
THE STUDY OF QUASI-PERIODIC 
OSCILLATIONS FROM SOFT 

GAMMA REPEATERS 

Joanne Kettner 

Master of Science 

Department of Physics 

McGill University 

Montréal, Québec 

2007-09-17 

A thesis submitted to McGill University in partial fulfilment of the requirements of 
the degree of Master of Science 

@Joanne Kettner 2007 



1+1 Libraryand 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-38408-4 
Our file Notre référence 
ISBN: 978-0-494-38408-4 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ACKNOWLEDGEMENTS 

1 thank Matt Becker, Caroline Niquette, and my mother for their support 

throughout my degree. 1 thank Paula Domingues for being so helpful and patient, 

and Elizabeth Shearon for being so giving over the past two years. 1 also thank my 

supervisor, Andrew Cumming. 

iii 



ABSTRACT 

Hyperflares from Soft Gamma Repeaters have revealed quasi-periodic oscilla­

tions, suggested to be torsional modes of the neutron star crust produced during 

starquakes. We study how a magnetic field affects these modes. We make a plane­

parallel model of the neutron star crust with a vertical and non-vertical field and 

solve for the eigenvalues and eigenfunctions. In the vertical field case we find a dis­

crete set of modes comparable to the observed frequencies giving evidence for this 

theory. We find that the lower order modes do not depend on B while the higher 

order modes do when the field strength is low or extremely high. We make a simple 

analytic model of a non-vertical field in a closed box representing the neutron star 

crust. The mode spectrum in this model is continuous rather than discrete, raising 

the puzzle of why only specifie modes are excited during the hyperflare. 
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ABRÉGÉ 

Des sursauts géants provenant de sursauteurs gamma mou ont révélé des oscil­

lations quasi-périodiques qui pourraient être des modes de torsion produits durant 

les tremblements de la croûte d'une étoile à neutrons. Nous étudions comment un 

champ magnétique affecte ces modes. Nous produisons un modèle d'une étoile à neu­

trons avec un champ vertical et non-vertical puis nous solutionnons pour trouver les 

valeurs propres. Dans le cas du champ vertical, nous trouvons une série discrète de 

modes comparables aux fréquences observées. Nous trouvons que les modes de bas 

ordres ne dépendent pas de B alors que les modes d'ordres plus élevés en dépendent 

parfois. Nous produisons un modèle analytique d'un champ non-vertical dans une 

boîte fermée qui représente la croûte de l'étoile à neutrons. Le spectre des modes 

dans ce modèle est continu plutôt que discret ce qui nous amène à nous demander 

pourquoi seuls des modes spécifiques sont excités durant les sursauts géants. 
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1.1 Overview 

CHAPTER 1 
Introduction 

A neutron star is born after a Type lb, le, or II supernova explosion, caused by 

the collapse of an t'V 8-60 MG star (the upper mass limit is uncertain and depends on 

metallicity; Heger et al. 2003), where MG = 1.99 X 1033 gis one solar mass (Hansen 

et al. 2004, Shapiro & Teukolsky 1983). It should be noted that neutron stars are 

not the only stars born after Type II supernovae sometimes a black hole is born. 

When the newly formed star is a neutron star it has the following properties; a mass 

~ 1.2 - 1.4 MG (Heger et al. 2003), a radius of t'V 106 cm, and an extremely high 

mean density of .:s 1015 g cm-3
. After the superova explosion, the neutron star may 

be spinning extremely rapidly, depending on whether angular momentum of the core 

is conserved during stellar evolution and collapse (Heger et al. 2005). Eventually the 

star's period will decrease at a very slow rate as its rotating magnetic field radiates 

energy away. 

Neutron stars are composed of layers. See Figure (1-1) for a cross sectional 

slice of the different regions (Shapiro & Teukolsky 1983). The innermost section is 

an extremely dense fiuid core tightly packed with neutrons, protons, and electrons. 

The exact structure at the center is currently unknown and of great interest to 

many thcoretical physicists, with suggestions ranging from pion condensates to quark 

matter to a neutron solid. The next layer is a solid crust which forms as the pressure 
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and temperature decrease outside the core. This crust has an inner and outer region. 

The inner crust contains nuclei, free neutrons, and free electrons while the outer 

cru st is composed of free electrons and nuclei that decreases in neutron number the 

further it gets from the star's center. The outermost layer is a fiuid ocean consisting 

of iron and neutron rich isotopes (Hansen et al. 2004). 

OtHerCnm ! 
Inner Crust 

Fluid Core 

Figure 1-1: Cross sectional slice of the layers within a neutron star. 

There are many different types of neutron stars. Those of interest for this 

dissertation are magnetars (Duncan & Thompson 1992, Thompson & Duncan 1995). 

A magnetar is thought to be born when its parent star has a fast rotation rate 

and an extremely large surface magnetic field before exploding as a supernova. The 

birthrate for these stars in our Galaxy is estimated to be rv (1 - 10) x 10-4 ye1 

(Duncan & Thompson 1992, Thompson & Duncan 1995). These young isolated 

neutron stars have long rotation periods (rv 5 -12 s) and extremely strong magnetic 

fields (rv 1014 _1015 G) compared to other types of neutron star. As a result of these 
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field strengths the main source of free energy in magnetars is magnetic as opposed 

to rotational. 

There exist at least two kinds of magnetars, Soft Gamma Repeaters (SGRs) and 

Anomalous X-ray Pulsars (AXPs). The former will be the focus of this dissertation. 

SGR bursts come in two forms, regular and giant. The giant bursts (or flares) 

are also referred to as hyperflares in the literature. Both bursts arise when the 

magnetic energy within the star becomes so strong it cracks the crust and emits 

high energy Alfvén waves into the magnetosphere, mostly in the form of gamma 

rays and x-rays (Thompson & Duncan 1995). The regular flares are thought to be 

powered by magnetic field diffusion across small crustal fractures, whereas the giant 

flares are expected to be produced through a sudden shift and reconnection of the 

magnetic field causing large fractures in the crust which in turn lead to the emission 

of extremely powerful Alfvén waves. 

There have been three hyperflares observed to date, each of which has revealed 

quasi-periodic oscillations (QPOs) in addition to their spin periods. The implication 

of these oscillations is that we are detecting toroidal (or torsional) modes produced 

by seismic vibrations within the neutron star crust (Duncan 1998). It is expected 

that these starquakes would pro duce many different modes as waves pass radially 

through the crust and circularly around it. The main restoring forces for these modes 

arise from the Coulomb forces between the ions within the solid crust. Because these 

forces are relatively weak these modes are easy to excite, where the lowest order 

modes are those most likely to be excited. Sorne other reasons these low or der modes 

are expected to be excited is that they have a slow damping rate due to their long 
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periods and they are closer to the stellar surface than other modes, which enables 

them to couple to the external magnetic field more easily (Blaes et al. 1989). 

Seismology, the study of seismic waves from earthquakes, has been used to learn 

about properties of the Earth. Global shear modes were detected in the Earth after 

an earthquake in 1960, and a fundamental period of 43 minutes was found (Duncan 

1998). Other toroidal modes have sinee been found in the Earth. Another form of 

seismology, helioseismology, has been used to study solar oscillation frequencies which 

has given insight into the structure of the solar interior (Hansen et al. 2004). If in fact 

we are observing seismic vibrations of neutron star crusts during magnetar Hares this 

is extremely exciting as we can now use seismology to gain a better understanding 

of neutron stars! 

The focus of this dissertation will be on QPOs produced by SGRs. We will 

begin by covering the observations of the SGR regular and giant Hares (section 1.2), 

followed by a summary of the theoretical work describing these objects and their 

giant bursts (section 1.3). In Chapter 2 we will describe the theory behind torsional 

modes of the neutron star crust, comparing our results to the work done by Piro 

(2005) on this subject. In Chapter 3 we will take this subject a bit further by 

considering a more complicated field geometry. We will end this chapter by giving 

an overview of what will be covered in the rest of the dissertation. 

1.2 Observations of SGRs 

There are currently five known SGRs, four in our galaxy and one in the Large 

Magellanic Cloud (LMC). The first detection of these objects was in 1979 (Mazets 

et al. 1979a) and bursts are still being observed today. They were not given the 
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name Soft Gamma Repeaters until 1986 when they were classified as a distinct set 

of objects, differing from the other bursters (Woods & Thompson 2006). These 

stars have many distinguishing properties. They pro duce frequent gamma-ray flares 

(peak luminosities of Lpeak ~ 1041 ergs S-l) and on rare occasions giant flares which 

pro duce extraordinary amounts of energy (Lpeak ~ 1044 - 1046 ergs S-l) (Duncan 

& Thompson 1992). These giant bursts begin with a hard spike of spectrally soft 

gamma-rays, lasting anywhere from a fraction of a second to a few seconds, followed 

by a weaker decaying tail that can continue for a few hundred seconds. See Figure 

(14.6) in the paper by Woods & Thompson (2006) which shows the giant burst 

emitted from SGR 1900+14 using data from a detector on Ulysses. SGRs are capable 

of emitting many bursts, differing from supernovae and gamma ray bursts which only 

release one explosion throughout their lifetimes (Woods & Thompson 2006). Their 

observed periods are between 5 and 8 seconds. We proceed by giving the details of 

the detections and analysis of the five currently known SGRs. 

1.2.1 SGR 0526-66, The March 5th Event 

The first giant flare was detected on March 5th 1979 and it came from the 

source SGR 0526-66 (Mazets et al. 1979a). Its location is 180 000 light years from 

our galaxy in a young ('" 104 yr) supernova remnant (SNR N49) in the LMC (Cline 

et al. 1982). Wh en the source was detected there was an initial hard pulse of gamma 

rays that lasted for ",0.2 s, followed by a soft tail of less intense gamma rays lasting 

for more than three minutes. This observation was extremely exciting as it was the 

most energetic flare of gamma rays ever to be recorded, and had an isotropie energy 

of ~ 5 x 1044 ergs (Woods & Thompson 2004). Over the next two months this source 
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emitted three regular bursts, the first lasting 1.5 s and the second and third lasting 

roughly 0.2 s. SGR 0526-66 continued to be active, emitting 16 more bursts, until 

May 1983. Since then there have been no detections from this source. 

The original hyperflare was recorded by ten different spacecrafts; two Soviet 

interplanetary space probes Venera 11 and Venera 12; the American space probe 

Helios 2; the Pioneer Venus Orbiter's gamma ray detector; three Vela satellites; the 

Soviet satellite Prognoz 7; an orbiting X-ray telescope belonging to the Einstein 

X-ray Observatory; and the International Sun-Earth Explorer (ISEE). Barat et al. 

(1983) analyzed data from three of these spacecrafts, Prognoz 7, Venera 11, and 

Venera 12. They found an 8 second spin period for the neutron star as well as a 

potential QPO with a frequency of 43.5 Hz. As this was the first giant flare ever 

recorded astronomers had not been prepared for this type of stellar activity which 

may be the reason why only one QPO was detected from this source. 

1.2.2 SGR 1806-20 

This burster is located in the Galactic plane in the constellation Sagittarius. !ts 

first flare was detected in January 1979 and it continued to emit over 100 more during 

the eighties, emitting fewer throughout the nineties. In 2004 it made a comeback 

by emitting the most energetic and recent giant fiare ever recorded with an isotropic 

energy of cv (3 - 10) x 1046 ergs (Israel et al. 2005). This burst was recorded by the 

Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) (Israel 

et al. 2005) and the Ramatay High Energy Solar Spectroscopic Imager (RHESSI) 

(Strohmayer & Watts 2005). 
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Analysis of the RXTE data (Israel et al. 2005) determined a short lived rv92.5 Hz 

X-ray QPO in the tail of the Rare, detected ~ 170 - 220 seconds after the main peak. 

This neutron star's spin period is 7.56 s and the QPO seemed to be dependent on this 

rotational phase, only appearing during specifie intervals of the period. This phase 

dependence implies that the QPO is occurring on a specifie area of the neutron star. 

At later times, between ~ 200 - 300 seconds after the initial pulse, two additional 

QPOs were detected at rv 18 and rv30 Hz. These oscillations were weaker than the 

first one and there was no conclusive evidence found for their phase dependence. 

When the RHESSI data were analyzed by Watts and Strohmayer (2006) they 

also found a rv92.5 Hz QPO confirming the result found by the RXTE PCA. They 

found the signal was strongest between ~ 150 - 260 seconds after the main peak 

and it was at a rotational phase away from the main pulse just as it had been in the 

RXTE data. Additional oscillations were found at rv18, 26, and 30 Hz (this detection 

was much weaker). These low frequency QPOs were found earlier than 200 seconds 

after the main spike (a bit earlier than those found by Israel et al. 2005) and the two 

lowest frequencies were found at the same rotational phase as the 92.5 Hz oscillation. 

