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ABSTRACT 

This thesis deals with error control techniques for the compound 

channel, and particularly with two new burst correcting techniques called 

compound-concatenated systems and GSA codes. Compound-concatenated systems 

are constructed by concatenating a random error correcting code with a burst 

correcting code, thereby giving the burst correcting code a large degree of 

immunity from noisy guard spaces. GSA codes are modified burst-trapping codes 

with the unique property that their adaptive guard space requirement is con­

secutive and immediately adjacent to the burst. 

These techniques and other, well-known burst correcting codes, 

interleaved block codes, diffuse codes, Gallager codes, and burst-trapping 

codes, are described in some detail and are compared with respect to their 

performance and their complexity of implementation. Also, insofar as they 

are important to the understanding of burst correcting methods, two random 

error correcting codes, linear binar,y codes (parity-check codes) and majority 

decodable convolution al codes, are described. 
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ADDENDA 

Several errors in the text have been brought to the attention of the author. 

Corrections and clarifications are as follows: 

(a) On pages 4, 57, and 65, it is alleged that the diffuse codes of Chapter 

7 were first described in 196$ by Kohlenberg and Forney (reference 22). 

In fact, the first published report on diffuse codes was J.L. Massey, 

ttAdvances in Threshold Decoding,\l tt in Advances in Oommunication Systems 

(Ed. A. Balakrishnan), VoL III, Academic Press; 196$. Massey's work 

was available to Kohlenberg and Forney in manuscript form when their 

paper was written. 

(b) On pages 5 and 93, it is inferred that the concept of concatenation, as 

applied to the compound-concatenated systems of Ohapter 10, is due to 

Farney (reference 2$). However, the coding scheme of Ohapter 10 is more 

properly an example of the iterative coding introduced by Elias 

(rei'erence 9). 

(c) On page l5, since modulo-q arithmetic is specified, the number q must 

itself be a prime and not simply a positive integer power of a prime. 

(d) On page 21, the minimum. distance d of a code may be as large as n-k+l, 

not just n-k. 

(e) On page 30, a feedback decoder is said to complement each of the J 

composite parity-checks in order to remove the effect of a detected 

error. :r:t should be emphasized that this is accomplished by 

complementing one and only one syndrome bit in each composite parity-

check. 
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(f) On page 73, the Gallager decoder of Figure 8.2.2 would not perform well 

in practice. This is because a burst may cause several incorrect decoding 

decisions by the random error correct or among th~ bits preceding the burst. 

These incorrect decisions can be cancelled by the burst corrector if 

several bits of buffering are provided at the storage register outputs. 

This more practical decoding scheme is described by Kohlenberg and Forney 

(reference 28). 

T • J. Dmuchalsky 
April 1972 . 
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channel, and particularly with two new burst correcting techniques called 

compound-concatenated 5,Ystems and GSA codes. Compound-concatenated 5,Ystems 

are constructed by concatenating a random error correcting code with a burst 

correcting code, thereby giving the burst correcting code a large degree of 

immunity from noi5,Y guard spaces. GSA codes are modified burs~trapping codes 
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interleaved block codes, diffuse codes, Gallager codes, and burst-trapping 

codes, are described in some detail and are compared with respect to their 

performance and their complexity of implementation. Also, insofar as they 

are important to the understanding of burst correcting methods, two random 

error correcting codes, linear binar,y codes (parity-check codes) and majority 

decodable convolutional codes, are described. 
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1. INTRODUCTION 

1.1. Purpose 

An important problem in communications engineering today is the 

reliable transmission of digital information over a channel designed for 

analog signals. A common solution to the transmission aspect of the problem 

is to modulate the digital message in some suitable fashion and then to 

demodulate the received signal. 

1. 

Since ever,y real system is subject to errors at the receiver and demo­

dulator, reliabili ty may not easily be achieved. Thesè errors may be statis­

tically random or they may occur in clusters or bursts. Random errors gener­

ally result from the total effects of background thermal noise, non-linear 

frequency response of the channel, and frequency offset and phase jitter in 

the receiver. Depending upon the modulation scheme and the transmission rate, 

some of these error-inducing mechanisms play a much more significant role than 

others. Bursts of errors are caused by more catastrophic events, including 

serious environmental disturbances such as lightning and sun spot activi ty, 

impulse noise and crosstalk in switched channels, loss of synchronization 

between receiver and transmitter, or even temporar,y loss of the channel. 

S,ystem reliability can often be interpreted as the frequency, or 

probability, of errors in attempting to recover the original digital message. 

If a minimum standard is not achieved at the demodulator, safeguards against 

errors must be incorporated into the system. One alternative is to encode 

the digital information before modulation in such a way that errors May be 

corrected after demodulation. 

It is the purpose of this thesis to examine encoding and error 
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2. 

correction techniques applicable to the compound channel, any channel or 

~stem subject to both random errors and bursts of errors. These techniques, 

called burst correcting codes, are discussed from three points of view: the 

structure of codes and methods for encoding and decoding; the complex::i ty of 

implementation of the decoder; and the expected performance in error control 

in terms of the probability of a decoding error. 

No background in coding theor,y or information theor,y is required of 

the reader, though he is expected to have some familiarit.Y with probability 

theor,y, linear algebra, and a few electronic circuits such as shift registers. 

AlI other essential concepts are developed in the text as they are needed. 

1.2. Outline and Historical Background 

Chapters 2 to 9 in this thesis may be considered te be introductor,y 

or tutorial in nature since they largely cOVer the work of the authors listed 

in the bibliography. The original papers, however, were intended for advanced 

students of coding theor,y and were written in styles uSing notational and 

mathematical conventions Most convenient to the individual authors. The 

introductor,y chapters of this thesis attempt to unify and simplify the des-

criptions of codes so that, with few exceptions, the approach in these chap-

ters is quite different from that in the original papers. Except where noted, 

expressions for the complexity and performance of codes were derived indepen-

dently in this thesis and Many are original. 

Chapters 10, 11, and 12 are, so far as is known, completely original 

in this thesis. The codes described in Chapters 10 and 11 were inspired by 

other known codes, but the ideas, descriptions, and derivations in these 

chapters are entirely the independent work of the author. 



3. 

This thesis deals Wi th coding which, qui te simply, is a means of 

increasing the reliability of a digital communications system. Random error 

correcting codes are designed for the discrete memor,yless channel (DMC), a 

channel producing only random errors, and burst correcting codes are designed 

for the compound channel. Chapter 2 develops the foundations for the descrip­

tions of these codes. It presents a simplified model of the communication 

system [lJ wherein only binar,y data is transmitted, the binar,y symmetric 

channel model of the DMC, and Gilbert's model [2J of the compound channel. 

In addition, it includes the fundamental mathematicàl properties of codes to 

be found in any text on coding theor,y, such as those by Berlekamp [3J and by 

Peterson [4J. 

Chapter 3 describes random error correcting block codes, particularly 

linear binar,y codes, and a decoding algorithm called minimum distance decoding. 

Shannon [5J originally showed that block codes could control errors with as 

much reliability as desired without sacrificing information rate, and a host 

of others, including Hamming [6J, Reed [7J, Muller [8J, Elias [9J, Slepian 

[10J, Hocquenghem [11J, Bose and Chaudhuri [12J, [13J, and Peterson [14J, 

developed and systematized block coding. Berlekamp [3J and Peter son [4J give 

thorough treatments of block codes, while Gallager [lJ and Massey [15J give 

simple descriptions of linear codes. 

Chapter 4 describes a decoding algorithm called majority decoding 

and an implementation of' that algorithm called feedback decoding. Then it 

describes random error correcting convolutional codes, particularly those 

which are feedback decodable. It was Elias [16J who first discovered convolu­

tional codes, but they were brought into prominence with the development of 

sequential decoding by Wozencraft and Reiff'en [17J and later of threshold 
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(majority) decoding by Massey [15J. Massey's work ~orms the basis for this 

chapter. 

Chapter 5 examine~ important concepts relevant to all burst correc­

ting codes. These include de~initions of a burst and its guard space, the 

definition of burst correcting capabilit,r and the development of bounds on 

this capability, and the differentiation between adaptive and non-adaptive 

codes. The definitions in ~,his chapter are taken from Gallager [lJ, while 

the bounds on burst correcting capabili ty were originally ~ound by Wyner and 

Ash [18J, Gallager [lJ, and Reiger [19J. 

4. 

Chapter 6 describes burst correcting interleaved block codes. These 

codes are the first example o~ modi~ying known random error correcting codes 

to make them suitable ~or the correction o~ long bursts, They are discussed 

by Gallager [lJ and by Berlekamp [3J. 

Chapter 7 describes burst correctlng convolutional codes known as 

dif~use codes, It was Hagelbarger [20J who first developed convolutional codes 

with burst correcting capability, and Massey [21J, among others, refined these 

codes. Di~fuse codes in particular were first reported by Kohlenberg and 

Forney [22J and were more fully developed by Tong [23J and by Ferguson [24J. 

Chapter 8 describes burst correcting Gallager codes. These codes 

are adaptive and are obtained by a simple extension of random error correcting 

convolutional codes. They were discovered by Gallager [lJ, who called them 

time-diversity codes, and were first reported by Kohlenberg and Forney [22J. 

They were later generalized by Sullivan [25J. 

Chapter 9 describes burst correcting codes known as burst-trapping 

codes. They are adaptive and are obtained from random error correcting block 

codes. They were developed by Tong [26J and were later generalized by Burton, 

Sullivan, and Tong [27J. 



5. 

Chapter 10 introduces a method of extending or generalizing aIl burst 

correcting codes such that their required guard spaces need not be error-free. 

The method is based on concatenated codes, discussed by Forney [28J, and the 

extended codes are called compound-conca'~enated systems. 

Chapter 11 introduces a new burst correcting technique called guard­

space-adaptive burst-trapping codes. These codes are adaptive and have an 

adaptive guard space requirement immediately adjacent to the burst being cor­

rected. Their principle is a modification of Tong's burst-trapping codes [26J. 

Chapter 12 compares the complexity and performance of the burst 

correcting codes of Chapters 6 to 11 on specifie compound channels. Data for 

the performance curves was obtained by programming in Fortran the IBM 360/75 

computer of the McGiII University Computing Centre. 
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2. SYSTEM MODELS AND MATHEMATICAL BASICS 

2.1. Introduction 

Before considering specifie random error correcting and burst cor-

recting codes, it is necessar,y ta define the environment to which they are 

applicable and to establish certain notational and mathematical foundations. 

This chapter is designed to meet this need. 

Section 2.2. defines a simple model of a digital communication 

system. This model treats aIl transmi tted data as a sequence of binar,y digits, 

commonly represented "0" and "1." The section also establishes the represen-

tation and certain characteristics of binar,y sequences, Sections 2.3. and 2.4. 

describe the two binar.y channel models which shall be used throughout this 

thèsis, the binar,y symmetric channel [lJ and the Gilbert char~el [2J. Finally, 

Section 2.5. provides the basic mathematical background necessary to establish 

the properties of binar,y codes applicable to these channel models. 

2.2. Model of a Digital Communication System 

In a general digital communication system, one of L discrete values 

at an information source must be reliably transmitted ta an information sink 

over some available channel. A simple system model in which L = 2k, k an 

integer, and in which only binar,y data is transmitted, is given in Fig, 2.2.1. 

For simplicity, we restrict ourselves to this model in the remainder of the 

thesis. 

During sorne arbi trar,y time interval from jT seconds to (j + 1) T 

seconds, a source encoder accepts one of the L source values and uniquely 

translates i t into a message sequence of k binar,y digits, or bits. This 

sequence is denoted ~j, 
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Source Source binary Cha.ymel 
Encoder data Encoder 

Noise - Channel 

Sink . Source binary Channel 
Decoder data Decoder 

Figure 2.2.1 Model of a Digital Communication System. 
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... , ~), (2.2.1) 

where j is simply an indexing right superscript. During the same interval, 

the channel encoder accepts the incoming stream of message bits and adds 

redundancy to them according to some fixed binar,y code. For each message 

sequence, the channel encoder transmits a channel sequence, t j , of n bits, 

(2.2.2) 

The binar,y code is said to have rate or efficiency R, where 

The transmission channel is considered to have a noise generating 

mechanism, modelled in Fig. 2.2.2, which corrupts the channel bits, t. Accor­
m 

ding to the detailed error statistics of the channel, the noise source pro du-

ces binar,y noise digits, e , which it adds to the corresponding channel bits. m 

The channel decoder then receives binar,y digits r m such that 

(2.2.4) 

The addition ab ove is modulo-2, where the mod-2 sum, or product, of 

any two binar,y digits is the remainder after di vision by 2 of the ordinar,y 

sum, or product, of the two digits. This remainder may only assume the values 

° and 1 and is thus itself a binar,y digit. Mod-2 addition gives the results: 

° + ° = 0, 

° + 1 = 1, 

1 + 1 = 0, 

1 + ° = 1. 

Note that addition and subtraction are equivalent mod-2 operations. Bence-

forth, all ari thmetic operations on binar,y digits will be understood to be 

mod-2 unless otherwise specified. 

The noise bit em is called an error if em = 1, since in that case 

the channel bit t and the received bit r must differ. Since tm is an element m m 

of some channel sequence ~j, em may be considered to be an element of a corrss~, 

,.-
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Noise Generating Mechanism of the Channel. 
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ponding noise sequence, or error pattern, ~j, 

j - (j j j) 
~ - el' e2, ••• , en • 

Similarly, r is an element of a received sequence I j , 
m 

... , 
and 

10. 

(2.2.6) 

(2.2.7) 

(2.2.8) 

Note from (2.2.8) that the mod-2 addition of equal length binar,y sequences is 

the mod-2 addition of the corresponding elements. Binar,y sequences have two 

other simple properties defined below. 

Definition 2.2.1. A binar,y sequence of length n which contains w l's and 

(n - w) O's is said to have weight w. 

Definition 2.2.2. If two binar,y sequences of length n differ in d of their 

corresponding elements, then the (Hamming) distance between them is d. 

From (2.2.5), the mod-2 sum of like digits is 0 and of unlike digits 

is 1. Thus, in (2.2.8), if the distance between ~j and e j is d, then I j must 

have weight d. 

The channel decoder in Fig. 2.2.1 accepts the incoming stream of 

received bits. Using the same code as the channel encoder, it attempts to 

recover the original message sequences ~j, possibly successfully. The source 

decoder then assigns one of the L sourCe values to each of the decoded messages 

and feeds this infonnation ta the sink. 

2.:3. The Binar,y Symmetric Channel 

A digital transmission channel which produces only random errors is 

,-
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known as a discrete memoryless channel, or DMC. Gallager [lJ describes many 

different DMC models, but the simplest and most widely applied model is the 

binary ~etric channel, or BSC, shown in Fig. 2.3.1. 

Each digit in any DMC noise sequence is sta tistically independent 

of aIl other noise digits, and errors occur according to some fixed probability 

distribution. On the BSC in particular, noise digits are binary and errors 

occur with probability P. If P < 0.5, then lower weight noise sequences are o 0 

more probable. 

Henceforth, we shall always use the BSC model of a DMC. 

2.4. The Gilbert Channel 

The compound channel, or discrete channel with memory, or burst-

noise channel, produces noise sequences in which errors may be either random 

and independent or clustered into bursts and generally not independent. 

Gallager [11 describes several models of the discrete channel with memory, 

including the very simple Gilbert channel [2J. 

The Gilbert channel model assumes that a noise sequence has the 

properties of a Markov chain [29J. The channel is assigned two states or 

modes of behaviour. In the "good" state, or random mode, errors occur with 

some low probability p , say 10-6, and are indeppndent. In the "bad" state, o 
-1 or burst mode, errors occur with much higher probability q , say 10 ,and are 

o 

also modelled as independent. The transition probabilities between states 

should be chosen such that the frequency and lengths of bursts are similar to 

experimentally obtained values on the real channel to be modelled. 

Later, when considering coding techniques for the compound channel, 

we shall make use only of the property of the Gilbert channel model that 

errors in either channel mode are statistically independent. 

'-
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2.5. Elements of Finite Algebra 

Many aspects of corling theor,y are based upon the properties of 

groups and fields in fini te algebra. Gallager [lJ, Berlekamp [3J, and 

Peterson [4J provide a thorough introduction to this field. Here we give 

only those few definitions necessar,y to establish the fundamental properties 

of codes. 

Definition 2.5.1. A group is a set of elements (gl' g2' g), ••• } under a rule 

of composition, denoted +, for which the following four axioms are satisfied: 

(a) For any gl' g2 in the set, gl + g2 is in the set. 

(b) The associative law is satisfie~; i.e., f?r any gl' g2' g) in the set, 

(gl + g2) + g) = gl + (g2 + g). 

(c) There is a unique identity element i in the set such that 

g + i = i + g = g, for aIl g in the set. 

(d) For each element g, there is a unique inverse element, -g, in the set 

such that 

g + (-g) = (-g) + g = i. 

Definition 2.5.2. An Abelian group is a group for which the commutative law 

is also satisfied: 

Definition 2.5.). A subgroup is a subset of elements of a group which itself 

forms a group under the same rule of composition. 

Definition 2.5.4. For any subgroup {sl,s2' s3' ••• } of an Abelian group and 

any fixed element g in the group, the subset of elements of the group given by 



14. 

is defined as a coset of the subgroup. 

Definition 2.5.5. The order of a group or subgroup is the number of distinct 

elements in the group or subgroup. 

A simple but important theorem [lJ follows from the above five 

defini tions • 

Theorem 2.5.6. (a) If a subgroup is of fini te order, each coset contains 

the same number of elements as the subgroup. (b) The coset containing the 

identity element is the subgroup itself. (c) No two cosets of the same sub­

group May have any elements in common. (d) The order of a group, if finite, 

is a multiple of the order of each subgroup. 

Defini tion 2.5.? A field is a set of at least two elements {f l' f 2, ••• } 

under two rules of composition, denoted addition (+) and multiplication (.), 

for which the following four axioms are satisfied: 

(a) For any f 1, f 2 in the set, f 1 + f 2 and f 1·f2 are in the set. 

(b) The set of elements is an Abelian group under addition. 

(c) Where zero is the identity element of the group under addition, the set 

of nonzero elements is an Abelian group under multiplication. 

(d) The distributive law is satisfied; i.e., for any f 1, f 2, f3 in the set, 

Definition 2.5.8. A Galois field, denoted GF(q), is a field containing a 

fini te number, q, of elements. q must be of the forro 

k 
q = p • 

where p is any prime number and k is any positive integer. 

'- , 
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It is easy to show that the set of integers {O, 1, ••• , q-1} is a 

Galois field under modulo-q addition and modulo-q multiplication, where the 

mod-q sum, or product, of any two elements of the set is the remainder after 

ordinar,y division by q of the ordinar,y sum, or product, of the two numbers. 

This remainder must also be an element of the set. In particular, the set of 

binar,y digits {O, 1} is the Galois field GF(2) under mod-2 addition and mod-2 

multiplication. 
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J. BLOCK CODES 

J.l. Introduction 

Many burst correcting codes, which are designed for use on the 

compound channel, either employ directly or are logical extensions of random 

error correcting codes. This chapter is in~ended as an introduction to the 

general class of random error correcting codes known as block codes, parti-

cularly that sub-class known as parity-check codes. For block codes, the 

channel encoder treats each incoming binar,y message sequence ~j as a distinct 

unit, or block, or group. The encoder adds redundancy to ~j by forming mod-2 

combinations of its elements and thereby produces a unique binar,y channel 

sequence, or codeword, !j. Since t j has length n and ~j has length k, we 

refer to such a code as an (n,k) block code with block length n. 

Section J.2. defines an (n,k) parity-check code and describes some 

of its properties. Section J.J. describes a decoding algorithm for parity-

check codes, called minimum distance decoding, and develops expressions for 

the performance of these codes in correcting errors and in detecting errors. 

J.2. Parity-Check Codes 

A class of block codes known as linear codes is useful for digital 

data whose values are the elements of the arbitrar,y Galois field GF(q). Parity­

check codes [lJ, [JJ, [4J are binar,y linear codes. This section describes 

the structure and properties of parity-check codes and is based largely on 

the work of Gallager [lJ. 

Definition J.2.1. The codeword digits of an (n,k) parit.y-check code are 

defined by the relation 

1, 2, ••• , n, 

'-
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where the summation is mod-2 and the binary set (gih} is arbitrary but fixed 

independent of ~j and !ja 

A parity-check code May appear in systematic form in which the first 

k codeword digits, called information digits or message digits, correspond 

exactly to the message sequence mj a The remaining n - k codeword digits, 

called parity digits or check digits, represent the redundancy added by the 

encoder to protect the message against errors a 

Definition 3a2a2a The codeword digits of an (n,k) systematic parity-check 

code are defined by the relations 

tÎ = mÎ ' i = 1, 2, aaa, k, 

. k j 
~ = L mi gih ' h = k + 1, a •• , n, 

i=l 

where the binary set {gih} is arbi trary but fixed independent of mj and t j • 

The set {gih} May be considered to be the elements of a k-by-n 

matrix G shown in Fig. 3.2al and known as the generator matrixa Treating mj 

and !j strictly as row vectors, we May write 

Mod-2 matrix operations are the same as over the field of real numbers except 

that element-by-element arithmetic is mod-2a 

~stematic parity-check codes are characterized by a parity-check 

matrix H which May be derived from the generator matrix Ga From Definition 

k. . 
L t~ gl.'h + tg = 0 , h = k + 1, ••• , n. 

i=l 1. 

The n - k equations in (3.2.2) May be expressed in matrix form as 
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gu g12 ••• gl,n 

g21 g22 ••• g2,n 
G = • • • • • • 

gk 1 , gk 2 , gk,n 

(a) Arbitrary (n,k) Parity-Check Code. 

1 0 • •• 0 gl,k+1 • •• gl,n 

0 1 • •• 0 g2,k+1 • •• g2,n 
G = 

0 0 · .. 1 gk,k+1 • •• gk,n 

(b) (n,k) Systematic Parity-Check Code. 

Figure 3.2.1 Generator Matrix of a Parity-Check Code. 
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~j H =,2, 

where H is the n-b,y-{n - k) parit,y-check matrix of the code, Fig. 3.2.2, and 

Q is a null row vector of dimension n - k. It is important to note that 

(3.2.3) is true if and only if the vector .t:j is a valid codeword of the parity-

check code. 

A fundamental property of pari ty-check codes is that the set of 

codewords forms an Abelian group under mod-2 addition. This follows from 

the following observations: 

(a) For any integer K, it is easily shown that the set of aIl 2K binary 

sequences of length K forms an Abelian group under mod-2 addition. The 

all-O sequence is the identi ty element of the group and each sequence 

is its own unique inverse. 

(b) It follows that the set {!!j} of aIl 2k message sequences forms an Abelian 

group under mod-2 addition. Thus, the sum of any two message sequences, 

!!1 and !!2, is also a message sequence. If t 1 and ~2 are the codewords 

corresponding ta !!1 and !!2, then their sum, 

(3.2.4) 

is also a codeword, and i t is easily shown that the set (~j} of aIl 2k 

codewords forms an Abelian group under mod-2 addition. The all-O code-

word is the identity element and each codeword is its own unique inverse. 

(c) The set of 2k codewords is a subset of the set of aIl 2n binary sequences 

of length n. Thus, the group formed by the subset of codewords is a 

subgroup of the group formed by the set of 2n binary sequences. From 

Theorem 2.5.6., there are 2n- k co sets of the subgroup, including the 

subgroup i tself, and every element of every coset is distinct. 
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gl,k+l gl,k-t-2 • •• gl,n 

gZ,k+1 g2, k-t-2 • •• g2,n 

• • 

gk,k+l gk,k-t-2 • •• gk,n 
H = 

1 0 • •• 0 

0 1 • •• 0 

• • 

0 0 • •• 1 

Figure 3.2.2 Parity-Check Matrix of a ~arity-Check Code. 
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3.3. Minimum Distance Decoding 

There are many di~ferent schemes for encoding and decoding the 

various sub-classes of (n,k) parity-check codes [lJ, [3J, [4J. A description 

of any or aIl of these schemes is beyond the scope of this thesis, though we 

shall describe the structure and performance of a rather general decoding 

algorithm called minimum distance decoding. 

3.3.a. Structure 

Because each of the 2k codewords of a parity-check code 1s distinct, 

there exists some nonzero distance between any two codewords in the set. In 

parti cular , if d is the minimum distance between any two codewords, then d is 

said to be the minimum distance of the code. For a systematic code, codewords 

must differ in at least one information digit, so d may be as low as one or as 

high as n - k, depending upon the choices of k, n, and G. 

