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Abstract

Background: Urinary tract infections caused by the bacteria Escherichia coli are among the 

most common infections in the world. Resistance to the antimicrobials used to treat these 

infections is a growing concern. Given the lack of new drug development, it is critically 

important to understand the factors underlying patterns of antimicrobial resistance.

Methods: The individual-level predictors of resistance to six antimicrobials (ampicillin, 

gentamicin, ciprofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, tobramycin) were 

investigated in community-acquired and nosocomial urinary E. coli isolates from three cities in 

the province of Quebec, Canada between April 2010 and December 2017. Hierarchical logistic 

regression models were used to account for correlations among the six types of resistance. We 

employed time series analysis in the form of dynamic linear models to explore the temporal 

association between oral fluoroquinolone use and ciprofloxacin resistance in isolates from the 

city of Montreal. Fluoroquinolone use in Montreal was estimated using a 25% sample of 

individuals insured under the public drug prescription plan up to December 2014.

Results: Both community-acquired and nosocomial isolates showed geographic variability in the

prevalence of resistance. Male sex and recent hospitalization were predictors of increased 

resistance for most types of resistance; additionally, ciprofloxacin resistance increased sharply 

with age. Distinct seasonal patterns were noted for community-acquired and nosocomial 

infections, and resistance in the community setting has been rising since 2015. In Montreal, we 

found a positive correlation between total fluoroquinolone use lagged by 1 and 2 months and the 

monthly proportion of isolates resistant to ciprofloxacin.

Conclusions: These results demonstrate that hierarchical modelling of the prevalence of, and 

risk factors for, many types of antimicrobial resistance allows general and region-specific 

inference, which may inform empirical therapy. The observed correlation between 

fluoroquinolone use and ciprofloxacin resistance supports the rationale for antimicrobial 

stewardship campaigns to reduce fluoroquinolone prescriptions in the community setting.

i



Résumé

Contexte : Les infections urinaires causées par la bactérie Escherichia coli figurent parmi les 

infections les plus fréquentes au monde. La résistance aux antimicrobiens utilisés pour traiter ces

infections est devenue une préoccupation croissante. Étant donné l’absence de mise au point de 

nouveaux médicaments, il est essentiel de comprendre les tendances sous-jacentes de la 

résistance aux antimicrobiens.

Méthode : Les prédicteurs individuels de la résistance à six antimicrobiens (ampicilline, 

gentamicine, ciprofloxacine, nitrofurantoïne, triméthoprime-sulfaméthoxazole, tobramycine) ont 

été étudiés à partir d’isolats d'E. coli associés à des infections urinaires nosocomiales et 

communautaires dans trois villes de la province de Québec, au Canada, entre avril 2010 et 

décembre 2017. Des modèles de régression logistique hiérarchique ont été utilisés pour expliquer

les corrélations entre les six types de résistance. Nous avons utilisé l'analyse de séries 

temporelles sous la forme de modèles linéaires dynamiques pour explorer l'association 

temporelle entre l'utilisation des fluoroquinolones par voie orale et la résistance à la 

ciprofloxacine dans des isolats obtenus à Montréal. L’utilisation des fluoroquinolones à Montréal

a été estimée en utilisant un échantillon correspondant à 25 % des personnes couvertes par le 

régime provincial d'assurance médicaments jusqu'en décembre 2014.

Résultats : Les isolats d’origine communautaire et les isolats d’origine nosocomiale ont 

démontré la variabilité géographique de la prévalence de la résistance. Le sexe masculin et 

l'hospitalisation récente étaient des facteurs de risque pour la plupart des types de résistance; de 

plus, la résistance à la ciprofloxacine augmentait fortement avec l'âge. Des tendances 

saisonnières distinctes ont été observées pour les infections nosocomiales et les infections 

communautaires. En outre, la résistance en milieu communautaire a augmenté depuis 2015. À 

Montréal, nous avons trouvé une corrélation positive entre l'utilisation totale de fluoroquinolones

et la proportion mensuelle d'isolats résistants à la ciprofloxacine de 1 à 2 mois plus tard.

Conclusions : Ces résultats démontrent que l’emploi de modèles hiérarchiques de la prévalence 

et des facteurs de risque de nombreux types de résistance aux antimicrobiens permet de tirer des 

conclusions tant générales que spécifiques d’une région. Une telle démarche pourrait éclairer la 

prise de décision concernant le traitement empirique. La corrélation observée entre l'utilisation 

des fluoroquinolones et la résistance à la ciprofloxacine fournit la justification des campagnes de 

gestion des antimicrobiens qui visent à réduire les ordonnances de fluoroquinolones en milieu 

communautaire.

ii



Preface

In this thesis, I investigate the extent to which individual-level and population-level factors 

explain variability in the prevalence of antimicrobial resistance in urinary E. coli isolates in the 

province of Quebec, Canada. First, I give a rationale for this research and outline the two main 

objectives of the thesis (Chapter 1). Chapter 2 introduces the topics of urinary tract infections 

and antimicrobial resistance. A summary of the epidemiological and clinical literature on risk 

factors for antimicrobial resistance in urinary E. coli isolates is given, as well as an overview of 

antimicrobial consumption in Canada and its connection to variation in the prevalence of 

antimicrobial resistance. Chapter 3 describes the study methodology, including study location, 

population, and rationale for the statistical analyses. The results are presented in the form of two 

manuscripts in Chapter 4. Finally, the results are discussed in Chapter 5, with concluding 

remarks in Chapter 6. References are provided in Chapter 7.

This thesis has been prepared according to the guidelines for a “Manuscript-Based Thesis”. The 

results are given in two manuscripts:

Jean-Paul R. Soucy, Alexandra M. Schmidt, Charles Frenette, Patrick Dolcé, Alexandre 

A. Boudreault, David L. Buckeridge, Caroline Quach. Joint modelling of resistance to six 

antimicrobials in urinary Escherichia coli isolates in Quebec, Canada.

Jean-Paul R. Soucy, Alexandra M. Schmidt, Caroline Quach, David L. Buckeridge. 

Fluoroquinolone use explains seasonal patterns in ciprofloxacin resistance in community-

acquired urinary Escherichia coli: A dynamic linear model in a large urban community.
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1. Introduction

1.1. Rationale
The World Health Organization (1) has called antimicrobial resistance “one of the biggest threats

to global health, food security, and development today.” Despite a widespread recognition of 

antimicrobial usage as the leading driver of resistance, unnecessary prescribing remains common

(2–4). Given the paucity of new drug development, it is critically important to understand the 

patterns underlying resistance to existing drugs. Urinary tract infections, especially those caused 

by the pathogen Escherichia coli, are among the most common infections in both the community

and hospital settings (5,6). Given the prevalence of these infections, UTIs are a major driver of 

antimicrobial consumption and thus a natural subject of study to elucidate patterns in 

antimicrobial resistance, antimicrobial consumption, and the connection between the two.

1.2. Objectives
This thesis will investigate antimicrobial resistance in urinary Escherichia coli isolates at both 

the individual and population levels in the province of Quebec, Canada. The first objective is to 

describe the association between patient-level characteristics (age, sex, and recent 

hospitalization) and the probability of resistance to six antimicrobials in community-acquired 

and hospital-acquired urinary E. coli isolates from three cities in the province of Quebec. As part 

of this objective, we will also describe annual, seasonal, and geographic variability in resistance 

to the aforementioned antimicrobials. The second objective is to investigate the association 

between community consumption of fluoroquinolones in the city of Montreal and the prevalence 

of ciprofloxacin resistance in community-acquired urinary E. coli isolates tested in the laboratory
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of the McGill University Health Centre. Specifically, the focus of this objective is to identify the 

time lag(s) at which this association occurs.
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2. Literature Review

2.1. Urinary tract infections

2.1.1. Definition and symptoms

Urinary tract infections (UTIs) are principally divided into infections of the lower urinary tract, 

cystitis (bladder infections), and infections of the upper urinary tract, pyelonephritis (kidney 

infections) (5). Cystitis is characterized by frequent urination, painful urination, the need to 

urinate despite an empty bladder, and/or suprapubic pain; pyelonephritis is characterized by the 

aforementioned symptoms plus fever, flank pain, and nausea (5). In severe cases, renal damage 

or sepsis may result (5). Bacteriuria, the presence of bacteria in urine, is considered 

asymptomatic when not accompanied by at least one symptom of urinary tract infection. This 

asymptomatic form is more common in women and the elderly (6).

2.1.2. Prevalence and etiology

Urinary tract infections are among the most common infections in both hospital and community 

settings, accounting for at least 150 million annual infections worldwide (7), including up to 40%

of all nosocomial (hospital-acquired) infections (6). Infections are common among infants, the 

elderly, and women of all ages (5,6). In women, the lifetime risk of a UTI exceeds 50% (8). 

Recurrence of UTIs is common (5,9), with around a quarter of women in a cohort of 113 

suffering a second infection within six months of an initial infection (10).

Urinary tract infections are further categorized as uncomplicated (patient has no structural or 

functional abnormalities, is not pregnant, and has not been instrumented, e.g., with a urinary 

catheter) or complicated (all other infections) (6). In uncomplicated infections, urinary tract 

infection is associated with sexual activity, which facilitates the movement of bacteria into the 
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bladder (11). In comparison to men, the periurethral area and vaginal cavity provide additional 

niches for bacterial growth; this fact, combined with a reduced distance between the urethral 

opening to the bladder, helps to explain the increased prevalence of UTIs among women (11). 

The frequency of bacteriuria is high among the very young, but otherwise incidence increases 

gradually with age, with the disparities between men and women being less pronounced in the 

elderly population (6). However, a higher proportion of bacteriuria is symptomatic (constituting 

urinary tract infection) in women between the ages of 15–29 (6). Most complicated infections are

associated with indwelling urinary catheters (12), the cause of over 1 million infections in 

hospitals and nursing homes per year in the United States (13). UTI is also a common 

complication during pregnancy (9).

Urinary tract infections are caused by a wide variety of pathogens, including Escherichia coli, 

Streptococcus, Enterobacteriaceae species, and even several types of yeast (6,14). Among these, 

the gram-negative, facultatively anaerobic bacterium E. coli is by far the most common agent of 

infection, accounting for 80–85% of UTIs (6,14), although E. coli is seemingly responsible for a 

smaller proportion of infections in men compared to women (15,16).

