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ABSTRACT

This thesis deals with error control techniques for the compound
channel, and particularly with two new burst correcting techniques called
compound=~concatenated systems and GSA codes, Compound-concatenated systems
are constructed by concatenatipg a random error correcting code with a burst
correcting code, thereby giving the burst correcting code a large degree of
immmity from noisy guard spaces, GSA codes are modified burst-trapping codes
with the unique property that their adaptive guard space requirement is con-
secutive and immediately adjacent to the burst,

These techniques and other, well-known burst correcting codes,
interleaved block codes, diffuse codes, Gallager codes, and burst-trapping
codes, are described in some detail and are compared with respect to their
performance and their complexity of implementation, Also, insofar as they
are important to the understanding of burst correcting methods, two random
error correcting codes, linear binary codes (parity-check codes) and majority

decodable convolutional codes, are described,
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ADDENDA

Several errors in the text have been brought to the attention of the author.

Corrections and clarifications are as follows:

(a) On pages 4, 57, and 65, it is alleged that the diffuse codes of Chapter

()

(e)

(a)

(e)

7 were first described in 1968 by Kohlenberg and Forney (reference 22).
In fact, the first published report on diffuse codes was J.L. Massey,

"Advances in Threshold Decoding,' in Advances in Communication Systems

(Ed. A. Balakrishnan), Vol. ILI, Academic Press; 1968. Massey!s work
was available to Kohlenberg and Forney in manuscript form when their

paper was written.

On pages 5 and 93, it is inferred that the concept of concatenation, as
applied to the compound-—concatenated systems of Chapter 10, is due to
Forney (reference 28). However, the coding scheme of Chapter 10 is more
properly an example of the iterative coding introduced by Elias

(reference 9).

On page 15, since modulo-q arithmetic is specified, the number g must

itself be a prime and not simply a positive integer power of a prime.

On page 21, the minimum distance d of a code may be as large as n-kil,

not Just n-k,.

On page 30, a feedback decoder is said to complement each of the J
composite parity-checks in order to remove the effect of a detected
error. It should be emphasized that this is accomplished by

complementing one and only one syndrome bit in each composite parity-

check.



(£) On page 73, the Gallager decoder of Figure 8.2.2 would not perform well

in practice. This is because a burst may cause several incorrect decoding
decisions by the random error corrector among the bits preceding the burst.
These incorrect decisions can be cancelled by the burst corrector if

several bits of buffering are provided at the storage register outputs.

This more practical decoding scheme is described by Kohlenberg and Forney

(reference 28).

T.J. Dmuchalsky
April 1972
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1, INTRODUCTION

1,1, Purpose

An important problem in communications engineering today is the
reliable transmission of digital information over a channel designed for
analog signals, A common solution to the transmission aspect of the problem
is to modulate the digital message in some suitable fashion and then to
demodulate the received signal,

Since every real system is subject to errors at the receiver and demo-
dulator, reliability may not easily be achieved, These errors may be statis-
tically random or they may occur in clusters or bursts, Random errors gener-
ally result from the total effects of background thermal noise, non-linear
frequency response of the channel, and frequency offset and phase jitter in
the receiver, Depending upon the modulation scheme and the transmission rate,
some of these error-inducing mechanisms play a much more significant role than
others, Bursts of errors are caused by more catastrophic events, including
serious environmental disturbances such as lightning and sun spot activity,_
jmpulse noise and crosstalk in switched channels, loss of synchronization
between receiver and transmitter, or even temporary loss of the channel,

System reliability can often be interpreted as the freéuency, or
probability, of errors in attempting to recover the original digital message,
If a minimum standard is not achieved at the demodulator, safeguards against
errors must be incorporated into the system, One alternative is to encode
the digital information before modulation in such a way that errors may be

corrected after demodulation,

It is the purpose of this thesis to examine encoding and error



correction techniques applicable to the compound chanmnel, any channel or
system subject to both random errors and bursts of errors, These techniques,
called burst correcting codes, are discussed from three points of view: the
structure of codes and methods for encoding and decoding; the complexity of
implementation of the decoder; and the expected performance in error control
in terms of the probability of a decoding error,

No background in coding theory or information theory is required of
the reader, though he is expected to have some familiarity with probability
theory, linear algebra, and a few electronic cirecuits such as shift registers,

A1l other essential concepts are developed in the text as they are needed,

1.2, Outline and Historical Background

Chapters 2 to 9 in this thesis may be considered to be introductory
or tutorial in nature since they largely cover the work of the authors listed
in the bibliography. The original papers, however, were intended for advanced
students of coding thecry and were written in styles using notational and
mathematical conventions most convenient to the individual authors, The
introductory chapters of this thesis attempt to unify and simplify the des-
criptions of codes so that, with few exceptions, the approach in these chap-
ters is quite different from that in the original papers, Except where noted,
expressions for the complexity and performance of codes were derived indepen~
dently in this thesis and many are original,

Chapters 10, 11, and 12 are, so far as is known, completely original
in this thesis, The codes described in Chapters 10 and 11 were inspired by
other known codes, but the ideas, descriptions, and derivations in these

chapters are entirely the independent work of the author,
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This thesis deals with coding which, quite simply, is a means of
increasing the reliability of a digital communications system, Random error
correcting codes are designed for the discrete memoryless channel (DMC), a
channel producing only random errors, and burst correcting codes are designed
for the compound chamnel, Chapter 2 develops the foundations for the descrip-
tions of these codes, It presents a simplified model of the communication
system [1] wherein only binary data is transmitted, the binary symmetric
channel model of the DMC, and Gilbert's model [2] of the compound channel,

In addition, it includes the fundamental mathematical properties of codes to
be found in any text on coding theory, such as those by Berlekamp [3] and by
Peterson [4],

Chapter 3 describes random error correcting block codes, particularly
linear binary codes, and a decoding algorithm called minimum distance decoding,
Shannon [5] originally showed that block codes could control errors with as
mach reliability as desired without sacrificing information rate, and a host
of others, including Hamming [67], Reed [7], Muller [87], Elias [97], Slepian
[10], Hocquenghem [117], Bose and Chaudhuri (127, [137, and Peterson (147,
developed and systematized block coding, Berlekamp [37 and Peterson [47 give
thorough treatments of block codes, while Gallager [1] and Massey [15] give
simple descriptions of linear codes,

Chapter 4 describes a decoding algorithm called majority decoding
and an implementation of that algorithm called feedback decoding, Then it
describes randoq error correcting convolutional codes, particularliy those
which are feedback decodable, ‘It was Elias [16] who first discovered convolu-
tional codes, but they were brought into prominence with the development of

sequential decoding by Wozencraft and Reiffen [17] and later of threshold



(majority) decoding by Massey [15]. Massey's work forms the basis for this
chapter,

Chapter 5 examines important concepts relevant to all burst correc-
ting codes, These include definitions of a burst and its guard space, the
definition of burst correcting capability and the develdpment of bounds on
this capability, and the differentiation between adaptive and non-adaptive
codes, The definitions in this chapter are taken from Gallager [1], while
the bounds on burst correcting capability were originally found by Wyner and
Ash [187, Gallager [17], and Reiger [197.

Chapter 6 describes burst correcting interleaved block codes, These
codes are the first example of modifying kmown random error correcting codes
to make them suitable for the correction of long bursts, They are discussed
by Gallager [1] and by Berlekamp [3].

Chapter 7 describes burst correcting convolutional codes known as
diffuse codes, It was Hagelbarger [20] who first developed convolutional codes
with burst correcting capability, and Massey [21], among others, refined these
codes, Diffuse codes in particular were first reported by Kohlenberg and
Forney [227] and were more fully developed by Tong [237] and by Ferguson [247,

Chapter 8 describes burst correcting Gallager codes, These codes
are adaptive and are obtained by a simple extension of random error correcting
convolutional codes, They were discovered by Gallager [13, who called them
time~diversity codes, and were first reported by Kohlenberg and Forney [22].
They were later generalized by Sullivan [25],

Chapter 9 describes burst correcting codes known as burst-trapping
codes, They are adaptive and are obtained from random error correcting block

codes, They were developed by Tong [26] and were later generalized by Burton,
Sullivan, and Tong [27].



Chapter 10 introduces a method of extending or generalizing all burst
correcting codes such that their required guard spaces need not be error-free,
The method is based on concatenated codes, discussed by Forney [28], and the
extended codes are called compound-concaienated systems,

Chapter 11 introduces a new burst correcting technique called guard=-
space~adaptive burst-trapping codes, These codes are adaptive and have an
adaptive guard space requirement immediately adjacent to the burst being cor-
rected, Their principle is a modification of Tong's burst~trapping codes [26].

Chapter 12 compares the complexity and performance of the burst
correcting codes of Chapters 6 to 11 on specific compound channels, Data for
the performance curves was obtained by programming in Fortran the IBM 360/75

computer of the McGill University Computing Centre,



2, SYSTEM MODELS AND MATHEMATICAL BASICS

2,1. Introduction

Before considering specific random error correcting and burst cor-
recting codes, it is necessary to define the environment to which they are
applicable and to establish certain notational and mathematical foundations,
This chapter is designed to meet this need,

Section 2,2, defines a simple model of a digital communication
system, This model treats all transmitted data as a sequence of binary digits,
commonly represented "O" and "1," The section also establishes the represen-
tation and certain characteristics of binary sequences, Sections 2,3, and 2,4,
describe the two binary channel models which shall be used throughout this
thésis, the binary symmetric channel [1] and the Gilbert channel [2], Finally,
Segtion 2,5. provides the basic mathematical background necessary to establish

the properties of binary codes applicable to these channel models,
2,2, Model of a Digital Communication System

In a general digital communication system, one of L discrete wvalues
at an information source must be reliably transmitted to an information sink
over some available channel, A simple system model in which L = Zk, k an
integer, and in which only binary data is transmitted, is given in Fig, 2.2,1,
For simplicity, we restrict ourselves to this model in the remainder of the
thesis,

During some arbitrary time interval from jT seconds to (j + 1)T
seconds, a source encoder accepts one of the L source values and uniquely
translates it into a message sequence of k binary digits, or bits, This

sequence is denoted EJ,
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Figure 2,2,1 :

Model of a Digital Communication System,

7,



o) = (mf, nd, ..., o)), (2.2,1)
where j is simply an indexing right superseript, During the same interval,
the chamnel encoder accepts the incoming stream of message bits and adds
redundancy to them according to some fixed binary code, For each message

sequence, the channel encoder transmits a channel sequence, jﬁ, of n bits,
N O U = N I '3 (2.2,2)
The binary code is said to have rate or efficiency R, where

R = k/n. (2,2,3)

The transmission chennel is considered to have a noise generating
mechanism, modelled in Fig, 2,2,2, which corrupts the channel bits, tm' Accor-
ding to the detailed error statistics of the chamnel, the noise source produ-
ces binary noise digits, e which it adds to the corresponding channel bits,

The channel decoder then receives binary digits T, such that

ro=t e, (2,2,4)
The addition above is modulo-2, where the mod-2 sum, or product, of
any two binary digits is the remainder éfter division by 2 of the_ordinary
sum, or product, of the two digits, This remainder may only assume the values
0 and 1 and is thus itself a binary digit, Mod-2 addition gives the results:
0+40=0, 1+1=0,
0O+1=1, 1+40=1, (2,2,5)
Note that addition and subtraction are equivalent mod-2 operations, Hence-
forth, all arithmetic operations on binary digits will be understood to be
mod-2 unless otherwise specified,
The noise bit e is called an error if ey = 1, since in that case

the channel bit 1:.m and the received bit T must differ, Since tm is an element

of some channel sequence LJ, e, may be considered to be an element of a corres-
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Figure 2,2,2 :
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ponding noise sequence, or error pattern, g?,

EJ = (eg, eg, [ EETYY e!Jl). (2-206)

Similarly, T is an element of a received sequence'ga,
IJ = (rg, rg; [N X rrJ!), (21217)

and =t sl (tf + eg, sens t;:'! + eg). (2,2,8)

Note from (2,2,8) that the mod-2 addition of equal length binary sequences is
the mod-2 addition of the corresponding elements, Binary sequences have two

other simple properties defined below,

Definition 2,2,1, A binary sequence of length n which contains w 1's and

(n - w) 0's is said to have weight w,

e

Definition 2,2,2, If two binary sequences of length n differ in d of their

corresponding elements, then the (Hamming) distance between them is 4,

From (2,2,5), the mod=2 sum of like digits is O and of unlike digits
is 1, Thus, in (2,2,8), if the distance between tJ and e is d, then rJ must
have weight 4,

The channel decoder in Fig, 2,2,1 accepts thg incoming stream of
received bits, Using the same code as the channel encoder, it attempts to
recover the original message sequences Ej,‘possibly successfully. The source

decoder then assigns one of the L source values to each of the decoded messages

and feeds this information to the sink,
2,3. The Binary Symmetric Channel

A digital transmission channel which produces only random errors is
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known as a discrete memoryless channel, or DMC, Gallager [1] describes many
different DMC models, but the simplest and most widely applied model is the
binary symmetric chamnel, or BSC, shown in Fig, 2,.3,1,

Each digit in any DMC noise sequence is statistically independent
of all other noise digits, and errors occur according to some fixed probability
distribution, On the BSC in particular, noise digits are binary and errors
occur with probability P,. If P, < 0.5, then lower weight noise sequences are

more probable,

Henceforth, we shall always use the BSC model of a DMC,

2,4, The Gilbert Channel

The compound channel, or discrete channel with memory, or burst~
noise chanmnel, produces noise sequences in which errors may be either random
and independent or clustered into bursts and generally not independent,
Gallager [1] describes several models of the discrete channel with memory,
including the very simple Gilbert chanmel [27.

The Gilbert channel model assumes that a noise sequence has the
properties of a Markov chain [29], The channel is assigned two states or
modes of behaviour, In the "good" state, or random mode, errors occur with
some low probability P,» say 10_6, and are independent, In the "bad" state,
or burst mode, errors occur with much higher probability Q0 S2Y 10-1, and are
also modelled as independent, The transition probabilities between states
should be chosen such that the frequency and lengths of bursts are similar to
experimentally obtained values on the real channel to be modelled,

Later, when considering coding techniques for the compound channel,
we shall make use only of the property of the Gilbert channel model that

errors in either channel mode are statistically independent,
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Figure 2,3,1 : The Binary Symmetric Channel,
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2,5. Elements of Finite Algebra

Many aspects of coding theory are based upon the properties of
groups and fields in finite algebra, Gallager [17], Berlekamp [37], and
Peterson [4] provide a thorough introduction to this field, Here we give

only those few definitions necessary to establish the fundamental properties

of codes,

Definition 2,5,1, A group is a set of elements {gl, E2s B35 +»»} under a rule
of composition, denoted +, for which the following four axioms are satisfied:
(a) For any 81> Ep in the set, gy + 8 is in the set,

(b) The associative law is satisfied; i,e,, for any g, &p» g5 in the set,
(g1 + gz) + g3 =gq + (82 + 83).
(¢) There is a unique identity element i in the set such that
g+i=1+g=2¢g, for all g in the set,

(d) For each element g, there is a unique inverse element, -g, in the set

such that
g+ (-g) = (-g) +g =1.
Definition 2,5,2, An Abelian group is a group for which the commutative law
is also satisfied:

gy + 8y = 8y + &9, for all g1s By in the set,

Definition 2,5,3, A subgroup is a subset of elements of a group which itself

forms a group under the same rule of composition,

Definition 2,5,4, For any subgroup {51’ Sy Sgs +s»} of an Abelian group and

any fixed element g in the group, the subset of elements of the group given by
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{.g + Sis g + 529 g + 539 --.}

is defined as a coset of the subgroup,

Definition 2,5,5, The order of a group or subgroup is the number of distinct

elements in the group or subgroup,

A simple but important theorem [1] follows from the above five

definitions,

Theorem 2,5,6, (a) If a subgroup is of finite order, each coset contains
the same number of elements as the subgroup, (b) The coset containing the
identity element is the subgroup itself, (c) No two cosets of the same sub-
group may have any elements in common, (d) The order of a group, if finite,

is a multiple of the order of each subgroup,

Definition 2,5,7, A field is a set of at least two elements {fi’ £y ses}

under two rules of composition, denoted addition (4) and multiplication (°),

for which the following four axioms are satisfied:

(a) For any fl’ f2 in the set, f1 + fz and fl'f2 are in the set,

(b) The set of elements is an Abelian group under additionm,

(c) Where zero is the identity element of the group under addition, the set
of nonzero elements is an Abelian group under multiplication,

(d) The distributive law is satisfied; i.,e,, for any fl’ f2’ f3 in the set,

(f1 + fz)'fB = (fl.fB) + (f2.f3)'

Definition 2,5,8, A Galois field, denoted GF(q), is a field containing a

finite number, q, of elements, q must be of the form

k
9=,

where p is any prime number and k is any positive integer,
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It is easy to show that the set of integers {0, 1, ,,., g-1} is a
Galois field under modulo-q addition and modulo-q multiplication, where the
mod-q sum, or product, of any two elements of the set is the remainder after
ordinary division by q of the ordinary sum, or product, of the two numbers,
This remainder must also be an element of the set, In particular, the set of
binary digits {0, 1} is the Galois field GF(2) under mod-2 addition and mod-2
multiplication,
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3., BLOCK CODES

3.1, Introduction

Many burst correcting codes, which are designed for use on the
compound channel, either employ directly or are logical extensions of random
error correcting codes, This chapter is intended as an introduction to the
general class of random error correcting codes known as block codes, parti-
cularly that sub-class known as parity~-check codes, For block codes, the
channel encoder treats each incoming binary message sequence gj as a distinct
unit, or block, or group, The encoder adds redundancy to Ej by forming mod-2
combinations of its elements and thereby produces a unique binary channel
sequence, or codeword, 33, Since ij has length n and.gj has length k, we
refer to such a code as an (n,k) block code with block length n,

Section 3,2, defines an (n,k) parity-check code and describes some
of its properties, Section 3,3, describes a decoding algorithm for parity-

check codes, called minimum distance decoding, and develops expressions for

the performance of these codes in correcting errors and in detecting errors,

3.2, Parity-Check Codes

A class of block codes known as linear codes is useful for digital

data whose values are the elements of the arbitrary Galois field GF(q), Parity-

check codes [17, [37, [#] are binary linear codes, This section describes
the structure and properties of parity~check codes and is based largely on

the work of Gallager [17.

Definition 3,2,1, The codeword digits of an (n,k) parity-check code are

defined by the relation

< k .
tﬂ%.zl mg gihoh‘:ls 2, vsss Ny
l=
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where the summation is mod-2 and the binary set {gih} is arbitrary but fixed

independent of _rgj and _33'.

A parity-check code may appear in systematic form in which the first
k codeword digits, called information digits or message digits, correspond
exactly to the message sequence ln_'j. The remaining n - k codeword digits,
called parity digits or check digits, represent the redundancy added by the

encoder to protect the message against errors,

Definition 3,2,2, The codeword digits of an (n,k) systematic parity-check

code are defined by the relations

;X 3
th=i=1migih,h=k+1, nl-gn,

where the binary set {gih} is arbitrary but fixed independent of QJ and 33.

The set {gih} may be considered to be the elements of a k-by~n

matrix G shown in Fig, 3.2,1 and known as the generator matrix, Treating _133

and _t_,j strictly as row vectors, we may write

9 =md e (3.2.1)
Mod~2 matrix operations are the same as over the field of real numbers except
that element-by-element arithmetic is mod-2,

Systematic parity-check codes are characterized by a parity-check
matrix H which may be derived from the generator matrix G, From Definition
3.2,2,,

k

J J o =
i§1ti gih + th. = 0 0y h = k + 19 sasy I, (3-2-2)

The n - k equations in (3.2,2) may be expressed in matrix form as
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1 0 LI O gi’k+1 28 % ] gl’nj
1 »e e o gz’k+1 LN I ] gz’n

G =
_o o [0 1 gk’k+1 [ ] gk,ru

(b) (n,k) Systematic Parity-Check Code,

Figure 3,2,1 : Generator Matrix of a Parity-Check Code,
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tJ H =0, (3.2.3)

where H is the n-by=-(n = k) parity-check matrix of the code, Fig, 3,2,2, and

0 is a null row vector of dimension n - k, It is important to note that

(3,2,3) is true if and only if the vector‘gj is a valid codeword of the parity-

check code,

A fundamental property of parity-check codes is that the set of

codewords forms an Abelian group under mod-2 addition, This follows from

the following observations:

(a) For any integer K, it is easily shown that the set of all ZK binary

(b)

(e)

sequences of length K forms an Abelian group under mod-2 addition, The
all~0 sequence is the identity element of the group and each sequence

is its own unique inverse,

It follows that the set {Ej} of all 2K message sequences forms an Abelian
group under mod=2 addition, Thus, the sum of any two message sequences,

g; and g?, is also a message sequence, If t1 and ;? are the codswords

corresponding to g} and EF, then their sum,

i+t Ei G+m° G = (31 + 22)G, (3.2,4)
is also a codeword, and it is easily shown that the set {17} of a1l 2¥
codewords forms an Abelian group under mod-2 addition, The all-0 code-
word is the identity element and each codeword is its own unique inverse,
The set of 2k codewords is a subset of the set of all 2" binary sequences
of length n, Thus, the group formed by the subset of codewords is a
subgroup of the group formed by the set of 2n binary sequences, From
Theorem 2,5,6,, there are 2“"k cosets of the subgroup, including the

subgroup itself, and every element of every coset is distinct,
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3.3. Minimum Distance Decoding

There are many different schemes for encoding and decoding the
various sub-classes of (n,k) parity-check codes [17, [3], [*]. A description
of any or all of these schemes is beyond the scope of this thesis, though we
shall describe the structure and performance of a rather general decoding

algorithm called minimum distance decoding,

3 . 3 2, Structure

Because ea;ch of the Zk codewords of a parity-check code is diét:‘mct,
there exists some nonzero distance between any two codewords in the set, In
particular, if d is the minimum distance between any two codewords, then d is
said to be the minimum distance of the code, For a systematic code, codewords
must differ in at least one information digit, so d may be as low as one or as
high as n -« k, depending upon the choices of k, n, and G,

Consider that some codeword ;t,_j from a set with minimum distance d
is transmitted over a BSC with P, < 0.5, The channel adds a noise sequence
_gj, which occurs with higher probability if it has lower weight, and from

(2,2,8), the decoder receives the sequence _1_:'_5,

o=t s, (3.3.1)
where both _gj and _gj are elements of the set of all 2" binary sequences of
length n, A minimum distance decoder attempts to deduce the most probable

value of gj and thereby recover Ej,

To do this, the decoder first calculates in some manner a syndrome

__S_j s Where

sd=rdm (3.3.3)
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and SSo@+edm-tdunsedn=oln, (3.3.%)
The syndrome, a binary sequence of dimension n « k, depends only upon the
noise sequence gj.

