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ABSTRACT

An experimental investigation of the influence of the large-scale features

of turbulent flows on the mixing of a passive scalar (viz. temperature) therein

is presented. Given the direct relationship between the large scales of turbu-

lent flows and the geometrical configuration of the flow, two distinct sets of

experiments are conducted in which the dependence of the scalar mixing on

the (i) scalar- and (ii) velocity-field boundary conditions is studied. In this

work, hot-wire anemometry and cold-wire thermometry are used to measure

the fluctuating velocity and temperature fields, respectively.

The first set of experiments is conducted in the plane wake downstream

of a circular cylinder. To vary the scalar-field boundary conditions, while

maintaining a hydrodynamically identical flow field, two different heat injec-

tion mechanisms are employed. First, a heating element is embedded within

the cylinder that generates the hydrodynamic wake. When the element is

energized, the wake is therefore heated by means of a “heated cylinder.” Sec-

ond, an array of fine, Nichrome wires is installed downstream of, and ori-

ented parallel to, the cylinder. This configuration, known as a “mandoline,”

has been demonstrated to have a negligible influence on the velocity field,

due to the small diameter of the wires. Consequently, either configuration

can be energized to heat the wake without altering the underlying velocity

field. Using this apparatus, multiple velocity and passive-scalar statistics

are examined. The measurements suggest that certain small-scale statistics

(such as the inertial-convective-range scaling exponents of the passive scalar

structure functions) may be contaminated by the large-scale features of the

scalar field. Consequently, it is of interest to determine why such statistics
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exhibit these dependencies. In particular, the passive scalar structure func-

tions, and their inertial-convective-range scaling exponents, along with the

mixed velocity-temperature structure functions and the (non-centered) auto-

correlations of the dissipation rate of scalar variance are employed to obtain

quantitative estimates of the internal intermittency of the passive scalar field.

It is revealed that the high-order passive scalar structure function scaling ex-

ponents display a significant difference when comparing the results generated

using different heat injection mechanisms. While this result suggests that the

two passive scalar fields exhibit different levels of internal intermittency, the

mixed structure functions and autocorrelations of the dissipation rate of scalar

variance indicate that both temperature fields possess similar levels of inter-

mittency. Upon examination of the kurtosis structure functions of the temper-

ature difference (i.e. the high-order structure functions normalized using the

second-order structure function), the present work suggests that passive scalar

structure function scaling exponents exhibit a dependence on the scalar-field

boundary conditions due to the finite (and different) Péclet numbers of the

flows under consideration — an effect that is significantly less prominent in

the measurements of the mixed velocity-temperature structure functions and

the (non-centered) autocorrelations of the dissipation rate of scalar variance.

The second set of experiments consists of a study of the scalar field down-

stream of a concentrated line source within a fully-developed, high-aspect-ratio

channel flow. However, unlike previous dispersion measurements employing

concentrated sources, the current research employs a line source oriented in

the direction of the inhomogeneity of the velocity field. Consequently, the re-

sulting wake downstream of the line source is statistically three-dimensional.

The dispersion is measured in planes parallel to the channel walls, and lat-

eral dispersion data can therefore be obtained for a variety of wall-normal
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distances. In such an arrangement, the velocity field at each wall-normal po-

sition is different, since the velocity field in the current configuration is solely

a function of the wall-normal distance. The resultant mixing is studied using

a variety of statistics, including the mean and root-mean-square temperature

distributions, probability density functions of the temperature fluctuations, as

well as the (turbulent) intensity of the scalar fluctuations. These results are

contrasted with prior transverse dispersion measurements in which the scalar

dispersion remains statistically two-dimensional, in an attempt to elucidate

the effect of the velocity-field boundary conditions. The findings suggest that

both the mean flow shear and turbulence intensity of the velocity field play an

important role in determining the mixedness of the scalar field.
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RÉSUMÉ

Une étude expérimentale de l’effet des caractéristiques à grandes-échelles

des écoulements turbulents sur le mélange d’un scalaire passif (température)

y est présentée. Étant donné la relation directe entre les grandes échelles des

écoulements turbulents et la configuration géométrique de l’écoulement, deux

ensembles d’expériences distincts sont menés dans lesquels la dépendance du

mélange d’un scalaire sur les conditions limites du (i) champ scalaire et (ii)

champ de vitesse est étudiée. Dans ce mémoire, l’anémométrie à fil chaud et

la thermométrie à fil froid sont utilisées pour mesurer le champ de vitesse et

le champ scalaire, respectivement.

Le premier ensemble d’expériences est réalisé dans le sillage d’un cylin-

dre circulaire. Pour varier les conditions limites du champ scalaire, tout en

gardant le même écoulement hydrodynamique, deux mécanismes d’injection

de chaleur différents sont utilisés. Premièrement, un élément chauffant est

incorporé dans le cylindre qui génère le sillage hydrodynamique. Lorsque

l’élément est mis sous tension, le sillage est donc chauffé au moyen d’un “cylin-

dre chauffé”. Deuxièmement, un ensemble de fils fins est installé en aval du,

et orienté parallèlement au, cylindre. Cette configuration, connue sous le nom

de “mandoline,” s’est avérée d’avoir une influence négligeable sur le champ

de vitesse, en raison du faible diamètre des fils. Par conséquent, l’une des

deux configurations peut être utilisée pour chauffer le sillage, sans modifier le

champ de vitesse, et de nombreuses statistiques du champ scalaire et du champ

de vitesse sont examinées. Les mesures suggèrent que certaines statistiques à

petites-échelles (comme les exposants d’échelle de la zone inertielle-convective

des fonctions de structure du champ scalaire) peuvent être contaminées par les

caractéristiques à grandes-échelles du champ scalaire. Par conséquent, il est
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intéressant de déterminer la raison pour laquelle ces statistiques présentent de

telles dépendances. En particulier, les fonctions de structure du champ scalaire

(et leurs exposants d’échelle), ainsi que les fonctions de structure mixte vitesse-

température et les autocorrélations (non-centrées) du taux de dissipation de

la variance scalaire, sont utilisées pour obtenir des estimations quantitatives

de l’intermittence interne du champ scalaire. Il est conclu que les exposants

d’échelle des fonctions de structure du champ scalaire passif présentent une

différence importante lorsque l’on compare les résultats obtenus en utilisant de

différents mécanismes d’injection de chaleur. Bien que ce résultat suggère que

les deux champs scalaires passifs aient de différents niveaux d’intermittence, les

fonctions de structure mixte et les autocorrélations du taux de dissipation de

la variance scalaire indiquent que les deux champs de température possèdent

des niveaux d’intermittence similaires. Lorsque l’on examine les fonctions de

structure du coefficient d’aplatissement (les fonctions de structure d’ordre qua-

tre normalisées par la fonction de structure de deuxième ordre) de la différence

de température, ce mémoire suggère que les exposants d’échelle des fonctions

de structure démontrent une dépendance aux conditions limites du champ

scalaire en raison des nombres de Péclet finis (et différents) des écoulements

étudiés — un effet qui est nettement moins important dans les fonctions de

structure mixte vitesse-température et les autocorrélations (non centrées) du

taux de dissipation de la variance scalaire.

Le deuxième ensemble d’expériences consiste d’une étude du champ scalaire

en aval d’une source concentrée linéaire dans un écoulement de canal pleine-

ment développé, ayant un rapport hauteur-largeur élevé. Contrairement à des

mesures de dispersion précédentes utilisant des sources concentrées, ce travail

emploie une source linéaire orientée dans la direction de l’inhomogénéité du

champ de vitesse. Par conséquent, le panache thermique créé par la source
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linéaire est (statistiquement) tridimensionnel. La dispersion est mesurée dans

des plans parallèls aux parois du canal, et des données de dispersion latérale

peuvent donc être obtenues pour de différentes distances perpendiculaires au

mur. Dans une tel configuration, le champ de vitesse à chaque distance du

mur est différent, puisque le champ de vitesse dans la configuration actuelle

est uniquement une fonction de la distance du mur. Le mélange du scalaire

passif est étudié en utilisant une variété de statistiques, incluant la moyenne

et la moyenne quadratique du champ de température, des fonctions de densité

de probabilité des fluctuations de température, ainsi que l’intensité (turbu-

lent) des fluctuations scalaires. Ces résultats (i) exposent les différences entre

ces mésures et celles de dispersion transverse, dans lesquelles la dispersion du

scalaire reste statistiquement bidimensionel, et (ii) facilitent l’élucidation des

effets des conditions limites du champ de vitesse sur le mélange d’un scalaire

passif. Les résultats suggèrent que le cisaillement de l’écoulement moyen et

l’intensité turbulent du champ de vitesse jouent un rôle important dans la

détermination du niveau de mélange du champ scalaire.

xiii



xiv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CHAPTER 1

Introduction

1.1 Motivation and Objectives

In engineering practice, as well as the study of geophysical phenomena,

fluid flow is often encountered. Its analysis is essential to the prediction of

many engineering phenomena (e.g. the flow of air around an airfoil; the pump-

ing of oil through a pipeline) and environmental applications (e.g. weather

forecasting; dispersion of a pollutant in the atmosphere). However, fluid flow is

governed by non-linear, coupled, partial differential equations. Consequently,

analytical solutions to most practical fluid flow problems are limited to a se-

lection of simplified, special cases.

Fluid flows are broadly designated as either “laminar” or “turbulent.”

Laminar flows are those in which the bulk motion of the fluid is structured in

“laminae” or layers. Consequently, there is (relatively) little exchange of fluid

particles between adjacent fluid layers, because transfers of mass, momentum

and energy occur by molecular interactions/diffusion. On the other hand, the

vast majority of both engineering and naturally-occurring flows are turbulent.

Given that it is difficult to formulate a precise definition of turbulence,

a common approach is to list its characteristics. Tennekes & Lumley (1972)

define turbulent flows as those possessing the properties that follow. First and

foremost, turbulence is chaotic, and, unlike structured laminar flows, turbulent

flows exhibit irregular, three-dimensional fluctuations in both their velocity

and vorticity fields. Moreover, turbulent flows are organized as a multitude

of “eddies” (i.e. coherent, rotational structures) of varying sizes. Due to these
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characteristics, turbulent flow problems are generally analytically intractable.

One common approach to their analysis relies on statistical methods.

Given the above-described nature of turbulent flows, they readily mix

mass, momentum and energy, due to advection by their three-dimensional,

fluctuating velocity fields. The enhanced mixing that occurs within turbulent

flows is one of its most striking features. One can readily identify numerous

phenomena in the fields of combustion, meteorology, heat transfer, oceanic

science and environmental pollutant dispersion that rely on this said property.

Since turbulent flows arise due to instabilities in laminar flows, turbu-

lence is found to occur at large Reynolds numbers, i.e. ReL = UL/ν, where

U and L are characteristic velocity and length scales, respectively, of the flow,

and ν is the kinematic viscosity of the fluid. The Reynolds number is fre-

quently interpreted as the ratio of the non-linear inertial (or advection) term

in the governing equations to the viscous (diffusion) term. Therefore, a large-

Reynolds-number flow is one in which the viscosity of the fluid is unable to

damp out the instabilities that arise from the inertial term. These flow insta-

bilities grow and coalesce, and are responsible for the transition to turbulent

flow.

Finally, turbulent flows are highly dissipative in nature. They readily

extract energy from the mean flow that is eventually converted into internal

energy by molecular (i.e. viscous) interactions. Turbulence therefore requires

a continuous source of energy to be sustained.

Given the ubiquitous nature of turbulent flows, an understanding of tur-

bulence, and the mixing that occurs therein, is crucial to multiple disciplines.

However, as stated above, many, if not most, practical turbulent flow problems

remain unsolved. A principal difficulty associated with the analysis of these

problems lies predominantly in the treatment of the continuum of eddies of
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different sizes that characterize turbulence. Consequently, this feature of tur-

bulent flows has been the subject of extensive study by numerous investigators.

The largest of these eddies scale with the geometry of the flow and, as such,

are usually anisotropic (and always flow-dependent). Their characteristic size,

commonly referred to as the “integral length scale,” is denoted by �. At large

Reynolds numbers, the action of viscosity is negligible on these large eddies

that engender smaller eddies in a process known as the “turbulent cascade.”

Such a process generates smaller and smaller eddies, until the effect of viscosity

dominates over the inertial effects. In this limit, a “local Reynolds number,”

defined using scales characteristic of the size and velocity of the smallest eddies,

approaches unity. One can also define a length scale representative of these

smallest (dissipative) eddies in the flow: the Kolmogorov microscale of length

(typically denoted by η). Its magnitude depends on the kinematic viscosity of

the fluid (ν) and the dissipation rate of turbulent kinetic energy per unit mass

(ε), where:

ε ≡ 2ν 〈sijsij〉 ≡ ν

2

〈(
∂ui

∂xj

+
∂uj

∂xi

)(
∂ui

∂xj

+
∂uj

∂xi

)〉
,

and the angular brackets denote averaging. The Kolmogorov microscale is

then defined as:

η ≡
(
ν3

ε

)1/4

.

The elucidation of the turbulent cascade has proven to be an important

discovery in the study of turbulence. It not only underlies the predominant

theory of turbulence — put forth in the seminal works of Kolmogorov (Kol-

mogorov, 1941a,b,c) — but it also bolstered the study of a second, significant

problem — the mixing of scalar contaminants within turbulent flows, which is

relevant to a multitude of both environmental and engineering processes.
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A scalar field can be considered “passive” if its presence in the flow does

not alter the advecting velocity field. (This is a more fundamental case than

that of “active” scalars, which modify the underlying velocity field.) One

common example is temperature (denoted herein using θ), which can be con-

sidered passive provided the density changes associated with the temperature

differences are small enough so as not to induce buoyancy effects. In recent

years, there have been significant advances in the understanding of passive

scalar mixing within turbulent flows. Most notably, it has been concluded

that certain aspects of the scaling and structure of a turbulent passive scalar

field arise from the mixing process itself, rather than from the nature of the

velocity field that performs the mixing (Shraiman & Siggia, 2000; Warhaft,

2000). Consequently, the study of turbulent passive scalars, once considered

“a footnote to the turbulence problem” (Warhaft, 2000), has evolved into a

field of study in its own right.

Analogously with hydrodynamic turbulence, passive scalar turbulence also

exhibits a turbulent cascade. Once again, the largest scalar eddies scale with

the geometry of the flow — their characteristic length scale is known as the

“scalar integral length scale” and is commonly denoted by �θ. There also exists

an analogous length scale for the smallest scalar eddies within the flows (ηθ),

which characterize the eddies responsible for smearing out the fluctuations in

the scalar field by molecular (diffusive) processes. For fluids with a Schmidt

number (or, in the case of the temperature field, Prandtl number) much larger

than 1 (i.e. Sc � 1, where Sc ≡ ν/α and α is the scalar diffusivity), the

smallest scalar eddies are smaller than the Kolomogorov microscale, and are

therefore exposed to the entire range of hydrodynamic eddies, thus yielding

the following expression for the “Batchelor microscale of length” or “Batchelor

scale:”
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ηθ ≡
(
να2

ε

)1/4

≡ ηSc1/2, Sc � 1.

For fluids with a Schmidt number that is much less than 1 (Sc � 1), the

smallest scalar eddies are larger than the Kolmogorov microscale. The “Corrsin

microscale” is defined as:

ηθ ≡
(
α3

ε

)1/4

≡ ηSc−3/4, Sc � 1.

(In the limit of Sc → 1, both the Batchelor and Corrsin scales asymptote

to the Kolmogorov scale, η).

The phenomenology of both the hydrodynamic and passive scalar cascade

has received significant consideration from numerous investigators — see, for

example, the review papers by Sreenivasan (1991) or Sreenivasan & Antonia

(1997). More precisely, many researchers examined the interactions that occur

among the eddies of varying sizes to elucidate the structure of the turbulent

cascade. While some recent studies suggest that the turbulence cascade may

not be a continuous process — see, for example, Villermaux et al. (2001) — the

evidence presented in the literature clearly establishes the relationship between

both the large- and small-scale flow structures. The mixing process relies on

both the large- and small-scale features of a turbulent flow. While the former

is responsible for the entrainment and initial mixing of the scalar contaminant,

the latter smoothes out the resultant scalar field.

The objective of the present work is to examine the influence of boundary

conditions on the scalar mixing that occurs within turbulent flows. This is

accomplished by examining the relationship between the large- and small-scale
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features of a turbulent flow and the resultant mixing. Herein, two particular

cases will be studied.

Firstly, the effect of the scalar-field boundary conditions on the intermediate-

and small-scale structure of a turbulent passive scalar field will be examined.

It has been well-documented in the literature that the dynamics of the small-

scale structures are vastly different from the large-scale flow features (see,

for example, Sreenivasan (1991), Sreenivasan & Antonia (1997), Shraiman &

Siggia (2000) and Warhaft (2000)). While the large-scale structure of a tur-

bulent flow often exhibits quasi-Gaussian behaviour, the small-scale statistics

deviate significantly from Gaussianity. This observation of scale-dependent

statistics is inconsistent with the postulate of local isotropy put forth by Kol-

mogorov, since the latter requires that the probability density functions of the

small-scale statistics be universal functions of the dissipation rate of turbulent

kinetic energy and the kinematic viscosity of the fluid. As outlined above, it

is hypothesized that the large-scale flow may bypass the cascade entirely and

interact directly with the smallest eddies within a turbulent flow. For example,

the skewness of the passive scalar derivative:

S∂θ/∂x =

〈
(∂θ/∂x)3

〉
〈
(∂θ/∂x)2

〉3/2 ,
typically has the same sign as the mean scalar gradient, ∂ 〈T 〉 /∂x, due to this

phenomena (Freymuth, 1976; Sreenivasan & Antonia, 1977). Therefore, it is

not unreasonable to assume that the large-scale flow features may influence the

small-scale statistics through these interactions. Moreover, these interactions

will no doubt influence the mixing that occurs within turbulent flows as well.

Consequently, a thorough understanding of the mixing that arises due to these

interactions is critical to our understanding of turbulent flows. To this end,

one objective of the current research is to determine whether variations in
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the boundary conditions (i.e. the large-scale flow features) can alter the small-

scale structure of the scalar field (and hence be responsible for the observed

behaviour of such quantities). This is accomplished by examining a variety

of statistics in a flow that remains hydrodynamically unchanged, albeit with

different scalar injection mechanisms. Thus, any observed differences in the

small-scale structure arise solely due to the scalar-field boundary conditions.

Secondly, the effect of the boundary conditions of the underlying velocity

field on the mixing of a passive scalar emitted from a concentrated line source

will be studied. (In this context, a “concentrated source” is defined as one that

injects a scalar into a turbulent flow at a length scale much smaller than that

which characterizes the velocity field.) This problem is relevant to many en-

vironmental and industrial applications in which scalars are released at small

scales into flows that have varying degrees of inhomogeneity in different direc-

tions. Consider, for example, the downstream dispersion of the plume emitted

from a smokestack. The pollutant concentration is injected into the turbulent

atmospheric boundary layer, where it is mixed with the ambient air. As the

plume is transported downstream, it grows not only in the vertical direction,

but horizontally as well. Given that atmospheric turbulence is neither homo-

geneous nor isotropic, there is no a priori reason to expect the vertical and

horizontal evolutions of the plume to be the same. For example, the Pasquill–

Gifford curves (Gifford, 1961; Pasquill, 1961) provide estimates of the evolution

of the mean plume widths in both the vertical and horizontal directions (sub-

ject to different atmospheric stability conditions). Furthermore, changing the

height of the smokestack, in this example, will also have differing effects on the

vertical and horizontal dispersion. In this (realistic) case, the boundary condi-

tions of the underlying velocity field play a crucial role in the mixing of passive

contaminants within turbulent flows. Moreover, given the inhomogeneity of
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practical fluid flows, passive scalar mixing is a statistically three-dimensional

problem. Nevertheless, the majority of the research to date on the subject of

scalar dispersion from concentrated sources has focussed on two-dimensional

(i.e. transverse dispersion) problems within homogeneous flows — see, for ex-

ample, Warhaft (1984), Nakamura et al. (1986), Sakai et al. (1986) and Karnik

& Tavoularis (1989). Consequently, it is crucial to understand the mixing that

occurs in both the transverse and lateral directions to obtain a complete pic-

ture of the mixing phenomenon. To this end, experiments are performed in

which the lateral dispersion of the passive scalar field is analyzed and com-

pared to similar problems pertaining to the transverse dispersion to identify

the influence of the different velocity-field boundary conditions.

1.2 Literature Review

The following section is divided into three sub-sections. Section 1.2.1

examines some of the implications of the predominant theory of turbulence,

i.e. the seminal works of Kolmogorov (Kolmogorov, 1941a,b,c) (abbreviated

herein as “K41”). Next, the literature pertaining to the two sets of experiments

presented herein is discussed. The influence of the passive scalar boundary

conditions is examined by means of the structure functions (and their respec-

tive, inertial-range scaling exponents), whereas the effect of the velocity field

boundary conditions is studied by a comparison of the lateral and transverse

dispersion downstream of a concentrated line source. Consequently, section

1.2.2 summarizes the literature pertaining to the (velocity and) passive scalar

structure functions obtained from a variety of laboratory experiments, nu-

merical simulations and atmospheric measurements, whereas a review of the

various (lateral and transverse) dispersion experiments described in the liter-

ature is presented in section 1.2.3. For a general introduction to turbulent

flows, and the passive scalar mixing that occurs therein, the reader is referred
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to the books by Monin & Yaglom (1971), Tennekes & Lumley (1972), Frisch

(1995) and Pope (2000), as well as the review articles of Sreenivasan (1991),

Sreenivasan & Antonia (1997), Shraiman & Siggia (2000), Warhaft (2000) and

Dimotakis (2005).

1.2.1 Kolmogorov Theory of Turbulence

The notion of the turbulent cascade was first put forth by Richardson

(1922), who recognized that the structure of turbulence consisted of a large

number of eddies of varying sizes. Building upon Richardson’s idea, Kol-

mogorov (1941b) proposed that the smallest eddies within turbulent flows are

many orders of magnitude smaller than the largest eddies because energetic

(i.e. high-Reynolds-number) flows can sustain many steps in the turbulent

cascade. Using scaling arguments, it can be shown that:

�

η
∼ Re�

3/4,

where Re� is a turbulent Reynolds number (Re� ≡ u′�/ν, where u′ is the root-

mean-square velocity fluctuation). Provided the separation of scales is large

enough (i.e. � � η), one can argue that the small eddies, having undergone

many steps in the cascade, will have lost all “recollection” of the large-scale

features of the flow. In this instance, it seems plausible that the small eddies

could be homogeneous, isotropic and independent of the large scales. This

notion, called “local isotropy,” forms the basis of Kolmogorov theory. Kol-

mogorov further supposed that the smallest scales of the velocity field should

be universal functions of the kinematic viscosity of the fluid (ν) and the dis-

sipation rate of turbulent kinetic energy (ε). Moreover, if the separation of

scales is large enough to define an intermediate range of scales (r) such that

� � r � η, the set of scales r may be independent of both the geometry of

the flow as well as the fluid viscosity (and solely determined by the dynamics

9



of the turbulence). Kolmogorov referred to this intermediate range of scales

as the “inertial subrange,” which is characterized by universal statistics that

are solely dependent on ε.

The practical considerations listed in the introduction also prompted many

investigators to study turbulent passive scalar fields. Consequently, Kolmogorov’s

postulate of local isotropy was extended to passive scalars by Oboukhov (1949)

and Corrsin (1951), independently. (The theory is commonly referred to as

the Kolmogorov-Oboukhov-Corrsin theory, abbreviated herein as “KOC.”)

KOC theory states that, in the limit of infinite Reynolds and Péclet num-

bers (Pe�θ ≡ u′�θ/α), the separation between the large, integral scales (�,

and its passive scalar analogue, �θ) and the small, viscous and diffusive scales

(the Kolmogorov and Batchelor/Corrsin microscales, η and ηθ, respectively)

results in small-scale passive scalar statistics that are independent of the large-

scale features of the flow. Given an intermediate range of scales, r, such that

�, �θ � r � η, ηθ, the set of scales r would be solely a universal function of the

dissipation rate of turbulent kinetic energy (ε) and its passive scalar analogue,

the dissipation rate of scalar variance, χ:

χ ≡ α

〈
∂θ

∂xj

∂θ

∂xj

〉
.

In analogy with its hydrodynamic counterpart, this range of scales is commonly

referred to as the “inertial-convective subrange.”

Perhaps the most well-known consequence of Kolmogorov theory is the

predicted inertial-range scaling of the power spectrum of turbulent kinetic

energy, E(κ). For such a range of scales, the statistics are independent of both

the large-scale flow geometry and the fluid viscosity, and solely dependent on

the dissipation rate of turbulent kinetic energy. Dimensional analysis dictates
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that:

E(κ) = Cε2/3κ−5/3,

where κ is the magnitude of the wavenumber vector and C is a universal

constant. The above-mentioned result can also be extended to the power

spectrum of scalar variance, Eθ(κ), using similar dimensional arguments:

Eθ(κ) = Cθε
−1/3χκ−5/3,

where Cθ is a second universal constant. Consequently, attempts to validate

Kolmogorov theory focused on determining the inertial-range scaling of the

turbulent kinetic energy and scalar variance spectra in the hopes of revealing

a -5/3 scaling region. Early experimental results, in atmospheric, oceanic

and wind tunnel flows, revealed the presence of the Kolmogorov scaling, thus

providing the first validations of Kolmogorov theory (Laufer, 1952; Grant et al.,

1962; Gibson, 1963; Kistler & Vrebalovich, 1966).

