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Abstract

Characterizing patterns of development across measures of brain structure is critical to

developing a “normative” characterization to better situate neuroanatomical variation in

behavioral and, potentially, clinical contexts. Using data from the long-running National Institute

of Mental Health (NIMH) longitudinal developmental cohort (ages 5-25), we sought to examine

patterns across cortical morphometric features; namely: cortical thickness (CT), surface area

(SA), local gyrification index (GI), and mean curvature (MC). We integrated cross-sectional and

longitudinal morphometric metrics using nonnegative matrix factorization (NMF), a matrix

decomposition technique that estimates a “parts-based” representation using orthogonal

components. The cross-sectional analysis identified six components of variation across cortical

morphometry features describing key neuroanatomical patterns such as higher CT and lower GI

covariation in frontotemporal areas and lower CT and higher SA covariation in unimodal areas.

The longitudinal analysis examined covariation in rates of change, and NMF identified another

six components describing age-related coordinated change across cortical morphometry

measures from childhood to early adulthood, demonstrating preserved SA in unimodal areas

through brain development. We further examined the putative relationships of these components

with key demographic and cognitive variables. Behavioral partial least squares (bPLS) identified

one significant latent variable (LV; 96% covariance) where the older age, lower Intelligence

Quotient (IQ), and lower socio-economical status (SES) were related to decreased covariance

patterns of GI, CT, and SA throughout the cortex and local increase in MC in associative cortices

sulcal depth. In the longitudinal analysis, bPLS identified three significant LVs (97% covariance

altogether). The first LV was related to the female sex, higher SES, higher IQ, and older ages and

followed a pattern of accelerated maturation of SA and CT covariance across significant portions
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of the cortical sheet. This novel characterization of cortical morphometric features maturation

provides an important understanding of the interdependencies between morphological measures,

their coordinated development, and their relationship to critical factors impacting development.

Résumé

Caractériser les modèles de développement à travers les mesures de la structure cérébrale

est essentiel pour développer une caractérisation «normative» afin de mieux situer la variation

neuroanatomique dans les contextes comportementaux et, potentiellement, cliniques.

À l'aide des données de la cohorte longitudinale de développement longitudinale de l'Institut

national de la santé mentale (NIH) (âgés de 5 à 25 ans), nous avons cherché à examiner les

modèles à travers les caractéristiques morphométriques corticales; à savoir: l’épaisseur corticale

(CT), la surface corticale (SA), l’indice de gyrification local (GI) et la courbure moyenne (MC).

Nous avons intégré des mesures morphométriques transversales et longitudinales à l'aide de la

factorisation matricielle non négative (NMF), une technique de décomposition matricielle qui

estime une représentation «basée sur les parties» à l'aide de composantes orthogonales. L'analyse

transversale a identifié six composantes de variation à travers les caractéristiques de la

morphométrie corticale décrivant des modèles neuroanatomiques clés tels qu'une covariation de

CT plus élevée et une covariation de GI inférieure dans les zones fronto temporales et une

covariation de CT plus faible et une SA plus élevée dans les zones unimodales. L'analyse

longitudinale a examiné la covariation des taux de changement et NMF a identifié six autres

composantes décrivant le changement coordonné lié à l'âge à travers les mesures de

morphométrie corticale de l'enfance au début de l'âge adulte, démontrant une SA préservée dans
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les zones unimodales à travers le développement du cerveau. Nous avons ensuite examiné les

relations putatives de ces composantes avec des variables démographiques et cognitives clés.

L’analyse des moindres carrés partiels comportementaux (bPLS) a identifié une variable latente

significative (LV; 96 % de covariance) où l'âge plus avancé, un quotient intellectuel inférieur

(IQ) et un statut socio-économique inférieur (SES) étaient liés à une diminution des schémas de

covariance de GI, CT et SA dans tout le cortex et augmentation locale de MC dans la profondeur

sulcale des cortex associatifs. Dans l'analyse longitudinale, bPLS a identifié trois LV significatifs

(97 % de covariance totale). La première LV étant liée au sexe féminin, à un SES plus élevé, à un

IQ plus élevé et à un âge plus avancé et suivait un schéma de maturation accélérée de la

covariance SA et CT sur des parties importantes de la feuille corticale. Cette nouvelle

caractérisation de la maturation des caractéristiques morphométriques corticales, fournit une

compréhension importante des interdépendances entre les mesures morphologiques, leur

développement coordonné et leur relation avec les facteurs critiques ayant une incidence sur le

développement.
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Chapter 1. Introduction

Characterizing patterns of neurodevelopment across morphological measures is essential

for understanding the dynamic processes underlying typical brain development. There has been a

significant amount of effort devoted to mapping “normative” neuroanatomical trajectories as a

means of characterizing neurodevelopmental disorders using single neuroanatomical features

[1–16]. However, the anatomy of the cortical sheet is convoluted and complex and can only be

properly defined through the integration of multiple morphometric measures, each having

neuroanatomical and neurodevelopmental correlates. Moreover, each of these cortical properties

undergoes significant remodeling at different developmental epochs: gyrification and curvature

undergo remodeling at the earliest stages of postnatal development [14,17], followed by a

significant expansion in brain volume until about five years old that results in increases in the

surface area [15,18,19], and an apparent cortical thinning from childhood into early adulthood

[18–22]. Accordingly, alterations in each of these features are expected to be imprinted with

different spatio-temporal patterns as well.

Although complementary, each morphometric feature describes a unique facet of the

underlying biology, in addition to being related to differing evolutionary [23], genetic [24–29],

cellular properties [30], developmental trajectories [31–35], and sensitivity to different clinical

conditions [36–38]. Given the dynamic biological relationships between these distinct

morphometric properties, each carrying specific yet complementary neurobiological information,

it is crucial to study their inter-relatedness in the context of typical cortical maturation. In this

regard, multivariate approaches simultaneously assessing several features may provide an insight

towards the morphometric inter-relatedness. Previous studies integrating these measures have
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estimated subject-specific morphological brain networks derived from combining multiple gray

and white matter morphometric/cortical features [39]. Other studies have used partial least

squares correlation of multiple features of morphometry in order to investigate the patterns of

regional correlation between cortical gray matter and white matter properties [40–42]. Recent

studies proposed the Morphometric Similarity Networks (MSNs) [43] to elucidate the

relationship between multiple dimensions of brain architecture using a graph-theoretical

approach. Innovatively, this group demonstrated that network properties were related to

transcriptomic and cell-specific architecture [44,45]. However, this analytical technique provides

limited interpretability with respect to the distinct morphological measures that contribute to

specific connectomic features (although sensitivity and specificity analysis are included in the

original work) [39,44–46]. Therefore, establishing distinct sources of variation across

morphometric patterns is crucial as a means of better understanding genetic, cellular, and

environmental factors in the context of adaptive and maladaptive brain development and

organization.

To address the limitations of previous studies, we propose a novel implementation of a

multivariate variance detection technique, nonnegative matrix factorization [NMF] [47–51].

NMF is conceptually similar to other unsupervised matrix decomposition techniques [52–56],

but with a nonnegativity constraint across all inputs and outputs. This technique has been

proposed in the context of neuroimaging studies [49,50,57–59] and has been used to capture

reproducible spatial patterns of cortical thickness variation in the brain development period [57].

More recently, this method has been further expanded upon by our group [51,60] to enable the

integration of multiple structural metrics in the context of the human hippocampus [51] and

striatum [60] that are related to inter-individual variation in demographic and cognitive features.
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1.1. Research statement

Here, we leveraged Nonnegative matrix factorization to study cortical

neurodevelopmental covariance, cross-sectionally and longitudinally, across multiple cortical

morphological measures of cortical thickness, surface area, local gyrification index, and mean

curvature in the context of developing brain anatomy. We further related these patterns to age

and sex, socioeconomic background, and cognitive ability to better understand inter-individual

differences in cortical patterning and maturation. Finally, we assessed how the identified

morphometric covariance patterns situate along the maturational stages of the principal gradients

of functional connectivity within the different periods of childhood, adolescence, and adulthood.
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Chapter 2. Background

2.1. The basis of cortical neurodevelopment

Brain development is a protracted dynamic process that begins in utero a few weeks after

conception [61,62] and continues through adolescence into adulthood [63] (Fig.2.1). During this

prolonged period, “the brain develops from a tubular structure to a highly complicated yet

organized organ with adult-like architecture” [64]. The foundations of microstructure and

anatomy of the brain are established primarily during the prenatal period and early childhood

[65]; however, the neural networks undergo substantial modifications and refinement over the

course of the lifespan [66,67]. A prerequisite to better characterize normal brain structural

changes through childhood and the maturation in adolescence and early adulthood is to

understand early brain structural development and examine the origins of these developmental

processes. In the following, these fundamental processes will be briefly described.

In the second week of gestation, the developing embryo organizes into a spherical,

three-layered structure, in which an area of thickened cells forms the neural plate (Fig.2.1).

Following that, by folding the neural plate, the neural tube forms (Fig.2.1), which starts to close

from bottom to top. Subsequently, the neural tube becomes a three-vesicle anatomical structure

(the forebrain, midbrain, and hindbrain) [68–71] (Fig.2.2A), in which each part starts to

differentiate into a distinct brain structure. The most anterior vesicle will form two vesicles in

which the most anterior one, Telencephalon (Fig.2.2B), will originate the cerebral hemispheres

[72–74] through “a complex, dynamic, sequential, and yet temporally overlapping series of

cellular events that are genetically determined, epigenetically directed, and environmentally

influenced” [71] (Fig.2.2 ).
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The innermost layer of neural tube cells (neural stem cells) begin proliferation to create

neuroepithelial cells such that the number of initial cells repeatedly multiply at a logarithmic

rate. Even though the apoptotic processes will modulate this accelerated proliferation, the

number of brain cells at birth outnumbers adult neurons. Following the overproduction of

neurons after reaching a sufficient population of neuroepithelial cells, the cells take a radial

morphology along the radial direction [75] transforming into cell types known as radial glial

cells (RGCs). Most RGCs, known as progenitor cells, undergo an asymmetric mitotic division.

They will produce either intermediate neuronal precursors, neurons directly, or glial cells.

Neurons and glial cells will then migrate through the neural tube’s layers in a radial path along

with radial glial cells (known as radial units), which guide the path of neurons to reach their final

destination [71,72,76]. This migration occurs within a radial path in an inside-out manner

(ventricular zone (VZ) → intermediate zone (IZ) → marginal zone (MZ)) such that the first

migrating cells become the deepest layer of the six cortical layers (cortical plate (CP)) [77–79].

On the other hand, interneurons migrate in a tangential manner (i.e., parallel to the cortical

layers). These processes of neuronal migration from their origin to their ultimate destination peak

between 12-20 post-conception weeks and are almost complete before the 29th post-conception

week [71–74,80,81] (Fig.1.3).

After the migration of the neuronal cells to their final destination, about half of the

neurons will undergo apoptosis. Meanwhile, the remaining neurons mature and commence the

development of neuronal processes that facilitate inter-neuronal communication, such as the

outgrowth of dendrites and axons [74,82]. With the acceleration of the simultaneous neuronal

production, migration, and differentiation, the sulcal and gyral pattern of the cortex begins to

form around the third trimester [83,84]. Although not completely understood [85], the formation
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of gyri is thought to result from the differential rates of tangential division and growth in the

progenitor cells [86]. The emergence of gyral patterns allows for substantial cortical surface

expansion within the restricted skull space [87]. Simultaneously, cortical thickening, which had

started at 10 - 15 weeks post-conception [65], increases exponentially [87], partly due to

dendritic arborization and axonal elongation [88,89]. Following the formation of axonal and

dendritic branches, synapses start to form and develop starting from the 18th-week

post-conception prenatally [71,90,91]. This process, referred to as synaptogenesis, reaches its

peak in the first year of life on average and continues well into childhood. Since there is a gap

between the timepoint that each part of the brain reaches its peak synapse production, the regions

accounting for sensorimotor functions mature faster, while the regions accounting for higher

cognitive function mature later. For example, while the production of synapses in the visual

cortical areas reaches the peak about 4th-8th after birth, prefrontal cortical regions show the peak

around 15th months postnatally [92,93].

Followed by the formation and rapid overproduction of synapses, the brain undergoes a

process of synapse elimination through synaptic pruning; this process starts near the time of birth

and continues well into adulthood [92,94]. Similar to the heterochronous temporal pattern of

synaptogenesis, the pruning also shows a regional-specific developmental time frame. The

sensorimotor cortical areas undergo synaptic pruning around the age of 5, and the pruning peaks

in higher cognitive areas through adolescence as a hallmark of cortical reorganization

[92,95–97].

Starting near birth [83], the synapses that have survived the refinements will be

myelinated (by oligodendrocytes) to optimize the network of functionally important white matter

fibers by improving the conduction velocity. This process is also experience- and
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environment-dependent such that the neurons within synapses and circuits that have been

activated the most will be myelinated to form the organized adult-like brain [65]. While the

myelination of most pathways, such as specific sensorimotor areas, completes around early

childhood, this process in prefrontal areas continues well through adolescence into the third

decade of life [94,98–101] (Fig.2.3).

Fig.2.1. From Neural plate to Neural Tube. An area with thickened cells forms the neural plate in

the embryo, which further undergoes a folding process, creating the neural tube. Schematic from

[102]. (This file is licensed under the Creative Commons Attribution 4.0 International license.)
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Fig.2.2. From the neural tube to cerebral hemispheres. The neural tube becomes a five-vesicle

anatomical structure. Each part will further differentiate into a distinct brain structure; the

anterior vesicle (Telencephalon) will form the forebrain, which further originates the cerebral

hemispheres. Schematic from [91].
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Fig.2.3. Schematic demonstration of cortical layers formation and development, highlighting the

radial and tangential neuronal and glial cell migration.VZ, ventricular zone; CP, Cortical plate;

IZ, intermediate zone; Schematic from [103,104].
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Fig.2.4. Timeline of cerebral maturational processes. The x-axis denotes the time, and the color

intensity in each bar corresponding to developmental processes demonstrates their rate of

change, with the hottest color corresponding to the mean peak of each process. The

spatiotemporal pattern of the progression of the synaptogenesis process has been illustrated in

blue, starting from the sensorimotor cortex and ending with the prefrontal cortex. Schematic

from [64].