Assume that gj is an element of the set of codewords, which includes
the zero-weight sequence, Then, from (3,2,3), §j = 0, In this case, the
decoder knows that _e_j is itself a valid codeword, and the most probable value
of gj is that value with lowest weight; i.e.,, the all-0 sequence, The decoder
therefore deduces that ij = gj. If g‘j is not an element of the set of code-
words, then SJ £ 0 and the decoder knows that eJ £ 0, Let us consider the
manner in which the decoder chooses.the most probable value of gj in this case,

Since __S_"j has dimension n - k, there are 2nk different syndromes,
There are also 2n-k different cosets of the subgroup of codewords and g_j must
be an element of one and only one of these cosets, It is easily shown that
each coset uniquely generates one of the on-k syndromes according to (3.3.4),
The following observations may be made:

(a) If 4 is the minimum distance of the subgroup of codewords, then d must
be the minirum distance of every coset of the subgroup,
(b) Every noise sequence with equal weight is equally probable, since a

sequence with welght w occurs with probability Pw’

PW = (3) poW (1 - po)n-w, (3-3:5)
where (3) = mg—’_—;ﬁ. (3.3.6)

(¢) Every coset must have at least one lowest weight sequence as an element,
corresponding to a most probable noise sequence. Choose one such sequence
as coset leader, the specific choice being immaterial since all lowest
weight sequences are equiprobable,

(d) The coset leader of the subgroup is the null sequence,



23,

(e) Every sequence with weight less than d/2 must be a coset leader,

It follows from the above observations that the decoder deduces the
most probable value of gj if it decides that‘gj is the coset leader of the
coset which generates the syndrome.§j. In so doing, it chooses as_&j that
codeword which is closest in distance to the received sequence gj and it
decodes with minimum probability of decoding error,

The minimum distance decoder always decodes correctly when the
noise sequence has weight less than d/ 20 It also decodes correctly for those
noise sequences with weight d/2 or greater which happen to be coset leaders,
if any, We say that a code has error correcting capability t if it corrects
a class of error patterns which includes all noise sequences with weight at
most t and, possibly, sonme éequences with higher weight, Thus, a minimum

distance decoded parity-check code has error correcting capability given by

t < S’-%-lj (3.3.7)
where we use the notation L;j to denote the greatest integer less than or
equal to x, and we use [X| to denote the least integer greater than or equal
to x,

The inequality exists in (3,3,7) because in many applications it is
useful to employ an error correcting capability which is less than maximum,
This preserves a portion of the minimum distance structure of the code for the
detection of errors, For example, we saw that if a noise sequence 6ccurs such
that gj is distance t or less from any codeword in the set, the minimum dis-
tance decoder chooses that particular codeword as having been transmitted,
Conversely, if the noise sequence is such that.zj is distance greater than t

from every codeword in the set, the decoder detects an uncorrectable error

pattem,
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3.,3.b, Performance in Error Correction

The criterion employed as a measure of the performance of a code in
correcting errors is the probability of decoding error, P(E), For a minimum
distance decoded parity-check code, all error patterns with weight at most t
are correctable, Also, if t is a2 maximum, some error patterns with weight
greater than t may be correctable, a quality referred to as robustness, Since
for the general case the degree of robustness of the code is undefined, the
probability of a decoding error is upper-bounded by the probability that the
noise sequence has weight at least t + 1, Thus, on the BSC,

t .
PE) <1=- 5 (D @ -p)", (3.3.8)
Jj=0
P(E) may be decreased by increasing t, decreasing n, or decreasing P,- How~

ever, t and n are not independent parameters and P, is fixed for any particular

channel,
3.3.c, Performance in Error Detection

The criterion employed as a measure of the performance of a code in
detecting errors is the probability of failure, P(F); i,e,, the probability
that an error pattern is neither detected nor successfully corrected, We shall
develop an expression for P(F) based on the work of Tong [26].

If the parity-check code has error correcting capability t <« [?-1/%J,

then Np different error patterns can be successfully corrected,

t
N = Z (r})o (3.3.9)
P 30

Each of these error patterns must be a coset leader, so that the probability

that any coset chosen at random has a correctable error pattern as its leader
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is PN,

N k-n t n
Py= plon=k =2 z (. (3.3.10)
N 2 . J
J:O
If one of the 2" - Np uncorrectable error patterns occurs, and if it is an
element of a coset whose leader is not correctable, then an error detection
occurs, On the other hand, if it is an element of a coset whose leader is
among the NP correctable patterns, then a failure occurs; i,e,, the decoder
mistakenly attempts a correction, thereby committing a decoding error,
Since a failure may occur only if zj is within distance t of the
wrong codeword, the error pattern must have weight at least d - t, an event

which occurs with probability P a°

el nej
Thus, P(F) is approximately given by

P(F) may be decreased by decreasing t, increasing d, and increasing n - k,

L
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L4, CONVOLUTIONAL CODES

4,1, Introduction

In this chapter we shall study another general class of random
error correcting codes known as convolutional codes, Like block codes, the
information digits in the codeword_t_j of a convolutional code correspond to
the digits of a message sequence gj. Unlike block codes, however, the parity
digits of Ej are linear mod-2 combinations of the elements of gj and of the
preceding u message sequences, g;-l, ey E;-u. Because of their application
to burst correcting codes for the compound chammel, we shall be particularly
interested in convolutional codes which are feedback decodable, where feedback
decoding is a method of implementing a more general algorithm called majority
decoding,

Section 4,2, develops the majority decoding algorithm and discusses
the difficulties encountered in applying it to both block codes and convolu-
tional codes, Section 4,3, defines the structure of convolutional codes and
then, through an example, describes how a convolutional encoder and a feedback
decoder are impleménted, defines the complexity of implementation, and defines
optimality criteria for convolutional codes, The section ends by developing -
useful expressions for the performance of feedback decoded convolutional codes

in correcting errors and in detecting errors, Section 4,4, is a note on the

comparative complexities of implementation for convolutional codes and block

codes,
h,2, Majority Decoding

Massey [15] introduced two useful and simple decoding algorithms,

applicable to both block codes and convolutional codes, known as majority
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decoding and "a posteriori" probability (APP) decoding, Both algorithms are
also known by the generic term threshold decoding, Majority decoding is most
commonly implemented with a feedback loop in the decoder, its purpose being
primarily to remove the effects of previously decoded errors, and in this form
it is known as feedback decoding, Robinson [30] has proposed a majority deco-
ding scheme without feedback which is called definite decoding, In this section,
we shall develop the majority decoding rule and desceribe the major difficulties

encountered in its implementation,

From {3,3.3) and (3,3,4), the syndrome obtained at a decoder is given
by the matrix relations

89 = 9§, (4,2,1)

H is the parity-check matrix of the code, derived from (3.,2,2),

k .
21 th. g.h+tljl=0, h=k+1, owpoy n, (L"-le)
i=
It follows that the syndrome bits may be expressed as
3 k j . 3 .
S5 = Z& (b5 + eg)gih + (g + eﬁ) s, h=k+1, ..., n, (k,2,4)
i=

or, equivalently, as

k .
Si'jl = i§1 eij. gih + eg [ ] h - k + 1, [N N ] ni (4.2-5)

The n - k equations above are known as parity-check equatioms,

Definition 4,2,1, Massey [157] defines a composite parity-check, A , as a

linear mod-2 combination of syndrome bits,

2 3
A = z a S
Mmoo MR

where the set of coefficients {amh} are arbitrary binary elements,
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It follows from (4,2,5) that a composite parity-check is a linear

mod=-2 combination of noise digits,

k n . n .
A = = 3 a g. eJ + = a eJn (43206)
M”51 hekar DBhAR R, My mhh

We say that a nolse digit, eg, is checked by a composite parity-check, Am’

if and only if eg appears in the equation for that composite parity-check

with a nonzero coefficient,

Definition 4,2,2, A set of J composite parity-checks, [Am: m=1, 2, ,,., J},
is said to be orthogonal on the noise digit eg if eg is checked by every
equation in the set and every other noise digit is checked by at most one

equation in the set,

Massey [15] gives an important theorem from which the majority
decoding rule can be derived,

Theorem 4,2,3, If there are at most [g/gJ nonzero noise digits in the set
{eg} checked by a set of J composite parity-checks, {Ami, orthogonal on eg,
then eg =1 if more than [J/;l of the Am have value 1 and eg = 0 if at least
{J/;] of the Am have value O,

Proof of Theorem 4,2,3, Suppose that all of the eg in the set {eg} are zero
with the possible exception of eg. Thus, A = eg, for all A_ in the set {Am}.
If eg = 0, then at most [f/ZJ of the other elements of {eg} can be nonzero and
at most Lf/%J of the A can have value 1, Thus, at least [U/é] of the A still
have value 0, If eg = 1, then at most L{/ZJ - 1 of the other elements of {eg}

can be nonzero and at most L?/ZJ - 1 of the Am can have value 0, Thus, more

than [U/;] of the Am still have value 1, Therefore, the theorem always gives
the value of eg correctly,
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The majority decoding rule may be stated as follows, Given a set
of J composite parity-checks, {Am}, orthogonal on the noise digit eg, choose
eg = 1 if and only if at least I—J/ 2‘| 4+ 1 of the Am have value 1,

It is useful to consider the class of error patterns which are
correctly decoded by the majority decoding rule. The members of this class
will be described by the following two corollaries of Theorem 4,2,3,, the

first of which is a theorem given by Tong [23].

Corollary 4,24, If eg = 1, then at least |-J/2_| +1 of the A will have value
1 if no more than |-J/ 2_| - 1 of the Am check other nonzero noise digits, If
eg = 0, then at least P/Z_l of the Am will have value O if no more than I_J/ 2_1

of the Am check any nonzero noise digits,

This corollary differs from Massey's theorem in that it does not
limit the number of nonzero noise digits to l_J/ ZJ » Rather, it limits the
number of composite parity-checks which may check an unspecified number of

errors, The theorem may be further generalized as follows,

Corollary 4,2,5, If eg = 1, then at least |-J/ 2—| + 1 of the A will have value
1 if no more than LJ/ 2_' - 1 of the Am check an even number of nonzero noise
digits, If eg = 0, then at least |-J/ ;l of the A will have value O if no more

than l_J/ 2_] of the Am check an odd number of nonzero noise digits,

A code which is majority decoded has error correcting capability

given by

t= |7, (#.2.7)

since the class of error patterns which is correctly decoded includes every
error pattern with weight l_J/ %l or less, However, from Corollary 4,2,5,, a

large number of error patterns with weight greater than t are also correctly
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decoded,

A decoder using the majority decoding rule recovers each codeword

digit tg by adding the decoded value of eg to the corresponding received bit rg,

tg - eg + rij). (’4'.2-8)

If the implementation is as a feedback decoder, and if eg = 1, then the decoder
complements each of the J composite parity-checks which check eg in order to
remove the effect of the error, However, the use of feedback in the decoder
leads to the possibility of error propagation, This may occur when the logic,
or threshold, element of the decoder incorrectly decides that eg =1, Since
the composite parity-checks are complemented, new errors are artificially
introduced into the system, and these in turn may be responsible for further
incorrect decisions at the logic element, With certain convolutional codes,
such self-generating error propagation might continue as long as there is
continuous data transmission, Other convolutional codes, known as self-
orthogonal codes, have limited error propagation properties, and for block
codes, error propagation cannot continue beyond the limits of the block being
decoded,

Definite decoding [30] does not use feedback and therefore does not
complement composite parity-checks, Although this avoids error propagation,
the set of composite parity-checks checks more noise digits than with feedback
decoding, and previous errors, even though they have been decoded, may affect
the correction of several subsequent noise digits, Sullivan [31] shows intui-
tively and experimentally that feedback decoding generally results in fewer
decoding errors than definite decoding in spite of error propagation,

Another difficulty with majority decoding is to find a set of ortho-

gonal composite parity-checks., There exists a class of convolutional codes
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which can be easily orthogonalized in one step, Another class of convolutional
codes cannot be orthogonalized at all and must be decoded by a complex algorithm
called sequential decoding [17]. There are at least three classes of block
codes which may be orthogonalized in one step: the Reed-Muller codes [3], [U],
[15]; the self-orthogonal quasi-cyclic codes discovered by Townsend and Weldon
[32]; and the difference-set cyclic codes discovered by Rudolph [33] and by
Weldon [34]. Many other block codes may be orthogonalized in L steps, L > 1,
and Massey [15] describes procedures for I-step orthogonalization, Rudolph
[35] and Gore [367], [37], by employing what may be called "non-orthogonal
composite parity-checks,”" have shown that all binary block codes are majority
decodable,

4.3, TFeedback Decodable Convolutional Codes

In this section, we shall consider that subeclass of convoiutional
codes which is feedback decodable, We shall describe the structure of these
codes, their optimality criteria, their construction and implementation, and
their performance in error correction and in error detection, Because of their
relative simplicity, we shall consider mainly rate %+ codes, Our approach is

based on the work of Massey [15].

4.3,a, Code Structure

For each message sequence ga, a channel sequence._gj is produced at
the encoder, Using the delay operator D, where D™ corresponds to a delay of

mT seconds, these sequences may be represented as sets of polynomials,

Mi(D)-_-mg+m3i'_D+m§ D2+.--9 i"—'l, 2; ensy k, (4-311)
1,0 =t 4l D4ei 0% 4,021, 2, ..., (#,3.2)
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Each polynomial is the sum of message or channel bits which appear in the same
location of succeeding sequences,
If the convolutional code is in systematic form, then the first k

bits in each channel sequence are information bits, Thus,

T,(P) =M. (D) , i =1, 2, ..., ki (4,3.3)

The n - k parity bits in each channel sequence are defined by a linear combi-

nation of the message sequences,

T,(D) = G;(D) M;(D) + K, (D) My(D) + ... + Z,(D) M4 (D),

i=k+1, .sas m, (4.3.4)
The k(n - k) polynomials Gi(D)’ Hi(D)’ vaes Zi(D)’ i=k+1, ,.,, n, are
known as code-generating polynomials and play a role analogous to the generator
matrix of an (n,k) parity-check code, These polynomials are of maximum degree
u and are of the form

G,(D) =g +el D+, +el DY, (#.3,5)

where the set of coefficients {gg} are binary elements,

A convolutional code has a characteristic matrix, which we denote
as Pc, analogous to the parity-check matrix H of a systematic parity-check
code, To find P°, we have from (4,3,3) and (%,3.4) that

[6;(D) Ty(D) + ... +2,(D) (D)) =~ Ty(D) =0, i =k +1, .uuy n, (4,3,6)

We may express the channel noise sequences g;, the received sequences ;j,
and the syndromes'§; by the sets of polynomials Ei(D)’ Ri(D)’ and Si(D) resp-
ectively, where .

E, (D) °

eg +eg: D +e§ D + [ BN X i = 1, 2, [ A EX] n, (4-307)

R (D) = T,(D) + E, (D)

0 0 1 1
(ti + ei) + (ti + ei) D+ XK
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Ri(D) = rg + r;'_l--D + ri % + aess i=1,2, ,.., n, (4,3.8)
S;(D) = [G;(D) Ry (D) + .., +2;(D) R, (D)] - R, (D)

[, (D) E{(D) + ... +2,(D) E_(D)] - E, (D)

So+SiD+Sz D2+...9 1 k+1, [ EEX]) n, (403-9)

Expanding the polynomials, whose coefficients are binary elements, we obtain

j o . 31 1 0 J
[g e +gi ei + s +gi 1] + o0

+[zij eg+z£'1 e11c+... +zo j]-c-ej,

i=k+1, svey n, j=o, 1, 2989 uo (4.3.10)
The set of equations above are the parity~check equations of the convolu-

tional code, and they may be expressed in matrix form as

5% =% P° = % | B, (#,3,11)
1°
where S® and e are row vectors of dimension (n - k)(u + 1) and n(u + 1)
respectively,
0
= (Sk+1’ LA NN Ikl""l’ [ EN X ) Sn' 2909 S,::)’ (’4'03-12)
| _e_c = (92, [ ERX) el;:, es sy eg, [ EX) eu)g (""’33-13)

I° is the identity matrix of dimension (n - k)(u 4 1), and H® is the k(u + 1)-
by-(n - k)(u + 1) matrix in Fig, 4,3,1, Each upper-triangular submatrix of

H® is known as a parity triangle, one for each code-generating polynomial,
4.3,b, Optimality and Implementation

In order to develop optimality criteria for a convolutional code
and to show how the encoder and feedback decoder are implemented, it is

convenient to use a numerical example, To maintain simplicity, we choose
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a code with k = 1, n = 2, requiring k(n - k) = 1 code-generating polynomial,

Example 4,3,1,

The code~generating polynomial is given by

G2(D) =1+D+ o + D6, (4,3.14)

with maximum degree u = 6, The information bits are the coefficients of the

equivalent polynomials Ml(D) and Ti(D)’ and the parity bits are the coeffi-
cients of TZ(D)’

Tz(D) = Gz(D) Ml(D)o (4-3-15)

Each parity bit is the mod-2 sum of message bits delayed by zero, one, four,
and six time units, the delays being represented by the coefficients of GZ(D)'
The encoder can therefore be modelled as in Fig, 4,3.2, Note that any message
digit can affect parity digits for v + 1 = 7 time units, in which time

n(u + 1) = 14 channel digits are transmitted, The convolutional code is said

to have (memory) constraint length n,, where

n, =n(u + 1), (#,3.16)

As we shall see later, constraint length is one of two important optimality
criteria of feedback decodable convolutional codes,

The P®-matrix of the code, and especially the parity triangle, is
of paramount importance in determining the orthogonalizability of the code,
Since G2(D) is known, we may write P® directly as in Fig, 4,3,3, Now, from

(4l3'11), (4.3.12), and (4.3.13), we know that
s® = e° 2

§_c = (So’ Si [N X Sg),

2’
0 6
gc = (egg A XX} e?’ 929 XEX) 92)-



Shift Register of 7 Stages

36,

> t? to channel

7
_ ]
..lml

=L
\Y)

Figure 4,3,2 : Encoder for a Rate

i

2

> tg to channel

Convolutional Code,



1100101
110010
1100 1
1 1 0 0
0 110
11
He 1
PP o o | ___
1° 1
1
n 0
1
0 1
1
i 1

Figure 4,3,3 : PC-Matrix of a Rate 1 Convolutional Code,

37'



38,

In the matrix multiplication, the sequence of parity noise digits (eg, aensy eg),
corresponding to the parity bits in the channel sequenceslzj, are maltiplied

by the identity matrix 1°, Clearly, then, each syndrome bit Sg checks the
parity noise bit eg and no other parity noise bit, On the other hand, the
sequence of information noise digits (eg, sevy e?), corresponding to the infor-
mation bits in the channel sequences Ej, are multiplied by the parity triangle
H®, Thus, the 1's in the j0 column, j =0, 1, ,,., u, of the parity triangle
determine which information noise bits are checked by the syndrome bit Sj,

th columns both contain a 1 in the kth row, then

s% and 5J both check the information noise bit ef.

The first row of the parity triangle is uniquely defined by the

For example, if the i'P and j

coefficients of the code-generating polynomial GZ(D)’ and each subsequent
row is simply a right shift of the row above it, Thus, if G2(D) has J nonzero
coefficients, there are J 1's in the first row and J syndrome bits check the

noise bit eg. These J = 4 parity-check equations are given by

Sg = eg + eg,

S% = eg + ei + eé,

Sg = eg + eg + eq + eg,

Sg = eg + ef + ef + eg + eg. (4.3.,17)

When a convolutional code is majority decoded, the decoder attempts
only to recover the information bits in the received sequences and therefore
decodes only the information noise digits, This is a logical strategy since
parity bits have no inherent usefulness except as a check on information bits,
In order to decode the first noise bit eg, the decoder must obtain a set of
composite parity=-checks orthogonal on eg. Since eg is checked by J syndrome

L N
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bits, there can be at most J (and codes are generally designed so that there
are exactly J) composite parity-checks in this set,
This example was deliberately chosen so that the set of J syndrome

bits {sg, s;, g, sg} in (4,3.17) constitutes a set of J composite parity-

S
checks {Al, A2’ A3, Au} orthogonal on eg, a fact easily verified by inspection,
A code with this property is known as self-orthogonal, In Chapter 7 we shall
give an example of a feedback decodable convolutional code which is not self-
orthogonal, »

The feedback decoder for this code is modelled in Fig, 4,3.4, Note
that the decoder contains a replica of the encoder in Fig, 4,3,2, It is used

to implement the parity-check equations and thereby form the syndrome bits Sg,

Sg = rf'é + rg-u + rg-i + rg + rg

eg'é + ef’u + ei’l + e + e, (4,3,18)

Note also that since J = 4, [J/;] = 2 and at least three inputs to the logic
element must have value 1 before the logic element can decide that eg =1,
Throughout this thesis we shall be concerned with the complexity

of implementation of decoders and we shall employ three parameters as measures

of this complexity:

(a) the storage requirement N; i,e,, the total number of stages of shift
register,

(b) the total number of shift register stages which are tapped, No.

