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Abstract

Ultra Wideband (UWB) Impulse Radio (IR) technology has attracted considerable attention in the
past few years due to its many desirable properties, such as the ability to penetrate through walls
and ground, low power spectral density level, immunity to multipath fading and high temporal
resolution. UWB radio is not restricted to radar and communications applications, but is also ex-
tensively used for indoor localization and tracking. Indeed, IR-UWB is especially well-suited for
these applications since it offers centimeter accuracy, has low power requirements and allows for
low cost hardware implementations. There is currently great interest for advanced applications of
IR-UWB localization, such as real time inventory monitoring, asset identification and tracking in
high security areas, monitoring of people or patients, and search/rescue operations, to name a few.
Precise radio localization and tracking require the prior estimation of one or more key physical
parameters, including: Angle of Arrival (AOA), Signal Strength (SS), Time of Arrival (TOA) and
Time Difference of Arrival (TDOA). In this thesis, we study and design new low-complexity, yet
accurate algorithms for parameter estimation in IR-UWB localization systems, including TOA
and AOA, under single and multiple users scenarios. The original contributions of the thesis are
organized along three main axes as follows.

The first problem we consider is the estimation of the TOA along with the Average Power
Delay Profile (APDP), in a single-antenna single-user system operating at a sub-Nyquist rate.
Indeed, while a priori knowledge of the APDP is assumed in many existing TOA estimators, its
estimation has been overlooked in the literature. We assume a multi-cluster parametric model for
the APDP and estimate its parameters via log-domain Least-Squares (LS) fitting; the estimated
APDP is then used in conjunction with a maximum likelihood criterion to obtain the TOA esti-
mate. Secondly, still in the context of single-user systems, we consider the case where an antenna
array is employed at the receiver, and we develop a joint estimator of the TOA and AOA. The
proposed method consists of two steps: (1) preliminary estimation of the TOA and APDP using
energy-based threshold crossing and log-domain LS fitting, respectively; (2) joint TOA refine-
ment and AOA estimation by local search of a Log-Likelihood Function (LLF) which employs
the preliminary estimates from the first step. The derivation of the LLF relies on an original
formulation in which the superposition of images from secondary paths is modeled as a Gaus-
sian random process, whose second order statistical properties are characterized by a wideband
space-time correlation function. In addition to the APDP, this function incorporates a special
gating mechanism to represent the onset of the secondary paths, thereby leading to a novel form
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of the LLF. Our third and final contribution deals with the extension of these newly proposed
estimators to the multi-user case. More specifically, we consider the joint estimation of the TOA
and AOA in the presence of Multi-User Interference (MUI), which is known to seriously degrade
the estimation accuracy of these parameters. To solve this problem, we propose a new low-
complexity approach which now includes three steps: (1) time alignment and averaging of the
antenna signals using Time-Hopping (TH) codes to mitigate the effects of MUI; (2) preliminary
TOA estimation based on energy detection followed by quadratic averaging; (3) joint TOA and
AOA estimation using the previously developed LLF, but extended to account for MUI.

The performance of all these newly proposed methods and algorithms is thoroughly investi-
gated by means of numerical simulation experiments over realistic UWB radio channels. Com-
parisons are made with the current state of the art as well as to closed-form expressions for the
Cramer-Rao bound, which are also derived in this thesis. In all cases, significant improvements
in estimation accuracy are demonstrated, as compared to existing benchmark approaches.



iii

Sommaire

Les technologies d’impulsions radio (IR) à ultra large bande (UWB) ont attiré une attention con-
sidérable au cours des dernières années en raison de leurs nombreuses propriétés avantageuses,
telles que la capacité de pénétrer les murs des édifices et le sol, le faible niveau de leur den-
sité spectrale de puissance, leur immunité aux évanouissements causés par les trajets multi-
ples, et leur résolution temporelle élevée. La transmission radio UWB n’est pas limitée aux
applications radar et de communications et s’avère très utile pour la localisation et le suivi des
sources à l’intérieur des édifices. En effet, l’IR-UWB est particulièrement bien adaptée à ce
genre d’applications puisqu’elle offre une grande précision (de l’ordre du centimètre), demande
une faible consommation de puissance et permet une mise en œuvre électronique à faible coût. Il
y a donc présentement un grand intérêt pour les applications avancées de localisation IR-UWB,
telles que le contrôle des inventaires en temps réel, l’identification et le suivi des biens dans les
zones de haute sécurité, le pistage du personnel et des patients d’un hôpital et les opérations de
secours et de sauvetage, pour n’en nommer que quelques unes. La localisation et le suivi de
sources en précision au moyen de la technologie IR-UWB requièrent l’estimation au préalable
d’un ou plusieurs paramètres physiques clés, incluant : l’angle d’arrivée (AOA), la puissance du
signal (SS), le temps d’arrivée (TOA) et la différence de temps d’arrivée (TDOA). Dans cette
thèse, nous concevons et portons à l’étude de nouveaux algorithmes à complexité réduite, mais
toujours très précis pour l’estimation de paramètres physiques telles que le TOA et l’AOA, dans
les systèmes de localisation IR-UWB à la fois pour les scénarios à usager unique et multi-usagers.
Nos contributions originales s’orientent selon trois axes principaux.

Le premier problème que nous abordons est celui de l’estimation du TOA conjointement
avec le profil de puissance du retard moyenné (APDP), dans un système à usager simple et an-
tenne unique opérant en régime sub-Nyquist. En effet, bien que la connaissance a priori du
APDP soit supposée connue dans de nombreux estimateurs du TOA de ce type, son estima-
tion a été quelque peu négligée dans la littérature. Nous considérons un modèle paramétrique
à agglomérats multiples pour l’APDP et estimons ses paramètres au moyen d’un ajustement
par la méthode des moindres carrés (LS) dans le domaine logarithmique. L’APDP ainsi obtenu
est alors utilisé dans un critère de maximum de vraisemblance (ML) afin d’obtenir l’estimé du
TOA. Deuxièmement, toujours dans un contexte d’usager unique, nous considérons le cas où un
réseau d’antennes est utilisé au récepteur et développons un estimateur conjoint du TOA et de
l’AOA. La méthode proposée consiste en deux étapes : (1) estimation préliminaire du TOA et
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de l’APDP par dépassement de seuil basé sur l’énergie et par ajustement LS dans le domaine
logarithmique, respectivement; (2) raffinement du TOA et estimation de l’AOA, conjointement
au moyen d’une recherche locale du maximum de la fonction de vraisemblance (LLF), utilisant
les estimés préliminaires de l’étape précédente. La détermination de la LLF repose sur une for-
mulation originale du problème dans laquelle la superposition des images provenant de trajets
secondaires est modélisée comme un processus aléatoire Gaussien, dont les propriétés statis-
tiques du second ordre sont caractérisées par une fonction de corrélation spatio-temporelle à large
bande. En plus de l’APDP, cette fonction incorpore un mécanisme de déclenchement servant à
représenter l’arrivée des trajets secondaires, ce qui conduit à une forme nouvelle de la LLF. Notre
troisième et dernière contribution porte sur l’extension des nouveaux estimateurs au cas multi-
usagers. Plus précisément, nous considérons l’estimation jointe du TOA et de l’AOA en présence
d’interférence multi-usagers (MUI), laquelle peut avoir des effets dévastateurs sur la précision de
cette estimation si elle n’est pas tenue en compte. En guise de solution à ce problème, nous pro-
posons une nouvelle approche à complexité réduite et reposant maintenant sur trois étapes: (1)
alignement temporel des signaux reçus aux antennes au moyen du code de saut temporel (TH)
de l’usager désiré, dans le but de réduire les effets de la MUI; (2) estimation préliminaire des
TOA basée sur la détection d’énergie suivie d’un moyennage quadratique; (3) estimation jointe
du TOA et de l’AOA par maximisation de la LLF développée précédemment, mais étendue afin
de tenir compte de la MUI.

La performance de tous les nouveaux estimateurs et algorithmes est étudiée en détail au
moyen d’expériences de simulations numériques sur des modèles réalistes du canal radio UWB.
Des comparaisons sont faites avec d’autres méthodes de pointe dans ce domaine ainsi qu’avec la
borne de Cramer-Rao dont les diverses expressions sont développées dans la thèse. Dans tous les
cas soumis à l’étude, des améliorations majeures sont démontrées au niveau de la précision des
estimés, en comparaison avec les méthodes existantes.
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Chapter 1

Introduction

This chapter provides a general introduction to the thesis, which aims at developing and studying
new signal processing algorithms for the problem of parameter estimation in impulse-based Ultra
WideBand (UWB) localization systems. A high level overview of UWB technology and its
applications are given in Section 1.1, while a literature review of various parameter estimation
methods for UWB localization systems is presented in Section 1.2. The research objectives and
the contributions of the thesis are discussed in Section 1.3, and finally, an outline of the upcoming
chapters is presented in Section 1.4.

1.1 Ultra wideband technology for source localization

According to the rules issued by the United States Federal Communications Commission (FCC)
[1] and International Telecommunications Union Radiocommunication Sector (ITU-R), a UWB
signal is a radio signal with an absolute bandwidth of at least 500MHz, or with a fractional
bandwidth larger than 20%. The absolute bandwidth B is defined as the difference between the
upper frequency fh and lower frequency fl at the −10dB emission points, i.e., B = fh− fl, while the
fractional bandwidth FB is defined as the ratio of the absolute bandwidth to the center frequency
of the signal, i.e.,

FB = 2
fh − fl

fh + fl
(1.1)

where ( fh + fl)/2 is the center frequency.
The Power Spectral Density (PSD) level of UWB communications signals is quite low, as

compared to narrowband or wideband signals used in more traditional communication systems.
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This is because the large bandwidth of UWB signals is made available under tight limits on the
emitted power. Indeed, due to the large frequency band covered by UWB systems, the control
of the power at transmitter output in order to prevent interference to users of other communica-
tions equipment or devices that share the same or nearby frequency bands, becomes one of the
most critical issues. In general, FCC in the USA and other groups in other countris have set
the Effective Isotropic Radiated Power (EIRP) level of UWB transmitters to be no larger than
-41.3dBm/MHz (dBm = decibel referenced to 1 milliwatt) in any direction, although a large con-
tinuous bandwidth of 7.5GHz exists from 3.1 to 10.6GHz to allow transmission at the maximum
power. For illustrative purpose, the spectral mask of FCC’s EIRP for indoor UWB systems is
shown in Fig. 1.1. The extremely low values of the allowed power output at certain frequencies
are set to avoid interference with existing radio communications services, e.g., Global Position
System (GPS), in those bands.
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Fig. 1.1 FCC spectral mask for indoor UWB systems as taken from [1]

There were originally two IEEE Task Groups dealing with the development of standards
related to UWB signals and systems, Task Groups IEEE 802.15.3a and IEEE 802.15.4a. Task
Group IEEE 802.15.3a focused on a high-speed alternative to IEEE 802.15.3 ( a standard for
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high-rate Wireless Personal Area Network (WPAN)), in the form of a UWB physical layer for
short-range WPAN [2], which utilizes all or part of the spectrum between 3.1 to 10.6 GHz and
provides data rates up to 480 Mbps. Two main signaling schemes were proposed, namely: Multi-
Band Orthogonal Frequency Division Multiplexing (MB-OFDM) [3] by WiMedia Alliance and
Direct Sequence-UWB (DS-UWB) [4] by the UWB Forum.

In MB-OFDM UWB, the 7.5GHz spectrum is divided into 14 subbands, each with a band-
width of 528MHz. The set of subbands is further partitioned into 5 groups, with the first four
groups consisting of three subbands each, and the fifth group having 2 subbands. The OFDM
symbols are transmitted using one of the available subbands in a particular time slot using
a switching mechanism. Although this scheme is denoted as OFDM, it operates over a very
wide bandwidth, much larger than that found in conventional OFDM systems, such as the IEEE
802.16e WiMAX. The introduction of carrier-based MB-UWB in IEEE 802.15.3a was intended
for high-speed communications over short ranges in wireless home networking. Examples of
targeted applications included high data rate (larger than 100Mb/s) download of digital television
signals within a WPAN. An MB-UWB system has the potential of high data rates for short range
transmissions, but is subject to both deep fades and Inter-Symbol Interference (ISI) when the
duration of the cyclic prefix is shorter than the maximum channel delay spread.

The DS-UWB scheme is based on Direct-Sequence Spread Spectrum (DSSS) technology [5].
Here, each data symbol is spread in the frequency domain by means of a specific spreading code
that takes the form of a transmit chip sequence at a rate higher than the data symbol rate; the
integer ratio of the chip to symbol rate is known as the Spreading Factor (SF). In effect, the
DS-UWB transmitter operates by sending a coded sequence of low power time localized pulses,
which are coherently decoded at the receiver given the knowledge of the spreading code. Because
these systems use very short pulses, with durations between ten to a few hundreds of picoseconds,
the transmitted signals spread out over a wide frequency band that meets the defining conditions
of UWB signals, as previously stated. DS-UWB signaling also suffers severely from ISI, since
the SF is relatively small for high data rates as compared with that of other DSSS systems, such
as Wideband Code Division Multiple Access (WCDMA).

Unfortunately, an agreement could not be reached in making a definite choice between these
two proposals, i.e., MB-OFDM versus DS-UWB, and the IEEE 802.15.3a project authorization
request was withdrawn in 2006. Nevertheless, research on these two different UWB signaling
schemes has continued since then.

Task Group IEEE 802.15.4a focuses on a low data rate alternative to IEEE 802.15.4 in the
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form of a UWB physical layer for WPAN [6]. Here, the available spectrum for UWB systems
includes the 250-750MHz, 3.244-4.742GHz, and 5.944-10.234GHz bands. The IEEE 802.15.4a
standard offers two different signaling schemes, namely: Chirp Spread Spectrum (CSS) and Im-
pulse Radio UWB (IR-UWB). CSS is a spread spectrum technique based on fast frequency chirps
[7], which achieves a wideband transmission by sweeping the transmitter oscillator’s frequency
across the available spectrum. Unlike the CSS signals, which are specifically designed for data
communications [8], the IR-UWB signals consist of coded sequences of short duration pulses,
which endow them with an optional capability for ranging applications. Therefore, they can be
used for high precision localization in various environments, such as indoor residential, indoor
office, industrial warehouse, as well as certain outdoor settings. In this thesis, we are interested in
the ranging aspect of IR-UWB signaling, and so this scheme is discussed in further details below.

In IR-UWB systems, a train of modulated pulses, each with very short duration (typically a
few tens to hundreds picoseconds) are transmitted with a low duty cycle, although each pulse
instantaneously occupies a very large bandwidth. Generally, the spectrum of each pulse should
adhere to the spectral mask requirements for the PSD as previously illustrated in Fig. 1.1. The
signaling typically employs a repetition pattern so that multiple pulses are combined to carry the
information of one bit. In IR-UWB signaling, the individual pulses are so short that most signal
reflections do not overlap with the original pulse, and thus multipath fading as encountered in
more traditional systems does not apply here. Due to their low PSD level and pseudo-random
character (as a result of applying various types of modulations on the pulse sequence), IR-UWB
signals also exhibit a noise-like signal spectrum which makes them resistant to unintended de-
tection (eavesdropping). Moreover, IR-UWB signals can be easily coupled to without the need
of a radio frequency (RF) mixing stage for up-conversion. Therefore, at the receiver, it is not
necessary to employ a local oscillator nor the associated complex electronics for delay and phase
tracking loops. As a result, both the complexity and cost of the IR-UWB transmitter and receiver
can be kept relatively low. These favorable characteristics of IR-UWB systems have motivated
their use in both ranging and communication applications.

Since the inception of IEEE 802.15.4a in late 2003, the development of UWB technologies
for moderate to longer range communications (100-300m) at lower data rate (a few Mb/s) has
received significant attention. The initially targeted applications in WPAN have been further
extended to wireless home networking, wireless Universal Serial Bus (USB), etc. Meanwhile,
UWB technology has also been applied to short range, low data rate communications such as in
Wireless Sensor Network (WSN) applications [9].
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Besides the above mentioned developments in IR-UWB technologies derived from IEEE
802.15.4a, there have been many earlier applications of UWB pulse signaling in the context
of impulse radar, that include: imaging radar, vehicular radar, military radar, etc. [10]. The
UWB nature of the short electromagnetic pulses confer them with a rich variety of material pen-
etration properties. For instance, the low-frequency components of UWB pulse signals enable
them to propagate effectively through various materials such as bricks and cement. The high
temporal resolution of IR-UWB signals, combined with their good material penetration proper-
ties, allow them to be used for short range radar imaging systems, including ground penetration
radars, through-wall radar imaging, surveillance and medical imaging. Their excellent time res-
olution and accurate ranging capability can be exploited in vehicular radar systems for collision
avoidance, guided parking, etc.

In recent years, one of the most popular applications of UWB technology has been that of pre-
cise positioning and tracking of fixed or moving objects equipped with radio transmitters [11].
Due to their use of very short pulses in the time-domain, localization systems based on IR-UWB
signaling can potentially offer timing precision of the order of a few tens of picoseconds, equiv-
alent to centimeter resolution in positioning accuracy. The robust features of IR-UWB signals
combined with through-wall propagation make them suitable for localization in harsh environ-
ments. Furthermore, the low power and cost attributes of the associated transceiver electronics
make them attractive for the ultra-low power Radio-Frequency Identification (RFID) of objects
equiped with small UWB transmitters also known as tags. In fact, IR-UWB represents a promis-
ing technology for locating people and assets, and navigating beyond the coverage zone of the
GPS. Furthermore, because of its data handling capability, it can simultaneously be used for the
accurate positioning and identification of multiple targets in different types of radio environments.

1.2 Literature review

While GPS shows excellent performance in outdoor localization, it fails to provide a good accu-
racy in indoor scenarios that are typically characterized by severe multipath effects. Hence, there
is a growing interest for alternative IR-UWB localization, including ranging or positioning, in
various commercial and military applications [12, 13, 14].

Radio localization is based on geometrical triangularization using location information from
radio signals traveling between the target node and one or more reference nodes. This information
can take different forms, depending on the specific radio measurements available at the reference
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nodes, including: Received Signal Strength (RSS), Time of Arrival (TOA), Time Difference of
Arrival (TDOA) and Angle of Arrival (AOA), [15]. In RSS-based approaches, the reference
nodes are aware of the transmitted power level by the target node and employ a path loss model
to estimate its distance based on the measured RSS. Unfortunately, due to the difficulty in predict-
ing the path loss with sufficient accuracy in practice, the use of RSS does not allow a very precise
localization of the target. Time-based techniques, such as those employing TOA and TDOA
estimation, can make use of the utmost advantage of IR-UWB signaling (i.e., ultra short pulse
duration) to achieve precise localization, and are therefore among the most popular approaches
for indoor localization. In the case of TOA-based approaches, the positioning is achieved by
employing distance measurements between the target and reference nodes, obtained in turn from
the TOA measurements. Most TOA ranging schemes are based on the detection of the first arriv-
ing multipath component, and require timing synchronization between the target and reference
nodes which poses a major challenge in dense multipath environments. Alternatively, the need
for synchronization with the target node can be relaxed if two or more time-synchronized refer-
ence nodes are available. In this case, measurement of the TDOA between two such reference
nodes (i.e., difference between their respective TOAs) provides information about the position
of the target in the form of an hyperbola. Subsequently, localization of the target in the plane
can be made by intersecting 2 or more such hyperbolas. AOA is another type of measurement
that is increasingly used for ranging applications. In this approach, positioning is based on the
measurement of angle between the line joining the target node to the receiver and some arbitrary
reference direction. AOA estimation can be achieved via the application of advanced antenna
array processing techniques.

In the rest of this section, we present selected recent works from the literature specific to
the problems of TOA estimation for single antenna receiver, AOA and joint TOA/AOA for an-
tenna array receivers, and spatial parameter estimation for multi-user applications, all under the
common UWB framework.

1.2.1 TOA estimation methods

Traditionally, TOA estimation is performed by using a correlation or Matched Filter (MF) re-
ceiver, where the received noisy signal is matched to a time-shifted replica of the undistorted
transmitted pulse waveform. The TOA estimate is then obtained as the time shift corresponding
to the positive peak value at the output of the matching correlator. In the case of a single path ra-
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dio channel, and under low noise conditions, this method provides good estimates of the unknown
delay, which is equal to the propagation time between the transmitter and the receiver (assuming
there is no synchronization error). However, it exhibits much poorer accuracy in multipath envi-
ronments, because then it is highly unlikely that the peak MF output will correspond to the first
(shortest) arrival path [16]. Unfortunately, the ideal single path condition of propagation is rarely
met in practical applications of UWB signals to localization, where the typical radio channel in-
stead exhibits a complex multipath structure [17, 18, 19, 20]. Accordingly, recent research efforts
on TOA estimation with UWB signals have focused mainly on the multipath problem.

A Maximum Likelihood (ML) estimator of the TOA is derived in [21] with explicit consid-
eration of multipath propagation. Its performance is shown to closely approach the Cramer-Rao
Bound (CRB) on the variance of unbiased TOA estimators [22] at high Signal-to-Noise Ratios
(SNRs). However, the excessive computational cost associated to the estimation of too many
modeling parameters, including all the multipath arrival instants along with their channel gains,
combined with the high sampling rate requirement for accurate TOA estimation, render this ML
estimator impractical for UWB channels with a large number of multipaths [23]. To reduce com-
plexity, the Generalized Maximum Likelihood (GML) estimator is proposed in [24] by utilizing
a Sequential Component Cancellation (SCC). While assuming that the strongest channel path
(i.e., the one leading to a positive peak in the ML-based objective function) has been correctly
acquired, this estimator obtains the desired TOA as the location of the smallest delay found to
be above a predetermined threshold during a backward search starting from this strongest path
location. Nevertheless, the estimation error with this method cannot be reduced below a certain
limit since the sequential cancellation scheme remains imperfect, even as the SNR increases.

Some recent works on practical ML-based TOA estimators aim at reaching a balance be-
tween low implementation complexity and competitive performance in estimation. In [25], an
Improved Generalized Maximum Likelihood (IGML) estimator is proposed, based on the a pri-

ori knowledge of the Average Power Delay Profile (APDP), which characterizes the power of the
received UWB signal through the multipath channel as a function of the propagation delay. In
[26], sub-Nyquist sampling ML estimators with different levels of a priori information are com-
pared, including the Maximum Energy Sum Selection (MESS), the Weighted Maximum Energy
Sum Selection (W-MESS) and the Double Weighted Maximum Energy Sum Selection (DW-
MESS). In [27], ML timing estimation with sub-sampling is proposed under the assumptions of
normally distributed channel impulse response and known APDP. In [28], the authors propose a
computationally efficient TOA estimator which is claimed to achieve the same performance as
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the ML estimator in [21] when the multipath arrivals are dense.
While most ML-based TOA estimators employ a MF receiver, TOA estimation methods based

on the Energy Detection (ED) receiver are also of interest due to their low complexity imple-
mentation, especially with sub-Nyquist sampling rates [29, 30, 31]. The performance of the
low-sampling rate MF and ED for TOA estimation based on thresholding is analyzed and com-
pared in [32]. In [33], a data-aided dual pulse autocorrelation based TOA estimation is proposed.
The TOA of direct path is calculated by using the received signal autocorrelation and threshold-
crossing (TC). In [34], a two-step approach is proposed where a coarse TOA estimate is first
obtained based on ED, and then refined through a hypothesis testing-based process. Two new
Bayesian TOA estimators that rely on the overall energy profile available at the output of the ED
receiver are proposed in [35].

In the ED approach, the TOA is normally estimated as the first TC point of a time localized
energy measure, where the threshold depends on the statistics of the received signal and the
channel [36, 37, 38]. The effect of different values for the threshold is further studied. We note
that these methods are sensitive to the threshold level: in order not to miss the attenuated first
arrival, the threshold level cannot be set too high; but then, the algorithm can suffer from high
false alarm (false detection) rates. False alarms can be either caused by noise at low SNR or
interference from the pulse side lobes at high SNR, depending on the specific pulse shape being
used at the transmitter. Since the performance of the detector greatly depends on the threshold
level, the latter should be chosen carefully in order to reach a balance between the probability of
missed detection and false alarms. In practice, one seeks to minimize the probability of missed
detection subject to a constraint on the probability of false alarm.

1.2.2 AOA and joint TOA/AOA estimation methods

Some initial attempts in developing AOA estimators for UWB signals have focused on subspace-
based methods [39, 40]. To apply the traditional subspace method (as in the narrowband case)
to UWB signals, a focusing technique must be employed [41] to account for the dependence
of the steering vector on the frequency. In [42], a new focusing technique for AOA estimation
of multipath cluster is proposed, which is claimed to achieve better performance than earlier
approaches. In [43], a two-dimensional unitary Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) algorithm is employed for AOA estimation in indoor UWB
mulitpath environments. In general, however, the resulting algorithms are characterized by very
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high computational complexity (as they need to perform focusing, eigenvalue decomposition,
etc.) and inadequate estimation performance in dense multipath environments.