2.1.3. Treatment

Urinary tract infections are generally treatable with a short course (1–7 days) of antimicrobials 

(11,17,18). For uncomplicated infections, nitrofurantoin, trimethoprim/sulfamethoxazole 

(TMP/SMX), fosfomycin, pivmecillinam, or one of a number of fluoroquinolones or β-lactams 

may be prescribed (17). The precise selection depends on a number of factors, including patient 

allergies, drug availability, local resistance rates, and local prescribing guidelines. An analysis of 

prescribing patterns for uncomplicated UTIs in the United States between 2002 and 2011 found 

that fluoroquinolones (mainly ciprofloxacin and levofloxacin) were the most commonly 
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prescribed antimicrobials, accounting for 49% of the total (19). In 2016, the United States Food 

and Drug Administration (FDA) recommended against prescribing fluoroquinolone 

antimicrobials for uncomplicated UTIs when other treatment options were available due to the 

possibility of disabling side effects (20). Complicated UTIs such as catheter-associated urinary 

tract infections generally call for longer treatment, from 5 to 14 days, depending on severity and 

etiology (18).

2.2. Antimicrobial resistance

2.2.1. Antimicrobials & antimicrobial resistance

Antimicrobials are a type of drug used to either kill or inhibit the growth of microorganisms like 

bacteria. Antibiotics are a sub-class of antimicrobials referring specifically to those that target 

bacteria. However, the strict definition of “antibiotic” includes only substances produced by 

other microorganisms, to the exclusion of drugs that are synthetic or semisynthetic. For this 

reason, this thesis uses the broader term “antimicrobial”, although we refer primarily to 

antimicrobials targeting bacteria (rather than fungi, viruses, or parasites). Antimicrobials are 

divided into several broad classes based on their chemical structures and mechanisms of action, 

with some of the more commonly used ones being β-lactams, tetracylines, macrolides, 

quinolones, and sulfonamides (for a comprehensive overview, see (21)). Some antimicrobials, 

such as penicillin and gentamicin, were isolated from microbes in nature, whereas others, such as

quinolones, are fully synthetic (22).

Antimicrobial resistance refers to the capacity of some bacteria to tolerate or resist the effects of 

particular antimicrobial agents. Bacteria have evolved a number of methods to deal with these 

compounds in nature and in the clinical setting, such as by inactivating the antimicrobial, 

actively pumping it out of the cell, altering the target site, or otherwise confounding its effects 
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(23). Although it was once believed that resistance would be unlikely to develop against some 

classes of antimicrobials, like the fully synthetic quinolones with their complex mechanisms of 

action (22), resistance is in fact inevitable for all antimicrobials (24). Although antimicrobial 

resistance occurs in nature, antimicrobial consumption among humans and livestock is the 

leading driver of resistance (1,25–27).

2.2.2. Antimicrobial resistance as a public health problem

Antimicrobial resistance threatens our ability to treat infections in all parts of the world. The 

consequences of rising levels of resistance to patients and healthcare systems include higher 

costs, prolonged hospital stays, and worse health outcomes. A review commissioned by the 

government of the United Kingdom in 2014 concluded that in the absence of significant 

progress, antimicrobial (in this case encompassing antibacterials as well as antifungals, 

antivirals, and antiparasitics) resistance would contribute to 10 million deaths per year by 2050—

greater than the current annual burden of cancer deaths (28). Additionally, the report estimated a 

100 trillion USD loss in global production between now and 2050 that would be attributable to 

antimicrobial resistance (28). At existing levels, antimicrobial resistance contributes to an 

estimated 700,000 deaths per year and climbing (28). The report further states that E. coli, 

malaria, and tuberculosis were the most significant pathogens driving mortality and economic 

costs (29). E. coli alone accounted for a substantial proportion of the economic impact, and the 

ubiquity of E. coli meant that there was less regional variation in these effects (29).

Urinary tract infections, as one of the most common infections (largely caused by E. coli), 

impose a large burden on the healthcare system. For example, in the United States in 1996, UTIs 

accounted for approximately 7 million office visits, 1 million emergency room visits, and 

100,000 hospitalizations (30); UTIs comprise also 40% of infections in hospitals (6). A study 
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analyzing data from 1995 estimated the direct and indirect costs of urinary tract infections among

American adult women at 1.6 billion USD annually (8). UTIs leading to severe kidney infection 

are a severe threat to maternal and foetal health (31).

2.2.3. Antimicrobial resistance in urinary tract infections

Resistance has emerged to all drugs used to treat urinary tract infections. The prevalence of 

resistances depends on the time, place, and antimicrobial in question. For example, resistance to 

ampicillin and amoxicillin, two widely prescribed antimicrobials in the penicillin family, is now 

extremely prevalent and thus these drugs are no longer recommended for the treatment of urinary

tract infections (17,32). In North America, ampicillin resistance ranges from 22% to over 50% 

(32,33). In contrast, nitrofurantoin, an antimicrobial used exclusively to treat urinary tract 

infections, has very low rates of resistance (~1%) despite decades of frequent use (17,32,33). 

Urinary E. coli resistant to multiple classes of antimicrobials, such as extended spectrum β-

lactamase (ESBL)-producing E. coli, have grown in frequency over the last two decades 

(15,34,35).

The decision to treat, with any antimicrobial, depends very much on local rates of resistance, 

with the acceptable threshold of resistance standing at 20%. The example of TMP/SMX 

illustrates the importance of regional considerations in the empirical treatment of urinary tract 

infections. This antimicrobial would be recommended as a first-line treatment in some locations 

but not others (17,32,33,36,37). For example, Zhanel and colleagues (32) surveyed 10 Canadian 

medical centres between 2003–2004 and found TMP/SMX resistance in 6.4% of isolates in New 

Brunswick and 48.5% in Manitoba. Although it should be noted that a more recent survey of 23 

acute care hospitals across 7 Canadian provinces found smaller differences between three broad 

geographic regions (resistance ranged from 17–27% (37)), it is nonetheless clear that the success 
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or failure of empirical treatment depends on the availability of a region-specific resistance profile

(17,38). This wide range of resistance across settings is also seen with fluoroquinolones, such as 

ciprofloxacin, which are among the most prescribed antimicrobials in the world for any condition

(39,40) and for urinary tract infections specifically (19). Given high antimicrobial concentrations

found in urine, antimicrobial treatment of UTI has been highly effective. However, resistance has

grown in the past few decades, potentially increasing the risk of treatment failure. Reported rates 

of ciprofloxacin resistance in North America range from 5% (in a sample of young women at an 

American college (41)) to over 50% (in a group of outpatients in Mexico City) (42) (see also 

other studies, e.g. (17,32,37,43,44)).

2.3. Risk factors for antimicrobial resistance

2.3.1. Individual-level risk factors

A number of individual patient characteristics have been associated with an increased risk of 

acquiring an antimicrobial resistant UTI. These characteristics include demographic, 

behavioural, and pharmacological factors but should not be confused with risk factors for urinary

tract infection in general. A prime example of this distinction is the observation that men tend to 

have a higher probability of a resistant infection (15,16,45–47), despite experiencing far fewer 

UTIs (6). For example, in a study of 18,112 urinary E. coli specimens taken from a university 

hospital in the United Kingdom between 2006 and 2014, Toner and colleagues (47) found that 

male sex was associated with a 46% increase in odds (OR = 1.46; confidence interval: 1.26, 

1.69) of having an ESBL-producing organism. The mechanism underlying this observation is not

well understood.

Age has also been correlated with higher rates of resistance to certain antimicrobials (36,44–49). 

This relationship has been most consistently observed with the fluoroquinolone ciprofloxacin 
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(36,44,46,48,49), but has also been seen with other antimicrobials such as ceftriaxone and 

piperacilin-tazobactam, as well as multi-drug resistance to common antimicrobial agents (46,49).

ESBL-producing organisms also seem to be more common among older adults (15,47). 

Mechanistically, cumulative consumption of broad-spectrum antimicrobials like ciprofloxacin 

are linked with profound changes in the gut microbiome (50), which may influence susceptibility

to invasion by antimicrobial-resistant organisms (51); additionally, older individuals have, in 

general, greater cumulative exposure to the healthcare system, more comorbidities, and longer 

hospital stays (49).

Antimicrobial consumption, particularly recent antimicrobial consumption, is a notable risk 

factor for antimicrobial resistance (45,52–55). The reasons are two-fold: antimicrobial use exerts 

a strong selective pressure for resistance in existing microbiota and disrupt bacterial communities

(especially in the gut), allowing foreign bacteria to colonize the body (51). Short courses of 

antimicrobials are capable of inducing both short-term and long-term changes in the body’s 

microbiome (51).

Other individual risk factors for antimicrobial resistance in UTIs identified in previous research 

include recent hospitalization (36,45), presence of a long-term medical condition (54), previous 

UTI (45,55), ethnicity (45,53), and severity of symptoms (i.e. uncomplicated versus complicated 

infection or asymptomatic versus symptomatic infection) (44,53), although these findings are 

often nuanced and occasionally contradictory (e.g. see (48)). These differences may arise partly 

from differences in patient populations, case definitions, and exposure ascertainment.

Finally, much attention has been given to the setting of acquisition as a predictor of risk. Nursing

home residents are a particularly vulnerable population for drug-resistant UTIs, especially given 

the high use of urinary catheters in this population (14,45,56–58). Importantly, this follows a 
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general trend where nosocomial (hospital-acquired) isolates are reported to have higher rates of 

antimicrobial resistance than community-acquired isolates (15,44,54,59) (but see (15,48) for 

counter-examples). Some reasons for this association may include urinary catheterization, a 

frequently identified risk factor (45,47) (but again, see (48) for counter-example), and the typical 

cause of infection in the healthcare setting. There may also be increased selective pressure 

arising from antimicrobial use in hospitals, as well as the possibility of being exposed to cross 

infection. Some of these differences may also be attributable to variation in demographic and 

behavioural factors in the patient populations, such as age, sex, and antimicrobial consumption.

2.3.2. Community-level risk factors

Perhaps even more important than individual antimicrobial use is antimicrobial use in the 

surrounding population (60). Numerous international or interregional comparisons have shown a 

strong tendency towards a higher prevalence of resistance in countries with higher overall levels 

of antimicrobial consumption (25–27,61). These differences can be quite dramatic. Between 

1997 and 2002, France consumed 32.2 Defined Daily Doses (DDD) of antimicrobials per 1,000 

inhabitant-days, whereas the Netherlands consumed only 10 DDDs per 1,000 inhabitant-days 

(26). In this same time period, the Netherlands had the lowest prevalence of penicillin-resistant 

Streptococcus pneumoniae (< 5%) among the 19 European countries in the study and France had 

by far the highest (> 40%). In this sample, average penicillin consumption explained around 84%

of variance in the prevalence of resistance in the sample (Spearman correlation = 0.84; 95% 

confidence interval: 0.62, 0.94).