(¢) the total number of mod-2 adders with two inputs, NA’ where it is easily
shown that a mod-2 adder with K inputs, K > 2, is equivalent to K - 1
adders with two inputs,

The complexity of a feedback decoder follows from Fig, 4,3,4, The
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-encoder replica contains k(u + 1) = 7 stages of shift register, while the
shift register of syndrome bits, or syndrome register, contains (n - k)(u + 1)
= 7 stages, Thus, the storage requirement is

N=k(u+1) + (n=-%)(a +1) =n(u +1) =n,, (4.3,19)

We see that storage requirement and constraint length are equivalent, and this
explains why constraint length is an optimality criterion,

The encoder replica is tapped in J = 4 locations, In addition, from
Fig, 4,3,3, the tap locations correspond exactly to the positions of the 1's
in the first row of the parity triangle, or, equivalently, to the nonzero
coefficients in the code-generating polynomial, The syndrome register is also
tapped in J = 4 locations, However, since the code is self-orthogonal, this
represents only a lower limit, Thus,

Np > 24, (4,3,20)

The decoder contains three mod-2 adders, two with two inputs and one
with J inputs, Thus,
Ny=2+(J=1)=7J+1, (4.3.21)

If the logic element decides that e‘i = 1, then the feedback decoder

complements the composite parity-checks which check eg, thereby "cancelling"
the error in these equations, It is umnecessary, however, to complement Sg
since that bit is shifted out of the syndrome register on the next cycle and

no longer plays a role in decoding, The next set of inputs to the logic

element is

Sé = ei + e; (eg has been removed),
Sg = ey + e + ey,
Sg =e; + e? + ef + 95,
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SZ = ei + eg + e? + eZ + eg. (4,3.22)

Clearly, the set {S;, Sé, Sg, SZ} constitutes a set of J composite parity-
checks orthogonal on e%, so decoding for ei is exactly the same as for eg.
Since the set of equations in (4,3.22) orthogonal on ei has precisely the same
form as the set in (4,3,17) orthogonal on eg, we say that the set orthogonal

on eg is typical of the code, Thus, in future, we shall not say that eg

necessarily the first information noise digit, Rather, we shall allow eg to

is

fall anywhere in the actual noise sequence and say that in decoding eg, we are
always decoding for a first error, provided that all previous decoding has
been correct,

We can now introduce the second optimality criterion of convolu=-
tional codes, called the effective length, Quife generally, each composite
parity-check Am in the set'{Am} orthogonal on eg checks eg plus n, other noise

bits, where n is called the size of Am. Thus, the total number of distinct
noise bits checked by the set {Am} is ng,

np =1+ ; n, (4.3.23)
m=1
and ng is the effective length, We shall see later that ng is an important
parameter in determining the performance of the code and that an optimal code
has minimmm effective length, Since the set {Am} is formed from at most
(n = k)(u + 1) syndrome bits, which together check at most n, noise bits, it
follows that

nE LN,y (uljnzn)

For rate 4 codes, Massey [15] has shown that

ng23°% 440 + 1, (%,3,25)

If J is even, then the error correcting capability of the code is

p S—



43,

t = I_J/ZJ = J/2, Jd even,
and np>26% +t 41, (4.3.26)

The code of this example, with J = 4 and t = 2, is optimal because
both ng and n, are minimal, To show that ng is a minimum, we have from
(4,.3.26) that ngp > 11, while a simple count in (4,3,17) or (4,3,22) gives
np = 11, Proving that n, is minimal is less straightforward, but an exhaus-
tive search shows that no self-orthogonal code exists with J = 4 and n, < 14,

Robinson and Bernstein {387, based on the work of Singer [397], have
demonstrated a good systematic method for the construction of optimal self-
orthogonal codes, They have also showm that self-orthogonal codes have limited
error propagation properties; i,e.,, a decoder always recovers from a decoding
error if an error-free sequence of at least wn, channel digits follows the
decoding error, where

w, < x(ny = n) +2n,, (#.3.27)

and x is the least integer such that

(-3 +EEDT @I H + (#F,

y =[] +1. (#.3.28)

Other optimal convolutional codes exist which are not self-orthogonal
but can be orthogonalized in one step, Massey [15] describes a trial-and-
error method for finding some of these codes, They generally have smaller
constraint lengths than equivalent self-orthogonal codes, but as a class they
do not exhibit the property that error propagation in the decoder is guaranteed
to cease upon reception of an error-free sequence of knoun finite length,
However, in most cases, an error-free sequence of some finite length, unknown
in general, will act to terminate propagation, For such codes, error propa-

gation can be controlled by periodically interrupting transmission to clear



the decoder shift registers, or by requesting a retransmission of data if a
counter detects more corrections over a certain interval of time than the

decoder can reliably produce,
4.3,c, Performance in Error Correction

A feedback decoded convolutional code has error correcting capability
t = Lf/ZJ' Thus, the probability of a decoding error, P(E), is upper-bounded
by the probability that more than t errors occur among the nn noise bits checked
at the decoder, For the BSC, then,

t ng . Nne=7j
PE)gl- = ()p? (L-p)" ", (4,3.29)
. J o o
j=0

P(E) may be reduced by increasing t or by decreasing Ny though these are not

independent parameters, For any t, np may be minimized according to (4,3,26),

ng > 2t% 4+t 41,

The effect of np on P(E) explains why effective length is an optimality
criterion of convolutional codes,

There are two important factors which affect the probability of a
- decoding error and which are not included in the performance expression
(4,3,29), First, from Corollary 4,2,5,, we know that in many cases the code
will correct a large number of error patterns with weight greater than t; i,e,,
many convolutional codes tend to be very robust, For this reason, the right-
hand side of (4,3,29) is too large, On the other hand, (4,3,29) does not
consider the effect of error propagation, which makes the right~hand side too
small, For simplicity, we shall assume that the effects of robustness and of
error propagation on the probability of decoding error are approximately equal

and opposite, so that
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t n ne=7Jj
E)w1- 3 ((Dpd-p)"", (#,3,30)
j=0 7 °

In many cases this approximation is quite good,
4,3,d, Performance in Error Detection

A convolutional code with error detecting capability may simulta-
neously have some error correcting capability t., Suppose, for example, that t
is 2 maximum, t = L?/ZJ. In this case, J, the number of orthogonal composite
parity~-checks, must be an odd number,
J=2t+1, (4,3.31)
The reason for this is that the logic element of the decoder may choose eo

1
only if [J/;] +1 =%t + 2 or more composite parity-checks have value 1, and it

=1

may choose eg = 0 only if (J/;] =t + 1 or more composite parity-checks have
value O, However, if exactly t + 1 composite parity=-checks have wvalue 1,
neither of these conditions is met and the decoder detects an uncorrectable
error pattern,

On the other extreme, we might choose t = O, In this case the
decoder decides that eg = 0 if and only if all J (odd or even) composite
parity-checks have value 0, Otherwise, an uncorrectable error pattern is

detected,

In the more general case, we say that

lgtg LJ/2J9 (4,3.32)

and we may choose J either odd or even, Then the decoder decides that eg

only if J = t 4+ 1 or more composite parity-checks have value 1 and that eg =0

=1
only if t = 1 or fewer composite parity-checks have value 1, Otherwise, an

uncorrectable error pattern is detected,

A fajlure can occur only if at least J -« t + 1 composite parity-



checks have value 1 when eg = 0, Thus, the probability of failure is upper-

bounded by the probability of J = t 4+ 1 or more errors among the ng noise bits
checked by the decoder, For the BSC,
J=-t ng nJ
M@ st1- 5 Bypd (1-p) F". (#.3.33)
The above expression does not account for robustness or for error propagation,

but again we assume that these effects approximately cancel each other, so that

J=-t ng j
P(F) x 1 - % j)pj(i-p) (4.3.34)
3=0

b, A Note on Complexity of Implementation

In Section 4,3, we introduced the three measures of complexity which
we shall use throughout this thesis: storage requirement, number of shift
register tap locations, and number of mod-2 adders, We also calculated the
complexity of a feedback decoder, However, we did not calculate the complexity
of a minimum distance decoder for block codes, This is because there are so
many different decoding algorithms available, and to study these algorithms
would require a more extensive examination of parity=-check codes than is needed
to understand error correcting codes for the compound channel, The interested
reader might consult Gallager [17], Berlekamp [37], Peterson [’4’], Massey [LLO],
and Savage [41]. We shall say simply that, in general, block encoders and
convolutional encoders have comparable complexities, while, except for one-
step orthogonalizable parity-check codes, block decoders are much more complex

than majority decoders for roughly equivalent codes,
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5, BURST CORRECTING CODES

5.1, Introduction

Before going on to describe specific coding schemes for error control
on the compound channel, known generally as burst correcting codes, we shall
first examine in this chapter some important concepts relevant to the correc-
tion of bursts, Section 5,2, formally defines a burst and its related guard
space and then relates bursts to the bshaviour of the compound chamnel, Section
5.3, defines the burst correcting capability of a code and presents two known
bounds on this capability, Section 5,4, describes the two general classes of
burst correcting codes and then outlines the specific codes to be studied in

the remainder of this thesis,
5.2, Burst Errors and the Compocund Channel

Before we can describe a burst correcting code, we must define pre-
cisely what is meant by a burst, Using Gallager's approach [1], we postulate
an arbitrary binary sequence of B consecutive noise digits g?, where

B
_e_ - (ej+1, seny ej.‘B). (5.2l1)

Definition 5.,2,1, The binary noise sequence g? of length B is defined to be
a burst of errors relative to an error-free, or clean, guard space of length
G if it satisfies the following criteria:

(a) The first and last noise bits in the sequence are errors,

(b) G consecutive noise bits on each side of the sequence are error-free,

(¢) There is no consecutive sequence of G error-free digits in g?.
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With G fixed and B variable, we can use the above definition to
segment a noise sequence of any length into a unique set of bursts, Thus,
even a single error or two isolated errors with separation less than G, pro~
vided that they are bracketed by two error-free sequences of length G, are
defined as bursts, However, from the point of view of the behaviour of the
compound channel, it is very much more likely that these are examples of
random errors embedded in a relatively long, otherwise error-free noise sequence,
Informally, bursts tend to be reasonably well-defined noise sequences
with high error density, say from 1 percent to 50 percent, Bursts are separated
by generally much longer sequences, or guard spaces, where errors may occur

in the random mode and are therefore comparatively rare,
5.3, Burst Correcting Capability

Analogous to the error correcting capability t of random error
correcting codes, burst correcting codes have a burst correcting capability
Bm relative to some clean guard space Gm. Various bounds exist on the rela-
tionship of Bm to Gm' Formally, Gallager [1j defines burst correcting capa-
bility in the following way,

Definition 5,3,1, A code, or altermatively, an encoder-decoder pair, is said
to have burst correcting capability Bm relative to a clean guard space Gm if

every noise sequence containing only bursts of length Bm or less relative to

the guard space Gm is correctly decoded, and Bm is the largest integer for

which this is true,

Gallager also shows that for codes with rate R,

1 +R
G, = (=% B, (5.3.1)
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Hereafter, we refer to (5,3.1) as the Gallager bound, This bound was originally
proved for convolutional codes by Wyner and Ash [18], but Gallager generalized
the proof for all codes, A somewhat stronger bound exists for the special case

of (n,k) block codes with burst length smaller than the block length,

Definition 5,3,2, An (n,k) block code is said to have burst correcting capa-
bility b if it corrects every burst of length b or less located anywhere in

the noise sequence of length n, provided that all other n - b noise digits are

error-free,

In this case, we may consider the guard space to be of length n -~ b,
so that the Gallager bound is

n-b> (__Tn_) b, (5.3.2)

This expression reduces to a form known as the Reiger bound [197,

b < %(n - k), (5.3.3)
The difference between the Reiger bound and the Gallager bound is that, in the
former, the burst and the guard space may be distributed arbitrarily within a
sequence of length n, while in the latter, the burst must be bracketed by two
guard spaces, The Gallager bound is, of course, more general because no
assumptions are made about the code or the burst length,

According to Definition 5,3.1,, there are three instances when a
code with burst correcting capability Bm relative to a gnard space Gm is not
guaranteed to decode reliably: when two bursts are separated by a clean guard
space smaller than Gm; when a guard space is not clean; and when a burst is
longer than Bm' Any code which will sometimes correct reliably despite the

occurrence of any of the above instances is said to be robust,
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5,4, Classes of Burst Correcting Codes

Broadly speaking, burst correcting codes can be classified as either
adaptive or non-adaptive, The non-adaptive codes decode all received data
according to a single algorithm, irrespective of the mode of the compound
channel, They can reliably correct every burst within their burst correcting
capability so that, at best, their guard space requirements are given by either
the Gallager bound or the Reiger bound, Adaptive codes, on the other hand,
attempt to deduce the channel mode and thereby decode random errors and bursts
according to different algorithms, They achieve guard space requirements
generally much smaller than predicted by the Gallager bound at the expense of
not being able to correct every burst within their burst correcting capability,
That is, adaptive codes may attempt to decode a burst according to the wrong
algorithm if and when the burst is not detected,

Adaptive codes may operate in a random mode or in a burst mode, The
random mode is a subcode, either an (n,k) block code or a convolutional code,
with random error correcting capability t and with enough error detecting
capability to detect most bursts, The burst mode has burst correcting capa-
bility Bm relative to a guard space Gm’ where Gm is generally much smaller
than given by the Gallager bound,

In Chapters 6, 7, 8, and 9, we shall describe four well~known coding
schemes which have proved to be very effective in controlling errors on the
compound channel and have manageable, in cost and hardware, implementation
complexity, Interleaved block codes (Chapter 6) are non-adaptive codes whose
guard space requirements at best can meet the Reiger bound, Diffuse codes
(Chapter 7) are non-adaptive convolutional codes whose guard space requirements

at best are asymptotic to the Gallager bound, Gallager codes (Chapter 8) are
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adaptive convolutional codes and Tong burst-trapping codes (Chapter 9) are
adaptive block codes, Comparative performance evaluations for interleaved
block codes, diffuse codes, and Tong burst-trapping codes on the real tele-
phone charmel are given by Burton [’42] and by Burton and Pehlert [431],

In Chapters 10 and 11, two new methods, original with the author,
will be presented, One is a concatenation scheme to allow reliable burst
correction even when the guard spaces are not clean, the other, a modified

burst~trapping scheme with adaptive guard space requirements immediately
adjacent to the bursts,
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6, INTERLEAVED BLOCK CODES

6,1, Introduction

In this chapter, we shall describe the structure, complexity, and
performance of a burst correcting technique known as an interleaved, or inter-
laced, block code [1], [3], Section 6,2, discusses the encoding and decoding
of these codes and determines their guard space requirement, Sections 6,3,

and 6,4, develop useful expressions for their complexity and performance

respectively,
6.2, Structure and Guard Space Regquirement

Throughout the remainder of this thesis, we shall assume that all
burst correcting codes are designed for use on a compound channel on which
channel bursts very rarely exceed some length Bc. In particular, an inter-

leaved block code has burst correcting capability Bm such that

Bm = B<= = b , r and b integers, (6,2,1)

The interleaved block code employs an (n,k) block code with burst
correcting capability b, From the Reiger bound,
b < 3n - k), (6.2,2)
The block encoder produces codewords _'c_.j, each of length n, Before transmission
over the chamnel, r such codewords, say _t._o, vy _t_r'l, are stored as a "super-
block™ of length rm, Conceptually, this "superblock" may be considered to be
arranged in an r-by-n matrix, Fig, 6,2,1, The jth row of this matrix is the

jth codeword i,j, j=0,1, .oy =1, The ith column consists of all digits

t), i=1, 2, ..., .

Once the matrix has been completely filled by the block encoder,
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the stored digits are transmitted by column, Thus, each digit tg in the code-
wordlgj is transmitted r channel time units after the preceding codeword digit
tg-i’ where one chammel time unit is the time required to transmit one channel
digit, The process of separating codeword digits by r channel time units is
called interleaving, or interlacing, or scrambling, to degree r; hence the
term "interleaved block code,"

The received digits are stored in the decoder in a "superblock" or
matrix corresponding exactly to that of Fig, 6,2,1, Decoding is performed by

a block decoder on the received sequences.gj,

D=+ el (6.2.3)

Thus, decoding is executed by row on the stored matrix, Within any "super-
block," a burst of length Bm or less can fill at most b consecutive complete
colums of the matrix with errors, sd that at most b consecutive digits in
any row can be affected by the burst, Since the block code has burst correc-
ting capability b, the burst of length Bm or less is guaranteed to be correctly
decoded if no other errors occur within the "superblock,"

The guard space in any one block of the code has length n - b,

Thus, the guard space requirement Gm of the "superblock™ is
Gm = r(n - b) =TIrm =~ Bm' (6-2|L")

Gm is a minimum if b is a maximum; i,e,, if b meets the Reiger bound with
equality, Corresponding to Gm, the guard space regquirement of the decoder,
there is a guard space of length Gc following the burst in the channel.

Except in cases where the received digits are compressed in some manner before
being decoded by the decoder of the burst correcting code, a situation des-
cribed in Chapter 10, the decoder guard space and the channel guard space are

equivalent., Thus, for interleaved block codes,

G, =G, = r(n - b) =m - B_. (6.2,5)
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6.3, Complexity

As measures of the complexity of the decoder we use the parameters
N (the storage requirement), Nop (the number of tapped shift register stages),
and N, (the number of mod-2 adders), As a secondary parameter, we include the
ratio N,/Gm of storage requirement to guard space requirement,

The decoder for an interleaved block code requires a buffer, or shift
register, for the "superblock" of length rn and a block decoder, whose own

storage requirement may be included in the buffer, Thus, from (6,2,4),

N:m:Bm"'Gm, (60311)

™m n
and N/Gm ] r(n - b) = e b > 1. (6a302)

Because the specific implementation of the block decoder is not defined, we

shall not attempt to calculate NT or NA for this code,

6.4, Performance

The criterion which we shall employ as a measure of the performance
of a burst correcting code is the probability of a decoding error given that

a channel burst has occurred, P(E | burst), where

P(E | burst) = PPEggizzt . (6.4,1)

P(E,burst) is the joint probability of a decoding error and a burst, while
P(burst) is the probability of a burst, We explained in Chapter 5 that deco-
ding errors could be caused by any of three events: a guard space which is
too short, a guard space which is not clean; i,e,, a noisy guard space, or a
burst which is too long, We shall assume throughout that the compound channel
is such that the probability of an excessively short guard space or of an

excessively long burst is negligible in comparison with the probability of a
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noisy guard space, Thus, decoding errors are causqd primarily by the occur-
rence of random errors in the guard space, so that, neglecting robustness,
P(E) = P(decoding error) = P(random error in guard space),
Since random errors and bursts on the compound channel are statistically
independent,
P(E,burst) = P(E) P(burst) (6.4,2)
and it follows from (6,4,1) that
P(E | burst) = P(E), (6,4,3)
According to the Gilbert channel model, random errors occur with

probability Pye Thus, for interleaved block codes,

G
P(E I burst) < 1 - (1 - po) m. (60434)

The inequality exists because the code may be robust, in which case not all
random error patterns in the guard space would result in a decoding error,
From (6,4.,4) we see that P(E | burst) decreases with decreasing Gm' Thus, it
is important from the point of view of performance that burst correcting codes

have minimum guard space requirements,
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7. DIFFUSE CODES

7.1, Introduction

In this chapter, we shall describe the structure, complexity, and
performance of a burst correcting technique kmown as a diffuse code, Diffuse
codes are feedback decodable convolutional codes with error correcting capa-
biiity t and are designed to treat channel bursts of length Bc or less as if
they contained no more than t "random errors," They were first reported by
Kohlenberg and Forney [22] and were more thoroughly investigated by Tong [23]
and by Ferguson [247,

Section 7,2, defines the optimality criteria of a diffuse code and
relates them to the burst correcting capability Bm and the guard space Gm'
Section 7.3, describes the structure>of diffuse codes and uses these general
principles to construct a specific optimal code, Section 7.4, develops expres-
sions for the decoder complexity, Section 7,5, discusses the existence of

optimal diffuse codes, and Section 7,6, develops an expression for the perfor-

mance of these codes,
7.2, Optimality and Guard Space Requirement

The diffuse codes of most importance have rate i and burst correcting

capability Bm such that

B, =B, = 2B , B an integer, (7.2,1)

Simaltaneously, they have random error correcting capability t,
t = J/ J even (7.2,2)
- 2 ’ . [ Tad ]

The optimality criteria of diffuse codes, like all feedback decodable

convolutional codes, are constraint length ny, and effective length ng. From
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(403-25) and (4-3-26)’

ng >3 +30 +1 =262 4t 41, (7.2.3)
Also, from (4,3,19),
ny =k(u +1) +(n=-k)u+1) =N, (7.2,4)

where k(u + 1) is the length of the encoder replica in the decoder,
(n = k)(u + 1) is the length of the syndrome register in the decoder, and N
is the total storage requirement, Since we consider only rate + codes, it
follows that

k =n -k,

and NS = k(u + 1) 3 (n - k)(u + 1) = %nA. (7.2-5)

We shall call Ns the shift register length, Clearly, since the decoder contains
two shift registers,

N = ZNS. (7-2.6)

We shall now relate shift register length to both the burst length Bm and the
guard space requirement Gm'
In order that all bursts of length Bm or less, relative to the guard

space Gh’ be correctly decoded, Gm is given by the Gallager bound,

6, > (i—f‘? B_ = 3B, = 6B, (7.2.7)
Any consecutive sequence of 6B channel bits contains exactly 3B information
bits and 3B parity bits, Thus, when either the first error or the last error
in a burst is the only one contained in the encoder replica, the Gallager
bound demands that at least 3B error-free information bits, the guard space,
also be contained in the encoder replica, It follows that the shift register

length is lower-bounded by

N_ >3B +1, (7.2,8)
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or, equivalently,

If G is the guard space required in the encoder replica, then

N =G+1,

and G =G, =26=N-2=mn, -2, (7,2,10)

where Gc is the channel guard space corresponding to the decoder guard space Gm'

If N_ meets the bound (7.2,8) with equality; i.e,,

N_ = NP - 38 41,

and Gm = 3Bm,

then the code is optimal with respect to constraint length, If the weaker
condition holds that

opt

N —N as B -—»cw,
s s m

then the code is said to be asymptotically optimal with respect to constraint
length,

7.3, Structure

A diffuse code with burst correcting capability Bm and error correc-
ting capability t = J/2 is structured in such a way that bursts of length Bm
or less never appear at the decoder to contain more than t errors among the
ng noise bits that are checked, The manner in which this is accomplished

depends on Corollary 4,2,4,, paraphrased below in Corollary 7,3.1,.

Corollary 7.3.1. If e = 1, no more than t - 1 of the A_ in the set of 2t
composite parity-checks {Am} orthogonal on e? may check other errors, and if

ey = 0, no more than t of the Am may check any errors,
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Ferguson [24] employs a useful terminology, We say that any digit

eg is g~-dependent if its superscript is of the form

j=aB +a, 0 <ca<B, q an integer, (7.3.1)
If eg is the first error in a burst of length Bm or less, the burst
can affect only the O-dependent information noise bits, eg, ei, ey e?—l, and

the O-dependent parity noise bits, eg, eé, sens eg-i. Since the guard space is

given by (7ozn 7)’

Gm 2 3Bm or G 2 3B, (7-3-2)

this means that all 1-, 2-, and 3-dependent noise bits must be error-free,

Suppose that eg = 1, Then a burst may affect only O-dependent noise
bits and Corollary 7,3.1, demands that no more than t - 1 of the Am check
other O-dependent noise bits, Alternatively, suppose that eg = 0, Then a
burst might be embedded somewhere among the 1=, 2-, or 3-dependent noise bits,
Corollary 7.3.1, demands that no more than t of the Am check any i-dependent
noise bits, i = 1, 2, 3,

To clarify the foregoing development, let us consider the conétruc-
tion of an (asymptotically) optimal diffuse code for, say, J = 4 and t = 2,
The code-generating polynomial GZ(D)’ or, eguivalently, the first row of the
parity triangle H®, is to be found,

The parity triangle, Fig, 7.3.1, has four 1's in the first row, two
of which are located in the first and last columms, The remaining two may be
assigned arbitrary locations such that x, y, and z represent the number of O°'s
between the 1's, The length of the first row defines the shift register length
NS and the locations of the 1's correspond exactly to the tap locations on the

encoder replica, From (7,2,8),

No=x+y +2+ 4 >3B + 1, (7.3.3)

We may write the four parity-check equations which check eg directly as
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s0 0 )

2 =€ + %

S§+1 = eg + éf+1 + e§+1,

SZ*y*z = eg + e{+1 + éfﬁy+2 + e§+y+2,

s§+y+z+3 = eg + ei+1 + é{+z+2 + e?*y*z+3 + eE*Y+z+3. (7.3.4)

Since the syndrome bit Sg checks the O-dependent parity noise bit
eg, one composite parity-check must also check eg. Also, since t - 1 =1, no
other composite parity-check may check any O-dependent bits other than eg.

