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• Multiple imputation can be used to impute data that are systematically missing at a data 
site, allowing for statistical adjustment for these missing variables 
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ABSTRACT 

Purpose: 

In distributed data networks, some data sites may be systematically missing important confounders 

that are captured by other sites in the network (e.g., body mass index [BMI]).  Multiple imputation 

may help repair bias in these scenarios. However, multiple imputation has not been described for 

distributed data networks where data access restrictions prevent centralized analysis. 

Methods: 

We conducted a simulation study and a real-world analysis using the UK’s Clinical Practice 

Research Datalink to evaluate multiple imputation for confounders that are systematically missing 

from a subset of data sites in mock distributed data networks. The simulation study addressed 

univariate missing data, while the real-world analysis addressed multivariate missing data. Both 

studies were designed as retrospective cohort studies of the effect of current statin use on the risk 

of myocardial infarction among patients with newly-treated type 2 diabetes. 

Results: 

In our simulation study, multiple imputation repaired bias from missing BMI in all scenarios, with 

a median bias reduction of 118% in the default scenario. In our real-world study, the multiply-

imputed analysis (hazard ratio [HR]: 0.86; 95% confidence interval [CI]: 0.69-1.08) was closer to 

the analysis that considered the true confounder values (HR: 0.85; 95% CI: 0.66-1.10) than the 

analysis that ignored them (HR: 0.93; 95% CI: 0.73-1.20). 

Conclusions: 

Multiple imputation adapted to distributed data settings is a feasible method to reduce bias from 

unmeasured but measurable confounders when at least one database contains the variables of 

interest. Further research is needed to evaluate its validity in real distributed data networks.  
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INTRODUCTION 

Distributed data drug safety networks such as the Canadian Network for Observational 

Drug Effect Studies (CNODES) play an important role in evaluating the safety and effectiveness 

of post-marketed medications through routine surveillance.1 Because of data access restrictions, 

these networks commonly use a two-step approach2 to pooling results: first, a standard analysis 

plan is implemented at each database, and then the aggregate effect estimates from each site are 

pooled using meta-analysis. One intrinsic problem with meta-analyzing results from different 

jurisdictions is discrepant capture of important confounding variables such as body mass index 

(BMI) and smoking status. These unmeasured, but measurable, confounders can bias the summary 

estimate to the extent that they are missing from databases in the network. 

Several reports from the individual patient data (IPD) meta-analysis literature have 

explored multiple imputation as a means to repair bias from missing data in multi-level settings 

similar to distributed data networks.3-8 Resche-Rignon and colleagues8 first applied multiple 

imputation by chained equations (MICE)9,10 to address systematically missing data (i.e., data that 

are missing for all individuals as a feature of the database or study design) in these settings. The 

authors have since expanded their MICE method to incorporate both data that are missing 

systematically (for all individuals in a database or data site as a feature of the data collection 

methods) and sporadically (for only a subset of individuals in the database or data site).7 While 

these methods sufficiently address the needs of IPD meta-analyses, they are not applicable to 

distributed data drug safety networks such as CNODES because they require access to data from 

each study site at a central site to apply the MICE algorithm. We propose an application of multiple 

imputation in distributed data networks with data access restrictions that prevent IPD from leaving 

the study site.  
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In this paper, we first describe our proposed application of multiple imputation. We then 

explore the effects of varying different study parameters on the validity of multiple imputation for 

a univariate missing data problem in a simulation study that mimics a distributed data drug safety 

network wherein all but one database are missing BMI, a variable commonly missing from 

administrative health databases such as the provincial health databases in CNODES. Finally, we 

evaluate multiple imputation in a mock distributed data network based on real-world data from the 

UK’s Clinical Practice Research Datalink (CPRD). Our real-world example investigates a 

multivariate missing data problem with four structurally missing variables that are commonly 

absent from administrative health databases such as those in CNODES but are present in electronic 

health databases such as the CPRD: BMI, smoking status, glycated hemoglobin (HbA1c), and 

cholesterol. Both simulated and real-world studies evaluate the effect of statins on the risk of 

myocardial infarction (MI) in patients with newly-treated type 2 diabetes, an association that has 

been previously described11 and for which we can identify confounders12,13 and predict their 

effects14-16. An analysis of statins on the risk of MI that does not consider smoking, obesity, 

HbA1c, and cholesterol would likely be biased towards the null. 
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METHODS 

Multiple Imputation 

In multiple imputation, missing values are randomly sampled from a posterior predictive 

distribution X times to create X distinct datasets, where X≥2.17 These X datasets are analyzed 

separately and the resulting X effect estimates are pooled using Rubin’s rules.17 Our proposed 

method applies multiple imputation to a multi-level distributed data setting in which data cannot 

leave a site. In our method, a database containing all variables of interest, hereafter referred to as 

the “validation database”, is used to produce predictive distributions from which draws are taken 

to impute values in the “missing databases”, those databases structurally missing the variables of 

interest.  

