Experimental Evaluation of α and β Thresholds 64

8 Conclusions . 69

8.1 Summary . 69
8.2 Future Directions . 70

References . 74

vii

LIST OF FIGURES
Figure page

3–1 Example of a student’s transcript. 21

3–2 Example of the course plan recommendation problem. 23

6–1 Overview of the course plan recommendation package 37

6–2 Overview of the course plan recommendation package 40

6–3 System’s presentation . 43

6–4 Screenshot of a parsed transcript on the survey 44

7–1 Dataset sparsity illustrated by the number of courses or states that
occur with certain frequencies in the dataset. 47

7–2 Reward prediction performance . 52

7–3 Average values of known ratings for each of the nine values of grades
in all transcript entries of the dataset. 53

7–4 Average accuracy and coverage vs. number of known terms when
using state-based pruning (SBP) with α = 1 60

7–5 Average accuracy and coverage vs. number of known terms when
using course-based pruning (CBP) with β = 3 61

7–6 Average accuracy and coverage vs. length of plan in terms when using
state-based pruning (SBP) with α = 1 62

7–7 Average accuracy and coverage vs. length of plan in terms when using
course-based pruning (CBP) with β = 3 63

7–8 Alpha values effect on average accuracy and coverage vs. number of
known terms when using state-based pruning (SBP) 66

viii

7–8 Beta values effect on average accuracy and coverage vs. number of
known terms when using course-based pruning (CBP) 67

ix

CHAPTER 1
Introduction

In the presence of today’s enormous volume of on-line content and media col-

lections, using technologies that can process huge amounts of information and help

us make right decisions has become inevitable. Researchers refer to the phenomenon

of having an excessive amount of information that cannot be understood or taken

advantage of by the information overload problem.

Recommender Systems tackle the information overload problem by providing

individuals with personalized suggestions or recommendations to help them choose

items that match their needs and interests. They draw an analogy from real life

experience, where people ask their friends’ opinion to decide what books to read or

movies to watch.

Traditional recommendation techniques operate mainly by estimating a rating

for each item, which is a numerical value that reflects how much the user likes the

item. Item ratings are then used to select an item or a set of items with highest

ratings as recommendations. These techniques have proven to work very well in rec-

ommending movies, news, music and other domains where satisfying user preferences

is the main objective. In domains where items are subject to ordering constraints,

however, recommending an item that violates the constraints is infeasible even if we

expect the user to like it. For example, recommending the last episode of a drama

1

series will be useless to a person who has no idea about the the whole story or flow

of events.

In this thesis we address the problem of generating recommendations for items

with inter-dependencies in the sequence that they should be consumed. We focus on

the domain of academic courses as our application. Our approach, however, applies

to many other domains where items have sequential nature, such as novels, TV

series, and website links. Academic courses enjoy strong dependencies that can take

various forms. First, dependencies are present as “mandatory” course prerequisites

which compel certain ordering in taking courses (e.g. the course “Programming I”

is a prerequisite for the course “Programming II”). Another form is what we like

to call soft-prerequisites, which are implicit course orderings that is proven to be

advantageous to students (e.g. Discrete Structures course is highly recommended to

be taken before Algorithms course, but not required). In addition, there could be

other general constraints that are not included in any written format (e.g. taking

four heavy programming courses is not a good idea). Therefore, recommending

academic courses needs to take into account these dependencies in addition to the

user’s interests in order to provide useful and feasible recommendations. Besides

being an important instance of the class of items with inter-dependencies, academic

course advising in general is a very complex problem which requires in-depth domain

knowledge of course choices and their constraints, in addition to understanding the

student’s interests and strengths. Hence, solving this problem has advantages from

both theoretical and applied perspectives.

2

In domains where items have strong inter-dependencies it is not sufficient to

provide the user with the top-N items even if they conform to dependency constraints.

This applies to even the broader case of items that are consumed in a sequential

manner, because the order in which items are consumed affects the degree of user

satisfaction [29]. Therefore, we will try in this thesis to answer the question: “What is

the sequence of courses that student x should take in the subsequent terms?”. This is

a special and less studied class of problems in recommender systems literature called

sequence recommendation [18].

The goal of this thesis is to recommend academic course plans to students based

on their interests. We define a course plan formally as a t-length sequence of sets

of k courses. Therefore, given the student’s course history, we recommend a plan of

k courses per term for the following t terms. A student’s interest in an individual

course is represented as a numerical value in the range of least interesting to most

interesting, and the interest in a course plan is modeled as the sum of interests

in courses that it is composed of. We provide formal definition of the course plan

recommendation problem in Chapter 3.

The algorithm for recommending course plans balances two objectives: 1) the

plan should fit the student’s interests; 2) it must respect ordering constraints between

courses. In fact, these two objectives can conflict with each other. Choosing the

best set of courses in terms of user preference for each successive academic session

can violate long-term ordering constraints, because it might ignore uninteresting

prerequisites although they are required for later interesting courses (e.g. the student

might be very interested in a Robotics course but hates Linear Algebra, which is a

3

prerequisite). Therefore, greedily maximizing the interest value of current courses

must be traded-off against respecting ordering constraints by recommending less

desirable courses in earlier stages of the plan. We do not, however, adopt an approach

that strictly satisfies prerequisites. We argue that holding tightly to these constraints

is an impractical decision, since transcripts of real students often violate prerequisites

(as we show in section 7.3.3). This is due to several factors: prerequisite constraints

do not count for equivalence of courses in terms of satisfying prerequisites, they

might be changed with different instructors, and they can be overlooked in certain

circumstances. We rather adopt on a more practical solution to this problem that

avails of course co-occurrence patterns, learned from real students’ transcripts, to

enforce the choice of next courses that conform to a high degree to hard and soft

prerequisites. Although co-occurrence patterns are not expected to fully capture

real-world ordering of courses, we show in this thesis that they provide an efficient

and powerful tool for capturing course dependencies.

As we show in Chapter 5, our overall approach is based on modeling the course

plan recommendation problem as a Markov Decision Process (MDP), which is a stan-

dard model for probabilistic sequential optimization [38]. We define the states that

our course planner can be in at any academic term (time step or decision epoch)

by the set of the courses that the student has taken in that term. In each term,

and based on the current state of the system, a set of courses (an action) is chosen

based on maximizing the total reward for the whole plan. In contrast to the stan-

dard stochastic MDP model, our planner evolves to the next state deterministically

after taking a certain action. This classifies our model as a Deterministic MDP (or

4

Deterministic Dynamic Program as in [38]). However, we use the notion of transition

function between any two states to enforce the logical ordering between the two sets

of courses. Therefore, by finding an optimal policy for this MDP model, we find the

plan that has the maximum total reward, and respects logical ordering of courses.

The main limitation that MDP approaches suffer from is the high dimensionality of

solution space. We overcome this limitation by a careful choice of state-space and

maintaining only the portion of it that we encounter in training data.

The recommended course plan is composed entirely of courses that the target

student has not taken before. This raises the question on how to specify the rewards

for these individual courses to the target student. We propose a solution to this

problem in Chapter 4 by estimating the student’s interest in an individual course

(course reward) based on reported knowledge of interest in previously taken courses.

Our method is based on using a hybrid approach of traditional collaborative filtering,

which matches the target student to other students with similar tastes, and content-

based filtering, which is based on analyzing textual description provided with each

course.

In Chapter 6 we describe the implementation of our approach as a course plan

recommendation system. We have developed and deployed a system that recom-

mends course plans to Computer Science and Software Engineering students at

McGill University. Additionally, we discuss in this chapter the data collection of

student transcripts through a web survey. We have used this transcript database

for both the deployment of our recommender system and in the evaluation of our

approach.

5

In Chapter 7 we discuss the experimental evaluation of our approach based on

the transcripts collected from students of McGill University. The results demonstrate

that our approach improves the quality of course plans that rely exclusively on course

rewards or on course co-occurrences.

Finally, in Chapter 8 we conclude our work with a summary of the key points of

this thesis and the important observations from the experimental results, and discuss

directions for future work.

6

CHAPTER 2
Related Work

The general recommendation problem can be decomposed into two subtasks:

rating prediction and item selection. Rating prediction assigns scores or ratings to

potential items that reflect the target user’s preferences. Item selection, on the other

hand, uses the estimated ratings, along with other criteria, for choosing items to

be recommended to the target user. The majority of work in recommender systems

literature deals with item domains that impose no restrictions on consuming items,

such as movies, music tracks, and books [1]. In other words, items in such systems

can be recommended independently, or without the need to check back with each

other for satisfying any constraints. As a result, the primary focus in the literature

is on offering various techniques for modeling user preferences and improving rating

prediction, as item selection can be trivially accomplished in this case by sorting

items according to their ratings.

In this thesis, we are interested in recommendation of items that are subject to

ordering constraints in general, but we focus on academic courses as the application

domain for our proposed approach. This leads to a special class of methods, where

the goal is not only to recommend items that maximize user interests, but also respect

these constraints. Two general approaches for recommendation in such domains were

previously introduced in the literature:

7

• Rating modification: The score given to an item based on user preferences is

increased or decreased according to how much it conforms to item dependencies.

Hence, the final score given to an item represents its “utility” to the user rather

than its mere “desirability”. For instance, an item given a high rating according

to the preferences of the user could get a low utility score if it has unfulfilled

dependencies. Consequently, items are selected based on a new score that takes

into account item dependencies.

• Constrained selection: The item selection process takes other factors into ac-

count, aside from the estimated user ratings, in choosing items for presentation.

Therefore, item ratings represent only the user’s preferences, and other con-

straints are taken into account to prune out choices that violate supplementary

constraints. Although this problem seems easy for individual items, it is a hard

problem when the goal is to recommend a “bundle” of items which have fulfilled

dependencies and maximum sum of scores as shown in [34].

These two approaches are not necessarily mutually exclusive. The approach

introduced in this thesis is based on assigning utility scores to items based on user

preferences and item inter-dependency constraints. In addition, the user is provided

with a sequence of items, which is ordered such that dependency constraints on items

are respected.

We provide in Section 2.1 a brief description of traditional recommendation

techniques which offer different approaches for estimating item ratings for a tar-

get user. This discussion is important in our work since we apply some of these

techniques in assigning user desirability scores (rewards) to items regardless of their

8

inter-dependencies (see Chapter 4). In addition, we discuss some of the key relevant

work from different perspectives to our problem and approach. The first is the prob-

lem of generating an ordered sequence of recommendations to the user (Section 2.2),

as our goal is to recommend a sequence of courses. In Section 2.3 we discuss some

key previous research on the academic course recommendation problem. In Section

2.4 we present related work discussing recommendation under constraints, as item

inter-dependencies are a special class of constraints on the recommendation process.

