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Abstract

Aircraft sizing, route network design, demand estimation and allocation of aircraft to
routes are different facets of the air transportation optimization problem that can be
viewed as individual systems, since they can be conducted independently. There is a large
body of literature that investigates each of these as a stand-alone problem. In this regard,
the air transportation design optimization problem can be viewed as an optimal system-
of-systems (SoS) design problem. The resulting mixed variable programming problem
may not be solvable using an all-in-one (AiO) approach because its size and complexity
grow rapidly with increasing number of network nodes. A decomposition-based nested
formulation and the Mesh Adaptive Direct Search (MADS) optimization algorithm are
presented to solve the optimal SoS design problem. The two-stage expansion of a regional
Canadian airline’s network to enable national operations is considered as a demonstrating
example.
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Résumé

La taille des avions, les réseaux d’itinéraire, l’estimation de la demande et l’affectation
des avions aux itinéraires sont différentes facettes d’un problème d’optimisation de trans-
port aérien, pouvant être considérés comme des systèmes individuels puisqu’ils peuvent
être résolus indépendamment. Un nombre important de travaux étudie chacune de ces
facettes comme un problème isolé. Dans cette optique, le problème présenté peut être vu
comme l’optimisation d’un système de systèmes. Le problème couplé en résultant n’est
pas solvable en utilisant une approche tout-en-un, car sa taille et sa complexité augmente
rapidement avec le nombre de noeuds du réseau. Une formulation par décomposition,
et l’optimisation par un algorithme de recherche directe par maillage adaptatif (Mesh
Adaptive Direct Search, MADS) sont présentées pour le résoudre. L’expansion en deux
étapes d’un réseau aérien régional canadien vers un réseau national est considérée à titre
d’exemple.
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CHAPTER 1

Introduction

1.1 System of Systems

The world is composed of an innumerable number of systems - from computers to auto-

mobiles. Before we introduce ‘System of Systems’, it is important to understand what

constitutes a ‘system’. The International Council on Systems Engineering (INCOSE) Sys-

tems Engineering Handbook [1] defines systems as ‘a combination of interacting elements

organized to achieve one or more stated purposes’. Thus a system can be anything from

a simple pulley mechanism to a large commercial aircraft.

With the increase in complexity of systems, the need has arisen for developing a holistic

perspective to system development. This need for a composite design process forms the

basic setting for a System of Systems (SoS) approach.

While there is no single universal definition of the term ‘System of Systems’ several

characteristics of what constitutes an SoS have been proposed. Jamshidi [2] defines SoS

as a ‘class of complex systems whose components are themselves complex’. The INCOSE

handbook defines an SoS as ‘an inter-operating collection of component systems that pro-

duce results unachievable by the individual systems alone’. This definition is very similar

to that of ‘complex systems’ and therefore implies that SoS is a complex system. Other

definitions in literature emphasize the independent operational capability of individual

systems that constitute an SoS. The term System-of-Systems (SoS) can thus be used to

describe a large system composed of multiple individual systems capable of independent

operation, that together provide capabilities beyond those of individual constituent sys-

tems. Maier [3] prescribes five properties a majority of which must be satisfied for a

system of systems: operational and managerial independence, geographic distribution,

emergent behaviour and evolutionary development.
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1.2 Air Transportation

Air transportation is a complex field that involves multidisciplinary objectives and con-

straints. Since the deregulation of airlines in America in late 1970s, the airline industry

has become increasingly competitive. Revenue margins have shrunk and airlines have to

ensure lean, cost-effective operation to stay in business. Massoud Bazargan [4] describes

how the current US airline industry illustrates the ‘survival of the fittest’ motto. Oper-

ations research as well as system design (aircraft, airports etc) have been key factors in

ensuring that their financial goals are met.

Operations research for airlines has been a key focus area since 1950s. The advances

in technology - design tools, manufacturing processes, new materials - and computing

power have allowed more complex problems to be tackled in shorter times resulting in an

enormous impact on airline managing and planning operations. Similarly, aircraft design

has also improved immensely during the last three decades.

Traditionally, majority of research in this area has focused on discrete areas of airline

operations - operations, aircraft design. Given the complex nature of air transportation,

a broader, cumulative approach to tackling the problem might be more beneficial. This

can be effected through a systems-of-systems methodology. The separate problems are

simultaneously considered for modelling and characterizing the additional functionalities

provided by the SoS. A few of these SoS models are discussed in the next section.

1.3 Air Transportation Design

The different elements of air transportation SoS are shown in Fig. 1.1. Each of these

individual systems is capable of independent operation and can be optimized indepen-

dently. The application of Maier’s criteria to the air transportation problem is reported

in Table 1.1.

The goal of this research is to model an air transportation system as an SoS. We

want to use the SoS model to identify key steps required for airline expansion. This

involves identifying possible areas of expansion (airports, routes) and designing/acquiring

new resources (aircrafts, airports) for servicing the increased demand. There are several

practical considerations that limit the choices available for each system (sub-problem) -

these include explicit constraints related to system design such as aircraft performance

characteristics, airport landing facilities and also more abstract constraints related to

airline competitiveness, demand forecasting etc. It is our aim to build a mathematical

8
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Figure 1.1: Components of an air transportation system

model than can capture the dynamic nature of these interactions and their effect on the

emergent behaviour of our system.

The air transportation SoS is assumed to consist of the following systems:

1. Demand Estimation Like most service industries, airline operations and revenues

are highly dependent on passenger demand. Further, airlines operations require

extensive investment in terms of infrastructure development, capital expenditure

in acquiring resources etc. Given the scale of these operations, airline companies

plan for long term operations. Demand estimation plays an important role in this

planning. It is desired to incorporate a realistic forecasting model into the SoS to

obtain practical results.

2. Network Design The airline routes can be modeled as a network, the structure

of which greatly impacts airline operations. Designing a network calls upon the

areas of graph theory, complex network theory and multi-commodity flow networks.

Further, constraints specific to the airline transportation need to be defined in order

to obtain a solution that can be applied to practical scenarios.

3. Aircraft Design The aircraft design problem is a complex problem in itself - Sobi-

esczanski and Agte [5] used the MDO SoS approach for the aircraft design problem

and it has since been studied extensively in current literature. The different aspects

9



Table 1.1: Maier’s criteria applied to air transportation problem

Criterion Equivalence in current problem & description

Operational Independence The aircrafts, route network design algo-
rithm, the scheduling authority and the al-
location algorithm are all capable of indepen-
dent functioning

Managerial Independence Shared variables are exchanged for the
system-wide optimization algorithm but each
system is a discrete functional entity capable
of independent operation that can reach its
optimal state individually

Evolutionary Development The SoS can evolve in response to change in
needs over time and as new technologies be-
come available

Emergent Behavior The system-wide coordination between differ-
ent subproblems leads to an improved perfor-
mance compared to individual systems acting
alone

Geographic Distribution The different components of the SoS are geo-
graphically discrete - airports are fixed while
the aircrafts, the scheduling authority occupy
variable geographic locations. The network
design system, allocation system are com-
puter algorithms which do not occupy physi-
cal space

of aircraft design include aerodynamics, aircraft performance, structural mechanics

and engine performance. Generally, the airline company does not have a significant

role to play in aircraft design and it is undertaken solely by the manufacturer.

4. Aircraft Allocation Aircraft allocation involves assigning aircraft to different routes

in the network to satisfy passenger demand. It is a complex exercise that forms

a significant part of an airline’s operations and can have a considerable impact on

its revenues. Several models have been suggested in literature to solve the aircraft

allocation problem.

Each of these systems and the corresponding formulations are discussed in more details

in following chapters.

10



1.4 Theoretical Background

Transportation problems have been studied extensively in the literature. Air transporta-

tion systems form a growing subset in this area of study. Several formulations have been

proposed that differ in the different systems/sub-systems considered each with their own

assumptions. We study these approaches in an attempt to arrive at a general model for

air transportation.

Mane, Crossley and Nusawardhana [6] formulated a ‘variable resource allocation’ prob-

lem that involved finding an appropriate mix of yet-to-be-designed and existing aircraft.

They employed a multidisciplinary design optimization (MDO) based decomposition ap-

proach for solving the coupled aircraft design and allocation problem for a fixed network

configuration (hub-spoke) of increasing sizes. Mane et al. reported that: i) decomposing

the problem provides a computational advantage over conventional methods, and ii) the

computational advantage becomes more significant as problem size grows. They further

extended their approach to incorporate uncertainty in operations for a problem with only

yet-to-be-designed aircraft for a fractional management company [7]. For both [6] and [7],

the aircraft design variables are passenger capacity, aspect ratio, wing loading and thrust

to weight ratio.

Similar to Mane et al., Taylor and De Weck [8] proposed a method that coupled

vehicle (aircraft) design and network flow (allocation) through a multi-disciplinary design

optimization (MDO) approach. Both vehicle design and network flow are treated as

‘subsystems’ that are optimized to minimize overall operating cost. Their method differs

from Mane et al. in terms of i) formulation of the two problems and ii) how they are

coupled. Aircraft design is defined empirically in terms of range, passenger capacity, cruise

velocity, wing loading, thrust-to-weight ratio and the number of engines. A simplified

model, similar to [9], is used for vehicle allocation model.

A combined vehicle design and allocation problem is also solved by Hidalgo and

Kim [10]. They use analytical target cascading (ATC) to formulate the problem. A

key difference in their approach from Mane et al. and Taylor et al. lies in the treatment

of vehicle routing problem - allocation for larger networks is broken down into smaller

subproblems in their formulation. They solve an eight-route problem by decomposing it

into four subproblems with two routes each.

The works described above illustrate the benefit of coupling vehicle design and op-

erations for air transportation systems. Airline operations are intrinsically linked with

passenger demand and it is interesting to study this relationship. Davendralingam and
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Crossley [11] analyze the impact of passenger demand in an air transportation system.

They formulate a recursive model for airline operations and passenger demand that builds

upon [6, 7] by accounting for changes in demand and ticket prices over time. The demand

is obtained from an econometric model based on the Federal Aviation Administration

models.

Majority of air transportation models proposed in literature are based on a known

static network configuration. Liu et al. [12] study the network structure for a real-world

transportation problem using a network theory approach. They employ a genetic algo-

rithm for optimizing network properties in order to facilitate airline operations in Europe.

Similar to Liu et al., Kotegawa [13] analyzes air-transportation SoS using network the-

ory. He formulates a model to study evolutionary behavior in air transportation networks

in US based on network properties and machine learning. Network topology models are

investigated and applied to a multilayer network with distinct levels for demand, mobility

and capacity. The approach is used to predict addition and removal of routes in an air-

transportation with greater accuracy compared to existing approaches, using historical

data for calibration. Kotegawa’s model underscores the impact of network configuration

on different aspects of airline transportation.

Ayyalasomayajula [14] investigates further into the airline networks and operations

for geographic locations with airports in close proximity to each other (metroplexes).

Metroplexes are studied for influence of competing airports on passenger demand - this

is particularly useful for dense passenger networks, e.g. Europe and Western Canada.

Each of the above mentioned studies investigate key aspect of airline transportation.

The goal of this research is to build upon these methods and develop a general SoS model

for air transportation SoS.

1.5 Thesis Organization

This thesis is organized as follows. The next chapter provides an overview of the conven-

tional approach to air transportation design and the system of systems design problem

formulation. Thereafter, different components of the SoS problem are introduced. Chap-

ter 3 describes the demand estimation problem for air transportation. Section 3.2 discusses

the principal demand models for air transportation. The SoS demand estimation model

and calibration results are given in Section 3.3. A brief introduction to the aircraft sizing

problem is given in Chapter 4. Different components of the sizing problem are described

in Section 4.1. Sections 4.2 and 4.3 contain a description of the sizing tool for the SoS

12



problem and the corresponding results. The nested network design problem and aircraft

allocation are discussed in Chapter 5 and Chapter 6 respectively. Chapter 7 provides a

brief introduction to derivative-free optimization using MADS - a direct search algorithm.

MADS is used for the outer-loop SoS problem (discussed in Chapter 2.2) and the net-

work design problem. The results for the SoS air transportation problem are presented

in Chapter 8. Section 8.1 and Section 8.2 discuss the results for the different stages of

airline expansion described in Chapter 2.2 alongwith comparisons to models suggested in

literature and actual data. The last part of this thesis, Chapter 9 summarizes the SoS

problem and discusses the scope of future work.
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CHAPTER 2

Air Transportation System Design

In this chapter, we discuss the conventional approach to air transportation design and

then propose a system of systems design problem formulation.

2.1 Conventional Approach

Traditionally, majority of the research in the area of air transportation design has fo-

cused on improving performance in individual disciplines separately by treating extra-

disciplinary quantities as fixed parameters. Each of the elements discussed in Section 1.3

are studied and optimized separately. For example, allocate aircraft to routes assuming

fixed aircraft design and route network configuration. To a large extent, this also holds

true for actual airline practices. Airline companies purchase off-the-shelf stock aircraft

from manufacturers and fly these aircraft along fixed routes. This approach is not optimal

since the coupling between different elements of air transportation can impact airline op-

erations. Bazargan [4] discusses how increased competition in the airline industry has led

to shrinking profit margins. Return on invested capital (ROIC) is used as a benchmark

for measuring an industry’s profitability. Studies such as [15] indicate that the airline

industry has one of the lowest reported ROIC - an argument that favors a more detailed

analysis of different components of airline operations.