First, a posterior predictive distribution is developed in the validation database that predicts 

the missing variables of interest. The case of a single structurally missing variable is 

straightforward. Assume that a variable Y is observed for all individuals in the validation database 

and is structurally missing for all individuals in the missing databases. Further assume that V is a 

set of predictor variables of Y observed for all individuals in all databases. A single regression 

model at the validation database can be used to generate a posterior predictive distribution of Y 

conditional on V, or F(Y | V), where prior distributions can either be specified or assumed to be 

non-informative. Conditional draws of Y can then be made for individuals in the missing databases 

for the purposes of multiple imputation using the distribution F(Y | V) estimated by regression in 

the validation database. Operationally, posterior prediction model parameters must be 

communicated from the validation database to the missing databases. 

For multivariate missing data, we propose approximating the joint posterior predictive 

distribution with a single application of chained equations. Consider two related variables of 
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interest, Y1 and Y2, which are structurally missing in all databases except the validation database. 

The set of variables V is observed in all databases and can be used to predict Y1 and Y2. The joint 

posterior predictive distribution of Y1 and Y2 is therefore denoted as F(Y1, Y2 | V), which is the 

product of conditional distributions F(Y1 | V) and F(Y2 | V, Y1). That is, 	"($!, $"|') =

"($!|') × "($"|$!, '). Therefore, to approximate F(Y1, Y2 | V), one can first estimate the 

distribution of a single missing variable, F(Y1 | V), using an appropriate regression model in the 

validation database. One can then use regression methods in the validation database to estimate Y2 

conditional on V and Y1, F(Y2 | V, Y1). Conditional draws of Y1 can be made for individuals in the 

missing databases using the model-estimated distribution, F(Y1, Y2 | V). The drawn values of Y1 can 

then be used to produce conditional draws of Y2 in the missing databases using the model-estimated 

distribution, F(Y2 | V, Y1). 

For our purposes, we assume that systematically missing data are missing completely at 

random (MCAR)17. For data that are MCAR, missingness is independent of all observed and 

unobserved covariates. This assumption is unreasonable in many situations, but it may be 

applicable to systematically missing data in distributed data network settings where missingness 

is due to administrative reasons unrelated to patient, physician, and other clinical characteristics. 

Further, the MCAR assumption is reasonable in situations where patients are subject to rigorous 

eligibility criteria. Thus, we argue that a single application of chained equations should produce 

unbiased conditional draws. This differs from the multiple imputation methods used in IPD meta-

analyses3-8, in which several iterations of the MICE algorithm are applied until convergence.9,10 

Once all missing values have been imputed, the parameter of interest (e.g., log hazard ratio 

[HR]) is estimated at each site. The process of sampling values and generating parameter estimates 

is performed X times, where X≥2. The mean parameter estimate for X imputations is +̅# =
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!
#∑ +.$#

$%! , where +.$ is the estimate for each imputed dataset.17 The variance of the summary 

estimate (/#) is a function of two components, the average within-imputation variance (01#) and 

the between-imputation variance (2#), given by 01# =
!
#∑ 0$#

$%!  and 2# =
!

#&!∑ (#
$%! +.$ − +̅#)", 

respectively. /# is determined as /# = 01# +
#'!
# 2#.17 Once estimated, +̅# and /# can be input 

into traditional meta-analytic models, as in studies with no missing data. 

Simulation Study 

Variables 

We assumed a distributed data network of D databases with n new users of 

antihyperglycemic agents at each database. In this population, we assumed several baseline 

covariates are available in all databases: Age (age at cohort entry), Dur (duration since diabetes 

diagnosis), Male (male sex), and Smoke (smoking status [current, former, never]). BMI was 

assumed to be available in all but one database, the validation database. In addition, we assumed 

that a dichotomous, time-varying exposure variable E denoting statin use is recorded four times 

(E1, E2, E3, E4; Supplemental Section I) throughout each patient’s follow-up. We assumed patients 

are censored for the outcome MI or at 20 years follow-up. We assumed no measurement error. 