2.2. Brain development from childhood to early adulthood

As discussed above, the foundations of brain microstructure, function, and anatomy are

established primarily during prenatal and early childhood [64,65,105]. After birth, as a result of

continual neurogenesis, synaptogenesis, gliogenesis, axonal growth, and myelination, the brain
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undergoes substantial changes: brain size increases most rapidly. It reaches approximately 80%

of its adult brain size by the age of two [2,106], and 90% of its adult volume by the age of five,

which reaches its peak in late childhood [3–7,15,16]. The myelination processes that had started

during the fetal period continued throughout adolescence [3,4,6,15,16], concurrent with the peak

of the synaptic pruning, which is considered the hallmark of brain transformations during

adolescence. Synaptic pruning leads to substantial synaptic density reductions, such that the

number of excitatory synapses reduces two to three times in adults compared to children

[107–109]. These harmonious modifications and refinements lead to a massive cortical structural

remodeling leading to an apparent gray matter volume decrease throughout adolescence that

continues to adulthood [1,2,6,9–13,15,16,110–112] and stabilizes around the third decade of life

[94].

This prolonged period of brain development and remodeling from childhood to adulthood

predisposes the brain to vulnerability. It is likely that subtle alterations in the neurocircuitry

refinements may result in aberrant formations [113]. Several studies have shown that the

dynamic variation in neurobiological, neurochemical, and social maturation processes is

concurrent with the peak vulnerability of several neuropsychiatric disorders [114–117]. More

precisely, more than half (62.5%) of the psychiatric disorders emerge before the age of 25, with a

mean peak age of onset at 14.5-18 [118]. This evidence has even led to the reconceptualization

of many neuropsychiatric disorders resulting from maladaptive brain development [119]. As a

result, there has been a significant amount of effort devoted to mapping the “normative”

development [4,120–122] as a means of characterizing neurodevelopmental and neuropsychiatric

disorders as deviations from this norm [13,114,115,123–126].
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2.3. Cortical cytoarchitecture and morphometric features

Since we cannot directly measure the neural properties of cortex in vivo, structural

magnetic resonance imaging (sMRI) has been a robust, reliable, and reproducible tool that

provides the opportunity to study brain (discussed thoroughly in section 2.7) and its development

through measures each having different neuroanatomical and neurodevelopmental correlates.

According to the radial unit hypothesis [127], the cerebral cortex is organized into columnar

units of neurons [128]. The morphology of the cerebral cortex is commonly described through

measures of cortical thickness and cortical surface area, which topologically includes cortical

gyrification and folding.

Cortical thickness (CT) is thought to reflect the radial (vertical) radial expansion of the

cortex [127] and represents the cellular density within the radial units. Changes in the CT are

thought to reflect the radial neuronal migration, synaptic pruning, axonal remodeling, dendritic

arborization, and glial support and myelination in cortical columns [92,107,127,129–131] in

earlier stages of development and with advancing age, cortical thinning may be more reflecting

neuronal and dendritic shrinkage [92,107,129,130,132].

Cortical surface area (SA) reflects the tangential (horizontal) growth of the cortex

[23,127,133] and is rather linked to the tangential expansion of the cortex. SA is, in part,

determined by the number of cortical columns and is likely indicative of the rate of neural stem

cell proliferation in the periventricular area and migration early in development [30] as well as

synaptogenesis and cortical myelination [19,94,127,133–140].

Cortical local Gyrification Index (GI) represents the folding characteristics of the surface

of the cerebral cortex. Cortical folding is thought to accommodate the increase of neurons and

the number of columnar functional units and enables the expansion of cortical surface area
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within the limited cranium volume [133,141]. Even though cellular mechanisms underlying the

gyrification are not clearly understood yet [142], theories have been proposed based on

topologically specific differential growth [143,144], cranial pressure and constraint [145],

mechanical tension [145,146], stress-dependent folding [147,148], axonal tension [149], and the

spatiotemporal patterns of neuronal birth and migration [142].

Cortical Mean Curvature (MC) is a local folding characteristic of the cortex that is

determined by cortical surface’s mechanical folding, provides spatial information on how the

surface is embedded in the three-dimensional space [150], and is thought to be reflective of white

and gray matter boundary changes [151,152]. Mean curvature follows the pattern of gyri and

sulci [150,153] and represents the local topography of the brain.

Each of these cortical properties undergoes significant remodeling at different

developmental time frames: gyrification and curvature undergoing remodeling at the earliest

stages of postnatal development [14,17], followed by a significant expansion in brain volume

until about five years old [90] that results in increases in the surface area [15,18,19]. The surface

area will then undergo a general decrease during adolescence [15,18,19], concurrent with the

apparent cortical thinning from childhood into early adulthood [18–22]. Accordingly, alterations

in each of these features are expected to be imprinted with different spatio-temporal patterns.

Overall, these properties are related to different cellular and neurobiological

neurodevelopmental properties[30] having differing evolutionary[23] and genetic[25–27,154]

and demonstrate different developmental trajectories[15,20,31–35,155], and are differentially

impacted in different clinical conditions [25,36,154,156,157]. Therefore, investigating these

cortical features and knowledge about their relative contributions to cortical architecture can

provide important, although indirect, insights into understanding the basic processes
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underpinning cortical structure development [19].

2.4. Sex differences in developing brain

To define a normative morphometric mapping of brain development, it is also crucial to

consider sex-specific brain development [15,21,158–160] as a means of improving our

understanding of sex-based prevalence disparities in neurodevelopmental disorders, such as

autism spectrum disorder (M/F:3/1) [161]. For example, males are more prone to developing

autism in their early childhood, which is associated with a cortical volume overgrowth [162,163].

However, by decomposing Cortical Volume (CV) into its subcomponents and tracking their

separate trajectories, studies have suggested that this volume overgrowth could potentially be due

to a surface area overgrowth rather than CT [15]. As previously mentioned, many psychiatric

disorders that emerge in youth, specifically during adolescence, demonstrate notable differences

in their prevalence between sexes [119,164–169]; while females show mood and anxiety

disorders almost twice as males [165,170], attention deficit hyperactivity disorder is twice in

male than females [119,171]. The disparities in the prevalence of such neurodevelopmental and

neuropsychiatric disorders have led to investigating sex differences in brain development to

identify potential sources of sex-specific vulnerability or resilience for certain symptoms [119].

Over the course of the lifespan, brain size is larger in males than females [119].

Specifically, around an overall 9-12% larger brain size has been reported in males [172] across

childhood [119,121,173–175], adolescence [119,121,173–176], and adulthood

[119,174,175,177–179]. At the level of distinct morphometric features, cortical thickness

[180,181], surface area, gyrification, and convex hull area have been reported to have sexually
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dimorphic maturational patterns over the course of development [15,119]. Sex differences across

global and regional variations in CT trajectories [174,180,181] and structural covariance

networks of CT [57] have been reported. In covariance networks, it has been reported that while

males show thicker parietal cortices around childhood, there is no such difference present in

cortices by adulthood [57,119]. In another study, while males at younger age demonstrated

greater CT in the insula, frontal and occipital lobes than females, adolescent females showed a

greater CT in those regions [119,175]. Overall, studies have suggested that while there is

evidence of CT differences across males and females, the direction might depend on age and the

target region [119]. SA is greater in males than females, independent of brain volume differences

[21,119,179]. The gyrification index has also been reported to be greater in males than females

from ages 5 to 25 [182]. In adults, although gyrification has been reported to be greater in men in

most cortical areas, after controlling for Gray Matter Volume (GMV), it has shown inconsistent

findings [183].

Females have been reported to mature earlier than males [184,185]: in childhood, gray

matter volume peaks earlier in females [2,186], and adolescent females undergo cortical

remodeling earlier than males [15], such that females reach peak cortical SA earlier compared to

males [15] while males show a slower overall SA loss (i.e., delayed maturation) compared to

females. Females also demonstrate significantly higher rates of cortical changes [187],

specifically higher rates of cortical thinning in the temporal, temporoparietal, and orbitofrontal

cortices, which is interpreted as “a faster maturation of the social brain areas in females” [159].

While sex differences captured in most cortical regions were mainly reported to be driven by sex

differences in SA and to a lesser extent CT maturation [15], GI has been reported to show only

subtle sex differences with age in localized frontal regions, suggesting that the mechanisms
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underlying of age-related changes are distinct [159]. In another study by Raznahan et al. [188],

sexually dimorphic patterns of CT maturational coupling were reported within a

frontopolar-centered prefrontal system corresponding to cortical areas involved in complex

decision-making [188]. These differing spatiotemporal sex-related patterns are thought to be

genetically determined [187] and could be explained by the different timing and rate of

fundamental biological maturation moderated by hormonal processes and puberty [189,190].

2.5. Socio-environmental factors impacting brain development

Childhood socioeconomic status (SES) is an index estimated using the parental level of

education and income, the two factors that are associated with children and adolescents'

environments and can shape their experiences [191,192]. Parental education could be

representative of the parent-child interactions experiences [193], and parental income may

indirectly represent material resources available to children [193] that jointly may contribute to

the individual's environment.

Brain development occurs within the context of individuals’ pre-and postnatal

environments. In the utero, the cerebral cortex undergoes substantial changes, during which

fundamental aspects of cortical development are established [120,194,195] as described in

section 2.1. After birth, the extensive synaptic pruning [196] in adolescence followed by white

matter fiber myelination [197] are highly experience-dependent [65,198] and are therefore

influenced by each individual's environment as well.

Such inter-individual environmental differences may therefore result in alterations in both

structure and maturation of the cerebral cortex that could be detected through surface-based
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measures driven by MRI [193]. A recent investigation by Rakesh et al. [199] has used SA and

CT as a proxy of maturation and demonstrated that individual youth with neighborhood

disadvantage exhibit an altered pattern of brain maturation, interpreted as a delayed maturation

compared to their advantaged counterparts [199]. These findings were consistent with previous

studies investigating the association of other types of disadvantage with delayed brain

development [192,199–203] and altered CT, SA, and GI development.

Consistently, individuals with higher SES have been shown to demonstrate accelerated

functional brain development, such as increased functional specialization [204] and resting-state

connectivity [205–209] in children and adults. Specifically, SA maturation has shown to be

vulnerable to the prenatal environmental differences [120] affecting maturation into late

adolescence.

2.6. Cognitive ability and variability in substrates of cortical structure

Previous studies have suggested that the neural structure and function relationships are

more complex than can be influenced by single cortical measures [210]; therefore, investigating

the associations between the integration of multiple features of brain structure with the variations

in cognitive ability could be more insightful. Such covariation has been shown in previous

studies [211–214]: CT has been reported to be negatively correlated with intelligence maximally

around the age of 10 when the relationship seems to be reversed later in adult life such that with

the increase of age from childhood through adulthood [212]. As for SA, it has been observed that

intelligence might be associated with the timing and magnitude of the change in SA, rather than

the microstructure alone [212].
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Cortical folding characteristics, specifically gyrification, have also been observed to have

neuroanatomical correlates related to cognitive ability [212]. Recent studies investigating the

regional association between GI and general cognitive ability have revealed a pattern of positive

correlation between the two in mainly parietal and frontal cortical areas [215]. Overall, previous

studies have reported a pattern of positive correlation between general cognitive ability as

indexed by Intelligence Quotient (IQ) with cortical SA expansion [192,193,216] and thickness

[192,212,217–219], and the gyrification that also exhibits a pattern of positive correlation to

general cognitive ability [214,215]. Notably, the study by McDermott et al. [192] demonstrated

a positive association with SES [192].

The pace of maturation has also been reported to be linked to variations in cognitive

ability. Earlier thinning of CT has been reported to be positively linked to IQ in typically

developing individuals in their late childhood, adolescence, and adulthood [212] which becomes

more pronounced with increasing age: the higher the IQ, the faster the thinning of cortex over

time [212]. Similarly, higher IQ has been linked to a faster maturational rate of decrease in SA

[212].

2.7. Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that generates

detailed images of the different organs and tissues of the body, such as the human nervous

system, using magnetic fields and radio waves [220]. In the field of neuroimaging, MRI is

widely used in different clinical and non-clinical contexts to capture the functional and structural

properties of the brain [220]. MRI is a safe and non-invasive procedure that allows repeated

28

https://paperpile.com/c/s6qez4/EvBRP
https://paperpile.com/c/s6qez4/1FacH
https://paperpile.com/c/s6qez4/sD8C9+TfQIC+gZz23
https://paperpile.com/c/s6qez4/TfQIC+EvBRP+2yUAI+Flaj7+k9Wb2
https://paperpile.com/c/s6qez4/1FacH+2qyDk
https://paperpile.com/c/s6qez4/TfQIC
https://paperpile.com/c/s6qez4/TfQIC
https://paperpile.com/c/s6qez4/EvBRP
https://paperpile.com/c/s6qez4/EvBRP
https://paperpile.com/c/s6qez4/EvBRP
https://paperpile.com/c/s6qez4/XwzVW
https://paperpile.com/c/s6qez4/XwzVW


scans to be obtained at high spatial resolutions and has enabled the investigation of brain

structural changes in vivo. Thus, the MRI technique has been an ideal tool that provides the

opportunity to study brain developmental processes.

2.7.1. Principles of magnetic resonance imaging

MRI is based on the principles of nuclear magnetic resonance and the magnetization

features of atomic nuclei. This technique is based on the magnetization of nuclei in the exposure

of an external magnetic field produced in the MRI scanner. The MRI signal is mostly derived

from hydrogen protons located in nuclei within the water molecules of the body tissues.