This means that ef+1 e{*l, and ef*i may not be O-dependent; i,e,,

Xy ¥y 2 _>_B - 1. (7-3.5)
If the code were to be self-orthogonal, then x, y, and z, besides
being bounded by (7,3.5), would all have to be different in order to ensure

that all ng noise bits in (7.3.4) would be different, However, Tong [23] has

proved that for a rate 3 self-orthogonal diffuse code, the shift register length

is at best asymptotic to the bound

N_ > (t +2)B, (7.3.6)

Since we wish our code to have shift register length asymptotically 3B, not 4B,
we may abandon any hope that the code be self-orthogonal, It follows that x,
¥, and 2z need not all be different,
Suppose we allow two of the variables to be equal,
X=y iz,

and, in order to minimize shift register length, we let the variables assume
minimum values as defined by (7,3.5),

X=B-1,y=B=-1, 2 =8, (7.3.7)
The shift register length is, from (7,3,3) and (7,2,8),

Ns=x+y+z+4=3B+2=ngt+1, (7.3.8)

.
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so the code is asymptotically optimal with respect to constraint length, The

set of parity-check equations in (7,3.4) can be rewritten as

0 0 0

B 0 B B

2B 0 B 2B 2B
S2 = 91 + 91 + 91 +e,,

Sgs.u e<1> . 9113‘*1 N e';:B+1 . e213+1 + eZB“i. (7.3.9)

We have already conceded that the code cannot be self-orthogonal and

this is confirmed by the fact that Sg and S2B above both check the noise bit

2
e]f. In addition, Sg, SSB, and SgB + all check l-dependent bits, which is not
allowed by Corollary 7.3.1.. In order to orthogonalize the set of parity-check
equations, and at the same time satisfy the corollary, we remove the 1-depen-
dence from SgB by adding to it (mod-2) some syndrome bit Sg, A good choice of
Sg is SgB s Where

SgB = e? + e?B + efB + egB. (7.3.10)

We replace S%B in (7.3.9) by the composite parity-check S%B + SgB, where

B
SSB +SgB = (6(1) + e? +e§B +e§B) + (e? +e§B +92B + eg )

eg + e%B + egB + egB. (7.3,11)

This new set of composite parity-checks, (7,3,9) and (7.3.11), is
orthogonal on eg and satisfies all the requirements of Corollary 7.3.1,. In
addition, by a simple count, ng = 11, so that the effective length of the code
is minimal from (7.2,3), The feedback decoder for this diffuse code is shown

in Fig, 7.3.2,
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7.4, Complexity

The three measures of the complexity of the decoder of a diffuse code,

and N

N, N js may be determined easily from Fig, 7.3.2., From (7.2,10), the

T9

storage requirement is

N - Gm + 2, (7-""-1)
Gm + 2
l\I/Gm =& —1 as B —wo, (7.4.2)

The encoder replica is tapped in exactly J locations, Since an (asymptotically)
optimal code camnot be self-orthogonal, the syndrome register is tapped in at
least J + 1 locations, Thus, the number of tapped shift register stages is

Np 220 +1 =4t +1, , (7.4,3)

At the encoder replica, the decoder requires one mod-2 adder with J inputs and
two with two inputs, In addition, the syndrome register requires at least one
adder because the code must be orthogonalized, Thus, the number of mod-2 adders

is

Ny2(@@=-1)+2 +1 =2t 42, (7.4.4)

7.5. Existence of Optimal Codes

The diffuse code which we derived in Section 7,3, was the only
example given in the first published description of diffuse codes by Kohlenberg
and Forney [22]. They implied that, although no unified theory for the design
of diffuse codes existed, this example for t = 2 with minimal effective length
and asymptotically optimal constraint length was typical, Ferguson [24], [&4]
disagreed, Based on Tong's treatment of self-orthogonal diffuse codes [23],
he developed the rules of a trial-and-error procedure to design asymptotically

optimal diffuse codes for t > 2, He found that for t > 3, it was not evident
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that codes existed with simultaneously minimal effective length, For example,
for t = 3 and asymptotically optimal constraint length, the best codes known

to the author were found by Tabak [45] with ng = 24 and by Ferguson with ng = 25,
vwhereas, from (7,2,3), n%pt = 22, However, codes with minimal effective length
were found [24] which have shift register length asymptotically 4B rather than
3B, Ferguson therefore conjectured that diffuse codes with both minimal effec-

tive length and asymptotically optimal constraint length do not, in fact, exist
for t > 3,

7.6, Performance

Our criterion of performance is the probability of decoding error
given that a burst has oceurred, P(E | burst), As in Section 6.4,, we assume
that decoding errors are caused primarily by random errors in the guard space

G . Thus, analogous to (6.4.4),

G
P(E|burst) <1 - (1 - p) ™. (7.6.1)

The above expression neglects both robustness and error propagation in the
feedback decoder, We again assume that these effects are approximately equal
and opposite, so that

G
P(E|burst) » 1 - (1 - p) m (7,6,2)

Since n, and Gm are linearly related by (7,2,10), we see that it is important
from the point of view of performance that diffuse codes be designed with
minimal constraint length,

A secondary criterion of performance of a diffuse code is the proba-
bility of a decoding error given that the compound channel is in its random

mode, P(E | random), In this case, the compound channel behaves roughly like
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a BSC, so that P(E | random) is given by (4,3,30),

t ng . nE-j
P(E|random) v 1 - ¥ () pY (1 -0p) R (7.6.3)
520 9 o ()
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8, GALLAGER CODES

8.1, Introduction

In this chapter, we shall describe the structure, complexity, and
performance of an adaptive burst correcting technique called a Gallager code
by Kohlenberg and Forney [22] and called a time-diversity code by Gallager [17],
The random mode of a Gallager code is a feedback decodable convolutional code,
while the burst mode is provided by a simple extension of the convolutional
code,

Section 8,2, describes the structure of a Gallager code, including
decoding procedures in both modes and the mechanism of decoder transitions
between modes, Section 8,3, calculates the guard space requirement of the code
and compares it to the Gallager bound, Section 8,4, determines the decoder

complexity, and Section 8,5, develops expressions for the performance of the

code,
8.2, Structure

The Gallager codes which we shall consider have rate + and burst

correcting capability Bm such that

B =B, =2B, B an integer, (8.2,1)

Since Gallager codes are adaptive, they include a random mode to correct random
errors and to detect bursts and a burst mode to correct the detected bursts,
The random mode is provided by a rate 4 feedback decodable convolu-
tional code with code-generating polynomial G2(D). If G2(D) has maximum degree
u and has J nonzero coefficients, then from (4,3,16) and (7,2,5) the constraint

length is
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n: =n(u+1) =2 +1) = 2N:, (8.2,2)

and from (4,3,25) the effective length is

Because the convolutional code might be required to have some error detecting

capability, the error correcting capability t of the code is given by (4,3,32),

PEPINAR (8.2,4)

There are two very simple ways in which the random mode can be used
to detect bursts, In the first, choose t small in (8,2,4) so that the convo-
lutional code has a large amount of error detecting capability, Then, at the
logic element of the decoder, if J = t 4+ 1 or more of the J composite parity-~
checks orthogonal on eg have value 1, choose eg =1, If t -1 or fewer compo-
site parity-checks have value 1, choose eg = 0, Otherwise, do not decide on
eg and defer to the burst mode of the decoder,

In the second burst detection scheme, the convolutional code need
not have any explicit error detecting capability so that t may be chosen a
maximum in (8,2,4), Now, if the compound channel were in its random mode, it
would be highly unlikely that the logic element would repeatedly decide that a
chammel error had occurred, In the channel burst mode, however, such a situa-
tion would appear to be highly likely due to the large probability of both
channel errors and error propagation, Thus, a counter at the logic element
output could be used to detect a burst if some minimum density of 1's were
detected,

For the burst mode of the Gallager code, a2 minimum of B stages of
shift register are appended to the right of the encoder of the convolutional
code, with a tap location at the rightmost stage, Thus, the shift register

length Ns of the Gallager code is at least
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*
N =B+NS=B+'U.+1, (8-235)

and the constraint length n, is

*
ny =2N =8 +2(u+1) =B +n,, (8.2,6)
The encoder for a Gallager code is shown in Fig, 8.,2.,1,

To demonstrate the decoding procedures of a Gallager code, We assume

that the decoder is initially in its random mode and that the received bit rg,
0 0 0
r1 = ti + el, (8l2' 7)

has just entered the encoder replica, As rg is shifted through the first

* .
N_ = u + 1 stages of the encoder replica, a set of J syndrome bits {SO, ,,.,?Sg}

is formed, each of which checks’eg, where

0 0 0
S2 = € + 6y,

wn

g - eg + ees + e? + eg. (8.2,8)

%k
These J syndrome bits are stored in the first Ns stages of the syndrome

register,

When rg is in the last, or Nsth, stage of the encoder replica, the

syndrome bit 557" is formed,

Sg'm = 9(1) + e? + 0ee + eli"“ + eg"u, (8.2,9)

and is stored in the first stage of the syndrome register, At this point, the
J syndrome bits Sg, eoes S; occupy the last u + 1 stages of the syndrome
register,

Assume that the convolutional code of the random mode has large

error detecting capability, Then the set of syndrome bits {Sg, sees S;} is

used to form a set of J composite parity-checks orthogonal on eg. If eg is
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Figure 8,2,1 : Encoder for a Rate 4 Gallager Code,
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correctable, the decoder continues operation in the random mode, If eo is

1
not correctable, the decoder switches to the burst mode,
When eg is the first error in a burst of length BN or less, the

burst can affect at most the B information noise bits eg, ei, sass e?-l and

the corresponding B parity noise bits eg, eé, srrs eg-i. The c¢lean guard space
of length Gm following the burst must span the u + 1 pairs of noise bits e?, eg,

esns e?w‘, 9123-}-11. Thus, from (8,2,9),

S§+u = eg + ef 4+ 2es + e?*u + e2+u = eg. (8,2,10)

Thus, the burst mode of the decoder simply decides that eg has the wvalue of
the syndrome bit Sg+u, The decoder is shown in Fig, 8.2,2,

The decoder remains in its burst mode until it receives some indica-
tion that the burst has ended, Once a burst has passed completely through the
encoder replica, only digits which are part of the guard space will remain,

If the guard space is clean, all syndrome bits will have value 0, In particular,
if a certain number y of consecutive 0's appear in the first stage of the

syndrome register, denoted Sg+u in Fig, 8,2,2, then the decoder switches back

to its random mode,
8,3, Guard Space Requirement

To determine the decoder guard space requirement Gm' we assume that

eg is the first error in a burst of length 2b,

2b < B = 2B, (8,3.1)
b-1 b1

€1 » %2
0 . B+4u
To decode O the burst mode uses the syndrome bit S, . From

The burst affects the b pairs of noise bits eg, eo, sany

(8|2n10),
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SB+u ] B B4u B4u

o = O € 4 ... e tey (8,3,2)
To decode e?-l, the burst mode must use S};+u+b-1,
Sg-nl-'b-l = e?-l + e?.‘b.l + [N ] + e?'“l'l‘b"i + eg-m-'b.in (80303)

In order that the decoder switch out of the burst mode, the succeeding y syn-

drome bits, Sg"u"'b, rees S}23'H1+b°1+y, mast be zero~valued, where
: B
Slgm-l-b - et1> + eli-i-b ... 4+ e113+u-i-b + ez+u+b,

gBHu+b-14y b=14y Bib-14y
= + €

+..l +el

From (8,3.2) and (8,3.3), in order that the burst be corrected, the
decoder guard space must span the noise bits e?, eg, rvery e?'m"'b-l, eg"'u"'b'i.
From (8,3.,4), in order that the decoder exit from the burst mdde, the guard
space must span the noise bits e?, eg, eess e?'l"y, e§-1+y and e?"'b, eg"'b, e
e?+u+b-1+y’ eg'm"'b-lw. Taking into account the overlap in these guard space
requirements, we see that the guard space must span the 2y consecutive digits
immediately following the burst, e‘i, eg, ey e?.l"'y, eg-l"'y , and the
2(b + u + y) consecutive digits displaced a length 2B from the beginning of
the burst, e]i, eg, rrss e?-mq-b-1+y’ eg'm"'b.lﬂ. In addition, as b approgches
its maximum value B, there may be overlap between the adjacent guard space of
length 2y and the displaced guard space of length 2(b +u +y).

The adjacent and displaced guard spaces first become a continuous
guard space when b = B - y, where the total guard space length G is

G=2y +2(B-y +u+y)=2(B+u+y), | (8,3.5)
When b = B, there is complete overlap of the two guard spaces so that .
G=2(B4+u+y), (8.3.6)

We may therefore write the decoder guard space requirement as
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G:Gdb=2(b +u+2y),b<B-Ya
G=G =2(B+u+y)=B +2(u+y),B-y<gbgB, (8,3.7)

Because the guard space depends on the length of the actual burst and not on
the length of the maximum correctable burst, the guard space is called adaptive,

The corresponding adaptive channel guard space, Gcb or Gc’ is
Gy =Gqp » P<B -7,
G’c-_-Gm,B-ysbSB. (813-8)
Since we consider Gallager codes with rate 3, the Gallager bound is
Gy, G > (tF) 26 = 6v (8.3.9)
db® m= ‘1 - 3 - i

From (8,3,7), when 6'< B - y, we know that Gdb = 2b + 2u + U4y, The parameters
u and y are typically small compared to B and are independent of B, so that

Gdb is smaller than the Gallager bound except for small values of b,

b<cy + u, (8.3,10)
For large values of b, Gdb or Gm approaches one-third the limit predicted by
the Gallager bound,

This apparent paradox is easily explained, The Gallager bouﬁd applies
to non-adaptive codes, such as diffuse codes, which are guaranteed to correct
all bursts of length Bm or less, Adaptive codes, such as Gallager codes, can
only correct detected bursts of length Bm or less, Any burst which is not

detected is certain to cause a decoding error,
8,4, Complexity

The three parameters of complexity, N, NT, and N,, may be easily
determined from Fig, 8,2,2, First, from (4,3,19), (8,2,6), and (8,3.7), the

storage requirement N is



76.

N=n, = Bm +2(u+1) = Gm -2(y - 1), (8,4,1)
It follows that

G - 2(y - 1)
N/Gm= = —>1 as B —w®, (8.4.2)

m

The number of tapped shift register stages NT and the number of mod-2
adders NA are both dependent on the choice of convolutional code for the random
mode, Since NT and NA are both minimized if this code is self-orthogonal, we
use this case as a lower bound, The decoder contains two shift registers, each
with at least J + 1 tap locations, Thus,

Np > 2J +2, (8.4,3)

Similarly, the decoder contains at least one mod-2 adder with J + 2 inputs

and one with two inputs, so that

Ny 2@ +1) +1=0J+2, (8,4,4)
8,5. Performance

We consider the probability of a decoding error given that a burst
has occurred, P(E | burst), where
P(E | burst) = P(E| no F) P(no F) + P(E| F) P(F), (8.5.1)
P(F) is the probability of failure; i,e,, the probability that the burst is
neither corrected nor detected by the random mode, P(no F) is the probability
that there is no failure, so that
P(no F) = 1 - P(F), (8.5.2)

P(E| F) is the probability of a decoding error given a failure by the random

mode, Since a burst which is not detected is certain to cause a decoding error,

P(E|F) =1, (8.5.3)

P(E | no F) is the probability of a decoding error when the burst is detected

Y
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and is therefore analogous to the probability P(E | burst) of a non~adaptive
code, It follows that for an adaptive code,

P(E | burst) = P(E| no F)[1 - P(F)] + P(F), (8.5,4)
Thus, the probability of decoding error is bounded away from zero by the proba-
bility P(F).

If the convolutional code of the random mode has error detecting

capability, we know that P(F) is given by an equation analogous to (4,3,34),
Since, in the channel burst mode, errors are produced with probability Qs We

have

J=t n ng~J
o E 31 o E
P(F) ~ 1 jEO (j )a® (1-aq)) . (8.5.5)

P(F) may be decreased by increasing J, decreasing t, and decreasing n_, How-

ever, J and np are related by (8.2,3),

2+%J +1,

np > 4J
The probability P(E | no F) is primarily the probability of a random

error in the guard space, Analogous to (6,4,4) and (7.6.1),

G
P(E|no F) g1 - (1-p) (8.5.6)

If the effects of robustness and error propagation are approximately equal and

opposite, then

G
P(E|no F) w1 = (1 - p) 0, (8.5.7)

A secondary criterion of performance is the probability of a decoding
error in the channel random mode, P(E | random), where
P(E | random) = P(E| no A) P(no A) + P(E| A) P(a), (8,5,8)
P(A) is the probability of false alarm; i,e,, the probability that the decoder

switches to its burst mode while the chammel is acting in its random mode,
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P(no A) is the probability of no false alarm, so that
P(no A) =1 - P(4), (8.5.9)
P(E| A) is the probability of a decoding error given a false alarm by the
burst detector, and P(E | no A) is the probability of a decoding error when no
false alarm occurs,
There can be a false alarm only if between t and J - t of the J
composite parity~checks have value 1 while the chamnel is in its random mode,

Thus, P(A) is lower-bounded by the probability of between t and J -~ t random
errors among np noise bits,
Jd=t

p(A) (Bypd (1-p)E (8.5.10)
< jft j ) Po - Po . .5.

If the decoder is in its burst mode due to a false alarm, we assume that decod-
ing errors occur primarily because of random errors in the guard space of

length Gy , Thus, from (8.5,7),

Gap
P(E | A) e P(E l no F) ~ 1 - (1 - Po) . (8.5.11)

If there is no false alarm, then a decoding error can occur only if there are

at least J = t + 1 random errors among ng noise bits,

J-t n . n-j
P(Elno A) <1 - ¢ (jE) poJ (1 -p,) B, (8.5.12)
j=0

Sullivan [25] has developed a generalization of the Gallager codes
which features improved performance by being very tolerant of random errors in
the channel guard space, Sullivan's scheme employs a convolutional code within
a convolutional code, The outermost code is used as the random mode of the
Gallager code, while the innermost code is used to correct random errors in the

channel guard space before they can affect the decoder guard space of the



Gallager code, A somewhat similar scheme for extending or generalizing all

burst correcting codes is described in Chapter 10,

79,
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9, TONG BURST-TRAPPING CODES

9.1, Introduction

In this chapter, we shall describe the structure, complexity, and
performance of an adaptive burst correcting technique discovered by Tong [26],
called a burst-trapping code, The random mode of a burst-trapping code is a
systematic (n,k) parity-check code, while the burst mode is provided by an
extension of the block code,

Section 9,2, describes the structure and decoding procedures of a
burst-trapping code, Section 9,3, calculates and discusses the guard space
requirement of the code, Section 9,4, determines the decoder complexity, and

Section 9,5, develops expressions for the performance of the code,

9,2, Structure

Burst~trapping codes are fairly straightforward extensions of the
systematic (n,k) parity-check codes which provide their random mode, They
have rate Ro such that

R =-§ ~x=1 , X an integer, (9.2.1)
and they have burst correcting capability Bm such that

B, =B, =, v an integer, (9.2.2)

The block code of the random mode has minimum distance d and error

correcting capability t,

t<| 253, (9.2.3)
The particular choice of t is a trade-off between the random error correcting
capability and the error detecting capability required of the code,

To show how the burst-trapping code is obtained from the block code,
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we note that the block code has 2X codewords ij,

P, 4, ., ), (9.2,4)

Since the block code is systematic, each message sequence g‘j is given by

w =, ., m) = (), L, ), (9.2.5)
However, from (9,2,1), it follows that

k=(x=-1)(n-%), n=x(n- k), (9.2,6)
so that _ngj may be divided into x - 1 segments of length n - k, Each such seg-

ment, _IL::-L’, i=1,2, ,,.9 X=1, is called an information sub-block, and

Ej = C‘Eg’ _I.%" (A RX) l;jc_l)Q (9-2-?)

_:!:_,jJ_ = (tgn-k)(i-1)+1’ save t%n-k)i)' (9-2'8)

In addition, the n -~ k parity bits of _t_,j may be represented by a sequence _lfj,
called the parity sub=-block, Thus,

Pl=(yd ., D), (9.2.9)
and @ P, .., B (9.2.,10)

The basic principle of Tong's burst-trapping scheme is as follows,
Any burst of length Bm or less can affect at most v codewords, _t,j, _t_,j+1, I,
_§j+v-1. Thué, _t:j"'v is unaffected, and if some of the information bits in ‘_h_j
could also be included in _’c_,j'w, then those bits could always be recovered from

at least one of the two codewords, This can in fact be done without altering

the rate Ro of the code simply by adding (mod-2) one of the information sub-

blocks of tJ to the parity sub-block of t3%¥, Specifically, the i'" information

sub-block of tJ is added to the parity sub-block of t3%7, i =1, 2, ,.., x - 1,

The burst-trapping code has codewords _’;‘_J of the form

_Ij = (l{g [ EXK] ;[.}J(__io 23)’ (9'2'11)

bR

A
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[T P Pl - pe AP +;§:(x'1)” (9.2,12)

We shall call this process of substituting the sequence Qj for the parity sub-
block _Pj time-diversification to degree v, Tong [26] calls this process
interleaving to degree v, but this terminology could lead to confusion with
the distinct process of interleaving described in Chapter 6,

For each codeword Ij, the decoder receives a block _Ej,

RY = TV + oY, (9.2,13)
where e‘:l is the binary channel noise sequence of length n, Corresponding to

BJ, there is a minimum distance decodable sequence r such that

=9+l (9.2,14)

Distinguishing received sub-blocks by a left superscript r, we may write

Bj = (rIJ [ R RN ) rl}-);.i, Q.j)Q
l‘J = (rlg, [(EEX] rli_l, rEJ). (9.2.15)

Thus, Ij may be recovered from _I_gj simply by forming the mod-2 sum, from

(9.2,12),

rpd _ 3-v j=2v 3-(x—1)v
P Q + 13 +ors + I 4 (9.2,16)

It is important in (9,2,16) that the information sub-blocks be error-free in
order to maintain the same noise sequence g'j in both _Ijj and _gj, The decoder,
therefore, must store the decoded message sequences of the preceding (x - 1)v
received blocks,

In order to demonstrate fully the decoding procedures of a burst~
trapping code and to show how the decoder is implemented, it is convenient to

use a numerical example,

Example 9,2,1,

The code parameters are x = 3, v = 3, and the block Bj has just been
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received by the decoder, Assume that the decoder is initially in its random
mode and that all previous decoding has been correct,

The decoder, Fig, 9,2.1, contains three shift registers, The first
is part of the minimum distance decoder of the (n,k) parity-check code and,
initially, is used to store the x - 1 information sub-blocks, "I} and 7IJ, of
the received block‘Bj. The second, called the storage register, is used to
store the decoded message sequences of the previous (x - 1)v blocks, This
implies that (x =~ 1)2 v = 12 information sub=blocks are stored, and these
twelve sub-block locations are numbered in the figure, The third shift regis-
ter, called the error-check register, is used to label the (x - 1)v message
sequences in the storage register as either presumably correct or definitely
unreliable by means of O's and 1's respectively, As we shall see, it is the
state of the error-check register that controls the mode of the decoder, The
(x = 1)v = 6 stages of the error-check register are numbered in the figure,
Because previous decoding has béen correct, the error-check register is ini-
tially in the state (0, 0, O, 0, O, 0),

The decoder can operate in its random mode only if the minimum dis-
tance decodable sequence.gj can be recovered from.gj according to (9.2,16),

This requires that the x = 1 decoded message sequences Ej—v’ E;-Zv’
(x=1)v

N
gﬂ‘ be correct, Equivalently, the error-check register stages numbered
Vs 2V, 24,5 (X = 1)v must contain 0's, If any of these stages contains a 1,
then‘_r_j cannot be recovered and the decoder will operate in one of x - 1 burst
modes, one for each of the x = 1 information sub-blocks,

In Fig, 9.2.1, since error-check register stages number 3 and number

6 contain 0's, the decoder operates in the random mode, The sequence‘ga is

recovered from.gj by forming the mod-2 sum

r_Ej - rg-j *lg-B +_I_g-6. (9.2017)
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Figure 9,2,1 : Decoder for a Rate 2/3 Burst-Trapping Code: Random Mode,
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This is accomplished by adding rg_j, taken directly from the channel, to the

contents of storage register sub-block locations number 6 and number 11, The

result YPJ is stored in the minimum distance decoder along with r;f and r;g.
If the minimum distance decoder decides that _1_'j contains t or fewer

errors, it makes the necessary corrections to the information bits, Otherwise

a burst is detected in the jth block, Then the decoder shifts _I_ij-é and _I_g-s
out of the storage register to the source decoder, shifts _I_f and _I_g (or rlg‘

‘and r;g'> into the storage register, right-shifts the error-check register,
inserting a O (or a2 1) in stage number 1, and accepts the next block §j+1.

