
Statistical Contributions to Data Analysis 
for High-Throughput Screening of 

Chemical Compounds 

Nathalie Malo 

Doctor of Philosophy 

Department of Epidemiology, Biostatistics, and Occupational Health 

McGill University 

Montreal, Que bec 

June 2006 

A thesis submitted to McGill University in partial fulfillment of the requirements of 
the degree of Doctor of Philosophy 

© Nathalie Malo, 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell th es es 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-27817-8 
Our file Notre référence 
ISBN: 978-0-494-27817-8 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



PREFACE 

Contributions of Authors 

This thesis is the beginning of an important collaboration between statisticians 

and life scientists working in high-throughput screening (HTS) of che mi cal com­

pounds. When Dr. Nadon agreed to become my supervisor, he introduced me to Dr. 

Jerry Pelletier and Dr. David Thomas, professors in the Department of Biochem­

istry. They, at their turn, introduced me to the HTS process and their respective 

laboratories. Two years ago, my supervisors, Dr. Hanley, Dr. Nadon, and l were 

just new to this field. 

When l started the literature review, l realized the urgent need for statistieians 

to get involved in this field. Although a large amount of data is generated daily by 

the new automated technology, only a few basic statistical methods are currently 

used. Dr. Nadon and l determined statistieal questions that could be answered in 

this research project and designed a first small measurement experiment. l spent 

days in the HTS laboratory, in order to observe the entire process, ask questions to 

the technieians, and thus, get a better understanding of the origins of the data. l did 

the statistical analysis of the data, and l wrote the first review paper. During this 

work, looking to develop new methods, l came across another research question of 

statistieal interest, whieh became the topie of the second paper. l was also respon­

sible for designing the simulation study, and for programming the diverse methods. 

Dr. Nadon had responsibility for day to day supervision. He offered his expertise 

in microarrays and suggested sorne references to me. He gave me advice with respect 
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to the research questions and the data analysis. Dr. Hanley offered his statistical 

expertise by giving me recommendations with regard to the statistical methods and 

the simulation study. He helped me to determine the objectives of the thesis and 

with the policies related to the department. 1 also wrote the two other papers and 

the thesis. Both Dr. Hanley and Dr. Nadon offered support during the editing of 

each of the three manuscripts and the thesis. 

Statement of Originality 

The doctoral thesis consists of three manuscripts. In the first manuscript, 1 

critically examine the current practice in HTS data analysis, and provide statistical 

recommendations. To my knowledge, it is the first statistical review in that field. The 

second manuscript is aimed at a statistical audience. It evaluates the performance 

of various robust methods for handling replicates in two-way layouts. 1 compared 

software and asked authorities in that field, but there was no consensus on which 

methods should be used. Finally, the third manuscript is an application of the statis­

tical methods to HTS data from both real screens and in-house experiments. Similar 

methods have been used in microarrays, but 1 adapted them in order to minimize 

potential biases specific to HTS data. 

Notes to the reader 

Since this work is the result of multi-disciplinary collaborations, 1 have included 

sufficient statistical material so that most of the thesis can be understood by statis­

ticians, epidemiologists and life scientists. In addition, 1 described the HTS process, 

III 



covered sorne background rnaterial in the introduction, and defined technical terrns 

in the glossary. The thesis do es not included a separate literature review, since it is 

the essence of the first rnanuscript. Finally, l used 'we' in the writing of the three 

rnanuscript chapters, and '1' throughout the other chapters. 
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ABSTRACT 

High-throughput Screening (HTS) is a relatively new pro cess which allows sev­

eral thousand chemical compounds to be tested rapidly in order to identify their 

potential as drug candidates. Despite increasing numbers of promising candidates, 

however, the numbers of new compounds that ultimately reach the market have de­

clined. One way to improve upon this situation is to develop efficient and accurate 

data processing and statistical testing methods tailored for HTS. Human, biological 

or mechanical errors may develop across the several days it takes to run the entire 

screen and cause unwanted variation or "noise". Consequently, HTS data need to 

be preprocessed in order to reduce the effect of systematic errors. Robust statisti­

cal methods for outlier detection can then be applied to identify the most promising 

compounds. Current practice typically uses only single measurements, which negates 

the use of standard statistical methods and forces scientists to rely on strong untested 

assumptions and on arbitrary choices of significance thresholds. 

The broad objectives of this research are to develop and evaluate robust and re­

liable statistical methods for both data preprocessing and statistical inference. This 

thesis is divided into three papers. The first manuscript is a critical review of the 

current practices in HTS data analysis. It includes several recommendations for im­

proving sensitivity and specificity of screens. The second manuscript compares the 

performance of different robust preprocessing methods applied to replicated two-way 

data with respect to detection of outlying cells. The third manuscript evaluates 
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sorne of the statistical methods described in the first manuscript with respect to 

their performance when applied to several empirical data sets. 
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ABRÉGÉ 

Le criblage à haut débit est un nouveau processus permettant de tester plusieurs 

milliers de composés chimiques rapidement dans le but d'identifier des candidats po­

tentiels pour le développement de nouveaux médicaments. Malgré le nombre crois­

sant de candidats prometteurs, le nombre de nouveaux composés qui atteignent le 

marché à toutefois diminué. Une façon d'amélioré cette situation est de développer 

des méthodes efficaces et précises pour le traitement de ces données ainsi que pour 

l'inférence statistique. Des erreurs humaines, biologiques et mécaniques peuvent 

survenir durant les semaines requises pour procéder à un dépistage complet et ainsi 

causer du "bruit", soit de la variation non désirée. D'où l'importance de traiter 

les données afin de réduire l'effet d'erreurs systématiques. Des méthodes robustes 

pour la détection de valeurs aberrantes peuvent ensuite être utilisées pour identi­

fier les composés les plus prometteurs. En pratique, une seule mesure est obtenue 

pour chaque composé et cette absence de mesures répliquées empêche l'utilisation de 

méthodes statistiques habituelles et oblige les scientifiques à baser leur analyses sur 

de fortes hypothèses non vérifiées et sur des choix arbitraires de seuils de significa­

tion. 

Les objectifs principaux de cette recherche consistent en le développement et 

l'évaluation de méthodes statistiques robustes et fiables pour le traitement des données 

et l'inférence statistique. Cette thèse est divisée en trois articles. Le premier 

manuscrit est une revue critique des pratiques courantes pour l'analyse de données 
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provenant de criblage à haut débit de composés chimiques. Plusieurs recommanda­

tions quant à l'amélioration de la sensitivité et de la spécificité des dépistages sont 

également incluses. Dans le deuxième manuscrit, je compare la performance de di­

verses méthodes robustes pour le traitement de tableaux de données répliquées lors de 

la détection de cellules aberrantes. Dans le troisième manuscrit, j'évalue différentes 

méthodes statistiques, décrites dans le premier article, lorsque appliquées à plusieurs 

jeux de données empiriques. 
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1.1 Rationale 

CHAPTER 1 
Introduction 

High-throughput screening (HTS) is a large-scale pro cess that is the first 

critical step in drug discovery. A collection of chemical compounds is tested 

against a specified therapeutic target in order to identify potential drug candidates 

rapidly and accurately. The scientific challenge is to test a very large number of com-

pounds against a number of targets while minimizing the research costs. This pro cess 

was made possible in part by the recent integration of new automated technology 

that works with very small volumes. 

In a single experimental run, over a period of weeks, thousands of compounds 

are tested in hundreds of plates, each containing a two-way array of wells. Typically, 

80 different compounds are stored on a single 96-well plate that contains 8 rows and 

12 columns. The first and the last columns are left empty for future use of controls. 

Raw data have no units, since activity values, generally obtained by luminescence 

or fluorescence, are measured relative to each other and depend on the technology 

used, the assay format, etc. 

The purpose in analyzing the large amount of data points generated daily is 

to find the small unknown proportion (maybe 1%) of "outliers", i.e. chemical com­

pounds with an extreme activity level (labeled "hits") that may later be developed 
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into drugs. The focus on outliers is for the opposite purpose than that is in tradi­

tional analyses up to now. Traditionally, outliers are undesirable, since they arise 

from errors in measurements and thus, are usually removed before performing any 

statistical analysis. In HTS, the outliers (hits) are of interest by themselves and 

statistical analyses are performed specifically to identify them and retain them for 

further testing and commercial potential. The non-outliers are discarded. 

Paradoxically to the increasing number of tested compounds, only a single mea­

surement of each compound's activity is obtained in an initial primary screen. 

From a statistical point of view, each tested compound may be thought of as an 

individual experiment with a n = 1. Despite the improvement of the HTS process 

and the reduction of the research cost, fewer new drugs enter the market. Part of 

this may be because of the considerable noise, since the activity of each compound is 

determined on the basis of n = 1 value. One obvious improvement would be through 

replication and averaging. The absence of replicate measurements is mostly due to 

cost and time issues. Screeners need to be convinced of the benefit of replicates. 

Without replicates, the use of standard statistical methods is negated and scientists 

are forced to rely on strong untested assumptions. Replicates are also needed to 

verify assumptions of current methods and to suggest data analysis strategies when 

assumptions are not met. 

In statistical analyses, compounds are typically assumed to have been randomly 

located in the wells of a plate, but the presence of row, column or weIl effects have 

sometimes been observed. For example, edge effects may be caused by evaporation 

at the edges and a better focus when reading the middle wells of a plate. Plates 
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containing more wells of smaller size (e.g. 16 rows x 24 columns = 384 wells) are 

starting to be used, but as the volume decreases, the effect of potential sources of 

error increases. 

ln order to introduce sorne of the issues, we present data from real screens 

performed on 384-well plates. Figure 1-1 shows the distributions of the raw data from 

two publicly-available screens with duplicate measurements (http:j jchembank.broad. 

harvard.edujscreens) for a yeast peptide inhibition assay (top half of figure) and a 

DNA synthesis assay (bottom half of figure). Although the distribution of data from 

the second screen is closer to Gaussian, the first one has three modes. How can 

we analyze such data? Which compounds may be deemed as hits? Should we first 

transform the data? 

For the same two datasets, with the values now plotted in weIl order (row1column1, 

... , row1-column24, row2-column1, ... , row2-column24, ... , row16-column1, ... , row16-

column24), Figure 1-2 shows two types of variation. First, since the points belonging 

to a same plate are linked, from one curve to another one can observe plate-to-plate 

variability. In the yeast peptide inhibition assay, we notice that half of the plates 

have a higher signal in comparison to the other half for both duplicate measurements. 

1 do not have enough information on the provenance of these data to explain why 

the two streams don't overlap, but this shift can be caused by several reasons such 

as a difference in environmental conditions, if the screen have been performed in two 

different days, or by the use of different batches of reagents and solutions. Second, 

each curve shows a similar 'zigzag' pattern which corresponds to within plate vari­

ability, more specifically to column effects, since higher values correspond to the first 
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Figure 1-1: Histograms of raw data for two publicy-available screens (see text for 
details). 

columns and lower values to the last columns. In addition, again in the yeast peptide 

inhibition assay, for the plates with higher signal, an important effect is observed on 

the last row sinee these wells have lower signal that all the others (right bottom 
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of the figure). This may have been caused by some procedural factor such as poor 

pipetting delivery or evaporation. 
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Figure 1-2: Raw Data vs weil locations ordered by row (i.e. row1column1, row1-
column2, ... , row1-column24, row2-column1, ... , row2-column24, ... , row16-column1, 
... , row16-column24). 
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In the HTS literature, the possibility of positional effects that may occur in a 

real screen has never been fully assessed. Are the measurement errors systematic or 

random? Can we control for them in the laboratory pro cess? Or must we do so at the 

data-analysis stage, and to what extent can we? l started my research by designing a 

small measurement experiment. The idea was simple: to test the same compound in 

each weIl in several plates, Le. to repeat the exact same experiment everywhere. To 

minimize biases that may occur from procedural and technical factors, we randomized 

the plate processing order at every step of the protocol. Needless to say, this was very 

laborious for the life scientists! The observed variation in the values from different 

wells on the same and on different plates, even though the values are generated by the 

same compound, allowed me to observe the presence of errors in the measurements. 

After a few days spent in the laboratory proceeding to the experiment, l realized 

that there are several potential sources of errors that may create noise. Unfortunately, 

sorne screeners tend to believe that results from automated technology do not contain 

any distortions. Robots are obviously faster and more reliable than manual work by 

humans; however, they are not infallible and may introduce their own biases (e.g. 

mechanical failures, differences in plate manufacturing etc.). Sources of errors may 

be biological, human and mechanical, and most of the time are of unknown origin, 

so they cannot be controlled during the HTS pro cess itself. Thus, preprocessing 

of the raw data is required before any inference is done. By preprocessing l mean 

an efficient "normalization" of the data in or der to reduce the effects of systematic 

errors. 
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At the same time, l started to consult the literature and ask screeners about 

the methods they currently use to analyze HTS data. l first noticed a lack of pre­

processing methods. Most of the time, only plate-to-plate variation was corrected 

for by using biological controls. Because compounds are placed in the middle wells 

of a plate, contraIs have to be placed on the edges and thus, they may introduce 

their own biases. Brideau et al. [2] have recently introduced a method to remove 

raw and column biases that do not use the contraIs, but it is not yet integrated into 

practice. As for inference, methods vary among laboratories; moreover, the choice 

of a significance threshold is totally arbitrary. When l heard comments like "don't 

worry about false positives unless the rate is very high"; "strive for highest possible 

quality and don't worry too much about the one that got away"; and "adjust the 

hit threshold until you have the number of hits you want" , l realized that screeners 

are unaware of the importance of false positives and false negatives, and of how they 

can be affected by the methods used for preprocessing and by the criteria used for 

decision making. 

The statistical community has also been slow to respond to the new inferential 

challenges posed by HTS data. Thkey's median polish [3], developed almost 30 years 

ago, would seem to be a natural tool. However, it was developed as an informaI and 

general tool for analyzing data in a two-way layout. It has been used for several 

different purposes. In sorne instances, the focus is on obtaining an additive model 

for the data, with the necessary examination of outliers as a secondary jsubordinate 

objective. Sometimes the focus is on interaction patterns. In sorne applications, the 

primary focus has been on detecting outliers as items of scientific interest, rather than 
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on identifying those of a nuisance nature. Even then, the median polish method did 

not allow for the estimate of the size of the outliers to be accompanied by standard 

errors or other such measures of statistical stability. Part of this lack of a precision 

measure may have stemmed from the fact that median polish has typically been 

applied to data with just one value per cell. Moreover, median polish was developed 

as an "exploratory data analysis" (EDA) tool, and it was not envisaged that it could 

be automated for HTS data. The refinement of methods for outlier detection seems 

to have been neglected for the next 25 years. It is only just recently that Terbeck 

and Davies [4, 5] have developed new robust methods to detect outliers in two-way 

data. However, there has been no formaI evaluation of these newer methods and no 

comparisons with the earlier methods for out lier detection. 

Moreover, no one has investigated how best to extend those older and newer 

methods ta two-way data with replicates. Both the median polish and the more 

recent statistical methods are designed to work with a single observation per cell. l 

could not find any guidelines on how replicates should be analyzed. Consequently, 

there is an important need for new efficient statistical tools that may handle replicate 

measurements in order to improve HTS data analysis. 

1.2 Objectives 

The broad objectives of my thesis are to develop and evaluate new and efficient 

statistical methods for both data preprocessing and statistical inference for HTS 

data. The purpose of these tools is to better identify high quality hits with a high 
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degree of confidence, and to be able to do so in a semi-automatic mode in order to 

handle the increasing volume of raw HTS data being generated. 

Since interest is on out lier detection, my first focus is on robustness. The use 

of statistics that are robust to the presence of outliers, and thus, can at the same 

time identify outliers, will give more reliable results than classical methods that 

are influenced by extreme values. For example, the use of a me di an instead of an 

arithmetic mean in the statistical analysis is a first step towards robustness. 

My second focus is to justify and promote the use of replicate measurements 

in HTS practice. Although it may be expensive, l believe that the use of replicates 

in both preprocessing and inference will help to minimize false positive and false 

negative rates, and thereby increase the sensitivity and specificity of screens. Conse­

quently, to demonstrate these benefits, l wish to provide proper statistical methods 

that allow replicates to be used in HTS data analyzes. 

My thesis is divided in three parts, with results that are of interest to both 

life scientists and statisticians; each part is presented as a separate manuscript. l 

begin with a critical review of the current practices in HTS data analysis. This 

first manuscript also includes several recommendations to improve sensitivity and 

specificity of screens. The second manuscript is mostly of statistical interest. It 

compares different robust preprocessing methods to deal with replicated two-way 

data. The last manuscript is an application of the statistical methods described in the 

first manuscript to data from both real screen and in-house laboratory experiments. 
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In these chapters, for a better understanding of the biochemistry part, relevant 

technical terms are identify in bold and are defined in a glossary (appendix). Finally, 

1 give a general conclusion, and discuss the potential impact of this research. 
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Preamble ta Manuscript 1 

The first objective of my thesis is to better understand what is the HTS process 

and the currently practiced methods for data preprocessing and hit identification, 

while keeping in mind my statistical knowledge. Few statisticians are involved in 

HTS. Being one of them, I wish to convince screeners to be conscious of, to appreciate, 

and to deal with statistical issues that are present in actual HTS procedures. 

Consequently, this manuscript is a critical look at the diverse statistical and 

non-statistical tools used to analyze the large amount of HTS data generated daily. 

In this manuscript, I also go further and recommended statistical methods that may 

be used to improve both preprocessing of, and inference from, HTS data. However, 

the presentation is mostly at a theoretical level and I restrict my attention to the 

two publicly-available data sets presented in the introduction. 

This manuscript has been published in the February 2006 issue of Nature Biotech­

nology under the computational biology section. The reprint can be found in ap­

pendix. The references are included in the global thesis bibliography. 
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Abstract 

High-throughput screening (HTS) is an early critical step in drug discovery. Its 

aim is to screen a large number of diverse chemical compounds in order to identify 

candidate "hits" rapidly and accurately. Few statistical tools are currently avail­

able, however, to detect quality hits with a high degree of confidence. We examine 

statistical aspects of data pre-processing and hit identification for primary screens. 

We focus on concerns related to positionai effects of wells within plates, choice of 

hit threshold, and the importance of minimizing faise positive and faise negative 

rates. We argue that replicate measurements are needed to verify assumptions of 

current methods and to suggest data analysis strategies when assumptions are not 

met. The integration of replicates with robust statisticai methods in primary screens 

will facilitate the discovery of reliable hits, uitimately improving the sensitivity and 

specificity of the screening process. 
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2.1 Introduction 

High-throughput screening (HTS) is the backbone of drug discovery within the 

pharmaceutical industry. Over the past decade it has also made its way into academic 

settings. The combination of robotic methods, parallel processing, and miniaturiza­

tion of biological assays has dramatically increased throughput. The potential to 

increase the hit discovery rate has been offset, however, by increased research costs. 

Despite the current popularity of HTS and major improvements in processing, the 

new drug approval rate has declined significantly [6]. 

Developers are attempting to counter this inefficiency by various means, includ­

ing developing biotech-pharmaceutical alliances and changing their internaI organiza­

tional structures by merging multiple disciplines associated with lead generation and 

validation [7]. Likewise, HTS programs are being integrated within academic settings 

where alternative targets and diseases of lesser commercial value can be explored [8]. 

At the root, the challenge is to find the next market able drug while simultaneously 

maximizing the number of screened targets and compounds, minimizing costs per 

well, and optimizing the lead generation and validation process. 

Two kinds of (inferential/decision) errors can occur at the primary screen step 

and it is unclear if current inefficiencies are partly due to too many false positives, too 

many false negatives, or both. We advance the view that improving hit specificity and 

sensitivity cannot be met by technological and organizational improvements alone 

and that improvements in data analysis methods are needed to fulfill the promise of 

HTS. 
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HTS is a large-sc ale pro cess (Figure 2-1) that screens many thousands of chem­

ical compounds in order to identify potentiallead candidates rapidly and accurately. 

Whereas the plating format and number of compounds per plate can vary, typically 

just a single measurement of each compound's activity is obtained in an initial pri­

mary screen. The automated process allows the testing of several hundred plates over 

a period of weeks. Compounds identified for follow-up (labeled "hits") are evaluated 

for biological relevance by a counter screen and confirmed as bona fide hits by a 

secondary screen. 