In Section 2.5 we present work done on using temporal information in making rec-

ommendations, and finally in Section 2.6 we present some key recommender systems

that used MDPs in generating recommendations.

2.1 Traditional Recommendation techniques

Traditional approaches in recommender systems offer various techniques for rat-

ing prediction, but they fall mainly into three categories: content-based filtering,

collaborative filtering and hybrid methods.

Content-based filtering relies on internal features of items in estimating their

ratings. This approach is based on analyzing the content of items in order to capture

only important features. Recommendation in content-based recommender systems is

based on a simple heuristic that users will like items similar to what they liked in the

past. For example, if Bob has expressed interest in action movies, we would expect

him to like “The Dark Knight” movie. The first step of recommending items is to

build an item representation that models items by a a list of features. In addition,

features of items favored by the user are used to learn a user profile is learned that

models user preferences. In the movie recommendation example, a movie could be

9

represented by the list of genres it can be categorized to, its actors, director, ...etc.

Additionally, the user profile models frequent genres or actors found in the user’s

favored movies. The second step is computing a feature-based distance metric that

measures similarity between items and the user profile. Therefore, new items are

recommended to the user if they are similar to the user’s profile.

In order to build an item representation, content-based recommender systems

assume that items are described by a rich information source from which features

can be extracted. Most content-based recommender systems deal with items (or

item descriptions) that are available in text format, such as news articles [27, 5]

and web pages [36]. Extracted features in this case are important keywords. The

simplest item representation is the Vector Space Model, which models each item

as a point in an n-dimensional feature space. In this model, each keyword of the

overall vocabulary of items represents a dimension of the space, and the weight

represents how important is the keyword to the item. Keyword weights are often

computed using the Term Frequency-Inverse Document Frequency (TF-IDF) metric

[39], which measures the association between an item (document) and a keyword

(term) by the number of times the keyword appears in the item (term frequency), but

de-emphasising keywords that might appear frequently in all items (inverse document

frequency).

Additionally, several approaches were introduced in the literature for modeling

and learning user profiles [37]. One approach is based on modeling the user profile as

an average weight vector of favored item vectors, which is computed using a variation

of Rocchio algorithm method as in [3, 27]. Items are then matched with the user

10

profile using some similarity measure, such as cosine similarity. The weight vector

representing user profile can be modeled also as a linear classifier, whose dot product

with item vectors gives a predicted rating for corresponding items [47]. Another

approach models the profile as a collection of past item vectors used as labeled

samples for k-nearest neighbor method [6].

Many applications may have limited amount of information on the content of

items, or it might be very hard to extract useful features from item content (e.g.

images and music). Furthermore, content-based filtering has a major drawback of

over specialization. Consistently recommending similar items to the current interests

reduces the novelty of the recommendations, although they might be consistent with

the user’s known interests. This specific issue is addressed with the concept of

“serendipity” in recommendations, where the goal of serendipitous recommendations

is to provide unexpected but interesting items.

The second class of of methods, collaborative filtering, can potentially provide

serendipitous recommendations because they are based on the experience of other

users. Collaborative filtering makes use of the choices of other humans regarding

items rather than item contents in rating prediction. In the movie example, ratings

that users give to movies are used rather than movie descriptions in predicting a

new movie rating. There are two primary approaches for collaborative filtering:

neighborhood-based (memory-based) methods and model-based methods.

Neighborhood-based approaches find a neighborhood set from the entire collec-

tion of other users’ ratings by employing statistical techniques, and then use it in

estimating ratings for the new user. The neighborhood set and can be established

11

either in the user domain or in the item domain. User-based collaborative filtering

(e.g. [16, 24, 19]) finds a neighborhood set of users to the target users. It is based

on the intuitive idea that a user will like what other “similar” people have liked.

Similarity between users is inferred based on the how much their ratings agree the

same set of items. For example, if Bob and Alice have consistently expressed similar

interests in movies -even if these movies have no common theme-, we induce that

they have similar taste in movies and that Bob will most likely be interested in a

new movie that Alice have liked. On the other hand, item based collaborative filtering

(e.g. [41, 8]) finds a neighborhood set of items for a potential item. It is based on

the same heuristic as content-based filtering that similar items will receive similar

responses. Here, however, similarity between items is based on the degree to which

user opinions agree about them, i.e. two items are considered similar if they have

received similar ratings. Therefore, the two movies “The Dark Knight” and “Batman

Begins” would be deemed similar just because they have received similar ratings.

Model-based approaches learn an off-line model that captures associations be-

tween users and items. Several machine learning techniques have been used in this

context, such as Graphical Models [17], Linear Regression [42], and latent factor

models such as: Latent Semantic Analysis (LSA) [21], Probabilistic LSA [20], and

most recently an improved Matrix Factorization Model called SVD++ [26] which

was introduced in the winning solution to the Netflix competition.1

1 A global competition for improving prediction accuracy of user ratings for movies
based on previous ratings by 10%. http://www.netflixprize.com/

12

The third class of traditional recommender systems approaches is hybrid meth-

ods, which are based on the combination of the above two mentioned approaches.

Burke [7] discuss several methods for combining recommendation techniques. The

goal of hybrid techniques is mainly to overcome some limitations of one method by

using the other method. For example, collaborative filtering suffers from the “new-

item problem”, i.e. it cannot recommend items that have not been rated before.

Content-based filtering can help in this case, as new items are recommended if they

are similar to one previously rated item. Previous systems such as Fab [3] and Rec-

ommendz [14] provide good examples for combining content-based and collaborative

filtering.

2.2 Sequence Recommendation

Most of the work in previous recommender systems focused on generating rec-

ommendations as single item or a set of items. The goal in sequence recommendation,

however, is to recommend a list of items that is expected to be pleasing for the user

if taken in order. Sequence recommendation has not been frequently addressed in

the literature. Masthoff showed that the order of items of the recommended set

in domains that have inherent ordering between items (e.g. TV series) affects user

satisfaction [29], and thus recommending a sequence of items is more appropriate in

such domains. The work of Masthoff [30] focuses on presenting a sequence of interac-

tive TV items (e.g. news items), but its main concentration is on targeting a group

of individuals, combining information from all group members, and selecting items

that satisfy the targeted group as a whole. Methods used for ordering items in the

recommended sequence are either based on heuristics such as having good narrative

13

flow, consistency in viewer mood, and strong ending, or based on interacting with

viewers and reordering items according to their feedback.

When items are subject to ordering constraints, recommending a sequence of

items becomes more evident as the sequence represents the order in which items

must be taken rather than should be taken, and hence we adopt that in our approach.

Likewise, Ge et. al. [15] recommend a sequence of pick-up locations for taxi drivers.

Pick-up locations are subject to distance constraints, as the goal is to provide a

sequence with minimized traveling distance. Selecting routes in their work, however,

is based on optimizing business success rather than satisfying user opinion. An

important commonality with our work is the combinatorial size of the solution space,

which was addressed in their work by using several pruning strategies.

2.3 Course Recommender Systems

Recommender systems technology has been recently employed in the education

domain, where the goal was primarily recommending academic courses, and more

generally recommending educational resources. Most of this work, however, does

not address item inter-dependencies. O’Mahony and Smyth [32] present an item-

based collaborative filtering algorithm for recommending elective courses to students

based on the core courses they have selected. In addition, CourseAgent system [12]

adopts a social navigation approach for course recommendation. On the contrary

to the general trend of recommender systems, recommendations in CourseAgent are

provided as visual cues that help students in selecting courses rather than a set of

recommended courses. Courses are tagged with community-based annotations in

the form of expected workload of the course and expected relevance to the student’s

14

career goals. AACORN system [40] employs a case-based reasoning approach for

course recommendation. Recommendations are built from other student transcripts

(cases), which are retrieved based on their similarity to the target student’s partial

transcript. RARE system [4] adopts a data mining approach similar to the MDP

model building step of our approach (see Section 5.2). RARE system learns from

previous course histories a set of association rules, which represent courses that are

often taken simultaneously. Recommendations are provided based on the similar-

ity between courses taken by the students and antecedents of the rules. Similarity

between courses in RARE, however, does not take into account student ratings or

grades. The inferred rules are improved in time by modifying them according to

student feedback on the provided recommendations.

Academic course recommendation has recently received special attention in the

context CourseRank2 project. The problem has been studied from various perspec-

tives [34, 35, 33], which we will discuss in the following sections.

2.4 Recommendation with constraints

Recommendation with constraints differ from the typical recommendation prob-

lem in that it must satisfy multiple objectives rather than a single one related to the

interests of the user. In the academic courses domain, the work of Parameswaran

et. al. [34] addresses the same problem of recommending courses that take into

account prerequisites. The authors, however, address the problem as an object se-

lection task. The goal of their work is to recommend a set of k courses such that

2 http://www.courserank.com

15

their prerequisites are already satisfied or otherwise included in the recommended

set. The authors prove that this problem is NP-Hard via reduction from set cover

problem, and provide polynomial time approximation algorithms for it. In contrast

to their work, we do not strictly satisfy prerequisite constraints (as we mentioned

in Chapter 1). We rather adopt an approach that relies on course co-occurrence

patterns that can capture both hard-prerequisites and soft-prerequisites.

Felfernig and Burke [13] discuss a special type of recommender systems called

Constraint-based recommendation. This technique deals with recommending prod-

ucts or services that are subject to complex constraints, but particularly ones that

may neither have large user communities nor long purchase histories. Jannach et.

al. [23] discuss applying this technique in recommending travel plans, where con-

straints are present in destination selection, transportation and accommodation ar-

rangements, and price or time limits. In such domains, products that satisfy the

set of constraints are considered good recommendations and the problem takes on

aspects of traditional resource-constrained planning. Therefore, the recommenda-

tion task is modeled as a constraint satisfaction problem. This technique follows

a knowledge-based approach, which exploits domain expertise rather than learning

patterns of user preferences from data, and hence it suffers from the typical knowl-

edge acquisition bottleneck. Our approach, in contrast, distinguishes between user

interest in items and external constraints that should be satisfied to generate feasible

recommendations.

Jambor and Wang [22] follow a rating modification approach when dealing with

recommendation under constraints. They model the rating prediction problem as

16

a multiple objective optimization problem, where prediction accuracy is the main

objective and other domain-specific objectives, such as recommending availability

in stock and profitability, as the problem constraints. They apply this approach to

address the “long-tail” problem [2] by adding constraints that degrade popular items.

