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Abstract

Constrained Geometry catalysts make it possible to control independently
molecular weight (MW), molecular weight distribution (MWD), homogeneity of short
chain branching (SCB), and degree of long chain branching (LCB). This catalyst
technology provides us with a unique opportunity to study the effects of molecular
structure on the rheological behavior of polyethylene. In particular the effects of low
levels of long chain branching (LCB) have never been studied in commercial
polyethylenes, because it was impossible to vary the degree of branching while
maintaining the backbone molecular weight and molecular weight distribution using
traditional polymerization techniques.

Nine constrained geometry catalyzed and metallocene polyethylenes (together
referred to as mPE) with approximately the same MWDs but varying degrees of LCB
were subjected to an intensive study including linear viscoelastic behavior and nonlinear
shear and extensional flow behavior. Using these results, it was found that low levels of
LCB manifest themselves mostly in the linear regime and not in nonlinear extensional
flow behavior as was previously thought. LCB extended the relaxation spectrum to
longer relaxation times, increased the zero shear viscosity and the shear sensitivity, and
resulted in a complex viscosity curve that was slightly sigmoidal in shape. It was also
found that these branched materials followed the Cox-Merz rule and the Gleissle mirror
relations. Separable stress relaxation behavior was exhibited in step strain experiments
with increasing degree of LCB resulting in increasing damping. LCB increased the
nonlinearity in the fluids’ response to large amplitude oscillatory shear (LAOS). The~
damping functions determined from step strain experiments were consistent with
experimental data for steady simple shear and LAOS.

A study of the effect of molecular weight and short chain branching on the linear
viscoelastic behavior was also performed. A set of three additional linear mPEs with the
same polydispersities but varying average molecular weights was studied. The usual
exponential dependence of the zero shear viscosity on the molecular weight was found

with coefficient and exponent values consistent with previously reported results for
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polyethylene. To determine the effect of short chain branching a set of three butene
copolymers with the same polydispersity but varying degrees of SCB was included. It
was found that any effect of SCB on the LVE behavior was smaller than the variation in
the experimental data.

A procedure was developed for inferring the degree of LCB using linear
viscoelastic data and backbone MWD information. Such a procedure is particularly
important in the case of ethylene-octene copolymers for which it is difficult to measure
the degree of long chain branching using nuclear magnetic resonance techniques. This
technique was shown to be robust and not likely to give false predictions of LCB in the
case of linear materials. A method for evaluating the reliability of the predicted degree of

LCB that involves only complex viscosity data was also presented.



iv

Resumé

Aujourd’hui, les catalyseurs contraintes géométriques nous laissent controller
indépendamment le poids moléculaire (MW), la distribution du poids moléculaire
(MWD), I'homogéneité des ramifications courtes (SCB), et le degré des ramifications
longues (LCB). Cette technologie nous donne une occasion unique pour étudier les effets
moléculaires sur les propriétés rhéologiques du polyéthyléne. C'est surtout le cas pour
Ieffet du niveau de ramifications longues sur la rhéologie: avec les techniques de
polymérization traditionnelles, il était impossible de changer le degré de ramifications
sans altérer le poids moléculaire du tronc et la distribution du poids moléculaire.

Neuf polyéthylénes contraintes géométriques catalysés et metallocénes ont été
étudiés en cisaillement lin€aire, cisaillement non-linéaire, et en extension. Ces polyméres
avaient tous la méme distribution de poids moléculaires, mais avec des degrés différents
de ramifications longues. Dans cette étude, nous avons découvert que les bas niveaux de
ramifications courtes se manifestent dans le régime linéaire et non dans le régime
d'extension non-linéaire. On a découvert que les ramifications courtes elargissent le
spectre linéaire a des temps plus élevés, augmentent la viscosité a cisaillement nul,
augmentent la sensibilité au cisaillement et donnent une forme sigmoidale a la courbe de
viscosité. On a aussi demontré que ces matériaux suivent la régle de Cox-Merz et les
relations mirroirs Gleisse. La relaxation des contraintes aprés des deformations étagé est
séparable et on a observé qu'une augmentation du degré de ramifications longues
augmente l'amortissement. Le degré de ramifications longues a aussi augmenté la non-
linéarité de la réponse du fluide au cisaillement oscillatoire a grande amplitude.
L'ammortissement calculé a partir des deformations étagé était en accord avec les
résultats obtenus en cisaillement simple et en cisaillement oscillatoire a grande amplitude.

On a aussi étudié l'effet du poids moléculaire et du degré de ramifications courtes
sur le régime viscoélastique linéaire. Trois polyéthylénes & base de catalyseurs
metallocénes ont été utilisés. Ces polyméres ont tous la méme polydispersité mais
varient en poids moleculaire. On a mesuré une dépendance exponentielle de la viscosité

a cisaillement nul sur le poids moléculaire. Les valeurs obtenues pour le coefficient et



I'éxposant sont en accord avec celles publiées dans la littérature pour le polyéthyléne.
Pour déterminer I'effet des ramifications courtes, trois copolymeres de buténe avec la
méme polydispersité mais avec différents degrés de ramifications courtes ont été inclus
dans I'étude. On a trouvé que l'effet des branchements courts sur la viscoélasticité
linéaire étaient inférieur a la variation normale des résultats expérimentaux.

Une procédure a été congue pour déterminer le degré de ramifications longues a
partir des résultats viscoélastiques linéaires et des propriétés de la distribution
moléculaire du tronc. Cette procédure est particuliérement importante pour les
copolymeres éthylene-octéne, ot il est difficile de mesurer le degré de ramifications
longues en utilisant les techniques de résonance magnétique nucléaire. On a démontré
que notre technique est robuste et ne donne pas de prédictions fausses pour les matériaux
linéaires. Une méthode pour évaluer la fiabilité de la prédiction du degré de
ramifications longues est aussi présentée. Cette technique utilise seulement la viscosité

complexe.
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Chapter 1

Introduction to Metallocene Polyethylenes

In the past decade a new commercial class has been added to the traditional line-
up of polyethylenes that includes low density polyethylene (LDPE), linear low density
polyethylene (LLDPE), and high density polyethylene (HDPE). This new class, referred
to as mPE, contains materials that differ from traditional resins in terms of molecular
structure, melt rheological behavior and solid state physical properties. The general class
of mPE consists of constrained geometry catalyzed and metallocene polyethylenes.

mPEs are interesting from a commercial point of view because of their good
physical properties and the better control of molecular structure. Generally, mPEs exhibit
higher toughness, better optical properties, better heat-sealing characteristics and higher
crosslink efficiency" than traditional polyethylenes. For most mPEs, improved physical
properties come at the price of reduced processability, however, which is an important
factor when determining the utility of a polymer for a particular product.

Metallocene polyethylenes are interesting to rheologists because of their unique
and precisely controlled molecular structures (described in Section 1.2). Using these
materials it is possible to study independently the effects of various molecular
characteristics on rheological behavior. This type of study was impossible with
traditional polyethylenes.

In the present work, the relationship between molecular structure and melt
rheology of mPE is studied. The dependence of various rheological parameters on
molecular weight, short chain branching and long chain branching is described. Also, a
technique for inferring degree of LCB from rheological data is presented.
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1.1 Single Site Metallocene Catalysts for the Production of Polyolefins

Catalysts are said to be “single-site” when reactions can occur only at one place
on the catalyst molecule. Typically, single site metallocene catalysts are referred to as
“metallocene catalysts™ without mention of the number of active sites. Since it is
possible to have metallocene catalysts with multiple active sites this designation can be
misleading. However, as it is the accepted terminology in the literature and it is less
cumbersome we will use the term metallocene catalyst to mean single site metallocene
catalyst. Conventional Zieger-Natta catalysts used for the production of the polyethylene
have multiple active sites with different reactivity ratios for different olefins. The
multiple active sites result in a polymeric system that is a mixture of many kinds of
molecules. The single site catalysts offer much more control over the molecular structure
of the polymer.

Figure 1.1 shows the general chemical structure of the catalyst used by Dow
Chemical to produce its AFFINITY" resins?. This catalyst is a constrained geometry
catalyst. However, for convenience purpose the industry also calls this catalyst a
"metallocene" catalyst and the polymer made from this catalyst system, mPE. In this
figure the R’ groups contain up to 10 carbon atoms. The metal ion is the active site and is
surrounded by the rest of the catalyst complex in a constrained geometry. This feature
allows for precise and independent control of the molecular weight, homogeneity of short
chain branching and degree of long chain branching.

The polyethylenes produced with metallocene catalysts are called ‘metallocene
polyethylenes’ (mPEs). As with the catalyst, this is perhaps not the most accurate name
but is the accepted terminology in the literature. In this work, we use metallocene

polyethylene and mPE to refer to polyethylenes produced with single site catalysts.

* Trademark of the Dow Chemical Company
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Figure 1.1 Chemical Structure of INSITE* Metallocene Catalyst

1.2  Unique Molecular Characteristic of Metallocene Polyethylenes

In Figure 1.2 the molecular structures of traditional and metallocene
polyethylenes are shown schematically. Traditional linear polyethylenes, such as HDPE
and LLDPE, have broad molecular weight distributions (MWD), and in the case of
LLDPE, broad short chain branching distributions. The short chain branches (SCB) are
distributed non-uniformly along the backbones and heterogeneously among the
molecules®. These materials are said to be “linear” because they have no long chain
branches (LCB). They can be contrasted to LDPE, which has branches of many different
lengths distributed non-uniformly throughout the system.

In comparison, mPEs have narrow MWDs with polydispersity indexes of
approximately 2. In the case of ethylene a-olefin copolymers produced with metallocene
catalysts, the SCB are distributed randomly and uniformly along the backbone and
homogeneously among the molecules. Within the general class of metallocene
polyethylenes there are two subclasses: linear and branched mPEs. In this context

"branched" refers to the presence of long chain branches. The linear mPEs, have either
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no branches or only short chain branches but no LCB. The branched mPEs (AFFINITY
Resins) are made using the constrained geometry catalysts and have precisely controlled
low levels of LCB. These materials are referred to as substantially linear, to distinguish
them from highly branched LDPE.

The narrow MWD is the source of both the benefits and the disadvantages of
mPE. The narrow MWD allows the good physical properties characteristic of mPE*.
However, a narrow MWD also causes decreased shear thinning resulting in higher energy
requirements for processing. The low levels of LCB in the AFFINITY™ polymers
increase the amount of shear thinning and therefore improve their processability. The

LCB also increases melt strength and reduces susceptibility to melt fracture and draw

resonances.

Iraditional Polyethyienes Metallocene Polyethylenes

HOPE: Linear mPE:

—

o

s

Figure 1.2 Schematic of Molecular Structures of Different Polyethylenes

Branched mPE:
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1.3 Rheological Behavior of mPEs — A Review of the Current Literature

There has been considerable interest in mPE because of its superior physical
properties, but, as mentioned in the previous section, many linear mPEs are difficult to
process. Figure 1.3 compares qualitatively the processability of various types of
polyethylene®. In an effort to understand the processing behavior of mPE a number of
rheological studies have been performed with these materials. These studies are

summarized in this section.

Traditional

Traditional LDPE

LLDPE

Poor Good
processability T T T > processability

Narrow MWD  Narrow MWD  Bimodal MWD mPE
linear mPE branched mPE

Figure 1.3 Comparing the Processability of Traditional and Metallocene
Polyethylenes (Reference 6)

Lai and coworkers’ compared the shear rheology of linear and branched mPEs.
They found that the viscosity curves of all linear mPEs (with Mw/Mx = 2) could be

described by a master curve using the Cross Equation (Equation 1.1).

n__ vt [1.1]
n
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N, =3.65x10°t, [1.2]

where 1, (Poise) and 1, (s) result from nonlinear regression fits of the Cross Equation to
experimental viscosity data. They also found that branched mPEs do not follow the
master curve and that branched mPEs exhibit more shear thinning. The authors used the
master curve for the linear mPEs as the basis of a method to quantify the effect of LCB
on viscosity. They defined a parameter parameter, the Dow Rheology Index (DRI), that
is zero for linear mPEs and increases as the degree of LCB increases. The determination
of the DRI is described in Section 9.1.

Kim and coworkers" studied a number of traditional and metallocene
polyethylenes and compared their shear and temperature sensitivities. They observed
increased shear thinning behavior with level of LCB. They also found that mPEs are
thermo-rheologically simple over the temperature range 170°C to 250°C, in that the
Arrhenius Equation (shown below) can describe the effect of temperature on the

viscosity.

n(T) _ E.(1 1 3
T)*’[ R (?‘fﬂ 1

In Equation 1.3, E, is the flow activation energy, which is independent of temperature.
The authors found that branched mPEs have much higher activation energies than linear
mPEs. This means that branched mPEs are much more sensitive to temperature than
linear mPEs. They also found that for the materials they studied the activation energy of

linear mPEs is not affected by short chain branch length (i.e. type of comonomer).

Recently Vega and coworkers have compared rheological properties of some
traditional and metallocene polyethylenes™®. They studied various commercial HDPE
and LLDPE grades and some specially prepared mPEs. In their first publication they
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present some anomalous results’. They found that the zero shear viscosity of the mPEs
did not follow the same dependence on M,, as the traditional polyethylenes. The
traditional PEs followed Equation 1.4 using the coefficients determined earlier by Raju

and coworkers’. In this equation 1, has units of Pa.s.
n,(190°C)=3.4x10™"° (M, )’ [1.4]

However, they reported that the mPEs had higher zero shear viscosities than those
calculated using Equation 1.4. According to their results for the mPEs, the exponent in
Equation 1.4 was 4.2. They also found that in the temperature range of 140 to 210°C the
effect of temperature on the dynamic LVE data could be described by the Arrhenius
Equation (Equation 1.3) for both the traditional PEs and the mPEs. However, they found
that the mPEs had significantly higher activation energies than the traditional PEs.
Furthermore, they found that the relaxation spectra for the mPEs were significantly
higher at longer relaxation times than the spectra for the traditional polyethylenes.
Unable to explain these unusual results, the authors hypothesized that they were due to

the absence of short chain branches in the mPEs.

Shortly after the first publication of Vega and coworkers , Carella'” suggested that
the unusual observations for the mPEs were due to the presence of low levels of LCB. In
particular, increased zero shear viscosity, larger exponent for dependence on My (weight
average molecular weight), higher values of the relaxation spectrum at long times, and

higher activation energy for flow were cited as characteristic of LCB.

Vega and coworkers then published additional data following the same trend as in
their 1996 results, which they now attribute to low levels of LCB®. They also defined a
LCB index that can be calculated from flow activation energy. It is important to note that
the presence of LCB in their original samples was not supported by their carbon-13 NMR
measurements (an analytical technique for detecting branching described in Section 2.2).
It is unlikely that LCB were formed during the polymerization process that the authors
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the presence of LCB in their original samples was not supported by their carbon-13 NMR
measurements (an analytical technique for detecting branching described in Section 2.2).
It is unlikely that LCB were formed during the polymerization process that the authors
described and two other explanations for the rheological behavior observed by Vega and
coworkers are: incomplete removal of co-catalyst residues, and/or cross-linking during

sample molding or LVE measurement. Further work must be done to resolve this issue.

In 1997 Wasserman presented a technique for evaluating the processabilty of
mPEs using dynamic LVE data'!. The author defines the RSI (relaxation spectrum
index) that is a measure of the breadth of the relaxation spectrum (Equation 1.5).

RSI=&£-
A

1

where : [1.5]

Zgi/ki ¢ Zgi

Higher values of the RSI correspond to better processing behavior. The author presents

results for two sets of mPEs. The first set, known as “High Performance mLLDPE”, has
RSI values ranging from 1.5 to 7. The second set, “Easy Processing mLLDPE”, has RSI
values in the range of 2 to 65. The author attributes the higher RSIs in the second set to

differences in molecular structure but does not describe these differences.

Koopmans'? compared the linear viscoelastic behavior of four polyethylenes,
including an LDPE, an LLDPE and two branched mPEs. All four resins had
approximately the same melt index (MI) and density. The author found that the complex
viscosity of the LLDPE was significantly different from those of the other three resins
(which were all very similar). In particular, he found that the branched materials had
higher zero shear viscosities and exhibited more shear thinning than the linear material.
The author also noted that there is a significant difference between the loss angles of the
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branched materials and those of the linear materials. Thus the branched mPEs exhibited
linear viscoelastic behavior that was closer to that of an LDPE than an LLDPE.

1213 Ramanathan

Very few extensional flow data have been published for mPEs
and coworkers' used flow visualization experiments to compare the behavior of an
LLDPE, a linear mPE and five branched mPEs in a 4:1 abrupt contraction. They found
that for extension rates between 1 and 10 s™', extension thinning increases as the degree of
LCB increases. The linear materials did not exhibit extension thinning in the range of
rates studied. Koopmans performed uniaxial extension experiments at extension rates
below 1 s™! using the extensional rheometer described in Chapter 7 for the resins
discussed in the preceding paragraph. He found that the LLDPE exhibited essentially no
strain hardening behavior, which is defined as an increase in the tensile stress growth
coefficient over the linear viscoelastic response, whereas the branched materials (LDPE
and two mPEs) exhibited strain hardening at all the extension rates studied. The strain
hardening behavior of all three branched materials was qualitatively and quantitatively
similar, leading to the conclusion that at low extension rates, the branched mPEs act more

like LDPEs than LLDPEs.
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Chapter 2

Background Information on Long Chain Branching

Long chain branching (LCB) is an important aspect of the molecular structure of
mPEs. Its presence improves processability without adversely affecting the good
physical properties of the final product. In the present work the rheological behavior of
several mPEs, including both linear and branched materials, was studied. A summary of
the current literature discussing the effect of LCB on rheology is presented in Section 2.1.
The various rheological properties are defined in later chapters (e.g. linear viscoelastic
properties are defined in Chapter 5. Linear Viscoelasticity). In Section 2.2 analytical
techniques for quantifying LCB are described.

2.1 The Effect of LCB on Rheological Behavior

The presence of long chain branches can result in complex rheological behavior
that cannot be explained simply by the additional molecular weight due to the branches.
Furthermore, the degree, length, and structure of the branching all affect the rheological
behavior in various ways. Studies of the effect of LCB on rheological behavior are
further complicated by a variation in molecular weight distribution, since it is often
impossible to control independently these two characteristics. Because of these
complications and the fact that much work in this area has been based on comparing
resins that are different in more than one aspect of molecular structure, we do not have a
clear understanding of the effect of LCB on rheological behavior of commercial
polyolefins. However, there has been a significant amount of work done with model
polymers such as stars or combs (Figure 2.1), which have very narrow molecular weight
distributions and uniform structures. Comprehensive summaries of these studies have

been presented by Bersted' and by Gell and coworkers®.
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Star Potymer Coms Polymer

Figure 2.1 Schematic Diagram of Model Branched Polymers

Commercial, branched polymers are typically randomly branched, which means
that the idea of a molecule consisting of a backbone with branches distributed along it is
not useful, and it is very difficult to make meaningful comparisons among randomly
branched materials. Studies of such materials involve either introducing controlled
degrees of random LCB to make “model” polymers or the use of analytical methods to
characterize the molecular structure of whole polymer systems, which are then compared.
Both of these approaches are less than ideal and care must be taken when interpreting the
results.

2.1.1 Zero Shear Viscosity

The dependence of the zero shear viscosity on degree of branching is not
straightforward. For star polymers the zero shear viscosity of a branched material is
generally lower than the zero shear viscosity of a linear material of the same molecular
weight. However at molecular weights around 10° the zero shear viscosity of the star-
approaches and may even exceed that of a linear material of the same molecular weight'.
The effect of LCB in star polymers below a certain critical molecular weight can be
explained by the adjustment for molecular size using the g parameter, as shown below.
Above this critical molecular weight, the zero shear viscosity of the star is higher than the

zero shear viscosity of a linear material with the same molecular size (gMw).

n, =k(gM ) [2.1]



Chapter 2. Background Information on Long Chain Branching 13

In this equation g is the ratio of the mean squared radius of gyration of the branched
molecule to that of a linear molecule with the same molecular weight and k and « are
constants. For linear materials g is, by definition 1 and it is less than 1 for branched
materials. For regular stars g is given by Equation 2.2

[2:2]

where f is the number of arms. Above the critical molecular weight, when Equation 2.1
fails, the zero shear viscosity is described by Equation 2.3, where I is the viscosity

enhancement factor which can be estimated with Equation 2.4.

n, =k(gM )°T [2:3]

M
'=xK AT 2.4
bex{ M, ] [2.4]

In Equation 2.4, M, is the molecular weight between entanglements. Depending on the

values of g and I the zero shear viscosity of a branched material can be either higher or
lower than the zero shear viscosity of a linear material at the same molecular weight.
Therefore, when studying the effect of LCB on the rheological behavior, it is necessary to

compare materials of similar molecular size (gM,,) rather than similar molecular weight.

Graessley and coworkers? studied a series of solutions of star branched
polyisoprenes with various molecular weights. Their results for 4 arm stars are shown in
Figure 2.2. Viscosity enhancement clearly occurs for the branched materials at the higher
molecular sizes, whereas at the lower molecular sizes the data for the linear and branched

materials superpose.
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Raju and coworkers demonstrated the effect of branch or arrn molecular weight,
M., on the viscosity enhancement of symmetric stars* of hydrogenated polybutadiene.
The exponential relationship of Equation 2.4 was found to describe accurately the

dependence of viscosity enhancement on branch molecular weight (Figure 2.3).