Secondary screens test many fewer compounds (e.g. the 1 % most active com­

pounds from the primary screen, [9]) and typically use at least duplicate measure­

ments. Paradoxically, compounds with the highest measured activity levels on a 

primary screen will on average be less extreme on a secondary screen because of 

a statistical artifact known as "regression toward the mean" [10, 11]. Accordingly, 

marginal hits on the first run may fail to validate on the second run merely because 

of random measurement error, although the size of the statistical artifact can be 

minimized by improving measurement precision (e.g. by obtaining replicate mea­

surements). Confirmed hits with an established biological activity according to 

a structure-activity relationship (SAR) series and medicinal chemistry are termed 

"leads" that can develop into drug candidates for clinical testing. 

Inferential errors can be caused by "noise" due to technical or procedural fac­

tors, including assay formats, poor pipette delivery, robotic failures and unintended 

differences in compound concentrations due to evaporation of solvent, either from 

the compound collection or during the assay set-up. Errors of unknown origin may 
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also develop over the course of the entire screen. Their adverse effects can often be 

minimized by quality control procedures, although statistical corrections may also be 

needed to mitigate the effects of uncontrolled variation (see "HTS Data Processing" 

section). Other factors which are less amenable to procedural quality control but 

which can nonetheless add extraneous variation include potency differences across 

compounds, and systematic across-plate and within-plate column or row biases (e.g. 

edge effects). 

Differences in variability can also create inequalities among the compounds. The 

measured activity of low variability compounds will almost always be close to their 

true levels. Thus, even when measured in singlet, hits are more easily discovered 

and false hits more easily avoided with these compounds. By contrast, the measured 

activity levels of highly variable compounds may differ considerably from their true 

values. It is correspondingly more difficult to discover hits and to avoid false positives. 

Once technical and procedural efficiencies have been optimized, the only way 

to minimize variability further is to obtain estimates of activity levels by averag­

ing (e.g. mean, median) across replicate measurements. Activity estimates based 

on repeated measurements are less variable than estimates based on single measure­

ments. Replicate measurements also provide direct estimates of variability which can 

be used to estimate the probability of detecting true hits (power analysis), facilitat­

ing costjbenefit analyses. Moreover, replicates reduce the number of false negatives 

without increasing the number of false positives (see "Use of Replicates" section). 

We review current data pre-processing and hit identification methods for pri­

mary screening. We discuss their use and limitations, problems with the constant 
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error assumption, the influence of hit threshold on false positive and false negative 

rates, and factors that can degrade assay sensitivity and specificity. We also discuss 

the advantages of replicates and make recommendations for the statistical analysis 

of HTS. 

2.2 HTS Data Processing 

A well-defined and highly sensitive test system requires both quality control 

and accurate measurements. Within-plate reference controls are typically used for 

these purposes. Controls help to identify plate-to-plate variability and to establish 

assay background levels. Normalization of raw data removes systematic plate-to­

plate variation, making measurements comparable across plates. Systematic errors 

decrease the validity of results by either over or under estimating true values. These 

biases can affect all measurements equally or can depend on factors su ch as well 

location, liquid dispensing, and signal intensity. Although recent improvements in 

automation can minimize bias, providing more reproducible results, equipment mal­

functions can nonetheless introduce systematic errors which must be corrected at the 

data processing and analysis stages. 

Measured compound activity is a function of at least two factors: the com­

pound's true activity and random error (see also "Use of Replicates" section). Sym­

bolically, one simple additive model might be }ijp = J.lp + Eijp where }ijp is the 

observed raw measurement obtained from the welliocated on row i and column j 

on the pth plate, J.lp is the "true" activity and Eijp is the effect of all sources of error. 

Assuming no bias, the Eijp are assumed to have zero mean and a specified probability 
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distribution (e.g. normal). Another simple model is Yi jp = J-Lp + Rip + Cjp + Eijp 

where Rand C represent plate-specific row and column artifacts, respectively, and 

Eijp represents remaining sources of error. (This latter model is assumed by the me­

dian polish procedure described below). Specifying models explicitly in this manner 

has the advantage of suggesting how sensitivity and specificity gains can be achieved 

most cost-effectively. 

2.2.1 Current Practice 

Because of the manner in which compound collections are plated, controls are 

typically placed contiguously on the outer columns. For example, Figure 2-2 shows 

the typicallocation of compounds and controls in a 96-well plate. Unfortunately, a 

systematic outer column effect affects aIl of the measurements on the plate because 

they are adjusted relative to these controls. For example, edge effects may lower (or 

increase) detection levels on average along the edge corn pared to the remainder of the 

plate. Consequently, background correction will be lower (or higher) if controls are 

located on this edge, causing compound activities to appear higher (or lower) than 

their true states. Worse still, the edge effects may be present in sorne plates but 

not others (see "Recommendations" section below). Cell-based biological controls 

are especially problematic because of variable growth patterns [12]; cell dumping or 

evaporation within different areas of the plate can lead to different growth condi­

tions and ultimately to position-related bias. Regardless of cause, positional effects 

increase the rate of false positives and false negatives. 
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"Percent of control" is one pre-processing method which attempts to correct for 

plate-to-plate variability by normalizing compound measurements relative to con­

troIs. Raw measurements for each compound, for example, can be divided by the 

average of within-plate contraIs. "Normalized percent inhibition" is another contral­

based method in which the difference between the compound measurement and the 

mean of the positive controls is divided by the difference between the means of the 

measurements on the positive and the negative contraIs. The "Z score" method ex­

cludes contraI measurements altogether under the assumption that most compounds 

are inactive and can serve as controls; compound measurements are rescaled relative 

to within-plate variation by subtracting the average of the plate values and divid­

ing the difference by the standard deviation estimated fram aH measurements of the 

plate. 

The three methods described above implicitly assume a random error distribu­

tion that is common to aH measurements within a single plate, although without repli­

cates this assumption cannot be verified directly. Positive and negative contraIs may 

exhibit differences in variability, however, raising questions about the constant errar 

assumption. Differences in variability among compounds are also likely inasmuch 

as inactive compounds are similar to negative, and active compounds are similar to 

positive controls [13]. For example, Figure 2-3 shows results from a titration series 

of a protein translation assay in which variability among replicates differs across the 

various concentrations. In general, non-constant variances among the compounds 

of interest may be due to differences in luminescence, reactivity, or solubility. The 

serious errors of inference that can arise from incorrectly assuming one distribution 
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even when de part ures from it are minimal, have been cogently described by Tukey 

[14]. 

Another potential difficulty is that these three methods rely on non-robust statis­

tics. Means and standard deviations are greatly influenced by statistical outliers, 

which in the context of HTS are putative hits. In statistical terms, the me an and 

the standard deviation have low breakdown points, in contrast to more resistant lo­

cation and sc ale estimators (e.g. median, Tukey biweight, median absolute deviation 

(MAD)). One recent proposaI circumvents these issues by adopting a more robust 

data analysis procedure. 

The B score [15] is a robust analog of the Z score which uses an index of disper­

sion that is more resistant to the presence of outliers and more robust to differences 

in the measurement error distributions of the compounds (Box 2) . A two-way me­

dian polish is first computed to account for row and column effects of the plate. The 

resulting residuals within each plate are then divided by their MAD to standardize 

for plate-to-plate variability. The B score has three advantages: it is non-parametric 

(i.e., makes minimal distributional assumptions), it minimizes measurement bias due 

to positional effects and is resistant to statistical outliers. 

2.2.2 Recommendations 

In the absence of compelling reasons to the contrary, we prefer normalizing the 

data without using controls. Specifically, we prefer the B score method, especially if 

row or column biases are suspected. Evidence of these biases can be obtained by ex­

amining the variability of the row and column effects estimated by the median polish 
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procedure relative to the residual compound measurements. To illustrate, we rean­

alyzed two public1y-available screening data sets with duplicate measurements for a 

yeast peptide inhibition assay and a DNA synthesis assay (http://chembank.broad. 

harvard.edu/screens; Screen numbers 295 and 900, respectively). Figure 2-4 shows 

a strong and variable column effect for Screen 295. Moreover, as we demonstrate 

in the "Use of Replicates" section, the variability of B scores may more adequately 

reflect actual random error conditions. This in turn facilitates the decision process 

because the compound measurements can be benchmarked against theoretical error 

distributions. 

If researchers were to use the Z score method, we would advise they use robust 

versions in order to minimize the undesirable influence of outlier compounds (i.e. 

"hits"). For example, in a "jackknife" Z score method, fi; and Sx (third equation in 

Box 2) are calculated exc1uding the compound of inter est (x value in the equation); 

accordingly, Sx differs for each individu al compound. Alternatively, in a "robust" 

Z score method, fi; and Sx are replaced by more robust measures (e.g. median and 

MAD, respectively). 

Controls, if necessary for a specific assay, should be used carefully. ldeally, 

they should be located randomly within plates, thereby minimizing row or column 

biases. Current compound collection formats, however, do not lend themselves to 

randomization. Potential positional effects can nonetheless be minimized by varying 

the location of controls within plates in a systematic manneL One way consists of 

alternating weIl-locations for the positive and negative controls along the available 

edges of the library (Fig. 2-2a) . Thus, positive and negative controls will appear 

21 



equally in each row and in each column and may minimize edge-related bias. For 

example, in a 96-well plate, an order effect may pro duce different biases among the 

different columns. In sueh a case, the alternating method (Fig. 2-2b) will be more 

efficient than current practice consisting of 8 positive controls on the first column 

and 4 negative controls on the last column (Fig. 2-2a) . 

If controls are used to normalize compound intensities, it is important to ob­

tain as aecurate and precise measurements as possible: any inaccuracies and random 

measurement errors will lower the accuracy and precision of the normalized values 

through error propagation. One way to improve precision is to obtain a relatively 

large number of control measurements (see the "Use of Replicates: Recommenda­

tions" section). Another way is to delete outliers among the controls prior to nor­

malizing. Identifying measurement outliers among controls is more straight-forward 

than among the compounds of interest because the control measurements are repli­

cates of the same measurement pro cess and should have similar values. 

2.3 Statistical Inference: Threshold for Rit Identification 

Regardless of library design strategy (rational or combinatorial), statistical meth­

ods offer the means to characterize quality of screens and of hits within a probabilistic 

framework. Quality can be defined as the ability of the screening pro cess to accu­

rately identify compounds that can be developed into potential leads [16]. A sta­

tistical approach to these issues has a number of advantages, including objectivity, 

reproducibility, and ease of comparison across screens. 
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Once data have been pre-processed with quality control checks and normal­

ization procedures, the next critical step is to decide which compounds should be 

processed in a secondary screen. Currently, this inferential process is not weIl de­

fined statisticaIly: procedures for hit identification are based on informaI rules of 

thumb rather than on probabilistic judgments of error rates. In academic settings 

and in sm aller companies, informaI rules may also be based on particular labora­

tory constraints such as capacity limitations. Although it is generally appreciated 

that lowering hit-threshold increases false positive rates while lowering false nega­

tive rates, statistical models can better quantify the balance between specificity and 

sensitivity by assigning probabilities to the two types of inferential errors (Fig. 2-5) 

2.3.1 Current Practice 

One way to identify hits is to plot raw or pre-processed measurements against 

compound identity (i.e., plot each activity measurement on the y axis and the weIl 

identity 1,2, ... 96 on the x-axis) for each plate separately. Compounds whose mea­

sured activity deviates from the bulk of the activity measurements are identified as 

hits. Although this subjective "eyebaIl" method may be adequate for identifying 

highly active compounds, potentiaIly important compounds of low or intermediate 

potency are difficult to identify reliably and may be missed. 

Hits can also be identified as a percentage of the compounds that generate the 

highest measured activity (e.g. top 1%, [9]). From an optimization perspective, this 

method is arbitrary and suffers from the absence of a probability model. Without 

prior consideration of the true number of active compounds, one cannot optimize 
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the percentage of primary screen compounds to be screened a second time. If the 

number of identified potential hits is dictated by the capacity for secondary screening, 

specificity and sensitivity may vary widely across screens. Consequently, the quality 

of the results from screen to screen within a laboratory will depend on the extent to 

which threshold choice reflects the actual number of true active compounds in the 

various screens. 

Compounds whose activity exceeds a fixed "percent of control" threshold may 

also be considered as hits. For example, in an agonist assay any compound with an 

activity measurement that is at least twice the average of the measurements on the 

negative controls is deemed a hit. 

Alternatively, the hit threshold may be defined as a number of standard devi­

ations (typically 3) beyond the mean of the raw or processed data. However, hits 

(outliers) may cause the distribution of the compound measurements to be skewed. 

Such a phenomenon may be observed when performing a fluorescent-based assay and 

when a large number of compounds in the collection are fluorescent. Statistically, 

imagine the observations as arising from a mixture of two populations with different 

means (e.g. non-active compound measurements centered around one mean and ac­

tive compound measurements around a different mean -likely with different standard 

deviations also). 

As with the pre-processing methods described earlier, the threshold methods 

described above assume a common magnitude of random error for all measurements 

and rely on non-robust statistics, which may lead to inferential errors in hit detection. 

Hit detection depends jointly on compound concentration, potency, and variability. 
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Potency will differ across compounds within a screen, as will actual concentrations 

due to uncontrolled factors such as solvent evaporation and compound solubility. 

The easiest hits to detect will be compounds with high relative potencies and con­

centrations and low variability. The titration series in Figure 2-3 illustrates this 

issue. Singlet measurement false positives for the three lowest non-null concentra­

tions were eliminated wh en activity measurements were based on me ans across the 

eight replicate measurements per concentration. Methods which estimate random 

error without assuming constant error are described in "Use of Replicates: Recom­

mendations" below. 

2.3.2 Recommendations 

One view about false negatives is that little can be done about them and so it 

is best to adopt a forward-looking perspective and to pursue the hits one do es have. 

We contend, however, that it is important to quantify potential false negative rates 

before deciding whether or not they are negligible in a particular screen. If 0.1% of 

a million compounds to be screened are truly active, a low false negative rate of 2% 

represents 20 potential candidates lost. With synthetic compound collections, the 

potential loss may be lessened because they are made from a set number of basic 

scaffolds. Thus, in practice, missing an active compound may not matter if related 

compounds are detected. When screening natural products or extracts, however, 

truly unique chemical entities will go undetected. Although it is difficult to assign a 

monetary value to these lost candidates, decisions to not follow-up will typically not 

be revisited and as such represent irretrievable financial losses. 
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Verifying data handling assumptions and contrasting various approaches in for­

maI methodological studies are important steps in determining the most cost effective 

procedures. Additivity assumptions, for example, can readily be verified from a sim­

ple graphical procedure once the data have been pre-processed by the median polish 

procedure [17]. This same procedure provides a simple method for determining the 

appropriate data transformation (e.g. log) which will produce additive measure­

ments. 

These various steps are necessary for quantifying many aspects of the decision­

making process in HTS. Currently, many important go/no-go decisions are based 

on perceived necessity (e.g. affordability, capacity), subjective perception, and past 

experience. These considerations must enter into any decision process. Statistical 

modeling of the type we are encouraging enhances rather than replaces this pro­

cess. Although we believe that currently practiced methods are often insufficiently 

sensitive to detect hits that arise from potentially important but marginally active 

compounds, attempts to improve sensitivity must be balanced against specificity and 

demonstrate cost effectiveness. One way to quantify this balance is to obtain esti­

mates of random error from replicate measurements and to conduct statistical power 

analysis. Judicious use of replicates will improve sensitivity to minimally active but 

pharmacologically important compounds which go undetected otherwise. 
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2.4 Use of Replicates 

Random error reflects inevitable uncertainties in all scientific measurements. 

This "noise" unpredictably raises or lowers measurements relative to their true val­

ues. Potential sources of random error include biological, instrument, and human­

related influences. Random error accumulates as a collection of several minimal 

differences across assays, such as voltage variation, liquid dispensing differences, as 

well as reagent or sample preparation and handling [16]. Compound-related problems 

involving chemical properties and activity (e.g. stability, solubility, auto-fluorescence 

and degradation) also affect measurement precision. 

Precision can be increased by obtaining replicates and by minimizing extraneous 

variation due to sample handling and processing. Random error estimates, which are 

central to statistical inference, are typically obtained from replicate measurements of 

the same attribute or process. Having empirical estimates of variability allows one 

to use statistical power analysis to control the false negative rate while maintaining 

a fixed false positive rate (Fig. 2-5) . We anticipate that obtaining replicates for at 

least sorne compounds in primary screens will become more routine. 

2.4.1 Current Practice 

Compounds in primary screens are typically measured only once because of 

time and cost issues, although the use of duplicate measurements has been recog­

nized for secondary screens and is beginning to be recommended for primary screens 

(http:j jiccb.med.harvard.edujscreeningjguidelines.htm). Absent replicates, strong 

assumptions must be made in order to estimate random error. For example, Buxser 

and Vroegop [18] describe an approach in which the variability among replicated 
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control measurements is used to estimate variability of the unreplicated compound 

measurements. Alternatively, random error can be estimated from the variability 

across single measurements of aH compounds on a plate, assuming that aH com­

pounds are inactive and that they all have the same random error; early approaches 

to gene expression microarray analysis adopted a similar approach for estimating 

error from single measurements [19]. Single measurement methods have ultimately 

proven inadequate [20], however, and it is now standard practice to obtain at least 

three replicates per measurement in recognition that replicates offer advantages which 

outweigh short term cost considerations [21, 22]. 

Ideal replicates are those measurements that are repeated for the same com­

pound under the same experimental conditions. For this reason and because they 

underestimate total random error, multiple re-readings of the same plate are not rec­

ommended as replicates, except as a check for possible extraneous variation due to the 

reading process itself. Similarly, structurally similar compounds (analogues) are not 

recommended as replicates, despite the fact that they may show comparable activity. 

Nor should measurements of the same compounds under different experimental cir­

cumstances (e.g. primary versus secondary screen) be used as replicates because they 

may be influenced by different extraneous factors (e.g. differences among reagents, 

batches of compounds, and time effects). Finally, pooling compounds in various 

combinations within individu al wells offers time-saving advantages but cannot be 

considered replication in the usual sense. For example, false positives are more likely 

to arise when weakly interacting compounds are pooled in a same weH or when true 

active compounds within a row increase. By contrast, false negatives are less common 
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in compound pooling, but may arise if pooled compounds have opposite biological 

effects of similar size [7]. 

2.4.2 Recommendations 

Replicates offer the twin advantages of greater precision for activity measure­

ments and the means to estimate variability associated with the measurements. Com­

pared with the uncertainty of a single measurement, the imprecision (standard error) 

of a mean is reduced by 100 x (1-1/ Fn)% where n refers to the number of replicates. 

Having two replicates reduces imprecision by 29%; having three replicates reduces 

it by a further 13% while having four replicates reduces it an additional 8% (i.e. 

to 50% of the imprecision associated with a single measurement). Thus, replicates 

make minimally and moderately active compounds easier to detect. 

Replicates may appear in wells on the same or on different plates. Although 

within-plate variation (due, for example, to plate composition and handling) will 

typically be smaller, across-plate repli cation is preferred because it represents a more 

realistic estimate of variation necessary for generalizing results beyond the immediate 

sample. In general, it is important to obtain estimates of total variability of any 

measurement pro cess , what has been called "genuine replication" [23]. 

We have argued that much of current practice makes strong assumptions about 

the data (e.g. same magnitude of random error associated with all measurements) 

which if incorrect can increase both the false positive and the false negative rates. 

Without large-sc ale studies with replicated measurements, these assumptions and 

the advantages of more complex statistical modeling approaches are difficult to ver­

ify. Moreover, it is unlikely that one approach will be optimal for all screens. These 
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caveats notwithstanding, minimal replication can be used to examine the reasonable­

ness of current assumptions and to potentially improve overall screen sensitivity and 

specificity. 