The 30 Hz QPO was too weak to be significant. One more QPO was found in this 

dataset at rv 626.5 Hz, occurring before the 92.5 Hz oscillation between 50 and 200 

seconds after the main Rare. It was detected at a different rotational phase, much 

closer to the main peak, than aH the other signaIs. 

Once Strohmayer and Watts had analyzed the RHESSI data the RXTE PCA 

data became public. They re-analyzed the RXTE detections and confirmed the 

QPOs found by Israel et al. (2005) at rvI8, 30 and 92.5 Hz (Strohmayer & Watts 
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2006). They were also able to confirm a rotational phase dependence for aU three 

of these QPOs, which had not done by Israel et al. (2005). Extending their search 

to higher frequency ranges they found additional QPOs at rv 150 and 1840 Hz and 

two more oscillations with lower significances at rv 720 and 2384 Hz. The most 

exciting result from this analysis was the detection of QPOs at rv 26 and 625 Hz, 

two results observed in the RHESSI data which had not been found during the first 

RXTE analysis. The fact that both satellites were detecting oscillations at the same 

frequencies implied that these QPOs were reaUy intrinsic to their source. 

1.2.3 SGR 1900+14 

This star is situated in the Galactic plane on the outskirts of a SNR (G42.8 ± 

0.6) in the constellation Aquila, the Eagle (Feroci et al. 2001). It was not very active 

in its early years, bursting three times in 1979 (Mazets et al. 1979b) and then not 

again unti11992 (Kouveliotou et al. 1993), emitting another three bursts. On August 

27th 1998 this SGR became much more exciting, producing the most luminous event 

ever detected outside our solar system at the time, with a peak source luminosity 

~ 2 X 1044 ergs S-l (Hurley et al. 1999). The actual burst was intrinsicaUy less 

powerful than that in SGR 0526-66, but because SGR 1900+14 is closer to Earth 

the flux was more intense. However it would only hold this record for another six 

years before SGR 1806-20 would burst, overpassing both hyperflares and becoming 

the most luminous SGR burst ever observed. 

Hurley et al. (1999) detected this event, having the same initial hard peak of 

gamma rays followed by a softer decaying tail (lasting ~ 300 s) as the March 5th 

event of SGR 0526-66. They discuss the detection of a rotational period of 5.16 s for 

8 



the neutron star which was also found in the analysis of the BeppoSAX and Ulysses 

data from this fiare (Feroci et al. 2001). 

After Israel et al. (2005) had found QPOs in the hyperfiare emitted by SGR 

1806-20 Stroymayer and Watts (2005) decided to look for similar behavior in the 

data from SGR 1900+14. They used signaIs from the RXTE PCA and discovered 

QPOs at ('-.J 28 (weakest detection), 53.5, 84, and 155.1 Hz. They also found that 

each oscillation was at the same rotational phase and not centered on a peak, which 

had already been shown for the QPOs from SGR 1806-20 (Israel et al. 2005). The 

similarity between the QPOs for SGR 1900+ 14 and SGR 1806-20 gives more evidence 

that these signaIs are associated with the source, which is promising for future under­

standing of these interesting astrophysical objects. See Table (1-1) for a summary 

of the observed frequencies from aIl three hyperfiares. 

1.2.4 SGR 1801-23 

In the summer of 1997 when SGR 1806-20 was extremely active two bursts were 

observed near this source that were inconsistent with its behavior. This turned out 

to be a new burster, SGR 1801-23. Four separate instruments detected the se fiares; 

BATSE aboard Compton Gamma Ray Observatory (CGRO) (Meegan et al. 1996), 

Konus-A aboard the Kosmos spacecraft (Aptekar et al. 1995), and the gamma­

ray burst (GRB) experiment aboard Ulysses (Hurley et al. 1992). Cline et al. 

(2000) attempted to locate the burster by analyzing potential SNRs that it may be 

associated with. Unfortunately, due to minimal detections from this SGR, there is 

currently not enough information to learn much more about it. Hopefully it will 
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Table 1-1: Approximate frequency results from aH three hyperfiares where the num­
bers beside the satellites represent the papers revealing these QPOs: [1] Watts & 
Strohmayer (2006); [2] Strohmayer & Watts (2006); [3] Israel et al. (2005); [4] Barat 
et al. (1983); [5] Strohmayer & Watts (2005). Notice the similarities between sorne of 
the observed frequencies from different sources, implying that the same phenomenon 
is powering these fiares. 

Frequency (Hz) SGR Satellite 
18 1806-20 RHESSI [1] & RXTE [2, 3] 
26 1806-20 RHESSI [1] & RXTE [2] 
28 1900+14 RXTE [5] 
30 1806-20 RXTE [2, 3] & RHESSI (weak) [1] 
44 0526-66 Prognoz 7, Venera 11 & 12 [4] 
54 1900+14 RXTE [5] 
84 1900+14 RXTE [5] 
93 1806-20 RHESSI [1] & RXTE [2, 3] 
150 1806-20 RXTE [2] 
155 1900+14 RXTE [5] 
625 1806-20 RHESSI [1] & RXTE [2] 
720 1806-20 RXTE (weak) [2] 
1837 1806-20 RXTE [2] 
2384 1806-20 RXTE (weak) [2] 

become active again in the future giving us more insight into these new and exciting 

sources. 

1.2.5 SGR 1627-41 

SGR 1627-41, our newest SGR, was first detected in 1998 (Kouveliotou et al. 

1998). It is located in a SNR near the Galactic plane. In the summer of 1998, 99 

bursts were detected from this source by the Burst and Tfansient Source Experiment 

(BATSE) (Woods et al. 1999). An estimated neutron star spin period of 6.4 s was 

calculated from these bursts (lasting between 25 ms and 1.8 s). No QPOs have been 
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observed in this source, and therefore we will not consider it any further in this 

dissertation. 

1.3 History of Theoretical Work on QPOs Produced by SGRs 

1.3.1 Seismic Vibration Models 

Early considerations of neutron star oscillations laid out the ground work for 

future research on SGRs. One of these papers (McDermott et al. 1988) described 

numerous types of nonradial oscillations that could potentially occur in neutron 

stars. Throughout this work rotation, general relativity, and magnetic field effects 

were ignored and it was assumed that the crustal motion had no dependence on the 

motion of the fiuid core. 

Stellar oscillations can be classified into two main types, spheroidal and toroidal 

modes. There are several subcategories within these modes. Toroidal oscillations are 

the most interesting and most likely candidates for SGR giant fiares. They can be 

described as normal modes of shear waves in the solid neutron star crust. They are 

divergence free and have no radial components. In order to study these oscillations 

McDermott et al. (1988) derived the perturbed wave equation caused by the shearing 

of the elastic crust and solved for the eigenfunctions. 

For the numerical calculations McDermott et al. (1988) used four neutron star 

models. In the short wavelength limit an analytic estimate for the dispersion relation 

was calculated, allowing for numerical approximations of these oscillation periods to 

be made. By using the spherical harmonies C and n to classify the torsional modes, 

where C is the spherical harmonie index and n represents the number of nodes in the 

radial eigenfunction, the fundamental period (n=O, C=2) was found to be ",,20 ms 
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for aIl four models. Other results showed that the eigenfunctions and periods of the 

overtones (n > 0) were not dependent on e. See Table (1-2) for a summary of these 

periods. These numerical solutions, for the fundamental and overtone periods, were 

in good agreement with the analytic calculations given by Hansen & Cioffi (1980) 

where the fundamental period is given by, 

and the overtone period is, 

Pn>O ~ 2 ms 6.r 
n lkm 

(1.1 ) 

(1.2) 

where R6 = R/106 cm and 6.r is the crust thickness. These period calculations are 

what we would expect since the lowest order modes can be estimated by the time 

it takes a shear wave to travel around the neutron star (Pn=o ~ R/vs), whereas the 

higher order modes can be estimated by the time it takes for a shear wave to travel 

vertically through the crust divided by the number of radial nodes (Pn>o ~ H/nvs), 

where Vs is the shear speed and H is the scaleheight. Additional numerical results 

concluded that the ratio of overtone to fundamental periods could give an estimate 

for the thickness of the neutron star crust, also agreeing with the equations (1.1) and 

(1.2). This implies that the observation of these modes could potentially lead to a 

greater understanding of the structure of neutron stars. 

The ide a of starquakes has been around sinee long before the magnetar model 

existed and also before many SGR bursts had been observed. The theory of star-

quakes as the cause of gamma ray bursts was considered by Blaes et al. (1989). A 
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Table 1-2: Period results from McDermott et al. 's (1988) neutron star models. The 
torsional modes are denoted by gtn, where R is the spherical harmonie index and n 
represents the radial node number. The bracketed numbers refer to the different 
models where; [1] is the fiducial model (M = 0.503M0 , R = 10.1 km, and Pcentral = 

9.44 X 1014 gcm-3 , [2] is NS05T7 (M = 0.503M0 , R = 9.839 km, and Pcentral = 9.44 X 

1014 gcm-3), [3] is NS05T8 (M = 0.503M0 , R = 9.785 km and Pcentral = 9.44 X 1014 

gcm-3
, and [4] is NS13T8 (M = 1.326M0 , R = 7.853 km, and Pcentral = 3.63 X 1015 

gcm-3 . 

Mode Period (ms) [1] Period (ms) [2] Period (ms) [3] Period (ms) [4] 
1t1 1.749 1.885 1.795 0.3512 
1t2 1.015 1.097 1.050 0.2079 
1t3 0.8315 0.8199 0.7547 0.1457 
1t4 0.6689 0.7027 0.6382 0.1192 
2tO 19.06 18.59 18.54 17.32 
2t1 1.742 1.877 1.788 0.3512 
2t2 1.014 1.096 1.049 0.2079 
2t3 0.8307 0.8190 0.7539 0.1457 
2t4 0.6685 0.7022 0.6378 0.1192 

starquake is believed to occur when the neutron star cru st is fractured and elastic cn-

ergy is released. This energy excites the surface magnetic field, producing an induced 

electric field which then ejects energy in the form of gamma rays. Blaes et al. (1989) 

concluded that the elastic energy stored in neutron star crusts was large enough to 

produce the required amount of energy observed for various gamma ray bursts, such 

as the March 5th event which had been detected by this time. However, they also 

believed that the energy may not have been enough to produce the multiple bursts 

that had been observed for various gamma ray bursts, specifically SGR 0526-66. At 

the time of this research magnetars were not a possible option, as they had not been 

thought up yet. Therefore the magnetic energy estimate for these calculations was 
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much lower than our values today since magnetic fields on the order of 1012 G were 

being used as opposed to the now known field strengths of cv 1014 - 1015 G. 

Once the magnetar model was proposed (Duncan & Thompson 1992, Thompson 

& Duncan 1995) and SGRs were defined as a distinct set of objects, research advanced 

dramatically. Duncan (1998) proposed that SGRs undergo frequent starquakes, pro­

duced by global seismic fractures of the crust which are powered by extremely strong 

magnetic fields. Neutron stars are the most likely candidates for starquakes because 

their thin crust requires less energy to pro duce observable shear modes than a com­

pletely solid object. In addition to the shear modulus, isotropic magnetic pressure is 

included in the theory and the assumption is that low order toroidal modes should 

be excited by these crustquakes. The suggestion is that a global crust fracture oc­

curred for the March 5th event, creating oscillation modes that emitted radiation 

with observable frequencies. An analytic estimate of the toroidal frequencies was 

calculated and compared to that found for SGR 0526-66, classifying it as the funda­

mental toroidal mode (P = 2, n = 0). Due to the restricted data for this SG R only 

one period could be compared to the theory as it was the only one detected. 

After three giant flares had been detected theoretical models progressed even 

further. Piro (2005) used simplified magnetic field and crustal geometries to calculate 

the eigenfrequencies and eigenfunctions expected for torsional oscillations from SGRs. 

He considered how the magnetic field and observed frequencies were related, as well 

as how the modes depend on the properties of neutron stars. His work will be 

described in full in Chapter 2. 
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Following Piro's work, there have been numerous attempts to modify and im­

prove these theoretical models. General Relativistic effects and elasticity were con-

sidered by Samuelsson & Andersson (2007), although they used a zero temperature 

model and did not include magnetic field effects. They simulated many different 

models with varying core masses and radii, finding mode frequencies comparable to 

those observed for SGR 1806-20 and SGR 1900+14. Their results can be seen in Ta-

ble (1-3) and it should be noted that the lowest observed SGR 1806-20 frequencies, 

18 and 26 Hz do not fit into these models. 

