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CHAPTER 1 : Introduction

To date, the history of the Complex Normal, or Complex
Gausslan Distribution'ﬁelongs to one man, namely N.R. Goodman.
The motivation for the postulation of the Complex Gaussian
Distribution occurred in 1957 1in [2] . However it was not
until 1963 in [1] , that he actually defined the Complex
Normal Distribution.

In this dissertation, a slightly more general definition
will be given for the Complex Gaussian Distribution. The
two definitlions coincide wherever the Goodman definition
appiies; and the revised definition lends 1itself nicely
to closed form results, v

The aim of this thesis is to study the properties of
the Complex Normal Distribution, whlle‘at the same time, to
investigate llkenesses and differences'betweenlthe classical
Normal Distribution and the Complex Normal Distribution in
thelr respective probability spaces.

Chapter .2 introduces the reader to the basic concepts
of the Complex Gaussian Distribution, and acquaints the reader
with the notation used throughout the paper.

Chapter 3 1lists the important Lemmas which will be

employed to prove Theorems about the Complex Normal Distribution,



Chapter 4 contains the basic Theorems on the Complex
Gaussian Distribution. Although these are interesting in their
own right, their prime importance is as tools to prove results
in subsequent chapters,

| Chapter 5 glves addiﬁional propertles of the distribution
and furthermore, 1t gives the reader some interesting comparisons
with the Gaussian Distribution.

Chapter 6 1s devoted to quadratic forms of the Complex
Normal, an essential ingredlent to Analysis of Variance,

Chapter 7 deals with the Central Limit Criteria of the
Complex Gaussian Distribution. Thls is perhaps one of the
most striking contrasts with the Normal Distribution.

.Chapter 8 1is concerned with a special regression

problem, leading to a characterization of the Complex Gaussian

- Distribution,

In Appendix I , the author leaves suggestions for
further studies. These would make excellent research projects,

In Appendix 1II, the author indicates some applications

‘of the Complex Gaussian Distribution,

At the conclusion of the paper the author will acknowledge

the generous help he recelved, without which, completion of

this paper would not have been possible.
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CHAPTER 2

Notation -

Ajk

Z,W,M

2

R(A)

I(A)

z/w
iff

>l

Basic Notations and Definitions

Meaning

Matrices

Sub=block of A

element of A

Vectors of complex.

numbers

j=th component of Z

Identity matrix

Null matrix; null

vector

-Matrix formed by4

taking only real
part of each ajy

Matrix formed by

taking only imaginary

part of each ajk

"Z given W "

If and only if

Matrix of complex

conjugates of each ajk



Notation
m) A'
n) (4
o) |zl
p) 2

q) s§

r)P(A)
s) Tr(A)
t) E(.)
u) Mz(t)

v) B (€)
) N(m,02)

X) MVN(M’V)

y)' n

Meaning
Transpose of A
det(A)

Modulus of Z

Arithmetic mean of
ZlseceyZn

};cz;--zzg;r.zz
gz ml

Sample Variance
Rank of A
Trace of A

Mathematical expectation

. E(exp(t'2))

E(exp(it'2))
Normal distribution
with mean m and variance

G2

Multivariate normal

distribution

Is distributed as



Definitions

D-1 Complex Random Variable
1f 17. is a sample space with a probability measure, f
|
and if z is a complex valued function defined over the

points of (L, then z is a complex random variable,

Example 1: (discrete case)

JL = outcomes of 3 flips of a balanced coin
z = (number of heads) = i(number of tails)
Then: z = 3 p(z) = 1/8
=2 -1 = 3/8
=1 - 2i = 3/8
= =3i = 1/8
“ | p(z) = 0 otherwise

Example 2: (continuous case)
(L = complex plane - : ' -
z is such that: |
f(z) = 1 12l € 1
=0 otherwise
D=2 Complex Random Veétor
A complex random vector is a vector of complex

random variables,



D-3 Complex Variance
1f z is a complex random variable, such that E(z)=m,

then the complex variance of z is given by:
o2 = E(Z=m)(z-m)

D-4 Complex covariance Matrix
If Z is a complex random vector, such that E(Z)=M,

Then the complex covariance matrix of Z is given by:

1

V.= E(2-M)(Z-M)'

D-~5 Goodman Random Vector
A Goodman random vector is a complex random vector

having the following property:

if Z2=X+1iY X,Y reai vectors
and if E(xj) =my ; E(yj) = rj J=1,2,..4,p
Then:
(xi-mj)(xk-mk) (xj-mj)(Yk'rk)
(y3-r3) (xic-my) (y3-r3) (yx-rk)
a§ 0 a5k '-bj#
= if j=k, and = : if j3k

2



D=6 The Complex Multivariate Normal Distribution (CMVN)
I1f Z is a complex random vector such that @

E(Z)=M , and the complex covariance matrix of Z is V,

Then ¢ For V, non-singular: ~

zrn GMVN[ M,V]  iff

£(z) =11 exp[-;('Z:E)'V-l(Z-M.):I
wP (vl



CHAPTER 3 : Useful Lemmas

In this chapter, the tools which are needed will be
listed, Many well known results will be stated without
proof, while the others will be proved in detail., The first
twelve lemmas are theorems in matrix analysis; the remaining

lemmas are theorems in statistics and functional equations,

Lemma 3.1 (matrix lemma)

1If A 1is a real symmetric matrix, and if B is a
real skew-symmetgic matrix, then a necessary and sufficient
condition that (A+iB) be positive definite is that

‘> be positive definite,
B A _

Proof:
Let Z =X + 1Y be an arbitrary vector,
Z'(A + 1B)Z = (X - 1)(a + iB)(X + iY)
=  X'AX + Y'AY 4 Y'BX - X'BY = iY'AX 4 iX'AY + iX'BX + iY'BY
But A , being symmetric, implies Y'AX = X'AY .,
And B , being skew-symmetric, implies X'BX=X'B!'X=-X'BX=0
Thus:
Z'(A + iB)Z = X'AX + Y'AY + Y'BX -X'BY ,



i.e.