Consider that some codeword ~j from a set wi th minimum distance d 

is transmitted over a BSC with p < 0.5. The channel adds a noise sequence 
o 

.!j, which occurs wi th higher probabili ty if i t has lower weight, and from 

(2.2.8), the decoder receives the sequence ~j, 

(3.3.1) 

where both .!j and ~j are elements of the set of aIl 2n binar,y sequences of 

length n. A minimum distance decoder attempts to deduce the Most probable 

value of .!j and thereby recover ~j, 

(3.3.2) 

To do this, the decoder first calculates in some manner a syndrome 

sj where - , 

'-
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and <:3.3.4) 

The s,yndrome, a binar,y sequence o~ dimension n - k, depends only upon the 

noise sequence ~j. 

Assume that ~j is an element of the set o~ codewords, which includes 

the zero-weight sequence. Then, ~rom (3.2.3), ~j = Q. In this case, the 

decoder knows that~j is itse~ a valid codeword, and the Most probable value 

o~ ~j is that value with lowest weight; i.e., the a11-0 sequence. The decoder 

there~ore deduces that t j = I j • If ~j is not an element o~ the set o~ code­

words, then ~j '= 0 and the decoder knows that ~j '= Q. Let us consider the 

manner in which the decoder chooses the Most probable value o~ ~j in this case. 

j n-k Since ~ has dimension n - k, there are 2 dif~erent s.yndromes. 

There are also 2n- k dif~erent co sets of the subgroup o~ codewords and ~j must 

be an element of one and only one o~ these cosets. It is easily shown that 

each coset uniquely generates one of the 2n- k s,yndromes according to (3.3.4). 

The ~ollowing observations May be made: 

(a) If d is the minimum distance of the subgroup of codewords, then d must 

be the minimum distance of ever,y coset o~ the subgroup. 

(b) Ever,y noise sequence with equal weight is equally probable, since a 

sequence with weight w occurs with probability Pw' 

(3.3.5) 

where (3.3.6) 

(c) Ever,y coset must have at least one lowest weight sequence as an element, 

corresponding to a Most probable noise sequence. Choose one such sequence 

as coset leader, the speci~ic choice being immaterial since aIl lowest 

weight sequences are equiprobable. 

(d) The coset leader of the subgroup is the null sequence. 
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(e) Ever,y sequence with weight less than d/2 must be a coset leader. 

It follows from the above observations that the decoder deduces the 

Most probable value of ~j if it decides that ~j is the coset leader of the 

coset which generates the ~drome sj. In so doing, it chooses as ~j that 

codeword which is closest in distance te the received sequence ~j and it 

decodes witb. minimum probability of decoding error. 

The mininnnn distance decoder always decodes correctly when the 

noise sequence has weight less than d/2 • It also decodes correctly for those 

noise sequences with weight d/2 or greater which happen te be coset leaders, 

if any. We say that a code has error correcting capabili ty t if i t corrects 

a class of error patterns which includes all noise sequences with weight at 

Most t and, possibly, some sequences wi th higher weight. Thus, a minimum 

distance decoded parity-check code has error correcting capability given by 

(3.3.7) 

where we use the notation LxJ to denote the greatest integer less than or 

equal te x, and we use r Xl to denote the least integer greater than or equal 

to x. 

The inequality exists in (3.3.7) because in ma.ny applications it is 

useful te employ an error correcting capabili ty which is less than maximum. 

This preserves a portion of the minimum distance structure of the code for the 

detection of errors. For example, we saw that if a noise sequence occurs such 

that .!:j is distance t or less from any codeword in the set, the minimum dis­

tance decoder chooses that particular codeword as having been transmitted. 

Convers ely , if the noise sequence is such that ~j is distance greater than t 

from ever,y codeword in the set, the decoder detects an uncorrectable error 

pattern. 

-' 
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3,3,b, Performance in Error Correction 

The criterion employed as a measure of the performance of a code in 

correcting errors is the probability of decoding error, P(E), For a minimum 

distance decoded parity-check code, aIl error patterns with weight at Most t 

are correctable. Also, if t is a maximum, some error patterns wi th weight 

greater than t May be correctable, a quality referred to as robustness. Since 

for the general case the degree of robustness of the code is undefined, the 

probability of a decoding error is upper-bounded by the probability that the 

noise sequence has weight at least t + 1. Thus, on the BSC, 

(3.3,8) 

P(E) May be decreased by increasing t, decreasing n, or decreasing p. How­o 

ever, t and n are not independent parameters and p is fixed for any particular 
o 

channel. 

3.3.c. Performance in Error Detection 

The criterion employed as a measure of the performance of a code in 

detecting errors is the probability of failure, P(F); i.e., the probability 

that an error pattern is neither detected nor successfully corrected. We shall 

develop an expression for P(F) based on the work of Tong [26J. 

If the parity-check code has error correcting capability t < Ld-l / 2J, 
then Np different error patterns can be successfully corrected, 

t 
N - 1: (nJo). 

p - j=O 
(3.3.9) 

Each of these error patterns must be a coset leader, so that the probability 

that any coset chosen at random has a correctable error pattern as its leader 

_1 
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<:3.:3.10) 

If one of the 2n - Np uncorrectable error patterns occurs, and if it is an 

element of a coset whose leader is not correctable, then an error detection 

occurs. On the other hand, if it is an element of a coset whose leader is 

among the Np correctable patterns, then a failure occurs; i.e., the decoder 

mistakenly attempts a correction, thereby committing a decoding error. 

Since a failure May occur only if I j is wi thin distance t of the 

wrong codeword, the error pattern must have weight at least d - t, an event 

which occurs with probability Pd' 

d-t-1 
r: (~) Poj (1 - po)n- j • 

j:O 

Thus, P(F) is approXimately given by 

(:3.:3.11) 

(3.:3.12) 

P(F) May be decreased by decreasing t, increasing d, and increasing n - k. 

,-
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4. CONVOLUTIONAL CODES 

4.1. Int.roduct.ion 

In t.his chapt.er we shall st.udy anot.her general class of random 

error correct.ing codes known as convolut.ional codes. Like block codes, t.he 

informat.ion digi t.s in the codeword ~j of a convolut.ional code correspond to 

the digit.s of a message sequence mj • Unlike block codes, however, t.he parity 

digit.s of ~j are linear mod-2 combinat.ions of t.he element.s of mj and of the 

j-1 j-u preceding u message sequences, m , ••• , m • Because of t.heir applicat.ion 

t.o burst. correct.ing codes for t.he compound channel, we shall be particularly 

int.erested in convolut.ional codes which are feedback decodable, where feedback 

decoding is a met.hod of implement.ing a more general algorithm called majorit.y 

decoding. 

Sect.ion 4.2. develops the majorit.y decoding algorit.hm and discusses 

t.he difficult.ies encount.ered in applying it. t.o bot.h block codes and convolu-

tional codes. Sect.ion 4.3. defines t.he struct.ure of convolut.ional codes and 

t.hen, t.hrough an example, describes how a convolut.ional encoder and a feedback 

decoder are implement.ed, defines t.he complexit.y of implementat.ion, and defines 

opt.imalit.y crit.eria for convolut.ional codes. The sect.ion ends by developing . 

useful expressions for t.he performance of feedback decoded convolut.ional codes 

in correct.ing errors and in det.ect.ing errors. Sect.ion 4.4. is a not.e on t.he 

comparat.ive complexit.ies of implementat.ion for convolutional codes and block 

codes. 

4.2. Majorit.y Decoding 

Massey [15J int.roduced t.wo useful and simple decoding algorithms, 

applicable t.o bot.h block codes and convolut.ional codes, known as majorit.y 

'-
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decoding and "a posteriori" probability (APP) decoding. Both algorithms are 

also known by the generic term threshold decoding. Majority decoding is Most 

commonly implemented with a feedback loop in the decoder, its purpose being 

primarily to remove the effects of previously decoded errors, and in this form 

it is known as feedback decoding. Robinson [30J has proposed a majority deco­

ding scheme without feedback which is called definite decoding. In this section, 

we shall develop the majority decoding rule and describe the major difficulties 

encountered in its implementation. 

From (3.3.3) and (3.3.4), the syndrome obtained at a decoder is given 

by the matrix relations 

.§j = .!:j H, 

H is the parity-check matrix of the code, derived from (3.2.2), 

k. j 
E t~ g.h + tb = 0 , h = k + 1, ••• , n. 

i=l ]. ]. 

It follows that the syndrome bits May be expressed as 

or, equivalently, as 

The n - k equations above are known as parity-check equations. 

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.5) 

Definition 4.2.1. Massey [15J defines a composite parity-check, Am' as a 

linear mod-2 combination of s.yndrome bits, 

where the set of coefficients (amh3 are arbitrar,y binar,y elements. 
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It ~ollows ~rom (4.2.5) that a composite parity-check is a 1inear 

mod-2 combination o~ noise digits, 

k n . n j 
A = E E a_~ g1·h e i

J + E a_~ eh. 
m i=l h:k+l DUI h:k+l l~l 

(4.2.6) 

We say that a noise digit, e~, is checked by a composite parity-check, Am' 

i~ and only i~ e~ appears in the equation ~or that composite parity-check 

with a nonzero coe~~icient. 

De~inition 4.2.2. A set o~ 

is said to be orthogonal on 

J composite parit,y-checks, (AmI m = 1, 2, ••• ~ 

the noise digit e j i~ e j is checked by every p p 

equation in the set and every other noise digit is checked by at MOSt one 

equation in the set. 

Massey [15J gives an important theorem ~rom which the majority 

decoding rule can be derived. 

Theorem 4.2.3. I~ there are at mostl:/~ nonzero noise digits in the set 

{e~} checked by a set o~ J composite parity-checks, {Am" orthogonal on e~, 

J~, 

. fJ l . then e~ = 1 i~ more than . / 21 o~ the Am have value 1 and e~ = 0 i~ at 1east 

r J / 2l o~ the Am have value O. 

Proo~ o~ Theorem 4.2.3. Suppose that a11 o~ the e~ in the set {e~} are zero 

wi th the possible exception o~ e j • Thus, A = e j , ~or a11 A in the set {A }. p m p m m 

I~ e~ = 0, then at Most LJ / 2J o~ the other e1ements o~ {e~} can be nonzero and 

at Most LJ / 2J o~ the Am can have value 1. Thus, at 1east rJ / J o~ the Am still 

. LJ J . have value O. I~ e~ = 1, then at MOst /2 - 1 o~ the other e1ements o~ {e~} 

can be nonzero and at Most LJ / 2J - 1 o~ the Am can have value O. Thus, more 

than fJ / 2l o~ the Am still have value 1. There~ore, the theorem a1ways gives 

the value o~ e j correctly. 
p 

~' 
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The majority decoding rule may be stated as follows. Given a set 

of J composite pari ty-checks, {Am}' orthogonal on the noise digi t e~, choose 

e~ = 1 if and only if at least r J / 2l + 1 of the Am have value 1. 

It is useful to consider the class of error patterns which are 

correctly decoded by the majority decoding rule. The meMbers of this class 

will be described by the following two corollaries of Theorem 4.2.3., the 

first of which is a theorem given by Tong [23J. 

Corollary 4.2.4. If e~ = 1, then at least rJ /2l + 1 of the Am will have value 

1 if no more than LJ 
/ ~ - 1 of the Am check other nonzero noise digits. If 

e~ = 0, then at least fJ /21 of the Am will have value 0 if no more than LJ / d 
of the A check any non zero noise digits. m 

This corollary differs from Massey's theorem in that it does not 

limi t the number of nonzero noise digits to LJ / d. Rather, i t limi ts the 

number of composite parity-checks which may check an unspecified number of 

errors. The theorem May be further generalized as follows. 

Corollary 4.2.5. If e~ = 1, then at least fJ /21 + 1 of the Am will have value 

1 if no more than LJ / J - 1 of the Am check an even number of non zero noise 

digi ts. If e~ = 0, then at least fJ / J of the Am will have value 0 if no more 

than LJ / J of the Am check an odd number of nonzero noise digits. 

A code which is majority decoded bas error correcting capability 

given by 

since the class of error patterns which is correctly decoded includes every 

error pattern with weight LJ/J or less. However, from Corollary 4.2.5., a 

large number of error patterns with weight greater than tare also correctly 

,-
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decoded. 

A decoder uSing the majority decoding rule recovers each codeword 

digit t~ by adding the decoded value of e~ to the corresponding received bit r~, 

(4.2.8) 

If the implementation is as a feedback decoder, and if e~ = 1, then the decoder 

complements each of the J composite parity-checks which check e j in orderto 
p 

remove the effect of the error. However, the use of feedback in the decoder 

leads to the possibili ty of error propagation. This May occur when the logic, 

or threshold, element of the decoder incorrectly decides that e j = 1. Since 
p 

the composite parit,y-checks are complemented, new errors are artificially 

introduced into the system, and these in turn May be responsible for further 

incorrect decisions at the logic element. With certain convolutional codes, 

such self-generating error propagation might continue as long as there is 

continuous data transmission. Other convolutional codes, known as self-

orthogonal codes, have limited error propagation properties, and for block 

codes, error propagation cannot continue beyond the limits of the block being 

decoded. 

Definite decoding [30J does not use feedback and therefore does not 

complement composite parity-checks. Although this avoids error propagation, 

the set of composite parity-checks checks more noise digits than with feedback 

decoding, and previous errors, even though they have been decoded, May affect 

the correction of several subsequent noise digits. Sullivan [31J shows intui­

tively and experimentally that feedback decoding generally results in fewer 

decoding errors than definite decoding in spite of error propagation. 

Another difficul ty wi th majori ty decoding is to find a set of ortho-

gonal composite parity-checks. There exists a class of convolutional codes 

,-
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which can be easily orthogonalized in one step. Another class of convolutional 

codes cannot be orthogonalized at all and must be decoded by a complex algorithm 

called sequential decoding [17J. There are at least three classes of block 

codes which May be orthogonalized in one step: the Raed-Muller codes [3J, [4J, 

[15J; the self-orthogonal quasi-cyclic codes discovered by Townsend and Weldon 

[32J; and the difference-set cyclic codes discovered by Rudolph [33J and by 

Weldon [34J. Many other block codes may be orthogonalized in L steps, L > 1, 

and Massey [15J describes procedures for L-step orthogonalization. Rudolph 

[35J and Gore [36J, [37J, by employing what May be called "non-orthogonal 

compof:ite parity-checks," have shown that all binary block codes are majority 

decodable. 

4.3. Feedback Decodable Convolution al Codes 

In this section, we shall consider that sub-class of convolutional 

codes which is feedback decodable. We shall describe the structure cf these 

codes, their optimality criteria, their construction and implementation, and 

their performance in error correction and in error detection. Because of their 

relative simplicity, we shall consider mainly rate t codes. Our approach is 

based on the work of Massey [15J. 

4.3.a. Code Structure 

For each message sequence mj , a channel sequence ~j is produced at 

the encoder. USing the delay operator D, where rP corresponds to a delay of 

mT seconds, these sequences May be represented as sets of polynomials, 

Mi(D) 
0 1 D 2 D2 i ~ 1, 2, k, = mj _ + mi + m~ + ... , ... , 

:1. 
(4.3.1) 

Ti (D) 
0 1 D + .(,~ D2 

i = 1, 2, = t i + t i + ... , . . . , n • 
]. 

(4.3.2) 

'-
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Each polynomial is the sum of message or channel bits which appear in the same 

location of succeeding sequences. 

If the convolution al code is in s.ystematic form, then the first k 

bits in each channel sequence are information bits. Thus, 

The n - k parity bits in each channel sequence are defined by a 1inear combi-

nation of the message sequences, 

i = k + 1, ••• , n. (4.3.4) 

The ken - k) polynomia1s G.(D), Hi(D), ••• , Z.(D), i = k + 1, ••• , n, are 
:L :L 

known as code-generating polynomia1s and play a ro1e ana1ogous to the generater 

matrix of an (n,k) parity-check code. These polynomia1s are of maximum degree 

u and are of the form 

() 0 1 u u 
Gi D = ~ + ~ D + ••• + gi D , (4.3.5) 

where the set of coefficients {g~ lare binary e1ements. 
:L 

A convo1utiona1 code has a characteristic matrix, which we denote 

as pc, ana1ogous te the parity-check matrix H of a s.ystematic parity-check 

code. To find pc, we have from (4.3.3) and (4.3.4) that 

[Gi(D) T1 (D) + ••• + Zi(D) Tk(D)] - Ti(D) = 0 , i = k + 1, ••• , n. (4.3.6) 

We May express the channel noise sequences ~j, the received sequences ~j, 

and the syndromes sj by the sets of polynomia1s E", (D), R. (D), and S. (D) resp-
.... 1. 1. 

ecti vely, where 

o 1 2 2 Ei(D) = ei + ei D + ei D + ••• , i = 1, 2, ••• , n, (4.3.7) 

RA(D) = T.(D) + E.(D) 
.l. :L :L 

'-



R (D) 0 1 D 2 D2 1 2 i = ri + r ï - + ri + ••• , i = , , ••• , n, 

SieD) = [Gi(D) R1(D) + ••• + Zi(D) ~(D)] - Ri(D) 

= [Gi(D) E1 (D) + ••• + Zi(D) Ek(D)] - Ei(D) 

o 1 22. = S. + Si D + S. D + ••• , J. = k + 1, ••• , n. 
J. J. 
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(4.3.8) 

(4.3.9) 

Expanding the polYnomials, whose coefficients are binar,y elements, we obtain 

i = k + 1, ••• , n, j = 0, 1, ••• , u. (4.3.10) 

The set of equa tions above are the pari ty-check equa tions of the convolu-

tional code, and they May be expressed in matrix form as 

2
C 

=!!c pC = e
C [::l (4.3.11) 

where SC and !f}.c are row vectors of dimension (n - k)(u + 1) and n(u + 1) 

respectively, 

c (0 u sO 2 = sk+1' ••• , sk+l' ••• , n' (4.3.12) 

c (0 u 0 u) 
!f}. = el' ••• , el' ••• , en' ••• , en ' (4 .. 3.13) 

I C is the identity matrix of dimension (n - k)(u + 1), and HC is the k(u + 1)­

by-(n - k)(u + 1) matrix in Fig. 4.3.1. Each uppe:r-triangular submatrix of 

HC is known as a parity triangle, one for each code-generating polynomial. 

4.3.b. Optimality and Implementation 

In order to develop optimality criteria for a convolutional code 

and to show how the encoder and feedback decoder are implemented, it is 

convenient to use a numerical example. To maintain simplicit,y, we choose 
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0 1 2 u 0 u 
gk+1 gk+1 gk+1 • •• gk+1 ~ • •• gn 

0 0 1 u-1 
gk+1 gk+1 • •• gk+1 

0 u-2 0 0 
0 0 • •• gn 

gk+1 • •• gk+1 ••• 

o o o 

0 u 0 zU 
zk+1 ••• zk+1 z • •• n n 

••• 

0 0 
0 0 

••• zk+1 • •• z 
n 

Figure 4.3.1 The HC-Matrix of a Convolutional Code. 
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a code wi th k = 1, n = 2, requiring ken - k) = 1 code-generating polynomial. 

Example 4.3.1. 

The code-generating polynomial is gi ven by 

4 6 
G2 (D) = 1 + D + D + D , (4.3.14) 

wi th maximum degree u = 6. The information bits are the coefficients of the 

equivalent polynomials Ml (D) and Tl (D), and the pari ty bits are the coeffi­

cients of T2(D), 

Each parity bit is the mod-2 sum of message bits delayed by zero, one, four, 

and six time units, the delays being represented by the coefficients of G2 (D)& 

The encoder can therefore be modelled as in Fig. 4.3.2. Note that any message 

digi t can affect pari ty digits for u + 1 = 7 time uni ts, in which time 

n(u + 1) = 14 channel digits are transmitted. The convolutional code is said 

to have (memor,y) constraint length nA' where 

nA = n(u + 1). (4.3.16) 

As we shall see later, constraint length is one of two important optimality 

criteria of feedback decodable convolutional codes. 

The PC-matrix of the code, and especially the parity triangle, is 

of paramount importance in determining the o rthogonali zabilit y of the code. 

Since G2(D) is known, we May write pc directly as in Fig. 4.3.3. Now, from 

(4.3.11), (4.3.12), and (4.3.13), we know that 

c c pc 
~ =~ , 

SC _ 0 1 6 
(S2' s2' .... t S2)' 

c 0 6 0 6 
..!! = (el' ... , el' e2, ... , e2)· 
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....---- Shift Register of 7 Stages 

~--------------------------------~t~ to channel 

L--________________ ~ t~ to channel 

Figure 4.3.2 Encoder for a Rate ~ Convolution al Code. 
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1 1 0 0 1 0 1 

1 1 0 0 1 0 

1 1 0 0 1 

1 1 0 0 

0 
1 1 0 

1 1 

~~j 
1 

pc = = ------------
1 

1 

1 0 

1 

0 1 

1 

1 

Figure 4.3.3 pC-Matrix of a Rate t Convolutional Code. 
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In the matrix multiplication, the sequence of parity noise digits (e~, ••• , e~), 

corresponding to the parity bits in the channel sequences ~j, are multiplied 

by the identity matrix IC. Clearly, then, each s,yndrome bit s~ checks the 

pari ty noise bi t e~ and no other pari ty noise bit. On the other hand, the 

sequence of information noise digits (e~, ••• , e~), corresponding to the infor­

mation bits in the channel sequences !j, are mul tiplied by the pari ty triangle 

HC• Thus, the l's in the jth column, j = 0, 1, ••• , u, of the parity triangle 

detennine which infonnation noise bits are checked by the s,yndrome bi t s~. 

For example, if the i th and jth columns both contain a 1 in the kth row, then 

s~ and s~ both check the information noise bit e~. 

The first row of the parity triangle is uniquely defined by the 

coefficients of the code-generating polynomial G2 (D}, and each subsequent 

row is sim ply a right shift of the row above it. Thus, if G2(D} has J nonzero 

coefficients, 

o noise bit el. 

there are J l's in the first rowand J s.yndrome bits 

These J = 4 parity-check equations are given by 

sO 0 ° 2 = el + e2, 

Sl 0 1 1 
2 = el + el + e2, 

4 0 + e3 4 4 
S2 = el 1 + el + e2, 

S6 ° 256 6 
2 = el + el + el + el + e2 • 

check the 

(4.3.17) 

When a convolution al code is majority decoded, the decoder attempts 

only to recover the information bits in the received sequences and therefore 

decodes only the information noise digits. This is a logical strategy since 

parity bits have no inherent usefulness except as a check on information bits. 

In order to decode the first noise bit e~, the decoder must obtain a set of 

composite parity-checks orthogonal on e~. Since e~ is checked by J syndrome 
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bits, there can be at Most J (and codes are genera1~ designed so that there 

are exactly J) composite parity-checks in this set. 

This examp1e was de1iberate1y chosen so that the set of J s,yndrome 

bitS{S~t S~, S~, S~}in (4.3.17) constitutes a set of J composite parity­

checks {Al' A2, A3, A4} orthogonal on e~, a fact easi~ verified by inspection. 

A code with this property is known as self-orthogonal. In Chapter 7 we sha11 

give an examp1e of a feedback decodab1e convo1utiona1 code which is not se1f-

orthogonal. 

The feedback decoder for this code is mode11ed in Fig. 4.3.4. Note 

that the decoder contains a replica of the encoder in Fig. 4.3.2. It is used 

to implement the parity-check equations and thereby form the s,yndrome bits S~, 

sj _ r j - 6 j-4 j-l + r j + r j 
2 - 1 + r 1 + r 1 1 2 

(4.3.18) 

Note a1so that since J = 4, fJ/J = 2 and at 1east three inputs to the 10gic 

e1ement must have value 1 before the 10gic e1ement can decide that e~ = 1. 

Throughout this thesis we sha11 be concerned with the comp1eXity 

of imp1ementation of decoders and we sha11 emp10y three parameters as measures 

of this compleXi ty : 

(a) the storage requirement N; i.e., the total number of stages of shift 

register. 

(b) the total number of shift register stages which are tapped, NT. 

(c) the total number of mod-2 adders wi th two inputs, NA' where i t is easi1y 

shown that a mod-2 adder with K inputs, K > 2, is equiva1ent to K - 1 

adders wi th two inputs. 

The compleXity of a feedback decoder fo110ws from Fig. 4.3.4. The 

,-
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Figure 4.3.4 Decoder for a Rate t Convolutional Code. 