1.E+09

1.E+08 1

1 E+07 Filled symbois are data for linear
n -E+07 1 | materials and open symbols are .
—= data for branched materials
Cls 1.E+06 ]

1.5 4 £+05
1.E+04 ;
1.E+03

1.E+02

1.E+01
1.E+03 1.E+04 1.E+05 1.€+06

cMug

Figure 2.2 The Relationship between Zero Shear Viscosity and Molecular Size for
Solutions of 4 Arm Polyisoprene Stars
(Data taken from Ref. 3, units of viscosity are Poise, units of concentration are g/em®)
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Figure 2.3. The Effect of Arm Molecular Weight on the Viscosity Enhancement of
Symmetric Star Polymers
(Data taken from Reference 4)

More recently, Gell and coworkers? studied a series of asymmetric 3 arm star
polymers to evaluate the effect of branch length on the rheological behavior. The
molecular characteristics of these Poly(ethylene-alt-propylene)s or PEPs are given in
Table 2.1. The dependence of the zero shear viscosity on molecular size is shown in
Figure 2.4. For the asymmetric stars, g was calculated as for symmetric stars, i.e. for all
stars g was assigned a value of 0.78. The relationship between 1, (at 100°C, Poise) and
M,, for linear PEPs is given by Equation 2.5. Using the data for S42, the symmetric sta'r,
the parameter K, in Equation 2.4 was calculated. Using the experimental value for K,
and Equations 2.3 through 2.5, we arrive at Equation 2.6, which describes the relationship

between 1, (at 100°C, Poise) and molecular weight for 3 arm symmetric PEP stars.

n, =6x10"P ML [2.5]
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M
=3.2x107"" M3 W 2.6
. = 32105 M [exp(6900)] [2.6]

From Figure 2.4 we see that an asymmetric star polymer exhibits a higher 1, than
a linear material of the same molecular size. Also, an asymmetric star polymer has a
higher 1, than a symmetric star of the same molecular size. If we define the viscosity
enhancement of an asymmetric star with respect to a symmetric star of the same
molecular size as in Equation 2.7 (1}, in Poise), we can evaluate the effect of branch
length on zero shear viscosity, as in Figure 2.5. In Figure 2.5 M, is the molecular weight
of the branch and My, is molecular weight of the backbone. At the shorter branch lengths
we see an increase in [aym as branch length increases. As the branch length approaches
%2 Mpp, I'asym must become 1, indicating that there is a maximum in the 5y, vs. branch
length function.

- N,
Con = —— [2.7]
3.2x10°7 M3 {ex W ]:I

6900

Table 2.1 Poly(ethylene-a/t-propylene)
Star Polymers from Reference 2
Salnple Mbnckbone Mbrmch

S00 88 000 0

S01 90 000 1100
S06 96 000 5500
S17 80 000 17 000
S42 84 000 42 000
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Figure 2.4 The Relationship between Zero Shear Viscosity (Poise) and Molecular
Size for Asymmetric Star Polymers (100°C)

(Data taken from Reference 2)
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Figure 2.5 The Effect of Branch Length on the Viscosity Enhancement of
Asymmetric Star Polymers with respect to Symmetric Stars of the same gMw
(Data taken from Reference 2)
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Comb and H-branched polymers also exhibit viscosity enhancement when
compared to linear materials of equivalent molecular size. For these materials the degree
of enhancement is typically much higher than with star polymers of the same molecular

size'.

Randomly branched polymers present a much more complicated situation, and for
such polymers with very low levels of LCB not all of the molecules are branched. Such
systems have been modeled as mixtures of linear and branched materials. Bersted and
coworkers® have shown that the zero shear viscosities of such materials can be described
by Equation 2.8. Therefore, as shown by Equation 2.8, for low levels of LCB the zero

shear viscosity increases as LCB increases.

\ad 8 \od:}

Mo, mivtwre = (Mavtiear )™ (Mo, ranchet ) [2.8]
where w, =1-w

At higher levels of LCB the dependence of the zero shear viscosity on molecular
size can be described by Equation 2.1 but with a much higher value of a than is found for
linear materials. The values for the parameters in Equation 2.1 found for linear
polyethylenes® and for highly branched polyethylenes (LDPE)’ at 190°C are given in
Table 2.2. The relationships between zero shear viscosity and molecular size for linear

and branched polyethylenes are compared in Figure 2.6.

Table 2.2 Parameters for Equation 2.1 for
Linear and Branched PE at 190°C

(N, in Pa.s)
Structure Logk a
Linear -14.47 3.6

Branched -49.79 114
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Figure 2.6 Relationship between Zero Shear Viscosity (Pa.s) and Molecular Size for
Linear and Branched Polyethylenes

For high levels of LCB, an increase in LCB at constant M,, typically causes a
decrease in the zero shear viscosity. Since, as was discussed earlier, at very low levels of
LCB the zero shear viscosity increases with LCB, there is 2 maximum in the n, vs. LCB
function. According to the results of Constantin® and Bersted’, this maximum should

occur at approximately 2.4 LCB/10* C at a molecular weight of 120 000.

2.1.2 Thermorheological Behavior

For linear polymers, the temperature dependence of rheological behavior can be

described by a single shift factor ar.

no(T)=am,(T,) [2.9]

In Equation 2.9, T, is the reference temperature. Materials that exhibit this behavior are

said to be thermorheologically simple, because simple shifts along the frequency axis will
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result in superposition of dynamic moduli data for various temperatures. For some
branched polymers however the effect of temperature cannot be explained by a simple
shift along the frequency axis'. In these cases a different shift factor is needed at each
frequency. Raju and coworkers® found that for star-branched hydrogenated
polybutadiene the shift factor varied as a function of frequency. At high frequencies, the
shift factor required for superposition is approximately equal to the shift fact for linear
polybutadiene, while at low frequencies it is higher. This can be explained by the greater
temperature sensitivity of the long relaxation times due to the LCB. The authors
demonstrated that the maximum apparent activation energy (which occurs at low
frequency) increased linearly with branch length (Figure 2.7). Thermorheological
complexity was also demonstrated for stars of poly(ethylene-alt-propylene) and of high
vinyl polybutadiene’. Previous research has shown that stars of polystyrene'® and
polybutadiene!! can be thermorheologically simple. In contrast with the results of
Carella and cowrokers’, Gell and coworkers? found that 3 arm poly(ethylene-alt-
propylene) stars were thermorheologically simple. Gell and coworkers also found that
temperature sensitivity increased with degree of LCB. Kasehagen®® measured
rheological properties of long chain randomly branched polybutadiene and found no

correlation between branching content and activation energy.

16
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° Circles are for 3 arm stars and
9 SQuAres are for 4 amn stars
8
79
6 - -
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Branch Length (g/mol)

Figure 2.7 Relationship between Branch Length and Maximum Apparent
Activation Energy for Stars of Hydrogenated Polybutadiene (Ref. 4)
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Bersted examined the effect of low levels of LCB on the temperature sensitivity
of polyethylene’ by measuring the effective activation energy corresponding to a
frequency range of 1 to 10 rad/s over a temperature range of 150°C to 190°C. He did not
address the issue of thermorheological complexity. He studied 3 sets of branched PEs.
The first set consisted of an HDPE resin that had been exposed to increasing amounts of
peroxide, resulting in tetra-functional branches. The second set consisted of several
HDPEs that were subjected to various thermal and mechanical histories to induce LCB.
The final set consisted of 4 commercial, low-density polyethylenes. The results of this
study are shown in Figure 2.8. The author concluded that the samples with the peroxide
induced branches exhibited a stronger dependence of E, on the degree of LCB. It seems
likely, however, that the difference between the peroxide samples and the thermal
degradation samples is not significant. At low levels of LCB, E, follows a linear
relationship with degree of LCB, and at very high levels of LCB it becomes independent
of degree of LCB.
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11 -
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® HDPE with peroxide
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N

degradation

f ¢ HDPE with thermal
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Figure 2.8 The Effect of Degree of Long Chain Branching on the Apparent
Activation Energy of Polyethylene (1 to 10 rad/s, 150 to 190°C)
(Data taken from Reference 7)
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2.1.3 Linear Viscoelasticity

Long chain branching also significantly affects linear viscoelastic behavior. In
particular, LCB increases elasticity in the linear regime, i.e. it extends the relaxation
spectrum to much longer relaxation times. In the case of star polymers the terminal to
plateau transition is broadened with respect to the behavior of a linear material. Gell and
coworkers? found that the broadening of this transition zone increased as branch length
increased for asymmetric stars (described in Table 2.1). Some linear viscoelastic data
for these materials are presented in Figures 2.9 through 2.12. For the material with the
shortest branch (S01), the authors found that the shape of the modulus curve differed
little from that of the linear material. The next material in the sequence, S06, exhibited
two maxima in the loss modulus curve. The first occurred at a low frequency and was
due to the relaxation of the large-scale conformation, and the high frequency maximum
was attributed to the relaxation of the branch. As the branch length increased from this
point, the loss modulus response became a single very broad peak, which is characteristic
of symmetric stars. In Figures 2.9 and 2.10 the loss and storage moduli of the linear
material and two of the branched materials (S06 and S42) are compared. The effect of
branch length on the loss angle is shown in Figure 2.11. The shape of the loss angle
curve of the material with the shortest branch is very similar to that of the linear material.
However, there is a significant difference at longer branch lengths. For resins S06 and
S42, we see a plateau in the loss angle that is not present in the data for SO1 and S00. A
plateau in the loss angles indicates that the loss and storage moduli curves are parallel.

Hingmann and Marczinke'? noted the same effect of LCB on the dynamic moduli of
polypropylene.

The complex viscosity curves of the star polymers are compared in Figure 2.11.
Since the effect of molecular size on the complex viscosity is confounded with the effect
of branch length (see Section 2.1.1) the differences between the curves in Figure 2.12
cannot be attributed solely to branch length. The effect of branch length on recoverable

compliance is shown in Figure 2.13. This parameter is independent of molecular weight,
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and the differences between the recoverable compliances of the series of stars of PEP can
therefore be attributed to branch length. The recoverable compliance, which is a measure

of elasticity in the linear regime, increases with branch length and approaches a

maximum as the molecule becomes symmetric.
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Figure 2.9 Effect of Branch Length on Loss Modulus of Stars of PEP
(Data from Reference 2, Samples are described in Table 2.1)
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Figure 2.10 Effect of Branch Length on Storage Modulus of Stars of PEP
(Data from Reference 2, Samples are described in Table 2.1)
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Figure 2.11 Effect of Branch Length on Loss Angle of Stars of PEP
(Data from Reference 2, Samples are described in Table 2.1)
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Figure 2.12 Complex Viscosity Curves of a Series of Asymmetric Stars of PEP
(Data from Reference 2, Samples are described in Table 2.1)



Chapter 2. Background Information on Long Chain Branching 25

Y XY
N A O O O
| U I CHN— |
a
a

L

-

Recoverable Compliance
(cm?/dyn, x107)
)
a

1 . 1

O N b O O

0.1 0.2 0.3 0.4 0.5 0.6
Mo/Myp

o

Figure 2.13 Effect of Branch Length on Recoverable Compliance of Stars of PEP
(Data from Reference 2)

Linear viscoelastic behavior is strongly affected by both MWD and LCB.
Therefore, looking at the effect of LCB on the LVE behavior of randomly branched
materials is difficult, since polydispersity cannot usually be controlled independently
from LCB for these materials. The effect of MWD on the recoverable compliance of

linear polymers can be approximated by Equation 2.10.

1 =(J‘:)m,,%€%‘% [2.10]
w

Pederson and Ram"? found that the recoverable compliance of highly branched
polyethylenes could be described by a relation analogous to Equation 2.10 with M

replaced by gM (Figure 2.14).
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Figure 2.14 Relationship between MWD and Recoverable Compliance for Highly
Branched Polyethylenes with Varying Degrees of LCB (190°C)
(Data taken from Reference 13)

2.1.4 Nonlinear Viscoelasticity in Shear

Because of experimental difficulties in making nonlinear viscoelastic
measurements and in producing large amounts of model polymers, little work has been
done in the area of the relationship between LCB and nonlinear viscoelasticity.
Generally, the easiest nonlinear behavior to study is the shear rate dependence of
viscosity, and several studies of this type will be discussed later in this section. Several
techniques have been employed to determine the effect of LCB on the damping function,
often with conflicting results.
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2.1.4.1 Shear Rate Dependence of Viscosity

For randomly branched materials at low levels of LCB, LCB increases shear
sensitivity. Bersted and coworkers® showed that for blends of linear HDPE and highly
branched LDPE the viscosity could be described by the logarithmic blending rule
(Equation 2.8) at all rates. Later Bersted and coworkers’ demonstrated that low levels of
LCB introduced in HDPE by thermal or mechanical degradation resuited in more shear
thinning behavior. Therefore, even though a branched material has a higher zero shear
viscosity than a linear material of the same molecular weight, at high rates the viscosity

can be lower.

For highly branched LDPE, shear thinning behavior does not necessarily correlate
with degree of LCB. Laun and Schuch"* presented data for two LDPE melts that had
similar zero shear viscosities but slightly different degrees of LCB. They found that the
material with the higher degree of LCB exhibited less shear thinning than did the material
with less LCB. Also, when comparing two LDPE resins having very different degrees of
LCB, they found that the more highly branched resin displayed less shear sensitivity,
even though its MWD was much broader.

2.1.4.2 Nonlinear Relaxation Modulus

Osaki and coworkers'® studied the rheological behavior of solutions of 4-arm star
branched and linear polystyrenes. They performed step strain experiments in a cone and
plate theometer to determine the nonlinear relaxation modulus. They found that the
characteristic time, which is the time at which the relaxation moduli at various strains can
be superposed by a vertical shift, increased with branch length for stars of polystyrene.
They also found that the damping function, h(y), was independent of branch length for
the stars. However, they did find that the damping function for the stars was different
that for the linear polystyrenes. In particular, h(y) fell below 1 at smaller strains for the
branched materials than for the linear materials. Also, the branched materials exhibited

more damping at all strains than did the linear materials. The damping function for the
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branched materials was in agreement with the prediction of the Doi-Edwards theory with
the independent alignment assumption, which is approximated by Equation 2.11. The
data for the linear polystyrenes could be described by a damping function of the same

form as Equation 2.11 but with a coefficient on the order of 0.14 in place of 0.2.

1
hy)= ——— 2.11
(Y) 1+0.2y° [ ]

The results of Osaki and coworkers, described above, are in contradiction with
results seen by Archer and Varshney' and Macosko and Kasehagen'”. Archer and
Varshney studied the relaxation behavior of multi-arm polybutadiene melts (of the
general form A3AAj) in step strain experiments. The authors found that linear
polybutadiene had a damping function that was more strain dependent than that of the
branched materials. In fact, the damping function of the linear material was in quite good
agreement with the Doi-Edwards theory with the independent alignment assumption.
Macosko and Kasehagen'’ also studied branched polybutadienes. They determined the
linear relaxation modulus and the damping function by fitting Wagner’s constitutive
equation to the results of start-up of steady simple shear experiments. The Wagner
constitutive equation in shear, together with the damping function used by Macosko and

Kasehagen, is given below.

c= ]m(tot'{ l z}ydt' [2.12]

1+ay

Macosko and Kasehagen found that for the linear material the fitted value a was 0.26 and
the values for the branched materials decreased with degree of LCB down to 0.07 for the
most highly branched material. Weaker damping for branched materials has also been
observed when comparing LDPE with HDPE and LLDPE'*"°.
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Yoshikawa and coworkers?® compared the behavior of three HDPEs and their
fractions. One of the HDPE resins had 1 LCB/10* C. Based on step strain experiments,
they concluded that this level of LCB had no effect on the damping function.

2.1.5 Non-linear Viscoelasticity in Extension

Studying extensional flow behavior is even more difficult than studying nonlinear
shear flow behavior and very few reliable data exist. Although various techniques for
inferring extensional flow properties from non-homogeneous flows have been proposed,

in this section only studies employing uniaxial extension will be discussed.

Over 30 years ago, Laun and Miinstedt?!***® demonstrated that shear flow
properties are insufficient to describe behavior in extensional flows. For example, Laun
and Miinstedt?'?** found that LDPE exhibited a maximum in the extensional viscosity
curve, behavior often referred to as “strain hardening”, which had no counterpart in shear.
In a further study of the relationship between molecular structure and extensional flow
behavior,?* they studied several LDPE and HDPE melts with various polydispersities and
degrees of LCB. In general, the authors found that both LCB and MWD affected
extensional flow behavior, and they were unable to distinguish between these effects.
They demonstrated that the height of the maximum in the extensional viscosity curve
divided by 3n, was related to degree of LCB for highly branched materials as shown in
Figure 2.15. Increased degrees of LCB resulted in higher maxima in the extensional

viscosity curve.



Chapter 2. Background Information on Long Chain Branching 30

0 5 10 15 20 25 30 35
LCB/1000 C

Figure 2.15. The Effect of LCB on the Maximum in the Extensional Viscosity of

Polyethylene
(Data taken from Reference 24)

More recently, Laun and Schuch'® found that MWD has very little effect on the
maximum in the extensional viscosity curve. They concluded that some of the resuits for
“HDPE” presented earlier, which had indicated that a maximum in the extensional
viscosity curve could be caused by a very broad MWD, were in fact due to low levels of

LCB introduced by thermal degradation.

Hingmann and Marczinke'* studied three polypropylene melts with various
degrees of LCB introduced by means of cross-linking agents. The degree of LCB was
estimated from the concentration of cross-linking agent. They found that the branched
materials exhibited a maximum in their extensional viscosity curves, while the linear
material did not. The dependence of the height of this maximum on degree of LCB is
shown in Figure 2.16. These results are in good qualitative agreement with those of

Miinstedt and Laun?.
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Figure 2.16 The Effect of LCB on the Maximum in Extensional Viscosity of
Polypropylene
(Data taken from Reference 12)

Macosko and Kasehagen'’ studied the extensional flow behavior of linear and
branched polybutadiene. As steady state was not achieved in their extensional

experiments, they reported transient stress responses. To compare the strain hardening
behavior of the various materials they used the ratio of n;(t) to n*(t) at a Hencky strain
of 2. For a linear response this ratio is equal to 3, for strain hardening it is greater than 3,
and for strain softening it is less than 3. The effect of degree of LCB on strain hardening
is shown in Figure 2.17. Again we see that increased LCB results in increased strain

hardening.
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Figure 2.17 Effect of LCB on Strain Hardening Behavior of Polybutadiene
(Data taken from Reference 17)

2.2 Quantifying Long Chain Branching Using Analytical Techniques

The long-chain branches present in materials produced according to the teachings
of Lai and coworkers®® allow these materials to be processed with much greater ease than
the strictly linear materials while retaining the good solid state properties associated with
their narrow molecular weight distributions. Because of this, the presence and detectipn

of LCB in constrained geometry catalyzed polymers is of interest.

Two analytical techniques have been used for quantifying LCB in LDPEs: high
field carbon-13 nuclear magnetic resonance (NMR) and size exclusion chromatography.
The Carbon-13 NMR spectra for branches that are 6 or more carbons in length are very

similar. Since AFFINITY resins are octene copolymers and therefore contain short
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chain branches that are 6 carbons in length, it is difficult to quantify LCB in these resins
using this technique?®. Size exclusion chromatography is very useful for quantifying high
levels of LCB*"#%_ Solution techniques have also been used to quantify LCB in
constrained geometry catalyzed polymers*'**?*>. Since we know that the rheological
behavior of polymers is significantly affected by long chain branching, using rheological

measurements to infer LCB characteristics of these materials is a viable alternative.
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Chapter 3

Objectives of Research

Constrained geometry catalyst technology provides us with a unique opportunity to
study independently the effects of various molecular characteristics on the rheological
behavior of polyethylene. In particular, the effects of low levels of long chain branching
(LCB) have never been studied in commercial polyethylenes, because it was impossible
to vary the degree of branching while maintaining the backbone molecular weight and
molecular weight distribution using traditional polymerization techniques. Because of
the unique capabilities of constrained geometry catalysts it was possible to set the

following objectives.

(1) To carry out a thorough study of the rheological behavior of mPEs.

(2) To determine the effects of LCB level on rheological behavior.

(3) To develop a procedure for inferring the level of LCB using rheological data.

(4) To determine the likelihood that variations in other molecular characteristics
(molecular weight, molecular weight distribution, and short chain branching) would

result in falsely predicting LCB.
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Chapter 4

Polymers included in Study

To meet the objectives of the project it was necessary to make a judicious choice
of the materials to be included. For our experimental study we chose sets of 4 low
density and 5 high density mPEs that have approximately the same MWDs but different
degrees of LCB. Also included in our discussion and data analysis is a set of linear mPEs

and a set of linear traditional polyethylenes.

Three sets of mPEs were studied. The first set consisted of low density
copolymers that were representative of commercial mPEs (Table 4.1).

Table 4.1 Characteristics of Low Density mPEs
Resin Comonomer Density Mw Mw/Mn
LDL1 Butene 0911 118 400 2.30
" LDBI Octene 0.908 109 300 221
LDB2 Octene 0.908 90 300 221
LDB3 Octene 0.908 89 400 2.32

To infer the degree of LCB in octene copolymers using analytical techniques, a series of

comparative homopolymers with increasing degrees of LCB was chosen to meet

objectives 2 and 3. The characteristics of these resins are given in Table 4.2.
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Table 4.2 Characteristics of High Density Polyethylenes
Resin Density Mw Mw/Mn LCB/
10°C
HDL1® 0.9351 100 900 2.08 0
HDBI1 0.9592 88 400 1.98 0.12
HDB2 0.9583 96 500 1.93 0.37
HDB3 0.9575 101 500 1.99 0.42
HDB4 0.9565 90 200 2.14 1.21

To partially meet the requirements for the fourth objective a set of linear mPE
homopolymers with varying molecular weights was selected. These materials (Table 4.3)

comprised a set that allowed the examination of a molecular weight range of 41 900 to

359 000.

