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CHAPTER 1 Introduction 

To date, the history of the Complex Normal, or Complex 

Gaussian Distribution belongs to one man, namely N.R. Goodman. 

The motivation for the postulation of the Complex Gaussian 

Distribution occurred in 1957 in [2J • However it was not 

until 1963 in [lJ , that he actually deflned the Complex 

Normal Distribution. 

In this dissertation, a sllghtly more general definition 

will be given for th~ Complex Gaussian Distribution. The 

two definitions coincide wherever the Goodman definitlon 

applies; and the revised definition lends itself nicely 

to closed form resultso 

The aim of this thesis is to study the properties of 

the Complex Normal Distribution, while at the same time, to 

Investigate likenesses and differences between the plassical 

Normal Distribution and the Complex Normal Distribution in 

their respective probability spaceso 

Chapter 2. introduces the reader to the basic concepts 

of the Complex Gaussian Distribution, and acquaints the reader 

with the notation used throughout the paper. 

Chapter :3 lists the important Lemmas which will be 

employed to prove Theorems about the Complex Normal Dlstributiono 
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Chapter 4 contains the basic Theorems on the Complex 

Gaussian Distribution. Although these are interesting in their 

own right, their prime importance is as tools to prove results 

in subsequent chapterso 

Chapter 5 gives add1-tional properties of the distribution 

and furthermore, it gives the reader some interesting comparisons 

with the Gaussian Distribution. 

Chapter 6 is devoted to quadratic forms of the Complex 

Normal, an essential ingredient to Analysis of Variance. 

Chapter 7 deals with the Central Limit Criteria of the 

Complex Gaussian Distribution. This is perhaps one of the 

most striking contrasta with the Normal Distribution. 

Chapter 8 is concerned with a special regression 

problem, leading to a characterization of the Complex Gaussian 

, Distributiono 

In Appendix l, the author leaves suggestions for 

further studies. These would make excellent research projects. 

In Appendix II, the author indicates, some applications 

of the Complex Gaussian Distribution. 

At the conclusion of the paper the author will acknowledge 

the generous help he received, without which, completion of 

thls paper would not have been possible. 
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CHAPTER 2 Basic Notations and Definitions 

Notation· Meaning 

a) A,B,D,V Matrices 

b) Ajk Sub-block of A 

c) ajk element of A 

d) Z,W,M Vectors of complex. 

n:umbers 

e) Zj j-th component of Z 

f) l ldentity matrix 

g) ~ Null matrix; null 

vector 

h) R(A) . Ma trix f ormed by 

taking only real 

part of each ajk 

i) I(A) Matrix formed by 

taking only imaginary 

part of each ajk 
j) Z/W IIZ given W Il 

k) iff If and on1y if 

1) A Matrix of comp1ex 

conjugates of each ajk 

1 
l, 
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Notation 

m) A' 

n) lAi 

0) Izi 
p) 2 

q) ss 

r) P(A) 

s) Tr(A) 

t) E(.) 

u) MZ(t) 

v)~z(t) 
w) N{m,a2) 

x) MVN(M,V) 

y) N 

4 

Meaning 

Transpose of A 

det(A) 

Modulus of Z 

Arithmetic mean of 

Zl,···,zn 

t(Zj"~)(Zj-i) 
J=/ n .. l 

Sample Variance 

Rank of A 

Trace of A 

Mathematical expectation 

E(exp(t'Z» 

E(exp(it'Z» 

Normal distribution 

with mean ID and variance 

a2 - . 
Multivariate normal 

distribution 

Is distributed as 
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( Definitions 

D-l Complex Random Variable 

If il ia a sample space with a probability measure, 

and if z is a complex valued function defined over the 

points of -fL, th en z ia a complex random variable. 

Example 1: (discrete case) 

-Il = outcomes of 3 flips of a balanced coin 

z = (number of heads) - i(number of 

!hen: z = 3 p(z) = 
= 2 - i = 
= 1 2i = 
= -3i = 

p(z) = 

Example 2: (continuous case) 

-Il = complex plane 

z is such that: 

1/8 

3/8 

3/8 

1/8 

0 

f(z) = ! \zl < l 

otherwise 

1T 

=0 otherwise 

D-2 Complex Random Vector 

tails) 

A complex random vector is a vector of complex 

random variables. 
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D-3 Complex Variance 

If z i8 a complex random variable, 8uch that E(z)=m, 

then the complex variance of z i8 given by: 

0 2 = E(z:M)(z-m) 

D-4 Complexcovariance Matrix 

If Z i8 a complex random vector, 8uch that E(Z)=M. 

Then the complex covariance matrix of Z ia given by: 

V, = E(Z-M)(z:M) 1 

D-5 Goodman Random Vector 

A Goodman random vector i8 a complex random vector 

having the following property: 

if Z = X + iY X,Y real vectors 

and if E(xj) = mj . E(Yj) = rj j=1,2, ••• ,p , 
Then: 

E 
[ (Xj -mj )(Xk-nq.) (xrmj )(Yk-'1t~J 

(Yj-rj) (Xk-IDk) (Yj-rj )(Yk-rtt) 

(:3 :~) Çk _b Ok) 
= if j=k, and = ' J if j,k 

bjk ajk 
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D-6 The Complex Multivariate Normal Distribution (CMVN) 

If Z is a complex random vector such that : 

E(Z)=M , and the complex covariance matrix of Z 1s V. 

Then : For V, non-singular: 1 

Z l'\J CMVN [ M, V] iff 

feZ) =-11 exp [~(Z-M) IV-l(Z_M~ 
lTP Ivi 
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CHAPT ER 3 :Useful Lemmas 

ln this chapter, the tools which are needed will be 

listed. Many well known results will be stated without 

proof, while the others will be proved in detail. The first 

twelve lemmas are theorems in matrix analysis; the remaining 

lemmas are theorems in statistics and functional equations. 

Lenuna 3.1 (matrix lemma) 

If A is a real symmetric matrix, and if B is a 

real skew-symmetric ~trix, then a necessary and sufficient 

conditio~ that (A+iB) be positive definite is that 

be positive definite. 

Proof: 

Let Z = X + iY 

Z'(A + iB)Z = (X 

be an arbitrary vector. 
1 

iY)(A + iB)(X + iY) 

= X'AX + Y'AY + Y'BX - X'BY - iY'AX + iX'AY + iX'BX + iY'BY 

But A , being symmetric, implies Y'AX = X'AY • 
And B, being skew-symmetric, implies X'BX=X'B'X=-X'BX=O 

Thus: 

Z'(A + iB)Z = X'AX + Y'AY + Y'BX -X'BY • 

__ .1 

··1 
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~:;: + iB)Z = cf(: -:) (:) 
Thu6 for all Z + O-vector (i.e. (~)+ O-vector), 

A + iB i6 positive definite iff Z' {A + iB)Z> 0 

·that is iff right hand side of above equation is strictly 

positive; and that is iff the following matrix is positive 

definite: 

This completes proof. 