· encoder replica contains k(u + 1) = 7 stages of shift register, while the 

shift register of syndrome bits, or syndrome register, contains (n - k)(u + 1) 

= 7 stages. Thus, the storage requirement is 

N = k(u + 1) + (n - k)(u + 1) = n(u + 1) = nA. 

We see that storage requirement and constraint length are equivalent, and this 

explains wby constraint length is an optimality criterion. 

The encoder replica is tapped in J = 4 locations. In addition, from 

Fig. 4.3.3, the tap locations correspond exactly to the positions of the l's 

in the first row of the pari ty triangle, or, equivalently, to the nonzero 

coefficients in the code-generating po4rnomial. The syndrome register is also 

tapped in J = 4 locations. However, since the code is self-orthogonal, this 

represents only a lower limite Thus, 

(4.3.20) 

The decoder contains three mod-2 adders, two with two inputs and one 

wi th J inputs. Thus, 

NA = 2 + (J - 1) = J + 1. (4.3.21) 

If the logic element decides that e~ = 1, then the feedback decoder 

complements the composite pari ty-checks which check e~, thereby "cancelling" 

o the error in these equations. It is unnecessary, however, to complement S2 

since that bit is shifted out of the syndrome register on the next cycle and 

no longer plays a role in decoding. The next set of inputs to the logic 

element is 

1 1 1 0 
S2 = el + e2 (el has been removed), 
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(4.3.22) 

C1early, the set {S~, S~, S~, S~} consti tutes a set of J composite pari ty­

checks orthogonal on e~, so decoding for e~ is exactly the same as for e~. 

Since the set of equations in (4.3.22) orthogonal on e~ has precisely the same 

form as the set in (4.3.17) orthogonal on e~, we say that the set orthogonal 

on e~ is typica1 of the code. Thus, in future, we sha11 not say that e~ is 

necessarily the first information noise digit. Rather, we sha11 a110w e~ to 

fa11 ~here in the actua1 noise sequence and say that in decoding e~, we are 

a1ways decoding for a first error, provided that a11 previous decoding has 

been correct. 

We can now introduce the second optima1i ty cri terion of convo1u-

tional codes, ca11ed the effective 1ength. Quite genera1ly, each composite 

parity-check Am in the set {Am} orthogonal on e~ checks e~ plus nm other noise 

bi ts, where nm is ca11ed the size of Am. Thus, the total number of distinct 

noise bits checked by the set l. Am} is nE' 

and nE is the effective 1ength. We sha11 see 1ater that nE is an important 

parame ter in determining the performance of the code and that an optimal code 

has minimum effective 1ength. Since the set {Am} is formed from at most 

(n - k)(u + 1) syndrome bits, which together check at most nA noise bits, it 

fo110ws that 

(4.3.24) 

For rate t codes, Massey [15J has shown that 

:1J2 :1J nE ~ '2 + '2 + 1. 

If J is even, then the error correcting capabi1i ty of the code is 



and 

t = LJ 
/ 2J = J / 2' J even, 

nE ~ 2t
2 + t + 1. 
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(4.3.26) 

The code of this example, with J = 4 and t = 2, is optimal because 

both nE and nA are minimal. To show that nE is a minimum, we have from 

(4.3.26) thatnE~ 11, while a simple count in (4.3.17) or (4.3.22) gives 

nE = 11. Proving that nA is minimal is less straightforward, but an exhaus­

tive search shows that no self-orthogonal code exists with J = 4 and nA < 14. 

Robinson and Bernstein [38J, based on the work of Singer [39J, have 

demonstrated a good s,ystematic method for the construction of optimal self­

orthogonal codes. They have also shown that self-orthogonal codes have limited 

error propagation properties; i.e., a decoder always recovers from a decoding 

error if an erro~free sequence of at least wnA channel digits follows the 

decoding error, where 

(4.3.27) 

and x is the least integer such that 

(4.3.28) 

Other optimal convolutional codes exist which are not self-orthogonal 

but can be orthogonalized in one step. Massey [15J describes a trial-and­

error method for finding some of these codes. They generally have smaller 

constraint lengths than equivalent self-orthogonal codes, but as a class they 

do not exhibi t the property that error propagation in the decoder is guaranteed 

to cease upon reception of an erro~free sequence of known fini te length. 

However, in MOst cases, an erro~free sequence of some fini te length, unknown 

in general, will act to terminate propagation. For such codes, error propa-

gation can be controlled b.Y periodically interrupting transmission to clear 
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the decoder shift registers, or by requesting a retransmission of data if a 

counter detects more corrections over a certain interval of time than the 

decoder can reliably produce. 

4.3.c. Performance in Error Correction 

A feedback decoded convolutional code has error correcting capability 

t = LJ/2J. Thus, the probability of a decoding error, P(E), is uppez-bounded 

by the probabili ty that more than t errors occur among the nE noise bits checked 

at the decoder. For the BSC, then, 

t 
P(E) ~ 1 - I: 

j::O 

nE· nE-j 
( ) p J (1 _ p ) • 
j 0 0 

(4.3.29) 

P(E) May be reduced b.Y increasing t or b.Y decreasing nE' though these are not 

independent parameters. For any t, nE May be minimized according to (4.3.26), 

2 
nE ~ 2t: + t + 1. 

The effect of nE on P(E) explains why effective length is an optimality 

criterion of convolutional codes. 

There are two important factors which affect the probabili ty of a 

de co ding error and which are not included in the performance expression 

(4.3.29). First, from Corollar,y 4.2.5., we know that in many cases the code 

will correct a large number of error patterns with weight greater than t; i.e., 

Many convolutional codes tend to be ver,y robuste For this reason, the right-

hand side of (4.3.29) is too large. On the other hand, (4.3.29) does not 

consider the effect of error propagation, which makes the right-hand side too 

small. For simplicity, we shall assume that the effects of robustness and of 

error propagation on the probability of decoding error are approxima'tely equal 

and opposite, so that 



P(E) ~ 1 - (4.3.30) 

In many cases this approximation is qui te good. 

4.3.d. Performance in Error Detection 

A convolutional code with error detecting capability may simulta-

neously have some error correcting capabili ty t. Suppose, for example, that t 

is a maximum, t = LJ 
/ J. In this case, J, the number of orthogonal composite 

parity-checks, must be an odd number, 

J = 2t + 1. (4.3.31) 

o The reason for this is that the logic element of the decoder may choose el = 1 

only if rJ/J + 1 = t + 2 or more composite parity-checks have value 1, and it 

may choose e~ = 0 only if rJ/~ = t + 1 or more composite parity-checks have 

value O. However, if exactly t + 1 composite pari ty-checks have value 1, 

neither of these conditions is met and the decoder detects an uncorrectable 

error pattern. 

On the other extreme, we might choose t = O. In this case the 

o decoder decides that el = 0 if and only if aIl J (odd or even) composite 

parity-checks have value O. Otherw:i.se, an uncorrectable error pattern is 

detected. 

In the more general case, we say that 

(4.3.32) 

o and we may choose J ei ther odd or even. Then the decoder decides that el = 1 

only if J - t + 1 or more composite pari ty-checks have value 1 and that e~ = 0 

only if t - 1 or fewer composite pari ty-checks have value 1. Otherw:i.se, an 

uncorrectable error pattern is detected. 

A failure can occur only if at least J - t + 1 composite parity-

'-, 
.. i 
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checks have va1ue 1 when e~ = O. Thus, the probability of failure is upper­

bounded by the probabili ty of J - t + 1 or more errors among the nE noise bits 

checked ~ the decoder. For the BSC, 

(4.3.33) 

The above expression does not account for robustness or for error propagation, 

but again we assume that these effects approximately cancel each other, so that 

(4.3.34) 

4.4. A Note on Complexity of Implementation 

In Section 4.3. we introdu.ced the three measures Ir)f complexity which 

we shall use throughout this thesis: storage requirement, number of shift 

register tap locations, and number of mod-2 adders. We also calculated the 

complexit.y of a feedback decoder. However, we did not calculate the complexit.y 

of a minimum distance decoder for block codes. This is because there are so 

many different decoding al go ri thms aVailable, and to study these algori thms 

would require a more extensive examination of parity-check codes than is needed 

to understand error correcting codes for the compound channel. The interested 

reader might consult Ga1lager [1J, Berlekamp [3J, Peterson [4J, Massey [4OJ, 

and Savage [41 J. We shall say simply that, in genera1, block encoders and 

convolutiona1 encoders have comparable complexities, while, except for one-

step orthogona1izable parity-check codes, block decoders are much more complex 

than majority decoders for roug~ equivalent codes. 



47. 

5. BURST CORRECTING CODES 

5.1. Introduction 

Berore going on to describe speciric coding schemes ror error control 

on the compound channel, known general~ as burst correcting codes, we shall 

rirst examine in this chapter some important concepts relevant to the correc-

tion or bursts. Section 5.2. rormal~ derines a burst and its related guard 

space and then relates bursts to the behaviour or the compound channel. Section 

5.3. derines the burst correcting capability or a code and presents two known 

bounds on this capability. Section 5.4. describes the two general classes or 

burst correcting codes and then outlines the speciric codes to be studied in 

the remainder or this thesis. 

5.2. Burst Errors and the Compound Channel 

Berore we can describe a burst correcting code, we must derine pre-

cise~ what is meant by a burst. Using Gallager's approach [1], we postulate 

B an arbitrary binary sequence or B consecutive noise digits.! , where 

Derinition 5.2.1. The binary noise sequence .!B or length B is derined to be 

a burst or errors relative to an error-rree, or clean, guard space or length 

G ir it satisries the rollow~ng criteria: 

(a) The rirst and last noise bits in the sequence are errors, 

(b) 

( c) 

G consecutive noise bits on each side or the sequence are error-rree. 

B There is no consecutive sequence or G error-rree digits in .! • 
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With G fixed and B variable, we can use the above definition to 

segment a noise sequence of any length into a unique set of bursts. Thus, 

even a single error or two isolated errors wi th separation less than G, pro-

vided that they are bracketed qy two error-free sequences of length G, are 

defined as bursts. However, from the point of view of the behaviour of the 

compound channel, it is very much more likely that these are examples of 

random errors embedded in a relatively long, otherwise error-free noise sequence, 

Informa1ly, bursts tend to be reasonably well-defined noise sequences 

with high error density, say from 1 percent to 50 percent. Bursts are separated 

by generally much longer sequences, or guard spaces, where errors may occur 

in the random mode and are therefore comparatively rare. 

5.3. Burst Correcting Capability 

Analogous to the error correcting capabili ty t of random error 

correcting codes, burst correcting codes have a burst correcting capability 

Bm relative to some clean guard space Gm• Various bounds exist on the rela­

tionship of Bm to Gm• Formally, Gallager [lJ defines burst correcting capa­

bility in the following way. 

Definition 5.3.1. A code, or alternatively, an encoder-decoder pair, is said 

to have burst correcting capability Bm relative to a clean guard space Gm if 

every noise sequence containing only bursts of length Bm or less relative to 

the guard space G is correctlY decoded, and B is the largest integer for m m 

which this is true. 

Gallager also shows that for codes with rate R, 

(5.3.1) 

1 
... 1 

/ 
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Hereafter, we refer to (5.3.1) as the Gallager bound. This bound was originally 

proved for convolutional codes by ~er and Ash [18J, but Gallager generalized 

the pro of for all codes. A somewhat stronger bound exists for the special case 

of (n,k) block codes with burst length smaller than the block length. 

Definition 5.3.2. An (n,k) block code is said to have burst correcting capa-

bility b if it corrects ever.y burst of length b or less located anywhere in 

the noise sequence of length n, provided that all other n - b noise digits are 

errol'-free. 

In this case, we may consider the guard space to be of length n - b, 

so that the Gallager bound is 

n-b~ 

This expression reduces to a form known as the Reiger bound [19J, 

b !i: ·Hn - k). 

(5.3.2) 

(5.3.3) 

The difference between the Reiger bound and the Gallager bound is that, in the 

former, the burst and the guard space may be distributed arbi trarily wi thin a 

sequence of length n, while in the latter, the burst must be bracketed by two 

guard spaces. The Gallager bound is, of course, more general because no 

assumptions are made about the code or the burst length. 

According to Definition 5.3.1., there are three instances when a 

code with burst correcting capability B relative to a guard space G is not m m 

guaranteed to decode reliably: when two bursts are separated by a clean guard 

space smaller than Gm; when a guard space is not clean; and when a burst is 

longer than B m' Any code which will sometimes correct reliably despi te the 

occurrence of any of the above inst,ances is said to be robust. 

>-

1 
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5.4. Classes of Burst Correcting Codes 

Broadly speaking, burst correcting codes can be c1assified as either 

adaptive or non-adaptive. The non-adaptive codes decode a11 received data 

according to a single a1gorithm, irrespective of the mode of the compound 

channel. They can re1iably correct every burst wi thin their burst correcting 

capabi1ity so that, at best, their guard space requirements are given by either 

the Ga11ager bound or the Reiger bound. Adaptive codes, on the other hand, 

attempt to deduce the channel mode and thereqy decode random errors and bursts 

according to different algorithms. They achieve guard space requirements 

genera1ly much sma11er than predicted by the Ga11ager bound at the expense of 

not being able to correct every burst within their burst correcting capability. 

That is, adaptive codes May attempt to decode a burst according to the wrong 

a1.gori thm if and when the burst is not detected. 

Adaptive codes May operate in a random mode or in a burst mode. The 

random mode is a subcode, either an (n,k) b10ck code or a convo1utiona1 code, 

wi th random error correcting capabi1i ty t and wi th enough error detecting 

capabi1ity to detect Most bursts. The burst mode has burst correcting capa-

bili ty B relative to a guard space G , where Gm is genera1ly much sma11er m m 

than given by the Gal1ager bound, 

In Chapters 6, 7, 8, and 9, we sha11 describe four we11-known coding 

schemes which have proved to be very effective in contro11ing errors on the 

compound channel and have manageab1e, in cost and hardware, imp1ementation 

comp1exity. Inter1eaved b10ck codes (Chapter 6) are non-adaptive codes whose 

guard space requirements at best can meet the Reiger bound. Diffuse codes 

(Chapter 7) are non-adaptive convo1utional codes whose guard space requirements 

at best are as.y.mptotic to the Ga11ager bound. Ga11ager codes (Chapter 8) are 

'- , 
..\ 

.. / 



adaptive convolutional codes and Tong burst-trapping codes (Chapter 9) are 

adaptive block codes. Comparative performance evaluations for interleaved 

block codes, diffuse codes, and Tong burst-trapping codes on the real tele­

phone charmel are given by Burton [42J and by Burton and Pehlert [43J. 

In Chapters 10 and 11, two new methods, original with the author, 

will be presented. One is a concatenation scheme te allow reliable burst 

correction even when the guard spaces are not clean, the other, a modified 

burst-trapping scheme with adaptive guard space requirements immediately 

adjacent te the bursts. 

51. 



6. INTERLEAVED BLOCK CODES 

6.1. Introduction 

In this chapter, we shall describe the structure, complexity, and 

performance of a burst correcting technique known as an interleaved, or inter-

laced, block code [lJ, [3J. Section 6.2. discusses the encoding and decoding 

of these codes and determines their guard space requirement. Sections 6.3. 

and 6.4. develop useful expressions for their complexity and performance 

respectively. 

6.2. Structure and Guard Space Requirement 

Throughout the remainder of this thesis, we shall assume that all 

burst correcting codes are designed for use on a compound channel on which 

channel bursts very rarely exceed some length B. In particular, an inter­c 

leaved block code has burst correcting capability B such that 
m 

Bm = Bc = rb , rand b integers. 

The interleaved block code employs an (n, k) block code wi th burst 

correcting capabili ty b. From the Reiger bound, 

b ~ t(n - k). (6.2.2) 

The block encoder produces codewords !j, each of length n. Before transmission 

l h d rd sa v !O, r-l d" over the channe , r suc co ewo s, 'J ••• ,! ,are store as a super-

block" of length rn. Conceptually, this "superblock" May be considered to be 

arranged in an r-by-n matrix, Fig. 6.2.1. The jth row of this matrix is the 

j th codeword !j, j = 0, 1, ••• , r - 1. The i th column consists of all digits 

t~, i = 1, 2, ••• , n. 

Once the matrix has been completely filled by the block encoder, 

'-
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tO tO · .. tO 
1 2 n 

t 1 t 1 · .. t 1 
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t r - 1 r-1 t r - 1 
1 t 2 • •• n 

Figure 6.2.1 Matrix Array for Interleaving a Block Code. 
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the stored digits are transmi tted by oolwm. Thus, eaoh digi t t~ in the oode-
1 

word j:j is transmitted r ohannel time units after the preoeding oodeword digit 

t~ l' where one ohannel time unit is the time required to transmit one ohannel 
1-

digi t. The prooess of separating oodeword digits by r ohannel time uni ts is 

oalled interleaving, or interlaoing, or sorambling, to degree r: henoe the 

term "interleaved blook oode." 

The reoeived digits are stored in the deooder in a "superblock" or 

matrix oorresponding exaotly to tbat of Fig. 6.2.1. Deooding is performed by 

a blook deooder on the reoeived sequenoes I j , 

Thus, deooding is exeouted by row on the stored matrix. Within any "super-

blook," a burst of length B or less oan fill at MOSt b oonseoutive oomplete m 

oolumns of the matrix with errors, so that at Most b oonseoutive digits in 

any row oan be affeoted by the burst. Sinoe the block code bas burst oorrec-

ting oapability b, the burst of length B or less is guaranteed to be correotly 
m 

decoded if no other errors ooour wi thin the "superblock." 

The guard space in any one blook of the oode bas length n - b. 

Thus, the guard spaoe requirement G of the "superblook" is 
m 

G - r(n - b) - m - B m - - m· (6.2.4) 

Gis a minimum if bis a maximum; i. e., if b meets the Reiger bound wi th m 

equali ty. Corresponding to Gm, the guard spaoe requirement of the decoder, 

there is a guard spaoe of length Go following the burst in the ohannel. 

Exoept in oases where the received digits are oompressed in some manner before 

being decoded by the deooder of the burst correcting oode, a situation des­

oribed in Chapter 10, the deooder guard spaoe and the ohannel guard spaoe are 

equivalent. Thus, for interleaved blook oodes, 

(6.2.5) 



55. 

6.3. Complexi ty 

As measures of the complexity of the decoder we use the parameters 

N (the storage requirement), NT (the number of tapped shift register stages), 

and NA (the number of mod-2 adders). As a secondar,y parameter, we include the 

ratio N/Gm of storage requirement to guard space requirement. 

The decoder for an interleaved block code requires a buffer, or shift 

register, for the "superblock" of length m and a block decoder, whose own 

storage requirement May be included in the buffer. Thus, from (6.2.4), 

and / 
rn ri. 

N G = ( b) = b > 1. m rn- n- (6.3.2) 

Because the specific implementation of the block decoder is not defined, we 

shall not attempt to calculate NT or NA for this code. 

6.4. Performance 

The criterion which we shall employas a measure of the performance 

of a burst correcting code is the probability of a decoding error given that 

a channel burst has occurred, peE 1 burst), where 

(6.4.1) 

peE, burst) is the joint probabili ty of a decoding error and a burst, while 

P(burst) is the probability of a burst. We explained in Chapter 5 that deco-

ding errors could be caused by any of three avents 1 a guard space which is 

too short, a guard space which is not clean; i.e., a noisy guard space, or a 

burst which is too long. We shall assume throughout that the compound channel 

is such that the probabili ty of an excessi vely short guard space or of an 

excessively long burst is negligible in comparison with the probability of a 

'-



noisy guard space. Thus, decoding errors are caused primarily by the occur­

rence o~ random errors in the guard space, so that, negiecting robustness, 

P(E) = P(decoding error) = P(random error in guard space). 

Since random errors and bursts on the compound channel are statistically 

independent, 

P(E,burst) = P(E) P(burst) 

and it ~ollows ~rom (6.4.1) that 

peE 1 burst) = P(E). 

(6.4.2) 

(6.4.3) 

According to the Gilbert channel model, random errors occur with 

probabili ty p. Thus, ~or interleaved block codes, o 

G 
peE 1 burst) ::; 1 - (1 _ p ) m. 

o (6.4.4) 

The inaquali ty exists because the code May be robust, in which case not all 

random errer patterns in the guard space would result in a decoding error. 

From (6.4.4) we see that peE 1 burst) decreases with decreasing G. Thus, it 
m 

is important ~rom the point o~ view o~ per~ormance that burst correcting codes 

have minimum guard space requirements. 

~I 
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7. DIFFUSE CODES 

7.1. Introduction 

In this chapter, we shall describe the structure, complexity, and 

perrormance or a burst correcting technique known as a dirruse code. Dirruse 

codes are reedback decodable convolutional codes with error correcting capa-

bili ty t and are designed te treat channel bursts of length B or less as ir c 

they contained no more than t "random errors." They were rirst reporled by 

Kohlenberg and Forney [22J and were more thoroughly investigated by Tong [23J 

and by Ferguson [24J. 

Section 7.2. derines the optimality criteria or a dirruse code and 

relates them te the burst correcting capability B and the guard space G • m m 

Section 7.3. describes the structure of dirruse codes and uses these general 

principles te construct a speciric optimal code. Section 7.4. develops expres-

sions ror the decoder complexity, Section 7.5. discusses the existence or 

optimal dirruse codes, and Section 7.6. develops an expression ror the perfor-

mance or these codes. 

7.2. Optimali ty and Guard Space Requirement 

The dirfuse codes or Most importance have rate t and burst correcting 

capability B such that 
m 

Bm = Bc = 2B , B an integer. 

Simultaneously, they have random error correcting capability t, 

The optimali ty criteria or dirfuse codes, like all reedback decodable 

convolutional codes, are constraint length nA and errective length nE' From 



(4.3.25) and (4.3.26), 

Also, ~rom (4.3.19), 

nA = k(u + 1) + (n - k)(u + 1) = N, (7.2.4) 

where k(u + 1) is the length o~ the encoder replica in the decoder, 

(n - k)(u + 1) is the length o~ the s.yndrome register in the decoder, and N 

is the total storage requirement. Since we consider only rate t codes, it 

~ollows that 

k = n - k, 

and N s = k( u + 1) = (n - k) (u + 1) = in A. 

We shall call Ns the shi~t register length. Clearly, since the decoder contains 

two shift registers, 

N = 2N • s (7.2.6) 

We shall now relate shi~t register length to both the burst length B and the 
m 

guard space requirement G • 
m 

In order that all bursts o~ length B or less, relative to the guard m 

space G , be correctly decoded, G is given by the Gallager bound, m m 

1+.1. 
G > (1 i) B = 3B = 6B. m- - 2 m m 

(7.2.7) 

Any consecutive sequence o~ 6B channel bits contains exactly 3B information 

bits and 3B parit.Y bits. Thus, when either the ~irst error or the last error 

in a burst is the only one contained in the encoder replica, the Gallager 

bound demands that at least 3B error-~ree information bits, the guard space, 

also be contained in the encoder replica. It ~ollows that the shi~t register 

length is lower-bounded by 

(7.2.8) 
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or, equivalent1y, 

nA = N > 6B + 2 = 3B + 2. - m 

If G is the guard space required in the encoder replica, then 

and 

N = G + 1, s 

G = G = 2G = N - 2 = nA - 2, m c 
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where Ge is the channel guard space corresponding ta the decoder guard space Gm• 

If Ns meets the bound (7.2.8) with equality; i.e., 

N s = N~Pt = 3B + 1, 

and G = 3B , m m 

then the code is optimal wi th respect ta constraint length. If the weaker 

condition holds that 

opt N _ N as B _0;), 
S S m 

then the code is said ta be asymptotical1y optimal with respect ta constraint 

length. 

7.3. Structure 

A diffuse code with burst correcting capability Bm and error correc­

ting capability t = J/2 is structured in such a way that bursts of length Bm 

or less never appear at the decoder ta contain more than t errors among the 

nE noise bits that are checked. The manner in which this is accompli shed 

depends on Corollar,y 4.2.4., paraphrased below in Corollar,y 7.3.1 •• 

Corollar,y 7.3.1. o If el = 1, no more than t - 1 of the Am in the set of 2t 

composi te pari ty-checks {Am} orthogonal on e~ may check other errors, and if 

e~ = 0, no more than t of the Am may check any errors. 

i .. / 
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Ferguson [24J employs a use:ful terminology. We say that any digit 

ei is q-dependent i:f i ts superscript is o:f the :fonn 

j = qB + a , 0 ~ a < B , q an integer. (7.3.1) 
o I:f el is the :first error in a burst o:f length Bm or less, the burst 

. b' 0 1 B-l can a:f:fect only the O-dependent 1n:formation noise 1tS, el' el' ••• , el ,and 

o 1 B-l the D-dependent parit,y noise bits, e2, e2, ••• , e2 Since the guard space is 

given by (7.2.7), 

G > JE or G > JE, m - m - (7.3.2) 

this means that aIl 1-, 2-, and 3-dependent noise bits must be error-:free. 