The system of systems approach provides a means to build a comprehensive airline

transportation model. This can allow airline companies to collaborate with manufacturers

to design aircraft that better meets their needs and plan their operations more efficiently.

Information about actual airline practices is not available publicly and a good approximate

is obtained from publications such as [15] and existing research. A brief discussion about

existing research was presented in Section 1.4 which is continued below.

Conventional aircraft design studies focus only on designing the best aircraft for achiev-

ing a given objective - most commonly to minimize operating cost or fuel consumption

e.g. [5]. The impact of existing resources has only been investigated by Mane et al. [6].
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Other works in literature study the combined aircraft design and allocation problem.

Taylor and de Weck [8] consider aircraft design and allocation in their problem but their

problem does not include existing aircraft fleet. Jansen and Perez investigate [16] solve

the coupled aircraft design and fleet allocation problem under uncertain demand to mini-

mize the environmental impact of the airline. Their work involves coupled aircraft design

and allocation but does not consider existing fleet or network design. They extend their

approach in [17] for coupled design and optimization of an aircraft belonging to a given

family, to minimize fuel burnt and cost of allocation. Lastly, they simultaneously optimize

the airframe design and aircraft trajectory [18].

The structure of airline networks is another area that has not been considered in exist-

ing research. Airline networks evolve over a period of time in response to changing business

needs and external factors. Hub-spoke models are the most commonly adopted network

topology for dense networks with competing airlines. These networks offer limited control

over travel itineraries, and consequently, the capacity utilization of airline resources. Yang

and Kornfeld investigated the optimality of hub-spoke networks in context of an overnight

package delivery system [20]. Although their work does not include aircraft design, their

findings indicate that it has significant impact on the optimal network structure in addi-

tion to other factors such as city location and cargo demand. They report how the optimal

network structure changes from hub-spoke configuration to a point-to-point network (fully

connected) and back to hub-spoke configuration in response to these factors. This is sim-

ilar to [13, 14] and underscores the changing nature of optimal network configuration.

An example of this can be found in mature markets (North America, Europe) that are

witnessing a greater proliferation of low-cost carriers (LCCs) [21, 22]. The increased com-

petition has an impact on profitability that can cause airlines to modify their operations

along different routes (in terms of flight frequency and total revenue-passenger-miles1).

A system of systems approach that can help determine the best network configuration

considering existing resources. This becomes especially useful as newer technologies (for

aircraft design) become available.

Operations planning in airline industry has improved significantly with the advent of

increased computing power. Allocation of aircraft to different routes along with scheduling

is the end-point of airline operations that is directly related to airline revenue. A system

of systems approach can be used to couple allocation with the other systems discussed

above and optimize operations to yield savings.

1Revenue-passenger-miles or passenger-air-miles is a fundamental unit of measuring air traffic. It is
obtained as the product of an aircraft’s passenger capacity (revenue seats), no. of trips and route distance
summed for the section of aircraft fleet being considered.
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2.2 System of Systems Formulation

In order to illustrate the concept of system of systems applied to the airline system design

and resource allocation problem, we consider a sample problem in which a Canadian

regional carrier wishes to expand its operations to become a nationwide carrier. The airline

originally operates in five cities in western Canada: Vancouver, Kelowna, Edmonton,

Calgary and Victoria and expands to a network of fifteen cities.

We begin by first simplifying the air transportation model of Fig. 1.1. We omit the

environmental agencies, air traffic control system and the fuel distribution system as

shown in Fig. 2.1. The aim of this exercise is to arrive at a simplified model that captures

all essential aspects of air transportation to which additional systems (e.g. environmental

agencies) can then be added for a more comprehensive model.

TICKETING
SYSTEM

AIRPORTS
SYSTEM 

PROPULSION 
SYSTEM 

FUEL 
MANAGEMENT 

SYSTEM 

AIRCRAFT
CREW

NAVIGATION 
SYSTEM

COMM. AND 
CONTROL 
SYSTEM 

AIRCRAFT

Figure 2.1: Simplified air transportation problem

In order to expand operations, the airline needs to accomplish the following:

1. Estimate demand: The airline needs to estimate the increase in demand due to

addition of new cities to the network.

2. Acquire new aircraft: The airline needs to purchase new aircraft that can fly longer

routes and to expand its total seat capacity to service demand in the extended

network.

3. Plan operational routes: The airline needs to plan which routes will be operational

in the extended network.
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4. Allocate aircraft: Finally, the airline needs to allocate its fleet along the operational

route to meet the total demand.

We consider a two-stage expansion for the airline. Figure 2.2 shows the original five

cities in the network. In the first stage we add two cities to the network as shown in

Fig. 2.3. The network is further expanded to include fifteen cities nationwide in the next

stage - Fig. 2.4.

Figure 2.2: Regional network

Figure 2.3: Stage 1: expansion to seven cities

The airline is assumed to have an existing fleet which is comprised of two aircraft

types, A and B, whose range and passenger capacity are reported in Table 2.1.
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Figure 2.4: Stage 2: expansion to fifteen cities

Table 2.1: Range and passenger capacity of existing aircraft

Aircraft Type Range (nmi) Passenger Capacity

A 2000 100
B 2400 140

We are interested to model all aspects of the air transportation mentioned above and

depicted in Fig. 2.1, namely, demand estimation, aircraft design, network design (airports

system) and aircraft allocation (ticketing system). A systems of systems approach is

implemented using the formulation shown in Fig. 2.5. It is different from [6, 7, 8] in terms

Minimize DOCF

Local Variables: RX, PX 
Size Aircraft 

Local Variables: dX

Configure Network
Local Variables: l

Allocate Aircraft
Local Variables: x, y

DOCF

DOCX

l

RX, PX

Figure 2.5: Systems of systems model for airline transportation
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of: i) treating range of new aircraft as an additional SoS outer-loop design variable, and

ii) the inclusion of network design as a coupled system.

The SoS optimization problem is solved using a nested formulation. The SoS outer-

loop optimization problem minimizes direct operating cost of the fleet (DOCF) and has

range RX and passenger capacity PX of the new aircraft as its design variables. This

objective is a surrogate for the more realistic objective of maximizing profit, as the lat-

ter requires revenue and pricing models based on data that are usually proprietary. For

each iteration of the SoS outer-loop optimization problem, the algorithm performs air-

craft sizing and solves the network design and aircraft allocation problems using a nested

structure. Demand along different routes in the network is a fixed parameter in this

model.

Passenger demand estimates along each route are obtained using the ‘gravity model’

formulation described in Section 3.3. The demand estimation problem has all continuous

variables which are obtained using nonlinear least squares. The aircraft design problem

has three design variables that are continuous and are bounded at both ends. An in-

equality constraint is included in the aircraft design problem for takeoff and landing field

length considerations. The mathematical formulation for the aircraft design problem is

presented in Section 4.3.

The network design problem has all binary variables with four inequality constraints.

The number of variables increases with increase in network size and additional constraints

are added for the larger second stage of airline expansion - described in Section 8.2.

The allocation problem is a linear program with all integer variables with inequality and

equality constraints. The allocation problem formulation is described in Chapter 6.

The SoS outer-loop problem and the network design problem are solved using the Mesh

Adaptive Direct Search algorithm described in Chapter 7. The aircraft sizing problem is

solved as an optimization problem using NASA developed Flight Optimization System

as explained in Chapter 4. The aircraft allocation problem is solved using GNU Lin-

ear Programming Kit (glpk) and IBM ILOG Cplex for the seven-cities and fifteen-cities

problems, respectively. Each of these systems is described in more detail in the following

chapters.
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CHAPTER 3

Demand Estimation

Airline transportation involves flow of goods and/or people from one place to another.

Demand forecasts are used by airline companies to predict this movement. Accurate

forecasts are, therefore, crucial to successful airline operations. As first step towards

solving the air transportation problem, we present a model for demand estimation.

3.1 Background

Rodrigue [23] terms flow of demand between two locations as a spatial interaction, defined

as ‘realized movement of people, freight or information between an origin and a destina-

tion. It is a transport demand/supply relationship expressed over a geographical space.

He goes on to define three independent conditions necessary for a spatial interaction to

occur:

1. Complementarity: there must be a supply and a demand between the interacting

locations. For example, residential zones and industrial zones are complimentary.

2. Intervening opportunity: there must not be another location that may offer a better

alternative as a point of origin or a point of destination - this follows from simple

laws of economics.

3. Transferability: Freight, persons or information being transferred must be supported

by transport infrastructures.

The problem presented here deals with domestic civil aviation and therefore only passenger

movement is considered. The following section offers a brief introduction to the demand

estimation models available in literature and the corresponding selection criteria.

Based on the type of interactions considered for demand estimation, models can be

broadly classified into two categories:
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1. Models that take into account the effect of neighboring cities, such as the Potential

model [23].

2. Models that ignore the effect of neighboring cities, such as the Gravity model [24].

Mathematical formulations for both model types take into account socio-economic at-

tributes and location attributes of participating destinations. The general form is given

by

Tij = f(Vi,Wi, Sij), (3.1)

where Tij = interaction between location i and location j,

Vi = attributes of location i

Wj = attributes of location j

Sij = attributes of separation between location i and location j.

The attributes for either location can include socio-economic and geographical attributes

such as population, gross domestic product and industrial output. These attributes are

explained in more details in section 3.2.

Figure 3.1 illustrates the difference in the formulation of the types of models explained

above. Another basic interaction model - retail model - is presented with the mathematical

formulation. Although it does not give the interaction directly, it gives the boundary Bij

of two locations competing over the same market which is used for subsequent demand

estimation analyses.

Figure 3.1: Basic spatial interaction models - (figure adapted from [23])
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Since no single forecasting model can guarantee accuracy, airline companies employ

several models and compare the results. Within this set, gravity models are a widely used

subset. In this context a brief summary of gravity model development and application is

presented below.

3.2 Gravity Model

Gravity models were one of the earliest causal models developed for travel forecasting and

are one of the most commonly used methods for predicting flow of demand between two

cities. They are so named due to close resemblance of the mathematical expression in its

basic form with Newton’s gravitational law. The generalized formulation (as shown in

Fig. 3.1) is given by

Tij =
(Vi ∗Wj)

α

Sij
γ (3.2)

As explained above, Vi and Wj are location attributes of the two destinations and

Sij represents the friction of separation. Similar to the gravitational law, the demand is

directly proportional to the location attributes of the two cities and varies inversely with

the separation between them. The parameters α and γ control the two factors respectively.

3.2.1 Extended Gravity Model

In the most basic form, location attributes in the formulation given by Eq. (3.2) are

indicated by the population of both destination cities and the separation is represented

by the intervening distance. This basic formulation can be extended to include other

parameters as described below in order to develop a more accurate model - depending

on the application area. For transportation models, the location attributes are expanded

to include socio-economic and geographical attributes. These are the driving forces for

the gravity model and can be divided into two groups: geo-economic factors and service-

related factors [25].

Geo-economic factors, as the name suggests, involve economic activities and geograph-

ical characteristics of the cities served. Commonly used geo-economic factors include:

income and population of the area served, population of the catchment area, income

distribution, gross domestic product, telephone connectivity and tourism destinations.

A principal geographic factor affecting demand between two cities is the geographical

distance between two destinations. Since we are dealing with air-transportation, direct

distance between destinations is considered. Geographical distance (hereafter referred to
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as ‘distance’) has two conflicting effects: longer distances lead to lower interactions be-

tween destination cities while increasing competitiveness of air-transportation compared

to other means of transport.

Service-related factors are primarily related to the airline itself [26]. These factors

focus on the quality and time of the airline service and include: travel time between

cities, average on-time arrivals, ticket pricing, load factors, frequency of flights and aircraft

equipment. Several of these factors are outside the control of the airline companies, such

as operational routes and frequency of flights are affected by competitors. Airfare being

dependent on distance and travel time can also be considered as an exogenous factor. The

airline has limited control over air travel prices in a competitive market and it is highly

dependent on air fuel prices that are highly volatile and hard to forecast accurately. Due

to these reasons, airfare is often omitted from the model [25].

3.2.2 Existing Formulations

Calderón’s Model

Calderón [26] presented a formulation of the extended gravity model that incorporates

the factors described in Sec. 3.2. Equation (3.3) gives the mathematical formulation of

this model applied to individual routes in the network. The inclusion of service-related

factors reported in Table 3.2 attains special significance as explained below.

TRAFFICi = DISTANCEβ1
i × POPULATION

β2
i × INCOMEβ3

i ...

× FREQβ4
i × ASIZE

β5
i × ECONOMY β6

i ...

× exp(α + γ1MODISCi × γ2HIDISCi × γ3PROX1i...

× γ4PROX2i × γ5SEAX i × γ6TOURISM i...