Lemma 3.2 (matrix lemma) 

If V is a positive definite Hermitian matrix, then: 

(
R(V) -leV») -1 = (R<V:1) _1<V:1») 
leV) R(V) 'lev 1) R{V 1) 

Proof: 

R{VV· l ) = l = R(V)R(V· l ) • I(V)I(V· l ) 

I{VV· l ) = ~ = R{V)I(V· 1 ) + 1(V)R(V-1 ). (see notation) 

But: 
(
R(V) -leV») (R(V·

l
) 1. .1(V·

l
») 

leV) R(V) I(V· l ) R(V· l ) 

= (R(VV-
l
) .1(VV·

l ») = l 
I(VV· l ) R(VV· l )' 

This completes proof. 

'ô! 



10 

Lemma3.3, (matrlx lemma) 

Let (: • -:) be a pos1 t1 ve def1n1 te s.I'mmetr1c matr1x 

Then (l) (: _:)-1 1s of the form (: -~) 
and (2) Glven matrlces C,D such that (1) holds, 

Then: {A + lB)-l = (C + lD) 

Proof of Cl): 

(: -1 ( -:) . ~ : D) Let 
E' 

Thusl G -:) C :J = I 

Equatlng correspondlng blocks, we obtaln: 

From 

From 

AC - BD = I .oo{a) 

BDI + AE = I ••• {b) 

{a} , C = A-l{I + BD) 

(dl , -1 D = -A BC 

AD' - BE = cp 0" (c) 

BC + AD = (\) ... (d) 

Therefore, C = A-l{I _ BA-IBC) 

that ls: C-i = A(I + A-IBA-IB) (*) 

From (b) , E=A-l{I-BDI) 

From (c) DI = A-IBE 

Solvlng exactly as for C-l glves: 

E-l = A(I + A-IBA-IB) = C-l (by *) 

Thus and hence D' = A-~BC = -D 
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Proof of (2) 

-:) = 1 

implies AC - BD ='1 

and BC + AD .= cP 
But (A + iB)(C +iD) = (AC -BD) + i(BC + AD) = l 

, ' 

That ls C + iD i8 the inverse of A + iB. 

This completes proof. 

Lemma 3.4 (matrix lemma) 

If H is any Hermitian matrix, then there exists 

a unitary martix, P, such that: 

/ P"HP=D where D is a real diagonal matrix. 

Proof: (see [8-1] ) 

Lemma 3.5 (matrix lemma) 

If A = R(A) +iI(A), then a necessary and sufficient 

condition that A be idempotent is th~t 

(

R(A) 
B = 

, l(A) 

ia idempotent. 

.. 1 (A») 
R(A) 
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Proofs 

AA = A lff (1) R(A)R(A) - I(A)I(A) = R(A) 

and (2) R(A)I(A) + I(A)R(A) = I(A) 

that ls lff 

(

RCA), 
BB = 

ICA) 

1.e. lff B ls ldempotent o 

Thls completes proofo 

-ICA)) 
R{A) 

Lemma 3.6 (matrlx 1emma) 

'If a Hermltlan matrlx A, ls ldempotent, then the 

rank of A ls equa1 to the trace of A. 

Proof,: 

Slnce A ls Hermltlan, there exlsts a unltary matrlx 

P, such that P'AP = D , a rea1 dlagona1 matr1x.{lemma 3.4) 

But: P'AP = P'AAP = P'APP'AP = DD 

Thus D = DD 1.eo djj = 1 or O. 

'(*) Thereforea Tr{D) = P(D)=,P(A) 

But A = PP'APP' = PDP' 

Hence ajj = ~ Pjk dkk P'kj 

1.e. Tr{A) = L: dkk L IPjk/2 
le: J , = Tr{D) (slnce P ls unltary) 

Thls completes proof. (because of equatlon (*) 

. ,. " ...... " ... _-_ ... ~ .. \ 
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Lemma 3.7 (matrix lemma) 

Let A,B be Hermitian matrices. A nece,ssary and 

sufficient condition that there exist a unitary matrix, T, 

with the property that 

, TIAT = Dl 

is that AB c BA. 

Proof: (see [8-iJ ) 

Lemma , 3.8 (matrix lemma) 

(Di diagonal i=1,2) 

If A is a positive definite Hermitian matrix, and B is 

a Hermitian matrix: then there exists a non-singular matrix,T 

such that 

Proof: 

TIAT = land T'BT = D (D diagonal). 

(see [8-3J ) 

Lemma 3.9 (matrix lemma) 

If A is a positive definite Hermitian matrix, and B is 

a Hermieian matrix: then a necessary and sufficient condition 

that A and (A-B) are simultaneously positive definite is thàt 

the eigen values ~f A-LB lie in the open interva1 (0,1)., 

Proof: 

By Lemma 3.8, there exists non-singular T, such that: 

T'AT = land T'BT = D (D diagonal) 

A-LB Let À be a characteristic root of • 

i.e. lA-lB - ÀI\ ,=' 0 i.e. iff \Ï'A(A-l,B)T - ÀT'AT/-=? 
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i.e. iff ID - ÀI1 = 0 

Thus D and A-lB must have the sarne eigen values. 

(a) If the eigen values of A-lB lie in (0,1) 

then the eigen values of D must lie in (0,1). 

But T'BT=D, T non-singular, and djj > 0 

B i8 positive definite. 

irnp1y that 

A1so, T'(A-B)T = (I-D) and djj < 1, imp1y that (A-B) 

is a1so positive definite. 

(b) If B is positive definite then c1ear1y, T'BT is a1so 

positive definite. But T'BT = D. Thus djj> 0 j=1,2, ••• ,p 

If A-B is positive definite then clearly, T'(A-a)T =(I-D) 

is positive definite. Thus (l-djj» 0' j=1,2, ••• ,p 

Hence djj lies in (0,1) j=1,2, ••• ,p 

and if tD-ÀII = 0 , then À must lie in (0,1) 
-1 Since the eigen values of D and A a are identica1, 

it fo11ows that the eigen values of 

the unit open interval. 

This completes proof. 

Lemma 3.10 (matrix 1emma) 

-1 
A a lie in (0,1), 

If A is a Hermitian matrix, and X and Y are vectors of 

the sarne dimension as A, then 

------------_. __ .. 
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Proof: 

X'AY = x'Aï = X'A'Y = Y'AX (s1nce Y'AX scalar) 

Now since: a+a = 2(R(a», 

and: 

X'AY + Y'AX = 2R(X'AY) 

Th1s completes proof. ' 

Lemma 3.11 (matrix lemma), 

If A,B are two positive def1nite Hermitian matrices, 
-1 C = A(A+B) 

then the e1gen values of C l1e 1n the open 1nterval (0,1). 