Recently, some researchers have proposed to jointly estimate the TOA and AOA at low com-
putational cost using simplified search techniques. These joint estimation schemes normally
require the use of a receiver equipped with an antenna array, such as a Uniform Linear Ar-
ray (ULA) or a Uniform Circular Array (UCA). In [44], a joint TOA/AOA estimator based on
time domain smoothing is proposed, where UWB signals from several immediate neighboring
elements of the antenna array are averaged over the time domain. In [45], for example, joint
estimation is achieved through calculating a two dimensional delay-angle power spectrum within
the frequency domain. In [46], a beamforming approach is proposed in which the overlapping
effect of secondary images is mitigated by a special form of multipath-aided acquisition that is
capable of resolving closely spaced multipath. Meanwhile, TDOA-based AOA estimation meth-
ods are adopted in many other works where, in general, TOA estimates are first obtained at each
antenna (either via time- or frequency-domain processing), and then used to further extract the
desired AOA by processing of the TOAs, e.g., by computing the TDOAs or least-square fitting
of the TOAs. In [47, 48, 49], such a frequency domain approach is adopted for the estimation of
the TOA and the AOA where in a first step, coarse symbol timing is achieved based on a min-
imum distance criterion that exploits the knowledge of the TH code, while in the second step,
high resolution TOA estimation is performed at each antenna by searching for the maximum of
a special power delay profile. In [50], a joint TOA/AOA estimator is proposed for UWB indoor
ranging under Line Of Sight (LOS) operating conditions, in which signal samples obtained from
an antenna array at the Nyquist rate are processed in a three-step algorithm to produce the de-
sired estimates: the first step estimates the TOAs at the antenna elements, the second step further
process these estimates to derive a joint estimate of the main TOA and AOA, while the third step
improves the AOA estimate.

Although the AOA estimation performance of these techniques is competitive to early subspace-
based schemes [41, 40], especially in dense multipath environments, the imposed processing
structure on the AOA estimation limits the achievable accuracy and suggests that other estima-
tors with better performance may exist.
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1.2.3 Parameter estimation under multiuser interference

All of the above approaches have been designed specifically under the assumption of a single user
system model. However, in practical applications of localization systems, multiple emitters often
operate simultaneously in the same radio environment. Consequently, the resulting Multiuser
Interference (MUI) can severely degrade the accuracy of the TOA and AOA estimation unless
special measures are taken to suppress it or, at least counteract its effects to a sufficient extent.
In radio localization systems based on IR-UWB signaling, this can be achieved by exploiting the
TH or DS code patterns of the desired user, which are assumed to be known at the receiver.

In [51], the authors develop a TOA estimation method that performs non-linear filtering on
the received signal energy to mitigate MUI. In [52], a multiuser AOA estimation technique is
proposed using a digital channelization receiver that has the ability to select spectral lines from
the desired UWB emitter. In [53], a TOA estimator is proposed that can reduce MUI in weak Non
Line-Of-Sight (NLOS) environments based on the Expectation Maximization (EM) and pseudo-
quadratic ML algorithms. In [54], TOA estimators based on the ML criterion with interference
cancellation are proposed, but they are mainly based on a single-path model.

Currently, and to the best of our knowledge, there are not many works on parameter estimation
for IR-UWB localization under MUI, especially on AOA estimation, therefore leaving an open
research area to be filled.

1.3 Thesis objectives and contributions

The aim of the proposed research is to develop improved parameter estimation algorithms for
wireless localization systems based on IR-UWB signaling. To be more specific, the main goal is
to develop high accuracy estimators for location related parameters such as TOA and AOA, but
with reasonable complexity and cost of implementation.

For TOA estimation, as we elaborated in the previous section, although there are already many
works in the literature, certain important aspects of the problem area, such as making partial use
of available channel statistics in the estimation process, are still worthy of further developments.
Existing estimators which employ channel information either require full channel parameter esti-
mation, which is not practical due to the large number of channel parameters (especially at higher
sampling rate where the computational load becomes prohibitive), or simply assume that the re-
quired information about the channel parameters is already known. For instance, the sub-Nyquist
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sampling ML estimators in [26] can achieve good estimation accuracy, but to function properly,
they generally require a priori information about the channel, in the form of the APDP, which
should be estimated beforehand. As we have been able to verify, a lack of adequate information
about the APDP in these methods can significantly deteriorate the performance of the TOA esti-
mator. We are therefore interested in exploring the use of realistic channel model information as
an aid to TOA estimation or IR-UWB signals, without significantly increasing the computational
complexity of the resulting processor. That is, we aim at using and estimating relevant channel
information, and especially the APDP, to efficiently benefit the final TOA estimation.

Besides its potential application in ML-based TOA estimation, the APDP is an important
characteristic of the UWB channel in its own right. Indeed, it can provide useful information
about the characteristics of the multipath radio channel, including the presence of dominant scat-
terers in the vicinity of the UWB transmitter as well as the reflection/absorption properties of
the surrounding environment [55]. Despite its importance, the estimation of the APDP from a
statistical signal processing perspective has not yet been extensively explored.

With regard to AOA estimation, our main interest lies in approaches where the TOA and AOA
are estimated jointly at low to moderate computational cost. These approaches are of practical
interest not only because of their low complexity, but also because they can simultaneously obtain
the AOA and TOA parameters, which are the ultimate parameters needed for radio localization.
As mentioned earlier, estimation of the AOA normally requires the use of a receiver equipped
with an antenna array, but this in turn opens a new real of possibility from a statistical signal pro-
cessing perspective. While recently proposed schemes offer competitive performance, they are
ultimately limited by the specific structural choices made in their derivation. Furthermore, as in
the case of TOA estimation, these estimators do not take full benefit of the temporal characteris-
tics of the multipath radio channel. Specifically, in the case of AOA estimation and to the best of
our knowledge, few works currently attempt to exploit knowledge of the APDP in the estimation.
Hence, there is still room to improve the final accuracy of the joint TOA/AOA estimates and we
are interested in deriving and studying the properties of such an improved algorithm, which can
achieve a better performance as well as requiring a low complexity.

Finally, since parameter estimation under MUI is currently not fully developed, our goal is to
provide an effective joint AOA and TOA estimator to fill this gap. Specifically, we are interested
in deriving joint estimators that are better equipped to mitigate MUI, specifically by exploiting
knowledge of the time hopping codes of the different user signals at the receiver.

A summary of the research contributions presented in this thesis is presented below.
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1. Development of a novel TOA estimator for IR-UWB impulse radio systems that exploits

APDP information: Specifically, we derive a sub-Nyquist ML-based TOA estimator that
employs specific knowledge of the UWB channels in the form of the APDP. However,
instead of assuming a known APDP, as in previous works, we propose and investigate a
joint estimator of the TOA and the APDP. At first, a simple exponential model is used for
the APDP and its parameters are estimated; the estimated APDP is then used to form a
likelihood function and obtain the ML-based TOA estimate.

2. Introduction of a more sophisticated multi-cluster model for the APDP: In practice, the
APDP of a dense multipath UWB channel usually consists of several clusters, each with
a specific exponential decay rate. A low-dimensional parametric model of this type is
therefore investigated as a generalization to the simple exponential model used above. The
parameters of this model are estimated via an original Least Square (LS) fitting approach;
then, the estimated APDP is used as above in a likelihood function to obtain the ML esti-
mate of the TOA. The newly proposed LS-based APDP estimator can also help boost the
performance of previously reported TOA estimators.

3. Performance evaluation of the newly proposed joint TOA and APDP estimation schemes:

Performance in the presence of Inter Frame Interference (IFI) of the proposed schemes
is also discussed. We derive the CRBs on the variance of both TOA and APDP parame-
ters, which are then used to benchmark the performance of the proposed estimators.The
performance of the proposed sub-Nyquist ML estimator along with single and multiple
APDP estimation (including single and multiple exponential models) is evaluated through
exhaustive numerical simulations under realistic conditions of propagation based on well
established UWB channel models, and comparisons are made to benchmark approaches
from the recent literature. The results clearly demonstrate the advantages of the new TOA
estimator as well as the usefulness of the proposed APDP estimation.

4. Development of a low complexity joint TOA and AOA estimator for antenna array receivers:

We propose an original model for the UWB channel, in which the pulse image from the
primary path is modeled as a deterministic component while the superposition of the im-
ages from the secondary paths are modeled as a Gaussian random process. A special gating
mechanism models the onset of the secondary paths. By exploiting the properties of this
model, we derive a new estimation method which consists of two steps: (1) coarse estima-
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tion of the TOA and the APDP followed by (2) joint TOA refinement and AOA estimation
by maximization of a novel log-likelihood function (LLF) using the coarse estimates from
the first step. We derive a general LLF expression for this problem and expose the process-
ing structure of the joint ML estimator of the TOA and AOA.

5. Consideration of implementation issues and performance analysis of the newly proposed

joint TOA/AOA estimator: We develop specific approaches for the solution of practical
issues related to the implementation of the new estimator, especially the coarse estima-
tion of the TOA and APDP in the first step, and the efficient implementation of the two-
dimensional search in the second step. We derive the CRB for unbiased TOA and AOA es-
timators, taking into account the proposed multipath signal model and its associated gating
mechanism. We also investigate the performance of the newly proposed joint TOA/AOA
estimator and demonstrate that it outperforms a benchmark approach from the recent liter-
ature. Our results are based on multipath UWB channel models featuring both diffuse and
directional secondary image fields, and include comparison to the CRB as well.

6. Extension of the above joint TOA/AOA estimator to the multi-user framework: This is equiv-
alent to the consideration of a Multiple-Input Multiple-Output (MIMO) scenario, which is
more challenging than the previous two system models. In this case, both the multipath
propagation of the desired signal itself and signals from multiple emitters will interfere
with the desired signal, and thus largely degrade the estimation. Traditionally, to allevi-
ate the hardware cost at the receiver, non-coherent approaches have been adopted. In this
work, we extend the previous joint estimator of the TOA and AOA estimator in dense mul-
tipath UWB environments, so that it may counteract the MUI and succeed in the parameter
estimation task. Specifically, we propose a MUI mitigation technique which exploits the
knowledge of the desired user’s TH code to time-align the received signal at the receiver.
We then show how the above joint TOA/AOA estimator can be applied to this time aligned
signal by properly compensating for the residual interference power in the log-likelihood
based energy filter. The validity of this proposed MUI mitigation scheme is thoroughly
demonstrated through simulation experiments considering practical conditions of opera-
tion, including multiple users with non-equal power (i.e., near-far effect) as well as dense
multipath propagation.

Parts of the research presented in this thesis have been published or submitted for publication
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in peer-reviewed journals and refereed conferences, as listed below:

Journal papers:

[J-1] F. Shang, B. Champagne and I. Psaromiligkos, “Time of arrival and power delay profile
estimation for IR-UWB systems,” Signal Processing, vol. 93, no. 5, May. 2013, pp.
1317-1327.

[J-2] F. Shang, B. Champagne and I. Psaromiligkos, “Joint ML based estimation of time and
angle of arrival for UWB localization in multipath environments,” submitted to IEEE

Trans. Wireless Communications, April 2013, currently under revision.

[J-3] F. Shang, B. Champagne and I. Psaromiligkos, “Joint ML based estimation of time and
angle of arrival for UWB localization in multipath environments,” to be submitted to IEEE

Communications Letters, Nov. 2013.

Conference papers:

[C-1] F. Shang, B. Champagne and I. Psaromiligkos, “Joint estimation of time of arrival and
power profile for UWB localization,” in Proc. 2010 IEEE Int. Conf. on Signal Processing,
Beijing, China, Oct. 2010, pp. 1484-1487.

[C-2] F. Shang, B. Champagne and I. Psaromiligkos,“Joint estimation of time of arrival and chan-
nel power delay profile for pulse-based UWB systems,” in Proc. 2012 IEEE Int. Conf.

Communications, Ottawa, Canada, Jun. 2012, pp. 4515-4519.

[C-3] F. Shang, B. Champagne and I. Psaromiligkos,“A novel ML-based joint TOA and AOA
estimator for IR-UWB systems,” in Proc. 2013 IEEE Int. Conf. on Acoust., Speech, and

Signal Processing, Vancouver, Canada, May 2013.

1.4 Thesis organization

Chapter 2 presents an up-to-date review of IR-UWB signaling technology, with focus on the
localization problem and associated parameter estimation. A detailed overview of IR-UWB sig-
naling is first presented, along with the background mathematical framework needed for the
characterization of pulse modulation and multi-access schemes. UWB channel models based on
IEEE 802.15.4a are then introduced with the consideration of various environments, including
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both LOS and NLOS. Current approaches available for the localization of an UWB emitter are
explained along with their advantages and disadvantages. Finally, selected parameter estimation
techniques from the recent literature are reviewed in detail.

Chapter 3 presents a novel TOA estimator for IR-UWB impulse radio systems that exploits
APDP information. We first introduce a detailed system model for estimating TOA in the case of a
single user and a receiver equipped with a single antenna. The novel ML-based TOA estimator is
obtained by modeling the channel impulse response as a Gaussian random process with second-
order characterization in the form of the APDP. The latter is modeled as comprising a single
or multiple exponentially decaying components and a LS fitting approach is proposed for the
estimation of its parameters. The performance of the proposed joint TOA and APDP estimator is
finally examined under different conditions, including channel models, sampling rates, etc.

In Chapter 4, a new joint ML-based TOA and AOA estimator for antenna array receivers is
developed and investigated. An original channel model is first assumed, in which the channel
impulse response is separated into two parts as explained in the previous section. A new log
likelihood function (LLF) is derived based on this model and used to develop a joint estimator in
two steps: coarse TOA estimation followed by localized two-dimensional search of the LLF. The
computational complexity of this estimator is analyzed, along with the consideration of important
implementation issues. The CRB on estimator variance is derived, and finally, the performance of
the newly proposed scheme is investigated through Monte Carlo simulations, with comparisons
to earlier competitive schemes.

In Chapter 5, we consider the extension of this joint TOA/AOA estimator to the multiuser
case, where the proposed design strategy includes three steps. The first step aims to reduce MUI
by alignment of the received signal over multiple symbols and frames using the knowledge of
TH codes and training sequence at the receiver. The second and third steps then involve coarse
TOA estimation followed by two-dimensional search for the maximum of a LLF. These steps are
similar to those in Chapter 4, but subtle modifications are made to the noise power to take into
account the residual level of interference after alignment. Finally, the behavior of the proposed
estimator is examined by simulation experiments.

Finally, Chapter 6 briefly summarizes the thesis, presents some concluding remarks and pro-
vides suggestions for future work.
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Chapter 2

Background on Parameter Estimation for
IR-UWB Localization

In this chapter, a comprehensive technical description of IR-UWB systems is given, with the main
focus on localization aspects. In Section 2.1, IR-UWB signaling is reviewed in detail, including
the choice of different pulse types, time-based digital modulation and multiple-access schemes.
In Section 2.2, reference UWB channel models are presented as per the IEEE 802.15.4a standard.
Various localization techniques and related physical parameters suitable for UWB systems are
explained in Section 2.3. Finally, some representative works on parameter estimation for IR-
UWB localization are briefly reviewed in Section 2.4.

2.1 IR-UWB signaling for localization applications

IR-UWB signals are especially well suited for short-range localization due to their high timing
accuracy and low-cost hardware circuitry. Indeed, because of their extremely short pulse du-
ration (i.e., < 1ns duration, equivalent to > 1GHz bandwidth), IR-UWB signals can achieve
a localization accuracy or spatial resolution, in the centimeter range. Furthermore, the elec-
tronic transceiver circuitry for generating and processing the modulated pulse sequence can often
be realized at low-cost using Complementary Metal Oxide Semiconductor (CMOS) technology
[56, 57]. However, since the transmitted power spectrum of the UWB signal is limited by the
FCC mask [6], UWB ranging and localization is mainly applicable over short distances, such as
in indoor and confined areas.
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A transmitted IR signal consists of a modulated sequence of individual pulse waveforms, also
called monocycles. While many different types of monocycles exist, they share a common dis-
tinguishing feature in that each transmitted ultra-short pulse instantaneously occupies the whole
UWB bandwidth. With the transmitted PSD strictly limited by FCC rules, the goal of the pulse
shape design is to achieve optimal utilization of the spectral mask (as illustrated in Fig. 1.1) while
minimizing interference to other wireless systems. The most often used types of monocycles in-
clude Gaussian derivatives, Rayleigh, Laplacian, cubic and modified Hermitian [58]. These often
refer to parametric families of pulses, with a generic waveform shape derived from a given math-
ematical expression, but characterized by different parameters that can be varied to control certain
shape factors, such as amplitude, duration, frequency content. Generally, monocycles that can be
easily generated are adopted widely, while the rule of thumb is to aim for a nearly flat frequency
spectrum.

One of the most often used pulse shapes is the Gaussian doublet, which is defined as the
the second derivative of a Gaussian pulse, the latter borrowing its shape from the well-known
Gaussian probability density function. Specifically, the Gaussian pulse is given by the bell-shape
function

w0(t) =
1

√
2πσ2

e−t2/2σ2
(2.1)

where t denotes the continuous time, σ is the standard deviation or pulse spread and a zero-mean
is assumed. The Gaussian doublet, obtained as the second derivative of g(t) with respect to time t,
is shown plotted in Fig. 2.1 in the time domain, along with its amplitude spectrum in the frequency
domain, where the value of σ =0.45ns. For the Gaussian derivative family of monocycles, it is
observed that the center frequency fc increases whereas the bandwidth decreases as the order of
the derivative increases [59]. Generally, higher-order derivatives show better fitting to the FCC
spectral mask but for ranging application, a wider spectrum (i.e. low-order derivative) is favored
since it can provide higher localization accuracy. However, the trade off between bandwidth and
implementation complexity should always be considered.

In practice, a pulse train which consists of a sequence of non-overlapping, digitally modulated
monocycles is emitted at the transmitter. In this case, the spectrum of a pulse train would not be
as smooth as that of the single pulse shown in Fig. 2.1. Instead, spectral lines are introduced
due to the repetitive nature of the continues pulse transmission [60], that is, the overall spectrum
envelope is similar to that of a single pulse, but the fine details of the spectral shape becomes very
irregular due to the presence strong spectral lines at multiples of the pulse repetition frequency.
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plitude spectrum
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To reduce the amplitude level of these spectral lines, various randomization techniques can be
employed. For instance, randomizing the position of each pulse by a small time shift around
pulse width, will tend to spread the energy spikes spread over the frequency, thereby smoothing
out the amplitude spectrum. The most common way to randomize the UWB pulse train is by
using a Pseudo-Random (PR) sequence to determine the time shifts applied to the individual
pulses, as further explained below [61].

In addition to reducing spectral peaks, pseudo-random codes can be used as a means to im-
plement a multiple access scheme, whereby IR signals from different users can be separated at
the receiver. In this scheme, each user owns a unique random code, which is different from (and
ideally orthogonal to) that of other users. The receiver, which observes a superposition of the
pulse trains emitted by multiple users, can recover the one emitted by a specific user simply by
using its corresponding code sequence and applying a reverse time shifting operation on the re-
ceived signal; following this operation, the pulse train from the desired user is preserved while
those from other users appears as low-level white noise [58].

There are mainly two different multiple access schemes that can be employed with IR-UWB
signaling, namely: Time Hopping (TH) and Direct Sequence (DS). In order to explain their
operation, we first note that in IR-UWB signaling, the time axis is divided into symbol periods
consisting of N f pulse repetition periods of duration T f , each of which is called a frame. Within
each frame a single pulse is transmitted. In TH-UWB systems, each frame is further divided
into Nc > 1 smaller time slots of duration Tc, each one providing a possible instant for pulse
transmission. For a symbol of N f frames, the TH code length is usually set to N f and the IR-
UWB signal transmitted by the kth user can be written as

sk(t) =

N f−1∑
j=0

w(t − jT f − ck( j)Tc) (2.2)

where w(t) is the pulse waveform, Tc = T f /Nc is the chip interval and ck( j) ∈ {0, . . . ,Nc − 1} is
the pseudo-random code sequence identifying user k. DS-UWB is much like the conventional
DS spread spectrum technique employed in 2nd generation wireless systems. The random code
assigned to a particular user serves to spread the data bit into multiple chips, now a chip is
now identified with the pulse repetition period. Again, assuming that each symbol or data bit is
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represented by N f pulses, the transmitted signal of one such symbol can now be written as

sk(t) =

N f−1∑
j=0

w(t − jTc)ck( j) (2.3)

where w(t) is the pulse waveform, Tc = T f and ck( j) ∈ {−1,+1}.
Different data modulation techniques are available for IR-UWB systems, such as Pulse Posi-

tion Modulation (PPM), Pulse Amplitude Modulation (PAM), Binary Position Modulation (BPM),
Orthogonal Pulse Modularization (OPM) and On-Off Keying (OOK) modulation [62]. PPM is
a time-based modulation scheme, in which, depending on the information symbol, each pulse is
delayed or advanced by a small time shift, denoted here as Tp such that Tp < Tc. Simple IR-UWB
transceivers can be designed by combining a selected modulation technique with the chosen mul-
tiple access scheme. However, certain constraints apply; for instance, while TH-UWB can be
used with PAM and PPM, it is not suitable for OOK.

In the TH-PPM combination, which is the most commonly employed in the literature, the
transmitted IR-UWB signal takes the form

sk(t) =

Nb−1∑
i=0

N f−1∑
j=0

w(t − jT f − ck( j)Tc − ak(i)Tp)) (2.4)

where Nb is the number of transmitted bits and ak(i) ∈ {0, 1} is the binary data sequence. An
example of such a signal is shown in Fig. 2.2, where Nb = 2, Nc = 3, N j = 5, T f = 3ns, Tc = 1ns
and Tp = Tc/2 = 0.5ns is the time shift of the PPM modulation. In this particular example, the
TH code sequence is ck( j) = [1, 2, 2, 2, 1], the transmitted bits are ak(i) = [1, 0] and a Gaussian
doublet pulse shape is used for w(t).

In contrast to PPM and BPM, which are time-based techniques, all other forms of modula-
tion are shape-based techniques. Among them, PAM is a popular one in which the binary data
sequence is used to control the amplitude of each pulse. The simplest case of PAM is the Bi-
nary Pulse Amplitude Modulation (BPAM), in which the pulse amplitude takes either a positive
or negative value (say ±1 Volt), depending on the binary data at that instant. In [62], simula-
tion studies show that IR-UWB systems using TH-BPAM have better performance than TH-PPM
and TH-OOK over the Additive White Gaussian Noise (AWGN) channel if there is a jamming
signal. Based on Bit Error Rate (BER) calculations, this reference even provides an order of
performance of the studied combination of multiple access schemes and modulation techniques
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Fig. 2.3 Time window of 2 data bits for BPAM modulation with DS spreading

over the AWGN channel: TH-BPAM followed by DS-BPAM, TH-PPM and then DS-OOK. In
the DS-BPAM combination, the transmitted signal is

sk(t) =

Nb−1∑
i=0

N f−1∑
j=0

w(t − jTc)ck( j)ak(i) (2.5)

An example of a 2-bit DS-BPAM signal is illustrated in Fig. 2.3, where Nb = 2, Nc = 1, N j = 10,
T f = Tc = 2ns, ak(i) = [−1,+1] and ck( j) = [+1,+1,+1,+1,−1,+1,−1,+1,−1,−1].
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Since the main focus of this thesis is on parameter estimation, as opposed to data transmission,
we shall limit our discussion of IR-UWB signaling to the above and skip the details about the
other modulation schemes; however, the interested reader may consult one of the many good
references available on this topic, such as [61, 58, 63].

2.2 Reference models for UWB channel

One distinguishing feature of the UWB channels in localization applications (especially indoor
and short range outdoor) is their extremely rich multipath structure. As such, they are well suited
for characterization with the Saleh-Valenzuela (SV) model or modifications thereof [64]. In the
conventional SV model, the multipath rays arrive in clusters, where the cluster onset and ray ar-
rival times within each cluster are described by two independent Poisson processes. In addition,
the average power of successive clusters and rays vary according to a doubly exponential Power
Delay Profile (PDP). The choice of the model parameters, especially the rates of the Poisson pro-
cesses and the exponential decay factor, provide great flexibility to model different environments.
Consequently, many experimental studies have been devoted to characterizing the UWB channel
in light of the SV model.