Z'(a + 1B)Z = (:)/C -A\)(:)

X
Thus for all Z 4 O-vector (i.e., Y/} O-vector),

A + iB is positive definite iff Z'(A + iB)2)> 0 ;

-that is iff right hand side of above equation is strictly

positive; and that is iff the following matrix is positive

definite:

But:

G )

This completes proof,

Lemma 3.2 (matrix lemma)
If V is a positive definite Hermitian matrix, then:
R(V) -1(v)) el -1(vh)
(I(V) rR(v)) (m‘l) R(v'*))
Proof:
ROW™Y) = 1 = ROVRE™Y) - 1(v)r(vh)

I(VV-I) =(b = R(V)I(V'l) + I(V)R(V-l)' (see notation)

(R(V) -1(v)> (R(v‘l)' -1(v'1))

1(V) r(v)/ \1evvhy  revth

) (R(vv‘l) -1(vv'1)) |

= -1 -, =1
I(w=™%) R(W™™)

This completes proof,
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Lemma 3.3. (matrix lemma)

A _ .
Let < ;'.> be a positive definlte symmetric matrix

B A .

7y -5\~! c -
Then (1) is of the form

B A D C

and (2) Given matrices C,D such that (1) holds,
Then: (A + 1B)'_1 = (C + 1D)
Proof of (1):

A B\Y L /c D'
Let ]
B A D E’
A -B\ /c D!
Thus = I
B A/ \D E

Equating corresponding blocks, we obtain:

AC =BD =1 ..0(a) AD' - BE =¢ eee(C)
BD' + AE = I +4s(b) | BC + AD = q> eeo(d)

From (a),  C = A™X(I + BD) |

From (d), D = -A"lpc

‘Therefore, C = A'l(I - BA-lBC)

that 1s:  C~l = A(I + A™'BA"!B) (%)

From (b), E = A~1(1 - BD') '

From (c) D' = A"YBE

~Solving exactly as for c-l glves:

-1 1

BE = A(I + A- -1

BA™1B) = C (by *)

Thus E=C and hence D' = A"1BC = =D
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Proof of (2)

A -B\/C ~D
= 1
B A/\D c
implies AC = BD =1
and BC+AD#=d)
But (A + iB)(C +iD) = (AC =BD) + i(BC + AD) = I

That is : C + iD is the inverse of A + iB,

This completes proof,

Lemma 3,4 (matrix lemma)
If H is any H.ermitian matrix, then there exists
a unitary martix, P, such that:
. P'HP=D where D is a real diagonai matrix,

Proof: ( see [8-1] )

Lemma 3,5 (matrix 1émma)
If A = R(A) +i1(A), then a necessary and sufficient
"condition that A be idempotent is that ‘
R(A) «-I(A)
B =
- \I(A) R(A)

‘18 idempotent,

e — L
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Proof':
AA = A Aff (1) R(A)R(A) - I(A)I(A) = R(A)
and (2) R(A)I(A) + I(A)R(A) = I(A)

R(A).  =I(A) '
BB = . .
I(A) R(A) : /

i.e¢ Iiff B is idempotent.

that is iff

This completes proof,

Lemma 3.6 (matrix lemma)

'If a Hermitién matrix A, 1s idempotent, then the

‘rank of A is equal to the trace of A,

Proof:

Since A 1s Hermlitian, there exlsts a unitary matrix
P, such that P'AP = D , a real diagonal matrix.(lemma 3.4)
But:  P'AP = P'AAP = P'APP'AP = DD
Thus D = DD l.ec dyy =1 or O,

(*) Therefore: Tr(D) = JD(D) ﬁ‘fD(A)

But A = PP'APP' = PDP'
Hence Q34 = Py dyy P!
13 ‘; 3k dxx P'xy
leee  Tr(A) = J_ dux O |Pykf?
. N K J
= Tr(D) (since P is unitary)

This completes proof. (because of equation (*) )
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Lemma 3,7 (matrix lemma)
Let A,B be Hermitian matrices. A necessary and
sufficient condition that there exist a unitary matrix, T,
with the property that
T'AT = D; and T'BT = D (Dy diagonal i=1,2)
is that AB = BA, |
Proof: (see [ﬁ-é] )

Lemma . 3,8 (matrix lemma)
If A is a positive definite Hermitian matrix, and B is
a Hermitian matrix: then there exists a non-singular matrix,T

such that T'AT =1 and T'BT =D (D diagonal),
Proof: (see [8=3] ) '

Lemma 3,9 (matrix lemma) |

1f A is a positive definite Hermitian matrix, and B is
a Hermitian maﬁrix: then a necessary and sufficient condition
that A and (A-B) are simultaneously positive definite is that

13 1ie in the open interval (o,1),

‘the eigen values of A~
Proof:
By Lemma 3.8, there exists non~singular T, such that:
TAT = 1 and T'BT =D (D diagonal)
Let A be a characteristic root of A~lB ,

e, |alB 1] =0 i.e iff |T'AGTIBIT - AT'aT|= 0




~~—
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i.e, iff [p = a1l =0

1

Thus D and A "B must have the same eigen values.

(a) If the eigen values of Al

B 1lie in (0,1) ,

then the eigen values of D must lie in (0,1),

But T'BT=D , T non-singular, and djj‘> 0 imply that

B is positive definite,

Also, T'(A-B)T = (I-D) and djj <1, imply that (A-B)

is also positive definite, | '

(b) If B is positive definite then clearly, T'BT is also

positive definite, But T'BT = D, Thus djj > 0 j=1,2,...,p
If A-B is positive definite then clearly, T'(A-B)T =(1-D)

is positive definite., Thus (l-djj)f> 0 j=l,2,...,p |
Hence djj lies in (0,1)  j=1,2,400,P |

and if ID-AII =0 , then A must lie in (O0,1)

Since the eigen values of D and A-lB are identical,

it follows that the eigen values of A‘lB lie in (0,1),

the unit open interval,

This completes proof,

Lemma 3,10 (matrix lemma)
If A is a Hermitian matrix, and X and Y are‘vectors of

the same dimension as A, then

X'AY + Y'AX = 2R(X'AY)

>
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Proof:
X'AY = X'AY = X'A'Y = Y'AX (since Y'AX scalar)
Now since: a+a = 2(R(a)), '

X'AY + Y'AX = 2R(X'AY)

This completes proof.

Lemma 3,11 (matrix lemma)

If A,B are two positive definite Hermitian matrices,
and: ¢ = A(MB)T |
then the eigen values of C lie in the open interval (0,1).

4Proofa (simple corollary of Lemma 3.9)

Lemma 3.12 (matrix lemma)

Let 2,,Z, be independent complex,zero-mean,random
vectors with complé; covariance matrices V; and Vp,
respectively. Also: let C = V:|_(V1+V2)-1 .