Table 4.3 Characteristics of Linear
Homopolymers
Resin Mw Mw/Mn
HDL2 41 900 1.90
HDL3 122 200 2.02
HDL4 359 000 2.08

To examine the effects of short chain branching two linear butene-ethylene
copolymers were also included. These materials along with LDL1 and HDLI1 covered a

comonomer content range of 1.44 to 21.2 weight % (Table 4.4).

* HDL1 is a butene copolymer with a very low comonomer content
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Table 4.4 Characteristic of Linear Butene Copolymers
Resin Mw Mw/Mn wt% Butene
HDL1 100 900 2.08 1.44
LDL1 118 400 2.30 114
LDL2 105 600 2.08 14.83
LDL3 130 400 2.12 21.2

To complete the requirements for the fourth objective 2 linear low density

polyethylenes were included.

Table 4.5 Characteristics of Traditional Linear Polyethylenes
Resin Comonomer Density Mw Mw/Mn

LLDPEI octene 091 158 000 4.54

" LLDPE2 octene 0.91 145 500 3.50

The data in Tables 4.1 to 4.5 were supplied by The Dow Chemical Company.

Molecular weight distributions were determined by gel permeation chromatography, LCB
by C'*-NMR, and density by ASTMD-792.
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Chapter 5.

Linear Viscoelasticity

Linear viscoelastic (LVE) behavior occurs at low deformation rates, small strains,
or short times and follows the Boltzmann superposition principle, which states that
stresses due to successive strains are additive'. LVE data are important, because they
provide an essential element of models for nonlinear flows and because they are highly

dependent upon molecular structure.

The linear relaxation modulus, defined by Equation 5.1, is a way of describing a
material’s response to a step strain deformation, and can be used to determine its

response to any other linear deformation.
G(t)=o(t)/y [5.1]

Often it is not possible to determine the relaxation modulus experimentally, because of
the difficulties associated with generating nearly instantaneous strains and accurately
measuring small stresses. Therefore, rheologists generally use small amplitude
oscillatory shear to study the LVE behavior of polymers. In this experiment the sample is

subjected to the sinusoidal strain given by Equation 5.2.
¥(t) = v,sin(wt) [5.2]

The measured stress is also sinusoidal and has the same frequency as the strain but is

shifted in time as shown in Equation 5.3

o(t) = y,Gssin(ot + 8) = 1, [G'(0)sin(et) + G''(0)cos(wt)] [5.3]
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where G’ and G’’ are the storage and loss moduli. The stress can also be written as

shown in Equation 5.4

o(t) = 1, [n'(@kin(ot) + n"(@)os(wt)] [5.4]

where '’ and n°’ have units of viscosity. The complex viscosity is given by Equation

5.5, and its absolute value is given by Equation 5.6.

n*(0)=7'(0)-in"(0) (5.5]
¥ =0,/7, =v() + (") [5.6]

The absolute value of the complex viscosity is referred to in this work as the complex

viscosity.

Dynamic LVE data can be used to determine the discrete relaxation spectrum [G;

Ai] which models the relaxation modulus:

G(t)=> Gexp(-t/2,) [5.7]

5.1 Experimental Procedures

The dynamic LVE data were collected for LDL1, LDB1-3, HDB1-4 and HDL1
by use of a Rheometrics Dynamic Analyzer Il (RDA II) in parallel plate (25 mm
diameter) configuration with a gap of | mm. All experiments were performed under a
nitrogen atmosphere, and resin stability under testing conditions was verified. This

instrument has a spring torque transducer with a range of 2-2000 gmf cm, and torques
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above 5 gmf cm were assumed to be reliable. Prior to performing frequency sweeps,
strain sweeps were performed to establish the linear region at each frequency. For the
frequency sweeps the variable strain technique was used, which entails using the
maximum strain still within the linear region for each frequency. Figure 5.1 shows an

example of a strain sweep that was used to determine the appropriate strain for HDB4 at a

frequency of 0.5 rad/s.
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35000 | * ., . } 400
a | [ ] o [ ] i
£ 34000 . faso o
o . )
G _ 33000 | . 1 300 8
; ! b (]
> & 32000 | . f250 g
("] E‘. * [ s
'E. 31000 - — 200 =
<] | i 3
o 30000 3 150 2
29000 - + 100
28000 - 50
27000 0
0 20 40 60 80 100
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Figure 5.1 Strain Sweep Results for HDB4 at 0.5 rad/s

For the case shown in Figure 5.1 the linear region ends at a strain level of approximately
20%. To ensure that measurements would be well within the linear region, a strain of "
10% was chosen for HDB4 at 0.5 rad/s.

Table 5.1 gives the strains used at each frequency for all the resins. The
measurements for HDB1-4 and HDL1 were taken at 150°C. A time temperature
superposition study was conducted on LDB1-3 and LDL1, which included measurements
at 130°C, 150°C and 170°C2. Differential scanning calorimetry data showing the melting

ranges of these materials are presented in Appendix E. For each material (and
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temperature) at least five frequency sweeps were performed using five different samples.
All LVE data sets discussed are therefore averages of multiple runs. LVE data are
tabulated in Appendix A.

Table 5.1 % Strain Used During Dynamic LVE Data Collection
Frequency 0.005-0.05 0.05-0.5 0.5-5 5-500
Range
rad/s
LDL1 100 30 10 5
LDB1 50 15 10 5
LDB2 40 25 15 5
LDB3 35 10 10 5
HDL1 250 200 80 10
HDBI 60 25 3 5
HDB?2 30t0 0.0186 15 5 5
rad/s and 20 to
0.05 rad/s
HDB3 25 to .0259 10 5 5
‘ rad/s and 20 to
0.0S rad/s
HDB4 30 20 10 5

Samples for the RDA II were molded using a Carver Laboratory Press at a temperature

between 185 and 190°C. The compression molding conditions are given in Table 5.2.

Table 5.2 Compression Molding
Procedure
Force (metric Holding Time
tonnes) (min)
0 5 [14Y
5 5 2]
10 5 [12]
15 5 [12]

A Holding times for LDLI are higher than for other resins
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§.2 Temperature Dependence of LVE Behavior

The effect of temperature on the complex viscosity of LDL1 and LDB3 is shown
in Figure 5.2. The master curves in Figure 5.3 were generated by applying time-
temperature superposition to the LVE data at 130, 150 and 170°C with a reference
temperature of 150°C. The shift factor, ar, can be determined using Equation 5.8 or by
plotting G'(®) and G(w) versus war for various temperatures and varying ar until the
curves superpose at a reference temperature. For some materials, especially long chain
branched materials, it is necessary to include a correction for the temperature dependence
of density in the form of br, which is a vertical shift in the moduli (Equation 5.9). In this
work the values for bt were found empirically rather than by using Equation 5.9. The
shift factor values for LDL1-3 and LDL1 are given in Table 5.3 and plotted in Figure 5.4.
From this table and graph we can see that temperature sensitivity of rheological behavior

is increased with degree of LCB.

a, = ;h((;f)) [5.8]
by = aePe (5.9]
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Table 5.3 Temperature Shift Factors for the Low Density mPEs
with a Reference Temperature of 150°C
Material 130°C 170°C
ar br ar br
LDL1 1.59 1 0.64 1
LDBI1 1.75 1 0.61 1
LDB2 1.85 0.95 0.57 1
LDB3 2.10 1.05 0.50 0.97
0.4
0.3 1
0.2
0.1 1 Increasing
degree of LCB
Log(a) O
-0.1 A
-0.2
-0.3 -
-0.4
120 130 140 150 160 170 180

Temperature (C)

[--LDL}eLDB1+LNE2%LDB3

Figure 5.4 The Effect of Temperature on Temperature Shift Factor
for LDL1 and LDB1-3

The effect of temperature on the shift factor, ar, can be described by the
Arrhenius Equation over the fairly small temperature ranges studied.

ap =exp{l;:{' (-_IF-%II [5.10]
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In Equation 5.10, E, is an activation energy. The linear relationship between log(ar) and
temperature that we see in Figure 5.4 indicates that the Arrhenius Equation is valid for
these materials over this temperature range, i.e. that E, is independent of temperature.
Materials that have frequency independent shift factors are said to be
“thermorheologically simple”. LDPE,.which has a high degree of LCB, is not
thermorheologically simple. The activation energies determined by fitting Equation 5.10
to the experimental data are plotted in Figure 5.5. Since these four materials have very
similar molecular weights and polydispersities, and are free of extraneous effects such as
impurities and high comonomer contents, the trend that we see in the activation energies

is assumed to be due to LCB.

7000

6000 4

Ea/R

(K) 5000 1

4000 %

3000 -

DRI

Figure 5.5 The Effect of LCB on the Arrhenius Activation Energy
DRI is an empirical measure of LCB in mPEs
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5.3 Effect of Long Chain Branching on LVE Behavior

The LVE data presented and discussed in this section have not been time-

temperature super-posed. Each data set is the result of measurements at a single

temperature.

5.3.1 High Density mPEs

The complex viscosity curves for the high-density mPEs, HDB1-4 and HDLI, are
compared in Figure 5.6. The presence of LCB has 4 main effects on the complex
viscosity: (1) the zero shear viscosity is increased for the same backbone molecular
weight, (2) the amount of shear thinning is increased, (3) the transition zone between the

zero shear viscosity and the power law zone is broadened, and (4) two points of inflection

are added within the transition zone.
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Figure 5.6 Complex Viscosity Data for High Density mPEs
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These points of inflection can be seen more clearly in Figure 5.7, which shows the
complex viscosity curves for HDL1 (linear material) and HDB4 (1.21 LCB/10 000C).
The circles on the HDB4 curve indicate the locations of the inflection points. In
comparison, the curve for HDL1 is concave downward over the entire frequency range.

As will be explained in Chapter 9, inflection points in complex viscosity curves are often
indicators of the presence of LCB in mPEs.
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Figure 5.7 Comparison of Complex Viscosity Curves for HDB4 and HDL1

The effects of LCB can also be seen in other LVE properties such as the dynamic
moduli, shown in Figure 5.8 and the loss angle, shown in Figure 5.9. In Figure 5.8 the
I dynamic moduli for HDB4 (branched) and HDL1 (linear) are plotted. LCB changes

entirely the shapes of the moduli curves. This point can be seen more clearly by looking
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at the loss angle (Figure 5.9) which is the inverse tangent of the ratio of the loss modulus
to the storage modulus. We recall that all polymers in this set have similar molecular
weights and polydispersities so the differences observed in Figure 5.9 are presumed due
to LCB. The loss angle curve for the linear material is what we would expect for a
narrow MWD linear polymer. However, the curves for the branched materials are
completely different. We see a plateau in the loss angle the magnitude and breadth of
which depend upon degree of LCB. This observation is in accordance with results
published by Koopmans® who noted the same effect of LCB on loss angle when
comparing an LDPE, an LLDPE and two branched mPEs.
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Figure 5.8 Comparison of Dynamic Moduli for HDB4 and HDL1
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Figure 5.9 The Effect of LCB on Loss Angle
High Density mPEs at 150°C

In Table 5.4 the estimated zero shear viscosities (calculated using discrete spectra)
and the cross over moduli and frequencies are given for the high density materials at
150°C. The relationship between zero shear viscosity and degree of LCB is shown in
Figure 5.10. Once again, all of the polymers in this set have similar molecular weights

and polydispersities.

Table 5.4 Dynamical Parameters for High Density mPEs

Resin n.' Cross-over Cross-over

Pa.s Modulus Frequency
kPa rad/s

HDLI1 5 800 221 188

HDBI1 11 700 223 293

HDB2 31 600 188 153

HDB3 56 600 174 117

HDB4 241 140 84 22
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Figure 5.10 The Relationship between 1, (150°C) and LCB (High Density mPEs
having similar Mw and Mw/Mn)

The discrete spectra (tabulated in Appendix A) were determined using IRIS*
software; this software fits the dynamic moduli to a series of Maxwell relaxation modes
(Equations 5.11 and 5.12). The discrete spectrum can be used to calculate a material’s
response to any deformation within the linear viscoelastic regime, and, as will be
discussed in Chapter 8, it is also an essential element of the simulation of nonlinear flow
using a constitutive equation. The relaxation spectra of the high density mPEs are
compared in Figure 5.11. As expected, the curves come together at short times, and the

differences between the materials are evident only at long times.

_or)
G'() = ZG @A) [5.11}

i=]

G'"'(0)= ;0 ” ( x) [5.12]



Chapter 5. Linear Viscoelasticity | 52

10000000
1000000 |
100000 -

G; (Pa) 10000 -

1000 A

100ﬁ

10 : X

0.0001 0.001 0.01 0.1 1 10 100 1000

Ai (s)

| %~ HDL1 -e- HDB1 -a- HDB2 -8- HDB3 -e-HDB4

Figure 5.11 The Effect of LCB on the Discrete Relaxation Spectrum

(lines are only to aid the eye)

Wassermen® has developed a method of comparing the LVE behavior of different
resins based on the breadth of the relaxation spectra as described by the Relaxation
Spectrum Index (RSI). The RSl is a ratio of two moments of the relaxation spectrum
(Equations 5.13 and 5.14) and is analogous to the polydispersity index, which is used to
describe the breadth of the MWD.

A =ﬁ_ [5.13]
YOYG/,
Ay = 2 Gk [5.14]

2.G,

RSI=2,/A, [5.15]
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The RSI values for the high density mPEs are given in Table 5.5. The RSI is dependent
on weight average molecular weight (M,,), MWD, LCB and temperature. To look at the
effect of LCB only, a reduced RSI (rRSI) can be calculated for these materials, which is
simply the ratio of the RSI to the RSI of a linear material of the same M,, and MWD, at
the same temperature. As expected, we see that increasing LCB level results in a broader

relaxation spectrum.

Table 5.5 RSI Values for High Density mPEs
Resin RSI rRSI
HDLI1 3.5 1
HDBI1 25.9 7.44
HDB2 27.8 7.98
HDB3 66.5 19.07
HDB4 108.9 31.24

5.3.2 Low Density mPEs

LCB has much the same effect on the LVE behavior of the low density mPEs as
we saw with the high density materials in the last section. The complex viscosity curves
for these materials are plotted in Figure 5.12. Once again with increasing LCB there is an
increase in the zero shear viscosity and the amount of shear thinning, the transition zone
is broadened, and points of inflection are added within the transition zone. In Figure 5.13
the loss angle curves for the low density mPEs are plotted. As with the high density
mPEs, the loss angle curve for the linear material (in this case, LDL1) has an entirely

different shape than those of the branched LDB1-3.
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Table 5.6 lists the dynamical parameters at 130°C for LDB1-3 and LDL1. Figure
5.14 shows the relationship between zero shear viscosity and the DRI (an indicator of

degree of LCB). For a complete definition of the DRI see section 9.1.

Table 5.6 Dynamical Parameters for Low Density mPEs (130°C)
Resin Mo Cross-over Cross-over
Pa.s Modulus Frequency
KPa rad/s
LDL1 19 850 162 33
LDBI 37 290 170 40
LDB2 80 600 113 36
LDB3 175 270 51 8
200000
180000 -
160000 A
140000 1
120000 -
Mo 100000 -
80000 -
60000
40000 H
20000 1
0 2 4 6 8 10 12 14 16
DRI

Figure 5.14 Relationship between 1, (130°C, Pa.s) and DRI for Low Density mPEs
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It is interesting to note that the effect of increasing degree of LCB on the LVE
behavior of mPEs is qualitatively similar to the effect of increasing branch length of
asymmetric stars that was seen by Gell and coworkers®. The data from this reference are

discussed in detail in section 2.1.3.

5.4 Effect of Molecular Weight on LVE Behavior of mPEs

Six linear mPEs were used to study the effect of molecular weight on the LVE
behavior. The molecular weights ranged from 41 900 (HDL2) to 359 000 (HDL4). All
of the materials included in this study have polydispersities of approximately 2.
Therefore the differences in the complex viscosity curves (Figure 5.15) are primarily due
to molecular weight variation. An increase in molecular weight causes an increase in the

zero shear viscosity and a decrease in the frequency at which shear thinning begins.

1000000
L

‘mT l.llI.---- .
3] .'c
Q. 100000 ‘e,
§ ooooo.ooooo........ l-.
@ 10000 - . Hs& -
S oooooooooo.......... 8‘8& .
x ..’0‘8\8’- .
o ety
2 1000 - *
£
o
o .....“.....O.....o°°.°

100 . . : :

0.01 0.1 1 10 100 1000
Frequency (rad/s)

|« EDL2 e« HDL1l o LDL1 ~HDL3 _* LDL3 * HDL4

Figure 5.15 Effect of Mw on Complex Viscosity of Linear mPEs (150°C)



Chapter 5. Linear Viscoelasticity 57

The relationship between molecular weight and zero shear viscosity is well
documented. For linear polymers above a critical molecular weight the relation shown

below is followed.

N, =K(M,, )* [5.16)
In Equation 5.16, a is usually found to be approximately 3.4, although it is not unusual to
see slightly higher values. The zero shear viscosities are plotted against weight average
molecular weight in Figure 5.16 on a double logarithmic plot. In accord with Equation
5.16, the data fall on a straight line. The parameters that result from fitting these data to
Equation 5.16 are given in Table 5.7. These values are in good agreement with those

reported by Raju and coworkers’ for polyethylene at 190°C (K=3.4x1 0%, «=3.6).

Table 5.7 Paramters for Relating n, to
Mw (Equation 5.16)
K a

3.9x10°"° 3.65

7
Points are experimental data
6 1 and line represents best fit of
Equation 5.16

5
Log(Me) 4 1

3 4

2 J

1 . : :

4 45 5 5.5 6

Log(Mw)

Figure 5.16 Relationship between Zero Shear Viscosity (Pa.s) and Mw for Linear
mPEs (150°C)
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5.5 Effect of Short Chain Branching on LVE Behavior of mPEs

Traditionally it is assumed that short chain branching (SCB) has little or no effect
on the rheological behavior of polyethylenes. The linear mPEs included in this work
provide an opportunity to test this theory, since they have the same polydispersities but
varying levels of SCB. In Table 5.8 the molecular characteristics of three linear mPEs

are given.

Table 5.8 Linear mPEs Included in SCB Study
Resin Mw PI = M, wt%
] butene
HDLI1 100 900 2.1 .44
LDL2 105 600 2.1 14.83
LDL3 130 400 2.1 21.1

To remove the effects of MW on the complex viscosity the data are plotted as in
Figure 5.17. This type of plot allows one to look at the effect of SCB only. It appears
that there is a difference between the three curves, with those for the two materials with
the higher levels of SCB are slightly above that for HDL1 at low frequencies. At higher
frequencies the curve for HDL1 (lowest level of SCB) is the highest, followed by that i’or
LDL2 and then that for LDL3. However, when the error bars on the complex viscosity
representing the 95% confidence limits on the mean are added (Figure 5.18), we see that
there is no meaningful difference between the three curves. Based on this observation,
we conclude that the differences in complex viscosity are less than the experimental error

and that there is no significant effect of SCB on the viscosity function.
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Figure 5.17 The Effect of SCB on Complex Viscosity
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Figure 5.18 The Effect of SCB on Complex Viscosity - Error Bars Represent 95%
Confidence Limits of the Complex Viscosity at each Frequency
(Same units as Figure 5.17)
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Chapter 6

Nonlinear Viscoelasticity in Shear

Polymer melts display nonlinear viscoelasticity under fast, large deformations.
This means that the material’s response depends on the size, rate and kinematics of the
deformation, and it is not possible to use information about its behavior in one
deformation to predict its behavior in a different deformation'. Nonlinear viscoelastic
behavior is important, because plastics forming processes involve high rates and large
deformations. To understand how a material will behave in a processing situation, it is
necessary to have information about its nonlinear viscoelastic behavior. Since nonlinear
phenomena are dependent on kinematics, we must study the material’s response to many
types of deformation. One can, in principle, use the resulting data to fit the parameters of
a constitutive equation, which can then be used in the simulation of complex flows. In
the present study both the linear and nonlinear viscoelastic behavior were studied to
determine the effect of long chain branching (LCB) and to identify the rheological
behavior most affected by the presence of LCB.

For the present study three shearing tests were used: (1) step strain, (2) steady
simple shear, and (3) large amplitude oscillatory shear (LAOS). A step strain
experiment involves subjecting the material to a sudden strain, Y,, and monitoring the
stress as it decays over time. This type of experiment allows one to determine the

nonlinear relaxation modulus, defined as follows.

G(ty)=o(tv)/y [6.1]
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Steady simple shear experiments can be used to determine the viscosity and the first
normal stress coefficient (Equations 6.2 and 6.3) by subjecting the material to a constant

shear rate and measuring the shear stress and first normal stress difference.

n(?)=3".(—?) [6.2]
¥
Wl(,-y)___cu(?)'.'czz(?) (6.3]

In LAOS the material is subjected to a sinusoidal shear strain (Equation 5.2), and the
periodic stress is measured. If the strain amplitude is large enough that the behavior is
nonlinear, the stress signal is not sinusoidal. LAOS is a useful test because it allows the
independent variation of the amplitudes of strain and strain rate, but the analysis of the
data is more complicated than for other shear flows. The Fourier series, shown by

Equation 6.4 can describe the stress.

o(t) =7, 3[G; (@7, kin(awt) + G; (v, 7, kos(not)] [6.4]

n=l
n odd

The material response can be more easily evaluated in a qualitative manner by the use of
closed loop plots of stress versus strain rate. Such loops are ellipses for LVE behavior -

and distorted ellipses for nonlinear viscoelastic behavior.