We illustrate the importance of pre-processing, the need to check assumptions 

regarding error distributions and the other options available when assumptions are 

not met, by performing additional analyses on the Figure 2-4 data. If the errors 

associated with the normalized compound measurements from these screens were 

normally distributed with constant variance across compounds, the sample variances 

based on the duplicate measurements would follow a X~l) distribution (Box 3). Figure 

2-6 illustrates the lack of fit, however, between the theoretical and the observed 

variance distributions for these data, indicating that the normalityjconstant variance 

combined assumption is not tenable after pre-processing by either the B score or the 

Z score procedures. 

Alternatively, one can assume that the error associated with compound mea­

surements is normally distributed but with unequal variances distributed across the 

compounds according to an inverse gamma distribution. An Empirical Bayes ap­

proach using this model has been used successfully for analysis of microarray data 

with minimal replication [20, 24, 25]. Figure 2-7 shows that the error variances of 

the data sets from Figure 2-6 fit an inverse gamma distribution for both data sets for 

the B scores and for one of the data sets for the Z scores. An important advantage 

of this variance distribution pattern is that standard statistical tests of compound 

activity can be constructed using a weighted average of the compound-specifie vari­

ances estimated from replicated measurements and the overall estimate obtained 
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from the variance distribution; when only a random subsample of the compounds 

has been replicated, the latter variance estimate can be applied to compounds mea­

sured only in singlet from the same screen (Box 4) . In either case, the more similar 

the compound-specifie variances are to each other, the more reliable the overall vari­

ance estimate will be. This in turn will provide more degrees of freedom and more 

power for the statistical tests. Figure 2-7 also illustrates the value of correcting 

for row and column effects. In the presence of column or row biases (screen 295), B 

scores more closely approximated the theoretical inverse gamma distribution than the 

corresponding Z scores, although in their absence (Screen 900) the B score method 

produced a slightly poorer fit. 

As more extensively replicated data sets become available, other data analytic 

approaches can be examined and optimized. For example, although we found no ev­

idence of a relationship between signal intensity and replicate variability in the two 

data sets we examined, such a relationship has been used in the microarray context in 

combination with the inverse gamma variance distribution assumption [26]; this type 

of relationship may provide additional useful information for estimating random er­

ror associated with replicate and singlet measurements. Similarly, if various classes 

of compounds are thought to differ in terms of variability, random subsets of the 

various classes may produce more accurate estimates of variability when examined 

separately. Another approach which may show promise is to model the distribu­

tion of activity measurements as a mixture of two distributions (inactive and active 

compounds) [18] . In short, the principle of "borrowing strength" from information 

available from the data in total can provide useful information that would normally 
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only be obtained from large numbers of replicates. 

2.5 Conclusions 

Statistics currently serve a limited role in HTS. One use is to correlate chemical 

properties with activity levels at the screen development stage to provide information 

for compound selection and for property modification to enhance chemical activity 

[27, 28]. Once the screen has been run, data mining software packages are increasingly 

being used for quality control. Notwithstanding these advances in data analysis, HTS 

continues to lack universal procedures for processing and extracting knowledge from 

screens [29]. We discuss four broad conclusions below that we believe are warranted 

at this early stage of development for the statistical modeling of HTS data. 

Replicate measurements provide numerous advantages for checking measure­

ment assumptions and improving hitjnon-hit decisions. Moreover, quantification 

and characterization of error variances obtained from replicate measurements allow 

specificity and sensitivity optimization of individual screens. Given fixed costs, stan­

dard statistical power analysis can be used to reach cost-effective decisions regarding 

the number of plates within a screen to be replicated and the number of replicates. 

Statistically adjusting measurements for row and column effects through proce­

dures su ch as the median polish offers gains in inference and should be used routinely. 

The assumption of a common error variance across compounds implicit to many 

current hit identification approaches is incorrect at least sorne of the time. At a 

minimum, the assumption should be routinely verified by replicating sorne of the 
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compounds and checked against theoretically-derived distributions. When the as­

sumption of constant error is untenable, the Empirical Bayes approach to estimating 

random error offers an attractive alternative. It provides an amalgam of the specifie 

within-compound variations (if measured in replicate) and the error estimate de­

rived from the distribution of the within-compound variances, with the latter alone 

providing the "best" estimate when a particular compound has not been replicated. 

This combination of sources of information is a compromise between using only the 

within-compound (and thus highly variable) error estimates and the average but un­

realistic (and thus falsely precise) pooled error estimate that would be appropriate 

under a common error model. 

The limitations of standard statistical approaches with minimal replication can 

be partially offset by "borrowing strength" from the large number of available mea­

surements (compounds). We have provided one example of this princip le by using 

the distribution of sample error variances to obtain error estimates for individu al 

compounds. 

Advances in statistical modeling of HTS data will provide objective benchmarks 

against which to compare experimental results and as a consequence help to stan­

dardize the hit identification process. By improving measurement quality and by 

providing quantifiable false positivejfalse negative ratios, statistical modeling can 

improve the efficacy of non-statistical considerations for lead development (such as 

counter screens to identify non-specifie interference). In this manner, the often-cited 

advice to identify false leads early and quickly can be strengthened while minimizing 
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potentially costly false negatives. 

2.6 Boxes 

2.6.1 Box 1 : Formulae for Normalization 

as: 

Percent of Control: A qualitative measure of test compound activity defined 

POC = Xi X 100 
C 

where Xi is the raw measurement on the ith compound and c is the mean of the 

measurements on the positive contraIs in an antagonist assay. 

N ormalized Percent Inhibition: Another normalization method using con-

traIs: 

NPI = c+ - Xi 

c+ - c_ 

where Xi is the raw measurement on the ith compound, c+ and c_ are the me ans of the 

measurements on the positive and negative contraIs, respectively, in an antagonist 

assay. 

Z score: A simple and widely know normalizing method calculated as: 

X' -x 
Z = -'-­

Sx 

where Xi is the raw measurement on the i th compound, x and Sx are the mean and 

the standard deviation, respectively, of aIl measurements within the plate. 
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B score [14]: The residual (Tijp) of the measurement for row i and column j 

on the pth plate is obtained by fitting a two-way median polish and is defined below: 

The residual is defined as the difference between the observed result (Yijp ) and the 

fitted value ( Yijp, defined as the estimated average of the plate (';p) + estimated 

systematic measurement offset for row i on plate p (Ê4p ) + estimated systematic 

measurement column offset for column j on plate p (êjp )). 

For each plate p, the adjusted median absolute deviation (M ADp) is obtained 

from the Tijp'S. The B score is calculated as follows: 

Tijp 
Bscore = MAD 

p 

Median Absolute Deviation (MAD): A robust estimate of spread of the 

Tijp 's values: 

medianlTijp - median( Tijp) 1 

2.6.2 Box 2: Examining the Distribution of Sample Variances 

Under the assumption of normally distributed errors with mean IL and variance 

(72, the statistic 

is distributed as a chi-square with K - 1 degrees of freedom where S2 is the sample 

variance for each of the K replicated compound measurements. 
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For each compound, consider the model: 

where k = 1,2, """' K replicates and it is assumed that: 

A standard Bayesian choice for a prior distribution of the variances is an inverse 

gamma with unknown parameters a and b: 

-2 I"V G( b) = x
a

-
1
exp( -x/b) 

a a, - r(a)ba 

The a and b parameters are assumed to be constant across compounds and can 

be estimated from the data from aIl compounds by fitting an F -distribution to the 

sample variances S2: 

(ab)s2 I"V F(k-l),2a 

Wright and Simon's [12] procedure for estimating the a and b parameters was 

used to generate the data shown in Figure 2-7" 

2.6.3 Box 3: Test Statistics for Hit Detection with Replicates 

is: 

One sample t-test: With K replicates, for each compound a Student t statistic 

j; - constant 
t=--==--

sJl/K 
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where x and s are the arithmetic mean and the standard deviation, respectively, of 

the K replicated measurements, constant is a constant typically equal to zero. t 

follows at-distribution with K - 1 degrees of freedom. 

"Modified" one-sample t-test: After estimation of the a and b parameters 

by fitting an inverse gamma distribution to the set of variances across replicates for 

each compound (see Box 3), a variation of the previous standard t-test is: 

- x - constant 
t=---==-

8J1/K 

where 
-2 (K - 1)s2 + 2a(ab)-1 
s = ~-~-~-~--

(K -1) + 2a 

and where x and S2 are the arithmetic mean and the variance, respectively, of the K 

replicated measurements. The degrees of freedom for the test are now (K - 1) + 2a, 

an increase of 2a over the standard t-test. 

82 can be viewed as a weighted average of the observed compound-specific vari-

ance S2 and an estimate (ab) -lof the "typical" error variance underlying the error 

distributions of different compounds. The weights are (K - 1) and 2a, respectively. 

A very large value of a is equivalent to assuming a common variance across aIl 

compounds and to simply averaging aIl of the observed variances, thereby virtually 

ignoring compound-specific variances. Sm aller values of a imply that the underlying 

variances across compounds are heterogeneous and that the observed compound-

specific variances be "trusted" more. In Figure 2-7, the values of a for Screens 295 

and 900 were 2.84 and 3.64, respectively for the B scores, and 1.11 and 4.12 respec-

tively for the Z scores. Accordingly, the estimates were 1:2.84 and 1:3.64 amalgams 
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of the compound-specifie and the "typical" variances for the B scores, and similarly 

1:1.11 and 1:4.12 for the Z scores. 

For an unreplicated compound, so that K - 1 = 0, 82 is sim ply the typical 

value, estimated by the quantity (abt 1 with 2a degrees of freedom (for example 

approximately 6 for the B scores), which is a compromise between zero degrees of 

freedom associated with single measurements and numberofcompounds - 1 degrees 

of freedom (i.e., 2687 and 3839 degrees of freedom, respectively for screen 295 and 

900) associated with a common error model. 
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2.7 Figures 

A Biological 
Assay 

(Specifie target 
& Reagents) 

Primary Screen 

Secondary Screen 
& Counter Screen 

Structure-Activity-Relationship (SAR) 
& Medicinal Chemistrv 

Figure 2-1: From HTS pro cess to eventual drug development. 
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Figure 2-2: Typicallocation of controls on a 96-well plate. In a primary scrcen, the 
designed biological assay is performed by using a robot to add the target of interest 
and specifie reagents to cach well, which already contain a different compound or 
control. After incubation or other required manipulations, an activity measurement 
is obtained for every well by automated plate reading. These raw data represent the 
activity measurement of each compound or control against a specified targct. The 
measurement units and the sc ales depend on the design of the biological assay, the 
target of interest and the specifie reader or imager that is used. (a) Generally, in a 
compound library, 80 different eompounds are stored in the middle of a 96-well plate 
and wells on the first and last columns are left empty. Often in a high-throughput 
screen, eight positive controls are placed in column 1 and four negative controls are 
placed in column 12. The others four wells in column 12 remain empty and are not 
used. (b) ldeally, controls should be located randomly among the 96 wells of each 
plate. Only the first and the last columns are typically available for controls, sinee 
compounds arc stored in the 80 middle wells. Despite this limitation, edge-rclated 
bias can be minimized by alternating the 8 positive controls and the 8 negative 
controls in the available wells, such that they appear equally on each of the 8 rows 
and each of the 2 available columns. 40 
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Figure 2-3: Titration series in a translation assay. Thcse rcsults from an Anisomycin 
titration in a Renilla lucifcrase translation assay show that variability differs across 
the various concentrations. A hit may be defined as any activity measurement that is 
at least 3 standard deviations away from the mean of the control measuremcnts. This 
corresponds to a dual intensity value of 19894 (dashcd line). AH of the measurements 
for concentrations greater than or equal to 0.78 are hits (aH of the values are below 
the dashed linc). Thcre were six false positives, however, for the threc lowest non-null 
concentrations. 
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Figure 2-4: Presence of edge effects in a high-throughput screen. Data from two 
different screens (http:j jchembank.broad.harvard.edujscreens) with duplicate mea­
surements across plates are presented. Thkey's two-way median polish was applied 
to each plate in order to obtain estimates of row and column effects and of residu­
aIs (i.e. compound measurements after the polish procedure removed any row and 
column effects). For each plate, variances of the 16 row effects and of the 24 column 
effccts wcre divided by the variance of the 384 rcsiduals. Boxplots of these variance 
ratios illustrate the presence of a column effect for Screen No. 295. 

42 



(a) 

(b) 

thrëshold 

(c) 

H1:'hits' 

Figure 2-5: Replicates, false positive and false negative rates. In hypothesis testing 
a false positive rate (Type 1 error) is the probability of rejecting the null hypothesis 
(HO) given that this hypothesis is true. The false negative rate (Type II error) is 
the probability of failing to reject the null hypothesis (HO) given that the alternative 
hypothesis (Hl) is truc. (a) Given a fixed threshold value, the false negative and 
false positive rates are represented by the blue and the red areas under the curve, 
rcspectivcly. (b) Decrcasing the threshold value results in an inCl'casc in the false 
positive rate and a decrease in the false negative rate. The opposite would be true 
if the threshold value were increased. (c) The benefit of multiple measurements 
(replicates) is illustrated. The use of replicates reduces data variability which is 
reflected in the narrowed data distributions. Consequently, the false negative rate is 
minimized while the false positive rate remains fixed. 
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Figure 2-6: Verification of the assumptions of normally distributed data with con­
stant variance among compounds. Empirical values correspond to a function of the 
sample variances. Under the assumption of a constant variance among compounds, 
the overall variance might be estimated by the mean of the sample variances. Each 
sample variance (obtained from the duplicate measurements) is divided by the overall 
variance estimate and the ratio should follow a chi-square distribution with 1 de grec 
of frcedom (Box 3). Results of the Kolmogorov-Smirnov (KS) test of differences 
between the theoretical and the empirical distributions arc shown. 
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Figure 2-7: Verification of the assumption that the within-compound variances fol­
low an inverse gamma distribution. Empirical values correspond to a function of the 
samp1c variances. Under the assumption of normally distributed data, each samplc 
variance (obtained from the duplicate measurements) is mu1tip1ied by the estimated 
a and b parameters of the inverse gamma distribution and the resu1t shou1d fo1-
low an F distribution with 1 and 2a degrccs of freedom (Box 3). Resu1ts of the 
Kolmogorov-Smirnov (KS) test of differences between the theoretical and the empir­
ical distributions arc shown. 
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Preamble to Manuscript II 

Current HTS practice does not include replicate measurements. However, repli­

cates are being increasingly appreciated since they (i) allow aggregated measure­

ments, thus reducing the variability of these averages on which decisions are made, 

and (ii) offer the advantage of improving both sensitivity and specificity of screens. 

During the course of my work on the previous manuscript, 1 realized that as 

currently practiced, robust methods cannot handle, or it is not clear how they should 

handle, replicates. For example, a two-way median polish [3] can clearly be applied to 

repeated measurements. However, the statisticalliterature does not provide detailed 

technical guidance on the appropriate algorithm to use. 

The purpose of this second manuscript is to evaluate and compare, via simulation 

studies, the performance of different robust preprocessing methods when applied to 

replicated two-way data with respect to detection of outlying ceUs. 

This manuscript will be submitted to JASA. The references are included in the 

global thesis bibliography. 
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Abstract 

The increasing amount of two-way data and the recent movement towards using 

multiple measurements (i.e., replicates) in diverse research applications have lead 

to renewed interest in robust methods for detecting outlying cells. Residuals from 

such robust methods are not affected by the "leakage" produced by those from a 

least squares fit. Thus, outlying cells are easier to detect. However, the statistical 

literature provides no technical guidance on how older and newer algorithms should 

be modified or adapted to handle multiple observations per cell. We compare the 

performance of four preprocessing options with respect to detection of outlying cells, 

which are defined by four inferential rules. 

Tukey's median polish is a preprocessing method which was introduced in the 

1970s as a general statistical tool. The residuals are those obtained in a classical 

two-way ANOVA model, but using medians rather than means. To overcome the 

potential lack of uniqueness of the Li solution, Terbeck and Davies [4], and Davies 

[5] have developed robust methods based on M -estimators. Using these older and 

newer methods, we consider four different options for obtaining residuals in replicated 

two-way data. The options are: median polish applied to individual values, median 

polish applied to the cell medians, and two methods from Davies [5] also applied to 

the cell medians. We adopt four arbitrary inferential rules to define outlying cells. 

ROC curves are used to compare tests, while effectively maintaining a constant test 

'size'. A median polish applied to individual values perform best in detecting an sin­

gle outlying ceIl. This method is also the most accurate of the four when applied to a 

real dataset. In contrast, in the presence of several outlying ceIls containing extreme 
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signaIs, preprocessing methods applied to cell medians have the best performance. 

Median polish also offers the advantage of being easier to understand and faster to 

compute than Davies [5] methods. We recommend the use of median polish applied 

to individual values, especially when interest is on detecting outlying cells with a 

small effect size. 
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3.1 Introduction 

Technological advances in several scientific fields have led to very large data 

sets with a two-way (row/column) structure. Row and column effects may be of 

direct scientific interest, or merely a nuisance to be dealt with. Irrespective of the 

primary focus, there is a need for automated robust methods: the large number of 

two-way tables, and the resulting volume of data preclude a detailed table by table 

examination. Areas of interest include estimating additive main effects (rows and 

columns) and detecting non-additive effects (individual outlying cells or interaction 

patterns). 

Tukey's median polish [3] is an early example of an exploratory statistical tool 

which has been used to examine two-way data structures. However, both its use, 

and theoretical study of its properties, subsequently declined. More recently, how­

ever, it has been revived for data-intensive applications such as geostatistics [30, 31], 

microarrays [32], and high-throughput screening (HTS) of chemical compounds [2]. 

Although the objectives of the contemporary use of median polish may differ 

across applications, the algorithm is mathematically and computationally the same. 

For example, in geostatistics, spatial data are obtained for irregularly distributed 

sampling locations, which results in a two-way array with missing values. The goal is 

to predict the phenomenon under study at unobserved locations using the correlation 

between neighboring observations. Median polish is used to provide robust and 

accurate estimates of spatial trends. Applying kriging methods to the residuals 

from the median polish is a powerful way for spatial estimation and prediction, 

since it eliminates biases caused by spatial trends. Median polish is also commonly 
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applied to Affymetrix microarray data in which each gene's expression is estimated 

by numerous gene-specifie probes. Here, the scientific focus is on obtaining gene 

expression estimates after removing microarray (columns) and probe-specifie (rows) 

biases on a gene-by-gene basis. In HTS, several thousand chemical compounds are 

tested in a single experimental run involving hundreds of plates. Each plate contains a 

two-way array of wells (e.g. 8 rows by 12 columns); often the first and last columns are 

used for positive and negative controls so that each 96-well plate can accommodate 

80 compounds. Median polish can be used to minimize processing biases which 

can create artifactual row and column effects within plates. The median polish 

preprocessing is a necessary step prior to the primary focus, which is to identify 

large residuals (outlying values) which represent active compounds that may later 

be developed into a drug. Median polish use in these data-intensive applications has 

raised several issues that were not even considered in its original applications. 

An alternative to the median polish, especially for the identification of outlying 

cells, has been proposed recently by Terbeck and Davies [4], and Davies [5]. Their 

methods, based on M -estimators, circumvent the potential lack of uniqueness of 

median polish and guarantee scale invariance. 

Both the median polish and the Davies' methods were designed to work with a 

single observation per ce Il. In two-way biomedical data of the type described above, 

there is a movement towards obtaining replicate measurements. After initial reluc­

tance, their benefit is now more widely recognized in microarrays [33]. The same 

appreciation of the advantages of replicated measurements is beginning to be recog­

nized in HTS applications [34]. For technical reasons, entire plates are replicated, so 
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that replicated compounds are located on the same well of different plates. However, 

the statisticalliterature provides no technical guidance on how median polish should 

be modified or adapted to handle multiple observations per cell, even though the 

literature does explain how median polish can be applied to a three way layout [35]. 

Terbeck and Davies [4] and Davies [5] also restricted their attention to the simple 

case of one observation per cell. Applications of their mcthods to two-way data with 

replicates have not been investigated. 

The focus of this paper is to compare the performance of four different options 

for dealing with replicates, when the ultimate task, after pre-processing, is to detect 

outlying cells in a two-way layout. The paper proceeds as follows. In section 2, 

we introduce the notation and describe four preprocessing procedures for handling 

replicates, namely two ways of adapting median polish, and one way of handling 

replicates using two methods from Davies [5]. In section 3, we describe a simulation 

study to compare performance of (i) the four preprocessing procedures and (ii) four 

inferential rules applied to the preprocessed data for defining outlying cells. ROC 

curves are used to compare performance. Results are presented in section 4. The 

four preprocessing options are applied to a real dataset in section 5. 