Another population-level factor that has been proposed to contribute to the prevalence of 

resistance is population density. Briefly, the hypothesis contends that increased migration and 

urbanization offers more opportunities for human-to-human contact, facilitating the spread of 
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resistance bacteria and genes (62). The idea has intuitive appeal, but is difficult to prove due to 

the large number of confounding factors present between cities of differing population densities.

2.4. Antimicrobial consumption

2.4.1. Antimicrobial consumption in Canada

Antimicrobial consumption happens in four settings: in the community, in hospitals, in veterinary

medicine, and in agriculture/aquaculture. In 2016, an estimated 22.6 million prescriptions for 

antimicrobials were dispensed to patients in Canada, at a cost of nearly 700 million dollars (37). 

This amounts to just under 20 DDDs/1,000 inhabitant-days. A vast majority of these doses were 

dispensed in the community (92%) rather than hospital setting (8%). Among community-

dispensed antimicrobials, 65% were dispensed by general and family practitioners. Compared to 

the 30 European countries participating in the European Surveillance of Antimicrobial 

Consumption Network, Canada ranked 13/31 for outpatient antimicrobial use when ranked from 

lowest to highest use (37). Antimicrobial consumption by companion animals and especially 

livestock is an enormous and pressing issue (37,63), but falls mostly outside of the realm of this 

thesis because it is harder to track.

2.4.2. Distribution of antimicrobial consumption

Unsurprisingly, the distribution of antimicrobial use is not uniform in the population. In 2016 in 

Canada, individuals 60 years of age and above had an average of 856.1 prescriptions dispensed 

in community pharmacies per 1,000 inhabitants (37). Usage was lower among younger age 

groups, with 546.5 prescriptions dispensed per 1,000 inhabitants for those aged 15–59 and 597.9 

prescriptions dispensed per 1,000 inhabitants for the 0–14 age group. Overall prescribing rates 

have remained relatively constant since 2010 after a substantial decline beginning in 1995 (37).
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There exist persistent, stable differences in rates of community prescribing across the ten 

Canadian provinces (37). In British Columbia, the overall community dispensation rate for 2016 

was 546.0 prescriptions per 1,000 inhabitants. At the other end of the spectrum, Newfoundland’s 

prescribing rate is 955.2 per 1,000 inhabitants. In the province of Quebec, the focus of this thesis,

the prescribing rate is 602.8 per 1,000, just under the national average of 625.5 prescriptions per 

1,000 inhabitants.

2.4.3. Antimicrobial consumption and antimicrobial resistance

It is intuitive that variation in resistance is driven by changes in antimicrobial use, but rigorously 

studying this relationship is challenging. The Public Health Agency of Canada notes that “there 

is a significant gap in understanding the linkages between [antimicrobial use] and the observed 

patterns of resistance and the spread of pathogens in Canada (64).” Simple comparisons of rates 

of consumption and resistance across countries are limited in their ability to draw causal 

inferences due to the large number of potential confounding factors between countries. Time 

series analysis is better suited to exploring this relationship, by being able to model the 

correlation through time between rates of antimicrobial use and the prevalence or incidence of 

resistant infections in the same region.

Several time series studies have been done, looking at how short-term fluctuations in the 

consumption of particular antimicrobials are reflected in the prevalence or incidence of 

infections resistant to closely-related antimicrobials. E. coli, a common pathogen, is the focus of 

much of this research. Other popular infections to study with this methodology include 

Staphylococcus aureus (65–68), Clostridium difficile (68–70), and ESBL-producing bacteria 

(71).
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Sun and colleagues (67) studied the seasonality of the prevalence of ampicillin and ciprofloxacin 

resistance in E. coli isolates in the United States between 1999–2007 and found that patterns of 

resistance to these two drugs lagged aminopenicillin consumption and fluoroquinolone 

consumption, respectively, by 1 month. Vernaz et al. (72), studying the incidence of resistant E. 

coli infections in Geneva, reported that community use of ciprofloxacin lagged by 1 month and 

community use of moxifloxacin lagged by 4 months both correlated with the incidence of 

community-acquired ciprofloxacin-resistant isolates. The incidence of isolates resistant to 

cefepime (a fourth-generation cephalosporin antimicrobial, resistance to which was used as a 

marker of ESBL production) correlated with outpatient and inpatient use of ciprofloxacin, as 

well as the inpatient use of a number of other antimicrobials, with time lags ranging from 0–4 

months. Outpatient use of TMP/SMX weakly correlated with the incidence of hospital-acquired 

TMP/SMX-resistant E. coli with a lag of 4 months but did not correlate with the incidence of 

community-acquired infections. Gallini et al. (73) investigated how the consumption of 

antimicrobials in the community was connected with ciprofloxacin resistance in E. coli 

infections acquired in a French university hospital. We would expect community consumption to 

take longer to affect hospital infections than community infections, and indeed, the study 

reported an association with levofloxacin use lagged by 12 months.
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3. Study Methodology

3.1. Study location
For objective 1, we examined antimicrobial susceptibility testing results from three cities across 

the province of Quebec, Canada. The large urban centre of Montreal was represented by the 

laboratory of the McGill University Health Centre (MUHC). Specifically, we analyzed data from

the following hospitals in the network: Royal Victoria Hospital, Montreal General Hospital, 

Montreal Neurological Hospital, and Montreal Children's Hospital, accounting for over a 

thousand hospital beds. We did not have data from the Hôpital de Lachine, one of the smaller 

hospitals in the network. The McGill University Health Centre is one of the two major teaching 

healthcare networks in the city; additionally, it provides specialized and ultra-specialized care to 

the surrounding area and the rest of the province. The smaller urban centre of Quebec City was 

represented by two hospital laboratories, those of the Centre hospitalier affilié universitaire de 

Quebec and the Centre hospitalier universitaire de Quebec. These two cities are by far the largest

in the province. Finally, the small, remote city of Rimouski was represented by the Hôpital 

régional de Rimouski.

For objective 2, we considered data from the MUHC exclusively, as antimicrobial consumption 

data were only available for the health region of Montreal. In 2011 (near the beginning of the 

study period), the health region of Montreal had a census population of 1,886,480, which 

includes the city proper but not the surrounding metropolitan area (74).
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3.2. Study population

3.2.1. Antimicrobial resistance data

The four aforementioned institutions have adopted a common infection control software 

(Nosokos; Nosotech, Rimouski, Canada). This software extracts data in each hospital from the 

laboratory system, including antimicrobial susceptibility testing results, and connects it with the 

ADT (admission, discharge, transfer) system, where demographic information and admission and

discharge data are stored. These results can then be collated and compared using a standardized 

dictionary. For this project, Nosotech extracted susceptibility testing results for urinary E. coli 

isolates from each of the four participating institutions between April 2010 and December 2017.

For each isolate, the following data were available: date of collection and susceptibility testing 

results classified as sensitive, intermediate, or resistant. Additionally, the following information 

was available for patients with urine samples included in the study: age, sex, unique identifier, 

and date of previous admission/localization in the hospital (e.g., emergency room). Patient 

identifiers were unique to each laboratory and could not be used to track patients across hospital 

laboratories in the dataset. Species identification was performed according to local procedures 

and susceptibility testing was done following Clinical and Laboratory Standards Institute 

breakpoints and guidelines (75).

We first classified each isolate as community-acquired or nosocomial (hospital-acquired) and 

then filtered isolates on a number of criteria. We considered samples taken at least 48 hours after 

hospital admission or within 48 hours after hospital discharge as potentially nosocomial (based 

on National Healthcare Safety Network guidelines (76)); other samples (e.g., from emergency 

departments, outpatient clinics, and community clinics) were classified as community-acquired. 
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We excluded contaminated samples, considered as those with more than two bacterial species 

(77). We also excluded a small subset of samples with missing information on patient sex.

In Quebec, adult urinary E. coli isolates are regularly tested for resistance to six antimicrobials 

belonging to five classes of antimicrobials: ampicillin (penicillin), gentamicin (aminoglycoside), 

ciprofloxacin (fluoroquinolone), nitrofurantoin (nitrofuran), trimethoprim/sulfamethoxazole 

(combination dihydrofolate reductase inhibitor/sulfonamide), and tobramycin (aminoglycoside). 

Fluoroquinolones are not typically prescribed to children, leading to susceptibility testing results 

for ciprofloxacin being regularly suppressed in the hospital information system for this group of 

patients. Thus, we restricted our sample to patients aged 18 years or older for both community-

acquired and nosocomial isolates. Our first objective was to investigate the association between 

age and probability of resistance for these six antimicrobials, so we wanted to avoid 

extrapolating results to ages not well-represented in the dataset. There were very few patients 

over the age of 95, and a small number of unrealistic values (i.e., older than the oldest person in 

the country), so we also excluded ages over 95. In the nosocomial dataset, people aged 65 and 

older accounted for 70% of samples, so we restricted the dataset to people in this age group to 

avoid unwarranted extrapolation on the association with age. For the purpose of analysis, we 

grouped the small percentage of intermediate susceptibility results with susceptible isolates 

(“non-resistant” isolates; e.g., see (67,78,79) for precedent; see also (72,73,80) for the alternative

“non-susceptible” classification).

In objective 1, our analysis used the raw, individual-level data as originally extracted. We were 

interested accounting for correlations between the six types of antimicrobial resistance, so we 

considered only isolates with susceptibility testing results for all six types of resistance. Finally, 
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we retained only the first sample from each patient in order to meet the assumption of statistical 

independence between samples.

In objective 2, we considered only ciprofloxacin resistance in community-acquired isolates from 

the MUHC in Montreal and therefore did not exclude samples without results for all six 

antimicrobials, only samples without results for ciprofloxacin susceptibility. Prior to calculating 

the proportion of resistant samples within each month, we retained only the first sample from 

each patient, as in objective 1.

Further descriptive statistics and filtering results of the resistance dataset are available in the 

methods and results sections of the two manuscripts.