Proof: (slmple co~ollary of Lemma 3.9) 

Lemma 3.12 (matrix lemma) 

Let Zl,Z2 be independent complex,zero-mean,random 

vectors w1th complex covariance matrices VI and V2' 

respectlvely. ,Also: let C = Vl(Vl+V2)-1 • 

Then lf: V = E [(Zl-C(Zl+Z2»(Zl-C(Zl+Z2»:] 

v-lC 1s a Hermltian matr1x. 

Proofl (slmple'exerclse ln matr1x mUltlpllcatlon) 

Lemma 3.13 (Cram~r's Theorem, p-d1menslonal case) 

If X,Y are independent, real, p-var1ate random vectors, 

then (X+y) I\J MVN lff both X I\.IMVN, and Y '\JMVN. 

,Proof 1 (see [7-lJ 

" 
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Lemma 3.14 (marginal densities of the MVN) 

If X rv MVN [M, V] 

Then the distribution of any set of components of X is 

multivariate normal with means, variances, and covariances 

obtained by taking proper components of M'~ V, and V 

respectively. 

Proof: (see [3-1J ) 

Lemma 3.15 (conditional densities of the MVN) . 

If X l'V MVN [M, vJ 

and if the components of X are divided into two subgroups 
(1) (2) 

composing the subvectors X and X : then 

f(X(1)/X(2»= MVN[M(l)+ V12(V22)-1(x(2)-M(2», V11-Vla(V22)-lv21] 

where: 
. (Vll 

and V = 
V21 

according to partition of X. 

Proof: (see (3-2] ) 

Lemma 3.16 (chi-square theorem) 

and A is a positive semi-definite 

symmetric matrix, then a necessary and sufficient condition 

that X'AX have the chi-square distribution with j'(A) 

degrees of freedom is that AA = A • 

Proof: (see [4-1] ) 

.... __ . __ ._._ .. _ JI 
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Lemma 3.17 (quadratic forms of normal distribution) 

If X'V MVN [q, ,IJ and ,if A,S are positive semi-definite 

symmetric matrices, then X'AX and X'BX are in~ependent if( 

AB = cp 
P,roof: (see [4-2J ) 

Lemma 3.18 (central limit theorem) 
, . 

If Yl 'Y2' ••• are'independent, identically distributed 

p-variate random vectors, such that E(Yj) = M and 

E(Yj-M)(Yj-M), = V , then 

l t (y j -M) L ~ MVN [ cp • V l 
-;i J~I J 

Proof: (see [3-~ ) 

Lemma 3.19 (a functional equation) 

If G(Z) is a continuous, real valued function of Z, then 

(a) G(Zl)G(Z2) = G(Zl + Z2) iff 

G(Z) = f(X,Y) satisfies the Cauchy functional equation in 

X and Y. (where Z = X + iY , as usual) 

(b) G(Zl)G(Z2) = G(Zl + Z2) implies that 

G(Z) = exp R(y'Z) (where y is a vector of complex constants) 

Proof of (a): 

G(Zl)G(Z2) = G(~l + Z2) iff 

f(Xl,Yl)f(X2'Y2) = f(Xl+X2, Yl+Y2) 

-----,._ .. _--_ ... 
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where 6 is a 2p-vector of real constants. !hus: 

G(Z) = exp r=R(Y'Zi):(Yj= 6j + i6p+j ) 

This completes proof. 
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CHAPTER 4 Basic Theorems on the Complex Normal 

Distribution 

THEOREM 4.1 CMVN lntegrates to Unit y 

If V is a positive definite Hermitian matrix, then 

S - -1 Q = -1- -1- exp(-Z'V Z) d(Z) = l 
TTP IV' . 

Where P is the dimensionality of Z, and the integration is 

taken over the entire 2p-dimensional Euclidean space. 

Proof. 

By Lemma 3.4, there exists a unitary matrix P; such that 

P'VP = D (a diagonal matrix) 

This implies: P'V-lp = D- l ~ 

Let W = PZ (the Jacobian of the transformation has 

modulus unit y) Thus: 

Q = S-1- -1- exp(-WID-1W) d(W) 

TTP Ivi 
But: \vl= I~ = dll ••• dp ; and if W = U+iV, it follows that: 

Q C S -;; ~ exp [-l~)' (~l ~_~ (~)] d(~) 
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Noting that (1): 

(2) : V being positive definite implies: 

ia a1so positive definite, 

Then Q = l ( Q has been reduced to an integral 

of a 2p-variate real,MVN distributed ,random vector, over 

its entire range of values.) 

This completes proof. 

THEOREM 4.2 (transformations) 

-If Z f"v CMVN [M, vJ , and P is a non-singulae matrix: 

Then W = PZ f\JCMVN [PM,PVP'] 

Proof: 

lt is clear that E(W) = PM, and E(W-PM)(w:P:M)' =PVP' 

feZ) = -1- -1- exp (-(z:M)'V-l(Z-M» 
nP Ivl . 

~~ - )-1 = -l- -l- exp (-(PZ-PM)·(PVP.' (PZ-PM» 
nP Ivl 

Letting W =PZ (the desired transformation) in above, and 

using the factt that g(W), the density function of W integrates 

to unity,it is clear: W "vCMVN [PM,PVP~ 

This completes proof. 

'~ï 
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THEOREM 4.3 ': Characterization of the CMVN 

A necessary and sufficient condition for Z = X + iY 

to be distributed as CMVN [M, V] is that:' 

(i)I\JMVN [(~~~n,\ ~m -M~ill 
Proof: 

(1) Assume Z rvCMVN [M,V] 

Therefore feZ) = Kl exp [-(Z-M)IV- 1(Z-MD 

= K exp 1_ (X-R(M»)O (R(V~l) _I(V~l») (X-R(M»)) 
1 ~ Y-leM) I(V 1) R(V 1) Y-leM) ') 

t (X-R(M») 1 [' l,. (R(V) -1(V)]-l(X-R(M)J.~ = Kl exp -\ ~ by Lem 3.2) 
Y-leM) leV) R(V)· Y-leM) 

Since V is positive definite Hermitian, then by Lemma 

~ (R(V) 

\1(V) 

-1(V>\ 

R(V») 
= B 

is positive definite symmetric. lntegrating over the 

2p-d1mensional Euclidean space, 1t is clear that: 

Kl = 1 1 
(2TT)P~ 

wh1ch 1mpliea that (*) 1a true. 

(2) Now let us assume (*) ia true, and prove that 

Z rv CMVN [M, vJ • 
(*) implies that: ' 

S ' (X-R(M») '[ (R(V) 
f (Z) = K2 exp ~ -\ Y-I (M) \ ~ (V..) . 

-l(y),l -l(X-R{M)\L 

R(V,»)J Y-leM»)) 

... 