Hydrogen is not only an omnipresent atom in the body tissues but is also highly sensitive to

external magnetic fields; these properties make hydrogen the main target to absorb and release

the electromagnetic energy and produce MRI signals.

Protons present in the human body rotate (spin) around their axis. This precession

characteristic of protons in hydrogen nuclei leads to the generation of a local magnetic field

specific to each nucleus [221,222]. In the presence of a strong external magnetic field, such as

the powerful magnet of the MRI scanner (B0; measured in Tesla (T)), protons within the

examined tissue will align in a parallel or antiparallel direction to the B0 axis (aligned with the

z-axis) [223]​. In this process, most of the protons will be aligned parallel to B0, as the process

takes less energy than aligning against the B0. The portion of protons aligned with the magnetic

field will create bulk magnetization (M0) and their current loop, parallel to B0, is known as

longitudinal magnetization (M0 strength < B0 strength). The protons will then start to spin in the

direction of the applied magnetic field, and the frequency in which they spin at (f​0) is a function

of the magnetic field strength and can be calculated using the Larmor equation:

f​0​ = γ B​0                                                                                                                                        (1)
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where γ represents a constant geometric ratio specific to nuclei.

To further derive an MRI signal, the radiofrequency (RF) coil in the MRI scanner

provides an RF pulse tuned to the Larmor frequency and applied perpendicular to B0 (into the

Bxy plane, at different flip angles, i.e., 90° based on the type of image being acquired.)

[221,222]. This pulse leads to a perturbation in the initial magnetic field (B0) and an RF pulse

B1. As a result of the change applied to the magnetic field, a portion of M0 will be tipped at a

predetermined amount (often between 90° - 180°) from their steady-state position to start to

process in the direction of the xy plane (Mxy).

With the elimination of the RF pulse, the protons return to their initial state alignment

around the z-axis;  as a result, the Mxy will decrease and the process is referred to as relaxation.

The procession during relaxation generates a current in the receiver coil, which yields in the

generation of the signals. These generated signals are recorded by the gradient coils in

longitudinal (z) and transverse (x and y) axes and can be measurable via Faraday’s Law of

Induction [224]. The excited protons in different tissues return to their original energy state in

different time frames, which varies depending on their structure [225]. The differential relaxation

rates derive distinct signals with varied frequencies, which are spatially encoded in a matrix

(k-space) in which each point (pixel) corresponds to specific spatial frequencies. This obtained

frequency information from each location will be spatially encoded to specific intensity levels

through a spatial gradient. Using the Fourier transformation [224,226], varying frequencies

derived from different tissues at different positions can be reconstructed into an image matrix

yielding an MR image.
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2.7.2. T1-weighted imaging

Different types of MR images are obtained at different relaxation times and collect

different RF pulse sequences. T1-weighted images are among the most common MRI sequences.

There are two types of relaxation that occur in MR imaging. The first relaxation occurs in the

longitudinal axis and is referred to as T1 or spin-lattice relaxation. This relaxation time (T1) is

the time for protons to release their energy and realign to their original state along the

longitudinal plane. Subsequently, the T1-weighted images are reconstructed according to time

(T1) differences in different tissue types to reach the equilibrium state. Each tissue emits a

different signal intensity, resulting in the contrast seen in MR images [221]. Specific

characteristics of T1-weighted images are having a longer repetition time (TR). This refers to the

time between two consecutive RF pulses and echo times (TE), which is the amount of time

between the RF pulse and the echo signal peak, leading to acquiring the maximum signal

difference from different tissues [221,222].

In T1-weighted images, tissues and regions containing higher water density show a

slower rate of realignment (i.e., the ventricular zone containing cerebrospinal fluid), and the

corresponding signal is encoded as dark shades of gray. On the other hand, tissues that are high

in lipids show faster realignment (i.e., cerebral white matter) and are visualized in brighter grays.

Any tissue with a combination of water-lipid density, such as cerebral gray matter and basal

ganglia, will place in between.
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2.8. Image pre-processing

In order to standardize the overall quality of T1-weighted images, several preprocessing

steps are performed prior to extracting structural measurements from MRI images. Bias field

correction and brain extraction are among the most crucial steps in preprocessing.

2.8.1. Bias field correction

The goal of bias field correction is to correct intensity inhomogeneity. This step is

particularly crucial to processing an MRI image since tissue classification algorithms presume an

intensity homogeneity within the classes of tissues. Bias fields are an imaging artifact in MRI

that leads to inhomogeneity of the intensity in an image that may cause variability in the intensity

within a single tissue. Several sources may cause this artifact, such as the spatial inhomogeneity

in the magnetic field itself or the interaction between the human body and the magnetic field.

The bias field is a function of the magnetic field strength such that the higher the magnetic field,

such as scanners with 1.5 T or 3 T or above, the more the images are prone to be affected by the

bias field, which may compromise the further MRI analysis [227].

Amongst the numerous bias field correction methods proposed in neuroimaging [228],

the non-parametric non-uniform intensity normalization (N3) [229,230] and its improved

version, N4ITK [231,232], are amongst the most commonly used algorithms. N3 is a fully

automatic and iterative algorithm that exploits b-spline approximation to yield the “smooth

multiplicative field that maximizes the high-frequency content of the distribution of tissue

intensity” distribution [229,231], with no requirement of a priori knowledge.​ N4 algorithm

performs a multiresolution iterative optimization framework, an improved form of the iteration

optimization used in N3. N4 starts by initially fitting a low-resolution b-spline, and the resolution
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is increased to reach the best fit of the bias field [231]. The iterative manner applied in N4 is

such that the corrected image from each step will be input to the next, which allows for iterative,

incremental updates of the bias field [231].

2.8.2. Brain extraction and masking

Brain extraction separates the brain from its non-brain surroundings, such as the neck,

skull, and fat tissue. The goal is to improve the tissues of tissue classification by removing the

non-brain tissues that have similar intensities with brain tissues that may interfere. This process

includes classifying the head MRI voxels into brain or non-brain and generating a binary mask

out of brain voxels [227]. The brain mask includes the cerebral gray matter and white matter

tissues, cerebrospinal fluid, and non-brain tissue, including bones, muscles, eye, skin, dura mater,

and fat tissue, separated and labeled non-brain. This generated brain mask can be further used to

facilitate image processing steps (Fig.2.5).

A commonly used method for brain extraction is a recently developed tool, the Brain

Extraction based on a nonlocal Segmentation Technique or BEaST [233]. This patched-based

segmentation tool uses affine registration to the MNI space [234] to construct the brain mask and

then, by transforming back to the native space, generates binary labeling of the brain. Notably,

the BEaST algorithm has achieved significant accuracy compared to other existing brain

extraction tools [233].

33

https://paperpile.com/c/s6qez4/Awmuf
https://paperpile.com/c/s6qez4/Awmuf
https://paperpile.com/c/s6qez4/mhwbU
https://paperpile.com/c/s6qez4/OfnMb
https://paperpile.com/c/s6qez4/U96xs
https://paperpile.com/c/s6qez4/OfnMb


Fig.2.5) examples of T1-weighted image brain masking (red) using BEaST brain labeling.
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2.9. Investigating morphometric measures from MRI

Over the last two decades, insight into human brain development has been fundamentally

improved through structural magnetic resonance imaging (sMRI) [9,13,235]. Until recently, there

was an assumption that substantial changes in the structure and function of the brain are limited

to the prenatal period and early childhood [198,236]. However, this assumption was revisited due

to large-scale and longitudinal neuroimaging studies [2], and it is now established that the brain

also undergoes a massive remodeling and reorganization of cortical structure and functional

circuits primarily during adolescence [2,6,188,198,211], which continues to some extent into

early adulthood (discussed above sections 2.1 and 2.2), and later in life span [237].

Volumetric approaches provide automated quantitative analysis of the gray and white

matter through voxel-based morphometry (VBM) approaches [238]; these methods have been

used in many previous studies of neurodevelopment [7,110]. The work from Giedd and

colleagues [2], one of the earlier works that provided insights into the cortical remodeling phase,

showed this spatiotemporally heterogeneous/ heterochronous pattern of change in gray matter

volume that occurs from childhood through adulthood. Volume-based methods, even though they

provide the volumetric and gray matter density measures, are unable to distinguish the

underlying geometrical changes. The measurements are hard to interpret since variations of gray

matter volume/density could be driven by each of the thickness, surface area, or any potential

combinations of these measures and could be influenced by regional folding characteristics of

the cortex [239,240].

Surface-based morphometry computational techniques have provided the opportunity to

overcome VBM limitations by decomposing the gray matter volume (GMV) measures into

neurobiologically distinct morphometric features through vertex-based analysis. This involves
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estimating cortical thickness and cortical surface area that jointly build the GMV, the folding

properties of the cortex indexed by cortical gyrification, and cortical curvature. In fact,

surface-based measures are required to parse the geometric complexity of the surface topology of

the brain in a way that reflects its true complexity.

2.10. Extracting morphometric features: Image processing

Over the last two decades, advances in developing automated processing pipelines have

enabled accurate, reproducible, and fine-grained estimations of cortical neuroanatomy

[241–244]. CIVET [245] and FreeSurfer [242] are amongst the most widely used software for

estimating cortical morphometric features. Recent investigations comparing the two have

demonstrated CIVET to exhibit better reproducibility [246], lower variance, higher reliability

[247], and higher stability and consistency in cortical thickness estimations [246,248].

The CIVET pipeline (Montreal Neurological Institute (MNI);

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) [243,247,249] is a fully-automated

pipeline for volumetric, corticometric, and morphometric analysis of human brain imaging data

[250,251]. Images submitted to CIVET are linearly registered to MNI space using the MNI

ICBM 152 average [252]. The brain tissue is then classified into white matter, gray matter, and

cerebrospinal fluid [253] through the automated PVE algorithm that iteratively corrects the tissue

class thresholds by “reseeding the tissue classification at the previous iteration to recompute the

thresholds at the current iteration until convergence” [251]. The surfaces are extracted using the

Constrained Laplacian Anatomical Segmentation using Proximities (CLASP) method [243,254].

Through the CLASP algorithm, the pial surface is expanded from the white matter surface to the
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gray matter and cerebrospinal fluid boundary along a Laplacian field [255]. The Marching-cubes

algorithm is applied during the extraction of the white surface for improved surface quality [251]

(Fig. 2.7).

Following surface extraction, CT is estimated through an improved version of the

tlaplace method that enables a more precise estimation of the cortical thickness at the sub-voxel

level by intersecting radial lines with the cortical surfaces [251]. Cortical thickness is estimated

as the minimum distance (in millimeters) between the corresponding vertices in gray matter and

white matter surfaces at each vertex (transformed back to the native space of the original MR

images) [245,256]. Surface Area is computed through the estimation of local variations

(contraction and expansion) of the total area of all six polygons surrounding each vertex relative

to the vertex distribution on the surface template on an intermediate tessellated surface mesh

between pial and gray/white surfaces [257] (Fig.2.6A). Mean cortical curvature is calculated as

the average of principal curvatures, derived from the inverse of the radius of the osculating

circles at each vertex on the mid surface of the gray and white matter junction [150,152]

(Fig.2.6B). The local Gyrification Index is calculated as the ratio between the pial surface

contained in a sphere with a predefined area around each vertex and the area of a circle of

equivalent center and radius on the cortical surface [258] (Fig.2.6C).
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Fig.2.6. Schematic of cortical morphometric features estimation. A) Cortical thickness and

surface area; adapted from [259] B) Local gyrification Index; adapted from [258,260] C) Cortical

Mean curvature; adapted from [261].

2.11. Quality control

In neuroimaging studies, quality control, is of great importance, particularly to ensure the

accuracy of further quantitative morphometric analyses. Quality control could be performed at

several steps of pre and post-processing.

2.11.1. Motion quality control

MRI data are prone to be affected by in-scanner head motion, involuntary movements, or

physiological sources of noise such as cardiac cycle and respiration, which subsequently may

degrade the image quality and lead to general and regionally-specific biases and

misinterpretation of the quantitative outputs derived from these images. Head motion has been
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shown to compromise T1-derived gray matter volume and cortical thickness estimates

[262–265], such that the seeming reductions have been reported to resemble cortical atrophy

[264,265], even if the motion is not apparently detectable in the scan. Similarly, the subtle

in-scanner motion has also been shown to confound measurements of MRI, such as mimicking

decreases in cortical volume and thickness and increases in mean curvature with greater motion

[265]. Given the inverse relationship between in-scanner motion and age [266], the issue is more

critical in studies involving younger age populations and children, such as the present work.

2.12. Processing outputs quality control

In addition to the effects of motion on the quantitative estimations of neuroanatomical

features, quality control of the processed images is also crucial as it could influence the output

measurements. Ducharme et al. [18] have explicitly shown how different thresholds in quality

control procedures could significantly impact the ultimate findings. In this study, which has

investigated the effect of quality control in the context of characterization of cortical thickness

developmental trajectories, it has been shown that while with no quality control, cortical

thickness exhibited either a cubic or quadratic trajectory, with the inclusion of strictly screened

scans the trajectories exhibited a linear pattern [18].

The CIVET pipeline automatically produces figures showing the gray and white matter

classification and boundary delineations for quality control to be used for the purpose of quality

control in order to prevent misleading quantitative results in further analyses [18,267] (

https://github.com/CoBrALab/documentation/wiki/CIVET-Quality-Control-Guidelines)

(Fig.2.7).
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Fig.2.7. Examples of tissue classification (third row) and surface extraction (fourth row) by the

CIVET pipeline.