The first experimental results on the measurement of the UWB propagation channel and im-
pulse response in typical office buildings are presented in [65], where a signal bandwidth in
excess of one GHz is employed. In addition to revealing the dense multipath structure and strong
path loss attenuation of these environments, the results also demonstrate that UWB signals do not
suffer from fading. Indeed signal fading is due to the overlapping superposition of unresolved
multipaths, which is partly avoided due the use of short duration pulses. Hence, the UWB fade
margin is only 3-4dB, as compared to 30-60dB for narrowband radio communications. Based
on the properties of multipath profiles measured in different rooms of a modern office build-
ing over a finely spaced measurement grid, [66] further establishes a statistical model for UWB
channels. This analysis leads to the formulation of a so-called Stochastic Tapped-Delay-Line
(STDL) model, which take into account several physical features of the UWB channel, including
the APDP, small-scale statistics and shadowing. In particular, it is found that the APDP can be
well-described by a single exponential decay with a statistically distributed decay constant.

In recent years, many other experimental measurement campaigns have been undertaken,
considering different radio environments. In [67], channel measurements are taken in both the
time and frequency domains in a university hospital and the resulting parameters extracted from
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the measurement data are compared with a modified SV model. In [68], the results of UWB mea-
surements conducted in two industrial environments are presented. Again, the energy arrives in
clusters, and the large amount of metallic scatterers present in the factory causes dense multipath
scattering, which can be characterized by a generalized Saleh-Valenzuela model. Reference [69]
investigates and summarizes some fundamental properties of UWB channels. In particular, it is
found that if the relative bandwidth is large, the propagation processes, including path loss and
shadowing, become frequency-dependent, while if the absolute bandwidth is large, the impulse
response can become sparse and the fading depth is smaller.

The results of these and other similar works were combined and contributed to the final report
of the IEEE 802.15 Channel Modeling Subgroup [70]. As mentioned before, the main IEEE
standards for UWB radio channels are based on the works of the IEEE 802.15.3a and IEEE
802.15.4a Task Groups. While the former was originally intended for high data rate WPAN, the
latter has been focusing on low data rate WPAN as well as source localization. The channel
model proposed under IEEE 802.15.3a consists of 4 different scenarios, defined in terms of 7
key parameters. These are based on the SV model, where multipath rays arrive in clusters, with
amplitude following a doubly-exponential decaying profile. IEEE 802.15.4a proposes 9 channel
models for different frequency ranges and environments [6]. In particular, both the LOS and
NLOS situations are considered for indoor residential, indoor office, industrial, while only NLOS
is considered for open outdoor environments.

The generic channel models proposed for localization applications in IEEE 802.15.4a can be
used for both the 0.1-1GHz and the 2-10 GHz ultra-wide frequency bands. The key features of
these model include the following components:

• Pathloss as a function of distance d characterized by a d−n law, with frequency dependent
pathsloss exponent n.

• Use of a modified SV model for the multipath delay profile: paths arrive in clusters; mixed
Poisson distribution for ray arrival times; cluster decay rate may depends on delay; Power
Delay Profile (PDP) is allowed to first increase, then decrease.

• Small-scale fading is described by Nakagami-distribution, with different m-factors for dif-
ferent components.

• Block fading, i.e., propagation channel stays constant over data burst duration.
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The pathloss, which is defined as the power ratio between the received and transmitted signals,
serves as a key parameter for radio channel models. For UWB systems, pathloss not only depends
on the distance the signal travels, but also on the frequency band of operation due to the very
large bandwidth available for signal transmission. Indeed, frequency-dependent effects can not
be ignored, i.e. the frequency components of a UWB signal propagate quite differently in the
lower and upper bands of the spectrum. Let PL(d, f ) denotes the pathloss as a function of the
distance d and frequency f . The effect of these parameters can be treated independently, as in
PL(d, f ) = PL(d)PL( f ), where PL( f ) ∝ f −2m and PL(d) ∝ d−n, and the decaying factors m and n

depend on the environment. In addition to the decay factors, there are three other passloss related
parameters in IEEE 802.15.4a for a typical UWB model, that is: pathloss at 1m distance PL0,
shadowing standard deviation σs and attenna loss Aant

Shadowing, or large scale fading, characterizes the (slow) variations of the local received
signal power around value predicted from the pathloss. Taking this effect into account, the net
passloss in dB (averaged over small-scale fading), can be written as

PL(d) = PL0 + 10n log10
( d
d0

)
+ S (2.6)

where the reference distance d0 is set to 1m and S is a Gaussian-distributed random variable, with
zero mean and standard deviation σs, used to model shadowing.

Small scale fading is a characteristic of radio propagation resulting from the presence of re-
flectors and scatterers that cause multiple versions of the transmitted signal to arrive at the receiver
with different amplitudes, phases, TOA and AOA, thereby creating constructive or destructive in-
terference as a function of the receiver position in space. In the IEEE 802.15.4a reference models,
the complex baseband channel impulse response follows a modified SV model. The cluster ar-
rival times are modeled as a Poisson process where the decay factor of each cluster depends
on its onset (or arrival) time, while the ray arrival times within a cluster obey a mixed Poisson
distribution. Accordingly, the impulse response in the complex baseband domain, is given by

h(t) =

Lc−1∑
l=0

K−1∑
k=0

αk,le jφk,lδ(t − Tl − τk,l), (2.7)

where Lc is the number of clusters, K is the number of paths in each cluster, αk,le jφk,l is the
complex gain (amplitude and phase) of the kth path of the lth cluster, Tl is the arrival time of
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the lth cluster and τk,l is the delay of the kth of the cluster k path relative to Tl. The phases φk,l

in (2.7) are uniformly distributed in the range [0, 2π) and the amplitude αk,l are positive random
variables with a Nakagami distribution. In above model, only the amplitude, phase and arrival
time are taken into consideration. While in practice this is adequate for single antenna receiver,
AOA should also be incorporated in the UWB channel model when dealing with antenna array
receivers. This aspect will be discussed in further detail in Chapter 4.

The number of clusters Lc in (2.7) follows a Poisson distribution, with probability mass func-
tion given by

PLc(l) = c
(L̄c)le−L̄c

l!
, l ∈ {0, 1, . . .} (2.8)

where the mean L̄c depends on the environment. The cluster arrival times are modeled as a
Poisson process, with conditional Probability Density Function (PDF).

f (Tl|Tl−1) = Λle−Λl(Tl−Tl−1), l ∈ {1, . . . , Lc}, Tl > Tl−1 (2.9)

where Λl is the cluster arrival rate, which depends on the environment. The path arrival times in
each cluster are modeled as a mixture of two Poisson processes, with conditional PDF as follows

f (τk,l|τk−1,l) = βλ1e−λ1(τk,l−τk−1,l)

+ (1 − β)λ2e−λ2(τk,l−τk−1,l), k ∈ {1, 2, . . . ,K}, (2.10)

where β is the mixture probability, with 0 ≤ β ≤ 1, and the path arrival rates λ1 > 0 and λ2 > 0
depend on the environment. Note that for each cluster, τ0,l = Tl.

In the IEEE 802.15.4a UWB reference model, the Power Delay Profile (PDP) P(τ) is defined
as the instantaneous average power of the channel response as a function of the propagation delay
tau, to an impulse emitted at time τ = 0. Considering the discrete nature of the channel impulse
response in (2.7), this information is captured by computing the average power of the kth path
of the lth cluster, i.e. P(τ) = E{α2

k,l}, where the arrival time is τ = Tl + τk,l. The PDP decays
exponentially within each cluster, as given by:

E{α2
k,l} = Ωl

1
γl[(1 − β)λ1 + βλ2 + 1]

eτk,l/γl (2.11)

where Ωl is the integrated energy of the lth cluster and γl is the intra-cluster decay time constant,
which linearly increases with Tl. The integrated energy Ωl, which represents an average value
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over the cluster shadowing and the small-scale fading, follows in general an exponential decay,
i.e., it satisfies the following relation after taking a log operation:

10 log10(Ωl) = 10 log10(e−Tl/Γ) + Mcl (2.12)

where Γ is cluster decay time constant and Mcl is a normally distributed random variable, both of
which being dependent on the environment.

For some NLOS environments (office and factory), the shape of the PDP can be different, as
given by

E{α2
k,l} = (1 − χe−τk,l/γrise)e−τk,l/γl

γl + γrise

γl

Ωl

γl + γrise(1 − χ)
. (2.13)

In (2.13), the PDP first increases and then decreases as a function of the path index k. The
parameters 0 < χ ≤ 1, γrise and γl control the attenuation of the first few components, the rate of
increase of the PDP to its maximum, and the decay rate of the PDP after reaching its maximum,
respectively.

In addition to parameters controlling the pathloss, shadowing and PDP, auxiliary parameters
of interest include the first arrival time τA, the mean excess delay τE, the root mean square delay
spread τrms, the maximum excess delay τM, and the peak to lead delay τpld, which measures the
time lag between the first and the strongest multipath component (MPC). For LOS channels, it is
possible for the first arriving path to be the strongest one, which is very desirable in localization
applications. For NLOS channels, τpld has a heavy-tailed distribution, which can potentially
cause large localization errors.

The impulse responses of UWB channels in different environments can be quite different, as
illustrated below. The case of a residential LOS situation in terms is depicted in Fig. 2.4, where
the MPC are well separated and grouped in a few clusters. In this case, the first MPC happens
to be the strongest one In contrast, Fig.2.5 depicts the UWB impulse response of an industrial
NLOS environment. The maximum magnitude appears after about 40ns while the first few MPC
are strongly attenuated. We note that the tail of the response in Fig.2.5 is much longer than that
of the response in Fig.2.4.

For the frequency band from 2 to 10GHz, each channel model in the IEEE 802.15.4a classifi-
cation corresponds to a specific environment, as summarized in the Table 2.1 for future reference.
These channel models are widely applied by researchers working on UWB localization systems
and algorithms, since the parameter values used for the generation of the corresponding channel
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responses have been obtained through extensive experimental measurements and analysis.

Table 2.1 Comparison of IEEE 802.15.4a standard channel models

Model name Description Range Frequency
CM1 Residential LOS 7–20m 2–10GHz

CM2 Residential NLOS 7–20m 2–10GHz

CM3 Office LOS 3–28m 2–8GHz

CM4 Office NLOS 3–28m 2–8GHz

CM5 Outdoor LOS 5–17m 3–6GHz

CM6 Outdoor NLOS 5–17m 3–6GHz

CM7 Industrial LOS 2–8m 2–8GHz

CM8 Industrial NLOS 2–8m 2–8GHz

CM9 Open outdoor NLOS channel
(snow-covered area, farm area)

– 2–8GHz

We note that, although the impulse response ((2.7) are presented in the above description is
of continuous-time nature, a corresponding discrete-time version is ultimately obtained from any
practical simulation software for the generation of such responses. In a discrete-time model of
the impulse response, the time axis is quantized (i.e., divided into bins), where each bin may
contribute 1 or more MPC after the Poisson arrival times are rounded to the nearest quantization
bin. In many papers, (2.7) is therefore simplified as

h(t) =

L−1∑
l=0

αle jφlδ(t − τl), (2.14)

where αle jφl is the complex gain of the lth MPC, τl = lTb is the corresponding delay, Tb is the
time quantization step, and t is now a discrete-time variable, i.e. multiple of Tb.

While the use of the reference channel models proposed by IEEE 802.15.4a is the favored
approach for channel simulation in many research works, the above tapped delay line model is
also widely used in theoretical analysis and simulation experiments, and has therefore motivated
further experimental work. In [18], the results of two indoor channel measurement campaigns are
presented. The authors consider the small-scale fading distribution for the tap amplitudes αl of
the discrete-time baseband-equivalent channel impulse response and investigate the correlation



30 Background on Parameter Estimation for IR-UWB Localization

between adjacent taps. For UWB channels, it is found that channel taps can still be modeled by
means of complex Gaussian distribution, despite the much larger bandwidth and the correspond-
ing high temporal resolution. Although the individual channel taps remain correlated to some
extent, it is proved that the temporal correlation is weak between most taps. In practice, when
applying (2.14), the complex channel gains remain fixed over the channel coherence time, while
channel realizations obtained at different coherence periods are statistically independent. Further
details about the tapped-delay-line model (2.14) will be provided in the next chapter.

2.3 Position estimation techniques

GPS, the technology behind most outdoor geolocation tracking systems, is not able to provide
position estimates inside buildings or in dense urban environments. This is simply because the
GPS signal is not able to penetrate through most materials, and it gets blocked or corrupted eas-
ily. For these reasons, in indoor environments, localization using radio signals is used instead
of GPS. Source localization through the use of narrowband or wideband signals relies on radio
transmissions between of two types of nodes: fixed infrastructure (anchors or tag readers) with
known positions and mobile devices (agents or tags) with unknown positions [71, 72]. A lo-
calization system obtains the position of agents through estimation of ranging parameters from
the received signals and, in many cases, additional a priori information. However, precise posi-
tion localization is still a challenging task, especially in harsh indoor environments due to radio
blockage (where multipath fading can be a problem). UWB technology is becoming the most
attractive candidate for indoor localization [14, 73] due to its obstacle-penetration capabilities
and fine delay resolution. Since the bandwidth of most UWB systems is more than 2-3GHz, the
ranging accuracy can achieve centimeter level. By further combining both location and control,
the positioning system can sense people or machines in various environments. Typical applica-
tions include asset and inventory tracking in warehouses or car tracking in a large car park, people
tracking or identification in offices, industrial factories, sports or even entertainment events.

A representative case of UWB positioning is UWB-based RFID positioning. As an elec-
tronic tagging technology, RFID uses radio wave communications to automatically identify and
track the target in LOS environments, however, RFID technology can also be modified to work
in NLOS environments. Future advanced RFID systems are expected to provide both identi-
fication and accurate localization (at the centimeter-level) of objects with extended operating
range (hundreds of meters) while maintaining low power consumption and low cost. Due to their
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characteristics such as very wide frequency spectrum and thus high-definition ranging capability,
multiple-access capability, low power demands, low complexity and thus low cost, IR-UWB sig-
nals are very suitable for future RFID systems. Indeed, recently, UWB techniques and especially
IR-UWB radio signals have been successfully applied in RFID systems [74, 75]. In addition,
UWB-RFID chipsets based on CMOS technology are already available; recently, passive chip-
less UWB-RFID localization systems have also been proposed [76].

UWB-RFID Tag

Localization 
center

TOA and AOA 
are estimated at 

tag readers
The estimated TOAs 

and AOAs are used to 
determine the location 

of the Tag 

Tag emits UWB 
pulses that are 
received by the 

tag readers

Tag reader

Tag reader

Tag reader

TOA: Time of arrival
AOA: Angle of arrival
RFID: Radio frequency identification

Wired connection

Fig. 2.6 UWB-RFID localization system

Fig. 2.6 depicts a typical UWB based RFID system. Pulse trains are transmitted from the
tag, and received by multiple tag readers. In general, RFID may refer to both (semi-) passive and
active situations, where in the first case the tag is powered by incoming radio waves emitted by the
tag reader through electromagnetic induction, while in the second case it may use a local power
source (battery) to emit its own signal; the latter case corresponds to the situation of interest in
this work. In terms of range, the active tag can read up to 300 feet or more while the passive tag
can read up to 40 feet. Passive tags, which are cheaper, are often used for the monitoring of small
objects that come in very large numbers, while active tags are preferred when security or asset
values are of consideration.

Most practical positioning systems adopt a two step approach. In the first step, the tag readers
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estimate certain parameters from the received signals. The estimated parameters include: TOA,
TDOA, AOA1, and Received Signal Strength (RSS). Furthermore, it is also possible to combine
different types of signal parameters to improve the positioning accuracy. At the second step, the
estimated parameters are sent to the localization center where, after applying certain optimization
algorithms, the position of source tag is finally obtained. The accuracy and structure of the final
location estimation is greatly dependent upon the choice and number of underlying parameters
(i.e., TOA, AOA, etc.) estimated in the first step. Generally speaking, the higher the number
of parameter estimates used, the better the final localization accuracy is. In addition, estimation
of these basic parameters can benefit from the incorporation of a priori knowledge in the UWB
channel model.

RSS-based approaches assume that the relationship between distance and power loss is known.
Therefore, after measuring the RSS at the receiver (assuming the transmit power is also known),
the distance between the transmitter and the receiver can be calculated. To determine the location
of a source node (a tag) on a 2-D plane, 3 reference nodes (tag readers) are needed. According
to the CRB [77], it is observed that the best precision depends on channel parameters such as the
standard deviation of the shadowing, achievable path loss exponent and the distances between
the source node and reference nodes. To be more specific, the lower bound increases linearly
with the distances and the standard deviation of the shadowing, and it decreases as the pass loss
exponent increases. Therefore, RSS-based approaches can not provide highly accurate position
estimates in UWB systems.

Time-based (e.g., TOA and TDOA-based) techniques [23, 78] that capitalize on the utmost
advantage of IR-UWB (fine time resolution), are the most popular approaches for UWB indoor
localization. In these approaches the distance between two nodes is estimated by measuring the
time of flight of a signal that travels between them. Most TOA ranging schemes are based on
the timing detection of the first arriving multipath component in the dense multipath channel.
If there is a common clock for both the transmitter (source node) and the receivers (reference
nodes), the TOA of the received signals can be estimated without clock drift. Similar to RSS-
based techniques, 3 reference nodes are needed to locate a source node in a 2-D plane. In the
absence of estimation error, the estimated source node location is the intersection of 3 circles,
whose radius is calculated from the estimated TOA of each reference node. According to the
derived CRB, the accuracy of a TOA measurement in the presence of error can be improved by
increasing the SNR or the effective bandwidth [77].

1Also called Direction Of Arrival (DOA). In this context, we only use AOA.



2.3 Position estimation techniques 33

If the transmitter and receivers do not share a common clock, there will be a timing offset at
the receiver compared to transmitter and TDOA based techniques are used. If the signal transmit-
ted by the source node reaches to 2 reference nodes at different locations, the arrival times will
be different: this difference of arrival times is called TDOA. As long as there is a synchronization
among all the receivers, which is easy to accomplish, TDOA between receivers can be measured
precisely. Generally, two reference nodes are required to obtain one measurement of TDOA.
Unlike the TOA, which determines a circle with a known radius, a measurement of TDOA deter-
mines a hyperbola on a 2-D plane. Thus 3 reference nodes are needed to determine the location
of the source node on the plane given by the intersection of the 2 hyperbolic curves determined
by the 2 TDOAs. If we need to localize a source node in a 3-D space, each TDOA determines
one half of a two-sheeted hyperboloid and thus 2 TDOAs define a hyperbolic curve. Since the
intersection of 3 hyperboloids or intersection of 2 hyperbolic curves can determine a point, 4
reference nodes are required for determining the location of the source node.

The TDOA can be obtained in two ways: we can either estimate 2 TOAs first and compute
the deference of the 2 TOAs, or do the cross-correlation of the received signals at two reference
nodes over an observation interval and obtain the corresponding TDOA by finding the maximum
of the cross-correlation [79]. For the correlator-based method, since the UWB signal travels
in a dense multipath environment, the performance will greatly degrade. Therefore, improved
methods such as the Generalized Cross-Correlation (GCC) are proposed [80], can be applied to
TDOA estimation in the UWB context. In GCC-based TDOA estimation, filtered versions of the
received signals are used as the correlator inputs. Therefore, shaping filters should be considered
carefully to improve the robustness against noise and multipath.

AOA is another widely used ranging parameter. AOA-based methods measure the direction
of arrival of the received signal, i.e., the angle of the straight lines that connect the transmitter
and receiver, as taken from a reference direction. These methods require the use of an antenna ar-
ray configuration and associated circuitry at each reference node (i.e., multi-antenna tag reader).
The number of antenna elements used in the array highly depends on the radio environment.
In addition, AOA measurements require precise calibration of the antenna circuitry at the ref-
erence nodes. In a 2-D plane, 2 reference nodes equipped with antenna arrays are sufficient to
locate a source node using an AOA-based approach. The location of the source node is simply
the intersection of the 2 connecting lines with estimated angles. Unlike time-based approaches,
AOA-based approaches do not require strict synchronization or clock precision among nodes.
However, the use of antenna arrays will increase the systems complexity and corresponding cost.
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Initially, the estimation of AOA mainly used subspace based methods[81, 82], which made the es-
timation very challenging under severe multipath propagation. More recently, sophisticated AOA
estimation techniques appropriate for multipath environments have been developed [83, 84].

The current trend is to combine the previous techniques such as a fusion of TOA (TDOA)
and AOA data to achieve more accurate localization is the current trend. Such hybrid systems at-
tempt to capitalize on the advantages of both time-based and angle-based positioning techniques.
Recently, hybrid systems that combine TOA and AOA estimation or TDOA and AOA estimation
have received considerable attention for UWB location estimation. In [85], a hybrid TDOA/AOA
is developed for indoor UWB scenarios using extended Kalman filters. A TOA/TDOA hybrid rel-
ative positioning system is presented in [86], with reduced receiver number and communication
times in a positioning sequence. In [106] the CRB is derived for hybrid TDOA/AOA systems,
using both non modulated and modulated IR-UWB waveforms.

2.4 Review of selected parameter estimation techniques for single-user

In this section we provide a more detailed summary of parameter estimation estimation tech-
niques from the pertinent literature.

2.4.1 Single antenna TOA estimation

Energy detection based methods

Low power, low complexity TOA estimators using Energy Detection (ED) have been well devel-
oped and researched in recent years. In a typical ED receiver, shown in Fig. 2.7, the received

First path 
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IntegratorBPF
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device

Estimated

TOA
Received

signal r(t) Z[n]

Tb

Fig. 2.7 Energy detection

signal is first passed through a Bandpass Filter (BPF), to eliminate out-of-band noise, followed
by a square law device. Then, a time integrator collects the signal energy within a chosen time
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window called a block. The integrator’s output for the nth block is given by

z[n] =

∫ nTb

(n−1)Tb

|r(t)|2dt (2.15)

where r(t) is the output of the BPF and Tb is the adjustable integration length (block length).
Finally, timing estimation is performed by detecting the delay of the first path.

In the last step, several estimation methods can be used. The most common ones are Thresh-
old Crossing (TC), Maximum Energy Select (MES), and MES-Search-Back (MES-SB) [87]. In
the TC method, z[n] is compared with a given threshold, say λ, to detect the presence of a signal.
Specifically, the TOA is determined by the index of the first energy block exceeding the threshold,
i.e., τ̂TC = n̂TCTb where

n̂TC = min{n | 1 ≤ n ≤ Nu and z[n] > λ} (2.16)

with Nu denoting the total number of samples in the TOA uncertainty region. The TC method
is perhaps the simplest first path detection technique and often serves as a building block for
more sophisticated TOA estimation techniques including the ones proposed in this thesis. Not
surprisingly, its performance strongly depends on the choice of λ. On one hand, if λ is too small,
there is a high probability of early (prior to the true TOA) detection of the first path. One the other
hand, if λ is too large, there is a high probability of missing the actual first path and detecting,
instead, an erroneous later path. In [32, 23], criteria for choosing the threshold are stated; many
improved versions have also been proposed, see, e.g., [88, 89].

In MES method, the TOA estimate is simply determined by the index of the strongest energy
block, i.e.,

n̂MES = arg max
1≤n≤Nu

{z[n]} (2.17)

However, it is quite possible that in multipath conditions, the true TOA may not correspond to
the first energy block exceeding the threshold nor to the energy block with the highest energy.
The MSE-SB attempts to avoid these situations by combining the previous two methods. First, it
finds the maximum energy block, and then searches backwards for several blocks until it reaches
one that exceeds the threshold λ. The index of that block determines the TOA estimate.
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Sub-Nyquist ML methods

Due to the impractical sampling rates of the exact ML estimators, ML estimators based on sub-
Nyquist sampling models such as MESS, W-MESS, and DW-MESS have been proposed [26].
These estimators have the same structure as the ED based estimators, shown in Fig. 2.7; it is
common, however, to replace the square law device and the integrator blocks with a filter matched
to a locally stored reference pulse. In the following we describe these methods in more detail.

a) MESS: This method is similar to MES but considers the combined energy of samples in a
sliding window instead of the energy of an individual sample. Denoting the window duration as
Nw, the TOA is obtained as

n̂MES S = arg max
1≤n≤Nu

{

Nw−1∑
k=0

z[n + k]} (2.18)

Clearly, when Nw = 1, MESS reduces to MES.
b) W-MESS: When a priori knowledge about the channel is available in the form of its APDP,

the MESS technique can be extended to incorporate this knowledge through a weighting proce-
dure. The resulting method, called W-MESS, obtains the TOA as

n̂W−MES S = arg max
1≤n≤Nu

{

Nw−1∑
k=0

P[k]z[n + k]} (2.19)

where P[k] is the sampled version of APDP. In many cases, APDP can be simply approximated
by a single exponential. Alternatively, if the channel path energies are perfectly known, the APDP
can also be replaced by the exact values of the path energies.

c) DW-MESS: This method is similar to W-MESS but the sample energies are further weighted
by estimates of the mean and variance of their noise components. It is expected that at the true
TOA, the mean µn and the standard deviation σn of the noise component are minimized. There-
fore, using their inverses as a weighting factor will improve the likelihood of detecting the correct
TOA. The resulting improved TOA estimator, DW-MESS, is given by

n̂DW−MES S = arg max
0<n<Nu

{

Nw−1∑
k=0

P[k]z[n + k]
µnσn

} (2.20)

The last two methods, W-MESS and DW-MESS require a priori information about the chan-
nel. However, such prior information may not be available in practice and should be accurately
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estimated beforehand.