2.5 Temporal Modeling in Recommendations

Leveraging sequential patterns has been studied in recommender systems, es-

pecially in the domain of Web personalization, as an extension to a large body of

work on Web usage analysis [31]. In the context of ”next page prediction” problem

[9], Deshpande and Karypis propose using user web surfing behavior in making pre-

dictions on the next page to be accessed in web browsing. Their approach is based

on modeling the user’s surfing path as a Markov chain, and then assigning proba-

bilities for following pages. In recommender systems context, Zimdars et. al. [48]

consider the order in which items were consumed in predicting user preferences. The

temporal information in these applications is used as an alternative for explicit rat-

ings. Other approaches apply time weighting schemes on rating data for computing

similarity between users in a collaborative filtering [10]: as time difference increases

between previously rated items, the contribution to similarity measure decreases.

Another interesting research direction has considered improving the performance of

collaborative filtering by studying temporal changes in user taste [25].

The precedence mining model [35] relies on precedence patterns that users tend

to follow in consuming items (taking courses) to predict future items. More specifi-

cally, the probability of taking a course is estimated given previously taken courses,

and items with the highest probabilities are recommended. The advantage of this

17

idea over traditional collaborative filtering is that it leverages precedence patterns

over all users, not only users with similar course histories. Nevertheless, it only uses

previous courses in identifying future courses, and ignores explicit information about

the user’s preferences (e.g. course ratings). Our work, on the other hand, takes into

account course ratings in identifying future courses the user might be interested in.

Additionally, unlike the prior work, we provide the user with a full course plan for

subsequent future terms, and use the precedence information in order to enforce the

right order for courses in the plan.

2.6 MDPs in Recommendation

The MDP framework has been previously applied in recommender applications

[44, 46]. These applications provide a different perspective to the general recom-

mendation problem as a dynamic process, where the effect of each recommendation

on the user’s choice is modeled, and both immediate and future returns are taken

into consideration in predicting one next step. The model is also updated based on

actual observations either periodically [44] or interactively using reinforcement learn-

ing [46]. Our work, on the other hand, uses the Markov Decision Process (MDP)

model in constructing a whole plan rather than a one-step prediction. More impor-

tantly, we avail of the MDP model in designing course plans by making sequential

decisions that maximize both the immediate rewards and long-term effects. The

designed plans maximize an objective function that satisfies both user interests and

course ordering constraints based on off-line experience rather than interacting with

the user.

18

Conversational recommender systems establish dialogues between the user and

the system in order to extract user preferences, but they usually apply fixed strategies

for interaction. Mahmood and Ricci [28] use an MDP model and apply an adaptive

Reinforcement Learning strategy for optimizing the dialogue and therefore building

a better recommendation strategy.

19

CHAPTER 3
Course Plan Recommendation Problem

3.1 Notation

We start by defining the notation we use in the rest of this thesis. Let C be

the set of all courses that we have available, where |C| = N . Let T be the set of

transcripts of previous students. A transcript T denotes the course history of a given

student and is composed of a sequence of sets of (course, rating, grade) triples such

that each set corresponds to courses the student has taken in a single term1 . A

rating rc ∈ [rmin, rmax] that the target student gives for course c ∈ C is a value that

expresses how much the student likes the course, where rmin represents the value

of least interesting and rmax the most interesting. In addition, gc is the grade that

the student receives in course c. In fact, the only information about the student we

are interested in is the transcript, so we will refer primarily to the transcript of the

target student instead of the student in the rest of the thesis. Figure 3–1 shows an

example of a transcript composed of three terms, where course objects are referred

to by their codes and arrows denote the sequential relationship between terms.

A course plan P that we would like to recommend is a t-length sequence of sets

of k courses. Figure 3–2a shows examples of course plans with t = 2, k = 2. Allowing

1 We might abuse this notation and deal with the transcript as a set of its con-
stituent courses rather than a sequence of sets.

20

Figure 3–1: Example of a student’s transcript. Each box represents a set of courses
taken in a single term, where the course is attributed with its code, received grade,
and rating. Arrows denote the sequential relationship between terms.

a variable number of courses per term in the plan makes the problem much harder,

as the number of possibilities increase exponentially. We discuss that in detail in

Section 5.1.1.

A prerequisite of a course c which imposes specific constraints on taking the

course is a logical expression composed of “AND” and “OR” operators and other

courses c′ ∈ C \ c that taking course c depends on as the expression’s operands.

These course operands take the value true if they are taken by the student in a

previous terms, and false if not, and the prerequisite expression evaluates to true

or false accordingly. For example, the course “Artificial Intelligence” or COMP 424

has the prerequisite expression: “(COMP 206 or ECSE 321) and COMP 251”. If the

student took the course COMP 206 in the term 2, then the prerequisite expression

evaluates to true when COMP 424 is taken in term 3 or any later term. We say that

a prerequisite for a given course is satisfied if its logical expression evaluates to true.

Finally, we say that a course plan P fully respects the ordering of courses or

ordering constraints if all prerequisite expressions evaluate to true, i.e. they are all

satisfied.

21

3.2 Problem Definition

We formally define in this section the problem of course plan recommendation.

Given the set of transcripts T , and the transcript T of a target student, we wish to

devise a course plan P , consisting of k courses per term for the following t terms,

such that P balances the following two objectives:

1. It has a maximum reward for the student.

2. It fully respects ordering constraints on courses.

We define reward for plan P to a student with transcript T , or RT (P), by:

RT (P) =
∑
c∈P

RT (c) (3.1)

Where the reward RT (c) for an individual course c is a value that represents how

“good” is c is for the target student with transcript T . Since this value is not known

a priori for every possible student-course pair, the first step in our approach to this

problem is to estimate this value for each pair based on the information we already

know about both the student and the course. Estimating rewards for a course c to a

target user with transcript T includes two main factors: how much this course was

liked by other similar users, and how much the user liked other courses of similar

content. We discuss that in detail in Chapter 4. In addition, as mentioned earlier in

Chapter 1, our goal is to balance these two objectives and not to fully satisfy them,

as they can be conflicting with each other.

3.3 Example

Figure 3–2 illustrates a simple example of course plan recommendation to the

transcript shown in Figure 3–1. The table shown in Figure 3–2b gives an example

22

(a) Example of two possible course plans with number of terms t = 2
and, courses per term k = 2 and their total rewards

(b) Predicted rewards for courses (c) Hard prerequisites

Figure 3–2: Example of the course plan recommendation problem.

of a set of potential courses with their predicted rewards. The table in Figure 3–2c

shows course prerequisites that are related to this example.

Reward prediction for potential courses is the first step performed to recommend

course plans, because deciding on which plan to recommend for a specific user de-

pends on estimated rewards for courses. Figure 3–2a shows two possible plans with

number of terms t = 2 and, courses per term k = 2. The rewards for PLAN 1 is 13

and for PLAN 2 is 15 as the plan’s reward is the sum of rewards for its constituent

23

courses. PLAN 2 is built by a greedy method that choses the best set of k courses

for the subsequent plans. Although it has a higher total reward, PLAN 2 does not

take into account the ordering constraints on courses. The course “COMP 206: In-

troduction to Software Systems”, which is a prerequisite for the course “COMP 303:

Software Development”, but it is recommended after it. PLAN 1, on the other hand,

has a lower reward but it is more consistent with the ordering constraints between

courses. Assuming that COMP 250, COMP 251, and MATH 323 are all taken by

the student in previous terms, PLAN 1 does not violate any course prerequisites.

Even if one of these prerequisites is violated, we can see that PLAN 1 is better than

PLAN 2 since it violates fewer constraints. In addition, PLAN 1 recommends the

course “COMP 230: Logic and Computability”, and it might be the case that it is

highly recommended to be taken before the course “COMP 330: Theoretical Aspects

of Computer Science”. As a result, PLAN 1 would be a better choice for the student.

We do not show in this example a quantitative method for preferring PLAN 1 to

PLAN 2, but we will discuss that in detail in Chapter 5.

24

CHAPTER 4
Course Reward Prediction

The approach presented in this thesis for recommending course plans relies on

the estimated rewards for potential courses. Course rewards are key in devising

personalized course plans that target the individual’s special interests. In this chapter

we describe the approach we use to estimate course rewards for a given student.

Rewards for potential courses are student-dependent. More accurately, they

depend on the specific course history of the student, along with course ratings given

by the student or the received grade. For a target student with transcript T , the

reward for a course c that the student have taken previously, i.e. c ∈ T , is based on

rating or grade information explicitly given by the student. We will refer to these

rewards as known rewards. In this thesis, we will use either the rating rc the student

gave to course c, or the grade gc that the student scored in c as the known reward to

a course. In the former case, the first objective of the course plan recommendation

becomes finding courses that the student will like the best, while in the latter it

becomes finding courses that the student will perform best at. In both cases, the

reward prediction process and further the course plan recommendation procedure

will be identical except that they will have different value ranges.

Based on the known rewards, the goal is to estimate the unknown reward RT (c)

for any course c ∈ C\T . We adopt two approaches for estimating these rewards. The

first is a user-based collaborative filtering approach, which is based on the idea that

25

students who have similar course histories and preferences (transcripts) will have

similar responses on future courses. This approach is based on matching the target

student transcript with other student transcripts in order to find a neighborhood set

of transcripts which are the most “similar” to it. We then estimate the unknown

reward for a course c based on a weighted average of the known rewards of the

neighborhood members for the same course c. We will discuss this approach in

detail in Section 4.1.

The second is a content-based filtering approach, which relies on the idea that

courses with similar content will have similar responses by the same student. We

analyze a textual course description provided for each course in our database and

infer their similarity based on similarity of their descriptions. The reward for a future

course is estimated as a weighted average of known rewards for previous courses taken

by the target student. We will discuss this approach in detail in Section 4.2.

These two approaches give two separate predictions of rewards for potential

courses. We propose taking a linear combination of both predictions to provide the

final prediction, and will show in Section 7.2.3 that combining their results performs

better than taking each one individually.

4.1 Rewards Based on Transcript Similarity

The collaborative filtering approach described in this section is accomplished by

a neighborhood-based algorithm that computes the unknown reward RT (c) for the

target transcript T , based on the known rewards for the same course c in similar

transcripts. Therefore, it is a user-based neighborhood approach as explained in

Section 2.1. The similarity between the two transcripts T, T ′ is measured with the

26

Pearson correlation coefficient using the set of courses they have in common, STT ′ :

sim(T, T ′) =

∑
c∈STT ′ (RT (c)−RT)(RT ′(c)−RT ′)√∑

c∈STT ′ (RT (c)−RT)2
∑

c∈STT ′ (RT ′(c)−RT ′)2
(4.1)

Where RT is the mean of known rewards for courses that appear in T . Based on this

transcript similarity measure, we can define the set of most similar transcripts, Ŝ,

but only those who have a known reward for c. We can compute the value of RT (c)

now based on the known rewards for c in transcripts of Ŝ as follows:

RT (c) = RT + k
∑
T ′∈Ŝ

sim(T, T ′)(RT ′(c)) (4.2)

Where k = 1/
∑

T ′∈Ŝ |sim(T, T ′)| is a normalizing factor. Hence, we have estimated

the unknown reward for a course to a target transcript T as the weighted average of

the known rewards for the same course but for other similar transcripts.