Then 1f: V = E [ (21-C(21+2,)) (Z1-C(Z1722)) ']
vlc 1is a Hermitian matrix:

Proof: (simple exercise in matrix multiplication)

Lemma 3.13 (Cram?2r's Theorem, p-dimensional case)

If X,Y are independent, real, p=-variate random vectors,

then (X+Y) UMVN 1ff both X UMVN, and Y "UMUN.
Proofs (see [7-1] ) |
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Lemma 3.14 (marginal densities of the MVN)

If X~ MVN [M,V]
Then the distribution of any set of components of X is
multivariate normai with means, variances, and covariances
obtained by taking proper components of M; V, and V
respectively.

Proof: (see [3-1] )

Lemma 3,15 (conditional densities of the MVN)
If X~ MVN [M,V]
and if the componeni:s of X are divided into two subgroups‘
X(l) and x(z) ¢ then .
£V/x ) < [ vip(v) D ), V11-V12(V22) Va1 ]

where:
(L)

v v
M=( (2)) and v=( 1 12)
M

Vor Va2

composing the subvectors

according to partition of X,
Proof: (see [3-2] )

Lemma 3,16 (chi-square theorem) .

1f XNMW[¢,I] and A is a positive semi~definite
symmetric matrix, then a necessary and sufficient condition
that X'AX have Fhe chi-square distribution with P(A) |
degrees of freedom is that AA = A ,

Proof: - (seé l4-1 )



17

Lemma 3,17 (quadratic forms of normal distribution)
If XN, MVN [CP ,1] and if A,B are positive semi-definite
symmetric matrices, then X'AX and X'BX are independent iff

=

Proof: (see [4=2] )

Lemma 3,18 (central limit theorem)
If Y3,Y5,... are independent, identically distributed
p-variate random vectors, such that E(Yj) =M and
E(Y;=M)(Yj=M)* = V , then
| _:Eg(Yj-M)—i—)MVNEQS,V]
Proof: = (see [3-3] ).

Lemma 3,19 / (a functional equation)
1f G(Z) is a continuous, real valﬁed function of Z, then
(a) G(Z3)6(27) = G(Z1 + 2p) iff
G(2) = £(X,Y) satisfies the Cauchy functional equation in
X and Y, (where 2 = X + iY , as usual)
(b) G(21)6(22) = G(2; + Z,) implies that
G(2) = exp R(y'2) (where vy is a vector of complex constants)
Proof of (a):
G(Z;)G(Zy) = G(2) + 22)  iff
£(X1,Y1)E(Xp,¥5) = £(X)4Xp, Y14Yp)

~
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Proof of (b):
(a) implies that £(X,Y)

o [o (3]

where 6 is a 2p~vector of real constants, Thus:

G(Z) = exp [R(y'zﬂ'.w_f 6y + ibp”.)

This completes proof.
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CHAPTER 4 : Basic Theorems on the Complex Normal

Distribution

THEOREM 4,1 : CMVN Integrates to Unity

If V is a positive definite Hermitian matrix, then

.Q = ' 11 exp(-E'V'IZ) d(z) =1

LY
Where p is the dimensionality of Z, and the integration is
taken over the entire 2p~-dimensional Euclidean space,
Proof .
By Lemma 3.4, there exists a unitary matrix P, such that

P'VP =D (a diagonal matrix)

This implies: P'V-lp = p~! 5
Let W = PZ (the Jacobian of the transformation has
modulus unity) Thus:
Q = 1 1 exp(~w'D~lw) a(w)
P |v]

But: |V[= |p| = dileeed,; ; and if W = U+iV, it follows that:

-1
U\* /D U U
Q= 1__1_ exp -( ) ( (b d

_ -1
R \ Cb D v v
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Noting that (L): P =(rr35)2p

(2): V being positive definite implies:

s %)

is also positive definite,

Then Q=1 ( Q has been reduced to an integral
of a 2p-variate real ,MVN distributed ,random vector, over
its entire range of values.)

This completes proof,

THEOREM 4,2 ( transformations)
‘1f ZOUCMVN [M,V] , and P is a non-singulae matrix:
Then W = PZ ~CMVN [ PM,PVF"]

Proof:
It is clear that E(W) = PM, and E(W-PM)(W=PM)' =PVE' ,
£(2) = _1_ _1_exp (=(Z°W)'v-1(z-M))

P vl
= _1 _1 exp (-(PZ-PM)'(PV?')'I(Pz-PM))
P v ‘

Letting W =PZ (the desired transformation ) in above, and

using'the factt that g(W), the density function of W integrates

to unity,it is clear: W "VCMVN | PM,PVF']

This c0mpletes proof,
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\
THEOREM 4.3 .: Characterization of the CMVN

A necessary and sufficient condition for Z = X + iY
to be distributed as CMVN [M,V] is that:
* X R(M) R(V <I(V)
) (Y)’\’MVN [(I(M))a%(xévg Rfv))]
Proof:
(1) Assume 2z~ CMVN [M,V]
Therefore £(2Z) = K3 exp E—(Z-M)'V'l(Z-M)J
(x-R(M))° (R(v‘l) -1vh) (X-R(M)
= K] exp - -1 -1
Y-I1(M)/ \I(V ") R(V ")/ \Y=-1(M)
' -1
, X=-R(M R(V) ~1(V) X=R(M)
= K] exp ¢=% ( ¢ )> % ) by Lem 3,2)
Y-1(M) \L(V) R(V)/] \Y=I(M)

~ Since V is positive definite Hermitian; then by Lemma

3,1: '
R(V) -I(V) '
5 = B
1(V) R(V)
is positive definite symmetric, Integrating over the
2p=-dimensional Euclidean space, it is clear that:
Ky = _1 1
\ (2n)p|B|E
which implies that (*) is true,
(2) Now let us assume (*) is true, and prove that

Z N\, CMVN [M,V_] .
(*) implies that:
L /x-R(M)
(Y-I(M))

x-r)\ [ Rev) 0] -
£(2) = K2 exp 7 =% ' ) E . )
Y=1(M) 1(V.) R(W)
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X=R(MN ' | R(V) «1(V)
=Reexpf oy ton) 1wy R

By Lemma 3,3, part (1):

R(V)  -L(M\"?

c
1(v) R(V) D

Therefore:

£(2) = K, exp|~(Z-F)" (c+iD)(z-Mﬂ

]

Ko exp}:- (z-M)! V'l(Z-M)]

Using the notatioh of the first part of the proof, B,
being positive definite symmetric, implies‘that V is
positive definite Hermitian, (by Lemma 3.1)

Thus, by Theorem 4,1:

K2 = _1 _1
P[]

and this establishes the fact that A

This completeé proof,

-1

X=R(M)
Y-1(M)

.

And by Lemma 3,3 (2):

Ky exp[~(Z7M)* (R(V)+11(V)) " (2-M)]

A, CMVN [_M,v] .