3.2.2. Fluoroquinolone dispensation data

In objective 2, we examined the association between short-term fluctuations in community 

fluoroquinolone use in Montreal and resistance to a common fluoroquinolone antimicrobial, 

ciprofloxacin, in UTIs in the community setting. We considered outpatient oral fluoroquinolone 

use (Anatomical Therapeutic Chemical Classification: J01MA), which in Quebec comprises the 

following drugs: ciprofloxacin, levofloxacin, ofloxacin, norfloxacin, and moxifloxacin. We also 

considered total fluoroquinolone use. We used drug dispensation data as a proxy for community 

consumption, although not all dispensed drugs are consumed as directed.

Drug dispensation data were procured for a randomly sampled, open cohort of 25% of people 

covered by the Régie de l’Assurance Maladie du Québec’s Public Prescription Drug Insurance 

Plan for the health region of Montreal. Our subsample, covering the years 2004–2014, is drawn 

from a larger cohort covering 25% of the population of the Census Metropolitan Area of 

Montreal, described in detail elsewhere (81). The province of Quebec, through the Régie de 

l'assurance maladie du Quebec (RAMQ), insures all residents for medical care and 
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hospitalizations. Prescriptions are also covered for residents ineligible for a private plan. These 

individuals are covered under three main insurance programs: individuals 65 years of age or 

older, individuals receiving social assistance, and workers and family members without access to

private drug insurance (e.g. self-employed, students, etc.). In the second quarter of 2011, these 

programs covered 258,774, 173,102, and 486,201 people, respectively (as reported in tables 

AM.01–AM.03 (82)), comprising nearly 49% of the health region of Montreal’s population.

The claims database included the nature, quantity, and date of every drug dispensed to each 

individual covered under the plan, as well as demographic information including sex, month and 

year of birth, first three digits of their postal code, and type of insurance. The number of grams of

each unique product (as defined by the Drug Identification Number from Health Canada) 

dispensed each month was tallied and then converted to Defined Daily Doses (DDDs) (83) for 

each active ingredient (e.g., ciprofloxacin, moxifloxacin). One DDD is defined as “the assumed 

average maintenance dose per day for a drug used for its main indication in adults” (83). We 

calculated DDDs assuming that all dispensed drugs were consumed, as antimicrobials are 

generally prescribed to provide one course of treatment for common infections. Next, for each 

active ingredient, we calculated monthly DDDs per 1,000 inhabitant-days for each insured group

defined by five-year age category, sex, and insurance program type (e.g., men aged 65–69 

covered under the old-age insurance plan). To produce a single monthly estimate for each active 

ingredient, we calculated a weighted average of the estimates for each insured group based on 

the composition of individuals enrolled in the public drug plan, which is reported quarterly (82).

Prior to analysis, we de-trended the antimicrobial consumption times series using loess 

smoothing, as implemented in the “stl” function in R 3.4.4 (84). This function decomposes the 

time series into three components: trend (time-varying mean), seasonal, and random. We 
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subtracted the trend component from the time-series, keeping only the seasonal and random 

components, which represents short-term, seasonal fluctuations in the consumption of 

antimicrobials.

3.3. Analysis

3.3.1. Objective 1

Antimicrobial susceptibility profiles are typically presented in the form of tables with resistance 

proportions for each antimicrobial, often broken down into sub-groups (e.g., men vs. women, 

elderly vs. non-elderly). These tables provide a simple, intuitive way to present local 

susceptibility results, but are limited in their ability to make inferences about risk factors for 

resistance for two reasons. First, it is difficult to simultaneously consider more than two factors 

in a table, making it difficult to appreciate the relative contributions of covariates or consider 

correlations between covariates. Second, each type of antimicrobial resistance is usually 

considered independently, even though different types of resistance are often related. To address 

these limitations, we propose to use a hierarchical, model-based approached to simultaneously 

consider each potential covariate and outcome (type of resistance). A model-based approach has 

the further advantage over tables of being easier to apply in clinical practice, as it facilitates the 

development of tools to predict risk and to make these predictions available when they are 

needed.

In this analysis, we modelled community-acquired and nosocomial isolates separately, with one 

independent model for each of the two groups. Within each model, we have six binary outcomes 

for each isolate i, the presence or absence of resistance to each of the six antimicrobials a (Yi, a). 

Each isolate i has a corresponding set of covariates Xi, which is a vector of length p, where p is 

the total number of covariates. Covariates included in the model were: community (Quebec City 
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and Rimouski compared to Montreal), sex (male compared to female), age (quadratic), 

hospitalization in the past 30 days (yes compared to no), month (compared to January), and year 

(compared to 2010). The age variable was centred prior to analysis.

We model the association between covariates and outcomes using a Bayesian hierarchical 

logistic regression model (for an overview of this method, see (85)). In this framework, each 

outcome (type of resistance) is allowed to have its own intercept and set of regression 

coefficients (βp, a). We impose a correlation structure on these coefficients by assuming that all 

coefficients for covariate p are normally distributed around a common mean value for that 

covariate (βp) with standard deviation σp. This assumption allows the “borrowing of strength” 

across outcomes. The model is as follows:

Each common mean βp was assigned a diffuse normal prior (mean = 0, variance = 10,000); each 

standard deviation σp was assigned a diffuse half-Cauchy prior (scale = 25) (86). The resultant 

posterior distribution of the parameters was estimated using Markov chain Monte Carlo 

(MCMC) as implemented in the nimble (87) package (version 0.6-10) in R. MCMC chains were 

run for 30,000 iterations and 95% posterior credible intervals for each parameter were extracted 

after discarding 10% of samples as burn-in. Chains were visually inspected for convergence; a 

second chain was run using different initial values and results were compared to verify 

convergence had occurred.

3.3.2. Objective 2

Studies of the temporal association between antimicrobial use and antimicrobial resistance are 

typically performed using the autoregressive integrated moving average (ARIMA) framework 
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(67,72,73). This class of models is widely used for a variety of time series problems and is 

implemented in all popular statistical packages. However, ARIMA models have several 

drawbacks. First, they require time series data to be stationary (constant mean and variance 

across time), an artificial requirement that often calls for extensive data transformation prior to 

analysis (88). Second, the approach is a “black box”: purely data-driven, without regard for prior 

analysis of the structure of the data.

Here, we propose an explicitly structural approach to studying the question of fluoroquinolone 

use and ciprofloxacin resistance in urinary E. coli samples in Montreal. Dynamic linear models, 

a form of state-space model, offer great flexibility. We used a dynamic linear model to 

decompose the ciprofloxacin resistance time series into several components (for an overview of 

this method, see (89) or (90) for worked examples with R). These components comprise a time-

varying mean, a seasonal component, and averaged patient characteristic component. Changes in

averaged patient characteristics between monthly samples have not been incorporated into 

previous research on this topic.

The outcome, the proportion of isolates resistant to ciprofloxacin in month t (Yt), is normally 

distributed after a logit transformation. Using a Bayesian dynamic linear model, we modelled the

expected proportion of resistant samples in month t (θt) with Gaussian white noise observation 

errors (vt):

The expected value (θt) is decomposed as the sum of three independent components: a time-

varying mean (μt), averaged patient characteristics (Pt), and a seasonal component (St):
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The time-varying mean component is treated as a random walk. The value of μt depends on the 

previous value, μt-1, plus a white noise with unknown variance σμ
2 . Both the variance and the 

value of  μt are jointly estimated from the data with other model parameters.

The averaged patient characteristic component includes three covariates: percentage of samples 

where the patient is male, mean age of patients, and percentage of samples where the patient was

admitted to the hospital in the past 30 days. This component was estimated in the model as a 

multiple regression on the values of these three covariates in the current month.

The seasonal component can be modelled in one of two ways. First, as seasonal fluctuations in 

fluoroquinolone use (as described in section 3.2.2). Second, as a neutral comparison to the first 

option, we could instead employ a first-order harmonic, without reference to fluoroquinolone 

use. In this case, a first-order harmonic models seasonality as a sinusoidal function of time 

(period = 12 months):

The coefficients of the harmonic ( ht , 
~
h t ) control the amplitude and phase of the resulting curve.

These coefficients can be defined as constant with respect to time ( ht=h , 
~
h t=

~
h ) or be allowed 

to vary according to random walks with variances σh
2  and σ~h

2 , respectively. This latter option 

produces a non-constant sinusoidal curve that can respond to changes in the seasonal pattern over

time, but also increases model complexity by adding additional model parameters.

Modelling the seasonal component as a function of changing fluoroquinolone use is achieved 

through the use of a transfer function (for an overview of transfer functions, see (91)), which 

describes how the association between the two variables evolves over time. For each of the five 
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fluoroquinolones described in section 3.2.2 (plus total fluoroquinolone use), we fit four types of 

distributed lag models, each of which considers the association between fluoroquinolone use in 

the current month (Dt, 0) up to fluoroquinolone use five months ago (Dt, 5). The sole exception is 

the Koyck model, which does not fix the lag a priori.

The finite distributed lag model requires one parameter (regression coefficient) for each lagged 

value of antimicrobial use (92). The Almon model reparametrizes the finite distributed lag model

by assuming the regression coefficients form a polynomial curve of order M (93). This means 

that fewer parameters must be estimated compared to the previous model. The raw beta 

coefficients, in the form one would expect from a standard finite distributed lag model, can be 

recovered through the following transformation:

For this study, we considered Almon transfer functions of order 2 (quadratic) and 3 (cubic). The 

final transfer function is the Koyck model, where the magnitude of association with the 

independent variable is greatest in the current time (t = 0) and decays exponentially with the 

length of the lag (92,94).

A total of 26 models (6 types of fluoroquinolone use × 4 possible transfer functions + static 

harmonic model + random harmonic model) were fit. Model selection was performed using 
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widely applicable information criterion (WAIC), a generalization of Akaike information criterion

(AIC), which assesses model fit while penalizing complexity (smaller values are better) (95). For

each model, we estimated the posterior distribution of the parameters using Markov chain Monte

Carlo (MCMC) as implemented in the nimble (87) package in R. MCMC chains were run for 

500,000 iterations and 95% posterior credible intervals for each parameter were extracted after 

discarding 10% of samples as burn-in and with a thinning interval of 5. The time-varying mean 

(µt) and transfer function (St) parameters were estimated in a block using automated factor slice 

sampling, which substantially speeds convergence in correlated state-space models (96,97).

3.4. Ethics
We obtained ethics approval from each participating institution according to the Multi-Centre 

Research Ethics Review Mechanism of the Quebec Ministry of Health and Social Services (MP-

37-2018-3758).
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4. Study Results

4.1. Preface
The results of this thesis are presented in two manuscripts. These manuscripts include:

Jean-Paul R. Soucy, Alexandra M. Schmidt, Charles Frenette, Patrick Dolcé, Alexandre 

A. Boudreault, David L. Buckeridge, Caroline Quach. Joint modelling of resistance to six 

antimicrobials in urinary Escherichia coli isolates in Quebec, Canada.