Neighborhood based collaborative filtering often performs poorly when there

is a very small number of ratings, as it uses only ratings of in common items in

making predictions and does not rely on prior assumptions [1]. This phenomenon

occurs in our system when we have students taking diverse set of courses and have

very few courses in common. Generally speaking, students of similar programs take

similar courses at the first one or two terms, but tend to specialize and take diverse

courses as they progress in their program and take advanced courses. This, in fact,

suggests that collaborative filtering predictions of rewards for these advanced courses

will not be as accurate as other courses as there will be less data samples to base

the prediction on. Nevertheless, students take advanced courses that are related to

interests. Thus, we can infer rewards for advanced courses based on known rewards of

27

similar courses taken by the student. In the following section, We introduce another

reward prediction method based on this idea.

4.2 Rewards Based on Course Description Similarity

We describe in this section a content-based filtering method that exploits simi-

larity between course contents in making new recommendations. We take advantage

of the textual course description associated with each course in our database in

applying content-based filtering. The descriptive textual data is written by course

coordinators, so it explains, to a large extent, the content of each course sufficiently.

We use this description to match between courses, as we expect that courses with

related content have similar descriptions. Similarity between descriptions is based

on in common words. For example, the description for Computational Biology (com-

puter science course) has many words in common with the description of Molecular

Biology (biology course), although the two are from two different programs. They

have words like “molecule”, “gene”, “sequence”, and “structure” in common, al-

though the words might have different inflected forms, such as having “molecular”

in one description and “molecule” in the other. Therefore, we follow a standard

natural language processing procedure of extracting keyword-based features from

course descriptions. A vocabulary of terms is built from descriptions of all courses

after stemming their words and thus representing each course description, di, as a

vector in a vector space model. Then we use the term frequency-inverse document

frequency (TF-IDF) weighting scheme to measure the weight of each keyword, kwj,

in the description. Consequently, each course description, di, is represented as a

28

vector di = {wi1, wi2, . . . }, where each wij is the weight of keyword kwj in descrip-

tion di. The similarity between two course descriptions is computed using the cosine

similarity measure as follows:

sim(di, dj) =

∑
k wikwjk√∑

k w
2
ik

√∑
k w

2
jk

(4.3)

The similarity between any pair of courses is computed only once and stored for later

use in all future recommendations. The reward prediction of a potential course c in

this method is computed using a nearest neighbor approach, where the predicted

rating is computed as a weighted average of known rewards for courses in the target

transcript T . The precomputed similarity value between a taken course, c′ ∈ T , and

the potential course c is used to weight the known reward RT (c′), so courses with

similar content will have a greater influence on the predicted rating for a new course.

This method, on the other hand, has multiple limitations. Similarity based on textual

course descriptions can suffer from the synonymy and polysemy phenomena that are

often in Information Retrieval systems. This in fact can lead to inaccurate similarity

values. In addition, this methods relies on having similar courses in the student’s

course history. That is not always the case especially when there are few courses in

the course history. We will see later that by combining the results of this method

with the previous collaborative filtering method we obtain good prediction results.

29

CHAPTER 5
The MDP Course Planner

In this chapter, we present our proposed approach for the primary problem of

this thesis: finding the “optimal” course plan. We assume that we are given the

set of transcripts of an ensemble of students, T , and we have computed the reward

RT (c) for any potential course c for the target transcript T .

We model the course plan recommendation as a finite horizon decision problem

for t decision epochs. Thus, we define the decision maker, or course planner, as an

MDP whose goal is to determine an optimal sequence of actions that correspond to

an optimal course plan. We begin with defining the components of the MDP model.

5.1 MDP Model Components

5.1.1 State space S

A state s ∈ S in the MDP planner is a k-tuple of courses that a student takes

in a single term. The choice of state space model fundamentally affects both the

efficiency of the system and performance of the recommendations. For example,

the most complex model of the state could be representing it as the sequence of all

previous courses taken by the student. Although this model takes into account the

order in which courses are taken in making future decisions, it leads to an intractable

number of possible states that cannot be handled efficiently. In addition, it requires

a larger number of training samples in order to be able to generalize to new samples,

30

which is often very hard to achieve. This model can simplified by ignoring the order

in which courses are taken, and considering the state as a set of previous courses.

We model the state of the planner as a k-tuple subset from courses of the current

term only, as opposed to the more complex modeling of the state as a set of all courses

taken by the student since the first term. This model reduces the size of the solution

space from O(2N) to O(
(
N
k

)
) (N could be in hundreds). Although this approximation

implies that previous history takes no part in deciding the next action to take, it

does not harm significantly the performance of the planner as courses taken in a

term usually depend on courses of the previous term. Besides, courses can implicitly

indicate the presence of their prerequisites in previous terms, so they do need to be

included the current state.

We further reduce the effective size state space by ignoring unobserved states

in the training set. Hence, we build the MDP planner states only from the courses

that appear in transcripts of T . Ignoring unobserved states reduces the novelty

of recommended plans; however, it helps in making the problem computationally

tractable and eliminates unlikely combinations of courses.

Finally, we reduce the complexity of the state space by pruning infrequent states.

We eliminate states based on their occurrence in transcripts of T using two simple

schemes: state-based pruning, in which we prune states that have their k-tuples

observed less than awidth= certain threshold α, and course-based pruning, in which

we prune states that have at least one of their constituent courses occurring less

than a certain threshold β. In addition to reducing the number of possible states,

pruning improves the prediction accuracy of the system because it disregards course

31

co-occurrence patterns that are not supported by enough evidence, as we will see in

Section 7.1.1.

5.1.2 Action set As

The action set of state s is the set of all k-tuples of courses that can be recom-

mended in s. We choose to consider actions as k-tuples, because the chosen set of

“optimal” actions should correspond to the final goal of having a course plan with

k courses per term. Likewise, we maintain only action sets observed in transcripts

of T to reduce the combinatorial possibilities of actions. Taking an action a ∈ As

in the state s will deterministically produce the new state s′ ∈ S of the planner in

the following term, i.e. Pr{st+1 = s′|st = s, at = a} = 1. State s′, therefore, is

equivalent to action a.

5.1.3 Transition function Tr(s, a)

We define the one-step dynamics of our MDP planner as the probability of taking

an action a in the state s:

Tr(s, a) = Pr{at = a|st = s} (5.1)

This definition distinguishes our MDP planner model from the standard MDP stochas-

tic model where the one-step dynamics is defined as the probability of the next state

given the current state and chosen action. We adopt this definition of transition

function because it models that the planner’s decision of taking an action a in state

s based on how often this decision was made by real students. Since this probability

encodes course ordering patterns, we use it to enforce taking decisions that respect

ordering constraints on courses.

32

5.1.4 Reward function RT (s)

This function assigns a scalar value to a state s ∈ S to represent the the im-

mediate utility of being at state s in the current term to the target student with

transcript T and hence we have it subscripted with T . We define RT (s) as the sum

of rewards for the individual courses that compose state s to the target transcript T :

RT (s) =
∑
c∈s

RT (c) (5.2)

This raises an important consideration for the MDP model on which components are

specific to a target user and which are general. Since rewards for courses are pre-

dicted based on the target student’s interests and performance, the reward function

for states is personalized (this applies to the value function introduced in the next

paragraph as well). The state space, action set, and transition function, on the other

hand, are not personalized so they are the same for all users.

5.1.5 Value function V π
T (s)

The value of a state represents the expected return obtained when following a

defined policy for a target student with transcript T . In other terms, it measures

the long-term effects of following some defined policy starting from the given state.

Since in our model the next state s′ ∈ S is deterministically decided given the chosen

action, we define our variation of the Bellman equation [45] for the value of a state

s under a given deterministic policy π as:

V π
T (s) = RT (s) + Tr(s, π(s))V π

T (s′) (5.3)

33

5.2 Building the Model

Let us consider how the components of the MDP planner are built from the

set of transcripts T . The k-tuples of courses that represent states are created from

courses that appear in the same term in each transcript of T , and actions are instan-

tiated by considering all k-tuples following these states in the next term. In addition,

transition probabilities are estimated by counting co-occurrences of k-tuples in sub-

sequent terms. We note here that this model is built once and used for multiple

recommendations. It can be easily updated off-line after having significant quantity

of new transcripts to add to the set T . The reward and value functions, however,

are built for each new recommendation because they depend on the target student’s

preferences.

5.3 Course Planning as Solving the MDP

Solving our MDP model corresponds to finding the policy that achieves the

maximum value over the t decision steps for the target student. Since our model

is deterministic, finding the optimal policy from a starting state s gives the best

sequence of sets of courses that the target student should take on the following t

terms. The optimal policy π∗ has the maximum value function, V ∗T , over all possible

policies. We write the Bellman optimality equation [45] for V ∗T as:

V ∗T (s) = RT (s) + max
a∈As

{Tr(s, a)V ∗T (s′)} (5.4)

The system of equations consisting of equation (5.4) for each state s has a unique

solution. We use value iteration [45] to find V ∗T .

34

We can now determine the optimal policy π∗ by greedily choosing actions that

give the maximum value. We formally write this as:

π∗(s) = arg max
a∈As

{Tr(s, a)[RT (s) + V ∗T (s′)]} (5.5)

Each application of equation (5.5) will give a set of k courses that the student

should take in the corresponding term, and repeating this for t terms gives the

required course plan.

The maximized expression in equation (5.5) gives a quantitative value for eval-

uating the choice of the next action a. This value depends on two factors: first, the

transition value, Tr(s, a), which represents how frequent this action is taken after

the current state s, or in other words, the co-occurrence of the set of courses in

action a after the courses of state s in the dataset. The second factor is the value of

the next state s′, V ∗T (s′), which represents the long term rewards that can be gained

after taking the action a. Therefore, both course co-occurrence patterns and user

estimated preferences play a role in deciding the next step of the plan.

The final issue is the selection of the first state which the MDP planner starts

searching for plans. Given the last term courses in target transcript T , we either

try all states that are included in this set of courses, or when no included state can

be found, we try all states that have non-zero intersection with this set and choose

the one with the maximum total reward. When no state can be found matching the

user’s last term courses, the planner is not capable of recommending a course plan

for this specific user.

35

CHAPTER 6
Implementation Details

One of the driving objectives of this thesis is to apply our approach for rec-

ommendation of items with inter-dependencies in a recommendation system that

helps students in selecting academic course plans. Therefore, we have developed and

deployed a web-based system course plan recommendation system that employs an

implementation of our approach. The current system is tailored towards Computer

Science and Software Engineering students at McGill University. Nevertheless, the

system can be easily extended by including data from other departments or from

other universities.

