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PREFACE

Contributions of Authors

This thesis is the beginning of an important collaboration between statisticians
and life scientists working in high-throughput screening (HTS) of chemical com-
pounds. When Dr. Nadon agreed to become my supervisor, he introduced me to Dr.
Jerry Pelletier and Dr. David Thomas, professors in the Department of Biochem-
istry. They, at their turn, introduced me to the HTS process and their respective
laboratories. Two years ago, my supervisors, Dr. Hanley, Dr. Nadon, and I were
just new to this field.

When I started the literature review, I realized the urgent need for statisticians
to get involved in this field. Although a large amount of data is generated daily by
the new automated technology, only a few basic statistical methods are currently
used. Dr. Nadon and I determined statistical questions that could be answered in
this research project and designed a first small measurement experiment. I spent
days in the HTS laboratory, in order to observe the entire process, ask questions to
the technicians, and thus, get a better understanding of the origins of the data. I did
the statistical analysis of the data, and I wrote the first review paper. During this
work, looking to develop new methods, I came across another research question of
statistical interest, which became the topic of the second paper. I was also respon-
sible for designing the simulation study, and for programming the diverse methods.

Dr. Nadon had responsibility for day to day supervision. He offered his expertise

in microarrays and suggested some references to me. He gave me advice with respect
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to the research questions and the data analysis. Dr. Hanley offered his statistical
expertise by giving me recommendations with regard to the statistical methods and
the simulation study. He helped me to determine the objectives of the thesis and
with the policies related to the department. I also wrote the two other papers and
the thesis. Both Dr. Hanley and Dr. Nadon offered support during the editing of

each of the three manuscripts and the thesis.

Statement of Originality

The doctoral thesis consists of three manuscripts. In the first manuscript, I
critically examine the current practice in HTS data analysis, and provide statistical
recommendations. To my knowledge, it is the first statistical review in that field. The
second manuscript is aimed at a statistical audience. It evaluates the performance
of various robust methods for handling replicates in two-way layouts. I compared
software and asked authorities in that field, but there was no consensus on which
methods should be used. Finally, the third manuscript is an application of the statis-
tical methods to HTS data from both real screens and in-house experiments. Similar
methods have been used in microarrays, but I adapted them in order to minimize

potential biases specific to HTS data.

Notes to the reader
Since this work is the result of multi-disciplinary collaborations, I have included
sufficient statistical material so that most of the thesis can be understood by statis-

ticians, epidemiologists and life scientists. In addition, I described the HTS process,
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covered some background material in the introduction, and defined technical terms
in the glossary. The thesis does not included a separate literature review, since it is
the essence of the first manuscript. Finally, I used ‘we’ in the writing of the three

manuscript chapters, and ‘I’ throughout the other chapters.
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ABSTRACT

High-throughput Screening (HTS) is a relatively new process which allows sev-
eral thousand chemical compounds to be tested rapidly in order to identify their
potential as drug candidates. Despite increasing numbers of promising candidates,
however, the numbers of new compounds that ultimately reach the market have de-
clined. One way to improve upon this situation is to develop efficient and accurate
data processing and statistical testing methods tailored for HT'S. Human, biological
or mechanical errors may develop across the several days it takes to run the entire
screen and cause unwanted variation or “noise”. Consequently, HTS data need to
be preprocessed in order to reduce the effect of systematic errors. Robust statisti-
cal methods for outlier detection can then be applied to identify the most promising
compounds. Current practice typically uses only single measurements, which negates
the use of standard statistical methods and forces scientists to rely on strong untested
assumptions and on arbitrary choices of significance thresholds.

The broad objectives of this research are to develop and evaluate robust and re-
liable statistical methods for both data preprocessing and statistical inference. This
thesis is divided into three papers. The first manuscript is a critical review of the
current practices in HTS data analysis. It includes several recommendations for im-
proving sensitivity and specificity of screens. The second manuscript compares the
performance of different robust preprocessing methods applied to replicated two-way

data with respect to detection of outlying cells. The third manuscript evaluates
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some of the statistical methods described in the first manuscript with respect to

their performance when applied to several empirical data sets.
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ABREGE

Le criblage & haut débit est un nouveau processus permettant de tester plusieurs
milliers de composés chimiques rapidement dans le but d’identifier des candidats po-
tentiels pour le développement de nouveaux médicaments. Malgré le nombre crois-
sant de candidats prometteurs, le nombre de nouveaux composés qui atteignent le
marché & toutefois diminué. Une fagon d’amélioré cette situation est de développer
des méthodes efficaces et précises pour le traitement de ces données ainsi que pour
I'inférence statistique. Des erreurs humaines, biologiques et mécaniques peuvent
survenir durant les semaines requises pour procéder a un dépistage complet et ainsi
causer du “bruit”, soit de la variation non désirée. D’ol l'importance de traiter
les données afin de réduire 'effet d’erreurs systématiques. Des méthodes robustes
pour la détection de valeurs aberrantes peuvent ensuite étre utilisées pour identi-
fier les composés les plus prometteurs. En pratique, une seule mesure est obtenue
pour chaque composé et cette absence de mesures répliquées empéche I'utilisation de
méthodes statistiques habituelles et oblige les scientifiques a baser leur analyses sur
de fortes hypotheses non vérifiées et sur des choix arbitraires de seuils de significa-
tion.

Les objectifs principaux de cette recherche consistent en le développement et
I’évaluation de méthodes statistiques robustes et fiables pour le traitement des données
et 'inférence statistique. Cette theése est divisée en trois articles. Le premier

manuscrit est une revue critique des pratiques courantes pour I'analyse de données
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provenant de criblage & haut débit de composés chimiques. Plusieurs recommanda-
tions quant & 'amélioration de la sensitivité et de la spécificité des dépistages sont
également incluses. Dans le deuxi®me manuscrit, je compare la performance de di-
verses méthodes robustes pour le traitement de tableaux de données répliquées lors de
la détection de cellules aberrantes. Dans le troisiéme manuscrit, j'évalue différentes
méthodes statistiques, décrites dans le premier article, lorsque appliquées a plusieurs

jeux de données empiriques.
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CHAPTER 1
Introduction

1.1 Rationale

High-throughput screening (HTS) is a large-scale process that is the first
critical step in drug discovery. A collection of chemical compounds is tested
against a specified therapeutic target in order to identify potential drug candidates
rapidly and accurately. The scientific challenge is to test a very large number of com-
pounds against a number of targets while minimizing the research costs. This process
was made possible in part by the recent integration of new automated technology
that works with very small volumes.

In a single experimental run, over a period of weeks, thousands of compounds
are tested in hundreds of plates, each containing a two-way array of wells. Typically,
80 different compounds are stored on a single 96-well plate that contains 8 rows and
12 columns. The first and the last columns are left empty for future use of controls.
Raw data have no units, since activity values, generally obtained by luminescence
or fluorescence, are measured relative to each other and depend on the technology
used, the assay format, etc.

The purpose in analyzing the large amount of data points generated daily is
to find the small unknown proportion (maybe 1%) of “outliers”, i.e. chemical com-

pounds with an extreme activity level (labeled “hits”) that may later be developed



into drugs. The focus on outliers is for the opposite purpose than that is in tradi-
tional analyses up to now. Traditionally, outliers are undesirable, since they arise
from errors in measurements and thus, are usually removed before performing any
statistical analysis. In HTS, the outliers (hits) are of interest by themselves and
statistical analyses are performed specifically to identify them and retain them for
further testing and commercial potential. The non-outliers are discarded.

Paradoxically to the increasing number of tested compounds, only a single mea-
surement of each compound’s activity is obtained in an initial primary screen.
From a statistical point of view, each tested compound may be thought of as an
individual experiment with a n = 1. Despite the improvement of the HTS process
and the reduction of the research cost, fewer new drugs enter the market. Part of
this may be because of the considerable noise, since the activity of each compound is
determined on the basis of » = 1 value. One obvious improvement would be through
replication and averaging. The absence of replicate measurements is mostly due to
cost and time issues. Screeners need to be convinced of the benefit of replicates.
Without replicates, the use of standard statistical methods is negated and scientists
are forced to rely on strong untested assumptions. Replicates are also needed to
verify assumptions of current methods and to suggest data analysis strategies when
assumptions are not met.

In statistical analyses, compounds are typically assumed to have been randomly
located in the wells of a plate, but the presence of row, column or well effects have
sometimes been observed. For example, edge effects may be caused by evaporation

at the edges and a better focus when reading the middle wells of a plate. Plates



containing more wells of smaller size (e.g. 16 rows x 24 columns = 384 wells) are
starting to be used, but as the volume decreases, the effect of potential sources of
error increases.

In order to introduce some of the issues, we present data from real screens
performed on 384-well plates. Figure 1-1 shows the distributions of the raw data from
two publicly-available screens with duplicate measurements (http://chembank.broad.
harvard.edu/screens) for a yeast peptide inhibition assay (top half of figure) and a
DNA synthesis assay (bottom half of figure). Although the distribution of data from
the second screen is closer to Gaussian, the first one has three modes. How can
we analyze such data? Which compounds may be deemed as hits? Should we first
transform the data?

For the same two datasets, with the values now plotted in well order (rowlcolumnl,
..., rowl-column24, row2-columnl, ..., row2-column24, ..., rowl6-columnl, ..., row16-
column?24), Figure 1-2 shows two types of variation. First, since the points belonging
to a same plate are linked, from one curve to another one can observe plate-to-plate
variability. In the yeast peptide inhibition assay, we notice that half of the plates
have a higher signal in comparison to the other half for both duplicate measurements.
I do not have enough information on the provenance of these data to explain why
the two streams don’t overlap, but this shift can be caused by several reasons such
as a difference in environmental conditions, if the screen have been performed in two
different days, or by the use of different batches of reagents and solutions. Second,
each curve shows a similar ‘zigzag’ pattern which corresponds to within plate vari-

ability, more specifically to column effects, since higher values correspond to the first
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Figure 1-1: Histograms of raw data for two publicy-available screens (see text for
details).

columns and lower values to the last columns. In addition, again in the yeast peptide
inhibition assay, for the plates with higher signal, an important effect is observed on

the last row since these wells have lower signal that all the others (right bottom



of the figure). This may have been caused by some procedural factor such as poor

pipetting delivery or evaporation.
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In the HTS literature, the possibility of positional effects that may occur in a
real screen has never been fully assessed. Are the measurement errors systematic or
random? Can we control for them in the laboratory process? Or must we do so at the
data-analysis stage, and to what extent can we? I started my research by designing a
small measurement experiment. The idea was simple: to test the same compound in
each well in several plates, i.e. to repeat the exact same experiment everywhere. To
minimize biases that may occur from procedural and technical factors, we randomized
the plate processing order at every step of the protocol. Needless to say, this was very
laborious for the life scientists! The observed variation in the values from different
wells on the same and on different plates, even though the values are generated by the
same compound, allowed me to observe the presence of errors in the measurements.

After a few days spent in the laboratory proceeding to the experiment, I realized
that there are several potential sources of errors that may create noise. Unfortunately,
some screeners tend to believe that results from automated technology do not contain
any distortions. Robots are obviously faster and more reliable than manual work by
humans; however, they are not infallible and may introduce their own biases (e.g.
mechanical failures, differences in plate manufacturing etc.). Sources of errors may
be biological, human and mechanical, and most of the time are of unknown origin,
so they cannot be controlled during the HTS process itself. Thus, preprocessing
of the raw data is required before any inference is done. By preprocessing I mean
an efficient “normalization” of the data in order to reduce the effects of systematic

errors.



At the same time, I started to consult the literature and ask screeners about
the methods they currently use to analyze HTS data. I first noticed a lack of pre-
processing methods. Most of the time, only plate-to-plate variation was corrected
for by using biological controls. Because compounds are placed in the middle wells
of a plate, controls have to be placed on the edges and thus, they may introduce
their own biases. Brideau et al. [2] have recently introduced a method to remove
row and column biases that do not use the controls, but it is not yet integrated into
practice. As for inference, methods vary among laboratories; moreover, the choice
of a significance threshold is totally arbitrary. When I heard comments like “don’t
worry about false positives unless the rate is very high”; “strive for highest possible
quality and don’t worry too much about the one that got away”; and “adjust the
hit threshold until you have the number of hits you want”, I realized that screeners
are unaware of the importance of false positives and false negatives, and of how they
can be affected by the methods used for preprocessing and by the criteria used for
decision making.

The statistical community has also been slow to respond to the new inferential
challenges posed by HT'S data. Tukey’s median polish [3], developed almost 30 years
ago, would seem to be a natural tool. However, it was developed as an informal and
general tool for analyzing data in a two-way layout. It has been used for several
different purposes. In some instances, the focus is on obtaining an additive model
for the data, with the necessary examination of outliers as a secondary/subordinate
objective. Sometimes the focus is on interaction patterns. In some applications, the

primary focus has been on detecting outliers as items of scientific interest, rather than



on identifying those of a nuisance nature. Even then, the median polish method did
not allow for the estimate of the size of the outliers to be accompanied by standard
errors or other such measures of statistical stability. Part of this lack of a precision
measure may have stemmed from the fact that median polish has typically been
applied to data with just one value per cell. Moreover, median polish was developed
as an “exploratory data analysis” (EDA) tool, and it was not envisaged that it could
be automated for HT'S data. The refinement of methods for outlier detection seems
to have been neglected for the next 25 years. It is only just recently that Terbeck
and Davies [4, 5] have developed new robust methods to detect outliers in two-way
data. However, there has been no formal evaluation of these newer methods and no
comparisons with the earlier methods for outlier detection.

Moreover, no one has investigated how best to extend those older and newer
methods to two-way data with replicates. Both the median polish and the more
recent statistical methods are designed to work with a single observation per cell. 1
could not find any guidelines on how replicates should be analyzed. Consequently,
there is an important need for new efficient statistical tools that may handle replicate

measurements in order to improve HTS data analysis.

1.2 Objectives
The broad objectives of my thesis are to develop and evaluate new and efficient
statistical methods for both data preprocessing and statistical inference for HTS

data. The purpose of these tools is to better identify high quality hits with a high



degree of confidence, and to be able to do so in a semi-automatic mode in order to
handle the increasing volume of raw HTS data being generated.

Since interest is on outlier detection, my first focus is on robustness. The use
of statistics that are robust to the presence of outliers, and thus, can at the same
time identify outliers, will give more reliable results than classical methods that
are influenced by extreme values. For example, the use of a median instead of an
arithmetic mean in the statistical analysis is a first step towards robustness.

My second focus is to justify and promote the use of replicate measurements
in HTS practice. Although it may be expensive, I believe that the use of replicates
in both preprocessing and inference will help to minimize false positive and false
negative rates, and thereby increase the sensitivity and specificity of screens. Conse-
quently, to demonstrate these benefits, I wish to provide proper statistical methods
that allow replicates to be used in HTS data analyzes.

My thesis is divided in three parts, with results that are of interest to both
life scientists and statisticians; each part is presented as a separate manuscript. I
begin with a critical review of the current practices in HTS data analysis. This
first manuscript also includes several recommendations to improve sensitivity and
specificity of screens. The second manuscript is mostly of statistical interest. It
compares different robust preprocessing methods to deal with replicated two-way
data. The last manuscript is an application of the statistical methods described in the

first manuscript to data from both real screen and in-house laboratory experiments.



In these chapters, for a better understanding of the biochemistry part, relevant
technical terms are identify in bold and are defined in a glossary (appendix). Finally,

I give a general conclusion, and discuss the potential impact of this research.
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Preamble to Manuscript 1

The first objective of my thesis is to better understand what is the HTS process
and the currently practiced methods for data preprocessing and hit identification,
while keeping in mind my statistical knowledge. Few statisticians are involved in
HTS. Being one of them, I wish to convince screeners to be conscious of, to appreciate,
and to deal with statistical issues that are present in actual HTS procedures.

Consequently, this manuscript is a critical look at the diverse statistical and
non-statistical tools used to analyze the large amount of HTS data generated daily.
In this manuscript, I also go further and recommended statistical methods that may
be used to improve both preprocessing of, and inference from, HT'S data. However,
the presentation is mostly at a theoretical level and I restrict my attention to the
two publicly-available data sets presented in the introduction.

This manuscript has been published in the February 2006 issue of Nature Biotech-
nology under the computational biology section. The reprint can be found in ap-

pendix. The references are included in the global thesis bibliography.
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Abstract

High-throughput screening (HTS) is an early critical step in drug discovery. Its
aim is to screen a large number of diverse chemical compounds in order to identify
candidate “hits” rapidly and accurately. Few statistical tools are currently avail-
able, however, to detect quality hits with a high degree of confidence. We examine
statistical aspects of data pre-processing and hit identification for primary screens.
We focus on concerns related to positional effects of wells within plates, choice of
hit threshold, and the importance of minimizing false positive and false negative
rates. We argue that replicate measurements are needed to verify assumptions of
current methods and to suggest data analysis strategies when assumptions are not
met. The integration of replicates with robust statistical methods in primary screens
will facilitate the discovery of reliable hits, ultimately improving the sensitivity and

specificity of the screening process.
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2.1 Introduction

High-throughput screening (HTS) is the backbone of drug discovery within the
pharmaceutical industry. Over the past decade it has also made its way into academic
settings. The combination of robotic methods, parallel processing, and miniaturiza-
tion of biological assays has dramatically increased throughput. The potential to
increase the hit discovery rate has been offset, however, by increased research costs.
Despite the current popularity of HTS and major improvements in processing, the
new drug approval rate has declined significantly [6].

Developers are attempting to counter this inefficiency by various means, includ-
ing developing biotech-pharmaceutical alliances and changing their internal organiza-
tional structures by merging multiple disciplines associated with lead generation and
validation [7]. Likewise, HTS programs are being integrated within academic settings
where alternative targets and diseases of lesser commercial value can be explored [8].
At the root, the challenge is to find the next marketable drug while simultaneously
maximizing the number of screened targets and compounds, minimizing costs per
well, and optimizing the lead generation and validation process.

Two kinds of (inferential/decision) errors can occur at the primary screen step
and it is unclear if current inefficiencies are partly due to too many false positives, too
many false negatives, or both. We advance the view that improving hit specificity and
sensitivity cannot be met by technological and organizational improvements alone

and that improvements in data analysis methods are needed to fulfill the promise of

HTS.
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HTS is a large-scale process (Figure 2-1) that screens many thousands of chem-
ical compounds in order to identify potential lead candidates rapidly and accurately.
Whereas the plating format and number of compounds per plate can vary, typically
just a single measurement of each compound’s activity is obtained in an initial pri-
mary screen. The automated process allows the testing of several hundred plates over
a period of weeks. Compounds identified for follow-up (labeled “hits”) are evaluated
for biological relevance by a counter screen and confirmed as bona fide hits by a
secondary screen.