Suppose that e~ = 1. Then a burst May a:f:fect only D-dependent noise 

bits and Corollary 7.3.1. demands that. no more than t - 1 o:f the A check 
m 

other O-dependent noise bits. Alternatively, suppose that e~ = O. Then a 

burst might be embedded somewhere among the 1-, 2-, or 3-dependent noise bits. 

Corollary 7.3.1. demands that no more than t o:f the A check any i-dependent 
m 

noise bits, i = 1, 2, 3. 

To clari:fy the :foregoing development, let us con si der the construc-

tion o:f an (asymptotically) optimal di:f:fuse code :for, say, J = 4 and t = 2, 

The code-generating polynomial G2(D), or, equivalently, the :first row o:f the 

pari t,y triangle HC
, is to be :found. 

The parity triangle, Fig. 7.3.1, has :four l's in the :first row, wo 

o:f which are located in the :first and last columns. The remaining two May be 

assigned arbitrary locations such that x, y, and z represent the number o:f O's 

between the l's. The length o:f the :first row de:fines the shi:ft register length 

Ns and the locations o:f the l's correspond exactly to the tap locations on the 

encoder replica. From (7.2.8), 

N = x + y + z + 4 ~ JE + 1. s 

o We m~ WTite the :four parity-check equations which check el directly as 

(7.3.3) 
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SO 0 0 
2 = el + e2, 

SX+l 0 x+l x+l 
2 = el + el + e2 ' 

Sx+y-t2 0 + ey +1 + ex~-t2 x+y'f2 
2 = el 1 1 + e2 ' 

Sx~+z+3 0 + ez+1 + ey +z-t2 + ex~+z+3 + e~+Y+Z+3. (7.3.4) 2 = el 1 1 1 

Since the s,yndrome bit S~ checks the O-dependent parity noise bit . 

e~, one composite parity-check must also check e~. Also, since t - 1 = 1, no 

other composite parity-check may check any O-dependent bits other than e~. 
x+l y+l z+l This means that el ' el ,and el may not be O-dependent; i.e., 

x, y, Z ~B - 1. (7.3.5) 

If the code were to be self-orthogonal, then x, y, and z, besides 

being bounded by (7.3.5), would aIl have to be different in order to ensure 

that aIl nE noise bits in (7.3.4) would be different. However, Tong [23J has 

proved that for a rate t self-orthogonal diffuse code, the shift register length 

is at best asymptotic to the bound 

N > (t + 2) B. s- (7.3.6) 

Since we wish our code to have shift register length asymptotically 3B, not 4B, 

we may abandon any hope that the code be self-orthogonal. It follows that x, 

y, and z need not aIl be different. 

Suppose we allow two of the variables to be equal, 

x = y '= z, 

and, in order to minimize shift register length, we let the variables assume 

minimum values as defined by (7.3.5), 

x = B - 1 , y = B - 1 , z = B. 

The shift register length is, from (7.3.3) and (7.2.8), 

N = x + y + z + 4 = 3B + 2 - Nopt + 1, s - s 

(7.3.7) 

(7.3.8) 

,­, 
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so the code is as,ymptotically optimal with respect ta constraint length. The 

set of parity-check equations in (7.3.4) can be rewritten as 

SO 0 0 
2 = el + e2, 

SB 0 B B 
2 = el + el + e2, 

S2B 0 B 2B 2B 
2 = el + el + el + e2 ' 

S3B ... 1 0 B+l 2B+l 3B+l 3B+l 
2 = el + el + el + el + e2 ' 

We have already conceded that the code cannot be self-orthogonal and 

this is confirmed by the fact that s~ and S~ above both check the noise bit 

e~. In addition, s~, S~B, and s~+l all check 1-dependent bits, which is not 

allowed by Corollary 7.3.1,. In order to orlhogonalize the set of parity-check 

equations, and at the same time satisfy the corollary, we remove the 1-depen­

dence from s~B by adding ta it (mod-2) some s.yndrome bit s~. A good choice of 

S~ is s~, where 

(7.3.10) 

We replace s~B in (7.3.9) by the composite parity-check S~B + S~B, where 

(7.3.11) 

This new set of composite pari~-checks, (7.3.9) and (7.3.11), is 

orthogonal on e~ and satisfies all the requirements of Corollary 7.3.1 •• In 

addi tion, by a simple count, nE = 11, so that the effective length of the code 

i5 minimal from (7.2.3). The feedback decoder for this diffuse code i5 shown 

in Fig. 7.3.2. 
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7.4. Complex:i ty 

The three measures of the complexi ty of the decoder of a diffuse code, 

N, NT' and NA' May be determined easily from Fig. 7.3.2. From (7.2.10), the 

storage requirement is 

N = G + 2, m 

as B ----+ (f\) • 
m 

(7.4.1) 

The encoder replica i5 tapped in exactly J locations. Since an (as.ymptotically) 

optimal code cannot be self-orthogonal, the s.yndrome register is tapped in at 

least J + 1 locations. Thus, the number of tapped shift register stages is 

NT :z 2J + 1 = 4t + 1. 

At the encoder replica, the decoder requires one mod-2 adder with J inputs and 

twowith wo inputs. In addition, the syndrome register requires at least one 

adder because the code must be orthogonalized. Thus, the number of mod-2 adders 

is 

NA:z (J - 1) + 2 + 1 = 2t + 2. (7.4.4) 

7.5. Existence of Optimal Codes 

The diffuse code which We derived in Section 7.3. was the only 

example given in the first published description of diffuse codes by Kohlenberg 

and Forney [22J. They implied that, although no unified theory for the deSign 

of diffuse codes existed, this example for t = 2 with minimal effective length 

and asymptotically optimal constraint length was typical. Ferguson [24J, [44J 

disagreed. Based on Tong's treatment of self-orthogonal diffuse codes [23J, 

he developed the rules of a trial-and-error procedure to design as.ymptotically 

optimal diffuse codes for t :z 2. He found that for t:z 3, i t was not evident 
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that codes existed with simultaneously minimal effective length. For example, 

for t = 3 and asymptotically optimal constraint length, the best codes known 

to the author were found by Tabak [45J with nE = 24 and by Ferguson with nE = 25, 

whereas, from (7.2.3), n~Pt = 22. However, codes wi th minimal effective length 

were found [24J which have shift register length as.ymptotically 4B rather than 

3B. Ferguson therefore conjectured that diffuse codes with both minimal effec­

tive length and as.ymptotically optimal constraint length do not, in fact, exist 

for t ~ 3. 

7.6. Performance 

Our cri terion of performance is the probabili ty of decoding error 

given that a burst has occurred, peE 1 burst). As in Section 6.4., we assume 

that decoding errors are caused primarily by random errors in the guard space 

Gm• Thus, analogous to (6.4.4), 

G 
peE 1 burst) ~ 1 _ (1 _ p ) m. 

o (7.6.1) 

The above expression neglects both robustness and error propagation in the 

feedback decoder. We again assume that these effects are approximately equal 

and opposite, so that 

G 
P( E 1 burst) ~ 1 _ (1 _ p ) m. 

o (7.6.2) 

Since nA and Gm are linearly related by (7.2.10), we see that it is important 

from the point of view of performance that diffuse codes be designed wi th 

minimal constraint length. 

A secondary cri terion of performance of a diffuse code is the proba-

bility of a decoding error given that the compound channel is in its random 

mode, peE 1 random). In this case, the compound channel behavesroughly like 
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a BSC, so that peE 1 random) is given by (4.3.30), 

t n nE-j 
peE 1 random) ~ 1 - L (E) P j (1 - P ) • 

j=O j 0 0 
(7.6.3) 
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8. GALIAGER CODES 

8.1. Introduction 

In this chapter, we shall describe the structure, complexi.ty, and 

performance of an adaptive burst correcting technique called a Gallager code 

by Kohlenberg and Forney [22J and called a time-diversity code by Gallager [lJ. 

The random mode of a Gallager code is a feedback decodable convolutional code, 

while the burst mode is provided by a simple extension of the convolutional 

code. 

Section 8.2. describes the structure of a Gallager code, including 

decoding procedures in both modes and the mechanism of decoder transitions 

between modes. Section 8.3. calculates the guard space requirement of the code 

and compares it to the Gallager bound. Section 8.4. determines the decoder 

complexity, and Section 8.5. develops expressions for the performance of the 

code. 

8.2. Structure 

The Gallager codes which we shall consider have rate t and burst 

correcting capability B such that 
m 

Bm = Bc = 2B , B an integer. 

Since Gallager codes are adaptive, they include a random mode to correct random 

errors and to detect bursts and a burst mode to correct the detected bursts. 

The random mode is provided by a rate t feedback decodable convolu-

tional code with code-generating polynomial G2(D). If G2(D) has maximum degree 

u and has J nonzero coefficients, then from (4.3.16) and (7.2.5) the constraint 

length is 

.1 
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* * nA = n(u + 1) = 2(u + 1) = 2Ns ' (8.2.2) 

and ~rom (4.3.25) the e~~ective length is 

(8.2.3) 

Because the convolutional cod~ might be required te have some error detecting 

capability, the error correcting capability t o~ the code is given by (4.3.32), 

(8.2.4) 

There are two very simple ways in which the random mode can be used 

to detect bursts. In the ~irst, choose t small in (8.2.4) so that the convo-

lutional code has a large amount o~ error detecting capability. Then, at the 

logic element o~ the decoder, i~ J - t + 1 or more o~ the J composite parity­

checks orthogonal on e~ have value 1, choose e~ = 1. I~ t - 1 or ~ewer compo­

site parity-checks have value 1, choose e~ = O. Otherwise, do not decide on 

o el and de~er to the burst mode o~ the decoder. 

In the second burst detection scheme, the convolutional code need 

not have any explicit error detecting capability so that t May be chosen a 

maximum in (8.2,4). Now, i~ the compound channel were in its random mode, it 

would be highly unlikely that the logic element would repeatedly decide that a 

channel error had occurred. In the channel burst mode, however, such a situa-

tion would appear te be highly likely due to the large probabili ty o~ both 

channel errors and error propagation. Thus, a counter at the logic element 

output could be used to detect a burst i~ some minimum density o~ l's were 

detected. 

For the burst mode o~ the Gallager code, a minimum o~ B stages o~ 

shi~t register are appended te the right o~ the encoder o~ the convolutional 

code, wi th a tap location at the rightmost stage. Thus, the shi~t register 

length Ns o~ the Gallager code is at least 
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* N - B + Ns = B + u + 1, s -

and the constraint length nA is 

* nA = 2N = B + 2(u + 1) = B + nA. s m m 

The encoder for a Gallager code is shown in Fig. 8.2.1. 

70. 

(8.2.6) 

To demonstrate the decoding procedures of a Gallager code, we assume 

that the decoder is initially in its random mode and that the received bit r~, 

000 r 1 =t1 +e1, (8.2.7) 

has just entered the encoder replica. As r~ is shifted through the first 

N: = u + 1 stages of the encoder replica, a set of J syndrome bits {s~, ••• , :'s~ } 
o is formed, each of which checks el' where 

• • • 

* 

(8.2.8) 

These J s.yndrome bits are stored in the first Ns stages of the s.yndrome 

register. 

When r~ is in the last, 

s.yndrome bi t s~+u is formed, 

th or N s ' stage of the encoder replica, the 

+ eB+u B+u 
1 + e2 ' 

and is stored in the first stage of the syndrome register. At this point, the 

J syndrome bi ts s~, ••• , s~ occupy the last u + 1 stages of the syndrome 

register. 

Assume that the convolutional code of the random mode has large 

error detecting capabili ty. Then the set of s.yndrome bits {s~, ••• , s~} is 

o 0 used to fonD. a set of J composite pari ty-checks orthogonal on el' If el is 

'-
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r-______________________________________ ~tB+u to channel 
1 

••• 

~ ______________________________ ~tB+u to channel 
2 

Modulo-2 Adder with J + 1 Inputs 

Shift Register of B + u + 1 Stages 

Figure 8.2.1 Encoder for a Rate t Gallager Code. 



correctable, the decoder continues operation in the random mode. If e~ is 

not correctable, the decoder switches to the burst mode. 

When e~ is the first error in a burst of length BII' ar less, the 

. '. 0 1 B-l burst can affect at most the B ~nformation no~se bits el' el' ••• , el and 

o 1 B-l the corresponding B parity noise bits e2 , e2, ••• , e2 The clean guard space 

of length Gm fol1owing the burst must span the u + 1 pairs of noise bits e~, e~, 
B+u B-t-U () ••• , el ,e2 • Thus, from 8.2.9, 

(8.2.10) 

Thus, the burst mode of the decoder simplY decides that e~ has the value of 

the syndrome bit s~+u. The decoder is shown in Fig. 8.2.2. 

The decoder remains in its burst mode until it receives some indica-

tion that the burst has ended. Once a burst has passed completelY through the 

encoder replica, only digits which are part of the guard space will remain. 

If the guard space is clean, all syndrome bits will have value O. In particular, 

if a certain number y of consecutive O's appear in the first stage of the 

syndrome register, denoted S~-t-U in Fig. 8.2.2, then the decoder switches back 

to i ts random mode. 

8.3. Guard Space Requirement 

To determine the decoder guard space requirement G , we assume that 
m 

o el is the first error ir1 a burst of length 2b, 

2b ~ B = 2B. m 

o The burst affects the b pairs of noise bits el' 

o To decode el' the burst mode uses the 

(8.2.10), 

(8.3.0 

o b-l b-l 
e2, ••• , el ' e2 • 

syndrome bi t s~+u. From 
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B-.u 0 B B-.u B-.u 
S2 = el + el + ••• + el + e2 • (8.3.2) 

To decode e~l, the burst mode must use S~4U+b-l, 

(8.3.3) 

In order that the decoder switch out o:f the burst mode, the succeeding y syn­

drome bits, S~iU-tb, ••• , S~4U+b-l+y, must be zero-valued, where 

SB+U-tb-l+y b-l+y + eB+b-l+y + 
2 = el 1 ••• (8.3.4) 

From (8.3.2) and (8.3.3), in order that the burst be corrected, the 

. . B B BiU-tb-l B4Uofb-l decoder guard space must span the n01se b1ts el' e2, ••• , el ' e2 

From (8.3.4), in order that the decoder exit :from the burst mode, the guard 

. . b b b-l~ b-l+y Bofb Bofb space must span the n01se b1ts el' e2, ••• , el ,e2 and el ' e2 ' ••• , 

Taking into account the overlap in these guard space 

requirements, we see that the guard space must span the 2y consecutive digits 

• • b b b-l+y b-l+y immediately :folloWl.ng the burst, el' e2 , ••• , el ' e2 ,and the 

2(b + u +y) consecutive digits displaced a length 2B :from the beginning o:f 

B B B4U+b-l+y BiU+b-l-f5T the burst, el' e2, ••• , el ' e2 • In addition, as b approaches 

i ts maximum value B, there may be overlap between the adjacent guard space of 

length 2y and the displaced guard space of length 2(b + u +y). 

The adjacent and displaced guard spaces first become a continuous 

guard space when b = B - y, where the total guard space length G is 

G = 2y + 2(B - Y + u + y) = 2(B + u + y). 

When b = B, there is complete overlap of the wo guard spaces so that 

(8.3.6) 

We may therefore write the decoder guard space requirement as 
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G = G db = 2 (b + u + 2y) , b < B - y, 

G = Gm = 2(B + u + y) = Bm + 2(u + y) , B - Y ~ b ~ B. (8.3.7) 

Because the guard space depends on the length of the actual burst and not on 

the length of the maximum correctable burst, the guard space is called adaptive. 

The corresponding adaptive channel guard space, Gcb or Gc ' is 

Gcb = Gdb ' b < B - y, 

G = G ,B - y .... b ~ B. c m ~ 
(8.3.8) 

Since we consider Gallager codes with rate t, the Gallager bound is 

1+.!. 
Gdb, Gm ~ (1 _ .u 2b = 6b. (8.3.9) 

2 

From (8.3.7) 9 when b' < B - y, we know that Gdb = 2b + 2u + 4y. The parameters 

u and y are t.1pically small compared ta B and are independent of B, so that 

Gdb is smaller than the Gallager bound except for small values of b, 

b ~ y + tu. (8.3.10) 

For large values of b, Gdb or Gm approaches one-third the limi t predicted by 

the Gallager bound. 

This apparent paradox is easily explained. The Gallager bound applies 

ta non-adapti ve codes, such as diffuse codes, which are guaranteed ta correct 

all bursts of length B or less. Adaptive codes, such as Gallager codes, can 
m 

only correct detected bursts of length B or less. Any burst which is not 
m 

detected is certain to cause a decoding error. 

8.4. Complexi ty 

The three parameters of complexi ty, N, NT' and NA' May be easily 

determined from Fig. 8.2.2. First, from (4.3.19), (8.2.6), and (8.3.7), the 

storage requirement N is 
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N = nA = Bm + 2(u + 1) =G - 2(y - 1). m (8.4.1) 

It follows that 

G - 2(y - 1) 
N/G -

m 
~1 Bm~ a:). m- G as (8.4.2) 

m 

The number of tapped shift register stages NT and the number of mod-2 

adders NA are both dependent on the choice of convolutional code for the random 

mode. Since NT and NA are both minimized if this code is self-orthogonal, we 

use this case as a lower bound. The decoder contains two shift registers, each 

with at least J + 1 tap locations. Thus, 

(8.4.3) 

Similarly, the decoder contains at least one mod-2 adder with J + 2 inputs 

and one with two inputs, so that 

NA ~ (J + 1) + 1 = J + 2. (8.4.4) 

8.5. Performance 

We consider the probability of a decoding error given that a burst 

has occurred, peE 1 burst), where 

peE 1 burst) = peE 1 no F) P(no F) + peE 1 F) P(F). (8.5.1) 

P(F) is the probability of failure; i.e., the probability that the burst is 

nei ther corrected nor detected by the random mode. P(no F) is the probabili ty 

that there is no failure, so that 

P(no F) = 1 - P(F). (8.5.2) 

peE 1 F) is the probability of a decoding error given a failure by the random 

mode. Since a burst which is not detected is certain te cause a decoding error, 

peE 1 F) = 1. (8.5.3) 

peE 1 no F) is the probability of a decoding error when the burst is detected 

, 
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and is therefore analogous to the probability peE 1 burst) of a non-adaptive 

code. It follows that for an adaptive code, 

P(E 1 burst) = peE 1 no F)[l - P(F)] + P(F). (8.5.4) 

Thus, the probabili ty of decoding error is bounded away from zero by the proba-

bility P(F). 

If the convolutional code of the random mode has error detecting 

capability, we know that P(F) is given by an equation analogous to (4.3.34). 

Since, in the channel burst mode, errors are produced with probability q , we o 

have 

P(F) may be decreased by increasing J, decreasing t, and decreasing nE' 

ever, J and nE are related by (8.2.3), 

How-

The probability peE 1 no F) is primarily the probability of a random 

error in the guard space. Analogous to (6.4.4) and (7.6.1), 

Gdb 
peE 1 no F) s: 1 - (1 - po) • (8.5.6) 

If the effects of robustness and error propagation are approximately equal and 

opposi te, then 

Gdb 
P (E 1 no F) ~ 1 - (1 - po) • (8.5.7) 

A seeondary cri terion of perfonnance is the probabili ty of a decoding 

error in the channel random mode, peE 1 random), where 

peE 1 random) = peE 1 no A) P(no A) + peE 1 A) P(A). (8.5.8) 

P(A) is the probability of false alarm; i.e., the probability that the decoder 

switches to its burst mode while the channel is acting in its random mode. 

~-
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peno A) is the probability of no false alarm, so that 

P(no A) = 1 - P(A). (8.5.9) 

peE 1 A) is the probabili ty of a decoding error given a false alarm by the 

burst deteotor, and peE 1 no A) is the probabili ty of a decoding error when no 

false alarm oocurs. 

There can be a false alarm only if between t and J - t of the J 

composite parity-checks have value 1 while the channel is in its random mode. 

Thus, P(A) is lower-bounded by' the probabili ty of between t and J - t random 

errors among nE noise bits, 

(8.5.10) 

If the decoder is in its burst mode due to a false alarm, we assume that decod-

ing errors occur primarily because of random errors in the guard space of 

length Gdb • Thus, from (8.5.7), 

Gdb peE 1 A) ~ peE 1 no F) ~ 1 - (1 - p) • o (8.5.11) 

If there is no false alarm, then a decoding error can occur only if there are 

at least J - t + 1 random errors among nE noise bits, 

(8.5.12) 

Sullivan [25J has developed a generalization of the Gallager codes 

which features improved performance by being very tolerant of random errors in 

the channel guard space. Sullivan' s scheme employs a convolutional code wi thin 

a convolutional code. The outermost code is used as the random mode of the 

Gallager code, while the innermost code is used te correct random errors in the 

channel guard space before they can affect the decoder guard space of the 

'-
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Gallager code. A somewhat similar scheme ~or extending or general1zing all 

burst correcting codes 1s described in Chapter 10. 
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9. TONG BURST-TRAPPING CODES 

9 D 1. Introduction 

In this chapter, we shall describe the structure, complexi ty, and 

per~ormance of an adaptive burst correcting technique discovered by Tong [26J, 

called a burst-trapping code. The random mode of a burs't-trapping code is a 

systematic (n, k) pari ty-check code, while the burst mode is provided by an 

extension of the block code. 

Section 9.2. describes the structure and decoding procedures of a 

burst-trapping code. Section 9.3. calculates and discusses the guard space 

requirement o~ the codf3. Section 9.4. determines the decoder complexi ty, and 

Section 9.5. develops expressions for the performance of the code. 

9.2. Structure 

Burs't-trapping codes are fairly straightforward extensions of the 

systematic (n,k) parity-check codes which provide their random mode. They 

have rate Ro such that 

R k x-1 . t = - = x ,x an J.n eger, o n 

and they have burst correcting capabili ty Bm such that 

Bm = Bc = vn , v an integer. 

(9.2.1) 

The block code of the random mode has minimum distance d and error 

correcting capability t, 

Ld - ~I 
t < 2 J. (9.2.3) 

The parlicul.ar choice of t is a trade-off between the random error correcting 

capability and the error detecting capability required of the code. 

To show how the burst-trapping code is obtained from the block code, 

'-
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k " 
we note that the block code has 2 codewords!J , 

'·.9 (9.2.4) 

Since the block code is s,ystematic, each message sequence ~j is given ~ 

j - ( j j) (tj 
~ - MI, ••• , ~ = l' ... , 1{) · 

However, from (9.2.1), it follows that 

k = (x - l)(n - k) , n = x(n - k), (9.2.6) 

so that!!!j May be divided into x - 1 segments of length n - k. Each such seg­

ment, ~, i = 1, 2, "" x-l, is called an information sub-block, and 

mj - (Ij Ij Ij) 
- - -1' -2' ••• , -x-l ' 

In addition, the n - k pari ty bits of .!:j may be represented by a sequence fj, 

called the pari ty sub-block. Thus, 

... , 
and 

The basic principle of Tong's burst-trapping scheme is as follows. 

j j+l 
Arry burst of length Bm or less can affect at Most v codewords, .!: ,! , ••• , 

"+v 1 "+v j !J -. Thus,!J is unaffected, and if some of the infonnation bits in ! 

could also be included in ~jTV, then those bits could always be recovered from 

at least one of the wo codewords. This can in fact be done without altering 

the rate R of the code simply· by adding (mod-2) one of the infonnation sub­o 

blocks of !j to the pari ty sub-block of !j+v. Specifically, the i th infonnation 

sub-block of .!:j is added to the parity sub-block of .!:j+iV, i = 1, 2, ... , x - 1. 

The burst-trapping code has codewords !j of the form 

(9.2.11) 

, 
j 
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••• 
+ Ij-(x-1)v 

-x-1 • 

We shall call this process of' substi tuting the sequence Qj f'or the pari ty sub­

block Ej time-diversif'ication to degree v. Tong [26J calls this process 

interleaving to degree v, but this terminology could lead ta confusion with 

the distinct process of' interleaving described in Chapter 6. 