Jean-Paul R. Soucy, Alexandra M. Schmidt, Caroline Quach, David L. Buckeridge. 

Fluoroquinolone use explains seasonal patterns in ciprofloxacin resistance in community-

acquired urinary Escherichia coli: A dynamic linear model in a large urban community.

The first manuscript has been targeted at a clinical-focused journal. It addresses the first 

objective of the thesis, to describe the association between patient-level characteristics and the 

prevalence of antimicrobial resistance in urinary E. coli isolates from three Quebec cities as well 

as annual, seasonal, and geographic variability in the prevalence of resistance. The second 

manuscript has been targeted at an epidemiology-focused journal. It addresses the second 

objective of the thesis, to investigate the temporal association between community consumption 

of fluoroquinolones in Montreal and the prevalence of ciprofloxacin resistance in community-

acquired urinary E. coli isolates tested in the city.
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4.2. Manuscript 1: Joint modelling of resistance to six 
antimicrobials in urinary Escherichia coli isolates in 
Quebec, Canada
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Abstract

Objectives: Empirical treatment of urinary tract infections should be based on susceptibility 

profiles specific to the locale and patient population. Additionally, estimates for the prevalence of

antimicrobial resistance should account for correlation between different types of resistance. We 

aimed to use a model-based approach to estimate the probabilities of multiple types of 

antimicrobial resistance in various patient populations.

Methods: We used hierarchical logistic regression models to investigate geographic, temporal, 

and demographic trends in resistance to six antimicrobials in community-acquired and 

nosocomial urinary E. coli isolates from three communities in the province of Quebec, Canada 

procured between April 2010 and December 2017.

Results: A total of 74,986 community-acquired and 4,384 nosocomial isolates were analyzed. In 

both community-acquired and nosocomial isolates, we found geographic variation in the 

prevalence of resistance; we also found male sex (top-level community OR 1.24, 95% credible 

interval: 1.00–1.53; top-level nosocomial OR 1.16, 95% CI: 0.95–1.42) and recent 

hospitalization (top-level community OR 1.48, 95% CI: 1.32–1.66; top-level nosocomial OR 

1.29, 95% CI: 0.98–1.78) to be associated with a higher risk of resistance to most types of 

antimicrobials. We found distinct seasonal trends in both community-acquired and nosocomial 

isolates, but only community-acquired isolates showed a consistent annual pattern. Ciprofloxacin

resistance increased sharply as patient age increased.

Conclusions: We found clinically relevant differences in antimicrobial resistance in urinary E. 

coli isolates between locales and patient populations in the province of Quebec. These results 

could help inform empirical treatment decisions for urinary tract infections.
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Introduction

Urinary tract infections (UTIs) are among the most common infections encountered in 

community and hospital settings.1,2 These infections occur primarily in women, with a lifetime 

risk in excess of 50%3, but UTIs also occur frequently in infant and elderly males2. Many 

pathogens cause UTIs, but by far the most prominent agents are the gram-negative, facultatively 

anaerobic bacteria Escherichia coli.2,4 In the community setting, UTIs occur frequently in 

sexually active women, whereas nosocomial infections are associated mainly with urinary 

catheters and urogenital procedures.2,5 Although UTIs are generally treatable with a short course 

of antimicrobials, the prevalence of urinary tract pathogens resistant to one or more drugs, such 

as extended spectrum β-lactamase-producing (ESBL) E. coli, appears to be rising.6–8 Given their 

high incidence, UTIs drive antimicrobial use in both hospitals and their surrounding 

communities. Understanding the mediators of resistance is therefore important to inform 

empirical therapy for this class of infections.

Previous research has identified several potential risk factors for antimicrobial resistance 

in urinary E. coli isolates, including age, male sex, hospitalization, previous UTI infection, 

antimicrobial use, and residence in a nursing home.4,5,9–17 These studies often suggest differences 

in rates of resistance between community-acquired and hospital-associated infections, reflecting 

variation in host characteristics, underlying mechanics of transmission, and pathogen 

phenotypes.2,6,18,19 Strong geographic and temporal variation in the prevalence of antimicrobial 

resistance in E. coli has been noted in North America, at both the national and sub-national 

levels. For example, Zhanel and colleagues20 reported that isolates of E. coli from urinary tract 

samples of US outpatients had higher resistance than isolates from Canadian patients in 2003–

2004, a trend that has also been observed in recent years with the rapid emergence of ESBL 

isolates in the United States6. The prevalence of resistance also varies between Canadian 
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provinces.21,22 For uncomplicated UTIs, 20% resistance is cited as a threshold passed which 

empirical treatment with that drug is compromised.23 Given the variation across regions, 

treatment decisions should be made with the most locally relevant information available.24 The 

relative importance of risk factors may also differ depending on the phenotypic composition of 

pathogen source populations, motivating investigation into local trends rather than relying on 

less regionally specific estimates.

Much of the previous research on variation in rates of antimicrobial resistance suffers 

from a small sample size and a short window of sample collection, with results being limited to 

tables of resistance proportions for various sub-groups (e.g. men vs. women, children vs. adults). 

Thus, it can be difficult to appreciate the relative contributions of each characteristic to observed 

variation in rates of resistance between times, places, and settings of acquisition (community-

acquired or nosocomial). With sufficient data and appropriate methods, we can build a model 

simultaneously considering these various demographic, temporal, and geographic characteristics.

Another issue is that previous research generally treats resistance to each type of antimicrobial as

an independent process, although this is clearly not the case. For example, the ESBL genes 

conferring penicillin and cephalosporin resistance often co-occur on plasmids with genes 

granting resistance to other classes of antimicrobials 25–27. Thus, a modelling approach explicitly 

accounting for correlations between different types of resistance, arising from a common 

phenotype within each organism, is both clinically relevant and statistically expedient.

In the province of Quebec, adult urinary E. coli isolates are regularly tested for resistance 

to six antimicrobials representing five classes of antimicrobial drugs: ampicillin (penicillin), 

gentamicin (aminoglycoside), ciprofloxacin (fluoroquinolone), nitrofurantoin (nitrofuran), 

trimethoprim/sulfamethoxazole (combination dihydrofolate reductase inhibitor
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/sulfonamide), and tobramycin (aminoglycoside). Here, we developed joint logistic regression 

models to investigate geographic, temporal, and demographic trends in resistance to these six 

antimicrobials in a large sample of community-acquired and nosocomial urinary E. coli isolates 

from three communities in the province of Quebec, Canada.

Materials and Methods

Study population

We examined antimicrobial resistance in urine samples positive for E. coli, analyzed in 

four hospital laboratories in three cities across the province of Quebec, Canada between April 

2010 and December 2017. The large urban centre of Montreal and the small, remote city of 

Rimouski were each represented by one laboratory (the McGill University Health Centre and the 

Hôpital régional de Rimouski, respectively), whereas Quebec City was represented by two 

laboratories (the Centre hospitalier affilié universitaire de Quebec and the Centre hospitalier 

universitaire de Quebec). These institutions have adopted a common infection control software 

(Nosokos; Nosotech, Rimouski, Canada) which facilitates aggregation of results from different 

institutions using a standardized dictionary.

For each isolate, the following data were available: date of collection, age, sex, and 

unique patient identifier, date of previous admission/localization in the hospital (e.g., emergency 

room), and antimicrobial testing results classified as sensitive, intermediate, or resistant. Species 

identification was performed according to local procedures and susceptibility testing was done 

following CLSI breakpoints and guidelines.28 Samples taken at least 48 hours after hospital 

admission or within 48 hours after discharge were considered potentially nosocomial (based on 

National Healthcare Safety Network guidelines29); other samples (e.g., from emergency 

departments, outpatient clinics, and community clinics) were considered community-acquired. 
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Samples with more than two bacterial species were excluded, considered as contaminated.30 We 

also excluded samples without results for all six antimicrobials of interest. Since 

fluoroquinolones are not typically prescribed for children31, results for ciprofloxacin resistance 

were regularly suppressed in the hospital information system; thus, we restricted our sample to 

patients aged 18 years and older. To avoid unwarranted extrapolation, we excluded patients with 

ages over 95 (very few individuals and some unrealistic ages); by the same logic, we limited 

nosocomial isolates to those obtained from patients aged 65 years and older, which accounted for

over 70% of the dataset. To meet the assumption of statistical independence between samples, 

we retained only the first sample from each patient in the dataset.

Analysis

Six antimicrobials were routinely tested for resistance in the adult population during the 

study period: ampicillin, gentamicin, ciprofloxacin, nitrofurantoin, 

trimethoprim/sulfamethoxazole (TMP/SMX), and tobramycin. The small percentage of 

susceptibility results classified as intermediate (1.7%) were grouped with the susceptible isolates 

for the purpose of analysis (“non-resistant” isolates; e.g., see 32–34). We jointly modelled each 

binary outcome (Yi, a, the presence or absence of resistance in a particular isolate i to 

antimicrobial a) using hierarchical logistic regression in a Bayesian framework (for an overview 

of this approach, see Gelman and Hill35). We allowed each outcome (type of resistance) to have 

its own intercept and set of regression coefficients βp, a while imposing a correlation structure on 

these coefficients by assuming each coefficient for antimicrobial a and covariate p was normally 

distributed around a common mean value for that covariate (βp) with standard deviation σp. By 

assuming, for example, that the association between male sex and the probability of resistance is 

related for different types of antimicrobial resistance, we allow for the “borrowing of strength” 

across outcomes. Each common mean βp was assigned a diffuse normal prior (mean = 0, variance
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= 10,000); each standard deviation σp was assigned a diffuse half-Cauchy prior (scale = 25)36. 

Two models were fitted independently: one for community-acquired isolates and another for 

nosocomial isolates. The model is as follows:

Covariate values for each isolate i are given as a p-dimensional vector Xi. Covariates 

included in the model were: community (Quebec City and Rimouski compared to Montreal), sex 

(male compared to female), age (quadratic), hospitalization in the past 30 days (yes compared to 

no), month (compared to January), and year (compared to 2010). The resultant posterior 

distribution of the parameters was estimated using Markov chain Monte Carlo (MCMC) as 

implemented in the nimble37 package (version 0.6-10) in R 3.4.438. The 95% posterior credible 

intervals for each parameter is presented after 10% burn-in of MCMC samples. See the 

supplementary methods for full details on how the model was estimated.