In the years since 1941, Kolmogorov theory has been shown to be gener-

ally valid. In particular, low-order statistics (e.g. the turbulent kinetic energy

and scalar variance spectra) agree well with Kolmogorov theory — a fact of

notable significance given that their form was put forth from purely theoretical

arguments without any a priori supporting evidence. Nevertheless, the theory

has its limitations, which will now be addressed.

Shortcomings of K41/KOC theory have been reported in the literature.

A prediction stemming from KOC theory is that the skewness of the passive

scalar derivative:

S∂θ/∂x =

〈
(∂θ/∂x)3

〉
〈
(∂θ/∂x)2

〉3/2 ,
must be zero, to satisfy the hypothesis of local isotropy. However, numerous

investigators (Thoroddsen & Van Atta, 1992; Holzer & Siggia, 1994; Tong &
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Warhaft, 1994; Mydlarski & Warhaft, 1998) have determined that the deriva-

tive skewness is in fact on the order of one in a variety of laboratory, numer-

ical and atmospheric flows. Moreover, this violation of small-scale anisotropy

persists in high-Reynolds- and high-Péclet-number flows. In addition, this re-

sult is also observed in numerical simulations using a Gaussian velocity field

(Holzer & Siggia, 1994). Warhaft (2000) concludes that “only a multiplicity

of scales, acting against an imposed mean temperature gradient, is all that

is required to obtain the persistent anisotropy.” The observed violation of

small-scale anisotropy is a result of “ramp-cliff” structures present within the

flow, which form at the intersection of two, large-scale, counter-rotating veloc-

ity structures. This large-scale interaction creates a converging and diverging

separatrix, which, in turn, leads to the creation of a scalar “front” (or “cliff”)

structure at the diverging separatrix, due to entrainment of hot and cold fluid

by the large, counter-rotating eddies (Antonia et al., 1986).

Another noteworthy example of the shortcomings of Kolmogorov theory

is the anomalous scaling of high-order structure functions in the inertial sub-

range. Using longitudinal velocity fluctuations (u) as an example, the nth-order

(longitudinal) structure function is defined as:

〈(Δru)
n〉 = 〈[u(x+ r)− u(x)]n〉 ,

where r is a (longitudinal) spatial separation. (Note that the second-order

structure function (i.e. n = 2) is a real-space statistic that is directly related

to turbulent kinetic energy spectrum.) At high Reynolds numbers, structure

functions exhibit a power-law scaling of the type 〈(Δru)
n〉 ∼ rζn in the inertial

subrange. According to K41 theory, the scaling exponents of the velocity

structure functions (ζn) should equal n/3. However, the scaling exponents

observed in the literature deviate from the predicted value of n/3, with the
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magnitude of the difference increasing with structure function order. Such

anomalous scaling is also observed in the study of turbulent passive scalar

structure functions. Moreover, the passive scalar exponents (ξn) deviate even

further from the n/3 prediction than do the velocity exponents.

The observed departures from K41/KOC theory stem from a phenomenon

known as “internal intermittency.” The latter is characterized by intense fluc-

tuations in the dissipation rates of turbulent kinetic energy (ε) and scalar

variance (χ), which are not accounted for in K41/KOC theory. Furthermore,

these events occur with greater frequency and intensity in the scalar field, as

compared to the velocity field. The underlying causes of the stronger inter-

mittency in the passive scalar field remains a topic of active research. As with

passive scalar anisotropy, an important discovery is the realization that the

intermittency of passive scalars can arise in a non-intermittent velocity field

(Holzer & Siggia, 1994; Kraichnan, 1994). This “decoupling” of the passive

scalar and velocity fields seems to suggest that the intermittency of passive

scalars is a result of the mixing process, and not a reflection of the intermit-

tency in the velocity field (Warhaft, 2000).

Despite the shortcomings of K41/KOC theory, the issue of small-scale

universality remains unclear. In complex phenomena such as turbulence, uni-

versality is desirable as it simplifies the analysis and prediction of the phe-

nomenon. Returning to the example of structure functions, many investiga-

tors continue to study the inertial-range scaling exponents of (velocity and

passive scalar) structure functions in the hopes that the exponents are in fact

universal, despite their deviations from K41/KOC theory.

To account for the effect of internal intermittency, Kolmogorov (1962) de-

veloped a refinement to his original similarity hypotheses. (This later theory is
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commonly known as the “refined similarity hypothesis” and frequently abbrevi-

ated as “K62.”) The motivation for such a refinement stems from an objection

put forth by Landau (see, for example Landau & Lifshitz, 1987), who noted

that the dissipation rate of turbulent kinetic energy should increase without

bound as the separation of scales (i.e. �/r) increases. To resolve this situa-

tion, Kolmogorov (1962) proposed that the variance of the volume-averaged

dissipation rate of turbulent kinetic energy1 (denoted herein using εr) obeys

a log-normal distribution, such that:

σln εr = A+ μ ln (�/r) ,

where A is a flow-dependent parameter and μ is a universal coefficient called

the “intermittency exponent.” Consequently, the proper expression for the

scaling of the velocity structure functions in the inertial range becomes:

〈(Δu)n〉 = Cnr
n/3

〈
εn/3r

〉
.

While the expression above may seem similar to the result derived using K41

theory, note that the use of the volume-averaged dissipation complicates the

analysis. More precisely, one must take into account the fact that the volume-

averaged dissipation is log-normally distributed. Consequently, the above ex-

pression becomes:

〈(Δu)n〉 = Cn (rε)
n/3 (�/r)μn(n−3)/18 ,

1 Oboukhov (1962) first proposed to average the dissipation rate of turbulent
kinetic energy over a sphere of radius r (where r is an inertial-range separation)
since such an average takes into account the local fluctuations of the dissipation
rate of turbulent kinetic energy, thereby providing a “pure ensemble average.”
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where Cn is no longer a universal constant (as it was using K41 theory) but

a flow-dependent parameter. Alternately stated, the inertial-range scaling of

the velocity structure functions becomes:

ζn =
n

3
− μn

18
(n− 3) ,

where μ is the same intermittency exponent defined above.

Analogous refinements to the Kolmogorov-Oboukhov-Corrsin theory for

the passive scalar field were put forth by Korchashkin (1970) and Van Atta

(1971). More precisely, Van Atta (1971) proposed that, for a fluid with a

Schmidt number of the order one, in analogy with the volume-averaged dissi-

pation rate of turbulent kinetic energy, the volume-averaged dissipation rate

of scalar variance, χr, also exhibits a log-normal distribution:

σlnχr = Aθ + μθ ln (�/r) .

Once again, Aθ is a flow-dependent parameter and μθ is the intermittency

exponent of the passive scalar field. Consequently, the analogous expression

for the inertial-convective range scaling of the passive scalar structure functions

becomes:

〈(Δθ)n〉 = Knr
n/3

〈
χn/2
r ε−n/6

r

〉
.

Once again, Kn is a flow-dependent parameter (as opposed to a universal

constant). Since the passive scalar structure functions are a function of the

dissipation rates of both the turbulent kinetic energy and scalar variance, the

expression above includes the correlation between χr and εr (which was not

required for the KOC prediction). This consideration complicates the analysis,

since one must know (or assume) the form of the joint probability distribution

of χr and εr (to obtain an estimate of their correlation coefficient, denoted
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herein by ρ). Assuming that the joint probability distribution of the dissipa-

tion rates is a bivariate log-normal distribution (with a constant correlation

coefficient), Van Atta (1971) derived the following expression for the inertial-

convective-range scaling exponents of the passive scalar field:

〈(Δθ)n〉 = Knr
n/3χn/2ε−n/6 (�/r)μn(n(5−3ρ)−6)/36 ,

assuming that Aθ = A and μθ = μ. The above expression can be re-arranged

to isolate the scaling exponent for r, such that:

ξn =
n

3
− μn

36
[n (5− 3ρ)− 6] .

Upon examination of the expressions above for the velocity and passive

scalar structure function scaling exponents, one observes that the two expres-

sions are similar. Both expressions include the K41/KOC n/3 prediction, in

addition to a correction, which is a function of the intermittency exponent.

Given this observation, one of the most commonly encountered measures of

internal intermittency are the inertial-range scaling exponents of the high-

order (velocity and passive scalar) structure functions, or, more precisely, their

departure from the K41/KOC theoretical prediction of n/3. Moreover, the ex-

pressions derived above suggest that the structure function scaling exponents

(for both the velocity and passive scalar fields) exhibit a parabolic variation

with structure function order. Frisch (1995) demonstrated that the structure

function scaling exponents must be a concave-down, non-decreasing function

of the structure function order — a condition that is clearly violated by the

K62 prediction. A second discrepancy also arises from the fact there exists nu-

merous methods to quantify the intermittency of both the velocity and passive

scalar fields. Sreenivasan & Kailasnath (1993) described multiple techniques

to determine the intermittency exponent, each yielding somewhat different
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values. Consequently, the “correct” values of both intermittency exponents

remains a topic for debate. (However, Sreenivasan & Kailasnath (1993) pro-

pose that the respective values for the internal intermittency of the velocity

and passive scalar fields are μ = 0.25 ± 0.05 and μθ = 0.35.) Nevertheless,

numerous investigators continue to make use of the structure function scaling

exponents as a measure of the internal intermittency, since their departure

from the Kolmogorov prediction arises due to the effects of internal intermit-

tency.

Given the widespread use of the velocity (and passive scalar) structure

function scaling exponents as measures of the internal intermittency, the first

set of experiments in the present work (from here on in referred to as the

“internal intermittency experiments”) examines whether such statistics ex-

hibit a dependence on the scalar-field boundary conditions. Consequently, the

following section summarizes the literature pertaining to measured structure

functions in a variety of laboratory, atmospheric and simulated flows.

1.2.2 Velocity and Passive-Scalar Structure Functions

Velocity structure functions have been measured in a variety of labora-

tory and atmospheric flows, as well as in numerical simulations. Frenkiel &

Klebanoff (1967) were among the first to examine the higher-order statistics

of the turbulent velocity field. In particular, they examined the high-order

correlation coefficients of the velocity increments (up to the eighth order) as

a function of the (temporal) separation. (One may easily demonstrate that

the nth-order correlation examined therein is simply the nth-order structure

function normalized by the second-order structure function.) Their results

revealed that the high-order moments depart from Gaussianity at small sepa-

rations. Unfortunately, given the low Reynolds number of the flow (Reλ = 55),
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they did not observe an inertial subrange and, therefore, could not compute

the scaling exponents.

Van Atta & Chen (1970) examined the structure functions of the turbulent

velocity field (up to fourth-order) in the atmospheric boundary layer above

the ocean to study the inertial-range scaling. The scaling exponents measured

therein were in agreement with the K41 prediction at low orders. However,

at fourth-order, they observed a discrepancy between the measured exponent

and the value predicted using Kolmogorov theory. In this case, Kolmogorov’s

modified theory yielded more accurate predictions. Van Atta & Park (1972)

extended the previous work of Van Atta & Chen (1970) to examine the inertial-

range exponents up to ninth-order. The refined Kolmogorov theory accurately

predicted the scaling exponents up to seventh-order. (However, the authors

conceded that their data may suffer from convergence issues for n ≥ 5.)

Antonia, Satyaprakash & Chambers (1982) examined the influence of the

Reynolds number on the high-order structure functions by considering a variety

of laboratory shear flows (i.e. a circular jet with 379 ≤ Reλ ≤ 966 and a plane

jet with 531 ≤ Reλ ≤ 728) as well as measurements made in the atmospheric

surface layer (with a Reynolds number range of 7353 ≤ Reλ ≤ 8995). They

found that K62 theory successfully predicted the evolution of the structure

functions with Reynolds number.

Anselmet et al. (1984) studied the high-order structure functions (up to

order n = 18) for the velocity fields within a turbulent jet (up to Reynolds

number Reλ = 852) and in a turbulent duct flow (for Reλ = 515). The

authors examined the log-normal model proposed in Kolmogorov (1962) in

the context of its ability to accurately predict the scaling exponents of the

high-order velocity structure functions. They determined that the log-normal

model was accurate up to the twelfth order. However, beyond the twelfth
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order, the measured exponents continued to increase in magnitude, whereas

the K62 prediction decreases with increasing structure function order (since

the expression for the scaling exponent is quadratic with structure function

order).

Maurer, Tabeling & Zocchi (1994) examined the structure functions in

a turbulent flow generated by means of two counter-rotating disks in low-

temperature helium. While the resulting flow is highly complex, it nevertheless

provides a relatively large Reynolds number (as compared to other laboratory

flows). The authors presented scaling exponents for a Reynolds number of

Reλ ≈ 1200, which, the authors concluded, were comparable to the values

previously presented in the literature. Belin, Tabeling & Willaime (1996)

later expanded upon the previous experiment by examining the variation of

the scaling exponents with Reynolds number. Their observations revealed

very little variability in the measured exponents (for the fourth-, sixth- and

eighth-order moments) over the range of Reynolds numbers examined therein

(i.e. 150 ≤ Reλ ≤ 5040).

Vincent & Meneguzzi (1991) were among the first to examine the higher-

order scaling exponents using direct numerical simulation of statistically sta-

tionary, homogeneous, isotropic turbulence at Reλ ≈ 150. The authors pre-

sented the scaling exponents for n < 30 and determined that their results were

consistent with those of Anselmet et al. (1984) — i.e. the scaling exponents

measured therein agreed well with the log-normal prediction of Kolmogorov

(1962) at low orders. However, the scaling exponents increased monotonically

with the structure function order (and, therefore, did not exhibit the decrease

predicted by the log-normal model).
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Boratav & Pelz (1997) examined the inertial-range scaling exponents of

decaying turbulence at Reλ ∼ 100 using direct numerical simulation. The scal-

ing exponents were determined using a number of different techniques and com-

pared to numerous theoretical predictions. They determined that the model

proposed by She & Leveque (1994) provided the most accurate estimates of

the longitudinal velocity structure function scaling exponents. Moreover, the

authors expanded upon the previous model to include additional free param-

eters and determined that the new model was equally capable of providing

accurate estimates of the exponents.

Gotoh et al. (2002) examined a variety of velocity statistics, including the

scaling exponents of both the longitudinal and transverse structure functions

(up to tenth order), using a high-resolution (10243 grid points) simulation.

They reported distinct differences in the longitudinal and transverse structure

functions, notably that (i) the transverse velocity structure function presents

a wider inertial scaling range than the longitudinal velocity structure function

and (ii) the “cross-over scale” (i.e. from the viscous-dominated regime to the

inertial region) for the longitudinal structure function is larger than the anal-

ogous value for the transverse structure function. (However, both values are

on the order of the Taylor microscale of the flow.)

Along with the experimental and numerical experiments described above,

the evolution of the structure function scaling exponents with structure func-

tion order has received significant theoretical consideration from numerous

investigators. Frisch, Sulem & Nelkin (1978) proposed a phenomenological in-

termittency model known as the “β model,” which assumes that as the large

eddies break up into smaller eddies, they become less “space-filling.” The im-

plication of such a model is that the smallest eddies, which are responsible for

the dissipation of turbulent kinetic energy into internal energy, occupy a much
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smaller volume than the largest eddies. This yields tiny regions over which

the bulk of the dissipation occurs, a phenomenon that is reminiscent of that

observed due to internal intermittency. Using this model, Frisch et al. (1978)

derived the following expression for the velocity structure function scaling ex-

ponent:

ζn =
1

3
(3−D) (3− n) ,

where D is the fractal dimension, which is related to the intermittency ex-

ponent, μ, such that D = 3 − μ. On the other hand, She & Leveque (1994)

proposed a hierarchical model using the ratio of the moments of the dissipation

rate of turbulent kinetic energy. Moreover, they suggested that the relation-

ship between the successive moments of the dissipation rate of turbulent kinetic

energy is universal. This assumption yields the following expression for the

inertial-range scaling exponents:

ζn =
n

9
+ 2

[
1−

(
2

3

)n/3
]
.

Chen & Cao (1995) developed an extension of the She & Leveque (1994) hier-

archical model that incorporates the scaling exponents of the locally-averaged

dissipation function (as proposed by Novikov, 1994). The authors demon-

strated that the resulting expression:

ζn =
9

2

[
1−

(
7

9

)n/3
]
,

yields accurate predictions of the scaling exponents (when compared to both

experimental data and previous theoretical predictions) up to the tenth order.

Moreover, their model predicts that the scaling exponents eventually asymp-

tote to a finite value, in the limit of infinite structure function order. Finally,

Camussi & Verzicco (2000) employed the probability density functions of the
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turbulent kinetic energy fluctuations to obtain a recursive formula for the ve-

locity structure function scaling exponents (which depends solely on the scaling

exponent of the first-order structure function). The motivation for this model

stems from the notion that the coherent structures within a turbulent flow are

solely responsible for the internal intermittency, which, in turn, yields expo-

nential PDFs for the turbulence kinetic energy. Consequently, they derived

the following expression for the structure function scaling exponents:

ζn = ζn−1 +
log n

log 6
(1− 3ζ1) + ζ1.

A similar analysis of the high-order passive scalar structure functions has

also been presented in the literature. Antonia & Van Atta (1978) examined the

structure functions of the temperature fluctuations in laboratory flows (i.e. a

thermal boundary layer and a heated jet), as well as the atmospheric sur-

face layer. They also examined the evolution of the structure functions with

Reynolds number. (However, they did not compute the inertial-convective

range scaling exponents.) Moreover, they also observed that the odd-order

temperature structure functions exhibited a significant departure from the Kol-

mogorov prediction (i.e. the value of zero, as required to satisfy local isotropy.)

The authors attributed this discrepancy to “ramp-like” structures within the

fluctuating temperature field, which arise due to the anisotropic large-scale

features of turbulent shear flows.

Antonia et al. (1984) measured the scaling exponents of the high-order

temperature structure functions (up to n = 12) in a weakly-heated turbulent

jet at Reλ ≈ 850. Their experiments revealed that the magnitude of temper-

ature scaling exponents was smaller than the velocity scaling exponents for

a comparable flow (i.e. Anselmet et al., 1984), with the difference increasing
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with structure function order. The authors concluded that differences may

exist between hydrodynamic and passive scalar internal intermittency.

Meneveau et al. (1990) examined the intermittent velocity and scalar fields

in the heated wake of a cylinder using a joint multifractal formalism. While

the primary objective of this paper was to develop a multifractal formalism

to describe intermittent fields, the authors demonstrated that the proposed

technique could also be applied to practical turbulence problems. Moreover,

using this technique, the authors computed the temperature structure function

scaling exponents, which are smaller than those presented by Antonia et al.

(1984) at higher orders.

Ruiz-Chavarria et al. (1996) also examined the heated wake downstream

of a cylinder. In contrast to the work of Meneveau et al. (1990), the authors

employed a “mandoline” (an array of fine, heated wires) to inject the scalar

into the flow. (Note that the experimental configuration employed in Ruiz-

Chavarria et al. (1996) is similar to the “mandoline experiment” described in

the present work — see sections 3.1 and 4.1.) The authors examined the passive

scalar structure function scaling exponents and proposed (and experimentally

verified) a hierarchical model for the temperature structure functions, akin to

that proposed by She & Leveque (1994).

Both Chen & Cao (1997) and Chen & Kraichnan (1998) employed di-

rect numerical simulation of isotropic turbulence to examine the high-order

structure functions of the passive scalar field, as well as the inertial-convective

range scaling exponents. While the former examined the relationship between

the structure of the internal intermittency and the structure function scaling

exponent, the latter studied the conditional expectation of the dissipation rate
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of scalar variance (along with its moments). In both cases, the authors demon-

strated that direct numerical simulations of passive scalar turbulence can be

successfully employed to determine the structure function scaling exponents.

Theoretical predictions of the evolution of the structure function scaling

exponents with the structure function order have also been proposed. For

example, Kraichnan (1994) examined the influence of the molecular diffusion

term of the Navier-Stokes equations on the passive scalar structure functions

and derived an expression for the structure function scaling exponents, such

that:

ξ2n =
1

2

√
4ndξ2 + (d− ξ2)

2 − 1

2
(d− ξ2) ,

where ξ2 is the scaling exponent of the second-order structure functions and d is

a general dimension of space. Cao & Chen (1997) proposed a phenomenological

model for the inertial-range scaling exponents, which the authors derived using

a bivariate log-Poisson model. Their expression:

ξn = 3− n

36
−2

(
3

4

)n/6

−
(
1

2

)n/2

+γ

[
1−

(
3

4

)n/6

−
(
1

2

)n/2

+

(
3

4

)n/6(
1

2

)n/2
]
,

where γ is a free (i.e. modelling) parameter, exhibited a good agreement with

the experimental data, provided γ = 0. The authors suggested that such a re-

sult is indicative of a weak correlation between the volume-averaged dissipation

rates of turbulent kinetic energy and scalar dissipation. Meanwhile, Lévêque

et al. (1999) built upon the previous model of She & Leveque (1994) to obtain

an expression for the inertial-convective range scaling exponents, which reads:

ξn =
n

9
+

(
10

9

)[
1−

(
2

5

)n/3
]
.

Gylfason & Warhaft (2004) examined both the longitudinal and trans-

verse temperature structure functions in grid-generated turbulence (for 150 ≤
Reλ ≤ 700) with a uniform mean temperature gradient. They determined
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Figure 1.1: The inertial(-convective) range scaling exponents of the (a) veloc-
ity and (b) passive scalar fields, obtained from the published literature. In
(a): ×: Present work. •: Anselmet et al. (1984), Maurer et al. (1994), Belin
et al. (1996), Vincent & Meneguzzi (1991), Boratav & Pelz (1997), Gotoh et al.
(2002). Solid line: K41 (n/3). �: ESS data of Arneodo et al. (1996). In (b): ◦:
Present work, heated cylinder experiment. +: Present work, mandoline exper-
iment. •: Antonia et al. (1984), Meneveau et al. (1990), Ruiz-Chavarria et al.
(1996), Gylfason & Warhaft (2004), Chen & Cao (1997), Chen & Kraichnan
(1998), Watanabe & Gotoh (2006). Solid line: KOC (n/3).
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that the passive scalar structure function scaling exponents (i) exhibited no

dependence on the Reynolds number and (ii) were the same for both the lon-

gitudinal and transverse cases. In addition to their results, they presented

a compilation of the passive scalar scaling exponents obtained from the lit-

erature, noting that there exists a considerable scatter in the experimentally

determined data. Figure 1.1 presents a compilation of the (a) velocity and

(b) temperature scaling exponents obtained from the literature. One notices

that the velocity scaling exponents exhibit a reasonable collapse at all orders,

excluding the data of Belin et al. (1996), whereas the passive scalar exponents

reveal a considerable scatter in the data at high-orders. Gylfason & Warhaft

(2004) remarked that such a variation could result from (i) convergence issues

at high-orders, (ii) “clipping” of large fluctuations due to finite experimen-

tal (and computational) domains, and (iii) differences in the initial/boundary

conditions of the flow.

Watanabe & Gotoh (2006) examined the high-order passive scalar struc-

ture function scaling exponents using high-resolution direct numerical simu-

lations. In particular, their simulations examined an isotropic turbulent flow

advecting two different passive scalar fields: (i) a random, Gaussian (white

in time) source (at Reλ = 427), and (ii) a uniform mean scalar gradient (at

Reλ = 468). Consistent with the work of Gylfason & Warhaft (2004), they

observed that the inertial-range scaling exponents for the longitudinal and

transverse structure functions were approximately equal (for the uniform mean

scalar gradient experiment). Moreover, their results revealed a significant dis-

crepancy between the scaling exponents generated by the two different scalar

sources.

Having summarized the literature pertaining to the first set of experi-

ments examined in this thesis, i.e. the influence of the scalar-field boundary
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conditions on passive scalar mixing, the following section examines the litera-

ture pertaining to the second set of experiments presented herein, which treats

the mixing that occurs downstream of concentrated sources within turbulent

flows.

1.2.3 Dispersion from Concentrated Sources

A theoretical background for the diffusion of passive contaminants by

turbulent flows was first provided by Taylor (1921), who examined the funda-

mental properties of a turbulent flow that are responsible for the dispersion

that occurs due to the motion of the turbulent fluid particles.2 Thereafter,

the experiments of Taylor (1935), Uberoi & Corrsin (1953) and Townsend

(1954) presented the development of the mean and fluctuating thermal fields

downstream of a thermal line source in (homogeneous, isotropic) grid turbu-

lence. These experiments revealed that the mean temperature profile is well

represented by a Gaussian distribution. Subsequent work revealed that the

evolution of the mean temperature field can be divided into three stages: (i)

a molecular diffusive regime, (ii) a turbulent convective regime and (iii) a

turbulent diffusive regime (Warhaft, 1984; Anand & Pope, 1985; Stapountzis

et al., 1986). In the molecular diffusive range (t � α/ 〈v2〉, where t is the

“flight-time” from the source, α is the scalar diffusivity and 〈v2〉 is the mean-

square transverse velocity fluctuation), the width of the plume (σ) grows as

σ ∝ (αt)1/2. The turbulent convective regime, α/ 〈v2〉 � t � tL, where tL

is the Lagrangian integral time scale of the flow, is characterized by a linear

growth rate of the plume width with time (i.e. σ ∝ 〈v2〉1/2 t). Finally, the

2 More recently, Durbin (1980) extended Taylor’s seminal work to develop
the two-particle dispersion model, which better predicts the fluctuating scalar
field. Shortly thereafter, Sawford & Hunt (1986) extended the model of Durbin
(1980) to include the effects of molecular diffusion.
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turbulent diffusive range (t � tL) is described by dσ2/dt ∝ αT , where αT is

the turbulent scalar (or eddy) diffusivity.