According to these assumptions, we simulated, for each individual in each database, Age, 

BMI, Dur, Male, Smoke, and E1 (baseline exposure status) from a multivariate normal distribution 

with a pre-defined correlation matrix and marginal distributions, categorizing variables from their 

respective normal distributions, as appropriate, to meet pre-specified marginal distributions 

(Supplemental Tables I-II)18. BMI was simulated for patients in all databases, not just the 

validation database, allowing us to compare the ‘true’ simulated values of BMI with the imputed 

values. We simulated time-dependent statin use over the course of a 20-year follow-up period 

(Supplemental Section I).19 We used an increasing Weibull distribution to represent the cumulative 



9 
 

hazard of MI (Supplemental Section I). We estimated time to MI according to each patient’s 

covariate/exposure history (Supplemental Section I).  

Parameters 

To evaluate the effect of study parameters on our application of multiple imputation, we 

varied several of them uniformly across sites (Table 1; Supplemental Table III): D, n, the scale 

parameter of the Weibull function (λ), the HR of statin use, the nonlinear HR of BMI  

(Supplemental Figures I-III), the continuous or categorical nature of BMI in outcome models, the 

correlation between BMI and E1, the multivariate baseline correlation matrix (Supplemental Table 

IV), and the number of imputations (X). 

In real distributed data networks, some heterogeneity of effects is expected across sites. 

For this reason, a parameter bd drawn from the distribution N(mean=0, standard deviation 

[SD]=0.2) was created to confer site-specific effects of statins on MI. We lowered the SD of bd in 

one scenario (Table 2; Supplemental Table III). Inter-site heterogeneity was also explored by 

varying the marginal distributions of BMI and the effect of BMI on MI between databases (Table 

2; Supplemental Table III). Finally, the correlations between baseline study covariates were varied 

for each data site in each simulation (Supplemental Table IV). 

We conducted 200 simulations in each of 20 parameter scenarios (Supplemental Table III). 

Imputation Models 

We fit a model predicting BMI in the validation database using multivariable linear 

regression, with Age, Male, Dur, Smoke, a variable indicating whether a patient was ever exposed 

to statins (Eever), and MI as model inputs. Beta splines with six degrees of freedom for Age and 

Dur were fitted, with the extreme knot boundaries set at the maximum and minimum values across 
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databases. We bootstrapped parameters and their 95% CIs with 200 samples (to address spline 

over-fitting). BMI values were imputed X times per database (X=20 in the default scenario). 

Statistical Analyses 

We first conducted a “naïve” analysis wherein missing BMI values were ignored, then an 

“imputed” analysis that used multiple imputation. In both analyses, the effect of statins on MI was 

estimated using Cox proportional hazards models bootstrapped with 200 samples. Current statin 

use was treated as time-varying with no exposure lag. All other covariates were adjusted for 

baseline values. BMI was modeled using B-splines with 6 degrees of freedom. The summary HR 

was estimated using random-effects models with the restricted maximum-likelihood estimator. 

Our simulation study was evaluated by several metrics. The % bias attributable to multi-

dataset imputation was calculated as %	6789 = 	(!
)&(!
(!

× 100%. We also calculated the true 

parameter’s 95% coverage rate as the proportion of simulations whose 95% CIs included the true 

parameter. The type II error rate was also calculated as the proportion of simulations whose 95% 

CIs included the null hypothesis (HR=1.0).  

All analyses were done using R (3.1.2) with the aid of the Guillimin computing cluster. 

Real-World Analysis 

Study Population 

We obtained data from the CPRD, a database of >700 general practitioner databases in the 

UK that contains a wealth of diagnostic, procedural, and laboratory-based data.20 A subpopulation 

of the CPRD may be linked to the Hospital Episode Statistics (HES) database, which contains 

inpatient diagnoses and procedures, and to the Office of National Statistics (ONS) vital statistics 

database, which contains causes of death. Among patients >18 years old with at least one year of 

observation time in the CPRD, HES, and ONS, we identified all initiators of non-insulin 



11 
 

antihyperglycemic agents between April 1, 1998 and March 31, 2016. The date of cohort entry 

was the date of first antihyperglycemic agent prescription. 