= K ex [_/X-R(M») 1 1 R(V) 
2 p (Y-l(M) l.l(V) 

By Lemma 3.3, part (1): 
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-l(V)l-l (X-R(M») 

R(V~ \Y-l(M) 

(

R(V) 

leV) 

_l(V»)_l = (C 
R(V) D 

Therefore: 

feZ) = K2 eXP[-(Z-M) 1 (C+iD)(Z-M~ And by LeIIllla 3.3 (2): 

= K2 exp f.:(~)' (R(V)+il(V) )-l(Z-MH 

= K2 exp[-(Z-M) 1 v-lez-Mil 

Using the notation of the first part of the proof, B, 

being positive definite symmetric, implies that V is 

positive definite Rermitian. (by Lemma 3.1) 

Thus, by Theorem 4.1: 

K2 = -L-L 
lT

P IVI 

and this establishes the fact that Z '\, CMVN [M, V] • 

This completes proof. 

Corollary: (connection to Goodman random vectors) 

(~) has covariance matrix of the form (~ 

Z = X + iY is a Goodman random vector. 

iff 



( 
Proof: 

The covariance matrix of 

E [(Xj-E(Xj ) )(xk-E(Xk» 

(yj-E(Yj»(Xk-E(Xk) 

This reduces to: 

Cjk 
bjk 

-b
j
!< ) 

ajk 

and to: 

(:j 2 

:.2) 
J 
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(~) = (~ -!) is equivalent 

(Xj-E(Xj»(Yk-E(Yk»~ 
(Yj-E(Yj»(Yk-E(Yk»J 

if j t= k 

if j = k 

which is exactly D-5, the definition of a Goodman random 

vector. 

This completes proof •. 

THEOREM 4.4 (zero-mean case) 

to: 

Let Z rv CMVN [CP , v] ; and P be a non-singular, unitary 

·matrix such that: PV = VP 

Then: PZ 'V CMVN [ cp ,V J 
Proof: 

By THEOREM 4.2, 

PZ rv CMVN [p~ ,PVP~ 
rv CMVN [ ~ ,vpp.] 

and since PV = VP with PP' = l 
PZ'" CMVN [ cp ,V] 

This completes proof. 

1 

:-1 
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Corollary I: 

exp( 1e)Z rv CMVN[ 4> ' vJ' 
Proofl 
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1ff ,Z'V CMVN [cp , V] 

Put P = exp( 1a) l'ln THEOREM 4.4 • 

Corollary III (Moment Generat1ng Funct10ns and 

Character1stlc Functlons) 

Let Z f\, CMVN [ cP ,V J : , 
Then MZ ( t) == E( exp ( t • Z» = ~ Z ( t) E E( exp ( 1 t • Z) ) 

Proof: 

• 

Let W = lZ • It ls clear that W has the same distribution 

as Z. (a~ln Corollary I) 

Mw(tf = E(exp(t'W)) = E(exp(it'Z)) = ~z(t) 
But W'l"Z 1mp11es that MW(t) = MZ(t) 

Th1s completes proof. 

THEOREM 4.5 (uncorrelated random vectors) 

If Z rvCMVN[ ~ ,6 2IJ' 

Then zl' ••• 'zp form a mutually 1ndependent set of complex 

random var1ables. 

Proof: 

Z rvCMVN[ ~ ,62~ 1ff (~) IV MVN[ ~ ,M2~ (b,y THM 4.)) 

Th1s 1mp11es that xl,.o.,xp'Yl' ••• 'yp form a mutually 

1ndependent set of random var1ables. 

i 

1 

1 
-,='\ 
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Hence: (Xl'Yl)' ••• (xp,yp) form a mutually independent set 

of random vectors in two-space. Therefore 

mutually independent set of complex random variables. ' 

This completes proof • 

. J 

are a 

.. 1 
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CHAPT ER 5 Distributional Properties of the Cpmplex 

Gaussian Distribution 

THEOREM 5.1 (Linear combinations) 

If Zl' ••• Zntv CMVN [Mj' Vj] , respective1y, Then: 

La .Zj ('\.J CMVN [I ajMj , La j 2v.J 
J J J J J 

where Zl' ••• Zn form a mutua1ly independent set of p-variate 

ranqom vectors, ,and aj are real numbers for j = l, ••• n 

Proof:; . 

= (~~) , 
J 

,and 

-I(Vj ~ 
R(Vj)J 

It is c1ear that tUj) are mutually independent, and by 

THEOREM 4.3, Ujr'\.J MVN [Nj ,B:fJ j = 1, ••• ,n 

MUj(t) = exp [tlNj + ~tl:Sj~ j = 1, ••• ,n 

where MUj(t) is the Moment Generating Function of Uj • 

Let 
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Therefore: 

But: 

And: a·N· = J J ' 

Thus by THEOREM 4~3, it follows that: 

~ RjZj '" CMVN [ rRjMj , ~R]VjJ· 
This completes proof. 

THEOREM 5.2 (Marginais) 

Let Z rv CMVN [M, vJ and partition Z as: 

Z = G~~~) rv·CMV{(:~~~). (:~~ :~:)J 
Then,: 

Where 

and 

Z(l) = X(l) + iy(l) 

Z(2) = X(2).+ iy(2) 

and: 

.... 

1 

'.7'\ 
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·PROOF: 

THEOREM 4.3 implies that: 

X(i) R(N(l») R(Vll ) 
(2) 

R(M(2» R(V2l ) x 
(1) fVMVN 

I(M(l» )1/2 
y I(Vll ) 
y(2) I(M(2» 1(V2l ) 

And thus by Lemma 3.14: 

[(R(M(l)) 
(X(l) )"vl'NN (1) , 

(1) . I(M ) y 

Hence by THEOREM 4.3, 

\... 

Z(l) IV CMVN [M(l) V J 
' 11 

Similarly for z(2) 

This completes .proof; 

R(V12 ) 

R(V22 ) 

I(V12) 

I(V22) 

~ [R(Vll) 
I(Vli) 

THEOREM 5.3 (Conditional Densities) 

-1(Vll ) 

-1(V21) 

R(Vll ) 

R(V21) 

Let Z rv CMVN [M, V] and parti tion Z as in THEOREM 5.2 

Then: 

-1(V12) 

-1(V22 ) 

R(VU) 

R(V22) 

f(z(l) /Z(2» = CMVN [M(l) ~ V12(V22)-1~z(2)-M(2». Vll-V12(V22)~lV20 

(Where Z(l) = X(l) + iY(~), and Z(2) = X(2) + iy(2) ) 
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l'roof: 

By THEOREM 4.3 and the commutativity of the components 

of the Normal distribution, it is evident that: 

R(M(l» R(Vll) -l(Vll ) R(V12 ) ,~1(V12) 

l(M( 1» l(Vll ) R(Vil) 1(V12) R(V12) 
rvMVN 

R(M(2» ) ~ , a(V2l) -1(V2l) R(V22) --l(V22) 
1(M(2» 1(V2i) R(V2l) 1(V22) R(V~ 

Lemma 3.2 implies that: 