Warhaft (1984) studied the downstream evolution of a passive scalar re-

leased from a concentrated line source in homogeneous, isotropic grid tur-

bulence. The results presented therein revealed that the root-mean-square

temperature profiles exhibit a transition from double-peaked (near the source)

to single-peaked (at intermediate distances) and back to double-peaked once

again (far downstream). In addition to the single-line-source experiments,

Warhaft (1984) also examined the interference of multiple thermal plumes by

means of their correlation coefficient. It was concluded that the mixedness of

the resultant thermal plume was a strong function of the separation between

the line sources and that the thermal fields exhibited a “destructive interfer-

ence,” similar to that which occurs within wave motion.

Anand & Pope (1985) carried out numerical simulations of grid turbu-

lence using the flow conditions examined in Warhaft (1984). Using probability

density function (PDF) methods, they calculated the evolution of the mean

plume for all three stages. Moreover, their computations of the scalar vari-

ance were improved by the use of a joint PDF method conditioned on the

transverse velocity at the source location. Viswanathan & Pope (2008) stud-

ied the scalar dispersion from one, two and multiple line sources in decaying

grid turbulence. Their implementation of the interaction by exchange with

the conditional mean (IECM) model, in conjunction with their PDF methods,

yielded accurate results for a variety of scalar statistics.

Nakamura et al. (1986) and Sakai et al. (1986) studied the mean and

fluctuating scalar fields (respectively) downstream of a concentrated point
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source in uniformly sheared turbulence. Their results indicated that the de-

cay rates of the centreline mean and root-mean-square (r.m.s.) scalar con-

centrations, as well as the lateral and transverse growth rates of the mean

scalar profiles, all exhibited a dependence on the magnitude of the mean-

flow shear. Karnik & Tavoularis (1989) examined the influence of anisotropy

(shear) on the dispersion from a line source in homogeneous turbulent shear

flow. They obtained mean temperature profiles that were initially Gaussian

(i.e. close to the source); however, far downstream, the profiles become asym-

metric with peaks shifting towards the lower velocity region. In addition, they

also measured r.m.s. temperature profiles that evolved from double-peaked

(close to the source), to single-peaked (at intermediate distances) and back to

double-peaked once more (far downstream), consistent with the observations

of Warhaft (1984). Their results also included various velocity–temperature

statistics (e.g. joint PDFs, turbulent fluxes, etc. ).

While the study of scalar dispersion in homogeneous turbulence provides

invaluable insight into the underlying physical mechanisms responsible for the

mixing of scalar contaminants, the majority of engineering and naturally oc-

curring turbulent flows are inhomogeneous. In order to explicitly isolate the

influence of the inhomogeneity, Lavertu & Mydlarski (2005) performed experi-

ments that will be of particular relevance to the experiments described herein.

They studied the (transverse) dispersion from a concentrated line source in

fully developed, high-aspect-ratio turbulent channel flow — the most funda-

mental inhomogeneous flow, given that the inhomogeneity of the velocity field

is confined to only one direction (the wall-normal direction). The line source

was oriented parallel to the channel walls, thus creating a statistically two-

dimensional temperature field, and transverse dispersion profiles were mea-

sured in the wall-normal direction for a variety of downstream positions and
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wall-normal source locations. They presented mean and fluctuating tempera-

ture profiles, which were well approximated by truncated Gaussian distribu-

tions, in addition to presenting temperature probability density functions and

various mixed velocity–temperature statistics.

In light of the practical considerations pertaining to atmospheric pollu-

tant dispersion, the development of a plume released from elevated (as well

as ground) sources in a turbulent boundary layer has also received significant

attention. Shlien & Corrsin (1976) presented the mean temperature profiles

for both a ground-level and elevated line source in a turbulent boundary layer.

Their results indicated that the mean profiles approached an asymptotic form,

regardless of the source elevation. Furthermore, they determined that a suit-

ably defined turbulent Prandtl number was of the order of unity.

Fackrell & Robins (1982) examined both the lateral and transverse evolu-

tion of ground-level and elevated point sources issuing into a turbulent bound-

ary layer. They presented statistics of the (mean and fluctuating) concentra-

tion field, along with measurements of various turbulent fluxes, for both the

vertical (i.e. transverse) dispersion, and, to a lesser extent, the lateral disper-

sion. They determined that the lateral profiles of the temperature variance

were slightly broader than a Gaussian distribution and exhibited very little

changes with downstream position. Finally, they observed that these profiles

displayed little variation for different source heights as well.

Paranthoën et al. (1988) studied the dispersion from a line source in both a

turbulent boundary layer and a plane jet. Their results included the mean and

fluctuating temperature fields, in addition to a re-scaling scheme, which makes

use of the Lagrangian integral time scale of the transverse velocity fluctuation

(see also Dupont, El Kabiri & Paranthoën, 1985), that provided a reasonable

30



collapse of the (mean) statistics from both flows. Unfortunately, the scheme

was not as successful in collapsing the fluctuating statistics.

Direct numerical simulations of the dispersion of passive scalars within

turbulent flows has also been presented by numerous investigators. For exam-

ple, Brethouwer et al. (1999) examined fully developed pipe flow with a point

source located at the pipe centreline by means of numerical simulations. They

calculated the mean and fluctuating concentration profiles, turbulent fluxes,

as well as PDFs of the concentration. Their results were in good agreement

with the relevant experimental data, thereby confirming the validity of using

direct numerical simulations in the study of turbulent mixing.

Vrieling & Nieuwstadt (2003), on the other hand, considered the mean

and fluctuating scalar statistics for a single and multiple line sources in chan-

nel flow, in a manner analogous to the work of Warhaft (1984) — i.e. they

examined profiles of the root-mean-square concentration fluctuation, as well

as the downstream evolution of the plume half-width and, in the case of mul-

tiple line sources, the correlation coefficient. Finally, they proposed a new

dispersion model, based predominantly on the fluctuating plume model pro-

posed by Gifford (1959), which permitted the authors to extend the results of

their numerical simulation to atmospheric flows.

Hanratty and his numerous collaborators — e.g. Lyons, Hanratty & Mc-

Laughlin (1991), Kontomaris & Hanratty (1994), Papavassiliou & Hanratty

(1997), Iliopoulos & Hanratty (1999) and Na & Hanratty (2000) — performed

multiple numerical simulations of scalar dispersion in turbulent channel flow

(using a variety of scalar boundary conditions, including both heated walls and

point sources). Their results demonstrated that direct numerical simulations

of dispersion within channel flow could be used to obtain reliable estimates of

numerous passive scalar statistics.
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Bakosi et al. (2007) studied the dispersion from a concentrated line source

in fully developed turbulent channel flow using PDF methods. They also ex-

amined the influence of different mixing models (more precisely, the interac-

tion by exchange with the mean and the interaction by exchange with the

conditional mean) on the resultant small-scale mixing of the passive scalar.

They concluded that the interaction by exchange with the conditional mean

model provided a better agreement with the experimental data of Lavertu

& Mydlarski (2005). (Unfortunately, this comes at the expense of increased

computational time.)

Finally, Boppana et al. (2012) performed large-eddy simulations of turbu-

lent channel flow with dispersion from a concentrated source using the same

experimental conditions as those presented in Lavertu & Mydlarski (2005).

Their numerical results were in reasonable agreement with those determined

by Lavertu & Mydlarski (2005), thereby illustrating the promise of using large-

eddy simulations in practical flows.

1.3 Structure of Thesis

The remainder of this thesis is organized as follows. The experimental

apparatuses are presented in Chapter 2. A description of the experimental

conditions, as well as the corresponding flow validation, is discussed in Chap-

ter 3. Results are presented and discussed in Chapter 4, which pertains to the

influence of the (i) scalar-field (section 4.1) and (ii) velocity-field (section 4.2)

boundary conditions on the structure of the turbulent passive scalar within in-

homogeneous turbulent flows. The former examines different statistics that are

commonly employed to characterize the internal intermittency of the passive

scalar field and whether they exhibit a dependence on the large-scale features

of the temperature field. The latter section presents statistics pertaining to the

mixing of a passive scalar and attempts to identify the influential parameters,
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with particular emphasis on the velocity-field boundary conditions. Finally,

the conclusions are summarized in Chapter 5.
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CHAPTER 2

Experimental Apparatus

The experiments described herein were conducted in the Aerodynamics

Laboratory in the Department of Mechanical Engineering at McGill Univer-

sity. Two different experimental facilities were employed. The internal in-

termittency studies were conducted in the open-circuit, suction-type, low-

background-turbulence wind tunnel (Beaulac & Mydlarski, 2004; Berajeklian

& Mydlarski, 2011), whereas the lateral dispersion measurements were ob-

tained using the channel flow facility (Lavertu & Mydlarski, 2005; Costa-Patry

& Mydlarski, 2008). The details of each facility, the instrumentation, and the

data acquisition processes, are described below.

2.1 Wind Tunnel Facility

The plenum of the open-circuit wind tunnel contains a flow-conditioning

section, which consists of an aluminum honeycomb flow straightener, followed

by a series of four stainless steel wire screens. It is connected to the test section

by a contraction with a 9 to 1 area ratio. The profile of the contraction follows

a fifth-order polynomial. The 85 × 122 × 274 cm3 test section has beveled

corners (that decrease in size with downstream distance, thus providing an

increasing cross-sectional area) to ensure a constant velocity therein. Upon

exiting the test section, the flow enters an 8.84m-long shallow-angle diffuser,

which connects to a 2.13m-diameter axial fan powered by a 125 hp AC motor.

To ensure a steady flow in the test section, a Unico controller maintains the

rotational speed of the fan to within ±0.5% of the set point.

In the present work, the flow under consideration is the turbulent wake

downstream of a circular cylinder. Since the objective of the current research
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is to investigate the inertial-convective range scaling of a variety of turbu-

lent statistics, the Reynolds number of the flow must be sufficiently large.

However, the temporal resolution of the cold wire limits the maximum flow

velocity. Consequently, the cylinder diameter was selected to be as large as

possible, while taking into consideration the limited downstream extent of the

experimental facility. (For downstream positions less than 30 diameters, the

wake is not yet fully turbulent and still externally intermittent.) Therefore, to

generate the hydrodynamic wake, a circular cylinder of diameter D = 73.0mm

was installed at the entrance of the tunnel test section, which yields a Taylor-

microscale Reynolds number of 370. It was oriented vertically and spanned

the entire extent of the test section. To inject the scalar (temperature) into

the flow, a 1.5 kW electric heating element was installed within the cylinder.

Energizing the heating element yields a “heated cylinder,” which was one of

the two methods for injecting the scalar into the flow field. The other required

a “mandoline” be installed 10 diameters downstream of, and oriented parallel

to, the cylinder (see figures 2.1 and 2.2). The downstream position of the

mandoline was selected by taking into consideration the data of Beaulac &

Mydlarski (2004), who determined that the scalar field generated by a man-

doline installed at this position would evolve in a manner similar to the scalar

field downstream of the heated cylinder. (More precisely, Beaulac & Mydlarski

(2004) determined that the scalar variance of the two fields decays at a similar

rate.)

First introduced by Warhaft & Lumley (1978), the mandoline consists of

an array of fine, Nichrome wires that are stretched across the wind tunnel

test section. When energized (using a DC power supply capable of provid-

ing 1.2 kW), the individual plumes of the multiple wires grow and rapidly mix,

thus providing a second method of heating the wake. To prevent the wires from
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Figure 2.1: Schematic illustrating the experimental configuration of the in-
ternal intermittency experiment. A heating element is embedded within the
cylinder that generates the hydrodynamic wake (thus creating a “heated cylin-
der”). In addition, a “mandoline” is installed downstream of the cylinder. The
hot- and cold-wire sensors are located 30 diameters downstream of the cylinder
and along its axis (corresponding to non-dimensional coordinates of x/D = 30
and y/D = 0). xθ/D = 10 in the current research. Not to scale.
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Figure 2.2: Picture of the open-circuit wind tunnel test section with the current
experimental apparatus installed. The hot- and cold-wire probes are mounted
on a stepper-motor-controlled traversing mechanism, which enables the probes
to travel in the transverse (i.e. y-) direction.
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sagging when heated, small springs are attached to one end of each wire to keep

them in tension. In the current configuration, thirteen 36 AWG (0.127mm in

diameter) wires were employed, evenly spaced 7.6mm apart (yielding a total

mandoline width of 91.4mm. Moreover, given the small diameter of the indi-

vidual wires, the presence of the mandoline does not disturb the hydrodynamic

field (see section 3.1), and, consequently, the velocity field was the same when

either scalar injection mechanism was used.

2.2 Channel Flow Facility

The airflow for the channel is provided by a Hudson Buffalo centrifugal

blower, powered by a 7.5 hp AC motor. The motor speed is controlled using

an ABB ACS 600 frequency converter. A filter box was installed at the blower

intake (preventing particles larger than 3 μm from entering the test section).

A flow conditioning section was attached to the blower outlet using a flexible

rubber coupling to minimize the transmission of any motor vibrations to the

test section. The former consisted of a (i) wide-angle diffuser, (ii) settling

chamber and (iii) contraction.

The wide-angle diffuser decelerates the flow prior to entering the settling

chamber, thereby allowing the flow more time to settle. However, given the

wide wall angle of the diffuser (approximately 45◦), flow separation within the

diffuser is possible, unless otherwise prevented. Consequently, four screens are

located within the diffuser (with an appropriately chosen separation between

them) such that the pressure drop across the screen balances the pressure rise

due to the diffuser. This reduces the likelihood of flow separation. The set-

tling chamber is a constant-area rectangular duct with a honeycomb section,

followed by a series of six screens, which serves to straighten the flow and re-

move any undesirable fluctuations in the velocity field. Finally, the contraction

located at the end of settling chamber is two-dimensional, with an area ratio
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of approximately eight. Moreover, the shape of the contraction follows a fifth-

order polynomial. Upon exiting the contraction (i.e. before entering the test

section), the flow is (almost) uniform and has a turbulence intensity of 0.25%.

(See McLeod (2000) for a thorough description of the design and construction

of the flow conditioning section.) The channel test section measures 8m long,

1.1m high and 0.06m wide. The boundary layer is tripped at the entrance

of the test section by means of two rods (3.2mm in diameter) located 60mm

downstream of the entrance and 3mm from each wall. Due to the channel’s

large aspect ratio (≈18), the flow field may be considered two-dimensional at

the centre of the channel. Experiments are conducted in the final metre of the

test section, where the flow is fully developed (see section 3.2).

In Lavertu & Mydlarski (2005) and Costa-Patry & Mydlarski (2008), the

channel test section was configured for two-dimensional transverse dispersion

measurements. Consequently, the line source was oriented in the spanwise

(vertical, z-) direction and measurements of the transverse (y-direction) pro-

files of the thermal plume were obtained at different downstream distances,

and for a variety of wall-normal source locations. This should be contrasted

with the present work, which studies three-dimensional lateral dispersion and

therefore requires the measurement of spanwise (z-direction) profiles of the

plume emitted from a line source oriented in the wall-normal (y-) direction.

The two configurations are best described by a schematic (see figure 2.3).

The measurement of lateral profiles downstream of a wall-normal line

source required modifications to the channel. To this end, a 12-mm-deep

groove running the entire height of the channel (in the spanwise direction) was

machined in the channel wall, 7.5m from the channel entrance. Its width and

depth were selected to receive an aluminium “slider” (through which probes

were inserted and whose length exceeded the width of the channel), permitting
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Figure 2.3: Schematic illustrating the transverse (left) and lateral (right) dis-
persion problems studied in Lavertu & Mydlarski (2005) and the current work,
respectively. Note that the thermal plume is statistically two-dimensional in
the former case, whereas it is three-dimensional in the latter (i.e. current) case.
Also note the location and orientation of the line sources and the coordinate
axes. (y is defined as the transverse direction and z is the lateral direction,
herein.) Not to scale.
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Figure 2.4: Picture of the modified channel test section with a sliding access
port for the hot- and cold-wire sensors. The latter were positioned by a two-
axis linear traversing mechanism, enabling movement in the y (transverse) and
z (lateral) directions.
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lateral profiles to be measured while preserving the hydrodynamic smoothness

of the wall along its entire height. The slider thus served as an access port

for the hot- and cold-wire sensors. Using this arrangement, the sensors could

travel in both the wall-normal (y) and spanwise (z) directions. Given that the

flow was fully-developed, it was possible (and much more convenient) to move

the line source (rather than the sensor) to change the downstream distance.

Therefore, six ports were added upstream of the slider on each of the two

(major) channel walls. They served as access ports for the line source and

were located such that the six downstream measurement positions studied in

Lavertu & Mydlarski (2005) were reproduced in the present experiments. The

modified channel test section is shown in figure 2.4.

The scalar (temperature) was injected via fine Nichrome wires (0.254mm

in diameter) that spanned the channel in the wall-normal direction. Outside

the channel, small weights were hung from the ends of each wire to counter-

act the effects of thermal expansion, thus keeping the wire taut. The wire was

heated using a DC power supply whose voltage and current output were contin-

uously monitored to ensure the power supplied to the wire was constant (both

during an experiment and from one experiment to the next). A power input of

76Wm−1 was selected, given the inherent competition between improving the

signal-to-noise ratio and minimizing both buoyancy and contamination from

heating of the ports.

Spanwise temperature profiles were obtained at six downstream positions

(x/h = 4.0, 7.4, 10.8, 15.2, 18.6 and 22.0) and six wall-normal separations

(y/h = 0.10, 0.17, 0.33, 0.50, 0.67 and 1.0) for a total of 36 different cases.

(Note that the channel is 2h wide.) The positioning of the hot- and cold-wire
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sensors, in both the wall-normal and spanwise directions, was accomplished us-

ing a two-axis Velmex BiSlide precision-stepper-motor-driven linear traversing

mechanism capable of moving in increments of 0.01mm.

2.3 Instrumentation

Hot-wire anemometry and cold-wire thermometry were used to measure

the longitudinal velocity and temperature fields, respectively. The former is

described in section 2.3.1 below, whereas the latter is presented in section

2.3.2.

2.3.1 Hot-Wire Anemometry

The hot-wire sensor consists of a fine tungsten wire (3 μm in diameter

and ∼ 500μm in length) that forms one arm of a Wheatstone bridge circuit.

Electronic instrumentation maintains that arm of the bridge at a constant

resistance (such that the temperature of the sensor is greater than that of the

flow). Hence, the “hot-wire” undergoes convective heat transfer with the flow.

To maintain the constant resistance of the sensor, the instrumentation must

adjust the power supplied to the wire to balance the energy lost by convection.

Therefore, by measuring the power supplied to the wire, one can use convective

heat transfer theory to infer the flow velocity (U) from the voltage applied to

the sensor (E).

Calibration of the hot-wire sensors employed the semi-theoretical rela-

tionship known as “King’s Law” (see, for example Bruun, 1995), which states

that:

E2 = A+BUn,

where A, B and n are constants determined via calibration. While the former

expression is typically valid for isothermal flows, Lienhard & Helland (1989)

proposed a modified version of the expression that incorporates temperature-

dependent coefficients, to account for variations in the flow temperature. In
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this case, A and B are no longer constants. Instead, the King’s Law calibration

is performed over a range of fixed temperatures, spanning the range of desired

flow velocities. For each temperature setting, the value of n is held constant

and the calibration constants A and B are determined. The A and B data are

then curve fit to the following expressions:

A = Ā

(
Tw + Tf

2

)0.84

(Tw − Tf ) ,

and:

B = B̄ (Tw − Tf) ,

where Tf is the flow temperature and Ā, B̄ and Tw are calibration constants,

the latter being representative of the hot-wire temperature. The curve fit co-

efficients obtained from this plot are then used in the expressions above to

determine the temperature-dependent curve-fit coefficients. Using this tech-

nique, the measured velocity field is compensated for fluctuations in the flow

temperature during post-processing of the sensor output voltage. (However,

this requires simultaneous measurement of both the velocity and temperature

fields, which is expounded upon below.) Figure 2.5 presents typical King’s

Law calibration curves, obtained for a variety of fixed temperature settings.

The hot-wire sensors were calibrated using a TSI 1127 laminar calibration

jet, which was modified to include the addition of electric heating elements to

heat the upstream air supply. The sensors were mounted on TSI 1210 single-

normal probes and operated at an overheat of 1.8 using either a TSI IFA 300

or a DISA 56C01 constant-temperature anemometer. The length-to-diameter

ratio of the hot wire was approximately 200, as recommended by Bruun (1995)

(to minimize the conduction effects associated with short wires).
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2.3.2 Cold-Wire Thermometry

Since the proposed research will employ temperature as the passive scalar,

cold-wire thermometry is selected to measure the fluctuating temperature field,

given its high spatial and temporal resolution. The cold-wire sensing element

consists of a fine, platinum-alloy wire (0.63μm in diameter and ∼ 500μm in

length). The cold-wire thermometer is composed of a constant-current source

that provides a small, constant-current to the sensor (∼ 100μA) — see, for

example, Lemay & Benäıssa (2001). Therefore, the cold-wire is sensitive to

changes in the flow’s temperature and consequently changes resistance as the

fluid temperature changes. Since the current supplied to the sensor is constant,

and given the linear relationship between temperature and resistance (over

small enough ranges), one obtains a linear relationship between the flow’s

temperature (T ) and the voltage drop across the cold-wire sensor (E):

T = CE +D,

where C and D are calibration constants. See figure 2.6(a) for a typical tem-

perature calibration curve.

The diameter of the cold-wire sensor plays an important role in deter-

mining the temporal resolution of the cold-wire thermometer, given that the

sensor must heat up/cool down in response to changes in the flow temperature.

Fine wires have a small thermal inertia and respond quickly to temperature

changes, thus providing a larger frequency response. By contrast, the temporal

resolution of the hot-wire sensor is principally limited by the response time of

the electronic instrumentation. As such, hot-wire anemometers tend to have a

much better frequency response than cold-wire thermometers. The frequency

response of the cold-wire sensor is determined using the technique proposed

by Lemay & Benäıssa (2001). A square-wave current signal is supplied to the
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cold-wire sensor (as opposed to the constant current supplied during opera-

tion) to rapidly heat and cool the wire. During the cooling phase, a time

series of the temperature signal, such as the one presented in figure 2.6(b), is

obtained, and the frequency response of the cold wire is determined using an

exponential curve fit. Typically, the time constant of the wire is approximately

2–3μs, which in turn yields a frequency response on the order of 7 kHz.

Sensor length plays a crucial role in determining the spatial resolution of

the sensor. One must select a sensor that is short enough to resolve the smallest

features of the flow — at most 3–4 times the Kolmogorov microscale (Wyn-

gaard, 1969, 1971) — while at the same time long enough to minimize finite-

wire conduction effects — a length-to-diameter ratio 1500 is recommended

for cold-wire sensors (Browne & Antonia, 1987). Given these competing ef-

fects, all of the cold-wire sensors were limited to 0.5mm in length, to obtain

the desired spatial resolution. This corresponds to a cold wire sensor with a

length-to-diameter ratio of 800, which is appreciably smaller than the mini-

mum value recommended by Browne & Antonia (1987). However, as discussed

by Mydlarski & Warhaft (1998), spatial resolution errors dominate over the

finite-wire conduction effects, especially when considering small-scale statis-

tics. Consequently, the recommendation for the length-to-diameter ratio has

been relaxed, to improve the spatial resolution of the sensor.

The cold-wire sensors were mounted on TSI 1210 single-normal probes.

The sensors were operated by a cold-wire thermometer built at the Université

Laval (Québec, Canada), consisting of the constant-current anemometry cir-

cuit described in Lemay & Benäıssa (2001), which provided a constant current

of 100μA. The modified TSI 1127 laminar jet described above was employed

to calibrate the cold-wire sensors, using an electric heater to heat the air up-

stream of the calibration jet, while maintaining a constant flow velocity that
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is similar to that observed during the experiments. LaRue, Deaton & Gib-

son (1975) determined that the −3 dB point of the frequency response of a

0.63μm-diameter platinum cold wire is ∼5 − 6 kHz (when operated in a flow

of 5 − 10m s−1). Given that the Kolmogorov frequencies of the flows studied

herein are on the order of 4 − 7 kHz, the temporal resolution of the cold-wire

is satisfactory, and a correction, such as that proposed by Lemay & Benäıssa

(2001), is not required (in addition to being found to distort some higher-order

temperature statistics).