Corollary: (connection to Goodman random vectors)

(ﬁ) has covariance matrix of the form (A - ) iff
B A

Z =X 4+ 1Y is a Goodman random vector.



23

Proof:

The covariance matrix of (x) = (A - ) is equivalent to:
Y A

B
(xj-E(xj))(xk-E(xk)) (xJ-E(xj))(yk-E(Yk))
(yJ,-E(Yj))(xk-E(xk)) ' (yj-E(yj))(yk-E(yk))
This reduces to:
(ajk -bj1:> if jEK

and to:

? 0,2 0 . '
| 3 T, if j=k
f 0 95

i ; which is exactly D=5, the definition of a Goodman random
}
vector,

; This completes proof.,.
|

THEOREM 4.4 ( zero-mean case) . |

Let 2 NCMVNECD ,VJ ; and P be a none-singular, unitary
% ‘matrix such that: PV = VP

. Then: PZ wcmvu[q) ,v]

f Proof:

By THEOREM 4.2,

Pz ~v cMvN [ PO ,PVF']
~awy [ §,ver]
and since PV = VP with PP' = I

pzv o[ O ,v]

: S This completes proof,



ke N\

Then

2l

Corolliary 1I: ’
exp(iO)Z"\/CMVN[q) ,v]‘ Aff zmcm[_d),v] .

Proof:

Put P = exp(16)I in THEOREM 4.4 .,

Corollary 1II: (Moment Generating Functions and

Characteristic Functions)

Let va\_,CMVN[d),V] H

m(6) = Blomp(s42)) = () z() = Blexp(16'2))

" Proof:

Iet W =1Z , It is clear that W has the same distribution

as Z. (Bgin Corollary I)

My(t) = E(exp(t*W)) = E(exp(1it®2)) =@Z(t)

But W/ UZ impllies that My(t) = Mz(t)

Thls completes proof.

THEOREM 4.5 (uncorrelated random vectors)

If 2 mcrmr[(b ,EZIJ'

Then Z)sesesZp form a mutually independent set of complex

random variables.

Proof':

z NCMVN[CI) , 621_] 17f G)mmvn[(j),-gﬁ‘zx:) (by THN 4.3)

This implies that XysecesXps¥iresesVp form a mutually

independent set of random variables.
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Hence: (xl,yl),...(xb,yp) form a mutually independent set
of random vectors in two-space, Therefore zl,...zP are a
mutually independent set of complex random variables., -

This completes proof,




()
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CHAPTER 5 : Distributional Properties of the Cpmplex

Gaussian Distribution

THEOREM 5.1 (Linear combinations)

If  Zg,e00Z," CHVN [Mj,vj] , respectively, Then:

' 2
ﬂtajzj A CMVN [Z ajMy, 2 ay vj:]
J J
where Zl,...Zn form a mutually independent set of p~variate

random vectors,,and aj are real numbers for j = l,,,.,.n

¥) . ony = (83 ane

’ R(V) -1(V;)
B: = % J
J 1(vs) R(V;)

Proof:..

Let Uj=( %

It is clear that %053 are mutually independent, and by
THEOREM 4,3, Ujrv MVN[NJ,B:ﬂ j = 1,04e,n

Muj(t) = exp [t'Nj + %t:'Bja j= 1,,..,9

where MUj(t) is the Moment Generating Function of Uj.

Let %) ='Za-Uj |
J

Mw('c) = Z" U (t) -—H_exp [t'ajN + %t'aj Byt ] \

[Z m( N j)]
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. 2

Therefore: wrv MVN[Z ajNJ, Zaj BJ-J
J J

But:

2 | 2

a 2 2
J i aj I(Vj) as%R(V,)
IR(M)
And: aij = aj(ch;)>

Thus by THEOREM 4.3, it follows that:

‘L;ajzj ~ CMVN [ %-_'_aij , ‘JL'ag:yj].

This completes proof,

THEOREM 5,2 (Marginals)
Let 2Z"vCMVN [M,V] and partition 2 as:

(1) - (1)
Z M v \'
Z = (Z(z))r\l CMVN (M(Z)), 11 12

Va1 V22
Then: , ' .
2~ an [M(l),vn] and:
22~ cuvm [ 12, vy
Where Z(l) = X(l). + iY(l)

and 2(2) _ 4(2) iY(z)
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. PROCF
THEOREM 4.3 implies that:

xi;; Ry (R(Vyy)  R(Vyp)  =1(Vyp)  =1(Vp)))
(2)
X R(M*“7) R(Vy1)  R(Vy,) -1(Vy;) -1(Vy,)
~s MVN 1/2
Y(l) 11y ) (V1)  I(Vyo) R(Vy1) R(Vyp)
(2) 2
2/ L»x(m‘ )) 1(V3)  IV22)  R(Vy) R(Vz%ﬁj»

And thus by Lemma 3,14: ‘ ~
(1) .
R(M™T7) R(V 1) =I(Vq,)
1) \nawn ( W ) x| 11
g/ e 1{v11)  R(Vy;)
Hence by THEOREM 4.3,

z{1) ~, cuyn [M(l) ,vu]

Similarly for Z(Z)

—

This completes proof,’

THEOREM 5.3 (Conditional Densities)

Let 2", CMVN [ M,V] and partition Z as in THEOREM 5,2
Then:

21 /220y = cun [ D) 4 vlz(vzz)"laz(Z)-M<2)),V11-V12(V22);1V2J

(Where Z(l) = x(l) + iY(I), and Z(Z) ; x<2) + if(Z). )
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Proof:

By THEOREM 4,3 and the commutativity of the components

of the Normal distribution, it is evident that:

x() ré1)  (R(vyp)
v} 11y 1(Vyy)
2 | VI 2y D l2¢vyy)
Y(2) I(M(Z)) I1(Vgy)

Lemma 3,2 implies that:

R(V22)
I(Vg2)
And hence by Lemma 3,15 :

fQ¥Ei3M§gggD -

’(V22)

M¥* % (1)) +A/

1(M
=1V ) | RCV)™h)
R(V12) | | 1C(Vp9)™1)
' R
oo 1 §|
1(V11)

-1(v12)] [ R((Vo2)™1)
R(V12) 1((V22)'1)

R(Vlz).
1(V12)

-1 _i
=1(Vg2) R((Vg9) ™)
T (1™

1V R(Vpp)
R(VIL)  I(V;,)
-1(V21)  R(Vpp)
R(V21)  I(V22)

-1((V22)™h)

Where:

~1((V99)™ 1)
R((V92)™1)

-1(V1)
R(Vy1)

. R(Vp)™H

(2)
e

1(va1)

:I(Vlzgiw
R(V}2)

~=L(V22)
R(Vy)
-

- 12y

“1((V92) ") [Reva)
R(ivzz)-l)

-1(V21)
R(V21)
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Multiplying out:

"k R(V11) -1(Vy1)

oo'o(l)

'
X of
N
mw 0O
'
O W
~_~

Where: '
Q= [R(Vlz)mvzz) DR(i) - 1(V12)1((Vpp) IR(Vy; )
- R(OVIINV,) THI,) - 1(vlz>R<(v22)"1)1(v21)j
And;
s =[LV1R(V) IRV + ROVIDL((Vz2) HR(V)
- LIy IV 4 R(Vu)R((vzz)‘l)x(vuﬂ
This is equivalent to: \

| (Q + i8) =
[R(v12) +11¢v; ) J(RCCV)™ )+11((v22) )}En(vzl) + u(vzl)}

= Vy2(Vy0)° vl

Partition M¥* as:

1) eH)
M*(Z) with same dimensions as (Y‘l)

Now by ...(1) and by THEOREM 4,3,
f(z(l)/z(Z)) = CMVN [(M*(D + iM*(z)), Vi1 - (Q + is)]
= CMVN [(M*(l) + iM*(Z)), Vi - vl?_(vzz)'lvu_]

Thus it remains merely, to show that:
Mx(l) R{:M(l) + V12(V22)-1(Z(2)-M(2)i] eee(2)
“*(2)\2 1 [ul1) vlz(vzz)'l(z(z)-_m(z)ﬂ eee(3)
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R.H.S, of ...(2) =
R S[ROIRC)™ = 111 ] (xP - ree)
- [}(vlé)R((vzz)‘l) + R(OV121V) ") ] (¥4 - I(M(Z»
il 1) (by multiplying; out in formula
for M* listed earlier in proof)
Similarly, ...(3) is true. Thus:
£(z¢1)) /2¢2)) = cmvwl:g(l) + vlzcvzz)‘l(z(Z)-m(Z)),vll-vlz(vzz)'lvzi]
This completes proof, -
Remark: THEOREMS 5.1, 5.2, and 5.3 are exact analogues of

the classical multivariate normal distribution,

Next, we shall examine whether or not Cramdr's Theorem

(Lemma 3.13) can be extended to the Complex Gaussian distribution,

THEOREM 5.4 @
If 21, and 27 are independent complex random vectors; and
£(21+23) = CMVN

ln order that Z1 and Z5 both have the coﬁplex Gaussian distribution,
it~is necessary and sufficient that both Z; and 4; be Goodman
Random Vectors,

Proof:

1f 2, ZZ are distributed CMVN, then by Corollary of THEOREM
4.3 , 2y, 2% are Goodman Random Vectors, | ‘ |

£(Z; + Zy) = CMVN implies , by THEOREM 4,3, that:

X X '
(i ~
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o

% (%)
also: Since Z; is independent of Zz,(Yl)is independent of Yg .

Thus conditions of Lemma 3,13 are satisfied., That is,

@i) and Gz(%) are both distributed as MVN, But if Z;,Z,
are Goodman random vectors, then by the Corollary of Theorem
4.3 and by Theorem 4.3 itself, Z; and Z, are distributed
as CMVN,

This completes proof,

THEOREM 5.5
If Zl,Zz are ihdependent complex random vectors, then

(2425) "\ CMVN [M,v] iff ()él)r\,mvxv [L,A] and (‘)i{;;_y\/MVN [N,B];
. 1) 2

| <R(M)> R(V)  -1(W)}
where (L + N) = and (A +B)=1/2
(M) I(V) R(V)

- Proof: .

By Theorem 4,3, (Z14Z;) Ny CMVN [M,v] iff

X3\ X5 (R(M)) R(V)  -I(V)
: + “Y{Nu MVN y 1/2

Y, ) \Y, (M) (V) R(V)
and that is, by Lemma 3.13 iff:

(X X
(Y)I.)m MVN [L,A] and (Yg)mmvu [:N,B:] with A,B,L,N
satisfying the equations above, '

This completes proof,

-—
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Corollary 1 @
If 21 and 29 are independently and identically disributed
random vectors such that: ‘
(2 + 2))"GMVN [M,V]  Then
2, "o CMVN [%M,%Vj

Corollary 2 ¢

If 2z7,...,2, are independent complex random variables

n
having distribution CN (m,c2 ) (univariate GMVN)

Then =1 %:zj A/ CN [(m,%z)]

Proof:

, . n
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CHAPTER 6 : Quadratic Forms of the Complex Gaussian

Distribution

THEOREM 6,1 ( chi-square theorem)
If Z’\/CMVN[(I) ,ZJ , and A is a positive

semi~definite Hermitian matrix :

_ 2
Then 2'AZ"U A,

2p(A)

iff AA = A
Proof:

i Let Z = X+iY

_ (x)' (R(A) ~1(a) (x) |

: Therefore: Z'AZ =

Y 1(A) R(A) | \Y/ -

| Since ny CMVN[ Cb ,ZIJ , THEOREM 4,3 implies that:
X R(21) -1(21)

-~ | "VMVN y1/2 = MVN ,

()l & el | L0

(R(A) -I(A)>
Now let B =
' 1(A) R(A)

By Lemma 3,16 ::
X\! X 2
(Y) B (Y>hV;K;JDG§ iff B is idempotent,

But by Lemma 3.5, A is idempotent iff B is idempotent,

Since A is Hermitian, ajj = &y (i.es I(ajj)_ =0 )
Thus: Tr(A) = Tr(R(A)) =5)(A)’ (by Lemma 3,6)
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Since a symmetric matrix is also a Hermitian matrix,then if

BB = B: : Tr(B) = 2Tr(R(A)) whiéh implies, by Lemma 3,6:
(B) = 20(a) |
55
Hence: ZVAZ ny sz()b\) iff =A

THEOREM 6.2 ( chi-square theorem)
If ZN"v CMVN E(p ,V] ; and A is a positive semi-definite
2

Hermitian matrix, Then E'AZ’\/X )iff XAV is idempotent,

2p(A
Proef:
Since V is positive definite Hermitian, there exists

a non=-singular matrix, P , such that:

PVP' = 21 That is:
v o=a2ptiEnt (*)
Let: W =Pz 'Hence by THEOREM 4,2,
WA CMVNE p, P\{'é"] = cmvm[d),z:]
Also: T(E) A lw = Zaz

Hence THEOREM 6.1 and the fact that P is non-singular imply that:
2 .
S — - -1
Z'AZN%zg(A) iff  (P') lAP is idempotent.

ice. iff:  (F)"laprE)"lap-l = G0 et
pee. 11 PEORIEO e EN L BE0 e En ™

i.e. iff: (3av)(%av) = (3AV) (by (*) )

This completes proof,
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Remark: In order to simplify the proof of the following
Theorem, we shall introduce two special pxp matrices:

G

(a matrix with each C*jk =« 1/p )

and H¥

14C* = (a matrix with all off-diagonal terms = = 1/p
and each diagonal term = (p-1)/p .)