Secondary screens test many fewer compounds (e.g. the 1% most active com-
pounds from the primary screen, [9]) and typically use at least duplicate measure-
ments. Paradoxically, compounds with the highest measured activity levels on a
primary screen will on average be less extreme on a secondary screen because of
a statistical artifact known as “regression toward the mean” [10, 11]. Accordingly,
marginal hits on the first run may fail to validate on the second run merely because
of random measurement error, although the size of the statistical artifact can be
minimized by improving measurement precision (e.g. by obtaining replicate mea-
surements). Confirmed hits with an established biological activity according to
a structure-activity relationship (SAR) series and medicinal chemistry are termed
“leads” that can develop into drug candidates for clinical testing.

Inferential errors can be caused by “noise” due to technical or procedural fac-
tors, including assay formats, poor pipette delivery, robotic failures and unintended
differences in compound concentrations due to evaporation of solvent, either from

the compound collection or during the assay set-up. Errors of unknown origin may
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also develop over the course of the entire screen. Their adverse effects can often be
minimized by quality control procedures, although statistical corrections may also be
needed to mitigate the effects of uncontrolled variation (see “HTS Data Processing”
section). Other factors which are less amenable to procedural quality control but
which can nonetheless add extraneous variation include potency differences across
compounds, and systematic across-plate and within-plate column or row biases (e.g.
edge effects).

Differences in variability can also create inequalities among the compounds. The
measured activity of low variability compounds will almost always be close to their
true levels. Thus, even when measured in singlet, hits are more easily discovered
and false hits more easily avoided with these compounds. By contrast, the measured
activity levels of highly variable compounds may differ considerably from their true
values. It is correspondingly more difficult to discover hits and to avoid false positives.

Once technical and procedural efficiencies have been optimized, the only way
to minimize variability further is to obtain estimates of activity levels by averag-
ing (e.g. mean, median) across replicate measurements. Activity estimates based
on repeated measurements are less variable than estimates based on single measure-
ments. Replicate measurements also provide direct estimates of variability which can
be used to estimate the probability of detecting true hits (power analysis), facilitat-
ing cost/benefit analyses. Moreover, replicates reduce the number of false negatives
without increasing the number of false positives (see “Use of Replicates” section).

We review current data pre-processing and hit identification methods for pri-

mary screening. We discuss their use and limitations, problems with the constant
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error assumption, the influence of hit threshold on false positive and false negative
rates, and factors that can degrade assay sensitivity and specificity. We also discuss
the advantages of replicates and make recommendations for the statistical analysis

of HTS.

2.2 HTS Data Processing

A well-defined and highly sensitive test system requires both quality control
and accurate measurements. Within-plate reference controls are typically used for
these purposes. Controls help to identify plate-to-plate variability and to establish
assay background levels. Normalization of raw data removes systematic plate-to-
plate variation, making measurements comparable across plates. Systematic errors
decrease the validity of results by either over or under estimating true values. These
biases can affect all measurements equally or can depend on factors such as well
location, liquid dispensing, and signal intensity. Although recent improvements in
automation can minimize bias, providing more reproducible results, equipment mal-
functions can nonetheless introduce systematic errors which must be corrected at the
data processing and analysis stages.

Measured compound activity is a function of at least two factors: the com-
pound’s true activity and random error (see also “Use of Replicates” section). Sym-
bolically, one simple additive model might be Y;;, = pp, + €;, where Yj;, is the
observed raw measurement obtained from the well located on row ¢ and column j
on the p'* plate, y, is the “true” activity and ¢, is the effect of all sources of error.

Assuming no bias, the €;;, are assumed to have zero mean and a specified probability
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distribution (e.g. normal). Another simple model is Yijp, = pp + Rip + Cjp + €ij5p
where R and C represent plate-specific row and column artifacts, respectively, and
€ijp Tepresents remaining sources of error. (This latter model is assumed by the me-
dian polish procedure described below). Specifying models explicitly in this manner
has the advantage of suggesting how sensitivity and specificity gains can be achieved
most cost-effectively.
2.2.1 Current Practice

Because of the manner in which compound collections are plated, controls are
typically placed contiguously on the outer columns. For example, Figure 2-2 shows
the typical location of compounds and controls in a 96-well plate. Unfortunately, a
systematic outer column effect affects all of the measurements on the plate because
they are adjusted relative to these controls. For example, edge effects may lower (or
increase) detection levels on average along the edge compared to the remainder of the
plate. Consequently, background correction will be lower (or higher) if controls are
located on this edge, causing compound activities to appear higher (or lower) than
their true states. Worse still, the edge effects may be present in some plates but
not others (see “Recommendations” section below). Cell-based biological controls
are especially problematic because of variable growth patterns [12}; cell clumping or
evaporation within different areas of the plate can lead to different growth condi-
tions and ultimately to position-related bias. Regardless of cause, positional effects

increase the rate of false positives and false negatives.
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“Percent of control” is one pre-processing method which attempts to correct for
plate-to-plate variability by normalizing compound measurements relative to con-
trols. Raw measurements for each compound, for example, can be divided by the
average of within-plate controls. “Normalized percent inhibition” is another control-
based method in which the difference between the compound measurement and the
mean of the positive controls is divided by the difference between the means of the
measurements on the positive and the negative controls. The “Z score” method ex-
cludes control measurements altogether under the assumption that most compounds
are inactive and can serve as controls; compound measurements are rescaled relative
to within-plate variation by subtracting the average of the plate values and divid-
ing the difference by the standard deviation estimated from all measurements of the
plate.

The three methods described above implicitly assume a random error distribu-
tion that is common to all measurements within a single plate, although without repli-
cates this assumption cannot be verified directly. Positive and negative controls may
exhibit differences in variability, however, raising questions about the constant error
assumption. Differences in variability among compounds are also likely inasmuch
as inactive compounds are similar to negative, and active compounds are similar to
positive controls [13]. For example, Figure 2-3 shows results from a titration series
of a protein translation assay in which variability among replicates differs across the
various concentrations. In general, non-constant variances among the compounds
of interest may be due to differences in luminescence, reactivity, or solubility. The

serious errors of inference that can arise from incorrectly assuming one distribution
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even when departures from it are minimal, have been cogently described by Tukey
[14].

Another potential difficulty is that these three methods rely on non-robust statis-
tics. Means and standard deviations are greatly influenced by statistical outliers,
which in the context of HTS are putative hits. In statistical terms, the mean and
the standard deviation have low breakdown points, in contrast to more resistant lo-
cation and scale estimators (e.g. median, Tukey biweight, median absolute deviation
(MAD)). One recent proposal circumvents these issues by adopting a more robust
data analysis procedure.

The B score [15] is a robust analog of the Z score which uses an index of disper-
sion that is more resistant to the presence of outliers and more robust to differences
in the measurement error distributions of the compounds (Box 2) . A two-way me-
dian polish is first computed to account for row and column effects of the plate. The
resulting residuals within each plate are then divided by their MAD to standardize
for plate-to-plate variability. The B score has three advantages: it is non-parametric
(i-e., makes minimal distributional assumptions), it minimizes measurement bias due
to positional effects and is resistant to statistical outliers.

2.2.2 Recommendations

In the absence of compelling reasons to the contrary, we prefer normalizing the
data without using controls. Specifically, we prefer the B score method, especially if
row or column biases are suspected. Evidence of these biases can be obtained by ex-

amining the variability of the row and column effects estimated by the median polish
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procedure relative to the residual compound measurements. To illustrate, we rean-
alyzed two publicly-available screening data sets with duplicate measurements for a
yeast peptide inhibition assay and a DNA synthesis assay (http://chembank.broad.
harvard.edu/screens; Screen numbers 295 and 900, respectively). Figure 2—4 shows
a strong and variable column effect for Screen 295. Moreover, as we demonstrate
in the “Use of Replicates” section, the variability of B scores may more adequately
reflect actual random error conditions. This in turn facilitates the decision process
because the compound measurements can be benchmarked against theoretical error
distributions.

If researchers were to use the Z score method, we would advise they use robust
versions in order to minimize the undesirable influence of outlier compounds (i.e.
“hits”). For example, in a “jackknife” Z score method, Z and s, (third equation in
Box 2) are calculated excluding the compound of interest (z value in the equation);
accordingly, s, differs for each individual compound. Alternatively, in a “robust”
Z score method, Z and s, are replaced by more robust measures (e.g. median and
MAD, respectively).

Controls, if necessary for a specific assay, should be used carefully. Ideally,
they should be located randomly within plates, thereby minimizing row or column
biases. Current compound collection formats, however, do not lend themselves to
randomization. Potential positional effects can nonetheless be minimized by varying
the location of controls within plates in a systematic manner. One way consists of
alternating well-locations for the positive and negative controls along the available

edges of the library (Fig. 2-2a) . Thus, positive and negative controls will appear
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equally in each row and in each column and may minimize edge-related bias. For
example, in a 96-well plate, an order effect may produce different biases among the
different columns. In such a case, the alternating method (Fig. 2-2b) will be more
efficient than current practice consisting of 8 positive controls on the first column
and 4 negative controls on the last column (Fig. 2-2a) .

If controls are used to normalize compound intensities, it is important to ob-
tain as accurate and precise measurements as possible: any inaccuracies and random
measurement errors will lower the accuracy and precision of the normalized values
through error propagation. One way to improve precision is to obtain a relatively
large number of control measurements (see the “Use of Replicates: Recommenda-
tions” section). Another way is to delete outliers among the controls prior to nor-
malizing. Identifying measurement outliers among controls is more straight-forward
than among the compounds of interest because the control measurements are repli-

cates of the same measurement process and should have similar values.

2.3 Statistical Inference: Threshold for Hit Identification

Regardless of library design strategy (rational or combinatorial), statistical meth-
ods offer the means to characterize quality of screens and of hits within a probabilistic
framework. Quality can be defined as the ability of the screening process to accu-
rately identify compounds that can be developed into potential leads [16]. A sta-
tistical approach to these issues has a number of advantages, including objectivity,

reproducibility, and ease of comparison across screens.
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Once data have been pre-processed with quality control checks and normal-
ization procedures, the next critical step is to decide which compounds should be
processed in a secondary screen. Currently, this inferential process is not well de-
fined statistically: procedures for hit identification are based on informal rules of
thumb rather than on probabilistic judgments of error rates. In academic settings
and in smaller companies, informal rules may also be based on particular labora-
tory constraints such as capacity limitations. Although it is generally appreciated
that lowering hit-threshold increases false positive rates while lowering false nega-
tive rates, statistical models can better quantify the balance between specificity and

sensitivity by assigning probabilities to the two types of inferential errors (Fig. 2-5)

2.3.1 Current Practice

One way to identify hits is to plot raw or pre-processed measurements against
compound identity (i.e., plot each activity measurement on the y axis and the well
identity 1,2,... 96 on the x-axis) for each plate separately. Compounds whose mea-
sured activity deviates from the bulk of the activity measurements are identified as
hits. Although this subjective “eyeball” method may be adequate for identifying
highly active compounds, potentially important compounds of low or intermediate
potency are difficult to identify reliably and may be missed.

Hits can also be identified as a percentage of the compounds that generate the
highest measured activity (e.g. top 1%, [9]). From an optimization perspective, this
method is arbitrary and suffers from the absence of a probability model. Without

prior consideration of the true number of active compounds, one cannot optimize
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the percentage of primary screen compounds to be screened a second time. If the
number of identified potential hits is dictated by the capacity for secondary screening,
specificity and sensitivity may vary widely across screens. Consequently, the quality
of the results from screen to screen within a laboratory will depend on the extent to
which threshold choice reflects the actual number of true active compounds in the
various screens.

Compounds whose activity exceeds a fixed “percent of control” threshold may
also be considered as hits. For example, in an agonist assay any compound with an
activity measurement that is at least twice the average of the measurements on the
negative controls is deemed a hit.

Alternatively, the hit threshold may be defined as a number of standard devi-
ations (typically 3) beyond the mean of the raw or processed data. However, hits
(outliers) may cause the distribution of the compound measurements to be skewed.
Such a phenomenon may be observed when performing a fluorescent-based assay and
when a large number of compounds in the collection are fluorescent. Statistically,
imagine the observations as arising from a mixture of two populations with different
means (e.g. non-active compound measurements centered around one mean and ac-
tive compound measurements around a different mean - likely with different standard
deviations also).

As with the pre-processing methods described earlier, the threshold methods
described above assume a common magnitude of random error for all measurements
and rely on non-robust statistics, which may lead to inferential errors in hit detection.

Hit detection depends jointly on compound concentration, potency, and variability.
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Potency will differ across compounds within a screen, as will actual concentrations
due to uncontrolled factors such as solvent evaporation and compound solubility.
The easiest hits to detect will be compounds with high relative potencies and con-
centrations and low variability. The titration series in Figure 2-3 illustrates this
issue. Singlet measurement false positives for the three lowest non-null concentra-
tions were eliminated when activity measurements were based on means across the
eight replicate measurements per concentration. Methods which estimate random
error without assuming constant error are described in “Use of Replicates: Recom-
mendations” below.
2.3.2 Recommendations

One view about false negatives is that little can be done about them and so it
is best to adopt a forward-looking perspective and to pursue the hits one does have.
We contend, however, that it is important to quantify potential false negative rates
before deciding whether or not they are negligible in a particular screen. If 0.1% of
a million compounds to be screened are truly active, a low false negative rate of 2%
represents 20 potential candidates lost. With synthetic compound collections, the
potential loss may be lessened because they are made from a set number of basic
scaffolds. Thus, in practice, missing an active compound may not matter if related
compounds are detected. When screening natural products or extracts, however,
truly unique chemical entities will go undetected. Although it is difficult to assign a
monetary value to these lost candidates, decisions to not follow-up will typically not

be revisited and as such represent irretrievable financial losses.
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Verifying data handling assumptions and contrasting various approaches in for-
mal methodological studies are important steps in determining the most cost effective
procedures. Additivity assumptions, for example, can readily be verified from a sim-
ple graphical procedure once the data have been pre-processed by the median polish
procedure [17]. This same procedure provides a simple method for determining the
appropriate data transformation (e.g. log) which will produce additive measure-
ments.

These various steps are necessary for quantifying many aspects of the decision-
making process in HTS. Currently, many important go/no-go decisions are based
on perceived necessity (e.g. affordability, capacity), subjective perception, and past
experience. These considerations must enter into any decision process. Statistical
modeling of the type we are encouraging enhances rather than replaces this pro-
cess. Although we believe that currently practiced methods are often insufficiently
sensitive to detect hits that arise from potentially important but marginally active
compounds, attempts to improve sensitivity must be balanced against specificity and
demonstrate cost effectiveness. One way to quantify this balance is to obtain esti-
mates of random error from replicate measurements and to conduct statistical power
analysis. Judicious use of replicates will improve sensitivity to minimally active but

pharmacologically important compounds which go undetected otherwise.

26



2.4 Use of Replicates

Random error reflects inevitable uncertainties in all scientific measurements.
This “noise” unpredictably raises or lowers measurements relative to their true val-
ues. Potential sources of random error include biological, instrument, and human-
related influences. Random error accumulates as a collection of several minimal
differences across assays, such as voltage variation, liquid dispensing differences, as
well as reagent or sample preparation and handling [16]. Compound-related problems
involving chemical properties and activity (e.g. stability, solubility, auto-fluorescence
and degradation) also affect measurement precision.

Precision can be increased by obtaining replicates and by minimizing extraneous
variation due to sample handling and processing. Random error estimates, which are
central to statistical inference, are typically obtained from replicate measurements of
the same attribute or process. Having empirical estimates of variability allows one
to use statistical power analysis to control the false negative rate while maintaining
a fixed false positive rate (Fig. 2-5) . We anticipate that obtaining replicates for at
least some compounds in primary screens will become more routine.

2.4.1 Current Practice

Compounds in primary screens are typically measured only once because of
time and cost issues, although the use of duplicate measurements has been recog-
nized for secondary screens and is beginning to be recommended for primary screens
(http://iccb.med.harvard.edu/screening/guidelines.htm). Absent replicates, strong
assumptions must be made in order to estimate random error. For example, Buxser

and Vroegop [18] describe an approach in which the variability among replicated
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control measurements is used to estimate variability of the unreplicated compound
measurements. Alternatively, random error can be estimated from the variability
across single measurements of all compounds on a plate, assuming that all com-
pounds are inactive and that they all have the same random error; early approaches
to gene expression microarray analysis adopted a similar approach for estimating
error from single measurements [19]. Single measurement methods have ultimately
proven inadequate [20], however, and it is now standard practice to obtain at least
three replicates per measurement in recognition that replicates offer advantages which
outweigh short term cost considerations 21, 22].

Ideal replicates are those measurements that are repeated for the same com-
pound under the same experimental conditions. For this reason and because they
underestimate total random error, multiple re-readings of the same plate are not rec-
ommended as replicates, except as a check for possible extraneous variation due to the
reading process itself. Similarly, structurally similar compounds (analogues) are not
recommended as replicates, despite the fact that they may show comparable activity.
Nor should measurements of the same compounds under different experimental cir-
cumstances (e.g. primary versus secondary screen) be used as replicates because they
may be influenced by different extraneous factors (e.g. differences among reagents,
batches of compounds, and time effects). Finally, pooling compounds in various
combinations within individual wells offers time-saving advantages but cannot be
considered replication in the usual sense. For example, false positives are more likely
to arise when weakly interacting compounds are pooled in a same well or when true

active compounds within a row increase. By contrast, false negatives are less common
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in compound pooling, but may arise if pooled compounds have opposite biological
effects of similar size [7].
2.4.2 Recommendations

Replicates offer the twin advantages of greater precision for activity measure-
ments and the means to estimate variability associated with the measurements. Com-
pared with the uncertainty of a single measurement, the imprecision (standard error)
of a mean is reduced by 100 x (1—1/+/n)% where n refers to the number of replicates.
Having two replicates reduces imprecision by 29%; having three replicates reduces
it by a further 13% while having four replicates reduces it an additional 8% (i.e.
to 50% of the imprecision associated with a single measurement). Thus, replicates
make minimally and moderately active compounds easier to detect.