-1 
( -1 -I(V2Û-1» t<V22) -I(V22~ R«V22) ) 

= 
, 1«V22)-1) R«V22)-1) 1(V22) Ji(V22) J 
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••• (1) 

Where: 

And: 

S =~(V12)R«V22)-1)R(V21) + R(V12)1«V22)-1)R(V21) 

I(V12)1«V22)-1)I(V21) + R(V12)R«V22)-1)I~V21~ 
This is equivalent to: 

(Q + iS) = 
[a(V1Û +U(V12>lR«V2û·

1
> + U«~~Û·l)][R(V21> + U(V21>] 

= V12(V22) Y21 

Partition M* as: 

(::~~~) with same dimensions as 

Now by .••• (1) and by THEOREM 4.3, 

f(Z(1)/Z(2» = CMVN [(M*(l) + iM*(2»), Vll -. (Q + iS)] 

= CMVN [(M*(l) + iM*(2», Vll - V12(V22)-lV21] 

Thus it remains merely, to show that: 

M*(l) = R [M(l) + V12(V22)-1(z(2)-M(2)D ••• (2) 

~(2) ': l [M'(l) ;.. Vl2(V22)-l(Z(2)-M(2)B ••• (3) 
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R.H.S. of ••• (2) = 
R(M(l» +~(V12)R«V22)-1) - 1(V12)1«V22)-1)] (X(2) _ R(M(2») 

- [!(V12)R«V2Z)-1) + R(V12)1«VZ2)-1~.(y(Z) - I(M(2~ 
= N*(l) (by multiplying;:~ out in formula 

for M* listed earlier in proof) 

Similarly, ••• (3) is true. Thus: 

f(Z(l» {Z(2» = CKVN[:K(l) + Vl2(V22)-l(Z(2)-K(2».Vll-Vl2(V22)-lV2~ 
This completes proof. 

Remark: ~EOREMS 5.1, 5.2, and 5.3 are exact analogues of 

the c1assical multivariate normal distribution. 

Next, we sha11 examine whether or not Cram~r's Theorem 

(Lemma 3.13) can be extended to the Comp1ex Gaussian distribution. 

THEOREM 5.4: 

If Zl, and Z2 are independent cornp1ex random vectors; and 

f(Zl+ZZ) = CMVN 

ln order that Zl and 22 both have the comp1ex Gaussian distribution, 

it is necessary and sufficient that both Zl and Z2 be Goodman 

Random Vectors. 

Proof: 

If Zl, 22 are distributed CMVN, th en by Coro11ary of THEOREM 

~.3 Zl, Z2 are Goodman Random Vectors. 

f(Zl'+ Z2) = CMVN irnp1ies , 'by THEOREM 4.3, that: 

(~~) + (~i) rv KVN 

.. _'oc i 
• 1 
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a1so: Since Z1 is independent of z2,(ii)iS independent of (i~). 
Thus conditions of Lemma 3.13 are satisfied. That is, 

(~t) and (~~) are both distributed as MVN. But if 

are Goodman random vectors, then by the Coro11ary of Theorem 

4.3 and by Theorem 4.3 itse1f, Z1 and Z2 are distributed 

as CMVN. 

This completes proof. 

THEOREM 5.5 

If Z1,Z2 are independent comp1ex random vectors, then 

(Zl+Z2) '\, CMVN [M.V] iff (~t)'''MVN [L.A] and (i~)"'MVN [N.B]; 

where (L + N) and (A + B) G
(V) 

= 1/2 
leV) . 

Proof: 

By Theorem 4.3, (Z1+Z2) f\J CMVN [M, v] iff 

G~)+G:) rv MVN [(:~:~) • 1/2 [:~:~ 
and that is, by Lemma 3.13 iff: 

-I(V~J 
R(V~ 

-1(V~ 
R(V2J 

and (i~)1V MVN [N,B] with A,B,L,N 

satisfying the equations above. 

This completes proof. 

--
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Corollary l 

If Zl and Z2 are independently and. identically disributed 

random vectors such that: 

o(Zl + Z2> IV CMVN [M, v] Then 

Zl 'V CMVN [~M, ~V] 

Corollaryo 2 : 

If zl, ••• ,zn are independent complex random variables 

having distribution CN (m,a2 > (univariate CMVN) 

Then z = .1 I. Z j IV CN [<m,,g:2 >] 
° n J n 

Proof: 

Put aj =.1 in IHEOREM 5.1. 
n 
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CHAPTER 6 Quadratic Forms of the Complex Gaussian 

Distribution 

THEOREM 6.1 (chi-square theorem) 

If Z rvCMVN[ cp ,2~ ,and A is a positive 

semi-definite Hermitian matrix : 
- ry~ 

Then Z'AZ rv /V2~(A) iff AA = A 

Proof: 

Let Z = X+iY 

Therefore: Z'AZ = (:)' G::~ -:::~J (:) 
Since Z'VCMVN[ cp ,2~ ,THEOREM 4.3 implies that: 

(X) l'V MVN[rr. ,1/2 \R(2I) -1 (21 )ll = MVN[ <t> ,il 
y ~ lI(2I) R(2IUJ' J 

(
R(A) -I(A») 

Now let B = 
I(A) R(A) 

By Lemma 3. 16 :. 2 

(~)' B (~)rv X.P(S.) iff Il is idempotent. 

But by Lemma 3.5, A is idempotent iff B is idempotent. 

Since A is Hermitian, ajj = ~jj 
~hus: Tr(A) = Tr(R(A» = J'(A) 

--_ .. -_._------------_. 

(i.e. l(aj j ) = 0 ) 

(by Lemma 3.6) 

1 . 
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Since a symmetric matrix is also a Hermitian matrix,then if 

BB = B: Tr(B) = 2Tr(R(A» which implies, by Lemma 3.6: 

Hence: 

Ç1(B) = 2 ~(A) 
- Y 2. 
ZIAZ rv 1'v2SiA) iff AA=A 

THEOREM 6.2 (chi-square theorem) 

If Z rv CMVN [~ , V] ; and A ia a positive semi-definite 

- Xl Hermitian matrix, Then Z'AZrv 29(A) iff ~AV is idempotent. 

Procf~ 

Since V is p~sitive definite Hermitian, there exists 

a non-singular matrix, P, such that: 

Let: 

W ""v CMVN [ 

Also: 

PVpl = 21 That is: 

V = '2P- l (P.' ) -1 (*) 

) W = PZ ,Renee by THEOREM 4.2, 

P ~, p~p 1] = CMVN [ cP ,21 J 
W,«p,)-lAP-l)W = Z'AZ 

Hence THEOREM 6.1 and the fact that P is non-singular imply that: 
~~ - -1 -1 

ZIAZrv IV19(A) iff (p 1) AP is idempotent. 

i.e. iff: (pl )-lAP-l(pl )-lAP-1 = (pl )-lAP-1 , 

i.e. iff: pl (p 1 ) -1 AP -1 (p 1 ) -1 AP - i (p 1 ) -1= pl (p 1 ) -1 AP -1 (p 1 ) -1 

i.e. iff: (~AV)(~AV) = (~AV) (by' (*) ) 

This completes proof. 
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Remark: In order to simplify the proof of the following 

Theorem, we shall introduce two special pxp matrices: 

C* = (a matrix with each c*jk = - l/p ) 

and H* = I+C* = (a matrix with all off-diagonal terms = - l/p 

and each diagonal term = (p-l)/p .) 