3.2 Background 

When the data consist of a single observation per cell (K = 1) in a two-way 

table, the usual focus is on the standard additive model 
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where 1 :::; i :::; land 1 :::; j :::; J. The row effects (ai), column effects ((3j) , and the 

grand mean (J-l) are typicaUy estimated by minimizing the sum of squared residuals 

1 J 1 J 

SSR = L L(Êij )2 = L L(Yij - ft - âi - {3j)2. 
i=l j=l i=l j=l 

The analytic solution satisfying this L2 criterion is given in the balanced case by 

âi = ~ L(Yij - ft); 
j 

A 1
L (3j = - (Yij - ft) l . . , 

It is helpful to note for the discussion of the median polish below that the 

residuals produced by this 'analysis by means' or 'mean polish' equal those obtained 

by a three step process: (i) find the grand mean and subtract it from aU observations; 

(ii) subtract the mean of each resulting row from aU ceU values in the respective row; 

(iii) subtract the mean of each new column from aU values in that new column. 

The least-squares method, however, has poor resistance to outliers. Because of 

the restriction "Li"L j Êij = 0, residuals in aU ceUs and estimates of row and column 

effects will be heavily infiuenced by the presence of an extreme value in one cell. 

One important consequence of this "leakage" problem is that the outlying cell will 

be less distinct after the polish, as illustrated by a simple example [36, 4]. Consider 

a 3 x 3 table with zero values in 8 of the cells, and a value of 9 in a single outlying 

cell. Table 3-1 shows that the L2 criterion applied to these data leads to nonzero 

residuals in aU cells, and that the residual in the outlying cell is now only 6 units 

higher than those in each of the others. By contrast, after the median polish, 8 of 

the residuals remain at zero, and the value in the outlying cell remains at a distance 

of 9 from these values, and thus, is more readily detected. 
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3.2.1 Robust Preprocessing Methods for Two-Way Data 

In contrast to the analysis by means, robust methods protect the fit from being 

distorted by extreme values and yield better estimates of the main effects, especially 

for contaminated or long-tailed data. We examine different robust approaches. 

Tukey's Median Polish. 

By analogy with the ANOVA model, Tukey's median polish is another simple 

method of fitting the standard additive model to the data, but using medians instead 

of means. The procedure operates iteratively and st arts as follows: 

l. Estimate the row effects by calculating the median of each row (ai = median[Yil, ... , YiJ]); 

2. Estimate the residuals by subtracting each row median from all observations 

in the corresponding row (Eij = Yij - Yi, Vj); 

3. Estimate the common value by taking the median of all row medians (p, 

median[Yl, ... , YI]); 

4. Subtract the common value from each row-median (ai = Yi - p,); 

5. Repeat all previous steps on columns of residuals Eij, rather than rows, to 

estimate the column effects (!Jj = median[Elj, ... , Elj]. 

The polishing is repeatedly applied to rows and columns of residuals alternatively 

until all row and column medians are zero or until no further improvement is ob­

tained. Beginning the iteration with columns instead of rows will not necessarily 

yield the same fit; however, the differences are typically small [36]. 

After the main effects have been removed by a robust method, residuals (Êij ) that 

originate from outlying cells are larger, because the median has a high breakdown 

point of 50%, and thus, these cells are easier to identify. For example, applying 
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the aforementioned median polish procedure to the data from table 3-1, the single 

out lier does not contribute to the estimation of the row, column and main effects. 

The residualized cell values remain at zero. As a result, the residuals correspond 

exactly to the original data where the first cell is clearly an outlier. 

Median polish has several uses: to identify row and column structure; to check if 

there is evidence of an interaction, i.e., if the model is non-additive; to detect global 

non additive patterns (e.g. increasing row effects in first column, decreasing effects 

in last column); to identify cclI-specifie abberations (e.g. data generally conform 

to additive model but residual in one cell is suspiciously high or low relative to 

the others). After fitting the standard additive model using median polish, a large 

residual appearing in one cell may come from an outlying ceIl, and thus, should be 

of particular attention [36]. 

Unfortunately, the median polish fit does not always coincide with the corre­

sponding Li solution [36, 37], Le., it does not always minimize the sum of absolute 

residuals 
1 J 1 J 

SAR = LL IËijl = LL IYij - jl- ai - Sjl· 

i=i j=i i=i j=i 

Median polish can therefore only be thought of as an approximate least-absolute-

deviations method of fitting. 

Davies' Methods. 

To overcome the potential lack of uniqueness of the Li solution, Terbeck and 

Davies [4] proposed methods based on M-estimators. The 'M' stands for 'maximum­

likelihood-like'. These estimators were introduced by Huber [38] and Hampel et al. 

[39]. M-estimators can be thought of as a generalization of maximum likelihood 
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estimation in which the function to be maximized has been modified. Under the 

assumption of a Gaussian model for crrors, maximizing the likelihood is equivalent 

to minimizing the SSR. Let p be a function of the residuals. The least-squares 

method minimizes S S R, where p( x) = x2 , which is unstable in the presence of 

outliers. In contrast, M -estimators minimize 

1 J 1 J 

L L p(Êij ) = L L p(Yij - jl- (Yi - Î3j ) 
i=1 j=1 i=1 j=1 

where p is a symmetric, positive-definite function of the residuals. If p(x) = Ixl, then 

the previous sum corresponds to the SAR and a minimum solution always exists, 

but in general may not be unique. However, if p is chosen to be a strictly convex 

function, then the solution is always unique. 

M -estimators are invariant to the scale if they minimize 

where s is a robust estimator of scale (e.g. 1.483 x median absolute deviation 

(MAD)). Consequently, neither mean nor median polish is invariant to scale because 

the variance of the residuals is not taken into account in the L 2 and LI criteria. 

Note that M-estimators can be calculated iteratively using reweighted least-squares. 

Davies [5] has argued that Terbeck and Davies [4] external estimator of scale is 

complicated and unsatisfactory; consequently, he has developed simpler and compu­

tationally more stable methods also based on M -estimators. Davies' [5] two methods 

are based on the same strictly convex function p of the residuals. The first method, 
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'Davies robust method', iterates over the set of Li solutions, and uses the correspond­

ing estimator of scale (see equation in Appendix). Davies [5] daims that "interac­

tions and outliers can be more reliably identified by the residuals from appropriate 

re-descending M -estimators than from Li residuals" or those obtained by the previ­

ous robust method. Consequently, his main method, 'Davies reweighted method', is 

based on re-descending M -estimators and overcomes the potential problem of mul­

tiple solutions corresponding to different local minima related to such estimators. 

Briefly, the second method minimizes a weighted function of the residuals obtained 

from the first method and uses an estimator of scale which is asymptotically Fisher 

consistent for normal errors (see A ppendix for details). 

3.2.2 Multiple Observations per Cell 

AU of the above methods refer to a single observation per cell. In a two-way 

layout with K ij > 1 replicate measurements in ceU ij, the observations Yijk represent 

the replicated values for each combination of the (1 x J) levels of the two factors. 

The standard additive model becomes 

With K ij > 1 replicates in sorne or an ceUs, it is possible to fit an additive model 

with interaction (,ij) terms 

It is possible to distinguish between interaction (,ij) and unstructured noise (Eijk) 

only if one has replicated data (i.e. K > 1). TypicaUy, the fitting of such a model 
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focuses on me ans and uses the L 2 criterion to determine the 'best' fit. But as previ­

ously demonstrated, the least-squares fit is not resistant to the presence of outliers 

and suffers from the 'leakage' problem. 

To circumvent these problems, a limited number of robust methods have been 

developed for detecting interactions in two-way data with replicates. Among others, 

Brown and Mood[40] and Hettmansperger and Elmore [41] have introduced a median 

and a rank test, respectively. Although these robust tests allow for the detection of 

interaction patterns, they do not allow one to identify specifie outlying cells. 

At this point, it is important to distinguish between interaction and outlying 

cells. Interaction is a more general term. Interaction may be conceptualized as a 

pattern of residuals after row and column effects have been removed. Our interest 

is in detection of individual outlying cells irrespective of the residualized structure 

pattern. We are not concerned with the interaction pattern, but in the special case 

of outlying cells. 

There is a lack of statistical research literature about the performance of robust 

methods to detect outlying cells when there are replicate observations in each ceU. 

To fiIl this gap, we examine the performance of various combinat ions of preprocessing 

robust methods and inferential rules when applied to replicated two-way tables. Since 

Davies [5] methods are defined for a single observation per ceIl, the only way to handle 

replicates is to replace the K ij observations in each ceIl by their median. Until now, 

attention has been restricted to the specifie case of K = 1 and the performance of 

these methods for the general case of K ;::: 2 has not yet been investigated. 
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3.2.3 Median Polish With Replicates 

Since its introduction, applications of the median polish procedure have been 

primarily to two-way (or higher) layouts with K = 1 observation per cell. In contrast 

to newer methods, two ways to han dIe the case of K > 1 suggest themselves with 

Thkey's median polish. 

Median Polish Applied to Table of Medians. 

One way is to reduce the replicates in a cell to a single value by taking the 

median of all K observations, Le. to calculate 

The usual two-way median polish can then be applied to the resulting table (1 x J) of 

cell medians Uhj's). For example, in a step where one polishes the rows, the median 

of the ith row is obtained by calculating the median of the cell medians in the row 

At the end of the entire procedure, one residual (Êij ) is obtained for each cell of the 

two-way table, whatever the number of replicated observations per cell. 

Median Polish Applied to Individual Values 

A second natural method is to use all individual replicated measurements in 

a row (column) when estimating row (column) medians during the polishing. To 

polish the rows, the median for the i th row is obtained by calculating the median of 

all Ki. = ~:=1 K ij observations in this row 
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This way of polishing creates a total of K .. = 2:{=1 2:f=l K ij residuals (Êijk ), i.e., 

one for each individual original observation. 

Lack of Consensus 

There are no guide lin es in the statistical literature as to which of the two pre­

vious algorithms is preferable. Few software packages inc1ude procedures to perform 

median polish and each of the two major ones that do forces the end user to treat 

replicates differently. In S-PLUS, the 'twoway' function limits its input to a two-way 

table with a single measurement in each cell. Consequently, the only way to handle 

multiple measurements is to first calculate the median of each cell and than use the 

'two-way' function to apply the median polish to the table of medians (as in Median 

Polish Applied to Table of Medians subsection). Minitab allows for multiple mea­

surements per cell, but its documentation does not specify the algorithm used. By 

calculating a small example both manually and with Minitab, we determined that 

aU individual replicated values are used to estimate row and column effects (as in 

Median Polish Applied to lndividual Values subsection). 

Nor is there any consensus among prominent researchers who have developed 

and refined robust data analysis methods. We asked four authorities which of the 

above two median polish methods should be used to handle replicated measurements. 

Their answers, shown in table 3-2, illustrate that there is no consensus. 

3.3 Methods 

Four preprocessing options are investigated: 

1. Median Polish Applied to Individual Values 
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2. Median Polish Applied to CeU Medians 

3. Davies Robust Method Applied to CeIl Medians 

4. Davies Reweighted Method Applied to CeIl Medians 

In addition, for the two first procedures, we examined the effect of starting the 

iterative median polish with columns rather than rows. For the two last procedures, 

we used the code provided by Davies [5]. AIl procedures were run in R 1.6.2 under 

Linux. 

A simulation study was performed to compare the four preprocessing procedures 

with respect to their performance in detecting outlying ce Ils in a two-way layout. The 

study included single and multiple outlying ceIls, increasing number of observations 

(both table size and number of replicated observations per ceIl) , outlying values 

of various sizes, the absence or presence of row / column effects, the four options 

for obtaining residuals and four different rules for defining outliers. For simplicity, 

we considered only square tables with equal numbers of rows and columns (1 = 

J), balanced designs with equal number of observations per ceIl (Kij = K, Vi,j), 

Gaussian errors, and no missing values. 

3.3.1 Amount of Data 

Two factors are considered: 

1. Table Size: 5 x 5 or 10 x 10; 

2. Number of Replicates: K = 1, 2, 3, 5 or 10; 

For each of the 20 combinat ions of table size, number of replicates, outlier size, 

and column effect, we simulated 1000 data sets. Values in 'null' cells were drawn 

from a N(O, 1) distribution. The replicated values in the single outlying cell or the 
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multiple outlying cells were drawn from a N(/-l, 1) distribution where /-l was either 1 

or 2. 

3.3.2 Patterns of Cells 

We studied two situations. Table 3-3 illustrates each of the following patterns. 

Single Outlying CeU 

Values in one selected cell are generated as out lier values. In addition, for this 

specific pattern, a column effect was created by adding a constant (2) to each of the 

values in the column that contained the outlying cell (see Figure 3-1). 

Multiple Outlying CeU 

Terbeck and Davies [4] and Davies [5] have restricted their attention to patterns 

they calI "unconditionally identifiable" that were also the main object of their study. 

Here we focus on two corollaries (2.7 and 2.8 in Terbeck and Davies [4]). Corollary 

2.7 states that an interaction pattern in which fewer than 50% of the rows and fewer 

than 50% of the columns contain interactions, is unconditionally identifiable. On the 

other hand, by corollary 2.8, an interaction pattern in which fewer than 25% of the 

cells in each row and in each column are outlying, is also unconditionally identifiable. 

Thus, the case of a single outlying cell satisfies the conditions in both corollaries. 

Consequently, we decided to test three other patterns that do not satisfy either one 

or the two corollaries. 

The second pattern satisfies the conditions in Corollary 2.8, but does not satisfy 

those in Corollary 2.7. Terbeck and Davies [4] mentioned that "Tukey's median polish 

can be shown to detect aIl interaction patterns described by Corollary 2.7, but it does 

not detect aIl those described by corollary 2.8". We investigate the most extreme 
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case where all rows and columns will each contains a maximum number (smaller 

than 25%) of outlying cells. Consequently, each row and each column contains one 

outlying cell in a 5 x 5 table, and two outlying cells in a 10 x 10 table. That is, 

20% of the cells in each table (distributed evenly among all rows and columns) were 

outlying cells. 

The third pattern corresponds to the opposite case, i.e., it satisfies the condition 

in Corollary 2.7, but does not satisfy those in Corollary 2.8. We used a neighboring 

group of outlying cells, while maintaining the number of outlying cells per row or 

column under the median breakdown point of 50%. Thus, four cells forming a 2 x 2 

cluster in a corner of a 5 x 5 table, and 16 cens forming a 4 x 4 cluster in a corner 

of a 10 x 10 table, contain outlying values. Consequently, each table contains 16% 

of outlying cells located in the same corner. 

The fourth pattern is a compromise between the two previous patterns of several 

outlying cells. However, it do es not satisfy any of the two coronaries. We decided to 

maintain a similar percentage of outlying cells. Thus, for a 10 x 10 table, the majority 

(60%) of the rows and columns contain three outlying cens. The 18 outlying cens 

are distributed in two clusters of nine outlying cells located in two 3 x 3 tables in 

opposite corners of the 10 x 10 table. 

3.3.3 Inferential Rules for Defining an Outlying CeU 

After each simulated dataset had been preprocessed by each of the four options, 

interest is on cell residuals. For the median polish applied to individual values, since 

one residual is obtained for each original observation, a 'cell residual' was defined 
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as the mean of aU residuals of the ceU. For the three other methods, no additional 

aggregation was required. 

We adopted the foUowing four arbitrary statistical rules to define a ceU as an 

outlier: 

1. SDs away from the Mean: A ceU in which the ceU residual is more than x 

standard deviations away from the mean of aU ceU residuals; 

2. Jackknife SDs away from the Mean: As in previous rule, but where the ceU 

residual in the candidate cell is removed from the mean and standard deviation 

calculations; 

3. MADs away from the Median: A ceU in which the ceIl residual is more than 

x (rescaled) Median Absolute Deviations away from the median of aU cell 

residuals; 

4. IQR away from Qi or Q3: Any observation that is more than x times the 

Inter Quartile Range away from the lst (Ql) or the 3rd (Q3) quartile of aU ceU 

residuals. 

3.3.4 Comparing Performance of Combinat ions of Preprocessing Op­
tions and Inferential Rules 

We wished to apply each of the four inferential rules to each resulting table 

of cell residuals. Since power may be higher at the expense of higher type 1 error, 

we needed to compare sensitivity (power, Le., l-probability of a type II error) at 

a common specificity (Le., l-a, l-probability of a Type 1 error). Otherwise, the 

sensitivity of one rule could artificially be higher than that of another because of its 

larger a level. Since we were unable to choose a priori the threshold 'x' which would 

result in a certain type 1 error, we employed an ROC analysis to control for different 
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a levels. We varied the threshold 'x' from 0.1 to 3.5 in steps of 0.1, for a total of 35 

data points for eaeh ROC eurve. 

To illustrate, eonsider residuals from a 5 x 5 table with one outlying ceIl, and 

one specifie mIe, e.g. 'x SDs away from the mean'. For the first value of x, we 

ealculated the eorresponding eutoff aeeording to the specifie rule. Using this eut off, 

we ealculated sensitivity and specifieity. For eaeh table, sensitivity is either 1/1 or 

0/1 depending on whether the absolute value of the ceIl residual in the tme outlying 

cell exceeds the eut off. Similarly, specificity is the proportion of the remaining 24 

ceIl residuals that are eorreetly classified as non-outliers. We reealculated sensitivity 

and specificity for eaeh value of x. Then, we repeated the ealculation for eaeh of the 

1000 datasets preproeessed by the same option and obtained an average sensitivity 

and an average speeificity aeross the 1000 values for eaeh value of x. 

3.4 Results 

First, we examined differences wh en the median polish algorithm starting the 

iteration with rows rather with eolumns, but results were the same no matter whieh 

was used first (data not shown), so we will eonsider only iterations starting with 

rows. 

The results using the four different mIes for defining an outlying ceIl were aIl 

equivalent (data not shown). Consequently, we will fix on the first mIe 'standard 

deviations away from the mean' that is simple, intuitive and weIl known. 

Figure 3-2 shows ROC eurves eomparing the four different options of obtaining 

residuals when trying to deteet a single outlying cell. As expeeted, the number of 
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replicates (K) has a pronounced effect on performance. For K = 1 or K = 2 (panel 

a), there is a slight advantage for the Davies reweighted and the median polish 

applied to cell medians methods, especially for the 10 x 10 tables. However, for 

K ~ 3 (panels b, c, and d), it becomes clear that median polish applied to individual 

values performs best when trying to detect an outlying cell in two-way data with 

replicates. 

When there are several outlying cells, results may differ. For the first pattern, 

where 20% of outlying cells are evenly distributed, the conclusions remain the same, 

but the differences are smaller (Figure 3-3). For the third and fourth patterns, when 

the outlying cells are grouped in one (Figure 3-4) or two (Figure 3-5) corners of the 

table, for outlying values of smaIl size (J-l = 1), the conclusions still hold but the 

differences are again smaIler. However, for outlying values of bigger size (J-l = 2), 

performance of the median polish applied to individual values decreases and becomes 

poorer in comparison to the other methods, as the number of replicates increases. 

We noticed that specificity remain the same for aIl methods whatever the number 

of replicates. Thus, preprocessing methods applied to ceIl medians performed best 

because, for fixed specificity, sensitivity increases when the number of replicates 

increases, in contrast with the median polish applied to individual values for which 

the sensitivity remains the same. AIso, there is a slight advantage for median polish 

applied to ceIl medians in comparison to the two Davies methods also applied to cell 

medians. 

Figures 3-6 and 3-7 show that increasing the number of observations increases 

the sensitivity for a fixed specificity for the median polish applied to individual values 
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method. Importantly, the gain is greater when increasing the number of replicates 

than the size of the table because of the stability of the estimate with more replicates. 