We excluded patients who: 1) had a previous recorded prescription for insulin (a marker of 

advanced diabetes) prior to cohort entry; 2) were previously diagnosed with polycystic ovary 

syndrome at any time before cohort entry; 3) were diagnosed with gestational diabetes in the year 

prior to cohort entry; 4) had a history of statin use in the year before cohort entry; and/or 5) had a 

history of cardiovascular disease (Supplemental Section II). We then paired the 10 English practice 

regions20 into five adjacent mock distributed databases (Supplemental Section II). The mock 

database “West Midlands and Southwest” was chosen a priori as the validation database. 

Patients were followed until incident MI, death, end of study (March 31st, 2016), end of 

follow-up (four years), end of CPRD registration, date of last data collection, or one year since last 

recorded physician contact or prescription, whichever occurred first.  

Exposure and Outcome 

Patients were classified into mutually-exclusive, time-dependent exposure groups: 

currently exposed or currently unexposed to statins. A patient was considered exposed to statins if 

the date of the risk set overlapped with a statin prescription’s intended duration of use + 30 days 

(Supplemental Section II).  

The primary outcome was time to fatal or nonfatal MI (International Classification of 

Disease 10th Revision [ICD-10] codes I21.x-I22.x; ICD-9 code 410.x), excluding perioperative 

MIs. Outcomes were ascertained in the primary or secondary position using HES and ONS data, 

with the earliest code determining the event date. 

Imputation Models 
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We used single imputation at each mock study site to replace sporadically missing data 

(i.e., data that was missing from a subset of individuals for unknown reasons) with a conditionally 

random draw for patients missing BMI, smoking status, HbA1c, and/or serum cholesterol in the 

five years before cohort entry. For systematically missing data, samples of 

"(9<=>7?@, 2AB, C6D1E, Eℎ=GH9IHJ=G	|		K) were drawn from sequential samples of 

"(9<=>7?@|	K), "(2AB|9<=>7?@, K), "(C6D1E|2AB, 9<=>7?@, K), and 

"(Eℎ=GH9IHJ=G	|2AB, 9<=>7?@, C6D1E, K), which were estimated by multinomial (BMI, HbA1c, 

cholesterol) or binomial (smoking) logistic regression at the validation data site. We used 20 

imputations in the primary analysis. 

Statistical Analysis 

All site-specific analyses used baseline-adjusted Cox proportional hazard models with 

time-dependent statin use. We adjusted for the missing variables (smoking status, BMI, HbA1c, 

serum cholesterol) except in the naïve analyses. We also adjusted for age, sex, history of alcohol 

abuse, year of cohort entry, year of CPRD registration, and other important potential confounders 

(Supplemental Section II).  

We performed three analyses: 1) the “naïve” analysis wherein smoking status, BMI, 

HbA1c, and serum cholesterol values were ignored; 2) the “imputed” analysis wherein imputed 

values were considered for each database; and 3) the “true” analysis that considered the measured 

(or singly-imputed) values for these covariates. In all analyses, we pooled results with random-

effects models according to the restricted maximum likelihood approach. The results of the three 

meta-analyses were qualitatively compared. 

Several sensitivity analyses were pre-specified. First, we repeated our analyses with one 

missing variable (smoking status or cholesterol). Second, we censored patients at two years of 
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follow-up (instead of four). Third, we limited our study population to patients with no previous 

statin use. Fourth, we used a different validation database. Fifth, we used linear imputation models 

for the continuous variables (BMI, HbA1c, and serum cholesterol). Sixth, we applied stepwise 

variable selection for our imputation models, starting with the variables in our primary analysis. 

Seventh, we reversed the order of our chained equations.21 Eighth, we excluded patients with a 

missing value for any of: BMI, smoking status, HbA1c, or serum cholesterol. Finally, we reduced 

the number of imputations from 20 to five. 

All analyses were done using R (3.1.2) and SAS (9.4). 

Ethics 

Our study was approved by the Independent Scientific Advisory Board of the CPRD 

(protocol number 17_133R) and by the research ethics board of the Jewish General Hospital in 

Montreal, Canada. 
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RESULTS 

Simulation Study 

Default Parameterization 

In the default scenario, the naïve analyses were substantially biased, with a median bias of 

120% across the 200 simulations (Table 3; Supplemental Figure IV). The median pooled HR of 

1.05 (2.5th quantile: 0.92, 97.5th quantile: 1.21) was attenuated compared to the true effect of 0.80. 