Recalling definitions of z, the sample mean; and s"A' 

the sample variance, from the table of notation (page 4), 

we shall prove the following important Theorem. 

THEOREM 6 •. 3 The Distribution of the Sample 

Variance, Zero Mean Case 

If zl' ••• 'zp are independent complex random variables· 

from CN(O,a2), then: 

2(p-l)s5 rv X2 

0 2 2pa 2 
Proof: 

= 
= Z' (I+C*)Z = Z' (H*)Z 

l t i8 clear that Z f\; CMVN [cp, a 2IJ. 

Thus: 

, 

) 

and for: 
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~A(02I) = H* ,which is clearly idempotent~ 

Hence, by THEOREM 6.2, 2-

ZIAZ IV X2J(A) 

But: 

Thus: 

Ç(A) = 9(H*) = Tr(H*) = (p-l) 

2(p-1)S8 rv X 2 (2p-2) 
0

2 

This completes proof. 

THEOREM 6.4 The Distribution of the Sample Variance, 

General Case 

If zl' ••• 'zp is an independent random' sample from 

CN(m,02) ,then: 

- X2 
2<p-1) ss 1\; 

02,. 2p-2 

Proof: 

Let Wj = zj-m j = 1,2, ••• ,p 

It is clear that: ~ = z-m Thus: 

It is hence evident that the set 

and the set of random variables 

variances. 2 But Wj IV CN(O,a ). 

of random variables {Zj} 

tWj~haVe the id~ntical,sampl~ 
Hence by THEOREM 6.3, 

2(p-1) ss rv ,\/2 
02 ~ 2p-2 

This completes proof. 
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THEOREM 6.5 lndependence of Iwo Quadratie Forms 

Let Z rv CMVN [~ ,02lJ 

Given: Z'AZ and Z'BZ, two positive semi-definite Hermitian 
..... 

quadratie forms, then: 

Z'AZ is independent of Z'BZ iff AB = ~ • 
ProoÏ: 

(i) We will f~rst assume that AB 

Hence: 

A,B Hermitian: 

BA=~ 
Therefore: AB = BA 

whieh implies that 

which implies, beeause 

Lemma 3.7 implies that there exista a unitary matrix I aueh that: 

and 

D1D2 = T'ATT'BT = T'ABT (ainee T ia unitary) 

Therefore: 

and 

Let: 

= T'~T = cp 
f 0 implies that 

f 0 implies that 

('p.2) jj = 0 

(Dl)jj E: 0 

. _ .. 1 .... \ 
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P(A) = 9(D*1) = Pl 

jJ(B) = 9(D*2) = P2 

and block matrix of zeros in lower right hand corner of each 

matrix has dimensions P3xP3. (Pl+P2~P3=p) 

Let W = TIZ that is Z: TW 

implies tha t W "" CMVN [ <p ' 02r J . 
Z'AZ = W'T'ATW = W'D1W = ~WjWj(D*l)jj 

p, ... fi J=I 

THEOREM 4.4 

Z' BZ = 2:. w· W • (D* 2) .. 
J=R+/ J J JJ 

Z'AZ depends upon only the 'first Pl Wj'S~ 

Similarly: 

Therefore: 

and, Z'BZ depends upon only the next P2 wj's. 

But by THEOREM 4.5, tWj' are mutually independent. 

Therefore, Z'AZ is independent of Z'BZ. 

,(ii) Now let us assume that Z'AZ and Z'BZ are independent. 

Z'AZ = fX\' [R(A) -l(A)l (X) 
ly} l(A) R(A)J Y 

Z'BZ c (:r [:~:~ -:~:~J (:) 
Since Z f\J CMVN [~,02rJ , then by THEOREM 4.3, 

(~) r\J MVN [ cp ,lj02l] 

Also by Lemma 3.1, A and B are positive semi-definite Hermitian 

matrices iff 
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(
R(A) 

I(A) 

_l(A») 

R(A) 
and 

(R(B) 

\1(B) 

-1(B)\ 

R(B») 
are both positive 

semi-definite symmetric matrices. 

Since we assumed Z'AZ and ZIBZ independent, the conditions 

of Lemma 3.17 are satisfied. That is: 

(

R(A) 

l(A) 

-1(A)\ (R(B) 

R(A») I(B) 

Multiplying out, we obtain: 

R(A)R(B) l(A)I(B) = 

and R(A)l(B) + I(A)R(B) :: 

And this in turn implies that: 

-1(B») = th 
R(B) 'V 

AB = (R(A)+iI(A»(R(B)+il(B» = ~ + i~= ~. 
This completes proof. 

THEOREM 6.6 Independence of Linear and Quadratic Forma 

If Z 'VCMVN[ <p ' 021J ; A is a pxp posi ti ve semi-defini te 

Hermitian matrix ; and B is a qxp matrix: 

Then ZIAZ is independent of BZ iff BA = ~ _ 

Proof: 

(i) First we shall assume BA = 4 . 
Let T be such that: Y'AT = D = (~* 
Where D is diagonal, and D* is of full rank, Pl-

(T unitary) 

1_,_, __ .,,--- , ___ ,,_ __ _ ',' \ 
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Let W = T'Z . that is , since T is unitary: Z = TW 

A1so by THEOREM 4.4 : W f'\.I CMVN [cp, 0
21 ] • 

Now BA=~ imp1ies that BAT = ~ , which in turn imp1ies: 

BTT'AT = ~ that is BTD =!~. 

Let BT = X = CU X
l2 ) 

X21 X22 

XD=~ implies that X11D* = cP and x21= cp 
But since diagonal matrices of full rank have no proper divisors 

of zero: it is c1ear that X11 = cp and 

Thus X ia of the form X = (~,~2) 
X21 = <P · 

Let us partition W i~to (~~) so that W1 has dimenaiona1ity Pl', 

Rence BZ = BTW = XW = X2W2 depends upon on1y the components 

of W2• 

depends on1y upon the 

components of W1. 

However: THEOREM 4.5 imp1ies that wl,w2'."'wp form a mutua11y 

independent set of comp1ex random variables. This further imp1ies 

that W1, and W2 are independent. Thus any function of W1 is 

independent of any function of W2' ln particu1ar, therefore: 

Z'AZ is independent of BZ 
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We shall now assume that Z'AZ and BZ are independent. 