Replicates may appear in wells on the same or on different plates. Although
within-plate variation (due, for example, to plate composition and handling) will
typically be smaller, across-plate replication is preferred because it represents a more
realistic estimate of variation necessary for generalizing results beyond the immediate
sample. In general, it is important to obtain estimates of total variability of any
measurement process, what has been called “genuine replication” [23].

We have argued that much of current practice makes strong assumptions about
the data (e.g. same magnitude of random error associated with all measurements)
which if incorrect can increase both the false positive and the false negative rates.
Without large-scale studies with replicated measurements, these assumptions and
the advantages of more complex statistical modeling approaches are difficult to ver-

ify. Moreover, it is unlikely that one approach will be optimal for all screens. These
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caveats notwithstanding, minimal replication can be used to examine the reasonable-
ness of current assumptions and to potentially improve overall screen sensitivity and
specificity.

We illustrate the importance of pre-processing, the need to check assumptions
regarding error distributions and the other options available when assumptions are
not met, by performing additional analyses on the Figure 2-4 data. If the errors
associated with the normalized compound measurements from these screens were
normally distributed with constant variance across compounds, the sample variances
based on the duplicate measurements would follow a X?1) distribution (Box 3). Figure
2-6 illustrates the lack of fit, however, between the theoretical and the observed
variance distributions for these data, indicating that the normality/constant variance
combined assumption is not tenable after pre-processing by either the B score or the
Z score procedures.

Alternatively, one can assume that the error associated with compound mea-
surements is normally distributed but with unequal variances distributed across the
compounds according to an inverse gamma distribution . An Empirical Bayes ap-
proach using this model has been used successfully for analysis of microarray data
with minimal replication [20, 24, 25]. Figure 2-7 shows that the error variances of
the data sets from Figure 2-6 fit an inverse gamma distribution for both data sets for
the B scores and for one of the data sets for the Z scores. An important advantage
of this variance distribution pattern is that standard statistical tests of compound
activity can be constructed using a weighted average of the compound-specific vari-

ances estimated from replicated measurements and the overall estimate obtained
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from the variance distribution; when only a random subsample of the compounds
has been replicated, the latter variance estimate can be applied to compounds mea-
sured only in singlet from the same screen (Box 4) . In either case, the more similar
the compound-specific variances are to each other, the more reliable the overall vari-
ance estimate will be. This in turn will provide more degrees of freedom and more
power for the statistical tests. Figure 2-7 also illustrates the value of correcting
for row and column effects. In the presence of column or row biases (screen 295), B
scores more closely approximated the theoretical inverse gamma distribution than the
corresponding Z scores, although in their absence (Screen 900) the B score method
produced a slightly poorer fit.

As more extensively replicated data sets become available, other data analytic
approaches can be examined and optimized. For example, although we found no ev-
idence of a relationship between signal intensity and replicate variability in the two
data sets we examined, such a relationship has been used in the microarray context in
combination with the inverse gamma variance distribution assumption [26]; this type
of relationship may provide additional useful information for estimating random er-
ror associated with replicate and singlet measurements. Similarly, if various classes
of compounds are thought to differ in terms of variability, random subsets of the
various classes may produce more accurate estimates of variability when examined
separately. Another approach which may show promise is to model the distribu-
tion of activity measurements as a mixture of two distributions (inactive and active
compounds) [18] . In short, the principle of “borrowing strength” from information

available from the data in total can provide useful information that would normally
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only be obtained from large numbers of replicates.

2.5 Conclusions
Statistics currently serve a limited role in HTS. One use is to correlate chemical
properties with activity levels at the screen development stage to provide information
for compound selection and for property modification to enhance chemical activity
[27, 28]. Once the screen has been run, data mining software packages are increasingly
being used for quality control. Notwithstanding these advances in data analysis, HTS
continues to lack universal procedures for processing and extracting knowledge from
screens [29]. We discuss four broad conclusions below that we believe are warranted
at this early stage of development for the statistical modeling of HT'S data.
Replicate measurements provide numerous advantages for checking measure-
ment assumptions and improving hit/non-hit decisions. Moreover, quantification
and characterization of error variances obtained from replicate measurements allow
specificity and sensitivity optimization of individual screens. Given fixed costs, stan-
dard statistical power analysis can be used to reach cost-effective decisions regarding
the number of plates within a screen to be replicated and the number of replicates.
Statistically adjusting measurements for row and column effects through proce-
dures such as the median polish offers gains in inference and should be used routinely.
The assumption of a common error variance across compounds implicit to many
current hit identification approaches is incorrect at least some of the time. At a

minimum, the assumption should be routinely verified by replicating some of the
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compounds and checked against theoretically-derived distributions. When the as-
sumption of constant error is untenable, the Empirical Bayes approach to estimating
random error offers an attractive alternative. It provides an amalgam of the specific
within-compound variations (if measured in replicate) and the error estimate de-
rived from the distribution of the within-compound variances, with the latter alone
providing the “best” estimate when a particular compound has not been replicated.
This combination of sources of information is a compromise between using only the
within-compound (and thus highly variable) error estimates and the average but un-
realistic (and thus falsely precise) pooled error estimate that would be appropriate
under a common error model.

The limitations of standard statistical approaches with minimal replication can
be partially offset by “borrowing strength” from the large number of available mea-
surements (compounds). We have provided one example of this principle by using
the distribution of sample error variances to obtain error estimates for individual
compounds.

Advances in statistical modeling of HT'S data will provide objective benchmarks
against which to compare experimental results and as a consequence help to stan-
dardize the hit identification process. By improving measurement quality and by
providing quantifiable false positive/false negative ratios, statistical modeling can
improve the efficacy of non-statistical considerations for lead development (such as
counter screens to identify non-specific interference). In this manner, the often-cited

advice to identify false leads early and quickly can be strengthened while minimizing
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potentially costly false negatives.

2.6 Boxes
2.6.1 Box 1 : Formulae for Normalization
Percent of Control: A qualitative measure of test compound activity defined

as:

PoC =% x 100

where z; is the raw measurement on the i* compound and ¢ is the mean of the
measurements on the positive controls in an antagonist assay.
Normalized Percent Inhibition: Another normalization method using con-
trols:
T

Npr=S7%
C+'—C_

where z; is the raw measurement on the 5** compound, ¢, and ¢_ are the means of the
measurements on the positive and negative controls, respectively, in an antagonist
assay.

Z score: A simple and widely know normalizing method calculated as:

szi_j

Sz

where z; is the raw measurement on the i** compound, Z and s, are the mean and

the standard deviation, respectively, of all measurements within the plate.
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B score [14]: The residual (r;j,) of the measurement for row ¢ and column j

on the pt* plate is obtained by fitting a two-way median polish and is defined below:
Tijp = Yigp — Yijp = Yizp — (fip + Rip + Cjp)

The residual is defined as the difference between the observed result (y;;, ) and the
fitted value ( §ijp, defined as the estimated average of the plate (4i,) + estimated
systematic measurement offset for row 7 on plate p (}:?,L'p ) + estimated systematic
measurement column offset for column j on plate p (Cjp ).

For each plate p, the adjusted median absolute deviation (M AD,) is obtained
from the 74j,’s. The B score is calculated as follows:

Tijp

Bscore = WDP

Median Absolute Deviation (MAD): A robust estimate of spread of the
Tijp s values:

median|ry, — median(ryp)|

2.6.2 Box 2: Examining the Distribution of Sample Variances
Under the assumption of normally distributed errors with mean p and variance

o2, the statistic
(K —1)s?

o2

is distributed as a chi-square with K — 1 degrees of freedom where s? is the sample

variance for each of the K replicated compound measurements.
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For each compound, consider the model:

Yk = T1.0 + €&
where k = 1,2, ..., K replicates and it is assumed that:
& ~ N(0,0?%).

A standard Bayesian choice for a prior distribution of the variances is an inverse

gamma with unknown parameters a and b:

% lexp(—z/b)

0%~ G(a,b) = T(a)br

The a and b parameters are assumed to be constant across compounds and can
be estimated from the data from all compounds by fitting an F-distribution to the

sample variances s2:

(ab)s2 ~ Flk-1)2q

Wright and Simon’s [12] procedure for estimating the a and b parameters was

used to generate the data shown in Figure 2-7.

2.6.3 Box 3: Test Statistics for Hit Detection with Replicates
One sample t-test: With K replicates, for each compound a Student ¢ statistic

is:
T — constant

B sv/1/K
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where Z and s are the arithmetic mean and the standard deviation, respectively, of
the K replicated measurements, constant is a constant typically equal to zero. ¢
follows a t-distribution with K — 1 degrees of freedom.

“Modified” one-sample t-test: After estimation of the a and b parameters
by fitting an inverse gamma distribution to the set of variances across replicates for

each compound (see Box 3), a variation of the previous standard ¢-test is:

T — constant

V1K

t=

where
5 (K —1)s*+2a(ab)™!
- (K—-1)+2a

and where Z and s? are the arithmetic mean and the variance, respectively, of the K
replicated measurements. The degrees of freedom for the test are now (K — 1) + 2aq,
an increase of 2a over the standard ¢-test.

52 can be viewed as a weighted average of the observed compound-specific vari-
ance s? and an estimate (ab)™! of the “typical” error variance underlying the error
distributions of different compounds. The weights are (K — 1) and 2a, respectively.
A very large value of a is equivalent to assuming a common variance across all
compounds and to simply averaging all of the observed variances, thereby virtually
ignoring compound-specific variances. Smaller values of a imply that the underlying
variances across compounds are heterogeneous and that the observed compound-
specific variances be “trusted” more. In Figure 2-7, the values of a for Screens 295
and 900 were 2.84 and 3.64, respectively for the B scores, and 1.11 and 4.12 respec-

tively for the Z scores. Accordingly, the estimates were 1:2.84 and 1:3.64 amalgams
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of the compound-specific and the “typical” variances for the B scores, and similarly
1:1.11 and 1:4.12 for the Z scores.

For an unreplicated compound, so that K — 1 = 0, §2 is simply the typical
value, estimated by the quantity (ab)™! with 2a degrees of freedom (for example
approximately 6 for the B scores), which is a compromise between zero degrees of
freedom associated with single measurements and numberofcompounds — 1 degrees
of freedom (i.e., 2687 and 3839 degrees of freedom, respectively for screen 295 and

900) associated with a common error model.
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2.7 Figures
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Figure 2-1: From HTS process to eventual drug development.
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Figure 2-2: Typical location of controls on a 96-well plate. In a primary screen, the
designed biological assay is performed by using a robot to add the target of interest
and specific rcagents to cach well, which alrcady contain a diffcrent compound or
control. After incubation or other required manipulations, an activity measurement
is obtained for every well by automated plate reading. These raw data represent the
activity measurement of each compound or control against a specified target. The
measurement units and the scales depend on the design of the biological assay, the
target of interest and the specific reader or imager that is used. (a) Generally, in a
compound library, 80 different compounds are stored in the middle of a 96-well plate
and wells on the first and last columns are left empty. Often in a high-throughput
screen, eight positive controls are placed in column 1 and four negative controls are
placed in column 12. The others four wells in column 12 remain empty and are not
used. (b) Ideally, controls should be located randomly among the 96 wells of cach
plate. Only the first and the last columns are typically available for controls, since
compounds are stored in the 80 middle wells. Despite this limitation, edge-related
bias can be minimized by alternating the 8 positive controls and the 8 negative
controls in the available wells, such that they appear equally on each of the 8 rows
and cach of the 2 available columns. 40
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Figure 2-3: Titration series in a translation assay. These results from an Anisomycin
titration in a Renilla luciferase translation assay show that variability differs across
the various concentrations. A hit may be defined as any activity mecasurement that is
at least 3 standard deviations away from the mean of the control measurements. This
corresponds to a dual intensity value of 19894 (dashed line). All of the measurements
for concentrations greater than or equal to 0.78 are hits (all of the values are below
the dashed line). There were six false positives, however, for the three lowest non-null
concentrations.
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Figure 2—4: Presence of edge effects in a high-throughput screen. Data from two
different screens (http://chembank.broad.harvard.edu/screens) with duplicate mea-
surements across plates are presented. Tukey’s two-way median polish was applied
to each plate in order to obtain estimates of row and column effects and of residu-
als (i.e. compound measurements after the polish procedure removed any row and
column effects). For each plate, variances of the 16 row effects and of the 24 column
effects were divided by the variance of the 384 residuals. Boxplots of these variance
ratios illustrate the presence of a column effect for Screen No. 295.

42



(@)

threshold

HO: 'no hit'

(b)

thrashold

HO: 'no hit'

()

threshold

HO: "no hit' H1: 'hits’

Figure 2-5: Replicates, false positive and false negative rates. In hypothesis testing
a false positive rate (Type I crror) is the probability of rejecting the null hypothesis
(HO) given that this hypothesis is true. The false negative rate (Type II error) is
the probability of failing to reject the null hypothesis (HO) given that the alternative
hypothesis (H1) is true. (a) Given a fixed threshold value, the false negative and
false positive rates are represented by the blue and the red areas under the curve,
respectively. (b) Decreasing the threshold value results in an increase in the false
positive rate and a decrease in the false negative rate. The opposite would be true
if the threshold value were increased. (c¢) The benefit of multiple measurements
(replicates) is illustrated. The use of replicates reduces data variability which is
reflected in the narrowed data distributions. Consequently, the false negative rate is
minimized while the false positive rate remains fixed.
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Figure 2-6: Verification of the assumptions of normally distributed data with con-
stant variance among compounds. Empirical values correspond to a function of the
sample variances. Under the assumption of a constant variance among compounds,
the overall variance might be estimated by the mean of the sample variances. Each
sample variance (obtained from the duplicate measurements) is divided by the overall
variance estimate and the ratio should follow a chi-square distribution with 1 degree
of freedom (Box 3). Results of the Kolmogorov-Smirnov (KS) test of differences
between the theoretical and the empirical distributions are shown.
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Figure 2-7: Verification of the assumption that the within-compound variances fol-
low an inverse gamma distribution. Empirical values correspond to a function of the
sample variances. Under the assumption of normally distributed data, cach sample
variance (obtained from the duplicate measurements) is multiplied by the estimated
a and b parameters of the inverse gamma distribution and the result should fol-
low an F distribution with 1 and 2a degrees of freedom (Box 3). Results of the
Kolmogorov-Smirnov (KS) test of differences between the theoretical and the empir-
ical distributions are shown.
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Preamble to Manuscript 11

Current HTS practice does not include replicate measurements. However, repli-
cates are being increasingly appreciated since they (i) allow aggregated measure-
ments, thus reducing the variability of these averages on which decisions are made,
and (ii) offer the advantage of improving both sensitivity and specificity of screens.

During the course of my work on the previous manuscript, I realized that as
currently practiced, robust methods cannot handle, or it is not clear how they should
handle, replicates. For example, a two-way median polish [3] can clearly be applied to
repeated measurements. However, the statistical literature does not provide detailed
technical guidance on the appropriate algorithm to use.

The purpose of this second manuscript is to evaluate and compare, via simulation
studies, the performance of different robust preprocessing methods when applied to
replicated two-way data with respect to detection of outlying cells.

This manuscript will be submitted to JASA. The references are included in the

global thesis bibliography.
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Abstract

The increasing amount of two-way data and the recent movement towards using
multiple measurements (i.e., replicates) in diverse research applications have lead
to renewed interest in robust methods for detecting outlying cells. Residuals from
such robust methods are not affected by the “leakage” produced by those from a
least squares fit. Thus, outlying cells are easier to detect. However, the statistical
literature provides no technical guidance on how older and newer algorithms should
be modified or adapted to handle multiple observations per cell. We compare the
performance of four preprocessing options with respect to detection of outlying cells,
which are defined by four inferential rules.

Tukey’s median polish is a preprocessing method which was introduced in the
1970s as a general statistical tool. The residuals are those obtained in a classical
two-way ANOVA model, but using medians rather than means. To overcome the
potential lack of uniqueness of the L! solution, Terbeck and Davies [4], and Davies
[6] have developed robust methods based on M-estimators. Using these older and
newer methods, we consider four different options for obtaining residuals in replicated
two-way data. The options are: median polish applied to individual values, median
polish applied to the cell medians, and two methods from Davies [5] also applied to
the cell medians. We adopt four arbitrary inferential rules to define outlying cells.
ROC curves are used to compare tests, while effectively maintaining a constant test
‘size’. A median polish applied to individual values perform best in detecting an sin-
gle outlying cell. This method is also the most accurate of the four when applied to a

real dataset. In contrast, in the presence of several outlying cells containing extreme
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signals, preprocessing methods applied to cell medians have the best performance.
Median polish also offers the advantage of being easier to understand and faster to
compute than Davies [5] methods. We recommend the use of median polish applied
to individual values, especially when interest is on detecting outlying cells with a

small effect size.
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3.1 Introduction

Technological advances in several scientific fields have led to very large data
sets with a two-way (row/column) structure. Row and column effects may be of
direct scientific interest, or merely a nuisance to be dealt with. Irrespective of the
primary focus, there is a need for automated robust methods: the large number of
two-way tables, and the resulting volume of data preclude a detailed table by table
examination. Areas of interest include estimating additive main effects (rows and
columns) and detecting non-additive effects (individual outlying cells or interaction
patterns).

Tukey’s median polish [3] is an early example of an exploratory statistical tool
which has been used to examine two-way data structures. However, both its use,
and theoretical study of its properties, subsequently declined. More recently, how-
ever, it has been revived for data-intensive applications such as geostatistics [30, 31},
microarrays [32], and high-throughput screening (HTS) of chemical compounds {2].

Although the objectives of the contemporary use of median polish may differ
across applications, the algorithm is mathematically and computationally the same.
For example, in geostatistics, spatial data are obtained for irregularly distributed
sampling locations, which results in a two-way array with missing values. The goal is
to predict the phenomenon under study at unobserved locations using the correlation
between neighboring observations. Median polish is used to provide robust and
accurate estimates of spatial trends. Applying kriging methods to the residuals
from the median polish is a powerful way for spatial estimation and prediction,

since it eliminates biases caused by spatial trends. Median polish is also commonly



applied to Affymetrix microarray data in which each gene’s expression is estimated
by numerous gene-specific probes. Here, the scientific focus is on obtaining gene
expression estimates after removing microarray (columns) and probe-specific (rows)
biases on a gene-by-gene basis. In HTS, several thousand chemical compounds are
tested in a single experimental run involving hundreds of plates. Each plate contains a
two-way array of wells (e.g. 8 rows by 12 columns); often the first and last columns are
used for positive and negative controls so that each 96-well plate can accommodate
80 compounds. Median polish can be used to minimize processing biases which
can create artifactual row and column effects within plates. The median polish
preprocessing is a necessary step prior to the primary focus, which is to identify
large residuals (outlying values) which represent active compounds that may later
be developed into a drug. Median polish use in these data-intensive applications has
raised several issues that were not even considered in its original applications.