For each codeword l j , the decoder receives a block Bj , 

!j = Tj +~j, (9.2.13) 

where ~j is the binary channel noise sequence of length n. Corresponding ta 

Bj
, there is a minimum distance decodable sequence I j such that 

(9.2.14) 

Distinguishing received sub-blocks by a left superscript r, we May write 

... , 

... , 
Thus, I j May be recovered f'rom Bj simply by forming the mod-2 sum, from 

(9.2.12), 

(9.2.16) 

It is important in (9.2.16) that the information sub-blocks be error-f'ree in 

order to maintain the same noise sequence .!!j in both Bj and I j • The decoder, 

therefore, must store the decoded message sequences of the preceding {x - 1)v 

received blocks. 

In order to demonstrate f'ully the decoding procedures of a burst-

trapping code and to show how the decoder is implemented, it is convenient to 

use a numerical example. 

Example 9.2.1. 

The code parameters are x = 3, v = 3, and the block Bj 
has just been 

'­, 
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received by the decoder. Assume that the decoder is ini tially in i ts random 

mode and that aIl previous decoding has been correct. 

The decoder, Fig. 9.2.1, contains three shift registers. The first 

is part of the minimum distance decoder of the (n, k) pari ty-check code and, 

ini tially, is used to store the x - 1 infonnation sub-blocks, rIr and rI~, of 

the received block Bj • The second, called the storage register, is used to 

store the decoded message sequences of the previous (x - 1)v blocks. This 

implies that (x - 1)2 v = 12 information sub-blocks are stored, and these 

twelve sub-block locations are numbered in the figure. The third shift regis­

ter, called the erro:r-check register, is used to label the (x - 1)v message 

sequences in the storage register as either presumably correct or definitely 

unreliable by means of 0' s and l' s respecti vely. As we shall see, i t is the 

state of the erro:r-check register that controls the mode of the decoder. The 

(x - 1)v = 6 stages of the erro:r-check register are numbered in the figure. 

Because previous decoding has been correct, the erro:r-check register is ini-

tially in the state (0, 0, 0, 0, 0, 0). 

The decoder can operate in its random mode only if the minimum dis­

tance decodable sequence ~j can be recovered from ~j according to (9.2.16). 

This requires that the x - 1 decoded message sequences mj - V
, mj - 2v, ••• , 

mj -(x-l)v be correct. Equivalently, the erro:r-check register stages numbered 

v, 2v, ••• , (x - l)v must contain o's. If any of these stages contains a 1, 

then ~j cannot be recovered and the decoder will operate in one of x - 1 burst 

modes, one for each of the x - 1 information sub-blocks. 

In Fig. 9.2.1, since erro:r-check register stages number 3 and number 

6 contain O's, the decoder operates in the random mode. The sequence ~j is 

recovered from Rj by forming the mod-2 sum 

'-, 
.. 1 
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This is accompli shed by adding rg,j, taken directly from the channel, to the 

contents of storage register sub-block locations number 6 and number 11. The 

result rpj is stored in the minimum distance decoder along with rlr and rl~. 

If the minimum distance decoder decides that I j contains t or fewer 

errors, it makes the necessar.y corrections to the information bits. Otherwise 

a burst is detected in the jth block. j-6 j-6 Then the decoder shifts 11 and 12 

Qut of the storage register to the source decoder, shifts lr and l~ (or rlr 

and rl~) into the storage register, right-shifts the error-check register, 
. 1 

inserting a 0 (or a 1) in stage number 1, and accepts the next block !J+ • 

The decoder operates in the random mode unless a 1 appears in any 

one of the error-check register stages numbered v, 2v, ••• , (x - l)v. In 

particular, a 1 in stage number iv results in decoder operation in a burst 

mode such as to correct the i th information sub-block, i = 1, 2, ••• , x - 1. 

Suppose, for example, that a burst is detected in I j • Then a 1 first 

appears in stage number 3 when .Ej +3 ; i.e., Bj +v , is received by the decoder. 

This is shown in Fig. 9.2.2. !j+3 is assumed to be part of a clean guard space 

of the burst in !j, so that 

(9.2.18) 

Since the information sub-blocks are known, the decoder attempts to recover 

lr. Analogous to (9.2.12), 

The decoder calculates pj+3 from Ij+3 and Ij+3 by using a replica of the 
- -1 -2 

encoder of the (n,k) parity-check code. It adds Ej +3 to ,gj+3, taken directly 

from the channel, and to the contents of storage register sub-block location 

number 11. The result Ir is used to replace rIt in sub-block location number 6. 

A 1 first appears in error-check register stage number 6 when Rj~, 

'-
j 
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or ]j-t2v, is received by the decoder. At the same time, stage number 3 must 

contain a 0 since .sj+3, or .sj+v, is part of' the clean guard space. This is 

shown in Fig. 9.2.3. .sj-t6 is also assumed ta be part of' the clean· guard space 

of' the burst in .!!j. Thus, the decoder attempts ta recover l~ trom 

(9.2.20) 

Ej -t6 is obtained f'rom the pari ty-check encoder repli ca, ,gj-t6 is taken directly 

f'rom the channel, and l.r+3 is taken f'rom sub-block location number 6. I~ 

replaces rI~ in sub-block location number 11 and the message sequence ~j is 

completely recovered. 

9.3. Guard Space Requirement 

The guard space requirement of a burst-trapping code May be deter-

mined by generalizing Example 9.2.1.. If' a burst is detected in some arbi trary 

block Rj, then the clean guard space must include only the x - 1 succeeding 

blocks !j+v, ]j-t2v, ••• , .sj+{x-l)v. That is, for each block in the burst, the 

guard space contains x - 1 blocks at intervals of v blocks. Thus, analogous 

ta the Ga1lager codes of Chapter 8, the guard space does not necessarily span 

consecutive blocks and i ts total length is proportional only ta the length of 

the actual burst, not ta the length of the longest correctable burst Bm' 

If' a burst af'fects y blocks, y ~ v, then the decoder guard space Gdy 

contains {x - l)y clean blocks, 

Gqy = (x - l)yn , Y = 1, 2, ••• , v. 

Because Gqy is proportional ta yn, the guard space is called adaptive. 

corresponding adaptive channel guard space G is cy 

(9.3.1) 

The 

(9.3.2) 
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If Y = v, then 

Gdy = Gm = (x - l)vn = (x - 1) Bm' 

G - G - G - (x - 1) B • cy-c-m- c 

Since the burst-trapping code has rate Ro = 
bound on guard space requirement is 

1 + R 
G dy ~ 1 _ R yn = (2x - l)yn. 

89. 

(9.3.3) 

(9.3.4) 

x- 1 lx' the Gallager 

From (9.3.1), the burst-trapping code has guard space requirement between 

one-half and one-third that predicted by the Gallager bound. 

9.4. Complexi ty 

The parameters of decoder complexity, N, NT' and NA' are easily 

detennined from Figs. 9.2.1, 9.2.2, and 9.2.3. In the decoder, the minimum 

distance decoder, or encoder repli ca, contains n stages, the starage register 

contains (x - 1)2 v (n - k) or (x - l)vk stages, and the error-check register 

contains (x - l)v stages. The storage requirement N is therefore given by 

N = (x - l)v(k + 1) + n. (9.4.1) 

From (9.3.3) it follows that 

1 (x - l)v(k + 1) + n 
N Gm = (x _ 1 )vn • (9.4.2) 

If the (n,k) parity-check code is ta be effective in detecting bursts, it must 

have a large minimum distance d. This implies that n - k must be large, 

Thus, 

n - k »1 , n > k + 1. 

N/G ~ k + 1 1 
m n < as B --+ d:> • m (9.4.4) 

To detennine the number of tapped shift register stages NT and the 

number of mod-2 adders NA' we note that the decoder formssums analogous ta 

(9.2.12), 
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_Qj ___ pj Ij-v Ij-(x-1)v 
+ -1 +. •• + -x-1 • 

The sequence ,gj is aJ.ways red to an array or mod-2 adders directly rrom the-

channel. The remaining x sequences, however, are always red directly rrom, 

or to, tapped stages or shirt register. Since each sequence occupies n - k 

stages, and since the same x sub-block locations are used in rorming ever,y sam, 

we have 

NT = x(n - k) = n. 

Ir we consider the summations to be perrormed by an array or n - k mod-2 adders 

w:i. th x inputs, then 

NA = (n - k)(x - 1) = k. (9.4.6 ) 

9.5. Perrormance 

To determine the probability or a decoding error given that a burst 

has occurred, P(Ë 1 burst), we know rrom (8.5.4) that ror an adaptive code, 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F). 

The probability or railure P(F) is derined qy the parameters or the (n,k) 

parity-check code. From (3.3.10), (3.3.11), and (3.3.12), since channel errors 

occur in the burst mode with probability q , o 

P(F) = Pd PN, 

t 
P

N 
__ 2k-n " (n) 

L- j' 
j:O 

d-t-1 
L (~) q j (1 _ q )n-j. 

J 0 0 j:O 

The probability or a decoding error given that the burst is detected, peE 1 no F), 

is primarily the probability or a random error in the guard space. Burst-

trapping codes, though, are not robust since the decoder assumes that all 
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recei ved blocks in the guard space are erro~free and takes no steps to check 

the validi ty of this assumption. Thus, analogous to (8.5.7), 

Gd 
peE 1 no F) ~ 1 - (1 - p) y 

o 

The probability of a decoding error in the channel random mode is 

given by (8.5.8) and (8.5.9), 

peE 1 random) = peE 1 no A)[1 - P(A)J + peE 1 A) P(A). 

A false alarm occurs when the received sequence is distance between t + 1 and 

d - t - 1 from the transmitted codeword, given that the channel is in its 

random mode. Thus, the probabili ty P(A) of false alarm is approXimately the 

probabili ty of a noise sequence w:i th weight between t + 1 and d - t - 1, 

d-t-l 
P(A) ~ L (~) p j (1 - po)n- j • 

j=t+l J 0 

Analogous to (8.5.11) and (9.5.3), 

peE 1 A) ~ peE 1 no F) 
Gd 

~ 1 - (1 - p) y. o 

Given no false alarm, a decoding error can occur only if the noise sequence 

has weight at least d - t. Thus, 

(9.5.7) 

Because the decoder of a burst-trapping code contains feedback, the 

possibility of error propagation eXists. Tong [26J shows that if a decoding 

error occurs, then error propagation is limi ted ta W blocks, 

. ( ) L(X - 2)~1 LJÇ' w ~ x - 1 v + d _ 2t J 2J v, (9.5.8) 

provided these W blocks are erro~free. However, the probability that propa­

g-::.tion would continue to the limit of (9.5.8) is very small if d - t is large. 

The fact that burst-trapping codes are not robust is of no great 
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importance on compound channels where random errors are extremelY rare. On 

channels where this is not true, measures must be taken to correct errors in 

the channel guard space before they can affect the decoder guard space. Burton, 

Sullivan, and Tong [27J have proposed a scheme, called generalized burst­

trapping codes, which has this capability. The principle is similar to the 

generalized Gallager codes of Sullivan [25J and te the codes of Chapter 10. 
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10. CCMPOUND-CONCATENATED SYSTEMS 

10.1. Introduction 

In this chapter, we describe a method for improving the perfonnance 

of burst correcting codes when the compound channel exhibits nois.y guard spaces 

between bursts. The method, which we calI a compound-concatenated s.ystem, 

utilizes a random error correcting code concatenated [28J with a burst correc­

ting code. The purpose of the random error correcting code is to control 

errors in the channel guard space before they can affect the decoder guard 

space of the burst correcting code. 

Section 10.2. defines concatenated codes and explains how the error 

correcting code of a compound-concatenated s.ystem controls channel guard space 

errors. Sections 10.3. and 10.4. discuss the structure of compound-concatenated 

s.ystems and calculate the guard space requirement when the error correcting 

code is either a block code or a convolutional code. Section 10.5. determines 

the complexity of compound-concatenated s.ystems in comparison with that of 

burst correcting codes alone. Sections 10.6. and 10.7. derive expressions for 

the performance of compound-concatenated s.ystems. 

10.2. Concatenated Codes 

We shall describe the principle of concatenated codes, introduced 

by Forney [28J, and then develop more fully the concept of a compound-con ca­

tenated s.ystem. 

Suppose that code X with rate Rx is used to transmit infonnation 

over some arbitrar,y channel. Then the s.ystem described by encoder X-channel-

decoder X May be considered to be a "superchannel." Depending upon the correc-

ting capabili ties of code X, the "superchannel" has a relati vely clean output, 
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only a fraction Rx of which consists of information digits. If code Y with 

rate Ry is used to transmit information over the "superchannel," then code Y 

is said to be concatenated with code X, Fig. 10.2.1. 

The overall rate R of the system of concatenated codes is s 

(10.2.1) 

Thus, the system has a rate lower than that of either code alone. However, if 

code X, called the inner code, and code Y, called the outer code, are chosen 

to correct sufficiently different classes of error patterns, then many errors 

not corrected by one code will be corrected by the other. It follows that the 

performance of the concatenated system, in terms of the probability of a deco-

ding error, is superior te that of either code alone. 

In a compound-concatenated system, the inner code is a random error 

correcting code, either a minimum distance decodable (n,k) parity-check code 

or a feedback decodable convolutional code. When the compound channel is in 

its random mode, the inner code is designed to decode correctly with ver,y high 

probability, so that the output of the "superchannel" is ver,y clean. When the 

channel is in its burst mode f the inner code is ineffective and the output of 

the "superchannel" is a burst of decoding errors. The length of the burst of 

decoding errors is related to the length of the channel burst by the properties 

of the inner code. 

The outer code of a compound-concatenated system is a burst correcting 

code such as those described in Chapters 6, 7, 8, and 9. The input to the 

outer decoder is simply the output of the "superchannel." Thus, the burst 

correcting capability of the outer code is determined by the maximum length of 

the burst of decoding errors. In addition, guard spaces at the outer decoder 

are ver,y clean despite the fact that guard spaces in the channel may be quite 

,- , 
.i 



Encoder Y 

..... 

1 - - - - _ - _ _ - - Il Superchannel" --------1 
1 

-----------

1 1 
1 

1 1 

1 .. Encoder X ... Channel Decoder X 1 

1 
. .. 

1 
1 1 
1 

1 1 L ______________________________ J 

Figure 10,2,1 Concatenated Codes, 

... Decoder Y P" 

\0 
\..n . 

r 



96. 

noisy. Thus, the performance of the outer code is improved over that of the 

sarne code used alone on the compound channel. 

The remainder of this chapter describes the structure, complexity, 

and performance of compound-concatenated s,ystems for both classes of inner 

code. As far as is known, .this material is new with this thesis. 

10.3. Inner Block Code: Structure and Guard Space Requirement 

The inner (n, k) pari ty-check code has ~inimum distance d and error 

correcting capabili ty t. Since the sole purpose of the inner code is to correct 

channel guard space errors, we choose t a maximum, 

(10.3.1) 

On the compound channel, bursts ver,y rarely exceed length Be' where 

Bc = fn , f an integer. (10.3.2) 

Since the inner decoder decodes each received block independently of all 

others, a burst of decoding errors cannot affect more blocks than the channel 

burst itself. Also, for each block, the output of the inner decoder consists 

only of the k decoded information bits in that block. It follows that the 

burst correcting capability Bm of the outer code need onlY be 

k 
B =fk=-B m n c' (10.3.3) 

In general, the outer code has burst correcting capability B 
m 

relative to a clean guard space G , where m 

G = h B • m m (10.3.4) 

The factor h is easily determined from the pararneters of the outer code. From 

(10.3.3), the guard space requirement of the outer decoder is 

(10.3.5) 
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Although hfk is an integer, hf need not be. Thus, the guard space Gc in the 

channel spans rhfl blocks, 

(10.3.6) 

It follows that 

k 
G ~ - G • m n c (10.3.7) 

10.4. Inner Convolutional Code: Structure and Guard Space Requirement 

The inner convolutional code may in theory have any rate k/. In 
n 

previous chapters, however, we have restricted our consideration ta rate t 
codes, the simplest though most important case, so we shall do 50 again. The 

code-generating polynomial G2 (D) has maximum degree u with J nonzero coeffi~ 

cients, the code constraint length is nA' the effective length is nE' and the 

error correcting capabili ty t is a maximum, 

Channel bursts very rarely exceed length B , where c 

Bc = snA ' s an integer. 

(10.4.1) 

(10.4.2) 

During a channel burst, the inner feedback decoder will almost certainly propa-

gate errors. By choosing a self-orthogonal convolutional code, this propagation 

is limited to 'WllA digits, given by (4.3.27) and (4.3.28), 

(10.4.3) 

where x is the least integer for which 

(u _ J + y)(J ; y)x ~ (y ~ 1) + (2y ~ J) 

and where y = iJ 
/ 2l + 1. This requires that the channel burst be followed by 

'WllA clean digitsr i.e., if the first wnA digits in the guard space following 

the burst are not all error-free, then error propagation is not guaranteed to 
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be limited as in (10.4.3). 

Because compound-concatenated systems are especially intended ~or 

compound channels wi th noisy guard spaces, the probabili ty that aIl digits in 

a sequence o~ length wnA will be error-~ree is not satis~actorily high. How­

ever, the probability PR o~ an error-~ree run o~ length wnA or greater anywhere 

in a sequence o~ length W, where W ~. wnA, is an increasing ~unction o~ W. Feller 

[46 ] shows that 

PR ~ 1 K (10.4.5) - W+l' c 

1 - (1 - p )c 
where K= 0 (10.4,6) (wnA + 1 - wnAc)po' 

(10.4.7) 

Error propagation can be limited to W digits simply by allowing the 

run o~ wnA error-~ree digits to occur anywhere wi thin the W guard space digits 

immediately ~ollowing the channel burst. The probability that this limi twill 

not be exceeded is at least PR' and PR can be made arbitrarily close to one 

by increasing W. From (10.4.5), 

log(K) - log(l - PR) 
W = log(c) - 1. (10.4.8) 

Since the output o~ the inner decoder consists only o~ the decoded 

in~ormation digits, the burst correcting capabili ty Bm o~ the outer code need 

only be 

B = t( snA + W) = t(B + W). m c (10.4.9) 

From (10.3.4), the guard space reqlûrement Gm at the outer decoder is 

This corresponds te a guard space in the channel o~ length h(Bc + W). Thus, 

'-
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the total channel guard space G is c 

It fo11ows that 

G = W + h(B + W) = h B + (h + l)W. ccc 

G = t(G - W). m c 

10.5. Comparative Comp1exities 

99. 

(10.4.11) 

(10.4.12) 

For any particu1ar compound channel on which bursts ver,y rarely 

exceed 1ength B , we consider three s,ystems which can be used to control errors. c 

One is a burst correcting code a1one, another is a burst correcting code concat-

enated with a b10ck code, and the 1ast is a burst correcting code concatenated 

with a convoluticna1 code. If the same c1ass and rate of burst correcting code 

is used in a11 three cases, then the 1ast two s,ystems have lower rate than the 

first, but we would expect them to have better performance in return. The three 

s,ystems can a1so be compared with respect to the comp1exity of their decoders. 

Using storage requirement N as the criterion, we shall make this comparison for 

inter1eaved b10ck codes, diffuse codes, Ga11ager codes, and burst-trapping codes. 

The 1eft superscripts "1" and "2" will refer to compound-concatenated systems 

with inner b10ck codes and inner convo1utiona1 codes respectively. 

10.5.a. Inter1eaved B10ck Codes 

From (6.3.1), the storage requirement of an inter1eaved b10ck code is 

N=B +G. m m (10.5.1) 

When the code is used a1one, we know from (6.2.1) and (6.2.5) that Bm = Bc and 

Gm = Gc • It fo11ows that 

(10.5.2) 

Also, if G = h B , then G = h Bc' m m c 

,-
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When the code is concatenated with a block code, then from (10.3.3) 

and (10.3.7), 

Because the compound channel is the same, 

1 B ~ B , c c 

and because l G - h lB from (10 ~ 6) c '" c • J. , 

1 

It follows that 

G ~ G • c c 

(10.5.3) 

(10.5.4) 

(10.5.5) 

(10.5.6) 

When the code is concatenated with a convolution al code, then from 

(10.4.9) and (10.4.12), 

Again, the channel is the same so that 

2 B ~ B • c c 

However, 2G - h ~ + (h + l)W from (10.4.11), so that c - c 

2 

It follows that 

G ~ G + (h + l)W. c c 

(10.5.7) 

(10.5.8) 

(10.5.9) 

( 10.5.10) 

Although the complexities of the inner block decoder and the inner 

feedback decoder are not included in the above calculations, (10.5.6) and 

(10.5.10) show that the complexity of a compound-concatenated system can very 

well be less than the complexity of the burst correcting code alone. 

'-
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Because B = B and G = G for all the burst correcting codes that m c m c 

we consider, all expressions derived above relating these four parameters are 

valid throughout this section. 

10.5.b. Diffuse Codes 

From (7.4.1), the sterage requirement of a diffuse code is 

Thus, when the code is used alone, 

N = G + 2. c 

When the code is concatenated with a block code, 

When the code is concatenated with a convolution al code, 

2N ~ i(G + hW) + 2 = i(N + hW) + 1. c 

10.5.c. Gallager Codes 

(10.5.11) 

(10.5.12) 

(10.5.13) 

(10.5.14) 

From (8.4.1), the sterage requirement of a Gallager code is 

N = G - 2(y - 1), m 

where y is the number of consecutive zero-valued syndrome bits required te 

switch the decoder from the burst mode to the random mode. Thus, when the code 

is used alone, 

N = G - 2(y - 1). c (10.5.16) 

When the code is concatenated with a block code, 

1 lk lk 
N ~ r-(Gc ) - 2(y - 1) = r-[N + 2(y - l)J - 2(y - 1). (10.5.17) 

n n 

When the code is concatenated with a convolutional code, 

'-
.1 
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2N ~ t(Gc + hW) - 2(y - 1) = t(N + hW) - (y - 1). (10.5.18) 

10.5.d. Burst-Trapping Codes 

From (9.4.1) and (9.4.2), the storage requirement of a burst-trapping 

code is 

N -_ k + 1 G + n, (10 5 19) 
n m" 

where the code is obtained from an (n,k) systematic parity-check code. Thus, 

when the code is used alone, 

N = k ; 1 Gc + n. (10.5.20) 

When the code is concatenated with a block code, 

1 k + 1 lk lk 
N ~ n r( G c) + n = r( N - n) + n. (10.5.21) 

n n 

When the code is concatenated with a convolutional code, 

2N k + 1 1 ( h ) 1 ( k + 1 hW) ~ n '2 Gc + W + n = 2" N + n + n • (10.5.22) 

10.6. Inner Block Code: Performance 

The criterion of performance of a compound-concatenated S,ystem is 

the probability of a decoding error given that a channel burst has occurred, 

peE 1 burst). From (8.5.4 ), 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F). (10.6.1) 

If the outer burst correcting code is non-adaptive, then the probability of 

failure P(F) is zero. The probability of a decoding error given that the burst 

is detected, peE 1 no F), is primarily the probability of an error in the guard 

space of the outer decoder. 

The compound channel model produces independent errors in the random 

mode wi th probabili ty p and in the burst mode wi th probabili ty q. In the o 0 

,-
1 
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random mode, the inner block decoder commits decoding errors with probability 

Pl' given approximately by (3.3.8), 

(10.6.2) 

Similarly in the burst mode, the inner block decoder commits decàding errors 

wi th probabili ty ql' where 

(10.6.3) 

Because t is chosen as large as possible and because p is small, it is generally o 

true that 

However, ql may be either larger than or smaller than qo' Although in actual 

~act a decoding error at the inner decoder results in a cluster o~ errors at 

i ts output, we may say roughly tha t on the average the "superchannel" produces 

independent errors in the random mode with probability Pl and in the burst mode 

with probability ql' These, then, are the parameters used in determining P(F) 

when the outer code is adaptive. 

To ~ind P( E 1 no F), we must ~ind the probabili ty o~ an error in the 

decoder guard space, or, equivalently, the probability o~ a decoding error in 

the channel guard space. From (10.3.6), the channel guard space spans fMl 

blocks, each o~ which is decoded independently. Since the probability o~ a 

decoding error in any one block is Pl' P(E 1 no F) is given by 

(10.6.5) 

The inequalit,v exists because, in general, the outer code may be robuste 



10.7. Inner Convolutional Code: Performance 

In the random mode of the compound channel, the inner feedback 

decoder commits decoding errors with probability P2' given approximately by 

(4.3.29) , 

104. 