Some of the statistics examined herein required the simultaneous measure-

ment of the turbulent velocity and temperature fields. These measurements

required the use of a TSI 1244 parallel-sensor probe, upon which both a cold-

and hot-wire sensor were mounted (0.5 mm apart). Both sensors were then

calibrated using the techniques described above. To ensure that the wake from

the hot-wire did not interfere with the cold-wire sensor mounted alongside of

it, a second series of experiments were conducted in which only the cold-wire

sensor was employed. The differences in the two sets of measurements was

negligible (i.e. on the order of the repeatability of an experiment using one of

the two sensor assemblies).

2.4 Data Acquisition

The output signals of the hot-wire anemometer and cold-wire thermome-

ter were band-pass filtered using Krohn-Hite 3382 and 3384 filters to remove

the mean component of the signal (i.e. high-pass filtered) as well as any high-

frequency electronic noise (i.e. low-pass filtered). (Whenever necessary, the

filtered signals were also amplified to minimize the discretization error.) The

filtered signals were then digitized using a 16-bit National Instruments PCI

6143 or a PCI 6036E multifunction data acquisition card, controlled using
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LabVIEW virtual instruments, and stored for future data reduction. Mea-

surements were sampled at twice the low-pass filter frequency (in accordance

with the Nyquist criterion) to obtain time series of the turbulent signals. Such

data sets are necessary for power spectra, autocorrelation and structure func-

tion calculations. Statistical moments (such as the mean and root-mean-square

fluctuation) on the other hand, are typically computed from data sets sampled

at a frequency that roughly corresponds to the inverse of the integral time scale

of the turbulence. This yields data points that are independent of each other,

and are therefore better suited for the computation of statistical moments.

Since the internal intermittency experiments described herein required

converged high-order moments, long data sets are required. However, the

LabVIEW virtual instruments employed herein can only generate data files

up to a maximum file size of 2GB. Consequently, the number of samples was

limited by this file size constraint (which is nevertheless quite large). In the

present work, the simultaneous velocity-temperature data consisted of time

series data set of 8.192 × 107 samples (for a total sampling duration of 58

minutes), whereas the individual temperature data sets consisted of 1.2288 ×
108 data points, corresponding to a total sampling time of 87 minutes. (These

data sets were also used to obtain the various low-order moments of the velocity

and passive scalar fields.)

For the lateral dispersion experiments, the moments of the fluctuating

velocity and temperature fields were determined using 2.048 × 104 data points

recorded at 200Hz for a total record length of 1.71 minutes. Time series of

the fluctuating temperature field were also obtained using 4.096 × 105 data

points, sampled at twice the low-pass filter frequency (which varied with wall-

normal location in the flow). The PDFs of the temperature fluctuations were

computed using 1.6384 × 105 samples recorded at 200Hz, for a record duration
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of 13.7 minutes. (Note that the number of samples for each type of data set

was selected such that each statistic was converged. This was confirmed by

comparing the statistics computed using fractions of the data set to those

obtained using the full record.)
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CHAPTER 3

Experimental Conditions and Flow Validation

The following section examines the experimental configurations of both

the internal intermittency and lateral dispersion experiments described herein

and, more precisely, serves to (i) characterize the hydrodynamic and thermal

fields studied herein, and (ii) identify and discuss potential sources of error.

3.1 Internal Intermittency Measurements

The primary objective of this experiment is to examine the influence of

the scalar-field boundary conditions on the small-scale statistics of the pas-

sive scalar field using the experimental configuration described in section 2.1.

Therefore, the passive nature of the scalar (temperature) field must first be

verified. Table 4.1 (see section 4.1) reveals that the r.m.s. temperature fluctu-

ation obtained using either scalar-field boundary condition is considerably less

than 1 ◦C. Consequently, the change in fluid density associated with such a

small temperature change will be negligible, thus providing the first indication

of a passive scalar field. To further confirm the passive nature of the temper-

ature field, numerous statistics of the velocity field, including the probability

density functions (PDFs) of the velocity fluctuation (figures 3.1a and 3.1b), the

sixth-order velocity structure functions (figures 3.1c and 3.1d), and the spectra

of turbulent kinetic energy (figures 3.1e and 3.1f) were computed for both the

“hot” (i.e. when the scalar source was energized) and “cold” scenarios. Each

of these statistics exhibited a collapse when plotted dimensionally (which is

a more rigorous test than plotting them non-dimensionally), thereby confirm-

ing that the temperature field is indeed passive. As a final note, Berajeklian

& Mydlarski (2011) recently presented mixed velocity-temperature statistics
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Figure 3.1: Comparison of the PDFs of the velocity fluctuation (p(u)), sixth-
order velocity structure functions (〈(Δru)

6〉 and power spectra of the velocity
fluctuations (E(κ1)) for both the unheated and heated wakes (for both scalar
field boundary conditions). Note that the data are presented dimensionally.
(a), (b): PDFs of the velocity fluctuation. (c), (d): Sixth-order velocity struc-
ture functions. (e), (f): Power spectra of the velocity fluctuation. (a), (c), (e):
Heated cylinder experiment. (b), (d), (f): Mandoline experiment. ◦, Solid
line: Unheated wake. +, Dashed line: Heated wake.
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obtained under similar experimental conditions. They computed the ratio of

buoyant production to the dissipation rate of turbulent kinetic energy and

noted that this ratio did not exceed 2% — another indication of the passive

nature of the scalar field.

Given the objective stated above, it is also of utmost importance that the

hydrodynamic flow field remains identical as the scalar injection mechanism is

varied. One must therefore determine whether the presence of the mandoline

adversely affects the velocity field generated by the cylinder. To this end, one

may examine the Reynolds number of the flow past the individual wires of the

mandoline to determine whether vortices are being shed from the wire. The

former is defined as Resource ≡ Uds/ν, where U is a characteristic scale of the

flow velocity, ds is the source diameter (0.127mm in the present experiment)

and ν is the kinematic viscosity evaluated at the film temperature of the fluid:

Tfilm ≡ 1

2
(Tsource + T∞) = T∞ +

1

2
(Tsource − T∞),

where Tsource is the surface temperature of the line source, calculated using the

convective heat transfer correlation of Zukauskas (1972), and T∞ is the free

stream (“cold”) fluid temperature. Recently, the use of the film temperature

to evaluate the kinematic viscosity of the fluid was studied by Lecordier et al.

(2000), who alternatively proposed the use of an effective temperature, defined

as:

Teff ≡ T∞ + (0.24± 0.02)(Tsource − T∞).

Both will be used in the calculations that follow to evaluate the kinematic

viscosity of the air.

As a worst-case estimate, one can assume that the velocity of the flow past

the wire is U∞ (thus yielding an over-estimate of the wire Reynolds number).

Using the heat transfer correlation proposed by Zukauskas (1972), the surface
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temperature of the wire, and, therefore, the film temperature of the flow, can

be estimated and the kinematic viscosity of the fluid determined. The resulting

Reynolds number Resource = U∞ds/ν yields a value of 36 when using properties

calculated using the film temperature (the corresponding value obtained using

the effective temperature of Lecordier et al. (2000) is 52), which is on the order

of the critical value of 40 for vortex shedding. Given that the flow exhibits none

of the phenomena associated with vortex shedding (i.e. no spikes are present

in the velocity spectra — see figure 3.2c), one may conclude that the effects

of vortex shedding, if at all present, are small (especially when compared to

the effects of the turbulence). Consequently, it can also be concluded that the

presence of the mandoline has a negligible influence on the velocity field.

To further support the above conclusion, figure 3.2 also compares the

velocity field statistics obtained from both the heated cylinder and mandoline

experiments (akin to figure 3.1 above). Consequently, the PDFs of the velocity

fluctuation (see figure 3.2a), the sixth-order velocity structure functions (see

figure 3.2b) and the power spectra of the velocity fluctuations (see figure 3.2c)

were computed when (i) only the cylinder was present in the wind tunnel and

(ii) both the cylinder and mandoline were installed in the test section. Upon

examining figure 3.2, one observes that the measured PDFs exhibit a collapse

over a range of ±4 standard deviations. In addition, both the high-order

structure functions and the power spectra are experimentally indistinguishable

(for the entire range of length scales presented herein). This result reinforces

the conclusion that the presence of the mandoline has a negligible influence on

the velocity field.

Kolmogorov theory applies to flows in which the scalar field is well-mixed

(and not “externally intermittent”). Consequently, it is necessary to ensure

that the scalar fields generated by the heated cylinder and mandoline are
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Figure 3.2: Comparison of the PDFs of the velocity fluctuation (p(u)), sixth-
order velocity structure functions (〈(Δru)

6〉 and power spectra of the velocity
fluctuations (E(κ1)) for the different scalar field boundary conditions. Note
that the data are presented dimensionally. (a): PDFs of the velocity fluctua-
tion. (b): Sixth-order velocity structure functions. (c): Power spectra of the
velocity fluctuation. ◦, Solid line: Heated cylinder experiment. +, Dashed
line: Mandoline experiment.

57



thoroughly mixed. This is accomplished by examining a variety of statis-

tics, including the power spectra of the scalar fluctuations (see figure 3.3a),

in addition to the PDFs of the temperature fluctuation (θ) (see figure 3.3b).

The measured temperature spectra demonstrate that the scalar fields differ

at large scales (due to the different large-scale injection methods), thus also

yielding different PDFs, as expected. In contrast to the PDFs of the velocity

field, there is no reason to assume that the scalar PDFs will collapse. In fact,

given the objectives of the present work, the PDFs of the scalar fields must be

different. Furthermore, the measured temperature spectra exhibit a collapse

in the inertial-convective- and dissipative-ranges (as predicted by KOC the-

ory), with an inertial-convective scaling region at least one decade in extent.

The PDFs of θ are smooth and unimodal, indicating that the wake is indeed

well-mixed. (A poorly-mixed wake would exhibit a bimodal PDF, with a sec-

ond sharp peak arising from unmixed fluid at the ambient temperature of the

flow.) Consequently, the collapse of the scalar variance spectra at small scales,

in addition to the smooth, unimodal PDFs, supports the conclusion that the

thermal wakes of both the heated cylinder and the mandoline are well-mixed.

Computing the high-order moments of both the velocity and scalar fields

requires measurement of the rare, intense fluctuations that occur within the

flow. This information lies in the tails of the PDF, and thus requires sufficiently

long data sets to accurately compute the high-order moments. Consequently,

one must also verify that the high-order moments are indeed converged. This

is accomplished by analyzing fractions of the data set and comparing the re-

sults to those obtained from the full record. In addition to verifying that the

statistics are converged, one must also verify that the higher-order moments

are indeed closed. Examining the PDFs of the scalar increments (Δrθ), and
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noting that:

〈(Δrθ)
n〉 ≡

∫ ∞

−∞

(Δrθ)
n p (Δrθ) d (Δrθ) ,

the tails of the (Δrθ)
n p (Δrθ) curve must go to zero as Δrθ → ±∞ for the

integral to close. Given the length of the data sets recorded herein, plots of

(Δrθ)
8p(Δrθ)d(Δrθ) — see figure 3.4 — reveal that the statistics are converged

up to order n = 8. Anselmet et al. (1984) employed a similar technique to

determine whether the higher-order moments measured therein were closed.

However, they extrapolated the tails of their PDFs to larger values of Δru (by

assuming an exponential form of the PDF of Δru), and therefore extrapolated

the integrand, to “artificially” close the high-order moments. Anselmet et al.

(1984) remarked that the measured value of 〈(Δru)
12〉 is 30% smaller than the

extrapolated value. Moreover, the authors discussed the validity of using such

an extrapolation — in particular, they examined whether the PDFs of Δru will

continue to decrease exponentially, or whether Δru is bounded. Given these

concerns, the present work does not employ any techniques that artificially

close the higher-order moments.

3.2 Lateral Dispersion Measurements

The following subsection serves two purposes: (i) to characterize the flow

field studied in the lateral dispersion experiments, and (ii) to discuss potential

sources of error. To this end, it will first summarize issues discussed in the

transverse dispersion experiments of Lavertu & Mydlarski (2005), followed by

new ones posed by the current work.

To verify that the flow is indeed fully developed, Lavertu (2002) measured

the mean and r.m.s. velocity profiles in the transverse direction for two different

downstream positions (x = 7.33m and x = 7.67m downstream of the channel

entrance) and showed that the profiles collapse (with a maximum difference

of 1.7% in the mean and 3.2% in the r.m.s.). Given the objectives of the
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Figure 3.3: Comparison of the (a) power spectrum of the temperature fluctu-
ations, normalized using Kolmogorov variables (Eθ(κ1)), and (b) PDFs of the
temperature fluctuation, normalized using the root-mean-square temperature
fluctuation (p(θ/θ′)), computed from the heated cylinder and mandoline exper-
iments, which demonstrate that the passive scalar field is indeed well-mixed.
In (a): Solid line: Heated cylinder experiment. Dashed line: Mandoline ex-
periment. In (b): ◦: Heated cylinder experiment. +: Mandoline experiment.
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Figure 3.4: Probability density functions for the temperature increment, mul-
tiplied by the increment raised to the eighth power (to establish the conver-
gence of the data set at the highest order). The separation corresponds to
the midpoint of the inertial-convective range (r ≈ 100η). (a) Heated cylinder
experiment. (b) Mandoline experiment.
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current work, the flow must be two-dimensional, in addition to being fully

developed. Consequently, figure 3.5 presents the mean and r.m.s. velocity

profiles obtained at three spanwise heights. One observes that (i) the profiles

are symmetric about the channel centreline (i.e. y/h = 1.0) and (ii) the profiles

for each of the spanwise positions collapse well with an average (maximum)

difference of 0.7% (1.4%) in the mean and 1.7% (3.4%) in the r.m.s. Figure

3.6 presents typical one-dimensional velocity spectra (obtained for two wall-

normal positions), non-dimensionalized by Kolmogorov variables. As expected,

the two curves collapse well at small scales.

Furthermore, one must also verify whether the presence of the line source,

as well as the thermal field generated by the source, adversely affects the flow

field. As described in section 3.1, the Reynolds number of the flow over the

line source is calculated (using fluid properties evaluated at both the film and

effective temperature). Given that the source is oriented in the direction of the

inhomogeneity of the velocity field, any velocity between zero and that at the

centreline may be used in the calculation of the Reynolds number. As a worst-

case estimate, one can employ the value at the channel centreline, yielding a

source Reynolds number of Resource = 52 (Resource = 66) using Tfilm (Teff)

to estimate the kinematic viscosity of the fluid. Because this value is slightly

larger than the critical value of 40, vortex shedding from the source may occur

at some locations in the centre of the flow. However, given that the present

data exhibit none of the mechanical effects associated with vortex shedding

(e.g. no spikes in the spectra), it can be concluded that, if present, the effects

of vortex shedding are small and masked by the turbulence.

To confirm the passive nature of the temperature field, (i) the ratio of the

rate of production of turbulent kinetic energy by buoyancy to the dissipation

rate of turbulent kinetic energy (i.e. g 〈wθ〉 /[〈T 〉 ε]) is calculated, as is (ii) the
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Figure 3.5: Transverse (y) profiles of the longitudinal velocity at three different
spanwise positions. (a) Mean velocity profile. (b) Root-mean-square velocity
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ratio of the Grashof number to the Reynolds number squared, Gr/Re2source,

where the Grashof number is defined as Gr ≡ gβ(Tsource − T∞)d3s/ν
2. Given

that velocity–temperature correlations were not measured herein, the corre-

lation coefficient (ρvθ) measured by Lavertu & Mydlarski (2005) is used to

estimate the lateral turbulent heat flux (to obtain an estimate of the produc-

tion by buoyancy). Assuming that 〈wθ〉 = ρwθw
′θ′ ≈ ρvθu

′θ′, one obtains

a ratio of roughly 1.3%, thereby confirming that the scalar field is passive

since buoyancy effects are small. Moreover, the ratio of the Grashof number

to the Reynolds number squared yields a value of Gr/Re2source = 45 × 10−6

(Gr/Re2source = 52 × 10−6) 	 1 when using the film (effective) temperature

to determine the fluid properties. This result further reinforces the previous

conclusion that the temperature field is indeed passive. Finally, it was also

demonstrated in Lavertu & Mydlarski (2005) that the channel walls could be

approximated as being adiabatic.

The most significant experimental difference between the present work

and that of Lavertu & Mydlarski (2005) is the orientation of the line source.

Given that the source is oriented in the wall-normal direction, six ports were

added to each of the two major channel walls to accommodate the line sources.

During the course of an experiment, the ports could heat up and thus con-

taminate the temperature signal from the line source (by the effective super-

position of a ground-level source — the inside surface of the port). Conse-

quently, measures were undertaken to minimize this contamination. First,

cooling fans were employed outside the channel to minimize any heating of

the ports. Second, the line source was turned off between data acquisitions

for each point and the background thermal noise was measured (i.e. a “cold”

run). This permitted the noise to be subtracted from the signal, as follows.

Denoting the temperature fluctuation measured by the cold-wire sensor as θM ,
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and assuming that it is composed of the sum of the true signal and the noise

(such that θM = θT + θN), the mean-square temperature fluctuation becomes:

〈θ2M 〉 = 〈(θT + θN )
2〉 = 〈θ2T 〉 + 〈θ2N 〉 + 2 〈θT θN〉. If the noise and the true

temperature signal are uncorrelated (a reasonable assumption), then the final

term on the right-hand-side is zero, and one obtains the following expression

for the true mean-square temperature: 〈θ2T 〉 = 〈θ2M〉 − 〈θ2N〉. The contribution

of any heating of the ports to the measured temperature field was negligible,

given that the typical difference between the measured and noise-compensated

r.m.s. temperature fluctuation was roughly 0.5%. Furthermore, the cold run

also permitted the measurement of the free-stream temperature (T∞), which

would be used to determine the mean temperature excess (see figures 4.9 and

4.10 in section 4.2.1).

Finally, errors in the probe positioning are small, owing to the precision

of the stepper motor that controls the traversing mechanism. Consequently,

relative displacements of the probe are accurate to within 0.01mm. However,

the more relevant source of error is the initial positioning of the probe, which

may vary as much as 0.5mm in the wall-normal and 1mm in the spanwise

direction. Downstream distances are accurate to within 1mm.
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CHAPTER 4

Results

The following chapter presents the data obtained from the (i) internal

intermittency (see section 4.1) and (ii) lateral dispersion (see section 4.2) ex-

periments described above in chapter 2. Whereas the former examines the

effects of the scalar-field boundary conditions on the small-scale statistics of

the passive scalar field, the latter presents data pertaining to the influence of

the velocity-field boundary conditions on large-scale mixing phenomena.

4.1 Internal Intermittency Measurements

The following section, which presents the data obtained from the internal

intermittency experiment, is divided into three subsections. The first examines

different measures of internal intermittency, including results pertaining to the

(i) high-order passive scalar structure functions (and their inertial-convective-

range scaling exponents, as discussed in Lepore & Mydlarski, 2009), (ii) mixed,

sixth-order velocity-temperature structure functions, and (iii) (non-centered)

autocorrelations of the dissipation rate of scalar variance. The second discusses

the sensitivity of the previous results to the scalar-field boundary conditions

(or, more precisely, the finite-Péclet-numbers of the flows under considera-

tion). In this context, the normalized high-order moments of passive scalar

increments are of particular interest. The final subsection attempts to com-

pensate the aforementioned normalized high-order moments to obtain further

insight into the influence of the large scales of the scalar field. The relevant

flow parameters are summarized in table 4.1. (Note that the spatial gradients

used to calculate both the dissipation rates of turbulent kinetic energy and

scalar variance are obtained by invoking Taylor’s “frozen flow” hypothesis and
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Table 4.1: Flow parameters for the internal intermittency experiment. Fluid
properties are evaluated at 298K (ν = 15.7 × 10−6m2 s−1, α = 22.2 ×
10−6m2 s−1). D = 73.0mm is the cylinder diameter. Note that the experi-
ments described herein were performed at a downstream location of x/D = 30
and a transverse position of y/D = 0. Please refer to the schematic presented
in figure 2.1 for the location and orientation of the coordinate axes.

U∞ [ m s−1] 10.3
ReD{≡ U∞D/ν} 47900
Reλ{≡ u′λ/ν} 370

〈U〉 [ m s−1] 8.42
u′ [ m s−1] 1.01

ε{= 15ν 〈(∂u/∂x)2〉} [ m2 s−3] 6.85
�{= ∫∞

0
ρuu(r)dr} [ mm] 280

λ{=
√

〈u2〉 / 〈(∂u/∂x)2〉} [ mm] 5.95
η{≡ (ν3/ε)1/4} [ mm] 0.154

Re{= u′�/ν} 18100

Heated Cylinder Mandoline
θ′ [ K] 0.195 0.164

Kθ{= 〈θ4〉 / 〈θ2〉2} 3.44 2.86

SKθ{= 〈θ6〉 / 〈θ2〉3} 26.1 14.1

HKθ{= 〈θ8〉 / 〈θ2〉4} 422 112
χ{= 3α 〈(∂θ/∂x)2〉} [ K2 s−1] 0.115 0.119
�θ{=

∫∞

0
ρθθ(r)dr} [ mm] 314 105

λθ{=
√〈θ2〉 / 〈(∂θ/∂x)2〉} [ mm] 4.68 3.88
ηθ{≡ (α3/ε)1/4} [ mm] 0.199 0.199

Pe{= u′�θ/α} 14700 4900
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assuming local isotropy — see Tennekes & Lumley (1972), pp. 65–67, 95–97,

253.)

4.1.1 Measures of Internal Intermittency

Figure 4.1 plots the even-order structure functions (up to order n = 8) of

the temperature field, non-dimensionalized using Kolmogorov variables. (To

avoid the introduction of any artifices, the structure functions are computed

using the raw difference — as opposed to using their absolute value. Hence, the

odd-order moments are not presented.) One observes that, at second order,

the structure functions obtained using the different heat injection mechanisms

are indistinguishable in the inertial-convective and dissipative ranges, consis-

tent with KOC theory. However, as the order increases, one observes that

the structure functions begin to deviate at progressively smaller scales — the

sixth-order structure functions begin to deviate in the inertial-convective range

whereas the eighth-order structure functions are different for a large range of

scales. The implication is that the effects of the scalar-field boundary condi-

tions permeate to progressively smaller scales as the structure function order

increases (Lepore & Mydlarski, 2009).

Since the current work examines the inertial-convective-range scaling ex-

ponents of the high-order passive scalar structure functions, one must objec-

tively determine the extent of the inertial-convective range, so that its scaling

can be systematically estimated. The former is accomplished using “Yaglom’s

4/3 law” (Yaglom, 1949), which states that, for large Reynolds and Péclet

numbers: 〈
(Δu) (Δθ)2

〉
= −4

3
χr,

in the inertial-convective range. This is analogous to the procedure used in

Anselmet et al. (1984). Therein, the authors employ Kolmogorov’s 4/5 law,
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Figure 4.1: The nth-order structure functions of the temperature increment,
normalized using Kolmogorov variables. (a) n = 2. (b) n = 4. (c) n = 6.
(d) n = 8. ◦: Heated cylinder. +: Mandoline. Note that the above data also
appear in Lepore & Mydlarski (2009).
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for which 〈(Δru)
3〉 = −4

5
εr in the inertial-range. They argued in favour of us-

ing the third-order velocity structure function to determine the extent of the

inertial range, given that it is the only structure function in which its inertial

range is unaffected by internal intermittency. The same argument holds for

the mixed third-order structure function examined herein. The extent of the

inertial-convective range is established by determining the two separations at

which the compensated mixed third-order structure function falls to 90% of

its maximum value, in a manner analogous to that of Jayesh, Tong & Warhaft

(1994). Figure 4.2 presents both the second-order structure function of the

temperature fluctuations, as well as the mixed third-order structure function,

generated using either the heated cylinder or the mandoline. In figure 4.2, the

upper and lower bounds of the inertial-convective range, as defined above, are

represented by the dashed lines. (Note that the different scalar injection meth-

ods yield different inertial-convective ranges.) One observes that this region

corresponds to the power-law region exhibited in the second-order tempera-

ture structure functions (figures 4.2a and 4.2c), as expected. Consequently,

the technique outlined above is employed herein as a consistent method for

determining the limits of the inertial range.

Given the difficulties associated with identifying the extent of the inertial-

range, Benzi et al. (1993) proposed an alternate technique for determining the

velocity structure function scaling exponents — see also Benzi et al. (1995).

By plotting the high-order structure functions versus the third-order struc-

ture function (as opposed to the separation, r), Benzi et al. (1993) discovered

that the inertial-range scaling region was significantly extended, especially in

low-Reynolds-number flows — a phenomenon they refer to as Extended Self-

Similarity (ESS). However, ESS is not without its limitations. Firstly, ESS
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Figure 4.2: The second- and mixed third-order structure functions of the tem-
perature fluctuation, subject to varying scalar-field boundary conditions. (a),
(c): Second-order structure function (non-dimensionalized using Kolmogorov
variables). (b), (d): Mixed third-order structure function (normalized accord-
ing to the Yaglom 4/3 law to determine the extent of the inertial-convective
range). (a), (b): Heated cylinder. (c), (d): Mandoline. In all figures, the
dashed lines denote the upper and lower bounds of the inertial-convective-
range scaling region (defined as the separations corresponding to the locations
at which the compensated mixed third-order structure function falls to 90% of
its maximum value).
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yields relative scaling exponents, since the structure functions are plotted ver-

sus the third-order structure function, which only scales as r in the limit of

infinite Reynolds numbers — see, for example, Mydlarski & Warhaft (1996)

for the dependence of the third-order structure function on Reynolds number.