For example, with three replicates per cell, the gain in performance from a 5 x 5 table 

(i.e. 75 data points) to a 10 x 10 table (i.e. 300 data points) is small in comparison 

to having four time more data points. In contrast, for a 10 x 10 table, increasing 

from two replicates (i.e. 200 data points) to three replicates (i.e. 300 data points) 

represents a larger gain for only 1.5 times more data points. AIso, power to be able 

to detect outlying cells is influenced by both the number of replicates and the size 

of the outlying values. Since the latter is divided by JI/Kin power calculations, 

large effect with few replicates end up with the same ratio as of small effect with 

more replicates. 

Finally, in the case of a single outlying cell per table, all four preprocessing 

options handle column effects equally well; sensitivity and specificity are the same 

whenever a column effect is present or absent (data not shown). 

3.5 Example 

The example is taken from Hahn et al. [1]. The data measure fighting behavior of 

pairs of mice after maturation, and can be found in Scheirer et al. [42]. Aggression 

was measured by seconds of tail rattling per seconds of fighting. The data are 

represented in a 2 x 3 table with 7 replicates (pairs of mice) per cell. The first factor 

corresponds to different environmental conditions (0 and 1) and the second factor 

to brain weight (small, medium, and large). Hettmansperger and Elmore [41] have 

also analyzed this data set. They present boxplots of cell data with 85% confidence 
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intervals. The application of their test allows detection of the presence of interaction. 

However, from the raw data, it appears that the 'environment 0, small brain group' 

is an outlying cell (Table 3-4). 

Table 3-5 shows residuals obtained when applying the four preprocessing op­

tions for obtaining residuals. As in the simulation study, residuals in each cel! for 

the median polish applied to individu al values have been aggregated by taking their 

me an in order to define cell residuals. Since the environment factor has only two 

levels, interpretation may be facilitated by examining the difference between the two 

environmental conditions [43]. Differences are presented in Table 3-6. In all cases, 

the largest residual appears correctly in the small brain group. However, as confirmed 

by the simulation study, the outlying cell can be identified with greater power when 

looking at the residuals obtained from the median polish applied to individual values. 

3.6 Discussion 

Since one cannot know in ad vance the numbers and the location of outlying 

cells, in a general manner, we recommend the use of the median polish applied to 

individu al values. In most cases, this method offers higher performance when trying 

to detect either one or several outlying cells. The three other preprocessing methods 

applied to cell medians perform better when there are several grouped outlying cells 

and wh en the size of the outlying values is high in comparison to the size of the other 

values. However, such outlying cells are easier to detect than outlying cells of lower 

value. Thus, in these cases, median polish applied to individual values is not the 

best method, but still performs weIl. 
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As expected, the number of observations (Le. table size and especially number 

of replicates), has a big effect on performance. Most of the time, with only K = 3 

or 5, there is an substantial increase in power. 

Results from our simulation study did not show any advantages for Davies [5] 

methods applied to cell medians. Median polish also applied to cell medians per­

formed as well and sometimes even slightly better. In addition, median polish has 

the advantages of being easier to understand and faster to calculate. However, there 

might be sorne interaction patterns that are 'unconditionally identifiable' but that 

do not satisfy either of the two Corollaries [4]. Note that Corollary 2.7 was also the 

definition studied by Daniel [44] 

For example in HTS, the last two patterns of cells may occur if compounds are 

not randomly located among the wells of the plates, and if analogue compounds are 

located in a same corner. Thus, if one of these compounds is active, the others have 

higher chances to be also active since they share similar chemical properties. 

In the future, additional simulation studies could be do ne to assess the perfor­

mance when the errors are not Gaussian. Also, using median polish with repeated 

measurements would also help in developing tests of significance of fitted row and 

column effects, since there is currently no theory on this issue. 
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3.7 Appendix 

Davies [5] preprocessing methods are based on a class of M -estimators. To 

guarantee uniqueness, the following strictly convex function is used 

x 2 

p),(x) = À + Ixl 

where À > 0, and satisfies suPxlp),(x) - Ixll = À. 

AIso, the two methods are invariant to the scale, since they both minimize 

where s is an estimator of scale as defined below. 

3.7.1 Davies Robust Method 

A unique Li solution (p.o, &0, ~o) is obtained by minimizing, over the set of Li 

solutions, 

for sorne specified value Ào of the parameter À, and where the corresponding estimator 

of scale is 

Davies [5] uses Ào = 0.1 as default value in the calculations arguing that it is a 

reasonable choice according to simulations. 
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3.7.2 Davies Reweighted Method 

An external estimator of scale, which is asymptotically Fisher consistent for 

normal errors, is given by 

S = U(IJ-K(IJ) 
.(a) 

where U(l) ::; U(2) ::; ... ::; u(IJ) are the ordered absolute residuals (Uij = hj 1 = 

IYij - {t0 - &0 - $°1) from the previous solution; K (I J) = min{ (J - [J ~l ]) [ 1 ~2], (I -

[I;1])[J~2]} + [I;l][J~ll is the maximal number of interactions in an uncondition­

ally identifiable interaction pattern; a = IJ-I;}:t:!~,J)/2, and z(a) denotes the a 

quantile of the standard normal distribution. 

Using this resulting estimator of scale sand residuals rij from the previous 

robust method, the procedure consists in minimizing 

where w(x) = 1 - (1 - (~)2)3 is a weight function, and c is a tuning constant set to 

c = 3.5 (default value in code). 
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Table 3-1: Hypothetical data to illustrate 'leakage' 

1 Two-way Data Il Least-Squared Residuals Il Median Polish Residuals Il 

IIWI ~ Il:1nl -: IIWI ~ Il 
Table 3-2: Rcsponses to questions on how to hancHe replicatcs in median polish 

Preference 
Authority Median Polish Applied to Comments 

lndividual Cell 
Values Medians 

1 V "1 bclieve you should first aggrcgate 
the replicates in each ceU." 

2 V "My intuition is that you can take the median 
of aU numbers in a row or column." 

"Approach used for 3-way tables would appear 
3 V V to suggest using medians over aU the replicates. 

But working with cell medians would certainly 
give more resistance ta outlicrs locaUy." 

"One natural question is whether the number 
4 V V of observations is the same in all the celis 

of the two-way table." 

3.8 Tables and Figures 
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Table 3-3: Patterns of outlying cells for 10 x 10 tables as used in the simulation 
study 

pt Pattern: 

Il 
2nd Pattern: 

1 Outlying Cell 20% Outlying Cells 

IL (+2) 0 0 0 0 0 0 0 0 0 J1 IL 0 0 0 0 0 0 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 J1 J1 0 0 0 0 0 0 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 J1 J1 0 0 0 0 0 0 

o (+2) 0 0 0 0 0 0 0 0 0 0 0 J1 J1 0 0 0 0 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 IL 0 0 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 J1 0 0 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 J1 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 IL 0 0 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IL J1 
o (+2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IL J1 

3rd Pattern: 4th Pattern: 
16% Outlying Cells 18% Outlying Cells 

J1 J1 J1 J1 0 0 0 0 0 0 J1 J1 J1 0 0 0 0 0 0 0 

J1 J1 /1, J1 0 0 0 0 0 0 IL J1 IL 0 0 0 0 0 0 0 

J1 J1 J1 J1 0 0 0 0 0 0 J1 J1 J1 0 0 0 0 0 0 0 

J1 J1 J1 IL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 J1 J1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 J1 J1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1 J1 J1 

Table 3-4: Cell medians of the original data from Hahn ct al. [1] (sec text for details) 

Brain Weight 
Small 1 Medium Large 

Environment 0 3.50 1 0.98 0.37 Il 
Environment 1 1.35 1 1.27 0.82 
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Table 3-5: Cell residuals for data from Table 3-4 

Brain Weight Environment 
Small Medium Large 

Median Polish Applied to 2.50 -0.41 -0.25 0 
lndividual Values -0.54 0.44 1.01 1 

Median Polish Applied to 1.22 0.00 -0.08 0 
Table of Cell Medians -1.22 0.00 0.08 1 

Li Solution Applied to 1.22 0.00 -0.16 0 
Table of Cell Medians -1.22 0.00 0.00 1 

!vI Functional Applied to 0.84 -0.38 -0.46 0 
Table of Cell Medians -0.84 0.38 0.46 1 

Table 3-6: Cell residual differences between the two environmental conditions (envi­
ronment 0 advantage) for data from Table 3-4 

Median Polish Applied to lndividual Values 
Median Polish Applied to Table of Cell Medians 
Li Solution Applied to Table of Cell Medians 
!vI Functional Applied to Table of Cell Medians 
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l Brain Weight " 

Small 1 Medium 1 Large 

3.04 -0.85 -1.26 
2.44 0.00 -0.16 
2.44 0.00 -0.16 
1.68 -0.76 -0.92 
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Figure 3-1: Overview of simulation study design 
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Figure 3-2: ROC curves to compare the performance of four options of obtaining 
residuals. Each ROC curve represents the performance of one of the 4 preprocessing 
options when trying to detect a single outlying celI (Table 3-3, pattern 1). Lower 
curves correspond to standard normal dataset with an outlying celI with a low 'signal' 
(J.l = 1, plain lines) while upper curves correspond to standard normal dataset with 
an outlying ceU with a higher signal (J.l = 2, dashed lines). In each case, an effect 
(value of 2) was added to the observations in the column containing the outlying celI. 
The 'standard deviations away from the mean' rule is used to define a celI residual 
as an outlying celI. Panels (a), (b), and (c) are for 10 x 10 tables \vith respectively 
2, 3, and 5 replicates pm celI. 76 



(a) 2 Replicates per Cell (b) 3 Replicates per Cell 
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(c) 5 Replicates per Cell 
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Figure 3-3: ROC curves to compare the performance of four options of obtaining 
residuals. Each ROC curve represents the performance of one of the 4 preproecssing 
options when trying to dctect sever al (20%) outlying ceUs evenly distributed in each 
row and column (Table 3-3, pattern 2). Lower curves correspond to standard normal 
datasct with outlying ce Us of low signal (ft = l, plain lines) while upper curves 
correspond to standard normal dataset with outlying ceUs of higher signal (ft = 2, 
dashed lines). The 'standard deviations away from the mean' rule is used to define 
a ecU residual as an outlying ecU. Panels (a), (b), and (c) are for 10 x 10 tables with 
respectively 2, 3, and 5 replicates per ecU. 
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(a) 2 Replicates per Cell (b) 3 Repllcates per Cell 
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(c) 5 Replicates per Cell 
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Figure 3-4: ROC curves to compare the performancc of four options of obtaining 
residuals. Each ROC curve represents the performance of one of the 4 preprocessing 
options when trying to detect several (16%) outlying ecUs aU located in a same 
corner of the table (Table 3-3, pattern 3). Lower curves correspond to standard 
normal dataset with outlying ecUs of low signal (J.1.. = l, plain lines) while upper 
curves correspond to standard normal dataset with outlying cells of higher signal 
(J.1.. = 2, dashed lines). The 'standard deviations away from the mcan' rule is used 
to define a ceU residual as an outlying cell. Panels (a), (b), and (c) are for 10 x 10 
tables with respectively 2, 3, and 5 replicates pel' ccU. 
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(a) 2 Replieates per Cell (b) 3 Replleates per Cell 
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(e) 5 Replieates per Cell 
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Figure 3-5: ROC curves to compare the performance of four options of obtaining 
residuals. Each ROC curve represents the performance of one of the 4 preprocessing 
options wh en trying to detect several (18%) outlying celIs located in two opposite 
corners of the table (Table 3-3, pattern 4). Lower curves correspond to standard 
normal dataset with outlying cells of low signal (11 = 1, plain lines) while upper 
curves correspond to standard normal dataset with outlying ceUs of higher signal 
(J.L = 2, dashed lines). The 'standard deviations away from the mean' rule is used 
to define a celI residual as an outlying celI. Panels (a), (b), and (c) are for 10 x 10 
tables with respectively 2, 3, and 5 replicates pel' celI. 
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Figure 3-6: ROC curves to illustrate the effect of increasing number of observations. 
Ali ROC Curves rcpresent results obtained when median polish is applied to indi­
vidual values and when the 'standard deviation away from the mean' rule is used 
to define an outlying ccli. Data arc standard normal with an outlying cell of low 
size (/1 = 1) and a column effect in the corresponding row (/1 = 1). The number of 
replicates varies for both 5 x 5 table (plain lines) and 10 x 10 tables (dashed lines). 
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Figure 3-7: ROC curves to illustrate the effect of increasing number of observations. 
AlI ROC Curves represent results obtained when median polish is applied to indi­
vidnal values and when the 'standard deviation away from the mean' rule is used 
to define an outlying cclI. Data are standard normal with an ontlying cclI of higher 
size (/1 = 2) and a column effect in the corresponding row (/1 = 1). The number of 
replicates varies for both 5 x 5 table (plain lines) and 10 x 10 tables (dashed lin es ). 
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Preamble to Manuscript III 

The last chapter of my thesis reveals crucial applications of my research to 

HTS data. In the two previous manuscripts, 1 was mainly thcorctical. In the first 

chapter, 1 reviewed both preprocessing and inferential methods, and made statistical 

suggestions to improve HTS data analysis. In the second, 1 performed a simulation 

study to compare the power of different statistical approaches to detect outlying cells 

in a replicated two-way dataset. Rere, in the third chapter, the focus is on real-life 

applications. 

The numerous RTS datasets generated are always examined with the goal of 

finding hits, and variation in primary screen has never been investigated systemati­

cally because of cost issues. AIso, 1 don't want us ers to become overly optimistic and 

to expect statistical tools to do as wen in real applications as they do in simulations. 

Looking at simulated data is not sufficient since we don't know where the hits are in 

real data and we cannot expect perfection. 

In this manuscript, based on empirical datasets and data from real screens, 1 

give a statistical view on the presence of unwanted variation; 1 provide designed pro­

cedures to optimally generate replicated HTS data; and 1 recommend steps, methods 

and guidance for statistical analysis of these data. Briefly, 1 demonstrate the benefits 

of (i) reducing unwanted variation, (ii) obtaining replicates, and (iii) using robust 
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efficient statistics to improve sensitivity and specificity of screens, and thus, hit de­

tection. 

This manuscript will be submitted to Nature Biotechnology. The references are 

included in the global thesis bibliography. 
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Abstract 

Identification of active compounds in high-throughput screening (HTS) contexts 

can be substantially improved by applying classical experimental design and statisti­

cal inference princip les to aIl phases of HTS studies. We make sever al procedural and 

statistical recommendations to increase sensitivity and specificity of screens. First, 

randomization of plate processing order at every step improves accuracy in activity 

measurements by minimizing unwanted variation stemming from human, biological 

and equipment errors. Second, the use of robust data preprocessing methods, such as 

the B-score normalization method, can further reduce unwanted variation by remov­

ing row, column and plate biases, which wou Id otherwise potentiaIly increase both 

false positives and false negatives. Third, replicate measurements allow estimation 

of the magnitude of the remaining random error and the use of formaI statistical 

models, such as by an Empirical Bayes t-test to benchmark putative hits relative to 

what is expected by chance. Thus, aIl these approaches together increase confidence 

in hit identification. 
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4.1 Introduction 

Identification of active compounds in high-throughput screening (HTS) contexts 

can be substantially improved by applying classical experimental design and statisti­

cal inference principles to all phases of HTS studies. Good experimental design at the 

data acquisition phase serves two broad purposes: it facilitates data interpretation by 

reducing the possibility that observed effects have been caused by confounding fac­

tors and it minimizes unwanted variation in activity measurements stemming from 

human, biological and equipment errors. Statistical methods at the data pre pro­

cessing (normalization) phase can further reduce unwanted variation which would 

otherwise potentially increase both false positives and false negatives. At the infer­

en ce phase, the magnitude of the remaining random error, inherent in any biological 

system, can be estimated by replicate measurements and taken into consideration 

when deciding which of the putative hits are sufficiently reliable to warrant follow-up. 

The information from the random error observed in this screen can also be used to 

estimate anticipated faise negative rates for similar future studies. 

Aithough the advantages of statisticai procedures for HTS analysis were de­

scribed a decade ago [45], statisticai articles are only now becoming more common as 

researchers search for ways to improve the sensitivity and specificity of their screens. 

Various methods have been proposed to characterize the quality of screens [16, 46], 

to remove bias within and across plates [2,47] and to obtain random error estimates 

for use in statistical tests to identify hits [18, 34]. 

We presented a data analysis strategy in a recent review of preprocessing and in­

ferential methods for HTS [34]. For preprocessing, we argued in favor of non-control 
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based normalization methods and specifically recommended the B-score procedure 

[2]. We argued further that replicate measurements are needed to minimize variabil­

ity, to verify method assumptions, and to suggest alternative data analysis strategies 

when assumptions are not met. SpecificaIly, we demonstrated that aggregating the 

random error estimate for an individual compound with an estimate obtained across 

aIl compounds can provide a more precise estimate of random error. The described 

Empirical Bayes approach provides an effective framework for verifying model as­

sumptions, estimating false positive rates, and reducing false negative rates. 

Here we extend those arguments and demonstrate the utility of the approaches 

with a replicated primary and secondary screen and with two control experiments. 

We illustrate the advantages of randomization in the screening setup to minimize 

unwanted variation. We show that the B-score method provides the desirable statis­

tical characteristics of bias correction and measurement independence. FinaIly, we 

show that B-scores when combined with Empirical Bayes t-test approach provide 

variance and p-value distributions which agree with theoretical expectations. The 

combination of randomization, replication B-score normalization, and the Empirical 

Bayes t-test should improve both specificity and sensitivity for HTS applications. 

4.2 Results 

4.2.1 Examination of raw data. 

Figure 4-1 shows histograms and line plots of column effects of raw data for 

the Imunofluorescent screens (see Methods section for description of these datasets). 

Under the usual assumptions of unbiased measurements and few hits, one should 
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expect that the majority of the measured values will be symmetrically distributed 

about a central null value. Panel a shows, however, that the distribution of the first 

replicate set in the non-randomized screen contains two modes. Moreover, Panel b 

shows evidence of column bias (the right-most columns within the plates have higher 

signaIs on average; see Supplemcntary Results online for plate-by-plate column effect 

plots). Panels c-d show that variability and the column effects in the randomized 

screen have been reduced. 

4.2.2 Data preprocessing. 

Unwanted variation in the measurements that cannot be controlled procedu­

rally may nonetheless be minimized by appropriate normalization of the data (see 

Methods section for more details on the procedures). Figure 4-2 show that rel­

ative to raw data, Z-scores were more symmetrically distributed and reduced the 

column effects. Figure 4-3 shows that B-scores, however, provided the best adjust­

ment for distributional asymmetry and column effects. Similar results were obtained 

for the less- pronounced row effects (data not shown). Moreover, overlap among 

the 100 largest/smallest values (averaged across replicates) between the two screens 

was higher for B-scores (14%/65%) than for either raw data (8%/43%) or Z-scores 

(7%/54%). Thus, although it is always best to avoid unwanted variation with pro­

cedural solutions, these results suggest that the B-score method provides a degree of 

reproducibility even in the presence of substantial procedurally-induced bias. 

The advantages of B-scores are illustrated further in Figure 4-4 by analysis of 

additional data from an in-vitro translation assay experiment in which the same 

compound was tested in every weIl in the same concentration across aIl plates (see 
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Methods for description). As such, in the absence of systematic bias, the same signal 

plus random noise was expected for aIl wells of every plate. Consequently, measured 

values should be uncorrelated with their counterparts in the same locations on other 

plates and should show no auto correlations within the series of measurements. Fig­

ure 4-4a, however, shows that the raw data are positively correlated, indicating the 

presence of procedurally-induced location-specific biases. Figure 4-4b shows that the 

B-scores greatly minimized the bias, producing the expected null correlation (Scat­

terplots between plates for Z-scores generate results identical to the raw data because 

on a plate-by-plate basis they are simply rescaled raw scores and as such generate 

identical scatterplots). Similarly, the auto correlation plots across aIl six replicate 

plates in Figure 4-4c show substantial correlations between putatively independent 

measurements for the raw data. The correlation at lag 1 indicates that wells in im­

mediate proximity to each other down columns and up the next column (column 2: 

weIl at row 1 with weIl at row 2, weIl at row 2 with weIl at row 3, weIl at row 8 with 

weIl at row l/column 3 weIl at row 7/column 10 with weIl at row 8/column 10) are 

highly correlated (r = 0.55). Successive lags indicate correlations between each weIl 

and the nth succeeding weIl (lag n). A pattern was observed which repeated at every 

8th lag. The doser wells were to each other within columns, the higher the correla­

tion (e.g. the lag 1 correlation is higher than that for lag 2). A similar pattern was 

observed across columns (e.g. the highest correlation of r = 0.68 was observed for 

lag 8, which corresponds to immediately adjacent wells across columns). Although 

Z-scores provided some degree of correction (Figure 4-4 b ), B-scores again provided 
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the best correction (Figure 4-4c) , reducing the auto correlations at the various lags 

to near zero values. 