Two instruments were used for the nonlinear shear flow studies; a sliding plate
rheometer? (SPR) and a rotational cone and plate rheometer (RMS800). The SPR was
used for step strain, steady simple shear and LAOS experiments, and the RMS800 was
used to measure the first normal stress under steady simple shear. The RMS800 studies
were performed by Plastech Engineering AG of Zurich, Switzerland.
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6.1 Steady Simple Shear Studies

6.1.1 Sliding Plate Rheometer

The viscosity was determined by subjecting the material to a constant strain rate
in the sliding plate rheometer and monitoring the stress until steady state was achieved.
These experiments were performed for LDB3, HDB1, HDB2, HDB3, HDB4 and HDL1
at 150°C. The range of shear rates studied was limited at the low end by very small stress
values and at the high end by slip and was different for each resin. Approximately fifteen
experiments at various rates were performed on each sample, and for each resin at least

three samples were used. Table 6.1 shows the shear rate ranges for each resin.

Table 6.1 Steady Simple Shear

Experimental Conditions
Resin y range
HDL1 0.5-74
HDB1 0.5-92
HDB2 0.2-28
HDB3 0.1-28
HDB4 0.05 -28
LDB3 0.01-28

Samples were compression molded using the same conditions as those used to prepare

the samples for dynamic linear viscoelastic testing (Section 5.1)

An example of the startup behavior observed in the sliding plate experiments is

shown in Figure 6.1. We see the typical overshoot before the stress reaches its ultimate

plateau value, which corresponds to the viscosity.
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Figure 6.1 Startup Transient for HDB2 at a Shear Rate of 46.1 s™

Startup of steady simple shear can be used to gain nonlinear rheological information; but
in the case of the sliding plate rheometer (SPR) the startup strain was not controlled
precisely enough to allow for extraction of this information. Therefore, only the steady
state behavior will be discussed. In Figure 6.2 the shear viscosity curves for HDL1,
HDB1, HDB2, HDB3 and HDB4 (150°C) are compared, and the viscosity curve for
LDB3 (150°C) is shown in Figure 6.3. The scatter in the low shear rate viscosity data for
LDB3 is due to the extremely small stresses that occurred under those conditions. The
similarity of the curves of viscosity and complex viscosity is referred to as the Cox-Merz’

rule.

)=l (=1 [6.5]
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6.1.2 Cone and Plate Rheometer

The data presented in this section were measured by Plastech Engineering AG of
Zurich, Switzerland. An RMS800 rheometer with cone and plate fixtures was used to
measure the viscosity and first normal stress difference coefficient. Measurements were
performed for HDB1, HDB2, HDB3, HDL1 and LDB3 at 150°C. The samples were
compression molded under the conditions shown in Table 6.2. Appropriate sample
diameters were used at each rate to keep the normal force within measurable limits (Table
6.3). At higher rates flow instabilities affected the measured stresses and narrowed the

experimental window to shorter ranges than those shown in Table 6.3.

Table 6.2 Compression Molding Conditions for RMS$00
Cone and Plate Samples
Resin Temperature (°C) Holding Time
(min.)

HDBI1 190 15
HDB2 190 15
HDB3 190 15
HDL1 180 15
LDB3 170 15

Table 6.3 Sample Diameters for RMS800 Cone and Plate Experiments

Rate 0.01 0.06 0.1 0.3 0.6 1 3 6 10 30
) | (mm)

HDB1 18.863 | 18.75 | 15339 | 15347 | 15.347 | 15.347 | 12.086 | 10.951 | 9.194 8.244

HDB2 18908 | 18.891 | 15373 | 15381 { 15356 | 15.364 | 12289 | 10.951 | 9.000 | 8.3618

HDB3 18.869 15.398 | 15364 | 15.347 | 15415 | 12222 | 10.901 | 9.000 ———

HDL1 18.925 | 18.869 18908 { 18.908 | 18.891 | 15381 | 12.204 | 10.312 | 8.303

LDB3 19.064 | 19.086 | 19.014 | 15508 | 15.524 | 12.433 | 10.331 | 10.513 | 8.389 —
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The viscosity data measured using the RMS800 are compared with the complex
viscosity and the SPR viscosity data in Figure 6.4 for four of the high density mPEs. For
all four resins, the viscosity data from the SPR and the RMS800 are in excellent
agreement. The RMS800 data for HDB1 appear to indicate a deviation from the Cox-
Merz rule at low rates. Given the error likely to be present in the low shear rate data, we

cannot be certain that this deviation is significant.
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Figure 6.4 Comparison of SPR and RMS800 Data (1)) with Complex Viscosity

The effect of LCB on the first normal stress coefficient is shown in Figure 6.5. In
this graph we can see that the first normal stress coefficient increases with degree of

LCB. There is some suggestion that the curves come together at high rates.
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Figure 6.5 The Effect of LCB on the First Normal Stress Coefficient Function

6.1.3 Empirical Relations between Linear Properties and the Viscometric Functions

Several empirical relations have been proposed that relate the viscometric
functions to linear viscoelastic properties. The Cox-Merz rule, defined in Section 6.1.2,

is one such relation. A second Cox-Merz rule is given by Equation 6.6.

o) @) (0=1) (5]
"

In addition, Gleissle? has proposed two “mirror” relations (Equations 6.7 and 6.8). These

relate the linear startup of shear flow to viscometric functions.

n*()=n() (t=1/) _ [6.7]
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vi(©)=v,G) (t=k/y) [6.8]

For use in Equation 6.8, y; (t) was calculated using Equation 6.9

Y = 2]sG(s)ds = 2‘2&%[&- ~ texp(~t/2,) - hexp(~t/2,)] [6.9]

Finally, Laun® proposed the relationship shown in Equation 6.10, which relates the first

normal stress coefficient and the dynamic moduli.

07
wl(.?)=2%[l+(%)z] [6.10]

We saw previously that mPEs follow the first Cox-Merz rule. However, in Figure
6.6 we can see that the second Cox-Merz rule applies only at low shear rates/frequencies
for the linear material, HDL1, and not at all for the branched material, HDB3. In this
figure the solid line represents n’'(®), and the points represent the derivative term in
Equation 6.6. Neither HDB1 nor HDB2 follow the second Cox-Merz rule.
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Figure 6.6 Testing of the Applicability of the Second Cox-Merz Rule
(Equation 6.6)

In Figure 6.7 the first Gleissle mirror relation (Equation 6.7) is tested. The solid
curves represent the shear stress growth coefficient calculated from the discrete spectra,
and the points are the shear viscosity data with t =1/y . The data for the linear material,
HDLI1, follow the rule very well. For the branched material (HDB3) the rule is followed
well at long times but is less accurate at shorter times. We see much the same behavior '
with HDB1 and HDB2.
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Figure 6.7 Testing the Applicability of the First Gleissle Mirror Relation
(Equation 6.7)

In Figure 6.8 the applicability of the second Gleissle mirror relation is tested for
four of the high density mPEs. The solid curves show w; (t) as calculated from the
discrete spectrum using Equation 6.9. The points are the RMS800 data, with time
calculated as shown in Equation 6.8. The k values in Table 6.4, were chosen to give the
best agreement betweeny, and the RMS800 data. For HDL1 using a value of k other
than 1 did not improve the agreement, since a simple shift cannot explain the difference .
between the two functions. From this comparison, we conclude that the second Gleissle
mirror relation is valid for the branched mPEs but not for linear mPEs. This is in
accordance with the findings of Larson® and Wissbrun’, who show that materials with
relaxation moduli that are broader functions of time display viscometric behavior that is
less sensitive to the detailed form of the damping function. This means that materials
with broader relaxation spectra are more likely to follow the empirical relations

developed by Cox, Merz, and Gleissle.
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Table 6.4 Parameter Values for
Equation 6.10
Resin k
HDLI1 1
HDB1 1.5
HDB2 1.2
HDB3 1.1
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Figure 6.8 Testing the Applicability of the Second Gleissle Mirror Relation
(Equation 6.8)

Using the second Gleissle relation, the first normal force coefficient curves were
extended for the branched materials (Figure 6.9), indicating that these curves do, in fact,

come together at high shear rates.
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Figure 6.9 Extrapolation of First Normal Stress Coefficient Curves using the
Second Gleissle Mirror Relation

In Figure 6.10 Laun’s relation (Equation 6.10) is tested. The solid lines represent
Laun’s relation, and the points are the experimental data. This relation does not fit the

experimental data as well as the second Gleissle mirror relation.
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6.2 Step Strain

[t is not possible to subject a material to a truly instantaneous step in strain, and

these experiments are therefore performed by applying a strain rate, v, until the desired

strain is reached. This is described by Equation 6.11

t O<t<At
y=4" [6.11]
Yo At<t<o®

where At is the rise time. The value of ¥ must be less than the critical rate for the onset

of slip but must be as high as possible in order to minimize the rise time. Step strain
experiments were conducted for materials HDL1, HDB1 and HDB3 at 150°C. The gap
between the two plates was 1.085 mm and the strain was calculated from the plate

displacement.
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_ Ax (mm)

1.085 [6.12]

Yo

These experiments involved small plate displacements ranging from 0.27 to 17.36 mm,
and the control system was not able to respond quickly enough to generate a constant
plate speed during the ramp. This meant that the rise time could not be calculated using
the strain and strain rate as in Equation 6.11. Plate position data were used to determine
the actual rise time corresponding to each strain and nominal plate speed, and a straight
line was fitted to the data (Equation 6.13). Other experimental conditions for this study

are given in Appendix B.

At(s) = 0.9789 +0.0294 [6.13]

To account for the departure from the ideal strain history, the independent

variable, ‘t’, of the relaxation modulus is calculated as in Equation 6.14°.

t=t, —— (6.14]

The reliability of this method was verified for each material by using various nominal
plate speeds to apply the same strain. These results are compared in Figure 6.11 and the
rise times are given in Table 6.5. At times greater than 0.5 s, the three curves superpose.
This indicates that Equation 6.14 is appropriate for HDB3 at a strain of 4, and that above
0.5 s the data are free of the effects of the non-ideal start-up. Therefore, in the case of
HDB3, for strains up to 4, stresses measured after 1.6At can be used to calculate a
relaxation modulus. Similar experiments were performed for each material at various

strains, and the results are given in Table 6.6.
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Table 6.5 Rise Times Corresponding to
the Data shown in Figure 6.11
Nominal Speed Rise Time (s)
(mm/s)
15 0.31
20 0.24
25 0.20
Table 6.6 Times at which Stress Data can be Used to
Calculate Relaxation Modulus Values
Resin Y, =1 Y, =4 Y, =16
HDL1 At 1.5At 1.6At
HDBI1 At 1.6At na
HDB3 At 1.6At 3.0At
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The non-linear relaxation moduli for HDL1, HDB1 and HDB3 are shown in
Figures 6.12 through 6.14. The data presented in these three figures were collected using
single samples, and replicates were performed to verify these results. For all resins, the
curves at the smallest strains were independent of strain and were taken to reflect the
linear relaxation moduli. At higher strains the relaxation modulus curves fall below the
LVE relaxation modulus. In Figures 6.12 through 6.14, at long times there is a
significant amount of noise in the data, especially for HDL1. This noise resuits from the
very low stress levels. The non-linear relaxation moduli in Figures 6.12 to 6.14 can be
superposed by vertical shifts, meaning that the time and strain dependencies can be

separated as indicated by Equation 6.15.

G(t,v) = h(y)G(1) [6.15]

This is demonstrated by Figures 6.15 through 17, where the ratio of the nonlinear to
linear relaxation modulus is plotted as a function of time for each strain. After some
initial variation this ratio, h(t,y), becomes constant. The value of the damping function,
h(y), can be determined at each strain from the long time value of h(t,y). At small strains
the damping function approaches a value of 1, which corresponds to LVE behavior. The
damping function falls below 1 at the onset of non-linear viscoelastic behavior and
continues to decrease as the strain is increased. A lower value of h at a certain strain
indicates a higher degree of non-linearity in the fluid’s response. Damping functions
were determined for HDL1, HDB1 and HDB3 and are plotted in Figure 6.18.
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Figure 6.13 Non-linear Relaxation Modulus Data for HDB1
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Figure 6.15 Time and Strain Dependent Damping Function for HDL1
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In Figure 6.18, we see that LCB causes the onset of non-linear behavior to occur
at lower strains and increases the degree of non-linearity at all strains up toy = 16. LCB

affects the damping function particularly in the region just beyond the LVE zone.

It is useful to fit an equation to damping function data, and several forms have
been proposed. One that has been found particularly useful is Equation 6.16, which has
only one parameter, a. The data in Figure 6.18 were fitted to Equation 16, and the results

are given in Table 6.7. For these materials, ‘a’ increases with degree of LCB.

1+1ay2 [6.16]

h(y) =
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The damping function curves calculated using Equation 6.16 are compared to the
experimental data in Figure 6.19. Equation 6.16 fits the data for HDB3 very well at all
strains. For HDL1 and HDB1, Equation 6.16 is not able to describe the small strain
behavior, but it fits well at higher strains. We can compare the damping functions of the
mPEs with that predicted by the Doi-Edwards theory, which is considered to represent a
lower bound, and the measured damping is always less than the Doi-Edwards prediction.

Table 6.7 Results of Fitting Equation
6.16 To the Data in Figure 6.15
Resin LCB/10 000 C a
HDLI1 0 0.05921
HDBI1 0.12 0.09607
HDB3 0.42 0.1492
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Figure 6.19 Damping Functions for HDL1, HDB1 and HDB3
(Solid curves represent best fit of Equation 6.16 and broken curve represents Doi-
Edwards Model)
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The results presented above do not agree with those of some published reports
(see section 2.1.4.2). In general, it has been reported that LCB either has no effect on the
damping function or results in less damping®'®!"'#!3. With the exception of the work of
Yoshikawa and coworkers'’, who found that the damping function was not affected by
LCB, all of these studies involved materials with much higher degrees of LCB than those
present in the materials studied here. Osaki and coworkers'*, who studied solutions of
star polymers with relatively low degrees of entanglement, did report that LCB resulted
in enhanced damping.

In Chapter 8, we show that the damping functions determined for these materials
using step strain experiments are in accord with data for steady simple shear and large
amplitude oscillatory shear. This leads us to conclude that the damping functions
measured here are valid and that the relationship between degree of LCB and damping

that we have observed is correct.

6.3 Large Amplitude Oscillatory Shear

In these experiments the sample was subjected to the large amplitude sinusoidal
strain described by Equation 6.17. In contrast to small amplitude oscillatory shear where
the stress response is also sinusoidal, the stress in this case is no longer sinusoidal and
can be described by Equation 6.4. The parameters in this equation are evaluated by

performing discrete Fourier transforms of the data.'®
¥ =7v,sin(ot) [6.17]

Samples were compression molded using the same conditions as were used for the

samples for dynamic linear viscoelastic testing (Section 5.1)

Figure 6.20 shows an example of the transient data from a large amplitude
oscillatory shear (LAOS) experiment. These data can be described by fitting the

parameters of Equation 6.4 using the discrete Fourier transform'". The effect of LCB on
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LAOS behavior is shown in Figures 6.21 and 6.22, which show the first harmonic of the
shear stress, o, as a function of strain amplitude, at a constant frequency. Data for four
of the high density mPEs are shown in these graphs. Essentially the effect of LCB is to
increase o}, with the exception of HDB1, which has lower stresses than HDL1 at both
frequencies. The increase in o; is a result of the increase in zero shear viscosity due to
the increased level of LCB. However, since LCB also causes greater shear thinning, at
some point the shear dependent viscosity of a branched material can be lower than that of
a linear material. This is why HDB1, which has a higher zero shear viscosity than HDLI,

has lower &, values under the conditions studied.

The degree of non-linearity in the material’s response can be evaluated by looking
at the magnitudes of the higher harmonics of stress. The presence of significant higher
harmonics indicates that the response is nonlinear. Figure 6.23 shows the effect of strain
amplitude on the third harmonic of stress for the same four resins. We see that o3
correlates directly with degree of LCB. In other words, increasing the degree of LCB

results in an increasingly nonlinear response to LAOS.
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Figure 6.20 Real Time Stress and Strain Curves for HDB3
Under LAOS aty=4 and o = 2xn rad/s.



Chapter 6. Nonlinear Viscoelasticity in Shear 85

140
130
120 -
110 -
kPa 190 7

90 -

80 —

70 v

60

-

50 T T
3

Yo
. Figure 6.21 Effect of v, on the First Harmonic of the Shear Stress at © = 2x rad/s

100

90

80 -

70

kPa

60 -

50

40

30 T T T T T

Yo
. Figure 6.22 Effect of v, on the First Harmonic of the Shear Stress at © = rad/s



Chapter 6. Nonlinear Viscoelasticity in Shear " 86

kPa

o
.

Yo

Figure 6.23 Effect of vy, on the Third Harmonic of the Shear Stress at ® = « rad/s

LAOS data can also be compared qualitatively by making closed-loop stress
versus strain rate plots as shown in Figures 6.24 through 6.28. Figure 6.24 shows the
effect of strain amplitude on the response to LAOS for HDB3, which is a high density
branched mPE. There are two effects of increasing the strain amplitude: (1) the
magnitude of the stress response increases and (2) the loop departs increasinglyv from an
ellipse. Figure 6.25 shows the effect of the strain amplitude for HDL1, the high density
linear mPE. We see similar though less prominent effects of increasing strain amplitude
for HDL1 in comparison with HDB?3. It is the second effect, the distortion of the loop;'
that is the manifestation of nonlinearity in this type of plot. The higher degree of
distortion in the response for HDB3 is what we expect, as we saw previously that
branched materials display a higher degree of nonlineraity in their response than do linear
materials. Figures 6.26 and 6.27 show the effect of increasing frequency at constant strain
amplitude for HDB3 and HDL1 respectively. The distortion of the loops is even more

apparent at the higher frequency.
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In Figure 6.28 the effect of LCB on the closed loop stress response is illustrated
by plotting reduced shear stress against reduced shear rate for three of the high density
mPEs. Once again, we see the increasing degree of distortion of the loop with increasing
degree of LCB. Figures 6.29 and 6.30 show another method of comparing the behavior
of different materials. In these figures, the solid curve represents the linear response at

the same frequency, which was calculated using Equation 6.18

SO _G +sinfwt +5) [6.18)

where G* and § are calculated from the discrete spectra. The points in these plots are the
experimental LAOS data. The LAOS response for the branched material (HDB3) is quite
different than its linear response at this frequency while the two responses for the linear

material (HDL1) are very similar.
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Chapter 7.

Nonlinear Viscoelasticity in Extension

The response of a polymer melt to large or fast deformations is nonlinear in that it
depends on the kinematics as well as the magnitude and rate of the deformation.
Therefore, as was discussed in Chapter 6, in order to characterize a polymer’s nonlinear
viscoelastic behavior its response to many different types of deformations must be
studied. In particular, one must determine the effects of both shearing and extensional
deformations on the material. An extensional deformation involves stretching along the
streamlines. The two uniform, shearfree, axisymmetric extensional flows are uniaxial
and biaxial extension. Uniaxial extension involves stretching along the axis of symmetry
. and biaxial extension involves stretching in the radial direction and compression along

the axis of symmetry. In the present study, uniaxial extension experiments were used.

The strain measure used for extensional deformations is the Hencky strain
(Equation 7.1). The corresponding measure of deformation rate (Equation 7.2) has the

useful characteristic that it does not depend upon the initial sample length.

-l
£ = h{Lo ] (7.1]
¢ - dIn(L) [7.2]
dt

The rheologically significant stress in this flow, the extension stress, is defined in

‘ Equation 7.3.
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One of the tests that is most useful for studying uniaxial extensional flow
behavior is the start-up of steady simple extension. In this test, the material, which is
initially at rest, is subjected to a simple extension with a constant Hencky strain rate. The

tensile stress growth coefficient is defined in Equation 7 4.

ne(t,e) == (t.¢) [7.4]

At longer times, steady state is reached and the limiting value of the extensional stress is

used to calculate the extensional viscosity.

L= S@ [7.5]

If the magnitude or the rate of the deformation is small enough the theory of linear
viscoelasticity will apply and the tensile stress growth coefficient will be related to the

linear relaxation modulus as shown below.

n2)=3n"())=3 [oeKs [7.6]

The measurement of extensional flow properties is more difficult than that of
shear flow properties and much work has been put into developing reliable techniques.
Miinstedt' and Meissner? developed two of the most successful experimental techniques.
In Miinstedt’s extensional rheometer a small sample is attached with an adhesive to a
stationary bottom plate which is coupled to a load cell. The top of the sample is attached
to a flexible band which is drawn upwards by a servomotor. The entire deformation takes

place in a vertical oil bath. With this instrument both constant rate and constant stress
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tests are possible. Meissner’s extensional rheometer uses metal conveyor belt clamps to
stretch the sample horizontally while supported by a cushion of nitrogen. One clamp is
mounted at the bottom of two leaf springs, which are bent by the tensile force resulting
from the deformation of the sample. An LVDT is used to measure the displacement of
the springs, which is proportional to the force exerted by the sample. Constant rate tests
are performed with this instrument.