Furthermore, Stolovitzky & Sreenivasan (1993) discovered that the extended

scaling range is not observed in higher-order moments. More precisely, the

eighth-order moments examined therein exhibited two distinct scaling regions

for the dissipative and inertial ranges. Stolovitzky & Sreenivasan (1993) thus

concluded that ESS is only valid for the low-order statistics. (Note that Benzi

et al. (1993) only present structure functions up to the sixth-order.) A simi-

lar conclusion regarding ESS was also drawn by Anselmet, Antonia & Danaila

(2001), who observed an “inflectional behaviour” in the ESS-compensated data

with increasing structure function order, especially at high Reynolds numbers.

In addition, Chen & Cao (1997) encountered some difficulty in estimating the

errors bars for their ESS-calculated structure function scaling exponents, not-

ing that: “[t]he error bar for the extracted scaling exponents in the inertial

range seems bigger than the result using the original structure functions.”

Despite the aforementioned limitations, Ruiz Chavarria, Baudet & Cilib-

erto (1995) proposed an analogous ESS technique for the passive scalar field.

Intuition would suggest plotting the scalar structure functions versus the mixed

third-order structure function, 〈(Δru)(Δrθ)
2〉 (given the analogy between Kol-

mogorov’s 4/5 Law and Yaglom’s 4/3 Law, both of which are proportional to

r in the inertial(-convective) range). However, Ruiz Chavarria et al. (1995)

chose to use the second-order structure function instead. Consequently, one

must also determine the second-order scaling exponent to determine higher-

order scaling exponents. (Otherwise, one can only compute the relative scaling

exponents, ξn/ξ2.) This complicates the analysis, since one cannot assume that
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the second-order structure function will scale as r2/3. (As demonstrated in the

compilation presented in figure 1.1(b) in the present work, the experimentally-

determined values of ξ2 vary from 0.58–0.66.) That being said, neither can

one assume that 〈(Δru)(Δrθ)
2〉 scales as r in the inertial-convective subrange

for non-infinite Reynolds and Péclet numbers (Mydlarski & Warhaft, 1998).

Furthermore, upon examination of figure 3 of Ruiz Chavarria et al. (1995), one

clearly observes that this technique does not enhance the inertial-convective

scaling region (this is especially true at higher-orders — see their figure 3b).

Therefore, given the significant difficulties presented above, the present work

does not make use of Extended Self-Similarity to compute the structure func-

tion scaling exponents.

The structure function scaling exponents were determined by fitting a

least-squares power-law curve fit to the data in the inertial-convective range,

defined using the previously-described method. The scaling exponents for the

passive scalar field are plotted in figure 1.1(b) (as well as listed in table 4.2).

When compared with the results of the other researchers in figure 1.1(b), one

observes that they fall within the range of exponents in the published literature.

Moreover, the current results for the scalar field generated using the mandoline

agree well with the exponents presented in Ruiz-Chavarria et al. (1996) (albeit

estimated by ESS), whose experimental configuration closely resembled the

mandoline experiment studied herein. More importantly, one immediately

notices that the passive scalar structure function scaling exponents for the two

different scalar field boundary conditions (i) deviate substantially from the

KOC n/3 theoretical prediction, and (ii) are significantly different from each

other at high-orders, thus indicating a dependence of the high-order statistics

on the scalar field boundary conditions. (Note that the velocity structure

function scaling exponents were also computed using the different scalar-field
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Table 4.2: Inertial-range scaling exponents of the structure functions of the
velocity (ζn) and passive scalar (ξn) fields. Note that the values listed in the
table below are the averages obtained from multiple experiments. The error
bars represent the maximum deviation from the average value observed for the
different experiments.

ζn ξn ξn
n Heated Cylinder Mandoline
2 0.74 0.63±0.005 0.62±0.005
4 1.35 0.96±0.01 0.93±0.01
6 1.83 1.19±0.01 1.12±0.02
8 2.23 1.39±0.02 1.23±0.03
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boundary conditions. At eighth-order, the velocity scaling exponents differed

by approximately 1%, which is considerably smaller than the 13% difference

observed in the passive scalar exponents, thereby confirming that the observed

discrepancy in the passive scalar exponents is not a spurious result of any

differences in the velocity fields — see section 3.1.) Given the moderately-high

Reynolds number of the flow examined herein, the present results imply a

dependence of the small-scale passive scalar field on the large scales. However,

Kolmogorov theory is only posed in the limit of infinite Reynolds (and Péclet)

numbers. Therefore, the observed discrepancy in the scaling exponents could

be an artifact of the non-infinite Reynolds number of the flow. Nevertheless,

as concluded in Lepore & Mydlarski (2009), the present work reveals that all

previous estimates of the passive scalar structure function scaling exponents

(because they are all measured/calculated in finite-Reynolds-number flows)

are subject to the scalar field boundary conditions. The question of Reynolds

(or, more precisely, Péclet) number dependencies will be addressed in the next

subsection.

In comparing the scaling exponents measured herein with the KOC n/3

prediction, one observes that the scalar field generated using the mandoline

exhibits scaling exponents that are smaller than those measured in the tem-

perature field generated by heating the cylinder. Since the deviation from

Kolmogorov theory results from internal intermittency effects, the magnitude

of this departure from KOC is frequently used as a measure of the intermit-

tency. Consequently, the scaling exponents presented in table 4.2 imply that

the scalar field generated by the mandoline is more intermittent than that gen-

erated by the heated cylinder. Furthermore, the current results demonstrate

that the passive scalar structure function scaling exponents are sensitive to

the large-scale features of the flow — i.e. the scalar-field boundary conditions.
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It is therefore of interest to determine if alternate statistics can be used to

provide insight into the small-scale structure of the passive scalar field.

To this end, the (i) sixth-order, mixed (velocity-temperature) structure

functions, 〈(Δru)
2(Δrθ)

4〉, and (ii) (non-centered) autocorrelations of the dis-

sipation rate of scalar variance, ρχχ(r) ≡ 〈χ(x)χ(x+ r)〉 / 〈χ2〉, were also ob-

tained for each of the two flows — see figures 4.3 and 4.4, respectively. In

the inertial-convective scaling range, the former scales as r2−μθ , whereas the

latter scales as r−μθ , where μθ is the scalar intermittency exponent and can be

used to quantify the degree of internal intermittency – see for example Antonia

et al. (1984) or Warhaft (2000). Consequently, these additional statistics can

also be used to obtain quantitative estimates of the internal intermittency of

the passive scalar fields examined herein.

Figure 4.3 reveals that the scalings of the sixth-order, mixed velocity-

temperature structure functions for the scalar fields generated by the heated

cylinder and the mandoline are quite similar — much more so than the anal-

ogous plots of the sixth-order passive-scalar structure function (see figure

4.1c). This similarity is quantitatively confirmed by the inertial-convective-

range scaling exponents for these two figures (measured in the same manner

as for the passive scalar structure functions), which are 1.638 and 1.644 for the

heated cylinder and mandoline experiments, respectively.

To place these exponents in the context of previous research, note that

Chambers & Antonia (1984) measured (by means of structure function com-

pensation) the scaling exponents of 〈(Δru)
2(Δrθ)

4〉 to be 1.75 ± 0.05 in the

atmospheric surface layer, whereas Schmitt et al. (1996) obtained 1.65± 0.05

(also in the atmospheric surface layer) using least-squares regression in the in-

ertial range. In the wake of a heated cylinder, Lévêque et al. (1999) obtained
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a scaling exponent of 1.608 ± 0.028 using Extended Self-Similarity. Xu, An-

tonia & Rajagopalan (2000) measured, by least-squares regression, the scaling

exponent to be 1.83 in a turbulent round jet. At the highest Reynolds number

in active-grid turbulence, Mydlarski (2003) measured the scaling exponent to

be 1.52± 0.05 (by means of structure function compensation) and 1.58 (using

ESS). Boratav & Pelz (1998) estimated the scaling exponents in their DNS

of homogeneous, isotropic turbulence by means of ESS and found them to be

1.61± 0.04. Consequently, the current results fall within the range of the val-

ues observed in the literature. Moreover, the current measurements imply that

the estimates of μθ for both scalar fields are approximately 0.36. This result

is especially consistent with the results of both Sreenivasan, Antonia & Danh

(1977) and Prasad, Meneveau & Sreenivasan (1988), who estimate μθ ≈ 0.35

and 0.38, respectively. Chambers & Antonia (1984) found μθ = 0.25 ± 0.05,

whereas Mydlarski & Warhaft (1998) found 0.19 ≤ μθ ≤ 0.28 over a range

of Reynolds numbers. In the context of the present work, the precise value

of μθ is not as important as the fact that both estimates of μθ are effectively

identical for the two different scalar fields. (It has been demonstrated that the

different approaches used to calculate the intermittency exponents can result

in different estimates – see Sreenivasan & Kailasnath (1993) and Mydlarski

(2003).)

Alternately, μθ is found to be 0.172 and 0.176 for the scalar fields gener-

ated by the heated cylinder and mandoline, respectively, when calculated from

the (non-centered) autocorrelations of the dissipation rates of scalar variance,

ρχχ(r) — see figure 4.4.1 Once again, both values are effectively identical, thus

1 The reason that the two autocorrelations have different (non-zero), large-
scale asymptotes is that these are non-centered autocorrelations (as opposed to
centered ones), with different (scalar) dissipation statistics. As was shown in
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implying that the passive scalar fields generated by both the heated cylinder

and the mandoline exhibit similar levels of internal intermittency.

Lastly, it is noted that, by use of an intermittency model, μθ can also be

inferred from the measured values of ξn. The model of Cao & Chen (1997)

was used herein to estimate the intermittency exponents by applying a least-

squares curve fit to the scaling exponent data presented in table 4.2. (Note

that the model assumes that the intermittency exponent for the velocity field,

μ, which is the same for both flows, is μ = 2/9 = 0.22.) The resulting in-

ferred scalar intermittency exponents were μθ = 0.246 and 0.288 for the heated

cylinder and mandoline experiments, respectively. These estimates differ by

17% — at least one order of magnitude larger than the difference obtained

when comparing the intermittency exponents computed from the mixed sixth-

order structure functions and the autocorrelations of χ. Consequently, this

result reinforces the significance of the perceived difference in internal inter-

mittency when using higher-order passive scalar structure function exponents

as a measure, given that the values of μθ (and therefore the degrees of passive

scalar internal intermittency) determined from both the sixth-order, mixed

velocity-temperature structure functions and the autocorrelations of χ can be

considered to be experimentally indistinguishable.

4.1.2 Finite-Péclet-Number Effects

In addition to the statistics described above, it is useful to consider the

higher-order moments of the passive scalar increments (as a function of the

separation, r), normalized by the second-order structure function. Normalized

Mydlarski & Warhaft (1996) (p.363), an equation can be derived which gives
the value of the asymptote as a function of the square of the mean dissipation
and the variance of the dissipation.
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fourth-, sixth- and eighth-order passive scalar structure functions are presented

in figures 4.5(a)–(c). (These will be referred to herein as the kurtosis, super-

kurtosis and hyper-kurtosis structure functions, respectively.) One observes

that, at large scales, the curves roughly asymptote to their respective Gaus-

sian values (3, 15 and 105). More precisely, the heated cylinder data appear

to asymptote to a value that is slightly larger than the analogous value for

the mandoline experiment. This result is not unreasonable since the kurtosis

of the scalar fluctuations (i.e. Kθ) is larger for the heated cylinder experiment

— see table 4.1. (One can easily demonstrate that, in the limit of r → ∞,

KΔrθ → Kθ.) At small scales, one notices significant departures from the

Gaussian prediction, due to the effects of internal intermittency. Significantly,

one also observes that, for all three subfigures, the mandoline data achieves

its Gaussian value at smaller scales than do the heated cylinder data. For

example, the mandoline data clearly attain their large-scale value (∼ 15) for

the super-kurtosis (i.e. figure 4.5b) at roughly r/ηθ ≈ 103, whereas the heated

cylinder data only do so towards the end of the recorded data (r/ηθ ≈ 104), or

even beyond that. This occurs because the thermal integral length scale for the

mandoline experiment is smaller than the corresponding value for the heated

cylinder experiment. (Table 4.1 indicates that �θ = 105mm and 314mm for

the mandoline and heated cylinder experiments, respectively.) This effect spu-

riously steepens the inertial-convective-range slope of the mandoline super-

kurtosis structure function (making it more negative, due to the smaller scalar

integral length scale / smaller Péclet number) relative to that of the heated

cylinder experiment because it must fall from its small-scale value (at r → 0)
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Figure 4.5: The high-order moments of the passive scalar increments,

〈(Δrθ)
n〉 / 〈(Δrθ)

2〉n/2, plotted as a function of the separation (r/ηθ). (a)
Kurtosis (n = 4). (b) Super-kurtosis (n = 6). (c) Hyper-kurtosis (n = 8).
◦: Heated cylinder experiment. +: Mandoline experiment. The dashed line
corresponds to the Gaussian prediction.
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to its large-scale value (at r ≈ �θ) over a smaller range of scales.2 Moreover,

the inertial-convective-range scaling exponents of the normalized higher-order

moments of the passive scalar increments (denoted by γn) can be related to

the structure function scaling exponents (ξn) as follows:

γn ≡ ξn −
(n
2

)
ξ2,

because, in the inertial-convective range:

〈(Δrθ)
n〉 / 〈(Δrθ)

2
〉n/2 ∝ rγn = rξn/(rξ2)n/2 = rξn−(n/2)ξ2 .

As demonstrated in table 4.2, the second-order structure function scaling ex-

ponents are experimentally indistinguishable for the heated cylinder and man-

doline experiments. Consequently, the slopes of the normalized high-order

moments (γn) are directly related to the inertial-convective range scaling ex-

ponents of the passive scalar structure functions of the same order (ξn). Since

it has already demonstrated that γn for the mandoline is smaller than that of

the heated cylinder (due to the smaller thermal integral length scale/narrower

inertial-convective range), one may therefore conclude that the structure func-

tion scaling exponents (ξn) for the scalar field generated by the mandoline are

smaller than the corresponding values for the heated cylinder for the same

2 Note that one might be tempted to extrapolate this argument to conclude
that the scaling exponents, ξn, will tend to increase with Reynolds / Péclet
number, and potentially asymptote to n/3. However, such an argument in
incorrect because it neglects to include the fact that intermittency effects also
increase with Reynolds number, as does the width of the inertial-convective
range. For example, the kurtosis of ∂u/∂x, or equivalently ∂θ/∂x, increases
with Reynolds / Péclet number (e.g. Sreenivasan & Antonia, 1997). Such an
argument is akin to stating that the (fourth-order) kurtosis structure functions
asymptote to 3 at all scales as Re → ∞. However, the tendency for this to
occur (due to the increase in extent of the scaling range) is offset by the increase
in K∂θ/∂x with Reynolds number.
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reason, and are not uniquely the result of a more intermittent passive scalar

field.

The dependence of the scaling exponents (either ξn or γn) on �θ (and,

therefore, on the width of the inertial-convective range, since the two scalar

fields have identical Corrsin microscales of length, ηθ — see table 4.1) is, in

effect, a Péclet number dependence. Recall that the Péclet number should

be defined as Pe = u′�θ/α, since the integral scale of the scalar field, �θ, is

different from that of the velocity field, �. Therefore, it is incorrect to simply

write Pe = Re× Pr, where Pr is the Prandtl number of the fluid, since such

an (overly simple) expression for the Péclet number would yield the same value

for both scalar fields, which is not the case herein, given that both scalar fields

have different integral length scales.

To account for this Péclet-number dependence, one may normalize the

data in figure 4.5 in a manner that compensates for this effect. More pre-

cisely, the spatial separation r is non-dimensionalized using the integral length

scale of the passive scalar field: [(r/2π)− ηθ]/[�θ − ηθ] (as opposed to the r/ηθ

normalization employed in figure 4.5). Using this non-dimensionalization, the

data of figure 4.5 are re-plotted in figure 4.6, where it should be noted that the

abscissa asymptotes to 0 as r → 2πηθ and to 1 as r → 2π�θ. One immediately

observes that the collapse of the kurtosis structure function data measured

using different scalar-field boundary conditions improves significantly. (This

normalization does not collapse the large-scale statistics, which will be ex-

pounded upon shortly.) This result may suggest that, when appropriately

compensated for their different Péclet numbers, the scaling exponents of the

two scalar fields are significantly less different. That being said, such a renor-

malization renders the estimation of scaling exponents more difficult, since
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Figure 4.6: The kurtosis structure functions, 〈(Δrθ)
n〉 / 〈(Δrθ)

2〉n/2, plotted as
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(n = 8). ◦: Heated cylinder experiment. +: Mandoline experiment.
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well-defined power-law scaling regions are no longer observed. More impor-

tantly, however, this result supports the previous conclusion that the observed

difference in the passive scalar structure function scaling exponents is related

to the different Péclet numbers of the two scalar fields (i.e. the difference in

their scalar integral length scales), and is not solely (if at all) a reflection of

the relative levels of internal intermittency of the two passive scalar fields.

Like the passive scalar structure functions, the mixed, sixth-order struc-

ture functions presented in figure 4.3 can also be normalized using the variance

of the fluctuating velocity and passive scalar fields as follows:

〈
(Δru)

2(Δrθ)
4
〉
/(
〈
(Δru)

2
〉 〈

(Δrθ)
2
〉2
).

They then become “mixed sixth-order super-kurtosis structure functions,”

which are presented in figure 4.7. Plotted in this manner, the mixed super-

kurtosis structure functions for the different scalar fields achieve their respec-

tive asymptotic large-scale values at similar separations (which, as demon-

strated in figure 4.5, was clearly not the case for the analogous passive scalar

kurtosis structure functions). The fact that such mixed velocity-temperature

structure functions are less dependent on their respective values of �θ (which

are different for both flows) is consistent with the (grid-turbulence) results

of Mydlarski (2003), who noted that mixed velocity-passive scalar (co-spectra

and) structure functions resembled more closely those of the velocity field than

those of the scalar field. This suggests that the reason the scaling exponents

determined from the mixed velocity-passive scalar structure functions are sim-

ilar and, therefore, not as Péclet-number-dependent is because these statistics

are dominated by the velocity field and, therefore, not as contaminated by the

different large scales of the scalar field. (Recall that � is the same for both

flows.)

87



10
0

10
1

10
2

10
1

10
2

10
3

10
4

<
(

ru
)2

(
r

)4
>

/[
<

(
ru

)2
>

<
(

r
)2

>
2
]

r/

Figure 4.7: The mixed (i.e. velocity-temperature) “super-kurtosis” (i.e. sixth-
order) structure function, 〈(Δru)

2(Δrθ)
4〉 /(〈(Δru)

2〉 〈(Δrθ)
2〉2), plotted as a

function of the separation, for the scalar fields generated by the heated cylinder
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The autocorrelations of the dissipation rate of scalar variance, ρχχ(r),

presented in figure 4.4, also exhibit a similar independence of the scalar-field

boundary conditions. Since this statistic is an autocorrelation of a small-scale

quantity (i.e. the dissipation rate of scalar variance), it is reasonable to expect

that such a quantity would be less sensitive to the large-scale anisotropies of

the temperature field.

It has been shown that the most commonly measured estimators of (pas-

sive scalar) internal intermittency — i.e. the high-order passive scalar structure

function exponents — are Péclet number dependent, whereas measures of in-

termittency derived from either (i) autocorrelations of the scalar dissipation

rate, or (ii) the mixed sixth-order structure functions appear to be effectively

independent of Péclet number. Consequently, the dependence of different mea-

sures of intermittency on the Péclet number / boundary conditions is (i) of

particular interest to any future work on this subject, and especially perti-

nent to any conclusions drawn pertaining to the degree(s) of universality of

passive scalar fields, and (ii) possibly indicative of further differences between

the hydrodynamic and scalar fields — differences which remain intriguing and

not fully explained. Lastly, the question of which, if any, of the measures of

internal intermittency studied herein is best and/or correct, remains open.

4.1.3 Compensation of Kurtosis Structure Functions

We return to the previous observation that the large-scale heated cylinder

statistics in figure 4.5 asymptote to constant values that are slightly larger

than the analogous values for the mandoline statistics. Consequently, it is

of interest to examine the effect of the large-scale asymptote of the kurto-

sis structure function (referred to as K∞ herein) on the small-scale statistics

(namely KΔrθ). To this end, the following two compensation techniques are

proposed. Figure 4.8 plots the kurtosis structure functions, KΔrθ, both offset
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Figure 4.8: The offset and normalized kurtosis structure functions of the pas-
sive scalar increment (KΔrθ − K∞ and KΔrθ/K∞, respectively) plotted as a
function of the separation (r/ηθ). (a), (c), (e): Offset kurtosis structure func-
tions. (b), (d), (f): Normalized kurtosis structure functions. (a), (b): Kurtosis
(n = 4). (c), (d): Super-kurtosis (n = 6). (e), (f): Hyper-kurtosis (n = 8). ◦:
Heated cylinder experiment. +: Mandoline experiment.
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(by subtraction), and normalized (by division) by their respective large-scale,

asymptotic values (i.e. K∞) — see figures 4.8(a)(c)(e) and 4.8(b)(d)(f), re-

spectively. (As previously mentioned, KΔrθ will approach Kθ, the kurtosis of

the fluctuating scalar field, in the limit of r → ∞. In the present work, �θ

for the mandoline experiment is sufficiently small so that Kθ ≈ K∞, which is

not the case for the heated cylinder experiment.) While there is no a priori

reason to argue in favour of either technique, it must be noted that offsetting

(KΔrθ − K∞) preserves the interpretation of the kurtosis (since it represents

a shift in the ordinate), whereas normalization (KΔrθ/K∞) does not. (The

interpretation of such a normalization is discussed below.) The offset kurto-

sis structure functions (KΔrθ − K∞) presented in figures 4.8(a)(c)(e) reveal

that the data obtained from the heated cylinder experiment exhibit a larger

deviation from their asymptotic values than the analogous results from the

mandoline experiment. Unfortunately, no conclusions pertaining to the in-

tensity of the internal intermittency can be drawn from these data, since the

magnitude of the kurtosis structure alone may depend upon flow-dependent,

large-scale parameters.

Regarding the normalized kurtosis structure functions (i.e. KΔrθ/K∞),

one observes that, as required, the data asymptote to unity at large scales.

Interestingly, one also observes a collapse of the data at small scales. However,

the heated cylinder and mandoline statistics diverge at intermediate scales,

with the magnitude of the divergence increasing with structure function order

(and with the heated cylinder taking on larger values). While the current nor-

malization successfully reconciles the small-scale statistics of the two different

scalar fields, one must note that, as previously stated, the data normalized

in this fashion are no longer physically representative of the kurtosis of the

passive scalar field. Lastly, note that the data, when plotted as KΔrθ/Kθ (not
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shown) collapse over a smaller extent, but nevertheless also exhibit increasing

divergence as the structure function order increases.

The divergence of the data in figures 4.8(b)(d)(f) at intermediate scales

merits further discussion. To this end, note that Schumacher, Sreenivasan &

Yeung (2003) used nearby even-order moments to non-dimensionalize the odd-

order statistics of the velocity gradient — e.g. 〈x5〉 / 〈x4〉5/4, 〈x5〉 / 〈x6〉5/6 and

〈x5〉 /[〈x4〉 〈x6〉]1/2, where x is the velocity gradient, ∂u/∂y — since normal-

ization using the variance may not be valid in intermittent (i.e. non-Gaussian)

phenomena. Warhaft & Gylfason (2004) examined various high-order statis-

tics of the passive scalar increments in homogenous, isotropic turbulence using

the different non-dimensionalizations presented in Schumacher et al. (2003)

to compensate for the effects of internal intermittency. Warhaft & Gylfason

(2004) concluded that, while the normalizations proposed by Schumacher et al.

(2003) were successful in compensating the low-order statistics, they simply

delayed the effects of internal intermittency to higher-order statistics. Rea-

soning along these lines, combined with the observation that the magnitude of

the difference between the heated cylinder and mandoline statistics at interme-

diate scales increases with the kurtosis structure function order, leads to the

conclusion that this difference will eventually permeate to the small-scales at

higher orders. Consequently, although the present normalization successfully

collapses the small-scale data (particularly at low orders), the normalization

employed in figures 4.8(b)(d)(f) delays the onset of the effects of internal inter-

mittency to even-higher order statistics, consistent with the results of Warhaft

& Gylfason (2004).