4.2.3 Hit detection. 

A major advantage of having replicates is the use of formaI statistical models to 

benchmark presumed hits relative to what is expected by chance under the statistical 

model being used for data analysis. Figure 4-5 illustrates our investigation of the 

assumptions of our model, a required step before use of any statistical test (see 

Methods section for a detailed description of the tests). 

The Empirical Bayes t-test produced the theoretically expected inverse gamma 

distribution for the non-randomized and randomized screens for replicate variances 

(Figures 4-5 a, d) and a uniform distribution for null p-values (Figures 4-5 c, f), 

increasing confidence in the validity of the results. The standard one-sample t­

test generated fewer hits (small p-values) and a non-uniform null 2-tailed p-value 

distribution (Figures 4-5 b, e), indicating that the test is inappropriate for the data. 

In this context, the standard t-test suffers from a lack of degrees of freedom due to 

the small number of replicates and it may be more vulnerable to any non-normality 

within each location. Rank or de ring of the two t-statistics is the same, but the 

quantiles are different because the activity measurements are divided by different 

estimates of the standard error. Finally, as we found previously with other data 

sets,(Malo et al., 2006), results from the one sample z-test were also not valid for 

these data. The common variance assumption was grossly violated, suggesting that 

the larger number of observed hits likely reflect an unduly high false positive rate 

(data no shown). 
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4.2.4 Other Considerations. 

Statistical hypotheses may be investigated as 1 or 2-tailed tests. The former are 

used when the direction of the effect is predicted; the latter are used when effects of 

interest may be in either direction. In the two imunofluorescent screens, statistical 

hits were expected in both directions and accordingly we examined 2-tailed p-value 

distributions as a check of assumptions. For the biological purposes of the studies, 

however, the interest lies in the activity measurements which correspond to high 

positive B-score values (increase in fluorescence). Accordingly, it is appropriate to 

estimate 1-tailed p-values for hit detection, with the understanding that effects in 

the opposite (negative) direction will be ignored, no matter how large the effects 

might be. Decrease of fluorescent signal may arise from a number of different causes. 

A compound may be toxic and cause remain in the cell during the experiment and 

have the ability to quench the fluorescence of the tag on the secondary antibody, or 

bind to the cystic fibrosis transmembrane regulator close to the location of the 3HA 

tag and mask the antibody binding site from the antibody detection. 

Outliers among replicates threaten the validity of results obtained from statis­

tical tests based on me ans (such as the ones employed here). Outliers are difficult 

to detect, however, when there are few replicates. One method to circumvent this 

problem in the current context is to investigate whether any of the replicate vari­

ances (rather than the individual fluorescent values) may be considered outliers. 

The advantage is that outlier variances are more readily detected because there are 

many variances distributed according to a known distribution under the Empiri­

cal Bayes model used here. The idea is that compounds with replicate fluorescent 
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outliers should have unusually large variances. The F-distribution (Figures 4-5 b 

and f) can be used as the reference probability model. At a fixed alpha level, any 

'rescaled' variance (i.e. the observed variance multiplied by a and b, the estimated 

parameters of the inverse-gamma distribution) that is greater than the quantile of 

a F-distribution with K-l and 2a degrees of freedom is deemed an out lier. For the 

'randomized screen', at alpha=O.OOl we found no outliers, and at alpha=O.Ol we 

found 70utliers. Since 1120 compounds were tested, these numbers are smaller than 

the expected numbers, and consequently there are no obvious variance outliers (and 

hence no obvious fluorescent outliers) in the randomized screen. 

Finally, interpretation of individu al p-values needs to be understood within the 

multiple testing context. For example, 5% of the compounds are expected to have 

p-values = 0.05 merely by chance. For the randomized screen, 9% of the individual p­

values were = 0.05, suggesting that hits are present (Figure 4-5h). Notwithstanding, 

we were un able to identify individu al hits using the false-discovery rate procedure, 

which provides sensitive p-value adjustment in multiple testing contexts (FDR [48]) 

procedure, despite allowing a relatively high FDR of 0.25 (see Methods section). 

This apparent contradiction can be explained as follows. The lowest I-tailed p-value 

was 0.003, a not unusually small p-value under the null hypothesis, given that there 

were 1120 compounds in the screen. That is, although there were many more small 

p-values than expected, none were so small as to merit individual attention. This 

in turn suggests that any true hits are likely to have small effect sizes (Le. low in­

tensities and/or high variability). This does not present insurmountable problems in 
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the current context because unlike for other high-throughput technologies (e.g. mi­

croarrays), secondary screens can be performed at medium throughput at relatively 

low cost. Accordingly, the net can be cast widely (likely generating large numbers 

of false positives) so as to minimize the number of false negativcs. 

4.2.5 Empirical demonstration of statistical power. 

We performed a 'dilution series experiment' (see Methods section) in whieh var­

ious concentrations of a true active compound were randomly assigned weIl positions 

on a 96-well plate. Figures 4-6 presents ROC curves which compare the perfor­

mance of three statistieal tests based on random samples generated from the data. 

The Empirical Bayes t-test performed best, generating the fewest false negatives at 

fixed false positive levels. Figure 4-6 also shows that false negatives are reduced by 

increasing the number of replieates, especially for low concentration hits. 

4.3 Discussion 

We make several procedural and statistical recommendations to improve HTS 

hit detection. 

For unavoidable sources of variation, randomization and blocking of processing 

steps provide the means to make valid assessments of compounds' activity levels by 

minimizing the effects of potential confounds such as processing order. 

Exploratory graphies [49] of raw and preprocessed data allow assessment of 

measurement adequacy before performing further statistieal analysis. Looking at 

the data distribution provide the means to check for gross errors in the measure­

ments. Plots of plate and row / column medians can highlight a Frequent source of 
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bias which can be minimized by robust preprocessing methods such as the B-score 

[2]. Autocorrelation plots can provide checks for measurement independence. 

Finally, we show how replicates increase sensitivity of screens. With replicates, 

the significance threshold for hit identification can be based on p-values offering the 

advantage of understanding the probability of what should be expected by chance. 

Assumptions must be verified to ensure that one uses the appropriate test. Triplicate 

measurements offer several advantages over duplicates. With triplicates, undesirable 

outlier measurements (e.g.. an extreme value due to a procedural error) can be 

deleted or corrected before further statistical analysis. Triplicates also produce a 

non-trivial increase in power. For the t-statistic, one addition al replicate provides 

the largest gains when sample sizes are small. For example, the critical t value 

threshold for identifying a hit with a one-sample t-test with two replicates is 12.7 

whereas the threshold for three replicates is reduced to 4.3. Lesser gains are observed 

for four and five replicates (thresholds of 2.57 and 2.28) Additional degrees offreedom 

can be achieved with the Empirical Bayes t-test [34, 20, 24] which acts as a proxy 

for adding replicates. 

Ultimately, biological validation will provide definitive evidence on the merits of 

various analytical approaches. How best to validate findings from high-throughput 

technologies is an unresolved philos op hic al question [50]. For example, a compound 

may be statistically deemed validated if it is significant in both tests or if the two 

p-values are not significantly different. It is left to the field to operationally define 
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validation and to decide on the methods that should be used for statistical confir­

mation of validation. 

4.4 Methods 

4.4.1 Data Sources 

Immunofluorescent screen (non-randomized). 

Sorne 1120 chemical compounds were tested to determine if they correct the 

trafficking defect of the phenylalanine deletion mutant form of cystic fibrosis trans­

membrane conductance regulator (CFTR) protein .6.F508. Fourteen 96-well plates 

were run in duplicate. lncluding incubation time, the screen was run in four days. 

Plates were processed in sets of five, followed immediately by a duplicate set pro­

cessed in the same sequence. Compounds that correct the mutant protein trafficking 

defect are detected by an increase in fluorescence (arbitrary units) - large measured 

values are more likely to be regarded as biologically valid hits. 

Immunofluorescent screen (randomized). 

This screen was the same as the previous non-randomized screen except for two 

aspects: processing order was randomized for aIl steps in the protocol and replicates 

were obtained in three inde pendent runs (i.e. blocks). 

Measurement experiment. 

An inactive compound from cystic fibrosis immunofluorescent assay screen de­

scribed above was tested in aIl of the 80 middle wells of six 96-well plates. Plate 

processing order was randomized for aIl steps. 
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Dilution series in-vitro translation assay. 

A known protein inhibitor was arrayed within each of six replicated plates in 10 

concentrations (0.0098, 0.0195, 0.039, 0.078, 0.1563, 0.2344, 0.3125, 0.4687, 0.625, 

and 1.25 p,M). Four replicates of each of the 10 concentrations and 24 negative 

controls (water) were randomly located in the 64 middle wells of 96-well plates. 

Positive controls (Anisomycin at 50 p,M) and negative controls (water) were placed in 

alternating wells on the pt, 2nd , 11th and 12th columns. Firefly and renilla luciferase 

activity measurements were obtained for each weIl; low measured values corresponded 

to hits. 

To circumvent the unrealistically high proportion (40/64) of true hits within 

each plate, we generated random samples from the data to mimic hit proportions 

which might be expected from a valid screen. Removing potential row and column 

biases with the B-score normalization method was deemed inappropriate for these 

data because differences among the rows and columns reflected biological differences 

as weIl as any potential biases due to the large number of hits of differing effect sizes. 

Accordingly, the data were normalized as follows: 

where Xijp is the compound measurement corresponding to the weIl located in 

row i, column j, and plate p; xp and M ADp are respectively, the median and the 

median absolute deviation of aIl measurements within the plate. 

For each of 100 simulation runs, we randomly sampled (with replacement) 1120 

normalized measurements from the empirical dataset (14 plates x 80 values per plate). 
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Sorne 1064 'non-hits' were sampled from the 240 negative control measurements (6 

plates x 40 values per plate). Four consecutive concentrations were chosen. For each 

concentration, 14 hits were sampled from the 144 concentration-specifie measure-

ments (6 plates x 24 values per plate) yielding a rate of true hits of 5% within each 

simulation run. We repeat this simulation for three different sets of concentrations, 

Le. the four highest, the four lowest, and the four in the medium. Hits were iden-

tified according to various statistical criteria and false positivejfalse negative rates 

were calculated (see Inferential Statistics section below). 

4.4.2 Preprocessing statistics. 

We compared two non-control-based normalization methods. Let i=l"I rows; 

j=l, .. ,J columns; and p=l"P plates. 

where Xijp is the compound measurement corresponding to the weUlocated in row 

i, column j, and plate p; xp and sp are respectively, the mean and the standard 

deviation of aU measurements within the plate. 

rijp 
B scoreijp = MAD 

p 

where rijp are the residuals obtained by a two-way median polish [3] and M ADp is 

the median absolute deviation of aU residuals within the plate. Since we did not 

observe consistency in positional effects from plate-to-plate and since we randomized 

the plate processing order, we did not used the smooth function in our calculations 

of B-scores. 
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Both the Z-score and B-score methods rescale measurements so that they are 

comparable across plates; in addition, the B-score corrects for row and column ef-

fects and is resistant to outliers [2]. Because the same compound was tested in all 

wells, within-plate variation reftected errors in measurement only (random error and 

potentially bias). 

4.4.3 Inferential statistics. 

The significance level to decide which compounds should be deemed as hits, was 

defined using statistical tests on K replicates. For each compound measurement, a 

standard one-sample t-test with K-l degrees of freedom was calculated as: 

X K - constant 
t = ----==::---

sK..}l/K 
where xl<: and SK are the arithmetic mean and the standard deviation, respectively, of 

the K replicated normalized measurements; the constant was taken to be zero. The 

ratio is then referred to at-distribution with K-l degrees of freedom for estimation 

of associated p-values. Because of cost and time issues, the number of replicates is 

usually very small. As such, this test relies on imprecise estimates of variance and 

has corresponding low sensitivity (high faise negative rates). 

To overcome this problem, a z-test was calculated for each compound using s, 

the square root of the average of all the compound-specific variances: 

X K - constant 
z= ----~==~--

s..}l/K 
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The ratio is then referred to a standard normal distribution. The z-test makes the 

strong assumption that the true variance is the same for all compound measurements, 

an assumption often not verified. 

The Empirical Bayes t-test provides a compromise between the low sensitivity 

of the local t-test and the strong common error assumption of the z-test. Compound-

specifie variances are assumed to follow an inverse-gamma distribution with param-

eters a and b [20, 24]: 

- X K - constant 
t=----=-=----==-

'8Jl/K 

h -2 - (K-l)sk+ 2a(ab)-1 and where XK and S2K are the arithmetic mean w ere s - (K-l)+2a ' 

and the variance, respectively, of the K replicated measurements. t follows a t-

distribution with K-l +2a degrees of freedom. Variance ('82
) is estimated by a 

weighted average of the compound-specifie variances and an estimate (abt 1 of the 

"typical" error variance underlying the error distributions of different compounds, 

with weights equal to (K-l) and 2a, respectively [34]. This leads to an increase of 

2a degrees of freedom over the standard t-test. 

4.4.4 False discovery rate (FDR) control. 

Benjamini et al. [48] have proposed a method to control for the expected pro­

portion of false positives among the positives which they called the false discovery 

rate (FDR). 

Once a nominal p-value P(i) is obtained, corresponding to each compound 

i=l"m, the compound is deemed a hit if: 
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(i - 1) 
Pei) ~ 1 - -'-----Co. 

m 

This method weakly controis the familywise error rate (FWER) and is more powerfui 

than other FWER controlling methods. 
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4.5 Figures 
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Figure 4-1: Graphical display of raw data for each replicated set of imunofiuorescent 
screens as exploratory analysis. (a) Histograms of raw data for the non-randomized 
screen show large variability, especially in the first replicated set. The first distribu­
tion contains two modes and a very long tail on the right, i.e., more large values than 
the usual expected proportion of hits. The second distribution is doser to expectation 
with one mode and sm aller asymmetry on the right end. (b) Plot of average mea­
surements against column number shows that column effects arc present, especially 
for the right-most columns. (c) Histograms of raw data for the randomized screen 
again show different patterns. However, distributions aIl three distributions are uni­
modal. (d) Although column effects remained, they were reduced by randomization 
of proccssing plate order. 
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Figure 4-2: Graphical display of preprocessecl data using the Z-score method. (a) 
Histograms of Z-scores for the non-randomized scrccn show less variability than the 
raw data_ (b) Plot of average measurements against column number shows that 
column effects are present, especially for the right-most columns. (c) Histograms of 
Z-scores for the ranclomized screen again show more similar patterns than for the raw 
data_ However, distributions an three distributions arc unimodal. (d) The Z-scores 
corrects for plate effects, but not for column effects. 
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Figure 4-3: Graphical display of preprocessed data using the B-score method. (a) 
Histograms of B-scores for the non-randomized screen show less variability than the 
raw data or the Z-scores. (b) Plot of average measurements against column number 
shows that column effects have been rcmoved. (c) Histograms of B-scores for the 
randomized screen again show more similar patterns than for the raw data or the 
Z-scores, and all thrcc distributions are unimodal. (d) The B-scores corrects for plate 
effects as well as for row and column effects. 
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Figure 4-4: Scatter plots of raw and preprocessed data from a 'measurement exper­
iment' in which the same compound was tested in all wells of several plates. (a) 
Because of procedurally-induced bias, measurements across plates were correlated. 
(b) The B-score method eliminates these biases, as evidenced by the lack of correla­
tion among the replicated plates. The benefit of the B-scores normalization is also 
shown wh en looking at the auto correlations (c,d,e), see text for details. 
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CHAPTER 5 
Conclusion 

At the beginning of my research three years ago, current practices relied on 

arbitrary and often non-statistical tools to analyze the increasing amount of HTS 

data generated daily. Worse, life scientists were relying on single measurements. 

They resisted obtaining replicates because of co st and time issues, and they did not 

fully appreciate the utility and benefit of statistics. They believed that automated 

technology and quality control were enough to produce reliable data. They were 

unaware of the biases that are caused by the presence of unwanted variation and of 

the importance of controlling false positive and false negative rates. 

Consequently, the main objective of this thesis was to provide new efficient 

statistical methods to improve hit detection, and thus, the discovery of new drugs. 

However, the biggest part of my work has been to convince screeners of the benefit of 

statistical methods based on replicate measurements and to promote their use in HTS 

data analysis. These objectives have mostly been achieved by the writing of the three 

previously presented manuscripts, the last one containing the applications. Although 

each manuscript contains its own discussion, here are sorne overall conclusions. 

l made several statistical recommendations which l divided in three different 

stages: experimental design, data preprocessing, and inference. When l first came 

into a HTS laboratory, with my statistical background and my limited knowledge 
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of biochemistry, everything was different from my point of view. My focus was on 

minimizing unwanted variation occurring during the entire screening process. For 

example, 1 proposed to prepare a big dilution and then split it in parts rather than 

preparing sever al small dilutions; to always use the same batch of compounds and 

reagents; to take plates from a same box; etc. Statistically, one solution was: since 

one cannot control for unknown potential sources or errors, one should randomize. 

1 greatly complicated screeners'lives and they were discouraged to see me with my 

long li st of random numbers! But my results suggest that randomization of plate 

processing order improves the reliability of results. However, it would be even better 

to perform at the same time the same screen twice, Le. with and without random­

ization of plate processing order, in order to conclude strongly on the evidence of 

effects of randomization. 

Second, at the preprocessing stage, 1 recommend the use of the B-score method 

[2]. This method offers the advantages of being robust and of removing row and 

column biases by using a two-way median polish [3]. In the first manuscript, 1 argued 

that normalization should not be based on controls, unless there is a major biological 

reason, since they may introduce their own biases. Although my results showed that 

the B scores are highly reliable, 1 pursued research on preprocessing methods in 

collaboration with bioinformaticians from UQÀM. The main idea is to correct for 

potential well effects, which can be though of as row and column interactions [51]. 

ln addition, the second manuscript contain a generalization of the median polish 

procedure. 1 first believed that using median polish with replicates cou Id improve 

data preprocessing. However, 1 finally realized that it was not the best way to 
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work with HTS data. Since each plate is performed separately, it is preferable to 

preprocess the data on a plate-by-plate basis. But the key findings of the second 

paper answer an open statistical question and thus, are of high statistical interest in 

and of themselves, and can certainly be applied to other fields. 

Lastly, at the inferential stage, l suggested the use of an empirical Bayes t-test 

[20, 24, 34]. In the third manuscript, l demonstrated that the assumption of the 

constant variance among compounds was not satisfied and thus, that a classical z­

test cannot be used. Since it is unrealistic to have a large number of replicates, a 

traditional t-test calculated individuaIly for each compound will rely on few degrees of 

freedom. Consequently, the empirical Bayes t-test offers the advantages of estimating 

variance by a weighted mean of the compound-specifie variance and the variance 

based on aIl compounds. The statistic is also compared to at-distribution with 

more degree of freedom. My results showed the benefit of this method and that the 

data satisfied the assumptions. 

In summary, l have provided warnings, recommendations, statistical thinking 

and methods, and my results have shown how to increase both the sensitivity and 

specificity of screens. In addition to publicly-available datasets, l had the opportunity 

to design my own empirical study and to perform specifie experiments. Consequently, 

l was able to take advantage of scientific principles and to evaluate the performance 

of different methods. 

However, since statisticians have just recently started to be involved in the HTS 

field, more work needs to be done in this area. First, statistical validation of hits must 

be defined. In microarrays, interest is on relative validation, which is easier. When a 
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gene is found in a RNA sample, then the same RNA sample and the same gene twice 

the amount are used for validation. In contrast, in HTS, interest is on absolute value. 