× γ7HUB1i × γ8HUB2i + ε) (3.3)

This formulation was applied to European airspace with high coefficient of determi-

nation and the following results:

1. Incorporating service-related factors improves the accuracy of the model.

2. Demand is inelastic to ECONOMY fares - used by business travellers.

3. Aircraft size becomes more important as route distance increases.

4. Aircraft frequency and on-time arrivals are important for short-haul routes in the

network.
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Table 3.1: Geo-Economic variables in Jorge Calderón’s mode

Attribute Notation Description

Distance DISTANCE Geographical distance between two cities

Population POPULATION Population of the origin and destination cities

Income INCOME
Overall average (population weighted) of ori-
gin and destination cities

Economy
fare

ECONOMY Cheapest unrestricted economy class fare

Proximity
to hubs

PROX1
One of the cities is close to a hub city (< 108
nmi)

PROX2 Both cities are close to a hub city (< 108 nmi)

Table 3.2: Service-related variables in Jorge Calderón’s model

Attribute Notation Description

Frequency FREQ Return flights on a route (per week)

Aircraft
Size

ASIZE
Obtained as the number of seats per aircraft
averaged over total flights per week

Airfare
ECONOMY Cheapest unrestricted economy fare
MODISC Moderate discount over ECONOMY (≤ 49%)
HIDISC High discount over ECONOMY (≥ 49%)

Grosche’s Model

Grosche, Rothlauf and Heinzl [24] proposed a model similar to Calderón’s, also adapted for

Europe. Grosche et al. presented two formulations of the extended gravity model for air

transportation: a basic model (BM) that does not take into account competing airports

and an extended model (EM) that includes multi-airport locations. For both models,

medium-haul and long-haul flights were used for calibration while excluding tourist des-

tinations. Formulation of the Basic Model is given by Eq. (3.4). Table 3.4 reports the

functional form of these parameters.

Vij = P π
ijC

χ
ijB

β
ijG

γ
ijD

δ
ijT

τ
ij (3.4)

• Population: Population figures for the city where the airport is located. Catchment
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Table 3.3: Special control variables in Jorge Calderón’s model

Attribute Notation Description

Tourism TOURISM Active for tourism destinations

Hub cities
HUB1 One city is an airline hub
HUB2 Both cities are airline hubs (≥ 49%)

Marine
transport

SEAX
Dummy variable - assumes a value of 1 whenever
a route flies over water

Table 3.4: Independent variables used in the Grosche’s gravity model

Notation Functional Form Factor

Pij PiPj Population
Cij CiCj Catchment
Bij Bi +Bj Buying power index
Gij GiGj Gross domestic product
Dij Geographical distance
Tij Average travel time

area population is included separately.

• Catchment: This refers to population of airport vicinity - defined as the area within

a specified driving time (usually assumed to be 60 minutes).

• Buying power index: Buying power index of the catchment area.

• Gross domestic product: Gross domestic product (GDP) is used in place of income

distribution as a representative indicator of economic activity.

• Geographical distance: Geographical distance is the great circle distance (used by

aircraft) between the two airports.

• Average travel time: Average travel time between two cities - obtained from air

traffic bookings or empirically from average aircraft speed.

Bhadra’s Model

Bhadra [27] presented a detailed model for semi-log linear demand relationship for origin-

destination (OD) travel in the United States. Bhadra’s model takes into account local
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characteristics of the OD cities as opposed to a ‘top-down’ approach commonly used in the

industry and Federal Aviation Administration and focuses on an econometric approach

to demand forecasting for OD pairs.

3.3 Proposed Model for System of Systems Problem

Models proposed by Calderón and Grosche et al. are calibrated for European airspace.

Bhadra’s model follows an econometric approach to demand estimation. Each of these

models requires changes in the formulation before they can be used for Canadian airspace.

Considering the constraints of the current problem, service-related factors may be

omitted from the network. A key consideration for doing so derives from the fact that

airline transportation industry is highly competitive and as such the market condition

is always changing. This volatility is not particularly useful for long-term forecasting.

Calderón’s model is the only formulation that discusses several-related factors. The sam-

ple European network used is dense with several large and medium hubs. Most airlines

follow similar practices with high passenger volumes on short-haul flights between impor-

tant business centers. Additionally, the North-American market medium and long-haul

flights that necessitate a different modeling approach. Factors such as proximity to hub-

cities (PROX1, PROX2) cannot be used for the current problem since the hub-cities

(HUB1, HUB2) are not previously known and the network topology is indeterminate.

The flight data and fares are also unavailable and corresponding factors can not be used

(ECONOMY, HIDISC, MODISC). Tourism affects seasonal demand between cities and is

in turn affected by network topology i.e. if the OD pair has a direct flight. Since network

topology in our problem is not known and we are not interested in seasonal demand [25],

tourism (TOURISM) is omitted in the proposed model.

The model proposed by Grosche et al. considers geo-economic factors only and is

taken as the basic model for our problem. Two additional factors are added to this model

based on the results from calibration (discussed in 3.3.1). These factors are incorporated

to improve the accuracy for cities close to the ocean (Oij) and language factor for Québec

(Lij). The formulation is given by Eq. (3.5):

Vij = P π
ijC

χ
ijB

β
ijG

γ
ijD

δ
ijT

τ
ijL

λ
ijOij

1

c
(3.5)

Tables 3.5 reports the additional factors and the cities for which these factors are active.
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Table 3.5: Additional Factors in proposed model

Variable Description Cities

Lij Language Factor Montréal, Québec
Oij Ocean Influence Victoria, St. Johns

3.3.1 Calibration and Results

A key challenge related to the use of any forecasting model is calibration. Calibration is

the process of obtaining optimal values for all parameters in the formulation in order to

minimize the difference between the estimated values and real data. Actual data for cali-

brating a demand model can be obtained through a detailed market research and survey.

Since large scale surveys would be very expensive, most models are calibrated using air-

line traffic figures as substitutes for unconstrained demand. These figures are influenced

by the fleet size and capacity of various airlines and do not equal actual unconstrained

demand. Further, the models discussed above are calibrated for European and American

networks and there are little recent data available for domestic aviation in Canada. A

range-based calibration methodology proposed by Grosche et al. [24] is implemented using

linear least squares. Three distance intervals are considered: short (less than 432 nmi),

moderate (between 432 nmi and 1, 080 nmi) and long (greater than 1, 080 nmi). The

language and ocean factors are held constant for each interval.

The most recent data for all domestic OD pairs in Canada was released in 1999. How-

ever, in its 2011 report, Transport Canada released daily seat numbers for the top 25

city-pairs based on domestic demand [28]. We used these data to calibrate the model of

Eq. (3.5) and then estimated demand for the routes considered in the two stage expansion

(the 2011 data do not include all routes considered in the problem presented here). We

used both linear (using log transformations) and non-linear least squares to determine

the coefficients of this model, including the normalizing constant c. We also explore the

option of fitting different models for each distance interval as well as reducing the number

of variables (e.g., by using the correlation of travel time to geographic distance). All mod-

els returned demand values that we overall very close to each other as quantified by the

root mean square (RMS) error. We report here the coefficients of the model of Eq. (3.5)

obtained using non-linear least squares since it had the smallest RMS error reported in

Table 3.6.
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Table 3.6: Root-mean-square error for different demand model formulations

Model 1 Model 2 Model 3 Model 4

RMS Error 186 288 276 390

Where,

1. Model 1 - Nonlinear least squares with 3 range-intervals and 9 unknowns in each

interval

2. Model 2 - Linear least squares with 2 range-intervals and 9 unknowns in each interval

3. Model 3 - Linear least squares with 3 range-intervals and 9 unknowns in each interval

4. Model 4 - Linear least squares with 3 range-intervals and 6 unknowns in each interval

Table 3.7 reports the numerical values of the coefficients of Eq. (3.5) obtained through

non-linear least squares. Note that we discuss the demand component because of its

importance to the problem. However, in this work demand is estimated a-priori and held

fixed throughout the SoS optimization process; in this regard we could have used directly

the 1999 demand values as they included all routes considered in our examples.

Table 3.7: Demand model coefficients for different distance intervals

Distance π χ β γ δ τ λ c

< 432 nmi 1.393 9.123E-6 3.528 -0.859 0.259 -0.240 -2.504 1.491E+6
432-1080 nmi 1.565E-5 0.478 0.240 -0.112 3.578 -6.385 -2.504 1.499E+8
> 1080 nmi 0.351 4.223E-5 0.0001 0.409 1.732 -1.547 -2.504 1903E+8

Using these values of the coefficients, the demand figures for the top 40 routes obtained

from the model are reported in Table 3.8. The values obtained from the model follow the

trend reported in [28]. It must also be noted that gravity models report reciprocal demand

for an OD pair i.e. demand from city i to city j is the same as the demand from city j to

city i which is practically very nearly the case. Cases where this is not applicable become

especially relevant for the allocation problem (Chapter 6) since difference in demand for

either direction would leave balance aircraft at one airport.

Route distances and demand for all possible OD pairs in the network are reported in

Table 3.9 and Table 3.10, respectively.
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Table 3.8: Top 40 domestic routes by daily air traffic demand using Eq. (3.5)

City pair Daily demand City pair Daily demand

Toronto-Montreal 5602 Vancouver-Winnipeg 901
Toronto-Ottawa 3717 Ottawa-Winnipeg 896
Toronto-Vancouver 3433 Vancouver-Montreal 893
Vancouver-Calgary 2870 Vancouver-Victoria 875
Toronto-Calgary 2457 Calgary-Saskatoon 828
Toronto-Edmonton 2101 Calgary-Regina 816
Vancouver-Edmonton 1904 Calgary-Ottawa 796
Calgary-Edmonton 1812 Edmonton-Regina 773
Toronto-Halifax 1655 Edmonton-Saskatoon 766
Toronto-Winnipeg 1553 Toronto-Quebec 734
Ottawa-Halifax 1253 Toronto-Victoria 720
Calgary-Winnipeg 1153 Edmonton-Ottawa 678
Edmonton-Winnipeg 1138 Montreal-Halifax 659
Vancouver-Ottawa 1107 Ottawa-Thunder Bay 654
Toronto-Thunder Bay 1086 Montreal-Calgary 646
Calgary-Victoria 1059 Vancouver-Kelowna 630
Vancouver-Saskatoon 1041 Halifax-St Johns 595
Edmonton-Victoria 1022 Toronto-Saskatoon 586
Vancouver-Regina 914 Kelowna-Saskatoon 581
Montreal-Ottawa 901 Calgary-Kelowna 574

29



T
ab

le
3.

9:
R

ou
te

d
is

ta
n
ce

s
(n

m
i)

fo
r

al
l

p
os

si
b
le

O
D

p
ai

rs
in

th
e

n
et

w
or

k

V
A

N
M

T
L

C
A

L
E

D
M

O
T

T
H

A
L

W
IN

V
IC

S
T

J
K

E
L

Q
B

E
S
K

T
R

E
G

T
B

Y

T
O

R
18

13
27

2
14

63
14

60
19

0
69

9
81

7
18

30
11

40
16

70
39

3
12

01
11

02
49

7
V

A
N

–
19

92
36

4
44

2
19

13
24

03
10

08
50

27
06

14
6

20
49

64
7

71
8

13
30

M
T

L
–

–
16

33
16

07
90

44
1

98
5

20
14

86
9

18
47

12
6

13
57

12
74

66
5

C
A

L
–

–
–

15
1

15
55

20
39

65
0

39
4

23
43

21
9

16
87

28
3

36
1

97
3

E
D

M
–

–
–

–
15

34
19

98
64

5
48

3
22

77
31

3
16

51
26

1
37

7
96

3
O

T
T

–
–

–
–

–
53

0
90

6
19

34
95

6
17

68
20

4
12

81
11

95
58

4
H

A
L

–
–

–
–

–
–

14
02

24
28

46
5

22
57

35
6

17
58

16
87

10
90

W
IN

–
–

–
–

–
–

–
10

29
17

41
86

2
10

46
38

5
28

9
32

3
V

IC
–

–
–

–
–

–
–

–
27

37
17

6
20

74
67

7
74

1
13

50
S
T

J
–

–
–

–
–

–
–

–
–

25
62

75
6

20
61

20
12

14
57

K
E

L
–

–
–

–
–

–
–

–
–

–
19

04
50

2
57

3
11

85
Q

B
E

–
–

–
–

–
–

–
–

–
–

–
14

07
13

33
73

5
S
K

T
–

–
–

–
–

–
–

–
–

–
–

–
12

8
70

5
R

E
G

–
–

–
–

–
–

–
–

–
–

–
–

–
61

2

30



T
ab

le
3.