Thus Z'AZ is independent of any function of BZ. ln particular, 

ZIAZ is independent of ZIBIBZ. 

But B'B is positive semi-definite Hermitian. Thus 

conditions of THEOREM 6.5 

B'BA=cj) 
A'B'BA = ~ 

,Let C = BA. Therefore 

(ii) are satisfied. Hence: 

This implies 

• 

Now (CIC)jj ,the element on the diagonal of 

the j-th row of ë'c , being ZERO implies: 

2]ck .,2= 0 j = l, ••• p 
1< J 

which implies: cjk = 0 j = l, ••• p and .k = l, ••• q 

That is . 'C = cP • 

or: BA = ~ 
This compl~tes proof. 

1 

1 

- ,,\ 
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CHAPT ER 7 Central Limit Theorems for Complex 

Random Vectors 

The most important reason why the Normal distribution 

has been so useful to statisticians is the en'ormous class 

of random variables which converge in law to the Normal 

distribution. Intuitively , one would expect similar result s 
( 

to hold for complex random variables , and the Complex 

Normal distribution. Unfortunately, this is not the case. 

THEOREM 7.1 : ( a central limit condition) 

If Zl, ••• ,Zm are independent, identically distributed 

Goodman random vectors, me an M, and complex covariance 

matrix V, Then: 

l L(za.-M) ----") CMVN[ cP ,vJ 
m~ ct. L 

Proof: 

Let 

s = ~ (R(V) 
leV) 

... iY 
a. 

-leV») 
R(V)' 

where S i8 ëüva~iance 

• Since Za. Goodman, 

and 

_ ....... ..-.;~ 
4&1Q .......... . 

it follows: 
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Thus G~) · · · G:) are 1ndependent 1dent1cally 

distributed random vectors satisfying conditions of 

Lemma 3.18. This implies: 

which, by THEOREM 4.3, is equivalent to 

1 t (Z(7.-Ml 
mi 01=1 

This completes proof. 

-~> CMVN [cp ,v] 
L 

THEOREM 7.2: (a startling counter-example 

If Zl,.o.,Zm are lndependent ldentically distributed 

random vectors, which are not Goodman random vectors, 

having mean M, and complex 

Tm = 1. 'L. (Za.-M) 
mi ex 

Proof: 

variance-covariance matrix V,thens 

does not converge in distribution 

to CMVN[ ~ ,vJ. 
Let us assume Tm do es converge in law to CMVN [cp ,~ , 

and obtain a contradictiono 

Uslng the notation of THEOREM 701, our assumption is 

equivalent to (by THEOREM 4 0 3) 
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But since H~:n 
random vectors, S 

are independent, identically distributed 

is the covariance matrix of each 

G:J (l = 1,2, ••• ,m 

But form of S implies that each Z(l is a Goodman random 

vector. This is contrary to the given fact that each Z(l 

is ~ a Goodman random vector. This clearly indicates that 

Tm does not converge in law to CMVN [ ~ , v] . 
This completes proof. 

THEOREM 7.3 ( application to sample mean ) 

If zl, ••• ,zm are independent, identically distributed 

Goodman random variables (l-dimensional Goodman random 

vectors), with mean 

zO-r 
(a2/m)~ 

infini tely large •. 

r, and complex variance 
1 

--~> CN(O,l), as m 
L 

2 . a • Then. 

becomes 
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Proof: 

= 

Since each z~ i8 a Goodman random variable, it is obvious 

that each of: 

z - r a. is a150 a Goodman random variable. 

Thus by IHEOREM 7.1, and the fa ct that: 

E~Zo.-r)'Zo.-rD = a2 

it i5 clear that: 

~-r ~--~~ eN [o,t] 
, (a2/m) L 

. This completes proof. 

0.= 1,2, ••• ,m 
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CHAPTER 8 A Characteristic Property of the Complex 

Gaussian Distribution 

THEOREM 8.1 ( main result of chapter ) 

If Zl and Z2 are independent p-variate complex random 

vectors, with continuous density functions Jl(Zl) and J2(Z2), 

which are non-vanishing at Zl -. ~ , and Z2 = ~ , respectively , 

and if V, a positive definite pxp Hermitian matrix, and C, 

a pxp non-singular matrix satisfy :, 

1) v-1C is Hermitian 

and 2) The eigen values of C lie in open 

interval, (0,1) 

Then if 

(where 1 means" given that Il) 

Zl rv CMVN, and Z2 rv CMVN. 

Proof: 

Let M(·) be the marginal density of (Zl+Z2) 

J l (Zl)J2(Z2) 
f(Zl/zl+Z2) = M(Zl +Z2) 

= ;p I~I eXP~-(Zl-~<Zl+Z2»'v-l(Zl-C(Zl+Z2i] •••• (A) 

........... -1 
ï 
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Thus the following apecial cases of (A) are readily obtained: 

Jl(Zl)J2(CP) = H(Zl) exp [-Zl' (r:c) 'V-l(l:C)ZJ 

. nP 
1 vI 

••• (1) 

Jl(~)J2(Z2) = M(Z2) exp [-Z2 'C' V- 1cZ2] 
nP 1 vI 

••• (2) 

J1( ~ )J2(cP) = ~ 
nP 1 vI 

••• (3) 

Multiplying (1) by (2) and substituting for J 1<CP)J2(GP) 

by (3), we obtain: (B):' 
J 1(Zl)J2(Z2) 
M('P )M(Zl+Z2) 

= ••• (B) 

Equating right hand sides of (A) and (B), we obtain (C): 

M(Zl)M(Z2) = 

M( 4 )M(Zl+Z2)exp [Zl' (ï=ë) 'V- 1ÇZ2 + Z2·ë'v-1(1-C)ZJ ••• (C) 

But (ï:ë)'V-1C = V-1C. C'V·1C, (and is thus Hermitian) 

= ('C'V-1(I-C)' 

Thus by Lemma 3.10, (C) can be reduced to: (D) 

M(Zl)M(ZÛ = M(</:> )M(Zl+Z2)eX{2R (Zl' (ï:c) 'V-1CZ2~ ••• (D) 

'-'1 ... 
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Let a(Z) = Mhp) exp l R ( Z' (ï'=ë) 'V-1CZ~ 
Thus: 

a(Zl+Z'2) = M(~) exp [R (ZlIAZ2 + Z2IAZ1)] 
a(Zl)a(Z2) 

where A = (ï=ë)'V·1C (Hermitian) 

Thus by Lemma 3.10 and equation (D), we obtain 

a(Zl+Z2) 
a(Zl)a(Z2) = 

Let G{Z) = a(Z)M(Z) 

Equation (E) implies 

M(Zl)M(Z2) 
M(Zl+Z2) 

G(Zl)G(Z2) = G(Zl+Z2) 

and thus by Lemma 3.19 : 

G(~) = exp R( ylZ) 

thus by definitions of G, and alpha, 

••• (E). 

