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Abstract

This thesis presents an exploration of a variety of transfer learning techniques in the context

of deep networks for the segmentation of focal pathological structures across neurodegener-

ative diseases. Deep learning frameworks have been successful in achieving state-of-the-art

performance on a variety of public medical imaging datasets for pathology segmentation. To do

so, deep learning models need large amounts of labelled training data, as they contain a huge

number of parameters. However, in medical imaging applications, finding a large amount of

annotated data is hard. This hinders the performance of these data-hungry deep learning based

frameworks in the medical field. Recently, transfer learning has been shown to be effective in

dealing with the challenges related to small data regimes in many medical imaging applications.

In this thesis, we explore various transfer learning strategies like fine-tuning a pre-trained

network, multi-task joint representation learning using a double head network and a novel

coupling of the above methods with cascaded networks, specifically for knowledge transfer across

neurodegenerative diseases. In addition to this, we also analyze several ways of fine-tuning a

pre-trained source network to determine the best way for carrying out knowledge transfer via

fine-tuning in the context of medical image segmentation. We evaluate these approaches by

leveraging a large, proprietary, multi-scanner, multi-center, clinical trial MRI dataset of 1385

patients with Multiple Sclerosis (MS) in order to improve performance on a multi-class brain

tumour sub-tissue segmentation task for which a much smaller, public dataset is available (from

the MICCAI BraTS 2018 challenge). We contrast these methods against the baseline method of

training a deep network with brain tumour data from scratch. We also present a comprehensive

analysis of these methods by varying the number of samples in the target brain tumour set

available for training. We obtain 3 − 61%, 3 − 11%, and 0.4 − 5% relative improvements over

the baseline on the target segmentation performance (measured through Dice scores) using

transfer learning techniques, when using small, medium and large amounts of training data in

the target task respectively.
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Résumé

Cette thèse présente une exploration d’une variété de techniques d’apprentissage par

transfert appliquées à des maladies neurodégénératives dans le contexte de réseaux profonds

pour la segmentation des structures pathologiques focales. Les cadres d’apprentissage profond

ont réussi à atteindre des performances de pointe sur une variété d’ensembles de données

d’imagerie médicale publiques pour la segmentation de pathologies. Pour ce faire, les modèles

d’apprentissage profond ont besoin de grandes quantités de données étiquetées durant la phase

d’entraînement car ils contiennent un grand nombre de paramètres. Cependant, dans les

applications d’imagerie médicale, de grands ensembles de données annotées sont difficiles à

trouver, ce qui entrave les performances de ces cadres basés sur l’apprentissage profond dans le

domaine médical. Récemment, l’apprentissage par transfert s’est révélé efficace pour adresser

les défis liés à la taille restreinte des ensembles de données dans de nombreuses applications

d’imagerie médicale. Dans cette thèse, nous explorons diverses stratégies d’apprentissage

par transfert comme le réglage fin de réseau pré-entraîné, l’apprentissage de la représentation

conjointe multi-tâches en utilisant un réseau à deux têtes et un ainsi que le couplage des méthodes

ci-dessus avec des réseaux en cascade, spécifiquement pour le transfert de connaissances entre

plusieurs maladies neurodégénératives. En plus de cela, plusieurs façons de régler avec précision

un réseau pré-entraîné sont analysées pour déterminer la meilleure approche pour effectuer

un transfert de connaissances via un réglage fin dans le contexte de la segmentation d’images

médicales. L’évaluation de ces approches se fait en tirant parti d’un ensemble de données d’IRM

d’essais cliniques de grande taille, multi-scanner et multicentrique, de 1385 patients atteints de

sclérose en plaques (SEP) dans le but d’améliorer la performance d’une tâche de segmentation

de sous-tumeur cérébrale de 4 classes pour laquelle un ensemble de données public beaucoup

plus petit est disponible (défi MICCAI BraTS 2018). Ces méthodes sont comparées avec la

méthode de base de formation d’un réseau profond avec des données sur les tumeurs cérébrales

entraîné sans transfert de connaissances. Nous présentons également une analyse complète de

ces méthodes en faisant varier le nombre d’échantillons dans l’ensemble de tumeurs cérébrales

cibles disponibles pour la formation. Nous obtenons des améliorations relatives de 3 à 61%,

de 3 à 11% et de 0,4 à 5% sur la performance de la tâche de segmentation ciblée (mesurée
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par les scores de Dice) en utilisant des techniques d’apprentissage par transfert comparé à la

performance de base lors de l’utilisation de petites, moyennes et grandes quantités de données

d’entraînement dans l’ensemble cible défini respectivement.
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1
Introduction

Owing to the success of deep learning in various computer vision applications, the potential impact of

these techniques in medical image analysis is enormous. Much research has been done to successfully

apply deep learning based approaches to medical image segmentation problems in the brain [42, 94],

prostate [144], pancreas [105], and many more applications, with the obtained results outperforming

traditional methods. However, the shortage of large, annotated patient imaging datasets available for

training hinders the performance of existing deep learning frameworks in medical image segmentation.

There are numerous challenges associated with obtaining big datasets. First, acquiring medical

imaging data is slow and expensive. Moreover, labelling the data is laborious and dependent on the

availability of qualified clinical experts. Datasets for patients with rare diseases are inherently small.

Finally, patient consent is not always available, and privacy considerations limit the possibility of

making the data public. As a result, the majority of datasets available publicly are small. Large

datasets exist, but many are proprietary. Therefore, finding ways to leverage knowledge from large

source datasets, if available, might be helpful for other, relatively smaller medical datasets of patients

with different diseases.

It has already been shown that transfer learning can be effective in dealing with small data

regimes in a wide variety of applications related to natural images [100, 37, 24, 29]. It has become

a common practice to use deep Convolutional Neural Network (CNN) models pre-trained on a

large ImageNet dataset [27] as a starting point for solving other computer vision tasks based on

natural images. In contrast, working with medical images presents more unique challenges. First,

1
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medical images can be 2D, 3D, or even 4D (spatio-temporal) in nature. Second, different anatomical

structures or pathologies (e.g. tumours, lesions) can occur non-uniformly, with varying shapes

and sizes across patients. Third, pixel intensities can vary across different modalities (MRI, CT)

and image acquisition protocols or scanners. This makes it hard to delineate the boundaries of

pathological structures accurately. Other factors include motion artifacts, missing edges and low

resolution, which increase the complexity of the problem.

Transfer learning has also been explored in many healthcare applications, such as the classification

of skin lesions [78] and brain lesion segmentation [36]. Typically, a deep network is trained using

a large-scale source dataset. This pre-trained network [19] can then be used in two ways: (1) to

extract off-the-shelf features for target datasets [51], or (2) as initialization for further fine-tuning

on the target dataset [125]. For example, knowledge could be transferred from medical and/or

non-medical datasets like ImageNet [27] to improve classification results in other target medical

applications [78, 145]. In the context of medical image segmentation, researchers have explored how

fine-tuning can be used to improve performance in segmenting pathologies when data is acquired

from multiple scanners [36] or in transferring knowledge from one grade of a disease to another

grade [1]. For example, authors in [86] trained a single CNN to perform different tasks, such as

tissue segmentation in brain MRI, pectoral muscle segmentation in breast MRI and cardiac CTA

segmentation. They found that this single network performed comparably to a CNN model trained

for each task individually. More recently, [147] trained a set of models in a self-supervised way

and showed how this approach could be leveraged to improve segmentation results across multiple

diseases (lung nodule, brain tumour, liver diseases) and multiple modalities (e.g. CT, X-ray, MRI).

In this thesis, we explore transfer learning techniques for the task of segmenting pathological

structures across different neurodegenerative diseases, where the imaging modalities are similar (e.g.

brain MRI), but the structures of interest differ substantially (e.g. lesions, tumours), and the task

can vary from binary to multi-label classification. The intuition is that since the imaging context

in both the diseases is similar, i.e. brain images, they share similar features. Hence, segmentation

results on the smaller target dataset should improve after leveraging the representation learned by

the network pre-trained on the large source dataset, as shown in Figure 1.1. Specifically, we explore
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different methods for leveraging a large, proprietary, clinical trial dataset of MRIs acquired from

patients with Multiple Sclerosis (MS), intending to improve the results for brain tumour sub-tissue

segmentation on a much smaller dataset. Our methods include: fine-tuning the pre-trained network,

jointly learning representations for both datasets using multi-task learning, and novel variations of

cascaded networks coupled with transfer learning techniques where sub-networks can be trained

in sequence or together. We also present a comprehensive study of these methods by varying the

number of samples in the target set available for training. Our approach shows great potential when

the target dataset is very small. We will now outline the main aspects of our approach, as well as

the content of the thesis.

(a) Large source dataset
(Multiple Sclerosis Lesions)

(b) Brain Tumor

(c) Stroke

(d) White Matter 
Hyper Intensity

Figure 1.1: Knowledge transfer from models pre-trained on a large annotated dataset of patients
having Multiple sclerosis to other relatively smaller datasets of patients having different neurological
diseases like brain tumours [9], brain stroke [72], and white matter hyperintensity [61]. Image
courtesy of NeuroRx Research for part (a).

1.1 Multiple Sclerosis

Multiple Sclerosis is a chronic neurological disease characterized by inflammatory demyelination of

the Central Nervous system (CNS), which consists of the brain and the spinal cord [41]. It is caused

when the body’s autoimmune system starts to attack the myelin sheath, a protective layer insulating



CHAPTER 1. INTRODUCTION 4

the axons in the neuron, which is responsible for the proper transmission of electrical signals. As

a consequence, lesions are formed in the affected areas, leading to loss of activity in the central

nervous system. These lesions can develop at multiple locations in the CNS, hence the name Multiple

Sclerosis (MS). In 2013, 2.3 million people were estimated to be affected by MS globally, with Canada

having the highest prevalence rate of 291 per 100,000 people [16]. The risk of developing MS is about

2-3 times higher for women [82] than men. The most common first signs of MS may include weakness

in limbs, difficulty balancing the body, vision problems and heat sensitivity. There are primarily

four patterns of progression in MS [69]: Clinically Isolated Syndrome (CIS), Relapsing-remitting MS

(RRMS), Primary Progressive MS (PPMS) and Secondary Progressive MS (SPMS). CIS is the initial

stage, in which a person experiences neurological episodes lasting for at least 24 hours. Around

30-70% of patients who enter the CIS stage develop MS later. More than 80% of patients with

confirmed MS after the CIS stage, are diagnosed with RRMS. RRMS is characterized by periods

of attacks, called relapses, that can last for months, followed by periods of remission during which

symptoms may disappear partially or altogether. At some point, symptoms can become permanent.

The remaining 20% of patients with confirmed MS are diagnosed with PPMS. Such patients suffer

from the progression of disability right from the onset of the disease, with little to no remission.

Around 65% of patients who experience RRMS progress later to the SPMS stage. Although there

are treatments available for controlling and slowing down the progression of the disease, no cure

exists to date.

Usually, the diagnosis is made by neurologists who check a patient’s medical history and conduct

a neurological examination, followed by confirmation of the disease after performing specific tests

like MRI scanning. Lesions in MRIs are one of the hallmarks of the disease. Lesions appear

hypo-intense in T1w MRI sequences in comparison to white matter and grey matter, while they

appear hyper-intense in T2w and FLAIR sequences. An example of all the sequences along with

expert level T2 lesion ground truth is shown in Figure 1.2.