2.13. Integrating Surface Morphology measures

Characterizing covariance across morphometric features during maturation and the

relationship of the inter-individual variation related to those properties may provide important

insight into their temporal patterning, sexual differentiation, environmental influence (such as

socioeconomic status), and behavioral attributes related to cognition. To investigate multiple

properties of cortical morphometry, several methods have been developed. Li et al. [39] have

proposed a novel technique for constructing individual-based morphological brain networks

using a combination of multiple morphometric features. In the proposed implementation, the

interregional connections were computed as the Pearson correlation of feature vectors
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comprising nine complementary morphometric features [39]. Other studies have utilized partial

least squares correlation with multiple features of morphometry in order to investigate the

patterns of regional correlation between cortical gray matter and white matter properties [40], or

have proposed structural covariance networks using a mutually built vector based on two

features of gray matter, namely SA and CT [41].

Innovatively, recent studies proposed the Morphometric Similarity Networks [MSNs],

introduced by Seidlitz and colleagues [43] as a means to elucidate the relationship between

multiple dimensions of brain architecture using a graph-theoretical approach. While being a

critical innovation that has been shown to provide a critical relationship to transcriptomic and

cell-specific architecture [44,45], this analytical technique provides limited interpretability with

respect to the distinct morphological measures that contribute to specific connectomic features

(although sensitivity and specificity analysis are included in the original work) [39,44–46].

2.14. Non-negative Matrix Factorization (NMF)

NMF is a data-driven matrix decomposition technique that can be used to identify

dominant patterns of covariance across a dataset with a nonnegativity constraint. NMF is

conceptually similar to unsupervised matrix decomposition techniques such as independent

component analysis (ICA) and principal component analysis (PCA) [52–56] but requires both

input and output matrices to be nonnegative. The standard decomposition methods such as PCA

and ICA, commonly used to reduce the high dimensionality of a given dataset, decompose the

original input matrix into a combination of positive and negative outputs [268]. Subsequently,

due to the cancellation of the oppositely signed values, these techniques cannot optimally
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reconstruct the input data in spatially localized and interpretably meaningful results through

which the input matrix could be described [269]. NMF, alternatively, decomposes the input into

purely positive outputs due to its nonnegativity constraint. This unique feature of NMF provides

an additive reconstruction and representation of the data [48]. NMF is ideal for working with

neuroimaging data as the elements of the input matrix are constrained to be nonnegative, it

reduces the dimensionality of the high-rank neuroimaging data by providing spatially localized

outputs which further facilitates the intuitive interpretation of the factorization and allows for a

more straightforward interpretation of results.

Recently a variant of NMF, known as orthogonal projective nonnegative matrix

factorization (OPNMF), has been explored in the context of neuroimaging data [49] which

prioritizes sparsity in the solution and enforces minimally overlapping components resulting in a

purely additive, part-based decomposition. More specifically, the OPNMF solution ensures that

each part of the input data contributes to the reconstruction of the original input in a

non-overlapping decomposition. This, in turn, provides a more biologically plausible

interpretation of neuroimaging data compared to other methods of variance components that

contain both positive and negative valued component weightings [49,269,270]. Moreover,

despite being an unsupervised approach, the method has been shown to generate bilaterally

symmetric spatial components [57] which in turn, matches well with the nature of biological

data.

NMF has been investigated and used in the context of high-resolution structural

neuroimaging data and has demonstrated distinguishing characteristics such as higher specificity

and reproducibility compared to other multivariate approaches [49,57]. This technique has been

implemented to identify structural covariance networks in neurodevelopment [50,57,89,271],
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neuropsychiatric disorders [58,59,272–274], and structure-function brain networks relation

[275–277] using voxel-based [50,59,269] and vertex-based [57,274,277] high-dimensional

neuroimaging data. Notably, in work by Sotiras et al. [57], NMF has been used to capture

reproducible spatial patterns of cortical thickness variation in brain development period [57],

reflecting functional specialization and evolutionary expansion hierarchy of the cortex [57].

In the present work, we implement an orthogonal variant of NMF, orthogonal projective

NMF (OPNMF) [49,278], which prioritizes sparsity in the solution and provides a part-based

decomposition. The goal is to provide minimally overlapping components where each vertex is

assigned to a specific component to ensure an additive parts-based representation. Thus,

compared to graph theory approaches as in MSN, OPNMF identifies spatial patterns but better

enables comparisons between neuroanatomical features and individual subjects.

More recently, this method has been further developed and extended by our group [51] to

enable the integration of multiple structural metrics in the context of human hippocampal [51]

and striatum [279] parcellation (Fig.2.8). In this implementation, briefly, a columnar stacking

fashion would be applied to the vertex-wise indices of multiple structural features in order to

build a single input matrix (data sample: vectorized map of multiple features). NMF would then

be applied to decompose this matrix into two output matrices that their multiplication would

reconstruct the input matrix with a minimum reconstruction error and high stability [51]. The

results demonstrate that the output neuroanatomical definitions identify multi-modal patterns of

spatial covariance with respect to multiple structural features and further can be related to

inter-individual variation in demographic and cognitive features.
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Fig.2.8. Integrated OPNMF implementation. OPNMF has been adapted to enable the integration

of multiple structural metrics. Schematic adapted from [279].

2.14.1. OPNMF background

OPNMF decomposes a given input matrix V of dimensions [m x n] into a component

matrix W [m x k] and a weight matrix H [k x n] in which k is the pre-defined number of

components output from the decomposition. Decomposition of the input matrix is such that the

multiplication of the component and weight matrices reconstructs the original input as accurately

as possible with the minimum error of the reconstruction original input reconstruction [W*H].

The product of W and H matrices describes the input, and they can be used to describe patterns

of covariance across both axes of the input matrix. [51,280]

Estimation of the components and weights is done through solving the nonnegative

matrix factorization minimization problem formulated as follows:

|| X - WW TX ||2 subject to W TW = I; W > 0 (2)

The solution is obtained through non-negative double singular value decomposition

choice of initialization [51,57,281] followed by the iterative multiplicative update rule [282] to

construct W. the H matrix will then be constructed by projecting the original input X onto the W
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matrix.

In the formulated solution of the nonnegative matrix factorization minimization problem,

I represent the identity matrix, enforcing a columnar orthonormality in the W matrix. Moreover,

the initialization choice enforces sparsity in the W matrix. Along with the nonnegativity

constraint, these OPNMF key features result in non-overlapping and sparse columns in the

output spatial components, leading to a more straightforward interpretation of the output data.
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Chapter 3. Methods

3.1. Workflow Overview

We included a subset of the large-scale longitudinal T1-weighted magnetic resonance

imaging (sMRI) data from the National Institute of Mental Health cohort (NIMH; Bethesda, MD,

USA) [11–13,15,186,192]. Using measures of Cortical Thickness (CT), cortical Surface Area

(SA), Mean Curvature (MC), and local Gyrification Index (GI) extracted from preprocessed

sMRIs (Fig.3.1.A) we examined cross-sectional and longitudinal patterns of morphometric

covariance using NMF (Fig.3.1.B). In the cross-sectional analysis, we used subjects’ cortical

measures to investigate cortical patterning, while in the longitudinal analysis, we extracted

age-related slopes as a proxy of change in the cortical measures over time to investigate the

pattern of coordinated maturation of the cortical features. Finally, we examined how these

covariance patterns in morphometry relate to age, sex, intelligence quotient (IQ), and

socioeconomic status (SES) using univariate measures to capture group-level trends and

multivariate methods (PLS) to examine the relationship across demographic variables

(Fig.3.1.C).
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Fig. 3.1. Workflow. A) Four cortical metrics (CT, SA, GI, MC) were extracted, and cortical

vertices of all subjects were concatenated in columns to build an input morphometry matrix. For

longitudinal analysis, age-related slopes were extracted using linear mixed effect modeling.

B) NMF decomposes the input matrix into a components matrix, representing spatially distinct

components of covariance of morphometry across subjects, and a weights matrix, representing

the extent to which each vertex loads onto the identified components. The optimal number of

components was selected by balancing the accuracy and spatial stability of decomposition by
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performing a stability analysis (see section 3.5). C) bPLS analysis was performed to identify

patterns of covariance across components and their specific morphometric weights with

demographic data (Age, Sex, SES) and cognitive ability (as indexed by IQ).

3.2. Dataset

This study includes structural magnetic resonance imaging (sMRI) data sample collected

at the National Institute of Mental Health (NIMH; Bethesda, MD, USA). Participants were

recruited based on their mental and physical health history for a study of brain development

conducted at the National Institute of Mental Health between the years 1990 and 2014

[11,13,15,192]. Inclusions were based on the absence of a history of head trauma, neurological

disease, and the diagnosis of psychiatric disorders. The NIMH cohort includes 2836 sMRI

acquired from participants aged 3 to 30 years, with a similar proportion of males and females

across the entire age range. All participants have 1 to 7 brain scans, acquired at intervals of

approximately two and a half years. This dataset is well-characterized and has been extensively

described in previous works [11–13,15,186,192].

3.2.1. Sample

We included two subsets of the NIMH dataset:

1) a cross-sectional sample, consisting of a total of 776 participants’ scans at their baseline age

sMRIs brain scans acquired from typically developing individuals (357 F, 46%) from age 5 to 25

(mean age:12.4, SD:3.49) for cross-sectional analysis.

2) A longitudinal sample consisting of 549 scans acquired from 183 participants, each being
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scanned at three timepoints with approximately 2.8 yrs intervals, was selected. This sample was

specifically ideal for capturing maturational changes in this period (see section 4.1 for

participants’ characteristics).

Other demographic and cognitive variables:

1) Full-scale Intelligence Quotient [IQ] estimation, using an age-appropriate Wechsler

scale. 94% of participants have been assessed with the Wechsler Abbreviated Scale of

Intelligence (WASI) [283], and the rest include WAIS-R, WISC-R, WISC-III, WPPSI, and

WPPSI-III. Notably, since most individuals with repeated scans had fewer IQ estimated

measures, we used each participant’s most recent IQ estimation for the longitudinal sample

analysis [192].

2) Childhood socioeconomic status (SES) score quantified by the Amherst modification

of the Hollingshead two-factor index [191,284]. This variable is based on parental education and

occupation, which was used to obtain a single SES score for analyses. Notably, the conventional

directionality suggests that a lower Hollingshead score indicates a higher socioeconomic status

such that the lowest Hollingshead score (i.e., 20) corresponds to individuals from the most

advantaged families, while those from the least advantaged families have the highest

Hollingshead score (i.e., 140) [192]. Accordingly, the Hollingshead score that has been used in

the statistical analyses and figures has an opposite direction with socioeconomic status. For ease

of interpretation, the directionality of socioeconomic status (rather than the Hollingshead score)

will be discussed in the rest of the present work. [ demographic and cognitive characteristics of

the NIMH dataset have been extensively described in [192] ]
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3.3. Neuroimaging

3.3.1. Image acquisition

All scans used were T1-weighted sMRI images, collected on the same 1.5 T General

Electric SIGNA scanner (Milwaukee, WI), with contiguous 1.5 mm axial slices and 2.0 mm

coronal slices using a three dimensional (3D) spoiled gradient recalled-echo sequence. Image

acquisition parameters are as follows: echo time: 5 ms, repetition time: 24 ms, flip angle: 45°;

acquisition matrix: 256×192, number of excitations: 1, field of view: 24 cm, resulting in a voxel

resolution of 0.9375×0.9375.0×1.5 mm. (for more details, see [11–13,15,186,192].)

3.3.2. Raw scan motion quality control

MRI data are prone to be affected by in-scanner head motion, involuntary movements, or

physiological sources of noise such as cardiac cycle and respiration, which subsequently may

degrade the image quality and lead to general and regionally-specific biases and

misinterpretation of the quantitative outputs derived from these images. Due to the inverse

relationship reported between in-scanner motion and age of the participants [266], the issue is

more critical in studies involving younger aged populations and children, such as the present

work. In the present work, all raw images were visually assessed and quality controlled for

motion artifacts, such as ghosting and blurring, using the QC procedure previously developed in

our group and described in [248,267] (for details, see:

https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-Manual).
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3.3.3. Image Pre-processing

In order to standardize T1-weighted images quality, preprocessing was performed using

the minc-bpipe-library pipeline (https://github.com/CobraLab/minc-bpipe-library). This pipeline

by default performs the integrated steps of N4 bias field correction to correct for inhomogeneities

in intensity [231], image registration to Montreal Neurological Institute (MNI) space (ICBM

2009c Nonlinear Symmetric) using bestlinreg [252,285], cropping the neck, field-of-view

standardization using an inverse-affine transformation of an MNI space head mask, brain

extraction and generating a brain mask using Brain Extraction based on nonlocal Segmentation

Technique (BEaST) [233] as previously described in [286]. Following the preprocessing steps,

the extracted brain bias field corrected T1 in native space with a specific brain mask for each

subject was submitted to the CIVET processing pipeline.

3.3.4. Surface-based morphometry feature estimation

To estimate quantitative neuroanatomical features, we used the CIVET pipeline (Version

2.1.0; Montreal Neurological Institute; http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET;

[243,249,287]. Preprocessed T1-weighted sMRI scans with matched masks, generated in

minc-bpipe-library, were submitted to the CIVET for automated surface-based estimation of four

cortical features of CT, SA, GI, and MC at 81,924 vertices across the cortex. T1-weighted

images were linearly registered to the Montreal Neurological Institute (MNI) ICBM 152 average

[288], brain tissue was classified into white matter, gray matter, and cerebrospinal fluid [253],

and the surface was extracted using the Constrained Laplacian Anatomical Segmentation using

Proximities (CLASP) method [243,254].
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3.3.5. Extracting morphometric features

Followed by surface extraction, neuroanatomical metrics were estimated as follows:

SA: Surface Area was computed through estimation of local variations (i.e., contraction

and expansion) of the total area of all six polygons surrounding each vertex relative to the vertex

distribution on the surface template on an intermediate tessellated surface mesh between pial and

gray/white surfaces [257]. The SA maps were blurred using a 40-mm geodesic surface kernel

[243].

CT: Cortical thickness was defined and estimated as the minimum distance between the

gray matter and white matter surfaces at each vertex [245,256]. CT maps were blurred using a

30-mm full-width at half-maximum (FWHM) surface-based diffusion smoothing kernel [243]. In

CIVET 2.1, CT estimation has been specifically improved by intersecting radial lines with the

cortical surfaces at the sub-voxel level.