Application of multiple imputation substantially reduced bias from unmeasured BMI 

(Table 3; Supplemental Figure IV). The median bias for the imputed simulations was 5%, and the 

median bias reduction was 118%. The median pooled HR estimate was 0.81 (2.5th quantile: 0.71, 

97.5th quantile: 0.93), close to the true effect of 0.80. 

Parameter Changes across Databases 

Multiple imputation reduced bias from unmeasured BMI in all parameterizations (Table 3; 

Supplemental Figure IV). Imputed analyses on fewer data sites (D=3 or 5) in the network yielded 

greater type II error rates and similar 95% coverage rates compared to the default scenario (D=7). 

With fewer patients in each database, the type II error rates increased; in these analyses, the 95% 

coverage rates were augmented. Stronger protective effects of E on MI greatly lowered the type II 

error rates of the imputed analyses. Our method was robust to changes in the shape of the HR of 

BMI curve and produced similar parameter estimates, 95% coverage rates, and type II error rates 

across specifications. Specifying BMI as a categorical variable reduced the ability of our method 

to correct for unmeasured confounding (median bias after imputation: 98%). Lowering the 

correlation between E1 and BMI reduced the bias in the naïve analyses, but had minimal impact on 

the imputed results. Reducing the number of imputations, X, from 20 to five had little impact on 

our results. Finally, our method was robust to random variations in the correlation matrix. 
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Parameter Changes between Databases 

Our method of imputing values from one validation database was robust to all evaluated 

differences in study parameters across databases in the simulated distributed network (Table 4; 

Supplemental Figure IV), including when each database had a unique correlation matrix of study 

variables (median bias reduction: 105%) and when the HR of BMI was different for each database 

(median bias reduction: 76%). 

Real World Analysis  

Study Population 

We identified 59,957 patients meeting our inclusion criteria, of whom 14,924 were in the 

validation database (Supplemental Figure V; Supplemental Table V). The mean age across 

databases was 56.8 years (SD: 14.3 years). Average BMI was 32.1 kg/m2 (SD: 7.2 kg/m2); 48.2% 

of patients were obese (BMI≥30 kg/m2). HbA1c levels varied at baseline: the mean was 9.0% (SD: 

2.2%). Cholesterol was broadly distributed (mean: 216.6 mg/dL; SD: 49.8 mg/dL). A total of 

48.3% of patients had at least one sporadically missing value for BMI (15.4% missing), cholesterol 

(20.5% missing), HbA1c (34.8% missing), or smoking status (13.1% missing): 25.1%, 14.3%, 

5.6%, and 3.3% were sporadically missing one, two, three, and four variables, respectively. No 

notable discrepancies in baseline patient characteristics were seen across mock databases 

(Supplemental Table V). 

Primary Analysis 

In the full study population, 625 MIs were observed over 181,777 person-years of follow-

up (incidence rate of 3.4 per 1000 person-years). This rate was slightly lower in patients currently 

exposed statins compared with those unexposed to statins (3.2 and 3.6, respectively, per 1000 

person-years). 
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In the “naïve” analysis, the summary HR for the effect of statins on MI was 0.93 (95 % CI: 

0.73-1.20) (Figure 1). In the “true” analysis, we observed a summary HR of 0.85 (95% CI: 0.66-

1.10). The “imputed” analysis produced a summary HR of 0.86 (95% CI: 0.69-1.08).  

Sensitivity Analyses 

When smoking status was the only missing covariate, there was little bias in the naïve 

analysis, rendering imputation unnecessary (Supplemental Figure VI). In contrast, the naïve 

analysis was biased when only total cholesterol was missing (Supplemental Figure VII); this bias 

was repaired with multiple imputation. With a follow-up duration of two years, the naïve and true 

HRs were qualitatively different than the primary analysis at 1.36 (95% CI: 1.07-1.73) and 1.28 

(95% CI: 0.95-1.73), respectively (Supplemental Figure VIII). The imputed analysis nevertheless 

directed the pooled effect estimate towards the true analysis (HR: 1.29; 95% CI: 1.01-1.65). The 

results of all other sensitivity analyses were similar to those of the primary analysis (Supplemental 

Figures IX-XV). 
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DISCUSSION 

Main Results  

In both simulated and real-world data structures, our proposed method of multiple 

imputation reduced confounding bias across all parametrizations and sensitivity analyses. In the 

simulation study, our method was effective even in the presence of heterogeneity between data 

sites, such as different correlations between baseline variables and different relationships between 

the BMI and MI. Indeed, multiple imputation performed no worse in these circumstances than in 

the default scenario.  