7.1  Experimental Procedures and Data Analysis

7.1.1 Experimental Apparatus

For the present work, extensional flow experiments were performed with a
Meissner type rheometer, the Rheometrics melt elongational rheometer (RME). A
schematic of the clamps and sample positioning is shown in Figure 7.1. The sample,
clamps, and leaf springs are housed in an oven, which is heated by electrical heater wires
embedded in the walls. A cushion of nitrogen that supports the sample is formed by
compressed nitrogen that flows though a frit. The nitrogen is preheated by passing it
through a copper tube inserted in the electrically heated back wall of the oven. The initial
sample length, L, is equal to the distance between the tips of the clamps (54.5 mm). The
conveyor belts rotate in the directions shown in Figure 7.1 at constant rates and the
sample is stretched horizontally between the two clamps. Strain rates between 0.0001
and 1 s are possible, although useful measurements at the lowest rates are often not

possible due to sample sagging and extremely small stresses.
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|
o)

Figure 7.1 Schematic of Flow Situation in RME

The sample can be stretched up to a Hencky strain of 7 in this instrument. There
are problems associated with measurements at higher strains, which will be discussed in
section 7.1.3. The tensile force can be measured between 0.001 and 2 N with a resolution

of 0.001 N.

Samples were prepared by compression molding. To avoid sample deformation
during melting in the rheometer, care was taken to ensure that there were no significant
residual stresses in the sample after molding. The samples were approximately 57 mm in
length with a rectangular cross section (width 7mm, height 1.3 mm). Measurements were
performed on the low density mPEs at 130°C and on the high density mPEs at 150°C.
For the purpose of studying the effect of temperature on the non-linear extensional flow
behavior, measurements were performed on LDB3 at both 130°C and 150°C.
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7.1.2 Calculating Strain and Stress from Measured and Controlled
Variables

The strain rate is related to the belt velocity as in Equation 7.7 and the strainas a
function of time is given by Equation 7.8.

2v
£E=— 7.7
L, [7.7]
2vt
- 7.8
€ L [7.:8]

It is possible that the true strain rate will differ from the nominal rate applied by the belts
at least at some times during the test. The true strain rate can be measured by marking
the sample with small glass beads and using an image processing routine to analyze video
records of the tests. When the experiments were performed for the present study the
image analysis software was not available, therefore in all of the following analysis we
assume that the true extension rate was defined by Equation 7.7.

As the sample is stretched at a constant extension rate its dimensions change as in

Equations 7.8 and 7.9.
L(t) = L exp(st) [7.8]
A(t) = H(t)W(t) = H, W, exp(- t) [7.9]

H, and W, are the height and width of the sample just before the deformation begins.
These dimensions are different from the dimensions of the molded sample due to thermal

expansion. Thermal expansion is accounted for with Equation 7.10
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Y
A, = Hnwg{;"-’-] [7.10]

T

where the subscript RT and TT refer to room temperature and test temperature
respectively. The melt density as a function of temperature for LDB3 is shown in Figure
7.2. These data were also used for all the high and low density mPEs since comonomer

content does not affect melt density.
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Figure 7.2 Effect of Temperature on Density (LDB3)
The extensional stress is calculated from the measured force using Equation 7.11.

It is important to note that any errors in the extension rate will be magnified

exponentially in the calculation of the stress.

W BN
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Before the stress is calculated using Equation 7.11 the force as a function of time curve
should be examined to allow the removal of erroneous data. Two types of non-ideal
experimental conditions can be identified with the force curve: (1) sample sticking to or
touching the nitrogen frit on top of the sample table and (2) sample breaking at high
strains. In Figure 7.3, the force curve from an experiment where the sample touched the
table twice is compared to the force curve that was generated at the same strain rate
without touching the table. The effect of the sample touching the table is an increase in
force and therefore viscosity. Once the sample has touched the table, the entire run is
invalid and data should be discarded. The force curve from an experiment when the
sample broke is plotted in Figure 7.4. In this case 3.42 s into the test the sample started to
neck down and finally broke at 4 s. This situation results in a lower than expected force
and viscosity after necking down begins and a zero force when the sample breaks. The
data up until the point of necking down are valid, and thus for this run the data before
3.42 s can be used to calculate the tensile stress growth coefficient.

25

\ Sample touched

table

[\8]
o

Force (cN)
o

Y
o

(3]
—

Good force curve

0.1 1 10
Time (8)

Figure 7.3 Effect of Sample Touching Table on Force Curve
HDL1, € =0.5s™
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Figure 7.4 Example of a Force Curve When Sample Breaks
HDB3, ¢ =1s"

7.1.3 Sources of Error in Measurement Technique

There are several significant sources of error in the measurement technique that
was used in this work. One problem is the sagging of the sample that occurs after
melting and before the stretching begins. When the conveyor belts first begin to turn the
slack due to the sagging of the sample is being taken up and the measured forces and
therefore viscosities are lower than would be expected. Previous work has found that this
problem affects the data only at the beginning of the test; at higher strains the initial
sagging has little effect on the results’. In Figure 7.5, the tensile stress growth
coefficient at 0.1s! is compared to the LVE response (calculated from Equation 7.6 using
the discrete spectrum) for HDB3. In this case, because of the sample sag the tensile
stress growth function is below the LVE response at times before about 1 s. There is
good agreement between the tensile stress growth coefficient and the LVE response in
the intermediate region before strain hardening begins.
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Figure 7.5 The Effect of Sample Sag on Tensile Stress Growth Coefficient

A second source of error is the uncertainty in the strain rate. Since it was not
possible to measure the true strain rate, it was assumed that the strain rate was defined by
Equation 7.7. Meissner and Hostettler” showed that this assumption results in
approximately 1% error in the strain rate. The effect of this error on the stress can be
determined by performing an error propagation analysis (Equation 7.12). In Equation

7.12 and all subsequent equations in this section A means uncertainty (i.e. AX means ’

uncertainty in x).

O pg =t [exp(ét)]%(—t)Aé [7.12]

At:'EIé =

The relative uncertainty in the stress due to the uncertainty in the strain rate is given by
Equation 7.13.
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A% | _iae= e(éﬁ) =0.01e [7.13]
Se |, >

Another important source of error is the uncertainty in the force measurement.
The error in the stress due to the uncertainty in the force measurement is given in
Equation 7.14. According to the instrument manufacturer the uncertainty in the force

measurement is 0.001 N. Therefore, the relative uncertainty in the stress can be written

as Equation 7.15.

oo AF  AF
A =—ELEAF = = 7.14
GEIF oF A(t) A, exp(ﬁ) [ |
Acg _ AF _ 0.001 [7.15]
Ge F F

F

Using Equations 7.13 and 7.15 and neglecting the uncertainty in the cross
sectional area, the total relative uncertainty in the extensional stress is given by Equation

7.16.

2
£9 =\/[9'9F—'11-) +(0.01¢) [7.16]

Cg

In Figures 7.6 through 7.8 the errors in the extensional stress due to the strain rate and to
the force are compared to the total error. At the higher rates the uncertainty in the rate is
the most significant source of error in the stress. At lower rates (and therefore lower
forces) the uncertainty in the force becomes the dominant source of error. This means
that the less viscous a material is the less accurate the measurements from the RME will
be. In the case of the high density mPEs included in this study, HDB3 has the highest
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viscosity, therefore for HDB1, HDB2 and HDL 1 the extensional flow data have even
more error. In Figure 7.9 the effect of extension rate on the total error in the stress is
shown for HDB3. Figure 7.10 is the same type of plot for HDL1. The increased
uncertainty due to the lower viscosity of HDLI1 is readily apparent in this plot.

HDB3.rate=1s"

4 Total error

/

2 1 rror due to
uncertainty in
; rate X
) Error due to
uncertainty in force
0 Cc.5 1 1.5 2 2.5 3 35 4
Strain

Figure 7.6 Uncertainty in Extensional Stress as a Function of Strain
HDB3, ¢=1s"
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Figure 7.8 Uncertainty in Extensional Stress as a' Function of Strain
HDB3, ¢ =0.01s™
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Equation 7.17 is used to calculate the total uncertainty in the tensile stress growth
coefficient due to the uncertainty in the strain rate and the force.

. 2
ane _ ‘K“EJ +(0.01) [7.17]
Me Cg

A fourth problem that occurs in the RME data is artificial strain hardening.

Hepperle and Saito” found that for non-strain hardening materials artificial strain
hardening is often observed at high rates. They also observed artificial strain hardening
with low-viscosity materials at low rates and long times. They were unable to find a
cause for the artificial strain hardening at high rates, but they suggest that the artificial
strain hardening at low rates could be due to calibration errors. In the case of very small
forces, a small error in the force can result in a very large error in the stress. Because of
the problem with artificial strain hardening care must be taken when making conclusions

about strain hardening using the RME data.

7.2 Results and Discussion

7.2.1 High Density mPEs

Results from the extensional flow experiments for the high density mPEs are
plotted in Figures 7.11 through 7.14. To ensure clarity in the graphs data from four or .
less extension rates are compared. The error bars were calculated using Equation 7.17
and represent the uncertainty in the tensile stress growth coefficient due to the uncertainty
in the rate and the force. In Figure 7.11 we see that at the higher rates HDB3 exhibits
significant strain hardening. At a rate of 0.01 s’! the uncertainty becomes so large that the
tensile data cannot be distinguished from the LVE response. The same phenomena are
observed in Figures 7.12 and 7.13 for HDB2 and HDB?3 although the onset of significant
strain hardening occurs at a higher rate. For HDL1 (Figure 7.14), a slightly different

situation is observed. At rates up to 0.5 s no significant strain hardening occurs. At 1
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s”! the data appear to indicate strain hardening, but because of the possibility of artificial
strain hardening at high rates we cannot conclude that strain hardening occurs for this
material. The onset of strain hardening behavior is summarized for these resins in Table
7.1.
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Figure 7.11 Start-up of Steady Simple Extension for HDB3
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Table 7.1 Summary of Non-linear
Behavior in Extensional Flow for High
Density mPEs at 150°C
Resin LCB ¢ at which strain
10°C hardening is first

observed (s ™)

HDL1 0 No strain hardening
observed

HDB1 0.12 0.05

HDB2 0.37 0.05

HDB3 0.42 0.02

It is also important to note that in the preceding figures no steady state values for
. the tensile stress growth coefficient were noted. In all cases the sample broke, the

instrument’s maximum strain of 7 was reached, or the force fell below detectable limits
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before steady state was reached. This is unfortunate because it means that it was not

possible to generate extensional viscosity curves for these materials.

7.2.2 Low Density mPEs

Extensional flow data for the low density mPEs are shown in Figures 7.15
through 7.18. Because these measurements were performed at a lower temperature
(130°C) than the measurements for the high density mPEs (150°C) the forces were higher
and therefore the data are more accurate. For LDB3 (Figure 7.15) even at a rate of
0.01 s the error bars are very small (especially at low strains). In this set of materials
the resin with the highest degree of LCB, LDB3, exhibits strain hardening at the lowest
rate. As the degree of LCB decreases the rate at which strain hardening begins increases.
LDLI1 is a linear material and in other rheological studies it behaved as a linear material.
However in the case of extensional flow behavior, the RME data for LDL1 appear to
indicate strain hardening for rates above 0.1 s'. Because of the previously observed
incidence of artificial strain hardening for non-strain hardening materials with this
instrument we cannot conclude based on these data that LDL1 exhibits strain hardening
behavior in extensional flow. Measurements for LDL1 should be performed with another
type of extensional rheometer to confirm or invalidate the RME data. The onset of strain

hardening behavior for the low density mPEs is summarized in Table 7.2.
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Table 7.2 Summary of Non-linear
Behavior in Extensional Flow for Low
Density mPEs at 130°C
Resin | DRI £ at which strain

hardening is first
observed (s)
LDL1 0 0.1°
LDB1 1.1 0.05
LDB2 3.9 0.02
LDB3 14 0.01

7.2.3 Effect of Long Chain Branching on Extensional Flow Behavior

The effect of LCB on extension flow behavior can be seen in Figures 7.19 and
7.20. In these figures the tensile stress growth coefficient is plotted for different resins at
the same rate. The data for the high density mPEs are plotted in Figure 7.19. Since the
tensile stress growth coefficient for HDL1 at 0.5 s was indistinguishable from the LVE
response, the LVE response of this material was plotted in Figure 7.19 to compare with
the other high density mPEs. We see that an increased degree of LCB causes an increase
in the tensile stress growth coefficient at a certain rate and time. Also, the behavior of
HDLL1 is significantly different from the behavior of the long chain branched materials.
The data for the low density mPEs are plotted in Figure 7.20. An increased degree of

LCB causes the same effect for these materials.

-
Data for LDL1 are suspect due to the errors discussed in Section 7.1.3 and must be verified.
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7.2.4 Effect of Temperature on Extensional Flow Behavior

Extensional flow measurements were performed on LDB3 at both 130 (Figure
7.15) and 150°C (Figure 7.21). Data from three extension rates at each temperature are
compared in Figure 7.22. As expected, an increase in temperature shifts the tensile stress
growth coefficient curves down and to the right. These data were shifted using the
temperature shift factors calculated from the LVE data (Section 5.2) and plotted in Figure
7.23. As, shown in this figure, the shifted rates for the 130°C data are equal to a,¥,3c-

In this plot we see that the LVE temperature shift factors appear to shift the extension

flow data correctly.
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Figure 7.21 Start-up of Steady Simple Extension for LDB3 at 150°C
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Chapter 8

Fit of the Wagner Constitutive Equation to Rheological Data

Under the conditions present in plastics forming processes, polymers exhibit
nonlinear viscoelasticity. To simulate such a response one must use a constitutive

equation such as the BKZ equation, which relates the stress to the strain history.

t au ' au ' '
‘C.',-(t)—jzacﬁ(&t)JEBﬁ(t,t)}dt [8.1]

where: C is the Cauchy strain tensor and B is the Finger strain tensor
I; and I, are the first and second scalar invariants of the Finger tensor
u is a time-dependent elastic energy potential which is also dependent on

I| and I;_

Wagner’s simplification of the BKZ equation is a widely used constitutive
equation (Equation 8.2)". In Wagner’s equation the memory function is described by the
product of a time dependent memory function (Equation 8.3) and the damping function.
A damping function that has been found to be useful is the one proposed by
Papanastasiou and coworkers (Equation 8.4)%. In this equation, a and B are material
dependent constants. For most flows, Wagner’s equation must be solved numerically. In
the present work, the numerical technique developed by Jeyaseelan and Dealy® was used

for all simulations.

7;(t)= ]m(t-t')h(II,Iz)B.-,-(t,t')dt' [8.2]
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m(t, t) = Z%ex -[‘}%‘D 8.3]

1
1+afpl, +(1-B)I, -3]

h(1,,1,)= [8.4]

8.1 Determining the Parameters in Wagner's Equation

In Wagner’s equation there are two material functions; the memory function,
m(t,t'), and the damping function. The memory function is based on a generalized
Maxwell model as shown in Equation 8.3. The parameters, Gi, A, are determined by
fitting dynamic linear viscoselastic data. In the present work we used the IRIS software

package to do this.

For shear flows, I; =I5, and Equation 8.4 for the damping function simplifies to
Equation 8.5. The most direct way to determine a in Equation 8.5 is by step strain
experiments. In these experiments the non-linear relaxation modulus, G(t.y), is
measured (described in Section 6.2). Using Equation 8.6, the value of the damping
function can be determined at various strains. The value of a is then calculated by fitting

these data to Equation 8.5.

h(l) = ﬁ—a(l_lff) [8.5]
G(t,v)= G(t)*h(y) 8.6]

As described in Section 6.2, this was done for three of the high density mPEs (Table 8.1).
The fit of Equation 8.5 to the experimental data is shown in Figure 8.1. The quality of
the fit is best for HDB3 and worst for HDL1. Equation 8.5 is not able to describe the
small strain behavior, of HDB1 and HDL1. For HDBI, the fit is better at higher strains.
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Table 8.1 Values of "a'" for Three

mPEs
Resin LCB a
10°C
HDL]1 0 0.059
HDBI1 0.12 0.096
HDB3 0.42 0.149

Damping Function

Increasing Degree
of LCB

Figure 8.1 Damping Functions for HDL1, HDBI and HDB3
Curves represent best fit to Equation 8.15

10

100

The value of B (Equation 8.4) must be determined from extensional flow data. An
attempt was made to use stress growth data from the start-up uniaxial extension to
estimate P, since these were the only extensional flow data available for these materials,

but the data were not of sufficiently good quality (see Section 7.1.3 for a discussion about
the errors in these data). Since we were only really interested in evaluating the Wagner

model for shear flows in this work the lack of a value for B was not a concern.
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8.2 Simulation Results for Steady Simple Shear

The Wagner model was used to generate viscosity curves, and theses are
compared with experimental data in Figures 8.2 through 8.4. The agreement for the of
the model predictions to the experimental datais fair with some deviations at high rates.
Despite this, the relative behavior of these three materials is preserved in the model
predictions. For example, in both experimental and predicted viscosity curves the

amount of shear sensitivity is greater for HDB3 than for HDB2 and HDL1.
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(Pa.s) 00
8 g
-] s = ~
9 e
1000 - .
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[—Wagner Model Prediction o Experimental Data !

Figure 8.2 Comparison between Wagner Prediction and Experimental
Measurements of the Viscosity Curve of HDL1
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Figure 8.3 Comparison between Wagner Prediction and Experimental
Measurements of the Viscosity Curve of HDB1

100000

(Fg ) 10000 -

1000 . —_ .
0.01 0.1 1 10 100
Shear Rate (s-1)

[— Wagner Model Prediction o HDB 3|

Figure 8.4 Comparison between Wagner Prediction and Experimental
Measurements of the Viscosity Curve of HDB3
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8.3 Simulation Results for Large Amplitude Oscillatory Shear

Large amplitude oscillatory shear, LAOS, was also simulated, and the predictions
of the model were compared with experimental data (Figures 8.5 through 8.10). In
general the simulation results agree very well with the experimental data for all three
materials. The amplitude and phase angle of the first harmonic, 6, and §,, are in
excellent agreement in all cases. The amplitude of the third harmonic, o3, is under-
predicted by the Wagner model in all cases. The phase angle of the third harmonic is in
excellent agreement for HDL1 and HDB3 and is slightly over predicted for HDBI.

Based on the results for steady simple shear and LAOS, and given the inherent
difficulty in modeling non-linear viscoelastic behavior we conclude that the Wagner

model predicts the behavior of the three mPEs in shear flows with reasonable accuracy.
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Chapter 9.
Using Rheological Data to Provide Information about LCB

Since rheological behavior depends strongly on molecular structure in fairly
predictable ways, rheologists have always been interested in solving the inverse problem:
using rheological data to provide information about molecular structure. Although there
has been some controversy about the feasibility of solving these ill-posed problems a
number of researchers have had significant success, especially with the calculation of
MWD for linear polymers. One of the techniques that has been demonstrated to be
reliable for linear polyethylenes was developed by Shaw and Tuminello' and refined by
various other researchers®’. This technique is particularly useful, because it requires only

LVE data, is simple to apply, and is robust.

A more complicated problem is to extract information about the molecular
structure of long chain branched polymers from rheological data. De-coupling the effects
of MWD and LCB on rheological phenomena is a key problem for researchers to solve,
because changes in these two molecular characteristics can have some similar effects on
rheological behavior. For example. broadening the MWD increases the longest

relaxation time, as does an increase in LCB.

As was discussed in Chapter 2, it is sometimes difficult to quantify low levels of
LCB using established analytical techniques. Therefore, there is a great deal of interest in
evaluating altemnative techniques for the quantification of LCB.
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9.1 Criteria for a Technique to infer the Level of LCB from Rheological
Data

A useful rheological technique for inferring the level of LCB must meet three

criteria:

1. It must distinguish between linear and branched mPEs.
2. It must distinguish between branched mPEs and traditional
polyethylenes.

3. It must allow us to infer the level of LCB.

To meet the first criterion, a technique must involve a parameter that is independent of
M, but highly sensitive to LCB. Since mPEs typically have polydispersity indexes of 2,
the shape of the MWD is not a complicating factor in meeting this criterion. However,
traditional polyethylenes (LLDPE and HDPE) can have significantly broader MWDs.
Therefore, to meet the second criterion the parameter must also be independent of MWD.
Finally, to be useful to infer the level of LCB, the parameter must have a unique value for

any given degree of LCB within a reasonable range.

The Dow Rheology Index* (DRI) meets the first criterion and also allows the
ranking of resins in terms of level of LCB. This parameter is a measure of the extent to
which the viscosity curve of branched mPEs deviates from that of linear mPEs. The DRI
is based on a resin’s shear thinning behavior and is related to the degree of long chain °
branching. It is defined in terms of the parameters arising from a nonlinear regression fit
of the generalized Cross viscosity function (Equation 9.1) to experimental complex
viscosity and/or viscosity data (assuming the Cox-Merz rule to be valid).

N Mo
n(¥)= T F [9.1]
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It has been found that linear mPEs obey the following relation®.

No = 3.65 x10%(t.)
where

. {9.2]
M. [=] poise
T [=]seconds
The DRI is a measure of the departure from this behavior and is defined as™:
6 -
DRI = 3:65%10 (ta/m0)—1 [9.3]

10

where the units are as in Equation 9.2. Linear mPEs always have a DRI value of zero,
while an increasing DRI value corresponds to an increasing degree of LCB. However,

' the DRI parameter is designed only for materials with narrow MWDs (M/M, = 2), and
this technique, therefore, will not be useful for distinguishing between long chain
branched mPEs and traditional polyethylenes. The DRI values for LDB1, LDB2 and
LDB3 are 1.1, 3.9 and 14 respectively.