10
:

P
as

se
n
ge

r
d
em

an
d

fo
r

al
l

p
os

si
b
le

O
D

p
ai

rs
in

th
e

n
et

w
or

k

V
A

N
M

T
L

C
A

L
E

D
M

O
T

T
H

A
L

W
IN

V
IC

S
T

J
K

E
L

Q
B

E
S
K

T
R

E
G

T
B

Y

T
O

R
34

33
56

02
24

57
21

01
37

17
16

55
15

53
72

0
43

5
49

1
73

4
58

7
47

6
10

86
V

A
N

–
89

3
28

70
19

04
11

07
48

9
90

1
87

5
31

1
63

0
20

6
10

41
91

4
14

5
M

T
L

–
–

64
6

54
9

90
2

65
9

40
8

18
7

27
2

12
8

38
0

15
6

12
8

30
3

C
A

L
–

–
–

18
12

79
6

36
1

11
53

10
59

23
2

57
4

14
9

82
8

81
6

39
8

E
D

M
–

–
–

–
67

8
30

7
11

38
10

22
19

6
56

0
12

7
76

6
77

3
39

5
O

T
T

–
–

–
–

–
12

53
89

5
23

2
48

5
15

9
35

9
19

1
15

7
65

5
H

A
L

–
–

–
–

–
–

16
1

10
3

59
5

71
18

7
89

75
34

W
IN

–
–

–
–

–
–

–
47

9
10

8
53

2
16

7
55

3
51

4
35

9
V

IC
–

–
–

–
–

–
–

–
73

24
2

43
55

0
48

6
31

S
T

J
–

–
–

–
–

–
–

–
–

45
13

8
58

49
24

K
E

L
–

–
–

–
–

–
–

–
–

–
30

58
1

52
4

20
Q

B
E

–
–

–
–

–
–

–
–

–
–

–
36

30
12

4
S
K

T
–

–
–

–
–

–
–

–
–

–
–

–
26

0
34

3
R

E
G

–
–

–
–

–
–

–
–

–
–

–
–

–
36

0

31



CHAPTER 4

Aircraft Sizing

Aircraft design (or aircraft sizing) refers to the process of obtaining a conceptual design

of an aircraft in terms of selected design variables and subject to relevant constraints.

Aircraft design has been studied as a standalone MDO problem by several researchers in

recent literature [5]. Clearly the level of detail in aircraft design depends on the choice

of design variables. This chapter presents a brief description of the sizing variables for

aircraft design. Finally a mathematical formulation for the SoS problem using NASA’s

Flight Optimization System (FLOPS) is presented.

4.1 Aircraft Sizing Variables

4.1.1 Aerodynamic Variables

Aerodynamics is a principal part of aircraft design. Table 4.1 reports important aerody-

namic variables used for aircraft sizing. It is possible to go beyond the small list reported

in Table 4.1, however, we limit our focus to principal design variables. The scope of

discussion is limited to subsonic jet design for civil (domestic) aviation. The variables

in Table 4.1 are coupled together through empirical relations based on existing design

practices. These relations are available in most standard textbooks on aircraft design

such as [29], [30] and [31]. For example, aspect ratio (AR), wingspan (b) and planform

area (SW ) are related as shown in Eq. (4.1).

AR =
b2

SW
(4.1)

Fuselage and Cabin design variables represent structural design of the aircraft which

affects the computation of weights and finally the aerodynamic variables. Design data

for horizontal and vertical tails is used for calibration of the aircraft sizing algorithm

(Sec 4.2).
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Table 4.1: Aerodynamic design variables

Variable Notation Description

Wing Data
SW

Planform area - projected area of the wing (including
that buried in the fuselage)

Λ
Wing sweep angle - angle of the quarter chord line ex-
tended from the line perpendicular to the centerline

λ
Wing taper ratio - ratio of wing tip chord (ctip) to wing
root chord (croot)

AR Wing aspect ratio
b Wing span

H-Tail
CHT H-tail volume coefficient
SHT Theoretical H-tail area
ARHT H-tail aspect ratio

V-Tail
CV T V-tail volume coefficient
SV T Theoretical V-tail area
ARV T V-tail aspect ratio

Fuselage Data
XL Length of aircraft fuselage

H
Fuselage height - max. distance of the fuselage from its
underside to the top in the vertical plane

W
Fuselage width - max. width of the fuselage - equal to
diameter for a circular cross section

Cabin Data
Hcab Internal cabin height from the floor
Wcab Internal cabin width
LP Length of passenger compartment

4.1.2 Propulsion System Variables

Propulsion system provides the motive power for the aircraft. For the problem described

here, we consider variables relevant to subsonic turbofan aircraft. A basic turbofan engine

consists of the following: a fan, a compressor, a combustion chamber, a turbine and finally

an expansion nozzle. Each of the rotary units may further consist of multiple stages (for

example, a multi-stage turbine). A key difference between turbofans and turbojets is

that all the exhaust from the fan does not enter the combustion chamber and turbine.

This portion of air is termed as ‘bypass’ and the corresponding ratio, the ‘bypass ratio’.

Figure 4.1 shows the basic turbofan engine. Key variables related to the propulsion
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Figure 4.1: Schematic of a turbofan engine

system are listed in Table 4.21. Of these variables engine weight and engine thrust are of

particular importance. The sizing approach is described in sections 4.2 and 4.3.

4.1.3 Weights

Weights estimation is a key component of aircraft design. The aircraft weight is typi-

cally defined in terms of maximum take-off mass (MTOM) or maximum take-off weight

(MTOW) which is also expressed maximum take-off weight i.e. with the effect of acceler-

ation due to gravity (g). Three approaches have been discussed in literature [30, 29]:

1. Statistical average method - also known as the ‘rapid method’ - in this method mass

of all components and component systems is represented as a percentage of MTOM.

2. Graphical method - this method consists of plotting weights of various manufacture

aircraft to fit into a regression curve.

3. Semi-empirical method - this method combines empirical derived from theory and

real data from various manufactured aircraft.

1These design variables are relevant for subsonic turbofan engine. Additional variables are required
for turboprops and rotary wing aircraft.
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Table 4.2: Propulsion system variables

Variable Notation Description

Thrust T Rated thrust of each baseline engine

Engine Weight WtEngine Weight of each baseline engine

Nacelle Length LNAC Length of engine nacelle

Specific Fuel
Consumption

SFC Engine specific fuel consumption

Engine Pressure
Ratio

EPR Overall engine pressure ratio

Bypass Ratio BPR
Ratio of volume of air that bypasses engine core to the
volume of air used in combustion

Equation (4.2) gives the different components used for weight estimation. The different

terms are detailed in Table 4.3.

MTOM = MSTR + MPP + MSYS + MFUR + MCONT

+ MCREW + MCON + MPL + MFUEL (4.2)

4.1.4 Take-off and Landing Performance

The variables related to take-off and landing are used to ensure that the aircraft can op-

erate from all airports. The corresponding weights MTOW and MLW (maximum landing
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Table 4.3: Individual weights used for MTOM computation

Term Description

MSTR

Structure group: Fuselage + Wing + H-tail + V-tail + Nacelle +
Undercarriage + Misc.

MSTR = MFU + MW + MHT + MVT + MN + MUC + MMISC

MPP

Power plant group: Engine (dry) + Thrust reverser + Control sys-
tem + Fuel System + Oil system

MPP = ME + MTR + MEC + MFS + MOIL

MSYS

Systems group: Environmental control system + Flight control sys-
tem + Hydraulic system + Electrical system + Electrical system
+ Instrument System + Avionics

MSYS = MECS + MFC + MHP + MELEC + MINS + MAV

MFUR
Furnishing group: Seats + Oxygen system + Paint

MFUR = MSEAT + MOX + MPN

MCONT Contingencies: Allowance for unspecific weight growth

MCREW
Crew: Flight crew + Cabin crew

MCREW = MFLC + MCCR

MPL Payload: Passengers + Baggage

MFUEL Mass of fuel

weight) and the weight ratio WR are used for payload estimation and cost analyses.

MTOW = MTOM× g (4.3)

= MRW− (MTaxi Fuel × g)

= (MEmpty + MCREW + MCONT + MPL + MFUEL)× g (4.4)

MLW = MTOW− (MMission Fuel + MReserve Fuel)× g (4.5)

WR =
MLW

MTOW
, (4.6)

where MPL = NPassengers ∗ (MPassenger + MBaggage) + MCargo (4.7)

MFUEL = 2 ∗ FuelWing + (NFuselage ∗ FuelFuselage)

= MMission Fuel + MReserve Fuel (4.8)

Aircraft performance variables are commonly expressed in fps units and the correspond-

ing empirical relations are expressed in terms of aircraft weights. Table 4.4 provides a
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description of these weights.

Table 4.4: Take-off and landing variables

Variable Notation Description

Approach
Velocity

VApproach Max. allowable approach velocity for landing

Weights
MTOW Max. take-off weight
MRW Max. ramp weight
MLW Max. landing weight
WR Ratio of max. landing wt. to max. take-off wt.

Runway
Length

FLTO Max. allowable takeoff field length
FLLDG Max. allowable landing field length

4.1.5 Mission Profile

The mission profile is a complete description of the aircraft operations that are performed

to execute the mission - from takeoff to landing. Figure 4.2 depicts the mission profile

used for the problem described here. The mission profile variables are calculated through

Figure 4.2: Aircraft mission profile

empirical relations described in [30] and are reported in table 4.5. Additionally time

available for takeoff can also be prescribed. Parameters related to aircraft noise are

omitted for the problem described here.
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Table 4.5: Aircraft mission profile

Variable Notation Description

Time

TTakeoff Takeoff time, min
TTaxi-out Taxi out time, min
TApproach Approach time, min
TTaxi-in Taxi in time, min

Climb
Information

VClimb Rate of climb
(CL)Climb Lift coefficient during climb
CLMin Min. mach number
CLMax Max. mach number
CHMin Min. altitude
CHMax Max. altitude

4.1.6 Cost Estimation Parameters

Cost analysis relates to the process of obtaining aircraft cost coefficients along different

routes in the network. Liebeck et al. [32] proposed a methodology for DOC estimation

for subsonic aircraft that incorporates the cost elements listed below:

1. Flight Crew

2. Cabin Crew

3. Landing Fees

4. Navigation Fees

5. Maintenance - Airframe

6. Maintenance - Engine

7. Fuel Costs

8. Depreciation - Aircraft & Spares

9. Insurance

10. Interest

Elements 1 through 7 are commonly referred to as ‘cash costs’ and elements 8 through 10

are referred to as ‘ownership costs’.
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4.2 Flight Optimization System

4.2.1 Introduction

The Flight Optimization System (FLOPS) is a NASA developed code for aircraft design

and cost analyses that is routinely used in government and academic studies. It provides

a good multidisciplinary platform for conceptual aircraft design as well as for evaluation

of advanced concepts. FLOPS consists of nine primary modules - reported in Table 4.6.

Through the program control option (9), it is possible to run a variety of analyses on

FLOPS. FLOPS performs the aircraft sizing operation based on empirical relations such

Table 4.6: FLOPS modules for aircraft design and cost analysis

Module FLOPS Namelist (primary)

Weights $WTIN
Aerodynamics $AERIN
Engine cycle analysis $ENGINE
Propulsion data $ENGDIN
Mission performance $MISSIN
Takeoff and landing $MISSIN
Noise footprint $NOISIN
Cost analysis $COSTIN
Program control $OPTION

as those presented in [29]. It is possible to perform sizing analyses with the least amount

of input from the user with unspecified variables computed using internal defaults. This

is particularly useful as much information about aircraft structure and performance is not

readily available. It is also possible to run FLOPS in ‘optimization mode’ to optimize

aircraft design for optimizing performance of one or more of the systems discussed above.

FLOPS offers a choice of five optimization algorithms for minimizing the objective function

- listed in Table 4.7. The objective function for the sizing optimization problem is given

by Eq. (4.9) and Table 4.8 provides a description of the corresponding weights.

OBJ = OFG ∗GW +OFF ∗MFuel +OFM ∗ V CMN ∗ (Lift/Drag) (4.9)

+OFR ∗ Range +OFC ∗ Cost +OSFC ∗ SFC

+OFNOX ∗NOx+OFNF ∗ (Flyover Noise) +OFNS ∗ (Sideline Noise)

+OFNFOM ∗ (Noise Figure of Merit) +OFH ∗ (Hold Time)
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Table 4.7: Optimization routines available in FLOPS

Davidon-Fletcher-Powell (DFP) Algorithm
Broyden-Fletcher-Goldfarb-Shano (BFGS) Algorithm
Conjugate Gradient (Polak-Ribiere) Algorithm
Steepest Descent Algorithm
Univariate Search Algorithm

Table 4.8: Weights for FLOPS objective function

Parameter Description

OFG Objective function weighting factor for gross weight
OFF Objective function weighting factor for mission fuel
OFM Objective function weighting factor for Mach*(L/D)
OFR Objective function weighting factor for Range,
OFC Objective function weighting factor for Cost

OSFC
Objective function weighting factor for Specific Fuel Consump-
tion at the engine design point

OFNOX Objective function weighting factor for NOx emissions
OFNF Objective function weighting factor for flyover noise
OFNS Objective function weighting factor for sideline noise
OFNFOM Objective function weighting factor for noise figure of merit
OAREA Objective function weighting factor for area of noise footprint
OFH Objective function weighting factor for hold time

4.2.2 Aircraft Sizing Using FLOPS

For the SoS air transportation problem, FLOPS is used to perform both aircraft sizing

and DOC estimation. A series of aircraft are sized to validate the results obtained from

FLOPS. For the problem presented here, the network has only short and medium haul

routes and the validation is carried out for short and medium range aircraft. Mane [33]

reported that validation results are more accurate for aircraft empty weight. Sizing for

empty weight was performed for four aircraft using the information obtained from Jane’s

All the World’s Aircraft [34]. The known sizing parameters were input to FLOPS and

the remaining were computed internally. The results obtained are shown in Fig. 4.3.