2.4.2 Cramer Rao Bound

The CRB provides a lower bound on the Mean-Squared-Error (MSE) of any unbiased estimator
and, therefore, represents the theoretical limit of TOA estimation. ML estimators, such as the one
developed in [21] for the UWB TOA estimation problem, can achieve this bound at high SNR. It
was shown in [21] that the CRB for TOA estimation of the first path, is given by

CRBTOA =
σ2

NsymEb(γ1 − γ
2
2)α2

0,0

(2.21)

where Nsym is number of transmitted symbols2, Eb is symbol energy, α0,0 is amplitude of the first
path, σ2 is the power spectral density of the white Gaussian noise, and finally

γ1 =

∫ Tp

0

(dw(t)
dt

)2dt∫ Tp

0
w2(t)dt

and γ2 =

∫ Tp

0
dw(t)

dt w(t)dt∫ Tp

0
w2(t)dt

(2.22)

are constants related to the specific pulse shape employed. It is clear that the CRB depends on the
pulse shape, the path gains, and the SNR Eb/σ

2 and, as expected, the more symbols employed in
the estimation, the lower the CRB is.

2.4.3 Joint TOA/AOA estimation

Joint parameter estimation has attracted increased attention in recent years. In this section, we
review the work in [50], which will later be used as a benchmark in our own developed scheme.

As discussed earlier, AOA estimations methods require use of an antenna array, say with
Q antenna elements, at each of the tag readers. The receiver chain at the qth antenna, q ∈

{0, . . . ,Q − 1}, includes a BPF, followed by a square law device and, finally, a Low Pass Filter
(LPF). The LPF output is averaged over several symbols in order to decrease the noise power;
the resulting signals zq(t) are used to jointly estimate the TOA and AOA3. Let τq denote the TOA
of the first path at the qth (q = 0, . . . ,Q − 1) antenna and ∆τ denote the TDOA of the first path

2In practice, the energy of the BPF output is averaged over Nsym symbols to minimize the effect of the additive
noise.

3For simplicity in presentation, we use a continuous time formulation. In practice, the antenna outputs are
sampled at the Nyquist rate and the algorithm operates in discrete time.
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between two adjacent antennas due to their spatial separation. Assuming a ULA with antenna 0
serving as the reference antenna illustrated in Fig. 2.8, we have the following relation between
τq’s and ∆τ:

τq = τ0 + q∆τ. (2.23)

The joint estimation process of τ0 and ∆τ consists of 3 main steps. The first step obtains a rough
estimate of τq at the qth antenna. The second step estimates ∆τ and improves the estimate of τ0

using the previously obtained rough estimates of τ̂q. The third and last step obtains a fine estimate
of the TDOA ∆τ from which the final estimate on the AOA θ is obtained. The steps are described
in more detail next.

a) Estimation of τq: At each antenna, a rough estimate, τ̃q, of the TOA τq is obtained using
the TC method described in Section 2.4.1. The threshold λ is chosen such that the probability of
early detection is in the order of 10−7.

b) Estimation of ∆τ and improved estimation of τ0: The following linear model of the rough
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estimates τ̃n obtained in the previous step is assumed:

τ̃q = τq + b + εq (2.24)

where b denotes a bias term and εq are independent, zero-mean random variables. Using this
model, the LS estimates of τ0 and ∆τ can be obtained as:

τ̂0 =
2

Q(Q + 1)

Q−1∑
q=0

[(2Q − 1) − 3q]τ̃q (2.25)

and

∆τ̃ =
12

Q(Q2 − 1)

Q−1∑
q=0

(q −
Q − 1

2
)τ̃q (2.26)

c) Improved estimation of ∆τ: Assuming that τ̂0 is a good approximation of the actual TOA
τ0, the averaged ED signal at the qth antenna can be decomposed into a sum of three terms:

zq(t) = g(t − τ̂0 − q∆τ) + g′(t) + n̄q (2.27)

where g(t − τ̂0 − n∆τ) denotes the signal due to the first path, g′(t) the contribution of paths
arriving after the first path, and n̄q is the noise contribution after averaging over K symbols with
mean σ2/K.

Under the assumption that the first two signal terms in (2.27) are well separated in time, the
signal yq(t) = zq(t) − σ2/K is given by

yq(t) = g(t − τ̂0 − q∆τ) + n̄q − σ
2/K (2.28)

for values of t around τ0 + q∆τ. Therefore, if ∆τ were known, shifting yq(t) leftward by τ̂0 + q∆τ

would yield g(t) plus noise. Because of this, in the summation

y(t; τ̂0,∆τ) =
1
Q

Q−1∑
q=0

yq(t + τ̂0 + q∆τ) (2.29)

the first path signals of all antennas would add coherently to form g(t), meanwhile the noise part
would add incoherently and thus reduce the overall level of noise. Based on this observation and
under the additional assumption that most of the pulse energy is concentrated in a interval of
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length Wg starting at time tg, the final estimate of ∆τ is obtained as

∆τ̂ = arg max
δ∈(∆τ̃−ε,∆τ̃+ε)

∫ tg+Wg

tg
y2(t; τ̂0, δ)dt (2.30)

where ∆τ̃ is the estimate of ∆τ obtained in the previous step, and ε is the maximum expected
absolute error |∆τ̃ − ∆τ|). Estimates of tg, Wg and ε can all be computed beforehand through
the analysis of the pulse shape employed. Finally, the fine estimate ∆τ̂ is transformed into the
corresponding AOA estimate.

2.5 Concluding statements

In this chapter, we presented a review of some important concepts for parameter estimation in IR-
UWB systems, including a brief discussion of pulse signaling, the IEEE 802.15.4a UWB channel
model, current position estimation techniques and selected parameter estimation methods. These
notions will serve as background material for the coming chapters in which we focus on new pa-
rameter estimation algorithms for TOA/AOA, which will be later used to develop corresponding
hybrid positioning schemes.
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Chapter 3

Estimation of TOA and APDP in
Single-Antenna IR-UWB Systems

In this chapter1, we consider the problem of TOA estimation for a single active user in single-
antenna IR-UWB systems. Instead of assuming a known APDP, a parametric model with multiple
exponentially decaying clusters is assumed for the APDP and its parameters are estimated along
with the unknown TOA. A preliminary motivational discussion for this approach is provided
in Section 3.1 and the corresponding system model is explained in Section 3.2. The proposed
method for joint TOA and APDP estimation, which relies on a combination of ML and LS tech-
niques, is presented in detail in Section 3.3. In Section 3.4, the CRB for joint estimation of these
parameters is derived. Performance comparisons of the proposed method to other benchmark
approaches are presented and discussed in Section 3.5. Finally, in Section 3.6, a short conclusion
is given.

3.1 Motivation

Sub-Nyquist ML-based TOA estimators, e.g., [25, 26], currently assume some prior knowledge of
the UWB channels in the form of the APDP, as explained in previous chapters. As we have been
able to verify, a lack of adequate information about the APDP can significantly deteriorate their
performance. Therefore, for these estimators to function properly, the APDP of UWB channels
should be estimated beforehand. We note that in addition to its application in TOA estimation, the

1Parts of Chapter 3 have been presented at the 2012 International Conference on Communications [90] and in
Signal Processing [91].
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APDP is an important characteristic of the UWB channel in its own right. Indeed, it can provide
useful information about the characteristics of the multipath radio channel, including the presence
of dominant scatterers in the vicinity of the RFID transmitter as well as the reflection/absorption
properties of the surrounding environment. Despite its importance, the estimation of the APDP
from a statistical signal processing perspective has not yet been extensively explored. Intrigued
by this, instead of assuming a known APDP of the UWB channel, we investigate the estimation of
the APDP along with the desired TOA at sub-Nyquist sampling rate. To this end, and motivated
by the work of the IEEE 802.15.4a Task Group on standard channel models for IR-UWB systems
[6], we adopt a multiple cluster parametric model for the APDP. The parameters of this model
include the clusters’ arrival times, peak power levels and decay rates which, together with the
unknown TOA, define the unknown parameter vector subject to estimation. Based on this model,
we can derive the likelihood function of the observed data for the complete set of unknown
parameters. Since a multi-dimensional exhaustive search for the ML estimates would be too
complicated and therefore impractical, a sub-optimal scheme in which the APDP parameters are
first estimated via a least-squares approach is considered. The resulting APDP is then used to
find the TOA estimate via the ML criterion through a 1-dimensional (1D) search at the chip level
(sub-Nyquist). We also derive the CRB for joint unbiased estimators of the APDP and TOA
parameters. Through numerical simulations of IR-UWB signal propagation in realistic multipath
UWB channels, the proposed joint estimator is shown to produce accurate estimates of the TOA
and the APDP parameters. The newly obtained APDP estimate can also be used in other existing
sub-Nyquist estimators which need this information beforehand. Using the same chip sampling
rate at the receiver, we show that the proposed joint TOA estimator outperforms the previous ones
as it can achieve a finer accuracy in practical UWB TOA estimation scenarios. The proposed
method has reasonable complexity and is well-suited for real-time implementation.

3.2 System model

We consider a RFID-based location system in which the tag transmits a time-hopping (TH) IR-
UWB signal s(t). TOA estimation is typically performed during the preamble section of a ranging
packet. As described by the IEEE 802.15.4a standard, the preamble can contain a large number
of symbols (e.g., up to 4096) [92]. To improve processing gain and suppress noise, averaging
over the preamble symbols is a very common operation [93, 23]. The signal s(t) consists of N f

consecutive frames of duration T f , that amount to a total observation interval To = N f T f . In turn,
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each frame is divided into Nc consecutive chips of equal duration Tc, so that T f = NcTc. Within
the jth frame, j = 0, 1, . . . ,N f −1, a single IR-UWB pulse w(t) is transmitted with a time offset of
c jTc relative to the beginning of the frame, where c j ∈ {0, . . . ,Nc − 1} denotes the TH sequence.
We assume that the UWB pulse waveform w(t) has finite duration Tc, i.e., w(t) = 0 for t ≤ 0
and for t ≥ Tc. In addition, the pulse transmitted within the jth frame is affected by a polarity
code, d j ∈ {+1,−1}, used for spectrum smoothing [94]. A data aided approach is employed in
this work in which a known training sequence (i.e., all zero) is used, which is very common in
this application, e.g., [95, 96].

Accordingly, the transmitted signal can be expressed in mathematical form as

s(t) =

N f−1∑
j=0

d j
√

Ep w(t − jT f − c jTc), 0 ≤ t ≤ To (3.1)

where Ep > 0 will denote the transmitted energy per pulse. In practice, both sequences c j and d j

are known to the receiver. In this thesis, since we consider the single user case, no TH code will
be used; without loss in generality, we therefore set c j = 0, ∀ j.

The transmitted UWB signal s(t) propagates over a multipath channel before reaching the tag
reader. A tapped delay line model is employed to characterize the UWB multipath channel, as in
[34, 97, 98]. Assuming a tap spacing of Tc, this model represents the impulse response h(t) of the
channel as the sum of scaled and delayed impulses:2

h(t) =

L−1∑
l=0

alδ(t − τl) (3.2)

where δ(·) is the Dirac delta function, al is a zero-mean random variable representing the am-
plitude of the lth multipath component, τl = lTc + τ0 is the propagation time delay of the lth
multipath, τ0 > 0 is the deterministic but unknown delay of the first path, and L is the number of
time resolvable multipaths. According to (3.2), the channel delay spread is given by τds = LTc.
Here, the focus is on sub-Nyquist TOA resolution and hence we assume that τo is a multiple of the
chip duration, i.e., τ0 = DTc where D is an integer [34]. This approach reduces the search com-
plexity of the delay estimation; yet, as will be illustrated in Section 3.5, our proposed algorithm
can be applied with arbitrary values of τ0.

2The pulse distortion on each multipath component, due to the fine (time unresolvable) structure of the channel,
is ignored for simplicity.
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Since the above tapped delay line model is based on the use of resolvable time delay bins,
the temporal correlation coefficients between adjacent tap amplitudes are very small and can be
neglected according to previous studies [66, 99, 27]. Therefore, the channel tap vector, defined
as h = [a0, ..., aL−1]T , has zero mean and covariance matrix

Rh = E[hhT ] =


P0 0 . . . 0

0 P1
...

...
. . . 0

0 . . . 0 PL−1


(3.3)

where the sequence of the diagonal entries, Pl = E[a2
l ], for l = 0, . . . , L−1, constitutes the APDP

of the channel.
The UWB channel model proposed by the IEEE 802.15.4a task group is based on the mod-

ified Saleh-Valenzuela model [6], according to which each channel tap amplitude al follows a
Nakagami distribution, and the APDP conforms to a doubly-exponential decay model with Pois-
son inter-arrival time. For mathematical convenience, we consider a simplified version of this
model in which the amplitudes of the resolvable multipaths in (3.2) follow a Gaussian distribu-
tion, with the associated APDP expressed as a sum of multiple, exponentially decaying clusters,
as follows (see also Fig. 3.1):

Pl =

C−1∑
k=0

βke−αk(l−ck)u(l − ck), l = 0, ...L − 1 (3.4)

where C is the total number of clusters, k ∈ {0, . . . ,C − 1} is the cluster index, the non-negative
parameters βk, αk and ck represent the peak power level, exponential decay rate and start time
(i.e., arrival time of the first path) of the kth cluster, respectively, and u(l) denotes the unit step
function (i.e., u(l) = 1 for l ≥ 0 and 0 otherwise). We note that ck represents the arrival delay
of the first path within the kth cluster, relative to the first arrival delay D. Therefore c0 = 0 and
ck < ck+1.

The parameters of this APDP model, depend on the characteristics of the UWB radio propa-
gation environment. We emphasize that the above modeling simplifications are made purely for
the sake of developing a mathematically tractable algorithm; in our simulation experiments in
Section 3.5, the resulting algorithm will be shown to perform adequately when applied to more
accurate UWB channel models that comply with the IEEE 802.15.4a standard.
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Fig. 3.1 APDP in Saleh-Valenzuela model.

After multipath propagation, the received UWB signal at the tag reader can be expressed as

r(t) =

L−1∑
l=0

als(t − τl) + n(t), 0 ≤ t ≤ To (3.5)

where n(t) is an additive noise term modeled as a white gaussian process with PSD level σ2
n =

N0/2. We assume that T f is sufficiently large such that there is no Inter-Frame Interference
(IFI), that is: the scaled and delayed replicas of the transmitted pulse during the jth frame are
received during that frame, which is possible if 0 ≤ τ0 ≤ τmax where the maximum delay satisfies
0 ≤ τmax ≤ T f − τds. In practice, the transmitted pulse signal has a low duty cycle, of the order of
1Mbits/s or less, while the delay spread of a typical indoor channel is of the order of a few 100ns
or less. Hence, this assumption is well justified. Nevertheless, the effect of a small amount of
IFI is further considered in our simulation experiments (see Section 5). Under this assumption, it
follows from (3.1) and (3.5) that

r( jT f + t) = d j
√

Ep

L−1∑
l=0

alw(t − τl) + n( jT f + t), 0 ≤ t < T f . (3.6)
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To derive the TOA estimator, an equivalent discrete-time version of the above signal model
will be used. We first consider uniform sampling at the rate 1/Ts, where Ts ≤ 1/2B and B is
the bandwidth of the transmitted IR signal. Let M = Tc/Ts be an integer, so that each frame is
represented by MNc samples and let r j = [r( jT f ), . . . , r( jT f + (MNc − 1)Ts)]T denote the column
vector of discrete-time noisy signal samples of the jth frame. Similarly, the IR pulse w(t) can be
represented by the column vector w = [w(0), ..., w((M − 1)Ts)]T and we let w have unit energy.
We emphasize that the sampling period Ts mentioned here is used only to analyze the discrete-
time system model; in the end, the proposed estimator will only require the evaluation of the
likelihood function at the sub-Nyquist chip rate of 1/Tc (see Section 3.3).

Making use of (3.6), the vector of received signal samples r j in the jth frame can be written
as

r j = d j
√

EpWh + n j (3.7)

whereW = [wD,wD+1, . . . ,wD+L−1] is a MNc × L matrix with columns

wd = [ 0 , . . . , 0︸      ︷︷      ︸
dM

, wT , 0 , . . . , 0︸     ︷︷     ︸
MNc−M−dM

]T (3.8)

for d ∈ {D,D + 1, . . . ,D + L − 1}, and n j is the discrete-time vector representation of the zero
mean Gaussian noise n(t) in the jth frame.

Given the set of observations r j, for j ∈ {0, . . . ,N f − 1} and the knowledge that the UWB
channel’s APDP can be described as in model (3.4), our aim is to develop estimators for the
unknown integer delay, D, and the modeling parameters of the APDP, that is, the number of
clusters C, and the individual clusters’ parameters αk, βk and ck for k ∈ {0, . . . ,C − 1}. In the
absence of IFI, D is limited to the range 0 ≤ D ≤ Dmax = Nc − L. The cluster parameters αk, βk

are positive real numbers, and the associated shift parameters ck are non-negative integers.

3.3 Joint estimator of APDP and TOA for single user case

In this section, we develop a novel approach for jointly estimating the unknown integer delay D

and the parameters of the APDP. The block diagram of the proposed method is given in Fig. 3.2.
We first derive the LLF for the joint estimation problem, based on the modeling assumptions pre-
viously discussed. To avoid the computational complexity of maximizing the likelihood function
by searching over the complete parameter space, we propose a sub-optimal approach in which
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the APDP parameters are estimated via least-squares fitting using the parametric model in (3.4).
The APDP estimates so obtained are substituted back into the LLF, which is finally maximized
to obtain the desired delay estimate D.

 TOA  

estimation

APDP

estimation

Received 

signal

Fig. 3.2 Block diagram of proposed approach

3.3.1 Log-likelihood function derivation

Since the channel tap vector h and the additive noise vector n j are independent Gaussian with
zero-mean, it immediately follows from (3.7) that the vector of observations in the jth frame, r j,
is also Gaussian with zero mean and covariance matrix

Rr j = E[r jr
T
j ] = EpWRhW

T + σ2
nI (3.9)

where Rh is given by (3.3). Note that in establishing the discrete form (3.9), we assume that the
vector w has unit energy instead of

∫ Tc

0
w2(t)dt = 1, and correspondingly, the covariance matrix

σ2
nI is used instead of 2Bσ2

nI . 3

In addition, because of the white noise assumption, the covariance matrix between observa-
tion vectors in different frames is simply

Rrir j = E[rir
T
j ] = did jEpWRhW

T . (3.10)

Therefore, the covariance matrix of the complete received signal vector within the observation
time To = N f T f , represented by r = [rT

0 , . . . , r
T
N f−1]T , can be described as the following block

matrix
Rr = EpWrRhW

T
r + σ2

nI (3.11)

where Wr = d ⊗W , d = [d0, . . . , dN f−1]T with size N f × 1, and ⊗ represents the Kronecker
product. We note that there are N f × N f blocks in the first term on the right-hand side of (3.11)

3In this chapter, we use the symbol I invariably to denote an identity matrix of appropriate dimension.
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and the identity matrix has dimension MNcN f .
Under the Gaussian assumption, the LLF of the received signal r can be written in the fol-

lowing form:
L(r;θ) = − rTR−1

r r︸   ︷︷   ︸
L1

− ln(det(Rr))︸        ︷︷        ︸
L2

(3.12)

where θ = (P0, . . . , PL−1,D) is the vector of unknown parameters, consisting of the APDP values
and the integer delay. The dependence of the LLF on θ is through the covariance matrix, i.e.,
Rr ≡ Rr(θ) in (3.11).

After some manipulations, we find that the terms L1 and L2 in the right hand side of (3.12)
are equal to

L1 = −
Ep

σ4
n
rTWr

(
R−1

h +
EpN f

σ2
n
I
)−1
W T

r r + C1 (3.13)

and

L2 =

L−1∑
l=0

ln det(
EpN f

σ2
n
Rh + I) + C2 (3.14)

where C1 and C2 are constants independent of the unknown parameter vector θ. The inverse of
Rr, which is needed in L1, can be obtained with the help of the matrix inversion lemma [100].

In light of (3.13), it is convenient to define the L × 1 vector z = 1
N f
W T

r r, whose lth entry can
be expressed as

z(l; D) =
1

N f

N f−1∑
j=0

d jw
T
D+lr j (3.15)

where the dependence on D is now made explicit. Note that, on the basis of (3.8), the inner
product wT

l r j represents the lth output (at the chip rate) of a filter matched to the transmitted
pulse w(t), when applied to the observed data in the jth frame. Accordingly, the vector z contains
delayed values (by D) of the matched filter output, further averaged over the N f available frames.

Making use of (3.15) and (3.3) in (3.13) and after further simplifications, the final expression
of the LLF can be obtained as

L(r;θ) =

L−1∑
l=0

[ SNRl

(1 + SNRl)
z2(l; D)N f

σ2
n

− ln(1 + SNRl)
]

(3.16)

where we define
SNRl =

N f EpPl

σ2
n

, l = 0, 1, . . . , L − 1. (3.17)
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The latter gives the SNR for the lth propagation path and is a function of the unknown parameter
Pl.

The joint ML estimator of the integer delay D and the APDP values Pl, l = 0, . . . , L − 1,
can be obtained by maximizing the log-likelihood function with respect to these parameters.
Unfortunately, the large dimension (i.e., L + 1) of the resulting parameter vector θ prohibits a
practical implementation of this search. In the next section, we develop a simplified scheme
based on a lower-dimensional parametric model of the APDP.

3.3.2 Estimation of average power delay profile

If the APDP were known, one could estimate the TOA via a simple one-dimensional search of the
LLF in (3.16) over the discrete delay parameter D. Motivated by this observation, we propose to
first estimate the APDP and then substitute the results back in (3.16) for the final search. Ideally,
as described in Section 2, the APDP of a UWB channel exhibits a double-exponential decay as
a function of the excess delay parameter l, as given by (3.4). Here, we adopt a curve fitting
approach based on a weighted LS rule to fit such a model to a function of the observed data.
Because of the importance of the single cluster case (C = 1) in the literature and the resulting
simplifications in the APDP estimation, we treat it separately from the multiple clusters (C > 1)
case.

Single cluster fitting

Differentiating (3.12) with respect to Pl and setting the result to 0, we first obtain a preliminary
APDP estimate conditioned on D as follows:

P̂(0)
l (D) = max{

1
Ep

[z(l; D)2 − σ2
n], δ0}, l = 0, . . . , L − 1 (3.18)

where z(l; D) is the time-shifted correlator output (3.15), δ0 is a small positive number and the
maximum operation is used to ensure that the estimate P̂(0)

l (D) ≥ δ0 > 0 for all l.
For the single cluster model, we seek to fit the calculated P̂(0)

l (D) in (3.18) to a simplified
form of the APDP (3.4) with only a single exponentially decaying envelope, i.e., Pl = βe−lα for
l = 0, . . . , L − 1, with parameters α > 0 and β > 0. Since an exponential decay in linear scale
becomes a straight line in logarithmic scale, we choose to carry out the curve fitting in the log-
domain and seek values of α and β that best fit ln P̂(0)

l (D) in a weighted LS sense. Specifically,
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these parameters are obtained by solving the following optimization problem:

min
α,β

L−1∑
l=0

µl |ln P̂(0)
l (D) − (ln β − lα)|2 (3.19)

where µl ≥ 0 denotes a suitable weighting sequence. Our use of µl and our choice for its spe-
cific form have a simple intuitive justification. Ideally, we would like to include in the fitting
only the data points that correspond to actual Multipath Components (MPCs). Also, due to the
log operation, we find that paths with very low power would be overemphasized in the above
objective function, which lead to poor fitting. Therefore, we propose to include in the fitting
only the local maxima as they are more likely to correspond to MPCs, and discard the very low
power values at the same time. Accordingly, we set µl = 1 if there is a local maximum, i.e.,
P̂(0)

l−1(D) < P̂(0)
l (D) > P̂(0)

l+1(D), and 0 otherwise. This approach, which has been confirmed experi-
mentally, allows us to mask out the noisy low power data points, as desired.

The analytic solution to (3.19) is given by

α̂ = −

∑L−1
l=0 µl(l − A1) ln P̂(0)

l (D)

A0A2
1 − A0A2

(3.20)

β̂ = exp (
1
A0

L−1∑
l=0

µl ln P̂(0)
l (D) + A1α̂) (3.21)

where we define

A0 =

L−1∑
l=0

µl, A1 =
1
A0

L−1∑
l=0

lµl, A2 =
1
A0

L−1∑
l=0

l2µl. (3.22)

Note that A0 is the total number of local maxima, while A1 and A2 corresponds to the first and
second moments of the weighting µl.