9.2 Using Extensional Flow Behavior to Obtain information about LCB

Previous resulits for traditional branched polyethylenes (LDPE) have suggested )
that a material’s behavior under extension is strongly affected by the presence of LCB.
LDPEs, which have high degrees of branching with many branch lengths, exhibit strain
hardening behavior in extensional flow. Strain hardening behavior is characterized by an
increase in the tensile stress growth coefficient above the LVE response (equal to 3 times
the shear stress growth coefficient). Strain hardening is observed at intermediate rates
only, resulting in an extensional viscosity curve that increases to a maximum that is

. higher than three times the zero shear viscosity and then decreases. Generally, linear

polymers do not exhibit strain hardening, and their extensional viscosity curves therefore
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decrease monotonically with rate. This means that strain hardening is independent of
MWD. One measure of degree of strain hardening is the ratio of the maximum
extensional viscosity to 3 times the zero shear viscosity. Miinstedt and Laun’
demonstrated the dependence of strain hardening on LCB using three polyethylenes
(Table 9.1).

Table 9.1 Dependence of Strain Hardening on LCB’
Sample Mw Mw/Mn Ne(max) | Density | LCB per
3n. (g/cm3) !
LDPE 6 | 467 000 25 7 0.918 30
LDPE9 | 256 000 10 2.8 0.928 15
HDPE 3 | 152000 14 1 0.960 0

Based upon accepted beliefs about the sensitivity of extensional flow behavior to
LCB, the present study was initially aimed at using extensional flow data to quantify
LCB in mPEs. However, as was shown in Chapter 7, the mPEs did not exhibit steady
state behavior within the experimentally accessible portion of the tensile stress growth
function, and it was therefore impossible to construct extensional viscosity curves for
these materials. This meant that the ratio used by Miinstedt and Laun to quantify strain
hardening was not useful for mPEs.

To establish precisely the information contained in the tensile stress growth
coefficient that is not provided by the LVE data, a reduced tensile stress growth function

was defined as shown by Equation 9.4.

n:(t.¢)

[9.4]
3n:(t)

N (L€)=

In Equation 9.4, the linear shear stress growth coefficient was calculated using the

discrete spectrum (Section 5.3). Figures 9.1 and 9.2 show the reduced tensile stress
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growth functions for the high and low density mPEs at 0.5 s'. Atarate of 0.5 s™', the

N1z (t) functions for the linear mPEs are different from those for the branched mPEs, but
the n; (t) functions for the branched materials are indistinguishable. Furthermore, at
lower rates the n, (t)functions for the linear materials were indistinguishable from those
of the branched materials. This means that while the 1 (t) function at higher rates is
affected by the presence of LCB, it is not highly dependent on degree of LCB (at these
levels). Hingmann and Marczinke® did find a dependence of the 1, (t) function on
degree of LCB for polypropylene for higher branching levels. However, the accessible

extensional flow data for the materials in this study do not contain much more
information about degree of LCB than is contained in the LVE data, and the data most
likely to be useful for inferring the level of LCB are thus the LVE data.
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Figure 9.1 Effect of LCB on Reduced Tensile Stress Growth Coefficient for
High Density mPEs at 0.5 s
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Figure 9.2 Effect of LCB on Reduced Tensile Stress Growth Coefficient
Low Density mPEs at 0.5 s

9.3 Separating the Effects of LCB and MWD on LVE Behavior

Separating the effects of LCB and MWD on rheological behavior is not a
straightforward task. Itis certainly not possible to determine the molecular structure of a
polymer from rheological data alone without any prior knowledge about the molecular
structure. If the material is known to be linear for example, then a reliable estimate of the
MWD can be obtained using the LVE data. If a material is branched, however, the
MWD predicted from LVE data using a technique such as that developed by Shaw and
Tuminello will deviate from the true MWD. The degree of deviation in the predicted
MWD is related to the degree of LCB. Therefore, comparing the gel permeation
chromatography MWD with the MWD predicted from LVE data can provide information
about the degree of LCB.
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9.3.1 A Technique for Inferring MWD from Complex Viscosity Data for
Linear Polyethylenes.

For the present study the correlation between MWD and complex viscosity is a
modified version of the technique developed by Shaw and Tuminello'. The mixing rule
given by Equation 9.5 is used along with the assumption that a polydisperse system can
be modeled as a mixture of N monodisperse fractions each having a complex viscosity

curve that consists of a Newtonian plateau followed immediately by a power law region.

N
N’ =3 wan® [9.5]

i=l

Equation 9.6 can then be derived (mathematical details are described by Malkin and
Teishev’) to describe the dependence of the cumulative MWD on the complex viscosity

curve.

*\ V2 via *
w(m)=1+%[“_} [:o‘i) dinn [9.6]

Mo € 0 =0m
In the above equation the critical frequency (@) is the intersection of the low shear rate

plateau and the power law portion of the log-log viscosity curve, and the reduced

molecular weight is defined as follows.
m = M/M, [9.71

The slope in the power law region is equal to -v. The logarithmic differential molecular
weight distribution (Equation 9.8) is obtained by taking the derivative of Equation 9.6

with respect to log(m).
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@) n* 1" & mn®  dinn® [(dinn® )
w(logm)——-[—_——z— LU [y P 712 +vE20 L [9.8]
mv n, dino dlno dlno

The reduced molecular weight is related to the frequency as shown below.
o=0m [9-9]

The use of Equation 9.8 to calculate the MWD implies the availability of
experimental complex viscosity data that include the Newtonian plateau and the power
law region. For most polydisperse polymeric systems it is not possible to measure the
complex viscosity over the entire range of interest. Therefore, the data are extrapolated at
both ends using well-behaved viscosity models. The extrapolation at the low frequency
end of the curve was accomplished using Equation 9.10 with the discrete linear relaxation

spectrum.

wGA Y (& G Y
ne- \[ Eets) -ty >

The Vinogradov fluidity model, Equation 9.11, was used to extrapolate at high rates. In

this equation, the negative of the power law slope, v, is determined by fitting
experimental data. It was found that for the mPEs included in this study the optimum
value for v was always 1. This is not generally the case with traditional polyethylenes.

Ny N 4 N 9.11]
_ZAm [

* '

=1

3

Once the complex viscosity curve has been extrapolated to a zero second

derivative at both ends, the logarithmic differential MWD is calculated from the complex
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viscosity data using Equations 9.8 and 9.9. This calculated MWD is referred to as the
“viscosity MWD™.

As described in Section 4.1.1, the true MWD can be measured using gel
permeation chromatography (GPC). GPC data are often reported in terms of weight
fractions (wt;) corresponding to molecular weights (M;). These data must be converted to
the discrete logarithmic MWD function using Equations 9.12 through 9.14. The weight
fraction data are first transformed into a discrete representation of the MWD function

(Equation 9.12) and then normalized as shown in Equation 9.13.

f=—t [9.12]

t

[9.13]

f, = £
l fo'(Mwl -IVI:)

Finally, the data are put into the form of the discrete logarithmic MWD function
(Equation 9.14), which is of the same form as the viscosity MWD.

w,(logM,) =£f,M,Ln(10) [9.14]

For linear polymers the viscosity MWD as determined above and the discrete logarithmic
MWD function calculated from GPC data should be the same.

9.3.1.1 The Effect of Various Molecular Characteristics on the Accuracy of
the Viscosity MWD for Linear Polyethylenes

The accuracy of the viscosity MWD is illustrated by the data for HDLI in Figure
9.3. For this material we have excellent agreement between the viscosity MWD and the

GPC MWD. To examine the effects of various molecular characteristics on the viscosity



Chapter 9. Using Rheological Data to Provide Information about LCB 139

MWD seven additional linear polyethylenes were chosen to permit the systematic
variation of My, polydispersity index (PI) and comonomer content. The quality of the
viscosity MWDs for these materials was then compared to that of HDL1. Two measures
of the quality of the viscosity MWD were used: the peak ratio (Equation 9.15) and the
breadth ratio (Equation 9.16).

Peak Ratio = — oL C MWD peak m [9.15]
viscosity MWD peak m
Breadth Ratio = GPC MWD breadth at w(logm)=0.5 (9.16]

viscosity MWD breadth at w(logm)=0.5

The characteristics of the materials included in this study are summarized in Table 9.2
and are described in detail in Tables 4.3 and 4.4 in Chapter 4. Unless indicated otherwise
the LVE data that were used to calculate the viscosity MWDs presented in this chapter
were measured at 150°C with a data point density of 7 points per decade of frequency.

Table 9.2 Linear Polymers Included in Viscosity MWD

Evaluation
Resins Molecular Characteristic of
Interest
HDL2 and HDL3 Mw range of 41 900 to 122 200
LDL1, LDL2,LDL3 Butene content range of
11.4t021.2 wt.%
LLDPEI1 and LLDPE2 | Broad MWD octene copolymers
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Figure 9.3 Comparison of Viscosity and GPC MWD for HDL1
(Butene copolymer (1.44 wt.%) with Mw= 100 900 and PI = 2.08)

The viscosity and GPC MWDs for HDL2 and HDL3 are compared in Figures 9.4
and 9.5, and the effect of My on the quality of the viscosity MWD is summarized in
Table 9.3. Lowering My results in a movement of the experimental window towards the
higher molecular weight end of the distribution (Figures 9.4 and 9.5). This movement of
the experimental window reduces the amount of information that is available for the
MWD prediction and results in a poorer prediction. The poorer quality of the prediction
affects the breadth of the viscosity MWD but not the location of the peak (Table 9.3).
The quality of the viscosity MWDs predicted for the two higher molecular weight '

materials is excellent.

Table 9.3 Effect of Mw on Viscosity MWD Quality
Resin Mw Peak Ratio Breadth Ratio
HDL2 41 900 1.06 1.18
HDLI1 100 900 0.96 1.04
HDL3 122 200 0.97 1.09
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Figure 9.5 Comparison of Viscosity and GPC MWD for HDL3
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The effect of short chain branching on the viscosity MWD was studied using

LDL1, LDL2 and LDL3 (Figures 9.6 through 9.8). The results shown in the figures and

summarized in Table 9.4 indicate that short chain branching resulting from

co-polymerization with butene (up to 21.2 wt.% butene) has no effect on the viscosity

MWD.

Table 9.4 Effect of Short Chain Branching on Viscosity MWD Quality
Resin wt. % butene Peak Ratio Breadth Ratio
HDLI1 1.44 0.96 1.04
LDLI1 114 0.97 1.06
LDL2 14.83 0.92 1.04
LDL3 21.1 0.90 1.05
1.2
11 e
Open symbols represent
experimental data and filled
0.8 1 symbols represent
‘g extrapolated data
g 0.6
3
0.4
0.2
0 "o 2t
0.01 0.1 1 10 100
Reduced Molecular Weight
{"s Viscosity MWD —GPC MWD |
Figure 9.6 Comparison between Viscosity and GPC MWD for LDL1

(LVE Data Measured at 130°C)
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The effect of polydispersity on the viscosity MWD was studied using LLDPE1
and LLDPE?2 (Figures 9.9 and 9.10), the results are summarized in Table 9.5. While the
viscosity MWDs of LLDPE1 and LLDPE?2 are not in as good agreement with the GPC
data as is the viscosity MWD for the narrower MWD HDLI1, the agreement is still very
good. Based on the data in Table 9.5 there is no correlation between polydispersity and
the quality of the peak molecular weight prediction.

Table 9.5 Effect of Polydispersity on Viscosity MWD Quality
Resin Mw Mw My Peak Ratio Breadth
Ratio
HDLI1 100 900 2.1 0.96 1.04
LLDPE2 145 500 35 1.11 .99
LLDPE1 158 000 4.54 1.07 .96
0.9
08 -~
0.7 Open symbols represent

experimental data and filled
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extrapolated data

0 4 : : .
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Figure 9.9 Comparison between Viscosity and GPC MWD for LLDPE1
(LVE Data measured at 150°C, 9 points/decade frequency)
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Figure 9.10 Comparison between Viscosity and GPC MWD for LLDPE2
(LVE Data measured at 150°C, 9 points/decade frequency)

9.3.1.2 The Effect of LVE Data Measurement Temperature on the Viscosity
MWD

The effect of the measurement temperature on the quality of the viscosity MWD
was evaluated using the low density mPE LDL1. LVE measurements were performed at
130, 150 and 170°C, and the viscosity MWD was calculated from the data at each
temperature. In Figure 9.11, the viscosity MWDs calculated from LVE data measured z;t
130°C and 170°C are compared with the GPC MWD. The increase in measurement
temperature moves the experimental window to higher molecular weights, which
corresponds to lower frequencies. This results in a slightly poorer prediction of the details
of the MWD, particularly in the region just before the peak. The results of this study are
summarized in Table. 9.6. Increasing the temperature affects primarily the breadth of the
viscosity MWD, although there is a small change in the peak location at 170°C. Overall,
these data indicate that in the temperature range 130°C to 170°C there is little effect of
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temperature on the viscosity MWD for LDL1. As is discussed in the next section,
increasing the temperature and thereby moving the experimental window to higher
molecular weights can reduce the quality of the viscosity MWD. Therefore, for the
materials studied in this work, the lowest temperature at which the material is completely
molten is the optimum testing temperature.

1.2

Open symbols represent
experimental data and filled
symbols represent
extrapolated data

0.01 0.1 1 10
m

| * Viscosity MWD 130C « Viscosity MWD 170C — GPC MWD

Figure 9.11 The Effect of LVE Measurement Temperature on the Viscosity MWD
for LDL1

Table 9.6 Effect of LVE Data Measurement
Temperature on Viscosity MWD Quality for LDL1

Measurement Temperature Peak Ratio Breadth Ratio
cO
130 0.97 1.06
150 097 1.09
170 0.96 1.09
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9.3.1.3 The Effect of LVE Data Density and Range on the Viscosity MWD

The effects of data range and density on the viscosity MWD have been previously
investigated®™. Increasing the range and the density of the LVE data results in a better
MWD prediction. In terms of range, the ideal LVE data set would include the Newtonian
plateau and the power law region. However, this is usually experimentally impossible,
and as is shown in reference 2 the most important LVE information resides in the region

around the minimum in the second derivative of the logarithmic complex viscosity curve

2

( flm n *J . The likelihood of predicting an accurate MWD with a given set of LVE data
now-

can be evaluated by plotting the second derivative curve against the reduced frequency

(w/w, )as in Figure 9.12. In this figure we see that the experimental window for HDL1 at

150°C includes the minimum in the second derivative, which leads to the excellent

quality of the viscosity MWD prediction for HDL1.

Any shift of the experimental window is likely to affect the quality of the
viscosity MWD. An increase in measurement temperature, as shown in the previous
section, will shift the experimental window to a lower reduced frequency. If the
experimental window no longer covers the minimum in the second derivative, the quality
of the MWD will be compromised. A decrease in molecular weight also shifts the
experimental window to lower reduced frequencies. This was the cause of the poor
quality of the viscosity MWD in the case of HDL2 that was presented in Section 9.3.1.1.
HDL2 has a very low molecular weight, resulting in the experimental window shown in

Figure 9.13, which does not include the minimum in the second derivative.
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A high frequency truncation study was performed using the data for HDL1 to
determine the relationship between the breadth of the experimental window and the
quality of the viscosity MWD. The data were truncated at the three frequencies shown in
Figure 9.14, and the viscosity MWDs were recalculated from the truncated data (Figure
9.15). The results are summarized in Table 9.7. When the data were truncated at
frequencies below 6.95 rad/s IRIS was not able to calculate the discrete spectrum. We
assume that this was a result of insufficient information for the fitting procedure. In
Table 9.7 we see that the quality of the viscosity MWD deteriorates as the experimental
window is narrowed. The viscosity MWD becomes narrower, and the peak moves to
higher molecular weights as more high frequency data are lost. The breadth of the
viscosity MWD is the first characteristic that is affected by the truncation. The peak
molecular weight is significantly affected only in truncation 3, shown in Table 9.7, and
even in this extreme situation the error in the peak molecular weight is not large. We
conclude from this study that data sets including information up to reduced frequencies
lower than 0.13 can still predict the location of the peak molecular weight reliably. In the
case of multiple peaks in the viscosity MWD, we can refer to the proximity of the
experimental window to the second derivative minimum that corresponds to the MWD
peak in question to evaluate the quality of the data. A measure of this proximity is the
relative location, R, defined in Equation 9.17. According to the results of the truncation
study, data sets with relative locations below 0.19 can still predict the location of the peak

molecular weight.

maximum experimental ® [9.17]
o at second derivative minimum

R
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Table 9.7 Data Truncation Study - HDL1
Data Set Experimental | Maximum 0/@, Relative Peak | Breadth
frequency in Exptl Data Location of | Ratio Ratio
range (rad/s) Exptl
Window
Original 0.036 - 500 2.58 3.73 0.96 1.04
Truncation 1 0.036 - 96.54 0.50 0.72 0.96 1.12
Truncation2 | 0.036 -25.90 0.13 0.19 0.95 1.20
Truncation 3 0.036 - 6.95 0.04 0.05 0.90 1.17

Liu and coworkers’ showed that the LVE data density govemns the resolution of
the viscosity MWD. If the data are too sparse, important details of the MWD will be lost,
e.g., bimodality in the MWD. To resolve two characteristics of the MWD, one occurring

at m; and the second occurring at m,, the condition in Equation 9.18 must be met.

6.5
3.4|Log(m, )- Log(m, )

Ppaa =

[9.18]
where p,,,, is points per decade of frequency

In the current work, the density of the LVE data was 7 points per decade of frequency
except for the low density mPEs at 150°C and 170°C when the density was S points per
decade and for LLDPE1 and LLDPE2 when the density was 9 points per decade. Using
Equation 9.18, this technique indicates that for the 9, 7 and 5 points/decade data sets the
viscosity MWD will resolve features that are 0.21, 0.27 and 0.38 decades of molecular
weight apart respectively.

Based upon the accuracy of the peak molecular weight predictions presented
earlier it appears that the viscosity MWD technique (applied in this work) actually has a
better resolution for this feature of the MWD than was indicated by the above analysis.
For all of the linear materials studied in this work, the errors in the peak molecular weight
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predictions were less then 0.044 decades of molecular weight (data density of 7 points
per decade of frequency). This corresponds to the relation given by Equation 9.19.

2
3.4p,..

Resolution in Peak m =

[9.19]

Using Equation 9.19, we can estimate that the error in the peak molecular weight for the
data sets that have densities of 5 and 9 points per decade would be at most 0.059 and
0.033 decades respectively (error is 'z of resolution). It is useful to note that an
uncertainty in the viscosity MWD peak molecular weight of 0.044 decades corresponds
to an uncertainty in the logarithm of the peak ratio of 0.044.

The results presented in Section 9.3.1 show that the technique used for the
calculation of the viscosity MWD of linear polyethylenes is robust, particularly in terms
of the peak molecular weight prediction. Based upon the truncation study using data for
HDL1, we find that as long as sufficient data for the fitting of the viscosity models is
available the peak molecular weight can be predicted with good accuracy. The LVE data
density governs the resolution in the peak molecular weight. For 7 points per decade of
frequency the resolution in the peak molecular weight is 0.084 decades of molecular
weight. This correspond to an uncertainty in the peak molecular weight ratio of 11% (for
a peak ratio of 1), which is larger than, and could therefore possibly explain, all of the
errors due to differences in molecular structure, measurement temperature, and data

truncation that were found in this work.

9.3.2 The Effect of LCB on Viscosity MWD

The viscosity MWD technique presented in Section 9.3.1 is valid only for linear
materials. Since the complex viscosity curve is affected by MWD and long chain
branching (LCB), a viscosity MWD calculated for a branched material does not represent
the GPC MWD. For a branched material, the viscosity MWD can be interpreted as the
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MWD of a linear polymer that would have the same complex viscosity curve as that of
the branched material. The viscosity MWD was calculated for the branched materials,
HDB1-4 and LDBI1-3, and the results are compared to the GPC MWDs in Figures 9.16
through 9.22. We recall that HDB1-4 have increasing levels of LCB as do LDB1-3. The
presence of LCB has several effects on the viscosity MWD. The viscosity MWD of a
branched material in comparison to the GPC is broadened, the primary peak is shifted to
a lower molecular weight, and a secondary peak is added at high molecular weights. As
can be seen in Figures 9.16 through 9.22, the degree of distortion in the viscosity MWD
as compared to the GPC MWD increases as the degree of LCB increases. It was found
that the shifting of the peak was the best measure of the difference between the viscosity
and the GPC MWD, and as shown in the next section, this shift can be correlated with the
degree of LCB. The LVE data used to determine the viscosity MWDs presented in this

section were measured at 150°C unless otherwise indicated.
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Since the peak of the viscosity MWD is an important parameter, it is necessary to
ensure that the predictions for this value are correct. For the branched materials, with the
exception of LDB1, the experimental window does not cover the primary peak.
However, as was demonstrated previously, the criterion for evaluating the quality of the
prediction of the location of a peak MWD involves the location of the experimental
window relative to the corresponding minimum in the second derivative curve. Figure
9.25 shows the second derivative of HDB3. By inspection, we see that the experimental
window is close enough to the relevant minimum in the second derivative to give a good
prediction of the location of the peak. A more objective measure is the relative location
parameter, R, as defined by Equation 9.17. The R values corresponding to the primary
peaks for all the branched materials are presented in Table 9.8. The lowest R value for
the branched materials, 0.52, is significantly higher than the R value of 0.19 that was
seen with the second truncation of the HDL1 (Section 9.1.3.1). Even with an R 0of 0.19
the peak molecular weight prediction was very good. Assuming that the R parameter is
valid for the branched materials we can thus have confidence in the predicted locations of

the primary peaks in the viscosity MWDs of the branched materials.
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Table 9.8 Relative Locations with respect to Primary Peaks in MWD for
Branched mPEs
High Density mPEs Low Density mPEs
Resin LCB/10°C R Resin DRI R
HDBI1 0.12 0.72 LDBI1 1.1 19.3
HDB2 0.37 0.72 LDB2 39 3.73
HDB3 0.42 0.52 LDB3 14 0.52
HDB4 1.21 2.68

A high frequency truncation study of the data for HDB3 was performed to

evaluate the applicability of the R parameter to branched materials. As for HDLI, high

frequency data were truncated, and the viscosity MWD was recalculated until the shortest

data set that allowed for the same peak molecular weight was found. The results of this
study are shown in Figure 9.24. The truncated data set included data up to a frequency of
258.28 rad/s and had an R of 0.19. This limiting value of R is in agreement with the
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results for HDL1. From this we conclude that R is a valid criterion for evaluating the
quality of the viscosity peak molecular weight for branched materials and that as long as
R is = 0.19 the peak molecular weight prediction is reliable.