The decoder operates in the random mode unless a 1 appears in any
one of the error-check register stages mumbered v, 2v, ,,,, (x = 1)v, In
particular, a 1 in stage number iv results in decoder operation in a burst
mode such as to correct the ith information sub-block, i =1, 2, ,,,, x -1,

Suppose, for example, that a burst is detected in _.'gj. Then a 1 first
appears in stage number 3 when _Ej+3; i,e,, Ej'W, is received by the decoder,
This is shown in Fig, 9,2,2, _Bj+3 is assumed to be part of a clean guard space
of the burst in R, so that

RI¥3 _ pJ43 _ @3, B, o9, (9.2,18)

Since the information sub-blocks are known, the decoder attempts to recover

_Z_[_g. Analogous to (9.2,12),

1 2 @3B 4 pIB L I (9.2,19)

The decoder calculates 25*3 from _I_g'-ﬁ and lg"a by using a replica of the
encoder of the (n,k) parity-check code, It adds PI*2 to 933, taken directly
from the chamnel, and to the contents of storage register sub-block location
number 11, The result _I_f is used to replace rlf in sub-block location number 6,

A 1 first appears in error-check register stage number 6 when Ej"é,

- g
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or Bj+2v’ is received by the decoder, At the same time, stage number 3 must
contain a 0 since §J+3, or _1_23+v, is part of the clean guard space, This is
shown in Fig, 9.2.3. _133"6 is also assumed to be part of the clean guard space

of the burst in _I_lj. Thus, the decoder attempts to recover ;g from

I = @3 4 pI6 13, (9.2.20)

_133'*6 is obtained from the parity-check encoder replica, Q_j"é is taken directly

from the channel, and l'2+3 is taken from sub-block location number 6, _Zgg
replaces rlg in sub=block location number 11 and the message sequence g‘j is

completely recovered,
9,3. Guard Space Requirement

The guard space requirement of a burst-trapping code may be deter-
mined by generalizing Example 9,2,1,, If a burst is detected in some arbitrary
block _I_ij, then the clean guard space must include only the x = 1 succeeding '
blocks RIFV, RI¥Y, | . rI*(®1)V  q¢ 36, for each block in the burst, the
guard space contains x - 1 blocks at intervals of v blocks, Thus, analogous
to the Gallager codes of Chapter 8, the guard space does not necessarily span
consecutive blocks and its total length is prdportional only to the length of
the actual burst, not to the length of the longest correctable burst Bm'

If a burst affects y blocks, y < v, then the decoder guard space G dy
contains (x - 1)y clean blocks,

Gdy =(x=1Dyn,y=1, 2, 1.,y Vs (9.3.1)

Because G dy is proportional to yn, the guard space is called adaptive, The
corresponding adaptive chammel guard space ch is

ch = Gdy,l (9.3-2)
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If y = v, then

Gdy = Gm = (x - 1)vn = (x - 1) Bm, (9.3:3)
=G =G = (x - .
oy = Gc = Gy = (x - 1) B, (9.3.%)
Since the burst-trapping code has rate R = x- 1'/ x> the Gallager

bound on guard space requirement is

Gdy-?%—}% yn = (2x - 1)yn, (9.3.5)

From (9,3,1), the burst-trapping code has guard space requirement between

one-half and one~third that predicted by the Gallager bound,
9,4, Complexity

The parameters of decoder complexity, N, NT, and N p» are easily
determined from Figs, 9.2,1, 9,2,2, and 9,2,3, In the decoder, the minimum -
distance decodgr, or encoder replica, contains n stages, the storage register
contains (x - 1)2 v (n - k) or (x - 1)vk stages, and the error-check register
contains (x - 1)v stages, The storage requirement N is therefore given by

N=(x-1)v(k +1) +n, : (9.4,1)
From (9,3,3) it follows that

Njg, = Z=fivlesd) +n (9.4.2)

If the (n,k) parity-check code is to be effective in detecting bursts, it must
have a large minimum distance 4, This implies that n - k must be large,

n-kx>1,n>k +1, (9.4,3)

Thus, N/Gm—-> k ; Lo1 as B —>w, o (9.8,4)

To determine the number of tapped shift register stages NT and the
number of mod-2 adders N e We note that the decoder forms sums analogous to

(9.2,12),
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3 pd v . ju(x=1)v
9, —2 +‘li + s +_1:,x_1 »

The sequence Qj is always fed to an array of mod-2 adders directly from the
channel, The remaining x sequences, however, are always fed directly from,

or to, tapped stages of shift register., Since each sequence occupies n - k
stages, and since the same x sub-block locations are used in forming every sum,
we have

NT = x(n - k) =N, (9:’4‘»5)

If we consider the summations to be performed by an array of n - k mod-2 adders

with x inputs, then

NA. - (n - k)(x - 1) = k, (9:“’-6)
9,5. Performance

To determine the probability of a decoding error given that a burst
has occurred, P(E | burst), we know from (8,5,4) that for an adaptive code,
P(E | burst) = P(E| no F)[1 - P(F)] + P(F), (9.5.1)
The probability of failure P(F) is defined by the parameters of the (n,k)
parity-check code, From (3,3,10), (3,3.11), and (3,3.12), since chamnel errors

occur in the burst mode with probability 9y

P(F) = P, P

N’

P - 2k--n

¢ = ™,

%Md‘ o

d=t~1 n s _
Pd = 1 - Z (-) qoa (1 - qo) Jn (9-5-2)
j=0 9
The probability of a decoding error given that the burst is detected, P(E| no F),
is primarily the probability of a random error in the guard space, Burst-

trapping codes, though, are not robust since the decoder assumes that all
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received bloecks in the guard space are error-free and takes no steps to check

the validity of this assumption, Thus, analogous to (8,5.7),

P(E|lno F) 1 - (1 = P, ) dy (9.5.3)

The probability of a decoding error in the channel random mode is
given by (8,5,8) and (8,5,9),

P(E | random) = P(E | no A)[1 - P(A)] + P(E | 4) P(4), (9,5.4)
A false alarm occurs when the received sequence is distance between t + 1 and
d -t -1 from the transmitted codeword, given that the channel is in its
random mode, Thus, the probability P(A) of false alarm is approximately the

probability of a noise sequence with weight between t + 1 and d - ¢ - 1,

d-t~1 _
PA)~ £ (%) p, 3 (- p )" 3, (9.5.5)
jet+t Y

Analogous to (8,5,11) and (9,5,3),

G
P(E|A) x P(E|no F) » 1 - (1 - p) 4, (9.5.6)

Given no false alarm, a decoding error can occur only if the noise sequence

has weight at least 4 - t, Thus,
d-t-1 n . -
P(Elnoa) =1- 3= (pd (t-p)J, (9.5.7)
3520 j’ o o
Because the decoder of a burst-trapping code contains feedback, the
possibility of error propagation exists, Tong [26] shows that if a decoding

error occurs, then error propagation is limited to W blocks,

We (x=1)v +|_§-2t_'”_xv, | (9.5.8)

provided these W blocks are error-free, However, the probability that propa-
eztion would continue to the limit of (9,5,8) is very small if d - t is large,

The fact that burst-trapping codes are not robust is of no great
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importance on compound channels where random errors are extremely rare, On
channels where this is not true, measures must be taken to correct errors in
the channel guard space before they can affect the decoder guard space, Burton,
Sullivan, and Tong [27] have proposed a scheme, called generalized burst-
trapping codes, which has this capability, The principle is similar to the

generalized Gallager codes of Sullivan [25] and to the codes of Chapter 10,
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10, COMPOUND-CONCATENATED SYSTEMS

10.1, Introduction

In this chapter, we describe a2 method for improving the performance
of burst correcting codes when the compound channel exhibits noisy guard spaces
between bursts, The method, which we call a compound-concatenated system,
utilizes a random error correcting code concatenated [287) with a burst correc-
ting code, The purpose of the random error correcting code is to control
errors in the channel guard space before they can affect the decoder guard
space of the burst correcting code,

Section 10,2, defines concatenated codes and explains how the error
correcting code of a compound-concatenated system controls channel guard space
errors, Sections 10,3, and 10,4, discuss the structure of compound-concatenated
systems and calculate the guard space requirement when the error correcting
code is either a block code or a convolutional code, Section 10,5, determines
the complexity of compound-concatenated systems in comparison with that of
burst correcting codes alone, Sections 10,6, and 10,7, derive expressions for

the performance of compound-concatenated systems,

10,2, Concatenated Codes

We shall describe the principle of concatenated codes, introduced
by Forney [28], and then develop more fully the concept of a compound-conca-
tenated system,

Suppose that code X with rate RX is used to transmit information
over some arbitrary channel. Then the system described by encoder X-channel-
decoder X may be considered to be a "superchannel,” Depending upon the correc-

ting capabilities of code X, the "superchannel" has a relatively clean output,
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only a fraction RX of which consists of information digits, If code Y with
rate RY is used to transmit information over the "superchannel," then code Y
is said to be concatenated with code X, Fig, 10,2.,1,

The overall rate RS of the system of concatenated codes is

R, = Ry Ry < Ry, Ry (10,2,1)

Thus, the system has a rate lower than that of either code alone, However, if
code X, called the inner code, and code Y, called the outsr code, are chosen
to correct sufficiently different classes of error patterns, then many errors
not corrected by one code will be corrected by the other, It follows that the
performance of the concatenated system, in terms of the probability of a deco-
ding error, is superior to that of either code alone,

In a compound-concatenated system, the inner code is a random error
correcting code, either a minimum distance deco&able (n,k) parity-check code
or a feedback decodable convolutional code, When the compound channel is in
its random mode, the inner code is designed to decode correctly with very high
probability, so that the output of the "superchannel"™ is very clean, When the
channel is in its burst mode, the inmer code is ineffective and the output of
the "superchannel" is a burst of decoding errors, The length of the burst of

decoding errors is related to the length of the channel burst by the properties

of the inner code,

The outer code of a compound-concatenated system is a burst correcting

code such as those described in Chapters 6, 7, 8, and 9, The input to the
outer decoder is simply the output of the "“superchamnel," Thus, the burst
correcting capability of the outer code is determined by the maximum length of
the burst of decoding errors, In addition, guard spaces at the outer decoder

are very clean despite the fact that guard spaces in the channel may be quite
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noisy, Thus, the performance of the outer code is improved over that of the
same code used alone on the compound chamnel,

The remainder of this chapter describes the structure, complexity,
and performance of compound-concatenated systems for both classes of inmer

code, As far as is known, this material is new with this thesis,
10,3, Imner Block Code: Structure and Guard Space Requirement

The inner (n,k) parity-check code has minimum distance d and error
correcting capability t, OSince the sole purpose of the inner code is to correct

channel guard space errors, we choose t a maximum,

¢ =954, (10,3,1)
On the compound channel, bursts very rarely exceed length Bc, where

B, = fn , f an integer, (10,3,2)

Since the imner decoder decodes each received block independently of all
others, a burst of decoding errors camnot affect more blocks than the channel
burst itéelf. Also, for each block, the output of the inner decoder consists
.only of the k decoded information bits in that block, It follows that the

burst correcting capability Bm of the outer code need only be

. .
B, =fk = B_, , (10.3.3)

In general, the outer code has burst correcting capability Bm
relative to a clean guard space Gm; where
Gm = h Bm- (10.3.4)
The factor h is easily determined from the parameters of the outer code, From
(10,3,3), the guard space requirement of the outer decoder is

G =hB = hfk, (10,3.5)
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Although hfk is an integer, hf need not be, Thus, the guard space Gc in the
channel spans | hf] blocks,

Gc = rhfln ~ h Bc. (100316)
It follows that
k
Gm x5 Gc' - (10,3.7)

10,4, Inner Convolutional Code: Structure and Guard Space Requirement

The inner convolutional code may in theory have any rate k/n. In

previous chapters, however, we have restricted our consideration to rate %
codes, the simplest though most important case, so we shall do sc again, The
code~generating polynomial GZ(D) has maximum degree u with J nonzero coeffi=

cients, the code constraint length is n,, the effective length is Ngy and the

error correcting capability t is a maximum,

t = LJ/ZJ . (10,4,1)

Chamnel bursts very rarely exceed length Bc, where

B, = sn, , S an integer, (10,4,2)

During a chamnel burst, the inner feedback decoder will almost certainly propa-
gate errors, By choosing a self-orthogonal convolutional code, this propagation

is limited to wn, digits, given by (4,3.27) and (4,3,28),
wn, < (n, - n)x +2n,, (10,4.3)
where x is the least integer for which
(w3 +EEDH T3 H + &3
and where y = FJ/é] + 1, This requires that the chammel burst be followed by

wn, clean digits; i,e,, if the first wn, digits in the guard space following

the burst are not all error-free, then error propagation is not guaranteed to
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be limited as in (10,4,3),

Because compound-concatenated systems are especially intended for
compound channels with noisy guard spaces, the probability that all digits in
a sequence of length wn, will be error-free is not satisfactorily high, How-
ever, the probability PR of an error-free run of length wn, or greater anywhere

in a sequence of length W, where W 2>wn,, is an increasing function of W, Feller

[llé‘] shows that

K
Ppnl- :T/J—-q-—l- , (10,4,5)
1-(1- po)c
Where K = ( - 1 ) v (10-“"6)
wn, + & = wn,elp,
cal +po(1 - po) + (wnA + 1)[p°(1 - po) T (10.4,7)

Error propagation can be limited to W digits simply by allowing the
run of wn, error-free digits to occur anywhere within the W guard space digits
immediately following the channel burst, The probability that this 1imit will
not be exceeded is at least PR, and PR can be made arbitrarily close to one
by increasing W, From (10,4,5), .

log(K) - log(l - PR)
W = log(c) - 1. (10,’4‘.8)

Since the output of the inner decoder consists only of the decoded
information digits, the burst correcting capability Bm of the outer code need

only be

Bm = %‘(SnA + W) = %(Bc + W), (10.4,9)

From (10,3,4), the guard space requirement Gm at the outer decoder is

Gm=th=

(V) [=3

(B, + W), (10.4,10)

This corresponds to a.guard space in the channel of length h(Bc + W), Thus,
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the total channel guard space Gc is

G, =W+ h(Bc +W) =h B, + (h + 1)w, (10,4,11)
It follows that
Y -
Gm = 2(Gc W), (10,4,12)

10,5, Comparative Complexities

For any particular compound chamnel on which bursts very rarely
exceed length Bc’ we consider three systems which can be used to control errors,
One is a burst correcting code alone, another is a burst correcting code concat-
enated with a block code, and the last is a burst correcting code concatenated
with a convolutienal code, If the same class and rate of burst correcting code
is used in all three cases, then the last two systems have lower rate than the
first, but we would expect them to have better performance in return, The three
systems can also be compared with respect to the complexity of their decoders,
Using storage requirement N as the criterion, we shall make this comparison for
interleaved block codes, diffuse codes, Gallager codes, and burst-trapping codes,
The left superscripts "1" and "2" will refer to compound-concatenated systems

with inner block codes and immer convolutional codes respectively,

10,5,a2, Interleaved Block Codes

From (6,3.1), the storage requirement of an interleaved block code is
N=B_ +G0, (10,5.1)

When the code is used alone, we know from (6,2,1) and (6,2,5) that Bm = Bc and

G =G, It follows that
m c

N 4 Bc + Gcn (10l5|2)

Also, if Gm =h Bm’ then Gc =h Bc'
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When the code is concatenated with a block code, then from (10,3,3)
and (10,3,7),

1 1
1 k1 1 k1
Bm = 1 ( Bc) 9 Gm ~ 1 ( Gc)n (10-533)
n n
Because the compound channel is the same,
1 &B (10.5.,4)
c N c? s e
and because 1Gc ~ h 1Bc from (10,3,6),
% ~6 (10,5.5)
c ~ cl ] L]
It follows that
1 1
1y . -k -k
N ~ 1n(Bc + Gc) = 1n(N)- (10:5-6)

When the code is concatenated with a convolutional code, then from

(10,4,9) and (10,4,12),

s =48 +w) , %6_=3Cc_ - W), (10.5.7)

Again, the channel is the same so that

25

c ~ B » (10l5l8)

c

However, 2Gc =h 2Bc + (h + 1)W from (10,4,11), so that

2

G, » G, + (h + 1)W, (10,5.9)

It follows that

N n 4B, + G, + (h + 1)W] = 310 + 2FL w, (10,5.10)

Although the complexities of the immer block decoder and the inner
feedback decoder are not included in the above calculations, (10,5,6) and
(10,5,10) show that the complexity of a compound-concatenated system can very

well be less than the complexity of the burst correcting code alone,

A
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Because Bm = Bc and Gm = Gc for all the burst correcting codes that
we consider, all expressions derived above relating these four parameters are

valid throughout this section.

10,5,b, Diffuse Codes

From (7,4,1), the storage requirement of a diffuse code is
N =Gm + 2, (10-5-11)
Thus, when the code is used alone,
N =G, +2, (10.5,12)

When the code is concatenated with a block code,

1 1
Iy o $HG) +2 = 75N - 2) +2, (10,5,13)
n n

When the code is concatenated with a convolutional code,
N 3(G_ +hW) +2 = (N + BN) +1, (10,5,1%)

10.5.,c, Gallager Codes

From (8,4,1), the storage requirement of a Gallager code is

N = Gm - 2(y - 1), (10-5-15)

where y is the number of consecutive zero-valued syndrome bits required to
switch the decoder from the burst mode to the random mode, Thus, when the code
is used alone,

N = Gc -2(y - 1). (10,5,16)

When the code is concatenated with a block code,

1y Ek(G) 2(y - 1) -151\1 2(y = 1)7 - 2(y - 1) (10,5.17)
Nln e - y - =1n[ + y - ]“' v » -5-

When the code is concatenated with a convolutional code,
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2N x $(G, +hW) - 2(y = 1) = $(N + bW) - (v - 1), (10,5.18)

10,5,d4, Burst-Trapping Codes

From (9,4,1) and (9,4,2), the storage requirement of a burst-trapping

code is

k +1

N==-"=0G, +n, (10,5,19)

where the code is obtained from an (n,k) systematic parity-check code, Thus,

when the code is used alone,

k +1
N =3-=G_ +n, (10,5,20)

When the code is concatenated with a block code,

1 i
1 k +1 "k k
N ~ n 1n(Gc) +nNn = 1n(N - n) +n, (1035-21)

When the code is concatenated with a convolutional code,

2 k + 1

N o k +1
n

n

%(Gc +hW) +n =3(N +n +

hwW), (10,5.22)
10,6, Imner Block Code: Performance

The criterion of performance of a compound-concatenated system is
the probability of a decoding error given that a channel burst has occurred,
P(E | burst), From (8,5,4),

P(E | burst) = P(E | no F)[1 = P(F)] + P(F), (10,6.1)
If the outer burst correcting code is non-adaptive, then the probability of
failure P(F) is zero., The probability of a decoding error given that the burst
is detected, P(E | no F), is primarily the probability of an error in the guard
space of the outer decoder,

The compound channel model produces independent errors in the random

mode with probability P, and in the burst mode with probability q,° In the
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random mode, the inner block decoder commits decoding errors with probability

Py, given approximately by (3,3.8),

t . R
ppaxl- 5 (1) pd(1-p)Y, (10,6,2)
1 520 j’ Yo o

Similarly in the burst mode, the imner block decoder commits decnding errors

with probability Qs where

t . .
n 3 n-j
9 ~1- jzo (5) 95" (1 =g )", (10,6.3)

Because t is chosen as large as possible and because Py is small, it is generally
true that

' Py << P, (10,6.4)

However, qq may be either larger than or smaller than 9. Although in actual
fact a decoding error at the inner decoder results in a cluster of errors at
its output, we may say roughly that on the average the "superchannel" produces
independent errors in the random mode with probability Py and in the burst mode
with probability Q. These, then, are the parameters used in determining P(F)
when the outer code is adaptive,

To find P(E| no F), we must find the probability of an error in the
decoder guard space, or, equivalently, the probability of a decoding error in
the channel guard space, From (10,3,6), the channel guard space spans [ hf|
blocks, each of which is decoded independently, Since the probability of a

decoding error in any one block is Py» P(E|no F) is given by

P(E[no F) g 1 - (1 - p) P, (10.6.5)

The inequality exists because, in general, the outer code may be robust,
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10,7, Inner Convolutional Code: Performance

In the random mode of the compound chammel, the inner feedback

decoder commits decoding errors with probability Py, given approximately by
(4,3.29),

-
-

t n J
E

. n
J (1 -
RPN P, ( P,)

(10.7.1)

Similarly in the burst mode, the inmer decoder commits decoding errors with

probability % where

t

n . Ne=3
E 3 E
~1l- . 1 - . 10,7.,2
1, EAVEERRCEEN (10,7.2)
It is generally true that
Pz << po’ (10-7-3)

but q, may be larger than or smaller than Qe We again consider that P, and a4
approximately represent independent error probabilities of the "superchamnel,”
so that these parameters are used in determining P(F) if the outer code is
adaptive,

P(E| no F) is again primarily the probability of an error in the
decoder guard space, and we can say that

P(E[no F) < (1 =~ B) +P_, (10,7.4)

From (10,4,5), Pp is the probability of a run of wn, error-free digits in the
first W digits of the channel guard space, Thus, 1 - PR is the limiting proba-
bility that a channel burst is propagated by the feedback decoder beyond the
burst correcting capability of the outer code, Pe is the probability of a
decoding error in the last h(Bc + W) digits of the channel guard space Gc, where

from (10,4,11),

G, = W +h(B, + W), (10.7.5)
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In decoding any one noise bit, the inner feedback decoder checks ng
distinct noise bits, In decoding a second noise bit, the effective length may
contain some noise bits in common with the first, Thus, decoding is not inde-~
pendent in blocks of length ng as it would be in a block decoder, However,

because random errors in the chamnnel guard space are relatively rare, a calcu-

lation for Pe based on the assumption that decoding is independent in blocks of

ngp noise bits gives a result that is approximately correct.

If all the parameters of the system are known, it is easy to calculate

the quantity g such that
. h(Bc + W)
E
The guard space can then be segmented into g distinct and independent blocks of
length ng. The probability of a decoding error in any one such block is Py SO
that Pe is given by -

g
Pe ~ 1 - (1 - pz) . (1007-7)

By increasing W sufficiently, PR can be made so close to one that
1-PpxP, (10,7,8)

In this case, then,

P(E|no F) » 1 - (1 - p,)5, (10,7.9)

.