GI: Local Gyrification Index was calculated for the local estimation of cortical folding at

each vertex as the ratio between the pial surface contained in a small sphere around the vertex

and the area of a circle of equivalent center and radius [152,258]. GI measures were estimated at

a 20 mm radius.

MC: Mean cortical curvature was calculated as the average of principal curvatures,

derived from the inverse of the radius of the osculating circles at each vertex on the mid surface

of the gray and white matter junction [150,152].

Notably, the non-cortical midlines were masked out for analyses (4802 vertices), and we

proceeded with the morphometric data of 77,122 vertices for each subject.
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3.3.6. Output quality control

CIVET automatically produces figures showing the gray and white matter classification

and boundary delineations for quality control. To prevent misleading quantitative results in

further analyses [18], all CIVET outputs were controlled for white and gray matter classification

accuracy and surface delineation by visual inspection following the QC procedure previously

developed in our group [267]. Only scans that passed through the CIVET quality control will be

used to extract morphometric features to be included in our analyses.

3.4. Nonnegative matrix factorization (NMF)

NMF is a data-driven matrix decomposition technique that models dominant patterns of

covariance across a given dataset. The unique feature of this technique is the nonnegativity

constraint which requires both input and output matrices to be non-negative. This feature of

NMF is not only ideal for working with neuroimaging data as the elements of the input matrix

are constrained to be nonnegative, but also provides an additive and parts-based reconstruction

and representation of the data, which further facilitates the intuitive interpretation of the

factorization and allows for a more straightforward and biologically plausible interpretation of

neuroimaging data compared to other methods of variance components that contain both positive

and negative component weightings [49,51,270].

In the current work, we employed the orthogonal version of NMF, orthogonal projective NMF

(OPNMF) [49,278], which prioritizes sparsity in the solution and provides a part-based

decomposition. The goal is to provide minimally overlapping components where orthogonality

ensures each vertex is assigned to a specific component to reach an additive parts-based
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representation and improves the specificity, and the projective features ensure that all

components participate in the reconstruction of the input data sample, which improves sparsity.

Compared to graph theory approaches, OPNMF identifies spatial patterns but better enables

comparisons between neuroanatomical features and individual subjects.

3.4.1. Implementation

The input matrix was created such that for each subject, each of the four cortical metrics

vertex-wise measures were stacked across hemispheres to create a single column of vertex-wise

data for a given subject-metric. Given the inclusion of 776 subjects and the columnar stacking

fashion of the four morphometric features of CT, SA, GI, and MC, the input matrix was built

having 776* 4 columns such that the first 776 rows correspond to subjects’ CT values, second

776 rows correspond to subjects’ SA values, etc. Finally, a within-subject z-scoring

normalization was performed to have different metrics with varying magnitudes on the same

scale and shifted by the minimum z-scored value to eliminate negative values. This multivariate

morphometry matrix would then be submitted to OPNMF.

3.4.2. Longitudinal Implementation

To better capture the dynamic relationship between cortical features, in order to

investigate the coordinated pattern of cortical change across multiple measures, and how

coordinated changes at different cortical regions are driven by changes at each cortical feature,

we also leveraged a longitudinal implementation of NMF. To do so, we included 183 participants

with three scans (a total of 549 total scans) acquired at three different time points with an average

of 2.8 years intervals to extract vertex-wise and subject-specific age-related slopes. To do so,

linear mixed-effects regression models with random intercept and slope for each subject were
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performed. We next extracted subject-specific vertex-wise age-related coefficients, as a proxy of

change over time, for each of the four morphometric features as the input for OPNMF.

To extract subject-specific cortical slopes, for each metric, a vertex-wise linear mixed-effects

model was performed with age as the fixed effect and a random intercept and slope of age for

each subject. Models were implemented in R (Version 3.6.3; www.r-project.com).

The coefficients for ith subject's jth vertex's metric n at kth time-point were calculated

based on the regression model as follows:

Ysubjectj_vertexi_metricn = β0 + dij + β1 (Age) + βj (1+Age|Subject) + eij                                   (3)

Where Y corresponds to subjects’ metric measures at each vertex, 𝝱0 corresponds to

equation intercept, 𝝱1 corresponds to fixed-effect coefficient, and 𝝱j corresponds to subjects’

random B-value. From each model, subject-specific age-related slopes (i.e. coefficient) were

extracted using the R coef() function. Coefficients are the summations of the general fixed effect

of age (𝝱1) and subject-specific random effects (𝝱j) [289], representing the impact of age on each

cortical measure. Finally, to capture patterns of ‘coordinated change’ across cortical features, the

input matrix was reconstructed similar to cross-sectional methods (see section 3.4.1) with

columns containing vertex-wise calculated age coefficients in three consecutive timepoints for

each subject-metric pair.

3.4.3. Running OPNMF

Following the construction of the input matrix, the OPNMF run was performed using the

publicly available code by [49,278,290,291] at (https://github.com/asotiras/brainparts) using

Matlab R2016a. The algorithm was initialized with a nonnegative, double singular value
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decomposition (SVD) and followed a maximum iteration of 100000 and tolerance = 0.00001, as

previously described in [51].

3.4.4. Interpreting OPNMF outputs

The implemented OPNMF outputs results are components matrix (W) and weights matrix

(H), which together reconstruct the input matrix:

1) Component matrix (W) of dimensions [cortical vertices (m) x number of components

(k)]: indicates the spatial location of the components indicating the extent to which each vertex

in the brain loads onto each component. Due to the orthogonality feature of OPNMF, each vertex

is assigned to the cluster of vertices for which it has the highest component score. Mapping back

these identified clusters of vertices to the population average brain enables visualization of a

parts-based representation of spatial cortical components that share the same patterns of

covariance across four morphometric features.

2) Weight matrix H of dimensions [number of components (k) x subject-metric pairs (n)]

represents each subject-metric pair contribution and loading onto each of the identified

components. Accordingly, a higher subject-metric loading onto a given component’s vertex

would indicate a greater magnitude of that metric within a subject's covariance pattern. The

components and weight matrix are then jointly used to describe the spatial location of identified

components (W matrix) and the pattern of covariance across multiple morphometric features of

the cortex (H matrix).

3.4.5. Interpreting longitudinal OPNMF outputs

Similar to outputs described in section 3.4.4, longitudinal OPNMF outputs a component

and a weights matrix that jointly describe the extent to which each identified cortical component
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is derived by a specific pattern of coordinated changes across morphometric features. In the

weight matrix, higher weights indicate a relatively higher magnitude of slopes which implies a

steeper decline, preservation, or decrease in the specific metric. Lower weights are indicative of

a lower magnitude of slopes which implies relatively sharper decline and loss in the specific

morphometric feature.

Fig.3.2. A schematic representation of longitudinal nmf implication and interpretation. While

higher NMF weights indicate relative preservation of a metric, a lower weight indicates a steeper

decline over time.

3.5. Stability analysis

To select the optimal number of components (k) for OPNMF decomposition, stability

analysis was performed. In order to balance the high spatial stability of various decompositions

while capturing major changes in the reconstruction accuracy, a split-half stability coefficient and

the change in reconstruction errors were calculated for a range of 2-20 component

decompositions [51]. To assess the stability, we measured the spatial similarity between the
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component’s output of OPNMF runs across varying random splits of the input data at each

granularity of 2 - 20. Accuracy was calculated as the gradient in reconstruction error, based on

the change in the reconstruction error from one granularity to the next (k to k + 1) [51]. The

procedure was done by splitting the participants (i.e.,: n=776) into two groups of (n_a = 388) and

b (n_b = 388) ten times. For each of the half-splits, a separate four-metric input matrix was built

(Va and Vb), and we performed OPNMF on each of the half-splits independently. Each run

outputs a weight and a component matrix, Wa and Wb matrices, of dimensions [#vertices * k].

To calculate the stability, a similarity matrix for each of Wa and Wb matrices (c_Wa, and

c_Wb) was computed using cosine similarity for rows of W matrices such that in each similarity

matrix, the cosine similarity of component scores between a specific vertex and all other vertices

is represented in each row. The higher the cosine similarity for each vertex with other vertices,

the more likeliness of those vertices to be clustered together. Next, the correlation coefficient

between corresponding rows of the similarity matrices of each split (c_Wa, and c_Wb) was

computed. The mean correlation across all rows (vertices) was taken as an indicator for stability

at that specifically tested granularity such that a mean correlation coefficient of 1 represents the

highest stability, while −1 represents the lowest stability [51]. To assess the accuracy of

reconstruction of the original input matrix, we computed the subtraction of the reconstruction

error matrix at each granularity (k) from the reconstruction error matrix at granularity at the

following granularity (k+1) and averaged the differences across all splits to report the gradient

reconstruction error at each granularity. These procedures were repeated for ten random splits of

the data and at each even granularity of k = 2 - 20 [51].
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3.6. Post NMF analysis

3.6.1. Multiple Linear regression models

To assess associations between metric-wise NMF components weigh on one hand and

age, sex, IQ, and SES on the other hand, we performed multiple linear regression analyses to

determine the statistical significance of the regression model.

To this end, we ran a metric paired components-wise regression model, in which for ith

components’ jth metric was modeled as follows:

YComponent (i)_metric (j) = 𝝱0 + 𝝱1(Age) + 𝝱2(Sex) + 𝝱3(IQ) + 𝝱4(SES) (4)

YComponent (i)_metric (j) = 𝝱0 + 𝝱1(Age × Sex) + 𝝱2(IQ) + 𝝱3(SES)

(5)

Where Y corresponds to metric-wise OPNMF components weights, 𝝱0 corresponds to

equation intercept, and 𝝱i corresponds to fixed-effect coefficient. We looked at all regression beta

coefficients, with particular emphasis on age effects grouped by sex, and age and sex

interactions. We looked for associations between component weights and each demographic

variable, corrected for multiple comparisons across components, and thresholded at a false

discovery rate (FDR; [292]) of q < 0.05.

3.6.2. Behavioral Partial Least Square Analysis (bPLS)

To investigate possible relationships across identified individual variation patterns of

morphometry and demographics data, we performed behavioral partial least square analysis

(bPLS). bPLS is a multivariate technique used to capture major covariance patterns between the

two sets of data via singular value decomposition (SVD) of a mutually constructed correlation
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matrix, which outputs uncorrelated sets of latent variables (LV). Each LV describes the linear

combinations of the two datasets that are maximally covariant and can be interpreted as a pattern

of association between the two sets of data [51,293–296]. For each LV, a singular value is

computed describing the percentage of the data explained by that LV. Within each LV, both sets

of variable parameters will be attributed to scores, reflecting the extent to which each parameter

contributes to the identified covariance patterns represented by LVs [51,293–296]. In the context

of neuroimaging analysis, this method has been originally and conventionally used to relate a set

of neuroimaging data (i.e., voxel- or vertex-wise data) to a set of behavioral data [293–295]. This

method has been further developed in our previous works to enable relating integrative structural

and morphometric patterns derived from NMF, to inter-individual differences [51,60]. Here, we

performed behavioral PLS to assess patterns of correlation across two sets of 1) brain data, the H

matrix output from OPNMF containing components’ subject-metric pair weights, and 2)

demographics and cognitive data, including subjects’ age, biological sex, SES, and IQ scores. the

brain matrix of dimensions (776 subjects × 4 metrics × 6 components) and a demographic matrix

of dimensions (776 subjects × 4 demographic variables) was used as the input matrices of PLS

(Sex coded as 0 = Female, 1= Male, Age measured in years, SES measured in Hollingshead

two-factor index, and IQ measured in Wechsler). PLS analysis outputs LVs representing patterns

of covariance across component-wise morphometric brain data and demographic data. To assess

the statistical significance of output LVs, we performed 10000 permutations testing such that

rows of the brain data matrix were permuted 10000 times to obtain a null distribution of singular

values under the assumption of permutations eliminating existing brain-demographics

correlations, which yields to the computation of a non-parametric P-value for each LV in the

primary data (non-permuted) [51]. We then applied a P<0.05 threshold for consideration of LVs
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significance, indicating a chance of a 95% confidence that the singular value of the primary LV

exceeds that of a singular value of the permuted LV [51]. To assess the contribution of each brain

variable (component-wise morphometric brain data) to each identified LV, we employed

bootstrap resampling. We randomly sampled 10000 sets of each brain and demographics

matrices and replaced the rows to create a distribution of the singular vector weight of each brain

variable in each LV. Next, to examine the contribution and reliability of a given brain variable,

the bootstrap ratio (BSR) was calculated as the ratio of generated singular vector weight over the

standard error of the weight from the bootstrap distribution. We then applied a threshold of

P<0.01 (99% confidence) for consideration of brain variables’ contribution significance,

corresponding to a BSR<2.58 [51,293–296].

3.7. Situating Morphometric components along the gradients of brain

function

Previous studies have shown that morphological networks can be used to investigate the

hierarchy of cortical macroscale organization [39,282,297]. Importantly, in a recent study, Dong

et al. [298] have demonstrated age-dependent patterns of gradual maturation in the macroscale of

a cortical organization that may be key to understanding the processes through which cognitive

capabilities and behavioral traits are shaped and refined [298]. In children (under 12 years old),

the organizational gradient peaks within the unimodal cortices, between somatosensory/motor

and visual cortices which in adolescence (12 years old and over), transitions into an adult-like

spatial framework, with the default network at the opposite end of a spectrum from primary

61

https://paperpile.com/c/s6qez4/WdvGI
https://paperpile.com/c/s6qez4/UaVqy+bhQCL+bQFLa+8xcmf+WdvGI
https://paperpile.com/c/s6qez4/JLlj2+WwmrF+xxx6A
https://paperpile.com/c/s6qez4/PKB6q
https://paperpile.com/c/s6qez4/PKB6q


sensory and motor regions [298].