Table 1-3: Mode identification for the observed QPO frequencies of SGR 1806-20 
and SGR 1900+14 (Samuelsson & Andersson 2007). 

SGR 1806-20 SGR 1900+14 
Frequency (Hz) Mode Frequency (Hz) Mode 

29 ot2 28 ± 0.5 ot2 

92.7 ± 0.1 ot6 53.5 ± 0.5 ot4 

150.3 ot lO 84 ot6 

626.46 ± 0.02 Ite 155.1 ± 0.2 otu 

None of the work described above has included the effect of the coupling between 

the solid crust and fluid core by the magnetic field. The most recent papers looking 

into this problem are; Glampedakis et al. (2006), Lee (2007), and Sotani et al. (2006 

& 2007), following previous attempts by Carroll et al. (1986) and Messios et al. 

(2001). Glampedakis et al. (2006) claimed that in order to have an accurate picture 

of these oscillations one must consider the global system of the coupled cru st and 

core. The reason for this is that any time the crust is deformed, the magnetic field 

will also be disrupted, causing Alfvén waves to travel into the core where they can 

be reflected by the crust once they have reached the other side. In order to calculate 
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the complete set of coupled magneto-elastic modes they used the same simplified 

plane parallel geometry as Piro (2005), ad ding the core into the calculations. This 

leads to very interesting results. The coupled system has a set of modes, and within 

this set most of the frequencies for the pure crustal modes are found as weIl as lower 

frequency modes, potentially comparable to the modes observed from SGR 1806-20 

which could not be explained by the uncoupled system! In order to understand why 

the majority of the modes observed are similar to the pure cru st modes, Glampedakis 

et al. (2006) calculate the total energy ratios between the crust and core. The modes 

maximizing this energy ratio should be the easiest to excite and thus those detected. 

The result is that the crustal frequencies are more energetically favorable explaining 

why we mostly observe these modes as opposed the core-Alfvén modes. 

After the release of Glampedakis et al.'s paper Sotani et al. (2006 & 2007) 

studied the crust-core coupling in relativistic neutron stars with dipole magnetic 

fields, following previous work by Messios et al. (2001). To understand the combined 

crustal torsional modes and global Alfvén modes two special cases (ie. toy models) 

are considered before the realistic model is calculated. The first is for a completely 

fluid neutron star with no crust at aU and therefore only pure Alfvén modes can 

exist. In the second case crusts of varying thicknesses are studied in order to see 

how the inclusion of a crust affects the Alfvén modes. For a completely solid star 

only crustal modes are present as would be expected. However, as soon as any 

amount of fluid is introduced global Alfvén modes arise. At this point both modes 

are present, the Alfvén modes penetrate the cru st while the torsional crustal modes 

enter the core. As the magnetic field increases and the crust thickness decreases 
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Alfvén modes become more dominant throughout the star. Therefore, for realistic 

neutron star models with crust thicknesses varying between 3 and 12% depending 

on the equation of state and mass of the star, Sotani et al. (2006 & 2007) conclude 

that global Alfvén modes are dominant over the torsional crustal modes and these 

are the oscillations we observe. They also claim that global Alfvén modes are not 

affected at all in the presence of a realistic size neutron star crust for B > 4 X 1015 G 

and that these modes can explain all the observed frequencies, including those very 

close together that cannot be explained by pure crustal modes (ie. the 26 and 29 

Hz QPOs found from SGR 1806-20). The reason for this is that the Alfvén mode 

overtone frequencies are non-degenerate for different values of 1!. See Table (1-4) for 

a comparison between the computed global Alfvén modes and the frequency results 

for SGR 1806-20 and SGR 1900+14. Another benefit to this theory is that it puts an 

upper limit on the magnetic field strengths for these SGRs, finding Bmax ~ 8 X 1015 

G for SGR 1806-20 and Bmax ~ 12 X 1015 G for SGR 1900+14. 

Table 1-4: Alfvén mode identification for the observed QPO frequencies of SGR 
1806-20 and SGR 1900+14, denoted by Can0 (Sotani et al. 2006). 

SGR 1806-20 SGR 1900+14 
Frequency (Hz) Mode Frequency (Hz) Mode 

18 2aO 28 2aO 

26 4aO 

29 5aO 54 7aO 

92.5 5a2 84 3al 

150 5a4 155 6a2 

626.5 4a25 

720 4a29 

1837 2aS3 

2384 2a lOS 
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Lee (2007) also studied the effects of a coupled ocean, crust, and core system with 

a dipole magnetic field. Their analysis was simplified by assuming a non-magnetic 

core and ignoring the effects of general relativity. In addition to studying toroidal 

modes they expanded their work to include spheroidal modes, magnetic modes in the 

crust and ocean, and the effects of slow rotation which ignored possible rotational 

deformations. Spherical geometry was employed, a more realistic model than the 

cylindrical geometry used by Carroll et al. (1986). Other improvements over Carroll 

et al. 's work was the inclusion of the fiuid core and realistic magnetar field strengths, 

where Carroll et al. had only included the ocean/crust system and magnetic field 

strengths of B Rj 1012 G. 

Lee (2007) did not attempt to compare their findings to observed oscillations, 

although they did mention that for frequencies less than 100 Hz it is extremely likely 

that these are fundamental torsional modes with low Ps, whereas for frequencies 

greater then 100 Hz the evidence is not concrete. Therefore claiming if we do not 

know anything else about the observed neutron stars we can not a priori classify the 

toroidal modes with these frequencies, other possible modes must also be considered. 

An example of this is for frequencies between 100 and 1000 Hz. In this situation the 

modes could be fundamental toroidal modes with high .e values, toroidal modes with 

n 2: 1 and low .e values, overtone spheroidal modes with low .e values, or crust/core 

interfacial modes with n = 2. Additional modes for the observed QPOs with ex­

tremely high frequencies, such as 1835 and 2384 Hz found from SGR 1806-20, must 

be considered as weIl. Therefore conclu ding that pure toroidal modes may be too 

simplistic an analysis for the observed QPOs. 
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1.3.2 Different Models 

One of the alternate ideas to neutron star torsional oscillations is the theory that 

magnetars are actually strange stars. These stars are composed almost completely of 

stable strange quark matter and there are two possibilities for their structure. The 

first is a bare st range quark star where the star is made of extremely dense quark 

fluid. Obviously this model could not house shear modes but the second type of 

strange star, one with a solid crust, could. There exist two different crustal theories. 

One is in which an electric field suspends the crust above the quark liquid. The 

composition of this crust is similar to that of a neutron star although it is thinner, 

only going as deep as neutron drip. The other kind of crust is one where strange 

quark nuggets exist in a background of uniform electrons; again this is much thinner 

than a neutron star crust. 

Following the approach used by Piro (2005), Watts and Reddy (2006) consider 

torsional oscillations for both types of crustal compositions and compare their results 

to the observed QPOs of SGRs. For the nuclear crust model they find the lowest 

possible fundamental frequency for a magnetic field strength of B > 1014 G to be 

34 Hz, thus ruling out the possibility of the strange star model revealing the lowest 

observed QPO frequencies. While for the first overtone with the same magnetic field 

they find a lower li mit frequency of cv 1660 Hz, mu ch higher than the observed 625 

Hz. The results for the nugget crust are no more promising; the minimum frequency 

for aIl parameters considered is 1.5 Hz, while the maximum is 20.7 Hz. These values 

could potentially agree with sorne of the observations although it would be difficult to 

find mode scalings with f. For the higher frequency calculations a similar conclusion 
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to the nuclear crust case was reached; even the minimum overtone frequencies were 

too high where for B > 1014 G, l/min ~ 920 Hz. These results imply that if we are in 

fact witnessing torsional shear QPOs from SGRs than the strange star hypothesis is 

unlikely for these objects. 

A recent paper by Levin (2006a) disagrees with the torsional shear mode analysis 

for SGRs claiming it contradicts the magnetar model. In his paper he includes the 

influence of the coupled crust/core system and argues that the crustal modes decay 

much too quickly, because of Alfvén wave propagation into the core, and can therefore 

not be observed as QPOs. He begins his work by considering a toy model of the core 

on its own and solves for the eigenmodes. The result is a continuous spectrum of 

magnetohydrodynamic (MHD) modes. He proceeds to add the crust into the model 

showing that any movement of the crustal modes will be coupled to the continuum 

of core modes. Claiming that these combined global modes will decay on the order 

of one second, much shorter than the observed rv 100 s QPOs, as energy rapidly 

transfers from the crust to the core. He conclu des that mechanical fracturing of 

the crust cannot be the mechanism behind these magnetar flares and suggests two 

potential candidates for these bursts. The first possibility is a different magnetic 

field configuration, either it is dominant in the crust or its poloidal component is 

incoherent. The second option is that these QPOs originate in the neutron star's 

magnetosphere as opposed to its crust. 

Levin (2006b) has a follow-up paper where he creates a more complicated toy 

model to better understand the occurrence of oscillations in magnetar crusts when 

a continuum of Alfvén modes is present in the core. They create 104 oscillators to 
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simulate the continuum of MHD modes in the core. Next they attach one single 

oscillator to this continuum and mimic the crustal motion by releasing it. In doing 

this they find that the energy drains into the core very quickly, confirming their 

previous predictions (Levin 2006a). Once the crust has transferred a large portion 

of its energy to the core it stabilizes and pro duces observable QPOs, explained by 

the turning points and edges of the Alfvén continuum. They claim that this model 

produces the 18 Hz QPO observed from SGR 1806-20 and potentially sorne of the 

other detected frequencies as weIl. In this paper they also refute previous calculations 

of crust/core coupled torsional modes (Glampedakis et al. 2006 and Sotani et al. 

2006b), arguing that the mis-use of symmetry in each case leads to the incorrect 

assumption of a discrete set of Alfvén modes. 

Strohmayer and Watts (2007), on the other hand, agree with the work done by 

Glampedakis et al. (2006) and Sotani et al. (2006) and discredit Levin's (2006a) 

work. Their first criticism is that the continuous spectrum is a result of the simplified 

geometry and would not hold in a more realistic system. They also point out that 

the model is not complete, including only one top plate as the sheared crust. A 

full slab core model should have two plates representing the crust, one on the top 

and one on the bottom which would definitely change the results of the calculations. 

This would also be true for the more complex toy model (Levin 2006b), where there 

should be a bottom crust oscillator as well as the top one. Therefore, more work 

will have to be do ne on this model before it gains popularity over the global seismic 

torsional oscillation model. 
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There have been two other suggestions on the theory of SGR QPOs which were 

summarized in Strohmayer and Watts (2007) paper. One of these suggestions stems 

from the fact that high frequency QPOs have been observed in several accreting neu­

tron star binary systems (van der Klis 2006). Recently, when a debris disk was found 

around an AXP (Wang et al. 2006) it led to the idea that debris disks surrounding 

magnetars could perhaps exhibit similar behavior as accretion disks around regular 

neutron stars and could therefore produce the observed SGR QPOs. Strohmayer and 

Watts (2007) claim that this idea is weak for a few reasons. First of aU there has been 

no pro of of a debris disk surrounding SGRs. Secondly, none of the binary system 

QPOs have had similar sets of frequencies to any of the observed magnetar fiares 

nor have they exhibited a dependence on rotational phase. The final and strongest 

reason Strohmayer and Watts (2007) discredit this theory is that the observed binary 

system QPOs are due to the proximity of the inner accretion disks to their neutron 

stars. The observed magnetar debris disk is much farther away from its star and 

would therefore not ex hi bit high frequency QPOs. At the present time Strohmayer 

and Watts (2007) conclude that this theory seems rather unlikely. 

The second alternate theory to seismic vibrations of the cru st is that Alfvén 

waves in the magnetosphere produce the observed QPOs, one of the possibilities 

mentioned by Levin (2006a). It has been suggested that the inner corona is capable 

of producing high frequency QPOs while the outer corona could potentiaUy create 

the lower frequency ones. However due to reduced emission around the outer corona 

it may be difficult for the observed frequencies to be reached. More work is needed 

on this theory before it can be credited as a viable option or completely discredited. 
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1.4 Outline 

We begin in Chapter 2 by giving an in depth description of the shear wave anal­

ysis for hyperflares from SGRs, comparing our results to Piro's (2005) throughout. 

We will explain the theories and produce simplified theoretical models of the modes 

of these neutron stars, showing the relationship between magnetic field strength and 

observed frequency. In Chapter 3, we will broaden the analysis by producing a toy 

model to see how different field geometries affect the QPOs. We will conclude our 

work in Chapter 4 and give suggestions for future research on these new and exciting 

objects. 
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CHAPTER 2 
Torsional Shear Modes from SGRs 

In this chapter we will consider a plane-parallel model of the neutron star crust. 