Experts use MRI scans to manually segment MS lesions, which is an important task for performing

proper diagnosis, and evaluating disease progression, activity and treatment response. This process

is laborious and time-consuming, because millions of voxels need to be manually examined by
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(a) T1w (b) T2w (c) FLAIR (d) T1p (e) Ground Truth

Figure 1.2: An example of different MRI sequences (a)-(d) along with expert labelled lesion labels
(e) overlayed on T2 modality in MRI of a MS patient. Image courtesy of NeuroRx Research.

the expert. This manual work is also subject to inter-rater variability, as segmentations can vary

across annotators, as well as intra-rater variability, because the same expert can produce different

segmentations at different times. This inconsistency motivates the development of automated

segmentation tools that can produce consistent segmentations across time. However, the automatic

segmentation of MS lesions from a patient’s MRI is a challenging task due to many factors. First, MS

lesions vary substantially in terms of shape, size, and texture from one patient to another. Multiple

lesions may be present at different sites in a patient’s brain. Second, lesions are generally present in

a small proportion of the brain, causing extreme class imbalances. Other factors like sensor noise,

motion artifacts, missing edges and low resolution make this problem even more challenging. In order

to deal with these difficulties, researchers have proposed many machine learning-based algorithms

for this task, which can be broadly classified into two kinds: traditional machine learning-based

approached and deep learning-based approaches. Traditional machine learning methods include, for

example, modelling the distribution of healthy and non-healthy tissue separately [32], using graphical

models for incorporating spatial context between neighbouring tissue voxels [123] and engineering

feature extractors for constructing complex models of the tissue classes [122]. Deep learning based

approaches [132, 130, 15] rely on deep neural networks, and often outperform traditional methods

because of their ability to combine the feature engineering and classification, thus obtaining features

that are automatically tailored for the classification task.
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1.2 Brain Tumours

Brain tumours are caused when cells in the brain stop growing normally, leading to the formation

of tumours [117]. Brain tumours can be benign or malignant (cancerous) and can be categorized

into two types: Primary or Secondary [118]. Primary brain tumours originate in the brain, whereas

secondary brain tumours originate in other parts of the body but spread to the brain. Based on

factors like the rate of growth of tumours as well as how probable they are to spread to surrounding

tissue, tumours can be divided into two grades: Low-grade and High-grade [117]. Low-grade tumours

are non-cancerous and unlikely to grow or to infiltrate surrounding tissue. High-grade tumours are

cancerous, proliferate and spread to other parts of the CNS. Low-grade tumours can also transform

into high-grade tumours. Gliomas [117] are the most common high-grade primary brain tumours,

which originate in the glial cells. These can be of three types: astrocytoma, oligodendroglioma

and ependymomas. Meningiomas, on the other hand, originate in meninges. Brain tumours affect

around 250,000 people worldwide every year [120]. Specific types of tumours are more likely to

develop at a certain age. A tumour can manifest through symptoms like headaches, vision problems,

seizures, memory loss, difficulty speaking and walking [118]. Once symptoms occur, the diagnosis

begins with a neurologist who browses through a patient’s medical history and performs various

neurological tests and other tests to check muscle strength, eyes, balancing and memory. After that,

the neurologist may conduct further tests, typically including imaging of a patient’s brain using CT,

MRI or PET scans.

(a) T1 (b) T2 (c) FLAIR (d) T1c (e) Ground Truth

Figure 1.3: An example of different MRI sequences (a)-(d) along with ground truth segmentation
mask (e) overlayed on T1c modality in BraTS 2018 Training dataset [79].
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These scans help radiologists in delineating brain tumours from other healthy parts of the brain.

For example, high-grade gliomas are hyper-intense in T1c sequences while edema, the swelling around

the tumour, is hyper-intense in T2w and FLAIR sequences. An example of all the MRI sequences

along with ground truth segmentation labels for a tumour is shown in Figure 1.3.

The treatment of the tumour depends on various factors such as the type, grade, location, size of

the tumour, age of the patient, and medical history. Surgery is usually performed to remove the

tumour entirely or partially [118]. For cases in which performing surgery is not feasible or needed,

radiation therapy and chemotherapy are used. For surgery based treatments, it is essential to detect

and segment the tumour and its sub-structures accurately. Experts examine the patient’s MRI

to segment different sub-structures of brain tumours manually. This process suffers from similar

challenges as in the case of MS lesion segmentation. In order to address those challenges, several

automatic brain tumour segmentation methods have been developed by researchers over the years.

The overall goal of all these segmentation approaches is to detect the location and delineate the

tumour regions in the brain from the healthy tissue. Figure 1.3(e) contains an example delineating

the active part of the tumour (in blue), the necrotic core (in red) and the edema (swelling around

the tumour, in green). As in MS lesion segmentation, both traditional machine learning and deep

learning approaches have been used for tumour segmentation. Some of the traditional machine

learning methods focus on distinguishing tumour regions from healthy tissue based on differences in

local intensity of the pixels and textual patterns [12] or by aligning MRI scans to a healthy atlas

and then classifying tumours as outliers [99], or by building generative, probabilistic models for

tissue distribution [80]. Deep Learning methods, on the other hand, learn highly discriminative

features from the data without the need for providing any hand-crafted or pre-defined features.

Particularly, Convolutional Neural Network-based methods have been leading in this field, with

promising results [42, 50, 54, 57]. In order to foster research in this domain, the brain tumour

segmentation challenge, BraTS [9], is organized every year since 2012, in conjunction with MICCAI

conference, allowing for objective comparison of different brain tumour segmentation methods on

standardized datasets.
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1.3 Outline of the Proposed Method

Lesion
Segmentation

3D Source
Multi-modal MRI
(Large dataset)

Finetuning

3D Target
 Multi-modal MRI
(small dataset)

x

Tumor
Segmentation

3D Deep Learning 
 Segmentation Network

(Source)

(a)

Multi-task
learning

Cascaded
Networks

(b)

(c)

(d)

Figure 1.4: Flowchart describing the proposed transfer learning approach from models pre-trained
on a large annotated dataset of MS patients (in part (a)) to multi-class brain tumour segmentation
on a relatively smaller brain tumour target dataset via fine-tuning, multi-task learning and cascaded
networks in part (b), (c) and (d) respectively.

In this thesis, we aim to address the challenges faced by the medical community due to the

lack of large annotated datasets in the context of medical image segmentation. In order to tackle

this problem, we propose and test several transfer learning methods which can be used on datasets

coming from different neurodegenerative diseases. The first objective is to explore different ways

of leveraging knowledge obtained from deep networks trained on a large source dataset in order to
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improve segmentation performance on a relatively smaller target dataset of patients with a different

disease. The second objective is to provide a comprehensive analysis of the impact of the target

dataset size on the performance of each transfer learning method. The source dataset used for both

objectives is a large, multi-site, multi-scanner, multi-sequence clinical trial MRI image dataset of

1385 patients with Relapsing-Remitting Multiple Sclerosis (RRMS), as well as expert-labelled T2

lesion masks for segmenting binary T2 lesions. The target datasets are subsets of the MICCAI 2018

BraTS dataset [79], which contains a total of 285 annotated brain tumour samples in the training

set and 66 unlabelled samples in the validation set.

For the first objective, we approach the problem using three different techniques that have

previously proven to be effective for similar tasks. A flow chart giving a high-level view of the

methods is shown in Figure 1.4.

1. FINE-TUNING: We explore the effectiveness of different fine-tuning techniques for the task

of segmenting pathologies across different diseases, as this approach has been shown in prior

work to improve segmentation results on data acquired from multiple scanners [36] and

knowledge transfer between different grades of a disease [1]. To achieve this aim, a 3D MS

lesion segmentation network is first pre-trained using the MS dataset. This network is then

fine-tuned for the multi-class brain tumour segmentation task. Furthermore, we evaluate

whether fine-tuning just the last few layers works as well for medical images as it does for

natural images, by varying the number of fine-tuned layers.

2. MULTI-TASK LEARNING: The second approach that we investigate is a multi-task learning

method in which a 3D segmentation network with two decoders, one for each dataset, is trained

to learn a representation jointly from both datasets. Previous works [86, 14] have shown

that sharing features across different tasks leads to better representation learning, resulting

in features that are inherently more task-invariant and generic. This has been beneficial in a

variety of computer vision domains [28, 84]. Moreover, multi-task learning allows us to train a

single network for handling multiple tasks rather than separate networks for individual tasks.

3. CASCADED NETWORKS : Cascaded networks have proven useful in various medical image
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segmentation applications [134, 42, 20], as they divide the overall task into a series of sub-tasks

and build on these sub-tasks. This motivated us to explore cascaded networks in the context

of deep transfer learning. We propose novel variations of cascaded networks by augmenting

the pre-trained MS network or pre-trained joint head network with another 3D UNet and then

training these sub-networks either simultaneously or sequentially. Note that the multi-task

learning approach assumes that both the source and the target datasets are available at training

time. In contrast, the other approaches work even if only a pre-trained source network is

available.

For the second objective, small, medium and large amounts of target brain tumour data are

used for training in order to provide a more comprehensive comparison between the performance of

different methods. Our quantitative and qualitative results show how different methods perform

in comparison to the baseline method of training the network from scratch on the target task, as

the number of target samples available for training varies. This comprehensive analysis is crucial in

order to understand if our approach can be applied in settings where the quantity of data available

for training is limited, in particular, to improve segmentation results on smaller public datasets,

real-time clinical data, data belonging to patients having rare diseases, and in analyzing similar data

from several hospitals.

1.4 Contributions

The work presented in this thesis contributes to the field of medical image segmentation for

applications in which only small amounts of data are available, as follows:

1. Exploring different transfer learning techniques across neurodegenerative diseases

in the context of medical image segmentation. Transfer learning techniques have been

studied extensively in computer vision applications. Yet, their integration into medical image

segmentation applications is still an ongoing research. This thesis explores a wide variety of

transfer learning techniques across neurodegenerative diseases, including fine-tuning a pre-
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trained network, joint learning of multiple tasks and proposes a novel coupling of these two

transfer learning methods with cascaded networks. The methods are evaluated using real-world

datasets of patients with MS as the source dataset and brain tumours as the target dataset,

which presents several challenges: differences in the structures of interest (lesions vs tumours),

the nature of task inference (binary to multi-label classification), and the dataset acquisition.

The methods we propose and test are general and can be applied to other medical image

segmentation tasks as well.

2. A quantitative and qualitative analysis of different transfer learning techniques as

a function of the size of the target dataset. We evaluate the performance of all the

methods using small, medium and large amounts of target brain tumour data. A comprehensive

comparison of different methods against the baseline method of training a network from scratch

with different amounts of target data is also presented for better insight. Our methods produce

the highest performance gain when the amount of target data is small to medium. These

results are promising since it suggests that our methods can be applied to improve performance

on other small medical imaging datasets.

1.5 Outline of Thesis

This thesis presents an exploration of several transfer learning techniques across neurodegenerative

diseases for segmenting pathological structures of interest. It is structured as follows.