Recalling definitions of 2, the sample mean; and s% ,
the sample variance, from the table of notation (page L),

we shall prove the following important Theorem,

THEOREM 6.3 : The Distribution of the Sample
Variance, Zero Mean Case

If Z]yeses2, are independent complex random variables -

from ) CN(O,OZ) , then:
2(p=1)ss ~ Xz :
o2 2p=2
Proof:

L@ = ) a2 - e
Z'1Z + Z'C*Z (@' = (215000525) )
ZV(1+C*)2Z = Z' (H*)Z |

It is clear that Z " GMVN [_Cp , 021] .

Thus;

ZSB:%)EE = 2'( 2 \n*z and for:
o 2 |
v

Y R




37

%A(OZI) = H* , which is clearly idempotent,
Hence, by THEOREM 6.2, 5 ' |
ZVAZ "V 7629#0
But: P@) = o*) = Tr@*) = (p-1)
- 2
Thus: 2(p=1)ss 1

This completes proof.

THEOREM 6.4 : The Distribution of the Sample Variance,
General Case

If Z1reeer2Z is an independent random sample from

p
CN(m,02) ,then:

- 2
2 )
2. 2p=2
Y ,
Proof:
Let Ws: = Zj-m j = 1,2,.0.,P

)
It is clear that: W = Z-m Thus: wj-ﬁ = zj-z

It is hence evident that the set of random variables {ZJ}

and the set of random variables gW33have the idéﬁticalgsample

variances, But w5f\/CN(O,02). Hence by THEOREM 6,3,

= ~y2
2(p=1)s3
2z X 2p-2

This completes proof,
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THEOREM 6.5 : Independence of Two Quadratic Forms
Let  Z M CMVN [c{) ,OZIJ

Given: Z'AZ and E'BZ, two positive semi-definite Hermitian
e

quadratic forms, then:

Z'AZ is independent of Z'BZ iff AB = ¢ .

Prooxf:

(i) We will first assume that AB =(b .

Hence: (AB)!' = (b which implies that \
“ B'A' = Qb which implies, because

A,B Hermitian:

e

Therefore: AB = BA

Lemma 3.7 implies that there exists a unitary matrix T such that:

T'AT = D, and T'BT = Dy
D1D2'= T'ATT'BT = T'ABT (since T is unitary)
= -'I-" T = ¢ .
Therefore: (Dl)jj + 0 implies that gpz)jj =0
~and (Dz)Jj + 0 implies that (Dl)jj e 0
Let: . . : ‘o
D | . B
TVAT = 1 ¢ 9 T'BT = 9 ¢ 0 o

6 b 6§ b
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Where: Pa) = O*) = py
SB) = O*3) = py

and block matrix of zeros in lower right hand corner of each

matrix has dimensions p3xp3. (p1+po+p3=p )
Let W=T'Z thatis Z=TW

THEOREM 4.4 implies that W~ CMVN ): (I) ,021] .

ZIAZ = w:;ATw = W'D,V = 2 ijj(Dkl)jj
Similarly: Z'BZ = ?:%fjwj(n*z)j j |
Therefore: Z'AZ depends upon only the first p; wy'se
and - Z'BZ depends upon only the next Py wy's.
But by THEOREM 4,5, %wag are mutually independent,

Therefore, Z'AZ is independent of 2'BZ ,

(i1) Now let us assume that Z'AZ and Z'BZ are independent,

- (x)' R(A) ~I(A (x)
Z'AZ =

Y [I(A) R(A)) \Y
- (x)' R(B)  -I(B)) (x)
Z'BZ =
| Y 1(B) R(B)J Y
since zn GMWN[ (),0%L) , then by THEOREM 4,3,
m v MVN[(b,%oZI]

Also by Lemma 3.1, A and B are positive semi=-definite Hermitian

matrices iff



|
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R(A)  -I(A) R(B)  -I(B)
and are both positive
I(A) R(A) I(B) R(B) .

semi-definite symmetric matrices,

Since we assumed Z2'AZ and Z'BZ independent, the conditions

of Lemma 3,17 are satisfied. That is:
R(A)  -I(A)\ [ R(B) -1(B)>
(I(A) R(A)) (1(3) R(B)/ ) Cb
Multiplying out, we obtain:
R(A)R(B) - 1(A)I(B) (b
and R(A)I(B) + I(A)R(B) q)
And this in turn implies that:
AB = (R(A)+iI(A))(R(B)+iI(B)) = (b-r i(b: ¢ .

" This completes proof,

THEOREM 6,6 : Independence of Linear and Quadratic‘Forﬁs
If Z’\/CMVN[(z),oZI] s A is a pxp positive semiedefinite
Hermitian matrix ; and B is a qxp matrix:
Then Z'AZ is independent of BZ iff BA =¢
Proof: .
(i) First we shall assume BA = q) .
Let T be such that: TYAT = D

(g* 8)- (T unitary)

Where D is diagonal, and D* is of full rank, pj.
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Let W=T'2 ; that is since T is unitary: 2 = TW

Also by THEOREM 4.4 : WAV CMVN Eq‘), oZIJ .

Now BA = 4} implies that BAT = (j) , which in turn implies:
BIT'AT , that is BID =fq).

(Xu X2
X21 Xy

XD =(1) implies that XnD* = d') and Xnﬁ‘; (p

Let BT = X

But since diagonal matrices of full rank have no proper divisors
of zero: it is clear that X;; = (b and x21 = (t) .
Thus X is of the form X = ({,Xp)

o\ |

5 Hence BZ = BIW = XW = X,Wy depends upon only the components

; of Wy, ‘

Z'AZ = W'T'ATW = W'DW = W 'D¥W; depends only upon the
components of Wi,

However: THEOREM 4.5 implies that W1sWgseee,Wy fOrm a mutually
independent set of complex random variables., This further implies
that Wl, and. WZ are independent, Thus any function of Wl is
independent of any function of Wy, In particular, therefore:

Z'AZ 1is independent of BZ

Let us partition W into (Wl> so that Wl has dimensionality pl.‘\
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(ii) .We shall now assume that 2'AZ and BZ are independent,
Thus Z'AZ is independent of any function of BZ. In particular,
Z'AZ is independent of Z'B'BZ.