This model is similar to that calculated by Piro (2005), and we compare our results 

to his where possible. Despite being a rather simplified model it has been extremely 

useful in broadening our knowledge on torsion al oscillations in neutron star crusts. 

We will attempt to complicate the model by changing the field geometry in Chapter 

3 in the hop es that this will give more insight into the QPOs produced by SGRs. 

In this chapter we begin by describing the key equations for studying the torsional 

modes (section 2.1). We then make sorne analytic estimates on how the equations 

will behave (section 2.2) and end the chapter by discussing our numerical results 

(section 2.3). 

2.1 The Main Equations 

Our simplified model uses a plane-parallel geometry where z is the radial co­

ordinate. We choose a mass M = 1.4 M0 and a radius R = 1.2 X 106 cm which 

gives us a gravitational acceleration of 9 = G M / R 2 ~ 1.3 X 1014 cm S-2, where G is 

the gravitational constant defined as G - 6.67 X 10-8 cm3g-1s-2 . We also choose a 

constant magnetic field jj = Bi, and a Lagrangian displacement { = Çxx + çyY. Our 

model is isothermal with a temperature T = 5.1 X 108 K. Shear waves can only exist 

in solids and thereforc will not be present in the fiuid ocean or core. Ther:5e waves 

are incompressible CV· ( = 0), axisymmetric, and have no vertical displacement. 
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In order to proceed, we must determine the equation for the shear modulus 

in neutron star crusts. The shear modulus describes how rigid the solid is. It is 

defined by the ratio of shear stress to shear strain of the material. The shear stress 

for toroidal modes arises from Coulomb forces between the ions in the neutron star 

cru st described by 

(2.1) 

while the shear strain cornes from the displacement of the ions from equilibrium given 

by 5x/ a. See Figure (2-1) for a simple diagram of this system. Here Z is the atomic 

number of the ions, a is the average inter-ion spacing, e is the electronic charge, 

and 5x is the infinitesimal displacement of the ions. This implies that a simple two 

dimensional estimate of the shear modulus is 

(Ze)2 4/3 
Il ';::j --4- ex: ni , 

a 
(2.2) 

where ni is the number density of the ions and 41fnia3/3 = 1. Complications arise 

due to the anisotropy of the neutron star crust and numerical calculations must 

be employed to obtain a better solution for the shear modulus. We use the one 

calculated by Strohmayer et al. (1991) where they model the neutron star crust as 

a Coulomb solid and assume that it is a perfect body-centered-cubic (bcc) crystal. 

This solid crust consists of positively charged ions in a uniform negatively charged 

background. By averaging over aH possible shear wave directions they solve for an 

effective shear modulus given by 

0.1194 ni (Ze)2 
Il = 1 + O.595(173/r)2 a 

(2.3) 
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where r is the ratio of Coulomb to thermal energy (( Z e ? / akbT). 

• 

• 

OX .-:>. 

• 

. -
a 

• 
a 

Figure 2-1: Depiction of the infinitesimal displacement of the ions in a Coulomb 
solid. 

In a three dimensional solid undergoing small deformations the strain is de­

scribed as a symmetric tensor as opposed to the two dimensional bx/a. This shear 

strain tensor is given by 

u .. = ~ (8~i + 8~j) = u .. 
tJ 2!::l !::l Jt, 

UXj UXi 
(2.4) 

which for toroidal displacements of the form { = ~xx + ~yY gives us a shear stress 

tensor defined by 5aij = 2j1Uij (McDermott et al. 1988). 

We are now in a position to write the equation of motion for the ions including 

shear and magnetic forces: 

2--> 8 ~ --> 1 --> --> 

p- = \7·58+ -(5j x B). 
8t2 C 

(2.5) 

By assuming a periodic time dependence { ex eiwt , where w is the frequency, and 

writing (2.5) in component form, the equation of motion simplifies to 

(2.6) 
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where 5; is the perturbed current density due to the shaking of the crust. We can 

solve for 5; as a function of [ using three equations (Blaes et al. 1989). First we 

treat the cru st as a perfect electrical conductor. This is a good approximation sinee 

the period time-scale for these modes is much shorter than the ohmic dissipation 

time-scale (Blaes et al. 1989). The perturbed electric field is given by 

We then use Faraday's Law 

and Ampère's law 

~ 1 a[ ~ 
5E= --- x B. 

c at 

v x 5E = _~ a(513) 
c at ' 

n S:B~ _ 47r s:--7 1 a(5E) 
v x U - -uJ + - , 

c c at 

(2.7) 

(2.8) 

(2.9) 

for the perturbed fields. In order to eliminate 5E from these equations we simply 

plug (2.7) into equations (2.8) and (2.9). We can then solve for 5B in terms of [ 

and B using (2.8), and we can then get 5; in terms of 5B, [, and B using (2.9) and 

the oscillatory time dependenee of [. The resultant perturbed magnetic field and 

current density equations are given by 

5B = V x ([ x B), (2.10) 

and 

~ c (-> -> w2 ~ -» 5j = - \7 x 5B - -ç x B . 
47r c2 

(2.11) 
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Combining equations (2.6), (2.10), and (2.11) gives us the full wave equation for 

these modes 

(2.12) 

where Vi = 82
/ 8x2 + 8 2

/ 8y2. It should be noted that Piro (2005) used Vi { = 

-f(f + 1){j R2
, whereas we will use the correct scaling of Vi { = -(f + 2)(f -1){j R2 

(Watts & Reddy 2006, Samuelsson & Andersson 2007) for our calculations. 

2.2 Simplified Analysis 

We now make a few approximations in or der to estimate the dispersion rela­

tion for toroidal modes. We assume ( ex: ei(kxx+kyy+kzz) e iwt and that /1 is constant. 

Equation (2.12) becomes 

(2.13) 

where the transverse wavenumbers (k; + k~) are represented by ki, kz is the vertical 

wavenumber, Vs = (/1/ p)1/2 is the speed of shear waves through the crust, and VA = 

B / (4n p) 1/2 is the Alfvén wave speed. The transverse wavelength scales with the 

horizontal radius of the star kJ.. ex: 1/ R, while the vertical wavelength scales with the 

vertical depth of the crust kz ex: 1/ H, where H = P / pg is the pressure scaleheight. 

We will consider two specifie cases, one for the modes traveling radially around 

the star (n = 0), and the second for the overtone modes (n > 0) traveling vertically 

through the crust. For the first case kz ~ 0 and equation (2.13) becomes w2 = 

v;ki/(l - V~/C2). The term V~/C2 is important in the limit VA -t c. This limit tells 

us that B 2 / 4n pc2 = 1 which we use to solve for the critical density Perit = B 2 / 4nc2 ~ 

107 -108 g cm-3 for magnetar field strengths. Therefore as long as p > Perit, which it 
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is throughout the crust, Va < c and we can drop this term from our expression, giving 

a dispersion relation w2 ~ v; ki for the n = 0 modes. Our numerical calculations 

confirm that neglecting this term does not affect our frequency results. 

In the second case k; is much larger than ki as long as Ji. remains relatively 

small. The dispersion relation for this situation is given by w2 = (v; + v~)k; where 

we have dropped the v~/ c2 term again. These two simple estimates show that the 

lowest radial-order mode depends on the spherical harmonie index Ji. and do es not 

depend on B using our simplified field geometry, whereas the higher radial-order 

modes are proportional to Band independent of Ji.. 

One final analytic calculation made by Piro (2005) was to estimate the observed 

fundamental frequencies of these modes. He first calculated the shear modulus at 

the base of the crust 

30 -3 4/3(Z)2(302)4/3(1-Yn )1/3 
Mbase = 1.2 x 10 ergs cm P14 38 A 0.25 ' (2.14) 

where A is the atomic mass number, Yn is the fraction of neutrons, and P14 - p/1014 

g cm -3. Our shear modulus at the base agrees with Piro's, where we find M = 

1.3 X 1030 ergs cm-3, P = 1 X 1014 g cm-3, Z = 38, A = 303, and Yn = 0.74. Once 

Piro (2005) had ca1culated equation (2.14) he used the estimated n = 0 dispersion 

relation (w 2 = v;ki = MbaseJi.(Ji.+ 1)/ PbaseR2) and the effect of gravitational redshifting 

(1 - 2GM/ Rc2)-1/2 to obtain the solution 

1 

Wobs 1 
Vobs = -- = 

n=O 27f n=O 

1/6(Z) (302)2/3(1- Yn )2/3 
28.8 Hz P14 38 A 0.25 (2.15) 

[
P(P+l)]1/2 -1( M1.4) 1/2 

X R 12 1.53 - 0.53-
R 

' 
6 12 
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where M1.4 M/1.4M8 and R 12 R/12 km. Using our values at the crust base in 

the above equation we find a fundamental frequency of Vobs = 24.6 Hz for R = 2 and 

n = 0, where we have replaced the R(R + 1) scaling with the corrected (R + 2)(R - 1) 

value. 

2.3 Numerical Results 

2.3.1 Neutron Star Structure 

The neutron star is made up of layers as mentioned in Chapter 1. The lay­

ers of interest for our model are the inner and outer cru st and the fluid ocean. 

The inner crust contains nuclei with very high neutron numbers, electrons, and free 

neutrons. The density in this region ranges from Pdrip :::::; 4 X 1011 g cm-3 at the 

boundary between inner and outer crust and increases to Pele:::::; 1 X 1014 g cm-3 

at the crust/core interface. The transition from outer to inner crust (Pdrip) occurs 

when neutron drip begins. At this point the neutron to proton ratio increases dra­

matically with increasing density and the nuclei emit free neutrons. By the time 

P 2: 6 X 1012 g cm-3 (Cumming et al. 2004) the pressure from these non-relativistic, 

degenerate neutrons completely dominates over the electron pressure. The fermi en­

ergy is EJ,n = 15 MeV Pî~3Yn2/3(f /0.5) where fis a factor included to represent the 

neutron-neutron interactions. The neutron pressure is Pn = (2/5)nnEJ,n = 6.0 x 1032 

ergs cm-3p~~3y:13(f/O.5), where nn = pYn/mp is the neutron number density and 

mp is the proton mass. 

The outer crust consists of heavy nuclei in a Coulomb lattice surrounded by 

relativistic, degenerate electrons. The top of the cru st is found at the point where 
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melting begins, defined by Piro (2005) and Farouki & Hamaguchi (1993) to be at 

Ze
2 (41T) 1/3 ( P ) 1/3 r=- - -- ;:::;:;173. 

kBT 3 Amp 

We can use this to estimate the density at the top of the cru st 

(TS)3 (26)6 (A) 
Ptop = 2.3 X 10

9 
g cm-3 3" Z 56' 

(2.16) 

(2.17) 

The dominant pressure in this region (p :::; 6x 1012 g cm-3 ) cornes from the relativistic, 

degenerate electrons. Their fermi energy is given by Ej,e = 51 MeV pi~3Ye1/3 and 

their pressure is Pe = (1/4)neEj,e = 1.2 x 1031 ergs cm-3 pi~3Ye4/3, where ne = pYe/mp 

is the electron number density, P12 _ p/1012 g cm-3
, and Ye is the number fraction 

of electrons. 

The third and final neutron star region we consider is the fluid ocean. We use 

a density range from p = 3.5 X 107 g cm-3 to p = 2.3 X 109 g cm-3 and set the 

composition to iron (Z = 26, A = 56). Since electrons become fully relativistic at 

p ;:::;:; 107 g cm-3 the pressure is still dominated by relativistic, degenerate electrons 

throughout the ocean. 

We use the cold dense matter models of Haensel & Pichon (1994) for densities 

throughout the outer cru st (p < 4 X 1011 g cm-3) and Douchin & Haensel (2001) for 

densities throughout the inner crust (p> 4 X 1011 g cm-3 ). We also use the models 

of Mackie and Baym (1977) to calculate the f factor arising in the neutron pressure. 