We present in this chapter our implementation of the course plan recommenda-

tion system. In addition, we discuss the data collection step of this project, which

was a crucial step in building the transcripts database that the recommendation

systems depends on in generating recommendations.

6.1 Course Plan Recommendation System

The goal of this system is to provide a web-based application that students

can access through the Internet and obtain recommendations for courses to take in

subsequent terms. We deployed this web-based system on the Z Object Publishing

36

Figure 6–1: Overview of the course plan recommendation package, where model
building is shaded to point that it is performed offline

Environment (Zope),1 which is a free, well documented, and easy to use web ap-

plication server with an embedded relational object database. The system interacts

with the user through dynamic web pages to collect information about courses taken

previously by the student, and then displays course plans generated by a back end

recommendation package. Data used for recommendation and presentation is stored

in a MySQL database. We describe in the following the components of the course

plan recommendation system in more detail.

6.1.1 Recommendation Package

The recommendation package forms the computational core of the system. It

uses data consisting of transcripts and courses in order to recommended a course

1 http://docs.zope.org/zope2/zope2book/

37

plan for the target user. Figure 6–1 illustrates the main functionalities of the rec-

ommendation package. The package has three main procedures: model building,

course reward prediction, and course plan recommendation. Model building differs

from the other two procedures in that it is performed offline to generate the MDP

model (states and transition probabilities) based on the set of transcripts T stored

in the database. The MDP model is kept in the memory of the server for later use

in all recommendations in order to increase the efficiency of the recommendation

process. The MDP model can be updated whenever there is additional “experience”

or student transcripts in the database, and reloaded to the server’s memory. The

online recommendation process starts with estimating the personalized rewards for

potential courses based on the target transcript using the reward prediction method

explained in Chapter 4. Reward prediction relies on potential course information and

their textual descriptions in order to compute content-based rewards, and transcript

data of other students in order to compute collaborative-filtering rewards, where

both are stored in the database. Finally, the course plan recommendation process

first computes values of states of the MDP model, and then it finds the best plan

based on the MDP model and estimated rewards for courses. It generates as a result

a course plan for the target student.

The computational cost of the online course recommendation depends mainly

on the efficiency of course reward prediction and MDP state values calculation

(described in Section 5.3). The efficiency of our user-based collaborative filter-

ing implementation depends on the number of available students, since we follow

a neighborhood-based approach. On the other hand, finding similarity between each

38

pair of courses, which is required for the content-based filtering reward prediction,

is O(N2), where N is the number courses, but we perform that offline and store

similarity values in a look-up table. The performance bottleneck of our approach is,

in fact, in calculating MDP state values. In our current implementation, the value

iteration algorithm converges after 7 or 8 iterations. The average of iterations before

convergence for a test of 200 runs of the algorithm is 7.6. This is mainly due to lack

of loops between states, which is often called directionality in state space [44]. The

main drawback of our approach is the potential of having very large number of state

space, which we try to overcome by ignoring unobserved states and pruning the ones

are observed infrequently.

6.1.2 Database

Providing useful and effective recommendations depends heavily on the richness

of the dataset. Due to the lack of any publicly available course and transcript dataset,

we had to build our own dataset. We collected our transcript data from Computer

Science and Software Engineering students at McGill through a web survey which

they were asked to complete voluntarily (we will discuss the survey in Section 6.2)2 .

We collected total number of 65 transcripts from students. Although this size of

the dataset is relatively small, it was enough to provide good validation results and

prove the effectiveness of our approach.

2 Subsequent to ethics approval

39

Figure 6–2: Overview of the course plan recommendation package

Course data was extracted from online sources at the McGill University official

website 3 . This web page provides a synopsis for any course at McGill. Figure 6–2

shows an example of the synopsis for COMP 302 course. We initially extracted course

data from the synopsis automatically for all Computer Science and Software Engi-

neering courses and all related courses from other departments such as Mathematics,

Physics, Chemistry, and other departments. In addition, courses that appeared in

a new student’s transcript but were not present in the database were also extracted

from the course web page and added to the database. As a result, we currently have

370 courses in the database.

Course data stored in the database includes: course code, title, textual descrip-

tion, and hard prerequisites. The textual description is used to compute similarity

between courses as described in Section 4.2. This, however, is performed only once

3 e.g. http://www.mcgill.ca/global/php/coursepopup.php?course=comp+302

40

and the inter-course similarity is stored as a table for later use in course reward pre-

diction for target transcripts. Hard prerequisites, on the other hand, require manual

preprocessing before being stored in the database in a well-formed logical expres-

sions. This is due to the fact that prerequisites written in in the available course

synopses do not conform to a fixed format, as they are usually written by course

coordinators in unstructured text and intended to be understood by humans rather

than computer programs. This introduces ambiguity in parsing them automatically,

and hence the need for manual preprocessing.

6.1.3 Presentation

The web interface of the system consists of a dynamic web page that users use

to input their courses with their grades and ratings. We have used in designing the

interface jQuery,4 which is a JavaScript library that facilitates client-side interac-

tivity on web sites. Figure (6.1.3) shows an example of our system’s web interface.

The user can input his courses, as in Figure (6–3a), by typing in the course code or

the course title, and this is searched through our course database. This is achieved

through AJAX (i.e. without reloading the whole page) to provide a more efficient

experience to users. If the course is found in the database it is added to the current

term courses. Otherwise, it is looked up from the McGill course pop-up web applica-

tion, and if it exists (a valid course at McGill), it is added to the current courses and

also stored in the course database permanently. The user can add multiple courses

per term and add multiple terms according to his/her current course history. Finally,

4 http://jquery.com/

41

when the user submits the transcript, it is sent to the recommendation application,

which processes the transcript and returns a recommended course plan according to

the number of courses per term, k, and number of terms, t, specified by the user.

Figure (6–3b) shows the recommended plan for the input given in Figure (6–3a).

6.2 Transcripts Survey

Collecting transcript data from previous students is a critical step in both build-

ing a system that future students can use and also for evaluating the overall approach.

In order to collect this data, we built a web survey for students to access online and

provide their own experience. We targeted Computer Science and Software Engi-

neering students with this survey who are either currently enrolled in the program

or have graduated. Focusing on these two closely related majors leads to a small

system, yet it retains important features of the problem that make it interesting and

complex.

Having a large set of transcripts in the database helps in discovering more course

co-occurrence patterns and covering more instances of student opinions. Therefore,

the main design goals of this survey were to make it easy to use and can be finished

quickly so that it does not take much the volunteering student’s time. Our first

version of the survey required students filling all courses taken in each term and

providing their grades and ratings. We found that we got low completion rates when

it was too complex and took long time to finish. In order to minimize the time

overhead, we improved the survey by adding the ability of parsing the electronic

unofficial copy of transcripts, which is available to all McGill students from Minerva

42

(a) Example of input to the system

(b) Example of the system’s output

Figure 6–3: System’s presentation

43

Figure 6–4: Screenshot of a parsed transcript on the survey

information system.5 Students submit the HTML file of their unofficial transcript,

and the parsed courses and grades are displayed to them as in Figure 6–4. The

student has only to give a rating, which expresses their personal opinion on the

course. The provide ratings for each course by selecting one of the five rating choices

that appear for each course, and finally submit the transcript to complete the survey.

The submitted transcript with course ratings is then stored in the database. This

survey takes very little time to finish and has a better reliability for the provided

transcripts, which has resulted in an increased user participation over earlier more

tedious versions.

5 www.mcgill.ca/minerva

44

CHAPTER 7
Experimental Evaluation

In this chapter we provide an empirical validation of our approach. We divide

our discussion into three sections. Section 7.1 provides a detailed description of the

dataset we use in our experiments, and was collected from real students through a

web survey. We present in Section 7.2 an evaluation of the hybrid reward prediction

method described in Chapter 4 against baseline methods and both partial methods

on our dataset. Evaluating the reward prediction method is key in assuring that

our system can provide personalized course plans. We finally evaluate the MDP

course plan recommender in Section 7.3, and show that our MDP approach generally

outperforms methods that rely solely on course co-occurrence patterns or on course

rewards in devising course plans.

7.1 McGill Transcripts Dataset

Our experiments are conducted on a set of transcripts that we collected from

students studying Computer Science and Software Engineering at McGill University

through the web survey discussed in Section 6.2.

The dataset has 65 transcripts with various degrees of completion, but the av-

erage length of transcripts spans 4 terms (students typically take 3-5 courses per

term). The dataset has 370 different courses, which contain all Computer Science

and Software Engineering courses and their prerequisites from within the department

and from other related departments such as Math and Physics. In addition to core

45

courses, the dataset contains a rich set of elective courses from various departments

(e.g. Biology, Psychology, Economics ...etc), which were collected based on courses

encountered in transcripts of student who participated in the survey. In the following

section we discuss the sparsity phenomenon in our dataset, which is commonplace

in recommender systems. In our dataset, however, sparsity is more severe as a result

of the small number of transcripts that we have, and as a result of the set-based

representation of our MDP states.

7.1.1 Data Sparsity and State Pruning

Although our dataset is collected from Computer Science and Software Engi-

neering majored student only, the existing transcripts have few courses in common.

This is due to the relatively small number of transcripts, which does not cover the

vast diversity of possible course selections. We had many students taking the survey

enrolled in joint major programs, or only have a minor in Computer Science, which

lead to a diverse set of courses. In addition, the number of courses in Computer

Science and Software Engineering is quite large, and there are multiple sub-interests

withing these two fields. As a result, our dataset is highly sparse and this is mani-

fested by having relatively few courses taken -and therefore rated- by a large number

of students.

We examine the data sparsity issue in our dataset in Figure (7–1). We define

the term course frequency for a course c as the number of transcripts in the dataset

that c appears in, or in other words, the number of students in our dataset took

this course. For example, if we have a dataset of two transcripts: T1 composed of

courses {c1, c2, c3, c4}, and T2 composed of {c1, c3, c5}, then c1 and c3 have frequency

46

(a) Frequency of course occurrences in dataset.

(b) Frequency of k-tuple occurrences in dataset.

Figure 7–1: Dataset sparsity illustrated by the number of courses or states that occur
with certain frequencies in the dataset.

47

of 2, and all other courses have frequency of 1. We are interested in the number of

courses that occur in our dataset with a certain frequency, because it gives us an

idea of how many courses the transcripts in our dataset have in common. Figure

(7–1a) illustrates the number of courses that occur with a certain course frequency

in our dataset. We can see that the number of courses taken by very few students is

large compared to courses taken by many students (119 course taken by 1 student as

opposed to only 1 course taken by 59 students). This, in fact, makes the course plan

recommendation problem harder because, on one hand, it becomes very difficult to

match student preferences, and on the other hand, it introduces many course co-

occurrence patterns that are not supported by enough evidence and can be therefore

considered as outliers.