0.001 0.01 0.1 1 10 100

—+—Original Data Set o Truncated Data Set ——GPC MWD

Figure 9.24 Results of HDB3 Truncation Study

9.4 Correlating the Distortion of the Viscosity MWD to Degree of LCB

It was found that the feature of the viscosity MWD that was most sensitive to the
degree of LCB was the shift in the primary peak as compared to the GPC MWD. To
quantify the shift of the primary peak we use the peak ratio, defined by Equation 9.15.
The peak ratio values for the branched materials are given in Table 9.9. As noted earlier,
the peak ratios for all of the linear materials are in the range 1.0+0.11, implying that there
is a significant difference between the linear materials and the (long chain) branched
mPEs.
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Using the data for the high density mPEs, for which we had C'*-NMR
measurements of degree of LCB, a correlation was developed between peak ratio and
degree of LCB (Equation 9.20). With this correlation, peak ratios less than 1
automatically indicate a linear material. For peak ratios greater than or equalto | a
parabolic function of the logarithm of the peak ratio was found to give the degree of
LCB. This function has only one fitted parameter, and it was found that functions with
more parameters did not improve the fit of the data. Equation 9.20 is compared to the

experimental data for the high density mPEs in Figure 9.25.

GPC Peak
LcB | Viscosity Peak

10°C | GPC Peak Gpcpeak P Y
x>, 2.66[Log[ J]

<],

Viscosity Peak Viscosity Peak
¥ =0.998

Table 9.9 Peak Ratios (Equation 9.15) for Branched mPEs

High Density mPEs Low Density mPEs
Resin Actual Peak Predicted Resin DRI Peak Pl’edictad
LCB/10*C | Ratio | LCB/10*C Ratio | LCB/10° C
HDBI1 0.12 1.73 0.15 LDBI1 1.1 1.27 0.03
HDB2 0.37 231 0.35 LDB2 | 39 2.33 0.36
HDB3 0.42 2.51 0.45 LDB3 14 2.96 0.60
HDB4 1.21 4.69 1.20
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Figure 9.25 Relationship between Degree of LCB and Peak Molecular Weight Ratio

To test the possibility of falsely predicting LCB in a linear material, this
correlation was used with all of the linear materials discussed in Section 9.3.1, and the
highest degree of LCB that was predicted was 0.005 LCB/10*C. The uncertainty in the
viscosity peak molecular weight due to data density for LVE data with 7 points/decade is
0.044 decades. Therefore, the largest peak ratio that should be obtained for a linear
material is 1.11, which corresponds to 0.005 LCB/10*°C. Therefore, only when the
predicted level of LCB is greater than 0.005, can it possibly indicate the presence of )
LCB. For branched materials, assuming the same uncertainty in the peak molecular
weight, the uncertainty in the predicted LCB can be calculated using Equation 9.21. In
Equation 9.21, PR is the peak molecular weight ratio. It should be noted that the
uncertainty in the predicted degree of LCB calculated using Equation 9.21 is only
indicative of the uncertainty due to data density in the LVE data. Issues such as
uncertainty in the correlation parameters due to limited data points have not been

included in this analysis.
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ALCB = 2B . ALog(PR)=0.118[Log(PR)] [9.21]

d Log(PR)

The predicted degrees of LCB for LDB1-3 and the uncertainties in these predictions due
to LVE data density are given in Table 9.10.

Table 9.10 Predicted Degree of LCB for Low Density
Branched mPEs
Resin LCB/10°C Uncertainty in
LCB/10*C
LDBI 0.03 0.01
LDB2 0.36 0.04
LDB3 0.60 0.06

It has been demonstrated that degree of LCB can be inferred using rheological
data when combined with analytical molecular weight distribution data. The extensional
flow data measured using the Rheomoetrics extensional rheometer (RME) are not useful
for quantifying LCB or even ranking resins in terms of LCB. LVE data, on the other
hand, appear to be sensitive to degree to LCB. The effects of MWD and LCB on the
LVE behavior can be distinguished by comparing the viscosity MWD calculated using
the complex viscosity curve with the GPC MWD. The difference between the viscosity
and the GPC MWDs for branched materials is related to the degree of LCB. This relation
is described by a simple correlation (Equation 9.20) that can be used to estimate the

degree of LCB for a material that has unknown branching characteristics.
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Chapter 10.
Conclusions

. The zero shear viscosity of linear mPEs depends exponentially on the weight average
molecular weight with an exponent very close to that reported previously for cther

linear polyethylenes.

. Comonomer content, based on butene comonomer, or degree of short chain branching
has no effect on the linear viscoelastic behavior up to a butene content of 21.1

weight %.

. Both the linear and nonlinear viscoelastic behavior of mPEs are affected by the

presence of long chain branches, with the linear viscoelastic data being most sensitive

to small differences in degree of long chain branching (LCB).

. Increasing the degree of long chain branching of mPEs has an effect on the linear
viscoelastic behavior that is similar to increasing the branch length of asymmetric star
polymers. The zero shear viscosity is increased, and the relaxation spectrum is
broadened with increased LCB. Also, long chain branched materials exhibit a plateau

in their loss angle function that is not exhibited by linear materials.

. mPEs follow most of the empirical relations developed by Cox, Merz and Gleissle to

relate linear properties to viscometric functions.

. Increasing the degree of LCB of mPEs results in more shear sensitivity.
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10.

11.

Both linear and long chain branched mPEs exhibit separable stress relaxation
behavior at large strains. Increasing the degree of LCB results in a damping function

that is more sensitive to strain.

The Wagner model, with a memory function inferred from linear viscoelastic data
and a damping function determined using step strain experiments, can adequately
describe the behavior of mPEs in steady simple shear and large amplitude oscillatory

shear.

Most of the effect of LCB on extensional flow behavior arises from the linear
viscoelastic properties of a material, and transient extensional flow data are therefore
not useful for inferring the level of LCB of mPEs.

Rheological data alone are not sufficient to infer level of LCB, and some knowledge

of the molecular structure is necessary.

The viscosity MWD, calculated from the complex viscosity using a technique
developed for linear polymers, can be used along with analytical molecular weight
distribution data to infer the level of LCB using the technique developed in this work.
The linear viscoelastic measurement conditions can be optimized to provide the best
LCB prediction. Variations in molecular weight, polydispersity and degree of short
chain branching within certain limits will not cause the false prediction of the

presence of LCB in the case of a linear material.
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Chapter 11.
Contributions to Knowledge

The effect of molecular structure on the rheology of polyethylene was studied in a
systematic way. Because of the unique properties of the constrained geometry catalyst
system we were able to study a precisely defined set of mPEs. The effect of molecular
weight (MW), short chain branching (SCB), and long chain branching (LCB) on the
rheological behavior of polyethylene were studied independently. A study such as this is
unique for polyethylene. Most of the previous work in this area compared materials that
were different in more than one molecular characteristic. In particular, studies of the
effect of LCB on the rheological behavior of commercial polyethylenes were complicated

by large variations in molecular weight distribution (MWD).

The zero shear viscosity was found to depend exponentially on the weight average
molecular weight, confirming previously reported results. Degree of SCB, for butene
copolymers, was shown to have no significant effect on the linear viscoelastic behavior
up to a butene content of 21.1weight %. The lack of effect of SCB on rheological
behavior is often assumed, but this is the first time that is has been confirmed using
materials with identical polydispersities. Low levels of LCB were found to affect both
linear and non-linear viscoelastic behavior with the linear viscoelastic data being the most
sensitive to degree of LCB. Zero shear viscosity and breadth of relaxation spectrum
increased with degree of LCB. Additionally branched mPEs exhibited a plateau in their
loss angle curve that is not present for linear polyethylenes. This plateau has been
reported before for model star polymers but not for commercial branched materials.
Temperature sensitivity increased with degree of LCB. In terms of linear viscoelastic

behavior, branched mPEs behaved in a very similar fashion to star branched polymers in
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that increasing the degree of long chain branching of mPEs has effects that were
qualitatively similar to those of increasing the branch length in asymmetric star polymers.

Branched mPEs follow the empirical relations developed by Cox, Merz and
Gleissle that relate linear properties to viscometric functions. This is not found with

highly branched traditional low density polyethylene and is therefore a new finding.

The degree of LCB significantly affects the viscosity curves of mPEs. As
mentioned previously, the zero shear viscosity is increased with degree of LCB. Also,
the shear sensitivity of the material is increased resulting in a high rate viscosity that can

be lower than that of a linear material of the same molecular weight.

Linear and branched mPEs exhibit separable stress relaxation behavior and that
the sensitivity of the damping function to strain increases with degree of LCB. This has
never been reported before for polyethylene.

This work showed that extensional flow data are not as sensitive to low levels of
LCB as was previously thought from studies of highly branched LDPE. In particular, the
effects of LCB on transient extensional flow behavior can be explained in terms of

changes in the linear viscoelastic properties.

This work has shown that the effect of low levels of LCB on the rheological
behavior is significantly different from the effect of high levels of LCB. An
extrapolation of the rheological behavior of highly branched low density polyethylenes to
the low levels of LCB present in mPEs is therefore not possible.

Transient extensional flow data are not suitable for inferring degree of LCB, and
since other rheological properties are affected by both MWD and LCB some knowledge
of the molecular structure is necessary to infer degree of LCB. The conclusion that
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extensional flow data are not useful for inferring degree of LCB is not in accordance with

the conventional view arising from studies of highly branched low density polyethylene.

A technique was developed for inferring low levels of LCB using complex
viscosity data and analytical MWD information. In this technique, the viscosity MWD is
calculated from the complex viscosity using a technique developed for linear polymers
and compared to the actual MWD (as measured by gel permeation chromatography). The
presence of LCB causes the viscosity MWD to be very different from the actual MWD;
the primary peak in the distribution is shifted to a lower molecular weight and a false
peak is added at high molecular weights. We have correlated the shift of the primary
peak to the degree of LCB using a simple equation. This procedure is robust and
variations in Mw, MWD and SCB are not likely to result in false predictions of LCB for
linear materials. We have also presented a technique for evaluating the reliability of the

predicted degree of LCB that involves only complex viscosity data.
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Appendix A.

Linear Viscoelastic Data

Table A.1 Dynamic Moduli Data for High Density mPEs at 150°C

HDL1

HDB1

HDB2

o
rad/s

Gl
Pa

GII
Pa

Gl
Pa

Gll
Pa

Gl
Pa

Gll
Pa

0.018638

13.03334

213.0084

76.57794

577.208

0.025898

23.57418

294.9436

136.1534

754.7262

0.036

2.381858

208.5366

38.89326

402.1786

236.1932

965.8944

0.05

4.359322

289.0956

64.7528

546.8924

343.7462

1286.622

0.069475

6.882828

401.026

107.8561

740.9424

531.5048

1673.746

0.096535

12.44524

554.6748

171.9522

991.5428

755.904

2146.928

0.134136

20.46138

767.8202

265.9622

1321.302

1047.842

2743.964

0.186382

34.67512

1061.23

408.6188

1743.774

1456.748

3422.71

0.25898

58.35384

1464.108

607.6494

2280.432

2017.236

4289.636

0.359848

96.97444

2017.638

882.9226

2960.196

2695.976

5310.034

0.5

170.5856

2783.748

1273.82

3811.318

3624.93

6508.376

0.694748

278.902

3821.83

1774.306

4874.298

4634.03

7978.586

0.965347

456.592

5238.576

2424.69

6205.046

5887.47

9754.598

1.34134

742.631

7154.926

3253.686

7860.926

7465.218

11919.44

1.8638

1205.12

9737.474

4303.164

9926.576

9348.868

14597.44

2.58972

1944.946

13184.96

5636.022

12506.06

11686.76

17848.34

3.59839

3111.09

17757.54

7317.762

15772.48

14553.46

21968.72

5

4927.406

23742.8

9440.6

19888.62

18090.14

27125.64

6.94751

7699.108

31440.48

12187.96

25055.36

22546.1

33517.36

9.65356

11845.42

41193.44

15743.14

31559.26

28151.96

41420.84

13.4136

17946.66

53364.62

20296.26

39600.52

34788.14

51958.6

18.6382

26574.8

68067.94

26548.52

49693.04

44346.24

62863.54

25.8975

38625.32

85576.72

34688.14

61933.76

55988.32

76789.12

35.9844

54862.06

105719.8

45359.38

76584.58

70686.72

93087.18

50

76227.32

128241.4

59371.72

93853.82

89294.32

111699.8

69.4746

103307.6

152663.6

77409.3

113661.8

112516.6

132340.8

96.5352

136849.8

178219.6

100386.9

135845.4

141066.2

154801.8

134.137

177005.8

203913.8

128970.4

160001.8

175434.4

178290

186.383

223578.6

228891.4

163754.2

185488.6

215972.6

202019.8

258.977

276050.8

252129.8

204765.4

211168

262362.6

225120.8

359.844

333376.2

273823.4

251808.4

236545.2

314560.6

247285.8

500

394078.6

293604.6

303864

261673.8

371237.8

267532
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Table A.2 Dynamic Moduli Data for High
Density mPEs at 150°C

HDB3

HDB4

()
rad/s

Gl
Pa

Gll
Pa

GI
Pa

Gll
Pa

0.005

211.8664

752.7026

0.006948

311.6256

990.4494

0.009654

456.834

1288.206

0.013414

654.5114

1644.062

0.018638

222.5204

902.6668

921.771

2072.44

0.025898

333.866

1186.226

1268.35

2582.546

0.036

499.216

1534.518

1712.364

3177.908

0.05

723.0098

1967.778

2310.008

3884.492

0.069475

1029.136

2492.696

3013.882

4697.832

0.096535

1428.306

3123.944

3880.956

5623.034

0.134136

1939.25

3876.946

4922.524

6680.164

0.186382

2594.86

4769.126

6169.3

7893.534

0.25898

3406.924

5822.408

7637.374

9275.954

0.359848

4404.38

7062.498

9352.354

10860.34

0.5

5637.884

8498.494

11464.7

12658.04

0.694748

7069.446

10240.13

13761.4

14809.64

0.965347

8798.274

12296.96

16433.22

17305.64

1.34134

10831.1

14768.36

19518.1

20241.44

1.8638

13240.1

17754.62

23087.26

23751.86

2.58972

16116.72

21382.28

27259.14

27921.66

3.59839

19555.5

25851.58

32160.2

32953.82

S

23710.14

31331.52

37969.36

38976.84

6.94751

28776.14

38050.96

44908.1

46175.4

9.65356

35051.72

46246.18

53264.92

54699.98

13.4136

43140.76

56347.14

63396.04

64706.56

18.6382

52748.4

68121.44

75732.68

76369.8

25.8975

65168.28

82195.82

90805.14

89722.74

35.9844

80763.84

98545.1

109163.6

104695.2

50

100207.9

117077.2

131471

121152.2

69.4746

124130

137659.6

158672.2

138314.2

96.5352

153308

159926

190963.8

155995.6

134.137

188143.4

183343.4

229415.2

172842.8

186.383

228968

207078.4

274237

187179

258.977

275329.8

230428

325303.2

197312.2

359.844

326393.4

253281.6

384446.8

200529

500

382688.8

274913.2

448927.6

193465.8
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Table A.3 Dynamic Moduli Data for Low Density mPEs

at 130°C

LDL1

LDB1

LDB2

LDB3

o
rad/s

G'
Pa

GII
Pa

Gl
Pa

Gn
Pa

G'
Pa

G"
Pa

G’
Pa

Gll
Pa

0.006948

-

299.219

954.5153

0.009654

429.9025

1223.28

0.013414

3.71314

266.3746

48.8757

474.6178

220.8

921.3308

603.3325

1562.84

0.018638

8.350374

370.657

78.6036

645.5482

329.8446

1201.288

836.2535

1969.348

0.025898

13.65832

511.4344

121.6356

869.907

482.9822

1554.002

1136.85

2462.165

0.036

23.36022

702.9088

185.524

1166.66

694.0426

1989.904

1534.528

3052.61

0.05

41.75928

973.4304

286.6032

1558.48

1009.806

2535.834

2091.858

3775.333

0.069475

66.60738

1339

416.4378

2069.674

1394.526

3192.1

2733.953

4612.385

0.096535

108.0436

1837.434

604.9374

2736.572

1899.116

3985.3

3539.93

5575.25

0.134136

168.2136

2518.358

856.2804

3604.402

2537.894

4936.266

4535.663

6711.428

0.186382

264.373

3447.92

1204.348

4739.444

3348.304

6067.93

5745.023

8022.178

0.25898

421.3752

4719.46

1673.822

6215.616

4349.582

7419.206

7193.573

9537.818

0.359848

668.9602

6445.458

2309.878

8134.002

5582.124

9030.266

8932.53

11288.48

0.5

1094.56

8794.68

3208.29

10638.1

7108.506

10949.42

11041.88

13299.75

0.694748

1749.778

11913.92

4417.786

13854.66

8907.376

13281.36

13420.35

15680.18

0.965347

2807.47

16067.72

6110.206

17983.98

11106.02

16073.72

16262.7

18428.65

1.34134

4473.442

21496.06

8455.49

23212.64

13753.86

19447.64

19608.18

21638.3

1.8638

7055.342

28495.8

11716.18

29786.94

16978.82

23531.14

23550.55

25412.6

2.58972

10972.82

373134

16229.24

37890.96

20928.22

28447.3

28116.7

29773.53

3.59839

16708.8

48225.44

22400.12

47806.9

25784.24

34400.48

33523.2

34907.38

]

24959.5

61251.7

30762.06

59439.66

31875.48

41459.38

40006.23

40904 .4

6.94751

36253.32

76575.54

41828.42

73178.66

39347.72

49908.62

47649.88

47930.58

9.65356

51452.7

94024.02

56280.12

88813.26

48667.9

59771.34

56692.48

56158.28

13.4136

71327.2

113191

74843.1

106070.8

60261.58

71153.3

67401.93

65215.08

18.6382

96251.4

133512.8

97861.48

124545.8

74555.34

83921.2

80448.5

76187.05

25.8975

126906.6

154335.2

126064

143678.6

92184.44

98075.24

95777

88112.88

35.9844

163294.6

174662.2

159521.2

162441.2

113395.8

113215.8

113981.5

101224.3

50

205570.2

193420.8

198533.8

180134.8

139010.2

128908.6

135333

115430.

69.4746

253381.8

209628.6

242617.4

195550

169087.8

144386

160404.3

129834

96.5352

306310

221994.6

2918524

2075874

204128.6

158844.6

189047

1448418

134.137

363773.6

229448.4

345393

215167.2

244413.2

171383.4

2223353

159600.8

186.383

424842 .4

230353.2

402755.2

216445

289524.6

180001.4

259148.5

173703

258.977

488971

223223.4

462895.8

210541.2

339329.4

183413.8

299568.8

186122.3

359.844

555279.4

206226.6

525487.6

194752.8

393908.4

179307.4

343791

195871

500

623393.8

176536

590082.8

167688.4

451920.6

164847.2

391061.3

203855.5
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Table A.4 Arrhenius Activation
Energies for Low Density mPEs
(130 to 170°C)

Resin Ea/R (K)
LDLI 4070
LDBI 4704
LDB2 5259
LDB3 6414

Table A.S Discrete Spectra for High Density mPEs (150°C)

Resin G; (Pa) A (s)
HDLI1 545 500 0.001723
172 600 0.01299
(5 modes) 21 490 0.08644
769.3 0.7991
13.9 9.398
HDB1 1174 000 0.0002296
260 900 0.003296
(7 modes) 73 340 0.01769
15 860 0.1103
4376 0.6895
871.4 3.642
63.34 20.59
HDB2 480 000 0.0009319
198 800 0.004609
(7 modes) 81 940 0.01911
25750 0.09373
9271 0.5376
3341 3.008
594.6 18.84
HDB3 581 000 0.000529
219 000 0.002745
(8 modes) 130 200 0.009982
48 760 0.04453
18 070 0.2387
7775 1.375
2510 7.408
456.1 40.8




Appendix A. Linear Viscoelastic Data 177

Table A.S Discrete Spectra for High Density mPEs (150°C) continued

Resin Gi (Pa) Ai(s)

HDB4 336 200 0.002479
137 800 0.01128

(9 modes) 55020 0.04889

23710 0.22
11 990 0.9842
6 289 4.069
2780 17.1
796.9 75.21
96.35 892 .4

Table A.6 Discrete Spectra for High Density mPEs (150°C)

Resin Gi (Pa) i (s)
HDL2 128900 0.002157
(2 modes) 138.5 0.1619
HDL3 575100 0.005141
144500 0.05001
(4 modes) 4391 0.728
127 14.79
HDL4 439200 0.0155
499100 0.09408
(6 modes) 321100 0.4639
86510 2.104
10610 11.24
2380 101.3

Table A.7 Discrete Spectra for Low Density mPEs (150°C)

Resin Gi (Pa) Xi(s)
LDL2 427500 0.003811
170400 0.02665
(5 modes) 18420 0.1774
223.9 2.366
2.398 30.54
LDL2 371400 0.004333
(5 modes) 231200 0.02747
58340 0.1566
2949 1.039
65.29 11.8
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Table A.8 Discrete Spectra for Linear Low Density Polyethylenes (150°C)

Resin G; (Pa) Ai (s)
LLDPEI1 255900 0.002613
137000 0.01207
(7 modes) 69560 0.05563
26390 0.2791
7692 1.466
1838 8.031
402.2 S51.64
LLDPE2 195400 0.002271
174000 0.007332
(7 modes) 114900 0.03371
44150 0.1752
10610 0.9586
1639 5.615
175.9 37.19

Table A.9 Discrete Spectra for Low Density mPEs at 130°C

Resin G (Pa) Ai (s)
LDL1 468 100 0.005407
180 900 0.05057

(4 modes) 13 520 0.4769

172.4 10.01
LDBI 332000 0.00366
207 800 0.01722
(7 modes) 82 140 0.07675

18 390 0.3675

3394 2.004

730.3 10.58

90.76 54.07
LDB2 290 100 0.002837
145 500 0.01214
(8 modes) 63 010 0.04872

23 810 0.2069

9 796 0.895

4354 3.649

1536 15.36

287.2 75.78
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Table A.9 Discrete Spectra for Low Density mPEs at 130°C continued

Resin Gi (Pa) Ai (s)

LDB3 352 200 0.001097
174 800 0.005931

(9 modes) 86 260 0.02642

37 090 0.1221
17 250 0.5644
8211 2.513
3437 10.89
981.6 4349
317.7 178




Experimental Conditions for Step Strain Experiments

Appendix B.