Using the above three models we calculate the atomic number Z, the neutron fraction 

Yn , and the electron fraction Ye as a function of density throughout the neutron star 

cru st and ocean (Figure 2-2). 
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Figure 2-2: Atomic number Z, neutron fraction Yn , and electron fraction Ye versus 
density p throughout the neutron star crust and ocean. Note how quickly Ye decreases 
and Yn increases after neutron drip (Pdrip ~ 4 X 1011 g cm-3 ). 
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2.3.2 Numerical Procedure 

In order to numerically solve equation (2.12) we must re-write it as two first 

order differential equations. We choose to integrate over column depth y as opposed 

to z, where dy = -pdz. The two resultant equations are 

(2.18) 

and 
d( T 

dy (11 + B2/47f )p' 
(2.19) 

where T is the horizontal traction defined as the force per unit area acting on a 

surface in the vertical direction (Carroll et al. 1986). It should be noted that we are 

assuming B 2 remains constant throughout the integration which allows us to replace 

Before integrating the above equations we must apply initial and boundary 

conditions. In the ocean we set ( = 1, T = 0, and 11 = 0 since shear waves can 

not exist in a fiuid. We use a root finding program to invert our equation of state 

(P(p) = Pn + Pe) and solve for density as a function of pressure. We integrate over 

column depth from y = 3.7 X 1010 to y = 8.8 X 1012 g cm-2 which corresponds to the 

ocean density values mentioned in section (2.3.1). At the ocean/crust interface and 

at the transition from inner to outer crust we enforce continuity of the eigenfunction 

(~ and the horizontal traction (T). We integrate from y = 8.8 X 1012 to y = 5.0 X 1015 

g cm-2 in the outer crust and aIl the way down to y = 2.8 X 1018 g cm-2 in the inner 

crust, which again corresponds to the densities described for these regions in the 

previous section. 
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In order to solve for the w eigenvalues we make an initial guess for the frequency, 

set the horizontal traction to zero at the top of the crust, and integrate equations 

(2.18) and (2.19) to the base. The resultant eigenfrequencies are those which satisfy 

the boundary condition at the base. By doing this we assume that the crust and core 

are completely decoupled which is not true. RecaIl from Chapter 1 that Glampedakis 

et al. (2006), Sotani et al. (2006, 2007), and Lee (2007) have looked into the effect 

of crust/core coupling on the modes. Despite this incorrect assumption we still find 

sorne interesting results. 

2.3.3 Results 

One of the first things we consider is the velo city of the different waves through­

out the crust. We calculate the shear speed as weIl as the Alfvén speed for three 

magnetic field strengths, B = 3 X 1014 G, 6 X 1014 G, and 1 x 1015 G. See Figure (2-3) 

for a plot of these velocities against density. These results show that the shear speed 

dominates at the crust base (p:::::: 1 x 1014 g cm-3 ) where the Alfvén speed has died 

out. The peaks in the Vs curve (p = 109 - 4 X 1O1l gcm-3 ) arise from the discrete 

density values used throughout the outer crust (Haensel & Pichon 1994), whereas 

the smooth portion of the curve (p = 4 X 1O1l - 1014 gcm-3 ) arises from continuous 

density values throughout the inner crust (Douchin & Haensel 2001). Even though 

the shear waves travel faster than the Alfvén waves at the base, the magnetic waves 

can still have important effects on the modes if VA > Vs at the top of the crust. We 

show results of this later in the section. 

In our models the shear modulus is f.-L = 1.45 X 1025 ergs cm-3 at the top of the 

crust. Using the above condition B/(47fp)I/2 > (f.-L/p)1/2, implies B must be larger 
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Figure 2~3: Shear speed Vs (thin solid line) and Alfvén speeds VA for B = 3 X 1014 G 
(thin dashed line) , 6 X 1014 G (thick solid line) , and 1 x 1015 G (thick dashed line) 
as a function of density throughout the crust. 

than 1.35 x 1013 G before the field will have an effect on these modes. This means 

for magnetic field strengths below this limit the ocean Alfvén waves will not be able 

to penetrate the crust. This is demonstrated in Figure (2~4) where we plot the 

absolute value of the eigenfunction ç versus depth z for the n = 0, 1, and 4 modes 

when B = 9 X 1O1l G (left panel) and n = 0, 2, and 4 modes for B = 4 X 1014 G 

(right panel), We keep e = 2 for each of these modes. Looking at the low field case 

first we notice that as soon as the wave reaches the top of the cru st at z ~ 1.2 X 104 

cm the wave decays away. On the other hand, in the high field case we see that the 

Alfvén waves have no trouble crossing the ocean/ cru st interface where they become 

shear waves deep within the crust represented by the larger amplitudes at this depth. 

It should be noted that in both cases the n = 0 modes remain constant since they 

have no node and are independent of B. 
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Figure 2-4: Absolute value of the eigenfunction ç as a function of depth z for .e = 2 
for the n = 0 (constant thick solid line) , 1 (dashed line), and 4 (solid line) modes for 
B = 9 X 1011 G (left panel), and n = 0 (constant thick solid line), 2 (dashed line), and 
4 (solid line) modes for B = 4 X 1014 G (right panel). Note that the zero crossings 
are represented by cusps since we plot the absolute value of the displacement. Also 
notice how mu ch larger the amplitudes are within the crust when B is large. 

N ow that we understand the displacements within the crust we would like to 

know if there is enough energy available to pro duce the observed QPOs during mag­

netar fiares. In order to estimate this we follow Piro's (2005) approach and plot 

the energy density per logarithmic pressure, dE/dlnP = 27fR2.e(.e+ l)w 2 (çR)2P/g, 

where we have multiplied our equation by R2 to account for the fact that we set our 

initial displacement as ç = 1 whereas Piro set his initial displacement as ç = R. It 

should be noted that the .e scaling for this equation is correct as it comes from the 

angular integration over a sphere. The results for the.e = 2 and n = 0,1, and 2 modes 

are given in Figure (2-5) for magnetic field strengths B = 9 X 1011 G (left panel) 

and B = 4 X 1014 G (right panel). Looking at the n = 0 mode which is the same in 

both plots, we see that the required excitation energy at the crust base is cv 1049 ergs 

which corresponds to an amplitude of ç cv R. Let's now consider what amplitude 
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Figure 2-5: Energy density per logarithm pressure as a function of pressure for 
/!, = 2 and n = 0 (thick solid line) , 1 (thin solid line) , and 2 (dashed line) modes for 
B = 9 X 1011 G (left panel) and B = 4 X 1014 G (right panel)" 

is required to excite these modes to the observed energies (",,-, 1044 - 1046 ergs). We 

know that the mode energy is proportional to e. This tells us that 1044 ergs of 

cnergy are needed to excite the lowest order modes to an amplitude of ç ""-' 0.003R 

while 1046 ergs of energy are required for an amplitude of ç ""-' 0.03R. We therefore 

conclude that the observed energies from magnetar hyperfiares are capable of excit-

ing large amplitudes for the n = 0 modes, while more energy would be required to 

excite the higher order modes to the same amplitudes since their excitation energy 

at the base is higher. This is perhaps the reason that more lower or der modes have 

been detected in comparison to the higher order ones. 

All of our calculations up to this point have been on the neutron star surface. 

In order to compare our results to observations we must take gravitational redshift 

into account due to the energy loss of emitted photons. The redshift factor for a 

37 



mass M = 1.4 Ml-) and radius R = 1.2 X 106 cm is given by 

1/ (2GM)-1/2 
em = 1 + z = 1 - --2- = 1.235. 

1/obs Re 
(2.20) 

We may now plot our observed frequency values as a function of magnetic field 

strength. The results are given in Figure (2-6), where we plot the n = 0 modes 

for certain e values as weIl as the n = 1,2,3, and 4 modes which we found to be 

independent of e sinee we are only considering situations where e :::; 13. It should be 

noted that this plot is different from Piro's (2005) (see his Figure 3) in a couple ways. 

First of aIl we used the corrected (e + 2)(e -1) scaling as mentioned previously. This 

did not affect our n > 0 modes sinee they are independent of the harmonie index 

but it did affect our lowest order modes. The highest order modes also differ, where 

our mode crossings at low B occur for slightly lower magnetic field strengths than 

Piro's. Unfortunately we have not been able to find why this discrepancy occurs 

(private communications with Piro). One possibility is that it has to do with the 

boundary conditions. We tried to be as consistent with Piro's values as possible, 

but this could still be the culprit. We found that the top boundary conditions, 

those for the ocean and the top of the crust, had minimal effects on our results 

whereas the bottom boundary condition at the base of the crust had notieeable 

effects on our results. For example when we changed the bottom column depth from 

y = 2.3 X 1018 --+ Y = 2.8 X 1018 g cm-2 (or equivalently p = 8.6 X 1013 --+ P = 1.0 X 1014 

g cm-3 ) our eigenfrequency w increased by a factor of rv 1000. 

Despite these discrepancies we do still obtain sorne interesting results. Calcu­

lating our n = 0 modes using the corrected scaling we find an e = 2 fundamental 
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Figure 2-6: Observed frequency as a function of magnetic field strength B for the 
n = 0, 1 (thick solid line) , 2 (thick dashed line) , 3 (thin solid line) , and 4 (thin 
dashed line) modes. For the n = ° modes we have plot the results for .e = 2,4,7, and 
13 (.e = 2 is the bottom line and .e = 13 is the top horizontal line) , whereas an the 
higher order modes have been calculated using .e = 2. 

frequency of 22 Hz, as opposed to 27.4 Hz which we find using Piro's scaling. This 

value is close to the analytic estimate given in section 2.2 (equation 2.15) which we 

calculated to be 24.6 Hz. Despite the fact that 22 Hz does not match any of the 

observed QPOs it is closer to the 18 and 26 Hz frequencies detected from SGR 1806-

20. This would be a very exciting result since these frequencies have previously been 

difficult to explain. As already discussed, the base boundary conditions and therefore 

crust thickness are very important in determining the eigenvalues. This implies that 

adjusting the boundary conditions at the base could possibly result in a frequency 

of 18 H7-. However, more complicated neutron star models would have to be made 

before we could confirm these findings. While Piro associated his .e = 2 frequency 
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with the 30 Hz QPO emitted by SGR 1806-20, we find that our f = 3 frequency of 

"-' 35.4 Hz is closer to this value than our f = 2 frequency. The index f = 4 gives a 

frequency of 47.4 Hz (50.0 Hz using Piro's scaling) whieh could be associated with 

SGR 1900+14's 53 Hz oscillation and it could also be associated with SGR 0526-66's 

43.5 Hz QPO. We find v = 82.2 Hz (83.7 Hz with Piro's scaling) for the harmonie 

index f = 7 and v = 93.7 Hz for f = 8. We associate these with the 84 Hz QPO 

emitted by SGR 1900+14 and the 92 Hz QPO from SGR 1806-20, respectively. The 

last classification we make for the n = 0 modes is a frequency of 150.1 Hz (150.9 

Hz with Piro's scaling) wh en f = 13 which we associate with the 150 Hz QPO from 

SGR 1806-20 and the 155 Hz oscillation from SGR 1900+14. 

N ext we discuss our n > 0 mode findings. For n = 1 we find that the horizontal 

branch (Figure 2-6) associated with the shear modes of the crust gives frequencies 

of,,-, 626.6 Hz for the modes independent of B. Piro (2005) also calculated this and 

wh en his paper was published no higher order modes had been found in any of the 

hyperflares data. Based on these calculations Piro recommended searching for QPOs 

in higher frequency ranges. Strohmayer & Watts (2006) did just that, uncovering a 

,,-,625 and 1840 Hz oscillation in the tail of SGR 1806-20. It was very exciting that 

Piro's simplified model had predicted the n = 1 overtone. Our data also show that 

the 1840 Hz QPO could be associated with the n = 3 overtone. We also suggest that 

the less significant 2384 Hz oscillation detected by Strohmayer & Watts (2006) could 

be linked with the n = 4 mode. The fact that we find results similar to observations 

leads us to believe that the detected oscillations are produced by toroidal shear modes 

of the neutron star crust. Hopefully once more realistie models, taking into account 
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a fuller neutron star structure, are employed the results will be even more consistent 

with the observations. 

Now that we have mapped our mode frequencies to the observed SGR QPOs 

we continue by explaining the behavior of the modes in Figure (2-6). First of aIl the 

n = 0 modes exhibit no change with B, confirming the prediction that these modes 

depend on g and do not depend on B. The more interesting behavior is exhibited 

by the overtone modes. On the far left of the plot (low B values) we see that the 

frequencies depend on B (w ex B). The explanation for this dependence is that these 

waves are Alfvén waves trapped above the surface of the crust unable to penetrate 

through as discussed previously. If we remove the ocean from our calculations the 

w ex B relationship disappears as can be seen in Figure (2-7), where in this plot the 

horizontal branch due to the shear modes extends down to our lowest B values. 

----------~ 

2 
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Figure 2-7: Observed frequency as a function of magnetic field strength B for the 
n = 0, 1 (thick solid line) , 2 (thick dashed line) , 3 (thin solid line) , and 4 (thin 
dashed line) modes. These values were obtained when we removed the ocean from 
our calculations. For the n = 0 modes we have plot the result for g = 13 (bottom 
th in solid line), whereas aIl the higher order modes have been calculated using g = 2. 
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The next thing we notice in Figure (2-6) is the existence of mode (or avoided) 

crossings. This occurs when the wave changes character from an Alfvén wave to a 

shear wave or vice versa. This can be se en in Figure (2-6) at the point where the 

n = 1 and n = 2 modes almost cross. It appears as though the Alfvén wave (w ex B) 

passes right through a shear wave (the horizontal line in the figure). On closer 

inspection we notice that the lines do not actually intersect, there is a forbidden 

region arising from the degeneracy of the modes, separating the n = 1 Alfvén and 

shear modes from the n = 2 overtones. This implies that for any line with constant 

radial number n, there may exist different types of waves. 