106,

11, GUARD=-SPACE-ADAPTIVE BURST-TRAPPING CODES

11,1, TIntroduction

In this chapter, we shall describe the structure, complexity, and
performance of a burst correcting compound-concatenated system which we call a
guard-space-adaptive burst-trapping code, or GSA code, GSA codes are adaptive,
The random mode is provided by the inner code of the compound-concatenated
system, a minimum distance decodable (ni’ki) parity-check code, The burst mode
is provided by the outer code of the system, a modified burst-trapping code
obtained from a systematic (no,ko) parity-check code,

GSA codes are similar to Tong's burst-trapping codes, having an
adaptive guard space requirement proportional to the length of the actual burst,
However, the guard space of a GSA code is immediately adjacent to the burst,
which is not always the case for“burstntrapping codes,

Section 11,2, combines the structure of a compound-concatenated
system, the general principle of a burst-~trapping code, and the regquirements
for an adaptive guard space adjacent to the burst in order to determine the
structure of a GSA code, Section 11,3, defines an optimality criterion for GSA
codes, called minimum effective length, and lists a number of optimal codes for
various rates and burst correcting capabilities, Section 11,4, shows that by
interleaving, GSA codes may have any desired burst correcting capability, and
then outlines the general properties of interleaved GSA codes, Section 11,5,
employs an example to demonstrate the decoding procedures of a GSA code and to
determine the decoder implementation, Section 11,6, discusses the decoder com-
plexity, and Section 11,7, derives expressions for the performance of GSA codes,

As far as is known, the principles of GSA codes and all material in

this chapter are new with this thesis,
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11,2, Structure and Guard Space Requirement

The inner (ni’ki) parity=-check code of the GSA code has minimum dis-
tance d and error correcting capability t, Since it is also the random mode

of the GSA code, it must have some error detecting capability, Thus, t is chosen

less than maximum,

t<[254. (11,2,1)

The outer code is a modified burst~trapping code based upon a syste-

matic (no, ko) parity-check code for which

k
-;19- == ; 1 , X an integer, (11,2,2)
()
and k = (x - 1)(n° - ko) s N, = x(no - ko)' (11,2,3)

Each codeword _§j of the parity-check code may be divided into x - 1 information
sub=~blocks l:'.z, i=1,2, ,.., x~ 1, and one parity sub-block _ljj, where each

sub=block has length n, - ko’

EJ = (EJQ _P_J) = (;[_gg _]_:g’ [ EXEE] l;j(-i’ _P_J)- (11'2."")

Since the outer code provides only the burst mode of the GSA code, it need have
no random error correcting capability or error detecting capability, Thus, it

can be chosen to be the trivial code for which gj is always the null sequence,

P oo, (11,2,5)
Iike a burst-trapping code, the outer code is obtained from the

(no’ko) parity~check code by forming codewords }‘_3 such that

J J ol J J J
E = (.IE ] .9. ) = (;19 XY -I-x-l’ .Q ), (11o2-6)

where od = P 4+ £(D) = £(D). (11,2,7)
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From (9,2,12), for a Tong burst~-trapping code,
_ 1=V j=2v F=(x=1)v
£(I) =1y +Iy ... 414 . (11,2,8)

For a GSA code, f(I) is some mod-2 sum of information sub-blocks which imparts
burst correcting capability to the outer code in such a2 way that the guard space
requirement is both adaptive and immediately adjacent to the burst,

Bursts on the compound channel very rarely exceed length Bc such that

Bc = fni ’

f an integer, (11,2,9)
For each block at the immer decoder, the output consists of the ki decoded
information bits in that block, Since each block is decoded independently, a

burst cannot be propagated, Thus, the burst correcting capability Bm of the

outer code need only be

k.
i
B =fk =-=B8., (11,2,10)
In addition, since the block length at the outer decoder is n,s

Bm = fki = bno, (11,2,11)
where b is an integer such that f/b is an integer,
If a burst at the outer decoder affects y blocks, y =1, 2, ,.., b,
then there are y(x = 1) unreliable information sub-blocks, which we call the
y(x = 1) unknowns, The sequences Qj or £(I) in the codewords of the outer code
are chosen in such a way that the set of y(x - 1) sequences immediately following
the burst constitutes a set of y(x = 1) linearly independent equations in the

y(x = 1) unknowns, In this way, for a burst of length yn s the guard space Goy
at the outer decoder is

f
Goy =_$x - 1)yno - (X - 1)yg ki s ¥ = 1, 2, 2029 b, (11,2,12)

This corresponds to an adaptive guard space Giy spanning (x - 1)yf/b blocks at
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the inner decoder,

f
Giy = (X = 1)y "'6 ni sy ¥ = 1s 29 seey D, (11-2-13)
In the case where y = b,
Goy = Gm - (x - 1)bn° = (x - 1) Bm, (11,2,1’4’)
Giy = Gc = (x - 1)fni = (x - 1) Bc. (11,2.15)

To demonstrate how f(I) is chosen, it is convenient to use a numerical

example,
Example 11.2,1,

The parameters of the system are x = 3, b = 3, The outer code

therefore corrects all detected bursts of length n_, 2n°, and 3n°.

For bursts of length n, a suitable burst correcting code is a Tong

burst-trapping code which is time-diversified to degree v = 1, From (11,2,8),
doe@ =gt (11,2,16)

If we are attempting to correct a burst in the jth block, then the guard space

spans the succeeding y(x - 1) = 2 blocks, for which
j+1 -1
[Sani P D

[ A o (11,2,17)

The two unknowns are recovered from two linearly independent equations,

po RS L (11,2,18)

To obtain a code which can correct bursts of length n and 2n°, we
append x - 1 terms; i,e,, information sub-blocks, to f(I) so that

Q@ or@ =gt o213, (11,2,19)
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The variables ¢ and d are to be determined, They may assume any of the values

0,1, ,.., x -~ 1, where we say that

J_ .
I =0 for all j, (11,2,20)

If a burst affects the blocks j and j + 1, then the guard space spans the
y(x - 1) = 4 succeeding blocks j + 2, ,,,, j + 5., The four unknowns are recovered

from four linearly independent equations,

Al R -

+177 41l

o ardoc- Qi L 1P L %,
j+i - o5 Jabt J+3 Jj+2
I3 =D=20 +I1y + I + I, (11,2,21)

The set of equations (11,2,21) are linearly independent if ¢ = 0, d = 1, so that

2D =0t 4 1d? . (11,2,22)

If bursts can be of length n, 2n°, or 3n°, we again append x - 1
terms to £f(I), Thus,
s j—u

J J-1 132 J=5
' =£1) =1y +I5" +If +I.° +

—-— 1 Ij-én (11-2023)

_d
Solving for ¢ and d such that a set of y(x - 1) = 6 equations in the guard space

are linearly independent, we obtain ¢ = 0, d = 2, Therefore,

_opd=l 132 | o34 36
£ =1 +137° + Iy + 1. (11,2,24)

11,3, Optimal GSA Codes

To find the function f(l) which defines the outer code of a GSA code,

we must solve for the x - 1 subseripts ¢, 4, ,,, a total of b times, where

Bm = bno. (110301)
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Each time we try to solve for these subscripts, there may be no solution, a
unique solution, or several solutions, If at any step there is no solution,
then a GSA code cannot be found, If several solutions exist, one or more of
them may be optimal,

The number of terms in the function f(I) is called the effective
length lE of the GSA code, We say that the code is optimal if it has minimum
effective length for, as we shall see in Section 11,6,, minimizing the effective

length minimizes the decoder complexity,

To determine the minimmm effective length of a GSA code, we observe

that f(I) has the general form

b i .
£(z) = 5 [pr-DG-L-1 3 G-DGe1-2 o 3y (11,3,2)
y=1
We say that the x - 1 terms T~ (-1 (x-1)-1 = 13=y(x-1) [ ctitute the y™P

partition of the function f(I), y = 1, 2, ,,., b, Some of these x - 1 terms

may be of the form ;g: i,e,, may be null sequences, and we minimize 1E if we

maximize the number of null sequences in f(I), In order that the set of b(x - 1)

equations in b(x - 1) unknowns be linearly independent, and in order that all

detected bursts of length bno or less be corrected, the following conditions on

£(I) must be met:

(a) A1l x - 1 terms in the first partition must have different subscripts and
no term may be a null sequence,

(b) At least one term in each of the remaining b - 1 partitions may not be a

null sequence,

(¢) No term in the yth partition may be a null sequence in a consecutive run

of y or more null sequences,
We say arbitrarily that the last term, T9"V(*1) sn the y™ parti-

tion may not be a null sequence, Then, if y > x - 2, the remaining x - 2 terms
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in the partition may all be null sequences, If y <« x - 2, then at 1eastl_x ; %J

of these x -« 2 terms may not be null segquences, It follows that

K
1,>(x=1) +(b=-1) + ¢ |%2
G- D L :

. y_z

In Table 11,3.1, we list all the optimal GSA codes found by the
method of Example 11,2,1, for different values of x and b, For convenience,
we have employed the notation
. _ TJ~u
(1,u) = 137, (11.3.%)

Note that no GSA codes were found to exist for b > 4,

11,4, Interleaved GSA Codes

GSA codes may be interleaved to any degree r so that their burst

correcting capability Bm may be arbitrarily long,

B = Tk, = ron  , b = 1, ...y &, r an integer, (11,4,1)

GSA codes can correct bursts of b different lengths, N, 2N, 1aos bno, according
to b different algorithms, Interleaved GSA codes are therefore restricted to b
decoding algorithms, so that all bursts of length r(y - 1)no + N5 »ses TYN

are decoded according to the algorithm for bursts of length s ¥ = 1, 2, ..., b,

The decoder guard space requirement for any such burst is, from (11,2,12),
f
Goy = (x - 1)ryno = (x - 1)3"5' ki » ¥y =1%4,2, ..., b, (11,4,2)
The function f(I) for an interleaved GSA code has the general form

£(I) = bl E_j'(Y‘i)(x-i)r—r

P S Satis (11,4,3)
y—
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=llp |y, £(1)
2/3{1(2 | (1,1) ‘+ (2,2)
2/312(3 | (1,1) + (2,2) + (1,4)
2/3 (314 | (1,1) +(2,2) + (1,4) + (2,6)
2/3 |45 | (1,1) +(2,2) + (1,4) + (2,6) + (2,8)
3/ 1103 | (4,1) + (2,2) +(3,3)
/8125 | (4,1) +(2,2) + (3,3) + (3,5) + (1,6)
(1,1) +(2,2) +(3,3) + (1,4) + (3,6)
(4,1) + (2,2) + (3,3) + (2,4) + (1,6)
(1,1) +(2,2) 4+ (3,3) + (3,4) + (1,6)
3/ 1316 | (1,1) +(2,2) + (3,3) + (3,5) + (1,6) + (2,9)
(1,1) + (2,2) + (3,3) + (2,8) + (1,6) + (2,9)
(1,1) +(2,2) + (3,3) + (3,4) + (1,6) + (2,9)
34 | 517 | (1,1) +(2,2) +(3,3) + (3,5) + (1,6) + (2,9) + (1,12)
(1,1) + (2,2) + (3,3) + (3,4) + (1,6) + (2,9) + (3,12)
b5 1114 | (1,1) +(2,2) +(3,3) + (4,4)
451216 | (1,1) +(2,2) +(3,3) + (4,4) 4 (1,6) + (3,8)
(1,1) +(2,2) + (3,3) + (4,4) + (3,6) + (1,8)
451318 | (1,1) +(2,2) +(3,3) + (4,8) + (1,6) + (3,8) + (1,11) + (2,12)

(1,1) +(2,2) + (3,3) + (4,4) 4 (1,6) + (3,8) + (2,11) + (1,12)
(L,1) +(2,2) + (3,3) + (B,4) +(3,6) + (1,8) 4 (1,11) 4+ (2,12)
(1,1) +(2,2) + (3,3) + (4,4) 4+ (3,6) + (1,8) + (2,11) 4+ (4,12)
(1,1) +(2,2) + (3,3) + (4,4) 4+ (3,6) + (1,8) + (3,11) + (2,12)
(1,1) 4+ (2,2) + (3,3) + (5,8) + (3,6) + (1,8) + (4,10) + (2,12)

Table 11,3,1 (continued on page 114)
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4 ¥
[ury

£(1)

4/5

45

(1,1) +(2,2) +(3,3) + (3,4) + (3,6) + (1,8) + (1,9) + (2,12)

(1,1) +(2,2) +(3,3) + (4,4) + (3,6) + (1,8) + (3,9) + (2,12)

(1,1) +(2,2) + (3,3) + (3,4) + (3,6) + (1,8) + (4,9) + (2,12)

(1,1) +(2,2) +(3,3) + (3,4) + (1,6) + (3,8) + (1,11) + (2,12)
+ (1,16)

(1,1) 4+ (2,2) +(3,3) + (4,4) + (1,6) + (3,8) + (2,11) + (1,12)
+ (2,16) |

(1,1) + (2,2) + (3,3) + (8,4) 4+ (3,6) + (1,8) + (1,11) + (2,12)
+ (3,16)

(1,1) +(2,2) +(3,3) + (4,4) + (3,6) + (1,8) + (3,11) + (2,12)
+ (3,16)

(1,1) +(2,2) +(3,3) + (4,4) + (3,6) + (1,8) + (4,10) + (2,12)
+ (3,16)

(1,1) +(2,2) +(3,3) + (4,84) + (3,6) + (1,8) + (1,9) + (2,12)
+ (3,16)

(1,1) +(2,2) +(3,3) + (4,4) + (3,6) + (1,8) + (1,9) + (2,12)
+ (4,16)

(1,1) +(2,2) 4+ (3,3) + (3,4) 4 (3,6) + (1,8) 4+ (3,9) + (2,12)
+ (3,16)

(1,1) +(2,2) +(3,3) + (4,8) + (3,6) + (1,8) + (4,9) + (2,12)
+ (3,16)

Table 11,3.1
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11,5, Decoding Procedures

For every block of length ny in the compound channel, the inner
minimum distance decoder of the GSA code passes on ki decoded information bits
to the outer decoder, These ki bits contain errors either if a burst was detec-~

ted or if a decoding error was committed in attempting to make a correction,

From (11,4.1),

£ .
n, =35k » 75 an integer, (11,5,1)

so f/rb groups of these ki decoded bits constitute one block of length n at

the outer decoder, The outer code has codewords‘zj, so that the received block

is denoted Ej,

B =19 40, (11.5.2)
where‘gj is the error pattern passed on from the inner decoder,
To demonstrate fully the decoding procedures of the outer code and

to show how the decoder is implemented, it is convenient to use a numerical

example,

Example 11,5,1,
The parameters of the outer code are x = 3, b =3, r =1, From
Table 11,3,1, an optimal code is given by

21 = o) = 1t w1 I . I, (11,5.3)

which is the code derived in Example 11,2,1,, This code has codewords of the

form
o=, 1 . (11,5,4)

Assume that the block 53 has just been received and that all previous decoding

has been correct,
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The outer decoder, Fig, 11,5,1, contains four shift registers, The
first is used to store the received block g@. The second, called the storage
register, is used to store the decoded message sequences of the previous
r(bx - 1) blocks, This means that r(bx - 1)(x - 1) = 16 information sub-blocks
are stored, these sub-block locations being numbered in the figure, The third
shift register, called the error~check register, is used to label the received
block and the r(bx - 1) stored message sequences as either presumably correct
or definitely unreliable by means of 0's and 1's respectively, A digit is
placed in the first stage by the inner decoder according to whether or not a
burst was detected somewhere in the block Ej. The state of the error-check
register, whose r(bx - 1) + 1 = 9 stages are numbered in the figure, controls
the mode of the decoder, Because previous decoding has been correct, the last
eight stages of the register initially contain 0's, The fourth shift register,
called the computation register, is used to store the mod-2 sums A, B, C, ...
of (11,2,18) and (11,2,21), These are the sums of the known quantities in the
set of linearly independent simultaneous equations from which the unknowm
information sub-blocks may be recovered, The computation register therefore
contains rb(x -~ 1) sub-block locations, Initially, it is either empty or con-
tains irrelevant data,

When the error-check register is in the state of Fig, 11,5.1, the
storage register dpes not contain a detected burst, In this case, the decoder
shifts 22-8 and.lg_s out of the storage register to the source decoder, shifts
lf and.;g into the storage register, right-shifts the error-check register one
" stage, right-shifts the computation register one sub-block, and accepts the
next block Ej+1.

We shall now consider the decoder behaviour for detected bursts of

length ryn followed by clean guard spaces of length (x = 1)ryn°, y=1, 2, 3,
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First, assume Ej is affected by a burst and 33*1, 33*2 are clean,
When §;+1 is received, the error-check register state (0, 1, 0, ,,,, 0),

Fig, 11,5,2, shows that the burst spans only one block, Analogous to (11,5,3),

the decoder forms the sum
li-,: A= Q.3-1-1 +l§'1 +_I_f-3 +_I_J-5, (11.5,5)

and stores it in the computation register, Similarly, when 53+2 is received,

Fig, 11,5,3, the decoder forms the sum

Bop-g®ar (11.5.6)

The decoder then solves the set of simultaneous equations as in Fig, 11,5.,4
and resets the error-check register to zero,
Assume now that R and B9*! are affected by a burst and 3%, .,
Bj+5 are clean, When‘§j+2 is received, the error-check register state
(0, 1, 1, 0, ,,., 0) shows that the burst spans two blocks, Each equation
therefore contains two unknowns and four sums, A, B, C, D, must be formed,
Figs, 11,5,5 and 11,5,6 show how the information sub~blocks are recovered,
Finally, assume that RJ, RI*!, and RI*? are affected by a burst and
43

ooy I

33*3, are clean, When Eﬁ*S is received, the error-check register
state (0, 1, 1, 1, O, ,.., 0) shows that the burst spans three blocks, Each
equation therefore contains three unknowns and six sums, A, B, C, D, g,‘g,'

mast be formed, Figs, 11,5,7 and 11,5,8 show how the information sub-blocks

are recovered,
11,6, Complexity

The three parameters of complexity, N, NT’ and NA’ may be determined
from Figs, 11,5.,1 to 11,5,8, In the outer decoder, the received block occupies

n_ stages of shift register, the storage register contains r(bx - 1)(x = 1)(no - ko)
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<<:::_ Computation Register

B

A

L+ to IJ (sub-block 4)

Figure 11,5,4 :

—» to lg (sub=block 3)

Computation Register Connections for the Correction of a

Burst in One Block,
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T Computation Register
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L »to 1* (sub-block 8)

Figure 11,5,6 : Computation Register Connections for the Correction of a

Burst in Two Blocks,
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<:::_Computation Register
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Figure 11,5,8 : Computation Register Connections for the Correction of a

Burst in Three Blocks,



126,

or r(bx - 1)k° stages, the error-check register contains r(bx - 1) + 1 stages,
and the computation register contains rb(x - 1)(n° - ko) or rbk  stages, The

storage requirement N is therefore gicen by

N = r(ko +1)(bx - 1) + rbk° +n  + 1, (11.,6.1)

From (11,2,14) and (11,4,2), it follows that

r(ko +1)(bx - 1) + rok  +n  + 1
NG, = = Dhvon, . (11,6,2)

The ratio of (11.6,2) is smaller than one if and only if

k
0 x-1 bx-b-1/r bx4+1~1/r
no = X < bx +b - 1 = (bx +b - 1)n°' (11l6l3)

The inequality (11,6,3) is most easily satisfied when the right hand side is a

maximum; i,e,, when n—>wo, First, if r = 1, then the condition becomes

-1 _gx-b- L (11,6,4)

which reduces to
b(x - 1) < —1. (1106-5)
Clearly, (11,6,5) can never be satisfied for positive values of b and x,

Alternatively, as r —© , the inequelity (11,6,3) becomes

X =1 bx - b
X < bx +b - 1’ » (11l6l6)
which reduces to
x -1 >b(x- 1), (11,6.7)

(11,6,7) can never be satisfied for integer values of b, Thus, because the
condition (11,6,3) camnot be satisfied, the storage requirement of the outer
decoder can never be smaller than its guard space requirement,

From Fig, 11,5,1, three of the decoder shift registers have tapped

stages, The sub-block denoted_g:j is tapped in all of its n, - ko stages, The
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entire computation register is tapped for a total of rbko stages, The storage
register is tapped in nT(no - ko) stages, where Nq is the number of tapped sub-
block locations, Examination of the storage registers of a number of GSA codes

shows that nn is given by

b
np = lE -b+ ¥ (x=-1)rj, (11,6,8)
321

Thus, the total number of tapped shift register stages in the outer decoder is
b
Np=[1p-b +1+ an (x - 1)r3](n° - ko) + rbk . (11,6.9)
NT is minimiged by choosing a GSA code for which lE is a minimum; i,e,, an opti-
mal code,

From (11,2,7), the burst correcting capability of the outer code is
imparted by the sub-block

o = £(1), (11,6,10)
where £(I) contains 1E terms, In forming the set of linearly independent
simultaneous equations, each of the mod~2 sums A, B, C, ,,. is given in general

by
A =0 +atmost (1 - 1) terms from £(I), (11.6,11)

If we consider the summations to be performed by an array of n, - ko mod-2
adders with at most 1, inputs, then (lE - 1)(no - ko) mod-2 adders with two
inputs are required, However, at different times in the decoding process, the
number of terms taken from f(I), and the storage register sub-block locations
tapped to supply fhese terms, may differ, Thus, the (1E - 1)(no - ko) mod~-2
adders may be given variable input leads, controlled by the state of the error-
check register, or the decoder may be given additional mod-2 adders, whichever

alternative appears more attractive in any particular application, In addition,
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from Figs, 11.5,6 and 11,5,8, a number of mod-2 adders may be required at the

computation register in order to solve the set of equations for the unknown terms,

The number, however, depends upon the specific GSA code and cannot be predicted
in general, We therefore say that the number of mod-2 adders in the outer deco-
der is lower~bounded by

Ny 2 Qg -1, - k), (11,6,12)

In addition to N, N., and NA’ the total complexity of the GSA decoder

includes the unspecified complexity of the inmmer minimum distance decoder,

11,7, Performance

To determine the probability of a decoding error given that a channel
burst has occurred, P(E | burst), we know from (8,5,4) that for an adaptive code
P(E | burst) = P(E | no F)[1 - P(F)] + P(F), (11,7,1)
The probability of failure P(F) is defined by the parameters of the inner
(ni’ki) parity-check code, From (3,3,10), (3.3.11), and (3,3,12), since channel
errors occur in the burst mode with probability 9y the probability Pf that the
inner code fails either to detect or to correct a burst in one block of length

n. is
i

P. = P, By,

ki-ni t n,
PN=2 .Z (j )9
j=0
d-t-1 n, 3 5ni-j (

P = 1 - Z (- ) q (1 - q » 11.752)

d 5=0. J o (o]
From (i1,4,1), an integer number f/rb of sequences from the inner decoder is
is required to form a single received block at the outer decoder, Thus, a

failure occurs at the outer decoder only if there is a failure in all f/rb

blocks at the immer decoder, Since a channel burst does not necessarily span

Y
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all f/rb blocks, we can say only approximately that