An alternative to the median polish, especially for the identification of outlying
cells, has been proposed recently by Terbeck and Davies [4], and Davies [5]. Their
methods, based on M-estimators, circumvent the potential lack of uniqueness of
median polish and guarantee scale invariance.

Both the median polish and the Davies’ methods were designed to work with a
single observation per cell. In two-way biomedical data of the type described above,
there is a movement towards obtaining replicate measurements. After initial reluc-
tance, their benefit is now more widely recognized in microarrays [33]. The same
appreciation of the advantages of replicated measurements is beginning to be recog-

nized in HT'S applications {34]. For technical reasons, entire plates are replicated, so
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that replicated compounds are located on the same well of different plates. However,
the statistical literature provides no technical guidance on how median polish should
be modified or adapted to handle multiple observations per cell, even though the
literature does explain how median polish can be applied to a three way layout [35].
Terbeck and Davies [4] and Davies [5] also restricted their attention to the simple
case of one observation per cell. Applications of their methods to two-way data with
replicates have not been investigated.

The focus of this paper is to compare the performance of four different options
for dealing with replicates, when the ultimate task, after pre-processing, is to detect
outlying cells in a two-way layout. The paper proceeds as follows. In section 2,
we introduce the notation and describe four preprocessing procedures for handling
replicates, namely two ways of adapting median polish, and one way of handling
replicates using two methods from Davies [5]. In section 3, we describe a simulation
study to compare performance of (i) the four preprocessing procedures and (ii) four
inferential rules applied to the preprocessed data for defining outlying cells. ROC
curves are used to compare performance. Results are presented in section 4. The

four preprocessing options are applied to a real dataset in section 5.

3.2 Background
When the data consist of a single observation per cell (K = 1) in a two-way

table, the usual focus is on the standard additive model

Yy = b+ o+ B + €
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where 1 <4< I and 1 < j < J. The row effects (o;), column effects (5;), and the
grand mean (i) are typically estimated by minimizing the sum of squared residuals

I J r J
SSR=3">"(&)* = (uy—f—&—B)"

i=1 j=1 i=1 j=1

The analytic solution satisfying this L? criterion is given in the balanced case by

/lzf‘ljzzyiﬁ di=%2(yij_ﬂ); ﬁj:}Z(yiJ‘_ﬂ)-
1 7 7 i

It is helpful to note for the discussion of the median polish below that the
residuals produced by this ‘analysis by means’ or ‘mean polish’ equal those obtained
by a three step process: (i) find the grand mean and subtract it from all observations;
(i) subtract the mean of each resulting row from all cell values in the respective row;
(iii) subtract the mean of each new column from all values in that new column.

The least-squares method, however, has poor resistance to outliers. Because of
the restriction ), 3", &; = 0, residuals in all cells and estimates of row and column
effects will be heavily influenced by the presence of an extreme value in one cell.
One important consequence of this “leakage” problem is that the outlying cell will
be less distinct after the polish, as illustrated by a simple example [36, 4]. Consider
a 3 x 3 table with zero values in 8 of the cells, and a value of 9 in a single outlying
cell. Table 3-1 shows that the L? criterion applied to these data leads to nonzero
residuals in all cells, and that the residual in the outlying cell is now only 6 units
higher than those in each of the others. By contrast, after the median polish, 8 of
the residuals remain at zero, and the value in the outlying cell remains at a distance

of 9 from these values, and thus, is more readily detected.



3.2.1 Robust Preprocessing Methods for Two-Way Data

In contrast to the analysis by means, robust methods protect the fit from being

distorted by extreme values and yield better estimates of the main effects, especially

for contaminated or long-tailed data. We examine different robust approaches.

Tukey’s Median Polish.

By analogy with the ANOVA model, Tukey’s median polish is another simple

method of fitting the standard additive model to the data, but using medians instead

of means. The procedure operates iteratively and starts as follows:

1.
2.

Estimate the row effects by calculating the median of each row (&; = median|y;,
Estimate the residuals by subtracting each row median from all observations
in the corresponding row (&; = y;; — %, Vj);

Estimate the common value by taking the median of all row medians (& =
median[g, ..., §1));

Subtract the common value from each row-median (&; = §; — i);

Repeat all previous steps on columns of residuals €;;, rather than rows, to

estimate the column effects (3; = median[é;, ..., &;].

The polishing is repeatedly applied to rows and columns of residuals alternatively

until all row and column medians are zero or until no further improvement is ob-

tained. Beginning the iteration with columns instead of rows will not necessarily

yield the same fit; however, the differences are typically small [36].

After the main effects have been removed by a robust method, residuals (€;;) that

originate from outlying cells are larger, because the median has a high breakdown

point of 50%, and thus, these cells are easier to identify. For example, applying
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the aforementioned median polish procedure to the data from table 3-1, the single
outlier does not contribute to the estimation of the row, column and main effects.
The residualized cell values remain at zero. As a result, the residuals correspond
exactly to the original data where the first cell is clearly an outlier.

Median polish has several uses: to identify row and column structure; to check if
there is evidence of an interaction, i.e., if the model is non-additive ; to detect global
non additive patterns (e.g. increasing row effects in first column, decreasing effects
in last column); to identify ccll-specific abberations (e.g. data generally conform
to additive model but residual in one cell is suspiciously high or low relative to
the others). After fitting the standard additive model using median polish, a large
residual appearing in one cell may come from an outlying cell, and thus, should be
of particular attention [36)].

Unfortunately, the median polish fit does not always coincide with the corre-
sponding L! solution (36, 37], i.e., it does not always minimize the sum of absolute

residuals

Median polish can therefore only be thought of as an approximate least-absolute-
deviations method of fitting.

Davies’ Methods.

To overcome the potential lack of uniqueness of the L' solution, Terbeck and
Davies [4] proposed methods based on M-estimators. The ‘M’ stands for ‘maximum-
likelihood-like’. These estimators were introduced by Huber [38] and Hampel et al.

[39]. M-estimators can be thought of as a generalization of maximum likelihood



estimation in which the function to be maximized has been modified. Under the
assumption of a Gaussian model for errors, maximizing the likelihood is equivalent
to minimizing the SSR. Let p be a function of the residuals. The least-squares
method minimizes SSR, where p(z) = 2?, which is unstable in the presence of
outliers. In contrast, M-estimators minimize

>N o) = Z

i=1 j=1 i=1 j

p(Yy — i — & — ;)
1

J
where p is a symmetric, positive-definite function of the residuals. If p(x) = |x|, then
the previous sum corresponds to the SAR and a minimum solution always exists,
but in general may not be unique. However, if p is chosen to be a strictly convex

function, then the solution is always unique.

M-estimators are invariant to the scale if they minimize

~

: & Yy—i—&—f
D2 =32 a1

i=1 j=1 i=1l j=1

where s is a robust estimator of scale (e.g. 1.483 x median absolute deviation
(MAD)). Consequently, neither mean nor median polish is invariant to scale because
the variance of the residuals is not taken into account in the L? and L! criteria.
Note that M-estimators can be calculated iteratively using reweighted least-squares.
Davies [5] has argued that Terbeck and Davies [4] external estimator of scale is
complicated and unsatisfactory; consequently, he has developed simpler and compu-
tationally more stable methods also based on M-estimators. Davies’ [5] two methods

are based on the same strictly convex function p of the residuals. The first method,
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‘ Davies robust method’, iterates over the set of L! solutions, and uses the correspond-
ing estimator of scale (see equation in Appendix). Davies {5] claims that “interac-
tions and outliers can be more reliably identified by the residuals from appropriate
re-descending M-estimators than from L! residuals” or those obtained by the previ-
ous robust method. Consequently, his main method, ‘Davies reweighted method’, is
based on re-descending M-estimators and overcomes the potential problem of mul-
tiple solutions corresponding to different local minima related to such estimators.
Briefly, the second method minimizes a weighted function of the residuals obtained
from the first method and uses an estimator of scale which is asymptotically Fisher
consistent for normal errors (see Appendix for details).
3.2.2 Multiple Observations per Cell

All of the above methods refer to a single observation per cell. In a two-way
layout with Kj;; > 1 replicate measurements in cell 77, the observations y;;); represent
the replicated values for each combination of the (I x J) levels of the two factors.

The standard additive model becomes
Yigk = i+ o + B + €.

With K;; > 1 replicates in some or all cells, it is possible to fit an additive model

with interaction (vy;;) terms
Yije = 1+ a; + G5 + Vi + €iji-

It is possible to distinguish between interaction (v;;) and unstructured noise (€;;x)

only if one has replicated data (i.e. K > 1). Typically, the fitting of such a model

57



focuses on means and uses the L? criterion to determine the ‘best’ fit. But as previ-
ously demonstrated, the least-squares fit is not resistant to the presence of outliers
and suffers from the ‘leakage’ problem.

To circumvent these problems, a limited number of robust methods have been
developed for detecting interactions in two-way data with replicates. Among others,
Brown and Mood[40] and Hettmansperger and Elmore [41] have introduced a median
and a rank test, respectively. Although these robust tests allow for the detection of
interaction patterns, they do not allow one to identify specific outlying cells.

At this point, it is important to distinguish between interaction and outlying
cells. Interaction is a more general term. Interaction may be conceptualized as a
pattern of residuals after row and column effects have been removed. Our interest
is in detection of individual outlying cells irrespective of the residualized structure
pattern. We are not concerned with the interaction pattern, but in the special case
of outlying cells.

There is a lack of statistical research literature about the performance of robust
methods to detect outlying cells when there are replicate observations in each cell.
To fill this gap, we examine the performance of various combinations of preprocessing
robust methods and inferential rules when applied to replicated two-way tables. Since
Davies [5] methods are defined for a single observation per cell, the only way to handle
replicates is to replace the K;; observations in each cell by their median. Until now,
attention has been restricted to the specific case of K = 1 and the performance of

these methods for the general case of K > 2 has not yet been investigated.
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3.2.3 Median Polish With Replicates

Since its introduction, applications of the median polish procedure have been
primarily to two-way (or higher) layouts with K = 1 observation per cell. In contrast
to newer methods, two ways to handle the case of K > 1 suggest themselves with
Tukey’s median polish.

Median Polish Applied to Table of Medians.

One way is to reduce the replicates in a cell to a single value by taking the

median of all K observations, i.e. to calculate
Y/ij = median{Y,-jl, ceny }/inij}'

The usual two-way median polish can then be applied to the resulting table (I x J) of
cell medians (§;;’s). For example, in a step where one polishes the rows, the median

of the i*" row is obtained by calculating the median of the cell medians in the row
Y; = median{Y¥, ..., Yis}.

At the end of the entire procedure, one residual (€;;) is obtained for each cell of the
two-way table, whatever the number of replicated observations per cell.

Median Polish Applied to Individual Values

A second natural method is to use all individual replicated measurements in
a row (column) when estimating row (column) medians during the polishing. To
polish the rows, the median for the " row is obtained by calculating the median of

all K;. = ijl K; observations in this row

Y= median{Yilh vy YilKay» Yiol, oons Yiokizs o Yid1y oo YiJK,»J}-
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This way of polishing creates a total of K.. = 31_, Z;zl K; residuals (€;i), i.e.,
one for each individual original observation.

Lack of Consensus

There are no guidelines in the statistical literature as to which of the two pre-
vious algorithms is preferable. Few software packages include procedures to perform
median polish and each of the two major ones that do forces the end user to treat
replicates differently. In S-PLUS, the ‘twoway’ function limits its input to a two-way
table with a single measurement in each cell. Consequently, the only way to handle
multiple measurements is to first calculate the median of each cell and than use the
‘two-way’ function to apply the median polish to the table of medians (as in Median
Polish Applied to Table of Medians subsection). Minitab allows for multiple mea-
surements per cell, but its documentation does not specify the algorithm used. By
calculating a small example both manually and with Minitab, we determined that
all individual replicated values are used to estimate row and column effects (as in
Median Polish Applied to Individual Values subsection).

Nor is there any consensus among prominent researchers who have developed
and refined robust data analysis methods. We asked four authorities which of the
above two median polish methods should be used to handle replicated measurements.

Their answers, shown in table 3-2, illustrate that there is no consensus.

3.3 Methods
Four preprocessing options are investigated:

1. Median Polish Applied to Individual Values
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2. Median Polish Applied to Cell Medians

3. Davies Robust Method Applied to Cell Medians

4. Davies Reweighted Method Applied to Cell Medians
In addition, for the two first procedures, we examined the effect of starting the
iterative median polish with columns rather than rows. For the two last procedures,
we used the code provided by Davies [5]. All procedures were run in R 1.6.2 under
Linux.

A simulation study was performed to compare the four preprocessing procedures
with respect to their performance in detecting outlying cells in a two-way layout. The
study included single and multiple outlying cells, increasing number of observations
(both table size and number of replicated observations per cell), outlying values
of various sizes, the absence or presence of row/column effects, the four options
for obtaining residuals and four different rules for defining outliers. For simplicity,
we considered only square tables with equal numbers of rows and columns (I =
J), balanced designs with equal number of observations per cell (K;; = K, Vi, 7),
Gaussian errors, and no missing values.

3.3.1 Amount of Data
Two factors are considered:
1. Table Size: 5 x 5 or 10 x 10;
2. Number of Replicates: K =1, 2, 3, 5 or 10;

For each of the 20 combinations of table size, number of replicates, outlier size,

and column effect, we simulated 1000 data sets. Values in ‘null’ cells were drawn

from a N(0,1) distribution. The replicated values in the single outlying cell or the
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multiple outlying cells were drawn from a N(y,1) distribution where p was either 1
or 2.
3.3.2 Patterns of Cells

We studied two situations. Table 3-3 illustrates each of the following patterns.

Single Outlying Cell

Values in one selected cell are generated as outlier values. In addition, for this
specific pattern, a column effect was created by adding a constant (2) to each of the
values in the column that contained the outlying cell (see Figure 3-1).

Multiple Outlying Cell

Terbeck and Davies [4] and Davies [5] have restricted their attention to patterns
they call “unconditionally identifiable” that were also the main object of their study.
Here we focus on two corollaries (2.7 and 2.8 in Terbeck and Davies [4]). Corollary
2.7 states that an interaction pattern in which fewer than 50% of the rows and fewer
than 50% of the columns contain interactions, is unconditionally identifiable. On the
other hand, by corollary 2.8, an interaction pattern in which fewer than 25% of the
cells in each row and in each column are outlying, is also unconditionally identifiable.
Thus, the case of a single outlying cell satisfies the conditions in both corollaries.
Consequently, we decided to test three other patterns that do not satisfy either one
or the two corollaries.

The second pattern satisfies the conditions in Corollary 2.8, but does not satisfy
those in Corollary 2.7. Terbeck and Davies [4] mentioned that “Tukey’s median polish
can be shown to detect all interaction patterns described by Corollary 2.7, but it does

not detect all those described by corollary 2.8”. We investigate the most extreme
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case where all rows and columns will each contains a maximum number (smaller
than 25%) of outlying cells. Consequently, each row and each column contains one
outlying cell in a 5 x 5 table, and two outlying cells in a 10 x 10 table. That is,
20% of the cells in each table (distributed evenly among all rows and columns) were
outlying cells.

The third pattern corresponds to the opposite case, i.e., it satisfies the condition
in Corollary 2.7, but does not satisfy those in Corollary 2.8. We used a neighboring
group of outlying cells, while maintaining the number of outlying cells per row or
column under the median breakdown point of 50%. Thus, four cells forming a 2 x 2
cluster in a corner of a 5 x 5 table, and 16 cells forming a 4 x 4 cluster in a corner
of a 10 x 10 table, contain outlying values. Consequently, each table contains 16%
of outlying cells located in the same corner.

The fourth pattern is a compromise between the two previous patterns of several
outlying cells. However, it does not satisfy any of the two corollaries. We decided to
maintain a similar percentage of outlying cells. Thus, for a 10 x 10 table, the majority
(60%) of the rows and columns contain three outlying cells. The 18 outlying cells
arc distributed in two clusters of nine outlying cells located in two 3 x 3 tables in
opposite corners of the 10 x 10 table.

3.3.3 Inferential Rules for Defining an Outlying Cell

After each simulated dataset had been preprocessed by each of the four options,

interest is on cell residuals. For the median polish applied to individual values, since

one residual is obtained for each original observation, a ‘cell residual’ was defined
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as the mean of all residuals of the cell. For the three other methods, no additional
aggregation was required.

We adopted the following four arbitrary statistical rules to define a cell as an
outlier:

1. SDs away from the Mean: A cell in which the cell residual is more than
standard deviations away from the mean of all cell residuals;

2. Jackknife SDs away from the Mean: As in previous rule, but where the cell
residual in the candidate cell is removed from the mean and standard deviation
calculations;

3. MADs away from the Median: A cell in which the cell residual is more than
z (rescaled) Median Absolute Deviations away from the median of all cell
residuals;

4. IQR away from QI or @Q3: Any observation that is more than z times the
Inter Quartile Range away from the 1st (Q1) or the 3rd (Q3) quartile of all cell
residuals.

3.3.4 Comparing Performance of Combinations of Preprocessing Op-
tions and Inferential Rules

We wished to apply each of the four inferential rules to each resulting table
of cell residuals. Since power may be higher at the expense of higher type I error,
we needed to compare sensitivity (power, i.e., 1-probability of a type II error) at
a common specificity (i.e., 1-a, l-probability of a Type I error). Otherwise, the
sensitivity of one rule could artificially be higher than that of another because of its
larger o level. Since we were unable to choose a priori the threshold ‘z” which would

result in a certain type I error, we employed an ROC analysis to control for different
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a levels. We varied the threshold ‘z’ from 0.1 to 3.5 in steps of 0.1, for a total of 35
data points for each ROC curve.

To illustrate, consider residuals from a 5 x 5 table with one outlying cell, and
one specific rule, e.g. ‘z SDs away from the mean’. For the first value of z, we
calculated the corresponding cutoff according to the specific rule. Using this cutoff,
we calculated sensitivity and specificity. For each table, sensitivity is either 1/1 or
0/1 depending on whether the absolute value of the cell residual in the true outlying
cell exceeds the cutoff. Similarly, specificity is the proportion of the remaining 24
cell residuals that are correctly classified as non-outliers. We recalculated sensitivity
and specificity for each value of . Then, we repeated the calculation for each of the
1000 datasets preprocessed by the same option and obtained an average sensitivity

and an average specificity across the 1000 values for each value of z.