Table B.1 Conditions for Step Strain Experiments

Resin Strain (y) Strain Rate (7) At
sh (s)
HDL1 0.5 55.3 0.038
0.75 55.3 0.043
1 64.5 0.045
1.5 55.3 0.056
2 64.5 0.06
4 64.5 0.09
8 64.5 0.15
16 64.5 0.27
HDBI 0.5 73.7 0.036
0.7 73.7 0.039
1 73.7 0.043
2 73.7 0.056
4 73.7 0.08
8 73.7/92.2 0.14/0.11
16 92.2 0.20
HDB3 0.25 18.433 0.043
0.5 18.433 0.056
0.75 18.433 0.07
1 18.433 0.08
2 23.04 0.11
4 23.04 0.20
8 23.04 0.37
16 23.04 0.71
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Table C1. Viscosity Measured Using the Sliding Plate Rheometer (150°C)

Y n (Pa.s) n (Pas) n (Pa.s) n (Pa.s) n (Pa.s) n (Pa.s)
HDL1 HDB1 HDB2 HDB3 HDB4 LDB3
0.009217 - - - - -- 81646.25
0.018433 - -- -- - -- 72875.83
0.02765 -- - - -- - 61845
0.046083 -- -- -- -- 100165.7 53165
0.064516 - - - -- -- 51821.67
0.092166 - - - 38079.71 | 75585.46 46655
0.184332 - -- 22119.57 | 29637.68 | 56228.99 -
0.276498 - - -- -- - 29994.22
0.460829 | 5835.141 | 8644.252 | 16442.52 | 21041.21 | 35842.47 | 25209.98
0.645161 - - - -- - 21785.25
0.921659 | 5347.072 | 7111.352 | 13083.88 | 15972.52 | 23691.85 | 18412.45
1.382488 | 5416.064 | 7040.521 | 11408.59 | 11888.57 | 18277.42 --
1.843318 | 5176.343 | 6530.114 | 9742.268 | 11144.87 | 16363.91 | 13303.46
2.764977 - - — -- -- 10600.45
3.686636 | 4972.878 - 7856.433 | 8463.068 | 11701.14 -
4.608 4871.962 | 4971.065 | 7668.186 | 7875.434 - -
6.451613 | 4701.643 | 4473.807 | 6300.372 | 6543.191 | 9318.51 --
9.21659 | 4464.034 | 3900.401 | 5441.575 | 4907.297 | 7720.65 --
12.903 | 4190.111 | 3690.615 -- - - -
18.43318 | 3860.468 | 3212.174 | 5005.813 | 4458.851 | 5788.385 -
23.04147 | 3438.517 — 4246.008 | 4108.184 | 5241.306 -
27.64977 | 3221.261 | 2818.626 | 3829.295 - 4828.557 .
46.083 | 2905.966 | 2341.102 | 3107.654 - - --
64.516 | 2654.535 | 2051.042 -- - - --
92.166 -- 1736.107 - -- -- -
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Table C2. Viscosity and First Normal Stress Difference Measured with RMS800
{(Cone and Plate) at 150°C

HDL1 HDBI1 HDB2
Y n Ni n N n N
(Pa.s) (Pa) (Pa.s) (Pa) (Pa.s) (Pa)
0.01 6359 - - - 35911 | 68.55666
0.03 - - 13426 - - -
0.06 6205 33.97316 12656 178.3667 27987 719.8032
0.1 - - 11739 338.2175 25091 -
0.3 6102 259.0908 10287 1470.388 18450 3686.647
0.6 6017 618.7907 8406 2592.1 13739 5647.882
1 5714 1123.856 7513 4590.909 11938 8318.716
5453 4051.275 - - - -
6 4993 8927.096 - - - -

Table C3. Viscosity and First Normal Stress Difference
Measured with RMS800 (Cone and Plate) at 150°C

HDB3 LDB3
¥ n Ni n N,
(Pa.s) (Pa) (Pa.s) (Pa)

0.01 65906 181.4882 79325 182.1736
0.06 - - 53205 2268.428
0.1 38037 2676.989 47544 3969.054
0.3 24571 5268.475 29323 8164.946
0.6 18281 8293.909 21799 12554.37

1 14192 10431.18 15956 13370.38
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Table C4. Damping Function determined from Step

Strain (150°C)
Y h(y)
HDLI HDBI HDB3
0.25 - - ]
0.5 1 1 0.965
0.75 1 1 0.91
1 1 0.95 0.86
1.5 0.91 0.82 0.7
0.84 0.705 0.59
0.453 0.37 0.315
8 0.215 0.16 0.117
16 0.107 0.07 0.045

Table CS. Large Amplitude Oscillatory Shear Results for HDL1 (150°C)

Yo F (Hz) o (kPa) 8, o3 (kPa) 83
2.498 0.5 38.81 1.3728 0.75 3.2942
2.551 0.5 40.27 1.4389 0.75 2.8836
3.996 0.5 58.53 1.401 1.78 3.5234
4.088 0.5 60.18 1.4643 1.57 3.5423
5.974 0.5 81.6 1.4215 3.71 3.6039 -
6.101 0.5 83.1 1.483 341 3.853
2.498 1 67.96 1.2984 1.97 3.0253
2.578 1 71.83 1.38 1.64 2.994
3.998 1 99.58 1.3425 443 3.3563

4.1 1 103.63 1.4157 3.45 3.4898
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Table C6. Large Amplitude Oscillatory Shear Results for HDB1 (150°C)

Yo F (Hz) o1 (kPa) 5 o3 (kPa) 83
2.501 0.5 34.68 1.3123 0.44 2.5733
2.499 0.5 35.55 1.11503 0.87 2.0669
3.994 0.5 48.9 1.3814 2.64 3.0102
3.996 0.5 50.43 1.2216 2.01 2.5514
3.996 0.5 50.33 1.2195 1.96 2.5499
5.991 0.5 64.84 1.4241 4.14 3.3946
5.98 0.5 66.91 1.2636 3.99 2.8578
2.497 1 56.76 0.9502 1.39 1.4598
2.501 1 55.78 1.2744 2.61 2.3936
2.499 1 57.05 0.9512 1.42 1.4412
3.997 1 80.1 1.0229 3.04 1.9177
5.929 1 104.13 1.0665 6.91 2.0938
5.929 1 104.16 1.0664 6.91 2.09

Table C7. Large Amplitude Oscillatory Shear Results for HDB2 (150°C)

Yo F (Hz) o (kPa) 3 o3 (kPa) 8;
2.498 0.5 50.8 1.0732 1.29 1.8507
2.499 0.5 50.98 1.09 1.32 1.889
3.996 0.5 69.8 1.1769 3.52 2.596
3.997 0.5 69.2 1.1616 3.48 2.6056 -
5.978 0.5 88.8 1.2164 5.95 2.9124
5.979 0.5 88.83 1.2366 6.22 29171
2.499 1 78.66 0.8881 2.02 1.2745
2.499 1 77.78 0.8686 2 1.2649
3.997 1 105.22 0.9637 4.8 1.9207
3.998 1 106.79 0.9767 4.69 1.9067
5.927 1 133.85 1.0333 10.3 2.1462
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Table C8. Large Amplitude Oscillatory Shear Results for HDB3 (150°C)

Yo F (Hz) o1 (kPa) S o; (kPa) 33
1.996 0.5 46.56 1.1409 1.23 2.3519
1.996 0.5 47.05 1.1433 1.21 2.2781
1.999 0.5 47.56 0.9983 1.01 1.5211
2.996 0.5 60.12 1.2318 3.05 2.9403
3.995 0.5 72.39 1.2737 4.36 3.2246
3.995 0.5 72.75 1.2728 446 3.2179
3.996 0.5 72.29 1.1484 454 2.7551
4.993 0.5 82.83 1.3142 5.2 3.4079
4.995 0.5 82.96 1.1866 536 2.922
1.997 1 69.51 1.0983 1.95 2.0982
1.999 1 72.05 0.7778 1.55 0.874
1.999 I 71.85 0.783 1.52 0.8889
2.996 1 91.41 1.1788 429 2.7238
2.996 1 90.45 1.1871 438 2.7352
2.999 1 92.54 0.8861 36l 1.6654
3.995 1 109.37 1.2347 672 3.0501
3.997 1 108.49 0.9549 6.18 2.0704
3.997 1 108.6 0.9571 622 2.069
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Appendix D.

Numerical Technique for Solving the Wagner Equation

Solving a separable BKZ model in simple extension or shear flow
Ranjit S. Jeyaseelan

Chemical Eng., McGill University
Montreal, Canada H3A 2A7

ABSTRACT

We propose a more efficient method for solving separable BKZ models. than numerical
integration. This is illustrated in both simple extension and shear flows. This method is also
particulary well suited for simulating the flow of fluids with multiple relaxation times.

A SEPARABLE BKZ MODEL

The Wagner equation is a versatile, separable BKZ model, wherein the extra stress tensor & is
given by the following hereditary integral {1] :

4

a(t) = fm(:-:’)h[[] B (t,t") dt’ a)

-

where B is the Finger tensor, m is the memory function :

-(e-d"ya,

G
-ty = ) —e
m(z-t') {; 3 @)
and 4 is the damping function. In the examples presented here, the following form is used :
h(D = —1 3
1+a(l-3)

and /is a general invariant of 8, defined in terms of the first and second invariants. /,and/; {2]:
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1= DI[ +(l'p)lz “)

In simple shear, since I and [, are equal, nonlinear behavior is govemned by only one parameter, a.
The parameter can be fitted to nonlinear behavior in extensional flow.

The Wagner equation with the damping function given by (3) cannot be solved analytically, except
during the time interval -= <¢’< 0 in the integral (1). Therefore, we have to perform numerical
integration to obtain the solution for the stress in the time interval 0 <t’<1¢ , where ¢, is the
discretized present time.

A limiting factor in numerically solving (1-4) is that since the memory function in (2) changes
exponentially with time, small time steps (At < .005s) in the integration scheme are frequently
necessary to obtain accurate solutions. Therefore, if the overall time for which we want the solution
is large (say 1000s), the CPU time required is enormous.

To circumvent this problem, we extend an idea used by Wagner and Laun [3] and propose the
following scheme to solve (1-4) : We make the approximation that during a small interval of
time At (which is the step size in the integration scheme) the damping function has a constant value
equal to the average of its values at the end-points of the interval. This approximation allows us to
take the damping function out of the integral during each time step, and the rest of the integral can
then be integrated analytically. With this approximation, instead of replacing the integral by an
integration rule, we replace it with a series of integrals, each of which can be solved analytically :

fm(t"-t’)h[l(rn,r")] B(t,t")dt' = E h(ICe,.t, )] fm(l"-t')B(t.,t’)dt’ 5)
0 = ., =

i=1 -

where h[I ('u"l )] is the value of the damping function corresponding to the strain €(¢,,¢’), and
h{1(t,,t,_,)] is the value of the damping function corresponding to the strain €(¢,.¢,_,) .

SIMPLE EXTENSION

In the start-up of simple extensional flow, equations (1-4) reduce to the following equation for the
tensile stress growth coefficient as a function of the extension rate €, and present time (¢, ) :
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2¢r, e -u,}

0= 9y _ GUYA(,0)] {e

n;[é'tn] = é &

‘. 6
. _!.fm(t_-t')h[[(ln,!’)][ez““'"’—e'“"" Jar’
€
1]

where G is the relaxation modulus and 4[/(t,,0)] is the value of the damping function
corresponding to the strain €(r,,0). For this case, the proposed scheme gives :

G(t,)h[I(t,,0)] {eZér.. g }
€

nz [€,1,]
- 1Y A6 e -]

k=1
2¢(t,-0,. ) -€(r, -t 1)
- Gt )| ) - g ET ]

e, DG e N[ (A2 _ (/200
2€e "E L

i

Y

+

1 - 2¢A,

-t /A /A +€ /A +&)e,
. iy ZG"}“‘e fn :[e( (] )'k_e( t e)kl]
+ €e "
1+ ér

i

where the average value of the damping function during each interval is :

hI(e,,0)] + BUI(L, 0 )]
2

R, )] = @®)

and A[I(¢,,t,)] is the value of the damping function corresponding to the strain €(¢,,1,).
SIMPLE SHEAR

Here we consider an additional approximation that the strain during each time step increases
linearly with time. Such an approximation is necessary if we desire to impose a controlled stress
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history, and solve (1-4) for the strain response.As an example we solve (1-4) for large amplitude
oscillatory shear (LAOS). The proposed scheme gives the following equation for the shear stress :

02 (t,) = GUIALIE,OIY(W) + Y, AllChty )] »
k=1

{[Y(n) -Y(B)1G(t,-1) - [Y(m) - ¥ (k-1)1G(t,-1,. )+ O

Yy(n) - y(k-1) ORIAY SR (T AT 4
At EGJ)'J{e -e ]

where y(n) =y, sin(we,) , y(n,k) = y sin(wt,) - v,sin(w¢,) and the average value of the
damping function during each time step differs only slightly from (8) :

- et
R{ICe .t )] = ALICe, 5 )] (10)

COMPARISON OF NUMERICAL INTEGRATION WITH PROPOSED SCHEME :

The discrete relaxation spectrum in Table [ is for a typical molten polymer (LDPE, 130 + 1 C).
Figure | is a plot of the shear stress predicted by the Wagner model for this material in LAOS for §
cycles at a strain amplitude of 5 and a frequency of 0.1 Hz. It is clear that the proposed method
(solid cuve) for solving (1-4) is as accurate as that obtained by numerical integration (symbols).
Numerical integration was performed using the trapezoidal rule, to obtain the solution at 100 points,
and the step sizes (At) are indicated in Table 2. The solution using the proposed scheme was
obtained for the same total flow duration as in numerical integration, with n =200 in equation (9).

For the case of simple extension, Figure 2 shows that for 4 extension rates. solving (1-4) using the
proposed scheme (curves) predicts the tensile stress growth coefficient as accurately as trapezoidal
integration. The step sizes in numerical integration are shown in Table 3, and the solution was
obtained at 100 points. The solution using the proposed scheme was obtained for the same total
flow duration as in numerical integration, with n = 100 in equation (7).

The primary importance of the new scheme is the drastic reduction in computation time. Tables 2
and 3 compare the CPU time taken for both schemes. In some cases, the advantage of the new
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scheme is over a thousand-fold. The value of At used in the trapezoidal scherne was chosen so as
to give results nearly independent of step size.

While it is certainly possible to improve the efficiency of numerical integration by using more
sophisticated rules such as Simpsons’ or Gaussian quadrature, a thousand-fold improvement is
unlikely without the use of an analytical approximation over some time period. Furthermore,
numerical integration of the Wagner model in some cases such as simple shear flow with dynamic
wall slip, may impose restrictions that do not permit the use of more sophisticated integration rules.

For multiple relaxation time fluids there is an important advantage in simulating polymer
processing behavior using integral constitutive equations such as the Wagner model, instead of
differential constitutive equations. With differential constitutive equations, the number of equations
to be solved for the stress scales with the number of elements in the discrete relaxation spectrum.
This is not so for the Wagner model, since the memory function can be evaluated separately asa
function of time, and read as a single variable during the iteration for the stress. This remarkable
property is not always realized; the asterisk in Table 3 indicates a case where declaring the memory
function as an array was not possible because the size of the array was too large for the memory of
the computer. While we may be able to increase this limit somewhat, it is certain that there will be
other cases where the size would be too large to handle, especially if the fluid has a small relaxation
time. This limitation does not exist for the proposed scheme of solving the integral constitutive
equations since the array size for the memory function is much smaller (due to the much larger time
steps). Therefore with the proposed scheme we will probably always be able to cut the CPU time
down to that of a single relaxation time fluid.
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Table 1. Discrete relaxation spectrum for a typical molten polymer (LDPE, 130 + 1 C)

A, (s) G, (Pa)

0008227 341300

005596 146300

02887 69100
1643 27910
9798 11910
5.565 4580
29.88 1382
192.7 2754

Table 2. CPU time taken on a Pentium 166 Mhz computer, for obtaining the shear stress predicted
by the Wagner model for 5 cycles of LAOS, at a strain amplitude of 5.

Frequency (Hz)

CPU Time (Trapezoidal Integration) s

CPU Time (Proposed Scheme) s

1.0 3.29 [Ar=.0005s5] 0.11
0.1 16.53 [Ar=.001s] 0.11
0.05 151.6 [Ar=.001s] 0.11

Table 3. CPU time taken on a Pentium 166 Mhz computer, for obtaining the tensile stress growth
coefficient predicted by the Wagner model in simple extension. The reason for the asterisk is

explained in the text.

CPU Time (Proposed Scheme) s

€ (l/s) CPU Time (Trapezoidal Integration) s
1.0 0.44 [Af=.025] 0.16
0.1 1.7 [Ar=.055] 0.11
0.01 16.81 [Az=.055) 0.17
0.001 4029 - [Az=.055] 0.17
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Fig. 1. Shear stress predicted by the Wagner model in LAOS for 5 cycles at a strain amplitude of 5
and a frequency of 0.1 Hz. Proposed method (solid cuve) for solving (1-4) is at least as accurate as

that obtained by numerical integration (symbols).
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Fig. 2. Tensile stress growth coefficient predicted by solving (1<) using the proposed scheme
(curves), and by trapezoidal integration (symbols).
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Table of Nomenclature

Greek Letters
a exponent for M,, n: reduced tensile stress
ER .
dependence of 1, growth coefficient
B material dependent Mo zero shear viscosity
parameter in damping
function
5 loss angle A relaxation time
Ax plate displacement o density
£ Hencky strain o stress
£ Hencky strain rate OE extensional stress
Y strain Go stress amplitude
Yo strain amplitude in Tjj Component 'ij' of the
oscillatory shear and extra-stress tensor
strain in step strain
Y strain rate T parameter in Cross
viscosity model
n viscosity L negative of the power law
slope of viscosity curve
n*(w) complex viscosity @ frequency
n’' (o) real component of ©¢ critical frequency
complex viscosity
n" (@) imaginary component of v first normal stress growth
complex viscosity coefficient I
n'Ee tensile stress growth Wi first normal stress
coefficient coefficient
Ne extensional viscosity r viscosity enhancement
factor
n* stress growth coefficient Casym viscosity enhancement

factor for assymetric stars
(defined in Equation 2.7)
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Roman Letters
J? recoverable compliance m reduced molecular weight
in Chap. 9 and Cross
model power-law index
parameter in Eqn. 1.1
A area M molecular weight
a material dependent m(t-t") memory function
parameter in damping
function
A, initial area Mam molecular weight of a
branch or arm
ar shift factor for time- M. critical molecular weight
temperature superposition for entanglement
Bj component 'ij' of the Finger Mw weight average molecular
tensor weight
bt modulus shift factor for M; Z average molecular
time-temperature weight
superposition
Cj component 'ij’ of the Mz, Z+1 average molecular
Cauchy strain tensor weight
Ea Arrhenius activation PR peak molecular weight
energy ratio
force R relative location (Eqn 9.17)
f number of arms (star R ideal gas constant
polymers)
g ratio of mean squared radii T temperature
of gyration
G(1) linear shear stress t time
relaxation modulus
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Roman Letters
G'(w) storage modulus To reference temperature
G"(®) loss modulus t time passed since
beginning of experiment in
step strain test
G () complex modulus v velocity
Gy amplitude ratio in w width
oscillatory shear
H height w weight fraction
h(;,15) damping function w(log m) differential molecular
weight distribution
function
H, initial height wp weight fraction branched
molecules
Ii,I first and second invariant WL weight fraction linear
of the Finger strain tensor molecules
L length W, initial width