Chapter 2 introduces the concept of deep learning and explains the fundamentals of convolu-

tional neural networks along with some tricks for training these networks. The problem of image

segmentation is discussed, where the goal is to label every pixel in the image with its corresponding

class. We then present a literature review of traditional machine learning and deep learning methods

for medical image segmentation. Afterwards, we discuss transfer learning in-depth, covering its

definition and its applications in computer vision. Finally, several recent deep transfer learning based

methods are reviewed in the context of medical image segmentation.
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Chapter 3 discusses different fine-tuning strategies employed for transfer learning across neuro-

logical diseases. We present details about the source MS lesion and target brain tumour datasets

used for evaluating the proposed methods, along with the pre-processing steps that we took. We

present the architecture of the 3D UNet along with its training procedure and the metric used for

evaluating the performance of the trained networks. Quantitative and qualitative results illustrate

the effectiveness of the proposed methods.

Chapter 4 explores a variety of transfer learning techniques used for leveraging knowledge from

the large MS source dataset in order to improve segmentation results on the smaller BraTS dataset.

The different methodologies, including fine-tuning, double-head networks for multi-task learning, and

novel variations of cascaded networks, are discussed in detail. We then describe our experimental

pipeline, as above, and a comparison of the different methods as a function of the amount of data

from the target dataset, which is available during training.

Chapter 5 summarizes the key ideas and contributions and discusses ideas for increasing the

applicability of this work to other relevant domains, as well as other avenues for future work.



2
Background and Literature Review

This chapter provides a review of relevant literature related to the task of transfer learning in

medical image segmentation. First, an overview of important concepts in the field of deep learning

is presented. It is followed by an overview of image segmentation in computer vision and in the

medical domain. Then, a review of deep learning methods in medical image segmentation, specifically

MS lesion segmentation and brain tumour segmentation, is provided. Finally, a review of transfer

learning techniques in deep learning for natural images is presented along with its applications in

medical image segmentation. Overall, this chapter focuses on providing a foundation for all the work

presented in later chapters.

2.1 Introduction to Deep Learning

Deep Learning [62, 39] is a powerful class of machine learning methods which has received immense

attention in various practical applications and as a research topic in the last decade. Deep Learning

methods rely on simple computational units, linked through parameters that are tuned so as to

model existing data. Deep learning methods are nowadays employed in many computer vision

applications like image segmentation [68], object detection [101], image generation [40], visual

question-answering [3], and image captioning [139]. One of the crucial reasons behind the success

of deep learning methods in computer vision applications is that they perform feature engineering

automatically from the raw data itself, instead of combining features that are hand-engineered. For

example, consider the case of image classification in which the task is to differentiate whether an

13
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object in a given image is a car or a bus. A traditional machine learning framework will first extract

features from the image, such as whether there are wheels, the size and number of wheels, overall

length and width of the object, to name a few, either using feature detectors or manually. These

extracted features are then fed into a classifier that learns the correlation of these different features

with the output class, i.e. car/bus, in this case. Extracting features is a tricky job and often requires

domain knowledge. This decoupling of the two stages of feature engineering and classification limits

the potential of traditional machine learning approaches. On the other hand, deep learning methods

thrive by learning the feature extraction part and classification part end-to-end.

2.1.1 Convolutional Neural Networks

Convolutional Neural networks (CNNs) [62, 111] are a type of Artificial Neural Network (ANN) that

operates on grid-like data, such as an image. This explicit assumption helps in reducing the number

of parameters by constraining the architecture of the model. In CNNs, each neuron is connected to

only a subset of neurons in its receptive field, and the weights among those subsets of neurons in that

layer, also known as kernels, are shared. Convolutional layers operate on this set of learnable weights

and receptive fields to calculate their dot product, which is used as an input to the next layer during

forward propagation. Another key property of CNNs is that they preserve spatial information in the

input image, unlike in ANNs, where the input image is flattened to form a vector. CNNs also employ

pooling layers to reduce the spatial size of the representations between successive convolutional layers.

This reduces the number of weights to be learned and hence prevents the network from overfitting.

An example of a CNN is presented in Figure 2.1.

Given an input volume [58] of size Wi × Hi × Di, one can design a convolutional layer of K filters,

each with a receptive field of size F, a stride S (with which the filters are slid over the input volume),

and an amount of padding P needed across the border of the input to produce an output of spatial



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

Convolutional 
Layer

Input

Convolution
Filter

Figure 2.1: An example of a CNN model where K filters of spatial dimension F convolve over an
image volume with stride S in order to produce an output volume of depth K.

Figure 2.2: An example of a 2x2 max pooling operation with stride of 2. The max is taken out of
every square belonging to different color. Image courtesy of [58]

dimension Wo × Ho × Do:
Wo = (Wi − F + 2P )

S + 1

Ho = (Hi − F + 2P )
S + 1

Do = K.

(2.1)

The notion of strides also extends to pooling layers with strides equal to the spatial dimension of

pooling filters. An example of a 2x2 max-pooling operation is shown in Figure 2.2.

2.1.2 Training Neural Networks

In supervised learning, every input data (e.g. image) is provided with the corresponding ground

truth label (e.g. bus or car, in the example we discussed above). After the initial pre-processing of

the data, an appropriate neural network architecture is defined, and its weights are initialized. Note
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that there are many smart techniques to initialize weights, which lead to faster convergence [38, 44].

The input is fed to the neural network, and the prediction is made at the last layer via forward

propagation. This prediction is then compared to the ground truth label, resulting in an error that

is captured using the notion of a loss function, L. In order to reduce the loss incurred, the weights of

the network are updated based on a technique called backpropagation, which is a form of Stochastic

Gradient Descent [103]. In practice, the weights are updated based on the loss incurred on a batch of

data samples at a time, rather than a single example. There are many other optimizers as well [60].

The networks are trained until the loss function on a validation set saturates. It is quite possible

for the network to accurately predict the labels on the training set without generalizing well to the

unknown data in the validation/test set. This situation is called Overfitting and can be tackled by

various regularization methods like reducing network complexity, adding dropout [119] or performing

batch normalization [52].

2.2 Image Segmentation

Image segmentation is a problem in the field of computer vision which deals with understanding the

content of an image by fragmenting it into sub-regions or segments. These segments are coherent, in

that there is usually a high similarity between pixels within a region. Image segmentation mainly

has two levels of granularity:

1. Semantic Segmentation refers to the labelling of every pixel with the class that best defines

it.

2. Instance Segmentation deals with identifying all the instances of a class that are present in

the input image.

Figure 2.3 illustrates the distinction between instance and semantic segmentation. In the case

of semantic segmentation, all the parrots are coloured in the same colour. In contrast, in instance

segmentation, every parrot in the image is considered a new instance of the class parrot and coloured

differently. Image segmentation algorithms have been widely explored in various applications, which
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Figure 2.3: An example illustrating the difference between Semantic Segmentation and Instance
Segmentation. The input image on the left is courtesy of [93].

include medical imaging and diagnostics [97], autonomous car driving [128], robotics [83], and video

surveillance [70].

A variety of approaches have been proposed to deal with the challenges related to the problem

of image segmentation. For example, in [95], the authors proposed a new segmentation algorithm

based on morphological properties of connected components in high-resolution satellite imagery. The

work in [53] presented an unsupervised clustering based texture segmentation algorithm that uses

the concept of Gabor filters. In [59], the authors employed a non-parametric information theory

based approach on a variety of image segmentation problems. The major disadvantage of all these

approaches is that they rely heavily on using image properties like texture, intensity, contrast and

entropy to understand the structures in the image, which can be subject to noise and variability that

are hard to work with in practice. Researchers also explored discriminative techniques like Support

Vector Machines [135, 85] and Random Forest [110] in the context of natural image segmentation.

However, all the approaches mentioned above failed to model the local spatial relationships, and some

approaches failed to learn from previous training examples. To deal with these issues, researchers also

worked on probabilistic graphical models like Conditional Random Fields [11, 48, 98], and Markov

Random Fields [33, 26] for modelling contextual and spatial relationships between neighbouring

pixels explicitly. In recent years, CNNs and other related models have proven much more successful

for image segmentation.

We will now focus on the problem of segmentation in medical images, which is the topic of our

work.
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2.3 Medical Image Segmentation

Image segmentation, in the context of medical images, is the process of delineating anatomical

structures and other regions of interest. These regions could either belong to normal healthy tissue,

like hippocampus [65], ventricles [124], liver [2] or to a pathology, such as lesions [122, 34] or

tumours [99, 80]. The segmentation of anatomical structures is useful for disease diagnosis, treatment

planning, computer-aided surgery and clinical studies. There are various types of imaging modalities

such as CT, MRI, X-ray, Microscopy, and Positron emission tomography (PET), which provide

insights about the internal anatomy of a patient. Figure 2.4 presents several examples of medical

images.

Medical image segmentation comes with its unique challenges, which make it a more complex

problem than natural image segmentation. First, medical data can be 2D, 3D or even 4D (spatio-

temporal) in nature. Second, there is high variability in medical images (See Figure 2.4). Different

anatomical structures can be present non-uniformly with respect to spatial occurrences of pixels or

groups of pixels. The shape and size of pathologies can vary across patients. Usually, pathology is a

small fraction of the whole image, which leads to large class imbalances. Also, obtaining datasets of

patients with rare diseases is a difficult task. There are many other challenges like noise induced by

sensors, occlusion, missing boundaries of regions, low-resolution images and motion artifacts, which

add to the complexity of the problem [97].

In order to address these specific challenges, a lot of medical image segmentation algorithms

have been proposed. The suitability of an algorithm depends on its area of application, the imaging

modality used, and the body organ under scrutiny [113]. One of the earliest approaches to medical

image segmentation includes several thresholding algorithms [63, 109], which aim to fragment the

input image based on different thresholds of image intensity. This kind of approach fails to model the

spatial properties of the image and is highly prone to noise and other artifacts. Methods involving

the extraction of regions based on manually specified seed points, called region growing methods,

have also been developed [73, 140]. Although these methods take into account important image

features like edges, in addition to the image intensities, they are still limited in scope due to the
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need for manual intervention and sensitivity to noise.

Figure 2.4: Examples of medical images capturing different anatomical structures of interest in
different organs. Image courtesy of [114].

Deformable methods [10, 25] use closed curves for defining the continuous boundary of a region,

which is obtained by iteratively applying internal and external forces. An advantage of deformable

methods is that they take into account the shape and appearance of the region as distinctive features
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and are more robust to noise. However, they still require manual intervention [97]. Classifier-based

methods like k-nearest neighbour or Bayes classifiers can be used to train a segmentation model from

data [76], but they strongly depend on the training set used. Clustering methods [23, 96] are similar

to classifier-based methods, but they do not require labelled training data. Both classifiers and

clustering methods lack in modelling spatial relationships in the image. Atlas-based approaches [13,

55] work by viewing the segmentation task as a registration problem. A target image is first registered

to a pre-annotated atlas image through a process called atlas warping. Afterwards, the target image is

segmented by transferring labels from the already segmented atlas image. Atlas-based approaches are

known to be prone to anatomical variability [97]. In order to incorporate the spatial context between

neighbouring voxels, researchers use statistical models called Markov Random Fields (MRFs) [45,

146, 67]. MRFs assume that pixels which are adjacent to each other should belong to the same

class, but other priors can also be used. However, MRFs can be sensitive to the choice of prior. A

prior that is too strong can lead to extremely smooth segmentation, with loss of intricate structural

information [97].