Ethics

We obtained ethics approval from each participating institution according to the Multi-

Centre Research Ethics Review Mechanism of the Quebec Ministry of Health and Social 

Services (MP-37-2018-3758).

Results

Study population

The initial database of urinary E. coli samples contained 163,541 entries. We excluded 

contaminated samples (1,484). When samples contained with more than one isolate of the same 

species, we retained one isolate and excluded the rest (4,817). We further excluded samples 

without test results (911), samples with missing sex (4,585), and samples with age under 18 
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(15,357) or over 95 (1,336). For nosocomial isolates, we also excluded samples with age under 

65 (3,468). We were left with 131,583 entries, 111,153 (85%) of which had complete information

for all six antimicrobials of interest. Finally, we retained only the first sample from each of the 

79,370 unique patients (71% unique samples). Demographic characteristics of these samples are 

described in Table 1.

Community-acquired isolates

Similar yearly (Figure 1) and seasonal (Figure 2) patterns were observed across most 

types of resistance. Compared to 2010, the odds of resistance held steady or slightly declined 

between 2011–2014, after which resistance increased from 2015–2017. The exceptions to this 

pattern were gentamicin, where resistance remained relatively constant throughout the study 

period, and nitrofurantoin, where resistance declined in 2016–2017. A seasonal trend was 

observed, with resistance generally peaking between February and May compared to January.

Resistance differed strongly by geography (Figure 3; Figure 4). Male sex and recent prior

hospitalization were universal risk factors (Figure 3; Figure 5). Increasing age was strongly 

associated with increased resistance to ciprofloxacin, whereas TMP/SMX resistance declined 

slightly with age (Figure 3; Figure 5). Exact values for model coefficients on the odds ratio scale 

are given in Supplementary Table 1.

Nosocomial isolates

Nosocomial isolates lacked a coherent yearly trend (Figure 1). Seasonally, there was a 

weak tendency for resistance to be lower in February and July–September compared to January 

(Figure 2).

In contrast with community-acquired isolates, female sex and location were predictive of 

risk in only three or four resistance types (Figure 3). Recent prior hospitalization was usually a 
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risk factor. Increasing age was again associated with ciprofloxacin resistance (Figure 5). Exact 

values for model coefficients on the odds ratio scale are given in Supplementary Table 2.

Discussion

In this study, we jointly modelled the temporal, geographic, and patient-level associations

with resistance to six antimicrobials in urinary E. coli isolates from inpatients and outpatients 

from three cities across the province of Quebec. Our hierarchical modelling approach allowed for

correlations between regression coefficients across different types of antimicrobial resistance. It 

revealed commonalities in risk factors across drugs and patient populations, with location, male 

sex, and recent prior hospitalization being associated with increased resistance in most cases. 

Conversely, the strong effect of age on ciprofloxacin resistance was a notable departure from the 

weaker trends observed in other types of resistance. This hierarchical approach also made it 

possible to estimate risk factors for nitrofurantoin and tobramycin resistance through the 

borrowing of strength across antimicrobials despite a low overall prevalence of resistance to 

these particular antimicrobials. The markedly different levels of resistance in our three 

communities underscores the importance of making available to physicians the most locally 

relevant information on rates of resistance, rather than relying on provincial or national 

estimates.

This study’s results support some of the findings from previous research. Both male sex 

and recent hospitalization have been previously identified as risk factors for resistance9,10,16. The 

mechanism underlying increased male susceptibility is not well understood; differences in 

etiology between men and women may be important, as UTIs are common in otherwise healthy 

women5 but in men are often associated with anatomical abnormality such as an enlarged 

prostate39. Nonetheless, male sex as a risk factor persisted in the nosocomial setting, despite the 
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similarity in route of acquisition (catheterization). Rising rates of resistance over time are 

consistent with trends in urinary E. coli40 and pathogens in general41.

Increased age has been linked to greater ciprofloxacin resistance in adults6,42,43, as 

observed here. This may be linked to cumulative changes in the gut microbiome which occur as a

result of the use of broad-spectrum antimicrobials like ciprofloxacin44, changing an individual’s 

susceptibility to invasion by antimicrobial-resistant organisms45. A previous study of 403 women 

with uncomplicated pyelonephritis found no differences in TMP/SMX resistance in patients 

older than 55 compared with younger patients14, whereas we found a negative relationship with 

age. Resistance rates were remarkably higher in the urban facilities of Montreal than the other 

two sites, with the more remote Rimouski generally showing the lowest. Our results are 

consistent with the hypothesized positive association between population density and 

resistance46, although we cannot draw general conclusions from only three sites. It should be 

noted, however, that the McGill University Health Centre serves as a major reference centre for 

urology in Montreal and may receive complex cases from other hospitals, which could be over-

representing the prevalence of resistance in the city.

Surprisingly, our model does not generally predict significantly different rates of 

antimicrobial resistance among elderly (65+) individuals based on setting of acquisition 

(community or nosocomial). A meta-analysis of 54 observational studies by Fasugba et al.40 

concluded that ciprofloxacin resistance was higher in hospital-acquired (38%; 95% confidence 

interval: 36%, 41%) compared with community-acquired (27%; 95% CI: 24%, 31%) infections, 

although they did not directly control for sex, previous hospitalization, or age among adults. 

Fleming et al.11 reported that in 156 urinary E. coli taken from a Georgia hospital, prevalence of 

resistance to TMP/SMX (and several other antimicrobials) was higher in the hospital-acquired 

(34.6%) than community-acquired (25.2%) isolates, but did not adjust for demographic factors. 
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Other studies6,14,17 also report differences in rates of resistance between these two sub-populations

(interestingly, Lob et al.6 reports these differences in the United States but not Canada), but it is 

also necessary to note the wide variation in estimated rates of resistance between studies. 

Geographic differences, as well as the demographic associations detected in our large database of

isolates, help to explain this variation.

Our study had several limitations. First, the lack of supplementary clinical data (e.g., 

symptoms) meant that we were unable to distinguish asymptomatic bacteriuria from 

symptomatic UTI, or tMain Thesis Fullhe type and severity of infections. Since our sampling 

frame included only patients for which clinical specimens had been taken, and specimens may 

not be systematically taken for uncomplicated UTIs, our sampling frame may not be reflective of

all treated UTIs. Additionally, changes in physician behaviour over time or between locations 

could explain some of the variability in rates of resistance. We make no attempt to draw 

inferences about factors influencing the incidence of UTIs, only the underlying prevalence of 

antimicrobial resistance among urinary E. coli isolates. Finally, since we cannot confirm the 

length of catheter use in hospitalized patients or identify when a patient was hospitalized in a 

hospital outside of where their sample was tested (more likely in Montreal and Quebec City, 

which have many hospitals), there is a possibility of misclassifying nosocomial isolates as 

community-acquired, as well as incorrectly identifying previous hospitalization status. This 

could obscure the differences we observed between nosocomial and community-acquired isolates

and blunt the increased risk of resistance seen in recently hospitalized patients.

This study demonstrates the utility of standardized antimicrobial resistance data from 

multiple institutions to produce locally relevant profiles of antimicrobial resistance. Our joint 

modelling approach allowed us to make inferences about demographic associations with six 

types of antimicrobial resistance, as well as temporal and geographic trends in resistance. 
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Clinically relevant differences in resistance within the province of Quebec, as well as between 

different patient populations, could inform empirical treatment decisions. In the future, a model-

based approach for antimicrobial resistance informed by local, provincial, and national trends 

could be incorporated into decision-support systems for clinicians.
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Table 1. Characteristics of 79,370 urinary E. coli isolates collected from three communities in 

Quebec, Canada (April 2010–December 2017).

Characteristic Community Nosocomial

All 74,986 4,384

Sex

Male 11,079 (14.8%) 1,310 (29.9%)

Female 63,907 (85.2%) 3,074 (70.1%)

Age category

18–64 44,981 (60%) -

65–95 30,005 (40%) 4,384

Prior hospitalization in the past
30 days

1,743 (2.3%) 392 (8.9%)

Community

Montreal 16,396 (21.9%) 1,478 (33.7%)

Quebec City 51,942 (69.3%) 2,296 (52.4%)

Rimouski 6,648 (8.9%) 6,10 (13.9%)

Resistance

Ampicillin 24,713 (33%) 1,683 (38.4%)

Ciprofloxacin 9,930 (13.2%) 896 (20.4%)

Gentamicin 4,572 (6.1%) 375 (8.6%)

Nitrofurantoin 719 (1%) 60 (1.4%)

Tobramycin 1,340 (1.8%) 120 (2.7%)

TMP/SMX 13,037 (17.4%) 819 (18.7%)
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Figure 1. Log odds ratios (with 95% credible intervals) for years compared to 2010 for resistance

to six antimicrobials in urinary E. coli isolates. Some credible intervals for nitrofurantoin have 

been truncated at -1.0 to facilitate comparison.
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Figure 2. Log odds ratios (with 95% credible intervals) for months compared to January for 

resistance to six antimicrobials in urinary E. coli isolates. Some credible intervals for gentamicin,

nitrofurantoin, and tobramycin have been truncated at -1.0 to facilitate comparison.
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Figure 3. Log odds ratios (with 95% credible intervals) for patient characteristics and community

(compared to Montreal) for resistance to six antimicrobials in urinary E. coli isolates. The 

intercept corresponds to female patients aged approximately 55 and 80 years old for community-

acquired and nosocomial isolates, respectively. The intercepts for gentamicin, nitrofurantoin, and

tobramycin are not shown, as the base odds of resistance are very low.
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Figure 4. Fitted probability of resistance to six antimicrobials (with 95% credible intervals) for 

community-acquired urinary E. coli isolates from three communities in Quebec, Canada. January

probability of resistance is presented for women aged approximately 55 and not hospitalized in 

the past 30 days.
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Figure 5. Fitted probability of resistance to six antimicrobials (with 95% credible intervals) for 

community-acquired and nosocomial urinary E. coli isolates, comparing female, not recently 

hospitalized patients versus male, recently hospitalized patients. Patients are assumed to be in 

Montreal during January of 2017.

47



Supplementary Methods

Markov chain Monte Carlo methods

Age was centred at its mean value prior to modelling.  Models were run for 30,000 iterations, 

discarding the first 10% as burn-in. Residuals were assessed using binned residual plots as 

described by Gelman & Hill47. Chains were visually inspected for convergence. Finally, a second

chain was run using different initial values and results were compared to verify convergence had 

actually occurred.
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Supplementary Table 1. Odds ratios (with 95% credible intervals) for all variables in the hierarchical model for resistance to six 
antimicrobials in community-acquired urinary E. coli isolates. The intercept refers to a female approximately 55 years of age and not 
hospitalized in the past 30 days in Montreal during January of 2010.