In our real-world example, the true analysis (HR: 0.85; 95% CI: 0.66-1.10) was consistent 

with a Cochrane review of trials (risk ratio: 0.75; 95% CI: 0.70-0.81)11. In this naïve analysis, bias 

due to missing confounders (HbA1c, BMI, cholesterol, smoking) was greatly reduced by multiple 

imputation. In sensitivity analyses, our method was robust to the order of chained equations, the 

specific validation database chosen, the type of imputation models (linear versus multivariate 

logistic regression), and a lower number of imputations. The precision of the imputed estimate was 

improved relative to the true analysis as evinced by the width of the 95% CIs, which may have 

resulted from patient outlier values being replaced by imputed values closer to the expected mean. 

The results of our real-world analyses were qualitatively different when follow-up was 

limited to two years: a substantial increased risk of MI among statin users was observed. We 

speculate that residual confounding by indication is responsible for this inversion. In both two- 

and four-year follow-ups, MI events occurred disproportionately in early periods following a statin 

prescription (Supplemental Figures XVI-XVII)22, possibly because many patients presented with 

deteriorating cardiovascular markers that signalled an impending MI and served as a statin 
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indication. Despite the potential for residual confounding in our analysis limited to two years, our 

method repaired bias from the specified unmeasured confounders. 

Strengths and Limitations 

Strengths of our study include application to both a controlled and real-world setting, 

exhaustive parameter constellations and sensitivity analyses, the use of a time-varying exposure to 

mimic analyses frequently conducted in distributed data networks, and our choice of substantive 

example, which allowed us to predict the direction of unmeasured confounding. 

Our study is not without limitations. The results of our simulation study may not be 

generalizable because the assumptions in our simulated data may not have been realistic—for 

instance, the default correlation between baseline statin use (E1) and BMI may have been 

unrealistically high (0.86 in the multivariate normal distribution). Our real-world data example 

was designed to address these concerns about generalizability. Nevertheless, our application of 

multiple imputation to a mock distributed data setting using real-world data from the CPRD also 

may have limited generalizability. In particular, data from real distributed settings may be more 

likely to depart from the MCAR assumption because predictor variables and their relations to 

missing variables differ across databases even after application of rigorous eligibility criteria. 

Discrepant variable capture and coding schemes between real distributed databases may also 

render our method less valid. In real distributed database situations with >1 validation database, 

our method would also need to be adjusted to accommodate additional information from other 

databases, though we anticipate research in CNODES may have a single validation database for 

important clinical or demographic variables best captured in the CPRD. Finally, our study 

addressed a missing data problem wherein the missing variables can be predicted from observed 
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variables; the performance of our method in scenarios where the missing variables cannot be easily 

predicted is unknown. 
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CONCLUSIONS 

Multiple imputation adapted to distributed data settings is a feasible method to reduce bias 

from unmeasured but measurable confounders when at least one database contains the variables 

of interest. Further research is needed to evaluate its validity in real-world distributed data 

networks.  
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Table 1. Default and alternative parameters varied uniformly in all databases 

Parameters   Values 
Notation Meaning   Default Alternatives 

D Number of datasets (including validation)   7 3, 5 

n Number of patients per dataset   10,000 1,000, 5,000 

λ Scale parameter for Weibull function   2E-06 1E-06, 5E-07 

HR(E)  HR for MI for current statin use vs non-use   0.8 0.3, 0.5 

HR(BMI) HR for MI compared to reference value of 22 kg m-2   Model 1* Model 2, Model 3* 

cor(BMI-E1) 
Correlation between BMI and baseline statin 

exposure 
  0.86 0.30, 0.50 

corr Correlation matrix  Matrix 1† Matrix 2† 

X Number of imputations  20 5 

BMI Body mass index in outcome models  ~ N(mean = 33, SD = 3) 7 categories: [0, 25), [25,30), [30, 32.5), [32.5, 35), [35, 37.5), [37.5, 40), [40, 1) 

Abbreviations: HR, hazard ratio; SD, standard deviation 
*Supplementary Figures I-III 
†Supplementary Tables I and III. Matrix 2 samples random correlations between variables, and replaces the resulting matrix with the nearest positive definite. All D databases use the same 
correlation matrix in these analyses.  
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Table 2. Default and alternative parameters varied between databases 
  