Although FLOPS does not offer very high accuracy, it performs better compared the

empirical approach reported in [33] and is considered to be adequate for the problem
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Figure 4.3: Percentage error in aircraft empty wt. computation using FLOPS

presented here. The Airbus A321-200 aircraft is chosen for modeling the FLOPS code for

the SoS problem. Results of more detailed sizing operation for this aircraft are shown in

Fig. 4.4.

Figure 4.4: Error in sizing Airbus A321-200 aircraft using FLOPS
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Minimize DOCF

Local Variables: RX, PX 
Size Aircraft 

Local Variables: dX

Configure Network
Local Variables: l

Allocate Aircraft
Local Variables: x, y

DOCF

DOCX

l

RX, PX Size Aircraft 
Local Variables: dX

Figure 4.5: Aircraft sizing in the SoS problem

4.3 Aircraft Sizing Problem

Figure 4.5 highlights the aircraft sizing problem in the SoS problem described in Chap-

ter 2.2. The aircraft sizing problem is formulated to minimize aircraft operating cost

DOCX as a function of a set of aircraft design variables dX, namely wing aspect ratio

(AR)X, thrust-to-weight ratio (T/W )X and wing loading (W/S)X. These are reported to

have the most impact on aircraft sizing and cost of operation [8, 6, 13, 33]. Figure 4.6

depicts the FLOPS aircraft sizing optimization problem. Note that aircraft range RX

min  DOCX(dX; RX, PX) 
s.t. g1(dX) ≤ 0

Aircraft Sizing
RX, PX DOCX

dX

min  DOCX(dX; RX, PX)
s.t. g1(dX) ≤ 0

Aircraft Sizing
RX, PX DOCX

dX

Figure 4.6: Schematic for aircraft sizing problem

and passenger capacity PX are held constant for the sizing step - as they are determined

in the outer-loop SoS problem. FLOPS is run in optimization mode using the Broyden-

Fletcher-Goldfarb-Shano (BFGS) algorithm.
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Mathematically the aircraft sizing problem is described by Equations (4.10) - (4.14):

min
dX

DOCX(dX;RX, PX) (4.10)

subject to

6.5 ≤ (AR)X ≤ 10.5 (4.11)

98 ≤ (W/S)X ≤ 150 (lb / sq. ft) (4.12)

0.3 ≤ (T/W )X ≤ 0.5 (4.13)

STO (RX, PX, (AR)X, (W/S)X, (T/W )X) ≤ 8, 990 ft (4.14)

The constraint set g1 depicted in Fig. 4.6 is described by Eqs. (4.11) - (4.14). These bounds

are based on the observed values for medium-range aircraft reported in [30, 31]. Since

wing-loading can not be bound directly in FLOPS optimization mode, other variables are

so chosen that wing-loading always lies within the bounds given by Eq. (4.12). A bound

on the runway length (STO) is imposed to ensure that the aircraft can take-off and land

from all cities in the network and is given by Eq. (4.14).

FLOPS minimizes the aircraft gross weight as a surrogate for minimizing aircraft

operating cost. The sized aircraft is then flown along all feasible routes in the network

(regardless of whether or not they are operational) to obtain the corresponding cost

coefficients. The basic mission profile used includes a quick ascent to cruise altitude

of 30, 000 ft, cruise-climb at constant velocity of Mach 0.82, and a quick descent to the

airport for landing. An allowance is made for a loiter time of 20 minutes for the scenario

where the aircraft does not get immediate clearance for landing.

Cost coefficients for the existing airline aircraft types (A and B) in the fleet are ob-

tained using the relations described in [32, 35]. Additional parameters used for these

calculations are reported in Table 4.9. The results obtained for aircrafts A and B along

all feasible routes are given by Tables 4.10 and 4.11 respectively2. As described previously,

DOCA and DOCB are constant parameters in our problem. All these cost coefficients

are passed on to the network design and aircraft allocation problems.

2The existing fleet can not operate along routes greater than aircraft range. Additionally, aircraft B
can not operate from Thunder Bay (TBY) as explained in Sec 8.2.
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Table 4.9: Additional cost estimation variables for existing fleet

Variable Notation Description

Development
Year

DEVST Year in which aircraft design was initiated

Depreciation Pe-
riod

DEPPER Period over which aircraft value depreciates

Residual Value RESID Residual value at the end of lifetime (percentage)

Load Factor LF Ratio of no. of passengers flown to total available seats

Operation
Type

IOP Domestic or international operation
IRNG Range indicator - short, medium or long range aircraft
IBDY Body type indicator - narrow-body or wide-body aircraft

Aircraft
Development

NFLT No. of flight test aircraft
NPROT No. of prototype aircraft

4.4 Summary and MATLAB Implementation

The outer loop of the SoS optimization problem considers candidates for capacity and

range. For each RX and PX, FLOPS attempts to design an aircraft while satisfying

constraints. At each iteration of the outer-loop SoS problem, MATLAB creates an input

script for execution in FLOPS (optimization mode). The output from FLOPS is recorded

on an external file which is read into MATLAB to get the design characteristics of aircraft

along with DOCX for all feasible routes. Since it is not possible to constrain wing-loading

explicitly in FLOPS, any design obtained from the FLOPS output file that does not satisfy

Eq. (4.12) is rejected at this stage. The entire process takes nearly 4 seconds to compute

on a 64-bit Intel i7 processor with 4 cores and 8192 MB of RAM.

It is observed that DOCX follows trends expected from economies of scale - the cost

coefficient of aircraft X for a fixed RX increases with increase in PX, however, the cost

per passenger decreases. Due to this, the optimal PX is expected to be close to the upper

bound of 240. This is described in more detail in Chapter 8.
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CHAPTER 5

Network Design

An airline route network1 is the complete set of direct flights operated by the airline

to meet passenger demand. All cities in the airline network may not be connected to

each other through direct flights. Depending on which routes are active in the network,

there are several feasible topologies for the same set of destination cities. Different net-

(a) Hub-spoke network

(b) Fully connected network (c) Multi-hub network

Figure 5.1: Different network topologies

work topologies have evolved in response to airline needs and operations as depicted in

Figure 5.1. A brief description of three common topologies is presented below:

1. Hub-spoke networks: This network type has a central hub-city to which all other

non-hub cities are connected. There are no connections between non-hub cities and

all passenger demand must be routed through the hub-city. These networks evolved

1Hereafter referred to as ‘network’
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as the airline industry was deregulated in the 1970s. Direct flights between small and

medium-sized cities were increasingly routed through larger, central hubs allowing

airlines to benefit from cost and volume advantages. This topology is suitable for

networks with high passenger demand - Fig. 5.1a

2. Fully connected networks: Also known as point-to-point networks, this topology is

typically used by low-cost carriers that have low marginal cost per passenger and are

typically regional in operation. In a fully connected network all cities are connected

to each other - Fig. 5.1b - however, some routes may not be operational in an actual

airline network.

3. Multi-hub networks: These networks have a structure between hub-spoke networks

and fully-connected networks. It is possible to have more than one hub-city as shown

in Fig. 5.1c although they may not be connected to all other cities in the network.

5.1 Network Topology Design

The cost of operation for a network is a function of the network topology/configuration

which is represented by the direct flights or active routes. Direct flights represent two

conflicting factors: generally, direct flights are less expensive than flights routed through

other cities, other factors remaining constant, however, practically this is not feasible due

to the associated costs involved. These costs include the fees the airline must pay to the

air traffic control authority, navigation authority, airport fees related to aircraft ground

operations and cost of developing infrastructure for the new routes. Finally, the airline

also needs to plan for future operations which includes revenue estimation. Collectively

these costs are termed as Indirect Operating Costs (IOC).

There is no method reported in current literature for IOC estimation. Further, each

airline has its own revenue generation model details of which are not easily available. An

alternative approach to modeling airline network topology is therefore needed.

Liu et al. [12] proposed a model based on complex network theory. The network design

problem is treated as an optimization problem to maximize the weighted sum of network

properties and solved using a genetic algorithm. However, the model does not take into

account the cost of operation of the network. The approach described in [8] incorporates

some elements of operating costs in network design but omits network properties. It is

desired to have a more encompassing design for the SoS problem.

We consider a model that minimizes the cost of operation while also ensuring that it
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is ‘well-connected’. The latter is accomplished by including network properties as con-

straints. A complex network theory approach [36] is followed wherein the nodes represent

different cities and the arcs between these nodes denote the existence of a direct flight.

The following simplifying assumptions are made:

1. The network is an undirected, simple and connected graph i.e. all nodes are con-

nected without any self-loops and that there can be no more than one arc connecting

two nodes.

2. Not all arcs are active - feasibility of a direct flight depends on range and distance

constraints.

3. Reciprocal demand - number of passengers flying between a pair of two cities is the

same in either direction.

4. Each city (airport) has sufficient resources to handle all the air-traffic directed

to/from that node.

Before we provide the mathematical formulation for network design, a brief description

of some terms used and network properties is presented:

1. Adjacency matrix - this is a binary matrix of the order n (n = no. of cities in the net-

work) that represents network configuration. Equation (5.1) gives the mathematical

description of adjacency matrix l.

lij =

1, if there exists an edge connecting i and j

0, otherwise
(5.1)

Based on assumption 1 described above, the adjacency matrix is symmetric i.e.

l> = l with all diagonal entries as zero.

2. Edge betweenness - Girvan and Newman [37] extended the concept of betweenness

from vertices to edges. It has since been used to measure relative importance of

an edge in the network and identify clusters (communities) in social and biological

networks. In context of the problem described here, it helps to identify critical routes

for the network. For any edge in the network, it is measured as the total number of

shortest paths between all possible node pairings in the network that pass through

that edge. For example, for the configuration shown in Fig. 5.2, the highlighted

edge has the highest betweenness since most number of shortest are expected to
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Figure 5.2: Edge betweenness

pass through it. Equation (5.2) gives the mathematical relation for calculating edge

betweenness.

Be
ij =

n∑
i=1

n∑
j=1

σij(e)

σij
, (5.2)

where Be
ij = Betweenness of edge e connecting nodes i and j (5.3)

σij(e) = No. of shortest paths between nodes i and j

that pass through edge e (5.4)

σij = Total no. of shortest paths between i and j (5.5)

3. Eigen-centrality - Boncnich [38, 39] postulated that nodal degree and degree distri-

bution (for nodes) in a network fail to capture all aspects of importance of a node in

the network and proposed eigen-centrality as an alternate measure. Eigen-centrality

is obtained from the eigenvector corresponding to the largest positive eigenvalue of

the adjacency matrix as given by Eq. (5.6).

lx = λx (5.6)

λxi =
n∑
j=1

lijxj, i = 1, ... , n (5.7)

where l = Adjacency matrix (binary) (5.8)

λ = Largest eigenvalue of l (5.9)
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5.2 Network Design Problem Formulation

For a network of n cities, it is possible to have up to n(n − 1)/2 active routes in the

network. The network design problem aims to find the best network configuration that

minimizes the cost of operating the airline fleet DOCF as a surrogate for maximizing

profits. By omitting pricing and IOC estimates, we are able to develop a model that

can be universally adopted. Figure 5.3 highlights the network design problem in the SoS

problem.

Minimize DOCF

Local Variables: RX, PX 
Size Aircraft 

Local Variables: dX

Configure Network
Local Variables: l

Allocate Aircraft
Local Variables: x, y

DOCF

DOCX

l

RX, PX

Configure Network
Local Variables: l

Figure 5.3: Network design problem in the SoS problem

The objective function value for the network design problem DOCF is obtained from

the aircraft allocation problem which takes as input the network configuration and allo-

cates aircraft to minimize DOCF. The network design and aircraft allocation problems

are thus nested. Figure 5.4 depicts the network design problem schematic.

min DOCF(l; RX, PX, DOCX)
s.t.  g2(l) ≤ 0

Network Design
Aircraft 

Allocation 
DOCF

l, RX, 
PX, DOCX

RX, PX, DOCX

l
m DOCF(l; RX, PX, DOCX)

s.t.  g2(l) ≤ 0
min DOC (l R P
Network Design

Aircraft
Allocation 

DOCF

l, RX, 
PX, DOCX

RX, PX, DOCX min min
l

Figure 5.4: Nested network design and aircraft allocation problems
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Mathematically the network design problem is given by equations (5.10) - (5.16):

min
l
DOCF(l;RX, PX,DOCX) (5.10)

subject to

ml ≤
n∑
i=1

n∑
j=i+1

lij ≤ mu (5.11)

n∑
i=1

lij ≥ 1 (5.12)

lij = 1 ∀i, j ∈ Π (5.13)

LFC(l) ≤ λ (5.14)

bl ≤
n∑
i=1

n∑
j=i+1

bij(l) ≤ bu (5.15)

cl ≤
n∑
i=1

n∑
j=i+1

cij(l) ≤ cu (5.16)

Equation (5.10) describes the objective function for the network design problem, the

design variable of which is the binary adjacency matrix l. The cost of operation DOCF is a

function of network configuration and design of new aircraft along with its cost coefficients.