Data sparsity is more severe when we consider frequencies of tuples of courses,

which will be eventually the states of our MDP course planner. Similar to the

individual course case, we define k-tuple frequency as the number of transcripts in

the dataset that a k-tuple of courses appears in (tuples are composed of courses

that occur in the same term). Figure (7–1b) shows the number of k-tuples (with

k = 2, 3, 4) that have certain frequencies in our dataset. We can observe that k-tuple

frequency values are less than course frequency values, but their counts are larger

as a natural result of taking combinations of courses. We are interested in k-tuples

that have high frequencies, because they are part of course co-occurrence patterns

that we are after.

In order to alleviate the effect on data sparsity on our MDP course planner

prediction accuracy, we eliminate infrequent states by performing either state-based

48

pruning or course-based pruning, depending the frequency of k-tuples or individual

courses, respectively, in the dataset.

7.2 Course Reward Prediction Evaluation

Understanding preferences of individuals is a very important step in designing

personalized course plans that match their interests and needs. Since user prefer-

ences in individual courses are modeled with reward values, we must ascertain that

our reward prediction method provides good estimates for them. In this section we

describe the performance evaluation conducted on the hybrid course reward predic-

tion method explained in Section 4 on our transcripts dataset, and show that it can

provide very good validation results.

7.2.1 Performance Measure

The ultimate goal of course reward prediction is to use the predicted rewards in

selecting the most interesting set of courses to the user. The specific values of course

rewards are therefore not significant as long as the reward prediction method gets the

right ranking for courses. Consequently, we use in evaluating reward predictions the

Kendall-τ statistic, which is a standard measure for estimating ranking correlation,

i.e. the degree of agreement in ordering pairs of items between two rankings. In our

case, the first ranking is the true ranking of courses that the student gave, which is

the reference ranking, and the second is the ranking accomplished with the estimated

rewards of our system.

We adopt the implementation of Kendall-τ explained by Shani and Gunawar-

dana [43]. Given the rating value rui of the user and r̂ui of the system that is given

49

to an item i for a user u, we define:

C+ =
∑
ij

sgn(rui − ruj) sgn(r̂ui − r̂uj) (7.1)

C− =
∑
ij

sgn(rui − ruj) sgn(r̂uj − r̂ui) (7.2)

Cu =
∑
ij

sgn2(rui − ruj) (7.3)

Cs =
∑
ij

sgn2(r̂ui − r̂uj) (7.4)

The values C+ and C− represent the number of pairs that the two rankings

agree and disagree on their ordering respectively, and Cu is the number of pairs of

items for which the user ranking gives an ordering (are not tied), while Cs is the

same but for system ranking. Given these values, Kendall-τ metric is calculated as

follows:

τ =
C+ − C−√
Cu
√
Cs

(7.5)

When there is a perfect agreement between the two rankings τ = 1, and in

complete disagreement τ = −1, while τ = 0 represents that the two rankings are

independent.

7.2.2 Experimental Procedure

Evaluation is based on the leave-one-out cross validation paradigm, where all

transcripts in the dataset, except one test transcript, are used as the set T , and the

reported value is the average for all possible test transcripts. In each transcript, we

assume courses are ordered according to their terms, but within the same term they

50

are ordered arbitrarily. We consider the first m courses as “known” courses, so we

know their rewards a priori (i.e. the known courses compose a target transcript T

that we wish to recommend courses to), and we wish to predict the rewards for the

rest of the courses. In Figure (7–2) we study the prediction performance against

the number of known courses, m, in each test transcript. Since transcripts in our

dataset vary in their size, we choose only transcripts that have at least 2 more than

the maximum number of known courses we take (i.e. m = 18) in order to do the

evaluation on the same set of test cases and make results comparable.

We compare the hybrid method with two non-personalized baseline methods:

“Random”, which predicts a random reward for a known course, and “Average”,

which assigns an average of other students’ known rewards for the course as the

estimated reward. We show the results of the pure collaborative and content-based

filtering methods as well. We perform the experiment on course ratings in the range

[1, 5] as rewards (Figure 7–2b), and on course grades in the range [1, 9] 1 as rewards

(Figure 7–2a). We refer to the collaborative filtering method (Section 4.1) by “Col-

laborative”, the content-based method (Section 4.2) by “Content-based”, and finally

the hybrid of the two by “Hybrid”.

7.2.3 Results and Discussion

We can observe that “Hybrid” generally does the best, and has a comparable

performance with “Collaborative” in Figure (7–2b). It has large Kendall-τ values

(over 0.7) after it has sufficient data about the user (m ≥ 10). This means that over

1 This range corresponds to McGill University grade scale

51

(a) Rewards based on course ratings

(b) Rewards based on course grades

Figure 7–2: Reward prediction performance

52

Figure 7–3: Average values of known ratings for each of the nine values of grades in
all transcript entries of the dataset.

70% of the predicted ranking of pairs of courses agree with the true ranking. The

three personalized models: “Hybrid”, “Collaborative”, and “Content-based” start

with low ranking correlation values, and increase as m increases. This is a natural

behavior because increasing the knowledge about the student’s previous preferences

or performance should lead to better reward prediction performance. We note that

the “Content-based” model has relatively low performance, which points out that

using subjective opinions of users in our problem is a more reliable indicator of their

preferences. Although the “Content-based” model does not perform well, combining

it with the “Collaborative” model helps most of the time in increasing the perfor-

mance. This is mainly due to the fact that our dataset is highly sparse, and a pure

neighborhood-based approach needs to be supported with additional information.

Using course similarity, especially when having enough information about the user,

53

can help in making better predictions. We notice that the “Average” model has quite

stable values around 0.5 performance, which means that general opinion on courses

achieves correct ranking about 50% of the time.

Another interesting observation is that although the personalized methods have

slightly better predictions in the case of ratings as rewards, we can notice that all

methods have very similar relative performance in both cases of ratings and grades as

rewards. This indicates that ratings and grades are both correlated, such that when

a students get a high grade in some course, they tend to give a high rating to it,

and vice-versa. We investigate this phenomenon more closely in Figure (7–3), where

we take the average of student ratings for each of the nine grade values. We can see

that rating values are linearly correlated with grade values, which is not surprising

as the grade that students receive usually affects their final opinion on the course.

The Pearson correlation coefficient of given ratings and received grades for courses

in all transcripts of our dataset is 0.47.

7.3 Evaluation of Course Plan Recommendations

In this section we evaluate the effectiveness of our approach in designing course

plans on our dataset of real student transcripts. We discuss in the following sections

the used performance measures, the experimental methodology, and finally results

of experiments.

7.3.1 Performance Measures

We consider three measures to evaluate the performance of the MDP course

plan recommender and compare it with other methods.

54

Accuracy

This measure evaluates how well the recommender predicts “relevant” courses

the student will take in the future. The relevance of a course is decided based on

the user’s true opinion on the course. Evaluating recommended course plans on

how much they agree with true transcripts is motivated by the fact that students

generally try their best in choosing courses they will like, and it would be nice to see

how much a recommender system can match their performance.

In contrast to the other definition of accuracy, where the goal is to evaluate

predicting any course the student will take (predictability as in [35]), this measure

assesses the ability of the algorithm of predicting the items that the user likes. In

our case, a course is considered relevant to the student if its reward is greater than

the average of rewards for all courses previously taken by the student. For example,

if the student in reality took two courses c1 and c2, and gave them a rating of 1 and 3

respectively, we consider c2 to be a relevant course because it has a reward above the

average 2, while c1 is not relevant. We prefer this definition of relevance to having

a fixed threshold (e.g. ≥ 4 is relevant in [1, 5] scale) because it helps avoiding bias

in cases where students give high ratings or low ratings for all courses (and likewise

for grades). Therefore, we define accuracy as the percentage of relevant courses that

were recommended to the user of all recommended courses.

Coverage

This measure evaluates the user coverage of the system. We define the coverage

measure as user-based coverage, i.e. as the percentage of recommendations that

the system can provide to users of the ones it is asked for. A similar definition for

55

coverage has been used in previous works [9, 35]. In our case, when, for example, the

system is asked to provide a course plan of t = 2 terms for 2 students, and it could

only provide one of the with a full plan and the other with only one term plan the

coverage will be 75%.

We are interested in coverage because we expect to get higher prediction accu-

racy as we prune more infrequent states, but this will not make the system useful as

it will cover fewer test samples (i.e. pruning will leave only mainstream courses).

Prerequisite concordance

On the contrary to the first two metrics which are used to evaluate how much

the recommended plan is truly relevant or interesting to the user, this performance

metric is designed to evaluate how much the recommended course plans conform to

course prerequisites. We define the prerequisite concordance as the percentage of

courses that satisfy prerequisites from the total number of recommended courses.

As we have discussed earlier in Section 3.1, course prerequisites are modeled

as a logical expression of AND-OR operations and prerequisite courses as variables.

We check that prerequisites are satisfied by giving a value true for each prerequi-

site course that appears in previous terms, and false otherwise. If the expression

evaluates to true then the course prerequisites are satisfied.

7.3.2 Experimental Procedure

We adopt the same leave-one-out cross validation methodology we applied in

Section 7.2.2 in this set of experiments. We assume here, however, that we know a

priori a first part of the test transcript (not included in T), and hide all courses in

the left part of it, as opposed to hiding only their rewards. The “known” part of the

56

test transcript in this set of experiments is in terms rather than individual courses,

because it reflects students with different degrees of program completion that we

wish to recommend courses to.

The MDP planner model is evaluated against two methods. The first is Markov

Chain (MC) model that has the same state space and transition function of the

MDP model, and is built in a similar way as described in Section 5.2. The transition

function in the MC model, however, defines transition between two states, and the

MC model does not have the notions of state rewards or values. Therefore, this model

recommends plans based on course co-occurrences only. We would like to compare the

quality of its recommended plans with the ones that our MDP approach recommends

by incorporating values of courses. The second method we compare against is a

Reward-based course planner, which relies exclusively on course rewards in designing

plans. This method chooses greedily for each term courses that have the highest

rewards, but only from the courses that have satisfied prerequisites. Comparing

our model to this method shows how exploiting course co-occurrences can affect the

quality of plans.

We evaluate the MDP and MC models with state-based pruning (SBP) and

course-based pruning (CBP) strategies introduced in Section 5.1.1. We, therefore,

have two versions of our experiments for the SBP and CBP, as we are interested in

comparing the performance of MDP and MC models is a similar setting, along with

the Reward-based model. In order to use these two pruning strategies, however,

we must set a value to the thresholds α and β for the SBP and CBP strategies

respectively. We set in the following experiments the value α = 1 for SBP that

57

correspond to pruning states occurring only once in the dataset, and the value β =

3 for CBP that correspond to pruning states occurring less than 3 times in the

dataset. We choose these values empirically because they give a good trade-off

between accuracy and coverage values as we will show in Section 7.3.4.