(10.7.1) 

Similarly in the burst mode, the inner decoder commits decoding errors with 

probability q2' where 

(10.7.2) 

It is generally true that 

but q2 may be larger than or smaller than qo' We again consider that P2 and q2 

approximately represent independent error probabilities of the "superchannel," 

so that these parameters are used in determining P(F) if the outer code is 

adaptive. 

peE 1 no F) is again primarily the probability of an error in the 

decoder guard space, and we can s~ that 

p( E 1 no F) ~ (1 - P R) + P e. (10.7.4) 

From (10.4.5), PR is the probability of" a run of wnA error-free digits in the 

first W digits of the channel guard space. Thus, 1 - PR is the limiting proba­

bility that a channel burst is propagated by the f"eedback decoder beyond the 

burst correcting capability of the outer code. P is the probability of a e 

decoding error in the last h(B + W) digits of the channel guard space G , where c c 

from (10.4.11), 

G = W + h(B + W) • c c (10.7.5) 

~I 
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In decoding any one noise bit, the inner feedback decoder checks nE 

distinct noise bits. In decoding a second noise bit, the effective length May 

contain some noise bits in common wi th the first. Thus, decoding is not inde-

pendent in blocks of length nE as it would be in a block decoder. However, 

because random errors in the channel guard space are relatively rare, a calcu-

lation for Pe based on the assumption that decoding is independentin blocks of 

nE noise bits gives a result that is approximately correct. 

If all the parameters of the system are known, it is eas,y to calculate 

the quantity g such that 

(10.7.6) 

The guard space can then be segmented into g distinct and independent blocks of 

length nE' The probabili ty of a decoding error in any one such block is P2' so 

that P is given by e 

(10.7.7) 

By increasing W suffi ci ently , PR can be made so close to one that 

(10.7.8) 

In this case, then, 

p( E 1 no F) ~ 1 - (1 - P2) g • (10.7.9) 

'-
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11. GUARD-SPACE-ADAPTIVE BURST-TRAPPING CODES 

11.1. Introduction 

In this chapter, we shall describe the structure, complexity, and 

performance of a burst correcting compound-concatenated s,rstem which we call a 

guard-space-adaptive burst-trapping code, or GSA code. GSA codes are adaptive. 

The random mode is provided by the inner code of the compound-concatenated 

system, a minimum distance decodable (n. ,k.) parity-check code. The burst mode 
l. l. 

is provided by the outer code of the system, a modified burst-trapping code 

obtained from a systematic (n ,k ) parit,y-check code. 
o 0 

GSA codes are similar to Tong's burst-trapping codes, having an 

adaptive guard space requirement proportional to the length of the actual burst. 

However, the guard space of a GSA code is immediately adjacent to the burst, 

which is not always the case for burst-trapping codes. 

Section 11.2. combines the structure of a compound-concatenated 

system, the general principle of a burst-trapping code, and the requirements 

for an adaptive guard space adjacent to the burst in order to de termine the 

structure of a GSA code. Section 11.3. defines an optimality criterion for GSA 

codes, called minimum effective length, and lists a number of optimal codes for 

various rates and burst correcting capabilities. Section 11.4. shows that by 

interleaving, GSA codes May have any desired burst correcting capability, and 

then outlines the general properties of interleaved GSA codes. Section 11.5. 

employs an example to demonstrate the decoding procedures of a GSA code and to 

determine the decoder implementation. Section 11.6. discusses the decoder com-

plexity, and Section 11.7. derives expressions for the performance of GSA codes. 

As far as is known, the principles of GSA codes and all material in 

this chapter are new with this thesis. 
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11.2. Structure and Guard Space Requirement 

The inner (n. ,k.) parity-check code of the GSA code has minimum dis­
~ ~ 

tance d and error correcting capability t. Since it is also the random mode 

of the GSA code, it must have some error detecting capability. Thus, t is chosen 

less than maximum, 

(11.2.1) 

The outer code is a modified burst-trapping code based upon a s,yste­

matic (no,ko ) parity-check code for which 

1 , x an integer, (11.2.2) 

and k = (x - l)(n - k ) , no = x(n - k ). o 0 0 0 0 
(11.2.3) 

Each codeword ~j of the parity-check code May be divided into x - 1 infonnation 

sub-blocks I~, i = 1, 2, ••• , x-l, and one parity sub-block pj, where each 
-:L 

sub-block has length no - ko' 

... , (11.2.4) 

Since the outer code provides only the burst mode of the GSA code, it need have 

no random error correcting capabili ty or error detecting capabili ty • Thus, i t 

can be chosen to be the trivial code for which 1:j is always the null sequence, 

pj = 0 - -' 
Iiike a burst-trapping code, the outer code is obt&ined from the 

(no,ko) parity-check code by forming codewords 1 j such that 

(11.2.6) 

where (11.2.7) 
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From (9.2.12), for a Tong burst-trapping code, 

f(I) _ I j - v + Ij-2v + Ij-(x-l)v 
- - -1 -2 + ••• -x-l • (11.2.8) 

For a GSA code, f(l) is some mod-2 sum of information sub-blocks which imparts 

burst correcting capability to the outer code in such a way that the guard space 

requirement is both adaptive and immediately adjacent to the burst. 

Bursts on the compound channel very rarely exceed length B such that c 

Bc = fni ' f an integer. (11.2.9) 

For each block at the inner decoder, the output consists of the k. decoded 
3-

information bits in that block. Since each block is decoded independently, a 

burst cannot be propagated. Thus, the burst correcting capability B of the 
m 

outer code need only be 

ki 
B = fk. - - B m 3- - n. c· (11.2.10) 

3-

In addition, since the block length at the outer decoder is no' 

B = fk. = bn , m 3- 0 
(11.2.11) 

where b is an integer such that f/b is an integer. 

If a burst at the outer decoder affects y blocks, y = 1, 2, ••• , b, 

then there are y(x - 1) unreliable information sub-blocks, which We call the 

y(x - 1) unknowns. The sequences .9j or f(l) in the codewords of the outer code 

are chosen in such a way that the set of y(x - 1) sequences immediately following 

the burst constitutes a set of y(x - 1) linearly independent equations in the 

y(x - 1) unknowns. In this way, for a burst of length yn , the guard space G o oy 

at the outer decoder is 

f G = (x - l)yn = (x - l)y-b k~ , Y = 1, 2, ••• , b. oy. 0 ... 
(11.2.12) 

This corresponds ta an adaptive guard space G. spanning (x - l)yf/b blocks at 
3-y 

___ i 
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the inner decoder, 

f 
Giy = (x - 1)y b ni ' y = 1, 2, ••• , b. 

In the case where y = b, 

G = Gm = (x - 1)bn = (x - 1) Bm' oy 0 
(11.2.14) 

To demonstrate how f(l) is chosen, it is convenient te use a numerical 

example. 

Example 11.2.1. 

The parameters of the S,Ystem are x = 3, b = 3. The outer code 

therefore corrects all detected bursts of length n , 2n , and 3n • 
000 

For bursts of length n , a sui table burst correcting code is a Tong 
o 

burst-trapping code which is time-diversified to degree v = 1. From (11.2.8), 

j () j-l j-2 .9 = f 1 = Il + I 2 • ( 11.2.16) 

If we are attempting te correct a burst in the jth block, then the guard space 

spans the succeeding y{x - 1) = 2 blocks, for which 

(11.2.17) 

The two unknowns are recovered from two linearly independent equations, 

(11.2.18) 

To obtain a code which can correct bursts of length n and 2n , we o 0 

append x - 1 terms; i.e., information sub-blocks, to f(l) so that 

~I 
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The variables c and d are to be determined. They may assume any o~ the values 

0, 1, ••• , x-l, where we say that 

~ = Q ~or all j. (11.2.20) 

r~ a burst a~~ects the blocks j and j + 1, then the guard space spans the 

y(x - 1) = 4 succeeding blocks j + 2, ••• , j + 5. The ~our unknowns are recovered 

~rom ~our linearly independent equations, 

(11.2.21) 

The set o~ equations (11.2.21) are linearly independent i~ c = 0, d = 1, so that 

~(r) = r j - 1 + r j - 2 + r j -
4 

- -1 -2 -1' (11.2.22) 

r~ bursts can be o~ length n , 2n , or 3n , we again append x - 1 o 0 0 

terms to ~(l). Thus, 

Qj = ~(r) = r j - 1 + r j -
2 + r j -

4 + r j - 5 + r j - 6 • - - -1 -2 -1 -c 4i (11.2.23) 

Solving ~or c and d such that a set o~ y(x - 1) = 6 equations in the guard space 

are linearly independent, we obtain c = 0, d = 2. There~ore, 

~(l) - r j - 1 r j - 2 r j - 4 r j - 6 
..L - -1 + -2 + -1 + -2 • (11.2.24) 

11.3. Optimal GSA Codes 

To ~ind the ~unction ~(l) which de~ines the outer code of a GSA code, 

we must solve ~or the x - 1 subscripts c, d, ••• a total o~ b times, where 

(11.3.1) 
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Each time we tr,y t~ solve for these subscripts, there m~ be no solution, a 

unique solu~on, or several solutions. If at any step there is no solution, 

then a GSA code cannot be found. If several solutions exist, one or more of 

them ~ be optimal. 

The number of terms in the function f(l) is called the effective 

length lE of the GSA code. We say that the code is optimal if it has minimum 

effective length for, as we shall see in Section 11.6., minimizing the effective 

length minimizes the decoder complexity. 

To de termine the minimum effective length of a GSA code, we observe 

that f(l) has the general form 

b Ilj -(y-l)(x-l)-l Ij-(y-1) (x-l)-2 = ~ l + + 
y=l -

Ij-y(x-l)] ••• + - • (11.:3.2) 

Jo-(y-1)(x-1)-1 Jo-y(x-1) ° th We say that the x - 1 terms 1 , ... , 1 const~ tute the y 

partition of the function f(l), y = 1, 2, ••• , b. Some of these x - 1 terms 

may be of the form 15: i.e., May be null sequences, and Wa minimize lE if we 

maximize the number of null sequences in f(l). In order that the set of b(x - 1) 

equations in b(x - 1) unknowns be linearly independent, and in order that aIl 

detected bursts of length bn or less be corrected, the following conditions on o 

f(l) must be met: 

(a) All x - 1 terms in the first partition must have different subscripts and 

no term may be a null sequence. 

(b) At least one term in each of the rernaining b - 1 partitions May not be a 

null sequence. 

(c) No term in the y th partition may be a null sequence in a consecutive run 

of y or more null sequences. 

We say arbitrarily that the last term, Ij-y(x-1), in the y th parti-

tion may not be a null sequence. Then, if y >x - 2, the remaining x - 2 terms 

'-
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in the partition May all be null sequences. 

of these x - 2 terms May not be null sequences. It follows that 

K 
lE 2! (x - 1) + (b - 1) + :E Lx_:.;., ~I 

y=2 Y J 

= x + b - 2 + ~ Lx - ~I , K = min(x-2, b). 
. y=2 Y J (11.3.3) 

In Table 11.3.1, we list all the optimal GSA codes found by the 

method of Example 11.2.1. for different values of x and b. For convenience, 

we have employed the notation 

( ) j-u 
i,u = 4 · (11.3.4) 

Note that no GSA codes were found to exist for b > 4. 

11.4. Interleaved GSA Codes 

GSA codes May be interleaved to any degree r so that their burst 

correcting capability B May be arbitrarily long, 
m 

B = fk. = rbn , b = 1, ••• , 4 , r an integer. m ~ 0 

GSA codes can correct bursts of b different lengths, n , 2n , 
o 0 

... , 
(11.4.1) 

bn , according o 

to b different algorithms. Interleaved GSA codes are therefore restricted to b 

decoding algorithms, so that all bursts of length r(y - l)no + no' ••• , ryno 

are decoded according to the algorithm for bursts of length yn , y = 1, 2, ••• , b. o 

The decoder guard space requirement for any such burst is, from (11.2.12), 

G = (x - l)ryn = (x - l)y -bf k. , Y = 1, 2, ••• , b. oy 0 ~ 

The function f(l) for an interleaved GSA code has the general form 

f(l) = ~ [Ij-(y-1)(x-l)r-r + .0. +lj-y(x-1)r]. 
y=l 

(11.4.2) 

(11,4.3) 

_ .i 

..,' 



2/3 1 

2/3 2 

2/3 3 

2/3 4 

3/4 1 

3/4 2 

2 

3 

4 

5 

3 

5 

(1,1) + (2,2) 

(1,1) + (2,2) + (1,4) 

(1,1) + (2,2) + (1,4) + (2,6) 

(1,1) + (2,2) + (1,4) + (2,6) + (2,8) 

(1,1) + (2,2) + (3,3) 

(1,1) + (2,2) + (3,J) + (3,5) + (1,6) 

(1,1) + (2,2) + (3,J) + (1,4) + (J,6) 

(1,1) + (2,2) + (J,3) + (2,4) + (1,6) 

(1,1) + (2,2) + (J,J) "+ (J,4) + (1,6) 

3/4 3 6 (1,1) + (2,2) + (J,J) + (3,5) + (1,6) + (2,9) 

(1,1) + (2,2) + (J,J) + (2,4) + (1,6) + (2,9) 

(1,1) + (2,2) + (J,J) + (3,4) + (1,6) + (2,9) 

J/4 4? (1,1) + (2,2) + (3,3) + (J,5) + (1,6) + (2,9) + (1,12) 

(1,1) + (2,2) + (J,J) + (J,4) + (1,6) + (2,9) + (J,12) 

4/5 1 4 (1,1) + (2,2) + (3,J) + (4,4) 

4/5 2 6 (1,1) + (2,2) + (J,J) + (4,4) + (1,6) + (3,8) 

(1,1) + (2,2) + (J,3) + (4,4) + (J,6) + (1,8) 

4/5 3 8 (1,1) + (2,2) + (J,J) + (4,4) + (1,6) + (J,8) + (1,11) + (2,12) 

(1,1) + (2,2) + (J,J) + (4,4) + (1,6) + (J,8) + (2,11) + (1,12) 

(1,1) + (2,2) + (J,J) + (4,4) + (3,6) + (1,8) + (1,11) + (2,12) 

(1,1) + (2,2) + (3,J) + (4,4) + (3,6) + (1,8) + (2,11) + (4,12) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (3,11) + (2,12) 

(1,1) + (2,2) + (3,3) + (4,4) + (J,6) + (1,8) + (4,10) + (2,12) 

Table 11.3.1 (continued on page 114) 
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4/5 3 8 (1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (1,9) + (2,12) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (3,9) + (2,12) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (4,9) + (2,12) 

4/5 4 9 (1,1) + (2,2) + (3,3) + (4,4) + (1,6) + (3,8) + (1,11) + (2,12) 

+ (1,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (1,6) + (3,8) + (2,11) + (1,12) 

+ (2,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (1,11) + (2,12) 

+ (3,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (3,11) + (2,12) 

+ (3,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (4,10) + (2,12) 

+ (3,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (1,9) + (2,12) 

+ (3,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (1,9) + (2,12) 

+ (4,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (3,9) + (2,12) 

+ (3,16) 

(1,1) + (2,2) + (3,3) + (4,4) + (3,6) + (1,8) + (4,9) + (2,12) 

+ (3,16) 

Table 11.3.1 
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11.5. Decoding Procedures 

For every block of length n. in the compound channel, the inner 
1. 

115. 

minimum distance decoder of the GSA code passes on k. decoded information bits 
1. 

to the outer decoder. These ki bits con tain errors either if a burst was detec-

ted or if a decoding error was committed in attempting to make a correction. 

From (11.4.1), 

f f 
no = ;b ki ' rb an integer, (11.5.1) 

so f/rb groups of these k. decoded bits constitute one block of length n at 
1. 0 

the outer decoder. The outer code has codewords Tj, so that the received block 

is denoted ~j, 

~j = l j + ~j, (11.5.2) 

where ~j is the error pattern passed on from the inner decoder. 

To demonstrate fully the decoding procedures of the outer code and 

to show how the decoder is implemented, it is convenient te use a numerical 

example. 

Example 11.5.1. 

The parameters of the outer code are x = 3, b = 3, r = 1. From 

Table 11.3.1, an optimal code is given by 

() j j-l j-2 j-4 j-6 
f l =.9 = Il + 12 + Il + I 2 ' 

which is the code derived in Example 11.2.1 •• This code has codewords of the 

form 

(11,5,4) 

Assume that the block lij has just been received and that aIl previous decoding 

has been correct. 

'-
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The outer decoder, Fig. 11.5.1, contains four shift registers. The 

first is used to store the received block Rj • The second, called the storage 

register, is usedto store the decoded message sequences of the previous 

r(bx - 1) blocks. This means that r(bx - l)(x - 1) = 16 information sub-blocks 

are stored, these sub-block locations being numbered in the figure. The third 

shift register, called the error-check register, is used to label the received 

block and the r(bx - 1) stored message sequences as either presumab~ correct 

or defini tely unreliable by means of 0' s and l' s respecti vely • A digit is 

placed in the first stage by the inner decoder according to whether or not a 

burst was detected somewhere in the block Rj • The state of the error-check 

register, whose r(bx - 1) + 1 = 9 stages are numbered in the figure, controls 

the mode of the decoder. Because previous decoding has been correct, the last 

eight stages of the register initially contain O's. The four th shift register, 

called the computation register, is used to store the mod-2 sums!, B, f, ... 

of (11.2.18) and (11.2.21). These are the sums of the known quantities in the 

set of linearly independent simultaneous equations from which the unknown 

information sub-blocks may be recovered. The computation register therefore 

contains rb(x - 1) sub-block locations. Initially, it is either empty or con-

tains irrelevant data. 

When the error-check register is in the state of Fig. 11.5.1, the 

storage register does not contain a detected burst. In this case, the decoder 
. 8 . 8 

shifts Ii- and I~- out of the storage register to the source decoder, shifts 

Ii and I~ into the storage register, right-shifts the error-check register one 

stage, right-shifts the computation register one sub-block, and accepts the 
. 1 

next block RJ+ • 

We shall now con si der the decoder behaviour for detected bursts of 

length r,yn followed by clean guard spaces of length (x - 1)r,yn , Y = 1, 2, 3. o 0 
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First, assume Ej is affected by a burst and Ej +1, Ej -+2 are clean. 

When Rj+l is received, the error-check register state (0, 1, 0, ••• , 0), 

Fig. 11.5.2, shows that the burst spans only one block. Analogous to (11.5.3), 

the decoder forms the sum 

and stores i t in the computation register. Similarly, when Ej -+2 is recei ved, 

Fig. 11.5.3, the decoder forms the sum 

(11.5.6) 

The decoder then solves the set of simultaneous equations as in Fig. 11.5.4 

and resets the error-check register to zero. 
. . 1 .. ? 

Assume now that ~J and EJ+ are affected by a burst and EJ~, ... , 
Ej +5 are clean. When ~j-+2 is received, the error-check register state 

(0, 1, 1, 0, ••• , 0) shows that the burst spans two blocks. Each equation 

therefore contains two unknowns and four sums, 1=, §., f, ,Q, must be formed. 

Figs. 11.5.5 and 11.5.6 show how the information sub-blocks are recovered. 

Finally, assume that ~j, Ej +1, and Ej +2 are affected by a burst and 

~j+3, ••• , Rj+B are clean. When Ej +3 is received, the error~check register 

state (0, 1, 1, 1, 0, ••• , 0) shows that the burst spans three blocks. Each 

equation therefore contains three unknowns and six sums, !" §., f, ,Q, !, F, 

must be formed. Figs. 11.5.7 and 11.5.8 show how the information sub-blocks 

are recovered. 

11.6. Complexity 

The three parameters of complexity, N, NT' and NA' may be determined 

from Figs. 11.5.1 to 11.5.8. In the outer decoder, the received block occupies 

no stages of shift register, the storage register contains r(bx - l)(x - l)(no - ko) 
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~ Computation Register 
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to r j 
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to r j 
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Figure 11.5.4 Computation Register Connections for the Correction of a 

Burst in One Block. 
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Computation Register Connections for the Correction of a 

Burst in Two Blocks. 



----woI 0 ·1 0 .1 0 ~I 0 ~, 0 
1 

., 0 
1 
~L 1 ... 1 1 _1 1 

0 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 .15 16 

,,-- r j +5 r j +5 r j -+4 r j -+4 r j +3 r j +3 r j -t2 r j -t2 r j +1 r j +1 r j r j j---. 

" 
-2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 

" " "-
"-
.'\ 

"-
"-

"-
"-

"-
"-

---+1 gj0f8 r j0f8 j-t8 "-
-2 Il --~ 

~ 
F E D C B A 

Figure 11.5.7 Correcting a Burst in Three Blocks. .... 
~ . 

."-. ï 



F 

125. 

~computation Register 
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or r(bx - l)k stages, the error-check register contains r(bx - 1) + 1 stages, o 

and the computation register contains rb(x - l)(n - k ) or rbk stages. The 
000 

storage requirement N is therefore gicen by 

N = r(k + l)(bx - 1) + rbk + no + 1. o 0 

From (11.2.14) and (11.4.2), it fo11ows that 

r (k + 1) (bx - 1) + rbk + no + 1 NI 0 0 
Gm = (x - l)rbn 

o 

The ratio of (11.6.2) is sma11er than one if and only if 

ko _ x - 1 bx - b - l/r _bx + 1 - l~r 
n - x < bx + b - 1 (bx + b - 1 n • o 0 

(11.6.1) 

(11.6.2) 

(11.6.3) 

The inequa1ity (11.6.3) is most easily satisfied when the right hand side is a 

maximum; i. e., when n ----;. cf:) • First, if r = 1, then the condition becomes o 

x - 1 bx - b - 1 
x < bx + b - l' (11.6.4) 

which reduces to 

b(x - 1) < -1. (11.6.5) 

C1early, (11.6.5) can never be satisfied for positive values of band x. 

Alternatively, as r-coO, the inequality (11.6.3) becomes 

x - 1 bx - b 
x < bx + b - l' (11.6.6) 

which reduces to 

x-l>b(x-l). (11.6.7) 

(11.6.7) can never be satisfied for integer values of b. Thus, because the 

condition (11.6.3) cannot be satisfied, the storage requirement of the outer 

decoder can never be sma11er than its guard space requirement. 

stages. 

From Fig. 11.5.1, three of the decoder shi ft registers have tapped 

The sub-b1ock denoted gj is tapped in a11 of its n - k stages, The o 0 

~I 

~I 
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entire computation register is tapped for a total of rbk stages. The storage o 

register is tapped in nT(no - ko) stages, where nT is the number of tapped sub-

block locations. Examination of the storage registers of a number of GSA codes 

shows that nT is given by 

b 
nT = lE -._b + :E (x - l)rj. 

j=l 
(11.6.8) 

Thus, the total number of tapped shift register stages in the outer decoder is 

b 
NT = [lE - b + 1 + :E (x - l)rj](n - k ) + rbk • 

j=l 0 0 0 
(11.6.9) 

NT is minimi~ed by choosing a GSA code for which lE is a minimum; i.e., an opti­

mal code. 

From (11.2.7), the burst correcting capability of the outer code is 

imparted by the sub-block 

(11.6.10) 

where f(l) contains lE terms. In forming the set of linearly independent 

simultaneous equations, each of the mod-2 sums!, ~, f, ... is given in general 

by 

! =,9j + at MOSt (lE - 1) terms from f(l). (11.6.11) 

If we consider the summations to be performed by an array of n - k mod-2 o 0 

adders with at MOSt lE inputs, then (lE - l)(no - ko) mod-2 adders with two 

inputs are required. However, at different times in the decoding process, the 

number of terms taken from f(l), and the storage register sub-block locations 

tapped to supply these terms, may differ. Thus, the (lE - l)(n - k ) mod-2 o 0 

adders May be given variable input leads, controlled by the state of the error-

check register, or the decoder May be given additional mod-2 adders, whichever 

alternative appears more attractive in any particular application. In addition, 

,-
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~rom Figs. 11.5.6 and 11.5.8, a number o~ mod-2 adders May be required at the 

computation register in order to solve the set o~ equations ~or the unknown terros. 

The number, however, depends upon the speci~ic GSA code and cannot be predicted 

in general. We there~ore say that the number o~ mod-2 adders in the outer deco-

der is lower-bounded by 

NA > (lE - l)(n - k ). 
- 0 0 

(11.6.12) 

In addition to N, NT' and NA' the total complexity o~ the GSA decoder 

includes the unspeci~ied complexity of the inner minimum distance decoder. 

11.?. Per~orroance 

To determine the probability o~ a decoding error given that a channel 

burst has occurred, P(E 1 burst), we know ~rom (8.5.4) that ~or an adaptive code 

peE J burst) = P(E 1 no F)[l - P(F)] + P(F). (11.?1) 

The probability of failure P(F) is de~ined by the parameters of the inner 

(ni,ki ) parity-check code. From (3.3.10), (3.3.11), and (3.3.12), since channel 

errors occur in the burst mode with probability qo' the probability P~ that the 

inner code fails either to detect or to correct a burst in one block of length 

k.-n. 
p _2J. J. 