The latter two are obtained from the aircraft sizing step described in Chapter 4 and are

held constant for the network design problem.

The first constraint (Eq. (5.11)) sets the bounds for the number of active routes in

the network. For the problem described here, a lower bound is selected that is greater

than the number of edges in the minimum spanning network [36]. The upper bound is

based on actual aircraft itineraries and observed aircraft movement reported in [28]. It is

possible to define a more rigorous procedure for selecting these bounds but not doing so

does not affect the usefulness or the validity of the methodology presented here.

The second constraint (Eq. (5.12)) ensures that each city has at least one direct flight.

If a city is to serve as a hub, it must be an element of the set Π. The third constraint

(Eq. (5.13)) ensures that hub-cities are connected to all other cities (since Π can be an

empty set).

The fourth constraint limits the max. allowable least no. of flight changes (LFC) for

any pair of cities in the network (5.14). This ensures that the network configuration allows

for realistic modeling of passenger movement. The last two constraints Eqs. (5.15)-5.16
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are added to ensure that critical links in the network are preserved.

We use MADS to solve outer-loop of the nested optimal network configuration prob-

lem. The nested aircraft allocation problem is discussed in greater detail along with the

mathematical formulation in Chapter 6.
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CHAPTER 6

Aircraft Allocation

The airline fleet consists of aircraft of different types, each with a unique cost associated

with it for flying different routes in the network. The goal of the allocation problem

is to assign aircraft to all active routes in a given network for minimizing overall cost of

operation DOCF while satisfying passenger demand. The network configuration, design of

new aircraft and the corresponding cost coefficients are fixed parameters for the allocation

problem.

Since the number of aircraft allocated and unfulfilled demand are integers, the resulting

problem is an integer programming problem. We solve this problem using the model

described in [9] with the following modifications:

1. Not all routes in the network are active and it is possible that passenger demand

between two cities may need to be routed through other active routes. Aircraft

allocation routes this demand along the shortest path determined using Dijkstra’s

algorithm [40].

2. Unlike the method employed by Mane et al. [6, 33], an allowance is made for un-

fulfilled demand. Further, unfulfilled demand along each route and total unfulfilled

demand are bounded from above.

3. Aircraft allocation along each route is bounded from above; this is necessary because

in practice each aircraft requires a different maintenance crew and other operations

before take-off and after landing

Figure 6.1 highlights the aircraft allocation problem in the SoS problem. The representa-

tive schematic of the aircraft allocation problem is depicted in Figure 6.2. The objective

function is to minimize the fleet operating cost, and the optimization variables are:

1. Number of aircraft xpij of a given type p ∈ T = {A,B,X} assigned along each

active route, and
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Minimize DOCF

Local Variables: RX, PX 
Size Aircraft 

Local Variables: dX

Configure Network
Local Variables: l

Allocate Aircraft
Local Variables: x, y

DOCF

DOCX

l

RX, PX

Allocate Aircraft
Local Variables: x, y

Figure 6.1: Aircraft Allocation in the SoS problem

min DOCF(x, y; l, RX, PX, DOCX)
s.t.  g3(x, y) ≤ 0

Aircraft Allocation
Network 
Design

l, RX, PX, DOCX

DOCF
x, y
min DOCF(x, y; l, RX, PX, DOCX)

s.t.  g3(x, y) ≤ 0
i DOC ( l R

Aircraft Allocation
Network 
Design

l, RX, PX, DOCX

DOCF
x, y

Figure 6.2: Allocation problem schematic
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2. Unfulfilled demand yij along each active route.

The total number of aircraft allocated is bounded by the available fleet size. Not all

aircraft can fly each route in the network and an additional constraint is included to ensure

no aircraft is allocated to a route that is longer than the aircraft range. The unfulfilled

route demand is penalized by a high penalty weight wij. The airline must meet demand

along all active routes. The allocation problem formulation is given by Eqs. (6.1) - (6.8):

min
x,y

∑
p∈T

n∑
i=1

n∑
j=i+1

[lijDOCpijxpij + wijyij], T = {A,B,X} (6.1)

subject to

∑
p∈T

n∑
i=1

n∑
j=i+1

[Ppij + yij] ≥ Vij (6.2)

n∑
i=1

n∑
j=i+1

xpij ≤ sp ∀ p ∈ T (6.3)

n∑
i=1

n∑
j=i+1

yij ≤ Y (6.4)

xpij ≤ hpij ∀ p, i, j with i > j (6.5)

yij ≤ δij ∀ i, j with i > j (6.6)

xpij = 0 ∀ 〈p, i, j〉 ∈ ξ(RA, RB, RX) (6.7)

where

wij =
2.5∑

p∈T
fpij

[∑
p∈T

fpij

(
DOCpij

Pp

)]
(6.8)

and ξ(RA, RB, RX) = {〈A, 3, 6〉, . . .} is the set of 3-tuples describing infeasible aircraft

range of an aircraft type for a given route.

For the problem presented here wij is set to 2.5 times the DOC-per-passenger averaged

over all aircraft as shown in Eq. (6.8). The variable fpij in Eq. (6.8) is a binary variable

whose default value is 1 but becomes 0 for any 〈p, i, j〉 in the set ξ(RA, RB, RX).

The right hand side of Eq (6.2) represents the routed demand Vij along that route.

For routes that are not active in l this demand becomes zero. For an active link lij, routed
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demand Vij is the sum of demand between cities i and j and the demand for any other

pair of cities r and s that are not connected directly and the shortest path between them

includes the link lij.

The constraint given by Eq. (6.3) ensures that the number of aircraft allocated does

not exceed fleet size. Equation (6.4) ensures total unfulfilled demand does not exceed

allowable limit. Equations (6.5) and (6.6) prescribe bounds on xpij and yij, respectively.

Equation (6.7) ensures that aircraft range feasibility constraints are always met. Allo-

cation xpij where 〈p, i, j〉 belongs to the set of forbidden 3-tuples is always zero. For

example, ξ(RA, RB, RX) includes 〈A, 3, 6〉 - this is because the corresponding route dis-

tance (Montréal-Toronto) is greater than range RA of aircraft A.

Table 6.1 lists the bound values for the allocation problem (seven-cities). A constant

value for δij is prescribed for all routes but it is possible to bound yij along individual

routes. Similarly, allocation of aircraft of a given type along all routes has a constant

upper bound which may be replaced with individual route bounds.

Table 6.1: Bound values for aircraft allocation problem

Bound sp Y δij ∀i, j hpij ∀i, j

Value {70, 100, 100} 100 20 {25, 10, 20}

The allocation problem is solved using the revised simplex method described in [9]

and implemented using GNU Linear Programming Kit (glpk) adapted for Matlab [41].
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CHAPTER 7

Mesh Adaptive Direct Search

Mesh Adaptive Direct Search (MADS) is a direct search optimization algorithm. It is

used for blackbox optimization of discontinuous functions where gradient information is

not available and the problem is subject to nonlinear constraints. The MADS algorithm

extends upon the generalized pattern search (GPS) class of algorithms [42] by allowing

for local exploration termed as polling. This allows to overcome the limitation imposed by

finite exploration directions offered by GPS algorithms. Without going into much detail,

the convergence of MADS is based on Clarke’s calculus for non-smooth functions [43]. A

brief description of the MADS algorithm is presented below.

7.1 MADS Algorithm

MADS is an iterative feasible-point algorithm. Given an initial starting point x0 ∈ Ω,

the algorithm attempts to located a local minimizer of the objective function f over the

feasible domain Ω by evaluating some trial points fΩ. The algorithm does not require an

additional derivative information. This is useful for problems where derivative information

is difficult to obtain and may be affected by noise in the objective function. At each

iteration a finite number of feasible trial points are generated and the infeasible trial

points are discarded. The algorithm compares the objective function value at the feasible

trial points and the current iterate fΩ(xk) - the best feasible value found so far. Each of

these trial points lies on a mesh constructed from a finite set of nD directions D ⊂ Rn

and scaled by a mesh size parameter ∆m
k ∈ R+. The set D must be a positive spanning

set in Rn.

The mesh is defined as the union of sets over the set of points where the objective

function has already been evaluated Sk. The mesh is conceptual in the sense that it is

not actually constructed and only underlies the algorithm. The evaluation of f at a trial

point x is preceded by the evaluation of constraints which may be ordered from easy to

expensive based on the computation. If the constraints are not satisfied x /∈ Ω, then fΩ(x)
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is set to +∞ without evaluating f(x) and (possibly) other constraints. This essentially

discards infeasible trial points without evaluating the computationally expensive objective

function.

Each MADS iteration is divided into two steps: the search step and the poll step:

The search step allows evaluation of fΩ at any number of trial points constrained to lie

on the mesh. The search is said to be empty when no trial points are considered. When

an improved mesh point is found, the iteration may be stopped or can be continued to

search for a better mesh point. In either case, the the next iteration is initiated with the

new incumber fΩ(xk+1) < fΩ(xk) and a mesh size parameter ∆m
k+1 set equal to or larger

than ∆m
k .

When the search step fails to find an improved mesh point, the second step called poll

is invoked. The poll step involves local exploration around the current incumbent xk and

determines the magnitude of distance of the trial points from the current incumbent. This

distance is called the poll size parameter and is denoted as ∆m
k . A key difference between

the GPS and MADS algorithm is that in GPS algorithms, there is only one quantity equal

to both mesh size parameter and poll size parameter ∆k = ∆m
k = ∆m

p whereas the MADS

strategy prescribes ∆m
k < ∆m

p for all k. At MADS iteration k, the set of trial points Pk

(also called frame) is given by Eq. (7.1)

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk (7.1)

where Dk is a positive spanning set. When the poll step fails to find an improved mesh

point, the mesh is refined as ∆k+1 < ∆k. Figure 7.1 depicts the general MADS algorithm.

7.2 Implementing MADS

The MADS algorithm is implemented for the SoS problem using NOMAD (Nonlinear

Optimization with the MADS algorithm) software [44, 45, 46]. NOMAD has been under

development since the year 2000 and is capable of running GPS algorithms in addition to

MADS. It allows for use of surrogates (non-adaptive) for evaluation of function trial points

before the actual objective function evaluation. This is particularly useful for problems

where the objective function is expensive to compute. The surrogate functions may be

defined by the user.

For the SoS air transportation problem, a Matlab interface to the C++ implementation

of MADS offered by OPTI toolbox [47] was used. MADS is used for the SoS outer-loop
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Figure 7.1: MADS algorithm

optimization problem and the network design problems depicted in Fig. 2.5.
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CHAPTER 8

Results

We consider a two stage expansion of airline’s network such that the final network is

comprised of fifteen cities. The formulation given in Chapters 4-5 is slightly modified for

the second stage as explained in Section 8.2.

8.1 Stage 1: expansion to 7 cities

In the first stage two cities in the eastern subnetwork (Toronto and Montreal) are added to

the original regional network. The behaviour of DOCF is studied through a modest full-

factorial design-of-experiments with respect to range and passenger capacity using points

visited by NOMAD in preliminary design space explorations. The obtained response

surface is depicted in Fig. 8.1. Note that the network configuration and aircraft allocation

Figure 8.1: DOCF response surface for seven cities problem

problems are solved for each feasible range-capacity point on that surface. The network
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problem is not necessarily convex; local optimal solutions are this possible. However, the

allocation problem is linear and thus yields globally optimal solutions.

The empty regions of the plot represent regions where the SoS problem becomes in-

feasible. This can happen for the following reasons:

1. The aircraft sizing problem fails to

(a) satisfy its constraints, or

(b) perform a cost analysis for some route(s).

2. The allocation problem becomes integer infeasible.

It can be seen that the DOCF response surface is monotonically decreasing in passenger

capacity of new aircraft and is extremely flat in the range dimension for a large part of the

graph. Investigating further, in the 1-d projection of the response surface on the design

space, DOCF becomes insensitive with respect to range a little after 2000 nmi as shown

in Fig. 8.2. As RX increases, the new aircraft can fly a greater number of routes. Since

the new aircraft has a lower operating cost DOCX compared to existing fleet, the overall

fleet cost DOCF also decreases. The longest route in the network is 2015 nmi, so RX

values greater than 2015 do not affect DOCF significantly. The two local minima around

2, 150 and 2, 900 nmi shown in Fig. 8.2 are most likely attributed to FLOPS numerical

noise.