But B'B is positive semi-definite Hermitian, Thus
conditions of THEOREM 6,5 (ii) are satisfied, Hence:

B'BA =4>
A'B'BA =(b

.Let C = BA, Therefore c'c =¢ R

This implies

Now (C'c) jj » the element on the diagonal of
the j-th row of C'G , being ZERO implies:

| ‘éckj{ %o = 1,eeep
which implies: cjk =0 = l,eeep and .k = 1,..09
That is : ¢ =0
or: BA = q)

This

completes proof,
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CHAPTER 7 : Central Limit Theorems for Complex
Random Vectors
The most important reason why the Normal distribution
has been s0 useful to statisticians is the enormous class
of random variables which converge in law to the Normal
distribution, Intuitively , one would expect similar result s
to hold for(complex random variables , and the Complex

Normal distribution. Unfortunately, this is not the case,

THEOREM 7.1 : ( a central limit condition)
1f Z1yeee32y are independent, identically distributed
Goodman random vectors, mean M, and complex covariance

matrix V, Then:

1) (2 M) ——— cmvm[ ,v]
m!i; o L ' <b
Proof:
Let Za = Xa * iYu . Since Z, , Goodman, it follows:
R(V) -I1(V)) X R(M)
S=% and E| %)=
1(V) R(VY Yo/ \z(w)

x‘\
o s o
where S 1is c¢ovariaice mateix of /
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Xy . [ Xnp
Thus o o o are independent identically
b4 1 Yy

distributed random vectors satisfying conditions of

Lemma 3,18, This implies:

- 7%\ (R(M)
LY |0 | ——m[ D ]
m o] Yo I(M) L
which, by THEOREM 4.3, is equivalent to

1 _% (Za-M) —_—> CMVN[CI) ,V]
‘mé Ol=} L
This completes proof.

THEOREM 7.2 : ( a startling counter-examplé )

If 231540092, are independent identically distributed
random vectors; which are not Goodman random vectors,
having mean M, and complex Variance-cofariance matrix V,then:

T =1 E (Za-M) does not converge in distribution
u?

‘to CMVN [CI) ,VJ .

Let us assume T, does converge in law to CMVN[:d) ,Y] ’

Proof:

and obtain a contradiction.
Using the notation of THEOREM 7.1, our assumption is
equivalent to (by THEOREM 4.3)

i%:Zl‘(l‘Z) e (0] o
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X
But since %(Ya)g are independent, identically distributed
a

random vectors, S is the covariance matrix of each

X
(YO.) . a = 1,2’.,.’m
a

But form of S implies that each Zy, .is a Goodman random
vector, This is contrary to the given fact that each 2,

is not a Goodman random vector, This'clearly indicates that
T, does not con\rerge in law to CMVN[(I),V] .

This completes proof.

THEOREM 7.3 ( application to sample mean )
If 21,eee,2; are independent, identically distributed
Goodman random variables ( l-dimensional Goodman random

vectors), with mean T, and complex variance az. Then:

S-r ——> CN(0,1), as m becomes
(a?/ m)% '

infinitely large.
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Proof:
5 -r = 1 X z.-r
(cz/m)% , m? ﬁéf ?553%

Since each z, is a Goodman random variable, it is obvious

that each of:

za-r

(02)g
Thus by THEOREM 7.1, and the fact that:

E[Eza-r)(za-ré] = g2
it is clear that: )
2z 5 oN[0,1]
L fml L
(o</m)
. This completes procf,

is also a Goodman random variable,

a= 1,2,...,m
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CHAPTER 8 : A Characteristic Property of the Complex

Gaussian Distribution

THEOREM 8.1 ( main result of chapter )

1f 2, and 27 are independent p-variate complex random
vectors, with continuous density functions Jj1(Z1) and J2(22),
which are non-vanishing at 21 = Cb , and 2o = (P s respectively ,
and if V, a positive definite pxp Hermitian matrix, and C,
a pxp none-singular matrix satisfy :

1) v°'¢ is Hermitian
and 2) The eigen values of C lie in open

interval, (0,1)

Then if £( 21/ 21 + 22) = CMVN [c(m + 22), v]
(where / means " given that ")

Zy "V CMVN , and Z9"\s CMVN,

Proof:

Let M(¢) be the marginal density of (21+2))

J1(21)32(22)

£(z1/21+22) = M(Z; +27)

11 -1 '
= P |v| exp [_-(zl-_cizl»fzz))'v (Zl-C(Z]_'bZzﬂv eees(A)




48

Thus the following special cases of (A) are readily obtained:

P v

Jl(d))Jz(zz) = M23)  exp E-’ZZ'E'V'lczzj eee(2)
P |v]
M(D ) g

Multiplying (1) by (2) and substituting for J1(¢)J2(4))
by (3), we obtain: (B):

M( q) WM(Z1+27) '
M(2, M(Z,) 11 . 2" 1=¢) v l(1-¢)zy +Z2'C'v-loz J
M((pr)M(ZHZz) L& exp [ ( 1'(1=C) ( 1 +22 2)

Equating right hand sides of (A) and (B), we obtain (C):
M(21)M(Z7) =

M(¢)M(zl+zz)exp Eil'(ﬁ)'v'lqzz + iz'E'V'l(I-G)ZJ ees(C)
But  (T=o)'v"lc = vt L

C =-C'V'C, (and is thus Hermitian) .
@V I(I=0))!
Thus by Lemma 3,10, (C) can be reduced to: (D)
M(21)M(2Zp) = M((j))M(zl-rzz)exp[ZR (21'('1_-'5)'V'1,022)], ees(D)
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Let a(Z)

1 exp [-R ( Z1(T=C)" v'lcz)]

W)
Thus:

a(21+22) = M(Q)) exp [R (Zl'Azz + 'Zz'Azl)]
alZ1)alZy '

where A = (I-C)'V-lC (Hermitian)

Thus by Lemma 3,10 and equation (D), we obtain :

0-(21‘*'22) M(Z]_.)M(ZZ)
a(@p)a(zy) = M(21+22) , ...(E):

Let G(2) = o(2)M(2)

Equation (E) implies :
G(21)6(2Z9)

and thus by Lemma 3,19 :

G(21+22)