We demonstrate this behavior by zooming in on the region around the avoided 

crossing for low B's between the n = 1 and n = 2 modes. This can be seen in Figure 

(2-8) where we plot the local energy density 

(2.21) 

as a function of column depth for three magnetic field strengths (B = 6.55 x 1011 G, 

B = 8.0 X 1011 G, and B = 9.0 X 1011 G) and their corresponding eigenfrequencies. 

In the top left panel when B = 6.55 X 1011 Gand Wobs = 519.7 Hz for the n = 1 mode, 

the avoided crossing has not occurred at this point and we see that there exists one 

wave in the ocean which is purely Alfvén in character. Continuing down to the left 

middle plot where B = 8.0 X 1011 Gand Wobs = 624.1 Hz we see that the mode is now 

mixed. There is an Alfvén wave wave in the ocean as weIl as a small crustal shear 

wave. Just after this, when B = 9.0 X 1011 Gand Wobs = 626.5 Hz, the wave has 

completely changed character and is Inow a pure shear wave as can be seen on the left 
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bottom panel of Figure (2-8). If we now look at the right side of this figure for the 

n = 2 mode we see the opposite behavior. The wave begins as a pure crustal shear 

wave in the top right panel when B = 6.55 X 1O1l Gand Wobs = 626.8 Hz, becoming 

mixed in character in the middle panel wh en B = 8.0 X 1011 Gand Wobs = 631.5 Hz. 

Finally in the bottom right panel at B = 9.0 X 1O1l Gand Wobs = 701.9 Hz the wave 

has switched form completely and is now a pure ocean Alfvén wave. 

The final thing to mention about Figure (2-6) is the transition from shear modes 

back to magnetic-dominated crustal modes at high B. We demonstrate this scaling 

with pure Alfvén waves in Figure (2-9), where we plot observed frequency versus B 

for the n = 1 mode for two cases. First we re-plot the n = 1 mode for our regular 

ocean/ crust models which include the contribution from the shear modulus in the 

solid cru st as weIl as the magnetic contribution. We also plot the n = 1 mode when 

I-t = 0 in the crust. By doing this we verify that the scaling for large B is consistent 

with the Alfvén waves (w ex: B). Referring back to Figure (2-3), we realize that 

even when the shear speed is greater than the Alfvén speed at the base of the crust 

the high magnetic field strengths do in fact have a large effect on the observable 

frequencies. 

We conclude this chapter with one more calculation where we use our results 

and the observed frequencies from SGR 1806-20 to estimate the neutron star's cru st 

thickness. Following the approach of Strohmayer & Watts (2006) we use our radius 

(R = 1.2 x 106 cm), crust thickness (~R ~ 1.4 x 105 cm), and frequencies to obtain 

a proportionality constant from the ratio VR,l~R/V2,oR, where the frequencies are 

denoted by ve,n. Our frequencies are given by ve,l ~ 627 and V2,O = 22 Hz, which 
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Figure 2-8: Local energy density versus column depth around the n = 1 (left panels) 
and n = 2 (right panels) avoided crossing between an Alfvén and shear mode for 
B = 6.55 X 1011 G (top panel), B = 8.0 X 1O11 G (middle panel), and B = 9.0 X 1011 

G (bottom panel). The corresponding redshifted eigenfrequencies are given for each 
plot. 
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Figure 2-9: Observed frequency as a function of magnetic field strength B for n = 1 
using our regular mixed shear and magnetic contributions (solid line) as well as a 
purely magnetic case (dashed line). 

gives us a proportionality constant of 3.3. We may now use this constant along with 

the observed frequencies from SGR 1806-20, Ve,l ~ 625 and V2,0 ~ 18 Hz, to obtain 

an estimate for the neutron star's cru st thickness. We find I::1R = 0.095R. This is 

a very exciting result, implying that we may be able to use the observed QPOs to 

learn about the crustal properties of neutron stars! 
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CHAPTER 3 
Non-Vertical Field Geometry Considerations 

In this Chapter we extend the work do ne in Chapter 2 by considering a different 

field geometry. Magnetars have dipole or higher order magnetic fields which means 

a simple vertical field geometry is not an entirely adequate assumption. We begin by 

re-defining the key equations from Chapter 2 with the inclusion of our new poloidal 

field components (section 3.1). We proceed with our numerical calculations (section 

3.1.1) which lead to more complicated results than originally expected. In or der to 

better understand the effect that a non-vertical field has on these modes we continue 

with sorne analytic calculations (section 3.2), where we make two simple toy models 

(section 3.3 and 3.4) in an attempt to describe the behavior of the eigenfunctions. 

3.1 The Main Equations for a New Field Geometry 

We use the same equations given in section 2.1 but instead of having a constant 

vertical magnetic field we add a horizontal component. The field is now given by 

jj = Byy+Bzz, where By = Bcose and Bz = Bsine. The Lagrangian displacement 

is chosen to lie perpendicular to the plane of jj and 11 and is therefore given by 

{ = Çxx for this field geometry. The displacement is still incompressible and satisfies 

the condition \7 . { = O. The perturbed magnetic field is now given by 

(3.1) 
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which gives a perturbed current density of 

(3.2) 

The resultant magnetic force term is 

and the shear force term is 

(3.4) 

Combining equations (3.3) and (3.4) gives the full wave equation for a non-vertical 

magnetic field. By assuming an oscillatory time dependence and of! oy -+ iki:, the 

resultant equation is given by 

(3.5) 

In order to numerically solve equation (3.5) it must be separated into two first or der 

differential equations just like we did in Chapter 2. Unfortunately it is not as simple 

for this case since there is now an imaginary cross term arising from the two field 

components. 

3.1.1 Numerical Procedure 

In an attempt to work around the imaginary term and solve this equation nu-

merically we consider a complex displacement which also gives ri se to a complex 

perturbed magnetic field and perturbed current density. Equation (3.5) can now be 
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written as two equations, one for the real part and one for the imaginary part. These 

are given by 

and 

(3.7) 

respectively, where ÇR and ÇI denote the real and imaginary eigenfunctions and we 

have dropped the w2 j c2 term from our equations since w < < c. Equations (3.6) and 

(3.7) can each be separated into two first or der differential equations where we have 

again chosen to integrate over column depth y instead of vertical depth z. The two 

real equations are given by 

and 

dÇR TR 
dy (p, + B'1j47f)p' 

(3.9) 

where TR and TI are the real and imaginary horizontal tractions. The imaginary 

equations are similar to equation (3.8) and (3.9) and are given by 

and 

df,r 
dy 

TI 
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The next step is to apply the initial and boundary conditions. These are sirnilar 

to the vertical field case except we now set the real and irnaginary horizontal tractions 

to zero, the initial real displacernent to one, and the irnaginary displacernent to zero 

at the top of the ocean. We rnake sure both displacernents and tractions rernain 

continuous throughout the ocean/crust and outer/inner crust interfaces and use the 

sarne rnethod as Chapter 2 to solve for the eigenfrequencies, where w must now satisfy 

the real and irnaginary base boundary conditions. We search for the eigenvalues at 

different Band e values, where By = B cos e and Bz = B sin e to gain insight into how 

the frequency depends on different field orientations. Unfortunately we are unable 

to find any w satisfying both boundary conditions except for in the lirniting case 

when e = 'if /2. In this situation the eigenfrequencies are the sarne as those found 

in Chapter 2 since in this lirnit the horizontal field cornponent is zero. We end our 

nurnerical calculations at this point and continue with sorne analytic estirnates in the 

next section in order to try and understand the physical picture of this problern a 

bit better. 

3.2 Analytic Estimates for Pure Alfvén Waves 

We begin by considering the pure Alfvén wave case where we set IL = 0 through­

out the crust. We still assume that of! oy -------+ iky { and we rnake an additional 

assurnption that the displacernent is given by Çx ~ Dz/ H, where D is sorne func­

tion of y, z is the vertical distance, and H is the scaleheight. This irnplies that 

oçx/ oz = D / H and 02çx/OZ2 = O. The sirnplified wave equation in this situation is 

given by 

2Dz 1 ( 2 2Dz a (D)) -pw - = - -k B - + 2B B - - . H 4'if y y H y z oy H (3.12) 
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By assuming that D is an oscillatory function of y given by 

D = Asin(ky) + Bcos(ky) = A (sin(ky) + ~ cos(ky)) , (3.13) 

where A and B are unknown constants, and setting the vertical displacement to 

z = H for simplicity equation (3.12) becomes 

-pw2A(sin(kY) + ~ cos(ky)) = 4~ [-k~B~A(sin(ky) + ~ cos(ky)) (3.14) 

+ 2BlIBz Ak(cos(ky) - ~ sin(ky))]. 

The next step is to equate the coefficients of cos(ky) and sin(ky), which gives two 

new equations 

(3.15) 

and 

(3.16) 

The constants A and B disappear when we multiply the above two equations. The 

resultant equation is 

(3.17) 

which can be written in terms of the Alfvén speed in the y and z directions, V~,y = 

B;/47rp and v~,z = B;/47rp, 

(3.18) 

Solving the above quadratic equation for w2 gives us 

2 ( k)2 iVA,yVA,zk 
W = VA,y ± H ' (3.19) 
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which is a complex solution. Taking the horizontal field limit (Bz -----. 0) we recover 

the expected dispersion relation for Alfvén waves (w2 = V~,yk2). Although, if we now 

take the vertical field limit (By -----.0), w2 disappears which do es not make sense since 

Chapter 2 considered only a vertical field and we calculated a real dispersion relation 

for that case. We realize that this term disappeared in the above calculations when 

we assumed that the displacement was proportional to z causing [P(; 8z2 -----. O. 

If we re-do this problem but do not assume a priori how ( depends on z we 

recover the vertical term in the dispersion relation. We use the same approach as 

before but we assume ( = f (z) (A sin( ky) + B cos( ky)). The wave equation is now 

given by 

-pw2 (Asin(ky) + B cos(ky)) 
B2 If -4; f (z)(Asin(ky) + B cos(ky)) (3.20) 

2ByBz 1 

- 41f f (z)k(Acos(ky) - Bsin(ky)) . 

B2 

+2 f(z)k 2 (A sin(ky) + B cos(ky)). 
41f 

Again we equate the coefficients of cos( ky) and sin( ky) and solve the quadratic 

equation for w2 which gives 

2 = f( k )2 _ f" 2 ± 2ivA,yVA,zkyj' w VA,y y V A,z H . (3.21) 

The result is still complex but we now have a real vertical field term as long as f" is 

negative. In the limit By -----. 0 or Bz -----. 0 we uncover the expected dispersion relation 

for pure Alfvén waves in the z and y directions, respectively. Equation (3.21) also 

implies that as soon as the field is not perpendicular to x an imaginary cross term 

arises. We do not quite understand why the tilting of the field lines would give rise 
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to an imaginary component. This is a topic that should be investigated further in 

the future. 

3.3 Non-Vertical Field in a Box with Infinite Length 

3.3.1 Pure Alfvén Waves 

In an attempt to gain more insight into this problem we approach it from a 

different angle where we try to understand the behavior of the eigenfunction. We 

start again with equation (3.5) where this time we try to eliminate the imaginary 

cross term right away. This can be done by making a coordinate transformation, 

where by defining two new perpendicular axes, Tl and (3, we can write y and z as 

functions of Tl and (3 given by 

y = Tl sin e + (3 cos e (3.22) 

and 

Z = Tl cos e - (3 sin e. (3.23) 

Equivalently we can write Tl and (3 as functions of y and z, where 

Tl = y sin e + Z cos e (3.24) 

and 

(3 = y cos e - z sin e. (3.25) 

See Figure (3-1) for a diagram of the new axes. We would now like to write the 

pure Alfvén wave equation in terms of these new coordinates. Writing equation (3.5) 
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z 

IE-------- Y 

Figure 3~ 1: Diagram of the new coordinate system described by r] and {3, where the 
angle between r] and {3 is 90 degrees and the angle between r] and z is given by B. 

a slightly different way we get 

(3.26) 

and if we let By = B sin Band Bz = B cos B equation (3.26) becomes 

(3.27) 

where v~ = Brot/47fp. Looking at the above equation we see that (cos BéJ / éJz + 

sin BéJ / éJy)2 = éJ2 / éJr]2. We can now write the wave equation in terms of the new 

coordinate r] given by 
éJ2çx -w2 
~=-2-ÇX' 
ur] vA 

which is a second order differential equation with the solution 
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where this oscillatory eigenfunction describes the waves traveling along the field lines 

in the 'r/ direction. We assume that A and B are funetions of (3 whieh implies there 

is a specifie (3 for each field line 'r/. 