One way to validate a hit would be via a dilution series where concentrations are 

randomly located on plates which also contains a majority of non-active compounds. 

But again, one needs to define what the 'null' would be. 

Second, replicates certainly improve sensitivity of screens, but their cost-benefit 

ratio needs to be examined. Although the higher the number of replicates, the 

better the estimates of the a and b parameters in the Empirical Bayes method, 

and the better the power. It is not clear that the increased costs are warranted by 

improvements in sensitivity. Somewhat differently, funds spent on new equipment 

and new technology to reduce variation in measurements, could also be spent to get 

replicates. For the same cost, one can test more compounds in single measurement or 

less compounds in replicates. Consequently, a very large simulation study needs to 

be performed to answer these questions, since the cost-benefit of replicates depends 

on several factors. 

Third, in the first manuscript, 1 suggested partial replication as a compromise 

between the benefit and the cost of replicates. Again, all the aforemention general 

questions on optimization, even when the entire screen is replicated, are important 

here in addition to shrinkage issue. In addition, one needs to determine the number 

of compounds that may be get away to have the shrinkage working; i.e. the size of 

the subsample that must be replicated, the number of replicated plates that must be 

obtained, and the effect of shrinkage on the estimation of the parameters, and thus, 

power; etc. Several parameters needs to be considered in order to give guidelines. 
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Finally, this thesis is a big step towards efficient detection of high-quality hits, 

and thus, 1 believe that statistics will help increasing the number of drugs reaching 

the market. 
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Appendix A : Glossary 

Agonist: A compound that binds to a receptor, enzyme, or protein and results in 

its activation. 

Antagonist: A compound that acts to inhibit a receptor, enzyme, binding interac­

tion, or cellular process. 

Assay: An experimentally controlled biochemieal or biologie system for detecting 

activity. 

Compound: Chemieal substance tested for desired molecular or cellular activity 

against the target in an assay or screen (e.g., clofoctol or anisomycin). 

Collection: A large library, set, file, deck, bank, dispensary of chemical com-

pounds. 

ControIs: A standard of comparison for screening results. Within plate controls are 

essential for identifying plate-to-plate variability and establishing assay background 

levels. Two types of controls are commonly used in early stages of HTS data analysis. 

Negative controls (referred to as background) represent the lowest possible measure­

ment for the assay. Positive controls depict the maximum attainable measurement 

[46]. For example, in a yeast assay where a low activity measurement occurs when 

cell growth is inhibited by an active compound and a high activity measurement 

occurs when it is not, the absence of any compound might be used as a positive 

control and the absence of yeast as a negative control. 

Counter Screen: A screen that tests the same compound library as in the primary 

screen, but against a related target in order to eliminate some hits seen in primary 
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screen. 

Hit: A compound identified as having a "significant" molecular or cellular activity. 

High-Throughput Screening (HTS): A process that allows the screening of sev­

eral thousand chemical compounds in a period of a few weeks. The major applica­

tions of HTS are drug discovery and understanding of protein structures or biological 

pathways. 

Lead: A hit validated by medicinal chemistry and structure-activity-relationship 

(SAR). A lead compound becomes a drug candidate for clinical trial. 

Primary Screen: An initial high-throughput screen in which a compound library 

is tested against a target of interest in order to identify hits. 

Reagent: A chemical or solution used to produce a desired chemical reaction (e.g., 

yeast or translation mix). 

Screen: A large-scale assay performed using HTS automation. 

Secondary Screen: A screen used for confirmation of initial hit compounds ob­

tained from the primary screen by repeating the same assay and retesting against 

the same target in a new run, often done in duplicate. 

Target: DNA, RNA, or protein that is involved in a disease process and is a suit able 

target for therapeutic compound development (e.g., rapamycin or protein synthesis) . 
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the mean of the measu,oments on the positive control. in an 
antagonÎst aSsay. 

Normalized percent inhibition, Anether normalization method using 
contro}s: 

NPl= ë,-~; 
c,-c 

where Xi is the raw measurement an the Jh compound, ë' + and ~­
are the mean. of the measuremenl$ on \lie positive and negative 
controls, ,espectively, in an antagoni.! ossay. 
Z $core. A simple and widety knowl;l norrnatiling rn~thod 
cale"laled as 

where XjÎs theraw measurement on the pt compourtd.-x and 

'6. 

on a secondary screen becau5e of a statistical artifact known as 'regression 
tow,ud the mean'S.6. Accordingly, marginal hitson the first run may fail to 
validate on the second run merely because of random measurement error, 
although the size of the statistkal artifact can be minirnized by improv­
ing measuremcnt precision (c.g .• by obtaining replicate measurements). 
Confirmed hitswith an established biologieal activityaccording to a struç­
ture-activity relatianship (SAR) series and medicinal dlernistry are tenned 
'leads' that can develop into drug candidates for clinical testing. 

$,'" !he.mean and \lie standard deviation,respectively, ofall 
measuremenls within the plate, 
B score-, The residU~; Irljpl 01 the m •• sur.ment fO( _ 1 and 
column j on Ihe Fi" plate Iloblamed by fitting a t_~ median 
polish and is delined below as 

r"," Y", - f",,, Y", -{p+ If.+ If..,> 

The ,esidual is defined as the difference betwee" Ihe observed 
,esult (Yijpl and !he li~ed value cYijp' defined as Ihe eslimated 
average of the plate (P,) + ~stim.ted systematie measuremenl 
offset fO( row i on plate p CR;.) + estimated systematic. 
measorement column offset 10( column i on plate p{Cjpll. 
FO( each plate p, the adjusted medlan absolute devlation (MAO." 
Is obtained Irom the ' .. '$ (MAO.". The.B $Coro i. ealcutaled as 
follows, 

r .. 
B$C0f8= M;O 

p 

Median absoMe devl"tlon (MAD),.A 'obus! estimate of spread of 
the ';inalues, 

median/.lr .. - medianl.r,,)ll 
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lnferential erroni cao be caused by 'noise' due to technkal or pro· 
cedural factors, including assay formats. pOOf pipette delivery, robotic 
failuTes and unintended differences in compound concentrations due to 
evaporation of solvent, cither from the compound collection or during 
the assay set-up. Ereors of unknown origin may aIso develop ovec the 
course of the entire sereen. Their adverse efteds can often he minirnized 
by quality control procedures, although stati~tical corrections may also 
be needed to mitigate the effects of uncontrolled variation (sec "HTS 

>. data processing" section), Othec factors that are Jess amenable to proce­
~ durai quality control but that can nonetheless add exlraneous variation 
g indude potency differences aewss compounds, and !oy5tematic acwss­

~ plate and within-platc cohunn or row biascs (c.g., cdge effccts). 
"5 Differences in variability can al50 creatt' inequalities among the corn­
t pounds. The measu red activity of Low variability compounds will almost 
~ always be dose to their truc levels. Thu:;, eyen whcn measured in singlet. 
c hits are more easily discovered and false hits more easily avoided with 
~ these compounds. By contf'dst. the measured activity levels ofhighly van­
~ able çompound!o maydiffer considerably from their true values. It is cor­
:J respondingly more diftkult to discover hits and to avoid false positives. 
~ Once technieal and procedural effiçjencies haye been optimized, 

-:-
~.' the only way to minimize variability further is to obtain estima tes of 
! activity levels by taking averages (e.g., mean, median) accoss replicate 
c.. meJsurement'5. Acthrity estimates based on repeated measurements are 
Ë less variable than estimates based on single measurements. Replicate 
~ measurements alse provide direct estima tes of variability, which can be 
~ used to estimate the probability of detecting true hits (power analysis), 

C) facilitating costlbenefit analyses. Moreover, replicates reduce the number 
~ of fcllse negatives without increasing the number of faIM: positives (sec 
~ "Use of replicates" section). 
:a We œvÎewcurrent data preprocessing and hit identification methods 
l. for primary screening. Wc discuss their U~ and limitations, problems 
! with the constant error assumption, the influence ofhit threshold on 
j false-positive and false-negative rates,and factors that cao degrade a3!t3y 
i sensitivity and specificity. We also discuss the advanrages of replicates 

g and make recommendations for the statistical analysis of HTS. 

'" @ HTS data processing 
.. fA~ well-defined and highly sensitive test system requires both quality 
~ontrol and aecurate measurements. Within-plate referenee con trois 

- are typically used for these purposes. Con trois help to identify plate-to­
ptate variability and establish assay background levels. Normalization of 
raw data removes systematie plate-to-plate variation, making measure­
meots comparable across plates. Systt:matie errors decrease the validity 
of results by either ovec- or underestimating truc values. These biases 
ean affect ail measurements equally or can depend on factors slleh as 
weil location, liquid dispensing and signal intensity. Although recent 
improvements in automation can minimize biJs, and thereby provide 
more reproduciblt:: results, c:quipment malfunctions can nonethele:.s 
introduce systematic errors, which must be corrected at the data pro­
cessing and anaJysis stages. 

Measured compound activity is il function of at least two factors: the 
eompound's truc activity and random error (see also "Use of replieates" 
section). SymbolicaUy, one simple additive model might be Yijl' = f.1,jp 1-

fijp where Yijp is the observed faw measurement obtained from the well 
located on row i and column j on the plh plate, Pijp is the 'true' activity 
and Fjjp is the effcct üf aIl sources of error. Assuming no bias. the Eljk'sare 
assumed to have zero mean and a specified probability distribution (e.g., 
normal). Another simple mode! is YÎJP = PÎ]p + Rip + Cil' + f.ijr where R 
and C represent plate-specifie row and column artifacts, respectively, and 
t'jJP represents remaining sources of ereor. (This latter mode! is assumed 
by the median poli!.h procedure described below.) Specifying models 

NATURE DIOTECI-INOLOGY VOLUME 24 NUMBER 2 FEBRUARY 2006 

REVIEW 

• o.œI f._ Q.3I UI , • ... üI tU ft • 

~\IIMI 

Figure 3 Titration series in a translation assay. These results trom an 
anisomycin titration in a Renfila luciferase translation assay show that 
variability differs across the various concentrations. A hit may be defined as 
any activity measurement that is at least three standard deviattons away trom 
the mean of the control measurements. This corresponds to a dual IOtensity 
value of 19,894 (doUed Bne). AI! 01 the measurements for concentrations 
~O. 78 are hits (ail of the values are below the dotted Une). There were six 
false positives, however. for the three lowest nonnul! concentrations. 

explicitly in this manner has the ad'~Jntage of suggesting how sensitivity 
and specificity gains can be achieved most cost effectively. 

Cunent practice. Because of the manner in which compound col­
lections arc plated, controls arc typÎcally placed contiguously on the 
outer eolumns (Fig. 2). Unfortunately, a systematic outer eolumn ettect 
affccts ail of the measurements on the plate becausc they are adjusted 
rdati\'\! 10 these con trois. For example, edge effeets may lower (or 
incre'lse) deteetion levels on average along the edge çompared to the 

Sc ... n 

'95 

Sono., 
900 

Figure 4 Presence of edge effects in a high·throughput sereen. Data Irom 
two different sereens (http://chembank.broad.harvard.edu/screenslwlth 
dupltcate measurements aeross plates are presented. Tukey's two-way 
median polish was applied to each plate to obtain estimates of row and 
column effects and of residuals (that is. compound measurements atter 
the polish procedure removed any row and column effectsl. For each plate, 
variances of the 16 row effects and of the 24 column effects were divtded by 
the varÎance of the 384 residuals. Box plots of these variance ratios Îllustrate 
the presence of a column effect for screen 295. 
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Figure 5 Replicates, false-positive and false-negative rates. In hypothesis testing a false-positlve rate (type 1 errar) is the probability of rejecting the nul! 
hypothesis (Ho) given that this hypothesis is true. The false-negative rate (type Il error) is the probability of failing ta reject the null hypothesis (Ho) given 
tha! the alternative hypothesis (Hl) is true. (a) Given a fixed threshold value, the false·negative and false-positive rates are represented by the blue and the 
orange areas under the curve. respectlvely. (b) Decreasing the threshold value results in an increase in the taise-positive rate and a decrease in the false­
negative rate. The opposite would be true lf the threshold value were increased. (c) The benefit 01 multiple measurements (replicatesl is illustrated. The use 
of replicates reduces data variabitity, which is reflected in the narrowed data distnbutlOns. Consequently, the 1alse-negative rate is minimized whereas the 
false-positive rate remains fixed. 

,! remainder of the pidte. Consequently, background correction will be 
-.c: lower (or higher) if contTols are located on this edge, causing com-

pound activities to appear higher (or lower) than their true states. 
~ Worse still, the edge etTects may be present in sorne plates but not others 
,~ (sec "Recommendations" section below). Cdl-based biological con troIs 
- are espedally problematic becausc of variable gw\.rth patterns'; œIl 
g' dumping or evapordtion within different arcas of the plate can lead 
~ to diffcTeut growth conditions and ultimately to position-related bias. 
li Regardless of cause, positional effeets increase the rate of faise positives 
~ and false negalives. 
! 'Percent of control' is one preprocessing method that attempts to 
::l correct for plate-tu-plate variability by normalizing compound mea-

Z
1iÎ surements relative to controls. Raw measurements for each compound, 
:g for example, can be divided by the average of within-plate conttols. 
~ 'Normalized percent inhibition' is another control-batoed method in 
® which the difference ben.\Teen the compound meaSlirement and the 

.. ~mean of the positive controls is dividcd br the difference between the 
~leans of the measurements on the positive and the negative controls. 

- The 'Z score' method exdudes control measurement'i a1together under 
the assumption that most compounds are inactive and can serve as 
controls; compound measurements ilre rescaled relative to within-plate 

Under the assumption of normaUy distributed enars. with mean J.I. 

and variance u2. the statîstîc 

.!,!!'.:.lli' 
o' 

is dislribuled as «r wilh /( -1' degrees 01 freedom wher. s2 
is the sample variance lor each of Ihe /( replie.led compound 
measurements. 

Foreach compound. consider,lhemodeh 

y,.x;P+s. 

wher. kR l ..... /(replic.' .. and il Îs .. sumed thal, 
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variation by subtracting the ave'~ge of the plate values and dividing the 
difference br the st.mdard deviatioll estimated from ail measurements 
of the plate (see Box 1). 

The three methods de3Crîbl:!d above implicitly assume a random error 
distribution tha.t is common to aIl measurements within a single plate, 
although without replicates this assumption cannot beverified directly. 
Positive and negative controls mayexhibitdifferencc:.s in variability, how­
ever, raising questions about the constant error assumption. Differences 
in variability among compounds are also Iikely inasmuch as inactive 
compound:; are similar to negative con troIs. and active compounds 
are similar ta positive controls8• For example, Figure 3 shows results 
fTom a tîtration serie!l of a protein tram-Iatilm assay in which vdTiability 

among replicates differs across the various concentrations. In general, 
nonconstant variances among the compounds of interest may be due tu 
differences in luminescence. reactivity or solubility. The serious errors 
of inference that can arise from incorrectly dssuming one distribution 
even when dl:!partures from il are minimal have been cogenrly describt..-d 

byTukey'. 
Another potential difficult}' is that these tluee methods rely on non­

TObust statistics. Medns and standard devidtions are greatly influenced 
by statistical outliers, which in the context of HTS are putative hits.ln 

A standard Bayesian choÎce for a prror distribution of the variances 
is an inverse gamma with unknown parameters a and b-. 

The a and b parameters are assumed to be constant across 

cr' _ G(a.b) .. x~lexp (-xl bl 
rlalb' 

compoundo and can be eslimaledfrom the data from ail 
compounds by litting an F-dislribution 10 th. sample 
variances s2, 
Wright and Simon'sla procedu,," fa. JlSlimating the a and b 

ab(s'l - F",~l," 

paramotets was useO 10 generate the data shown in fieu" 7. 
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Fia:ure 6 Verification of the assumptions of 
narma!!y distributed data with constant variance 
among compounds. Empirical values correspond 
to a function of the sample variances. Under 
the assumption of a constant variance among 
compounds, the overall variance might be 
estimated by the mean of the sample van an ces. 
[ach sample variance (obtained tram the 
duplicate measurements) is multiphed by (K - 1) 
and divided by the overall variance estimate and 

~ ~i~hr~li~!;:~U~~ f~~~~~~ ~~~~~~~~e~~~~~~~I~~ 
g Kolmogorov-Smirnov (KS) test of ditferences 
J: between the theoretical and the empirical 
~ distributions are shown. 
~ .-----------------
e 
~ 
~ 
8 e 
~ 

Scrvan 
205 

SCllIen 
900 

1 
1 
" 

~ statistical terms, the mean and the standard deviation have low break­
~ down points, in contras! to more rcsistant lociltion and scale estima~ 

t ;~::~;';~'o;:s~;a~i'r~~~e:el~:~:~~~;' i::~:a~/~~~:~::v~~~~en~~~l~~ 
c. data analy.!.is procedure. e The B scor~lO i!. a robust analog of the Z ~ore which uses an index 
" of dispersion that is more resistant to the presence of outliers and more 
~ robust to differences in the measurement crror distributions of the wm· 
~ pounds (Box 1). A two~waymcdian polish is first computed to account 
li for row and column effeets of the plate. The resulting œsiduab within 
l. each plate are then divided by their median absolu te deviation to stan­
f dardize for plate-to-plate variability. The B score has three advalltages: it 
::J is nonpararnetric (that 1S, makes minimal distributional assumptions), 
i it minimizes measurement bias due to positional effeets and is rcsistant 
~ 10 statistical ourliers. 

~ 
@ RecommendatioDs. ln the absence of (ompelling reasons to the 

~~contrary, wc prefer normalizing the data withollt using contrais. 
~Specifieally, we prefer the B score method, especiaUy if row or col­

- umn biases are sllspected. Evidence of these biases can be obtaincd 

Fieure 7 Verification of the assumption that the 
within-compound variances foHow an inverse 
gamma distribution. Empirical values correspond 
to a function of the !>ample variances. Under the 
assumption of normally distributed data. each 
sam pie vanance (obtained from the duplicate 
measurements) is multiplied by the estimated 
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by examining the \·ariabilityofthe row and column effects estimated 
by the medi.m polish procedure relative to the residual compolmd 
measurements. To illustrate. we reanalyzed two publidy available 
screening data sets with duplicate measurcments for a yeast peptide 
inhibition assay and a DNA synthesis assay (http://ehembank.broad. 
han'ard.edu/!.creens; sereen numbers 195 and 900, respectively). 
Figure 4 shows a strong and variable column cffeet for screen 295. 
Moreover, as we demonstrate in the "Use of replicates" section, the 
variability of li scores mal' more adequately retlect actual random 
error conditions. This in tum facilit<ttes the decision process because 
the compound rneasurements can be benchmarked against theoretical 
crror distributions. 

If œscarchers were to use the Z score mcthod, we would advise they 
use robust versions to minimize the undesirable influence of outlier 
compounds (that is, 'hits'). For example. in a 'jackknife' Z score method, 
x and Sx (third equation in Box 1) are calculated excluding the com­

pound of interest (x value in the equation); acrordingly, Sx differs for 
caro individual compound. Altt:rnatively. in a 'robust' Z score method, 
X and sxare replaced by more robust measures (e.g .• median and median 
absolu te deviation. respectively). 

BSCOfe Zscora 

a and b parameters of the inverse gamma 
distribution and the result should follow an F 
distribution with 1 and 2a degrees of freedom 
(Box 2). Results of the Kolmogorov-Smirnov (KS) 
test of differences between the theoretical and 
the empirical distributions are shown. 

Sereen 
900 i: ~ 

~ / "Ir!'l,jr!r.<!1 :,,!/~ ,,1! ' ci t (KS: P",0.:22) ci (Ks·p",On) 

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Ouanllle Quantlle 
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One sample t-test: With K replicates, for sach compound a Sludent 
Is!atislie is 

t- x- cons 
--;:{flK 

where i and $ are the arithmetic mean and the standard deviation, 
respecti<ely, of Ihe K replieele maasuroments, cons is a constant 
Iypically equal to lem. tfollows a t-distribution w~h K -1 degrees 
ollr..pom. 
'Modlfied' Olle-sampi. t-test: Aller estimation of the a and b 
paramelers by fitUng an inverse gamma distribution to the set 
of variances across replieates for each compound (_ Box 2J, a 
variation 01 the pre.ious standard t-test ls: 

wlIere 

- ii-cons 
1" s'lîiK 

S',,:(K - Us, + 2a(abl-1 

(K-l) + 2. 

whe,e ië and SZ are the arilhmetlc mean and tho variance, 
respech"ely, of the K replieate maasurements. The degrees 01 
freedom for the test are .. rIOW K -1 ... 2a, an incr.ase of 20 over 
Ihe standard t-test. 