3.4 Results

First, we examined differences when the median polish algorithm starting the
iteration with rows rather with columns, but results were the same no matter which
was used first (data not shown), so we will consider only iterations starting with
rOwS.

The results using the four different rules for defining an outlying cell were all
equivalent (data not shown). Consequently, we will fix on the first rule ‘standard
deviations away from the mean’ that is simple, intuitive and well known.

Figure 3-2 shows ROC curves comparing the four different options of obtaining

residuals when trying to detect a single outlying cell. As expected, the number of
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replicates (K) has a pronounced effect on performance. For K =1 or K = 2 (panel
a), there is a slight advantage for the Davies reweighted and the median polish
applied to cell medians methods, especially for the 10 x 10 tables. However, for
K > 3 (panels b, ¢, and d), it becomes clear that median polish applied to individual
values performs best when trying to detect an outlying cell in two-way data with
replicates.

When there are several outlying cells, results may differ. For the first pattern,
where 20% of outlying cells are evenly distributed, the conclusions remain the same,
but the differences are smaller (Figure 3-3). For the third and fourth patterns, when
the outlying cells are grouped in one (Figure 3—4) or two (Figure 3-5) corners of the
table, for outlying values of small size (x = 1), the conclusions still hold but the
differences are again smaller. However, for outlying values of bigger size (u = 2),
performance of the median polish applied to individual values decreases and becomes
poorer in comparison to the other methods, as the number of replicates increases.
We noticed that specificity remain the same for all methods whatever the number
of replicates. Thus, preprocessing methods applied to cell medians performed best
because, for fixed specificity, sensitivity increases when the number of replicates
increases, in contrast with the median polish applied to individual values for which
the sensitivity remains the same. Also, there is a slight advantage for median polish
applied to cell medians in comparison to the two Davies methods also applied to cell
medians.

Figures 3-6 and 3-7 show that increasing the number of observations increases

the sensitivity for a fixed specificity for the median polish applied to individual values
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method. Importantly, the gain is greater when increasing the number of replicates
than the size of the table because of the stability of the estimate with more replicates.
For example, with three replicates per cell, the gain in performance from a 5 x 5 table
(i.e. 75 data points) to a 10 x 10 table (i.e. 300 data points) is small in comparison
to having four time more data points. In contrast, for a 10 x 10 table, increasing
from two replicates (i.e. 200 data points) to three replicates (i.e. 300 data points)
represents a larger gain for only 1.5 times more data points. Also, power to be able
to detect outlying cells is influenced by both the number of replicates and the size
of the outlying values. Since the latter is divided by \/m(_ in power calculations,
large effect with few replicates end up with the same ratio as of small effect with
more replicates.

Finally, in the case of a single outlying cell per table, all four preprocessing
options handle column effects equally well; sensitivity and specificity are the same

whenever a column effect is present or absent (data not shown).

3.5 Example

The example is taken from Hahn et al. [1]. The data measure fighting behavior of
pairs of mice after maturation, and can be found in Scheirer et al. [42]. Aggression
was measured by seconds of tail rattling per seconds of fighting. The data are
represented in a 2 X 3 table with 7 replicates (pairs of mice) per cell. The first factor
corresponds to different environmental conditions (0 and 1) and the second factor
to brain weight (small, medium, and large). Hettmansperger and Elmore {41] have

also analyzed this data set. They present boxplots of cell data with 85% confidence
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intervals. The application of their test allows detection of the presence of interaction.
However, from the raw data, it appears that the ‘environment 0, small brain group’
is an outlying cell (Table 3-4).

Table 3-5 shows residuals obtained when applying the four preprocessing op-
tions for obtaining residuals. As in the simulation study, residuals in each cell for
the median polish applied to individual values have been aggregated by taking their
mean in order to define cell residuals. Since the environment factor has only two
levels, interpretation may be facilitated by examining the difference between the two
environmental conditions [43]. Differences are presented in Table 3-6. In all cases,
the largest residual appears correctly in the small brain group. However, as confirmed
by the simulation study, the outlying cell can be identified with greater power when

looking at the residuals obtained from the median polish applied to individual values.

3.6 Discussion

Since one cannot know in advance the numbers and the location of outlying
cells, in a general manner, we recommend the use of the median polish applied to
individual values. In most cases, this method offers higher performance when trying
to detect either one or several outlying cells. The three other preprocessing methods
applied to cell medians perform better when there are several grouped outlying cells
and when the size of the outlying values is high in comparison to the size of the other
values. However, such outlying cells are easier to detect than outlying cells of lower
value. Thus, in these cases, median polish applied to individual values is not the

best method, but still performs well.
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As expected, the number of observations (i.e. table size and especially number
of replicates), has a big effect on performance. Most of the time, with only K = 3
or 5, there is an substantial increase in power.

Results from our simulation study did not show any advantages for Davies [5]
methods applied to cell medians. Median polish also applied to cell medians per-
formed as well and sometimes even slightly better. In addition, median polish has
the advantages of being easier to understand and faster to calculate. However, there
might be some interaction patterns that are ‘unconditionally identifiable’ but that
do not satisfy either of the two Corollaries [4]. Note that Corollary 2.7 was also the
definition studied by Daniel [44]

For example in HTS, the last two patterns of cells may occur if compounds are
not randomly located among the wells of the plates, and if analogue compounds are
located in a same corner. Thus, if one of these compounds is active, the others have
higher chances to be also active since they share similar chemical properties.

In the future, additional simulation studies could be done to assess the perfor-
mance when the errors are not Gaussian. Also, using median polish with repeated
measurements would also help in developing tests of significance of fitted row and

column effects, since there is currently no theory on this issue.
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3.7 Appendix
Davies [5] preprocessing methods are based on a class of M-estimators. To

guarantee uniqueness, the following strictly convex function is used

where A > 0, and satisfies sup,|pr(z) — |z|| = A

Also, the two methods are invariant to the scale, since they both minimize

DWW INCEE

i=1 j=1 i=1 j=1

where s is an estimator of scale as defined below.

3.7.1 Davies Robust Method
A unique L! solution (ji°, &%, 3°) is obtained by minimizing, over the set of L?
solutions,

I J ~0 0 20
( J

PIPI )

i=1 j=1

for some specified value \q of the parameter A, and where the corresponding estimator

of scale is
1L
PN EL R}

Davies [5] uses Ao = 0.1 as default value in the calculations arguing that it is a

reasonable choice according to simulations.
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3.7.2 Davies Reweighted Method
An external estimator of scale, which is asymptotically Fisher consistent for

normal errors, is given by

§ = U(IJ—KgIJ))

z(a)
where uy < wg < ... < ugy) are the ordered absolute residuals (u; = |rii| =

|yi; — i — &° — 3°]) from the previous solution; K (IJ) = min{(J — [ZF2])[5F3], (I —

=

N2} + 55211457 is the maximal number of interactions in an uncondition-

IJ-I-J+1-K(1,J)/2
TT—T-J+1

ally identifiable interaction pattern; o = , and z(a) denotes the «

quantile of the standard normal distribution.
Using this resulting estimator of scale s and residuals r;; from the previous

robust method, the procedure consists in minimizing

~

Z w(Tij—/l‘;di—ﬂj)

i=1 j=1

where w(z) =1 — (1 — (%)?)® is a weight function, and c is a tuning constant set to

c = 3.5 (default value in code).
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Table 3-1: Hypothetical data to illustrate ‘leakage’

[ Two-way Data [ Least-Squared Residuals || Median Polish Residuals ||

910 0 41-2 -2 910 0
00 0 211 1 010 0
010 0 211 010 0

Table 3-2: Responses to questions on how to handle replicates in median polish

Preference
Authority || Median Polish Applied to Comments
Individual Cell
Values Medians
1 v "1 believe you should first aggregate
the replicates in each cell.”
2 N ” My intuition is that you can take the median
of all numbers in a row or column.”
” Approach used for 3-way tables would appear
3 Vv Vv to suggest using medians over all the replicates.
But working with cell medians would certainly
give more resistance to outliers locally.”
”One natural question is whether the number
4 Vv Vv of observations is the same in all the cells
of the two-way table.”

3.8 Tables and Figures
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Table 3-3: Patterns of outlying cells for 10 x 10 tables as used in the simulation

study
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Table 3-5: Cell residuals for data from Table 3—4

Brain Weight Environment
Small | Medium | Large
Median Polish Applied to 2.50 -0.41 | -0.25 0
Individual Values -0.54 044 | 1.01 1
Median Polish Applied to 1.22 0.00 | -0.08 0
Table of Cell Medians -1.22 0.00 | 0.08 1
L' Solution Applied to 1.22 0.00 | -0.16 0
Table of Cell Medians -1.22 0.00 | 0.00 1
M Functional Applied to 0.84 -0.38 | -0.46 0
Table of Cell Medians -0.84 0.38 | 0.46 1

Table 3-6: Cell residual differences between the two environmental conditions (envi-
ronment 0 advantage) for data from Table 3-4

Brain Weight
Small | Medium | Large

Median Polish Applied to Individual Values 3.04 -0.85 | -1.26
Median Polish Applied to Table of Cell Medians 2.44 0.00 | -0.16
L' Solution Applied to Table of Cell Medians 2.44 0.00 | -0.16
M Functional Applied to Table of Cell Medians 1.68 -0.76 | -0.92
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Figure 3-1: Overview of simulation study design
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(a) 2 Replicates per Cell (b) 3 Replicates per Cell
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Figure 3-2: ROC curves to compare the performance of four options of obtaining
residuals. Each ROC curve represents the performance of one of the 4 preprocessing
options when trying to detect a single outlying cell (Table 3-3, pattern 1). Lower
curves correspond to standard normal dataset with an outlying cell with a low ’signal’
(= 1, plain lines) while upper curves correspond to standard normal datasct with
an outlying cell with a higher signal (¢ = 2, dashed lines). In each case, an effect
(value of 2) was added to the observations in the column containing the outlying cell.
The ‘standard deviations away from the mean’ rule is used to define a cell residual
as an outlying cell. Panels (a), (b), and (c) are for 10 x 10 tables with respectively
2, 3, and 5 replicates per cell. 76



(a) 2 Replicates per Cell (b) 3 Replicates per Cell

e ] .
«© «©
o S ]
©
Z S z S
(] (]
= f=
& = & =
o o
o~ N
o =3
o _| e
<o <
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity
(c) 5 Replicates per Cell
< e 4
« _| «© |
o o
©w -}
£ o° 7 2 o 7
2 2
‘@ ‘@
c o
& = | é = ]
(=1 <
—— Median Polish Applied to Ir}
~ ~ -—— Maedian Polish Applied to G
° 7 S 7 —  Davies Robust Method Apg
—— Davies Reweighted Metho
g - 2 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity

Figure 3-3: ROC curves to compare the performance of four options of obtaining
residuals. Each ROC curve represents the performance of one of the 4 preprocessing
options when trying to detect several (20%) outlying cells evenly distributed in each
row and column (Table 3-3, pattern 2). Lower curves correspond to standard normal
datasct with outlying cells of low signal (u = 1, plain lines) while upper curves
correspond to standard normal dataset with outlying cells of higher signal (¢ = 2,
dashed lines). The ‘standard deviations away from the mean’ rule is used to define
a cell residual as an outlying cell. Panels (a), (b), and (c) are for 10 x 10 tables with
respectively 2, 3, and 5 replicates per cell.
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(a) 2 Replicates per Cell (b) 3 Replicates per Cell
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Figure 3—4: ROC curves to compare the performance of four options of obtaining
residuals. Each ROC curve represents the performance of one of the 4 preprocessing
options when trying to detcct several (16%) outlying cells all located in a same
corner of the table (Table 3-3, pattern 3). Lower curves correspond to standard
normal dataset with outlying cells of low signal (4 = 1, plain lines) while upper
curves correspond to standard normal dataset with outlying cells of higher signal
(u = 2, dashed lines). The ‘standard deviations away from the mean’ rule is used
to define a cell residual as an outlying cell. Panels (a), (b), and (c) are for 10 x 10
tables with respectively 2, 3, and 5 replicates per cell.
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(a) 2 Replicates per Cell (b) 3 Replicates per Cell
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Figure 3-5: ROC curves to compare the performance of four options of obtaining
residuals. Each ROC curve represents the performance of one of the 4 preprocessing
options when trying to detect several (18%) outlying cells located in two opposite
corners of the table (Table 3-3, pattern 4). Lower curves correspond to standard
normal dataset with outlying cells of low signal (z = 1, plain lines) while upper
curves correspond to standard normal dataset with outlying cells of higher signal
(1 = 2, dashed lines). The ‘standard deviations away from the mean’ rule is used
to define a cell residual as an outlying cell. Panels (a), (b), and (c) are for 10 x 10
tables with respectively 2, 3, and 5 replicates per cell.
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Figure 3-6: ROC curves to illustrate the effect of increasing number of observations.
All ROC Curves represent results obtained when median polish is applied to indi-
vidual values and when the ‘standard deviation away from the mean’ rule is used
to define an outlying cell. Data are standard normal with an outlying cell of low
size (u = 1) and a column effect in the corresponding row (u = 1). The number of
replicates varies for both 5 x 5 table (plain lines) and 10 x 10 tables (dashed lines).
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Figure 3-7: ROC curves to illustrate the effect of increasing number of observations.
All ROC Curves represent results obtained when median polish is applied to indi-
vidual values and when the ‘standard deviation away from the mean’ rule is used
to define an outlying cell. Data are standard normal with an outlying cell of higher
size (1 = 2) and a column effect in the corresponding row (¢ = 1). The number of
replicates varies for both 5 x 5 table (plain lines) and 10 x 10 tables (dashed lines).
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Preamble to Manuscript 111

The last chapter of my thesis reveals crucial applications of my research to
HTS data. In the two previous manuscripts, I was mainly theoretical. In the first
chapter, I reviewed both preprocessing and inferential methods, and made statistical
suggestions to improve HTS data analysis. In the second, I performed a simulation
study to compare the power of different statistical approaches to detect outlying cells
in a replicated two-way dataset. Here, in the third chapter, the focus is on real-life
applications.

The numerous HTS datasets generated are always examined with the goal of
finding hits, and variation in primary screen has never been investigated systemati-
cally because of cost issues. Also, I don’t want users to become overly optimistic and
to expect statistical tools to do as well in real applications as they do in simulations.
Looking at simulated data is not sufficient since we don’t know where the hits are in
real data and we cannot expect perfection.

In this manuscript, based on empirical datasets and data from real screens, I
give a statistical view on the presence of unwanted variation; I provide designed pro-
cedures to optimally generate replicated HTS data; and I recommend steps, methods
and guidance for statistical analysis of these data. Briefly, I demonstrate the benefits

of (i) reducing unwanted variation, (ii) obtaining replicates, and (iii) using robust
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efficient statistics to improve sensitivity and specificity of screens, and thus, hit de-
tection.

This manuscript will be submitted to Nature Biotechnology. The references are

included in the global thesis bibliography.
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Abstract

Identification of active compounds in high-throughput screening (HTS) contexts
can be substantially improved by applying classical experimental design and statisti-
cal inference principles to all phases of HTS studies. We make several procedural and
statistical recommendations to increase sensitivity and specificity of screens. First,
randomization of plate processing order at every step improves accuracy in activity
measurements by minimizing unwanted variation stemming from human, biological
and equipment errors. Second, the use of robust data preprocessing methods, such as
the B-score normalization method, can further reduce unwanted variation by remov-
ing row, column and plate biases, which would otherwise potentially increase both
false positives and false negatives. Third, replicate measurements allow estimation
of the magnitude of the remaining random error and the use of formal statistical
models, such as by an Empirical Bayes t-test to benchmark putative hits relative to
what is expected by chance. Thus, all these approaches together increase confidence

in hit identification.
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4.1 Introduction

Identification of active compounds in high-throughput screening (HTS) contexts
can be substantially improved by applying classical experimental design and statisti-
cal inference principles to all phases of HTS studies. Good experimental design at the
data acquisition phase serves two broad purposes: it facilitates data interpretation by
reducing the possibility that observed effects have been caused by confounding fac-
tors and it minimizes unwanted variation in activity measurements stemming from
human, biological and equipment errors. Statistical methods at the data prepro-
cessing (normalization) phase can further reduce unwanted variation which would
otherwise potentially increase both false positives and false negatives. At the infer-
ence phase, the magnitude of the remaining random error, inherent in any biological
system, can be estimated by replicate measurements and taken into consideration
when deciding which of the putative hits are sufficiently reliable to warrant follow-up.
The information from the random error observed in this screen can also be used to
estimate anticipated false negative rates for similar future studies.

Although the advantages of statistical procedures for HTS analysis were de-
scribed a decade ago [45], statistical articles are only now becoming more common as
researchers search for ways to improve the sensitivity and specificity of their screens.
Various methods have been proposed to characterize the quality of screens [16, 46],
to remove bias within and across plates [2, 47] and to obtain random error estimates
for use in statistical tests to identify hits [18, 34].

We presented a data analysis strategy in a recent review of preprocessing and in-

ferential methods for HTS [34]. For preprocessing, we argued in favor of non-control
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based normalization methods and specifically recommended the B-score procedure
[2]. We argued further that replicate measurements are needed to minimize variabil-
ity, to verify method assumptions, and to suggest alternative data analysis strategies
when assumptions are not met. Specifically, we demonstrated that aggregating the
random error estimate for an individual compound with an estimate obtained across
all compounds can provide a more precise estimate of random error. The described
Empirical Bayes approach provides an effective framework for verifying model as-
sumptions, estimating false positive rates, and reducing false negative rates.

Here we extend those arguments and demonstrate the utility of the approaches
with a replicated primary and secondary screen and with two control experiments.
We illustrate the advantages of randomization in the screening setup to minimize
unwanted variation. We show that the B-score method provides the desirable statis-
tical characteristics of bias correction and measurement independence. Finally, we
show that B-scores when combined with Empirical Bayes ¢-test approach provide
variance and p-value distributions which agree with theoretical expectations. The
combination of randomization, replication B-score normalization, and the Empirical

Bayes t-test should improve both specificity and sensitivity for HTS applications.

4.2 Results
4.2.1 Examination of raw data.

Figure 4-1 shows histograms and line plots of column effects of raw data for
the Imunofluorescent screens (see Methods section for description of these datasets).