With the above values of α̂ and β̂, a new APDP estimate is obtained as follows

P̂(1)
l (D) = β̂e−lα̂, l = 0, . . . , L − 1. (3.23)

This estimate can be easily calculated for every possible D in the range of 1, 2, . . . ,Dmax, and
then substituted back in (3.16) to finalize the one-dimensional search over the delay parameter,
as further discussed in section 3.3.1. Although single cluster fitting may lead to an oversimplified
description of the overall APDP, its use in connection with the LLF (3.16) can still provide a
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fine estimation of the unknown delay D. However, in cases where there are multiple separated
clusters in the UWB channel, we find that the TOA performance can be improved by using a
more sophisticated fitting approach that better reflects this situation.

Multiple clusters fitting

In this case, we would like to adjust the parameters in the complete model (3.4) to achieve the
best fit with the available data obtained for a specific channel. Since a more complicated APDP
model is adopted, it is desirable to estimate its parameters only once; that is, to reduce complexity,
we will not seek to estimate a new P̂(1)

l for every possible D. It turns out that for this purpose,
only a rough estimate of D is needed, and this can be obtained by considering the complete set of
instantaneous power values at the matched filter output, i.e., P̂(0)

i (0), as given by (3.18) with D = 0
but with the range of the subscript i now extended over the entire frame, i.e., i = 0, . . . ,Nc−1. To
obtain the preliminary delay estimate of D, say D̂p, we use a method similar to the MESS in [26],
with the main difference that a threshold is used to rule out impossible timing points. As a result,
the search range for the delay is now much smaller, which greatly reduces the computational
cost. Based on the estimate D̂p, we form the sequence P̂(0)

l (D̂p) for l = 0, . . . , L − 1 and use it
to fit the parameters of the multiple cluster model in (3.4). To this end, we propose an iterative
weighted LS approach, which searches for, and fits consecutive clusters one at a time, until a
stopping criterion has been met.

A detailed description of the proposed algorithmic steps follows.4

Step 1: We fit the instantaneous log power data for the whole frame (i.e., ln P̂(0)
i (0), i =

0, ...,Nc − 1) to a straight line lT H1(i) = ln β − iα, which will be used as a basic threshold. In
particular, the parameters α and β are obtained via a weighted LS fitting similar to (3.19), but
where the range of summation is now from 0 to Nc − 1:

arg min
α,β

Nc−1∑
i=0

µi |ln P̂(0)
i (0) − (ln β − iα)|2 (3.24)

where µi = 1 if P̂(0)
i (0) is a local maximum and 0 otherwise. The use of lT H1(i) will greatly reduce

the search range for the preliminary estimate of D̂p in the next step.
Step 2: We identify the local maxima of ln P̂(0)

i (0) which are above the basic threshold line

4At this point, the reader may consult Fig. 3.3 for further clarifications on these steps; the experimental method-
ology for generating this figure will be explained in detail in Section 3.5.
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lT H1(i). Among these local maxima, we consider those in the range 0 ≤ i ≤ Dmax. For each of
these points, we calculate the sum

∑L−1
l=0 ln P̂(0)

l (i). The value of i for which this sum is maximum
is taken as the estimate D̂p. The latter also gives us the position of the first cluster in the frame,
i.e., c0 = D̂p.

Step 3: We fit the local maxima of ln P̂(0)
l (D̂p), l = 0, . . . , L−1 to a new straight line, denoted by

lT H2(l), using the same procedure as in the single exponential case. This new threshold, obtained
using the data of all the clusters, will be used to determine the onset of any new cluster, that
is: the APDP value at the starting point of each cluster, given by parameter βk, should be above
lT H2(l).

Step 4: We search for new clusters using lT H2(l) as a threshold. Assuming that the starting time
of the current cluster ck is known, we detect a new cluster if we find at least one point P̂(0)

l (D̂p) that
is above lT H2(l) in the range ck + bτmic/Tcc ≤ i ≤ ck + L, where τmic is the minimum inter-cluster
delay depending on the channel environment, e.g., τmic = 10ns. We denote the corresponding
abscissa l for these points as l j, j = 1, . . . , J, where J is the total number of such points.

Step 5: Once a new cluster is detected, we have to identify its starting time. Intuitively, l1

could be considered as the new cluster starting time. However, this may not be the best choice
due to noise and the random nature of the channel. Therefore, to select the starting time of the
new cluster ck+1, we proceed as follows. For each j = 1, . . . , J, we temporarily set ck+1 = l j and
perform a weighted LS fitting of the current exponential cluster between ck and l j according to

arg min
αk ,βk

∑l j−1
i=ck

µi |ln P̂(0)
i (0) − (ln βk − (i − ck)αk)|2∑l j−1

i=ck
µi

. (3.25)

The value of l j with the smallest average LS fitting error is chosen as the new cluster starting
time, that is ck+1 = l j, and the corresponding values of αk and βk are used as model parameters
for the current cluster.

Step 6: We repeat Steps 4 and 5 until there are no new clusters detected and we let C denote
the total number of detected clusters.

3.3.3 TOA Estimation

For the single cluster case, we let the estimated P̂(1)
l (D) in (3.23) depend on the integer delay D.

Since we simply assume one decaying exponential, it is simple to calculate this APDP estimate
for every possible D. Note that α should be positive to ensure an exponential decay; therefore,
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tentative delays D that lead to a negative value of α should be discarded. For every possible
D in the search range, we substitute P̂(1)

l (D) back into the LLF (3.16), and then search for the
maximum over D, which is the only unknown parameter left to be estimated.

For the multiple clusters case, the APDP estimate P̂(1)
l obtained from the above procedure

bears no dependence on D. Inserting the refined APDP estimate P̂(1)
l back into the LLF (3.16),

again, the only unknown parameter left to be estimated is D, which can be finally obtained via a
simple one-dimensional integer search. We note that once the APDP has been estimated, the final
LLF L(D) only depends on the matched filter outputs z(l; D) and the background noise variance
σ2

n, which can be obtained from a priori estimation. We denote the final delay estimate by D̂.

3.3.4 Complexity analysis

The computational complexity of our proposed approach mainly depends on two factors, namely,
the preliminary LS-based APDP estimation and the subsequent TOA estimation which involves
the maximization of the LLF.

For the sake of conciseness, our analysis of the APDP estimation complexity focuses on
multiple cluster fitting as in Section 3.3.2. This approach begins in Step 1 with the LS fitting
in (3.24) at a total cost of 4Nc flops. 5 The core of the procedure then relies on the application
of multiple LS estimation steps, in which a set of power measurements, represented here by a
vector b of generic length m, are fitted to a straight line in the log domain, represented by the
productAx whereA is a known matrix of size m×2 and x = [α, ln β]T is the vector of unknown
parameters. The efficient implementation of the LS method then involves the QR factorization
of matrix A, with a cost of 8m, followed by the computation of the unknown parameters with a
cost of 4m. Therefore, the total cost for each LS estimation step is 12m, which is linear in m. In
Step 1, we have m < Nc, while in Step 3, we have m < L ≤ Nc. For Step 5, it is necessary to
perform multiple LS fittings of various sizes. For simplicity, let us assume a constant value of J

for each cluster index k. Because the cost of each LS fit is linear in m, it can be verified that the
total cost of Step 5 is upper bounded by 12JL. The total complexity of the multiple cluster APDP
estimation algorithm is therefore upper bounded by 16Nc + 12(J + 1)L where J would typically
be a small integer. Because we only use local maxima in the fitting, these bounds tend to be very
conservative.

5The computational complexity is evaluated in terms of the number of required floating point operations (flop),
where a multiply-add, a division and a numerical function evaluation (e.g. log) each count for 1 flop.
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For each frame, we assume that the Nc squared correlator values, i.e., z(l; 0)2 for l = 0, . . . , L−
1, are available. For each l ∈ {0, . . . , L − 1}, we first compute the numerical coefficients al =

SNRl/(1 + SNRl), at the cost of 4L. From there, each evaluation of the LLF (16) amounts to the
calculation of an inner product. The total cost of the ML search is therefore of the order of LDmax,
where Dmax delimits the range for the TOA search. This cost for the evaluation and maximization
of the LLF is comparable to that of competing sub-Nyquist estimators which, when implemented
at the same sampling rate, require the evaluation of an inner product with similar size for each
tentative value of the unknown delay [26],[27].

In practice, we find that the search range Dmax ≥ 12J, so that the total computational cost
is dominated by the ML search for the TOA estimation, with the APDP estimation representing
only a small fraction.

3.4 Cramer Rao Bound

The CRB provides a lower bound on the covariance matrix of any unbiased point estimator of a
parameter vector. Specifically, if θ̂(r) denotes such an estimator of vector θ = [θ1, . . . , θL+1] as a
function of the observation vector r, we have that

Cov(θ̂(r)) ≥ J (θ)−1 (3.26)

where Cov(·) denotes the covariance matrix of its matrix argument, and J (θ) is the (L+1)×(L+1)
Fisher Information Matrix (FIM). The latter is defined in terms of its entries

Ji, j(θ) = −E
[∂2L(r;θ)
∂θi∂θ j

]
(3.27)

where the expectation is based on the data model with parameter vector θ. The CRB is of practical
interest here since the ML estimator can achieve this bound asymptotically under certain limiting
conditions [22]. In this section, we derive the CRB for the joint estimation of the TOA and APDP,
as represented by the unknown parameter vector θ.

To simplify the derivations, and especially manipulations involving differentiation with re-
spect to time, we begin by introducing an equivalent integral representation for the discrete sam-
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ple values at the matched filter output. That is, we let

z(l; D) ≈
1

N f Ts

∫ To

0
r(t)ξ(t − (l + D)Tc)dt (3.28)

where the template signal ξ(t) is defined by

ξ(t) =

N f−1∑
j=0

d jw(t − jT f ). (3.29)

This approximation is well justified for small values of Ts, i.e., Ts ≤ 1/2B as previously assumed.
We differentiate (3.16) with respect to Pl and D, to obtain

∂L(r;θ)
∂Pl

=
∂L(r;θ)
∂SNRl

∂SNRl

∂Pl

=
EpN f

σ2
n(1 + SNRl)

[ z2(l; D)N f

σ2
n(1 + SNRl)

− 1
]

(3.30)

and
∂L(r;θ)
∂D

=
2N f

σ2
n

L−1∑
l=0

SNRl

1 + SNRl
z(l; D)z′(l; D) (3.31)

where we define

z′(l; D) =
∂z(l; D)
∂D

= −
M
N f

∫ T0

0
r(t)ξ′(t − (l + D)Tc)dt (3.32)

and
ξ′(t) =

dξ(t)
dt

. (3.33)

Based on (3.30) and (3.31), we can further obtain the required second order derivatives:

− E
[∂2L(r;θ)
∂Pl1∂Pl2

]
= 0, ∀ l1 , l2 (3.34)

− E
[∂2L(r;θ)

∂P2
l

]
=

E2
p

(EpPl + σ2
n/N f )2

( 2E[z(l; D)2]
EpPl + σ2

n/N f
− 1

)
(3.35)

− E
[∂2L(r;θ)
∂Pl∂D

]
= −

2EpN2
f

σ4
n

E
[
z(l; D)z′(l; D)

]
(1 + SNRl)2 (3.36)
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and

E
[∂2L(r;θ)

∂2D
]

= −
2N f

σ2
n

L−1∑
l=0

SNRl

1 + SNRl

(
E[z(l; D)z′′(l; D)] + E[z′(l; D)2]

)
. (3.37)

Next, to calculate the above terms we need to evaluate the expected values E
[
z(l; D)2], E

[
z(l; D)z′(l; D)

]
and E

[
z(l; D)z′′(l; D) + z′(l; D)2] at the true value of D.

For the transmitted pulse, since w(Tc) = w(0) = 0 is the common case in practice, it comes
naturally that ∫ Tc

0

dw(t)
dt

w(t)dt =
1
2

[w2(Tc) − w2(0)] = 0 (3.38)

and therefore ∫ Tc

0

d2w(t)
dt2 w(t)dt = −

∫ Tc

0

(dw(t)
dt

)2dt. (3.39)

After some manipulations using the above identities, the required expectations in (3.35)-
(3.37) can be obtained as follows:

E[z(l; D)2] = EpPl +
σ2

n

N f
(3.40)

E[z(l; D)z′(l; D)] = 0 (3.41)

and
E[z(l; D)z′′(l; D) + z′(l; D)2] = −γEpPlT 2

c (3.42)

where the parameter

γ =

∫ Tc

0

(dw(t)
dt

)2dt∫ Tc

0
w(t)2dt

(3.43)

is positive and determined by the pulse shape.
Based on (3.36) and (3.41), it follows that

− E
[∂2L(r;θ)
∂Pl∂D

]
= 0, ∀l (3.44)

Together with (3.34), this implies that the Fisher information matrix J (θ) is diagonal. Using
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(3.35), (3.37), (3.40) and (3.42), the diagonal entries of J (θ) can be obtained as

Jl,l = −E
[∂2L(r;θ)

∂2Pl

]
=

[ EpN f

σ2
n(1 + SNRl)

]2
, l = 0, . . . , L − 1 (3.45)

and

JL,L = −E
[∂2L(r;θ)

∂2D
]

=
2γEpN f T 2

c

σ2
n

L−1∑
l=0

Pl
SNRl

1 + SNRl
. (3.46)

Consequently, the CRBs are given by

Var(P̂l) ≥ J−1
l,l = P2

l

(
1 +

1
SNRl

)2
(3.47)

Var(D̂) ≥ J−1
L,L =

1
2γT 2

c

( L−1∑
l=0

SNR2
l

1 + SNRl

)−1
. (3.48)

From the above formulas, it is obvious that the CRBs depend on the SNRl. When SNRl � 1,
the above expressions for the CRB take simplified forms as follows:

Var(P̂l) ≥ J−1
l,l ≈ P2

l (3.49)

and

Var(D̂) ≥ J−1
L,L ≈

σ2
n

2(
∑L−1

l=0 Pl)γEpN f T 2
c

. (3.50)

Consequently, the CRB for the TOA estimate τ̂ becomes

Var(τ̂) ≥
σ2

n

(
∑L−1

l=0 Pl)2γEpN f
. (3.51)

We note from (3.49) that the standard deviation for the APDP at the lth tap is lower bounded
by the corresponding power value, which is consistent with well-known results from the theory
of smoothed power spectrum estimation [101]. Lower bounds on the estimation variance of the
APDP parameters αk and βk can be obtained in turn by applying the chain rule for derivatives to
(3.27) and making use of the results in (3.34) and (3.45). As for the CRB of the TOA in (3.51),
it is inversely proportional to the total average power over the L taps,

∑L−1
l=0 Pl, the ratio of pulse

energy-to-noise variance Ep/σ
2
n, the pulse shape factor γ in (3.43), and the number of frames N f .
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3.5 Numerical results

3.5.1 Methodology

In the simulations carried out here, the frame duration is set to T f = 200ns; each frame is further
divided into Nc = 400 chips of duration Tc = 0.5ns. Unless specified otherwise, the number of
transmitted frames is set to N f = 60. It is also assumed that each frame is equivalent to a single
symbol. The transmitted UWB pulse w(t) is a unit-energy Gaussian doublet [63] with duration
Tc and effective bandwidth B = 4GHz. The energy per pulse Ep is given in terms of the SNR
parameter Ep/σ

2
n. The synthesized pulse sequence is then filtered by a multi-path UWB channel.

The channel impulse responses used in our work are derived from the IEEE 802.15.4a typical
channel models [6]. These impulse responses are randomly generated such that the multipath
arrival times are grouped into multiple clusters, each cluster being characterized by an exponen-
tially decaying average power envelope. Several such models have been developed to fairly repre-
sent channel conditions in different types of environments, such as residential, office, outdoor and
industrial settings. The parameters of these models have been adjusted based on measurements
over a representative range of frequencies and distances.

As mentioned in Section 3.3, the single cluster fitting method represents the overall fading
of the channel versus delay by assuming a single exponentially decaying profile. Despite its
simplified nature, this simple method is fairly robust and can be applied to all kinds of realistic
channels. The multi-cluster fitting method seeks to further exploit finer details present in the
APDP structure, i.e., by representing it in terms of multiple exponentially decaying components
caused by the physical environment. When there is a clear multi-cluster structure in the channel,
this method will indeed lead to better TOA estimation performance than the previous one. We
note that the multi-clusters structure is very common for indoor UWB channels, as indicated by
the measurement results in [18].

In our experiments, minor modifications were made to these IEEE channel models to allow
for explicit control of the APDP parameters, i.e., number of clusters C, and for each cluster,
shape parameters αk, βk, ck. The results presented next focus on the CM3 channel model, which
is representative of an indoor office environment; however, similar results and conclusions were
obtained with other standard channels. The following parameter values were used: delay spread
τds = 120ns, number of taps L = 240, and maximum delay τmax = 80ns. We note that the tap
spacing of the created channel can be smaller than Tc, while our method still works fine with the
assumption of Tc spaced taps.
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Zero-mean white noise is added to the time domain samples at the UWB channel output. At
the receiver side, the baseband antenna signal is passed through a (digital) filter matched to a local
copy of the transmitted reference s(t). The MF output is then sampled at the sub-Nyquist rate
1/Tc and the resulting samples are used in the ML estimator of τ and Pl as explained in Section
3. In addition, several TOA estimators from the recent literature are implemented and used as
benchmarks.

The TOA estimation performance is evaluated in terms of the root mean square error (RMSE),
defined as

√
E[(D̂Tc − τ0)2] where D̂ and τ0 denote the estimated integer delay and the true

value of the delay, respectively. In the Monte-Carlo simulations, the RMSE is approximated
by averaging over 1000 independent channel trials, where in each trial a different value of τ0 is
selected randomly from the interval (0, τmax]. Note that here, τ0 is arbitrary and not limited to
being an integer multiple of Tc.

3.5.2 Results and discussion

The fitting in semi-logarithmic scale for several clusters is illustrated in Fig. 3.3 for a particular set
of observed data with SNR = 30dB, as obtained with a CM3 channel displaying three identifiable
clusters in its APDP structure. The longest straight line is the basic threshold lT H1(i), which
helps to select the first preliminary estimate D̂p and the corresponding log values ln P̂(0)

l (D̂p),
l = 0, . . . , L− 1. The second longest straight line represents the new threshold lT H2(l), that is used
in turn to detect the clusters. Finally, the C = 3 clusters detected in this example are fitted using
the 3 shorter straight lines of varying slopes.

After getting all the needed parameters, i.e., C and the set of triplets {αk, βk, ck}
C−1
k=0 , the final

APDP estimate P̂(1)
l can be calculated according to the general expression in (3.4). The newly

estimated APDP P̂(1)
l is plotted in linear scale in Fig. 3.4, along with the true APDP Pl based on

the exact parameter values. It is seen that the proposed method provides a sufficiently accurate
estimation of the true APDP. In this figure, we also show the result of single cluster estimation,
showing that the single cluster method can be used to provide useful information about the rate
of decay of the APDP even in this case.

To see whether multi-cluster fitting offers any performance advantages over single-cluster
fitting, we compare the average fitting error and final TOA estimation performance as a function
of the assumed number of clusters. For each experimental trial, we generate TOA estimates
corresponding to different numbers of clusters, specifically: fixing C = 1, 2 and 3. For each
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of the considered cases, we show in Fig. 3.5 the average fitting error (defined by
∑L−1

l=0 µl|P̂
(0)
l −

P̂(1)
l |

2/
∑L−1

l=0 µl) as a function of the SNR. It can be seen that multi-cluster fitting yields the lowest
fitting error, followed by 2-cluster fitting and 1-cluster fitting.

In Fig. 3.6 we show the corresponding RMSE of TOA estimation. The same trend as in
Fig. 3.5 is observed where it is seen that multi-cluster fitting also yields the best TOA estimation
performance. It is remarkable that while the variations in the average fitting errors are relatively
small, the gain in TOA performance can be quite significant, especially in the mid to high SNR
range, i.e., between 15dB to 30dB, which is of great practical interest.

Fig. 3.7 shows the TOA estimation performance of the proposed multi-cluster fitting-based
method as a function of the SNR for different values of the number of frames N f . As expected,
the TOA estimation accuracy improves as the number of frames increases, due to the averaging
operation that reduces the effect of noise.

Next, we compare the proposed TOA estimator with the WMESS, DW-MESS [26] and ML
with Partial channel information (MLP) [27] estimators. Since these methods require a priori

knowledge of the APDP, we evaluate their performance with the true APDP (used to generate the
CM3 channels) and with the estimated APDP obtained using the proposed multi-cluster method
in Section 3.2. For a fair comparison, all the methods use the same sub-Nyquist sampling period
of 0.5ns. The window length for the reference methods is set to 120ns, which is equal to the
channel delay spread τds. The other parameter values are the same as for the proposed method.
Fig. 3.8 shows the performance of the 4 methods under consideration as a function of the SNR.
We can see that the proposed method achieves a better accuracy than the previously proposed
methods when the latter use the estimated APDP. Even when they use the true APDP, the pro-
posed method outperforms WMESS and performs closely to the other two methods at high SNR.

We also investigate the behavior of the proposed approach under low levels of IFI. To this
end, we consider an extended version of the CM5 channel model of total duration τds = 280ns,
which now exceeds the frame duration T f = 200ns. The tail portion of the response that extends
over the next frame, consisting of the paths with delay in excess of 120ns, is linearly scaled so
that its energy E2 is equal to a given percentage of the energy E1 within the frame, as represented
by ρ = E2/E1. The comparative results obtained with the various sub-Nyquist TOA estimators
under consideration in this study, are presented in Fig. 3.9, which shows the RMSE of the TOA
estimates as a function of ρ at an operating SNR of 25dB. If the level of IFI level is not too
large, all the sub-Nyquist estimators can still work properly and maintain the same, or a slightly
degraded level of performance. However, when the IFI becomes too large, all the TOA estimators
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will degrade significantly.
Finally, Fig. 3.10 compares the RMSE performance of the proposed TOA estimator as a func-

tion of the SNR when different time resolutions are used to obtain a finer estimate by searching
around the initial estimate D̂Tc. The CRB for TOA estimation derived in Section 5 is also shown
for reference. From this figure, we conclude that conducting a fine local search using a higher
sampling rate can significantly improve the estimation performance. However, this improvement
comes at a slightly higher implementation cost. Note that the performance can not reach the CRB
since the performance is still limited by the sub-Nyquist sampling; we will elaborate more on this
in the next chapter.
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Fig. 3.5 Average APDP fitting error versus SNR.

3.6 Conclusion

In this chapter, we proposed and investigated a joint sub-Nyquist ML-based estimator of the TOA
and APDP to UWB impulse radio applications. A parametric model was assumed for the APDP
and its parameters were estimated jointly with the unknown TOA by exploiting the interplay
between the ML and LS approaches. This is in contrast to previous sub-Nyquist methods which
require a priori knowledge of the APDP. Through simulations, we showed that the proposed
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TOA estimator has a good accuracy and can outperform earlier methods when using the same
estimated APDP. While the joint estimation of the APDP adds to the complexity, the increase
is still reasonable since all digital processing is done at the lower chip (sub-Nyquist) rate. The
accuracy of the proposed TOA estimator can be improved by fine search with a higher sampling
rate.
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Chapter 4

Joint TOA and AOA estimation in
multi-antenna IR-UWB systems

In this chapter1, we consider the problem of joint TOA and AOA estimation in IR-UWB systems.
To enable estimation of the latter, an antenna array is employed at the receiver side. This chapter
is organized as follows. In Section 4.1, the motivation for the work presented in this chapter is
discussed. In Section 4.2, we present the IR-UWB system model under study and formulate the
estimation problem in mathematical terms. In Section 4.3, we derive a general LLF expression
for this problem and expose the processing structure of the joint ML estimator of the TOA and
AOA. In Section 4.4, the CRBs for both TOA and AOA are derived for the proposed multipath
signal model. In Section 4.5, we discuss practical aspects related to the implementation of the
new estimator. Section 4.6 presents the methodology and results of the numerical simulation
experiments, including comparisons to the CRB. Finally, Section 4.7 concludes this chapter.

4.1 Motivation

In theory, the number of required readers for localization can be reduced if the AOA of the trans-
mitted pulses can be estimated jointly with the TOAs [72]. In this case, each tag reader must be
equipped with an array of antennas and have the capability to process their outputs coherently,
allowing for the extraction of spatial information from the observed wavefield. This is possible
if the antenna outputs are sampled at a sufficiently high rate to allow for the fine timing accuracy

1Parts of Chapter 4 have been presented at the 2013 International Conference on Acoustic, Speech and Signal
Processing [102].
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needed in coherent spatial processing. A multiple-antenna IR-UWB reader designed for AOA
estimation of the transmitted signal will therefore require a much higher level of sophistication
than a single-antenna reader performing basic TOA estimation. Nevertheless, considering re-
cent advances in the field of IR-UWB electronics, especially Analog-to-Digital (A/D) converter
and demodulator functionality [103], new algorithms with improved performance for the joint
TOA/AOA estimation of radio pulses with an antenna array become a real possibility.