We perform two types of experiments: the first studies the average performance

of the three methods as we vary the knowledge of the target student (i.e. the size

of the “known” part of the target transcript). The second studies the effect of

increasing the length of the recommended plan. We consider, in addition, the both

cases of ratings and grades as rewards for MDP and Reward-based models. We

discuss the results of these experiments in detail in the following section.

7.3.3 Results and Discussion

Accuracy and coverage vs. size of a priori knowledge of user

Figures (7–4) and (7–5) show the average accuracy and coverage results of the

three methods versus different values of m, i.e. the number of terms known from

the target transcript, when recommending a plan of 3 courses per term for a single

term (i.e. t = 1, k = 3). Figure (7–4) shows the results of the MDP and MC models

when state-based pruning is performed with α = 1, while Figure (7–5) shows their

results when course-based pruning is performed with β = 3. We can observe that

in both experiments that the MDP model generally does better than the MC and

Reward-based models. We believe this is due to the fact that the MDP model en-

joy the benefits of both exploiting user interests and course co-occurrence patterns

in choosing courses. The Reward-based model performs relatively well for m ≤ 2,

but does worse afterwards mainly because estimated rewards fail to provide a better

58

advantage to advanced courses over introductory courses in last terms - when both

are available as their prerequisites are satisfied. For example, it might recommend

in the last term an introductory Biology course for a student who expressed interest

in Bioinformatics courses before, while it might be appropriate to recommend an

advanced Computational Biology course. This is due to ignoring the temporality

information in this method, while methods that exploit co-occurrence patterns take

this information into account by assigning high probability to advanced courses to

follow after introductory courses. All methods perform similarly when rewards are

based on ratings or on grades, which is due to the correlation between ratings and

grades as we discussed earlier. The accuracy of all methods increases (except the

Reward-based model) as a result of having more a priori knowledge about the stu-

dent, but it then deteriorates because the prediction problem becomes harder as the

courses at the end of the program become more specialized and harder to predict.

The coverage of the MDP and MC models is shown in Figure (7–4c) and (7–5c).

We show one coverage result for both ratings and grades as rewards, since it does

not have any effect on the coverage. We observe that the coverage of both methods

are equal because we are evaluating a plan of only one step (i.e. k = 1) in these

experiments (we will see later that they can differ when plans have more than one

step). We do not show the coverage of the Reward-based model, since it can always

find some courses with satisfied prerequisites to recommend and therefore covers

all test samples. In the MDP and MC models, however, the student’s last term

might match only to states that have no further transitions, so it cannot provide

any recommendation, and since the last term either matches to some state or not,

59

(a) Accuracy with ratings as rewards (b) Accuracy with grades as rewards

(c) Coverage percentage

Figure 7–4: Average accuracy and coverage vs. number of known terms when using
state-based pruning (SBP) with α = 1

both methods have same coverage values. This phenomenon, in fact, happens more

frequently in last terms, and we therefore see coverage decreasing as we increase m.

Finally, we observe that although using SBP with the MDP and MC models

gives better accuracy results than CBP (with β = 3), it has lower coverage - even

when we use the lowest possible α threshold.

60

(a) Accuracy with ratings as rewards (b) Accuracy with grades as rewards

(c) Coverage percentage

Figure 7–5: Average accuracy and coverage vs. number of known terms when using
course-based pruning (CBP) with β = 3

Accuracy and coverage vs. length of course plan

In Figures (7–6) and (7–7) we study the effect of increasing the length of the

recommended plan t, which is composed of also 3 courses per term (k = 3). We

assume here a fixed “known” part of 2 terms. Similar the previous experiment, we

observe that the MDP model (with SBP and CBP) generally has better accuracy

than other methods. Accuracy, in all methods, gradually decreases as we increase the

61

(a) Accuracy with ratings as rewards (b) Accuracy with grades as rewards

(c) Coverage percentage

Figure 7–6: Average accuracy and coverage vs. length of plan in terms when using
state-based pruning (SBP) with α = 1

size of the recommended plan. This is mainly due to the fact that as we increase the

size of the required recommendation, the numerator of the accuracy ratio becomes

bigger and the predictability problem becomes harder, which will make the accuracy

naturally drop.

The coverage of the MDP and the MC models differs slightly in these exper-

iments. This is because the two algorithms take different approaches in choosing

62

(a) Accuracy with ratings as rewards (b) Accuracy with grades as rewards

(c) Coverage percentage

Figure 7–7: Average accuracy and coverage vs. length of plan in terms when using
course-based pruning (CBP) with β = 3

states of the model. We observe that the MDP model has slightly higher coverage

than the MC model. This is mainly because action selection in the MDP model is

based on state values, which generally increase when states are followed by future

states for multiple time steps, especially when there is no discount factor. This can

be observed in Figure (7–6c), but it is less obvious in Figure (7–7c).

63

Table 7–1: Prerequisite Concordance Results

Real Transcripts MDP MC
72.5% 68.6% 63.3%

Prerequisite concordance results

In order to evaluate our MDP approach in producing plans that conform to

course dependencies (exemplified in course prerequisites), we evaluate the ratio of

the recommended plan courses that have satisfied prerequisites, and compare it to

the same ratio but for real student transcripts. Table (7–1) shows the prerequisite

concordance values for real transcripts, MDP, and MC approaches. Real transcripts

in our dataset have the value 72.5% compared to 68.6% and 63.3% of plans recom-

mended with the MDP and MC approaches respectively. The recommended plans

have t = 3, k = 3, and are based on 2 “known” terms. This means that 68.6% of the

recommended courses by our MDP model satisfy prerequisites, and this not very far

from real student transcripts. In practice, transcripts of real students do not always

satisfy all prerequisites for several reasons as discussed in Chapter 1. The MDP and

MC models, however, match the performance of real transcripts, because they rely

on course co-occurrence patterns learned from the dataset.

7.3.4 Experimental Evaluation of α and β Thresholds

In this section we present an experimental evaluation of different values for

pruning thresholds α in state-based pruning (SBP), and β in course-based pruning

(CBP), and their effect on the accuracy and coverage of our MDP model. We perform

a similar experiment to the one introduced in Section (7.3.3), where we report average

values of accuracy and coverage of recommending a plan of a single term with 3

64

courses per term (i.e. t = 1, k = 3), versus a different values of “known” terms of

the target transcript m.

Figure (7–8) shows accuracy and coverage results for pruning threshold α =

0, 1, 2, 3 when using SBP. The value α = 0 implies that the algorithm is not perform-

ing any pruning on the allowed states. We can see in Figure (7–9a) that accuracy

values are generally lower than those obtained by performing pruning. We conjec-

ture that is because states may contain some outlier states that do not correspond

to general patterns of student behavior, and therefore might introduce low accuracy

performance. The coverage in this un-pruned case, however, is the highest since

the state space is the largest among other α values. Increasing α values increases

accuracy generally for all m “known” terms, and decreases the coverage as a result

of a trimmed state space. It is shown in Figure (7–9a) that accuracy has quite good

averages with acceptable average coverage ratios. In higher values of α = 2, 3, we

notice an interesting phenomenon of a deteriorating accuracy when m ≥ 3. This is

mainly caused of having very sparse states space, which cannot provide good recom-

mendations when the problem gets harder, which is also illustrated in low coverage

ratios.

Figure (7–8) shows accuracy and coverage results for the pruning threshold β =

1, 2, 3, 4 when using CBP. We notice that since pruning based on course frequencies is

a more fine-grained approach, values differ less significantly than the previous case.

We can observe that with β = 3, we get a good trade-off between accuracy and

coverage.

65

Figure 7–8: Alpha values effect on average accuracy and coverage vs. number of
known terms when using state-based pruning (SBP)

(a) α = 0

(b) α = 1

(c) α = 2

66

(d) α = 3

Figure 7–8: Beta values effect on average accuracy and coverage vs. number of known
terms when using course-based pruning (CBP)

(a) β = 1

(b) β = 2

67

(c) β = 3

(d) β = 4

68

CHAPTER 8
Conclusions

8.1 Summary

In this thesis we have considered the problem of generating recommendations in

domains where items are subject to strong inter-dependency constraints, in particular

for course selections by university students. In this domain, the main challenge is

to account for ordering constraints on courses due to hard and soft prerequisites

while maximizing user preferences. Our approach is based on a Markov Decision

Process (MDP) formulation of the recommendation problem. The main advantage

of this approach is that it combines both student interests and course co-occurrence

patterns to recommend personalized sequences of courses that take into account item

inter-dependencies.

In order to estimate student preferences in courses, we proposed using two ap-

proaches: collaborative filtering, which predicts student interests by aggregating

opinions of other like-minded students, and content-based filtering, which estimates

interests in future courses based on opinions on similar courses that were previously

taken. We have seen that using a combination of the two methods gives better pref-

erence estimation results than using each of them individually. We have found that

liking a course and excelling in it are correlated phenomena, and hence we get similar

preference estimation results when using each of them as basis for user preferences

in courses.

69

Another interesting challenge in this class of recommendation problems is the

combinatorial problem domain, which leads to a very sparse coverage of the rec-

ommendation space making the sparsity problem especially severe. By ignoring the

unobserved subspace of the recommendation space and using frequency-based prun-

ing, we have been able to obtain good recommendations.

Our experiments are based on real transcript data collected from students at

McGill University through a web survey. These experiments suggest that combining

both student interests and course co-occurrences give better performance results than

employing each of them separately. Results show that our approach can outperform

the two non-hybrid approaches in predicting the enrollment of students across several

academic sessions in terms of accuracy and coverage values. Finally, we have shown

that course plans recommended by our approach conform to course prerequisites

in a similar degree to real transcript data, which is a result of employing course

co-occurrences learned from the data.

8.2 Future Directions

This research can be extended in several interesting directions. Our approach

can be directly applied to define the best course plan that satisfies specific career

objectives of the student. This can be implemented by asking students to explicitly

rate advanced courses based on their career objectives, and then find the maximum

reward course plan that leads to the objective courses of the student. Alternatively,

we can infer rewards of advanced courses based on association of these courses with

a predefined list of majors or career objectives. Another interesting extension to

our course recommendation approach is accounting for program requirements. In

70

fact, a useful course plan would be not only composed of courses that students will

like, but would also help them to graduate. An initial study of considering program

requirements in course recommendation has been discussed in [33].