~ Controls, if necessary for a specifie assay. should be used c..1.refully. 
li IdeaUy. ther should be loçated randomLy within plates, thereby rnini­
~ rnizing row or column biases. eUTrent compound collection formats, 
! however, do not lend themselves to r.mdomization. Potential positional 
:::J effeets can nonetheless be minimized byvarying the location of controIs 
i within plates in a systematic manner. One way consists of alternating 
~ weil locations for the positive and negative controls along the av-d.il­
~ able edges of the plate (Fig. 2). Thus. positive and negative controls 
@ will appear equally in each row and in each column and Olay minimize 

.. ~dge-related bias. For example, in a 96-well plate, an order effect may 
~~rodllce ditferent biases among the different columns. The current prac­

- tice consisting of eight positive controls on the first column and four 
negative controls on the last column (Fig. 2a) i5 less efficient than the 
alternating method (Fig. 2b). 

Tf oontrols are used to normalize compound intensities, it is important 
to obtain as accu rate and precise meusu rements as possible: any inaccura­
des and r.mdom measurement errors williower the accuraq and precision 
of the normalized values through error propagation. One way to improve 
precision is to obtain a relatively large number of oontrol measurements 
(sec the "Use of repliçates: recommendations" section). Another woly is to 
delete outliers among the controls before normalizing. rdentifying mea­
surernèllt outliers among oontrols is more stnlÎghtforward than among the 
compounds of inter~1 because the control measurements are replicates of 
the same measurement process and should have similar values. 

Stalislieal inferenee and hit idenlifiealion Ihresholds 
Regardless of library design strategy trational or oombinatorial), statisti­
cal methods offer the means to characterize qualityof screens and ofhits 
within a probabilistic frame\\I'ork. Quality can be defined as the ability 
of the screening process to accurately identify compounds that can be 
developed into potentialleadsll . A statistical approaeh to these issues 
has a number of advantages, including objectivity. reproducibility and 
ease of comparison across screens. 
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i 2 can be viewed as a waighted a<erage of the observed 
compound·specifie yariance SZ and an estimate (abr' of 
the 'typical' e"or variance undartylng Ihe errot distribution. 
of different compounds. The waigh!. are (K - Il and 2a, 
re.pectively. A ve1)llarge value of a is equivalent to assuming 
a comrnon variance across ait cornpouncfs and to simpl)' 
àveraging ail of the observed yariances, thereby y;rtuilly ignoring 
tompound-spec~ic variances. Smaller values of a imply lhat lhe 
Underlying yariances.across compound. are heterogenei>us and 
tha! the~observed compound-specifie variances be'trusted' more. 
ln Fllur. 7, the .alues 01 a for screens 295 and 900 weil 2.84 
and 3.64, respectively lor the B scores, and 1.11 and 4.12. 
respectively, for the Z scores. Accordingl~,!h. eslima!es ware 
t:2.84 and 1 :3.64 amalgams 01 the COll)pound-speelfie 1Ind tne 
'lyplcal' "'riance. fOI the Il scores, and sim ilarly 1: l, II and 
1:4.12 for the Z~ores. 

For an unrepliealad compound, sa that K - 1 • O,.$~iS simpty 
the Iypieal value, .slimated by the quantlly (abr' with 2a 
degrees of freedom (o.g., ~6 d.l. for the 8 scores),which is a 
compromise between zero dogr.es of freedom associilted with 
single me.surement. and 'Rumber 01 compound. - l' degrees 
QI freedom (Ihal is, 2,687 and 3,839 degree.~01 freedom, 
respectÎvely for sc,een 295 and 9l)Ol associated with • common 
error modal. 

Once data have becn preproccssed with quality control checks and 
normalization procedures, the next critical step is to decide which 
compounds should be processed in a secondary sereen. Currently, 
this inferential process is not well defined statistically: procedures for 
hit identification are based on informaI 'rules of thumb' rather than 
on probabilîstic judgments of error rates. In academic settings and in 
smaller companies, informai rules may aL'io be based on particular labo­
ratory constraints such as capacity limitations. Although it is generally 
appreciated that lowering the hit-threshold increases ftllse-positive rates 
while lowering false-ncgative rates, statistical models cao better quantify 
the balance ben.veen specificity and 5ensitivity by assigning probabilities 
to the two types of inf~rential error3 (Fig. 5). 

Current practice. One WJy to identify hits is ra plot rawor preprocessed 
measurements against compound identîty (lhat is. plot each activity 
measurcrnent on the y-axis and the weU identity 1.2 •... 96 on the x-axis) 
for each plate separately. Compounds whose measured activity devi­
ates from the bulk of the activity measurements are identified as hits. 
Although this subjective 'eyeball' method may be adequate for identi­
fying highly active compounds, potentially important compolmds of 
low or intermediate potency are difficult to identify reliably and may 
be missed. 

Hits can a1so be identified as a percentage of the compounds that 
generate the highest measured activity (e.g., top 1 %4). From an optimi­
zation perspective. this method is arbitrary and suffers from the absence 
of a probability model. Without prior consideration of the true number 
of active compounds, one cannot optimize the percentage of primary 
sereen eompounds to be screened a second time. rf the number ofidenti­
tied potential hits is dictated by the capacity for secondary screening, 
specificity and sensitivity mayvary widely across screens. Conseq uently, 
the quality of the results from sereen to sereen within a laboratory will 
depend on the atent to which threshold choice reflects the actual num­
ber of true active compounds in the various screens. 
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Compounds whose activityexceeds a fixed 'percent of oontwl' thresh­
olcl may also be considered as hits. For example, in an agonist assay any 
compound with an activity measurement that is at least twke the average 
of the measurements on the negative oontrols is deemed a hit. 

Alternatively. the hit threshold may be defined as a number of 
standard deviations (typically 3) beyond the mean of the raw or pro­
œssed dala. However, hits (outliers) may cause the distribution of the 
çompound mea!lurements to be skewed. Such a phenomenon may be 

>- observed when performing a fluorescent-based assay and when a large f nwnber of compounds in the wllection are fluorescent. Statistically, 
c: imagine the observations as arising from a mixture of two populations 
"fi with different means (e.g., nonactive compound measurements centered 
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around one! mean and active- compound measurements around a differ­
ent mean-likely with different standard deviations also). 

A5 with the pre::processing rnethods described earlier. the threshold 
method .. described above assume a common magnitude of random erHlr 
for aU measurements and relyon nonrobust statistics, which may lead to 
inferential errors in hit detection. Hit detection depends jointly on com­
pOlmd concentration. potenq and variability. Potencywill diffcr across 
compound.!> within a screen, as will actuaI conœntratÎons due to llDcon­
tHllled factors such as solvent evaporation and compound solubility. 
The easiest hits to detect will be compounds with high relative potencies 
and concentrations and lowvariability (Fig. 3). Singlet-measurement 
faise positives for the three lowest nonnuU concentrations were climi­
nated when activitymeasurements were based on rne::ans across the eight 
replicate measurements per concentration. Methods that estimate ran­
dom crror without assuming constant error are described in "Use of 
replialtes: re(:ommendations" below. 

~ Recommendations. One view about f.llse negatives is that little can be 
~ donc about them and so it is best to adopt a forward-looking perspec­
! tive and to pursue the hits one does have. Wc contend, however, that it 
i is important to quantify potential false-negative rates be::fore deciding 
z whether or not theyare negligible in a particular sereen. UO.l % of a mil-
8 lion compounds to be:: screened are truly active, a low false-negative rate 
!? ,... of 2% represents 20 potential candidates lost. With !>ynthetic compound 
® collections, the potentialloss may be lessened because they are made 

"fA.~rom a set nwnber of basic scaffolds. Thus. in practice. mi3sing an active 
~ompound may Ilot matter if reLated cornpounds are detected. \Vhen 

- screening natllral products or extracts, however, truly unique chernieal 
entities will go undetected. Although it is difficult to assign a monetary 
value to thcse lost candidates, decisions to not foUow-up will typically 
not be revisited and as such represent irretrievable finandallosses. 

Verifying data handling assumptions and contrastingvarious approaches 
in formaI methodological studies are important steps in determining the 
most cost-effective pmcedures. Additivity assurnptions. for exarnple. can 
readily be verified from il simple graphical procedure once the data have 
been preproœssed bythe median polish proœdurel2. This sarne procedllre 
provides il sim pIe method for determ ining the appropriate data transfor­
mation {e.g..log), which will produce additive mcasurements. 
The~ various steps are neœ!ll'ilry for quantifying manyaspect!! of the 

decision-making process in HTS. Currently, many important go/no-go 
decisions are based on perœived neœ!!sity (e.g., affordability, capacity), 
subjective perception and past experience. These considerations must 
enter into any decision proccss. Statistical modeling of the type wc are 
encouraging enhanœs rather than replaces this process. Although we 
believe that currently practiced methods are often insufficiently sensi­
tive to detect hits that arise from potentially important but marginaIly 
active Ç{)mpounds, attempts to improve sensitivity must be balanced 
against specificity and demonstrate cost cffectivencss. One way to quan­
tify this balance Is to obtain estima tes of random error from replicate 
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measurements and to conduet statistical power analysis. Judicious use of 
replicatc::s will improve sensitivity to minimally active but pharmaoologi­
cally important compounds that go undetected otherwise. 

Use of replicales 
Random error reflècts inevitable uncertainties in ail sdentific measure­
ments. This noise unpredictably raises or lowers me::asurements relative 
tu their true values. Potential sourœsof random error indude biol()gical, 
instrument and human-related influences. Random error accumulates 
as a collection of several minimal differences across assays. such as volt­
age variation, liquid dispensing differences. as weil as reagent or sample 
preparation and handling ll . Compound-related problems involving 
chemical properties and activity (e.g., stability. solubility •. lUtofluore!.­
cence and degradation) also affect measurement precision. 

Precision can be increased by obtaining replicates and byminimizing 
extrane(lUS variation due to sample handling and processing. Random 
error estima tes, whkh are central to statistical inference, are typicaUy 
obtained from replicate measurements of the same attribute or process. 
Having empirical estirnates of variability allows one to use stJtistical 
power analysis to control the false-negative rate whjle maintaining a 
tïxèd fabe-positive rate (Fig. 5 ). We anticipate !hat obtaining replicates 
for at least some compounds in prirnary screens will become more 
routine. 

Current practice. Compounds În primary screens are typicaUy mea­
sured only once becalLsc of time and cost issues, although the use of 
duplicate measurements has been recognized for secondary screens 
and is beginning to be recomme::nded for primary screens (http://iccb. 
rned.harvard.edu/saeeninglguidelines.htm). Absent replicates, strong 
assumptions must be made 10 estimate random error. For example. 
Buxser and VroegopD describe an approach in which the variability 
among replicated control measurements is llsed to estimate variability 
of the unreplicated compound rne3Surements. Altematively. random 
error ean be estimated from the variability across single measurements 
of ail compounds on a plate, assuming that ail compounds are inactive 
and that they ail have the same random error; early approaches to gene 
expression microarray analysis adopted a similar approach for estimat­
ing error from single measuremenls14. Single mcasurement methods 
have ultimatdy proven inadequate1s, however, and it is 110W standard 
practke to obtain at least three replialtes per rneasurement in recog­
nition that replicates offer advantages thdt outweigh short-term cost 
considerations16,17. 

Ideal replicates arc those measurements that are repeated for thesame 
compOlllld under the same experimental conditions. For this reason 
and be(:ause they underestimate total random errar, multiple reread­
ings of the same plate are not recommended as replicates, except as 
a check for possible extraneous variation due to the reading process 
itsclf. Similarly, structurally similar compounds (analogs) are not rec­
ommended ilS replicates, despite the facr that they may show compa­
rable activity. Nor !!hould measurements of the same compounds under 
different experimental drcumstances (e.g., primary versus secondary 
sereen) be used as replicates because they may be influenced by dif­
ferent extraneous factors (e.g., differenœs among reagents, batdes of 
compounds and time effects). Finally, pO(Jling compounds in various 
combinations within indi\'idual wells offers timesaving advantages but 
Cclnnüt be considered replication in the usual sense. For example. false 
positives are more likely to arise when wcakly interacting compounds 
are pooled in the saille weIl or when true active compounds within a 
row increase. Br wntra,')1. t'aIse negatives are less common in compound 
pooling, but may arise if pooled cornpounds have opposite biological 
eft"ects of similar size2• 
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Recommendations. Rl!pliC4te~ offer the twin advantages of greater pre­
CÎ1.ion for activity measurements and the means to estimate variability 
assodated with the measurements. Cümpared with the uncertainty of 
a single measurement, the imprecision (standard error) of a mean is 
reduœdby 

100 x (J - JI-fn) % 

where n refeTs to the number of replicates. Having!Wo replicates reduces 
Imprecision br 29%. having three replicates redu(:es it by a further 13% 
while having four replicates reduœs it an additional 8% {that is, to 
50% of the Imprecision associated with il single measurernent). Thus, 
replicates make minimally and moderately active çompounds casier 

to deteet. 
Replicates rnay appear in wells on the same or on differenr plates. 

Althoughwithin-plate variation (due, for example, to plate composition 
and handling) will typically be smaller, across-plate replieation is pre-1 è ferred because it represents a more realistic estimate of variation neces-

~ sary for generalizing results beyond the immediate sample. In general, it 

j
~ is important to obtain estÎmates of total variabilityof any measurement 

process, what has been called 'genuine replication'18. 
We have argued thdt much of current practiçe rnJkes strong assump~ i tions about the data (e.g., same magnitude of random error associated 

=. with ail measurements). which if incorrect can inerease both the false­
~ positive and the fa1se~negative rates. Without large-scale studies with 
e replicated measurements, these assumptions and the advantages of more 
o complex statistical modeling approaches are difficuLt to verify. Moreover, 

~ it is unlikely that one approach will he optimal for aH screens. These 
~ caveats norwithstanding. minimal replication can be used to examine 
:a the re'clsonableness of eurrent assumptions and to potentially irnprove 
~ overall sereen sensitivity and specificity. 
! Wc illustrate the importance of preprocessing. the need to check 
~ ilSSlLfllptÎons regarding error di.!.tributiom, and the other options available 
z when assumptions are not met, by performing additional analyses on the 
co Figure" data. If the errors associated with the nonnalized compound 

2
0 
''" measurernents from these screens were llormally distributed with COll-
@ stant variance across compolmds, the sample variances based on the 

.~duplicate measurement!t would follow a X~ (l) distribution (Box 2). 
WFigure 6 illustrJtes the lack of fit, however, bet\veen the theoretical and 

- the observed variance distributions for these data, indicating that the 
normdlity/constant variance combined as. .. umption 1S not tenable after 
preprocessing by either the B score or the Z score procedures. 

Alternatively, one can assume that the efror assoçiated with compound 
measurements is normally distributed but with unequal variances dis­
tributed across the compounds according to an inverse gamma distri~ 
bution (BOI 2). An empirica1 Bayes approach using this mode! has been 
used successfully for analysis of microarray data \\-;th minimal replica­
tion I5,19,1O. Figure 7 shows that the error variances of the data sets from 

Figure 6 fit an inverse gamma distribution for both data sets for the B 
scores and for one of the data sets for the Z scores. An important Jdvan­
tage of this variance distribution pattern is that standard statistical tests 
of compound aetivitycan be constructed using a weighted average of the 
compound-specifie v-.uiances estimated from replicated measurements 
and the overall estimate ohtained from the variance distribution; when 
onlya random subsample of the compounds has been replicated, the 
latter variance estimate can be applied to compounds mea'iured only 
in singlet from the same sereen (Box 3). ln eithcr case, the more similar 
the compound~specific vurianœs are to each other, the more reliable the 
overaJl variance estimate will be. This in turn will provide more degrees of 
freedom and more power for the statistical tests. Figure 7 also mustrates 
the '''.d.lue of correcting for row and column effects. In the presence of 
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eolumn or row biases (screen 295), B scores more dosely approximated 

the theoretieal invt:rse gamma distribution than the corresponding Z 
scores. although in thdr absence (sereen 900) the B score method pro­
d llced a slightly poorer fit. 

A'i more extensively replicated data sets become available, otherdata­
analytic approaches can be examined and optimized. For example. 
although we found no evidence of a relationship between signal inten~ 
siry and replicate variability in the two data sets wc examined. such a 
relationship has been llsed in the microarray context in combination 
with the inverse gamma variance distributiun assumption21 ; this type 
of relationship may provide additional usetul information for estimat~ 
ing random error associated with replicate and singlet measurements. 
Similarly, if various classes of compounds are thought to differ in terms 

of variability. random subsets of the various classes may produce more 
accurate estimates of variability when examined separately. Another 
approach that may show promise is to model the distribution of activity 
measurements as a mixture of two distributions (inactive and active 
C()mpounds)13. In short, the principle of 'borrowing strength' from 
information available from the data in total can providc uscful infor­
mation that would normally be ohtained only from large nLlmbers of 
replicates. 

Conclusions 
Statistics currently serve a limited role in HTS. One use is to correlate 
chemical properties with activity h:vds at the sereen developmentstage 
to provide information for compound selection and for property modi~ 
fication to enhancc chemicaJ activity22.2\ Once the sereen has been run, 

data mining !toftware packages are increa!Jingly being used t'Or quality 
control. Notwithstanding these advances in data analysis, HTS continues 
to lack lmiversal procedures for processing and extracting knowledge 
from screens24. Wc discuss four broad conclusions below that we believe 
are wammted at this carly stage of development for the statistical rnode1~ 
ing of HTS data. 

Replicate measuremcnts provide nurnerous advantages for check­
ing measurement assumptions and improving hit/non-hit decisions. 
MmeQver, quantification and characterization of error variances 
obtained from replicate measurements allow specificity and sensitivity 
optîmization ofindividual screens. Given fixed costs, standard .!ttatistical 
power analysis can be used to reach cost~effective decisions regarding 
the numbt:r of plates within a screen to ot: replicated and the nLlmber 
of replicates. 

StatisticaUy adjusting measurements for row and column effccts 
through procedures sllch as the median polish offers gains in inferenee 
and should be uscd routinely. 

The assllmption of a common error variance across compounds 
implicit to many CUfrent hit identification approaches is incorrect 
at least some of the time. At a minimum, the assumption should be 
routinely verified by replicating sorne of the compounds and checked 
against theoretically derived distributions. When the assumption of 
constant error is un tenable, the empirical Bayes approadI to estimating 
random erTOr offers an attractive alternative. It provides an amalgam 
of the specifie withinwcompound variations (if measured in replicate) 
and the error estimate derived from the distribution of the within­
compound variances, with the latter alone providing the 'best' estimate 
when a partieular compOlllld has not been replicated. This combina­
tion (1f sources of information is a compromise between uSlng only the 

within-compound (and thus highly variable) errer estimates and the 
average but unrealistic (and th us falsely precise) pooled error estimate 
that would he appropriate under a common error rnodel. 

The limitations of standafd stati.!.tical approaœes with minimal rep~ 
lication can be partially offset by 'borrowing strength' from the large 
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number of available measurements (compounds). We have provided 
one example of this prindple by using the distribution of sample error 
variances to obtain error estimates for individual compounds. 

Advances in statistical modeling of HTS data will provide objective 
benchmarks against which to compare experîmental resu1ts and as a con­
sequence help to standardize the hit identification proccss. By improving 
measurement quality and byproviding quantifiable false-positivdfalse­
negative ratios. statisticaJ modeling cao improve the efficacy of nonsta-

~ ti5tical considerations for lead development (such as counter screens to 
~ identify nonspecitic interfert:nce). In this manner. the often-citt:d advicc 
g to identify faise leads carly and quickly can bc strengthencd while mini­
.c mizing potentially costly false negatives. j .., 
f 
~ 
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