H 

Figure 3-2: Two dimensional box with height H and infinite length where the field 
lines are defined by the coordinate 'r/ = z / cos O. 

Now that we have re-defined our coordinate system let's take a very simplistic 

toy model of a thin two dimensional box with height H in the z direction and infinite 

length in the y direction (see Figure 3-2). The total distance along the field lines is 

given by 'r/ = H / cos 0 in this simple system. We enforee continuity at the boundaries, 

z = 0 and z = H, which gives the condition çx(z = 0) = çx(z = H) = O. Setting 

z = 0 in equation (3.23) gives 

while setting z = H gives 

'r/1 = (3 tan 0 ) 

H 
'r/2 = (3 tan 0 + --O' 

cos 

(3.30) 

(3.31) 

We can now apply the boundary conditions in terms of 'r/ and (3 which gives us 
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A . (w(3tan()) B (w(3tan()) sm + cos 
VA VA (

w(3tan()) (WH) A sin cos () (3.32) 
VA VA cos 

(
w(3tan()) (WH) +B cos cos () 

VA VA cos 

B . (w(3tan()) . ( wH ) - sm sm 
VA VA cos () 

=0, 

and we have used the identities sin(A ± B) = sin A cos B ± cos A sin Band cos(A ± 

B) = cos A cos B =F sin A sin B to write it in the above form. We may now equate 

the coefficients of sin(w(3tan()/vA) and cos(w(3tan()/vA) to eliminate A and B from 

equation (3.32). The resultant dispersion relation is 

27rnv A cos () k 
W = H = VA , (3.33) 

where k = 27r(n cos ()/H) and À = (H/n cos ()). This is exactly what we expect for a 

pure Alfvén wave. The wavelength is equal to the total distance the wave can travel 

divided by the number of nodes. If we now go back to the first boundary condition 

(Asin(w(3tan()/VA) + Bcos(w(3tan()/vA) = 0) we can solve for the B/A ratio. We 

find B /A = - tan(w(3tan () /VA). Plugging this into our eigenfunction (equation 3.29) 

we get 

ç,x(71, (3) = A((3) [sin(W(71- (3 tan ())/VA)]. 
cos(w(3tan () /VA) 

(3.34) 

We would now like to transform ç,x(71, (3) -+ ç,x(y, z). We know from equation (3.23) 

that 71 - (3 tan () = z / cos () and from equation (3.25) that (3 = y cos () - z sin (). Also 
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using W /VA = 21["n cos e / H from equation (3.33) we obtain our final solution, 

~x(y, z) = A(fJ) [ sin(21["nz/ H) ] . cose;t (y sin e cos e - z sin2 e)) (3.35) 
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Figure 3-3: Eigenfunction versus z for e = 1[" (top le ft panel), e = 1["/4 (top right 
panel), e = 1["/3 (bottom left panel), and e = 1["/8 (bottom right panel). 

We set A = 1 and plot this function, varying different parameters to see how 

it behaves. In Figure (3-3) we set n, H, and y = 1 and vary e. We find that the 

function is sinusoidal when e = 0 and 1[" (top left panel) since the denominator goes 

to one for these values of theta. When e = 1["/4 (top right panel) the function is 

still periodic but has a higher amplitude and fewer nodes. For all other angles the 

function is not periodic and has spikes occurring throughout its spectrum. These 

spikes probably arise when the denominator goes to zero, so for each choice of y there 
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are particular z's where the argument of the cosine is mr/2 and cos(mr/2) = 0 ::::} 

displacement goes to infinity. We show this in Figure (3-3) for e = 7r /3 (bottom left 

panel) and 7r /8 (bottom right panel). 
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Figure 3-4: Eigenfunction versus z for e = 7r /3 for y = 2 (top left panel) and y = 7 
(top right panel), and e = 7r / 8 (middle and bottom panels), for y = 2 (middle le ft 
panel), y = 12 (middle right panel), y = 7 (bottom left panel), and y = 11 (bottom 
right panel). 

In Figure (3-4) we plot the eigenfunction versus z again, but this time we set n 

and H = 1 and vary y. When e = 0 and 7r the result is the same as in the top le ft 
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panel of Figure (3-3) for aH y's since the y term vanishes for these values of theta. 

For certain angles, such as e = 'Tf /3 and 'Tf /7, the amplitudes change for different y 

values but the function maintains the same form. We show this in the two top panels 

of Figure (3-4) when y = 2 and 7 for e = 'Tf /3. On the other hand, when e = 'Tf /8 

the function has three different forms. When y = 2, 6, and 8 there is a sharp spike 

in the negative direction, whereas for y = 12, 16, 18, and 22 the spike is now well 

above zero. When y = 3, 14, 17, and 20 the function is sinusoidal with increasing 

amplitude as z increases. The function begins with a positive slope. When y = 4, 7, 

10, 13, and 21 the function has the same form except it begins with a negative slope. 

The final shape this function has when e = 'Tf /8 is two distinct spikes, one positive 

and one negative. This occurs when y = 5, 11, 15, and 19. We show these different 

behaviors for e = 'Tf /8 in the middle and bottom panels of Figure (3-4) when y = 2, 

12, 7, and 11. 

In Figure (3-5) we now set H and y = 1 and vary n. For e = 'Tf / 4 (top panels) 

the function stays periodic and has 2n-1 nodes. When e = 'Tf /3 and 'Tf /8 the function 

has the same form, where the number of spikes increases with increasing n and we 

see sorne periodic behavior between the spikes. We demonstrate this behavior in 

Figure (3-5) for () = 'Tf /8 when n = 2 (bottom left panel) and 5 (bottom right panel). 

These plots have given us an idea of how the eigenfunction behaves, although we 

should point out that we set A = 1 in aH these calculations. In the future it would 

be beneficial to understand how A behaves as weIl. 
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Figure 3-5: Eigenfunction versus z for e = 7T / 4 for n = 2 (top left panel), and n = 5 
(top right panel), and e = 7T /8 for n = 2 (bottom left panel), and n = 5 (bottom 
right panel). 

3.3.2 Combined Shear and Alfvén Waves 

N ow that we have calculated the eigenfunction for a pure Alfvén wave we next 

turn to the shear wave solution, where for this case we set B = 0 and keep JL constant. 

Equation (3.5) for this situation becomes 

(3.36) 

which has a separable solution of the form Çx = [cos(kzz) + sin(kzz)][cos(kyY) + 

sin(kyY)]. Using the same coordinate system described in the pure Alfvén case we 

find that fJ/fJy = sinefJ/fJry + cosefJ/fJ(3 and fJ/fJz = cosefJ/fJry - sinefJ/fJ(3. We can 

59 



now write equation (3.36) in terms of Tl and (3 as 

(3.37) 

Now that we have solved for the shear and Alfvén equations (3.36) and (3.28) 

they can be combined to give the complete wave equation described in the new 

coordinate system, 

(3.38) 

This equation looks familiar; it is the same as the analytic result we found in Chapter 

2 for constant p, and B, exeept in a different coordinate system. This makes sense 

sinee the field lin es are now directed along one axis, 'Tl. The solution is now separable 

so we write Çx = f (Tl) g((3) and plug this eigenfunction into the above equation, 

(3.39) 

If we set 
222 

" Cl 9 d f" W - Cl f 9 = -- an =-
v2 v 2 + v 2 
sas 

(3.40) 

equation (3.39) is satisfied and the solution has the form 

[Asin(~) + BCOS(~))] (3.41) 

x [c sin( 

where the first term in brackets is g((3) and the second term is f (Tl)· 
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We begin by applying our boundary conditions just for f(TJ) and keeping g({3) 

constant. This gives the same result as was found for the pure Alfvén case where at 

z = 0, 171 = {3 tan e and at z = H, 172 = (3 tan e + HI cos e. Putting these conditions 

back into equation (3.41) and setting the eigenfunction to zero at the boundaries, we 

can then equate the coefficients of sin( Jw2 - 0'2 Iv~ + V;17) and cos( Jw 2 - 0'2 Iv~ + v;17) 

and eliminate the CID ratio. We obtain the relation, 

(3.42) 

Applying the boundary conditions again but this time for g({3) while keeping f(17) 

constant, we find at z = 0, {31 = 17 cot e while at z = H, (32 = 17 cot e - HI sin e. 

U sing the same approach as above we find 

0'= 
2m7Tvs sine 

H 
(3.43) 

Putting this into equation (3.42) we find the dispersion relation for the combined 

shear and Alfvén waves, 

(3.44) 

which is now a real solution. In order to eliminate as many of the constants in 

equation (3.41) as possible we use the boundary conditions for f(17) and g({3) to 

solve for the ratios Die and BI A, where 

D (2n7T ) B (2m7T ) C = -tan S17 sine and A = -tan H17coSe . (3.45) 
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Plugging these ratios into equation (3.41) we solve for the eigenfunction in terms of 

Tt and (3, 

[ ( 0"(3) ( O"Tt cot e) ( 0" (3) ] AC sin -;;; - tan Vs cos-;;; (3.46) 

x [sin( 

Using the definitions of Tt and (3 (equations 3.24 and 3.25) we transform this back 

into a function of y and z. The final solution is given by 

ç,x(y, z) = ( ) ( . 
cos 2~7r (y cos e sin e + z cos2 e) cos 2r;t (y cos e sin e - z sin2 e)) 

(3.47) 

We notice that the n dependence for this function is the same as the pure Alfvén 

case implying that the m dependence is caused by the shear waves. 
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Figure 3-6: Eigenfunction versus z for e = 'Tr (left panel) and e = 'Tr/8 (right panel). 
Comparing these plots to the pure Alfvén waves (Figure 3-3 top left and bottom 
right panels) we observe how the shear waves change the displacement. 

We plot the total eigenfunction while varying different parameters, just as we 

did in the pure Alfvén situation. We set A and C = 1 for an of these calculations. In 

Figure (3-6) we keep n, m, H and y = 1 and plot the function for different values of 
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theta. We notice for certain angles that the inclusion of the shear term changes the 

waveform dramatically, whereas for other values of theta it changes less, producing 

additional peaks as weIl as changing the amplitude of the original peaks. When e = 0 

and 7f (left panel) the wave has changed completely, instead of being a sinusoidal 

function (see top left panel in Figure 3~3) it now has sharp peaks. The function is 

still symmetric about the z = 0 axis, but the waveform has changed appreciably. 

When e = 7f /3, 7f /6, 7f /7, and 7f /8 the function behaves similarly to the pure Alfvén 

case except there is now one more sharp peak and valley. Also, two of the peaks and 

valleys have been inverted for these values of theta. We show this for e = 7f /8 in the 

right panel of Figure (3~6) which can be compared to the pure Alfvén case displayed 

in the bottom right panel of Figure (3~3). 
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Figure 3~7: Eigenfunction versus z for e = 7f /3 for y = 2 (top le ft panel) and y = 7 
(top right panel), and e = 7f/8 for y = 2 (bottom left panel), and y = 7 (bottom 
right panel). 
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We show the resu1ts of setting n, m, and H = 1 while varying y in Figure (3-7). 

When () = 7r /3 the eigenfunctions are similar to the pure Alfvén disp1acements. The 

addition of the shear term has changed the amplitude and sign of sorne peaks and 

has a1so produced additional peaks for certain y values. We plot the eigenfunction 

versus z for y = 2 (top left panel) and 7 (top right panel) which can be compared to 

the top two panels in Figure (3-4). For () = 7r /8 and y = 2 (bottom 1eft panel) the 

sharp spike that was present in the pure Alfvén case has now fiipped sign and there 

are a few additional small peaks (compare to the middle right panel of Figure 3-4). 

When y = 7 for the same angle the shear contribution has changed the waveform 

considerably, where there was a nice smooth function with increasing amplitude for 

the pure Alfvén waves (bottom right panel Figure 3-4), there are now many spikes 

present (bottom right panel Figure 3-7). 

In our final variations to the eigenfunction we keep H and y = 1 and vary n 

and m. As expected the number of nodes increases with increasing n or m, while the 

waveforms do not change dramatically for different n and m values. In Figure (3-8) 

we plot the disp1acement for () = 7r /3 (top panels) and e = 7r /8 (bottom panels) for 

different combinations of m and n. We find the same results when interchanging m 

and n values, for example the displacement for n = 1 and m = 2 is equivalent to 

that when n = 2 and m = 1. We also notice that the amplitudes of the waveforms 

change slightly and we detect sorne periodicity between peaks as m and n increase. 