4.2 Lateral Dispersion Measurements

The results of the lateral dispersion experiment are subdivided into the

following sections: measurements of the mean temperature field (section 4.2.1),
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fluctuating temperature field (section 4.2.2) and temperature PDFs (section

4.2.3). Given that one objective of the present work is to compare and contrast

the current lateral dispersion with the transverse dispersion studied in Lavertu

& Mydlarski (2005), the flow parameters and measurement locations examined

in the current study were selected to match those of Lavertu & Mydlarski

(2005). Consequently, the experiments described herein were conducted at a

Reynolds number of Re = 10200 (Reτ = 502) at six downstream locations

(i.e. x/h = 4.0, 7.4, 10.8, 15.2, 18.6 and 22.0) and six wall-normal positions

(i.e. y/h = 0.10, 0.17, 0.33, 0.50, 0.67 and 1.0) with a horizontal line source

located at the mid-height of the channel. The relevant flow parameters are

summarized in table 4.3. (Note that, as before, the spatial gradients used

to calculate the dissipation rate of turbulent kinetic energy are obtained by

invoking Taylor’s hypothesis and assuming local isotropy.)
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Table 4.3: Flow parameters for the lateral dispersion experiment. Fluid prop-
erties are evaluated at 295K (ρ = 1.18 kgm−3, cP = 1007 J kg−1K−1, ν =
15.5 × 10−6m2 s−1). h = 0.030m is the channel half-width. ds = 0.254mm
is the source diameter. P ′ = 76Wm−1 is the power input to the source per
unit length. ρuu(r) is the autocorrelation function of the longitudinal velocity
fluctuation, defined as ρuu(r) ≡ 〈u(x+ r)u(x)〉 / 〈u2〉.

u∗ [ m s−1] 0.258
Re{= 〈U〉y/h=1.0

h/ν} 10200

Reτ{= u∗h/ν} 502

y/h
0.10 0.17 0.33 0.50 0.67 1.0

〈U〉 [ m s−1] 3.73 4.05 4.52 4.83 5.04 5.24

〈u2〉1/2 [ m s−1] 0.536 0.463 0.397 0.340 0.284 0.208
ΔTr{= P ′/ρcPds 〈U〉} [ K] 67.4 62.1 55.7 52.2 49.9 48.1

ε{= 15ν 〈(∂u/∂x)2〉} [ m2 s−3] 7.66 5.20 2.52 1.46 0.912 0.548
�{= ∫∞

0
ρuu(r)dr} [ mm] 14.6 16.4 19.7 20.6 21.0 18.5

λ{= √〈u2〉 / 〈(∂u/∂x)2〉} [ mm] 2.95 3.09 3.80 4.29 4.53 4.27
η{= (ν3/ε)1/4} [ mm] 0.15 0.16 0.20 0.22 0.25 0.29

Reλ{= 〈u2〉1/2 λ/ν} 102 93 98 94 83 57

50 84 167 251 335 502
y+{≡ yu∗/ν}
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4.2.1 The mean temperature field

The downstream and transverse evolutions of the spanwise mean temper-

ature excess (ΔT = 〈T 〉 − T∞) profiles, non-dimensionalized by their peak

(i.e. centreline) value (ΔTc), are presented in figures 4.9 and 4.10, respectively.

For all combinations of downstream positions and transverse distances exam-

ined herein, the profiles are described well by Gaussian distributions. Further-

more, the profiles remain symmetric with peaks that are located downstream

of the source location. (Displacement of the peaks would not be expected,

given the symmetry of the flow in the lateral direction.) Fackrell & Robins

(1982) also measured lateral mean concentration profiles that were well approx-

imated by Gaussian profiles in their turbulent boundary layer flow. This is to

be contrasted with the transverse mean temperature profiles in fully developed

turbulent channel flow (Lavertu & Mydlarski, 2005), which are approximated

well by truncated Gaussian distributions due to the bounded nature of the

flow in the transverse direction. (Given that the channel walls are adiabatic,

a more accurate representation would be a Gaussian profile with a “mirror

source” located at −ysource/h. However, given the objectives of their work,

Lavertu & Mydlarski (2005) concluded the added complexity provided lit-

tle additional insight.) Finally, the mean temperature profiles presented in

Lavertu & Mydlarski (2005) show no discernable displacement of the peaks

with downstream position (i.e. they remain fixed at the source location). In

grid turbulence (Warhaft, 1984), the mean temperature profiles were Gaussian.

The same is true in homogeneous turbulent shear flow (Karnik & Tavoularis,

1989) for downstream positions close to the source. Farther downstream, how-

ever, Karnik & Tavoularis (1989) observed that the mean temperature profiles

became asymmetric and their peak drifted into the lower velocity region.
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Figure 4.9: Downstream (x) evolution of the lateral (z) profiles of the mean
temperature excess (ΔT ), non-dimensionalized by their peak value (ΔTc), for
six wall-normal distances: (a) y/h = 0.10, (b) y/h = 0.17, (c) y/h = 0.33,
(d) y/h = 0.50, (e) y/h = 0.67, (f) y/h = 1.0. Symbols denote different
downstream positions: ◦: x/h = 4.0, ×: x/h = 7.4, �: x/h = 10.8, +:
x/h = 15.2, 
: x/h = 18.6, �: x/h = 22.0. The solid lines correspond to the
best fit Gaussian profiles.
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Figure 4.10: Transverse (y) evolution of the lateral (z) profiles of the mean
temperature excess (ΔT ), non-dimensionalized by their peak value (ΔTc), for
six downstream positions: (a) x/h = 4.0, (b) x/h = 7.4, (c) x/h = 10.8,
(d) x/h = 15.2, (e) x/h = 18.6, (f) x/h = 22.0. Symbols denote different
wall-normal distances: ◦: y/h = 0.10, ×: y/h = 0.17, �: y/h = 0.33, +:
y/h = 0.50, 
: y/h = 0.67, �: y/h = 1.0. The solid lines correspond to the
best fit Gaussian profiles.
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The (downstream and transverse) evolutions of the centreline mean tem-

perature excess (ΔTc) are shown in figure 4.11. These are non-dimensionalized

by the “reference temperature rise” (ΔTr) proposed by Karnik & Tavoularis

(1989)

ΔTr =
P ′

ρcPds 〈U〉 , (4.1)

where P ′ is the power injected into the source per unit length, ds is the di-

ameter of the source, and ρ and cP are the density and specific heat capacity

at constant pressure of the ambient air, respectively. Consistent with homo-

geneous turbulence (and in contrast with the results of Lavertu & Mydlarski

(2005) for dispersion in the inhomogeneous (y) direction), the downstream de-

cay of the centreline mean temperature excess (see figure 4.11a) is described

well by a power law of the form

ΔTc

ΔTr
= A

(x
h

)m

. (4.2)

This result, and its consistency with results in purely homogeneous flow, is

not unreasonable, given the unbounded and homogeneous nature of the flow

in the spanwise direction. The parameters in the power law curve fit above

are shown in table 4.4. The value of m falls in the range −0.78 ≤ m ≤
−0.68, and exhibits a non-monotonic trend in wall-normal distance exhibiting

the slowest decay around y/h ≈ 0.5. The present values are comparable to

those obtained in homogeneous turbulence: Warhaft (1984) obtained a decay

exponent on the order of m ∼ −0.7 (over the entire range of downstream

positions under consideration therein), whereas Karnik & Tavoularis (1989)

quoted an exponent of m ≈ −1.0 near the source and m ≈ −0.75 farther

downstream. In the fully developed channel flow experiments of Lavertu &

Mydlarski (2005), the data were not well represented by a power-law, owing

to the bounded nature of the flow. Nevertheless, the authors computed decay
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exponents of m ∼ −0.7 to −0.5, solely for the sake of comparison with the

above-mentioned homogeneous flows.

The non-monotonic trend of the power law scaling exponents with wall-

normal distance observed herein merits further discussion. Table 4.4 reveals

that the fastest decay rates occur at the near-wall and centreline locations.

In the near-wall region, the higher turbulence intensity (and/or the increased

advection time due to the lower mean velocity) serves to enhance the mixing

of the thermal plume, yielding a rapid decay rate of the peak mean temper-

ature. Consequently, the drop in turbulent kinetic energy associated with

increasing wall-normal distance may result in the initial decay of m observed

herein. However, as the distance from the wall increases, bulk “flapping” of

the instantaneous thermal plume (by the large eddies in the flow) becomes

more prominent (see the temperature PDFs in section 4.2.3), and acceler-

ates the spreading of the mean plume. As the mean plume widens, the peak

mean temperature decreases, to satisfy conservation of energy. Therefore, the

observed faster decay at the channel centreline is presumably related to the

increased flapping of the plume at that location.

Figure 4.11(b) plots the transverse evolution of the centreline mean tem-

perature excess for the different downstream positions. When plotted using

logarithmic coordinates (not shown), the data appear to be described well us-

ing a power law, though no theoretical justification exists for this behaviour.

Given that the curves should be symmetric about y/h = 1.0, a power law in

y is incompatible with the underlying symmetry of the experiment. The fact

that a power law fits the data well is most probably coincidental, and pre-

sumably results from the relatively few (six) data points in the transverse (y)

direction. Were more data points used — especially near the wall — a power

law may very well cease to accurately fit the data over this wider range of
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Figure 4.11: The (a) downstream and (b) transverse evolution of the centre-
line mean temperature excess (ΔTc) non-dimensionalized using the reference
temperature rise (ΔTr). In (a), symbols denote different wall-normal distances
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figure 4.9). The solid lines correspond to the best fit power law.
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Table 4.4: Parameters corresponding to the power-law evolution of the nor-
malized peaks and half-widths of the mean temperature excess (ΔT ) profiles:
ΔTc/ΔTr = A(x/h)m and zmean

1/2 /h = B(x/h)n.

y/h A m B n

0.10 0.0355 -0.72 0.116 0.55
0.17 0.0415 -0.72 0.116 0.55
0.33 0.0491 -0.70 0.103 0.59
0.50 0.0540 -0.68 0.0887 0.62
0.67 0.0641 -0.70 0.0677 0.70
1.0 0.0869 -0.78 0.0522 0.76
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scales. Nevertheless, a power law fit (ΔTc/ΔTr = C(y/h)p) was applied to the

transverse evolution data, for the sole purpose of obtaining a quantitative esti-

mate of the transverse evolution to be compared with that in the downstream

direction. One obtains exponents in the range of 0.31 ≤ p ≤ 0.35 and the value

of p decreases non-monotonically with increasing downstream position. The

smaller variation of p suggests that the transverse growth of the peak mean

temperature is less sensitive to the downstream position. One can infer that

this “quasi-homogeneous” behaviour in the downstream direction arises from

the weaker inhomogeneity of the scalar field in that direction. We also note

that the centreline mean temperature excess decays at a much slower rate in

the transverse direction (as compared to the downstream evolution). This is

presumably due to the bounded nature of the flow in the transverse direction

(which stifles the growth of the plume in the transverse direction, thus yielding

a slower decay rate of the peak mean temperature). Given that all bounded

flows are inherently inhomogeneous, there is no a priori reason to assume that

the transverse plume should evolve in a manner similar to the lateral plume,

as observed.

Figures 4.12(a) and 4.12(b) plot the development of the half-width of the

mean temperature excess profiles (zmean
1/2 ). Once again, power laws are fitted

to the downstream evolution data such that:

zmean
1/2

h
= B

(x
h

)n

, (4.3)

with the parameters B and n being summarized in table 4.4. We note that,

near the wall, the profiles are wider than the corresponding profiles at the cen-

treline. This may be attributed to one (or both) of two phenomena: (i) upon

reaching a given downstream distance, the scalar contaminant has had more

time to diffuse, given the lower mean velocity in the near-wall region, and/or
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(ii) a larger turbulent kinetic energy near the wall enhances the spreading of

the scalar field. This being said, it is worth noting that the power law expo-

nent n increases monotonically from 0.55 to 0.76 as y/h increases from 0.10

to 1.0 — i.e. the growth rate of the width of the mean temperature profiles

is smallest at the wall and largest at the channel centreline. In the turbulent

boundary layer studies of Fackrell & Robins (1982), the half-widths of the

lateral mean concentration profiles obey a power law distribution with expo-

nent n ≈ 1/2 (far downstream of the elevated source). This result agrees well

with the near-wall observations (n = 0.55) herein, presumably due to the fact

that the source locations studied in Fackrell & Robins (1982) are compara-

ble to the near-wall source locations investigated herein. In grid turbulence,

Warhaft (1984) examined the effect of the turbulence intensity at the source

location by changing the downstream position of the source with respect to

the grid (since grid turbulence decays with downstream position). Consistent

with the present results, Warhaft (1984) obtained wider profiles with a line

source located closer to the grid (i.e. higher turbulent kinetic energy at the

source location). However, in contradiction with the present results, there

was no discernable effect on the growth rate of the plume — the power law

exponent had an approximate value of n ∼ 0.7, regardless of the turbulence

intensity at the source location. Warhaft (1984) states that, in homogeneous

turbulence, the product of the peak mean temperature and the half-width of

the mean temperature profile should remain constant (to satisfy conservation

of energy). Therefore, the peak mean temperature decay exponent and the

power law exponent describing the downstream evolution of the half-width of

the mean temperature profile should be equal in magnitude and opposite in

sign — as is the case in Warhaft (1984). In the present work, table 4.4 reveals

that this does not hold, given that the flow is inhomogeneous. However, at
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Figure 4.12: The (a) downstream and (b) transverse evolution of the half-width
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1/2 ) of the mean temperature excess profiles non-dimensionalized using the

channel half-width (h). In (a), symbols denote different wall-normal distances
(see figure 4.10). In (b), symbols denote different downstream positions (see
figure 4.9). The solid lines correspond to the best fit power law.
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y/h = 1.0, m ≈ −n, which is not unreasonable, given that the symmetry at

the centreline results in a “quasi-homogeneous flow” (since the gradients at

this location are zero). The half-width data presented in Warhaft (1984) sug-

gests that the observed evolution of n with y/h cannot be solely attributed to

differences in the turbulent kinetic energy at the given wall-normal location.

Nakamura et al. (1986) investigated the effect of (mean) shear on the mean

concentration statistics of a dye emitted from a continuous point source in uni-

formly sheared, homogeneous turbulence. They determined that the growth

rate of the half-width of the mean concentration profiles shows a dependence

on the mean shear. More precisely, they observe an increase in the growth rate

of the half-width of the mean concentration profiles (n) with decreasing shear

parameter (Λ), which they define as: Λ ≡ (
√
3/2)A

−1/2
h A

−1/2
z Ω−1

z U2
CL, where

Ah and Az are the turbulent scalar diffusivities in the directions normal and

parallel to the velocity gradient, respectively (and assumed to be constant),

Ωz is the uniform mean shear rate and UCL is the velocity at the mid-height

of the channel. Consequently, the observed increase in the growth rate of the

half-width of the mean temperature profile (n) with increasing wall-normal

distance might be explained by the decreasing mean velocity gradient in that

same direction.

A primary objective of the current work is to compare the lateral dis-

persion measured herein to the transverse dispersion studied in Lavertu &

Mydlarski (2005). One observes that the half-widths of the mean temperature

profiles presented in 4.12(a) are well represented by a power law distribution,

whereas the data presented in Lavertu & Mydlarski (2005) — see their figure

7(c), for example — appears to plateau for large downstream distances. Conse-

quently, one can infer that, far downstream of the source, the lateral half-width

of the mean temperature field is larger than the transverse half-width. Fackrell
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& Robins (1982) observed a similar behaviour of the mean-profile half-widths

in their experiments (albeit for all of the downstream locations under consider-

ation therein). This may be attributed to the unbounded nature of the lateral

dispersion, whereas the presence of the wall stifles the growth of the transverse

plume.

Turning our attention to the transverse evolution of the half-width of

the mean plume (figure 4.12b), one observes that the width of the thermal

plume becomes uniform across the entire channel half-width far downstream

of the source location, consistent with the observations presented in Fackrell

& Robins (1982). Such an observation may potentially arise due to the ap-

proach of a shear flow dispersion regime (Taylor, 1953, 1954), where, for large

downstream distances, the randomly moving fluid particles have been able to

explore the entire channel (in the flow’s inhomogeneous, y-direction).

Following Paranthoën et al. (1988), who successfully collapsed the peak

mean temperature data from a variety of dispersion experiments (in bound-

ary layers, plane jets and pipe flows) using the integral Lagrangian time scale

of the transverse velocity fluctuation at the source location, plotted in fig-

ure 4.13 is the downstream evolution of both the peak (centreline) value

and the half-width of the mean temperature excess profiles using a quasi-

Lagrangian non-dimensionalization of the downstream coordinate. Instead of

non-dimensionalizing the downstream position (x) by the channel half-width

(h) — as done in figure 4.11(a) — the flight time from the source (x/ 〈U〉)
is non-dimensionalized by (an approximation of) the local Lagrangian time

scale. The latter is estimated from the (local) longitudinal root-mean-square

turbulent velocity fluctuation, u′(= u′(y)), and a turbulent length scale. In the

present work, one of two length scales is used: (i) the channel half-width (yield-

ing a local Lagrangian time scale of h/u′), or (ii) the integral length scale of
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Figure 4.13: The downstream evolution of the centreline value (ΔTc) and
half-width (zmean

1/2 ) of the mean temperature excess profiles, using a La-

grangian non-dimensionalization. (a), (b): ΔTc. (c), (d): zmean
1/2 . (a), (c):

non-dimensionalization using the channel half-width (h). (b), (d): non-
dimensionalization using the integral length scale of the turbulence (�). Sym-
bols denote different wall-normal distances: ◦: y/h = 0.10, ×: y/h = 0.17,
�: y/h = 0.33, +: y/h = 0.50, 
: y/h = 0.67, �: y/h = 1.0. The solid lines
correspond to the best fit power law.
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the turbulence (�/u′). (Note that � = �(y) is a function of the transverse posi-

tion, whereas h is constant.) One observes that both non-dimensionalizations

collapse the peak mean excess temperature data — see figures 4.13(a) and

(b). This result is consistent with that obtained by Paranthoën et al. (1988)

in a turbulent boundary layer. However, the data non-dimensionalized us-

ing the constant length scale h does not collapse the half-width data (figure

4.13c), whereas figure 4.13(d) reveals that non-dimensionalizing using �(y) sig-

nificantly improves the collapse of zmean
1/2 . Figure 4.13(d) illustrates the impor-

tance of using local characteristic scales when non-dimensionalizing quantities

of interest in the present inhomogeneous flow. Moreover, one observes a sig-

nificant improvement in the collapse of the half-width (zmean
1/2 ) data when using

the local characteristic scales as opposed to the peak mean temperature data,

which show a reasonable collapse of the data regardless of the normalization.

This is presumably because both the half-width and the downstream distance

are non-dimensionalized by �(y), whereas only the latter is non-dimensionalized

by �(y) in the case of the peak mean excess temperature data.

4.2.2 The fluctuating temperature field

The spanwise profiles of the r.m.s. temperature fluctuations (θ′), nor-

malized by the centreline value (θ′c), are plotted in figures 4.14 (downstream

evolution) and 4.15 (transverse evolution). Unlike the mean temperature pro-

files, the r.m.s. profiles are non-Gaussian. However, they remain symmetric

about z/h = 0 — as required by the underlying symmetries. Furthermore, the

r.m.s. profiles, which are initially single-peaked, evolve into double-peaked pro-

files (i) with increasing downstream position and (ii) as the wall is approached.

Both Warhaft (1984) and Karnik & Tavoularis (1989) observed non-Gaussian

r.m.s. profiles that were double-peaked very close to the source, then evolved

into single-peaked profiles, only to become double-peaked once again farther

108



downstream. (We note that, while not observed herein, it remains extremely

probable that the r.m.s. profiles are double-peaked for downstream positions

that are very close to the source, i.e. for x/h 	 4.0, which corresponds to the

farthest upstream measurement location.) In Lavertu & Mydlarski (2005), the

r.m.s. profiles were approximated well by truncated Gaussian profiles, though

deviations began to appear for the largest downstream distances when the line

source was located at the channel centreline. For the range of downstream

positions considered therein, the profiles remained single-peaked.

The appearance, disappearance and re-emergence of the double-peaked

r.m.s. profiles have been explained by Warhaft (1984) and Karnik & Tavoularis

(1989) as follows. Temperature fluctuations arise predominantly from one

(or both) of two mechanisms: (i) turbulent production in regions of non-zero

temperature gradients, and (ii) turbulent transport of temperature by velocity

fluctuations, both of which appear in the transport equation of scalar variance

(
〈
1
2
θ2
〉
), notably:

∂
〈
1
2
θ2
〉

∂t
+ 〈Uj〉

∂
〈
1
2
θ2
〉

∂xj
=

∂

∂xj

[
α
∂
〈
1
2
θ2
〉

∂xj

]
− 〈ujθ〉 ∂ 〈Θ〉

∂xj︸ ︷︷ ︸
A

− ∂
〈
1
2
ujθ

2
〉

∂xj︸ ︷︷ ︸
B

−χ,

and are respectively labeled as terms “A” and “B.” For downstream positions

very close to the source, Warhaft (1984) argues that the thermal plume, hav-

ing had little time to evolve, is very narrow and, therefore, much smaller than

the typical size of the transporting eddies. Consequently, there is little turbu-

lent structure within the plume and temperature fluctuations arise predomi-

nantly from “flapping” of the thermal plume (i.e. advection of the plume by

the largest turbulent eddies that are larger than the plume itself). Therefore,

one would expect the largest temperature fluctuations to occur off the centre-

line, along the edge of the plume. One can imagine that a cold-wire probe

placed along this interface would frequently measure both the hot fluid heated
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Figure 4.14: Downstream (x) evolution of the lateral (z) profiles of the non-
dimensionalized root-mean-square temperature for six wall-normal elevations.
(a) y/h = 0.10, (b) y/h = 0.17, (c) y/h = 0.33, (d) y/h = 0.50, (e) y/h = 0.67,
(f) y/h = 1.0. Symbols denote different downstream positions: ◦: x/h = 4.0,
×: x/h = 7.4, �: x/h = 10.8, +: x/h = 15.2, 
: x/h = 18.6, �: x/h = 22.0.
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Figure 4.15: Transverse (y) evolution of the lateral (z) profiles of the non-
dimensionalized root-mean-square temperature for six downstream positions.
(a) x/h = 4.0, (b) x/h = 7.4, (c) x/h = 10.8, (d) x/h = 15.2, (e) x/h = 18.6,
(f) x/h = 22.0. Symbols denote different wall-normal distances: ◦: y/h = 0.10,
×: y/h = 0.17, �: y/h = 0.33, +: y/h = 0.50, 
: y/h = 0.67, �: y/h = 1.0.
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by the line source and the surrounding cold fluid (compared to a probe placed

on either side of the interface, which would predominantly measure either the

hot or cold fluid). Far downstream of the line source, Karnik & Tavoularis

(1989) proposed that the reappearance of double-peaked r.m.s. profiles occurs

when the width of the thermal plume exceeds the typical size of the trans-

porting eddies (i.e. the integral length scale of the turbulence). Consider, for

example, a Gaussian mean temperature profile. In this scenario, the mean

temperature gradients (and consequently, the turbulent production term in

the scalar variance budget) are the largest away from the centreline (at the

point of inflection of the mean profile). If the transporting eddies are small

compared to the width of the thermal plume, then the contribution of turbu-

lent transport to the temperature fluctuations will be small compared to their

production. Therefore, one can expect the largest temperature fluctuations to

coincide with the location of the maximum mean temperature gradient, result-

ing in the double-peaked r.m.s. profiles. (Furthermore, Karnik & Tavoularis

(1989) demonstrated that, given a Gaussian mean temperature profile — and

invoking a constant turbulent diffusivity assumption — the turbulent produc-

tion term becomes double-peaked and that the peaks become more prominent

with increasing downstream position.) However, between these two regimes,

when the width of the plume is comparable to the integral length scale of the

turbulence, both mechanisms create temperature fluctuations. In this case,

the turbulent transport term smooths out the double peaks of the turbulent

production term, resulting in single-peaked r.m.s. profiles.

The downstream development and transverse evolution of the centreline

r.m.s. temperature fluctuation (θ′c), non-dimensionalized by the reference tem-

perature rise (ΔTr), is plotted in figures 4.16(a) and 4.16(b), respectively.