2.3.1 Deep Learning for Medical Image Segmentation

All the approaches discussed so far have a common disadvantage: they separate feature engineering

from the classification phase, as discussed in Section 2.1. With advances in computational power,

Deep Learning [62] has gained immense popularity in the field of medical image segmentation, by

overcoming the need to extract hand-crafted features from the images. By leveraging advances in

parallel computing, it has been possible to train deeper models that have become state-of-the-art in

medical image segmentation. The capabilities of deep learning-based approaches have led to their

use in a variety of medical image analysis tasks like classification, segmentation, detection, image

registration, and disease prognosis. This section is, however, dedicated to the application of deep

learning methods specifically for the task of medical image segmentation.

For a long time, researchers have worked on patch-based methods, where the goal is to classify the

pixels in small 2D or 3D patches extracted from full 3D volumes. The application of patch-based
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methods for segmentation in MRI images includes brain tumour segmentation [42, 50], segmentation

of different anatomical structures in the brain [133], lesion segmentation in MS patient MRIs [132],

segmentation of rectal cancer in the pelvis [127], segmentation of ventricles in cardiac MRI [31],

pancreas segmentation in CT images [105]. One limitation of patch-based methods is that they fail

to capture a wider or global context, focusing instead on the window size of the patch. Moreover,

these methods are computationally demanding, especially when overlapping patches are present.

In order to deal with this problem, researchers started working on incorporating full image

volumes as input to deep learning models called fully convolutional neural networks. These networks

predict a segmentation map as an output of the same size as the input volume. Some of the

most prominent network architectures in this regard are fully Convolutional Networks (FCNs) [68],

UNet [104, 22], VNet [81] and SegNet [5].

Figure 2.5: Architecture of 3D UNet. Image courtesy of [22].

Figure 2.5 depicts the architecture of the UNet, which will be a starting point in our investigation.

The network consists of an encoder, followed by a decoder which outputs a segmentation map.

The encoder and decoder are interconnected at different scales via links called skip connections.

These skip connections help in passing gradients back through the network more efficiently, thereby
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promoting faster training. Although working on full images is computationally more challenging, it

has been widely explored in medical image segmentation tasks due to the increasing availability of

high-performance computing resources. Applications include the segmentation of MS lesions in the

brain [15, 75, 88], brain tumour segmentation [57, 54], prostate gland segmentation [144] and cardiac

segmentation [126]; see [74, 66] for a survey.

2.3.2 Deep Learning for MS Lesion Segmentation

One of the early applications of deep learning in MS lesion segmentation is [130], in which the

authors present a 3D CNN model trained on 3D MRI patches from the public Longitudinal Multiple

Sclerosis Challenge 2015 [17]. The authors of [15] use 3D convolutional encoder networks with

shortcut connections to capture features at multiple levels, for better lesion segmentation across

different lesion sizes. They also observe that increasing the depth of the network has a positive

impact on the segmentation output. Also, authors in [43] develop an automated lesion segmentation

network on the Grand Challenge (MSGC) dataset [121] that can deal with missing modalities. Their

method learns an embedding for every input modality, where the latent space is acted upon by

well-defined arithmetic operations in order to generate the segmentation results. The work in [35]

incorporates location-sensitive information or lesion priors into a deep learning model trained on

patches of multiple sizes. In [132], the authors propose a cascade of two 3D patch-based CNNs, where

the first network predicts prospective lesion voxels, and a secondary network refines the segmentation

results by reducing the number of false positives.

2.3.3 Deep Learning for Brain Tumour Segmentation

The segmentation of brain tumours is a crucial task for cancer diagnosis, assessment of tumour

growth, treatment recommendation, evaluation of treatment response, and computer-aided surgery.

Recently, deep learning methods have achieved state-of-the-art results on some brain tumour

segmentation tasks [87] without the need for hand-crafted features. Some of the early works applying

deep learning approaches to brain tumour segmentation include [42, 148, 94]. These are patch-based
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methods which extract patches from the image and predict the class label of the central pixel.

Initially, researchers mainly opted for 2D patches [42] instead of 3D patches [129], for the sake of

managing computational load. In [57, 42], the authors incorporate global and local context using

dual pathway CNN models in order to produce accurate segmentation. In [42], the authors introduce

cascaded CNN models for brain tumour segmentation, where soft segmentation maps of a base

model are concatenated with input image sequences to train a secondary model. The authors of [94]

opt for smaller kernels, which allows them to have deeper networks with the same receptive field as

shallow networks with bigger kernels. In [71], the authors convert the problem of multi-class brain

tumour segmentation into multiple binary sub-tasks for segmenting different sub-structures of the

tumour. They also use an ensemble of networks trained on one of the three orthogonal planes in

order to incorporate 3D contextual information. Recently, the UNet architecture, which we discussed

above [104, 22] has become popular for brain tumour segmentation [30] due to its empirical success.

2.4 Transfer Learning

Humans are capable of transferring knowledge across different tasks. For example, consider a person

who knows how to ride a bike. If he or she tries to learn how to ride a motorcycle, the previous

biking experience helps to quickly pick up the new skill rather than learning basic principles of riding

(like balancing or following traffic rules) from scratch. Unfortunately, artificial agents based on deep

learning are designed to learn different tasks separately (see Figure 2.6). They fail to generalize when

presented with out-of-distribution data, i.e. data of a type which has not been seen during training.

However, in practical applications, it can be difficult or expensive to obtain large annotated datasets

for training data-hungry artificial agents from scratch. Transfer learning helps address this challenge.

Before proceeding to the formal definition of transfer learning, we need to introduce some

notations. A domain [92] D = {X , P (X)} has two components: X is the feature space and P (X) is

the marginal probability distribution of X = {x1, x2, · · · , xn} ∈ X . A difference in either feature

space or marginal probability distribution leads to a different domain. Given a specific domain D,

a task T = {Y , f(·)}) consists of two parts: Y, the label space, and f(·), a predictive conditional
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Figure 2.6: Example illustrating the difference between (a) traditional machine learning and (b)
transfer learning.

function which learns P (y | x) from training data samples {xi, yi}, where xi ∈ X and yi ∈ Y [92].

Given a source domain DS and source learning task TS, a target domain DT ̸= DS and target

learning task TT ̸= TS, transfer learning tries to leverage the knowledge obtained through DS and

TS, in order to better learn the target predictive function fT (·) in DT [92]. Transfer learning achieves

this by focusing on three main aspects: "what to transfer", i.e., which information in the source is of

use to the target, "how to transfer", i.e., finding the best way to transfer the useful information, and

"when to transfer", i.e., understanding which information from the past can interfere with the target

and how to avoid transferring in such scenarios. The above three aspects vary depending on how

similar the source and the target domains are.

The relationship between source and target domains and tasks leads to two primary transfer

learning settings: homogeneous transfer learning and heterogeneous transfer learning. Homogeneous

transfer learning deals with cases where P (XT ) ̸= P (XS) and/or P (YT | XT ) ̸= P (YS | XS). It

tries to narrow the gap of the marginal distribution P (X ) and/or conditional distribution P (Y | X )

between source and target domains. Heterogeneous transfer learning deals with cases where XT ̸= XS

and/or YT ̸= YS. It focuses on narrowing the gap between the input feature spaces of the source

and target domains and further correcting the differences between domain distributions (marginal or

conditional) if they exist, using homogeneous transfer learning techniques [136]. The methodologies

for homogeneous transfer learning include instance-based, feature-based, parameter-based, hybrid-

based and relational based approaches. Instance-based approaches [47] employ a weighing scheme by
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which some instances in the source domain are re-weighted and directly used with the target set for

training. This re-weighing helps in reducing the difference in marginal distributions between the two

domains. Feature-based approaches work in two ways: the first approach [46] finds a transformation

of the feature space of the source domain to be closer to the target domain. The other approach [91]

transforms both the domains to a common meaningful latent feature representation with better

predictive capabilities and therefore reduces the differences in the marginal distribution between the

two domains. Parameter-based methods [142, 107] share the parameters of the models learned on the

source and target domain. They also create an ensemble of multiple source models combined optimally

to improve the performance of the target model. Hybrid-based approaches [138] combine instance

and parameter-based approaches for transferring knowledge between the domains, whereas relational

based approaches [141] work in scenarios where there exists a well-defined relationship between

source and target domains. Heterogeneous transfer learning deals with cases where the feature

spaces differ. In that case, feature-based methods help by converting the heterogeneous problem

to a homogeneous problem and then using the methodologies mentioned above for homogeneous

transfer learning.

In recent years, transfer learning has also been successfully applied in the context of deep learning.

Using off-the-shelf pre-trained models [112] as feature extractors has been the most basic way to

transfer the knowledge from source to target. The key idea here is to use initial layers of a pre-trained

source model as a fixed feature extractor for other target tasks. An advantage of this approach is

that it allows the training of shallow classifiers on top of the extracted features.

Another popular strategy for deep transfer learning is to selectively retrain or fine-tune the layers

of a pre-trained model [90, 49]. As deep learning models are layered architectures, different layers

capture different levels of patterns in the input. The initial layers tend to capture generic features

like shape, colour, orientation, whereas deeper layers tend to capture more complex patterns in the

input, which are often task-specific in nature [143]. Typically, the initial layers of a source model are

frozen while the deeper layers are retrained or fine-tuned on the target task. The selection of layers

to freeze or retrain depends on the target task and the amount of target data available. Another

slightly different type of deep transfer learning is called multi-task deep learning [108], where a deep
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learning model is trained to handle several tasks simultaneously. This leads to an inductive bias in

the model, which encourages the model to learn features that can generalize to more than one task.

2.5 Deep Transfer Learning for Medical Image

Segmentation

The potential impact of deep learning methods in medical image analysis is immense. Deep learning

systems have been successful in early diagnosis, predicting the risk of diseases and thereby aiding

in taking preemptive steps to prevent them. Yet, many barriers slow down their progress in the

medical field. Since deep learning requires large amounts of data for training, the unavailability of

large annotated datasets becomes a hurdle for the advancement of deep learning systems in medical

imaging analysis. Acquiring medical imaging data is a challenging task, as the process is slow and

expensive. Moreover, labelling the data depends on the availability of qualified clinical experts,

which is a laborious and expensive job. Often, the issue of imbalanced data remains in healthcare

due to factors like shortage of data for rare diseases or high class imbalances in terms of pathology vs

healthy tissues. Moreover, the majority of datasets available publicly are small. Large datasets exist

but are mostly proprietary, which further hinders their use freely in the medical community. Recently,

transfer learning has proven effective in dealing with small data regimes in healthcare domains for

various applications such as the classification of skin lesions [78] and brain lesion segmentation [36].