Under the usual assumptions of unbiased measurements and few hits, one should
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expect that the majority of the measured values will be symmetrically distributed
about a central null value. Panel a shows, however, that the distribution of the first
replicate set in the non-randomized screen contains two modes. Moreover, Panel b
shows evidence of column bias (the right-most columns within the plates have higher
signals on average; see Supplementary Results online for plate-by-plate column effect
plots). Panels c-d show that variability and the column effects in the randomized
screen have been reduced.

4.2.2 Data preprocessing.

Unwanted variation in the measurements that cannot be controlled procedu-
rally may nonetheless be minimized by appropriate normalization of the data (see
Methods section for more details on the procedures). Figure 4-2 show that rel-
ative to raw data, Z-scores were more symmetrically distributed and reduced the
column effects. Figure 4-3 shows that B-scores, however, provided the best adjust-
ment for distributional asymmetry and column effects. Similar results were obtained
for the less- pronounced row effects (data not shown). Moreover, overlap among
the 100 largest/smallest values (averaged across replicates) between the two screens
was higher for B-scores (14%/65%) than for either raw data (8%/43%) or Z-scores
(7%/54%). Thus, although it is always best to avoid unwanted variation with pro-
cedural solutions, these results suggest that the B-score method provides a degree of
reproducibility even in the presence of substantial procedurally-induced bias.

The advantages of B-scores are illustrated further in Figure 4-4 by analysis of
additional data from an in-vitro translation assay experiment in which the same

compound was tested in every well in the same concentration across all plates (see
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Methods for description). As such, in the absence of systematic bias, the same signal
plus random noise was expected for all wells of every plate. Consequently, measured
values should be uncorrelated with their counterparts in the same locations on other
plates and should show no autocorrelations within the series of measurements. Fig-
ure 4-4a, however, shows that the raw data are positively correlated, indicating the
presence of procedurally-induced location-specific biases. Figure 4-4b shows that the
B-scores greatly minimized the bias, producing the expected null correlation (Scat-
terplots between plates for Z-scores generate results identical to the raw data because
on a plate-by-plate basis they are simply rescaled raw scores and as such generate
identical scatterplots). Similarly, the autocorrelation plots across all six replicate
plates in Figure 4-4c show substantial correlations between putatively independent
measurements for the raw data. The correlation at lag 1 indicates that wells in im-
mediate proximity to each other down columns and up the next column (column 2:
well at row 1 with well at row 2, well at row 2 with well at row 3, well at row 8 with
well at row 1/column 3 well at row 7/column 10 with well at row 8/column 10) are
highly correlated (r = 0.55). Successive lags indicate correlations between each well
and the nth succeeding well (lag n). A pattern was observed which repeated at every
8th lag. The closer wells were to each other within columns, the higher the correla-
tion (e.g. the lag 1 correlation is higher than that for lag 2). A similar pattern was
observed across columns (e.g. the highest correlation of r = 0.68 was observed for
lag 8, which corresponds to immediately adjacent wells across columns). Although

Z-scores provided some degree of correction (Figure 4-4b), B-scores again provided
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the best correction (Figure 4-4c), reducing the autocorrelations at the various lags
to near zero values.
4.2.3 Hit detection.

A major advantage of having replicates is the use of formal statistical models to
benchmark presumed hits relative to what is expected by chance under the statistical
model being used for data analysis. Figure 4-5 illustrates our investigation of the
assumptions of our model, a required step before use of any statistical test (see
Methods section for a detailed description of the tests).

The Empirical Bayes t-test produced the theoretically expected inverse gamma
distribution for the non-randomized and randomized screens for replicate variances
(Figures 4-5 a, d) and a uniform distribution for null p-values (Figures 4-5 c, f),
increasing confidence in the validity of the results. The standard one-sample t-
test generated fewer hits (small p-values) and a non-uniform null 2-tailed p-value
distribution (Figures 4-5 b, ¢), indicating that the test is inappropriate for the data.
In this context, the standard t-test suffers from a lack of degrees of freedom due to
the small number of replicates and it may be more vulnerable to any non-normality
within each location. Rank ordering of the two t-statistics is the same, but the
quantiles are different because the activity measurements are divided by different
estimates of the standard error. Finally, as we found previously with other data
sets,(Malo et al., 2006), results from the one sample z-test were also not valid for
these data. The common variance assumption was grossly violated, suggesting that
the larger number of observed hits likely reflect an unduly high false positive rate

(data no shown).
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4.2.4 Other Considerations.

Statistical hypotheses may be investigated as 1 or 2-tailed tests. The former are
used when the direction of the effect is predicted; the latter are used when effects of
interest may be in either direction. In the two imunofluorescent screens, statistical
hits were expected in both directions and accordingly we examined 2-tailed p-value
distributions as a check of assumptions. For the biological purposes of the studies,
however, the interest lies in the activity measurements which correspond to high
positive B-score values (increase in fluorescence). Accordingly, it is appropriate to
estimate 1-tailed p-values for hit detection, with the understanding that effects in
the opposite (negative) direction will be ignored, no matter how large the effects
might be. Decrease of fluorescent signal may arise from a number of different causes.
A compound may be toxic and cause remain in the cell during the experiment and
have the ability to quench the fluorescence of the tag on the secondary antibody, or
bind to the cystic fibrosis transmembrane regulator close to the location of the 3HA
tag and mask the antibody binding site from the antibody detection.

Outliers among replicates threaten the validity of results obtained from statis-
tical tests based on means (such as the ones employed here). Outliers are difficult
to detect, however, when there are few replicates. One method to circumvent this
problem in the current context is to investigate whether any of the replicate vari-
ances (rather than the individual fluorescent values) may be considered outliers.
The advantage is that outlier variances are more readily detected because there are
many variances distributed according to a known distribution under the Empiri-

cal Bayes model used here. The idea is that compounds with replicate fluorescent
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outliers should have unusually large variances. The F-distribution (Figures 4-5 b
and f) can be used as the reference probability model. At a fixed alpha level, any
'rescaled’ variance (i.e. the observed variance multiplied by a and b, the estimated
parameters of the inverse-gamma distribution) that is greater than the quantile of
a F-distribution with K-1 and 2a degrees of freedom is deemed an outlier. For the
'randomized screen’, at alpha=0.001 we found no outliers, and at alpha=0.01 we
found 7 outliers. Since 1120 compounds were tested, these numbers are smaller than
the expected numbers, and consequently there are no obvious variance outliers (and
hence no obvious fluorescent outliers) in the randomized screen.

Finally, interpretation of individual p-values needs to be understood within the
multiple testing context. For example, 5% of the compounds are expected to have
p-values = 0.05 merely by chance. For the randomized screen, 9% of the individual p-
values were = 0.05, suggesting that hits are present (Figure 4-5h). Notwithstanding,
we were unable to identify individual hits using the false-discovery rate procedure,
which provides sensitive p-value adjustment in multiple testing contexts (FDR [48])
procedure, despite allowing a relatively high FDR of 0.25 (see Methods section).
This apparent contradiction can be explained as follows. The lowest 1-tailed p-value
was 0.003, a not unusually small p-value under the null hypothesis, given that there
were 1120 compounds in the screen. That is, although there were many more small
p-values than expected, none were so small as to merit individual attention. This
in turn suggests that any true hits are likely to have small effect sizes (i.e. low in-

tensities and/or high variability). This does not present insurmountable problems in
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the current context because unlike for other high-throughput technologies (e.g. mi-
croarrays), secondary screens can be performed at medium throughput at relatively
low cost. Accordingly, the net can be cast widely (likely generating large numbers
of false positives) so as to minimize the number of false negatives.

4.2.5 Empirical demonstration of statistical power.

We performed a ’dilution series experiment’ (see Methods section) in which var-
ious concentrations of a true active compound were randomly assigned well positions
on a 96-well plate. Figures 46 presents ROC curves which compare the perfor-
mance of three statistical tests based on random samples generated from the data.
The Empirical Bayes t-test performed best, generating the fewest false negatives at
fixed false positive levels. Figure 4-6 also shows that false negatives are reduced by

increasing the number of replicates, especially for low concentration hits.

4.3 Discussion

We make several procedural and statistical recommendations to improve HT'S
hit detection.

For unavoidable sources of variation, randomization and blocking of processing
steps provide the means to make valid assessments of compounds’ activity levels by
minimizing the effects of potential confounds such as processing order.

Exploratory graphics [49] of raw and preprocessed data allow assessment of
measurement adequacy before performing further statistical analysis. Looking at
the data distribution provide the means to check for gross errors in the measure-

ments. Plots of plate and row/column medians can highlight a frequent source of
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bias which can be minimized by robust preprocessing methods such as the B-score
[2]. Autocorrelation plots can provide checks for measurement independence.

Finally, we show how replicates increase sensitivity of screens. With replicates,
the significance threshold for hit identification can be based on p-values offering the
advantage of understanding the probability of what should be expected by chance.
Assumptions must be verified to ensure that one uses the appropriate test. Triplicate
measurements offer several advantages over duplicates. With triplicates, undesirable
outlier measurements (e.g.. an extreme value due to a procedural error) can be
deleted or corrected before further statistical analysis. Triplicates also produce a
non-trivial increase in power. For the t-statistic, one additional replicate provides
the largest gains when sample sizes are small. For example, the critical t value
threshold for identifying a hit with a one-sample ¢-test with two replicates is 12.7
whereas the threshold for three replicates is reduced to 4.3. Lesser gains are observed
for four and five replicates (thresholds of 2.57 and 2.28) Additional degrees of freedom
can be achieved with the Empirical Bayes ¢-test [34, 20, 24] which acts as a proxy
for adding replicates.

Ultimately, biological validation will provide definitive evidence on the merits of
various analytical approaches. How best to validate findings from high-throughput
technologies is an unresolved philosophical question [50]. For example, a compound
may be statistically deemed validated if it is significant in both tests or if the two

p-values are not significantly different. It is left to the field to operationally define
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validation and to decide on the methods that should be used for statistical confir-

mation of validation.

4.4 Methods
4.4.1 Data Sources

Immunofluorescent screen (non-randomized).

Some 1120 chemical compounds were tested to determine if they correct the
trafficking defect of the phenylalanine deletion mutant form of cystic fibrosis trans-
membrane conductance regulator (CFTR) protein AF508. Fourteen 96-well plates
were run in duplicate. Including incubation time, the screen was run in four days.
Plates were processed in sets of five, followed immediately by a duplicate set pro-
cessed in the same sequence. Compounds that correct the mutant protein trafficking
defect are detected by an increase in fluorescence (arbitrary units) - large measured
values are more likely to be regarded as biologically valid hits.

Immunofluorescent screen (randomized).

This screen was the same as the previous non-randomized screen except for two
aspects: processing order was randomized for all steps in the protocol and replicates
were obtained in three independent runs (i.e. blocks).

Measurement experiment.

An inactive compound from cystic fibrosis immunofluorescent assay screen de-
scribed above was tested in all of the 80 middle wells of six 96-well plates. Plate

processing order was randomized for all steps.
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Dilution series in-vitro translation assay.

A known protein inhibitor was arrayed within each of six replicated plates in 10
concentrations (0.0098, 0.0195, 0.039, 0.078, 0.1563, 0.2344, 0.3125, 0.4687, 0.625,
and 1.25 pM). Four replicates of each of the 10 concentrations and 24 negative
controls (water) were randomly located in the 64 middle wells of 96-well plates.
Positive controls (Anisomycin at 50 uM) and negative controls (water) were placed in
alternating wells on the 1%, 2*¢, 11t* and 12** columns. Firefly and renilla luciferase
activity measurements were obtained for each well; low measured values corresponded
to hits.

To circumvent the unrealistically high proportion (40/64) of true hits within
each plate, we generated random samples from the data to mimic hit proportions
which might be expected from a valid screen. Removing potential row and column
biases with the B-score normalization method was deemed inappropriate for these
data because differences among the rows and columns reflected biological differences
as well as any potential biases due to the large number of hits of differing effect sizes.
Accordingly, the data were normalized as follows:

Tijp — Tp
MAD,

where z;;, is the compound measurement corresponding to the well located in
row ¢, column j, and plate p; Z, and M AD, are respectively, the median and the
median absolute deviation of all measurements within the plate.

For each of 100 simulation runs, we randomly sampled (with replacement) 1120

normalized measurements from the empirical dataset (14 plates x 80 values per plate).
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Some 1064 ‘non-hits’ were sampled from the 240 negative control measurements (6
plates x 40 values per plate). Four consecutive concentrations were chosen. For each
concentration, 14 hits were sampled from the 144 concentration-specific measure-
ments (6 plates x 24 values per plate) yielding a rate of true hits of 5% within each
simulation run. We repeat this simulation for three different sets of concentrations,
i.e. the four highest, the four lowest, and the four in the medium. Hits were iden-
tified according to various statistical criteria and false positive/false negative rates
were calculated (see Inferential Statistics section below).
4.4.2 Preprocessing statistics.

We compared two non-control-based normalization methods. Let i=1,,I rows;

j=1,..,J columns; and p=1,,P plates.

Tijp — Tp
Sp

Zscore;jp =
where z;;, is the compound measurement corresponding to the well located in row
i, column j, and plate p; Z, and s, are respectively, the mean and the standard
deviation of all measurements within the plate.

Pas
Bscore;j, = ﬁ%p
where 7,5, are the residuals obtained by a two-way median polish [3] and M AD, is
the median absolute deviation of all residuals within the plate. Since we did not
observe consistency in positional effects from plate-to-plate and since we randomized

the plate processing order, we did not used the smooth function in our calculations

of B-scores.
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Both the Z-score and B-score methods rescale measurements so that they are
comparable across plates; in addition, the B-score corrects for row and column ef-
fects and is resistant to outliers [2]. Because the same compound was tested in all
wells, within-plate variation reflected errors in measurement only (random error and
potentially bias).

4.4.3 Inferential statistics.

The significance level to decide which compounds should be deemed as hits, was

defined using statistical tests on K replicates. For each compound measurement, a

standard one-sample t-test with K-1 degrees of freedom was calculated as:

¢ = T — constant
sk 1/K

where Zx and sk are the arithmetic mean and the standard deviation, respectively, of
the K replicated normalized measurements; the constant was taken to be zero. The
ratio is then referred to a ¢-distribution with K-I degrees of freedom for estimation
of associated p-values. Because of cost and time issues, the number of replicates is
usually very small. As such, this test relies on imprecise estimates of variance and
has corresponding low sensitivity (high false negative rates).

To overcome this problem, a z-test was calculated for each compound using s,

the square root of the average of all the compound-specific variances:

Txg — constant

- syv/1/K
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The ratio is then referred to a standard normal distribution. The z-test makes the
strong assumption that the true variance is the same for all compound measurements,
an assumption often not verified.

The Empirical Bayes ¢-test provides a compromise between the low sensitivity
of the local ¢-test and the strong common error assumption of the z-test. Compound-
specific variances are assumed to follow an inverse-gamma distribution with param-

eters a and b [20, 24]:

T — constant
§v/1/K
(K—1)s% +2a(ab)™

where 52 = —&512. > and where ZTx and s are the arithmetic mean

t=

and the variance, respectively, of the K replicated measurements. ¢ follows a #-
distribution with K-1+2a degrees of freedom. Variance (§%) is estimated by a
weighted average of the compound-specific variances and an estimate (ab)™! of the
“typical” error variance underlying the error distributions of different compounds,
with weights equal to (K-1) and 2a, respectively [34]. This leads to an increase of
2a degrees of freedom over the standard ¢-test.

4.4.4 False discovery rate (FDR) control.

Benjamini et al. [48] have proposed a method to control for the expected pro-
portion of false positives among the positives which they called the false discovery
rate (FDR).

Once a nominal p-value P(i) is obtained, corresponding to each compound

i=1,,m, the compound is deemed a hit if:
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(i-1)

m

Py< 1=

This method weakly controls the familywise error rate (FWER) and is more powerful

than other FWER controlling methods.
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Figure 4-1: Graphical display of raw data for each replicated set of imunofluorescent
screens as exploratory analysis. (a) Histograms of raw data for the non-randomized
screen show large variability, especially in the first replicated set. The first distribu-
tion contains two modes and a very long tail on the right, i.e., more large values than
the usual expected proportion of hits. The second distribution is closer to expectation
with one mode and smaller asymmetry on the right end. (b) Plot of average mea-
surements against column number shows that column effects arc present, especially
for the right-most columns. (c¢) Histograms of raw data for the randomized screen
again show different patterns. However, distributions all three distributions are uni-
modal. (d) Although column cffects remained, they were reduced by randomization
of processing plate order.
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Figure 4-2: Graphical display of preprocessed data using the Z-score method. (a)
Histograms of Z-scores for the non-randomized screen show less variability than the
raw data. (b) Plot of average measurements against column number shows that
column effects are present, especially for the right-most columns. (c¢) Histograms of
Z-scores for the randomized screen again show more similar patterns than for the raw
data. However, distributions all three distributions arc unimodal. (d) The Z-scores
corrects for plate effects, but not for column effects.
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Figure 4-3: Graphical display of preprocessed data using the B-score method. (a)
Histograms of B-scores for the non-randomized screen show less variability than the
raw data or the Z-scores. (b) Plot of average measurements against column number
shows that column effects have been removed. (c¢) Histograms of B-scores for the
randomized screen again show more similar patterns than for the raw data or the
Z-scores, and all three distributions are unimodal. (d) The B-scores corrects for plate
effects as well as for row and column effects.
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Figure 4-4: Scatter plots of raw and preprocessed data from a 'measurement exper-
iment’ in which the same compound was tested in all wells of several plates. (a)
Because of procedurally-induced bias, measurements across plates were correlated.
(b) The B-score method eliminates these biases, as evidenced by the lack of correla-
tion among the replicated plates. The benefit of the B-scores normalization is also
shown when looking at the autocorrelations (c,d,e), see text for details.
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Figure 4-5: Checking of assumptions for statistical testing. (b,e) Under the null
hypothesis of no hits, p-values should follow a uniform distribution, which is not the
case with the ’local #-test’. However, for the Empirical Bayes t-test, we obtained a
good fit under the assumption that the variances follow an inverse gamma distribu-
tion (a,d) and distribution of p-values is uniform with more low p-values, as expected
in the presence of hits (c,f).
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Figure 4-6: ROC curves to compare power achievable with various inferential ap-
proaches and various numbers of replicates. Data were generated according to a
"dilution series experiment’. The black line represents the rank ordering of activity
measurcments in the absence of replicates. The color curves illustrate the benefit
of using statistical tests based on replicates. For the Firefly protein (a,b,c), hits
are easily identify by all tests. For the Renilla protein (d,e,f), hits are more readily
identified with the Empirical Bayes t-test (orange curves) than with the ’local ¢-test’
(blue curves). All methods failed to identify hits at very low concentrations (c,f).
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CHAPTER 5
Conclusion

At the beginning of my research three years ago, current practices relied on
arbitrary and often non-statistical tools to analyze the increasing amount of HTS
data generated daily. Worse, life scientists were relying on single measurements.
They resisted obtaining replicates because of cost and time issues, and they did not
fully appreciate the utility and benefit of statistics. They believed that automated
technology and quality control were enough to produce reliable data. They were
unaware of the biases that are caused by the presence of unwanted variation and of
the importance of controlling false positive and false negative rates.