)f/fb

P(F) » (P, (11,7.3)

The probability of a decoding error given that the burst is detected,
P(E | no F), is primarily the probability of an error in the guard space Goy of
the outer decoder, This is equivalent to the probability of a decoding error
in the guard space Giy of the inner decoder, From (11,2,13) and (11,4,2), Giy
spans (x = 1)yf/b blocks if the burst at the outer decoder is of length
r(y - 1)no +N_s 2o Yy, ¥ =1, 2, ..., b, The probability B of a decoding

error in any one of these (x - 1)yf/b channel blocks is, from (3,3,8),
n, . n,

et (L-p) T (11.7.4)
Since the decoding of blocks is independent, it follows that

P(E[no F) 1 - (1 - Pb)(x’i)yf/b. (11,7.5)

From (9,5,4), the probability of a decoding error in the channel
random mode is
P(E | random) = P(E [ no A)[1 - P(A)] + P(E| A) P(A), (11,7.6)
In order that a false alarm occur, at least one of £/rb sequences at the inner
decoder must be distance between t + 1 and d - t -~ 1 from the corresponding
transmitted codeword, Thus, the probability P(A) of a false alarm is approx-

imately given by

d~t~1 n, . n.=3
PA) wl-[1-  (B)pd-p)t /™, (11,7.7)
j=t+l Y

Analogous to (8,5,11) and (11,7.5),
P(E|A) » P(E| o F) » 1 = (1 = B )*-1¥E/®, (11,7.8)

Given no false alarm, a decoding error can occur only if at least one of f/rb
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sequences at the inmner decoder contains a noise sequence with weight at least
d - t, Thus,
d=t~1 n ns;=j

P(E | no A) =1-[jfo (J_i) Poj (1-p)" ]

£/xb (11.7.9)
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12, SUMMARY AND NUMERICAL COMPARISON OF BURST CORRECTING CODES

12,1, Introduction

In Chapters 6 to 11, a large number of error control techniques for
the compound channel were described, Expressions were developed for the burst
correcting capability, the guard space requirement, the complexity, and the
performance of these codes, In this chapter, we shall summarize these results
and evaluate the expressions for particular codes on specific chamnels, It will
be assumed throughout this chapter that channel bursts very rarely exceed length
Bc ~ 1000, In the channel random mode, errors will occur with probability P,
ranging from 1078 to 10-2, while in the channel burst mode, errors will occur
with probability 9, ranging from 0,01 to 0,50,

Interleaved block codes, diffuse codes, Gallager codes, burst-trapping
codes, and GSA codes are treated respectively in Sections 12,2,, 12,3,, 12.,4,,

12.5.9 and 12|6ol
12,2, Interleaved Block Codes

Interleaved block codes, originally described in Chapter 6, are
obtained by interleaving an (n,k) block code with burst correcting capability b,
These codes have minimum guard space requirement, and thereby optimum performance,
if b meets the Reiger bound (6.2,2) with equality,
b<i(n- k). (12,2,1)
From (6,2,1), interleaved block codes have burst correcting capability

B such that
m

B =B =rb, (12,2,2)

where r is known as the interleaving degree, Their guard space regquirement Gm

is given by (6-2-4) and (6-205)9
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Gm = G’c = r(n - b) =rrTMm - Bmo (12-213)

The complexity of the decoder is defined by the storage requirement N in (6,3,1),

N=rn=38 +G, (12,2,4)

The performance of these codes in correcting bursts is bounded by (6,4,4),
Gy
P(E|burst) <1 - (1 - po) . (12,2,5)
12,2,a, Numerical Example

Consider a (15,9) parity-check code, originally used by Weldon [47],
which has optimal burst correcting capability b = 3, Interleaving this code to

degree r = 334, we obtain

B, = B, = (33%)(3) = 1002,
G, =G, = (33#)(15 - 3) = %008,

N = 1002 + 4008 = 5010,
N/Gm = 5010/4008 = 1,25000, (12,2,6)

8 ana 10'2, we obtain

For the range of channel random error rate P, between 10~
an upper bound on code performance P(E | burst) by substituting G = 4008 into
(12,2,5), The result is shown in curve I of Fig, 12,2,1,

It follows from (12,2,2) and (12,2,3) that

G, =2F— B =48, (12,2,7)

Thus, P(E| burst) is an increasing function of burst correcting capability Bm'

P(E | burst) approaches 1 with increasing B and approaches p  with decreasing

Bm' The relationship P(E | burst) = P, therefore is a lower bound on code perfor-

mance when Bm——a-o, shown in curve II of Fig, 12,2,1,
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Interleaved block code alone, Bm = 100z,
Lower limit of performance for interleaved block code, Bm-—> 0.
Immer block code and outer interleaved block code, [hf]| = 168,

Inner convolutional code and outer interleaved block code, g = 328,

Figure 12,2,1 ¢ Performance of Interleaved Block Code,
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12,2.b, Compound-Concatenated System With Inner Block Code

In Chapter 10 we saw that the performance of a burst correcting code
could be improved by concatenating it with an inner random error correcting
code; i,e,, by forming a compound-concatenated system, Consider an inner (n,k)

block code with minimum distance d and error correcting capability t given by

(10.3,1),

t = |_"5_1_'] i (12,2,8)

The maximum length Bc of channel bursts is expressed as in (10,3,2),

Bc = fn. (12|2-9)

The outer burst correcting code has burst correcting capability Bm and guard

space requirement G given by (10,3,3) and (10,3.5),

k
B =fk =238, (12,2,10)
G, = h B = hfk, (12,2,11)

From (10,3,6) and (10,3,7), the channel guard space G, is

n
| G, = [afln & b B, » 3 Cp»

(12,2,12)
At the outer decoder, errors in the random mode occur approximately
with probability Py and errors in the burst mode occur approximately with

probability q4, given by (10,6,2) and (10,6,3) respectively,

t . . '
~l - n J - n-J
p; ~ 1 ij (3 p,? (1 = p )77, (12,2,13)
t n J n-j
q1 ~ 1 - jfo (j) qO (1 - qo) » (12'2-1“’)

Throughout this chapter, we assume that the inner block code is the

(24,12) extended Golay code [17] with error correcting capability t = 3, With
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f = 42, we obtain from (12,2,9) and (12,2,10),
B, = (42)(24) = 1008,

Consider a compound-concatenated system whose outer code belongs to
the same class as the interleaved block code of Section 12,2,a,., With inter-

leaving degree r = 168, we obtain

B = (168)(3) = 504,
G, = (168)(15 - 3) = 2016,

h = 2016/504 = 4,
]l = [(#)(u2)] = 168,
G, = (168)(24) = 4032,

N = 504 + 2016 = 2520,
N/Gm = 2520/2016 = 1,25000, (12,2,16)

From (10,6,1) and (10,6,5), the performance of the compound-concaten-

ated system is bounded by
P(E| burst) < 1 - (1 - pl)rhf_l . (12,2.17)

For every Pys Py is found by substituting the parameters n = 24 and t = 3 of the
inner block code into (12,2,13), Then, with [hf]| = 168, we obtain the upper
bound on system performance P(E | burst) shown in curve III of Fig, 12,2,1,
Because B is linearly related to f by (12,2,10), P(E | burst) approaches 1 with

increasing Bm and approaches Py with dscreasing Bm'

12,2,c, Compound=-Concatenated System With Inner Convolutional Code

Another compound-concatenated system may be formed by using as the

inner code a rate %+ self-orthogonal convolutional code with constraint length n,,
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effective length Np, and error correcting capability t from (10,4,1),

t = LJ/ZJ. (12,2,18)

J is the number of nonzero coefficients in the code~generating polynomial G2(D),
which has maximum degree u, The maximum length Bc of chamnel bursts is expressed

as in (10,4,2),

BC = SnA. (1212n19)

Channel bursts may be propagated at the inner decoder for some length W > wn,,
where W is given by (10,4,8) and wn, is given by (10,4,3), The outer burst
correcting code then has burst correcting capability Bm and guard space require-

ment G given by (10,4,9) and (10,4,10),

B, =4(sn, +W) =4(B_ +W), (12,2,20)
G =h B =&sn, +W (12,2,21)
m - m-_ 2 A ' 2T

From (10,4,11), the channel guard space Gc is

Gc =W 4+ h(Bc + W), (12,2,22)

At the outer decoder, errors in the random mode occur approximately
with probability Py and errors in the burst mode occur approximately with

probability Q,, given by (10,7,1) and (10,7,2) respectively,

t

n . Ne~3j
E
ppri- £ ((DpJd-p)" ", (12,2,23)
=0
t n . ne~j
9 rx1- % ;% a7 (1 - q,) B (12,2,24)
=0

Throughout this chapter, we assume that the inner convolutional code
is the rate %+ code taken from Robinson and Bernstein [38] with the code-

generating polynomial .
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G,(D) =1 + D% 4+ D7 + DY 4 pt6 + 07, (12,2,25)

This code has the parameters n, = 36, np =22, J = 6, t =3, u=17, and

wn, = 106, With s = 28, we obtain from (12,2,19),

B, = (28)(36) = 1008, (12.2.26)

The parameter W must be chosen so that the probability that a
channel burst is propagated beyond the burst correcting capability of the outer
code is small compared to Pps the probability of a decoding error in the
channel guard space, Consider W = 792, At least eight random errors are
necessary to result in no error-free run of length 106 in a sequence of 792 bits,
whereas at least four random errors in the effective length np = 22 are needed
to cause a decoding error in the channel guard space, When P, is small, the
probability of multiple random errors is relatively insensitive to the length
of the noise sequence, so the probability of eight errors in 792 digits is
smaller than the probability of four errors in 22 digits, A choice of W = 792
is thus sufficient to make error propagation a negligible factor in the compound-

concatenated system, Therefore, from (12,2,20),
B = 1(1008 + 792) = 900, (12,2,27)
Consider a compound-concatenated system whose outer code belongs to

the same class as the interleaved block code of Section 12,2,a,, With inter-

leaving degree r = 300, we obtain
B, = (300)(3) = 900,
G = (300)(15 - 3) = 3600,
h = 3600/900 = 4,
G, = 792 + (4)(1008 + 792) = 7992,
N = 900 + 3600 = 4500,

N/G_ = 4500/3600 = 1,25000, (12,2,28)
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Because error propagation is a negligible factor, we have from

(10,6,1) and (10,7,9) that the performance of the compound-concatenated system

is approximately

P(E | burst) ~1l-(1 - Pz)g9

h(B_ + W)
. [ = 1 - [0008 + 23] _ 55, (12,2.29)

For every Pys Po is found by substituting the parameters np = 22 and t = 3 of
the inner convolutional code into (12,2,23), Then, with g = 328, we obtain the

approximate system performance P(E| burst) shown in curve IV of Fig, 12,2.1,

Since g is proportional to Bc + W= 2Bm’ P(E | burst) approaches 1 with increasing

Bm and approaches Py with decreasing Bm'
12,2,4, Comparison

We showed in the preceding sub-sections how code performance
P(E | burst) is bounded by variations in the burst correcting capability Bm of
the burst correcting code, In all cases, P(E| burst) approaches 1 as Bm approa-
ches infinity, independent of the channel error rate Py. This is a very reason-
able conclusion and clearly holds for all burst correcting codes, In all cases

also, P(E| burst) is of the general form

P(E| burst) ~ 1 - (1 - p)%, (12,2,30)
where p is the random error rate in the decoder guard space of the burst
correcting code and x is linearly related to Bm' Thus, as Bm approaches zero,
x approaches zero, and P(E | burst) approaches p as a lower limit, This too is
a very reasonable conclusion, since with Bm = 0 and Bm proportional to B , the
channel does not produce bursts, there is no burst correcting code, and errors

occur at the "natural” random error rate p, This relation holds for all codes
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which obey (12,2,30),

Fig, 12,2,1 shows clearly the potential improvement available by
concatenating an interleaved block code with a random error correcting code,
Since both inner codes have rate 3, we are in effect halving the system rate

in exchange for reduced storage requirement and an improvement in performance

I

of roughly nine orders of magnitude at p_ = 10”

12,3, Diffuse Codes

The diffuse codes originally described in Chapter 7 are rate + feed-

back decodable convolutional codes which treat bursts of length Bm or less as if

they contain no more than t errors among the np checked bits, From (7.2,1),

(7.2,2), and (7,2,3),

B, = B, = 2B, (12,3,1)
t =Y/, (12,3,2)
ng >2t% 4+t +1, (12.3.3)

From (7,2,4), (7.2,6), and (7,2,10), the constraint length n,, the storage

requirement N, and the guard space requirement Gm are related by
nA =N = ZNS = Gm + 2 = GO + 2, (12.3.14')
where Ns is the shift register length in the decoder, given by (7.2,8),

NS 2 3B + 1. (12u3-5)

Besides storage requirement, the decoder complexity is also measured by the

number of tapped shift register. stages, NT’ and the number of mod-2 adders with
two inputs, NA' From (7,4%,3) and (7,4,4),

D
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The performance of diffuse codes in correcting bursts is given by (7,6,2),

G
P(E| burst) » 1 - (1 - p) ™, (12,3.8)
12,3,a, Numerical Example

Consider the diffuse code which was derived in Section 7.3,, This
code has the parameters J = 4, t = 2, np = 11, and Ns = 3B + 2, The effective
length is optimal and the shift register length is asymptotically optimal, With
B = 500, we obtain

B, =3B, = (2)(500) = 1000,

N = nA = (6)(500) o4 4 = 300“’,

G, = G, = 3004 - 2 = 3002,

N/Gm = 3004/3002 = 1,00067,

N

p= @)@ +1 =09,

Ny

(2)(2) +2 =6, (12,3.9)

8 -2

For P, between 10~ and 10”°, we obtain the approximate code performance
P(E | burst) by substituting G = 3002 into (12,3.8). The result is shown in
curve I of Fig, 12,3,1, The lower bound on code performance when Bm——e-o is

shown in curve II,
12,3,b, Compound=-Concatenated System With Irmer Block Code

Consider a compound-concatenated system whose outer code belongs to
the same class as the diffuse code of Section 12,3,a, and whose inner code is
the extended Golay code of Section 12,2,b,, With B = 252, we obtain

B, = (2)(252) = (42)(12) = 504,

N = (6)(252) + 4 = 1516,
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P(E | burst)
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. P,
- Ts Diffuse code alone, Bm = 1000,
IT: Iower limit of performance for diffuse code, Bm-u.O.

III: Inner block code and outer diffuse code, rhf] = 127,

IV: Inner convolutional code and outer diffuse code, g = 246,

Figure 12,3,1 : Performance of Diffuse Code.
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G, = 1516 - 2 = 1514,

h = 1514/504 = 3,00397,
hf] = [(3.00397)(42)] = 127,
G, = (127)(24) = 3048,

N/G, = 1516/1514 = 1,00132, (12,3,10)

Analogous to (12,2,17), if robustness and error propagation are
approximately equal and opposite effects in the feedback decoder, system perfor-

mance is given by
P(E|burst) » 1 - (1 = pi)rhf], (12,3,11)

p, is again found from (12,2,13), and with [hf| = 127, P(E| burst) is shown in
curve ITT of Fig, 12,3,1,

12,3,c, Compound-Concatenated System With Inner Convolutional Code

Consider a compound-concatenated system whose outer code belongs to
the same class as the diffuse code of Section 12,3,a, and whose inner code is
the convolutional code of Seetion 12,2,c,, With B = 450, we obtain

B, = (2)(450) = (1008 + 792) = 900,

N = (6)(450) 4+ 4 = 2704,
G

n = 2704 - 2 = 2702,

h = 2702/900 = 3,00222,
(3,00222)(1008 + 792)
g = l— 00 2; - = 214'6,

G, = 792 + (3,00222)(1008 4+ 792) = 6196,
N/Gm = 2704/2702 = 1,00074, (12.3.12)

Analogous to (12,2,29), the performance of the compound-concatenated

system is approximately
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P(E | burst) » 1 = (1 - p,)5, (12,3.13)

P, is found from (12,2,23), and with g = 246, P(E| burst) is shown in curve IV
of Fig- 12l3l1l

12,3.4, Comparison

The improvement in performance available with a compound-concatenated
system is evident from Fig, 12,3,1. Another obvious point is the great similarity
between this figure and Fig, 12,2,1, the equivalent for an interleaved block
code, This was to be expected since both codes are non-adaptive and meet the
Reiger or Gallager bounds with (near) equality, It should be noted, however,
that the interleaved block code has rate 0,6, while the diffuse code has rate
0,5, Thus, the interleaved block code achieves nearly the same performance
with a 20 percent increase in efficiency, while in return, the diffusq code is

much less expensive to implement,
12,4, Gallager Codes

Gallager codes, originally described in Chapter 8, are an adaptive
burst correcting technique, Their random mode is obtained from a rate + feed-
back decodable convolutional code whose code-generating polynomial G2(D) has
maximum degree u with J nonzero coefficients, The convolutional code has con-

s
straint length n,, effective length Npy and error correcting capability t given

by (8.2.2), (8.2,3). and (8,2,4),

L3 *
ny =2(u+1) = 2N, (12,4,1)
ng >5° + 39 + 1, (12,4,2)
J

From (8,2,1), the Gallager code has burst correcting capability Bm
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such that

B, =B, = 2B, (12,4,4)

The shift register length N_ is given by (8.2,5),

NS=B+N:=B+\1+1, (12,4,5)

and the constraint length n,, the storage requirement N, and the guard space
requirement are related by (8,2,6), (8,3.7), (8.3.8), and (8,4,1),

N=mn, = BIu +2(u +1) = G - 2(y - 1), (12,4,6)

G, =G, =B +2(u+y),B-y<bgB,

Gy =Gcb=2(b +u+2y) , beB-=-y, (12,4,7)
where y is the number of consecutive zero-valued syndrome bits required to
initiate a transition from the decoder burst mode to the decoder random mode,
and b is the number of information bits contained in the burst, The decoder
complexity is also defined by (8,4,3) and (8,4,4),

Np>2J +2, - (12,4,8)
Ny>J +2, (12,4.,9)

In the channel random mode, code performance is given by (8,5.8),

(8.5.9), (8.5.10), (8.5,11), and (8.5.12),

P(E | random) = P(E| no A)[1 - P(A)] + P(E| 4) P(4), (12,4,10)
J=t n . n.=-3j
P <z (Dpd@-p)"", (12,4,11)
j=t I
Cap
P(E|A) » 1=~ (L =-p,) ", (12,4,12)
J=t ng R nE-‘
P(ElnoA)<cl- = ((NpJd (1-p) . (12,4,13)
520 J () o

In the channel burst mode, performance is given by (8.5,4), (8,5.5), and

(81537)9
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P(E | burst) = P(E| no F)[1 - P(F)] + P(F), (12,4,14)
J=t n . Nn=Jj
PF)pwl- 5 ((MDaqd(-q)F", (12,4,15)
320 3 o o
G
P(E[no F) » 1 - (1 -p) %, (12.4,16)

12,4,a, Numerical Example

Consider the Gallager code whose random mode is obtained from the
self-orthogonal convolutional code in Robinson and Bernstein [38] with the

code~generating polynomial

G,(D) = 1 + D% + 07 4+ 015 4 0P p?% 4 0?5, (12,4,17)

ok
and with the parameters ny = 52, ng = 29, d =7, and u = 25, With B = 500 and
¥y = 20, we obtain

B =3B, (2)(500) = 1000,

G G3
m c

1000 + (2)(25 + 20)

1090 , 480 < b < 500,

Ggp = Ggp = 2 + (2)(25 + 40) = 2b + 130 , b < 480,

N =n, =1000 + (2)(25 + 1) = 1052,
N/Gm = 1052/1090 = 0,96514,

N

T (2)(7) + 2 = 16,

Ny

7+2=9, (12,4,18)

For this code, J = 7 and ng = 29 are constant parameters, while
random error correcting capability may span the range t = 1, 2, 3 and decoder
guard space requirement is bounded by Gd = 130, 1090, For the range of chammel

8

random error rate P, between 10~ and 10-2, we obtain the random mode performance

curves P(E | random) for this code, Fig, 12,4,1, by substituting the various

parameters into (12,4,10), (12,4,11), (12,4,12), and (12,4,13), These curves



| P(E- | random)

1.0—

146,

Figure 12,4,1 : Performance of Gallager.Code in Channel Random Mode,
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are actually pairs of bounds for different values of t, The bounds are given
because any particular false alarm can require any guard space between 130 and
1090,

For the range of channel burst error rate 9, between 0,01 and 0,50,
we obtain the probability of failure P(F) of this code, Fig, 12,4,2, by substitu-
ting the code parameters into (12,4,15), This figure shows clearly that by
decreasing the error correcting capability t, we increase the detecting capa-
bility of the code, thereby improving P(F), Note that for this particular code,
P(F), which lower-bounds P(E | burst), becomes prohibitively large for bursts
with error densities in excess of 5 percent, This situation can be improved
by choosing a convolutional code for which J is greater, However, increasing
J leads to increasing complexity N, NT’ and NA’ as well as increasing maximum
guard space Gm and increasing effective length ng, For large values of s the

EJ

n
effect of the factor (1 =~ qo) in (12,4,15) may be such that increasing n

E
by increasing J will result in a deterioration of performance, Careful consider-
ation must be given to all these trade~offs when selecting a code for a particu-
lar channel,

By substituting the code parameters into (12,4,16), we obtain the
limits on P(E| no F), the probability of a decoding error given that the burst
is detected, shown in curves I and II of Fig, 12,4,3, Combining the results of
Figs, 12,4,2 and 12,4,3 as in (12,4,14), we obtain the performance P(E| burst)
of the Gallager code as shown in curves I and II of Figs, 12,4,4, 12.,4,5, and
12,4,6, The fact that P(E| burst) is lower~bounded by P(F) is evident in these
curves, and becomes increasingly evident for larger values of q,s when P(F)
itself becomes large,

Two particularly interesting points are brought out by Figs, 12,4.,4,

12,4,5, and 12,4,6, First, the performance of the adaptive Gallager code is
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Figure 12,4,2 : Probability of Failure of Gallager Code,
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Figure 12,4,3 : Performance of Gallager Code Given a Detected Burst,
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extremely sensitive to the error rate a, in the channel burst mode, This parti-~
cular code is essentially useless for Q, > 0,05, Second, for mid-range values
of Pgs around 10-4, before the effect of P(F) becomes important, the performance
is nearly independent of the choice of error correcting capability t of the
convolutional code, Thus, by checosing t large, we can realize an improvement
of six or more orders of magnitude in P(E | réndom), Fig, 12,4,1, without suffer-

ing any important penalty in P(E | burst),
12,4.,b, Compound-Concatenated System With Inner Block Code

Consider a compound~concatenated system whose outer code belongs to
the same class as the Gallager code of Section 12,4,a, and whose inner code is
the extepded Golay code of Section 12,2,b,, With B = 252 and y = 20, we obtain

B, = (2)(252) = (42)(12) = 504,

G = 504 + (2)(25 + 20) = 59% , 232 ¢ b < 252,

Gg, = 2b + (2)(25 + 20) = 2b + 130 , b < 232,

N = 504 + (2)(25 + 1) = 556,

h = 594/504 = 1,17857,

N/G, = 556/59% = 0,92923. (12,4,19)