Typically, a deep network is trained using a large-scale source dataset. This pre-trained network

is then used in two ways: either to extract features for the target task [51] or as initialization for

further fine-tuning based on the target task [125], as shown in Figure 2.7. For example, in the case

of classification tasks, it has been shown that results on smaller target medical datasets [78, 145,

102] could be improved by leveraging models pre-trained on medical and/or non-medical datasets

like ImageNet [27].

Transfer learning has also been explored in many medical image segmentation applications. MRI

imaging data acquired from different scanners and imaging protocols leads to differences in the
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Source Domain Target Domain

Fine-tuning

Model trained 
on source domain

 used as starting point
for target domain

Model fine-tuned 
on target domain

Figure 2.7: An example illustrating how fine-tuning is performed in deep learning networks in order
to transfer knowledge from source to target.

nature and quality of the images. Often, models trained with data belonging to one protocol can

perform poorly on data from other protocols. In [36], the authors show that fine-tuning can be useful

to increase performance in white matter lesion segmentation in the brain, when the data is acquired

from multiple scanners and imaging protocols. They also present an extensive study on how much

target data is required for successful domain adaptation of the source network and how much of

the pre-trained model should be fine-tuned with target data. In [56], the authors address the same

problem in the context of brain lesion segmentation, by performing unsupervised domain adaptation,

which means that their method does not require ground truth labels for the target set. This involves

training a discriminator which classifies the domain of the input image based on activations obtained

when the input is passed through a segmentation network, which is trained to learn domain-invariant

features. In [1], the authors show how knowledge can be transferred from one grade of a disease to

another. Notably, the authors show that transfer learning helps to generalize on unseen test data

by using a model pre-trained on high-grade brain tumour cases and fine-tuning it with low-grade

glioma cases. In [6], the authors use the prediction of anatomical positions as a pretext task, and

train input features in a self-supervised manner for cardiac MR image segmentation. In [86], the

authors train a single CNN to perform different tasks, ranging from tissue segmentation in brain

MRI, pectoral muscle segmentation in breast MRI and cardiac CTA segmentation. This single

network performs comparably to a CNN model trained for each task individually. In [125], the
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authors perform extensive experiments on four different medical imaging applications in order to

show that fine-tuning CNNs deeply can be effective in many medical image analysis tasks. Recently,

the authors of [147] trained a set of models called Model Genesis in a self-supervised way, without

requiring any manual annotations, and showed how the knowledge in this model could be leveraged

to improve segmentation results across multiple diseases (lung nodule, brain tumour, pulmonary

embolism, liver diseases) and multiple modalities (e.g. CT, X-ray, MRI).



3
Transfer Learning via Fine-tuning

In the previous chapter, we saw how the performance of deep learning models suffers in small data

regimes in medical imaging applications. We also saw how transfer learning could be beneficial

for various medical imaging applications to alleviate such problems. This chapter explores the

hypothesis that transfer learning for the task of segmenting pathological structures can be performed

across neurodegenerative diseases. Specifically, we leverage a deep learning segmentation network

pre-trained on a large pathology segmentation dataset, in order to improve segmentation performance

on a small dataset, in a scenario in which: (a) the two image datasets are acquired from patients with

different neurological diseases, (b) the pathological structures are different in the two datasets (lesions

vs. tumours), and (c) the inference tasks themselves differ (binary vs. multi-class segmentation). We

explore several fine-tuning strategies to see how to best leverage the source model and adapt it to

the target dataset, including freezing the network and only retraining the last few layers, fine-tuning

only the decoder, or carefully fine-tuning the entire network.

Experimental validation of the methods involves first pre-training a binary classifier for the

segmentation of T2 lesions based on a large proprietary, multi-scanner, multi-center, longitudinal

clinical trial, MRI dataset of 1385 patients with relapsing-remitting Multiple Sclerosis (RRMS), along

with expert-labelled T2 lesions. Next, a series of experiments are performed to explore the ability

of transfer learning to improve the results of an end-to-end multi-class brain tumour segmentation

network trained on subsets of the MICCAI 2018 BraTS dataset [79]. Given that both MRI datasets

are acquired from patients with neurological diseases that present with focal pathologies (lesions and

29
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tumours), the intuition is that the two datasets share common features. As such, the framework

should be able to leverage the representation learned by the lesion segmentation network trained on

the bigger MS dataset to improve the segmentation results on the smaller brain tumour dataset.

3.1 Methodology

This section talks about different fine-tuning strategies that we employ for transferring knowledge

across diseases. Mainly, a 3D deep neural network inspired by UNet [22] has been used for the task

of focal pathology segmentation. The architecture of the network is depicted in Figure 3.1(a), and

the implementation details of the model are described in Section 3.2.2.

Now, given a source network trained from scratch on a large source dataset, the objective is to

transfer the representation learned by the source network and adapt it to the (smaller) target set

to improve pathology segmentation performance. A popular strategy for transfer learning consists

of fine-tuning the pre-trained source network on the target dataset. It is also to be noted that

fine-tuning is a general approach and can be performed as long as a pre-trained network trained on a

source dataset is available or the source dataset is available to train a source network. In this chapter,

three different strategies of fine-tuning are explored, considering that we have a source dataset that

is used to train a source network. The most common way of fine-tuning consists of replacing the

last few layers of the source network with new layers, re-initializing the weights and changing the

output dimension of these newly added layers as per the target task. The remainder of the network

is frozen, which prevents the gradient flow. In the first strategy, namely FT-Last Three, only the

newly added layers are trained on the target dataset (See Figure 3.1(b)). This strategy has been

advocated when the amount of target data available is small, and the similarity between the two

datasets is high, as in the context explored in this paper [36]. The intuition behind this approach is

that the initial layers of the network tend to learn low-level image features (e.g. edges, orientations)

that are generic and, therefore, useful across different datasets and tasks. In contrast, the higher

layers of the network tend to capture more complex patterns that are specific to a particular task.

When the source and target datasets are similar, and/or more target data is available, more layers
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can be fine-tuned [143, 21]. This leads to the second strategy we explore, represented as FT-Decoder,

which involves freezing the encoder and fine-tuning the entire decoder (See Figure 3.1(c)). The third

strategy, represented as FT-All, consists of fine-tuning the whole network with target data (See

Figure 3.1(d)).

Lesion
Segmentation

x

Tumor
Segmentation

Frozen
Newly added layers
Fine-tuned layers

3D conv (3x3x3)+ LRelu
3D conv (1x1x1)+ softmax
3D Average Pooling (2x2x2)
3D Transposed conv (3x3x3 + LRelu)

Batch Norm 
Skip connections

3D Multi-modal
Target MRI

3D Multi-modal
Source MRI

Transfer from
Source to Target

(a)

(b)

(c)

(d)

Figure 3.1: Transfer learning framework. (a) UNet architecture for pre-trained source network. (b),
(c) and (d) depict different methods of adapting the pre-trained source network for the target task.
In all three, the last three task-specific layers are replaced with new layers (orange). The remaining
network is fine-tuned such that: (b) only the newly added layers are re-trained (FT-Last Three), (c)
only the decoder is fine-tuned (FT-Decoder) and (d) the whole network is fine-tuned (FT-All) with
the target data respectively.
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3.2 Experimentation Pipeline

This section describes the data and its preprocessing. This is followed by a detailed breakdown of

the 3D UNet based network architecture along with its training procedure and the experimental

setup. To assess the performance of the three different transfer learning approaches, as discussed in

Section 3.1, in the context of pathology segmentation, we perform experiments using a large source

dataset of MS patients, in which the segmentation network is trained to label lesions. The target

task is to segment brain tumours and their tissue sub-classes from patient MRI. We compare the

performance of these transfer learning approaches to training only on the target data from scratch,

for different dataset sizes.

3.2.1 Data Description and Pre-processing

Multiple Sclerosis Dataset (Source): The source task involves a binary classification to dif-

ferentiate T2 hyperintense lesions from healthy tissues in a proprietary, multi-modal MRI dataset

acquired from Multiple Sclerosis (MS) patients participating in a multi-site, multi-scanner clini-

cal trial. The dataset consists of 1385 patients, scanned annually for up to 24 months, totalling

3630 multi-sequence 3D MRI samples consisting of T1-weighted, T2-weighted, Fluid Attenuated

Inverse Recovery (FLAIR), and T1 post-Gadolinium sequences acquired at 1mm × 1mm × 3mm

resolution. They are then interpolated to 1mm3 isotropic resolution, which results in MRIs of size

229 × 193 × 193. T2 binary lesion segmentation masks provided with the dataset are obtained

through expert manual corrections as a result of a proprietary automatic segmentation method.

Before using these MRI samples for training the segmentation network, a preprocessing pipeline is

followed, which includes brain extraction [116], N3 bias field inhomogeneity correction [115], Nyul

image intensity normalization [89], and registration to the MNI-space.

Brain Tumour Dataset (Target): The target datasets are obtained by subsampling datasets of

various sizes from the BraTS 2018 MICCAI challenge [79, 7, 8]. The entire training dataset consists

of 210 high-grade glioma (HGG), and 75 low-grade glioma (LGG) patients, and the validation set
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consists of 66 patients. Each sample contains T1-w, T1 post-contrast (T1c), T2-w, and FLAIR 3D

MR sequences. Expert segmentation labels are provided for the BraTS Training set (used for training

the network) but not for the BraTS Validation set1 (used for testing). Tumours are segmented

into three classes: edema, necrotic/non-enhancing core, and enhancing tumour. These three classes

combined together are referred to as “whole” tumour. The volumes are co-registered, resampled to

1mm3 resolution and skull-stripped. Our pre-processing pipeline includes registration of samples to

the same space as MS data using ANTs tool [4].

For both MS dataset and Brain tumour dataset, the image intensities are then standardized

using mean subtraction, division by standard deviation, and rescaled to range from 0 to 1. The

images are standardized to 240 × 192 × 192 using zero-padding and cropping operations.

3.2.2 Architecture of 3D CNN for Segmentation

The proposed segmentation network is a 3D UNet based network that takes 3D patient MRI sequences

as input and generates a 3D output mask of the same resolution. As is typical of a 3D UNet [22,

77], the network consists of an encoder part and a decoder part, which helps it to model the entire

brain concurrently for the segmentation task preserving all spatial information unlike in patch-based

methods. The architecture of the proposed network is shown in Figure 3.1(a).

Like the original 3D UNet, our proposed segmentation network also consists of four downsampling

blocks followed by four up-convolution blocks. The encoder part consists of two consecutive 3D

convolutions of size 3 × 3 × 3 with k ∗ 2(n−1) filters, where n is the resolution step, and k is the

initial number of filters (4 in our case). Each convolution is followed by a leaky rectified linear

unit (L-ReLU), unlike ReLU in standard 3D UNet. Average pooling of size 2 × 2 × 2 and stride

of 2 is performed, followed by batch normalization [52]. In the decoder part, each step consists

of 3D transposed convolutions of size 3 × 3 × 3 with 2 × 2 × 2 stride and k ∗ 2(n−1) filters for

upsampling, whose output is concatenated with the corresponding output of the encoder part. Batch

normalization is applied again, following which, two 3 × 3 × 3 convolutions with L-ReLU activation
1Please note that the predictions made on the BraTS 2018 Validation set must contain all four tumour sub-classes,

which are then uploaded onto the BraTS web portal for evaluation.
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are applied. The last layer consists of 1 × 1 × 1 convolution with F filters, where F denotes the

number of classes for the task, followed by a Softmax/Sigmoid non-linearity. The implementation of

the model is done in Pytorch2.