Parameters   Values 
Notation Meaning   Default Alternatives 

BMId Body mass index at 
each database  

  BMId ~ N(mean = 33, SD = 3) BMId ~ N(meanj = N(mean = 33, SD = 2), SD = 3) 

corrd Correlation matrix  Matrix 1* Matrix 2* 

bd 

Beta coefficient for 
random effects of 

statin exposure 
  bd ~ N(mean = 0, SD = 0.2) bd ~ N(mean = 0, SD = 0.1) 

HR(BMI)d 

HR for MI 
compared to 

reference value of 
22 kg m-2 

  
Model 1: 

!"($%&)! = 4 × 10"# × ($%& − 22)$ + 1 

Model	4:	!"($%&)!

=

⎩
⎪
⎨

⎪
⎧;<=>(1 × 10"#, 6 × 10"#) × ($%& − ;<=>(20,24))$ + 1							if	C	is	1	or	4
;<=>(0.27, 0.75) × |$%& − ;<=>(20,24)| + 1																											if	C	is	2	or	5
;<=>(5 × 10"%, 3 × 10"&) × ($%& − ;<=>(20,24))& + 1							if	C	is	3	or	6
;<=>(5 × 10"#, 2 × 10"%) × |$%& − ;<=>(20,24)|% + 1								if	C	is	7									

 

Abbreviations: HR, hazard ratio; SD, standard deviation 
* Matrices 1 and 2 can be found in Supplemental Tables I and IV. Matrix 2 samples random correlations between variables and replaces the resulting matrix with the nearest positive 
definite. Each D database uses a distinct correlation matrix in these analyses. 
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Table 3. Effect of different simulation study parameters varied uniformly in all databases 

      Naïve analysis¶   Imputed analysisǁ     

      HR   % Bias         HR   % Bias           

Parameter* Scen   Med 

Quantile 

  Med 

Quantile 

  

Type 
II 

error 
(%) 

95% 
coverage 

(%)   Med 

Quantile 

  Med 

Quantile 

  

Type 
II 

error 
(%) 

95% 
coverage 

(%)   
Med % Bias 
Reduction** 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5 

D                                                   
7 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
3 2   0.98 0.77 1.23   89 -15 194   96.0 72.5   0.80 0.64 1.02   0 -103 107   64.5 98.0   88 
5 3   1.03 0.87 1.24   113 38 195   98.0 36.5   0.81 0.68 0.98   6 -70 91   46.5 97.0   109 

n                                                   
10000 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
1000 4   1.04 0.79 1.26   117 -4 205   98.0 52.0   0.81 0.66 0.94   7 -84 72   80.0 100.0   113 
5000 5   1.04 0.90 1.23   116 52 192   99.0 24.0   0.80 0.68 0.93   1 -70 68   39.0 99.5   118 

λ                                                   
2 × 10^-6 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
5 × 10^-7 6   1.06 0.92 1.28   127 61 210   99.5 21.5   0.81 0.69 0.94   7 -65 72   57.5 99.0   126 
1 × 10^-6 7   1.07 0.93 1.22   129 68 190   100.0 19.0   0.81 0.70 0.93   5 -57 68   40.0 98.0   122 

HR(E)                                                    
0.8 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
0.3 8   0.41 0.35 0.48   25 14 39   0.0 17.5   0.30 0.26 0.35   1 -12 14   0.0 98.0   24 
0.5 9   0.67 0.58 0.78   42 21 64   1.5 14.5   0.51 0.44 0.58   2 -19 22   0.0 98.0   41 

HR(BMI)†                                                   
Model 1 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
Model 2 10   0.90 0.77 1.03   50 -15 113   69.0 66.0   0.81 0.69 0.92   4 -65 65   26.0 95.5   48 
Model 3 11   0.97 0.84 1.12   87 21 152   97.5 36.0   0.81 0.70 0.92   5 -60 65   27.0 97.5   86 

BMI specification                                                   
Continuous 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
Categorical 12   1.06 0.93 1.21  127 69 186   99.5 11.5   0.99 0.87 1.18   98 36 174   100 54.0   27 

cor(BMI-E1)                                                   
0.86 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
0.30 13   0.87 0.73 1.01   35 -40 104   53.5 78.5   0.81 0.70 0.93   5 -61 68   30.0 97.5   31 
0.50 14   0.92 0.80 1.07   60 1 128   81.0 58.5   0.81 0.71 0.93   4 -56 68   28.0 98.0   58 