As we mentioned in the pure Alfvén case, this has been helpful in giving us 

insight into what the eigenfunction looks like. This is just a first step in understand­

ing how a different field geometry affects the oscillations. The next step would be 
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to do a full numerical calculation, solve for the eigenfrequencies, compare them to 

the observed QPOs, and solve for A and C. We already suggested that A and C 

depend on rJ and {J. If this is true solving for these functions may get rid of the 

spike nature that we observed in Figures (3-3 -t 3-8) which would then give us a 

complete picture of how the eigenfunction behaves. 

3.4 Non-Vertical Field in a Closed Box 

In this last section we make one more analytic ca1culation where we now consider 

a closed box of height H and length L instead of an infinitely long box, since the 

star is effectively a box with periodic boundary conditions at each end. We begin by 

breaking the box into three regions with one field line per region, where each field 

line is now a different length (Figure 3-9). We apply the boundary conditions in 
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Figure 3-9: Two dimensional box with height H and length L, where the field lines 
are now a different length in each region. 

each region by ensuring the eigenfunction remains continuous at the edges. In region 

one the boundary conditions occur when 

çx(z = hl) = 0 =? 7]1 = (3tan() + hl/ cos(), (3.48) 

and when 

Çx (z = H) = 0 =? 7]2 = {3 tan () + H / cos (). (3.49) 

Using the same procedure as the previous section we solve the dispersion relation in 

this region to be 

W 2 = 47r
2 

(2 (2 2) 2 () 2 2 . 2 ()) (H _ hl)2 n Va + Vs COS + m Vs sm . (3.50) 

Region two has the same dispersion relation as the result for the infinitely long box 

since the field line has a total length of H / cos (). The result is given in equation 

(3.44). In the third region we apply the boundary conditions, 

(3.51) 
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and 

çx(z = h2) = 0 =? fl2 = JHane + h2/ cose, (3.52) 

which gives us a frequency of 

(3.53) 

These results are what we would expect from looking at Figure (3-9); the disper­

sion relation in each region depends on the vertical height of the field line. This is 

interesting sinee it implies that for an infinite number of field Hnes there will be an 

infinite number of frequencies =? a continuous spectrum! This result leads to sorne 

difficult questions which we discuss in the next chapter. 
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CHAPTER 4 
Summary and Discussion 

The first SGR hyperflare was detected on March 5th, 1979 (Mazets et al. 1979). 

Since then our knowledge regarding these bursts has grown immensely. The second 

and third hyperflares were observed in 1998 (Hurley et al. 1999) and 2004 (Israel et 

al. 2005). The QPOs produced by these flares prompted a great deal of research in 

attempts to understand the mechanisms underlying these events (see Chapter 1 for 

a review of the theoretical work on this subject). The proposed idea is that these 

flares occur wh en there is a sudden shift in the external magnetic footpoints of the 

star (Thompson & Duncan 1995). This displacement is caused by a build up of 

magnetic energy within the star which becomes so strong it fractures the crust while 

the magnetic field readjusts and reconnects. Since the field is anchored to the crust 

this leads to the release of huge amounts of energy, mostly in the form of gamma 

rays and x-rays, into the magnetosphere. It has been suggested (Duncan 1998) that 

seismic vibrations within the neutron star crust pro duce torsional oscillations which 

give ri se to the QPOs observed during these hyperflares. If this theory is correct it 

implies that seismology can be used to uncover properties about the inner structure 

and composition of neutron stars. 

We have focused on the torsional oscillation hypothesis throughout this thesis. 

The goal has been to gain insight into the QPOs detected during rnagnetar hyperflares 

and to understand how the magnetic field affects the se frequencies. We have carried 
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this out by making a simplified theoretical model of the neutron star crust and 

ocean which we have used to calculate the observed frequencies of these oscillations 

as a function of magnetic field strength for a vertical magnetic field (Chapter 2). 

In Chapter 3 we complicated the situation by considering how a non-vertical field 

geometry would affect this system. We conclude in this chapter by summarizing our 

work, discussing open issues, and suggesting future work on this topie. 

4.1 Torsional Oscillations from SGRs 

In Chapter 2 we modeled a neutron star crust and ocean with a vertical magnetic 

field. Piro (2005) recently calculated a similar model and our results agree well with 

his findings. We described the key equations for studying torsional oscillations which 

allowed us to make sorne analytic estimates, including the observed fundamental 

frequency of these modes. This gave us an observed frequency estimate of 24.6 Hz 

for the n = 0 and R = 2 mode in comparison to our numerical value of 22 Hz. 

We proceeded by explaining the structure of the neutron star crust and ocean, 

where the pressure is dominated by nonrelativistic degenerate neutrons in the inner 

crust and relativistic degenerate electrons in the outer crust and ocean. We then 

calculated and compared the Alfvén and shear speeds throughout the crust, finding 

the shear speed to be much greater than the Alfvén speed at the crust base even 

for extremely high magnetic field strengths. We also found for field strengths less 

than 1.35 x 1013 G the Alvén waves will be trapped in the ocean. In this situation 

as soon as the waves try to penetrate the crust they decay away. On the other 

hand, when the field strength is high, the Alfvén waves travel through the crust 

and eventually bec orne shear waves. We used the observed energies from SGR giant 
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fiares to estimate the amplitudes, fin ding that the bursts are capable of exciting 

appreciable amplitudes. 

Our next step was to include gravitational redshift and calculate the observed 

frequencies as a function of magnetic field strength, which we then compared to the 

observed SGR QPO frequencies. We found that the n = 0 modes depend on.e and 

do not depend on B, whereas the n > 0 modes are independent of e and dependent 

on B. For the n = 0 modes we associated our e = 2 and 3 modes with the 18, 26, 

and 30 Hz QPOs detected from SGR 1806-20. We linked our .e = 4 mode with the 

43.5 Hz QPO from SGR 0526-66 and the 53 Hz oscillation from SGR 1900+ 14, while 

we associated our e = 7 and 8 modes with the 84 Hz QPO from SGR 1900+14 and 

the 92 Hz oscillation from SGR 1806-20, respectively. The final n = 0 mode we 

compared to observations was .e = 13, which we associated with the 150 Hz QPO 

from SGR 1806-20 and the 155 Hz oscillation from SGR 1900+14. The only source 

to emit frequency oscillations higher than 155 Hz was SGR 1806-20. We associated 

the n = 1 mode with the 625 Hz oscillation, and suggested that the n = 3 and n = 4 

overtones could be associated with the 1840 Hz QPO and the less significant 2384 

Hz oscillation. 

We continued by describing the different regions on our plot of observed fre­

quency versus magnetic field strength. We explained the concept of avoided crossings, 

arising from mode degeneracy, between shear and Alfvén waves. We demonstrated 

that different types of waves can exist for a specific radial number n by plotting the 

local energy density versus column depth around the avoided crossing between n = 1 

and 2. We also described that for low and high magnetic field strengths the waves 
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will be Alfvén-like in character. In the low field case this is due to the trapped ocean 

Alfvén waves unable to penetrate the crust, whereas in the high field case the large 

B causes the Alfvén wave to dominate over the shear wave. 

We concluded Chapter 2 by using our results along with the observed QPOs for 

the n = 0, and n = 1, e = 2 modes from SGR 1806-20 to estimate the thickness of 

the neutron star crust. We found the crust thickness to be 9.5% compared to the 

stellar radius. If we continue observing higher or der modes from SGR's than this will 

be a very useful probe into understanding the structure and composition of neutron 

stars. 

Despite the fact that we used a simple plane-parallel model of the neutron star 

crust and ocean we were still able to associate our calculated frequencies with the 

observed QPOs produced during giant fiares. This leads us to believe that torsional 

oscillations of the neutron star crust is a likely the ory for the detected frequencies. 

In order to conclude that this is the underlying mechanism producing the observed 

QPOs sorne improvements should be made to our neutron star model. One suggestion 

is to include a more complex magnetic field geometry. We made an initial attempt to 

do this in Chapter 3 and will summarize our results in the next section. Additional 

considerations of the field geometry should include a complete spherical model of the 

neutron star including the core, crust, and ocean since the magnetic field couples 

the core to the crust. This model should also include general relativistic corrections, 

which we did not consider for our calculations. More accurate equations of state 

would be helpful as well. We used a cold, beta-equilibrium model of the neutron star 

which may not be entirely correct for young, hot magnetars. It would be beneficial 
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to see how the composition depends on age and to understand what effect this has 

on the stars (Piro 2005). 

Excitation and damping mechanisms should also be looked into, su ch as the 

damping effect of electromagnetic and gravitational radiation on the oscillations 

(Samuelsson & Andersson 2007). Viscous effects at the crust/core interface and 

dissipation in the neutron star core may also be important (Strohmayer & Watts 

2007). Samuelsson and Andersson (2007) suggested that comparing the observations 

of SGR damping times (rv a few tens of seconds) to estimated damping times could 

help us understand these mechanisms within the sources. One final suggestion for 

future work would be to understand how x-rays and gamma rays are transmitted 

through the magnetosphere. Blaes et al. (1989) studied this before magnetars were 

known to exist and wh en equations of state were less accurate than they are to­

day. Looking into this problem with our current knowledge on this subject could be 

extremely useful. 

4.2 A Different Field Geometry 

In Chapter 3 we re-defined our equations from Chapter 2 by adding a horizontal 

field component into our calculations. Changing the field geometry gave rise to an 

imaginary cross term in the wave equation for the combined shear and Alfvén waves. 

In an attempt to numerically solve this equation we considered a complex displace­

ment and separated the second order differential equation into two real and two 

imaginary first order differential equations. We searched for eigenvalues satisfying 

the real and imaginary boundary conditions for different field strengths and geome­

tries. Unfortunately, we were unable to simultaneously solve the real and imaginary 
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boundary conditions except in the limiting case wh en the field was completely verti­

cal. We did not continue with numerical calculations after this point. One suggestion 

for future work would be to apply different numerical techniques to this problem so 

as to solve for the eigenvalues and eigenfunctions. 

Moving away from numerical calculations we made sorne analytical estimates 

with the goal of gaining more insight into the non-vertical field problem. Our first 

approach was to set the shear modulus to zero and consider pure Alfvén waves. We 

solved the dispersion relation for this situation and found that as soon as the field 

lines were tilted from the horizontal or vertical axis an imaginary cross term arose. 

We do not currently understand why this occurs and feel that further study on this 

subject would be useful. 

The next step in our analytic calculations was to make a coordinate transfor­

mation in order to immediately eliminate the imaginary cross term from the wave 

equation. We made a simple toy model of an infinitely long box with a fixed height. 

We placed non-vertical field lines in this box, enforced continuity at the boundaries, 

calculated the dispersion relation, and solved for the eigenfunction for pure Alfvén 

waves as well as for the combined shear and Alfvén waves. We plot the eigenfunc­

tions for both situations to get an idea of how the dis placement behaves and to see 

how the inclusion of the shear waves affects the Alfvén waves. We found for most 

values of theta the eigenfunction was not periodic and exhibited large spikes in its 

spectrum. The addition of the shear term changed the waveform in different ways 

depending on the parameters. This work gave us sorne insight into the behavior of 

the eigenfunction. However, we must point out that we set certain functions (A and 
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C) equal to one for these calculations, which was a large simplification. We will not 

get a complete picture of how the eigenfunction behaves until we solve the problem 

completely. This calculation is encouraged for the future. 

The final work we did in Chapter 3 was to take the box we had already considered 

and give it a finite height and length. We separated this closed box into three regions, 

with one field li ne per region each having a different length. Solving the dispersion 

relation for all the regions gave us three different frequencies depending on the vertical 

height of their corresponding field line. This calculation implies that if we have an 

infinite number of field Hnes we will have a continuous spectrum of modes! As 

mentioned at the end of Chapter 3 this result gives rise to sorne difficult questions. 

If in fact there is a continuous, as opposed to discrete, spectrum then what are 

we observing from these SGR hyperflares? The torsional oscillation model matched 

theory to observation quite well with the inclusion of a purely vertical magnetic field, 

so what is changing when the field is tilted away from the vertical axis? AIso, if there 

is a continuous spectrum why are we detecting only certain frequencies during these 

flares. Perhaps only specific modes excite oscillations, but if this is true we must try 

and understand why this would be the case. Levin (2007) has recently made a first 

attempt at addressing these issues with a model of a coupled crust and core. The 

answers to these questions are unclear at this point and definitely a topic that requires 

further research. We hope that this work has given sorne insight into different field 

geometries for neutron star oscillations and we look forward to additional work on 

this topic. 
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