Accordingly, we aimed to assess how the identified morphometric covariance patterns

situate along the stages of the principal gradients' gradual maturation within the different periods

of childhood, adolescence, and adulthood. To do so, gradient value distributions of vertices

within each component’s spatial boundaries were extracted from the maps of the second gradient

of functional connectivity for children (6-12 years old) and the map of the first gradient map

from adolescents (12-18 years old) and adults (22-35 years old). The child and adolescent maps

were obtained from Dong et al. [298], and the adult map was obtained from Margulies et al.

[299]. All gradient maps were transformed into CIVET space (MNI ICBM152 surface) using the

neuromaps toolbox [300] (https://github.com/rmarkello/neuromaps) to further assess NMF

components’ position along the maps.
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Chapter 4. Results

4.1. Final sample

From the initial 3097 scans of the NIMH dataset, 2658 scans were included based on the

age range of this study and health profile. Of which, 811 were excluded at the level of motion

QC (at both pre-and post- preprocessing steps; based on criteria described at [267]), and 159

were excluded at the level of software failure and post-processing quality control.

For cross-sectional analysis, 776 participants (357 F; mean age:12.4, Standard Deviation

[SD]:3.49) (Fig.4.2), and for the longitudinal analysis, 183 participants (77 F; three repeated

scans per subject; approximate interval 2.8 years; mean age: 11.2, SD: 2.7) were included

(Fig.4.2). Full-scale Intelligence Quotient (IQ) and childhood socioeconomic status (SES) scores

were included as demographics for further analyses (see Table 4.1 for both cross-sectional and

longitudinal data samples participants’ demographics data characteristics.)

Fig.4.1. Quality control and scan exclusion procedure.
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Table 4.1. Cross-sectional and longitudinal data samples participants’ demographic data
characteristics.

Characteristic \ Data sample Cross-sectional sample Longitudinal sample

Number of scans 776 549

Number of individuals 776 183

Age, years

Mean (SD) 12.4 (3.49) 11.2 (2.7)

Range 5 - 25 5 - 24.2

Sex, n

Female (%) 357 (46%) 77 (42)

Male 419 106

IQ

Mean (SD) 110 (13.1) 114 (12.4)

Range 50 - 150 80 - 140

SES

Mean (SD) 44 (18.3) 40 (19.7)

Range 20 - 94 20 - 90

Intervals between scans, years

Mean (SD) NA 2.8 (0.5)

Range NA 1- 6
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Fig.4.2. NIMH subsamples characteristics. left) Histogram showing the distribution of scans on

the sample by subjects’ age and sex (females in red). right) Dot and line plot showing the

distribution of scans per subject by age and sex where each line indicates a subject with repeated

scans identified by dots.

4.2. Stability analysis results

The stability analysis results for both cross-sectional and longitudinal analyses are shown

in Fig.4.3: the stability coefficient (red) and the gradient of the reconstruction error (blue) of

OPNMF decompositions are shown for every other granularity of 2 - 20. In Fig 4.3, the inverse

relationship between the number of components and stability is shown. At k > 6, the stability

coefficient is above 0.95, which sharply drops moving from k = 6 to k = 8. As a result, we chose

k = 6 as a decision point for choosing parsimonious but stable spatial patterns. This choice also

prioritizes stability while capturing complex spatial patterns.
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Fig.4.3. A) cross-sectional and B) longitudinal split stability analysis plots: Stability coefficients

and gradient of the reconstruction error for granularities from 2 to 20. The k = 6 decomposition

solution was chosen as a suitable balance of stability, and reconstruction accuracy for both

decompositions as stability (red line) drops at k > 6, and the gradient in reconstruction error (blue

line) from k = 6 to k = 8 is considerably less than from k = 4  to k = 6.
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4.3. Morphometric Covariance Results

4.3.1. Cross-sectional morphometric covariance

Components identified in Section 4.2 reflect morphological covariance patterns across

the four input metrics (Fig.4.4A), and the weights matrix describes the extent to which each

subject-metric pair loads onto a specific component (Fig.4.4B; z-scored to facilitate

visualization) [51,60].

The spatial extents of each component are described by their anatomical location, and the

specific patterning of morphometric features is described in the weight matrix. Notably, even

though there were no topological constraints in our analysis, there is significant topological

specificity and bilateral representation for each component:

1. Component [C] 1 is characterized by higher values of GI and variation in SA, primarily

in the sulcal depth of temporal, occipital, and parietal association cortices.

2. C 2 is characterized by higher values of CT and MC, moderate variation in SA, and lower

values of GI in limbic and heteromodal regions along the medial surface, extending along

the temporoparietal junction, Broca’s and Wernicke's area to the orbitofrontal cortex, and

the superior gyrus.

3. C 3 is characterized by high GI and moderate SA weighting across the insular cortices

and cingulate sulcus.

4. C 4 is characterized by higher MC and SA weight values along the fusiform and

orbitofrontal gyri and unimodal regions along the lateral and medial occipital lobe and

postcentral gyri.
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5. C 5 is characterized by primarily higher SA weights in primary heteromodal regions of

the inferior temporal, inferior parietal, and dorsolateral medial prefrontal cortex.

6. C 6 is characterized by low SA, moderate CT and GI, and high MC. This component

includes cortical regions of pre and postcentral gyri (primary sensory and motor cortex)

and precuneus.

4.3.2. Longitudinal morphometric covariance

Longitudinal analysis using NMF also identified six stable spatial cortical components

representing a selection of vertices sharing a coordinated morphological pattern of change across

the four metrics (Fig.4.4C). Here, the weights matrix describes the extent to which each

subject-metric change (i.e., age-related slope) loads onto the identified spatial pattern (i.e.,

components) (Fig.4.4D).

Fig.4.4 shows the subject weight matrix, describing morphometric patterns associated

with each component.

1. Longitudinal Component [LC] 1 describes relative preservation of GI, dominant decline

of CT, and a moderate decline of MC and SA across much of the cortex, in keeping with

the known literature on brain morphology changes during development.

2. LC 2 describes relative preservation of CT, a sharp decline of GI, and a decline of SA and

MC in bilateral occipital and temporal poles and the right precentral gyrus/ primary

somatosensory areas.

3. LC 3 describes the preservation of MC and a decline of CT, SA, and GI, respectively in

the sulcal depths and precuneus.
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4. LC 4 describes relative preservation of SA and steeper GI decline in GI and moderate CT

and MC decline in unimodal areas such as primary somatosensory areas, cuneus, and

lingual gyrus.

5. LC 5 describes a steep SA decline and moderate CT decline in the left temporoparietal

junction.

6. LC 6 describes a steep decline in CT and a moderate decline of MC in the posterior

cingulate gyrus.

Fig.4.4) A & C . Spatial cortical components of a 6 component decomposition solution. Identified

components are projected onto an average template brain. Lateral and medial views of both
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hemispheres are shown. Warmer blues correspond to higher component scores. A) vertices that are

grouped together in components share the same pattern of morphometry, while in C) vertices that

cluster together share a coordinated pattern of maturation across four metrics. B & D. The weight

matrix shows a comparative morphometric pattern of each component. B) brighter colors represent

higher values (measurements) D) brighter colors represent higher slopes and preservation. Please note

that the weight matrix is normalized by z-scoring within each row for the purpose of visualization to

better capture the comparative morphometric features of each component.

4.4. Post-NMF analyses results

4.4.1. Multiple Linear regression models

To investigate the specific sex and age by sex associations with regional patterns of

morphometric variation, we also performed multiple linear regression analyses to determine the

statistical significance of the regression model. Fig 4.5 displays multiple linear regression models

of OPNMF individuals’ weightings, corrected for multiple comparisons across components

(q-value = p-value <0.008), plotted against age for males and females.

All components’ weights significantly decreased with age, except for MC weights being

significantly increasing in C1 and decreasing in C2 and in the components of 3, 4, 5, and 6,

which were not associated with age. Weightings of most components were significantly greater

in males than females across morphometric measures; SA weights across all components, CT

across components 4 and 6, GI across components 2, 5, and 6. Conversely, in MC weights,

females’ weights were significantly higher across all components (marked with green Astros in

Fig.4.5). Significant age and sex interactions were observed across SA weightings in components
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1, 4, 5, 6 such that males show a slower SA loss relative to females. Significant age and sex

interactions were observed across CT weightings in component 4 such that males show a slower

CT thinning loss relative to females (highlighted in light blue in Fig.4.5). SES analysis revealed

associations exclusively with GI weights across components 1, 2, and 5 (highlighted in yellow in

Fig.4.5). However, IQ scores weren’t associated with cortical weights.

Fig.4.5) Multiple linear regression models of individuals’ weightings plotted against age for

males and females association with respect to age and sex. Component weights with significant

71



age-by-sex interactions are highlighted in blue, component weights significantly associated with

SES are highlighted in yellow, and component weights significantly associated with sex are

marked by green Astros.

Table 4.2. Summary of all linear model results. T-values (t) and p-values (p) (uncorrected) are

bolded if they survive Bonferroni correction (q-value=p<0.008).

metric CT SA
factor Age SexM SES IQ Age*Sex Age SexM SES IQ Age*Sex

C1 t=-10.30
p=<2e-16

t= 2.086
p=0.037

t=  0.659
p=0.5098

t=0.161
p=0.8718

t= 2.515
p=0.012

t=-5.422
p=7.89e-08

t= 7.197
p=1.46e-12

t=-1.252
p=0.211

t= 0.614
p= 0.539

t=  4.125
p=4.11e-05

C2 t= -6.842
p=1.59e-11

t= 2.238
p=0.025

t= 1.368
p=0.1717

t=0.433
p=0.6651

t= 1.359
p= 0.175

t= -2.854
p=0.0044

t= 5.777
p=1.1e-08

t=-0.823
p=0.410

t= 1.382
p= 0.167

t= 2.630
p= 0.00870

C3 t= -8.769
p=<2e-16

t= 2.080
p=0.037

t=0.0686
p=0.644

t=0.0842
p=0.141

t=1.406
p=0.160

t= -3.005
p=0.0027

t=5.000
p=7.11e-07

t= -1.118
p=0.263

t= 1.478
p=0.1397

t= 2.453
p= 0.01439

C4 t= -6.101
p=1.67e-09

t= 3.655
p=0.0002

t= 1.223
p=0.2217

t=0.293
p=0.7699

t=3.307
p=0.000

t= -3.833
p=0.0001

t= 6.489
p=1.55e-10

t= 0.051
p=0.959

t= 0.240
p=0.8107

t= 4.432
p=1.07e-05

C5 t= -7.188
p=1.56e-12

t= 1.591
p=0.112

t= 1.392
p= 0.164

t=0.617
p=0.538

t= 1.762
p=0.078

t= -4.122
p=4.16e-05

t= 5.674
p=1.98e-08

t=-1.076
p=0.282

t= 1.796
p=0.0729

t= 2.649
p= 0.00824

C6 t= -8.545
p=2e-16

t= 2.664
p=0.007

t= 0.924
p=0.3555

t=0.249
p=0.8036

t=2.046
p=0.041

t=-4.428
p=1.09e-05

t= 6.159
p=1.18e-09

t=-1.205
p=0.228

t= 1.865
p=0.0626

t= 3.034
p= 0.0025

Metric GI MC
factor Age SexM SES IQ Age*Sex Age SexM SES IQ Age*Sex

C1 t=-22.186
p=< 2e-16

t= 2.297
p=0.0218

t= -2.898
p=0.003

t=-0.575
p=0.5653

t= 0.176
p=0.860

t= 6.107
p=1.61e-09

t= -3.170
p=0.001

t=0.725
p=0.46

t= -0.264
p=0.7918

t= -2.424
p= 0.0156

C2 t=-16.589
p=<2e-16

t= 3.861
p=0.0001

t= -3.065
p=0.002

t=0.597
p=0.5504

t=0.621
p=0.534

t=-5.880
p=6.11e-09

t= -5.141
p=3.48e-07

t=-0.36
p=0.71

t= -0.982
p=0.326

t= -1.629
p= 0.10379

C3 t=-12.323
p=<2e-16

t= 2.533
p=0.0115

t= -2.543
p=0.0112

t=0.360
p=0.7187

t=0.877
p=0.380

t= 1.548
p=0.122

t=-4.342
p=1.6e-05

t=0.957
p=0.33

t= -0.181
p=0.856

t=-2.141
p=0.03263

C4 t=-24.249
p=<2e-16

t= 1.652
p=0.0988

t= -2.632
p=0.0086

t= -0.320
p=0.7487

t=0.293
p=0.769

t= -2.537
p=0.0114

t=-4.629
p=4.3e-06

t= 0.02
p=0.32

t= -0.979
p=0.1476

t=-1.394
p=0.164

C5 t=-19.030
p=< 2e-16

t= 3.358
p=0.0008

t= -2.978
p= 0.002

t= 0.011
p=0.9913

t=0.306
p=0.759

t= 0.056
p=0.955

t=-4.951
p=9.07e-07

t=-0.10
p=0.91

t= -1.377
p=0.169

t= -0.122
p=0.9032

C6 t= -17.391
p=< 2e-16

t= 3.404
p=0.0006

t= -2.104
p=0.0357

t= 0.312
p=0.7554

t=0.981
p=0.327

t= -1.756
p=0.0795

t=-5.101
p=4.25e-07

t=0.074
p=0.94

t= -0.208
p=0.8352

t= -1.515
p= 0.130
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4.4.2. Cross-sectional NMF analysis results are mostly associated with age

PLS identified a single significant LV (p<0.05), explaining 94.6% of the covariance

across cortical and demographic data (Fig.4.6). The largest contribution to the demographic

covariance patterns is clearly age, and in the morphometry pattern, we see a somewhat

unexpected dominant contribution of GI across all components and the somewhat unexpected

contribution of CT, and to a lesser extent of SA. However, we do also observe the subtle impact

of lower SES and IQ scores on these patterns, suggesting patterns of brain maturation, distributed

decreases in GI, CT, and SA through the cortex, and also local increase in the sulcal depth in

MC, to be associated with lower IQ and SES.
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Fig.4.6) The single significant cross-sectional NMF and individual’s characteristics LV. Cortical

components of morphometric features (left) and demographic data (right) contributing to the LV

are shown. Right) The brain maps are summarized with their morphometric profiles, each with a

set of four metrics corresponding to a single spatial component; for each significant

morphometric feature contributing to the LV, the bootstrap ratios are displayed on the

components’ morphometry profile, In which a decrease in a metric is color-coded in blue

whereas increases, in red. Left) The Bar plot describes the contribution of demographic variables

to the identified LV. The x-axis demonstrates the correlation of each demographic variable in the

LV. Error bars indicate the 95% confidence interval; variables with a BSR> 0.196 (p <0.05) are

described as contributing to the LV [51] (color-coded in yellow). Please note the opposite

directionality of the Hollingshead score used in the analysis and figure, and the SES.