3.2.3 Training the Network

Segmenting MS lesions is a binary voxel-wise classification task, whereas brain tumour sub-type

segmentation is a four-class voxel-wise classification task [79]. For lesion segmentation, the training

objective is weighted binary cross-entropy loss. Given an expert labelled image Y n for a patient

volume n consisting of labelled voxels yn
1 , . . . , yn

i and the network’s predicted output Ŷ n containing

voxel predictions ŷn
1 , . . . , ŷn

i , then, the weighted binary cross-entropy loss is computed as follows:

BCEn = −
∑︂

i

(︃
wey

n
i log(ŷn

i ) + (1 − yn
i ) log(1 − ŷn

i )
)︃

(3.1)

where we is the weight of lesion class at epoch e during training as specified in Equation 3.2. The

weighted binary cross-entropy loss helps to account for class imbalance, caused due to the presence

of fewer lesion voxels in comparison to non-lesion voxels.

we = max(Pre, 1) (3.2)

where P, initial weight for the lesion voxel class, is the ratio of the number of non-lesion voxels to

the number of lesion voxels in the whole training dataset as defined below:

P = #non-lesion voxels in whole dataset
#lesion voxels in whole dataset (3.3)

Initially, due to the presence of a small proportion of lesion voxels, high value of P will encourage

the network to put more emphasis on learning voxels belonging to lesion class, thereby over-segmenting

the lesion. As the training procedure proceeds, the emphasis of P will decay exponentially with epochs

at the rate of r, decay rate until it reaches 1, as specified in Equation 3.5. This weighing scheme
2http://pytorch.org/

http://pytorch.org/
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promotes the network to decrease the number of false positives in prediction, thereby discouraging

over-segmentation of lesions as the learning proceeds.

For the multi-class brain tumour segmentation task, the training objective is weighted categorical

cross-entropy loss. Given ŷn
i,c be the probability with which the network predicts that voxel i of

volume n belongs to class c, then, the weighted categorical cross-entropy loss is calculated as shown

in Equation 3.4.

CCEn = −
∑︂

i

∑︂
c

wn
i,c log(ŷn

i,c) (3.4)

wn
i,c = pc,e × yn

i,c, pc,e = pc ∗ re + 1, where, pc =
(︄∑︁k=C

k=0 Vk

Vc

)︄
(3.5)

The initial weight of a class c, pc, is calculated as the ratio of the total number of voxels divided

by the number of voxels Vc belonging to class c in the training set. The class weights pc,e at epoch e

are scheduled to decay with a decay rate lower than 1 as explained in Equation 3.5. As the number

of epoch increases, the weight for each class converges to 1, ensuring that every class is given equal

importance during the later stages of training.

3.2.4 Evaluation Metrics

For the task of segmenting MS lesions, a voxel-level analysis of the network’s prediction is performed.

The network’s sigmoid output is compared against a threshold, t, for obtaining a binary segmentation

output. It is followed by counting the number of True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN) for a given input image. For example, every voxel for

which the predicted lesion voxel is correctly classified accounts for True Positive (TP). In contrast, a

False Positive (FP) results from the misclassification of a voxel as a lesion voxel. These four metrics

are summarised in Table 3.1.

These voxel-wise measures are then used to calculate the True Positive Rate (TPR) and False

Detection Rate (FDR), as defined in Equations 3.6 - 3.7. TPR and FDR are calculated at a set

of different thresholds t, which capture the range of operating points describing the network’s
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Ground Truth
1 0

Prediction 1 TP FP
0 FN TN

Table 3.1: Confusion matrix showing how True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN) are calculated.

predictions. These resulting vectors of TPR and FDR at different thresholds are then plotted in a

Receiver Operating Characteristic (ROC) curve. As the threshold t decreases, the network prediction

will classify more voxels as lesion voxels, thereby increasing the number of TP and FP, and therefore,

further increasing both TPR and FDR. Ideally, segmentation output with a TPR of 1.0 and FDR of

0.0 is considered optimal.

True Positive Rate (TPR) = TP

TP + FN
(3.6)

False Detection Rate (FDR) = FP

TP + FP
(3.7)

Now, for the task of segmenting brain tumours, the segmentation performance is assessed using

Dice scores. Every voxel is classified as belonging to the class, which maximizes the network’s

softmax prediction at that voxel. The Dice score, as explained in Equation 3.8, is calculated for

different substructures of the tumour, namely, whole tumour, core tumour and enhancing tumour.

The value of the Dice score can range from [0,1]. Higher the value of the Dice score, the better the

segmentation performance. A Dice score of 1.0 for segmentation is ideal.

Dice = 2 × TP

2 × TP + FP + FN
(3.8)

3.2.5 Experiments

As described in Section 3.1, the baseline experiment consists of training a network from scratch on

the brain tumour dataset. The other three experiments use a network trained on the MS dataset

from scratch, which is then fine-tuned using the three transfer learning approaches discussed above
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Figure 3.2: Voxel-wise performance ROC curves on the MS validation set of 718 samples. The x-axis
depicts False Detection Rate (FDR) and y-axis depicts the True Positive Rate (TPR) captured at a
set of different thresholds used to binarize the network’s sigmoid predictions.

in Section 3.1 and denoted as FT-Last Three, FT-Decoder, FT-All in Figure 3.1. When pre-training

the MS lesion segmentation network, 80% of the MS data (2912 samples) is used for training, and

the remaining 20% is left out for validation (718 samples) for 190 epochs. The initial weight of the

positive lesion class is found to be 660.68. For all the experiments, Adam is used as an optimizer

with (β1, β2) = (0.9, 0.999). Additional information about hyper-parameters used in MS pre-training

experiment can be found in Table 3.2. The best validation performance of the pre-trained network is

obtained at epoch 186 with an AUC of 0.77, as shown in Figure 3.2.

In order to examine the effect of the size of the target dataset on the transfer learning outcome,

the number of patient brain tumour MRI samples extracted from the BraTS 2018 training dataset

and used in the target dataset is set to several values: 20, 50, 100, 150. For each case, the fine-tuned

networks are compared to the corresponding baseline network. For all experiments, the ratio of

high-grade gliomas (HGG) to low-grade gliomas (LGG) is maintained across folds. Four-fold cross-

validation is performed on the respective training sets to determine the best hyperparameters. More

information about hyper-parameter tuning is shown in Table 3.2. Then, the networks are re-trained

on the respective complete training sets, using the hyper-parameters that performed best during

cross-validation for 100 epochs, and a local validation set (a subset of BraTS 2018 training set) of 50

samples is used to select the operating point. The best learning rate obtained after hyper-parameter
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tuning is shown in Table 3.3. Finally, the predictions on the separate BraTS 2018 Validation set

are registered to the same space as the original BraTS 2018 training set using ANTs tool [4]. The

performance on the BraTS 2018 Validation set (for which the ground truth is not available) is then

evaluated by uploading the predictions on the BraTS 2018 challenge portal.

Hyper-parameter MS pre-training
Baseline,

FT-Last Three,
FT-Decoder

FT-All

Initial
Learning rate 1e − 4 {1e − 3, 1e − 4,

1e − 5, 1e − 6}

(UNet1, UNet2) ∈
{(1e − 4, 1e − 3), (5e − 4, 1e − 3),
(1e − 3, 1e − 3), (1e − 4, 1e − 4),

(1e − 3, 5e − 3)}
Batch size 4 2 2
Class weight
decay rate 0.95 0.92 0.92

Learning rate
decay schedule

0.75 every
50 epochs

0.75 every
25 epochs

0.75 every
25 epochs

Table 3.2: Hyper-parameter tuning for different methods. The intuition behind keeping a lower
learning rate for the encoder in case of the FT-All experiment is to alleviate the network from totally
forgetting low-level knowledge representations learned about source data, which can also help learn
the target task.

Methods Samples Best Learning rate
MS pre-training 2912 1e − 4

Baseline,
FT-Last Three,

FT-Decoder

20 1e − 3
50 1e − 3
100 1e − 3
150 1e − 3

FT-All

20 (UNet1, UNet2) = (1e − 3, 1e − 3)
50 (UNet1, UNet2) = (1e − 4, 1e − 3)
100 (UNet1, UNet2) = (1e − 4, 1e − 3)
150 (UNet1, UNet2) = (1e − 4, 1e − 4)

Table 3.3: The best learning rate (LR) obtained after hyper-parameter tuning for different methods
as a function of the number of brain tumour cases available for fine-tuning. The learning rate is
chosen as the one which provides the best results on the majority of the three Dice scores (Dice
enhance, Dice core, and Dice whole).
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3.3 Results

Figure 3.3 summarizes all the Dice scores obtained on the BraTS 2018 validation set for the baseline

and various transfer learning methods, as a function of the number of brain tumour cases available

for fine-tuning. The epoch for which the sum of the Dice scores is best on the local validation set, is

selected as an operating point.

Figure 3.3: Comparison of Dice values for baseline method against different fine-tuning methods
for enhanced, core and whole tumour segmentation on the BraTS 2018 Validation set. The x-axis
depicts a varying number of brain tumour cases available for training (20, 50, 100, 150).

The results indicate that FT-All outperforms the baseline results in almost every case and

consistently provides the best Dice scores for core and enhanced tumour, particularly when the

number of tumour cases is extremely low, with 25.9% and 204.09% improvement on core and enhanced

tumour over baseline respectively when the number of cases is 20. The percentage improvement

is calculated as the ratio of the difference in the baseline and FT-All Dice scores over the baseline.

Since lesions are smaller in size when compared to tumours, the results indicate that the network is

extracting information from the MS pre-trained network that is relevant to segmenting sub-regions

of tumour well, even though lesions present quite differently than brain tumours. As the number of

brain tumour samples increases, the gain of FT-All over baseline diminishes. FT-Last Three and

FT-Decoder do not perform as well as the baseline. This is likely due to low-level representations

not getting updated as per the target task, which in turn fuse with high-level representations in the
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UNet to produce an output.

Qualitative segmentation results of the different methods on the local validation set for the case

of 20 and 150 target dataset samples are shown in Figure 3.4(a) and Figure 3.4(b) respectively. Note

that with just 20 target dataset samples, FT-All is able to capture different sub-structures of tumour

better than the other methods. Performance is better on the HGG over the LGG case, as more

HGG cases are present in the training dataset. Also, fine-tuning with 150 brain tumour samples

generally produces better results than with just 20 samples in all the experiments. It can also be

seen that in the case of 150 brain tumour samples, FT-All produces much more refined results in

comparison to all other methods.

3.4 Discussion

In this chapter, we explore different strategies of fine-tuning for transfer learning across neurode-

generative diseases for the task of focal pathology segmentation. We observe that fine-tuning the

entire binary lesion segmentation network trained on a larger MS dataset improves the multi-class

brain tumour segmentation results on target MRI datasets, outperforming the baseline method

and the other fine-tuning methods, especially when only very small target datasets are available.