From (12,2,12), we know that for any decoder guard space G gps ‘the corresponding

channel guard space Gcb is

n 24
Gob ® % Cab = 12 Cap = Fap
such that Gy = [hf]n = 24[hf] , [hf] an integer, (12.4,20)

For the range of Gy in (12,4,19), we have

Gy, = 264, 288, ..., 1200,

G ~¢ M

o =Ggp " = 1200,
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rhﬂ = 11’ 129 I EEX 50’

] ™% = [(1,17857) (42)] = 50, (12,4,21)
From (10,6,1), (12,4,15), and (10,6,5), the performance of the

compound-concatenated system in correcting bursts is given by

P(E | burst) = P(E | no F)[1 - P(F)] + P(F), (12.4,22)
J-t n . -3
PO v1- 5 (el -q) ", (12.4,23)
j=0 7
P(E[no F) w1 - (1 - p) P, (12,4,24)

For every P, and. qgs the corresponding values of 12 and q are found by substi-
tuting the parameters n = 24 and t = 3 of the inner block code into (12,2,13)
and (12,2,14), We obtain the probability of failure P(F) of the compound-
concatenated system by substituting the parameters of the Gallager code, J = 7,
ng = 29, and t = 1, into (12,4,23), The result is shown in curve I of Fig,
12,4,7, We choose t = 1 because it is known from Fig, 12,4,2 to yield the best
curve for P(F),

By substituting the extreme values [hf] = 11, 50 into (12,4,24), we
obtain the limits of P(E| no F), the probability of a decoding error given a
detected burst, shown in curves III and IV of Fig, 12,4,3, Combining P(F) and
P(E | no F) asvin (12,4,22), we obtain the performance P(E | burst) of the com-

pound-concatenated system as shown in curves III and IV of Figs, 12,4.4, 12,4,5,

and 12,46,
12,4,¢c, Compound-Concatenated System With Immer Convolutional Code

Consider a compound-concatenated system whose outer code belongs to
the same class as the Gallager code of Section 12,4,a, and whose imner code is
the convolutional code of Section 12,2,c,, With B = 450, y = 20, and W = 792,
we obtain
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B = (2)(450) = $(1008 + 792) = 900,

G, = 900 + (2)(25 + 20) = 990 , 430 < b < 450,

Ggqp = 2b + (2)(25 + 40)

2b 4+ 130 , b < 430,

N =900 + (2)(25 + 1) = 952,
h = 990/900 = 1,10000,

N/G, = 952/990 = 0,96162, (12,4,25)

From (12,2,21) and (12,2,22), for any decoder guard space Gy,s the corresponding

channel guard space Gcb is

Gy, = 2Ggy + We (12,4,26)

Also, from (12,2,22) and (12,2,29),

h(B W) G, =W
g =( §E+ 1 =[°§E 1 (12,4,27)

Thus, for the range of Gy in (12,4,25),

Gy, = 1052, 1054, ..., 2772,

G =G M

c cb = 2772,

g =10, 11, ,,., 90,

gmax _ | (1,1 1328 + 792)| _ 90, (12.4,28)

From (10,6,1), (12,%4,15), and (10,7,9), the performance of the

compound-concatenated system in correcting bursts is given by

P(E | burst) = P(E | no F)[1 - P(F)] + P(F), (12,4,29)
J=-t n . Ne=3
PE) xl- 5 (a0 (L=g) ", (12,%,30)
j=0 7
P(E|no F) » 1 - (1~ p,)E, (12,4,31)

For every P, and Qe the corresponding values of Py and q, are found by substi-
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tuting the parameters np = 22 and t = 3 of the inner convolutional code into
(12,2,23) and (12,2,24), We obtain the probability of failure P(F) of the
compound-concatenated system by substituting the parameters of the Gallager code,
J =7 ng=29 and t = 1, into (12,4,30), The result is shown in curve II of
Fig, 12,4,7,

By substituting the extreme values g = 10, 90 into (12,4,31), we
obtain the limits of P(E lno F) as shown in curves V and VI of Fig, 12.4,3,
Combining P(F) and P(E| no F) as in (12,4,29), we obtain the performance
P(E | burst) of the compound-concatenated system as shown in curves V and VI of

Figs, 12,44, 12,4,5, 12,4.6,
12,4,d4, Comparison

There are many obvious differences between Gallager codes, which are
adaptive, and interleaved block codes and diffuse codes, which are non-adaptive,
First, the performance of Gallager codes is described by bounds corresponding
to the shortest and longest possible guard space requirements, Second, the
performance of Gallager codes is highly dependent upon the probability of
failure, P(F), which in turn is a function of the chammel burst mode error rate
9y Non-adaptive codes, on the other hand, perform equally well for all burst
densities, Third, the optimum choice of random error correcting capability t
for the adaptive code is found by correlating the curves for P(E | burst) and
P(E | random), and this optimum choice can be any allowable value of t,

By using a Gallager code as the outer code of a compound-concatenated
system, a great improvement in performance can be realized, However, this is
only true when P(F) is small, As a, increases, P(F) increases until a compound-
concatenated system actually has inferior performance, For the choice of codes

in this section, this transition occurs for q, > 0,08, and the approaching

transition is apparent in Figs, 12,4,4 ) 12.,4.5 and 12,4,6, The reason for this
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is that, from Figs, 12,4,2 and 12,4,7, with q, > 0,08, P(F) is larger for a

compound=-concatenated system than for a Gallager code alone,

12,5, Burst=Trapping Codes

Burst-trapping codes, originally described in Chapter 9, are another
adaptive burst correcting technique, They are derived from a systematic (n,k)

parity-check code with rate R° as in (9,2,1),

x -1
x » (12l5'1)

R =
o

=R B

From (9,2,2), these codes have burst correcting capability B such that

Bm Bc = vn, ) (1235:2)

For bursts spanning y blocks, y

1, 2, ..vs Vv, their guard space requirement
G4y is adaptive and is given by (9.3.1),
Gdy = (x = 1)yn, (12,5,3)
From (9,3,2), the corresponding adaptive channel guard space is
Cy dy’ (12l5n4)

where ch,s Gc and Gdyls Gm' The complexity of the decoder of a burst-trapping
code is defined by (9.4,1), (9.4,5), and (9.4.6),

Ne(x-1)v(k+1) +n, (12,5,5)
NT =N, (1205'6)
Ny, = k.7 (12,5,7)

In the channel random mode, code performance is given by (9,5.4),
(9.5.5), (9.5,6), and (9,5,7),
P(E | random) = P(E| no A)[1 - P(A)] + P(E [ A) P(4), (12,5,8)
d-t~-1

PA) » ¥ ()pd (1-p)d, (12,5,9)
o P, P, 5
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G
PE|A) 1 - (1-p) %, (12,5.10)
d-t~-1 : :
PE[noA)=1- 5z (D) p (-p)J, (12,5,11)
=0 J

In the channel burst mode, performance is given by (9.5.1), (9,5,2), and
(9.5.3),
P(E | burst) = P(E| no F)[1 - P(F)] + P(F), (12,5,12)

P(F) = Py Py,

t
po=25" 5 (M),

N~ 3520 J
d=t-1 . .
Pa=t- I (3 a7 (@ =g )", (12,5,13)
G
P(E|no F) w1~ (1-p) %Y, (12,5,14)

12,5,a2, Numerical Example

Consider the burst-trapping code derived from a systematic (30,15)
shortened parity-check code [4] with minimum distance d = 7, Since this is a
rate 3 code, x = 2, With v = 34, we obtain

B, = B, = (30)(3%) = 1020,

Gdy=ch=30y=30, 60, sass 1020,y531#, .

N = (1)(34)(16) + 30 = 574,
N/Gm = 574/1020 = 0,56275,

Ny = 30,

N, = 15, (12,5,15)

For this code, n = 30, k = 15, and d = 7 are constant parameters,

while random error correcting capability may span the range t = 1, 2, 3 and
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decoder guard space requirement is bounded by Gdy = 30, 1020, By substituting
these parameters into (12,5,8), (12,5,9), (12,5,10), and (12,5,11), we obtain
the random mode performance curves P(E | random) for this code, Fig, 12,5.1.
Note that the largest choice of t, t = 3, does not permit a false alarm, so the
burst mode of the decoder cannot be used to correct random error patterns with
large weight, Thus, the overall performance of the code in correcting random
errors is actually reduced when it has maximum error correcting capability t.
Substituting the code parameters into (12,5,13) gives the curves in
Fig, 12,5,2 for the probability of failure, P(F), and into (12,5.14) gives curves
I and IT in Fig, 12,5,3 for the probability of decoding error given a detected
burst, P(E| no F), Combining the results of Figs, 12,5,2 and 12,5,3 as in
(12,5,12), we obtain the performance P(E | burst) of the burst-trapping code as

shown in curves I and II of Figs, 12,5,4, 12,5,5, and 12,5,6,
i2,5,b, Compound-Concatenated System With Imner Block Code

Consider a compound-concatenated system whose outer code belongs to
the same class as the burst-trapping code of Section 12,5,a, and whose imner
code is the extended Golay code of Section 12,2,b,, With v = 17, we obtain

B = (30)(17) = 510,

Gdy = 30y = 30, 60, IR EY]) 510 L ] ys 17’

N = (1)(17)(16) + 30 = 302,
h = 510/510 = 1,00000,
N/Gm = 302/510 = 0,59216, (12,5.,16)

Analogous to (12,4,20), the adaptive channel guard space requirement is

G~ 2G

ey ay such that

G
cy

[bf]n = 24[hf] , [hf] an integer, (12,5.17)
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For the range of Gdy in (12,5,16), we have
= 72, 96, ..., 1008,

rhﬂ = 3’ L"’, 290y 42- (12n5118)
From (10,6,1), (12,5,13), and (10,6,5), the performance of the

compound=concatenated system in correcting bursts is given by

P(E | burst) = P(E | no F)[1 - P(F)] + P(F), (12,5,19)
P(F) = P, By, ‘
d-t=1 . .
Fa=t- % (3 a7 (1 - a7, (12,5,20)
P(E|no F) w1 - (1 - p) P, (12,5.21)

For every Py and Qs the corresponding values of Py and q, are found by substi-
tuting the parameters n = 24 and t = 3 of the inner block code into (12,2,13)
and (12,2,14), The probability of failure P(F) of the compound-concatenated
system is found By substituting the parameters of the burst-trapping code,

=30, k=15, d =17, and t = 1, into (12,5,20) and (12,5,13), The result is
shown in curve I of Fig, 12.5,7. We choose t = 1 because it is known from Fig,
12,5,2 to yield the best curve for P(F),

B d.hhﬁy substitut1ng the extreme values [hf] 3,42 into (12,5,21), we
obtain the limits of P(EI no F), the probability of a decoding error given a
detected burst, shown in éurves III and IV of Fig, 12,5,3, Combining P(F) and
P(El_no F) as in (12,5,19), we obtain the performance P(E | burst) of the com-

pound=concatenated system as shown in curves IIT and IV of Figs, 12,5,4, 12,5,5,
and 12,5,6,

12,5,¢c, Compound-Concatenated System With Immer Convolutional Code

Consider a compound-concatenated system whose outer code belongs to
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the same class as the burst~trapping code of Section 12,5,a, and whose inner

code is the convolutional code of Section 12,2,c,, With v = 30 and W = 792,
we obtain

B = (30)(30) = 1(1008 + 792) = 900,

Gdy = 30y = 30, 609 s2e9 900 s ¥ S 30,

N = (1)(30)(16) + 30 = 5109

h = 900/900 = 1,00000,

N/G_ = 510/900 = 0,56667, (12,5,22)

Analogous to (12,4,26), for any decoder guard space Gdy’ the corresponding

channel guard space ch is

Gy = 2Gdy + W, (12,5.23)

Also, from (12,4,27),

h(B W) G =W
g={ §E+ 1=|‘°{E ‘l (12,5,24)

Thus, for the range of Gdy in (12,5,22),

ch 3 852, 912’ LB XX} 25929

max
Go =Gy = 2592,

g = 39 L"o [ R R X 829

max 1)(1008 + 792)"
g = '(“ 22 - 82,

(12,5,25)

From (10,6,1), (12,5,13), and (10,7,9), the performance of the

compound=concatenated system in correcting bursts is given by

P(E | burst) = P(E | no F)[1 - P(F)] + P(F), (12,5,26)
P(F) = Py Py,
-t nej
Pd =1 - > (j) qz (1 - qz) s (12-5-27)

3=0
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P(Elno F) » 1 = (1 - p,)E, (12,5,28)

For every P, and Qg the corresponding values of P, and q, are found by substi-
tuting the parameters ng = 22 and t = 3 of the inner éonvolutional code into
(12,2,23) and (12,2,24), We obtain the probability of failure P(F) of the com-
pound-concatenated system by substituting the parameters of the burst-trapping
code, n = 30, k=15, d = 7, and t = 1, into (12,5,27) and (12,5,13), The
result is shown in curve II of Fig, 12,5.7,

By substituting the extreme values g = 3, 82 into (12,5,28), we
obtain the limits of P(E| no F) as shown in curves V and VI of Fig, 12,5.3.
Combining P(F) and P(E|no F) as in (12.5.26), we obtain the performance
P(E | burst)H;f the compound-concatenated system as shown in curves V and VI of

Figs, 12,5,4, 12,5,5, and 12,5,6,

12,5,d, Comparison

Adaptive burst~trapping codes are seen to be a block-code~analog of
adaptive Gallager codes, They suffer the same disadvantage of high dependency
on the channel burst mode error rate and have the same advantages of reduced
guard space requirement and reduced complexity. Since burst-trapping codes
have a lower probability of failure than equivalent Gallager codes, they tend
to have superior performance, In addition, they have a much lower storage

requirement than any other burst correcting code described in this thesis,

12,6, GSA Codes

GSA codes, originally described in Chapter 11, are an adaptive burst
correcting technique with the structure of a2 compound-concatenated system,
The random mode of the system is provided by an inner (ni’ki) parity-check code

with minimum distance d and error correcting capability t, The burst modes of



171,

the system are obtained from a modified burst-trapping code derived from a

trivial (no,ko) systematic parity-chuck code for which the parity bits are
always zero, From (11,2,2),

k
2 ==l (12.6.1)
o

For some integer f£, (11,2,9) gives the chamnel burst length B, as
B = fn, . (12.6,2)
c i
From (11,4,1), the outer code has burst correcting capability Bm such that
Bm - fki - I‘bno, (12r603)

where r is known as the interleaving degree and b is the number of algorithms

by which bursts can be decoded, b < 4, The adaptive guard space requirement
Goy is, from (11,4,2),
Goy = (x - 1.)1'yno = (x - 1)y-}:%k:,L s Y =1, 2, ...y b, (12,6,4)

and from (11,2,13), the corresponding adaptive channel guard space Gi is

Gy, = (x - 1)y % ng, (12.6.5)

where Goy < G, and Giy < G, The complexity of the outer decoder is defined by

(11,6.1), (11,6,9), and (11,6,12),

N = r(ko + 1)(bx - 1) + rbko +n + 1, (12,6,6)

o b
Np = [1E -b+14 jEl (x - l)rj](no - ko) + rbk , (12,6.7)
Ny 2 (1E - 1)(n, - k), (12,6,8)

where lE is called the effective length of the GSA code,

In the channel random mode, the performance of the code is given by

(11,7.4), (11,7,6), (11,7.7), (11,7.8), and (11,7,9),
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P(E| random) = P(E | no A)[1 - P(A)] + P(E| A) P(4), (12,6.9)

d=t=1 n. . n. =3
P(A) ~ 1 = [1 - 1y pd(1-p ¥ Al 12,6,10
[t- . 3, GOr’ -r) ) ( )
P(E|A) 1 =~ (1 - Pb)(x'l)yf/b, (12,6.11)

t =, . -3
Po=1- % (rfl) pJd(1-p )n’L J, (12,6.12)
320 J o o

detel n, -3

PElmo &) =1-[ £ () pd (t-p) "t /™, (12.6.13)
=0 J

In the channel burst mode, performance is given by (11,7,1), (11,7,2), (11,7,3),
(11,7.4), and (11,7.5),

P(E | burst) = P(E|no F)[1 - P(F)] + B(F), (12,6,14)
Pp = Py Py,
k.=n. t+ n.
P =2 + 4 = (-1)s
N 320 J
det-1 ng j ni-j
Pj=1- 350 (._j ) a,” (1 =aq) ’ (12,6,15)
P(F) & ()P, (12,6.16)
P(E|no F) a1 - (1 = B )= 1I¥E/b, (12,6.17)

12,6,a, Numerical Example

Consider a GSA code whose inner code is the same (30,15) shortened
parity~-check code used in Section 12,5,a2,, This code has the parameters

n; =30, k;, =15, and d = 7, Withf = 36, we obtain
B, = (36)(30) = 1080,

B, = (36)(15) = %0, (12.6,18)
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The outer code has the parameters x = 3, n = Lsg, k = 30, b=4, and r = 3,

From Table 11,3,1 an optimal code with lE = 5 is given by

£(@) = 13 + 136 4 12 4 1318 L P, (12.6.19)

This gives f/b = 9 and £/rb = 3, and we obtain
B = (3)(#)(45) = 540,

Goy = (2)(3)(45)y = 270y = 270, s40, 810, 1080,

N = (3)(31)(11) + (3)(#)(30) + 45 + 1 = 1429,
N/Gm = 1429/1080 = 1,32315,

L
Np=[5-4%+1+(2)(3) z JJ45 - 30) + (3)(¥)(30) = 990,
=1
Ny 2 (5= 1)(45 - 30) = 60, (12,6,20)

The random error correcting capability of the inner code may span the
range £t = 1, 2, 3 and the guard space requirement of the outer code is
Goy =270y, ¥y =1, 2, 3, 4, By substituting these and the other parameters of
the GSA code into (12,6,9), (12,6,10), (12,6,11), (12,6,12), and (12,6,13), we
obtain the random mode performance curves P(E| random) for this code, Fig,
12,6.1, Again, because a choice of t = 3 does not permit a false alarm, the
decoder burst mode cannot be used to correct random error patterns with large
weight, resulting in reduced overall performance, This effect is not as pro-
nounced as with a burst-~trapping code, however, because the GSA code allows the
false alarm to occur in any of f/rb = 3 blocks at the “inmer decoder,

Substitufing the code parameters into (12,6,15) and (12,6,16) gives
the curves in Fig, 12,6,2 for the probability of failure P(F), Because a failure
must occur simultaneously in f/rb blocks at the inner decoder, P(F) is much
less for a GSA code than for other adaptive codes or compound-concatenated

systems,
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(12,6,12) and (12,6,17) yield the curves for P(E| no F), the proba-
bility of a decoding error given a detected burst, in Fig, 12.6,3, Combining
P(F) and P(E| no F) as in (12,6,14), we obtain the code performance P(E | burst)
in Figs, 12,6,4, 12,6,5, and 12,6,6,

12,6,b, Comparison

With a choice of error correcting capability t = 1 at the inner
decoder, this GSA code is not as effective as the other compound-concatenated
systems when the channel burst mode error rate 9, is low, However, since P(F)
for the GSA code is comparatively low, its performance does not deteriorate
nearly as badly as that of the other adaptive compound-concatenated systems as
q, inecreases, It should also be noted that this GSA code has higher rate than
the other systems; i,e,, 1/3 compared to 1/4, The main disadvantage of GSA

codes is their relatively large complexity, particularly in terms of the number

of tapped shift register stages,
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13, CONCLUSION

The purpose of this thesis was to describe various error control
techniques for the compound channel, particularly the two new techniques called
compound-concatenated systems and GSA codes, As a basis for comparison between
these codes, we used the criteria of decoder complexity and probability of de-
coding error, important measures of system cost and reliability, To simplify
the comparison, we attempted to unify the descriptions of the principles of
operation of interleaveé block codes, diffuse codes, Gallager codes, and burst-
‘trapping codes, as well as of tﬁe two new techniques, and to obtain relatively
simple expressions for their complexity and performance in a st#ndardized format,
In the last chépter, a summary and numerical evaluation of these various codes
was presented,

Burst correcting codes, though not presently enjoying widespread
application due to the greater cost effectiveness of retransmission requests
in low speed situations, will likely appear ever more attractive to system
designers as hardware costs decrease and transmission rate increases, The
most important parameter in the selection of a burst correcting code is its
compatibility with the characteristics of the particular transmission channel,
For example, if bursts on the channel are known to be of high error density,
then we have seen that an adaptive code is probably unsuitable because of its
poor performance under such a condition, On the other hand, with low error
density, adaptive codes give performance comparable to that of non-adaptive
codes but with lower complexity, If a very high degree of reliability is impor-
tant and a reduction in efficiency is an acceptable trade-off, then # compound-
concatenated system is appropriate, particularly if the outer code is non-
adaptive, If bursts are very common, then a GSA code may be suitable because

of its adjacent adaptive guard space and relatively high tolerance of variations
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in burst error density,

A great many interesting and important topics in this thesis were
treated only lightly and many others were omitted completely, For example,
the classes and implementations of block codes has been for two decades and
is still an area of intensive research, Then there are the related problems
of timing, control, and synchronization of encoders and decoders, as well as
channel design and signal design, However, one factor that more directly con-
cerns the characteristics of specific burst correcting codes, but which is
very difficult to describe accurately, is robustness, the capability of a code
to correct or to detect an error pattern not guaranteed to be corrected or
detected by the parameters of the code, In the text of the thesis, we gener-
ally ignored the specific effects of robustness, and this is the most important
factor affecting the accuracy of the performance curves in Chapter 12,

| Despite their inherent inaccuracies, performance curves like those
in Chapter 12 are extremely useful tools in determining the suitability of
various codes, First, they give rough approximations to the performance
which can actually be expected on a real channel, Second, since robustness
is the most significant factor neglected in obtaining these curves, they are
generally pessimistic; that is, true performance can be expected to be better
than shown in the curves, Third, for adaptive codes, the optimum choice of
error correcting capability in the random mode can be determined by inspection
if the predominant channel random mode error rate is known,

In addition to performance, of course, a major engineering consid-
eration is the complexity or cost of implementing these codes, It is their
generally much lower complexity which is the major factor in directing current
interest in burst correcting codes tow;rds the adaptive codes, such as Gallager

codes and burst-trapping codes, It is the fact that overall system complexity
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need not be increased, and may even be reduced, that makes compound-concatenated
systems appear to be a very attractive method of improving performance on noisy
channels, And it is, unfortunately, complexity which makes GSA codes unattrac-
tive in coste~sensitive applications,

For over two decades now, the major problem in the field of random
error correcting codes has been the development of simple and inexpensive de-
coders, An important breakthrough in this area was the introduction of threshold
decoding, As research intensified over the past few years in the field of burst:
correcting codes, the cost of decoders again appeared as the primary deterrent
to widespread acceptance, Even though threshold decodable diffuse codes and
Gallager codes exist, a block coding technique, burst-trapping codes, is less
complex, Thus, threshold decoding in itself does not provide aé significant
a solution to the complekity problem for burst correcting codes as for random
error correcting codes, The search, then, must continue for ever more inexpen-

sive codes and decoding methods,
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