Indeed, the literature review of AOA estimation methods presented in Chapter 1 revealed the
recent trend of jointly estimating TOA and AOA in order to improve estimation performance. In
the methods we have studied, it is common to estimate AOA based on the TDOA between the
installed antenna elements. Inspired by the same idea, in this chapter we propose a novel joint
estimator of TOA and AOA for a multi-antenna IR-UWB receiver based on the ML criterion. To
simplify its implementation, the proposed estimator consists of two steps: (1) preliminary esti-
mation of the TOA and the APDP; (2) joint refinement of the TOA and estimation of the AOA
by local maximization of a new LLF which employs the estimates from the first step. Besides
preliminary TOA estimation using energy-based threshold crossing, the first step includes the
estimation of the APDP using LS fitting to a decaying exponential model, which is not found in
prior methods. A key feature of the proposed approach lies in the choice of an original statistical
model, in which the primary pulse image and the superposition of the secondary images are rep-
resented by a deterministic component and a zero-mean Gaussian random process, respectively.
The latter is characterized by a wideband space-time correlation function, which uses a special
gating mechanism to represent the onset of the secondary paths (after the primary one) and takes
into account the APDP of the multi-path components. This model leads to a previously unknown
form of the LLF in step (2). Extensive simulation studies are carried out based on multipath
UWB channel models featuring diffuse and directional secondary image fields. In both cases, our
approach exhibits superior performance to that of a competing method from the recent literature.

4.2 Problem formulation

We consider a RFID localization system, as depicted in Fig. 4.1, in which a tag equipped with
a single antenna transmits an IR-UWB signal. The transmitted signal propagates in a multi-path
environment where it is reflected, scattered or diffracted by walls and other objects or surfaces. A
tag reader equipped with an antenna array acquires the propagating UWB signal, and estimates
relevant parameters (in our case, TOA and AOA), which will be used later for the tag localization.
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s(t) Tag (TX)

r0(t)

rQ-1(t)

r1(t)

Tag reader 

(RX)

Parameter

estimation

Fig. 4.1 RFID-based localization system.

As per the IEEE 802.15.4a standard, the parameter estimation is performed during the ranging
preamble of a synchronization header using a pulse train [92]. As in the previous chapter, the tag-
emitted signal s(t) consists of Nsym consecutive pulses and is given by

s(t) =

Nsym−1∑
j=0

a j
√

Ep w(t − jTsym), 0 ≤ t ≤ To (4.1)

where w(t) represents the transmitted pulse waveform, assumed to have finite duration [0,Tc]
and unit energy, and Ep denotes the transmitted energy per pulse. The pulse repetition period is
denoted by Tsym and the transmitted signal spans a total observation time of To = NsymTsym. For
the purpose of ranging, a known training sequence is adopted here, i.e., a j = 1, ∀ j.

The transmitted IR-UWB signal s(t) propagates along multiple paths that combine additively
at the tag reader, where a ULA of Q > 1 identical antenna elements is employed for signal
acquisition.2 Under the far field assumption, the wavefronts arriving at the receiver’s ULA along
different paths can be taken as planar. In particular, for the primary path (the first one in a LOS
environment), the TOA at the qth antenna can be written as

τq = τ + (q −
Q − 1

2
)∆τ, q ∈ {0, . . . ,Q − 1} (4.2)

2 The use of a ULA is assumed mainly for mathematical convenience; generalization of the proposed techniques
to other antenna configurations is conceptually straightforward.
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where τ denotes the TOA or propagating delay at the antenna array geometric center and ∆τ is the
TDOA between adjacent antennas. For a 2-dimensional geometry, the TDOA can be expressed
in terms of the AOA, θ, as

∆τ =
d
c

cos θ (4.3)

where d is the inter-antenna spacing and c is the speed of light.
The propagation channel between the tag and the tag reader’s antenna array is modeled as

a linear time-invariant Single-Input Multiple-Output (SIMO) system, with components Hq{·}

where q ∈ {0, ...,Q − 1}. In this work, we represent the channel response to the pulse wave-
form w(t) at the qth antenna as a superposition of two distinct components:

Hq{w(t)} = η(t − τq) + ζq(t) (4.4)

where η(t) represents the pulse image arriving along the primary path and ζq(t) represents the total
contribution (linear superposition) of the images received along secondary paths, i.e., excluding
the primary one. This signal structure is depicted in Fig. 4.2, where the duration of η(t) is shown
comparable to that of w(t), while that of the secondary images extends from around τq to τq +

τds, where τds is the delay spread of the channel. Note that there may be overlap between the
primary and secondary pulse images. In addition, we assume there is no interference between
successive pulses, i.e., τds < Tsym. In IR-UWB localization, s(t) has a low duty cycle of the order
of 1Mbits/s or less, while τds for a typical indoor channel is on the order of a few 100ns or less.
This assumption is therefore well justified from a practical standpoint and it is common in the
literature (e.g., [94]).

We model the primary pulse image η(t) as a deterministic signal, which may possibly include
some unknown (nuisance) parameters. A simple such description is η(t) = aw(t), where a denotes
a (real) path gain. However, more sophisticated filtering operations can be applied to model pulse
distortion resulting from the fine (time-unresolvable) structure of the channel or the receiver front-
end filters. In this setting, the filtering parameters will be deterministic but unknown, and can be
estimated jointly with the desired TOA and AOA.

The superimposed secondary pulse images ζq(t) are modeled as independent Gaussian random
processes with zero mean. Considering the dense indoor environments, we represent the space-
time cross-correlation of ζq(t) by

E[ζq(t)ζq′(u)] = σq(t)σq′(u)δc(t − u)%(q, q′) (4.5)
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ζq(t)

Hq{w(t)}

Tc

η(t-  q)

tTsym

q

Fig. 4.2 Decomposition of the multi-path channel response to transmitted pulse w(t)
into a sum of primary, η(t − τq), and secondary, ζq(t), components.

where δc(t) is the Dirac delta function, %(q, q′) is the spatial correlation and σ2
q(t) is the instanta-

neous power (level) of ζq(t). The use of δc(t − u) in (4.5) is motivated by the fact that the extent
of the temporal correlation for multipath components is usually very small [27, 99]. Regarding
%(q, q′), it has been observed that the spatial correlation decreases rapidly with the inter-antenna
spacing [104], and accordingly, we set %(q, q′) = 1 for q = q′ and 0 otherwise. The instantaneous
power level can be further represented by

σ2
q(t) = g(t − τq)P(t) (4.6)

where P(t) is the APDP and g(t) is a gating function. Specifically, the APDP models the decay
in the small-scale average power of the received pulse images as a function of the propagating
delay, for an impulse emitted at time t = 0 [66]. In this work, it is assumed that P(t) is a slowly
varying function of time relative to the pulse duration and travel time across the antenna array.
The gating function g(t) is introduced to model the onset of the secondary pulse images after the
primary one at t = τq and is assumed to satisfy the following conditions: g(t) = 0 for t ≤ 0, equal
to 1 for t ≥ Tc and monotonically increasing for 0 < t < Tc.

Finally, the noisy IR-UWB signal received at the qth antenna at time t, after multipath propa-
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gation, can be expressed as

rq(t) = Hq{s(t)} + nq(t)

= µq(t) + ξq(t) + nq(t), 0 ≤ t ≤ To (4.7)

where

µq(t) =

Nsym−1∑
j=0

√
Ep η(t − τq − jTsym) (4.8)

ξq(t) =

Nsym−1∑
j=0

√
Ep ζq(t − jTsym) (4.9)

and nq(t) is an additive noise term modeled as a spatially and temporally white Gaussian process
with zero mean and known power spectral density level σ2

n. We assume that the noise terms nq(t)
are statistically independent from the secondary pulse images ζq′(t).

We can now describe the problem considered in this chapter as follows: Given the observation
of the received antenna signals at the reader, that is {rq(t)} for 0 ≤ t ≤ To and q ∈ {0, . . . ,Q − 1},
we seek to jointly estimate the TOA and AOA parameters of the primary path, respectively τ and
θ in (4.2), which are needed for localizing the tag. A key feature of our proposed approach is
the formal consideration of distinct models for the primary pulse image η(t) and the combined
secondary images ζq(t), and especially the use of the space-time correlation function (4.5)-(4.6)
which incorporates the gating and APDP functions. This formulation will allow us to derive
a new ML estimator with improved performance, and gain a deeper insight into its operation.
While we shall consider the effect of unknown (nuisance) parameters of η(t) and ζq(t) on the
estimation process, our main interest lies in the estimation of the geometrical TOA and AOA
parameters. Appropriately, in our proposed approach, it will be sufficient to use educated guesses
of the functions η(t), g(t) and P(t) in order to benefit from the merits of the ML formulation. The
choice of these functions will be further discussed in Sections 4.5 and 4.6.

4.3 Joint maximum likelihood estimation

In this section, we first derive the LLF for the SIMO system model previously introduced. We
then formulate the joint ML estimator of the TOA and AOA parameters, which will play a key
role in our proposed scheme.
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In practice, the received antenna signals rq(t) are uniformly sampled at a rate Fs, which is
greater than or equal to the Nyquist rate. Therefore, we let t = nTs, where n is an integer and
Ts = 1/Fs denotes the sampling period which meets the Nyquist criterion for bandpass signals.
In addition, for the sake of simplicity, we assume that each pulse repetition period consists of
exactly M time samples, i.e., Tsym = MTs where M is a positive integer.

Let us represent the set of received antenna signals during the jth symbol by the vector func-
tion

r j(t) = [r0(t + jTsym), . . . , rQ−1(t + jTsym)]T (4.10)

where rq(t + jTsym) is given by (4.7) and discrete-time t ∈ T = {nTs : n = 0, 1, . . . ,M − 1} ⊂
[0,Tsym). In the absence of interference between adjacent pulses, with t restricted in this manner,
it follows from (4.8) and (4.9) that µq(t + jTsym) =

√
Epη(t − τq) and ξq(t + jTsym) =

√
Epζq(t),

respectively. Therefore, we can write

r j(t) = µ(t) + ξ(t) + n j(t) (4.11)

where we define

µ(t) =
√

Ep[η(t − τ0), . . . , η(t − τQ−1)]T (4.12)

ξ(t) =
√

Ep[ζ0(t), . . . , ζQ−1(t)]T (4.13)

n j(t) = [n0(t + jTsym), . . . , nQ−1(t + jTsym)]T . (4.14)

In the context of IR-UWB localization, the received pulse train is usually averaged to increase
the SNR. Leting x(t) = [x0(t), . . . , xQ−1(t)]T denote the symbol-averaged array output vector, it
follows from (4.11) that

x(t) =
1

Nsym

Nsym−1∑
j=0

r j(t) = µ(t) + ξ(t) + n(t) (4.15)

where the additive noise term n(t) = 1
Nsym

∑
j n j(t).

Invoking the Gaussian assumption on the secondary images and background noise processes,
it follows that x(t) is a Gaussian vector process with non-zero mean, E[x(t)] = µ(t), and Q × Q
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matrix auto-covariance function

Kx(t, u) = E
[(

x(t) − µ(t)
)(

x(u) − µ(u)
)T ]

= Kξ(t, u) + Kn(t, u) (4.16)

where, in turn, Kξ(t, u) = E[ξ(t)ξ(u)T ] and Kn(t, u) = E[n(t)n(u)T ] denote the auto-covariance
functions of ξ(t) and n(t), respectively. In these expressions, u is a discrete-time variable with the
same range as t. Using the expression (4.5)-(4.6) of the space-time cross-correlation function of
ζq(t), and taking into account the band-limited (i.e., anti-aliasing) filtering implicit in the uniform
sampling of the antenna signals, we obtain

Kξ(t, u) = Epδ(t − u) D(t)
1
Ts

(4.17)

where δ(t) is the Kronecker delta function3 and D(t) is a Q×Q diagonal matrix with qth diagonal
entry σ2

q(t). Meanwhile, we have

Kn(t, u) = σ2
n̄δ(t − u)IQ

1
Ts

(4.18)

where we define σ2
n̄ = σ2

n/Nsym and IQ is an identity matrix of order Q.
Let the unknown parameters under estimation be represented by the row vectorφ = [τ, θ,φη,φζ],

where φη contains the (nuisance) parameters associated with the pulse image from the primary
path, η(t), and φζ contains those associated with the pulse images from the secondary paths,
{ζq(t)}Q−1

q=0 . Also let x denote the complete set of symbol-averaged array output vectors available
for estimation, i.e., {x(t) : t ∈ T }. For the non-zero mean Gaussian signal model under consider-
ation in this study, the LLF of the observations can be expressed (up to a constant factor) in the
form [105]

ln Λ(x;φ) = −
1
2
(
l1(x;φ) + l2(φ)

)
. (4.19)

The two terms composing this expression are examined in detail below.
The data-dependent term l1(x;φ) is given by

l1(x;φ) =
∑
t∈T

∑
u∈T

(x(t) − µ(t))T K−1
x (t, u)(x(u) − µ(u)) (4.20)

3That is, δ(nTs) is equal to 1 for n = 0 and to 0 for all integers n , 0.
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where the quantity K−1
x (t, u) denotes the inverse kernel of the auto-covariance function Kx(t, u) in

(4.16), and is obtained as the solution to the inverse problem:∑
u∈T

Kx(t, u)K−1
x (u, v) = δ(t, v), (t, u) ∈ T 2. (4.21)

For the special form of the auto-covariance function in (4.16), it can be verified that the
solution to (4.21) is given by:

K−1
x (t, u) = δ(t − u)Ts(EpD(t) + σ2

n̄IQ)−1. (4.22)

Substituting this expression in (4.20), and after further manipulations, we find that

l1(x;φ) = Ts

Q−1∑
q=0

∑
t∈T

[xq(t) −
√

Epη(t − τq)]2

Epg(t − τq)P(t) + σ2
n̄

. (4.23)

The second term in (4.19), l2(φ), is given by

l2(φ) = ln detK (4.24)

whereK is a Hermitian matrix of order MQ, composed of M2 blocks of size Q×Q, with Kx(t, u)
as its (t, u)th block. In the situation of interest here, due to the presence of the delta function in
Kx(t, u) (4.16)-(4.18), this term simplifies to

l2(φ) = Ts

Q−1∑
q=0

∑
t∈T

ln
[
Epg(t − τq)P(t) + σ2

n̄
]
. (4.25)

Given the set x of symbol-averaged array output vectors, the joint ML estimator of parameter
vector φ is obtained by maximizing the LLF ln Λ(x;φ) in (4.19), or equivalently:

φ̂ML = arg min
φ∈P

(
l1(x;φ) + l2(φ)

)
(4.26)

where l1(x;φ) and l2(φ) are given by (4.23) and (4.24), respectively, and P denotes the param-
eter space over which the search is performed. In practice, the search range for the TOA and
AOA parameters, τ and θ, will be restricted by geometrical considerations. This aspect is fur-
ther discussed in Section 4.5. Other limitations may apply to the search ranges of the nuisance
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parameters in φη and φζ when they are part of the estimation process.
It is worth noting that, for l2(φ), the inner sum over t is almost the same for the different

possible values of the unknown delay τ and differential delay ∆τ. Indeed, as long as the channel
delay spread is smaller than the pulse repetition period Tsym, the value of this term is almost con-
stant. Therefore, maximizing the data dependent term l1(x;φ) with respect to τ and θ becomes
our main consideration. This term dictates the signal processing operations that need to be per-
formed on the observed data x to obtain φ̂ML. Upon closer examination of (4.23), we note that
the ML processing is tantamount to obtaining, for each antenna index q, the best match between
xq(t) and

√
Epη(t − τq) during the initial period, while ensuring that the instantaneous power in

the residual signals xq(t)−
√

Epη(t − τq) conforms to the available a priori information about the
APDP. In the low SNR regime where Ep � σ2

n̄, the ML processor simply measures and seeks to
minimize the energy of the difference signals at the Q antennas over the symbol duration.

4.4 Cramer Rao Bound

As discussed in the previous section, of the four elements comprising the unknown parameter
vector φ = [τ, θ,φη,φζ] we are interested in just the first two, τ and θ. The first step towards
derivation4 of the CRB of τ and θ is to evaluate the FIM given by

J =

J11 J12

J21 J22

 = −

E[∂2 ln Λ(x;τ,θ)
∂2τ

]
E
[∂2 ln Λ(x;τ,θ)

∂τ∂θ

]
E
[∂2 ln Λ(x;τ,θ)

∂θ∂τ

]
E
[∂2 ln Λ(x;τ,θ)

∂2θ

] . (4.27)

First, we focus on entry J11 in (4.27). Using “prime” to denote differentiation w.r.t. time t, as
in, e.g., η′(t) =

∂η(t)
∂t , we have

∂ ln Λ(x; τ, θ)
∂τ

= −
Ts

2

Q−1∑
q=0

∑
t∈T

2
√

Epyq(t)η′(t − τq)
γ(t, τq)

−

(
yq(t)2

γ(t, τq)2 +
1

γ(t, τq)

)
∂γ(t, τq)
∂τ

]
(4.28)

4Although closed form expressions for the CRB of TOA and AOA estimation can be found in previous works
[106, 46], the CRB for the signal model considered here still needs to be investigated.



4.4 Cramer Rao Bound 77

where
γ(t, τq) = Epg(t − τq)P(t) + σ2

n̄ (4.29)

yq(t) = xq(t) −
√

Epη(t − τq) (4.30)

and
∂γ(t, τq)
∂τ

= −Epg
′(t − τq)P(t). (4.31)

Taking the derivative of (4.28), and applying the expectation operation, we can write J11 as

J11 = −E
[∂2 ln Λ(x; τ, θ)

∂2τ

]
=

Q−1∑
q=0

S q (4.32)

where we define

S q =
∑
t∈T

[Epη
′(t − τq)2

γ(t, τq)
+

1
2γ(t, τq)2 (

∂γ(t, τq)
∂τ

)2]Ts. (4.33)

To obtain (4.32) we used the fact that, according to the channel model described in Section II, we
have

E
[
yq(t)

]
= 0 (4.34)

and
E
[
yq(t)2] = γ(t, τq). (4.35)

Due to the slowly varying nature of the APDP and the fact that no signal power is received
at the very beginning and end of a symbol interval, it follows that, in practice, S q does not vary
appreciably with the antenna index. That is, S q ≈ S for all q, where we can write

S = SNR(S 1 + S 2) (4.36)

with

S 1 = Ts

∑
t∈T

η′(t − τ)2

1 + SNRg(t − τ)P(t)
(4.37)

S 2 =
Ts

2

∑
t∈T

SNRg′(t − τ)2P(t)2

(1 + SNRg(t − τ)P(t))2 (4.38)
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and we define SNR = Ep/σ
2
n̄. Therefore, we finally obtain

J11 = S Q. (4.39)

Performing similar calculations for the rest of the entries of the FIM, it is straightforward to
check that they share a common form, except for a multiplicative factor that accounts for the
relationship between τq in (4.2)-(4.3) and the specific combination of the parameters τ and θ

involved in each entry. In particular, we have that

J12 = J21 = −E
[∂2 ln Λ(x; τ, θ)

∂τ∂θ

]
(4.40)

= S
Q−1∑
q=0

∂τq

∂θ
= 0 (4.41)

and

J22 = −E
[∂2 ln Λ(x; τ, θ)

∂2θ

]
(4.42)

= S
Q−1∑
q=0

(
∂τq

∂θ
)2 = S

d2

c2 (sin θ)2Ψ (4.43)

where the last equalities in (4.41) and (4.43) follow from (4.2), and the constant Ψ is defined as
Ψ = Q(Q − 1)(Q + 1)/12.

Consequently, the CRBs of τ and θ are given by

CRB(τ) = J−1
11 =

1
S Q

(4.44)

and
CRB(θ) = J−1

22 =
c2

S d2(sin θ)2Ψ
. (4.45)

We can now make the following observations:

1. In the absence of secondary paths, g(t) = 0 and S reduces to

S = SNR
∫ Tc

0
η′(t)2dt. (4.46)
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In this case, (4.44) and (4.45) are identical to the conventional form of the CRB found in
the literature [106, 46].

2. In practice, the transmitted signal will be subjected to multipath, that is, g(t) , 0. If
there is overlap between the primary and secondary images (in which case, the overlapping
secondary images act as interference in the estimation), the denominator in (4.37) will
be larger than σ2

n̄ over a corresponding time interval. Therefore, the value of S 1 will be
reduced and, in turn, this will contribute to an increase of the CRB.

3. Recall that g(t) is used to characterize the onset of the secondary paths. Therefore, the
instantaneous power level of the secondary images, as given by σ2

q(t) in (4.6), provides
some information about the unknown delay τq through the function g(t−τq). In this respect,
a sharp transition in the term g(t) would contribute to an increase of the term S 2 in (4.38),
and thereby reduce the CRB.

4. Finally, we note that the achievable performance of both TOA and AOA estimators depends
on the pulse shape, SNR, total number of antennas Q and the number of symbol Nsym in
the observation period. While the analysis was carried out for a ULA, the use of a different
array geometry would also affect the performance.

These properties of the CRB shed additional light on the achievable performance level of joint
TOA/AOA estimators in the presence of overlapping primary and secondary images.

4.5 Practical implementation

According to the developments in Section 4.3, in order to obtain the joint ML estimates of the
unknown TOA and AOA parameters, we need to minimize the data dependent term of the LLF, as
given by expression (4.23). Assuming that the required a priori information about the APDP P(t)
and the primary pulse image

√
Epη(t) is available, this minimization can be performed in theory

by carrying a full 2D search over the set of permissible values for τ and θ. The computational cost
associated with a full search is, however, prohibitive and this approach is not feasible practically.
Instead, we consider a low-cost alternative, shown in Fig. 4.3, that consists of two steps: In the
first step, we perform a preliminary estimation of the TOAs τq, based on which we then obtain
suitable estimates of P(t) and

√
Epη(t). In the second step, using the obtained estimates, we find

the best combination of τ and θ that minimizes (4.23) via a simplified search strategy that takes
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Fig. 4.3 The implementation block diagram.

advantage of the preliminary TOAs along with localized time domain interpolation. The detailed
description that follows covers the following aspects of the proposed method: preliminary TOA
estimation, subsequent estimation of priori information (i.e., APDP and primary pulse image),
2D search of LLF for optimum parameters with interpolation, and finally, complexity analysis.

4.5.1 Preliminary TOA estimation

As with many other high-resolution techniques for joint TOA/AOA estimation of UWB signals,
our proposed approach will require a preliminary estimation of the unknown TOAs in order to
reduce the size of the search space and minimize the complexity of the final estimation. Several
low-complexity TOA estimators are available for this purpose from the literature. Among these,
energy detection approaches that do not require explicit knowledge of the pulse shape are well
suited for this task. In particular, a simple energy detector based on a threshold crossing (TC)
as in [32] can be adopted for this purpose. This technique can be applied at a single antenna or
independently at multiple antennae, followed by averaging of the multiple TOA estimates.

Specifically, in the TC-based method, the TOA estimate at the qth antenna is obtained as the
smallest value of time t for which the instantaneous power at the antenna output, x2

q(t), exceeds a
given threshold λ. That is

τ̂q = arg min
0<t<Tu

{x2
q(t) > λ} (4.47)

where Tu is the initial search range (uncertainty region) for the TOA. In our work, the value
of the threshold λ is adjusted experimentally to obtain the best TOA estimation performance,
considering the trade-off between the probabilities of false alarm and missed detection. Once
TOA estimates τ̂q are obtained for each one of the antennas, we can further compute a LS estimate
of τ as [49, 50]

τ̂LS =
1
Q

Q−1∑
q=0

τ̂q. (4.48)
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4.5.2 Estimation of a priori information

The required a priori information needed to implement the proposed joint ML estimator consists
of two elements, namely: the APDP P(t) and the primary pulse image

√
Epη(t). In practice,

this information may not be readily available and it therefore needs to be estimated before hand.
While this estimation can be done jointly with the desired TOA and AOA through the parametric
model introduced in Section 4.2, and especially the nuisance parameters φζ and φη, it may impose
a significant computational burden. In this work, to limit the processing complexity, we consider
an alternative approach in which the required a priori information is obtained separately through
simplified estimators. Still, as will be shown in Section 6, this is adequate to obtain significant
performance gains in the joint, ML-based TOA/AOA estimation. Below, we discuss in further
details the determination of P(t) and

√
Epη(t).