We also observed that as in the case of natural images, where fine-tuning just the last few layers

works, it is not the same case in the medical domain. Moreover, we believe that the public release of

more models that have been pre-trained on large proprietary datasets (e.g. where it is not possible

to release the images themselves) will permit the community to leverage them for the broad set

of applications with small datasets. All the three strategies of fine-tuning are general and can be

performed as long as a pre-trained source network is available, or the source dataset is available

to train a source network. In this chapter, the methods handle the differences between the nature

of inference tasks in the two datasets, i.e. from binary MS lesion segmentation task to multi-class

brain tumour segmentation, by replacing the last few layers of the pre-trained network with newly

initialized layers having correct output dimensions as per target task. This limits the architecture of

the target model to be similar to the pre-trained model, thereby constraining the representation
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power of the target network. Nonetheless, there are many sophisticated techniques available in order

to tackle the differences in the nature of inference tasks between the two datasets, which are explored

in the next chapter.
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Figure 3.4: Examples of visualizations obtained on a local validation set when fine-tuning with (a)
20 and (b) 150 brain tumour samples, respectively. The top two rows and bottom row illustrate the
segmentation results obtained on HGG and LGG cases, respectively. From left to right: T1c MRI
(column 1), Expert segmentation (column 2), results of baseline experiment (column 3), FT-Last
Three (column 4), FT-Decoder (column 5) and FT-All (column 6) are shown. Edema, necrotic core
and enhancing tumour are shown in green, red and yellow, respectively.



4
Multi-task Learning and Cascaded Networks

In the previous chapter, we saw how knowledge transfer via fine-tuning could be beneficial for

improving performance in the task of medical image segmentation across neurodegenerative diseases,

particularly in small data regimes. We also discussed how the representation capacity of the target

network is constrained to be similar to the source network. Hence, simply fine-tuning this target

network with target dataset may not be as effective when the nature of the inference tasks between

the two datasets differ significantly. In order to address this issue, this chapter further explores

other sophisticated ways of transferring knowledge across diseases where the imaging modalities are

similar (e.g. brain MRI), but the structures of interest vary substantially (e.g. lesions, tumours),

and the task can vary from binary to multi-label classification. Specifically, we explore different

methods for leveraging a large, proprietary, clinical trial dataset of MRIs acquired from patients

with Multiple Sclerosis (MS), to improve the results for brain tumour sub-tissue segmentation on

a much smaller dataset. We explore several general methods that can be applied for a variety of

transfer learning tasks, including fine-tuning the pre-trained network, jointly learning representations

for both datasets using multi-task learning, and novel coupling of transfer learning techniques with

cascaded networks where sub-networks can be trained in sequence or together. We also present a

comprehensive study of these methods by varying the number of samples in the target set available

for training.

42
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4.1 Methodology

The goal is to leverage a large source dataset of annotated medical images in order to increase

pathology segmentation performance on a much smaller target dataset, where the pathological

structures of interest vary (lesions vs tumours), and the inference tasks differ (two-class vs. four-class

segmentation). With this aim, we explore several transfer learning techniques, which we detail below.

4.1.1 Multi-task Learning

Multi-task learning [108, 18] is a technique by which shared feature representations are learnt between

two or more related tasks, which can ultimately lead to better overall generalization of the network.

Multi-task learning imparts an inductive bias in the model to prefer the hypothesis, which can

generalize over more than one task. For instance, authors in [87] train a network to learn image

reconstruction with semantic segmentation of brain tumours jointly. This is performed by adding

a variational autoencoder branch to the network, which helps in regularizing the shared encoder.

Their method secured the first position at the BraTS 2018 challenge. Authors in [86] trained a single

CNN for joint segmentation of six tissue types in brain MRI, pectoral muscle in breast MRI and

coronary arteries from cardiac CTA images with performance comparable to that of a CNN model

trained for each task individually. In [131], the authors propose a dual-stream encoder-decoder style

architecture to improve segmentation results on multiple organs using multi-modal learning from

MRI and CT images.

In this chapter, the effectiveness of multi-task learning is explored in the context of transfer

learning across neurodegenerative diseases. Specifically, we use hard parameter sharing methods [108],

in which the network consists of an encoder, common to all the tasks at hand, and separate decoders

for learning task-specific features. The architecture of the double head network, labelled DOUBLE,

is shown in Figure 4.1(b). Training a network with more than one task forces it to learn generic

features that are common to all the tasks. Moreover, it also allows us to train a single network

for performing a variety of tasks instead of training separate networks for every individual task.

Although, multi-task learning assumes that data for all the tasks are present at the time of training.
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Figure 4.1: (a) BASE: UNet architecture for baseline networks. (b) DOUBLE: Double head network
having a shared encoder and two task-specific decoders (c) SEQ: Sequential Cascaded UNet where
the UNets are trained one by one in sequence and (d) SIM: Simultaneous Cascaded UNet where both
the UNets are trained simultaneously.
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4.1.2 Cascaded Networks

Cascaded Networks comprise of a series of networks, where every sub-network is trained to handle a

specific sub-task. Cascaded networks have shown to be effective in various medical image segmentation

problems including brain tumour segmentation [134, 42], liver and lesion segmentation [20], organ

and vessel segmentation [106], prenatal fetal head and abdomen ultrasound image segmentation [137]

and prostate segmentation [64] to name a few. The main advantage of cascaded networks in medical

image segmentation is that they divide the overall segmentation task into a series of sub-tasks

and build on the sub-tasks that have already been learned. This enables the cascaded networks to

capture different anatomical structures of interest present in medical images at different hierarchical

levels and predicting precise segmentation results at the end. In this chapter, we explore different

variations of cascaded networks and their novel coupling with transfer learning techniques in order

to show their effectiveness in medical image segmentation tasks. More details about this can be

found in Section 4.2.5. The first version of cascaded networks that we explore is the sequential

version in which a first UNet is trained fully before training a second UNet. We use UNets [22]

because they have been shown to provide excellent results for medical segmentation tasks in previous

works [66]. Once the first UNet is trained, its sigmoid output is multiplied with the input MRI

sequences element-wise, and the result is then fed as input to the second UNet for further training.

The first UNet is frozen while training the second UNet. This way, the output of the first UNet

guides the second UNet, thereby serving a similar role to an attention map when training the second

UNet. The second version of cascaded networks, which we call simultaneous, involves jointly training

both UNets at the same time, with their corresponding objectives. When back-propagating through

the second UNet, the gradient is allowed to flow through the first UNet, in this case. Therefore,

the output of the first UNet is tailored to facilitate better segmentation on the downstream task of

the second UNet. Figure 4.1(c) and (d) present sequential and simultaneous versions of cascaded

networks respectively.
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4.2 Experimentation Pipeline

This section talks about the data and its pre-processing steps, followed by a detailed description of

the 3D network architecture used and the experimental setup. In order to evaluate the performance

of the techniques described in Section 4.1 for the task of pathology segmentation, several experiments

are performed using a large source dataset of MS patients and a small public brain tumour dataset.

We also compare the performance of different transfer learning approaches to a baseline UNet, on

the task of multi-class brain tumour segmentation.

4.2.1 Data Description and Preprocessing

The evaluation of our transfer learning approaches involves the usage of two datasets: Multiple

Sclerosis dataset and Brain tumour dataset (BraTS 2018 challenge dataset). The details about these

two datasets are already described in section 3.2.1. Pre-processing of data is also done in the same

manner as described in section 3.2.1. The only key difference in pre-processing this time is that the

images are reduced to 216 × 176 × 184 using zero-padding and cropping operations. This is done to

remove the maximum amount of irrelevant background voxels from the MRI images.

4.2.2 Architecture of 3D CNN for Segmentation

The first proposed segmentation network is a variant of 3D UNet, as shown in Figure 4.1(a). An

input of 3D MRI sequences is passed to the network, which predicts a 3D output segmentation mask

of the same size as the input. The proposed baseline network contains an encoder and a decoder of

four resolution steps each. The encoder has two consecutive 3D convolutions at every resolution step

(with eight filters initially). Every convolution layer is followed by LReLU activation and average

pooling, instance normalization, and a dropout of 0.05 is applied at the end of each step. The

decoder uses 3D transposed convolutions for upsampling, whose output is concatenated with the

corresponding output of the encoder step. It is followed by instance normalization and a dropout of

0.05, after which two consecutive 3D convolutions with Leaky ReLU activation are applied. The

last layer is a 1 × 1 × 1 convolutional layer having C filters, where C is the number of classes. The
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output is passed to a softmax/sigmoid layer for the final voxel-wise segmentation prediction. The

implementation of all the above models is done in Pytorch1.

4.2.3 Training the Network

As already explained in sub-section 3.2.3, we use weighted binary cross-entropy loss and weighted

cross-entropy loss for two-class and four-class voxel-wise classification, respectively. The initial

weight of a class C is determined by the ratio of the total number of voxels to the number of voxels

belonging to class C present in the ground truth labels available in the training set. The class

weights are scheduled to decay with a decay rate r ∈ (0, 1) over epochs. This weighing schedule

reduces bias and ensures that all classes are given equal importance during the later phases of the

training. For the SEQ experiment, the first UNet is trained for binary whole tumour segmentation

using weighted binary cross-entropy loss function and then kept frozen. The sigmoid output of this

frozen UNet is then used for training the second UNet for sub-structure brain tumour segmentation

using weighted cross-entropy loss. For the SIM experiments, the network follows two levels of training

objectives. The first objective only back-propagates the weighted binary cross-entropy loss with

respect to whole tumour segmentation in the first UNet. The second objective function, i.e., the

weighted cross-entropy loss at the end of the second UNet, for multi-class brain tumour segmentation,

gets propagated through both UNets. For DOUBLE experiment, binary cross-entropy loss for lesion

segmentation output is re-weighted according to the ratio of the number of brain tumour and MS

lesion cases to remove biases incurred due to predominance of MS samples.

4.2.4 Evaluation Metrics

As mentioned in sub-section 3.2.4, for the task of segmenting tumours (the binary task of segmenting

the whole tumour or segmenting all the different sub-types of tumours), Dice scores are calculated

based on the type of tumour of interest.
1http://pytorch.org/

http://pytorch.org/
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4.2.5 Experiments

The baseline experiment(BASELINE) involves training a network from scratch for multi-class tumour

segmentation on the brain tumour dataset. Besides, another network, denoted BASE_MS, is trained

from scratch for binary lesion segmentation on the MS dataset. The double head experiment (denoted

DOUBLE), uses instances from both datasets, which are passed to a common encoder. The resulting

encodings are then passed through different decoders, depending on the task (binary segmentation

of MS lesions or whole tumour segmentation). The cascaded experiments can be further divided

into three types:

1. SIM_BRATS: Both UNets are trained simultaneously from scratch with brain tumour data. The

first UNet and second UNet are trained in conjunction to perform the whole tumour and

multi-class brain tumour segmentation, respectively.

2. SIM_MS: This is similar to SIM_BRATS, but the first UNet is initialized with the weights of the

BASE_MS network. Both UNets are then simultaneously fine-tuned/retrained using the brain

tumour data, as described in Section 4.1.2.

3. SEQ_DOUBLE: Here, the first UNet is initialized with the weights of the double head network,

DOUBLE (the head corresponding for the whole brain tumour segmentation) and kept frozen.