Correlation matrix‡                                                   
Matrix 1 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
Matrix 2 15   1.03 0.84 1.23  114 23 192  96.0 25.0  0.82 0.68 0.95  8 -73 75  34.0 94.0  105 

X                          
20 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
5 16  1.04 0.92 1.21  119 61 185  99.0 17.0  0.81 0.69 0.94  5 -66 70  29.0 97.5  117 

Abbreviations: BMI, body mass index; HR, hazard ratio; Med, median; MI, myocardial infarction; Scen, scenario  
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*D refers to the number of databases; n is the number of patients; λ is the scale parameter of the Weibull function; HR(E) is the HR of statin use; HR(BMI) is the relationship between BMI and 
the HR of MI; cor(BMI-E1) is the correlation between BMI and the first statin exposure period, E1; “correlation matrix” refers to the multivariate normal correlation matrix used to determine 
baseline covariates; X is the number of imputations 
†See Supplemental Figures I-III 
‡See Supplemental Tables I and IV 
¶In the naïve analysis, missing confounders were not considered in outcome models 
ǁIn the imputed analysis, missing confounders were considered in the outcome models using multiple imputation 
**Absolute reduction in % bias 
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Table 4. Effect of different simulation study parameters varied between databases 

Abbreviations: BMI, body mass index; HR, hazard ratio; Med, median; MI, myocardial infarction; Scen, scenario; SD, standard deviation 
*BMId refers to the distribution of BMI at each d database of D total databases; “correlation matrix” refers to the multivariate normal correlation matrix used to determine baseline covariates; bd  
is the log-HR for the random-effect of statins on MI in database d of D total databases; HR(BMI)d is the relationship between BMI and the HR of MI in database d of D total databases 
†See Supplemental Tables I and IV 
‡See Table 2 
¶In the naïve analysis, missing confounders were not considered in outcome models 
ǁIn the imputed analysis, missing confounders were considered in the outcome models using multiple imputation 
**Absolute reduction in % bias 
 

      Naïve analysis¶   Imputed analysisǁ     

      HR   % Bias Reduction         HR   % Bias Reduction           

Parameter* Scen   Med 

Quantile 

  Med 

Quantile 

  

Type 
II 

error 
(%) 

95% 
coverage 

(%)   Med 

Quantile 

  Med 

Quantile 

  

Type 
II 

error 
(%) 

95% 
coverage 

(%)   

Med % 
Bias 

Reduction** 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5 
BMId                                                   

N(mean = 33, SD = 3) 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
N(meanj = N(mean = 33, SD =2), SD =3) 17   1.03 0.90 1.20   115 54 183   98.0 21.5   0.81 0.70 0.93  3 -62 66   31.5 97.5   115 

Correlation matrix†                                                   
Matrix 1 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
Matrix 2 18   1.02 0.89 1.18  110 50 175  99.0 22.0  0.81 0.70 0.95  7 -57 79  33.5 95.5  105 

bd                                                   
N(mean=0, SD=0.2) 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
N(mean=0, SD=0.1) 19   1.04 0.97 1.14   120 85 157   100.0 1.5   0.80 0.74 0.87   1 -33 38   8.0 100.0   119 

HR(BMI)d‡                                                   
Model 1 1   1.05 0.92 1.21   120 61 185   99.0 17.5   0.81 0.71 0.93   5 -53 70   30.0 97.5   118 
Model 4 20   0.96 0.83 1.09   80 15 138   90.5 42.5   0.81 0.70 0.92   4 -61 62   23.5 98.0   76 
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FIGURE LEGEND 
 
Figure 1.   Effect of statins on myocardial infarction in databases with missing data 

(naïve), no missing data (true), and imputed data (imputed)*  

  *In this analysis, the mock database “West Midlands and Southwest” served as the 

validation database. In the “naïve” analysis, the pre-specified confounders (HbA1c, 

smoking, cholesterol, BMI) were ignored in all databases but the validation 

database. In the “true” analysis, the observed or singly-imputed values of the pre-

specified confounders were used in all databases. In the “imputed” analysis, 

multiple imputation was applied to consider values for the pre-specified 

confounders in the missing databases. 
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