Figure 8.2: DOCF vs aircraft range for fixed passenger capacity
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The outer-loop SoS optimization problem depicted in Fig. 2.5 was solved using 4

different initial guesses for range and capacity. The initial network configuration for each

of these runs was as shown in Fig. 8.3. This initial configuration was obtained from a

stand-alone optimization problem using only the existing fleet (aircrafts A and B).

Figure 8.3: Initial network configuration for seven cities problem

Table 8.1 reports the results obtained for each optimization run. The 4 runs pro-

duced two local optima, confirming the information obtained by investigating the DOCF

response surface (Fig. 8.1). This validates the choice of MADS as the optimization algo-

rithm which is able to find minima when the objective function is extremely flat in one

of the variables.

Table 8.1: Results for the seven cities problem

Variable Run 1 Run 2 Run 3 Run 4

Initial RX (nmi) 2,015 2,933 2,500 1,800
Initial PX 240 240 170 170
Initial DOCF ($) 3,090,187 2,114,174 2,816,993 3,028,026

Optimal RX (nmi) 2147 2926 2147 2147
Optimal PX 240 240 240 240
Optimal DOCF ($) 2,079,355 2,075,566 2,079,355 2,079,355
No. of active routes 14 14 14 14

Both optima reported in Table 8.1 have the same optimal network configuration with
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14 active routes (out of a total of 21 possible routes) - depicted in Fig. 8.4. There are 3

new routes in the optimal network configuration and two routes that were active in the

initial configuration were removed: KEL-VAN and KEL-CAL.

Figure 8.4: Optimal network configuration for seven cities problem

The second minima reported in Table 8.1 at RX = 2926 nmi is slightly better compared

to the minima at RX = 2147 nmi - the difference being nearly $3, 800. However, we choose

the latter1 because a lower aircraft range is desirable for the network size considered

here. The optimal aircraft design dX for this minimum is reported in Table 8.2. The

corresponding DOCX is listed in Table 8.3 for all routes, regardless of whether they are

active in the optimal network. The optimal aircraft allocation is given in Table 8.4. The

allocation algorithm attempts to make maximum allocations for aircraft X since it has a

lower operating cost compared to existing fleet.

1highlighted in Table 8.1.
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Table 8.2: Optimal design of aircraft X for the 7-city problem

Variable Value

Range (nmi) 2,147
Passenger capacity 240
Gross weight (lb) 181,600
Wing aspect ratio (-) 9.69
Thrust per engine (lb) 27,000
Wing area (sq. ft) 1,311
Cruise velocity (Mach) 0.82
Wing loading (lb / sq. ft) 138.50
Thrust to weight ratio (-) 0.31
Take-off distance (ft) 8,990

Table 8.3: Optimal DOCX ($) for the 7-city problem

VAN MTL CAL EDM VIC KEL

TOR 25,461 7,979 21,461 21,430 25,650 23,822
VAN – 27,518 9,020 9,900 5,471 6,548
MTL – – 23,393 23,107 27,768 25,850
CAL – – – 6,606 9,355 7,380
EDM – – – – 10,357 8,440
VIC – – – – – 6,887
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Table 8.4: Optimal aircraft allocation and unfulfilled demand for the 7-city problem
(Inactive routes left out for the sake of brevity)

Route Number OD Pair Aircraft A Aircraft B Aircraft X Unfulfilled Demand

1 TOR–VAN — — 15 —
2 TOR–MTL 9 1 20 —
3 TOR–CAL — — 11 —
4 TOR–EDM — — 11 11
5 TOR–VIC — — 3 —
7 VAN–MTL — — 4 —
8 VAN–CAL — — 20 —
10 VAN–VIC 14 — — —
12 MTL–CAL — — 3 —
14 MTL–VIC — — 1 —
15 MTL–KEL — — 1 —
16 CAL–EDM 25 — 1 —
20 EDM–KEL — — 7 —
21 VIC–KEL 4 — 3 —

8.1.1 Solving the SoS Problem All in One

It is possible to combine the aircraft sizing, network design and allocation subproblems to

solve the SoS design optimization problem using an all-in-one (AiO) approach. The SoS

outer-loop optimization problem in AiO formulation shown in Fig. 8.5 finds the optimal

RX, PX and l to minimize DOCF.

Minimize DOCF

Local Variables: RX, PX, l
Size Aircraft 

Local Variables: dX

Allocate Aircraft
Local Variables: x, y

DOCF

DOCX

RX, PX

l

Figure 8.5: Schematic for all-in-once (AiO) problem
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This is mathematically given by Eqs. (8.1) - (8.9). While the SoS outer-loop formulation

changes, the formulations for aircraft sizing and aircraft allocation problem remain un-

changed. The AiO problem formulation is a mixed integer nonlinear program (MINLP),

which can be more difficult to solve and require longer computation time.

min
RX,PX,l

DOCF(RX, PX, l) (8.1)

subject to

1600 ≤ RX ≤ 3000 (8.2)

120 ≤ PX ≤ 240 (8.3)

ml ≤
n∑
i=1

n∑
j=i+1

lij ≤ mu (8.4)

n∑
i=1

lij ≥ 1 (8.5)

lij = 1 ∀ i, j ∈ Π (8.6)

LFC(l) ≤ λ (8.7)

bl ≤
n∑
i=1

n∑
j=i+1

bij(l) ≤ bu (8.8)

cl ≤
n∑
i=1

ci(l) ≤ cn, (8.9)

The seven cities AiO problem was solved using NOMAD with the same initial guesses

used to solve the aircraft sizing, network design and allocation subproblems in the nested

formulation. The obtained results differed only for the optimal range, i.e., optimal ca-

pacity, aircraft sizing, active network routes and allocation of aircraft to routes were the

same as for the decomposed problem formulation. As summarized in Table 8.5, the local

optimal range values for the AiO problem are very near to the ones for the decomposed

problem; the best “AiO” objective value is only 0.1% worse then the best “SoS” objective

value. However, the AiO problem required more than 4 times longer computation time

compared to the nested SoS formulation (80 and 17 minutes, respectively, on a 64-bit

Intel i7 processor with 4 cores and 8192 MB of RAM). This discrepancy grows rapidly

when considering larger-size problems.

The AiO formulation is not suited for problems of this magnitude. Although it takes
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Table 8.5: Results for the AiO problem formulation (7-city problem)

Variable Run 1 Run 2

Initial RX (nmi) 2015 1800
Initial PX 240 240
Initial DOCF($) 3,090,187 3,090,187

Optimal RX (nmi) 2124 2920
Optimal PX 240 240
Optimal DOCF($) 2,124,600 2,078,618

less time to set up, the computation time increases exponentially with increase in problem

size and this method often fails to yield a solution. The failure of AiO approaches for

larger problems has been investigated in literature [6, 7] and is one of the motivating

factors for the SoS approach described here. In fact, we were not able to obtain a solution

to the AiO problem for the fifteen cities network - described in Section 8.2.1.

8.1.2 Comparison to Hub-Spoke Networks

Mane et al. considered fixed hub-spoke network configurations in a thirty-one route

problem [6]. They employed a sequential decomposition approach that has only PX as

the outer-loop SoS variable - shown in Fig. 8.6. The aircraft range RX is assumed to be

the longest route distance in the network. Further, their allocation algorithm does not

allow for unfulfilled demand. Mathematically this implies that an aircraft is allocated to

a route for even small residual demand. Allowing for unfulfilled demand allows for more

realistic modeling of airline transportation since airlines tend to ensure highest possible

capacity utilization for each aircraft.

Following the approach of Mane et al., the seven cities problem was solved for fixed

hub-spoke networks and aircraft sizing for a fixed range of 2015 nmi. Two different

hub-spoke configurations were considered centered at Calgary and Toronto as shown in

Figs 8.7a and 8.7b respectively. Since non-hub cities are not connected to each other, the

demand between them is routed through the hub-cities.

The allocation and DOCF results are given in Tables 8.6 and 8.7, respectively. While

the hub network with Calgary as the hub city is 7% less expensive to operate, it is dramat-

ically (almost three times) more expensive than the optimal “free” network configuration.
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Figure 8.6: Mane’s model schematic

(a) Network with Calgary as hub-city

(b) Network with Toronto as hub-city

Figure 8.7: Single-hub networks
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Table 8.6: Optimal aircraft allocation and unfulfilled demand for Calgary and Toronto
single-hub networks for the 7-city problem (route numbers kept same but only possible
routes shown)

Route No. OD Pair
Calgary Toronto

Aj Bj Xj yj Aj Bj Xj yj

1 TOR–VAN — — — — 40 2 20 4
2 TOR–MTL — — — — 36 1 12 —
3 TOR–CAL 50 30 20 4 33 — 20 —
4 TOR–EDM — — — — 22 1 20 —
5 TOR–VIC — — — — — — 17 25
6 TOR–KEL — — — — — — 11 —
8 VAN–CAL 40 2 20 4 — — — —
12 MTL–CAL 23 — 20 — — — — —
16 CAL–EDM 36 — 12 29 — — — —
17 CAL–VIC — — 17 25 — — — —
18 CAL–KEL — — 11 — — — — —

Table 8.7: DOCF for single-hub networks for the 7-city problem

Hub City DOCF

Calgary $5, 957, 316
Toronto $6, 399, 722

8.2 Stage 2: expansion to 15 cities

To this point, the analysis presented here is a simplistic representation of actual airline

operations. Medium-sized airline companies fly several hundred routes per day using

different aircraft. For example, Westjet Airlines operates nearly 425 flights daily using

114 aircraft of 4 different types. It is therefore interesting to apply the nested formulation

to a larger problem.

We consider an extended network consisting of fifteen cities and 105 possible routes as

shown in Figure 8.8. While the number of variables for the outer-loop SoS problem and

aircraft sizing remains unchanged, the number of variables for the network design and

aircraft allocation problems increases 5-fold from 21 and 84 to 105 and 420, respectively.

The estimated demand (computed using the model outlined in Chapter 3) for the new

possible routes is listed in Table 8.8.
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Figure 8.8: Fifteen-city network

The cities are divided into eastern and western sub-networks given by sets πE and πW

and Eqs. (8.10) - (8.11) respectively in order to draw a comparison between the results

and actual passenger movement.

πE ≡ {Toronto, Ottawa, Montreal, Quebec, Halifax, St. Johns} (8.10)

πW ≡ {Victoria, Vancouver, Kelowna, Calgary, Edmonton, Saskatoon, Regina, Winnipeg}
(8.11)

Additional constraints are included in the nested network design and aircraft allocation

problems to account for the following.

1. Aircraft B cannot operate from Thunder Bay (Ontario), and aircraft X can not use

all airports because of runway length limitations2. Table 8.9 reports the runway

lengths available at new cities added to the network.

2. There exist several routes that are longer than the range of the existing fleet (aircraft

A and B) but lie within the bounds of RX.

2We ignore Halifax otherwise the number of feasible routes for aircraft X falls to 45.
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Table 8.8: Demand for the additional possible routes of the 15-city problem

OTT HAL WIN STJ QBE SKT REG TBY

TOR 3717 1655 1553 435 734 587 476 1086
VAN 1107 489 901 311 206 1041 914 145
MTL 902 659 408 272 380 156 128 303
CAL 796 361 1153 232 149 828 816 398
EDM 678 307 1138 196 127 766 773 395
OTT – 1253 895 485 359 191 157 655
HAL – – 161 595 187 89 75 34
WIN – – – 108 167 553 514 359
VIC – – – 73 43 550 486 31
STJ – – – – 138 58 49 24
KEL – – – – 30 581 524 20
QBE – – – – – 36 30 124
SKT – – – – – – 260 343
REG – – – – – – – 360

Table 8.9: Airport runway length data

Airport Halifax Winnipeg St. Johns Kelowna Quebec Saskatoon Regina Thunder Bay

STO (ft) 8800 11000 8500 9000 9000 8300 7900 7300

These constraints are implement by expanding the set of impermissible 3-tuples -

〈p, i, j〉 ∈ ξ(Rp, sTOp) if sTOp > {ri, rj} or Rp < Dij ∀ p ∈ {A,B,X}, (8.12)

where the parameters ri and rj denote runway lengths for cities i and j, respectively.

Based on the aircraft range and runway length constraints, the maximum number of

feasible routes for each aircraft is given in Table 8.10 (upper bound values were used

for range and runway length of aircraft X). The set ξ contains at least 83 3-tuples of

infeasible aircraft-route combinations. Additional tuples are introduced to this set when

RX is smaller than the distance of an otherwise feasible route.

Table 8.10: Maximum possible routes for each aircraft type for the 15-city problem

Aircraft Type A B X

No. of Routes 91 86 55
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The sharp drop in possible routes for aircraft X is due to:

1. The runway length constraint.

2. The fact that it can serve a maximum of 11 cities (depending on RX).

The network design problem is also modified to include feasibility constraints that ensure

that routes common to all three aircraft in the set ξ are always inactive. Mathematically,

this is formulated by

lij = 0 ∀ i, j such that 〈p, i, j〉 ∈ ξ ∀ p ∈ {A,B,X}. (8.13)

Finally, for the larger-sized 15-city problem we used the Mixed Integer Linear Program-

ming (MILP) solver in IBM ILOG CPLEX for increased computational efficiency [48].