The sigmoid output of this frozen UNet is then used for training the second UNet with brain

tumour data for multi-class brain tumour segmentation.

The BASE_MS and DOUBLE experiments involve the MS dataset. These versions are trained using

80% of the total available MS data (2911 samples), while the remaining 20% is left out for validation

(719 samples). For the DOUBLE experiment, we combine the MS training set and MS validation

set with 228 and 57 samples of brain tumour data, respectively. An AUC of 0.7 is obtained as

the top segmentation performance on the validation set for the BASE_MS experiment. This pre-

trained BASE_MS network is then fine-tuned with brain tumour data for the task of segmenting the

whole tumour in the FINETUNE experiment. For experiments involving the brain tumour dataset

(BASELINE, FINETUNE, SIM_BRATS, SIM_MS, and SEQ_DOUBLE), five-fold cross-validation is performed
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for determining the best hyper-parameter setting. The ratio of high-grade glioma patients (HGG) to

low-grade glioma patients (LGG) is maintained across all folds. Once the best hyper-parameters

are determined, the networks are retrained on the complete BRATS 2018 training set. The details

about hyperparameter tuning are presented in section 4.2.5.1. Finally, predictions obtained on the

BraTS 2018 validation set are then uploaded on the BraTS 2018 portal for evaluation. We also run

experiments on all the above variations using small target datasets for training, of 50 and 20 brain

tumour instances respectively, in order to test the effectiveness of all the proposed transfer learning

approaches. In this setting, we do not perform five-fold cross-validation, as the size of the training

data is very small. Instead, we use a validation set of 50 samples to select the best hyper-parameters

(so in effect, the total amount of data used is 100 and 70 examples, considering both training and

hyper-parameter tuning).

4.2.5.1 Hyperparameter tuning

For the BASE_MS and DOUBLE experiments, the networks are trained using an initial learning rate of

1e-3, which is reduced by a factor of 0.75 every 25th epoch. This annealing of the learning rate is

performed in order to ensure proper convergence of the model during training. The networks are

trained for 100 epochs with a batch size of 1 using SGD with momentum of 0.9 as an optimizer. Due

to severe class imbalance in the context of MS lesion segmentation, the ratio of the weight of lesion

class and non-lesion class is calculated to be 544:1 in MS training data. The initial class weights

are then decayed with rates of 0.95 and 0.92 when training on the MS and brain tumour training

sets, respectively. The details about the hyper-parameter tuning of the learning rate are shown in

Table 4.1. For 50 and 285 brain tumour training cases, the networks are trained with a batch size

of 1 for 100 epochs. For the experiments with 20 brain tumour training samples, the networks are

trained for 50 epochs. The learning rate that provides the best performance in terms of Dice scores

on the validation set is chosen and fixed.
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Methods Learning rate
base_ms, double {1e − 3}
baseline, finetune,
seq_double {5e − 3, 1e − 3, 5e − 4, 1e − 4}

sim_brats, sim_ms
(LR1st UNet, LR2nd UNet) ∈ {(1e − 4, 1e − 3),

(5e − 4, 1e − 3), (1e − 3, 1e − 3),
(1e − 4, 1e − 4), (1e − 3, 5e − 3)}

Table 4.1: Hyper-parameter tuning of learning rate (LR) for different methods.

4.3 Results

4.3.1 Quantitative Results

Sample size 20 50 285
Method EN CO WH EN CO WH EN CO WH
baseline 0.367 0.443 0.789 0.599 0.611 0.83 0.67 0.735 0.88
finetune n/a n/a 0.814 n/a n/a 0.845 n/a n/a 0.87
double n/a n/a 0.818 n/a n/a 0.856 n/a n/a 0.882
sim_brats 0.336 0.48 0.78 0.609 0.68 0.825 0.668 0.765 0.872
sim_ms 0.592 0.564 0.801 0.594 0.653 0.846 0.673 0.773 0.883
seq_double 0.531 0.604 0.795 0.63 0.646 0.853 0.67 0.773 0.886

Table 4.2: Dice values obtained on the BraTS 2018 Validation for the BASELINE compared to all
other methods, as a function of the number of brain tumour cases available for training (20, 50, 285).
The values marked in bold are the best scores. ’WH’, ’CO’, and ’EN’ stand for whole, core, and
enhancing tumours, respectively. N/A means not applicable since it is a two-class whole tumour
segmentation problem.

Table 4.2 provides the comparison of all the Dice scores obtained on the BraTS 2018 validation set

(used for testing). The results demonstrate that the baseline segmentation performance is surpassed

by all the transfer methods in almost every case. Notably, there is a consistent improvement in

Dice scores for core tumour in all the proposed methods over baseline. Also, we observe a more

significant improvement in all the Dice scores as we decrease the number of samples in the target

dataset. Particularly, there is a percentage improvement2 of 61.3% and 36.3% in the Dice scores for

the enhanced and core parts of the tumour, compared to the baseline, when only 20 brain tumour

samples are available. We also notice that all the proposed methods outperformed or performed just

as well as the baselines most of the time. This suggests that the networks in the proposed methods

can leverage aspects that are common among MS lesions and brain tumours. Moreover, in order to
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test the effectiveness of the proposed methods against the baseline and reduce the biases induced due

to statistical errors, we also calculate the mean Dice scores for the whole, core and enhanced tumour

across five-folds based on BraTS 2018 training dataset after performing five-fold cross-validation

in case of a total of 285 brain tumour cases. The comparison of results for the same is shown in

Table 4.3. Here, every fold has 228 samples for training and 57 samples for validation. The table

shows results with a percentage improvement of 4.27% and 3.03% in the mean Dice scores across

five folds for the core and whole tumour respectively over the baseline.

Method EN CO WH
baseline 0.618 0.725 0.856
finetune n/a n/a 0.865
double n/a n/a 0.878
sim_brats 0.592 0.715 0.855
sim_ms 0.603 0.755 0.864
seq_double 0.614 0.756 0.882

Table 4.3: Mean Dice scores obtained across five-folds based on the BraTS 2018 training dataset for
different types of tumours after performing five-fold cross-validation in case of a total of 285 brain
tumour cases. The values marked in bold are the best scores. ’WH’, ’CO’, and ’EN’ stand for whole,
core, and enhancing tumours, respectively. N/A means not applicable since it is a two-class whole
tumour segmentation problem.

4.3.2 Qualitative Results

Figure 4.2 shows visualizations of the results from the different methods obtained on examples

from the BraTS 2018 training dataset when (a) 50 and (b) 285 brain tumour cases are available for

training. It is evident that BASELINE either over-segments or under-segments the core tumour (in

red), thereby performing poorly. At the same time, the proposed methods are better at capturing

different sub-structures of the tumour. This also falls in line with the quantitative results discussed

before. Overall, all the methods perform better on the HGG cases over the LGG ones. This is due

to the abundance of HGG cases in the training dataset.
2The percentage improvement is measured as the difference in the baseline and best Dice score obtained across

the proposed methods, divided by the baseline result.
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Figure 4.2: Examples of visualizations obtained on the BraTS 2018 training dataset when 50 (a)
and 285 (b) brain tumour cases are available. The top two rows and the bottom row in each figure
present the tumour segmentations obtained on HGG and LGG cases, respectively. Green, red and
yellow colours represent edema, necrotic core and enhancing tumour respectively. From left to right
column: T1c MRI , Ground truth , results of BASELINE, SIM_BRATS, SEQ_DOUBLE and, SIM_MS are
shown.
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4.4 Discussion

In this chapter, we explored a variety of transfer learning techniques for the task of focal pathology

segmentation across different neurodegenerative diseases, where the pathological structures of interest

vary (e.g. lesions, tumours), and the tasks are different (two-class vs. four-class segmentation).

Specifically, we leveraged a deep learning network pre-trained on a large MRI dataset of MS patients

in order to improve multi-class brain tumour segmentation on a much smaller public dataset. We

showed that cascaded networks, as well as learning joint representations combined with a double

head network for each task, substantially improve brain tumour segmentation results, especially

when very few instances are available for training. These results show the potential of transfer

learning for broadening the application of deep nets in medical imaging.



5
Conclusions and Future Work

In this thesis, we presented an exploration of a variety of transfer learning techniques for segmenting

pathological structures of interest across neurodegenerative diseases. The main contribution of

this thesis is to show the effectiveness of various transfer learning strategies, such as fine-tuning

a pre-trained network and multi-task joint representation learning using double head networks in

medical image segmentation based applications, and also to propose a novel augmentation of the

above networks in a cascaded approach. We analyzed several ways of fine-tuning to determine the

best way of leveraging a source network pre-trained on a large MS dataset, in order to improve

segmentation performance on a target brain tumour dataset. The two image datasets are acquired

from patients with different neurological diseases, the pathological structures of interest vary in the

two datasets (lesions vs. tumours), and the inference tasks differ (binary vs. multi-class segmentation).

Extensive quantitative and qualitative analysis as a function of the target dataset size brings several

key takeaways, detailed below. First, we observe that fine-tuning the whole network works better

than fine-tuning only a portion of the pre-trained network, especially when small target datasets

are available. This means that fine-tuning just the last few layers may not be as effective in the

medical domain as in the case of natural images. Second, cascaded networks, as well as learning

joint representations using multi-tasking, substantially improve brain tumour segmentation results

in the case of small target datasets. Our results show the potential of transfer learning and the

significant impact it can have, particularly for diseases where there is limited access to large scale,

annotated datasets needed for training segmentation networks from scratch. These methods are

54
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general and can be applied to other medical image segmentation tasks such as brain stroke, or white

matter hyperintensity segmentation. Furthermore, their application can be extended to transfer

knowledge between different organs or different grades of the same disease, or for domain adaptation

between medical images obtained from different scanners/hospitals, thereby further broadening the

application of deep nets in medical imaging.

One possible direction for extending the work done in this thesis is to explore different kinds of

loss functions or their combinations, instead of simply using the cross-entropy loss. For example,

using the Dice loss or a combination of the Dice loss and cross-entropy loss could help in boosting

segmentation performance, by producing crisper boundaries. Another immediate experiment that

could be performed is multi-class brain tumour segmentation in the DOUBLE dataset, instead of

binary whole tumour segmentation. For the experiments involving the coupling of cascaded networks

with transfer learning, SIM_MS, SEQ_DOUBLE, only the first UNet is initialized with the weights of a

pre-trained network. This initialization could also be applied to the second UNet. In this way, both

the UNets would be initialized with a better starting point, which could lead to faster convergence

as well.

One drawback of the techniques discussed in this thesis, especially multi-task learning and

cascaded networks, is an increase in the number of parameters needed to train in the target

segmentation task. Another drawback is that the network architectures for the source and target

networks are taken to be similar. One possible direction to address these problems is to answer

concretely the questions of what to transfer from the source network and where to transfer it in

the target model. The first question deals with identifying the particular layers in the pre-trained

network that can be useful for the target task. The second part deals with finding the relative

positioning of those selected layers in the target network. This would enable network architectures to

be different in the source and the target task, which could improve the segmentation performance. It

would also be interesting to see how the approaches explored in this work perform when transferring

across different imaging modalities (MRI to CT) or different organs (pancreas to liver, for example).
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