As was the case for the mean temperature profiles (and consistent with the
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work in homogeneous turbulence), the downstream evolution of the centreline

r.m.s. temperature fluctuation (see figure 4.16a) follows a power law (analo-

gous to equation 4.2) with exponent −1.22 ≤ m ≤ −1.06. Table 4.5 presents

the parameters in the power law curve fit for the six different transverse posi-

tions. One notices that for y/h = 0.10 to y/h = 0.33, the exponent remains

approximately constant, and then decreases with increasing wall-normal po-

sition. In homogeneous flow, Warhaft (1984) observed a power law exponent

of m ∼ −1 (which held over the entire extent of downstream positions con-

sidered therein). This result is consistent with the observations herein at the

channel centreline (m = −1.06 at y/h = 1.0), due to the quasi-homogeneous

behaviour of the flow at the channel centreline. As the wall is approached, the

mixing is enhanced due to the larger turbulence intensity and, consequently,

the fluctuating temperature field decays more rapidly. Karnik & Tavoularis

(1989) identified two distinct scaling regions with different scaling exponents:

m ≈ −0.85 near the source and m ≈ −1.6 far downstream. This result is not

without justification, given that the homogenous shear flow therein produces

a turbulent velocity field that increases in turbulence intensity with down-

stream position (as opposed to the present experiment, in which the flow field

is statistically homogeneous in the downstream direction). Therefore, one may

attribute the increase in the decay rate with an increased level of turbulent

kinetic energy. In fully developed turbulent channel flow, Lavertu & Mydlarski

(2005) measured a decay exponent of m ≈ −1, which, once again, is consistent

with the present work. Moreover, Sakai et al. (1986) demonstrated that the

decay exponent of the centreline r.m.s. fluctuation is sensitive to the mean-

flow shear. In particular, they determined that the r.m.s temperature decays

faster as the mean-flow shear increases. (This observation is consistent with

the present work, given that the decay exponents presented herein increase
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Figure 4.16: The (a) downstream and (b) transverse evolution of the centreline
root-mean-square temperature fluctuation (θ′c) non-dimensionalized using the
reference temperature rise (ΔTr). In (a), symbols denote different wall-normal
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Table 4.5: Parameters corresponding to the power-law evolution of the nor-
malized centreline values and half-widths of the root-mean-square temperature
(θ′) profiles: θ′c/ΔTr = A(x/h)m and zrms

1/2 /h = B(x/h)n.

y/h A m B n

0.10 0.0415 -1.21 0.182 0.59
0.17 0.0519 -1.21 0.179 0.59
0.33 0.0750 -1.22 0.161 0.62
0.50 0.0851 -1.16 0.133 0.67
0.67 0.0944 -1.11 0.109 0.71
1.0 0.0995 -1.06 0.0895 0.76
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with decreasing wall-normal distance.) Consequently, the present results, as

well as those available in the literature, would suggest that the decay rate of

the centreline r.m.s. temperature fluctuation is influenced by both the turbu-

lence intensity of the flow as well as the magnitude of the mean-flow shear.

These parameters are summarized in table 4.6 for the different flows considered

herein.

The transverse evolution of the centreline r.m.s. temperature fluctuation

is presented in figure 4.16(b) for the six different downstream positions. In

spite of the same lack of a theoretical justification (previously discussed in

detail with respect to figure 4.11b), the data are described well using a power

law distribution when plotted in logarithmic coordinates (not shown). The

power law exponents fall in the range 0.45 ≤ p ≤ 0.59 and their variation

with downstream position is non-monotonic. The growth rate increases with

downstream position (attaining a maximum value of p = 0.59 at x/h ≈ 15.2)

and decreases thereafter.

Figure 4.17(a) plots the downstream development of the half-width of the

r.m.s. temperature profiles. Like the mean temperature profiles, the r.m.s. pro-

files are wider at the walls (compared to those at the centreline), while exhibit-

ing a faster growth at the centreline. Fitting a power law distribution to the

data (akin to equation 4.3), one obtains an exponent that increases mono-

tonically from n = 0.59 at y/h = 0.1 to n = 0.76 at y/h = 1.0 (see table

4.5). Lavertu & Mydlarski (2005) obtained power law exponents in the range

of n = 0.37 to n = 0.68. In Warhaft (1984), contrary to his results for the

mean temperature field, the power law exponents describing the growth rates

of the half-width of the r.m.s. profile exhibited a trend with turbulence inten-

sity, increasing from n ∼ 0.4 to n ∼ 0.6 with decreasing turbulence intensity.

Both the current research and that of Warhaft (1984) exhibit similar trends
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regarding the growth rates of the half-widths of the r.m.s. profiles (n), and

their relationship to the turbulence intensity of the flow at the source loca-

tion. (Note that in Warhaft (1984), the turbulence intensity at the source

location is varied by changing the downstream position of the source relative

to the grid that generates the turbulent velocity field, whereas the present

work examines the influence of the turbulence intensity at the injection site

by varying the wall-normal position.) While the magnitudes of the exponents

in the current work are larger than those of Warhaft (1984), the turbulence

intensities in Warhaft (1984) are smaller than those in the present experiment.

This observation implies that while the turbulence intensity of the flow plays

an important role in the growth rate of the r.m.s. plume, it is not solely respon-

sible for the observed variation of n among the results quoted in the literature.

Presumably, as was the case for the mean temperature field, the mean-flow

shear also influences the growth rates of the r.m.s. profiles. Consequently, the

current results — as well as those of Warhaft (1984) and Lavertu & Mydlarski

(2005) — would suggest that while the turbulence intensity at the source loca-

tion is inversely related to the growth rate of the r.m.s. profiles, the mean-flow

shear may also enhance the spreading of the r.m.s. profiles (in a manner similar

to the mean temperature profiles).

In examining the transverse evolution of the half-width of the r.m.s. pro-

files (figure 4.17b), one observes once again that, far downstream, the lateral

width of the profiles becomes uniform across the width of the channel, at

roughly the same rate as the half-widths of the mean temperature plume.

Upon examination of tables 4.4 and 4.5, one also notices that the scaling ex-

ponents describing the power law growth of the plume half-widths (n) are

roughly the same for both the mean and r.m.s. profiles, which is consistent

with the behaviour described above.
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Figure 4.17: The (a) downstream and (b) transverse evolution of the half-width
(zrms

1/2 ) of the root-mean-square temperature profiles non-dimensionalized using

the channel half-width (h). In (a), symbols denote different wall-normal dis-
tances (see figure 4.15). In (b), symbols denote different downstream positions
(see figure 4.14). The solid lines correspond to the best fit power law.
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Figure 4.18 presents the downstream evolution of the centreline r.m.s. tem-

perature fluctuation and the half-width of the r.m.s. temperature profile, re-

spectively, using the quasi-Lagrangian non-dimensionalizations introduced in

section 4.2.1. Consistent with the results obtained for the mean tempera-

ture field, and in contrast with the boundary layer work of Paranthoën et al.

(1988), the Lagrangian non-dimensionalization collapses the normalized cen-

treline r.m.s. temperature fluctuation data onto a single curve (regardless of

which length scale is employed in the normalization). Once again, the half-

width data do not exhibit a similar collapse when non-dimensionalized by the

channel half-width, whereas normalization using �(y) improves the collapse.

To quantify the “mixedness” of the scalar field, the ratio of the centre-

line r.m.s. temperature fluctuation to the centreline mean temperature excess

(θ′c/ΔTc) is plotted in figure 4.19. In a perfectly mixed flow, this ratio is zero,

since the r.m.s. temperature fluctuation must be zero. (A perfectly mixed

fluid will have the same concentration throughout its entirety.) When the

downstream position (x) is non-dimensionalized using the channel half-width

(h), as in figure 4.19(a), the data show the mixedness to increase (i.e. smaller

θ′c/ΔTc) as the wall is approached and as one proceeds downstream. Replot-

ting the data of figure 4.19(a) using the Lagrangian non-dimensionalizations

introduced above collapses them onto a single curve — see figures 4.19(b) and

4.19(c). This is in contrast to the work of Paranthoën et al. (1988), who were

unsuccessful in their attempt to collapse their plots of the intensity of the scalar

fluctuations. Furthermore, the curve shows a monotonic decay from a value

of 0.8 down to an asymptotic value of approximately 0.3. (Given the range of

downstream distances examined herein, it is not possible to determine whether

the curve exhibits a maximum in the range 0 ≤ x/h ≤ 4.0.) In Warhaft (1984),

this ratio peaked at a downstream position of x′/M ≈ 10 (at the end of the
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Figure 4.18: The downstream evolution of the centreline value (θ′c) and
half-width (zrms

1/2 ) of the root-mean-square temperature profiles, using a La-

grangian non-dimensionalization. (a), (b): θ′c. (c), (d): zrms
1/2 . (a), (c):

non-dimensionalization using the channel half-width (h). (b), (d): non-
dimensionalization using the integral length scale of the turbulence (�). Sym-
bols denote different wall-normal distances: ◦: y/h = 0.10, ×: y/h = 0.17,
�: y/h = 0.33, +: y/h = 0.50, 
: y/h = 0.67, �: y/h = 1.0. The solid lines
correspond to the best fit power law.

121



turbulent convective regime) and asymptoted to a value of roughly 0.7. Karnik

& Tavoularis (1989) observed similar trends — their data exhibited a peak at

xθ/M ∼ 8. However, they obtained much lower values than Warhaft (1984)

— their curve appears to asymptote to a value of 0.15. Consistent with the

present work, Lavertu & Mydlarski (2005) observed a monotonic decrease of

the ratio θ′c/ΔTc with no observable peak in their range of downstream mea-

surement locations. However, in contrast to the current results, the magnitude

of their ratio was 0.8 at x/h = 18.6, although the authors concluded that no

inferences can be drawn concerning its asymptotic value. The intensity of the

scalar fluctuations has also been examined in numerical simulations of fully

developed turbulent channel flow (Vrieling & Nieuwstadt, 2003; Bakosi et al.,

2007). Although there is some variation between the asymptotic values of the

scalar intensity (which fall in the range of 0.8 < θ′c/ΔTc < 1.0), the data

are consistent with the experimental results of Lavertu & Mydlarski (2005).

Furthermore, the transverse dispersion data appear to asymptote to a value

similar to (or slightly larger than) that measured in the homogeneous, isotropic

turbulence of Warhaft (1984), which will be expounded upon shortly. Finally,

Viswanathan & Pope (2008) performed numerical simulations of the thermal

plume generated by means of a line source in grid turbulence (under condi-

tions similar to those studied in Warhaft (1984)). Consistent with the current

work, they determined that the intensity of scalar fluctuations asymptotes to

a constant value of 0.4.

The difference in the asymptotic values between the three flows for which

dispersion is occurring in an unbounded, homogeneous direction (i.e. (i) ho-

mogeneous isotropic turbulence, (ii) homogeneous turbulent shear flow, and

(iii) lateral dispersion within a fully developed, high-aspect-ratio turbulent

channel flow) reveals that the homogeneous turbulent shear flow of Karnik &
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Figure 4.19: The downstream development of the ratio of the centreline
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temperature excess for six different wall-normal positions. In (a), an Eu-
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dimensionalization is employed. The symbols denote different wall-normal
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y/h = 0.67, �: y/h = 1.0.
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Tavoularis (1989) is the “best-mixed” of the three, followed by the present

lateral dispersion in fully developed channel flow and then the grid turbulence

studied by Warhaft (1984). In Karnik & Tavoularis (1989), the presence of

the mean flow shear (which is aligned in the direction of the scalar dispersion)

enhances the mixing of the temperature fluctuations. Moreover, due to the na-

ture of homogeneous turbulent shear flow, both the magnitude of the velocity

fluctuations and the turbulence intensity increase with downstream position.

This serves to further mix the passive scalar. In contrast, the present channel

flow has variable shear (albeit in the direction normal to the dispersion) and,

given its fully developed nature, exhibits a turbulence intensity that remains

constant in the downstream direction. Finally, the grid turbulence studied in

Warhaft (1984) is shear-free. Consequently, there is no production of turbulent

kinetic energy and the turbulence intensity decays with increasing downstream

position. Given the nature of these three flows, there appears to be two coop-

erative effects that increase the mixedness of the scalar plume: (i) mean-flow

shear and (ii) the level of turbulence intensity (which, it is worth noting, are

not entirely unrelated, as mean-flow shear leads to production of turbulent

kinetic energy). See table 4.6 for a summary of these properties.

A comparison of the mixedness estimates measured herein with those of

transverse dispersion is difficult, for the following reason. As noted by Lavertu

& Mydlarski (2005) (and others) in both channel flow and boundary layers, the

peaks of the r.m.s. profiles (emitted from near-wall sources) drift away from the

wall with increasing distance, whereas the peaks of the mean profiles remain

relatively fixed downstream of the source. Consequently, calculation of θ′c/ΔTc

may not be sensible when the peaks of the mean and r.m.s. temperature profiles

are not aligned. The one exception to this is the case of a source located at the

channel centreline (Lavertu & Mydlarski, 2005). Here, due to the symmetry

124



of this geometry, both the mean and r.m.s. temperature profiles peak at the

channel centreline, directly downstream of the line source. However, it has

been found (Vrieling & Nieuwstadt, 2003; Lavertu & Mydlarski, 2005) that

— due to the even symmetry of the flow at the channel centreline, and the

weak variations (in the y-direction) of the statistics of the flow in the vicinity

of the centreline — the flow in the centre of the channel, far from the walls,

as well as the scalar mixing therein, resembles that in homogeneous flows.

Therefore, the values of θ′c/ΔTc measured for the transverse dispersion emitted

from a centreline line source in fully developed channel flow are similar to

those measured in a homogeneous, isotropic flow, like that of Warhaft (1984).

Given the limitations on calculating θ′c/ΔTc in flows undergoing transverse

dispersion, one can only draw a qualified conclusion regarding the state of the

mixedness in lateral and transverse dispersion phenomena because θ′c/ΔTc can

only be reliably calculated for one location in the case of transverse dispersion.

At this location, for which the mean-flow shear is zero, the flow resembles

homogeneous, isotropic turbulence over a limited region. Therefore, based

on this one, limited comparison, it could be concluded that lateral dispersion

results in increased mixing, given its lower values of θ′c/ΔTc (0.5 at x/h = 18.6

for y/h = 1.0 – see figure 4.19a) versus the asymptotic value of 0.7 measured

by Warhaft (1984).

To emphasize the differences between lateral and transverse dispersion,

figure 4.20 presents a comparison of the one-dimensional power spectra of the

temperature fluctuations measured herein to those observed in Lavertu & Myd-

larski (2005). We note that for the data obtained at the channel centreline

— i.e. y/h = 1.0, or figures 4.20(b) and 4.20(d) — the two spectra are only

marginally different. This would suggest that the structure of both the lateral

and transverse plumes are quite similar. On the other hand, this does not hold
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Figure 4.20: Comparison of the one-dimensional spectra of the temperature
fluctuations measured herein to those obtained by Lavertu & Mydlarski (2005),
non-dimensionalized using Kolmogorov variables. Note that for the data of
Lavertu & Mydlarski (2005), the source is located at the transverse location
under consideration (i.e. ys/h = y/h). (a) x/h = 4.0, y/h = 0.17. (b) x/h =
4.0, y/h = 1.0. (c) x/h = 15.2, y/h = 0.17. (d) x/h = 15.2, y/h = 1.0. Solid
line: Present work. Dashed line: Lavertu & Mydlarski (2005).
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for the near-wall data — see figures 4.20(a) and 4.20(c) — given the discrepan-

cies observed at large scales. (At small scales, the spectra invariably collapse,

given the Kolmogorov normalization employed in these figures.) Furthermore,

as one proceeds farther downstream (and approaches the wall), the spectra

exhibit a κ−1
1 scaling region (see figure 4.20c, for example). Villermaux, In-

nocenti & Duplat (2001) suggest that this scaling arises when the scalar is

injected into a region of uniform strain (such as the inertial-convective range,

or, in the current work, the logarithmic layer). The fact that this scaling range

only appears farther downstream (for both the lateral and transverse disper-

sion) may be due to the requirements of a finite, non-zero development time

— on the order of the time scale of the strain — to elapse.

4.2.3 Temperature PDFs

The temperature fluctuations are further studied by means of their PDFs.

As alluded to in section 4.2.2, temperature fluctuations are generated by two

principal mechanisms: (i) turbulent production due to interactions with the

mean temperature gradients, and (ii) turbulent transport (or “flapping”) of

the plume by the large eddies. The latter manifests itself as a spike in the

PDF, observed at the temperature of the cold fluid outside of the plume.

The downstream evolution of the non-dimensional temperature PDFs is

plotted in figure 4.21. Near the wall (y/h = 0.1), one observes that the thermal

plume is well mixed, as evidenced by the quasi-Gaussian PDFs (present for

all the downstream distances except for the x/h = 4.0 case, which exhibits

a slight bump in the PDF). Moving away from the wall, one observes an

increased prominence in the spike at the cold temperature of the fluid for

the x/h = 4.0 downstream position. Furthermore, one also notices that a

similar spike begins to appear for the x/h = 10.8 data as well. As mentioned

above, this spike indicates that plume flapping is a significant mechanism in
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Figure 4.21: Non-dimensionalized probability density functions of the temper-
ature fluctuations at different downstream positions for the six wall-normal
elevations. The spanwise position in each figure is behind the source location
(i.e. z/h = 0). (a) y/h = 0.10, (b) y/h = 0.17, (c) y/h = 0.33, (d) y/h = 0.50,
(e) y/h = 0.67, (f) y/h = 1.0. Symbols denote different downstream positions:
◦: x/h = 4.0, ×: x/h = 10.8, �: x/h = 22.0.
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the production of turbulent fluctuations at these locations. Consequently, the

plume is better mixed in the near-wall region, as opposed to near the channel

centreline. This presumably arises due to the increased turbulence intensity

at the wall.

The difference between lateral and transverse dispersion is further eluci-

dated in figure 4.22. It compares the PDFs from a specific case of Lavertu

& Mydlarski (2005) (data downstream of a source located at the channel

centreline — y/h = ys/h = 1.0) with the most similar case studied herein

(i.e. y/h = 1.0, z/h = 0). The PDFs therein indicate that, close to the source

location, the dispersion is not especially sensitive to the orientation of the line

source. Consider, for example, figure 4.22(a), which plots the PDFs at a down-

stream location of x/h = 4.0. The two curves are quite similar, indicating that

the statistical distribution of the temperature fluctuations is similar for both

line source orientations. Far downstream of the source location (figure 4.22c),

both curves appear to have a quasi-Gaussian shape, indicative of a well-mixed

scalar field. (However, note that the data of Lavertu & Mydlarski (2005) ap-

pear to be more skewed, and therefore somewhat less well mixed, than the

present data.) Consequently, the asymptotic behaviours of both the lateral

and transverse plume dispersion appears to be similar in the limits of small

and large x/h. For intermediate distances, the PDFs suggest that the plume

emitted from a wall-normal line source is better mixed than the correspond-

ing plume emitted from a spanwise line source. Thus, one could hypothesize

that the lateral mixing may be more rapid than the transverse mixing, if one

were considering the three-dimensional dispersion of a plume emanating from

a point source (at least, at this centreline source location). This hypothesis

is also validated by the lower values of θ′c/ΔTc (i.e. increased mixedness) for

129



the lateral dispersion as compared to the transverse ones, as discussed ear-

lier. Given the spikes present in both PDFs (see figure 4.22b), plume flapping

remains a dominant mechanism for the generation of the scalar fluctuations.

However, the bounded nature of the dispersion in Lavertu & Mydlarski (2005)

inhibits plume flapping, and thus hinders the mixing in the transverse plume.
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Figure 4.22: Comparison of the non-dimensional probability density functions
measured herein with those obtained in Lavertu & Mydlarski (2005) for three
of the downstream positions. (a) x/h = 4.0, (b) x/h = 10.8, (c) x/h = 22.0.
Symbols denote different experiments: ◦: Present work, y/h = 1.0, z/h = 0.
×: Lavertu & Mydlarski (2005), ys/h = y/h = 1.0.
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CHAPTER 5

Conclusions

The following chapter is divided into four sections. The first section sum-

marizes the results of the internal intermittency experiment, whereas the sec-

ond presents the pertinent conclusions from the lateral dispersion measure-

ments. The third section outlines the original contributions of the present

study, whereas the fourth section proposes some extensions of the current re-

search, and discusses the potential benefit of the proposed experiments.

5.1 Internal Intermittency Experiment

The influence of the scalar-field boundary conditions on the small-scale

statistics of passive scalar increments were experimentally studied in the heated

wake of a circular cylinder at a Taylor-microscale Reynolds number of 370. To

explicitly isolate the influence of the scalar-field boundary conditions, two in-

dependent heat injection mechanisms were employed. However, the hydrody-

namic field was identical for both cases. Results pertaining to the (i) high-order

passive scalar structure functions (and their inertial-convective-range scaling

exponents), (ii) mixed, velocity-temperature sixth-order structure functions,

(iii) (non-centered) autocorrelations of the dissipation rate of scalar variance,

and (iv) normalized high-order moments of the passive scalar increments were

presented.

The second-order passive scalar structure functions obtained using the dif-

ferent scalar injection mechanisms were experimentally indistinguishable in the

inertial-convective and dissipative ranges of scales. However, as the structure

function order increased, the structure functions began to differ at progres-

sively smaller scales. By eighth-order, the curves were different at almost all
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scales. This result indicates that the effects of internal intermittency permeate

to the small scales at the highest orders. An analysis of the (inertial-convective

range) structure function scaling exponents showed that the structure function

scaling exponents obtained using the different scalar-field boundary conditions

(i) are significantly different from each other at high orders, and (ii) increas-

ingly deviate from each other with increasing structure function order. This

result is consistent with those obtained in the direct numerical simulation of

Watanabe & Gotoh (2006), who also observed that different scalar sources

yield different inertial-convective range scaling exponents.

It was observed that the effects of the scalar-field boundary conditions

were small and confined to the largest scales for low-order structure functions.

However, the differences in the two scalar fields became more pronounced

with increasing structure function order, with the scalar field generated by the

mandoline exhibiting smaller inertial-convective-range scaling exponents. To

further study these effects, and, more precisely, determine whether this result

was truly indicative of the relative levels of the internal intermittency of the

passive scalar fields examined herein, other statistics were considered.

The inertial-convective range scaling exponents of both the mixed, sixth-

order structure functions and the autocorrelations of the dissipation rate of

scalar variance were employed to obtain estimates of the intermittency expo-

nent of the flows under consideration herein. Contrary to the result obtained

from the passive scalar structure function scaling exponents, these latter two

measures indicated that the scalar fields generated by the mandoline and by

heating the cylinder have experimentally indistinguishable degrees of internal

intermittency. Furthermore, the inertial-convective scaling ranges of these two

quantities also exhibited a lack of dependence/sensitivity to the large-scales

of the flow. Whereas it has been shown that the (i) inertial-convective-range
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structure function scaling exponents are clearly affected by the large-scale fea-

tures of the passive scalar field at high orders, and (ii) autocorrelations of the

dissipation rate of scalar variance and the mixed sixth-order structure func-

tions are significantly less sensitive to the scalar-field boundary conditions,

the question of which, if any, of these measures is the “correct” estimator of

passive scalar intermittency remains open.

In addition to the statistics described above, the kurtosis structure func-

tions of the passive scalar increment were examined. For large separations,

the high-order moments asymptoted to their respective large-scale, quasi-

Gaussian values. However, at small scales, the moments deviated significantly

from the Gaussian prediction, due to internal intermittency. Moreover, it

was noted that the high-order moments of the mandoline data reached their

large-scale, quasi-Gaussian values at smaller values of r/ηθ than their heated

cylinder counterparts, due to the smaller scalar integral length scale of the

mandoline-generated temperature field. Consequently, the inertial-convective-

range, power-law slopes of the kurtosis structure functions for the mando-

line data are steeper (i.e. have smaller/more negative scaling exponents) than

the heated cylinder data. Since the slopes of the high-order moment curves

are directly proportional to the structure function scaling exponents, it can

be concluded that the scaling exponents for the mandoline experiment are

anomalously smaller than those obtained from the heated cylinder experiment

because of the smaller inertial-convective range in the former experiment, and

are therefore not solely a reflection of a more intermittent passive scalar field,

but remain affected by the smaller Péclet number of the scalar field generated

by the mandoline.

In light of this result, the mixed, sixth-order structure functions described

above were also non-dimensionalized using the variances of differences of the
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velocity and scalar fields to obtain a mixed “super-kurtosis” structure function

(analogous to the normalized high-order moments discussed in the previous

paragraph). Plotting the mixed super-kurtosis structure functions revealed

that the data obtained using the different scalar-field boundary conditions

achieve their respective, large-scale asymptotic values at roughly the same

separation, unlike the passive scalar structure functions.

The current results suggest that a direct relationship between the internal

intermittency of the turbulent passive scalar and the inertial-convective-range

scaling exponents of the high-order passive scalar structure functions can only

exist when the inertial-convective ranges of the scalar fields are of the same

width (or, alternately, infinite). Such a result is also consistent with previ-

ous works that have shown that large-scale effects such as non-stationarity

(Danaila et al., 1999) or production (Danaila & Mydlarski, 2001) contaminate

the inertial-convective-range statistics. While the two flows examined herein

have the same Reynolds number, their Péclet numbers are different because of

the different thermal integral length scales associated with the different heat

injection mechanisms. Consequently, the flows examined herein have the same

inertial ranges, but different inertial-convective ranges.

To isolate the influence of the different scalar integral length scales, the

kurtosis structure functions were plotted versus a Péclet-number-compensated

separation. In doing so, one observes that the collapse of the kurtosis struc-

ture functions obtained using the different scalar-field boundary conditions

improves at small-scales.

Finally, the effects of large-scale anisotropy were examined by (i) offset-

ting, and (ii) normalizing the kurtosis structure functions by their respec-

tive, quasi-Gaussian, asymptotic values. (Note that the former preserves the

interpretation of the kurtosis, whereas the latter does not.) Unfortunately,
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no conclusions pertaining to the passive scalar internal intermittency can be

drawn from the offset kurtosis structure functions, since the magnitude of these

statistics alone may be dependent upon large-scale, flow-dependent features.