4.4.3. Longitudinal NMF analysis results demonstrate increased specificity to

demographics

bPLS identified three significant (p<0.05) LVs, altogether explaining 97.6% of the

covariance across cortical and demographic data. In Fig.4, cortical morphometry and

demographic patterns contributing to the LVs and their corresponding bootstrap ratios (BSR) are

displayed.

LV1 (p= 0.0001), explaining 47% of covariance across the brain and demographic data,

describes a sexually differentiated pattern of change in the cortical morphometry slopes which

five of the cortical components (LC1 - 4 and C6). The results suggest that more

socioeconomically advantaged and high IQ females accelerate through the neurodevelopmental

processes. These are mostly related to their association with SA (LC1, LC3, LC4, LC6) and CT
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(LC1, LC2) changes in specific components, almost uniquely in regions that are related to

heteromodal processes. MC changes in LC6 exclusively, show a more stable or increasing rate of

change in females and lower SES demographic groups as they mature (Fig.4.7A).

LV2 (p = 0.005), explaining 26% of covariance, describes a more component-specific

pattern, loading predominantly onto LC1 and LC2. This LV reveals a pattern in which male sex

and higher IQ are associated with changes in MC and CT in two of the cortical components

(LC1, LC2). The relationship is such that male individuals with higher IQ show relative

preservation of MC (in LC1, LC2) and CT (in LC4) compared to females and the lower IQ

participants as they mature through adulthood. (Fig. 4.7B).

LV3 (p = 0.02), explaining 24% of covariance across the data (p-value= 0.005) describes

a specifically age-related pattern in which changes of GI in two cortical components of LC2 and

LC4, such that GI slopes show a milder decline in older ages (the slopes of GI change become

less negative in older ages) (Fig. 4.7C). These LVs together (explaining 97% of the covariance)

uncover patterns of co-ordinated anatomical change that are sexually differentiated and that are
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influenced by environmental factors such as SES and related to different cognitive abilities.
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Fig.4.7. BPLS identified three cortical morphometry and demographic latent variables​. bPLS

analysis identified three (LV1: A; LV2: B; LV3: C) significant latent variables (p<0.05), each

identifying a pattern of linear correlation between NMF weights and demographics. Bar plots on

the left describe the contribution of demographic measures in which the x-axis demonstrates the

correlation of each demographic variable within an LV. Error bars indicate the 95% confidence

interval; only variables with a BSR> 0.196 (p <0.05) are described as contributing to each LV

[51] (color-coded in yellow). For each bar plot, cortical components contributing to the LV are

shown. The morphometric profile of each component describes to what extent changes across a

given metric are identified as being accelerated (blue) or decelerated (red) in the spatial

component in relation to the demographic pattern shown in bar plots. Only cortical variables

with a BSR > 2.58 (p <0.01) are described as contributing to an LV (color-coded according to the

BSR plot is shown on the right).
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4.5. Morphometric components occupy different positions along

gradients of brain function

Fig.4.8 demonstrates parcellation brain maps for NMF components, demonstrating the

gradients’ value distributions of vertices within each component for the three age groups where

more positive values indicate proximity to the transmodal end of the gradients.

In the cross-sectional NMF results (cortical covariance patterns), C2 and C5 are generally

associated with a position along the association end of the principal gradients. While components

C1, C3, and C4, which are more sensorimotor, lie towards the sensorimotor gradient end, and C6

is prominently distributed over the two ends of gradients. The comparison between how the

components situate along the children’s second gradients with their situation along the first

gradient of adolescents reveals a pattern of shifting in the mean and median values (Fig 4.8)

towards the transmodal end of the gradients a seen in C1, C4, and subtly in C6 (which are

generally unimodal-centered components).

In the longitudinal NMF (coordinated maturation), in children and adults gradients,

components LC2, LC3, and LC4 occupied more sensorimotor spatial locations and lay towards

the sensorimotor gradient end. In contrast, the first component, LC1, and to a lesser extent

component LC5, is multimodal with especially two peaks at the opposite ends of the gradients.

In longitudinal components, this shift from children to adolescents is seen in LC2, LC3, and

LC4, components that are generally situated along the unimodal cortical regions.

Interestingly, in both cross-sectional and longitudinal components analyses, from

adolescence to adulthood, even though our dataset (5-25 years old) does not fully represent an

adult population (22-35 years old), components show a pattern of the shift from an overarching

mid-centered situation across the first gradient (i.e., visual system) in adolescents to a more

78



multimodal-centered organization (i.e., means and medians in adolescents are mid-centered,

whereas in adults, are more towards the ends of the gradients more specifically).

Fig.4.8. A&C) Distribution of cortical components derived from NMF for cross-sectional (A) and

longitudinal (C) analyses. B&C) Violin plots demonstrating z-scored gradient value distributions

from the three age group maps for each NMF-derived component, where more positive values

indicate proximity to the association end of the gradient. The white line in the box plots indicates

the mean, and the gray box indicates the median. The Connectome workbench [301] was used to

generate the NMF parcellation brain map​s (A&C).
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Chapter 5. Discussion

5.1. Overview

In the present work, I implemented a multivariate framework, OPNMF, to examine

morphological and maturational covariance patterns across measures of CT, SA, GI, and MC.

This implementation provided insight into group-level covariation in the morphometric and

coordinated maturational aspects of cortical neuroanatomy that are related to inter-individual

variations in demographics and cognitive ability. NMF captured covariation patterns across

morphometry measures in the cross-sectional implementation, such as higher CT and lower GI

covariation in frontotemporal areas and lower CT and higher SA covariation in unimodal areas.

Further investigations revealed different contributions of different age, sex, SES, and IQ groups

to the found morphometric patterns such that older age dominantly, and lower IQ, and lower SES

were related to lower GI, CT, and SA covariance throughout the cortex and local increase in

associative cortices sulcal depth in MC. Next, NMF identified patterns within which cortical

changes covary coordinatedly through a novel longitudinal implementation of the framework,

such as demonstrating preserved SA primarily in unimodal areas through brain development.

These patterns were age-related, sex-specific, and varied by different socioeconomic status; as

our PLS analysis revealed covariance with female sex, higher SES, higher IQ, and older ages

showed a pattern of accelerated maturation of SA mainly, and CT covariance across significant

portions of the cortical sheet. Finally, we observed that cortical components occupy spatially

different positions along the sensorimotor-association axis of brain function maturational

gradients. From childhood to adolescence, the position of morphometric components shifts from

a unimodal-centered position to a more transmodal anchored position; whereas from adolescence
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to adulthood, the components’ situation shifts from an overarching mid-centered distribution in

the first gradient (visual system) to a more multimodal-centered organization towards the

extreme ends of the gradients.

5.2. Significance

The convoluted anatomy of the cortex and its highly dynamic maturational processes can

only be properly mapped through the integration of multiple facets of morphometry. Expanding

on multivariate data-driven techniques, we identified spatial patterns of variation across the

cortical sheet with respect to multiple brain features within the critical period of brain

maturation. The proposed implementation enables describing the heterogeneous contributions of

well-defined neuroanatomical features and their relationship within and across cortical

components in a single framework. Moreover, using a large, long-running, and

well-characterized dataset, we developed a longitudinal implementation of nonnegative matrix

factorization which identified patterns of coordinated change across multiple cortical

morphometric features. We identified dominant modes of covariance between cortical

morphometric features and their coordinated pattern of change, demonstrating sexually

differentiated patterns and a strong association with variability in demographics and cognitive

ability. This novel characterization of cortical morphometric features provides an important

understanding of the interdependencies between morphological measures, their development,

and their relationship to critical factors impacting development and will contribute to future

studies of neurodevelopmental disorders.

81



5.3. NMF results

5.3.1. Identifying regions of cortical variability and the choice of parcellation

The NMF technique has been used in voxel- [50,59,269] and vertex-wise [57,274,277]

MRI studies to identify structural covariance networks in the context of neurodevelopment

[50,57,89,271], and neuropsychiatric disorders [58,59,272–274]. These previous studies have

demonstrated that the technique can identify meaningful patterns [49,57,271]. NMF has shown

higher specificity, reproducibility, and better statistical power in contrast to other conventional

methods such as ICA and PCA [49]. It also leads to purely positive outputs due to its

nonnegativity constraint leading to more straightforward representation subsequently,

interpretation of the data.

Additionally, with the orthogonality constraints in decomposition, OPNMF prioritizes

sparsity in the solution and provides a part-based decomposition with minimally overlapping

components where each vertex is assigned to a specific component for a purely additive

parts-based representation. Thus, compared to graph theory approaches as in MSNs [43],

OPNMF also allows for recovering the contribution of individuals’ variations and the

neuroanatomical features to the identified patterns. Comparing the NMF-derived components to

the MSNs N=4 modular decomposition that approximately corresponds to the lobes of the brain

[43],  the NMF components provide additional information on the pattern of cortical features

covariation in deriving the resultant pattern. For example, the NMF C2 and C3 combination are

spatially comparable to the temporal and frontal MSNs’ regions; these components indicate a

mutual pattern of high CT and low SA in this organization, but high GI and low MC in sulci,

whereas low GI and high MC in gyral regions of the modes. NMF framework, providing such
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specificity at the morphometric level, could narrow down the further assessments of genetic and

cellular associations in the context of normative as well as pathological variations in cortical

development.

5.4. Different contributions of demographics and cognitive groups to the

morphometric maturational patterns

Existing literature suggests that the hierarchy of cortical organization serves as the

foundation for human brain development [302] that integrates differentially with the unique

combination of each individual’s biological characteristics, exposures, and experiences, resulting

in inter-individual cortical variability [302]. Following the identification of group-level

morphometric covariation patterns across individuals, bPLS revealed differing contributions of

individual participants with different ages, sex, SES, and IQ groups to the found morphometric

patterns. Using the weight matrix output from NMFs, corresponding to the weight of each

subject-metric pair on the found morphometric pattern, bPLS analysis, and linear regression

models revealed unique patterns of associations with different demographic and cognitive ability

characteristics. In the following, the findings from both cross-sectional and longitudinal analyses

will be discussed.

5.4.1. Inter-individual variability in the context of morphometric networks

Cross-sectional PLS (PLS1) showed associations between inter-individual variations to

the group-level variation patterns across individuals and morphometric features, while

longitudinal PLS (PLS2) revealed associations between the “tempo” of the change to the
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inter-individual variations. In contrast to PLS1, which has revealed one general age-dominant

pattern of association with less regional specificity, results from PLS2 showed more specificity

in morphometric features and cortical regions.

Older age has shown to be a significant contributing factor to both patterns of

morphometric covariation and coordinated change LVs; the relation was such that with the older

ages, individuals showed thinner cortical thickness, reduced area, and complexity, and sharpened

sulcal curves, keeping with the known literature of pattern of cortical remodeling occurring

between the ages 5 to 25 [15,16].

In PLS2, maturational changes of cortical thinning and area reduction have shown to be

explicitly accelerated in female individuals with age as expected (LV1, 47% covariance), while

the gyrification changes exclusively were shown to be decelerated with age (LV3, 24%

covariance). These findings are in line with the previously described sexually differentiated

patterns of cortical maturation with females maturing earlier [184,185] and demonstrating

statistically significant higher rates of cortical changes [159,187], specifically cortical thinning in

the temporal, temporoparietal, and orbitofrontal cortices, interpreted as a faster maturation of

regions of the social brain areas in females [159]. The differing tempo of maturation has also

been previously reported by Raznahan et al. [15], such that sex differences captured in most

cortical regions were mainly reported to be driven by sex differences in SA and, to a lesser

extent, CT maturation [15] while GI has been reported to show only subtle sex differences with

age in localized frontal regions, suggesting that the mechanisms underlying of age-related

changes across these features are quite distinct [159]. These sex-related differing patterns are

thought to be genetically determined [187] and could be explained by the different timing and

rate of fundamental biological maturation moderated by hormonal processes [189,190].
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IQ and SES have shown a similar directionality in associations with both morphometric

patterns of covariation (PLS1) and patterns of change (PLS2) and, in fact, in a recent PLS

analysis investigating the association between the connectomic organization and childhood SES

[303], it has been shown that the structural connectome mediates the relationship between SES

and cognitive ability [303]. In our PLS results, while lower SES and IQ were associated with

thinner CT, reduced SA, and reduced gyrification/complexity were also associated with

accelerated cortical thinning and area reduction (i.e., accelerated maturation) in line with the

previous literature [192,199].

Seidlitz et al. [43] have previously demonstrated that inter-individual variation in

topography of multiple dimensions of brain organization in the MSN framework is predictive of

the inter-individual variation in IQ [43]. Particularly, performing a PLS analysis between the

MSNs’ nodal degree and IQ measurements, their analysis revealed patterns of association

between the left frontal and temporal cortex (left-lateralized temporal and bilateral frontal

cortical areas), where a higher degree was reported to be predictive of a higher general IQ, and

bilateral primary sensory cortical areas, where a higher degree was specifically predictive of a

higher nonverbal IQ [43]. These results are considerably comparable with the pattern of cortical

morphometry-cognitive and demographics association captured through bPLS. In components

LC1 and LC4, including the bilateral middle temporal, superior, and inferior frontal regions

(LC1), and left-lateralized primary sensory cortical areas (somatomotor and visual cortex) (LC4).