Consequently, the main objective of this thesis was to provide new efficient
statistical methods to improve hit detection, and thus, the discovery of new drugs.
However, the biggest part of my work has been to convince screeners of the benefit of
statistical methods based on replicate measurements and to promote their use in HTS
data analysis. These objectives have mostly been achieved by the writing of the three
previously presented manuscripts, the last one containing the applications. Although
each manuscript contains its own discussion, here are some overall conclusions.

I made several statistical recommendations which I divided in three different
stages: experimental design, data preprocessing, and inference. When 1 first came

into a HTS laboratory, with my statistical background and my limited knowledge
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of biochemistry, everything was different from my point of view. My focus was on
minimizing unwanted variation occurring during the entire screening process. For
example, I proposed to prepare a big dilution and then split it in parts rather than
preparing several small dilutions; to always use the same batch of compounds and
reagents; to take plates from a same box; etc. Statistically, one solution was: since
one cannot control for unknown potential sources or errors, one should randomize.
I greatly complicated screeners’lives and they were discouraged to see me with my
long list of random numbers! But my results suggest that randomization of plate
processing order improves the reliability of results. However, it would be even better
to perform at the same time the same screen twice, i.e. with and without random-
ization of plate processing order, in order to conclude strongly on the evidence of
effects of randomization.

Second, at the preprocessing stage, I recommend the use of the B-score method
[2]. This method offers the advantages of being robust and of removing row and
column biases by using a two-way median polish [3]. In the first manuscript, I argued
that normalization should not be based on controls, unless there is a major biological
reason, since they may introduce their own biases. Although my results showed that
the B scores are highly reliable, I pursued research on preprocessing methods in
collaboration with bicinformaticians from UQAM. The main idea is to correct for
potential well effects, which can be though of as row and column interactions [51].

In addition, the second manuscript contain a generalization of the median polish
procedure. I first believed that using median polish with replicates could improve

data preprocessing. However, I finally realized that it was not the best way to
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work with HTS data. Since each plate is performed separately, it is preferable to
preprocess the data on a plate-by-plate basis. But the key findings of the second
paper answer an open statistical question and thus, are of high statistical interest in
and of themselves, and can certainly be applied to other fields.

Lastly, at the inferential stage, I suggested the use of an empirical Bayes t-test
[20, 24, 34]. In the third manuscript, I demonstrated that the assumption of the
constant variance among compounds was not satisfied and thus, that a classical z-
test cannot be used. Since it is unrealistic to have a large number of replicates, a
traditional t-test calculated individually for each compound will rely on few degrees of
freedom. Consequently, the empirical Bayes t-test offers the advantages of estimating
variance by a weighted mean of the compound-specific variance and the variance
based on all compounds. The statistic is also compared to a t-distribution with
more degree of freedom. My results showed the benefit of this method and that the
data satisfied the assumptions.

In summary, I have provided warnings, recommendations, statistical thinking
and methods, and my results have shown how to increase both the sensitivity and
specificity of screens. In addition to publicly-available datasets, I had the opportunity
to design my own empirical study and to perform specific experiments. Consequently,
I was able to take advantage of scientific principles and to evaluate the performance
of different methods.

However, since statisticians have just recently started to be involved in the HTS
field, more work needs to be done in this area. First, statistical validation of hits must

be defined. In microarrays, interest is on relative validation, which is easier. When a
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gene is found in a RNA sample, then the same RNA sample and the same gene twice
the amount are used for validation. In contrast, in HTS, interest is on absolute value.
One way to validate a hit would be via a dilution series where concentrations are
randomly located on plates which also contains a majority of non-active compounds.
But again, one needs to define what the ‘null’ would be.

Second, replicates certainly improve sensitivity of screens, but their cost-benefit
ratio needs to be examined. Although the higher the number of replicates, the
better the estimates of the a and b parameters in the Empirical Bayes method,
and the better the power. It is not clear that the increased costs are warranted by
improvements in sensitivity. Somewhat differently, funds spent on new equipment
and new technology to reduce variation in measurements, could also be spent to get
replicates. For the same cost, one can test more compounds in single measurement or
less compounds in replicates. Consequently, a very large simulation study needs to
be performed to answer these questions, since the cost-benefit of replicates depends
on several factors.

Third, in the first manuscript, I suggested partial replication as a compromise
between the benefit and the cost of replicates. Again, all the aforemention general
questions on optimization, even when the entire screen is replicated, are important
here in addition to shrinkage issue. In addition, one needs to determine the number
of compounds that may be get away to have the shrinkage working; i.e. the size of
the subsample that must be replicated, the number of replicated plates that must be
obtained, and the effect of shrinkage on the estimation of the parameters, and thus,

power; etc. Several parameters needs to be considered in order to give guidelines.
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Finally, this thesis is a big step towards efficient detection of high-quality hits,
and thus, I believe that statistics will help increasing the number of drugs reaching

the market.
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Appendix A : Glossary

Agonist: A compound that binds to a receptor, enzyme, or protein and results in
its activation.

Antagonist: A compound that acts to inhibit a receptor, enzyme, binding interac-
tion, or cellular process.

Assay: An experimentally controlled biochemical or biologic system for detecting
activity.

Compound: Chemical substance tested for desired molecular or cellular activity
against the target in an assay or screen (e.g., clofoctol or anisomycin).

Collection: A large library, set, file, deck, bank, dispensary of chemical com-
pounds.

Controls: A standard of comparison for screening results. Within plate controls are
essential for identifying plate-to-plate variability and establishing assay background
levels. T'wo types of controls are commonly used in early stages of HTS data analysis.
Negative controls (referred to as background) represent the lowest possible measure-
ment for the assay. Positive controls depict the maximum attainable measurement
[46]. For example, in a yeast assay where a low activity measurement occurs when
cell growth is inhibited by an active compound and a high activity measurement
occurs when it is not, the absence of any compound might be used as a positive
control and the absence of yeast as a negative control.

Counter Screen: A screen that tests the same compound library as in the primary

screen, but against a related target in order to eliminate some hits seen in primary
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screen.

»

Hit: A compound identified as having a “significant” molecular or cellular activity.
High-Throughput Screening (HTS): A process that allows the screening of sev-
eral thousand chemical compounds in a period of a few weeks. The major applica-
tions of HTS are drug discovery and understanding of protein structures or biological
pathways.

Lead: A hit validated by medicinal chemistry and structure-activity-relationship
(SAR). A lead compound becomes a drug candidate for clinical trial.

Primary Screen: An initial high-throughput screen in which a compound library
is tested against a target of interest in order to identify hits.

Reagent: A chemical or solution used to produce a desired chemical reaction (e.g.,
yeast or translation mix).

Screen: A large-scale assay performed using HTS automation.

Secondary Screen: A screen used for confirmation of initial hit compounds ob-
tained from the primary screen by repeating the same assay and retesting against
the same target in a new run, often done in duplicate.

Target: DNA, RNA, or protein that is involved in a disease process and is a suitable

target for therapeutic compound development (e.g., rapamycin or protein synthesis) .
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Appendix B : Reprint of Manuscript I

j compypiondd ~ REVIEW

Statistical practice in high-throughput
screening data analysis

Nathalie Malo!%, James A Hanley?, Sonia Cerquozzi', Jerry Pelletier’ & Robert Nadon'+

High-throughpat screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical
compounds to identity candidate ‘hits’ rapidiy and accuratety, Few statistical tools are currently available, however, to detect
quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for
pnmary screens. \Ne |ocus on concerns related to positional effects of wells within plates, choice of hit threshold and the

of itive and false-negative rates, We argue that replicate measurements are needed to verify

assumptions of current methods and to suggest data analysis strategies when ions are not met. The i jon of
rephcates vmh robust statistical methods in primary screens wili facilitate the discovery of reliable hits, ultimately improving the
ificity of the ing process.

Group

High-throughput screcning (HTS} is the backbone of drug discov-  HTS is a large-scale process (Fig, 1) that screcns many thousands
ery within the pharmaceutical industry. Over the past decade it has  of chemical compounds in order 1o identily potential lead candidates
akso made its way into academic settings. The combination of robotic  rapidly and accurately. Whereas the plating format snd number of
‘meihods, parallel processing and miniaturization of biological assays  compounds per plate can vary, ty pically just a single measurement of
has dramatically increased throughput. The polential to increase the  each compound s activity is obtained in an initial primary screen. The
hit discovery rate has been offset, however, by increased research costs.
Despite the current popularity of HTS and major improvements in
processing, the new drug approval rate has declined significantly!.

Developers are pting to counter this inefficiency by various
means, incuding developing biotech-pharmaceutical alliances and
changing their internal organizational structures by merging multiple

sciplines associated with lead generation and validation?. Likewise,
HTS programs are being integrated within academic settings where
alternative targets and diseases of lesser commercial value can be
explored?. At the root, th ltenge is to find the next marketable d
while simultaneously maximizing the number of screened targets and
compounds, minimizing costs per well and optimizing the lead genera-
tien and validation process.

Two kinds of inference or decision errer can occur at the primary
screen step: ‘false positives’ and ‘false negatives'—it is unclear if cur-
rent inefficiencies are due mosily to the generation of too many false
positives, too many false negatives or both. We advance the view that
|mpmvmg hit spmﬁqrv and sensitivity cannot be met by tcdmuloglcal

k nd that imps
analysis methods are needed 1o fulfilk the promise of HTS.
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automated process allows the testing of several hundred plates over a
period of weeks. Compounds identified for follow-up (labeled *hits’)
are evaluated for biological relevance by a counter screen and confirmed
as bona fide hits by a secondary screen.

Secandary screens test many fewer compounds (e.g., the 1% most
active compounds from the primary screen?) and typically use at least
duplicate measurements. Paradoxically, compounds with the highest mea-
sured activity levels on a primary screen will on average be less extreme

on a secondary screen because of a statistical artifact known as ‘regression
toward the mean’9. Accordingly, marginal hits on the first run may fail to
validate on the second run merely because of random measurement error,
although the size of the statistical artifact can be minimized by improv-
ing measurement precision (e.g.. by obtaining replicate measurements).
Confirmed hits with an established biological activity according to a struc-
ture-activity relationship (SAR) series and medicinal chemistry are termed
‘leads’ that can develop into drug candidates for clinical testing.

Pcmnt of contral. A qualltatwe measure. of test compound actmty
defined as

POCE =t x 100‘ .

where x;is the raw: measurement onthe ,th compound and Cis
the mean of the measurement; Hon the pnsmve contrals i inan
antagonist assay }
Normalized percent mmbmnn. Anothe( normatization method using
contrals:

NPi= -E:—;L
where x; is the raw measurement onthe A" compound, Erand T &=
are the means of the me: surements o the positive and negative”
comrols, respecnve!y, in-an antagonist assay.
Z'score. A simple and widely knowo normalszmg mathod
‘calculated as

XX

;;Z= ; A ’
where x; s the raw on the- M comp
168

5y are the mean and the standard deviation, espectlvely. of all
. measurements within the piate. .

B score?. The residual {rg)of the measurament for mw i and

column jon the 2" plate is obtained

polish and is define below a: E

’b"w“yib

iR C)

The residualis deflned as the dnfference between the ‘observed
result (y;,) and the fmed value (¥, /- defined.as the estmated
average of the plate (y,) +@stimated: atie

offset for row j on-plate p (R,) +:estimated systematic
measurement column offset for column j on plate p (G,

: For each plate p, the adjusted'median absoliite deviation (MAD )
is obtained from the rws (MAD,,) TheB score m ca!cumed as
follows::

Bscore =

f
MAD,

Median lbsoiuh duiatiou (MAD). A robust estimate nf spread of
the ’w‘ values:
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Inferential errors can be caused by ‘noise’ due to technical or pro-
cedural factors, including assay formats, poor pipette delivery, robotic
failures and unintended differences in compound concentrations due to
evaporation of solvent, either from the compound collection or during
the assay set-up. Errors of unknown origin may also develop over the
course of the entire screen. Their adverse eftects can often be minimized
by quality control procedures, although statistical corrections may also
be needed to mitigate the effects of uncontrolled variation {see “HTS
data processing” section), Other factors that are less amenable to proce-
dural quality control but that can nonetheless add extraneous variation
include potency differences across compounds, and systematic across-
plate and within-plate column or row biases (¢.g., edge effects).

Differences in variability can also create inequalities among the com-
pounds. The measured activity of low variability compounds will almost
always be close to their true levels. Thus, even when measured in singlet,
hits are more easily discovered and false hits more easily avoided with
these compounds. By contrast, the measured activity levels of highly vari-
able compounds may differ considerably from their true values. It is cor-
respondingly more difficult to discover hits and to avoid false positives.

Once technical and procedural efficiencies have been optimized,
the only way to minimize variability further is to obtain estimates of
activity levels by taking averages (e.g., mean, median) across replicate
measurements, Activity estimates based on repeated measurements are
less variable than estimates based on single measurements. Replicate
measurements also provide direct estimates of variability, which can be
used to estimate the probability of detecting true hits (power analysis),
facilitating cost/bencfit analyses. Moreover, replicates reduce the number
of false negatives without increasing the number of false positives (see
“Use of replicates” section).

We review current data preprocessing and hit identification methods
for primary screening. We discuss their use and limitations, problems
with the constant error assumption, the influence of hit threshold on
false-positive and false-negative rates, and factors that can degrade assay
sensitivity and specificity. We also discuss the advantages of replicates
and make recommendations for the statistical analysis of HTS.

HTS data processing
A well-defined and highly sensitive test system requires both quality
ontrol and accurate measurements. Within-plate reference controls
are typically used for these purposes. Controls help to identify plate-to-
plate variability and establish assay background levels. Normalization of
raw data removes systematic plate-to-plate variation, making measure-
ments comparable across plates. Systematic errors decrease the validity
of results by either over- or underestimating true values. These biases
can affect all measurements equally or can depend on factors such as
well location, liquid dispensing and signal intensity. Although recent
improvements in automation can minimize bias, and thereby provide
more reproducible results, equipment malfunctions can nonetheless
introduce systematic errors, which must be corrected at the data pro-
cessing and analysis stages.

Measured compound activity is a function of at least two factors: the
compound’s true activity and random error (see also “Use of replicates”
section). Symbolically, one simple additive model might be ¥;, = pty;, +
& where Y, is the observed raw measurement obtained from the well
located on row i and column j on the p™" plate, H;ip is the ‘true’ activity
and £, is the effect of all sources of error. Assuming no bias, the £5/'sare
assumed to have zero mean and a specified probability distribution {c.g.,
normal). Another simple model is Yi;p = fhiy + R,-l, + Cj,, + £ where R
and Crepresent plate-specific row and column artifacts, respectively,and
£4p TEpresents remaining sources of error. This latter model is assumed
by the median polish procedure described below.) Specifying models
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Figure 3 Titration series in a translation assay. These resuits from an
anisomycin titration in a Renilla luciferase translation assay show that
variability differs across the various concentrations. A hit may be defined as
any activity measurement that is at ieast three standard deviations away from
the mean of the control measurements. This corresponds to a dual intensity
value of 19,894 (dotted line). All of the measurements for concentrations
20.78 are hits (all of the values are below the dotted line). There were six
false positives, however, for the three lowest nonnull concentrations.

explicitly in this manner has the advantage of suggesting how sensitivity
and specificity gains can be achieved most cost effectively.

Current practice. Because of the manner in which compound col-
lections are plated, controls are typically placed contiguously on the
outer columns {Fig. 2). Unfortunately, a systematic outer column effect
affects all of the measurements on the plate because they are adjusted
relative to these controls. For example, edge eftects may lower (or
increase) detection levels on average along the edge compared to the
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Figure 4 Presence of edge effects in a high-throughput screen. Data from
two different screens (http:/fchembank.broad.harvard .edu/screens) with
duplicate measurements across piates are presented. Tukey's two-way
median polish was applied to each plate lo obtain estimates of row and
column effects and of residuals (that is, compound measurements after

the palish procedure removed any row and column etfects). For each plate,
variances of the 16 row effects and of the 24 column effects were divided by
the variance of the 384 residuals. Box plots of these variance ratios illustrate
the presence of a column effect for screen 295,
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remainder of the plate. Consequently, background correction will be
lower (or higher) if controls are located on this edge, causing com-
pound activities to appear higher (or lower) than their true states.
Worse still, the edge effects may be present in some plates but not others
(see “Recommendations” section below). Cell-based biological controls
are especially problematic because of variable growth patterns’; cell
clumping or evaporation within different areas of the plate can lead
to different growth conditions and ultimately to position-related bias,
Regardless of cause, positional effects increase the rate of false positives
and false negatives.

‘Percent of control’ is one preprocessing method that attemipts to
correct for plate-to-plate variability by normalizing compound mea-
surements relative to controls. Raw measurements for each compound,
for example, can be divided by the average of within-plate controls.
“Normalized percent inhibition’ is another control-based method in
which the difference between the compound measurement and the

rg mean of the positive controls is divided by the difference between the

neans of the measurements on the positive and the negative controls.
The ‘Z score’ method excludes control measurements altogether under
the assumption that most compounds are inactive and can serve as
controls; compound measurements are rescaled relative to within-plate

variation by subtracting the average of the plate values and dividing the
difference by the standard deviation estimated from all measurements
of the plate (see Box 1).

The three methods described above implicitly assume a random error
distribution that is common to all measurements within a single plate,
although without replicates this assumption cannot be verified directly.
Positive and negative controls may exhibit differences in variability, how-
ever, raising questions about the constant error assumption, Differences
in variability among compounds are also likely inasmuch as inactive
compounds are similar to negative controls, and active compounds
are similar to positive controls®. For example, Figure 3 shows results
from a titration series of a protein translation assay in which variability
among replicates differs across the various concentrations, In general,
nonconstant variances among the compounds of interest may be due to
differences in luminescence, reactivity or solubility. The serious errors
of inference that can arise from incorrectly assuming one distribution
even when departures from it are minimal have been cogently described
by Tukey®.