6(2) = exp R( y'2)
thus by definitions of G, and alpha,

M(Z1) ='M(<p) exp ['-R (le(f?é)'v'lczl-y'z)jl '
with-above in equation (1), we obtain :

3 (21)3(d) =

310 232D Yexp [ ~Z1* (T7E) v L(1-C)21 -2, * (T=C) -v'lczl-»a(;(:_zl)],

( Above since R(Z'Bz) = 2'BZ ) ( for B Hermitian )
Simplifying, we obtain : :
3y(2y) = 3() exp L--‘z‘l-v‘lu-c)z1 N R(y'Zi)}
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Let V “(I<C) = § and viic =T
s -1
Noting (21 - 38~l)s(zy - &871y) = :
Z)'s21 - Bv'Zy - BV + kST o=

Z1'SZ; - R(y'Zy) + yy's™Hy
Hence the equation for J;(2Z;) -reduces to:
o Lamlo -1- -l-
3(2) = 3(P) exp -(Z] - 55 1y)1s(2zg - 357I9) + y'sTy
Similarly it can be shown that:

Jo(29) = J2(4>) exp =(Z2 = %TfI¥)'T(zz -3 Ty

' wl.=l =
Since C = (V 1) \' lC has all its eigen values in the

1

open interval (0,1), and since V — is positive definite

-1
Hermitian, and V C is Hermitian, Lemma 3,9 implies both

-l vl and T = V"¢ are positive

S=V
definite Hermitian,

Hence by THEOREM 4.1 :
1 1

| 1 1 1
Jl(_,(;b) exp(%y'S 7y) = p |g-

Therefore: Z1 Nv CMVN I:%S-l-f, s~

_ ' «l- =1

Similarly;  Zp Nv CMVN ]}T Y, T J

This completes proof,
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Corollary : ( Characterization )
If 24, zz are independent random vectors having
respective densities QN[ ,a] and N[ ,B], then:
£(21/21+29) = CMVN [?(zl+zz),v] .
with V-IC Hermitian, and the eigen values of C lie in
the open interval (0,1). |
Proof:
By THEOREM 5.1, (21+25) " CMVN [ d) ,A+B]
and hence by THEOREM 5.3,

£(21/2,+2,) = OMWN [AM+B) T (2132) , (1-AGA+B) ™A |

Putting C = A(A+B)™t and V = (I-G)A
Lemmas 3.1l and 3,12 imply that the eigen values of C
lie in (0,1); and that v"l¢ is Hermitian, |

This completes proof,

We thus have a characterization of the Complex Normal
Distribution for the zero mean case,

THEOREM 8.2 : ( a regression problem)

Given: (1) 23,2, are independent p-variate complex
random vectors with zero means and respective complex

covariance matrices Vj and V,
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end (2) If Linear Regression of 27 on 27 + Z5 implies:
£(21/2142,) = CMVN | a(Z1425), v]
where o 1s the coefficient matrix of regreésion: A
Then 21"\ CMVN [¢ , vlj and 2 " CMVN[C]) , VZJ
Proof:

Let a Vl(V1+V2)-1 +B = C+ 8B

where C = Uy (Vy+v,)"t

It is easlly seen that:

(I-C)Vl = CVsp cool¥)
(Since: - (I-C)Vy = CVp = V1 = C(V14V2) = d) )
Also: . V1(I-C)' = V,C° cos (*#) (obtained from (*))

Let H be the complex covariance matrix of (2y=-u(Z21+23))

and J be the complex covariance matrix of (zl-c(zl;Zz,)).

Thus ‘ H = |

(I-C)V1(T=C)* + CV,C' = 8V (T=C)' = (I-C)V1E' + CVoF' +
BVoC*' + B(Vy+Vp)B"* |

and by (*) and (**) this reduces to:

H

(I-C)V(T-C)* + CVoC' + B(Vy+V,)B"

J + B(Vq+Vo)E" |
Since B(Vy+Vp)B' is positive semi-definite for all matrices

B, H 1s minimum at @ = C. (i.e. for all vectors W, WHWRW'JW )

Therefore by definition of regression, a = C o
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But by Lemma 3,11, C= V1(V1+V2)"l has all its eigen values
in the open interval (0,1) ;

and by Lemma 3.12, v-lc is Hermitian.

Since we assumed f£(21/Z1+Z2) = CMVNIZC(Z1+ZZ);é] ,

the conditions of THEOREM 8.1 are satisfied.

Therefore ' 21 " GMVN[ (f ,vl:] and Zp ~GMVN] ¢ ,vz]

This completes proof,

Remark: The results in this chapter exactly parallel those

of the MVN, ( see [P-g )
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APPENDIX 1 Suggestions For Further Studies

(1) Since it is well known that Laplace Transform has not
‘necessarily a unique inverse in the complex plane, what would
one use to replace the characteristic function?

Example 1,1 :

2)

Let z " CN(0,0 with 2z = x+iy

Mz(t),= E(exp(tz)) = E(exp(tx)exp(ity))
= E(exp(tx))E(exp(ity)) since X,y independent,
= exp(}t20%)exp(-}t2a?) by THEOREM 4.3
=1 '

Thus for all values of 02 the moment generating function,and

hence by Corollary 2, THEOREM 4.4, the characteristic function
is the same.

(2) What closed form results can be obtained for the
following logical extension of the complex normal distribution:

Z =X + i¥Y ~ CMVN iff (}Y{)NMVN 9

(3) What other distributions have complex counterparts,
which can be systematically treated ? N,R, Goodman [1] , has

treated the Complex Wishart Distribution in some detail,




APPENDIX II: Applications

N.R. Goodman in [2] , lists several applications of Complex
Gaussian processes, although“at that time he did not call them
such, He was motivated in his research by experimenters’needs
in such fields as micrometeorology, oceanography, electrical
engineering, and aeronautical engineering. Goodman was asked
to statistically estimate parameters characterizing "mbdels"
of physical systems,

In this dissertation, the distributional properties of
some of these estimates have been developed, In addition,
the tests of hypotheses concerning certain two-dimensional
sfationary Gaussian vector processes can be conveniently
performed, /

| The complex Gaussian distribution‘is an excellent mode
,of treating Brownian Motion problems in which one considers
displacements jointly along the X-axis and the Y-axis,

Analysis of Variance models can easily be constfﬁcted
using results of Chapter 6. This would be a nice method for
treating experiments with bivariate observations. For example
we may be interested in the joint‘yields of copper and zinc
at two different temperatures, using three different catalysts,

The CMVN reduces this problem to one operation,
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