The bound values for the allocation problem were modified as listed in Table 8.11 to

ensure fulfilling the increased demand.

Table 8.11: Revised bound values for the allocation problem (15-city problem)

Bound sp δij ∀i, j hpij ∀i, j

Value {350, 500, 500} 40 {50, 20, 40}

8.2.1 Results

Figure 8.9 depicts the DOCF response surface for the 15-city problem. The empty regions

indicate points where the aircraft sizing problem fails to perform a cost analysis for one

or more routes. Figure 8.10 depicts a contour map of the same response surface. We can

see that the response surface is substantially more multi-modal than the one for the seven

cities problem, and can pose a large challenge to an optimization algorithm.

We solved the 15-city problem with an initial guess for capacity and range equal to

the optimal values of the seven cities problem. The minimum spanning network was used

as the initial network configuration for the nested optimal network design problem. Each

iteration of the MADS algorithm for the SoS design optimization problem (including air-

craft sizing, network design and aircraft allocation) takes nearly 90 minutes to compute

on a 64-bit Intel 7 processor with 4 cores and 8192 Mb of RAM. This is in contrast to 17

minutes for finding the optimal solution to the seven cities problem (using the nested for-

mulation). As mentioned earlier, we could not solve the problem using the AiO approach
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Figure 8.9: DOCF response surface for the 15-city problem

(which took 80 minutes for the seven cities problem) despite several attempts as computa-

tions were exceeding 24 hours forcing Matlab to crash due to memory allocation problems.

The MADS algorithm generated 134 feasible solutions for the decomposed formulation of

the 15-city problem (as opposed to 62 for the 5-city problem). The best feasible solution

was obtained for RX = 2388 and PX = 240. The different points investigated by the

MADS algorithm are shown in Fig. 8.11

Table 8.12: Best feasible solution for the 15-city problem

RX PX DOCF Active routes Aircraft allocated Total unfulfilled demand

2388 240 $5,642,754 55 418 215

This solution is confirmed by inspecting the response surface, and is similar to the seven

cities problem where the optimal solution was found at the upper bound for passenger

capacity. The optimal aircraft design dX is reported in Table 8.13 and contrasted to

the design obtained for the seven cities problem. The corresponding DOCX is listed in

Table 8.14 for all routes regardless of whether they are active in the optimal network.

Figure 8.12 depicts the optimal network configuration. Table 8.15 lists the optimal

aircraft allocation and the unfulfilled demand for all routes in the network.
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Figure 8.10: Contour map of the DOCF response surface for the 15-city problem

8.2.2 Comparison to Real Data

The results obtained for the fifteen cities problem are compared to real data for WestJet

Airlines, which expanded from being a regional operator to a national carrier. Since the

SoS problem formulation does not take into account aircraft scheduling and intensive

revenue models that affect airline operations, we compare the principal aviation hubs and

routes of the network.

Caldéron [26] defines hub-cities as “top cities two cities in the country where the airline

carries out operations and where the airport is among the top twenty destinations in the

sample in terms of throughput”. Calgary and Edmonton in the western sub-network

(ΠW )and Toronto in the eastern sub-network (ΠE)emerge as principal aviation hubs for

the network. The corresponding nodes have the highest nodal degree, nodal betweenness

and number of passengers enplaned - reported in Table 8.16. This is in agreement with

WestJet’s operations statistics that list Calgary, Toronto and Vancouver as the principal

operating bases accounting for nearly 46% of its domestic market share in terms of daily

flights [49].

Edmonton and Winnipeg are other important hubs that collectively account for 14% of

WestJet Airlines’ market share. The best configuration obtained from the nested formu-

lation returns similar results, however, Winnipeg has greater number of flight connections

due to network configuration. This is due to network configuration - Winnipeg is the only

city in ΠW connected to St. Johns - and therefore, all demand originating in the western
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Figure 8.11: Different points investigated by MADS algorithm for 15-city problem

Table 8.13: Optimal design of aircraft X

Variable 15-city problem 7-city problem

Range (nmi) 2,388 2,147
Gross weight (lb) 193,133 181,600
Wing aspect ratio (-) 9.20 9.69
Thrust per engine (lb) 33,000 27,000
Wing area (sq. ft) 1,289 1,311
Cruise velocity (Mach) 0.82 0.82
Wing loading (lb / sq. ft) 149.83 138.50
Thrust to weight ratio (-) 0.34 0.31
Take-off distance (ft) 8,990 8,990

sub-network ΠW for St. Johns is routed through it.

In the absence of route-specific data for WestJet Airlines, we make a comparison with

the overall observed passenger movement (for all airline carriers in Canada). Table 8.17

reports the four busiest routes (domestic non-stop flights) in Canada [28] and those ob-

tained from solving the SoS design optimization problem. The agreement for three out

of these four busiest routes is remarkable: the ranking dissimilarities occur because our

method assigned a significantly higher passenger number to the CAL-TOR route, which

can be attributed to demand that is routed through for other routes of “our” optimal

network configuration.
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Figure 8.12: Optimal network configuration for the 15-city problem

8.2.3 Comparison to Hub-Spoke Networks

Similar to the comparison presented for the seven-cities problem, we considered two dif-

ferent fixed hub-spoke network configurations for the 15-city problem. For each case the

new aircraft was sized for a fixed range equal to the longest route distance in the corre-

sponding network. The DOCF for hub-spoke network is given in Table 8.18. The Calgary

and Toronto hub-spoke networks are now approximately 65% and 135% more expensive,

respectively, for the 15-city problem (as opposed to both being approximately 200% more

expensive for the seven cities problem), i.e., the Toronto hub-spoke network is now twice

more expensive to operate than the Calgary hub-spoke network; this may be due to a

large number of cities being located in the western part of the network.
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Table 8.15: Optimal aircraft allocation and unfulfilled demand for the 15-city problem
(Inactive routes left out for the sake of brevity)

Route OD Pair A B X U Route OD Pair A B X U

1 TOR–VAN – – 15 – 48 CAL–SKT 20 2 – –
2 TOR–MTL – – 24 – 49 CAL–REG 19 1 – –
3 TOR–CAL – – 11 – 51 EDM–OTT – – 3 –
4 TOR–EDM – – 9 – 52 EDM–HAL – – 2 24
5 TOR–OTT – – 16 – 53 EDM–WIN – – 7 –
6 TOR–HAL – – 9 – 54 EDM–VIC – – 5 –
7 TOR–WIN – – 11 – 56 EDM–KEL – – 3 –
8 TOR–VIC – – 3 – 58 EDM–SKT 5 1 – –
10 TOR–KEL – – 2 11 59 EDM–REG 5 1 – –
11 TOR–QBE – – 3 15 61 OTT–HAL – – 8 –
14 TOR–TBY 8 – – – 62 OTT–WIN – – 9 8
16 VAN–CAL – – 20 26 65 OTT–KEL – – 2 –
17 VAN–EDM – – 8 – 69 OTT–TBY 7 – – 36
18 VAN–OTT – – 5 – 72 HAL–STJ 18 – – 7
20 VAN–WIN – – 5 – 74 HAL–QBE – – 9 –
21 VAN–VIC – – 6 – 78 WIN–VIC – – 3 22
23 VAN–KEL – – 3 – 79 WIN–STJ 3 1 – –
24 VAN–QBE – – 10 – 80 WIN–KEL – – 3 –
29 MTL–EDM – – 3 – 81 WIN–QBE – – 3 –
30 MTL–OTT – – 13 – 82 WIN–SKT 12 – – –
31 MTL–HAL – – 4 – 83 WIN–REG 10 – – 29
36 MTL–QBE – – 8 – 84 WIN–TBY 10 – – –
40 CAL–EDM – – 8 – 86 VIC–KEL – – 1 3
41 CAL–OTT – – 6 3 102 QBE–TBY 1 – – –
43 CAL–WIN – – 8 – 103 SKT–REG 2 – – –
44 CAL–VIC – – 9 – 104 SKT–TBY 3 – – –
46 CAL–KEL – – 7 – 105 REG–TBY 3 – – –
47 CAL–QBE – – 2 31

Table 8.16: Nodal degree and passengers enplaned for Calgary and Toronto (15-city prob-
lem)

City Passengers Enplaned Degree

Calgary 22,343 10
Toronto 25,045 11
Vancouver 16,588 8
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Table 8.17: Principal routes in the 15-city network

Real Data Air Transportation SoS Design

Route Daily Passengers Rank Daily Passengers Rank

MTL–TOR 5,547 1 5,602 1
OTT–TOR 3,743 2 3,717 3
VAN–TOR 3,496 3 3,433 4
CAL–VAN 3,101 4 4,826 2

Table 8.18: DOCF for single-hub networks (15-city problem)

Hub City DOCF

Calgary $8, 925, 466
Toronto $13, 102, 547
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CHAPTER 9

Summary

This research presents a new, enhanced model for air transportation as an SoS design

optimization problem formulation. Compared to the existing literature, the SoS model

introduces range as a SoS outer-loop design variable, conducts optimal network config-

uration and treats unfulfilled demand as additional optimization variable in the aircraft

to routes allocation problem. The proposed methodology was demonstrated using the

example of a two-stage expansion of a regional airline network consisting of 5 cities to a

small national network consisting of 7 cities that was then more than doubled in size to

a network of 15 cities.

Given the rapid grow of problem size and complexity, the SoS design optimization

problem was solved using a decomposition approach with a nested formulation. The

Mesh Adaptive Direct Search (MADS) algorithm was used to solve the outer-loop SoS

optimization problem, NASA’s FLOPS code was used for aircraft sizing and a combination

of MADS with either GNU’s linear programming kit (for the seven cities problem) or IBM

ILOG CPLEX (for the 15-city problem) was used for the nested network configuration /

aircraft allocation optimization problem.

For the seven cities problem, both the nested formulation and the all-in-one (AiO)

approach two local optima that differ in the range value. The respective local optima of

the two approaches are almost identical. However, the nested formulation reduced com-

putation time by a factor of more than 4 compared to the AiO approach. A comparison to

fixed hub-spoke networks demonstrated that the free network configuration can decrease

daily fleet direct operating cost by a factor of almost 3. At the same time, the choice of

single-hub city does not seem to alter the fleet direct operating cost for small networks

dramatically.

For the 15-city problem, computational challenges prevented the solution of the AiO

problem. The results of the nested formulation agree closely with actual observed pas-

senger movement and show that the formulation presented here can be used to obtain

practical results. Moreover, comparisons to single-hub networks showed that while the
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latter are still significantly more expensive to operate, the cost ratio of single-hub to free

networks decreases with increasing network size. At the same time, the location of the

cities in the network, in conjunction with demand, can have a large impact on which city

should be considered as the single hub.

For the allocation problem it is assumed that each airline can arrive or depart from any

airport throughout the day. In practice, there are strict guidelines for aircraft traffic close

to an airport for safety reasons. Consequently, each aircraft gets a limited window of time

for take-off and landing and associated operations such as taxi-in, taxi-out, deplaning

etc. Therefore, for a more accurate model, aircraft scheduling needs to be considered

as a part of the allocation problem. This can be be done for example by incorporating

block-hours availability as constraints in the allocation step. As a preliminary attempt in

this direction, we limit the number of aircraft (of a given type) that can fly along a given

route; this is especially important since different aircraft have different crew handling

ground operations after landing and before take-off. A possible means of incorporating

scheduling into the problem could be modeling the scheduling problem as a network where

arcs indicate the block-hours available for aircraft movement.

The symmetric demand assumption in the model described here is quite realistic.

However, it has been observed that deviation from the symmetric demand assumption can

significantly impact operating costs. This becomes especially important when considering

aircraft scheduling since unsymmetrical demand would leave balance aircraft at an airport,

leading to reduction fluctuations in daily demand that can be serviced with a given fleet

size.

Finally, the cost analysis estimates presented here consider only the direct operating

cost. In practice, an airline would also need to factor other indirect costs such cost of

acquisition, maintenance costs, crew requirements and costs for flying additional (new)

routes. Of these costs, the first and the last are typically of higher order of magnitude,

and need to be accounted for in operating costs. As the airline expands operations to

include new routes, these costs are expected to rise along with additional fees which may

be levied by relevant regulatory authorities. The airline may adjust its revenue and ticket

pricing models based on its planned return on investment (ROI) [15]. However, to our

best knowledge, there does not exist a comparable method for assigning cost of including

a route in the network in the literature.

Despite these limitations, the presented model illustrates the usefulness of an SoS ap-

proach to air transportation and provides a starting point for the development of higher

fidelity models. Further, this type of analysis would hold well for air-cargo services where
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the assumptions described above are more likely to be satisfied - unlike passengers, air-

cargo traffic is not sensitive to flight-timings, shipment quantities are usually known be-

forehand and pricing model follows simpler constraints.

Other topics of possible future work include considering more than one type of new

aircraft to be designed and allocated as well as incorporating demand uncertainty in cost

analysis for airline operations (variable ticket pricing is a good example of how airlines

account for uncertain demand in civil aviation).
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