Another potential difficulty is that these three methods rely on non-
robust statistics. Means and standard deviations are greatly influenced
by statistical outliers, which in the context of HTS are putative hits. In

Under the assumpﬂon of narmally dnsmbuted errors with mean p.
and variance o2, the $tatistic

(K= 1)s?
o-i

is distributed as a 32 with K- ‘degrees of freedom where's?
is the sample variance for eachiof the K rep!lcated compoind.
measurements.

For each compound.

where'k= 1,}..,)( replicaias and it fs as:sumed; thal

§=N@©oy

170

A standard Bayesian-choice.for a prior distribution of the variances

is an inverse gamma with-unknown parameters a.and b:
The aand bp t to.be
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compounds and can be estlma’led from the data from all
compounds by fittingan F-distribution to me sample
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Figure 6 Verification of the assumptions of
normatly distributed data with constant variance
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statistical terms, the mean and the standard deviation have low break-
down points, in contrast to more resistant location and scale estima-
tors (e.g., median, Takey biweight, median absolute deviation). One
recent proposal circumvents these issues by adopting a maore robust
data analysis procedure.

The B score!? is a robust analog of the Z score which uses an index
of dispersion that is more resistant to the presence of outliers and more
robust to differences in the measurement error distributions of the com-
pounds (Box 1). A two-way median polish is first computed to account
for row and column effects of the plate. The resulting residuals within
each plate are then divided by their median absolute deviation to stan-
dardize for plate-to-plate variability. The B score has three advantages: it
is nonparametric (that is, makes minimal distributional assumptions),
it minimizes measurement bias due to positional effects and is resistant
to statistical outliers.

Recommendations. In the absence of compelling reasons to the
contrary, we prefer normalizing the data without using controls.
Specifically, we prefer the B score method, especially if row or col-

=" umn biases are suspected. Evidence of these biases can be obtained

02 04 06 08 10

Quantie

by examining the variability of the row and column effects estimated
by the median polish procedure relative to the residual compound
measurements. To illustrate, we reanalyzed two publicly available
screening data sets with duplicate measurements for a yeast peptide
inhibition assay and a DNA synthesis assay (http://chembank broad.
harvard.edu/screens; screen numbers 295 and 900, respectively).
Figure 4 shows a strong and variable column effect for screen 295.
Moreover, as we demonstrate in the “Use of replicates” section, the
variability of B scores may more adequately reflect actual random
error conditions. This in turn facilitates the decision process because
the compound measurements can be benchmarked against theoretical
error distributions.

If researchers were to use the Z score method, we would advise they
use robust versions to minimize the undesirable influence of outlier
compounds (that is, hits"). For example, in a ‘jackknife’ Z score method,
X and s, (third equation in Box 1) are calculated excluding the com-
pound of interest (x value in the equation); accordingly, s, differs for
each individual compound. Alternatively, in a ‘robust’ Z score method,
X and s, are replaced by more robust measures (e.g., median and median
absolute deviation, respectively).
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Controls, if necessary for a specific assay, should be used carefully.
Ideally, they should be located randomly within plates, thereby mini-
mizing row or column biases. Current compound collection formats,
however, do not lend themselves to randomization. Potential positional
effects can nonetheless be minimized by varying the location of controls
within plates in a systematic manner. One way consists of alternating
well locations for the positive and negative controls along the avail-
able edges of the plate (Fig. 2). Thus, positive and negative controls
will appear equally in each row and in each column and may minimize

l a edge-related bias. For example, in a 96-well plate, an order effect may

roduce different biases among the different columns. The current prac-
tice consisting of eight positive controls on the first column and four
negative controls on the last column (Fig. 2a) is less efficient than the
alternating method (Fig. 2b).

If controls are used to normalize compound intensities, it is important
to obtain as accurate and precise measurements as possible: any inaccura-
ciesand random measurement errors will lower the accuracy and precision
of the normalized values through error propagation, One way to improve
precision is to obtain a relatively large number of control measurements
(see the “Use of replicates: recommendations” section). Another way is to
delete outliers among the controls before normalizing. Identifying mea-
surement outliers among controls is more straightforward than among the
compounds of interest because the control measurements are replicates of
the same measurement process and should have similar values.

Statistical inference and hit identification thresholds

Regardless of library design strategy (rational or combinatorial), statisti-
cal methods offer the means to characterize quality of screens and of hits
within a probabilistic framework. Quality can be defined as the ability
of the screening process to accurately identify compounds that can be
developed into potential leads!!, A statistical approach to these issues
has a number of advantages, including objectivity, reproducibility and
ease of comparison across screens.

of freed

srespectively for screen- 295 and: 900) assoctated wmn acommon

error model

Onge data have been preprocessed with quality control checks and
normalization procedures, the next critical step is to decide which
compounds should be processed in a secondary screen. Currently,
this inferential process is not well defined statistically: procedures for
hit identification are based on informal ‘rules of thumb’ rather than
on probabilistic judgments of error rates. In academic settings and in
smaller companies, informal rules may also be based on particular labo-
ratory constraints such as capacity limitations. Although it is generally
appreciated that lowering the hit-threshold increases false-positive rates
while lowering false-negative rates, statistical models can better quantify
the balance between specificity and sensitivity by assigning probabilities
10 the two types of inferential errors (Fig. 5).

Current practice. One way to identify hits is to plot raw or preprocessed
measurements against compound identity (that is, plot each activity
measurement on the y-axis and the well identity 1,2....96 on the x-axis)
for each plate separately. Compounds whose measured activity devi-
ates from the bulk of the activity measurements are identified as hits.
Although this subjective ‘eyebali’ method may be adequate for identi-
fying highly active compounds, potentially important compounds of
low or intermediate potency are difficult to identify reliably and may
be missed.

Hits can also be identified as a percentage of the compounds that
generate the highest measured activity (e.g., top 1%?*). From an optimi-
zation perspective, this method is arbitrary and suffers from the absence
of a probability model. Without prior consideration of the true number
of active compounds, one cannot optimize the percentage of primary
screen compounds to be screened a second time. If the number of identi-
fied potential hits is dictated by the capacity for secondary screening,
specificity and sensitivity may vary widely across screens. Consequently,
the quality of the results from screen to screen within a laboratory will
depend on the extent to which threshold choice reflects the actual num-
ber of true active compounds in the various screens.
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Compounds whose activity exceeds a fixed ‘percent of control’ thresh-
old may also be considered as hits, For ple, in an agonist assay any
compound with an activity measurement that is at least twice the average
of the measurements an the negative controls is deemed a hit.

Alternatively, the hit threshold may be defined as a number of
standard deviations (typically 3) beyond the mean of the raw or pro-
cessed data. However, hits (outliers) may cause the distribution of the
compound measurements to be skewed. Such a phenomenon may be
observed when performing a fluorescent-based assay and when a large
number of compounds in the collection are fluorescent. Statistically,
imagine the observations as arising from a mixture of two populations
with different means (e.g., nonactive compound measurements centered
around one mean and active compound measurements around a differ-
ent mean—likely with different standard deviations also).

As with the preprocessing methods described earlier, the threshold
methods described above assume a common magnitude of random error
forall and relyon bust statistics, which may lead to
inferential errors in hit detection. Hit detection depends jointly on com-
pound concentration, potency and variability. Potency will differ across
compounds within a screen, as will actual concentrations due to uncon-
trolled factors such as solvent evaporation and compound solubility.
The easiest hits to detect will be compounds with high relative potencies
and concentrations and low variability (Fig, 3). Singlet-measurement
false positives for the three lowest nonnull concentrations were climi-
nated when activity measurements were based on means across the eight
replicate measurements per concentration, Methods that estimate ran-
dom error without assuming constant error are described in “Use of
replicates: recommendations” below.

Recommendations. One view about false negatives is that little can be
done about them and so it is best to adopt a forward-looking perspec-
tive and to pursue the hits one does have. We contend, however, that it
is important to quantify potential false-negative rates before deciding
whether or not they are negligible in a particular screen. If 0.1% of a mil-
lion compounds to be screened are truly active, a low false-negative rate
of 2% represents 20 potential candidates lost. With synthetic compound
collections, the potential loss may be lessened because they are made
from a set number of basic scaffolds. Thus, in practice, missing an active

ompound may not matter if related compounds are detected. When
screening natural products or extracts, however, truly unique chemical
entities will go undetected. Although it is difficult to assign a monetary
value to these lost candidates, decisions to not follow-up will typically
not be revisited and as such represent irretrievable financial losses.

Veritying data handling assumptions and contrasting various approaches
in formal methodological studies are important steps in determining the
most cost-effective procedures. Additivity assumptions, for example, can
readily be verified from a simple graphical procedure once the data have
been preprocessed by the median polish procedure!?. This same procedure
provides a simple method for determining the appropriate data transfor-
mation {e.g., log), which will produce additive measurements.

These various steps are necessary for quantifying many aspects of the
decision-making process in HTS. Currently, many important go/no-go
decisions are based on perceived necessity (¢.g., affordability, capacity),
subjective perception and past experience. These considerations must
enter into any decision process, Statistical modeling of the type we are
encouraging enhances rather than replaces this process. Although we
believe that currently pracriced methods are often insufficiently sensi-
tive to detect hits that arise from potentially important but marginally
active compounds, attempts to improve sensitivity must be balanced
against specificity and demonstrate cost effectiveness. One way to quan-
tify this balance is to obtain estimates of random error from replicate
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measurements and to conduct statistical power analysis. Judicious use of
replicates will improve sensitivity to minimally active but pharmacologi-
cally important compounds that go undetected otherwise.

Use of replicates

Random error reflects inevitable uncertainties in all scientific measure-
ments, This noise unpredictably raises or lowers measurements relative
to their true values. Potential sources of random error include biological,
instrument and human-related influences. Random error accumulates
as a collection of several minimal differences across assays, such as volt-
age variation, liquid dispensing differences, as well as reagent or sample
preparation and handling!!. Compound-related problems involving
chemical properties and activity (e.g., stability, solubility, autofluores-
cence and degradation) also affect measurement precision.

Precision can be increased by obtaining replicates and by minimizing
extraneous variation due to sample handling and processing. Random
error estimates, which are central to statistical inference, are typically
obtained from replicate measurements of the same attribute or process.
Having empirical estimates of variability allows one to use statistical
power analysis to control the false-negative rate while maintaining a
fixed false-positive rate (Fig. 5). We anticipate that obtaining replicates
for at least some compounds in primary screens will become more
routine,

Current practice. Compounds in primary screens are typically mea-
sured only once because of time and cost issues, although the use of
duplicate measurements has been recognized for secondary screens
and is beginning to be recommended for primary screens (http://iccb.
med.harvard.edu/screening/guidelines.htm). Absent replicates, strong
assumptions must be made to estimate random error. For example,
Buxser and Vroegop!*® describe an approach in which the variability
among replicated control measurements is used to estimate variability
of the unreplicated compound measurements. Alternatively, random
error can be estimated from the variability across single measurements
of all compounds on a plate, assuming that all compounds are inactive
and that they all have the same random error; early approaches to gene
expression microarray analysis adopted a similar approach for estimat-
ing error from single measurements™. Single measurement methods
have ultimately proven inadequate'>, however, and it is now standard
practice to obtain at least three replicates per measurement in recog-
nition that replicates offer advantages that outweigh short-term cost
considerations'®7,

Ideal replicates are those measurements that are repeated for the same
compound under the same experimental conditions. For this reason
and because they underestimate total random error, multiple reread-
ings of the same plate are not recommended as replicates, except as
a check for possible extraneous variation due to the reading process
itself. Similarly, structurally similar compounds (analogs) are not rec-
ommended as replicates, despite the fact that they may show compa-
rable activity. Nor should of the same compounds under
different experimental circumstances (e.g., primary versus secondary
screen) be used as replicates because they may be influenced by dif-
ferent extraneous factors (e.g., differences among reagents, batches of
compounds and time effects). Finally, pooling compounds in various
combinations within individual wells offers timesaving advantages but
cannot be considered replication in the usual sense. For example, false
positives are more likely to arise when weakly interacting compounds
are pooled in the same well or when true active compounds within a
row increase. By contrast, talse negatives are less common in compound
pooling, but may arise if pooled compounds have opposite biological
effects of similar size,
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Recommendations. Replicates offer the twin advantages of greater pre-
cision for activity measurements and the means to estimate variability
associated with the measurements. Compared with the uncertainty of
a single measurement, the imprecision (standard error) of 2 mean is
reduced by

100 X (1 =~ 14n) %

where 7 refers to the number of replicates. Having two replicates reduces
imprecision by 29%; having three replicates reduces it by a further 13%
while having four replicates reduces it an additional 8% (that is, to
50% of the imprecision associated with a single measurement). Thus,
replicates make minimatly and moderately active compounds easier
to detect.

Replicates may appear in wells on the same or on different plates.
Although within-plate variation (due, for example, to plate composition
and handling) will typically be smaller, across-plate replication is pre-
ferred because it represents a more realistic estimate of variation neces-
sary for generalizing results beyond the immediate sample. In general, it
is important to obtain estimates of total variability of any measurement
process, what has been called ‘genuine replication’®.

‘We have argued that much of current practice makes strong assump-
tions about the data (e.g., same magnitude of random error associated
with all measurements), which if incorrect can increase both the false-
positive and the false-negative rates. Without large-scale studies with
replicated measurements, these ptionsand the ad ges of more
complex statistical modeling approaches are difficult to verify. Morcover,
it is unlikely that one approach will be optimal for all screens. These
caveats notwithstanding, minimal replication can be used to examine
the reasonableness of current assumptions and to potentially improve
overall screen sensitivity and specificity.

We illustrate the importance of preprocessing, the need to check

ption. ding error distrit and the other options available

when assumptions are not met, by performing additional analyses on the
Figure 4 data. If the errors associated with the normalized compound
measurements from these screens were normatly distributed with con-
stant vatiance across compounds, the sample variances based on the
w duplicate measurements would follow a %° (1) distribution (Bex 2).
@Figure 6 illustrates the lack of fit, however, between the theoretical and

=¥ the observed variance distributions for these data, indicating that the

normality/constant variance combined assumption is not tenable after
preprocessing by either the B score or the Z score procedures.
Alternatively, one can assume that the error associated with compound
measurements is normally distributed but with unequal variances dis-
tributed across the compounds according to an inverse gamma distri-
bution (Box 2). An empirical Bayes approach using this model has been
used successfully for analysis of microarray data with minimal replica-
tion'>1%2%_ Figure 7 shows that the error variances of the data sets from
Figure 6 fit an inverse gamma distribution for both data sets for the B
scores and for one of the data sets for the Z scores. An important advan-
tage of this variance distribution pattern is that standard statistical tests
of compound activity can be constructed using a weighted average of the
compound-specific variances estimated from replicated measurements
and the overall estimate obtained from the variance distribution; when
only a random subsample of the compounds has been replicated, the
latter variance estimate can be applied to compounds measured only
in singlet from the same screen (Box 3). In either case, the more similar
the compound-specific variances are to each other, the more reliable the
overall variance estimate will be. This in turn will provide more degrees of
freedom and niore power for the statistical tests. Figure 7 also illustrates
the value of correcting for row and column effects. In the presence of

t74

column or row biases (screen 295), B scores more closely approximated
the theoretical inverse gamma distribution than the corresponding Z
scores, although in their absence {screen 900) the B score method pro-
duced a slightly poorer fit.

As more extensively replicated data sets become available, other data-
analytic approaches can be examined and optimized. For example,
although we found no evidence of a relationship between signal inten-
sity and replicate variability in the twa data sets we examined, such a
relationship has been used in the microarray context in combination
with the inverse gamma variance distribution assumption®’; this type
of relationship may provide additional useful information for estimat-
ing random error associated with replicate and singlet measurements.
Similarly, if various classes of compounds are thought to differ in terms
of variability, random subsets of the various classes may produce more
accurate estimates of variability when examined separately. Another
approach that may show promise is to model the distribution of activity
measurements as a mixture of two distributions (inactive and active
compounds)?3. In short, the principle of ‘borrowing strength’ from
information available from the data in total can provide useful infor-
mation that would normally be obtained only from large numbers of
replicates.

Conclusions

Statistics currently serve a limited role in HTS. One use is to correlate
chemical properties with activity levels at the screen development stage
to provide information for compound selection and for property modi-
fication to enhance chemical activity??2*, Once the screen has been run,
data mining software packages are increasingly being used for quality
control. Notwithstanding these advances in data analysis, HTS continues
to lack universal procedures for processing and extracting knowledge
from screens?, We discuss four broad conclusions below that we believe
are warranted at this early stage of development for the statistical model-
ing of HTS data.

Replicate ments provide for check-
ing measurement assumptions and improving hit/non-hit decisions.
Moreover, quantification and characterization of error variances
obtained from replicate measurements allow specificity and sensitivity
optimization of individual screens. Given fixed costs, standard statistical
power analysis can be used to reach cost-effective decisions regarding
the number of plates within a screen to be replicated and the number
of replicates.

Statistically adjusting measurements for row and column effects
through procedures such as the median polish offers gains in inference
and should be used routinely.

The assumption of a common error variance across compounds
implicit to many current hit identification approaches is incorrect
at least some of the time. At a minimum, the assumption should be
routinely verified by replicating some of the compounds and checked
against theoretically derived distributions. When the assumption of
constant error is untenable, the empirical Bayes approach to estimating
random error offers an attractive alternative. It provides an amalgam
of the specific within-compound variations (if measured in replicate)
and the error estimate derived from the distribution of the within-
compound variances, with the latter alone providing the ‘best’ estimate
when a particular compound has not been replicated. This combina-
tion of sources of information is a compromise between using only the
within-compound (and thus highly variable) error estimates and the
average but unrealistic (and thus falsely precise) pooled error estimate
that would be appropriate under a common error model.

The limitations of standard statistical approaches with minimal rep-
lication can be partially offset by ‘borrowing strength’ from the large
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number of available measurements (compounds). We have provided
one example of this principle by using the distribution of sample error
variances to obtain error estimates for individual compounds.

Advances in statistical modeling of HTS data will provide objective
benchmarks against which to compare experimental results and as a con-
sequence help to standardize the hit identification process. By improving
measurement quality and by providing quantifiable false-positive/false-
negative ratios, statistical modeling can improve the efficacy of nonsta-
tistical considerations for lead development (such as counter screens to
identify nonspecific interference). In this manner, the often-cited advice
to identify false leads early and quickly can be strengthened while mini-
mizing potentially costly false negatives.
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