In the context of UWB propagation, the APDP is typically modeled as the superposition of
doubly-exponential decaying clusters with Poisson inter-arrival times, as per the Saleh-Valenzuela
model [6]. Here, we propose the use of a single decaying exponential, as given by

P(t) = βe−αt (4.49)

where α > 0 is the decay rate and β is the peak power level. To estimate the APDP, we propose
to fit the instantaneous power at the output of a selected antenna to this model. Let lo = bτ̂LS /Tsc

and L = bτds/Tsc respectively denote the LS estimate of τ and the maximum channel delay spread
in samples, with b·c being the floor function. We seek the choice of α and β that yields the best
fit between the segment of P0(l) = x0((lo + l)Ts)2 from l = 0 to L − 1, and the function βe−lα. As
in Chapter 3, we perform the curve fitting in the log domain using a weighted LS criterion, i.e.,

min
α,β

L−1∑
l=0

µl |ln P0(l) − (ln β − lα)|2. (4.50)

In this approach, the weight µl = 1 if there is a local maximum, i.e., P0(l− 1) < P0(l) > P0(l + 1),
and µl = 0 otherwise. This choice of µl allows us to include in the fitting only the local maxima,
as they are more likely to correspond to multipath components, and to mask out the noisy low
power data points. Denoting as β̂ and α̂ the solutions to (4.50), we obtain a preliminary estimate
of the APDP as

P̂(nTs) = β̂e−α̂(n−lo), n = 0, ...,M − 1. (4.51)
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where M = bT f /Tsc. We note that, the initial samples of P̂(t) are not critical in (4.23) since they
will be zeroed by the gating function g(t − τq). It is worth noting that, in Chapter 3, there is no
preliminary TOA estimation stage. The TOA is estimated together with the APDP, and therefore
the fidelity requirement for the APDP is higher, that is, a more sophisticated model that describes
well the clusters structure is needed. In the joint estimation considered here, the APDP is used
as part of a weighting function in the LLF (4.23), which in turn is used in the fine estimation
stage only. In general, we have found through simulations that the use of a single cluster model
is adequate to exploit the main benefits of this weighting mechanism. Therefore, for the sake of
simplicity in implementation, we have chosen to use a single exponential in modeling the APDP
in this work.

Due to local (small-scale) channel dispersion as well as the effects of the transmit and receive
filters, the shape of the primary pulse image η(t) will be distorted, when compared to the orig-
inally transmitted pulse waveform w(t). This distortion can be significant; we observed that for
the type of multipath channels under consideration in this work, the use of the known pulse shape
w(t) in place of η(t) does not give satisfactory results . Therefore, it is necessary to estimate the
scaled primary primary image

√
Epη(t) prior to carrying the search for the minimizers of (4.23).

To this end, we proposed to estimate this quantity simply as a time-shifted version of x0(t) over an
interval of duration Tc. Specifically, for each candidate values of τ and θ, we replace the function√

Epη(t) in (4.23) by √
Epη̂(t; τ0) = x0(t + τ0), 0 ≤ t < Tc. (4.52)

As will be demonstrated through simulations, this approach is robust to small-scale distortion and
leads to satisfactory performance in the absence of exact knowledge of the received pulse shape.

4.5.3 Parameter search and interpolation

With the assumed knowledge of the APDP P(t) and primary pulse image
√

Epη(t), the joint ML
estimator of the TOA τ and AOA θ can now be obtained as the minimizers

(τ̂, θ̂) = arg min
(τ,θ)∈P

l1(x; τ, θ) (4.53)

where the objective function is computed according to (4.23) andP is the set of permissible values
over which the 2D search is performed. The choice of the search space P is further discussed in
next part below.
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Once a local optimizer has been found, refined estimates of the desired parameters with im-
proved resolution can be obtained through a final interpolation of the objective function. That
is, the time dependent terms in (4.23) will be replaced by their interpolated versions and the 2D
search will be resumed with a finer step size near the previously found minimizer. In the sequel,
we refer to the refined search step as Tint, which is typically set to Ts/Kint, with Kint a positive
integer. In this work, we use interpolation based on quadratic polynomial fit, but other interpola-
tion methods could be used as well. The performance of the proposed estimator depends on the
final value of Tint, and in general, reducing the value of this parameter contributes to a decrease of
the estimator variance. However, the trade-off between accuracy and complexity should always
be considered.

4.5.4 Computationall complexity

An advantage of the proposed joint estimator of the TOA and AOA is the relatively moderate
computational complexity of its realization, as explained next.

In the first step, the main computation cost lies in the preliminary estimation of the TOA and
the APDP. According to the TC method, once a suitable threshold λ has been chosen in (4.47),
the TOA estimation cost is mainly dictated by the size of the search range, and is therefore upper
bounded by QbTu/Tsc, where Q is the number of antennas. The LS estimation of the APDP aims
to represent a set of power measurements by a straight line in the log domain, or equivalently,
a product Av, where A is a known matrix of size m × 2 (m < L) and v = [α, ln β]T is the
vector of unknown parameters. The efficient implementation of the LS method then involves the
QR factorization of matrix A, with a cost of 8m, followed by the computation of the unknown
parameters with a cost of 4m. Therefore, the total cost for the LS fitting is 12m, which is linear in
m.

In the second step, the main cost lies in the computation of the objective function (4.23) over
the two-dimensional search range of interest. According to our previous discussion and based on
further experimentation, we found that only a small search range is needed to obtain adequate
estimation results. In particular, the search for the TOA will be limited to K1 samples around the
previously obtained estimate τ̂LS , where K1 is a small integer. The search over θ will be limited
to a non-uniform set of K2 = 2bd/cTsc + 1 values given by θk = arccos(kcTs/d), where the range
of |k| ≤ bd/cTsc depends on the antenna separation and the sampling period.

Therefore, the two-dimensional search space consists of K1K2 points in total, where for each
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point, the evaluation of (4.23) requires 5QM numerical operations. We find that the complexity
of the 2D search is consequently less than 5K1K2QM operations per application of the algorithm.
In our experiments, typical values of the product K1K2 are on the order of 1000 or less, as will be
elaborated upon in the next section.

4.6 Numerical results

In this section, computer simulations are used to evaluate the performance of the proposed joint
estimator of the TOA and AOA, and the corresponding results are discussed. A recently proposed
scheme from the literature as well as the CRB are used as benchmarks in this evaluation. Also,
for completeness, results are presented for two different types of secondary image fields, i.e.,
diffuse and directional.

4.6.1 Methodology

We use a Gaussian doublet as the transmitted pulse w(t) with effective bandwidth B = 4GHz. The
other system parameters of interest on the transmitter side are chosen as follows: pulse duration
Tc = 0.5ns, pulse repetition period Tsym = 200ns and number of transmitted pulses Nsym = 1000.
The receiver is equipped with a ULA of Q ∈ {2, 3, 4} identical antenna elements, with inter-
element spacing d = 50cm, except for the the study in Fig. 4.7 where the antenna spacing is
varied. The nominal sampling rate at the receiver is Fs = 16GHz. The UWB radio channels are
generated using the models in the IEEE 802.15.4a standard [6]. To properly emulate the plane
wave propagation, spatial dependence should be introduced when an antenna array is employed
at the receiver. Accordingly, certain modifications are needed to account for this aspect. In
particular, we generate the channel response according to model CM1 (residential LOS) and then
add the spatial dependence to the model according to [107, 108]. That is, the AOA of each path
follows a Laplacian distribution with a cluster mean value uniformly distributed in a given range
and a standard deviation of 5◦ for each cluster.

For each Monte Carlo run, we synthesize a SIMO channel according to the above approach
and use it to generate the received antenna signals, to which we add white Gaussian noise at the
desired power level. This data is used to jointly estimate the TOA and AOA by means of our
newly proposed approach, realized in two steps as described in Section 4.5. In the first step, we
set the initial search range to Tu = 80ns, while in the second step, considering the above choices
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for the UWB setup, we use K1 = 17 and K2 = 55 in defining the size of the two-dimensional
search space (prior to interpolation). Regarding the gating function g(t) needed in the evaluation
of (4.23), in the absence of further a priori knowledge, we make the simplest possible choice
and use a unit step function with delay Tc. We compare our approach to the recently proposed
method from [50] as well as the CRB derived in Section 4.4. As described in Chapter 2, [50]
also estimated TOA of qth antenna through TC method. Similar to the proposed method, the
obtained TOAs are then used to estimate the TDOA and reference TOA. However, the last step
is quite different, the method in [50] only attempts to improve TDOA by maximize energy sum
using fine search over 1D interval while the proposed method minimizes the developed LLF
function using 2D fine search. The performance of the joint estimators of the TOA and AOA is
evaluated in terms of the root mean square error (RMSE), based on a sample size of 500 runs
using independent channels and additive noise realizations, and shown plotted as a function of
the SNR = Ep/σ

2
n.

4.6.2 Diffuse image field

This situation, which is the most typical case for UWB applications, occurs in dense, highly
reverberant environments, where a large number of secondary images impinge on the reader’s
antenna array from a wide range of directions. In our computer implementation of the SIMO
UWB channel, this configuration is achieved by selecting the mean AOA of each cluster from a
uniform distribution over the range [45o, 135o].

Fig. 4.4 compares the AOA estimation performance of our proposed method to that in [50]
for ULAs with Q = 3 and 4 antennas. While the AOA estimation accuracy of both methods
improves as the number of antennas increases, it can be seen that the proposed method achieves
a significantly better accuracy under the same choice of parameters. At high SNR, the attainable
RMSE value of the proposed method is only limited by the step size used in the ML search
(represented as the sampling limit in Fig. 4.4). To obtain the CRB value, in the CRB expression
(4.44) we use a gating function that linearly ramps up from 0 to 1 over the interval [Tc − Trise,Tc]
where Trise represents the overlap between the primary and secondary paths. More specifically,

g(t) =


0 t ≤ Tc − Trise

t−Trise
Trise

, Tc − Trise < t ≤ Tc

1, Tc ≤ t

(4.54)



86 Joint TOA and AOA estimation in multi-antenna IR-UWB systems

0 5 10 15 20 25 30
10−2

10−1

100

101

102

SNR (dB)

R
M

S
E A

O
A (d

eg
re

es
)

 

 
Q=4, Proposed method
Q=4, Ref. [50]
Q=3, Proposed method
Q=3, Ref. [50]
Sampling limit
CRB (Q=3, Trise=Tc/2)

Fig. 4.4 RMSE of AOA estimates versus SNR for different numbers of antennas
(Fs=16GHz).
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Fig. 4.5 RMSE of TOA estimates versus SNR for different numbers of antennas
(Fs=16GHz).

Results for TOA estimation in Fig. 4.5 also show a superior performance with the proposed
method.
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Fig. 4.7 RMSE of AOA estimates versus antenna spacing (Q=2, SNR=20dB).

Fig. 4.6 compares the AOA estimation performance of the proposed method with different
values of the step size in the interpolation, i.e., Tint = Ts/2 and Ts/4. It can be seen that when the
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resolution is finer (i.e., Tint is reduced), a better accuracy is obtained in the estimation. We note
that the performance gap between the CRB and AOA estimates is reduced when the resolution
is improved, although at higher SNR, the time resolution will ultimately limit the achievable
performance. To show the effect on the achievable performance of the amount of overlap between
the primary and secondary images, we consider three values for the parameter Trise, namely,
2Tc/8, 3Tc/8 and 4Tc/8. It is seen that when the overlap between the primary and secondary
images is decreased, corresponding to a smaller value of Trise, a small reduction is obtained in the
CRB. However, the performance is still bounded by the resolution which, as we know, is decided
by minimum search size. A small error in time domain will produce a transversal error of several
degrees in angle.

Fig. 4.7 shows the AOA estimation performance of the proposed method for different values
of the antenna spacing d between two adjacent antenna elements. As d increases, the RMSE
of the AOA estimates decreases, as expected. In particular, a notable gain in performance is
achieved when the spacing is increased from 10 to 60cm. Beyond this value, other effects such
as the loss of spatial correlation over the primary path wavefront, would limit the estimation
accuracy in practice.

The relationship between accuracy in spatial localization and TOA/AOA measurement is dis-
cussed in terms of the CRB in [11]. The CRB formulas provided in this chapter can be used to
compute the improvement in localization accuracy that result from the smaller estimation RMSE
with our proposed approach as compared to [50]. However, this requires the specification of an
explicit operating configuration in terms of the number and position of the receivers, number
of antennas, etc. Here, we shall limit our discussion of this issue to a simplified scenario, that
is: single receiver equipped with Q=3 antennas, source node located along the array broadside
(θ = 90o) at a distance of 4m from array center, and SNR=10dB. For this configuration, the
RMSE values in Fig. 4.6 and 4.7 translate into a radial and tangential localization RMSE of
1.5cm and 6cm for the proposed method, versus 3cm and 17cm, respectively, for [50].

4.6.3 Directional image field

A limiting case of interest is that of a highly directional image field, in which all paths are arriving
from almost the same angle, within a very narrow aperture. This could be the case in a LOS
environment, where the emitting tag is surrounded by multiple reflecting objects in its immediate
vicinity. In our simulations, to emulate this configuration, we simply set the mean angle of
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Fig. 4.8 RMSE of AOA estimates versus SNR for directional and diffuse secondary
image fields (Q=2).

each cluster to the same value, i.e., 60◦. As before, the AOA of each path follows a Laplacian
distribution with standard deviation of 5◦.

Fig. 4.8 shows the performance of both the proposed method and the one in [50] under this
special condition of propagation. Comparing these results with those for the diffuse image field,
we note that the AOA estimation accuracy of both methods is degraded. This is due to the fact that
it is now more difficult to exploit the spatial information to separate the primary image path from
the secondary ones. Nevertheless, in this more challenging scenario, the proposed estimator still
outperforms the one in [50]. Similar conclusions can be drawn from the results of TOA estimation
shown in Fig. 4.9.

4.7 Conclusion

In this chapter, we proposed a novel joint TOA and AOA estimator for dense multipath UWB
environments. The proposed method consists of two steps: (1) preliminary estimation of the TOA
and required a priori information; (2) joint estimation of the TOA and AOA by maximization
of a new LLF which employs the preliminary estimates from the first step. The derivation of
this LLF relies on a special formulation in which the superposition of pulse images from the
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Fig. 4.9 RMSE of TOA estimates versus SNR for directional and diffuse secondary
image fields (Q=2).

secondary paths is modeled as a Gaussian random process characterized by a wideband space-
time correlation function which uses a gating mechanism to represent the onset of the secondary
paths and also takes into account the APDP.

In simulation experiments based on multipath UWB channel models, our approach exhibits
superior performance to that of a competing scheme from the recent literature. For a typical
UWB environment based on the standard CM1 channel model and diffuse image field, with 2
antennas spaced 50cm apart, a SNR of 10dB and a sampling rate of 16GHz, the proposed joint
estimator can provide an angular accuracy around 0.7◦ and a timing accuracy of less than 0.1
ns (corresponding to 3cm in range). Furthermore, the estimation accuracy improves with finer
interpolation of the LLF as well as by increasing the number of antennas. The proposed estimator
was also tested in an extreme case of highly directional noise field, where the obtained estimation
accuracy remains competitive both for TOA and AOA parameters.
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Chapter 5

Joint TOA and AOA Estimation in the
presence of Multi-User Interference

In this chapter, the problem of joint estimation of the TOA and AOA in IR-UWB localization
systems under the presence of MUI is modeled and discussed. A preliminary motivational dis-
cussion for this approach is provided in Section 5.1. In Section 5.2, we explain how the system
model can be introduced in the multiuser context, by considering the MUI as background noise.
The proposed joint estimation method is presented in detail in Section 5.3. Section 5.4 demon-
strates the performance of the method using numerical experiments. Finally, in Section 5.5, a
short conclusion is given.

5.1 Motivation

While most of the current works focus on TOA and AOA estimation in single-user systems, in
the context of multiuser systems the parameter estimation for user of interest would be much
more challenging due to the presence of interfering signals from undesired users. In [109], the
authors derive a Ziv-Zakai lower bound for TOA estimation in the presence of MUI for single-
path AWGN channels. However, the single path assumption severely limits the applicability
of the derived results to realistic multipath channel scenarios. To the best of our knowledge,
joint TOA/AOA estimation of IR-UWB signals in the presence of MUI has not been previously
considered. Therefore, we attempt to fill this gap by proposing a practical low-complexity, yet
highly accurate joint TOA/AOA estimator for a desired user whose signal is corrupted by MUI.
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The work in the chapter is an extension of the the work presented in Chapter 4 to the multi-user
case. The proposed method now includes 3 steps: (1) Time-alignment and averaging to reduce the
effect of MUI; (2) preliminary TOA estimation based on energy detection followed by quadratic
averaging; (3) joint TOA and AOA estimation using a LLF extended to consider the effect of
MUI. The performance of the proposed method is demonstrated by numerical simulations.

5.2 Problem formulation

r0(t)

rQ-1(t)

rq(t)

Tag reader 

(RX)

Parameter

estimation

User 0s0(t)

User ksk(t)

User K-1sK-1(t)

0

0 0

0,q…

…

…

…

Fig. 5.1 Multiuser localization system.

We consider a multiuser localization system as depicted in Fig. 5.1, with K active users (tags)
each equipped with a single antenna transmitter, and a receiver (tag reader) equipped with an
antenna array. We are interested in the localization of a single user of interest, say user 0, in the
presence of MUI.

The IR-UWB signal sk(t) transmitted by user k ∈ {0, . . . ,K − 1} is composed of Nsym con-
secutive symbols of duration Tsym, each of which consists of N f frames of duration T f (i.e.,
Nsym = N f T f ) . Each frame is further divided into Nc chips of length Tc (T f = NcTc) where each
chip consists of Np pulse periods of duration Tp (Tc = NpTp). Within the jth frame of the ith
symbol, a single unit-energy pulse w(t) of length Tp is transmitted in the chip identified by the
unique TH code ck( j) ∈ {0, . . . , cmax} assigned to user k. In practice, the maximum code value
satisfies cmax < Nc − 1 to allow for guard intervals between successive frames and thereby avoid
inter-frame interference (IFI) in the signal reconstruction process, as discussed later in Section
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5.3. The pulse position is further modulated by a known training sequence ak(i) ∈ {0, . . . ,Np−1},
adopted by user k for the purpose of ranging.

Hence, over the observation interval of length To = NsymTsym, the signal sk(t) is described by

sk(t) =

Nsym−1∑
i=0

N f−1∑
j=0

√
Ek w(t − iTsym − jT f − ck( j)Tc − ak(i)Tp) (5.1)

where Ek is the transmitted energy per pulse of the kth user.
After multipath propagation, the transmitted signals are acquired at the tag reader by a ULA

of Q ≥ 1 identical antenna elements.1 Under the far field assumption, the TOA at the qth antenna
of user 0’s signal through the primary path, i.e., the first path in a LOS environment, can be
written as

τ0,q = τ0 + (q −
Q − 1

2
)∆τ0, q ∈ {0, . . . ,Q − 1} (5.2)

where τ0 denotes the TOA at the antenna array geometric center and ∆τ0 is the TDOA between
adjacent antennas. For a 2-dimensional (2D) geometry, the TDOA is related to the AOA, θ0, by
∆τ0 = d

c cos θ0 with d denoting the inter-antenna spacing and c the speed of light.
The multipath channel between the kth user and qth antenna element is represented byHk,q{·},

with k ∈ {0, ...,K − 1} and q ∈ {0, ...,Q− 1}. The response to the emitted pulse w(t) of the channel
between user 0 and the qth receive antenna, is modeled as the superposition

H0,q{w(t)} = η0(t − τ0,q) + ζ0,q(t) (5.3)

where η0(t) denotes the pulse image arriving along the primary path and ζ0,q(t) represents the
total contribution of the images received along secondary paths, i.e., excluding the primary one.
We model the primary pulse image η0(t) as a deterministic signal and the secondary pulse im-
ages {ζ0,q(t)}q as independent Gaussian random processes with zero mean and cross-correlation
function

E[ζ0,q(t)ζ0,q′(u)] = g(t − τ0,q)P(t)δc(t − u)δq,q′ . (5.4)

In (5.4), P(t) is the average power delay profile (APDP) of the wireless channel, δc(t) is the
Dirac delta function, δqq′ is the Kronecker delta function, and g(t) is a gating function used to
characterize the onset of the secondary images (after the primary one) [102]. In this work, we set

1Here, a ULA is assumed for mathematical convenience, but generalization to other antenna configurations is
straightforward.
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g(t) = u(t − Tp), where u(t) denotes the standard unit step function.
The response to w(t) of the channel between an interfering user k and the qth receive antenna,

is modeled simply as

Hk,q{w(t)} = ζk,q(t), k ∈ {1, ...,K − 1} (5.5)

where ζk,q(t) represents the total contribution of the pulse images received along all paths, i.e., in-
cluding the primary one. We model {ζk,q(t)}q as independent Gaussian random processes with
zero mean and cross-correlation function

E[ζk,q(t)ζk,q′(u)] = P(t)δc(t − u)δq,q′ . (5.6)

Image components ζk,q(t) corresponding to different users (including k = 0) are assumed to be
statistically independent.

The noisy IR-UWB signal at the output of the qth receive antenna can be expressed as

rq(t) =

K−1∑
k=0

Hk,q{sk(t)} + nq(t), 0 ≤ t ≤ To (5.7)

where nq(t) is an additive noise term modeled as a spatially and temporally white Gaussian pro-
cess with zero mean and known power spectral density level σ2

n. The noise terms nq(t) are as-
sumed to be statistically independent from the pulse image component signal ζk,q(t).

The problem addressed in this letter can be stated as follows. Given the observation of the
received antenna signals at the reader, {rq(t) : 0 ≤ t ≤ To, q = 0, . . . ,Q − 1}, we seek to jointly
estimate the TOA and AOA parameters of the primary path, respectively τ0 and θ0 in (5.2) for
user 0, in the presence of interference from the other users k ∈ {1, . . . ,K − 1}.

5.3 Proposed method

The proposed method for joint parameter estimation consists of three main steps, as depicted in
Fig. 5.2. These can be summarized as follows: (1) symbol and frame alignment followed by
averaging to reduce MUI and white noise; (2) preliminary TOA estimation to narrow down the
search range; (3) joint fine estimation of TOA and AOA based on an ML criterion. Note that the
first step is very important in a multiuser environment; indeed, without a good MUI cancellation
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Fig. 5.2 Block diagram for proposed algorithm.

scheme, one cannot proceed to the next steps.

5.3.1 Frame alignment and averaging

First, the received signals rq(t) at each antenna q ∈ {0, . . . ,Q − 1} are time-aligned and averaged
according to the TH code and training sequence of user 0, which are known at the receiver side,
resulting into

xq(t) =
1

NsymN f

Nsym−1∑
i=0

N f−1∑
j=0

rq(t + iTsym + jT f + c0( j)Tc + a0(i)Tp), 0 ≤ t ≤ T f . (5.8)

As explained in Section II, each user k is assigned a unique TH identification code ck( j) and
training sequence ak(i). These sequences are used in the PPM scheme (cf. (5.1)) to shift the
transmitted pulses from user k at a specific location within each frame of each symbol. Since
these sequences are different for each user k and have a random character, when we time-align
the received signals within each frame of each symbol according to the TH code and training
sequence of user 0, c0( j) and a0(i), pulses from the interfering users k ∈ {1, . . . ,K − 1} will fall at
random locations within the different frames. Then, by averaging all time-aligned received data
frames, the effects of the MUI as well as the additive noise can be reduced to a certain degree.
In Fig. 5.3, we show the effects of time alignment and averaging. As can be seen in Fig. 5.3(a),
before the time alignment and averaging, the received signal during a single frame is similar to a
noise signal due to the MUI from other users and the background noise. After time alignment and
averaging according to the TH code and training sequence of the desired user, we can detect the
signal of interest as in Fig. 5.3(b). It is clear that in Fig. 5.3(b) both the MUI and white noise are
greatly reduced after the operation. In Fig. 5.4, we show the result of alignment and averaging for
each of four equipower users. It is clear that the process of decoupling the users’ signals based
on their unique codes is very effective: the actual TOA (indicated by a dotted line) is very close
to the signal onset time for each user.

We note that while the training sequences ak(i) are usually chosen randomly, the selection of
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Fig. 5.3 Effects of alignment.

the TH codes ck( j) directly affects MUI mitigation. In this regard, the choice of a well-designed
set of TH codes for the K users can greatly reduce the effect of MUI, and thus improve the final
performance of the parameter estimation. Also, by increasing the values of Nsym and N f , the more
effective is the averaging operation (5.8) in reducing MUI and noise.