Coefficient Top-level Ampicillin Ciprofloxacin Gentamicin Nitrofurantoin Tobramycin TMP/SMX

Intercept 0.10 (0.02, 0.65) 0.69 (0.64, 0.74) 0.19 (0.18, 0.21) 0.08 (0.07, 0.09) 0.02 (0.01, 0.02) 0.02 (0.02, 0.03) 0.32 (0.30, 0.34)

Sex (male) 1.24 (1.00, 1.53) 1.19 (1.14, 1.24) 1.30 (1.23, 1.37) 1.17 (1.09, 1.27) 1.16 (0.97, 1.37) 1.59 (1.39, 1.81) 1.08 (1.02, 1.14)

Age (10 years) 1.08 (0.95, 1.23) 1.00 (0.99, 1.00) 1.25 (1.23, 1.26) 1.04 (1.03, 1.06) 1.21 (1.17, 1.26) 1.06 (1.04, 1.09) 0.96 (0.95, 0.97)

Age2 (10 years) 1.00 (0.98, 1.01) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.01) 0.98 (0.97, 1.00) 0.99 (0.99, 0.99)

Hosp. past 30 days 1.48 (1.32, 1.66) 1.47 (1.35, 1.60) 1.50 (1.37, 1.66) 1.55 (1.40, 1.82) 1.45 (1.10, 1.70) 1.51 (1.30, 1.82) 1.44 (1.28, 1.56)

Quebec 0.62 (0.51, 0.74) 0.60 (0.57, 0.62) 0.60 (0.57, 0.63) 0.73 (0.68, 0.78) 0.49 (0.42, 0.57) 0.71 (0.63, 0.80) 0.59 (0.57, 0.62)

Rimouski 0.36 (0.27, 0.48) 0.45 (0.42, 0.48) 0.33 (0.30, 0.36) 0.46 (0.40, 0.53) 0.34 (0.24, 0.44) 0.28 (0.20, 0.37) 0.36 (0.33, 0.39)

2011 0.96 (0.90, 1.03) 0.96 (0.90, 1.02) 0.94 (0.86, 1.00) 0.96 (0.89, 1.04) 0.97 (0.88, 1.10) 0.97 (0.88, 1.09) 0.96 (0.90, 1.02)

2012 0.97 (0.88, 1.05) 0.96 (0.91, 1.02) 0.97 (0.91, 1.03) 0.99 (0.93, 1.10) 0.98 (0.88, 1.16) 0.93 (0.75, 1.01) 0.98 (0.92, 1.04)

2013 0.93 (0.81, 1.04) 0.93 (0.87, 0.99) 0.96 (0.90, 1.04) 0.95 (0.87, 1.04) 0.96 (0.84, 1.14) 0.82 (0.65, 0.97) 0.95 (0.90, 1.02)

2014 1.00 (0.94, 1.07) 1.02 (0.97, 1.08) 1.00 (0.95, 1.07) 0.99 (0.92, 1.06) 1.01 (0.94, 1.15) 0.99 (0.87, 1.06) 1.00 (0.95, 1.06)

2015 1.10 (1.00, 1.19) 1.12 (1.06, 1.20) 1.12 (1.05, 1.21) 1.06 (0.95, 1.15) 1.08 (0.90, 1.19) 1.12 (1.02, 1.30) 1.09 (1.02, 1.16)

2016 1.00 (0.66, 1.47) 1.13 (1.06, 1.21) 1.10 (1.01, 1.19) 1.04 (0.94, 1.16) 0.53 (0.38, 0.74) 1.25 (1.05, 1.50) 1.11 (1.03, 1.20)

2017 1.03 (0.72, 1.41) 1.10 (1.03, 1.19) 1.08 (0.99, 1.18) 1.03 (0.92, 1.15) 0.65 (0.46, 0.93) 1.34 (1.10, 1.62) 1.08 (1.00, 1.17)

Feb 1.08 (1.02, 1.17) 1.09 (1.03, 1.15) 1.08 (1.01, 1.16) 1.08 (1.01, 1.17) 1.10 (1.02, 1.34) 1.08 (0.98, 1.20) 1.07 (1.00, 1.14)

Mar 1.08 (1.01, 1.19) 1.07 (1.02, 1.14) 1.10 (1.04, 1.20) 1.08 (0.99, 1.17) 1.10 (1.01, 1.33) 1.09 (1.00, 1.25) 1.05 (0.97, 1.12)

Apr 1.10 (1.04, 1.17) 1.11 (1.06, 1.17) 1.09 (1.02, 1.16) 1.11 (1.04, 1.20) 1.10 (1.01, 1.23) 1.10 (1.00, 1.20) 1.09 (1.02, 1.15)

May 1.08 (1.01, 1.14) 1.08 (1.03, 1.14) 1.07 (1.00, 1.13) 1.07 (0.99, 1.15) 1.07 (0.95, 1.17) 1.08 (0.99, 1.18) 1.09 (1.04, 1.17)

Jun 1.03 (0.96, 1.09) 1.02 (0.97, 1.08) 1.03 (0.97, 1.10) 1.04 (0.97, 1.13) 1.02 (0.84, 1.09) 1.03 (0.93, 1.14) 1.04 (0.98, 1.11)

Jul 1.05 (0.97, 1.19) 1.02 (0.96, 1.08) 1.06 (0.99, 1.14) 1.07 (0.99, 1.18) 1.10 (1.00, 1.50) 1.04 (0.90, 1.17) 1.04 (0.97, 1.11)

Aug 0.99 (0.92, 1.07) 0.98 (0.92, 1.03) 1.00 (0.94, 1.08) 0.98 (0.89, 1.05) 0.99 (0.88, 1.12) 1.01 (0.93, 1.21) 0.98 (0.91, 1.04)

Sep 0.99 (0.93, 1.04) 0.98 (0.93, 1.04) 0.99 (0.94, 1.06) 0.99 (0.92, 1.05) 0.99 (0.91, 1.09) 0.98 (0.89, 1.06) 0.98 (0.93, 1.04)

Oct 1.01 (0.94, 1.07) 1.00 (0.95, 1.05) 1.00 (0.93, 1.05) 1.01 (0.93, 1.07) 1.00 (0.89, 1.10) 1.02 (0.94, 1.14) 1.02 (0.96, 1.09)

Nov 1.00 (0.95, 1.06) 1.00 (0.95, 1.05) 1.01 (0.95, 1.07) 1.00 (0.93, 1.08) 1.01 (0.93, 1.11) 1.00 (0.91, 1.08) 1.00 (0.94, 1.06)

Dec 1.04 (0.91, 1.11) 1.05 (0.99, 1.11) 1.03 (0.94, 1.09) 1.06 (0.98, 1.18) 1.01 (0.70, 1.10) 1.03 (0.88, 1.14) 1.05 (0.98, 1.12)



Supplementary Table 2. Odds ratios (with 95% credible intervals) for all variables in the hierarchical model for resistance to six 
antimicrobials in nosocomial urinary E. coli isolates. The intercept refers to a female approximately 80 years of age and not hospitalized in 
the past 30 days in Montreal during January of 2010.

Coefficient Top-level Ampicillin Ciprofloxacin Gentamicin Nitrofurantoin Tobramycin TMP/SMX

Intercept 0.14 (0.02, 0.93) 0.89 (0.71, 1.13) 0.33 (0.26, 0.41) 0.11 (0.09, 0.15) 0.02 (0.01, 0.03) 0.03 (0.02, 0.05) 0.34 (0.26, 0.43)

Sex (male) 1.16 (0.95, 1.42) 1.15 (1.02, 1.29) 1.14 (0.99, 1.30) 1.27 (1.08, 1.61) 1.08 (0.66, 1.35) 1.24 (1.01, 1.75) 1.11 (0.95, 1.27)

Age (10 years) 0.97 (0.80, 1.15) 0.94 (0.87, 1.02) 1.16 (1.05, 1.27) 1.01 (0.89, 1.14) 0.96 (0.75, 1.20) 0.83 (0.65, 1.01) 0.96 (0.87, 1.05)

Age2 (10 years) 0.99 (0.85, 1.13) 1.03 (0.94, 1.13) 1.06 (0.96, 1.19) 0.94 (0.79, 1.06) 1.01 (0.83, 1.30) 0.93 (0.69, 1.08) 0.99 (0.88, 1.09)

Hosp. past 30 days 1.29 (0.98, 1.78) 1.25 (1.02, 1.49) 1.35 (1.12, 1.71) 1.06 (0.70, 1.38) 1.41 (1.01, 2.62) 1.36 (1.00, 2.12) 1.33 (1.10, 1.68)

Quebec 0.73 (0.57, 0.98) 0.63 (0.55, 0.72) 0.69 (0.59, 0.81) 0.86 (0.67, 1.09) 0.72 (0.50, 1.07) 0.87 (0.65, 1.29) 0.65 (0.55, 0.75)

Rimouski 0.60 (0.38, 0.97) 0.53 (0.43, 0.64) 0.71 (0.57, 0.91) 0.83 (0.59, 1.17) 0.72 (0.40, 1.36) 0.56 (0.31, 0.92) 0.39 (0.29, 0.52)

2011 0.98 (0.80, 1.23) 0.93 (0.75, 1.13) 1.02 (0.83, 1.29) 0.99 (0.79, 1.31) 1.01 (0.76, 1.61) 0.95 (0.65, 1.23) 0.98 (0.80, 1.23)

2012 0.98 (0.76, 1.30) 0.93 (0.75, 1.11) 1.07 (0.87, 1.38) 0.99 (0.78, 1.30) 1.07 (0.79, 2.01) 0.93 (0.58, 1.25) 0.91 (0.70, 1.11)

2013 1.10 (0.91, 1.35) 1.08 (0.89, 1.27) 1.09 (0.90, 1.30) 1.12 (0.92, 1.45) 1.11 (0.86, 1.57) 1.10 (0.86, 1.45) 1.10 (0.91, 1.34)

2014 0.80 (0.56, 1.07) 0.86 (0.70, 1.06) 0.73 (0.55, 0.91) 0.83 (0.63, 1.11) 0.75 (0.27, 1.04) 0.85 (0.62, 1.34) 0.82 (0.66, 1.04)