In these components, LV1 was associated with higher IQ, along with higher SES, and female sex

has been linked to covariation of accelerated thinning in cortical thickness in LC1 and surface

area reduction in LC1 and LC4. (In cross-sectional analysis, we did not capture regional

specificity for IQ associations as the pattern was dominated by age - morphometric relations. In
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the multiple linear models on cross-sectional NMF, IQ was not a significant variable in none of

the analyses.)

Taken together, the results highlight the complex dynamic changes occurring across this

age range and emphasize that inter-individual differences significantly influence the normal

variation in cortical patterning. Comparing the results from the two PLS analysis of

cross-sectional and longitudinal NMF weights emphasize that inter-individual variations in

factors such as age, sex, environmental and cognitive ability are more variably explained by

variations in the tempo of anatomical change than morphometric covariations at any one-time

point [15]. Overall, these findings support that the integrative NMF-framework approach,

simultaneously capturing information about multiple dimensions of brain morphometry, shows a

capacity to explain a significant proportion of inter-individual variance in age, sex, IQ, SES, in

the identified patterns, but also recovers the contribution of specific cortical features into the

patterns of correlation.

5.4.2. Cross-sectional NMF PLS and multiple linear regression results

bPLS analysis identified one LV accounting for 96% of covariance across morphometric

variation patterns of cross-sectional NMF-derived components which was dominantly derived by

older age, and the subtle impacts of lower socioeconomic status, and lower IQ. The general

pattern of negative correlation between age and morphometric measures, keeping with the

literature, reflects the expected general pattern of cortical remodeling occurring between the ages

5 to 25: an overall pattern of thinner cortical thickness, reduced area, and complexity (i.e.,

gyrification), and sharpened sulcal curves in lateral frontal, superior parietal, middle temporal,

and occipital regions. Cortical gray matter loss during adolescence [129] is thought to be the
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result of synaptic pruning and the encroachment of continued white matter growth [21] which

continues well into adulthood [4,304–308]. The harmonious changes of the continuous cortical

thinning [18–22], decreasing cortical surface area [11,15,18,19], and the decreasing cortical

complexity [14,15,142,155,309] could reflect the known neurodevelopmental underlying cortical

maturation linked to the known regressive and progressive processes of increased synaptic

pruning [92], myelination [83,310], decreases in neuronal cell numbers [24], reduction in

dendrite arborization complexity, length, spines [94], and synaptic densities [311,312].

While fewer studies have investigated cortical MC in the context of development within

this period [151,313], it has been hypothesized that increases in the MC could effectively

measure the changes attributed to gray matter volume loss [152]. Increasing white matter volume

in sulcal regions has also been reported to be linked to the increasing MC, which

Could be reflected in a sharpening of the sulci, partly due to the reorganization (or

encroachment) of white matter into cortical regions that are normally occupied by gray matter

[152]. This hypothesis behind sulcal sharpening is consistent with the negative direction of MC

with other metrics found in C1 (sulcal regions in heteromodal association cortices), where

increasing MC is associated with decreasing subcomponents of gray matter volumes, CT and

SA, and is highly consistent with our understanding of the synaptic pruning versus axonal

myelination synchrony.

This cross-sectional LV also indicated a subtle impact of environmental factors, as

indexed by Childhood SES, and cognitive performance, indexed by IQ, showing a similar

direction in positively associating with morphometric patterns. Individuals with lower SES and

IQ showed subtly thinner CT, reduced SA, and reduced gyrification. These findings are

consistent with the previously shown positive association between SES and IQ [192], cortical SA
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expansion [192,193,216] and thickness [192,212,217–219], and the gyrification that exhibited a

pattern of positive correlation to general cognitive ability in mainly parietal and frontal cortical

areas [214,215].

Evidence from the extensive previous literature suggests that cortical morphometric

changes differ across sexes [119], although the direction of this effect varies as a function of the

age and the region being examined [119]. The PLS results, however, did not reveal a significant

sex effect in the demographic pattern; it is, therefore, probable that the existing sex-specific

differences might be obscured by the overall dominant and strong effect of GI and age (maximal

linear association between the two), which has been shown to exhibit little sex-specific

differences [159].

Further investigations through multiple linear regression models revealed female sex to

be associated with significantly lower weights of SA weights across all components, CT across

components C4 and C6, GI across components C2, C5, and 6. In MC weights, conversely,

females’ weights were significantly higher across all components. Specific age by sex

interactions associations with patterns of morphometric variation were also identified specifically

in SA weights across C1, C4, C5, and C6 such that females show a faster loss relative to females.

Raznahan et al. [15], leveraging over 1250 longitudinally acquired brain scans from typically

developing individual youth, have previously shown that differences in CV result from the

complex interaction between cortical thickness, surface area, gyrification, and convex hull in a

sexually dimorphic and age-dependent manner [15,119]. The differing patterns were such that all

measures of morphometry (the mean of each measure across the cortical sheet) were

significantly greater in males than females, and sex differences in CV arise mainly due to sex

differences in how SA (rather than CT) changes with age [15]. The present age-, sex-, and age by
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sex-related findings are consistent with these findings. What is more, we have added a

component-level spatial specificity to such previous reports; this enables distinguishing the

different effects of age, sex, and their interaction with different cortical regions in a single

integrative analytical framework, combining multiple aspects of cortical morphometry, that also

recovers the contribution of each feature.

5.4.3. Longitudinal NMF PLS results

PLS identified three LVs (explaining 96% of covariance overall) relating coordinated

cortical maturation variability to demographics and cognitive ability variability.

LV1, explaining nearly half of the covariance (47% covariance), revealed an age-related

sex-specific pattern influenced by environmental factors and related to the differences in

cognitive ability. This LV shows associations between female sex, older ages, higher SES, and

higher IQ with a coordinated pattern of accelerated maturation across primarily SA and CT

across the majority of the cortex. This differing pattern in the tempo of loss is relatively more

demonstrated in SA across components LC1, LC3, LC4, and LC6, which is notably strongly

pronounced in LC4, including unimodal areas such as primary somatosensory areas cuneus, and

lingual gyrus. To a lesser extent, CT shows a similar pattern across components LC1, and LC2,

occupying the majority of the cortex. Socio-environmental factors significantly influencing

patterns of brain maturation have been investigated in previous works [192,200–203]. Childhood

SES and IQ have also shown a similar direction in associations with morphometric patterns of

change​​, such that Individuals with higher SES and IQ individuals demonstrate patterns of

accelerated cortical thinning and area reduction (i.e., accelerated maturation) [192]. In a recent

investigation by Rakesh et al. [199], patterns of association between delayed cortical maturation

and deprived socio-environmental factors have been observed using SA and CT as a proxy of
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brain age [199], along with previous works reporting other types of disadvantages associations

with delayed brain development [192,200–203], and higher SES individuals that have shown

faster functional brain development, such as increased functional specialization [204] and

resting-state connectivity [205–209] in children and adults. Specifically, SA maturation has

shown to be vulnerable to the prenatal environmental differences [120] affecting maturation into

late adolescence.

The pace of maturation has also been reported to be linked to variations in cognitive

ability in previous works. Earlier thinning of CT has been reported to be positively linked to IQ

in typically developing individuals in their late childhood, adolescence, and adulthood [212]

which becomes more pronounced with increasing age: the higher the IQ, the faster the thinning

of cortex over time [212]. Similar to SA, with higher IQ, the surface area has decreased at a

higher rate [212], consistent with the present findings.

The sexually differentiated pattern of cortical maturation has been previously described in

numerous works, and sexually differing associations seen in this LV were in the expected regions

and directionality: maturational changes have shown to be explicitly accelerated in older female

individuals compared to males in surface area reduction in the majority of cortex (LC1, LC3,

LC4, LC6), and to lesser extents cortical thinning (LC1, LC2), while localized gyrification

changes (in unimodal association cortices of occipital lobe, and postcentral areas) were

exclusively shown to be decelerated with age across both sexes (LV3). These findings are in line

with the previously described sexually differentiated patterns of cortical maturation with females

maturing earlier [184,185] and demonstrating significantly higher rates of cortical changes [187],

specifically changes of SA [15], and specifically thinning in the temporal, temporoparietal, and
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orbitofrontal cortices, interpreted as a “faster maturation of the social brain areas in females”

[159].

5.5. Alignment of NMF components with the principal functional

gradients

Human brain development follows a pattern of an early maturation of the unimodal visual

and sensorimotor areas, followed by the refinements of the multimodal association cortex

[2,11,298]. Leveraging the previously described age-dependent patterns of gradual maturation in

the macroscale of cortical organization, we investigated how NMF components situate along the

gradients of brain function across development.

Consistent with the findings reported in Dong et al. [298], the position of NMF-derived

components along the secondary gradient of connectivity in children generally resembles their

position along the primary gradient in adolescents (Fig.4.8). From a transition of the gradients

point of view, the secondary gradient of children notably demonstrates a shift from a more

unimodal-centered organization to a transmodal anchored framework. However, such

developmental transitions are not present in all components such as (C2, C3, C5) and (LC1, LC5,

LC6) that their positions were spatially consistent across children (second gradient) and

adolescents (first gradient); as suggested by Dong et al. [298], this may highlight the presence of

stable features of the cortical macroscale organization of the cortex in this overarching pattern of

developmental transition.

From adolescence to adulthood, on the other hand, even though our dataset (5-25 years

old) does not fully represent an adult population (i.e., 22-35 years old), components show a
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pattern of shift from an overarching mid-centered distribution in the first gradient (visual system)

to a more multimodal-centered organization towards the extreme ends of the gradients. As

suggested in Dong et al. [298], these findings could potentially reflect the continued refinement

of the visual system within the global connectivity structure through young adulthood [298].

Taken together, these age-dependent and interconnected patterns of shift across the

position of morphometric derived components along functional gradients may reflect the

refinements towards the facilitation of multimodal information integration and “segregation of

local, specialized processing streams” in the adult-like cortical architecture, as proposed by Dong

et al. [298].

5.6. Limitations

The findings of this study should be interpreted while considering its limitations. The primary

limitation to the generalization of presented results is that NMF identifies data-driven

components; subsequently, the identified spatial patterns are specific to the used data, and the age

range studied. Another limitation is the linearity presumption in multivariate approaches. PLS,

for example, reduces the complexity of analyses by providing a concise summary of the data;

however, it may also mask the potential non-linear relationship between the two. The same is

true for the use of slopes as the proxy of change in our longitudinal analysis; our analysis of

coordinated maturation is restricted to modeling the effect of age on cortical changes in a linear

fashion which conceals nonlinear changes, given that brain development is a nonlinear process

[2,186,314]. For example, SA peaks at the age of 8 and decreases gradually afterward; through

the linear measure of slope, this cubic trajectory would be interpreted as a slow decline with age

92

https://paperpile.com/c/s6qez4/PKB6q
https://paperpile.com/c/s6qez4/PKB6q
https://paperpile.com/c/s6qez4/PKB6q
https://paperpile.com/c/s6qez4/7SHPA+ycIYW+FycZx


instead. A caveat of the current work could therefore be the large age range studied that might

conceal interaction effects that vary by age, such as the cognitive- and demographics-related

variability (as shown in previous studies [212]). While NMF is an ideal method to explore large

population samples by providing group-level covariation networks, it is limited by the inability

to construct individual-level networks; this should be borne in mind for the future clinical

implications of this framework. Lastly, manual quality control could potentially be subject to

errors and inconsistencies, and the present work is unavoidably no exception to that.

5.7. Future directions

This work would benefit from the integration of white matter indices (such as T1/T2, T2*,

Fractional Anisotropy, and Mean Diffusivity) from multi-modal data to delineate networks of

coordinate maturation across gray and white matter boundaries, enabling better characterization

of the complex and dynamic codependencies between gray and matter tissues. Additional

cortical metrics to be investigated using higher resolution MR images could be boundary

sharpness coefficient (BSC), which has been proposed as a proxy to capture alterations in

microstructure at the cortical gray/white matter boundary [315,316], and measures obtained from

different cortical depths, that have been shown specificity in capturing alterations in

neuropathological conditions [317–320]. Another direction for future work would be to assess

whether the found morphometric components of covariation map onto spatial expression of

certain cell types, gene expressions (transcriptional profiling of spatial components),

evolutionary hierarchy, and developmental expansion [138] profiles. Moreover, characterizing

the normal patterns of cortical maturation across its multiple facets would not only contribute to
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better modeling the typical brain development and its underpinning mechanism but also shapes

thinking about the mechanisms underlying pathological neurodevelopmental instances.

Therefore, an important next step will be to investigate patterns of healthy versus

neurodevelopmental and neuropsychiatric populations, such as autism spectrum disorder and

psychotic spectrum disorders, to contrast their integrated patterns of maturation, which remains

to be determined in future work.

94



Chapter 6. Conclusion

Characterizing patterns of neurodevelopment across morphological measures is essential for

understanding the dynamic processes of typical brain development. Leveraging a data-driven

technique, we identified cortical covariation patterns across integrated cortical morphometry

measures and their synchronized rate of maturation in typically developing youth. To our

knowledge, this is the first implication of NMF that implements integrated longitudinal sMRI

data to describe the maturation process. Taken together, we observed a non-uniform relationship

between morphometric measures throughout the cortex underlying fundamental

neurodevelopmental processes that covary together. The identified patterns were age-related,

sexually differentiated, influenced by individual differences in socioeconomic factors, and

associated with cognitive ability. This novel characterization of cortical morphometric features

maturation provides an important understanding of the interdependencies between morphological

measures, their coordinated development, and their relationship to critical factors impacting

development.
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