. M(Zl) =. M(~) exp [-R (Zl' <r~C) 'V-1CZ1-Y 'Zl~ 
wi1.th'.-abbY.'~ in equation (1), we obtain: , 

J1(Zl)J2(~) = 

'J1 (CP )J2( ~ )exp [ -Zl' (l-C) IV·1(I-C)Zl-Z11 (l-ë') 1 v-1CZ1+~<'" ~Zl~' 
( Above sinee R(ZI BZ) = Z~BZ ) (for B Hermitian ) 

Simp1ifying, we obtain : 

J1(Zl) = J(CP) exp [-Zl'V-1(I-C)Zl + R(Y'Zl~ 
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Let V-l(I_C) = S and V-1C = T 

Noting (Zl - ~S-ly)S(Zl - ~S-ly) = 
Zl'SZl - ~y'Zl - ~zl'Y + ~y'S-ly = 
Zl'SZl - R(y'Zl) + ~y'S-ly 

Hence the equation for Jl(Zl) ·reduces to: 

Jl(Zl) = Jl(q) exp -(Zl - ~S-ly)'S(Zl - ~S-ly) + ~y'S~ly 
Similarly it can be shown that: 

J2(Z2) = J2(q) exp -(Z2 _ ~~lY)'T(Z2 _ ~-ly) + ~y'T-ly 

Since C = (V-l)-lV-1C has all its eigen values in the 

open interva1 (0,1), and since V- l i8 positive definite 

Hermitian, and 

S = V· l _ v-lc 

V-1C.is Hermitian, Lemma 3.9 implies both 

and T = V-lC are positive 

definite Hermitian. 

Hence by THEOREM 4.1 

Therefore: 

Similarly~ 

Jl(,~) exp(~yIS-ly) = 

[
1.. -1- -lJ Zl rv CMVN ~S y, S 

r!: -1- T-lJ Z2 l'V CMVN l}T y, 

This completes proof. 

;-c i 
.1 
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( Characterization ) 

If Zl' Z~ are independent random vectors having 

respectivedensities CMVN[CP,AJ and CMVN[~,BJ, then: 

f(Zl/Zl+Z2) = CMVN [C(Zl+Z2),V] , 

with V-1C H .. d h i 1 f erm1t1an, an tee gen va ues 0 

the open interval (0,1). 

Proof: 

By THEOREM 5.1, (Zl +Z2) rv CMVN [ cp ,A+ BJ 
and hence by THEOREM 5.3, 

C lie in 

f(Zl/Zl+Z2) = CMVN j!(A+B)-1(Zl+Z2) , .<1_A(A+B)-l)A] 

Putting C = A(A+B)-l and V = (l-C)A 

Lemmas 3.11 and 3.12 imply that the eigen values ofe 

lie in (0,1); and that V-1C is Hermitian. 

This completes proof. 

We thus have a characterization of the Complex Normal 

Distribution for the zero mean case. 

THEOREM 8.2 ( a regression problem) 

Given: (1) Zl,Z2 are independent p-variate complex 

random vectors with zero means and respective comp1ex 

covariance matrices 
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and (2) If Linear Regression of Zl on Zl + Z2 implies: 

f(Zl/Zl+Z2) = CMVN [n(Zl+Z2), ~J 
where n is the coefficient matrix of regression; 

Then and Z2 rv CMVN [ct> t V~ 
Proof: 

Let 
-1 

n = Vl(Vl+V2) + ~ = C + ~ 

where C = Vl (Vl +v2 )-1 

It is easily seen that: 

(Since: 

Also: • oe (**) (obtained from (*)) 

Let H be the complex covariance matrix of (Zl-a.(Zl+Z2)) 

and J be the complex covariance matrlx of (Zl-C(Zl+Z2)) 0 

Thus H = 
(I-C)Vl(I-C)' + cV2ë' - ~Vl (I-C)' . - (I-C)Vlr' + CV2r' + 

~v2ë' + ~ (Vl+V2){r' 

and by (*) and (**) this reduces to: 

H = (I-C)Vl(I-C)' + cV2ë' + ~(Vl+V2)1i' 

= J + ~(Vl+V2){r' 

Slnce ~(Vl+V2){r' is positivesemi-definite for all matrices 

~, H is minimum at n = Co (ioe. for al1 vectors W, W'HW~W'JW 

Therefore by defini tion of regression, ·n = Co" 

.' 
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But by Lemma 3.11, C= Vl{Vl+V2)-1 has all its eigen values 

in the open interval (0,1) ; 

and by Lemma 3.12, V-1C is Hermitian. 

Since we assumed f(Zl/z1+Z2) = CMVN [C(Zl+Z2)',i] , 

the conditions of THEOREM 8.1 are satisfied. 

Therefore and 

This completes proof. 

Remark: The results in this chapter exactly parallel those 

of the MVN. {see (9-g ) 

~. ',' 1 

1 
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APPENDIX 1 Suggestions For Further Studies 

(1) Since it is well known that Laplace Transform has not 

necessarily a unique inverse in the complex plane, what wou1d 

one use to replace the characteristic function? 

Example 1.1: 

Let z 1'\" CN(O,a2) with z = x+iy 

MZ(t) = E(exp(tz)) = E(exp(tx)exp(ity)). 

= E(exp(tx))E(exp(ity)) since x,y independent. 

= exp(~t2a2)exp(_tt2a2) by THEOREM 4.3 

= 1 

Thus for a1l values of a2 the moment generating function,and 

hence by Cor~llary 2, THEOREM 4.4, the characteristic function 

is the same. 

(2) What closed form results can be obtained for the 

fo1lowing logical extension of the complex normal distribution: 

Z = X + iY '" CMVN iff (~) rvMVN ? 

(3) What other distributions have complex counterparts, 

which can be systematica1ly treated ? N.R.·Goodman [lJ , has 

treated the Complex Wishart Distributio~ in somedetail. 
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APPENDIX II: Applications 

N.R. Goodman in [2J , lists several applications of Complex 

Gaussian processes, although at that tirne he did not call them 

. 'd such. He was rnotivated in his research by exper1menters nee s 

in such fields as micrometeorology, oceanography, electrical 

engineering, and aeronautical engineering. Goodman was asked 

to statistically estimate parameters characterizing "models" 

of physical systems. 

In this dissertation, the distributional·properties of 

sorne of these estimates have been developed. In addition, 

the tests of hypotheses concerning certain two-dimensional 

stationary Gaussian vector processes can be conveniently 

performed. 

The complex Gaussian distribution is an excellent mode 

,of treating Brownian Motion problems in which one considera 

diaplacementa jointly along the X-axis and the Y-axis. 

Analysis of Variance models can easily be constructed 

using results of Chapter 6. This would be a nice method for 

treating experiments with bivariate observations. For example 

we may be interested in the joint yields of copper and zinc 

at two different ternperatures, using three different catalysts. 

The CMVN reduces this problem to one operation. 
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