N -

(11.7.2) 

From (11.4.1), an integer number f/rb o~ sequences from the inner decoder is 

is required to forro a single received block at the outer decoder. Thus, a 

failure occurs at the outer decoder on~ if there is a ~ailure in all f/rb 

blocks at the inner decoder. Since a channel burst does not necessarily span 



129. 

aIl f/rb blocks, we can say only approximately that 

(11.7.3) 

The probability of a decoding error given that the burst is detected, 

peE 1 no F), is primarily the probability of an error in the guard space G of oy 

the outer decoder. This is equivalent to the probability of a decoding error 

in the guard space G. of the inner decoder. From (11.2.13) and (11.4.2), G. 
~y ~y 

spans (x - l)yf/b blocks if the burst at the outer decoder is of length 

r(y - l)no +no' ••• , ~o' y = 1, 2, ••• , b. The probability Pb of a decoding 

error in any one of these (x - l)yf/b channel blocks is, from (3.3.8), 

(11.7.4) 

Since the decoding of blocks is independent, it follows that 

(11.7.5) 

From (9.5.4), the probability of a decoding error in the channel 

random mode is 

peE 1 random) = peE 1 no A)[l - P(A)] + peE 1 A) P(A). (11.7.6) 

In order that a false alarm occur, at least one of f/rb sequences at the inner 

decoder must be distance between t + 1 and d - t - 1 from the corresponding 

transmitted codeword. Thus, the probability P(A) of a false alarm is approx-

imately given by 

P(A) ~ 1 - [1 _ d-~l (~i) Poj (1 _ po)ni-j]f/rb. 
j:::':t+1 

Analogous to (8.5.11) and (11.7.5), 

peE 1 A) ~ peE 1 no F) ~ 1 - (1 - Pb )(x-l)yf/b. 

(11.7.7) 

(11.7.8) 

Given no false alarm, a decoding error can occur only if at least one of f/rb 

. ../ 
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sequences at the inner decoder contains a noise sequence with weight at least 

d - t. Thus, 

d-t-1 n n -j 1 
P( E 1 no A) = 1 - [ E ( . i) P j (1 - po) i Jf rb. 

j::O J 0 
(11.7.9) 
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12. SUMMARY AND NUMERICAL COMPARISON OF BURST CORRECTING CODES 

12.1. Introduction 

In Chapters 6 to 11, a large number of error control techniques for 

the compound channel were described. Expressions were developed for the burst 

correcting capability, the guard space requirement, the complexity, and the 

performance of these codes. In this chapter, we shall summarize these results 

and evaluate the expressions for particular codes on specific channels. It will 

be assumed throughout this chapter that channel bursts very rarely exceed length 

Bc ~ 1000. In the channel random mode, errors will occur with probability Po 

. -8-2 rangJ.ng from 10 to 10 ,while in the channel burst mode, errors will occur 

with probability q ranging from 0.01 to 0.50. o 

Interleaved block codes, diffuse codes, Gallager codes, burst-trapping 

codes, and GSA codes are treated respectively in Sections 12.2., 12.3., 12.4., 

12.5., and 12.6 •• 

12.2. Interleaved Block Codes 

Interleaved block codes, originally described in Chapter 6, 'are 

obtained by interleaving an (n,k) block code with burst correcting capability b. 

These codes have minimum guard space requirement, and thereby optimum performance, 

if b meets the Reiger bound (6.2.2) with equality, 

b ::: 'Hn - k).' (12.2.1) 

From (6.2.1), interleaved block codes have burst correcting capability 

B such that 
m 

where r is known as the interleaving degree. 

is given by (6.2.4) and (6.2.5), 

(12.2.2) 

Their guard space requirement G 
m 

,-
1 
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G = G = r(n - b) = rn - B • m c m (12.2.3) 

The complexity of the decoder is defined by the storage requirement N in (6.3.1), 

(12.2.4) 

The performance of these codes in correcting bursts is bounded by (6.4.4), 

G 
p( E 1 bur st) 5: 1 - (1 _ p ) m 

o 

12.2.a. Numerical Example 

(12.2.5) 

Consider a (15,9) parity-check code, originally used by Weldon [47J, 

which has optimal burst correcting capabili ty b = 3. Interleaving this code to 

degree r = 334, we ob tain 

Bm = Bc = (334)(3) = 1002, 

Gm = Gc = (334)(15 - 3) = 4008, 

N = 1002 + 4008 = 5010, 

N/G = 5010/4008 = 1.25000. m 
(12.2.6) 

For the range of channel random error rate p between 10-8 and 10-2, we obtain 
o 

an upper bound on code performance peE 1 burst) by substituting G = 4008 into 
m 

(12.2.5). The result is shown in curve l of Fig. 12.2.1. 

It follows from (12.2.2) and (12.2.3) that 

(12.2.7) 

Thus, peE 1 burst) is an increasing function of burst correcting capability B • 
m 

peE 1 burst) approaches 1 wi th increasing B and approaches p wi th decreasing m 0 

The relationship peE 1 burst) = p therefore is a lower bound on code perfor­o 

Mance when B - 0, shown in curve II of Fig. 12.2.1. 
m 

'-
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1: Interleaved block code alone, B = 1002. m 

II: Lower limit of performance for interleaved block code, B -+- O. m 

III: Inner block code and outer interleaved block code, rhfl = 168. 

IV: Inner convolutional code and outer interleaved block code, g = 328. 

Figure 12.2.1: Performance of Interleaved Block Code. 
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12.2.b. Compound-Concatenated System With Inner Block Code 

In Chapter 10 we saw that the performance of a burst correcting code 

could be improved by concatenating it with an inner random error correcting 

code; i.e., by forming a compound-concatenated s,ystem. Consider an inner (n,k) 

block code with minimum distance d and error correcting capability t given by 

(10.3.1), 

I.d - ~ 
t = L 2' 

The maximum length B of channel bursts is expressed as in (10.3.2), c 

BC = fn. 

(12.2.8) 

(12.2.9) 

The outer burst correcting code has burst correcting capability B and guard . m 

space requirement G given by (10.3.3) and (10.3.5), 
m 

G = h B = hfk. m m 

From (10.3.6) and (10.3.7), the channel guard space G is c 

G = rhfl n ~ h B ~ nk G • c c m 

(12.2.10) 

(12.2.11 ) 

(12.2.12) 

At the outer decoder, errors in the random mode occur approximately 

wi th probabili ty Pl and errors in the burst mode occur approximately wi th 

probability ql' given by (10.6.2) and (10.6.3) respectively, 

t 
p j )n-j Pl ~ 1 - L: (~) (1 -

j:O J 0 Po ' (12.2.13) 

t 
q j (1 - qo)n- j • ql ~ 1 - L: (~) 

j::O J 0 
(12.2.14) 

Throughout this chapter, we assume that the inner block code is the 

(24,12) extended Golay code [lJ with error correcting capability t = 3. With 

,-
.1 
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f = 42, we ob tain from (12.2.9) and (12.2.10), 

B = (42)(24) = 1008, c 

Consider a compound-concatenated system whose outer code belongs to 

the saroe class as the interleaved block code of Section 12.2.a •• With inter­

leaving degree r = 168, we obtain 

B = (168)(3) = 504, m 

Gm = (168)(15 - 3) = 2016, 

h = 2016/504 = 4, 

fhi] = r(4)(42n = 168, 

Gc = (168)(24) = 4032, 

N = 504 + 2016 = 2520, 

N/G = 2520/2016 = 1.25000. m 
(12.2.16) 

From (10.6.1) and (10.6.5), the performance of the compound-concaten­

ated system is bounded by 

peE 1 burst) ~ 1 - (1 - Pllhf1 . (12.2.17) 

For every Po' Pl is found by substituting the pararoeters n = 24 and t = 3 of the 

inner block code into (12.2.13). Then, with rhfl = 168, we obtain the upper 

bound on system performance peE 1 burst) shown in curve III of Fig. 12.2.1. 

Because B is linearly related to f by (12.2.10), peE 1 burst) approaches 1 with m 

increasing B and approaches Pl with decreasing B • m m 

12.2.c. Compound-Concatenated System With Inner Convolutional Code 

Another compound-concatenated system May be formed by using as the 

inner code a rate! self-orthogonal convolutional code with constraint length nA' 
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effective length nE' and error correcting capability t from (10.4.1), 

(12.2.18) 

J is the number of nonzero coefficients in the code-generating polynomial G2(D), 

which has maximum degree u. The maximum length Bc of channel bursts is expressed 

as in (10.4.2), 

Bc = snA• (12.2.19) 

Channel bursts May be propagated at the inner decoder for some length W ~ wnA, 

where W is given by (10.4.8) and wnA is given by (10.4.3). The outer burst 

correcting code then has burst correcting capability Band guard space require-
m 

ment G given by (10.4.9) and (10.4.10), m 

B = -HsnA + W) = t(B + W), m c 

From (10.4.11), the channel guard space Gc is 

(12.2.20) 

(12.2.21) 

(12.2.22) 

At the outer decoder, errors in the random mode occur approximately 

with probability P2 and errors in the burst mode occur approximately with 

probability q2' given by (10.7.1) and (10.7.2) respective~, 

t n 
p j 

nE-j 
P2 ~ 1 - L ( .E) (1 - po) , 

j::O J 0 
(12.2.23) 

t n 
q j 

nE-j 
q2 ~ 1 - L ( .E) (1 - qo) • 

j::O J 0 
(12.2.24) 

Throughout this chapter, we assume that the inner convolution al code 

is the rate t code taken from Robinson and Bernstein [38J with the code­

generating polynomial 



This code has the parameters nA = 36, nE = 22, J = 6, t = 3, u = 17, and 

wnA = 106. With s = 28, we ob tain from (12.2.19), 
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B = (28)(36) = 1008. c (12.2.26) 

The parameter Wmust be chosen so that the probability that a 

channel burst is propagated beyond the burst correcting capability of the outer 

code is small compared to P2' the probability of a decoding error in the 

channel guard space. Consider W = 792. At least eight random errors are 

necessary to result in no error-free run of length 106 in a sequence of 792 bits, 

whereas at least four random errors in the effective length nE = 22 are needed 

to cause a decoding error in the channel guard space. When Po is small, the 

probability of multiple random errors is relatively insensitive ta the length 

of the noise sequence, so the probability of eight errors in 792 digits is 

smaller than the probability of four errors in 22 digits. A choice of W = 792 

is thus sufficient to make error propagation a negligible factor in the compound­

concatenated s.ystem. Therefore, from (12.2.20), 

Bm = t(1008 + 792) = 900. 

Consider a compound-concatenated system whose outer code belongs to 

the same class as the interleaved block code of Section 12.2.a •• With inter-

leaving degree r = 300, we obtain 

Bm = (300)(3) = 900, 

Gm = (300)(15 - 3) = 3600, 

h = 3600/900 = 4, 

Gc = 792 + (4)(1008 + 792) = 7992, 

N = 900 + 3600 = 4500, 

N/G = 4500/3600 = 1.25000. m (12.2.28) 
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Because error propagation is a neg1igib1e factor, we have from 

(10.6.1) and (10.7.9) that the performance of the compound-concatenated s,ystem 

is approximate1y 

peE 1 burst) ~ 1 - (1 - P2)g, 

g = I~(B~E + w~ = ~(4)(10~~ + 792~ = 328, (12.2.29) 

For every Po' P2 is found by substi tuting the parameters nE = 22 and t = 3 of 

the inner convo1utiona1 code into (12.2.23). Then, with g = 328, we obtain the 

approximate system performance peE 1 burst) shown in curve IV of Fig. 12.2.1. 

Since g is proportiona1 to B + W = 2B , peE 1 burst) approaches 1 wi th increasing c m 

Bm and approaches P2 with decreasing Bm' 

12.2.d. Comparison 

We showed in the preceding sub-sections how code performance 

peE 1 burst) is bounded by variations in the burst correcting capabi1ity B of 
m 

the burst correcting code. In a11 cases, peE 1 burst) approaches 1 as B approa­
m 

ches infinity, independent of the channel error rate p. This is a very reason­o 

able conclusion and c1early ho1ds for a11 burst correcting codes. In a11 cases 

a1so, peE 1 burst) is of the genera1 form 

peE 1 burst) ~ 1 - (1 _ p)x, (12.2.30) 

where p is the random error rate in the decoder guard space of the burst 

correcting code and x is linear1y re1ated to Bm' Thus, as Bm approaches zero, 

x approaches zero, and peE 1 burst) approaches p as a lower 1imi t. This too is 

a very reasonab1e conclusion, since with B = 0 and B proportiona1 to B , the 
m m c 

channel does not produce bursts, there is no burst correcting code, and errors 

occur at the "natura1" random error rate p. This relation ho1ds for a11 codes 

,-, 
j 
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which obey (12.2.30). 

Fig. 12.2.1 shows clear~ the potential improve~ent available by 

concatenating an interleaved block code with a random error correcting code. 

Since both inner codes have rate t, we are in effect halving the S,ystem rate 

in exchange for reduced storage requirement and an improvement in performance 

-4 of roug~ nine orders of magnitude at p = 10 • o 

12.3. Diffuse Codes 

The diffuse codes original~ described in Chapter 7 are rate t feed-

back decodable convolutional codes which treat bursts of length B or less as if 
m 

they contain no more than t errors among the nE checked bits. From (7.2.1), 

(7.2.2), and (7.2.3), 

(12.3.1) 

(12.3.2) 

2 
nE ~ 2t + t + 1. (12.3.3) 

From (7.2.4), (7.2.6), and (7.2.10), the constraint length nA' the storage 

requirement N, and the guard space requirement Gm are related by 

where N is the shift register length in the decoder, given by (7.2.8), s 

N > 3B + 1. s-

(12.3.4) 

(12.3.5) 

Besides storage requirement, the decoder complexity is also measured by the 

number of tapped shift registerstages, NT' and the number of mod-2 adders with 

two inputs, NA' From (7.4.3) and (7.4.4), 

(12.3.6) 

(12.3.7) 
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The performance of diffuse codes in correcting bursts is given by (7.6.2), 

G 
P(E 1 burst) ~ 1 - (1 _ p ) m 

o (12.3.8) 

12.3. a. Numerical Example 

Consider the diffuse code which was derived in Section 7.3 •• This 

code has the parameters J = 4, t = 2, nE = 11, and Ns = 3B + 2. The effective 

length is optimal and the shift register length is as,y.mptotically optimal. With 

B = 500, we obtain 

Bm = Bc = (2)(500) = 1000, 

N = nA = (6)(500) + 4 = 3004, 

G = G = 3004 - 2 = 3002, m c 

N/Gm = 3004/3002 = 1.00067, 

NT = (4)(2) + 1 = 9, 

NA = (2)(2) + 2 = 6. (12.3.9) 

-8 -2 For p between 10 and 10 ,we obtain the approximate code performance o 

P(E 1 burst) by substituting G = 3002 into (12.3.8). The result 1s shown in 
m 

curve l of Fig. 12.3.1. The lower bound on code performance when B - 0 is 
m 

shown in curve II. 

12.3.b. Compound-Concatenated System With Inner Block Code 

Consider a compound-concatenated system whose outer code belongs to 

the same class as the diffuse code of Section 12.3.a. and whose inner code is 

the extended Golay code of Section 12.2.b •• With B = 252, we ob tain 

B = (2)(252) = (42)(12) = 504, m 

N = (6)(252) + 4 = 1516, 

. ../ 
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G = 1516 - 2 = 1514, m 

h = 1514/504 = 3.00397, 

fhfl = 1(3.00397)(42)1 = 127, 

Ge = (127)(24) = 3048, 

N/Gm = 1516/1514 = 1.00132. 
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(12.3.10) 

Analogous to (12.2.17), if robustness and error propagation are 

approximately equal and opposite effects in the feedback decoder, S,Ystem perfor-

mance is given by 

fhil peE 1 burst) ~ 1 - (1 - Pl) • (12.3.11) 

Pl is again found from (12.2.13), and wi th fh:fl = 127, peE / burst) is shown in 

eurve III of Fig. 12.3.1. 

12.3.e. Compound-Coneatenated System With Inner Convolutional Code 

Consider a compound-eoneatenated s'ystem whose outer code belongs te 

the same class as the diffuse code of ~eetion 12.3.a. and whose inner code is 

the convolutional code of Section 12.2.e.. With B = 450, we obtain 

B = (2)(450) = t(1008 + 792) = 900, m . 

N = (6)(450) + 4 = 2704, 

G = 2704 - 2 = 2702, m 

h = 2702/900 = 3.00222, 

_ f(3.00222Hl008 + 79251 
g - 22 -/ = 246, 

Ge = 792 + (3.00222)(1008 + 792) = 6196, 

N/G = 2704/2702 = 1.00074. m 
(12.3.12) 

Analogous te (12.2.29), the performance of the eompound-coneatenated 

s'ystem is approximately 

. .J 



(12.3.13) 

P2 is found from (12.2.23), and with g = 246, peE 1 burst) is shown in curve IV 

of Fig. 12.3.1. 

12.3.d. Comparison 

The improvement in performance available with a compound-concatenated 

s.ystem is evident from Fig. 12.3.1. Another obvious point is the great similarity 

between this figure and Fig. 12.2.1, the equivalent for an interleaved block 

code. This was to be expected since both codes are non-adaptive and meet the 

Reiger or Gallager bounds with (near) equality. It should be noted, however, 

that the interleaved block code has rate 0.6, while the diffuse code has rate 

0.5. Thus, the interleaved block code achieves nearly the same performance 

with a 20 percent increase in efficiency, while in return, the diffuse code is 

much less expensive to implement. 

12.4. Gallager Codes 

Gallager codes, originally described in Chapter 8, are an adaptive 

burst correcting technique. Their random mode is obtained from a rate t feed-

back decodable convolutional code whose code-generating polynomial G2(D) has 

maximum degree u with J nonzero coefficients. The convolutional code has con-

* straint length nA' effective length nE' and error correcting capability t given 

by (8.2.2), (8.2.3)~ and (8.2.4), 

* * nA = 2(u + 1) = 2Ns ' (12.4.1) 

From (8.2.1), the Gallager code has burst correcting capability B 
m 
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such that 

(12.4.4) 

The shift register length Ns is given by (8.2.5), 

* Ns = B + Ns = B + u + 1, (12.4.5) 

and the constraint length nA' the storage requirement N, and the guard space 

requirement are related by (8.2.6), (8.3.7), (8.3.8), and (8.4.1), 

N = nA = B + 2(u + 1) = G - 2(y - 1), m m (12.4.6) 

Gm = Gc = Bm + 2(u + y) , B - Y ~ b S B, 

Gdb = Gcb = 2(b + u + 2y) , b < B - y, (12.4.7) 

where y is the number of consecutive zero-valued syndrome bits required to 

initiate a transition from the decoder burst mode to the decoder random mode, 

and b is the number of information bits contained in the burst. The decoder 

compleXity is also defined by (8.4.3) and (8.4.4), 

NT.è! 2J + 2, (12.4.8) 

(12.4.9) 

In the channel random mode, code performance is given by (8.5.8), 

(8.5.9), (8.5.10), (8.5.11), and (8.5.12), 

peE 1 random) = peE 1 no A)[l - P(A)] + peE 1 A) P(A), 

J-t nE' nE-j 
P(A) ~ I: (.) p J (1 - p ) , 

j=t J 0 0 

Gdb 
P( ElA) ~ 1 - (1 - po) , 

(12.4.10) 

(12.4.11) 

(12.4.12) 

(12.4.13) 

In the channel burst mode, performance is given by (8.5.4 ), (8.5.5), and 

(8.5.7), 



peE 1 burst) = peE 1 no F)[l - P(F)J + P(F), 

~t n nE-j 
P(F) ~ 1 - L (E) q j (1 - q) , 

j 0 0 j::O 

Gdb 
p( E 1 no F) ~ 1 - (1 - po) • 

12.4.a. Numerical Example 

(12.4.14 ) 

(12.4.16) 

Consider the Gallager code whose random mode is obtained from the 

self-orthogonal convolutional code in Robinson and Bernstein [38J with the 

code-generating polynomial 

2 
G2(D) = 1 + D 

* 

D7 D15 D21 D24 D25 + + + + + , (12.4.17) 

and with the parameters nA = 52, nE = 29, J = 7, and u = 25. With B = 500 and 

y = 20, we obtain 

Bm = Be = (2)(500) = 1000, 

Gm = GJ = 1000 + (2)(25 + 20) = 1090 , 480 ~ b ~ 500, 

Gdb = Gcb = 2b + (2)(25 + 40) = 2b + 130 , b < 480, 

N = nA = 1000 + (2)(25 + 1) = 1052, 

N/G = 1052/1090 = 0.96514, m 

NT = (2)(7) + 2 = 16, 

NA = 7 + 2 = 9. (12.4.18) 

For this code, J = 7 and nE = 29 are constant parameters, while 

random error correcting capability May span the range t = 1, 2, 3 and decoder 

guard space requirement is bounded by Gdb = 130, 1090. For the range of channel 

-8 -2 random error rate p between 10 and 10 ,we obtain the random mode performance o 

curves peE 1 random) for this code, Fig. 12.4.1, by substituting the various 

parameters into (12.4.10), (12.4.11), (12.4.12), and (12.4.13). These curves 
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are actually pairs of bounds for different values of t. The bounds are given 

because any particular false alarm can require any guard space between 130 and 

1090. 

For the range of channel burst error rate q between 0.01 and 0.50, o 

we ob tain the probability of failure P(F) of this code, Fig. 12.4.2, qy substitu-

ting the code parameters inte (12.4.15). This figure shows clearly that by 

decreasing the error correcting capability t, we increase the detecting capa-

bility of the code, thereby improving P(F). Note that for this particular code, 

P(F), which lower-bounds peE 1 burst), becomes prohibitively large for bursts 

wi th error den si ties in excess of 5 percent. This situation can be improved 

by choosing a convolutional code for which J is greater. However, increasing 

J leads te increasing complexity N, NT' and NA' as weIl as increasing maximum 

guard space G and increasing effective length nE' For large values of q , the m 0 

nE-j 
effect of the factor (1 - qo) in (12.4.15) May be such that increasing nE 

by increasing J will result in a deterioration of performance. Careful consider-

ation must be given te all these trade-offs when selecting a code for a particu-

lar chanr.el. 

By substituting the code parameters into (12.4.16), we obtain the 

limits on peE 1 no F), the probability of a decoding error given that the burst 

is detected, shown in curves l and II of Fig. 12.4.3. Combining the results of 

Figs. 12.4.2 and 12.4.3 as in (12.4.14), we obtain the perfonnance peE 1 burst) 

of the Gallager code as shown in curves l and II of Figs. 12.4.4, 12.4.5, and 

12.4.6. The fact that peE 1 burst) is lowar-bounded by P(F) is evident in these 

curves, and becomes increasingly evident for larger values of q , when P(F) o 

itself becomes large. 

Two particularly interesting points are brought out by Figs. 12.4.4, 

12.4.5, and 12.4.6. First, the performance of the adaptive Gallager code is 

'-
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Figure 12.4.3: Performance of Gallager Code Given a Detected Burst. 
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extremely sensitive to the error rate q in the channel burst mode. This parti­o 

cular code is essentially useless for q > 0.05. Second, for mid-range values o 

of p , around 10-4 , before the effect of P(F) becomes important, the performance 
o 

is nearly independent of the choice of error correcting capability t of the 

convolutional code. Thus, by choosing t large, we can realize an improvement 

of six or more orders of magnitude in P(E 1 random), Fig. 12.4.1, without surfer-

ing any important penalty in P(E 1 burst). 

12.4.b. Compound-Concatenated System With Inner Block Code 

Consider a compound-concatenated system whose outer code belongs to 

the sarne class as the Gallager code of Section 12.4.a. and whose inner code is 

the extended Golay code of Section 12.2.b.. With B = 252 and y = 20, we ob tain 

B = (2)(252) = (42)(12) = 504, m 

Gm = 504 + (2)(25 + 20) = 594 , 232 ~ b S 252, 

Gdb = 2b + (2)(25 + 20) = 2b + 130 , b < 232, 

N = 504 + (2)(25 + 1) = 556, 

h = 594/504 = 1.17857, 

N/Gm = 556/594 = 0.929:23. 