Upon substitution of (5.7) into (5.8), and making use of (5.1), (5.3) and (5.5), we can express
the received signal at the output of the qth antenna, after averaging and time alignment for desired
user 0, in the form

xq(t) =
√

E0[η0(t − τ0,q) + ζ0,q(t)] + n̄q(t) + zq(t) (5.9)

where the MUI term zq(t) is given by

zq(t) =
1

NsymN f

K−1∑
k=1

Nsym−1∑
i=0

N f−1∑
j=0

√
Ekζk,q(t − τi, j,k) (5.10)

and n̄q(t) is a zero-mean white Gaussian noise with power spectral density level σ̄2
n = 1

NsymN f
σ2

n.
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The time shifts τi, j,k in (5.10), defined as

τi, j,k = (ck( j) − c0( j))Tc + (ak(i) − a0(i))Tp (5.11)

are bounded by |τi, j,k| ≤ T f − Tp. According to (5.10), zq(t) is a sum of multipath contributions
ζk,q(t) from the different users at the qth antenna, shifted by all possible values of the delays τi, j,k,
i.e., after proper alignment for desired user 0.

In this work, for simplicity, we model the summation of all the interference terms from other
users k ∈ {1, . . . ,K − 1} in (5.10) as a Gaussian distributed random process with zero mean,
but independent from the noise and desired signal. However, other assumptions such as the
generalized Gaussian approximation or the Gaussian mixture [110, 111] could be also explored.
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5.3.2 Preliminary TOA estimation

After obtaining the time-aligned array output signals {xq(t)}, a preliminary TOA estimation is
carried out for each antenna q. This step is used to alleviate the computational cost of the fine 2D
search for joint TOA/AOA estimation in the final step. To this end, any current TOA estimation
scheme for single antenna with satisfying performance can be adopted. In this work, we propose
to use a TC method because of its simplicity and robustness. In fact, our experiments have shown
that the use of more sophisticated methods, such as the DW-MESS in [26], do not necessarily
lead to noticeable performance improvements in this preliminary estimation step.

In the TC method, the TOA estimate at the qth antenna is obtained as the smallest value of
the time t, for which the instantaneous power of the time-aligned signal at the qth antenna output,
x2

0,q(t), exceeds a given threshold λ > 0. That is:

τ̂0,q = min
0<t<Tu

{t | x2
q(t) > λ} (5.12)

where Tu is the initial search range (i.e., uncertainty region) for the unknown TOA. The value of
the threshold λ in (5.12) can be selected by considering the trade-off between the probabilities of
false alarm and missed detection [32]. In this regard, we note that the noise variance now has to
be adjusted to account for the presence of MUI, an aspect which will be elaborated upon in the
next subsection.

Next, the preliminary TOA estimates τ̂0,q are averaged to obtain a single coarse estimate of
the TOA at the array geometric center, i.e., τ0 in (5.2). After comparing different approaches for
the calculation of a mean TOA value, we found that the quadratic mean, given by

τ̂0 =
1
Q

( Q−1∑
q=0

τ̂2
0,q

)1/2
(5.13)

achieved relatively better performance than other approaches. This can be explained by the fact
that outlier estimates resulting from the application of (5.12) tend to be negatively biased (i.e.,
smaller than the true delay), and the quadratic mean gives a lesser weight to these smaller values.

5.3.3 Refined joint ML-based estimation

In this third and final step, the preliminary TOA estimate (5.13) is used to initiate a fine search
for the TOA and AOA of user 0. This is achieved by maximizing a LLF based on the work in
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[102], but extended to take into account the presence of MUI in the scenario considered here. The
derivation of this extended LLF calls for the characterization of the random processes {xq(t)}.

According to the Gaussian assumption for the combined pulse images {ζk,q(t)}, the MUI in-
terference zq(t) and the equivalent noise n̄(t), as well as their assumed mutual independence, it
follows from (5.9)-(5.10) that xq(t) is also a Gaussian process, with non-zero mean

µq(t) = E[xq(t)] =
√

E0 η0(t − τ0,q) (5.14)

and covariance function

Rq(t, u) =E[(xq(t) − µq(t))(xq(u) − µq(u))]

=E0P(t)g(t − τ0,q)δc(t − u) + σ̄2
nδc(t − u) + Rzq(t, u) (5.15)

where Rzq(t, u) = E[zq(t)zq(u)] is the auto-correlation of the MUI interference. To complete the
characterization of xq(t) and proceed further with the application of the joint ML-based parameter
estimation, we need a reasonable approximation for this auto-correlation, and especially the MUI
power.

By making use of (5.10) along with the assumption that MUI contributions from different
users k are independent, Rzq(t, u) can be further expanded as

Rzq(t, u) =
1

(NsymN f )2

K−1∑
k=1

∑
(i, j)∈I

∑
(i′, j′)∈I

EkP(t − τi, j,k)δc(t − u − τi, j,k + τi′, j′,k) (5.16)

where we define I = {0, . . . ,Nsym − 1} × {0, . . . ,N f − 1}. At this point, we make an important
simplification in (5.16): referring to the two inner summations over the index set I, we shall
neglect cross-terms for which (i, j) , (i′, j′). Indeed, due to the random nature of the TH codes
ck( j) and training sequences ak(i), the delays τi, j,k will be different with high probability for the
different pairs of indices (i, j), and therefore the absolute delay differences |τi, j,k−τi′, j′,k| far exceed
Tp on average, which is the duration of the pulse waveform w(t) in our model. Then, following
the developments in [102], it can be shown that the corresponding peaks of the autocorrelation
function Rxq(t, u) bring no useful information in the joint TOA/AOA estimation problem under
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consideration, as their contributions to the LLF nearly vanish.2 Consequently, we can write

Rzq(t, u) '
(
E0P(t)g(t − τ0,q) + σ2

z (t) + σ̄2
n
)
δc(t − u) (5.17)

where σ2
z (t), the instantaneous power level of the MUI, is given by

σ2
z (t) =

1
(NsymN f )2

K−1∑
k=1

Nsym−1∑
i=0

N f−1∑
j=0

EkP(t − τi, j,k). (5.18)

The time delay variables τi, j,k in (5.15) account for the asynchronism between the different users,
frames and symbols. Due to the random nature of the TH codes ck( j) and training sequences
ak(i), it is reasonable to model the time differences τi, j,k in (5.15) as independent realizations of a
random variable υ with PDF f (υ). Hence, since the value of the product NsymN f is typically large
under the proposed scenario in this work, the law of large numbers can be invoked to obtain the
following approximation

1
NsymN f

Nsym−1∑
i=0

N f−1∑
j=0

P(t − τi, j,k) ' Eυ[P(t − υ)] =

∫ T f

−T f

P(t − υ) f (υ)dυ. (5.19)

Using (5.18) in (5.15) we finally obtain

σ2
z (t) =

P̄(t)
NsymN f

K−1∑
k=1

Ek (5.20)

where we define P̄(t) =
∫ T f

−T f
P(t − υ) f (υ)dυ.

Let x = {xq(t) : t ∈ [0,T f ], q ∈ {0, . . . ,Q − 1}} represent the complete set of observed data,
after time-alignment for user 0 and frame averaging, and define φ = [τ0, θ0] as the vector of the
unknown parameters being estimated. By proceeding as in [102], a closed form expression for
the LLF of x given the value of the unknown parameter vector φ, can be derived. This involves
passing to discrete-time by uniformly sampling the signals xq(t) at the Nyquist rate, making
use of the multi-dimensional Gaussian PDF expression for the resulting vector of time samples,
inverting the associated data covariance matrix, and finally converting back to continuous-time.

2 These peaks contribute additional terms of the type
∫ T f

0 α(t)x̄q(t)x̄q(t − δτ)dt to (21), where α(t) is a weighting
function, x̄q(t) = xq(t) − µq(t; τ0,q), and |δτ| > Tp, to the LLF in (21). For such values of δτ, this integral is nearly
zero as there remains no useful correlation between xq(t) and xq(t − δτ).
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After these operations, the desired LLF is obtained as

ln Λ(x,φ) = −
1
2

Q−1∑
q=0

(
l1,q(x;φ) + l2(φ)

)
(5.21)

where the data-dependent terms l1,q(x;φ) are given by

l1,q(x;φ) =

∫ T f

0

(
xq(t) − µq(t)

)2

E0P(t)g(t − τ0,q) + σ2
z (t) + σ̄2

n
dt. (5.22)

with τ0,q as defined in (5.2) in terms of the TOA τ0 and AOA θ0. During the calculation of l2(φ),
we found that its final value is almost constant for different choices of τ0 and θ0, as long as the
channel delay spread is smaller than T f .

The numerical evaluation of (5.21) requires the knowledge of µq(t) in (5.14), which in turn
depends on η0(t), i.e., the received pulse image from user 0 along the primary path. In practice,
the pulse shape η0(t) is unknown and must be estimated from the observed data along with the
desired parameters. Here, we proceed as in [102] and estimate µq(t) simply as a time-shifted
version of x0(t) over an interval of duration Tp. That is, for each candidate value of the unknown
TOA τ0,q in (5.2), we replace the unknown pulse shape

√
E0η̂(t) in (5.21) by x0(t + τ0,q) when

0 ≤ t ≤ Tp and by 0 otherwise. In addition, the evaluation of (5.21) also requires σ2
z (t), which

is given by (5.18). In practice, if the transmitted powers Ek are unknown, we can approximate
EkP(t−τi, j,k) in (5.18) by squaring the signal obtained through alignment and averaging using the
TH code and training sequence of the kth user.

Finally, the joint ML estimator is obtained by maximizing the LLF using a two-dimensional
fine search, as in:

φ̂ML = arg min
φ∈P

( Q−1∑
q=0

l1,q(x;φ)
)

(5.23)

where P denotes the parameter space over which the search is performed. In practice, the search
range for τ0 and θ0 is restricted by practical considerations. That is, the search for τ0 is limited to
a few chip intervals around the preliminary estimate τ̂0 in (5.13), while the search for θ0 is limited
by the antenna distance d and the sampling resolution of the available discrete-time signals.
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5.4 Numerical results

To demonstrate the validity of the proposed method for joint TOA/AOA estimation in the pres-
ence of multiuser interference, computer simulations under realistic operating conditions are car-
ried out and the corresponding results are discussed in this Section.

5.4.1 Methodology

We consider a K = 4 user system, with user 0 being the desired user. The main timing system
parameters are chosen as follows: Nsym = 32, Tsym = 512ns, N f = 4, T f = 128ns, Tc = 4ns
and Tp = 0.5ns. An optimal TH code set from [110, 111] is adopted in the simulations, specif-
ically: for the desired user c0( j) = [3, 2, 3, 6], and for the interfering users c1( j) = [7, 9, 1, 7],
c2( j) = [2, 0, 4, 2] and c3( j) = [9, 5, 7, 1], where j runs from 0 to 3. The training sequences are
created randomly for each user, i.e., the values of ak(i) are generated as independent and uni-
formly distributed random variables from the discrete set {0, . . . , 7}. The TH code and training
sequences are used to construct the IR-UWB pulse trains of the individual users by repetition of
a properly shifted Gaussian doublet pulse, with effective bandwidth B = 4GHz.

The UWB radio channels are generated using the CM1 channel model (i.e., residential, line
of sight) in the IEEE 802.15.4a standard [6] with a delay spread of 80ns. Spatial dependence
is incorporated into the propagation model according to the approach in [107, 108]. That is, the
AOA of each path follows a Laplacian distribution with a cluster mean value uniformly distributed
over the range [45o, 135o] and a standard deviation of 5◦ for each cluster. The receiver is equipped
with a ULA of Q = 3 identical antenna elements, with inter-element spacing d = 50cm, whose
outputs are sampled at the rate Fs = 16GHz.

The joint TOA/AOA estimation is realized by implementing the three-step approach presented
in Section III, with the following specifications. In the second step, the initial search range is set
to Tu = 48ns and the preliminary estimate τ̂0 in (5.13) is rounded to the nearest available time
sample, i.e., multiple of Ts = 1/Fs = 0.0625ns. In the third step, the gating function g(t) used in
the LLF (5.22) is simply set as a unit step function with delay Tp. The search range for the fine
estimation (5.23), which is limited by the sampling period Ts, consists of a regular grid of 17×55
points in the (τ0,∆τ0) plane with center at (τ̂0, 0). The performance of the proposed estimator is
measured using the root-mean-square error (RMSE), evaluated by averaging over 500 runs using
independent channels and additive noise realizations.
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5.4.2 Results and discussion

Fig. 5.5 shows the performance of the preliminary TOA estimation with respect to the number of
symbols Nsym, with the SNR = N f E0/σ

2
n of the desired user fixed at 15dB. Here, the RMSE is

also compared for different numbers of interfering users, with same power as the desired one, i.e.,
Ek = E0. When the number of interfering users is reduced from K − 1 = 3 to 0, the RMSE of the
preliminary TOA estimates decreases as expected. We also note that the estimation performance
becomes stable when Nsym reaches a value of 16, beyond which only marginal improvements are
obtained.

Results of the fine TOA estimation using the proposed joint estimator are presented in Fig. 5.6
as a function of SNR. In this case, Nsym = 32, K = 4, and the results are compared for different
values of the interference power, i.e., Ek = ρE0 where ρ ∈ {0, 0.5, 1, 1.5}. It is clear that the
fine TOA estimation from the joint ML estimation step achieves fairly high accuracy (mostly less
than 0.1 ns). In particular, comparing with the corresponding results in Fig. 5.5, we find that the
RMSE of the TOA estimation drops from 0.12ns following the preliminary estimation, to about
0.08ns after the fine search, for a net additional gain of about 3.5dB.

Fig. 5.7 compares the AOA estimation performance of the proposed method with different
MUI power levels. As in Fig. 5.5, the energies of the interfering users are set to larger, equal or
smaller than the energy of the desired user, accordingly. It can be seen that the AOA estimation
accuracy improves as the interference degrades. At SNR of 10 dB, the attainable RMSE value is
under 2 degrees for all the cases. When the interference user energy is 1.5 times that of the desired
user, the performance of the AOA estimation slightly degrades. This is reasonable because in this
case, the total energy level of the additive MUI amounts for 4.5 times (13dB) that of the desired
user in this worst case scenario.

5.5 Conclusions

In this chapter, we proposed a new three-step method for the joint TOA/AOA estimation of a
desired IR-UWB signal with an antenna array receiver, in the presence of multiuser interference.
In the first step, the received signals which consist of the linear superposition of all the user trans-
missions, are time-aligned according to the unique TH code and training sequence of the desired
user, which greatly reduces the power of unwanted MUI and additive noise. In the second step,
a preliminary TOA estimate is obtained via energy detection followed by non-linear averaging.
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K = 4).

In the third step, the final joint TOA/AOA estimation is achieved by maximization of a recently
proposed LLF through a fine 2D search over a smaller region delimited by the preliminary TOA.
This LLF, which relies on a special formulation of the desired user signal model that incorporates



5.5 Conclusions 105

0 2 4 6 8 10 12 14 16 18 20

10
0

10
1

SNR (dB)

R
M

S
E

A
O

A (
de

gr
ee

s)

 

 
E3=E2=E1=1.5E0

E3=E2=E1=E0

E3=E2=E1=0.5E0

E3=E2=E1=0

Fig. 5.7 RMSE of AOA estimates versus SNR for different MUI power (Nsym = 32,
K = 4).

a gating mechanism along with the APDP [102], is further extended to incorporate the effect of
MUI. Finally, simulation experiments are carried out that demonstrate the effectiveness of the
proposed method.
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Chapter 6

Conclusions and Future Works

6.1 Summary and conclusions

In this thesis, we designed and studied the properties of new low-complexity, yet accurate algo-
rithms for parameter estimation in IR-UWB systems, and this for both single user and multiple
users scenarios. The estimated parameters include the TOA and the AOA, which are the most
commonly employed parameters in UWB localization systems, as well as the APDP which pro-
vides important information about the UWB channel.

In the first chapter, we began by introducing the UWB technology and its applications from
a high-level perspective. This was followed by a literature review of different parameter esti-
mation methods with special emphasis on TOA and AOA, both for single user and multi-user
applications. The main objectives and research contributions of the thesis were then stated.

In the second chapter, the main focus was on presenting the necessary background informa-
tion on parameter estimation for IR-UWB localization systems. We first reviewed IR-UWB sig-
naling principles, including the choice of pulses, time-domain modulation and multiple-access
schemes. This was followed by a detailed description of the UWB channel model proposed
along with the IEEE 802.15.04a standard and based on the modified SV model. Since the sta-
tistical parameters of these models were obtained from practical measurements, they are favored
by many researchers and they were employed in the later simulations. The various geometrical
approaches for the localization of a UWB emitter based on the estimation of physical parameters
such as RSS, TOA, TDOA, AOA and hybrid combination thereof where then introduced. Finally,
selected methods from the literature for TOA and AOA estimation were reviewed.

Starting with the third chapter, we gave the detailed explanations of our own proposed meth-
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ods, which in each case were thoroughly evaluated and compared to other algorithms of the same
category as well as the CRB. In Chapter 3, we mainly studied the TOA estimation problem under
the single user, single antenna scenario. In particular, a new method for jointly estimating the
TOA and the APDP was developed that only required a sub-Nyquist sampling rate. While there
have been many works in this area during the past years, we were still interested in improving
the sub-Nyquist ML based approach since it has the potential to achieve the best performance un-
der the constraint of low sampling rate [22]. As we know, traditionally, the nuisance parameters
related to channel information are either estimated simultaneously with the TOA, which adds a
heavy burden on the algorithm, or simply assumed as available a priori knowledge. Noting that
neither of these approaches are practical for a real implementation, we decided to explore the use
of channel information in terms of APDP at low cost, by using some recently proposed channel
models. We assumed a multi-cluster parametric model for the APDP and estimated its parameters
via log-domain LS fitting; the estimated APDP was then used in conjunction with a ML criterion
to obtain the TOA estimate. By exploiting these parameterized APDP models, the computation
complexity now became practical due to the largely reduced number of unknowns. Meanwhile,
to further alleviate the computational burden, all the operations were performed at sub-Nyquist
rate. Consequently, we were finally able to achieve an accurate TOA estimation performance at
a low and practical cost. In addition, the effectiveness of estimated APDP was further verified by
applying it to earlier TOA estimation methods which also need to employ the APDP to fulfill the
final TOA estimation.

In Chapter 4, we studied the joint estimation problem of the TOA and AOA for a single user
assuming this time that an antenna array is employed at the receiver to enable the AOA estimation.
We focused on developing a joint ML-based estimator by exploring the spatial as well as the
channel information, still targeting a low computation cost. Unlike previous works, we brought in
an original formulation of the channel in which the impulse response is separated into two parts:
the primary pulse image and the superposition of images from secondary paths. The primary
pulse image was considered as deterministic while the secondary path images were modeled as
a Gaussian random process, whose second order statistical properties were characterized by a
wideband space-time correlation function. Taking advantage of this model, together with spatial
information, a novel form of the LLF was derived which incorporates a special gating mechanism
to represent the onset of the secondary paths. The LLF depends on both nuisance parameters
(APDP and primary pulse image) as well as the geometrical parameters to be estimated (TOA
and AOA). Therefore, if we can solve for the nuisance parameters, a simplified 2D search can be
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carried out to determine the unknown TOA and AOA. To implement this approach, we proposed a
specific method in two steps, that is: (1) a preliminary stage which involves the coarse estimation
of the TOA using energy-based threshold crossing, the APDP using log-domain LS fitting (which
can be easily obtained based on our previous work in Chapter 3) and the primary pulse image
using one of the received signals; (2) joint TOA refinement and AOA estimation by local 2D
maximization of a LLF which employs the preliminary estimates from the first step. A new CRB
based on the estimation variance of unbiased estimators of the TOA and AOA was derived based
on this LLF. Finally, according to the simulation results, the proposed joint estimator provided
a better performance than an existing benchmark algorithm by taking better advantage of the
channel as well as the spatial information.

As an extension of these contributions, Chapter 5 considered the problem of joint TOA and
AOA estimation under a multiple users scenario. Unlike the single user case, where we can op-
erate directly on the received signals, here we need to firstly isolate the signal of desired user out
of the received signal which bears much resemblance to noise due to the MUI. In our proposed
method, this task was fulfilled by making use of the TH code of the desired user, which is avail-
able at the receiver for multi-user access, as well as the unique training sequence assigned to this
user. Specifically, the TH code and training sequence were used in a first step to time-align and
average the sequence of time coded pulses emitted by the desired user. After reducing the effects
of MUI and noise in this manner, the remaining steps were similar to those of the single user.
Therefore, in a second step, preliminary TOA estimation based on energy detection followed by
quadratic averaging were applied and then, in the third and final step, joint TOA and AOA es-
timation were performed by maximizing a LLF. The latter was based on our previous work in
Chapter 4, but extended to consider the effect of MUI as an additive Gaussian noise term with
calculated power level. The performance of the proposed method in estimating TOA and AOA
was demonstrated through numerical simulations for a multi-user scenario where the near-far
problem was accounted for.

In conclusion, several new parameter estimation methods for the estimation of the TOA and
AOA parameters in IR-UWB localization systems were proposed and thoroughly investigated in
this thesis. We paid special attention to exploring and modeling the internal characteristics of
the UWB radio channel, especially the APDP and the spatial correlation properties, in order to
achieve a fine estimation of the geometric localization parameters. We employed the channel
statistics in a much simpler way, instead of using the full channel information (i.e., the channel
impulse response) as in previous work, which would have greatly increased the overall cost and
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complexity of the estimation algorithms. Our work showed that by properly exploiting a limited
amount of information about the channel, in the form of second order statistical properties, it
is still possible to improve the accuracy of the TOA and AOA estimation without excessively
increasing the computational complexity of the required processing. Comprehensive studies as
well as simulation experiments were conducted, which demonstrated the effectiveness of the
proposed methods.

6.2 Future work

The following topics have been identified during the development of this thesis, which deserve
particular attention for future research:

1. Experimental validation: Issues regarding practical hardware implementation of the pro-
posed estimators can be further studied, and the interpolation structure can be included as
well. While the experiments in this thesis are based on numerical simulations, it is worth
examining and verifying the proposed methods by means of a real experimental set up us-
ing off-the-shelf IR-UWB tags and special purpose tag readers (receivers) along with fast
DSP processors for off-line data processing and evaluation. For example, real measure-
ments can be conducted in an indoor open hall where several tags transmitting IR-UWB
pulses can be placed at different locations, whereas a tag reader employing a ULA array
with adjustable distance between antenna elements is fixed in a peripheral location. The
receiver should incorporate an assembly board of cascaded components, including anten-
nas, low-noise amplifier, fast A/D for sampling and data processing unit for parameter
estimation. In this respect it would be of interest to determine the effect of the A/D reso-
lution (i.e., number of quantization bits) on the achievable estimation performance of the
proposed estimator.

2. Directional image field: In terms of joint estimation, a more sophisticated spatial model
could be developed that more accurately represents the directional image fields encoun-
tered in practical applications. We have been able to observe that the performance of the
proposed as well as other existing estimation methods degrades notably in the presence of
a directional secondary image field, since the current signal model on which the estimators
are based is not designed for such extreme cases. As an alternative, we could consider
the necessary changes in the problem formulation part for the special case of a directional
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image field as it is believed that a more accurate, although more complex model would
bring benefit under the same framework. To be specific, this can be done by modifying the
space-time correlation function in (4.5), and especially the spatial component %(q, q′). Cur-
rently, there is no clear description for the space-time correlation of the channel response
at different antenna elements, especially for the extreme case of a very directional image
field. It is therefore worthwhile to develop new functional relations which can embody the
characteristics of such highly directional paths. Then, based on this generalized model of
the space-time correlation, a new (hopefully tractable) form of the LLF can be obtained and
the associated CRB derived as well. With the corresponding changes in the signal model
according to the spatial correlation properties of the radio environment, it is hoped that a
better performance in TOA and AOA estimation could be obtained with the newly derived
ML estimator.

3. Joint multi-user estimation: Finally, as mentioned previously, joint TOA and AOA estima-
tion under MUI is not well developed in the literature and we believe it is worth putting
more effort along this avenue. In our current work, we considered this joint estimation
problem for one specific user under different power levels of MUI. This can be extended
to a more sophisticated scenario where we attempt to perform joint multi-user parameter
estimation simultaneously. In fact, joint estimation of localization parameters of different
users may lead to a performance gain, since it can benefit from a better exploitation of the
incorporated signal structure. However, these benefits are likely to come at the expense of
many practical complications. For example, a joint multi-user parameter estimation implies
the use of a more complex form of the LLF, which would require much further work for
its derivation as well as for its implementation. In addition, the joint multi-user estimation
would require a high-dimensional multi-dimensional search in the final joint optimization
step. To alleviate the computation cost, it would be necessary to develop simplified or
more efficient search techniques, such as the ones used in current sequential interference
cancelation techniques. Of related interest is the derivation of the CRB on TOA and AOA
parameters for the joint multi-user estimation problems. Finally, the individual estimation
accuracy of the parameter estimates obtained with the joint multi-user approach would need
to be compared to the current work under the same system set up, to determine whether or
not this new formalism can bring sustainable performance gains.
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