The normalized kurtosis structure functions exhibited a reasonable collapse at

both large and small scales, and diverge only at intermediate scales (with the

magnitude of the divergence increasing with structure function order, and the

heated cylinder flow taking on larger values). Since the observed difference

in the kurtosis structure functions permeates to smaller scales with increasing

structure function order, it is not unreasonable to assume that the data will

no longer collapse at small scales at even higher orders.

5.2 Lateral Dispersion Experiment

The lateral dispersion of a passive scalar injected from a concentrated

line source in fully developed, high-aspect-ratio turbulent channel flow was

studied. Results pertaining to the mean and fluctuating temperature field

were presented, including spectra and PDFs. Six wall-normal positions (y/h

= 0.10, 0.17, 0.33, 0.5, 0.67 and 1.0) were considered at a Reynolds number of

Re = 10200. The downstream evolution of the scalar statistics was presented

for the range 4.0 ≤ x/h ≤ 22.0.

The mean temperature excess profiles were well described by Gaussian

distributions with peaks that occurred downstream of the source. Consistent

with work in homogeneous turbulence (presumably due to the unbounded na-

ture of the dispersion in the lateral direction), the downstream evolution of

the centreline (peak) mean temperature excess was found to obey a power law

with an exponent, m, falling in the range −0.78 ≤ m ≤ −0.68. Moreover, the

exponents exhibited a non-monotonic trend with transverse position, with the

slowest decay at y/h ≈ 0.5. On the other hand, the transverse evolution of the
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centreline mean temperature excess was less dependent on the downstream po-

sition. Moreover, the decay of the mean temperature excess was much slower

in the transverse direction (when compared to the downstream development).

The half-widths of the lateral profiles are shown to be larger in the near-wall

region and narrower at the centreline. In contrast to the grid turbulence work

of Warhaft (1984), the downstream evolution of the half-widths was shown to

obey a power law evolution, with exponents in the range 0.55 ≤ n ≤ 0.76 that

increase monotonically with distance from the wall. This difference suggests

that the evolution of n with y/h observed herein cannot be solely attributed to

differences in the turbulence intensity at the source location. The transverse

development of the half-width of the mean temperature profiles was found

to become independent of the wall-normal position far downstream from the

source. Finally, the use of a Lagrangian non-dimensionalization of the down-

stream coordinate collapsed the downstream evolution of the centreline (peak)

mean temperature excess onto a single curve. However, the same does not hold

for the half-width data. To collapse the half-width data, a second Lagrangian

non-dimensionalization, which makes use of the local integral length scale of

the turbulence (�) instead of the channel half-width (h), was proposed. By

making use of a variable length scale, i.e. �(y), the new Lagrangian normaliza-

tion successfully collapsed both the peak mean temperature excess as well as

the half-width data.

In contrast to the mean temperature profiles, the r.m.s. temperature fluc-

tuation profiles were non-Gaussian. Furthermore, the profiles evolved from

single- to double-peaked profiles with increasing downstream distance (and

as the wall is approached). The centreline r.m.s. temperature fluctuation was

found to exhibit a power law decay with exponents −1.22 ≤ m ≤ −1.06 for the

various wall-normal positions. The exponents were relatively constant for the
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y/h = 0.10, 0.17 and 0.33 wall-normal positions and then decreased with in-

creasing y/h. The downstream evolution of the half-width of the r.m.s. profiles

was described by a power law evolution with exponents that increase mono-

tonically from n = 0.59 near the wall (y/h = 0.10) to n = 0.76 at the channel

centreline (y/h = 1.0). Akin to the mean temperature field, the transverse

evolution of the half-width of the r.m.s. profiles also indicated that the width

of the plume became independent of the wall-normal position at downstream

positions far from the source. Once again, consistent with the observations of

the mean temperature field, the downstream evolution data of the centreline

r.m.s. temperature fluctuation (and the half-widths of the r.m.s. temperature

profiles) could be described by a single curve if the downstream coordinate was

non-dimensionalized using a quasi-Lagrangian non-dimensionalization (where

�/u′ is used to estimate the local Lagrangian time scale).

The mixedness of the flow was studied by examining the ratio of the

centreline r.m.s. temperature fluctuation to the centreline mean temperature

excess. When the downstream coordinate was non-dimensionalized by the

channel half-width (h), the data revealed that the mixedness of the flow im-

proved with increasing downstream position and as the wall was approached.

Furthermore, using a quasi-Lagrangian non-dimensionalization of the down-

stream distance, one obtained a collapse of the data from the six different

wall-normal distances, revealing a monotonic decay of the ratio θ′c/ΔTc from

a value of 0.8 down to roughly 0.3 over the range of downstream distances

explored in the current research. No local maxima were observed. The cur-

rent results were compared to those obtained in grid turbulence by Warhaft

(1984), as well as the homogeneous shear flow results of Karnik & Tavoularis

(1989), revealing a difference in the asymptotic values of the ratio θ′c/ΔTc.

The shear flow of Karnik & Tavoularis (1989) was the best mixed, followed
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by the current channel flow, and finally, the homogeneous, isotropic turbu-

lence described in Warhaft (1984). Moreover, the comparison suggested that

there exist two cooperative effects that determine the mixedness of the plume:

the mean-flow shear and the turbulence intensity, which are different, but not

entirely independent, as higher shear results in larger turbulent intensities.

One-dimensional spectra of the temperature fluctuations were measured

and compared to those obtained in the transverse dispersion study of Lavertu &

Mydlarski (2005). The spectra revealed that, far from the walls, the structure

of the lateral and transverse plumes is quite similar. Moreover, the near-

wall spectra exhibited a κ−1
1 scaling region (at large downstream distances),

consistent with a scalar field exposed to a constant strain rate (as described

in Villermaux et al. (2001)).

The PDFs showed that mixing was enhanced (i) farther downstream and

(ii) closer to the wall. The latter is presumably due to the increased turbu-

lence intensity at the wall, while the former is due to the increased advection

time. Plume flapping (as inferred from the presence of a spike in the PDFs

corresponding to the cold fluid temperature) was the dominant mechanism

in the production of temperature fluctuations for all transverse distances at

the closest downstream position of x/h = 4.0. At x/h = 10.8, a transition

from a flapping-dominated regime to a turbulent-mixing-dominated regime

was observed at roughly y/h ≈ 0.5. The present PDFs were compared to

those obtained by Lavertu & Mydlarski (2005) to ascertain the differences be-

tween the mixing in the lateral and transverse directions. Close to the source,

the PDFs of the temperature fluctuation presented with similar features. At

the farthest downstream position, the PDFs in both experiments approached

quasi-Gaussian profiles, suggesting the presence of a well-mixed asymptotic

limit for both the lateral and transverse dispersion statistics in the limit of
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large downstream distances. However, for the intermediate downstream posi-

tions, the PDFs corresponding to the lateral dispersion exhibited better mixing

than the transverse dispersion, consistent with the measurements of θ′c/ΔTc.

This presumably arises due to the bounded nature of the flow in the wall-

normal direction, which stifles the plume growth by hindering the transverse

flapping of the plume.

5.3 Contributions of the Present Study

The objective of the current research was to examine the influence of

both the velocity- and scalar-field boundary conditions on the passive scalar

mixing that occurs within turbulent flows. Consequently, the present study

provides insight into both large- and small-scale mixing phenomena within

inhomogeneous turbulent flow. The original contributions of the present work

are summarized below.

1. The internal intermittency experiment was the first rigorous experimen-

tal study of the effect of the (large-scale) scalar-field boundary conditions

on the small-scale structure of a turbulent passive scalar field. This was

accomplished by means of a logical experiment in which the scalar field

injection mechanism was independently varied while expressly maintain-

ing an identical hydrodynamic field. The current research proved that

the high-order passive scalar structure function scaling exponents were

dependent upon the scalar field boundary conditions, or, more precisely,

the Péclet number of the flow under consideration. This explained the

results of previous investigations of the inertial-convective-range scaling

exponents, which revealed a considerable scatter in their results. The
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present work therefore demonstrates that none of the multitudes of pre-

viously measured high-order passive scalar structure function scaling ex-

ponents can be considered to be the “true,” universal values, as they

were all measured/calculated in low- (i.e. finite-) Péclet-number flows.

2. To date, the only other similar work was the numerical simulation of

Watanabe & Gotoh (2006). They examined the passive scalar structure

function scaling exponents generated by means of a (i) Gaussian, white-

in-time scalar source and (ii) uniform mean scalar gradient. Watanabe &

Gotoh (2006) observed that the different scalar fields also yielded differ-

ent scaling exponents. However, unlike the current research, Watanabe

& Gotoh (2006) did not explain the cause of the observed difference in

the inertial-convective-range scaling exponents. Consequently, not only

does the present work validate the simulations of Watanabe & Gotoh

(2006), but it also elucidated the critical influence of the Péclet number

on the structure function scaling exponents.

3. Given that (i) the inertial-convective-range scaling exponents of the pas-

sive scalar structure functions are frequently employed measures of pas-

sive scalar internal intermittency, and (ii) the observed dependency of

these scaling exponents on the scalar-field boundary conditions, the present

work examined two additional measures of internal intermittency. In par-

ticular, it studied the mixed, velocity-temperature sixth-order structure

functions and the non-centered autocorrelations of the dissipation rate of

scalar variance, to verify whether these measures were similarly affected.

Unlike the structure function scaling exponents, it was determined that

the mixed structure functions and non-centered autocorrelations were

less sensitive to the scalar-field boundary conditions, i.e. the resulting
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intermittency exponents (μθ) were experimentally indistinguishable. Al-

though it has been established in the literature that different values of

the intermittency exponents could be obtained when using different pro-

cedures in their calculation, the present work also reveals for the first

time that certain measures are much more sensitive to the scalar field

boundary conditions than others.

4. The lateral dispersion experiment examined the mixing that occurs down-

stream of a concentrated line source. The present work targeted and sys-

tematically studied the details of the lateral dispersion of both the mean

and fluctuating scalar fields in an inhomogeneous turbulent flow result-

ing from a three-dimensional thermal plume. Because almost all prac-

tical environmental and engineering dispersion problems involve three-

dimensional mixing phenomena, quantification of the lateral dispersion

is especially relevant. Moreover, since the present work was conducted in

the same experimental facility as the transverse dispersion experiment of

Lavertu & Mydlarski (2005), the current research enabled a comparison

of the lateral and transverse dispersion for an inhomogeneous turbulent

flow.

5. Distinct differences between the present work and the previous two-

dimensional studies, conducted in both homogeneous and inhomogeneous

turbulence, were observed. For example, the development of the mean

and r.m.s. temperature fluctuations suggested that the lateral disper-

sion more closely resembled the transverse dispersion observed in the

mixing studies conducted in homogeneous turbulence (as opposed to

those results obtained from inhomogeneous flows). This observation was

attributed to the unbounded nature of the lateral plume (whereas the

transverse plume is bounded due to the presence of the channel walls).
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6. Finally, the present work highlighted the importance of using a La-

grangian normalization to collapse the lateral dispersion data obtained

for the different wall-normal positions. Unlike the previous transverse

dispersion studies, the Lagrangian normalization collapsed both the mean

and r.m.s. temperature data, as well as the intensity of the scalar fluctua-

tions. Moreover, examining the intensity of the temperature fluctuations

by means of a Lagrangian normalization revealed its asymptotic limit —

a measure that is frequently employed to characterize the mixedness of

the flow. Furthermore, by comparing the asymptotic value observed

herein to those available in the literature, the present work elucidated

the influence of the mean-flow shear and the turbulence intensity in de-

termining the mixedness of the passive scalar field.

5.4 Extensions of the Present Work

One of the primary conclusions of the internal intermittency experiment

was that the observed discrepancy in the passive scalar structure function scal-

ing exponents exhibited a marked dependency on the large-scale features of

the scalar field, or, alternately, the Péclet numbers of the flows under consid-

eration. However, in the present work, the scalar fields were injected such that

the scalar integral length scales of the flow, and thus their Péclet numbers,

were notably different. It would be of interest to repeat the current exper-

iment using two distinct scalar sources with the same scalar integral length

scale. For example, changing the downstream position of the mandoline rel-

ative to the cylinder would yield different scalar integral length scales — see

Beaulac & Mydlarski (2004). Unfortunately, given the constraints of the ex-

perimental facility employed herein, the scalar integral length scales could not

be matched using the current apparatus. Nevertheless, an experiment with

two distinct scalar injection methods resulting in the same values of the scalar
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integral length scale could provide additional insight into the passive scalar

structure function scaling exponents, as well as the internal intermittency of

the passive scalar field. Such an experiment would provide further insight into

how the inertial-convective-range scaling exponents are contaminated by the

large-scale boundary conditions and whether they are indeed representative of

the internal intermittency of the turbulent passive scalar.

Additional insight into the structure of the passive scalar field can also be

achieved through the use of multi-point statistics. Three-points statistics have

been obtained in homogeneous, isotropic turbulence (Mydlarski et al., 1998),

which examined the turbulent passive scalar using three-point autocorrelations

of the temperature fluctuation. Such measurements reveal the structure of the

scalar fronts that are responsible for passive scalar anisotropies (as opposed

to two-point statistics, which only provide information about their scaling).

Consequently, such correlations could highlight differences in the structures

of the small-scale passive scalar fields obtained using the different boundary

conditions, and therefore provide a quantitative measure of the internal inter-

mittency of the passive scalar field.

The lateral dispersion measurements described herein revealed that the

effects of the mean-flow shear and the turbulence intensity played a significant

role in passive scalar mixing. However, all of the data presented in the present

work was obtained at wall-source positions located within the turbulent (outer)

core of the flow. It would be of interest to examine the lateral dispersion that

occurs in the near-wall region of the flow, since the dynamics of the near-wall

flow region are different from the core region. Moreover, the effects of the

mean-flow shear dominate the fluid dynamics in this region. Consequently,

such measurements could provide further insight into the influence of the mean-

flow shear on the mixing of the turbulent passive scalar.

145



In addition, the mixing downstream of multiple sources is also of interest

to many investigators. While such experiments have already been conducted

in both homogeneous and inhomogeneous flows, it would be of interest to de-

termine whether the observed similarities and differences between the present

work and the results obtained in homogeneous flows can be extended to the

mixing of multiple sources. Given the inherent three-dimensionality of the cur-

rent experimental configuration, there is no a priori reason to assume that the

proposed experiments will resemble the two-dimensional mixing experiments

presented in the literature. Such results would therefore (i) highlight the in-

fluence of the inhomogeneity of the velocity field on the mixing that occurs

downstream of multiple scalar sources, and (ii) provide insight as to how to

accelerate (or delay) the mixing of multiple scalars that are transported by an

inhomogeneous flow.
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APPENDIX A

Error and Uncertainty Analysis

The current appendix examines the uncertainty of the various velocity and

temperature statistics presented in the current research. Tavoularis (2005) ar-

gues that the total measurement uncertainty can be divided into two distinct

classes: (i) bias error and (ii) precision error. Bias error, denoted herein using

b, is typically assumed to be systematic, and is, consequently, representative

of the accuracy of the measurement. Precision error (denoted using p), as

its name implies, is a measure of the precision, or repeatability of the mea-

surement. Given the difficulty associated with determining the bias error,

the present analysis assumes that the bias error is equal to the manufacturer-

specified accuracy (if available). The precision error, on the other hand, can

be estimated in one of two ways.

For the purposes of the following analysis, it is assumed that each source

of precision error can be classified in one of two manners.

1. Given a series of N measurements, with a mean μ and a standard devi-

ation of σ, Tavoularis (2005) argues that the appropriate expression for

the precision error of a given measurement is:

p =
2σ√
N
.

Such measurements will be referred to herein as “Type 1” measurements.
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2. Given a single measurement, obtained using an instrument with a preci-

sion of σ, it is assumed that the error is uniformly distributed1 between

the endpoints ±σ, such that:

p =
σ√
3
.

This type of measurement will be denoted as a “Type 2” measurement.

Once the precision and bias errors have been estimated from each source of

uncertainty, the total measurement uncertainty, u, can be calculated using the

expression presented in Tavoularis (2005), namely:

u =

√∑
i

b2i +
∑
i

p2i .

In the following sections, the uncertainties arising from both the temperature

and velocity measurements presented herein will be analyzed individually, fol-

lowed by a discussion of the uncertainty of the various turbulent statistics

presented herein.

A.1 Uncertainty of the Temperature Measurements

Since the calibration employed herein for the hot-wire sensor (U) relies

upon the temperature measurement (T ) from the cold-wire sensor, the present

analysis begins by examining the uncertainty in the temperature measurements

presented herein. The cold-wire sensor is calibrated in a heated, isothermal,

laminar jet at a constant velocity (typical of the velocity encountered during

the experiment). The jet temperature is measured using an unshielded, type E

thermocouple, connected to a digital display (accurate to 0.1K). As described

in Section 2.3.2, the relationship between the cold-wire thermometer output

1 See, for example, the NIST/SEMATECH e-Handbook of Statistical Meth-
ods, http://www.itl.nist.gov/div898/handbook/.
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voltage (E) and the flow temperature is linear over small temperature incre-

ments, such as those encountered in this work. The output of the cold-wire

thermometer is digitized using a 16-bit analog-to-digital (A-D) converter (with

a maximum voltage span of ±5V), and both the average and root-mean-square

(RMS) voltage are calculated (using 256 samples). In addition, the error asso-

ciated with the linear curve fit is estimated by comparing the temperature val-

ues predicted using the curve fit to the measured temperature values. Finally,

note that the error analysis below applies strictly to the absolute temperature

measurements (and not the temperature differences, which will be expounded

upon below). Table A.1 below summarizes the various sources of error for the

temperature measurements.

Using the first two lines of table A.1, the total uncertainty of the voltage

measurements is :

uE = 3.614mV.

Clearly, the accuracy of the A-D board is the dominant factor in this calcu-

lation. However, one must incorporate the error of the voltage measurement

into the total error for the temperature measurement, such that:

uT =

√√√√∑
i

b2i +
∑
i

p2i +

(
∂T

∂E
uE

)2

.

Using the values listed in table A.1, the total uncertainty of the absolute

temperature measurement is:

uT = 1.71K.

Once again, the accuracy of the thermocouple plays a significant role in deter-

mining the total uncertainty of the total, absolute temperature.
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Table A.1: Summary of the various sources of error for the absolute tempera-
ture measurements.

Error Description Type σ bi or pi

Bias Accuracy of the N/A N/A ±3.613mV
A-D converter

Precision Precision of the Type 2 0.153mV ±0.0881mV
A-D converter

Bias Accuracy of the N/A N/A ±1.7K
Type E thermocouple

Bias Error in temperature N/A N/A ±0.142K
calibration curve
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A.2 Uncertainty of the Velocity Measurements

The calibration of the hot-wire sensor is also conducted in an isothermal,

laminar jet. However, the calibration is repeated for a number of different flow

temperatures, to obtain the temperature-dependent coefficients described in

Section 2.3.1. Consequently, the uncertainty of the temperature measurement

displayed above must be taken into account. Moreover, unlike the temperature

calibration, in which the temperature was measured directly, the jet velocity

must be inferred from a differential pressure measurement (as well as taking

into account the measurement of the ambient pressure and flow temperature).

The ambient pressure is measured using a mercury barometer, which features

a Vernier scale accurate to 0.1mmHg, whereas the flow temperature is once

again measured using the type E thermocouple and digital display configura-

tion described above. Table A.2 summarizes the various sources of error in the

instruments used to calculate the flow velocity.

Once again, the total uncertainty of the voltage and cold-wire temperature

measurements are uE = 3.614mV and uT = 1.71K, respectively. To determine

the uncertainty of the velocity measured during the calibration procedure, one

must determine the uncertainty of the differential pressure measurement, as

well as the ambient pressure and flow temperature measurements, all of which

can be obtained from the data in table A.2.

The differential pressure transducer produces an output voltage of 0−10V

for a given input pressure difference of 0 − 100mmHg. Assuming that the

voltage response is linear, the total uncertainty in the differential pressure

measurement can be estimated using that of the voltage measurement, namely:

uΔP =

√(
∂ (ΔP )

∂E
uE

)2

,
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Table A.2: Summary of the various sources of error for the absolute velocity
measurements.

Error Description Type σ bi or pi

Bias Accuracy of the N/A N/A ±3.613mV
A-D converter

Precision Precision of the Type 2 0.153mV ±0.0881mV
A-D converter

Bias Accuracy of the N/A N/A ±1.7K
Type E thermocouple

Precision Precision of Type 2 0.1K ±0.06K
thermocouple reading

Precision Error in ambient Type 2 0.1mmHg ±0.06mmHg
pressure measurement

Bias Error in velocity N/A N/A ±0.0917m s−1

calibration curve
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which yields a value of 0.03614mmHg. Meanwhile, the total error associated

with the ambient pressure measurement arises strictly from the precision error,

such that uP = 0.06mmHg. Finally, the uncertainty of the flow temperature

is determined by both the accuracy and precision of the thermocouple. Con-

sequently, the total uncertainty in the flow temperature is uT = 1.70K.

Given the three measurements listed above, namely the differential pres-

sure, ambient pressure and flow temperature, the flow velocity can be calcu-

lated using the isentropic relations for compressible flow. Using these equa-

tions, the partial derivatives ∂U/∂ (ΔP ), ∂U/∂P , and ∂U/∂T can be com-

puted, and the uncertainty of the calculated velocity obtained. Using the

expression:

uU =

√(
∂U

∂ (ΔP )
uΔP

)2

+

(
∂U

∂P
uP

)2

+

(
∂U

∂T
uT

)2

,

the total uncertainty is uU = 0.0752m s−1. Finally, one must also take into ac-

count the uncertainty of the cold-wire temperature measurement (as described

above), along with error associated with the velocity calibration curve fit — see

table A.2 — and the measured output voltage of the hot-wire. Consequently,

the total uncertainty in the absolute velocity becomes:

uU = 0.28m s−1.

Note that it is the uncertainty of the measured temperature that dominates the

uncertainty of the velocity measurement. Therefore, improving the accuracy

of the cold-wire thermometer would yield a reduced error estimate for the

velocity field.

A.3 Uncertainty of the Turbulent Statistics

While the previous two sections provide error estimates of the absolute

temperature and velocity measurements, one must discuss how the uncertainty
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estimates outlined above apply to the various turbulent statistics examined

in the present work. One important distinction is that the majority of the

statistics presented herein are computed using velocity and/or temperature

differences. Tavoularis (2005) argues that when differences are measured using

the same instrument, one may assume that the bias error will be canceled out

by the subtraction. Therefore, the exercise outlined above is repeated, this

time setting all of the sources of bias error to zero. In doing so, one obtains

the following uncertainty estimates for the measured velocity and temperature

differences: uΔU = 0.0042ms−1 and uΔT = 0.058K.

Note that the previous estimate of the uncertainty in the temperature dif-

ference is in fact smaller. Given the linear relationship between the cold-wire

thermometer output voltage and the flow temperature, the temperature differ-

ence is simply the voltage difference multiplied by a constant value, which can-

cels out when appropriately non-dimensionalized. Therefore, the uncertainty

of the temperature difference is given by the minimum voltage resolution of

the A-D converter (i.e. 0.0881mV), multiplied by that same constant value.

This yields an uncertainty value of

uΔT = 0.00016K

for the temperature differences only. When compared to the root-mean-square

temperatures observed herein — particularly, those of the internal intermit-

tency experiment, see table 4.1 — the temperature difference measurements

presented herein are accurate to approximately 1%. Although the error asso-

ciated with the nth-order moments of the temperature difference (for a given

separation) will therefore be equal to 1.01n, it is not clear how to theoret-

ically estimate the uncertainty in the inertial-convective-range slopes of the

nth-order structure functions (which consist of the high-order moments of the
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temperature difference plotted as a function of their separation). However, the

precision error of the slopes was estimated in table 4.2, by making repeated

measurements of the slopes in multiple, distinct experiments.

A.4 Probe Spatial and Temporal Resolution Errors

One of the final sources of error to examine in the present work are those

associated with the spatial and temporal resolution of the sensors. Both the

hot- and cold-wire sensors are etched to reveal a sensing element roughly

0.5mm in length. Therefore, both sensors will have roughly the same spatial

resolution. However, while the temporal resolution of the hot-wire is deter-

mined principally by the electronics of the hot-wire anemometer, the diameter

of the cold-wire plays a crucial role in determining its temporal resolution. In

the present work, the −3 dB point of the frequency response of the cold-wire

is typically 7 kHz.

Of the two experiments conducted herein, the spatial and temporal res-

olution of the cold-wire sensor is of greater importance to the internal inter-

mittency experiment, since both the large- and small-scale passive scalar fields

are examined. (By contrast, the lateral dispersion experiment examines only

the large-scale features of the temperature field.) Of critical importance in the

internal intermittency experiment is the inertial-convective-range scaling of a

variety of turbulent statistics. Consequently, one must establish whether the

cold-wires employed herein can sufficiently resolve the inertial scaling region.

In the present work, it was determined that the lower limit of the inertial-

convective range occurs at r/ηθ = 30, or r = 5.7mm. The frequency asso-

ciated with an eddy of this size can be estimated as f = 〈U〉 /(2πr), which
yields a value of roughly 200Hz. Therefore, given these values, the spatial

and temporal resolution of the cold-wire sensor are more than sufficient for

resolving the entire inertial-convective range of scales.
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