From (12.2.12), we know that for any decoder guard space Gdb, the corresponding 

channel guard space Gcb is 

n 24 
Gcb ~ k Gdb = 12 Gdb = 2Gdb 

such that Gcb = rhi] n = 24,hil , ,Ml an integer. (12.4.20) 

For the range of Gdb in (12.4.19), we have 

Gcb = 264, 288, ••• , 1200, 

'-
j 



ihfl = 11, 12, ••• , 50, 

(12.4.21) 

From (10.6.1), (12.4.15), and (10.6.5), the performance of the 

compound-concatenated s.ystem in correcting bursts is given by 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F), (12.4.22) 

J-t nE· nE-j 
P(F)~l- L: (.)qlJ (l- ql) , 

j:O J 
(12.4.23) 

peE 1 no F) ~ 1 - (1 - Pl )rhfl. (12.4.24) 

For every Po and qo' the corresponding values of Pl and ql are found by substi­

tuting the parameters n = 24 and t = 3 of the inner block code into (12.2.13) 

and (12.2.14). We ob tain the probability of failure P(F) of the compound-

concatenated s.ystem by substituting the parameters of the Gallager code, J = 7, 

nE = 29, and t = 1, into (12.4.23). The result is shown in curve l of Fig. 

12.4.7. We choose t = 1 because it is known from Fig. 12.4.2 to yield the best 

curve for P(F). 

By substituting the extreme values rhfl = 11, 50 into (12.4.24), we 

ob tain the limi ts of p( E 1 no F), the probabili ty of a decoding error gi ven a 

detected burst, shown in curves III and IV of Fig. 12.4.3. Combining P(F) and 

peE 1 no F) as in (12.4.22), We ob tain the performance peE 1 burst) of the com-

pound-concatenated system as shown in curves III and IV of Figs. 12.4.4, 12.4.5, 

and 12.4.6. 

12.4.c. Compound-Concatenated ~stem With Inner Convolutional Code 

Consider a compound-concatenated s.ystem whose outer code-belongs to 

the same class as the Gallager code of Section 12.4.a. and whose inner code is 

the convolution al code of Section 12.2.c •• With B = 450, y = 20, and W = 792, 

we obtain 



155. 

1.0 

0.0 0.1 0.2 0.3 0.4 0.5 

:( : Wi. th inner block code. 

II : Wi. th inner convolutional code. 

Figure 12.4.7: Probability of Failure of Compound-Concatenated System 

With Outer Gallager Code. 

.,/ 



B = (2)(450) = t(1008 + 792) = 900, m 

G = 900 + (2)(25 + 20) = 990 , 430 ~ b ~ 450, m 

Gdb = 2b + (2)(25 + 40) = 2b + 130 , b < 430, 

N = 900 + (2)(25 + 1) = 952, 

h = 990/900 = 1.10000, 

N/G = 952/990 = 0.96162. m 

From (12.2.21) and (12.2.22), for any decoder guard space Gdb, the corresponding 

channel guard space Gcb is 

Also, from (12.2.22) and (12.2.29), 

g = rh(B~E'" w~ = i-GC:E-1. 
Thus, for the range of Gdb in (12.4.25), 

Gcb = 1052, 1054, ••• , 2772, 

max 
G = G b = 2772, c c 

g = 10, 11, ••• , 90, 

max _ f(1.1)(1008 + 79251 
g - 1· 22 -1 = 90. 

(12.4.26) 

(12.4.27) 

(12.4.28) 

From (10.6.1), (12.4.15), and (10.7.9), the performance of the 

compound-concatenated ~stem in correcting bursts is given by 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F), (12.4.29) 

(12.4.30) 

(12.4.31) 

For every Po and qo' the corresponding values of P2 and q2 are found by substi-
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tuting the parameters nE = 22 and t = 3 of the inner convolutional code into 

(12.2.23) and (12.2.24). We obtain the probability of failure P(F) of the 

compound-concatenated s,ystem by substituting the parameters of the Gallager code, 

J = 7, nE = 29, and t = 1, into (12.4.30). The result is shown in curve II of 

Fig. 12.4.7. 

By substituting the extreme values g = 10, 90 into (12.4.31), we 

obtain the limits of P(E 1 no F) as shown in curves V and VI of Fig. 12.4.3. 

Combining P(F) and P(E 1 no F) as in (12.4.29), we obtain the performance 

P(E 1 burst) of the compound-concatenated s,ystem as shown in curves V and VI of 

Figs. 12.4.4, 12.4.5, 12.4.6. 

12.4.d. Comparison 

There are Many obvious differences between Gallager codes, which are 

adaptive, and interleaved block codes and diffuse codes, which are non-adaptive. 

First, the performance of Gallager codes is described by bounds corresponding 

ta the shortest and longest possible guard space requirements. Second, the 

performance of Gallager codes is highly dependent upon the probabili ty of 

failure, P(F), which in turn is a function of the channel burst mode error rate 

qo' Non-adaptive codes, on the other hand, perform equally well for all burst 

densities. Third, the optimum choice of random error correcting capability t 

for the adaptive code is found by correlating the curves for P(E 1 burst) and 

P(E 1 random), and this optimum choice can be any allowable value of t. 

By using a Gallager code as the outer code of a compound-concatenated 

system, a great improvement in performance can be realized. However, this is 

only true when P(F) is small. As q increases, P(F) increases until a compound­o 

concatenated s,ystem actually has inferior performance. For the choice of codes 

in this section, this transition occurs for q > 0.08, and the approaching a 

transition is apparent in Figs. 12.4.4, 12.4.5, and 12.4.6. The reason for this 

, 
J 

1 
AC 
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is that, from Figs. 12.4.2 and 12.4.7, with q > 0.08, P(F) is larger for a o 

compound-concatenated s.ystem than for a Gallager code alone. 

12.5. Burs"t-Trapping Codes 

Burst-trapping codes, originally described in Chapter 9, are another 

adaptive burst correcting technique. They are derived from a systematic (n,k) 

parity-check code with rate R as in (9.2.1), o 

From (9.2.2), these codes have burst correcting capability Bm such that 

(12.5.1) 

(12.5.2) 

For bursts spanning y blocks, y = 1, 2, ••• , v, their guard space requirement 

Gdy is adaptive and is given by (9.3.1), 

G dy = (x - l)yn. 

From (9.3.2), the corresponding adaptive channel guard space is 

G -G cy - dy' 

(12.5.3) 

(12.5.4) 

where G s: G and Gd ~ G • cy c y m The complexity of the decoder of a burst-trapping 

code is defined by (9.4.1), (9.4.5), and (9.4.6), 

N - (x - 1) v (k + 1) + n, (12.5.5) 

(12.5.6) 

(12.5.7) 

In the channel random mode, code performance is given by (9.5. 4), 

(9.5.5), (9.5.6), and (9.5.7), 

peE 1 random) = peE 1 no A)[l - P(A)] + peE 1 A) P(A), (12.5.8) 

d-t-l 0 0 

P(A) ~ r (~) p J (1 _ p )n- J , 
0tl J 0 0 
J= + 

'-
.. i 

...,' 
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(12.5.10) 

(12.5.11) 

In the channel burst mode, performance is given by (9.5.1), (9.5.2), and 

(9.5.3), 

peE 1 burst) = peE 1 no F)[l - P(F)J + P(F), 

P(F) = Pd PN, 

k t n 
PN 

__ 2 -n ( ) 
L: j' 

j::O 

d-t-l 
L: (~) q j (1 _ q )n- j , 

J 0 0 j::O 

G 
P( E 1 no F) ~ 1 - (1 - po) dy. 

(12.5.12) 

(12.5.13) 

(12.5.14) 

12.5.a. Numerical Example 

Consider the burst-trapping code derived from a systematic (30,15) 

shortened parity-check code [4J with minimum distance d = 7. Since this is a 

rate t code, x = 2. With v = 34, we obtain 

Bm = Bc = (30)(34) = 1020, 

Gdy = Gcy = 301 = 30, 60, ••• , 1020 , Y ~ 34, 

N = (1)(34)(16) + 30 = 574, 

N/G = 574/1020 = 0.56275, m 

(12.5.15) 

For this code, n = 30, k = 15, and d = 7 are constant parameters, 

while random error correcting capability May span the range t = 1, 2, 3 and 
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decoder guard space requirement is bounded by Gdy = 30, 1020. By substituting 

these parameters into (12.5.8), (12.5.9), (12.5.10), and (12.5.11), we obtain 

the random mode performance curves peE 1 random) for this code, Fig. 12.5.1. 

Note that the largest choice of t, t = 3, does not permit a false alarm, so the 

burst mode of the decoder cannot be used to correct random error patterns with 

large weight. Thus, the overall performance of the code in correcting random 

errors is actually reduced when it has maximum error correcting capability t. 

Substituting the code parameters into (12.5.13) gives the curves in 

Fig. 12.5.2 for the probability of failure, P(F), and into (12.5.14) gives curves 

l and II in Fig. 12.5.3 for the probability of decoding error given a detected 

burst, peE 1 no F). Combining the re:mlts of Figs. 12.5.2 and 12.5.3 as in 

(12.5.12), we ob tain the performance peE 1 burst) of the burst-trapping code as 

shown in curves l and II of Figs. 12.5.4, 12.5.5, and 12.5.6. 

12.5.b. Compound-Concatenated System With Inner Block Code 

Consider a compound-concatenated system whose outer code belongs to 

the same class as the burst-trapping code of Section 12.5.a. and whose inner 

code is the extended Golay code of Section 12.2.b •• With v = 17, we obtain 

Bm = (30)(17) = 510, 

Gdy = 30y = 30, 60, ••• , 510 , y ~ 17, 

N = (1)(17)(16) + 30 = 302, 

h = 510/510 = 1.00000, 

N/G = 302/510 = 0.59216. m 
(12.5.16) 

Analogous to (12.4.20), the adaptive channel guard space requirement is 

G ~ 2Gd such that cy y 

G = fhil n = 24fhfl , fhfl an integer. cy (12.5.17) 
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For the range of Gdy in (12.5.16), we have 

Gcy = 72, 96, ••• , 1008, 

fhil = 3, 4, ••• , 42. 
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(12.5.18) 

From (10.6.1), (12.5.13), and (10.6.5), the performance of the 

compound-concatenated s,rstem in correcting bursts is given by 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F), 

P(F) = Pd PN, 

d-t.-1 
L (j) q1 j (1 - Q1)n- j

, 
j:O 

P(E 1 no F) ~ °1 - (1 - Pl)rhfl • 

(12.5.20) 

(12.5.21) 

For every Po and qo' the corresponding values of Pl and q1 are found by substi­

tuting the parameters n = 24 and t = 3 of the inner block code into (12.2.13) 

and (12.2.14). The probability of failure P(F) of the compound-concatenated 

s,rstem is found by substi tuting the parameters of the burst.-trapping code, 

n = 30, k = 15, d = 7, and t = 1, into (12.5.20) and (12.5.13). The result is 
~ .... 

shown in curve l of Fig. 12.5.7. We choose t = 1 because it is known from Fig. 

12.5.2 to yield the best curve for P(F). 

By ~bstituting the extreme values fhfl 3,42 into (12.5.21), we 

obtain the limits of P(E 1 no F), the probability of a decoding error given a 

detected burst, shown in curves III and IV of Fig. 12.5.3. Combining P(F) and 

peE 1 no F) as in (12.5.19), we obtain the performance peE , burst) of the com-

pound-concatenated sYstem ~s shown in curves III and IV of Figs. 12.5.4, 12.5.5, 

and 12.5.6. 

12.5.c. Compound-Concatenated System With Inner Convolutional Code 

Consider a compound-concatenated s.ystem whose outer code belongs to 
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the same class as the burst-trapping code of Section 12.5.a. and whose inner 

code is the convolutional code of Section 12.2.c •• With v = JO and W = 792, 

we obtain 

Bm = (JO)(JO) = t(1008 + 792) = 900, 

Gqy = JQy = JO, 60, ••• , 900 , y ~ 30, 

N = (1)(JO)(16) + JO = 510, 

h = 900/900 = 1.00000, 

N/G = 510/900 = 0.56667. m (12.5.22) 

Analogous te (12.4.26), for any decoder guard space Gdy' the corresponding 

channel guard space G is cy 

G = 2G"n + W. cy '-VI 
(12.5.2J) 

Also, from (12.4.27), 

g = I~(B~E+ w~ rG 
- ~ cy 

= nE • 
(12.5.24) 

Thus, for the range of Gdy in (12.5.22), 

Goy = 852, 912, ••• , 2592, 

g = J, 4, ••• , 82, 

max_ nl)(1008 + 792)1 8 
g - 1- 22 -1 = 2. (12.5.25) 

From (10.6.1), (12.5.13), and (10.7.9), the performance of the 

compound-concatenated system in correcting bursts is given by 

peE 1 burst) = peE 1 no F)[l - P(F)] of- P(F), 

P(F) = Pd PN, 

d-t-1 (n) j ( )n-j 
Pd = 1 - ~ j q2 1 - q2 ' 

j=O 

(12.5.26) 

(12.5.27) 
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(12.5.28) 

For ever,y Po and qo' the corresponding values of P2 and q2 are found by substi­

tuting the parameters nE = 22 and t = 3 of the inner convolutional code into 

(12.2.23) and (12.2.24). We ob tain the probability of failure P(F) of the com-

pound-concatenated ~stem by substituting the parameters of the burst-trapping 

code, n = 30, k = 15, d = 7, and t = 1, into (12.5.27) and (12.5.13). The 

result is shown in curve II of Fig. 12.5.7. 

By substituting the extreme values g = 3, 82 into (12.5.28), we 

obtain the limits of peE 1 no F) as shown in curves V and VI of Fig. 12.5.3. 

Combining P(F) and peE 1 no F) as in (12.5.26), we obtain the performance 

peE 1 burst) ~~f the compound-concatenated system as shown in curves V and VI of 

Figs. 12.5.4, 12.5.5, and 12.5.6. 

12.5.d. Comparison 

Adaptive burst-trapping codes are seen to be a block-code-analog of 

adaptive Gallager codes. They surfer the same disadvantage of high dependency 

on the channel burst mode error rate and have the same adv~tages of reduced 

guard space requirement and reduced complexi ty • Since burst-trapping codes 

have a lower probability of failure than equivalent Gallager codes, the,y tend 

to have superior performance. In addition, they have a much lower storage 

requirement than any other burst correcting code described in this thesis. 

12.6. GSA Codes 

GSA codes, originally described in Chapter 11, are an adaptive burst 

correcting technique with the structure of a compound-concatenated system. 

The random mode of the system is provided by an inner (n.,k.) parity-check code 
~ ~ 

wi th minimum distance d and error correcting capabili ty t. The burst modes of 



the system are obtained from a modifi·ed burst-trapping code deri ved from a 

trivial (n ,k ) s.ystematic parity-chbck code for which the parity bits are o 0 

always zero. From (11.2.2), 

k 
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o x - 1 -= n x (12.6.1) 
o 

For some integer f, (11.2.9) gives the channel burst length B as c 

From (11.4.1), the outer code has burst correcting capability B such that m 

B = fk. = rbn , (12.6.3) m 1. 0 

where r is known as the interleaving degree and b is the number of algorithms 

by which bursts can be decoded, b ~ 4. The adaptive guard space requirement 

Goy is, from (11.4.2), 

f 
Goy = (x - l)ryno = (x - l)y b ki ' Y = 1, 2, ••• , b, (12.6.4) 

and from (11.2.13), the corresponding adaptive channel guard space G. i5 l.y 

(12.6.5) 

where G ~ Gand G. ~ Glc··' oy m l.y The complexity of the outer decoder is defined by 

(11.6.1), (11.6.9), and (11.6.12), 

N = r(k + l)(bx - 1) + rbk + no + 1, o 0 
(12.6.6) 

b 
NT = [lE - b + 1 + L (x - l)rjJ(n - k ) + rbko' 

j=l 0 0 
(12.6.7) 

(12.6.8) 

where lE i5 called the effective length of the GSA code. 

In the channel random mode, the performance of the code i5 given by 

(11.7.4), (11.7.6), (11.7.7), (11.7.8), and (11.7.9), 

.. i 



( 

peE 1 random) = peE 1 no A)[l - P(A)] + peE 1 A) P(A), 

P(A) '" 1 _ [1 _ d-~-l (~i) j (1 _ )ni-jJf/rb 
'" • L. J Po Po ' 

J=t+l 

peE 1 A) ~ 1 - (1 _ P
b

)(x-l)Yf/b, 

t n.. n.-j 
Pb = 1 - E (.1) P J (1 _ p ) 1 , 

j:O J 0 0 

d-t-l n. n -j / 
peE 1 no A) = 1 - [ E ( ?) P j (1 - po) i Jf rb. 

• n J 0 
J::v 
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(12.6.9) 

(12.6.10) 

(12.6.11) 

(12.6.12) 

(12.6.13) 

In the channel burst mode, performance is given by (11.7.1), (11.7.2), (11.7.3), 

(11.7.4), and (11.7.5), 

peE 1 burst) = peE 1 no F)[l - P(F)] + P(F), 

Pf = Pd PN, 

k.-n. t n. 
PN=211 E (j1), 

j::O 

d-t-l n. j n.-j 
Pd = 1 - I: ( j 

1
) qo (1 ~ qo) 1 , 

j::O 

P(F) ~ (Pfl/rb, 

peE 1 no F) ~ 1 - (1 _ P
b

)(x-l)yf/b. 

12.6.a. Numerical Example 

(12.6.14) 

(12.6.16) 

(12.6.17) 

Consider a GSA code whose inner code is the same (30,15) shortened 

parity-check code used in Section 12.5.a.. This code has the parameters 

n. = 30, k. = 15, and d = 7. With f = 36, we obtain 
1 1 

Bc = (36)(30) = 1080, 

Bm = (36)(15) = 540. (12.6.18) 



.-. __ ._.--_ .. _----~ 

173. 

The outer code has the parameters x = 3, n = 45, k = 30, b = 4, and r = 3. o 0 

From Table 11.3.1 an optimal code w:ith lE = 5 is given by 

f(I) = Ir-3 + I~-6 + Ir-12 + I~-18 + I~-24. 

This gives f/b = 9 and f/rb = 3, and we obtain 

Bm = (3)(4)(45) = 540, 

Go.y = (2)(3)(45)Y = 27Qy = 270, 540, 810, 1080, 

N = (3)(31)(11) + (3)(4)(30) + 45 + 1 = 1429, 

N/Gm = 1429/1080 = 1.32315, 

4 
NT = [5 - 4 + 1 + (2)(3) I: jJ(45 - 30) + (3)(4)(30) = 990, 

j=1 

NA ~ (5 - 1)(45 - 30) = 60. 

(12.6.19) 

(12.6.20) 

The random error correcting capability of the inner code m~ span the 

range t = 1, 2, 3 and the guard space requirement of the outer code is 

G = 27Qy, Y = 1, 2, 3, 4. oy By sUbstituting these and the other parameters of 

the GSA code into (12 .. 6.9), (12.6.10), (12.6.11), (12.6.12), and (12.6.13), we 

obtain the random mode performance curves P(E 1 random) for this code, Fig. 

12.6.1. Again, because a choice of t = 3 does not permit a false alarm, the 

decoder burst mode cannot be used to correct random error patterns with large 

weight, resulting in reduced overall performance. This effect is not as pro-

nounced as w:ith a burs~trapping code, however, because the GSA code allows the 

false alarm to occur in any of f/rb = 3 blocks at the'inner decoder. 

Substituting the code parameters into (12.6.15) and (12.6.16) gives 

the curves in Fig. 12.6.2 for the probability of failure P(F). Because a failure 

must oceur simultaneously in f/rb blocks at the inner decoder, P(F) is much 

less for a GSA code than for other adaptive codes or compow1d-concatenated 

systems. 
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(12.6.12) and (12.6.17) yield the curves for peE 1 no F), the proba-

bility of a decoding error given a detected burst, in Fig. 12.6.3. Combining 

P(F) and peE 1 no F) as in (12.6.14), we ob tain the code performance peE 1 burst) 

in Figs. 12.6.4, 12.6.5, and 12.6.6. 

12.6.b. Comparison 

With a choice of error correcting capability t = 1 at the inner 

decoder, this GSA code is not as effective as the other compound-concatenated 

systems when the channel burst mode error rate q is low. However, since P(F) o 

for the GSA code is comparatively low, its performance does not deteriorate 

nearly as badly as that of the other adaptive compound-concatenated systems as 

q increases. It should also be noted that this GSA code has higher rate than 
o 

the other systems; i.e., 1/3 compared to 1/4. The main disadvantage of GSA 

codes is their rela"tively large complexity, particularly in terms of the number 

of tapped shift register stages. 
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13. CONCLUSION 

The purpose of this thesis was to describe various error control 

techniques for the compound channel, particularly the two new techniques called 

compound-concatenated s'ystems and GSA codes. As a basis for comparison between 

these codes, we used the criteria of decoder complexity and probability of de-

coding error, important measures of s'ystem cost and reliability. To simplify 

the comparison, we attempted to unify the descriptions of the principles of 

operation of interleaved block codes, diffuse codes, Gallager codes, and burst-

trapping codes, as well as of the two new techniques, and te obtain relatively 

simple expressions for their compleXity and performance in a standardized format. 

In the last chapter, a summary and numerical evaluation of these various codes 

was presented. 

Burst correcting codes, though not presently enjoying widespread 

application due te the greater cost effectiveness of retransmission requests 

in low speed situations, will likely appear ever more attractive to s'ystem 

designers as hardware costs decrease and transmission rate increases. The 

MOst important parame ter in the selection of a burst correcting code is its 

compatibility with the characteristics of the particular transmission channel. 

For example, if bursts on the channel are known to be of high error density, 

then we have seen that an adaptive code is probably unsuitable because of its 

poor performance under such a condition. On the other hand, with low error 

density, adaptive codes give performance comparable te that of non-adaptive 

codes but wi th lower compleXi ty. If a very high degree of reliabili ty is impor-

tant and a reduction in efficiency is an acceptable trade-off, then a compound-

concatenated s'ystem is appropriate, particularly if the outer code is non-

adaptive. If bursts are very common, then a GSA code May be suitable because 

of its adjacent adaptive guard space and relatively high tolerance of variations 

'-
1 

.. 1 
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in burst error density. 

A great Many interesting and important topics in this thesis were 

treated only lightly and Many others were omi tted completely. For example, 

the classes and implementations of block codes has been for two decades and 

is still an area of intensive research. Then there are the related problems 

of timing, control, and s.ynchronization of encoders and decoders; as well as 

channel deSign and signal design. However, one factor that more directly con-

cerns the characteristics of specifie burst correcting codes, but which is 

very difficult to describe accurately, is robustness, the capability of a code 

to correct or to detect an error pattern not guaranteed to be corrected or 

detected by the parameters of the code. In the text of the thesis, we gener-

ally ignored the specifie effects of robustness, and this is the Most important 

factor affecting the accuracy of the performance curves in Chapter 12. 

Despite their inherent inaccuracies, performance curves like those 

in Chapter 12 are extremely useful tools in determining the sui tabili ty of 

various codes. First, they give rough approximations to the performance 

which can actually be expected on a real channel. Second, since robustness 

is the Most significant factor neglected in obtaining these curves, they are 

generally pessimistic; that is, true performance can be expected te be better 

than shown in the curves. Third, for adaptive codes, the optimum choice of 

error correcting capability in the random mode can be determined by inspection 

if the predominant channel random mode error rate is known. 

In addition to performance, of course, a major engineering consid-

eration is the complexity or cost of implementing these codes. It is their 

generally much lower complexity which is the major factor in directing current 

interest in burst correcting codes towards the adaptive codes, such as Gallager 
,<t",., 

,:.:~:. codes and burst-trapping codes. It is the fact that overall system complexity 
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need not be increased, and May even be reduced, that makes compound-concatenated 

s.ystems appear ta be a very attractive method of improving performance on nois.y 

channels. And it is, unfortunately, complexity which makes GSA codes unattrac­

tive in cost-sensitive applications. 

For over two decades now, the major problem in the field of random 

error correcting codes bas been the development of simple and inexpensive de­

coders. An important breakthrough in this area was the introduction of threshold 

decoding. As research intensified over the past few years in the field of burst 

correcting codes, the cost of decoders again appeared as the primar,y deterrent 

to widespread acceptance. Even though threshold decodable diffuse codes and 

Gallager codes exist, a block coding technique, burst-trapping codes, is less 

complexe Thus, threshold decoding in i tself does not provide as significant 

a solution ta the complexity problem for burst correcting codes as for random 

error correcting codes. The search, then, must continue for ever more inexpen­

sive codes and decoding methods. 
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