Our reward prediction method is a hybrid method of collaborative filtering and

content based filtering. We can point out several aspects that can be improved

in this method in future work. We have chosen to use a memory-based method

for collaborative filtering reward prediction for its simplicity and clear intuition;

however, as the number of users in the system increases, the algorithm becomes

computationally expensive. Model-based methods, on the other hand, provide better

scalability. Methods such as SVD and SVD++ [26] have proven superiority in Netflix

movie recommendation, and it would be interesting to investigate their performance

in the academic courses domain. Additionally, we can observe from our experiments

that the content-based reward prediction did not give good ranking results when

used individually. We can use different approaches for building the user profile as

described in Section 4.2, which might give better performance but with an extra time

cost. Taking a linear combination of the collaborative and content-based methods

gives the best performance, yet other combination strategies can be also tried for

hybrid recommendations as suggested by Burke [7].

An interesting extension of our work is providing explanations to the user that

justify the recommended course plan. Explanations in recommender systems help in

increasing trust in the system and convincing users to accept the recommendation.

In our case, the MDP policy chooses an action which maximizes the expected future

reward, and hence the choice of courses might not be obvious to the student. A

71

similar idea was suggested by Dodson et. al. [11], where they used natural language

explanations for policies generated by an MDP model used for academic advising.

The experimental evaluation of our course plan recommender system can be ex-

tended in several directions. A basic extension is to collect more Computer Science

and Software Engineering transcripts, or to add data from other departments. Hav-

ing more transcript samples can provide better prediction accuracy of the system

as it can cover more of the course selections space. Additionally, we can investigate

additional performance measures that go beyond the the standard information re-

trieval ones (accuracy and coverage). For example, we can examine the novelty of

our recommendations by finding the unexpected course selections that our system is

able to generate. A simple novelty measure can be implemented by the number of

courses taken by a student which do not belong to the student’s program. We can

also use the collaborative filtering estimates for course reward and course similarity

explained in Section 4.2 to create a measure of serendipity in our recommendations.

Serendipitous courses are expected to have high collaborative filtering scores but low

similarity to previous courses of the student. Another interesting future direction

in evaluating our approach is by conducting qualitative evaluation of the designed

course plans based on either an expert’s experience (academic adviser) or the stu-

dent’s opinion.

We have assumed in this thesis that the MDP states can be represented as

a table with one entry for each state. This is a reasonable assumption given the

number of states (course tuples) observed from our dataset. When transcripts from

all departments are incorporated, however, the number of states will enormously

72

increase, which will not only require large memory but also very long processing

time. Therefore, a very important extension is to investigate function approximation

methods for the value function of states that can generalize from the observed subset

of state space, and to use Monte Carlo or Temporal-Difference learning algorithms

for finding the optimal value function.

Finally, although we have focused our implementation on the academic courses

domain, our approach can be applied to other domains where items are subject to

ordering constraints. For instance, books can have strong ordering dependencies

and therefore should be recommended in sequence. Another interesting domain is

recommending web pages, where hyperlink structure and user browsing patterns can

define dependencies between pages. Combining web browsing patterns with user

personal preferences can be used to design a sequence of pages that should be viewed

in order. A concrete application can be developed for Wikipedia 1 pages. Wikipedia

currently implements an Article Feedback Tool 2 , which assesses the quality of

articles based on user opinions. Although the feedback is not personalized, it can be

used in recommending sequences of high quality articles.

1 http://www.wikipedia.org/

2 http://en.wikipedia.org/wiki/Wikipedia:Article Feedback Tool

73

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17:734–749, June 2005.

[2] C. Anderson. The long tail: Why the future of business is selling less of more.
Hyperion Books, 2008.

[3] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommen-
dation. Communications of the ACM, 40(3):66–72, 1997.

[4] N. Bendakir and E. Aimeur. Using association rules for course recommendation.
In Proceedings of the AAAI Workshop on Educational Data Mining, pages 31–
40, 2006.

[5] D. Billsus and M.J. Pazzani. User modeling for adaptive news access. User
Modeling and User-Adapted Interaction, 10(2):147–180, 2000.

[6] Daniel Billsus, Michael J. Pazzani, and James Chen. A learning agent for wire-
less news access. In Proceedings of the 5th international conference on Intelligent
user interfaces, IUI ’00, pages 33–36, New York, NY, USA, 2000. ACM.

[7] R. Burke. Hybrid recommender systems: Survey and experiments. User Mod-
eling and User-Adapted Interaction, 12(4):331–370, 2002.

[8] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.
ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[9] Mukund Deshpande and George Karypis. Selective markov models for predicting
web page accesses. ACM Trans. Internet Technol., 4:163–184, May 2004.

[10] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the
14th ACM international conference on Information and knowledge management,
CIKM ’05, pages 485–492, New York, NY, USA, 2005. ACM.

74

75

[11] T. Dodson, N. Mattei, and J. Goldsmith. A natural language argumentation
interface for explanation generation in markov decision processes. Explanation-
aware Computing ExaCt 2011, page 1, 2011.

[12] R. Farzan and P. Brusilovsky. Social navigation support in a course recom-
mendation system. In Adaptive Hypermedia and Adaptive Web-Based Systems,
pages 91–100. Springer, 2006.

[13] A. Felfernig and R. Burke. Constraint-based recommender systems: technolo-
gies and research issues. In Proceedings of the 10th international conference
on Electronic commerce, ICEC ’08, pages 3:1–3:10, New York, NY, USA, 2008.
ACM.

[14] Matthew Garden and Gregory Dudek. Mixed collaborative and content-based
filtering with user-contributed semantic features. In proceedings of the 21st
national conference on Artificial intelligence - Volume 2, pages 1307–1312. AAAI
Press, 2006.

[15] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani. An energy-
efficient mobile recommender system. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 899–
908. ACM, 2010.

[16] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61–70,
1992.

[17] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-
thwaite, and Carl Kadie. Dependency networks for inference, collaborative fil-
tering, and data visualization. J. Mach. Learn. Res., 1:49–75, September 2001.

[18] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl. Evaluating col-
laborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1):5–53, 2004.

[19] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An
algorithmic framework for performing collaborative filtering. In Proceedings of
the 22nd annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’99, pages 230–237, New York, NY, USA,
1999. ACM.

76

[20] Thomas Hofmann. Collaborative filtering via gaussian probabilistic latent se-
mantic analysis. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, SIGIR ’03,
pages 259–266, New York, NY, USA, 2003. ACM.

[21] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Trans. Inf. Syst., 22:89–115, January 2004.

[22] T. Jambor and J. Wang. Optimizing multiple objectives in collaborative filter-
ing. In Proceedings of the fourth ACM conference on Recommender systems,
pages 55–62. ACM, 2010.

[23] D. Jannach, M. Zanker, and M. Fuchs. Constraint-based recommendation
in tourism: A multiperspective case study. Information Technology &# 38;
Tourism, 11(2):139–155, 2009.

[24] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker,
Lee R. Gordon, and John Riedl. Grouplens: applying collaborative filtering to
usenet news. Commun. ACM, 40:77–87, March 1997.

[25] Y. Koren. Collaborative filtering with temporal dynamics. Communications of
the ACM, 53(4):89–97, 2010.

[26] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model. In Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’08, pages 426–434,
New York, NY, USA, 2008. ACM.

[27] K. Lang. Newsweeder: Learning to filter netnews. In in Proceedings of the 12th
International Machine Learning Conference (ML95. Citeseer, 1995.

[28] T. Mahmood and F. Ricci. Learning and adaptivity in interactive recommender
systems. In Proceedings of the ninth international conference on Electronic com-
merce, pages 75–84. ACM, 2007.

[29] J. Masthoff. Group recommender systems: combining individual models. Rec-
ommender Systems Handbook, pages 677–702, 2011.

[30] Judith Masthoff. Group modeling: Selecting a sequence of television items to
suit a group of viewers. User Modeling and User-Adapted Interaction, 14:37–85,
February 2004.

77

[31] Bamshad Mobasher. Data mining for web personalization. In Peter Brusilovsky,
Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, volume 4321 of
Lecture Notes in Computer Science, pages 90–135. Springer Berlin / Heidelberg,
2007.

[32] Michael P. O’Mahony and Barry Smyth. A recommender system for on-line
course enrolment: an initial study. In Proceedings of the 2007 ACM conference
on Recommender systems, RecSys ’07, pages 133–136, New York, NY, USA,
2007. ACM.

[33] A. Parameswaran, P. Venetis, and H. Garcia-Molina. Recommendation systems
with complex constraints: A courserank perspective. 2009.

[34] A.G. Parameswaran, H. Garcia-Molina, and J.D. Ullman. Evaluating, combining
and generalizing recommendations with prerequisites. In Proceedings of the
19th ACM international conference on Information and knowledge management,
pages 919–928. ACM, 2010.

[35] A.G. Parameswaran, G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Rec-
splorer: recommendation algorithms based on precedence mining. In Proceed-
ings of the 2010 international conference on Management of data, pages 87–98.
ACM, 2010.

[36] M. Pazzani and D. Billsus. Learning and revising user profiles: The identification
of interesting web sites. Machine learning, 27(3):313–331, 1997.

[37] Michael J. Pazzani and Daniel Billsus. The adaptive web. chapter Content-based
recommendation systems, pages 325–341. Springer-Verlag, Berlin, Heidelberg,
2007.

[38] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[39] G. Salton. Automatic text processing: the transformation. Analysis and Re-
trieval of Information by Computer, 1989.

[40] J. Sandvig and R. Burke. Aacorn: A cbr recommender for academic advising.
Technical Report TR05-015, DePaul University, Chicago, USA, 2005.

[41] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th

78

international conference on World Wide Web, WWW ’01, pages 285–295, New
York, NY, USA, 2001. ACM.

[42] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web, WWW ’01, pages 285–295, New
York, NY, USA, 2001. ACM.

[43] G. Shani and A. Gunawardana. Evaluating recommendation systems. Recom-
mender Systems Handbook, pages 257–297, 2011.

[44] Guy Shani, Ronen I. Brafman, and David Heckerman. An mdp-based rec-
ommender system. In Journal of Machine Learning Research, pages 453–460.
Morgan Kaufmann, 2002.

[45] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. The
MIT press, 1998.

[46] N. Taghipour, A. Kardan, and S.S. Ghidary. Usage-based web recommendations:
a reinforcement learning approach. In Proceedings of the 2007 ACM conference
on Recommender systems, pages 113–120. ACM, 2007.

[47] Tong Zhang and Vijay S. Iyengar. Recommender systems using linear classifiers.
J. Mach. Learn. Res., 2:313–334, March 2002.

[48] A. Zimdars, D.M. Chickering, and C. Meek. Using temporal data for making
recommendations. In Proceedings of the 17th UAI Conference, 2001.