2015 0.96 (0.72, 1.23) 1.02 (0.84, 1.26) 0.91 (0.70, 1.12) 0.87 (0.59, 1.12) 0.99 (0.66, 1.53) 0.93 (0.59, 1.26) 1.07 (0.86, 1.38)

2016 0.80 (0.55, 1.04) 0.85 (0.70, 1.05) 0.88 (0.72, 1.13) 0.74 (0.49, 0.95) 0.73 (0.30, 1.00) 0.86 (0.61, 1.31) 0.78 (0.61, 0.97)

2017 0.94 (0.63, 1.21) 0.94 (0.76, 1.13) 0.96 (0.77, 1.19) 0.94 (0.69, 1.20) 0.86 (0.26, 1.13) 0.98 (0.71, 1.47) 1.01 (0.83, 1.30)

Feb 0.84 (0.59, 1.28) 0.78 (0.59, 0.99) 0.74 (0.52, 0.96) 0.85 (0.61, 1.24) 1.00 (0.67, 2.46) 0.80 (0.46, 1.26) 0.87 (0.66, 1.18)

Mar 0.87 (0.69, 1.10) 0.90 (0.72, 1.13) 0.88 (0.70, 1.12) 0.89 (0.68, 1.18) 0.86 (0.58, 1.17) 0.87 (0.61, 1.18) 0.85 (0.65, 1.06)

Apr 1.13 (0.89, 1.38) 1.10 (0.87, 1.33) 1.15 (0.91, 1.41) 1.16 (0.92, 1.54) 1.12 (0.75, 1.49) 1.13 (0.81, 1.49) 1.12 (0.88, 1.38)

May 1.01 (0.80, 1.27) 0.99 (0.80, 1.22) 1.02 (0.82, 1.28) 0.99 (0.73, 1.25) 1.01 (0.71, 1.40) 1.02 (0.76, 1.42) 1.03 (0.83, 1.32)

Jun 1.02 (0.80, 1.28) 0.98 (0.77, 1.21) 1.06 (0.85, 1.36) 1.03 (0.79, 1.34) 1.01 (0.71, 1.42) 1.00 (0.69, 1.32) 1.03 (0.81, 1.29)

Jul 0.80 (0.61, 1.01) 0.79 (0.62, 0.98) 0.77 (0.59, 0.97) 0.78 (0.55, 1.00) 0.80 (0.52, 1.15) 0.80 (0.56, 1.13) 0.84 (0.67, 1.11)

Aug 0.80 (0.49, 1.08) 0.93 (0.72, 1.20) 0.79 (0.58, 1.02) 0.79 (0.53, 1.06) 0.77 (0.34, 1.18) 0.69 (0.27, 1.02) 0.87 (0.66, 1.15)

Sep 0.83 (0.53, 1.37) 0.81 (0.62, 1.03) 0.83 (0.61, 1.09) 0.59 (0.32, 0.92) 1.16 (0.68, 2.83) 0.89 (0.55, 1.56) 0.81 (0.59, 1.07)

Oct 0.99 (0.76, 1.23) 1.04 (0.83, 1.31) 0.99 (0.78, 1.22) 0.97 (0.73, 1.24) 0.97 (0.59, 1.30) 1.02 (0.75, 1.49) 0.96 (0.72, 1.18)

Nov 1.03 (0.81, 1.27) 1.06 (0.86, 1.31) 1.04 (0.84, 1.29) 1.05 (0.83, 1.37) 1.01 (0.66, 1.34) 1.02 (0.71, 1.32) 1.02 (0.79, 1.26)

Dec 0.92 (0.72, 1.17) 0.95 (0.77, 1.21) 0.87 (0.66, 1.08) 0.95 (0.74, 1.30) 0.94 (0.66, 1.46) 0.93 (0.67, 1.34) 0.89 (0.68, 1.10)
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ABSTRACT

Urinary tract infections caused by the bacteria Escherichia coli are among the most frequently 

encountered infections and a common reason for antibiotic prescriptions. Resistance to 

fluoroquinolone antimicrobials, and in particular ciprofloxacin, has increased in recent decades. 

It is intuitive that variation in resistance is driven by changes in antimicrobial use, but proper 

time series methods are necessary to study this association. We investigated the monthly 

proportion of ciprofloxacin resistance in community-acquired urinary E. coli isolates in 

Montreal, Quebec, Canada between April 2010 and December 2014 using a dynamic linear 

model. We found a positive correlation between total fluoroquinolone use lagged by 1 and 2 

months and the proportion of isolates resistant to ciprofloxacin. Our results suggest that 

resistance to ciprofloxacin is responsive to changes in antimicrobial use. Thus, antimicrobial 

stewardship campaigns to reduce fluoroquinolone use, particularly in the community setting, are 

likely to be a value tool in the struggle against antimicrobial resistance.

Keywords: antimicrobial resistance, antimicrobial use, ciprofloxacin, dynamic linear models, 

Escherichia coli, fluoroquinolones, time series, urinary tract infections
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Antimicrobial resistance has been recognized as one of the greatest threats to global 

health today (1). Rising levels of resistance to numerous classes of drugs threatens our ability to 

treat common infections, leading to higher costs, prolonged hospital stays, and worse outcomes 

for patients (1,2). Although antimicrobial resistance is a naturally occurring phenomenon, 

antimicrobial use is generally recognized as the leading driver of resistance (1,3–5). Given the 

paucity of new antimicrobials in the drug development pipeline, it is critical to understand the 

forces underlying patterns of resistance (6,7).

Urinary tract infections (UTIs) are among the most commonly encountered infections in 

both the hospital and community settings, affecting mainly women, as well as infant and elderly 

males (8,9). In fact, the lifetime risk for UTIs in women exceeds 50%, and many women will 

suffer more than one episode in their lifetime (10,11). Additionally, UTIs may account for up to 

40% of infections in hospitals (9). Although UTIs are associated with a number of bacterial and 

even fungal species, Escherichia coli is by far the most prominent infectious agent (9,12). Given 

the high prevalence of these infections, it follows that UTIs are major drivers of antimicrobial 

use and potentially resistance.

The connection between antimicrobial use and antimicrobial resistance is certainly 

intuitive, and studies comparing patterns of use and resistance across countries support this 

notion (3–5). The demonstration of a temporal association between use and resistance provides 

stronger evidence for this connection, but this relationship is more difficult to study for both 

statistical and biological reasons. First, special time series methods are required to deal with the 

serial dependence of observations through time. Caution must be observed, as it is easy to 

observe strong yet spurious correlations between two variables by not accounting for the 

correlated nature of the data or due to hidden variables (13,14). Biologically, there are good 

reasons to expect antimicrobial resistance to imperfectly mirror patterns of antimicrobial 
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consumption. Generally, resistance mutations incur fitness penalties, such as reduced growth 

rate, competitive ability, and virulence (15,16). However, compensatory evolution (additional 

mutations relieving the fitness cost of resistance), co-selection with other traits, and complex 

interaction between genes can result in the persistence of antimicrobial resistance in bacterial 

populations even when the selective pressure of antimicrobials is alleviated (15–17).

Quinolone antimicrobials present a particularly interesting case of antimicrobial 

resistance. This class of drug, introduced in 1962, is fully synthetic and involves complex 

mechanisms of action; for these reasons, it was thought to be unlikely that resistance would 

emerge (18). Nonetheless, resistance to early quinolones quickly became widespread, and a more

potent sub-class of quinolones, fluoroquinolones, was introduced in 1982 (18). This sub-class 

represents almost all quinolones still in use today, including the broad-spectrum antimicrobial 

ciprofloxacin, which is among the most commonly prescribed antimicrobials in the world 

(19,20). The prevalence of fluoroquinolone resistance has risen over the past two decades (21–

23). Given the frequency at which fluoroquinolones (specifically ciprofloxacin and levofloxacin)

have been prescribed for UTIs (24), as well as the ability for quinolone resistance to transfer 

horizontally via plasmids (18,25), this suggests that UTIs may play an important role in rising 

rates of resistance.

In the province of Quebec, Canada, ciprofloxacin resistance is routinely tested and 

reported for E. coli UTIs in adults (fluoroquinolones are not approved for use in children and 

thus rarely prescribed to them (26)). The prevalence of resistance to this drug shows both annual 

and seasonal patterns, as does the use of fluoroquinolones, making it an ideal candidate for time 

series analysis. Previous research has found correlations between time-lagged values of 

fluoroquinolone use in the community and the prevalence and incidence of ciprofloxacin 

resistance in community-acquired E. coli isolates using models under an autoregressive 
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integrated moving average framework (27–29). However, this class of models has several 

notable drawbacks, including a disregard for the structure of the data in favour of an 

untransparent, data-driven approach (“black box” model) and an artificial requirement for 

stationarity (constant mean and variance across time) prior to analysis, often requiring extensive 

transformation of the data (30). Additionally, the aforementioned studies did not consider 

averaged patient characteristics such as age and sex for explaining variation in observed rates of 

resistance between months.

Here, we propose the use of dynamic linear models (a type of state-space model—for an 

overview, see (31) or (32) for worked examples with R), an explicitly structural approach to time

series analysis which offers greater flexibility than autoregressive integrated moving average 

models and allows us to decompose monthly ciprofloxacin resistance as a function of mean, 

seasonal, and averaged patient characteristic components. In this study, we investigated 

community fluoroquinolone use as a driver of observed seasonal trends in ciprofloxacin 

resistance in the city of Montreal, Quebec, Canada between April 2010 and December 2014.

METHODS

Setting

Montreal is a large city located in the province of Quebec, Canada. Near the beginning of

the study period (2011), the health region of Montreal had a census population of 1,886,480, 

which includes the city proper but not the surrounding metropolitan area (33). The McGill 

University Health Centre is one of the two major teaching healthcare networks in the city, 

providing hospital services to the city as well as specialized and ultra-specialized care to the 

surrounding area and the rest of the province. This study included data from the following 

hospitals representing all but one in the network: Royal Victoria Hospital, Montreal General 
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Hospital, Montreal Neurological Hospital, and Montreal Children's Hospital, accounting for over

a thousand hospital beds.

Antimicrobial resistance data

We examined resistance to ciprofloxacin in community-acquired urinary E. coli isolates 

for patients between the age of 18 and 95 tested in the laboratory of the McGill University 

Health Centre between April 2010 and December 2014. For each isolate, the following data were

available: date of collection, age, sex, patient unique identifier, date of previous admission, and 

antimicrobial susceptibility testing results classified as sensitive, intermediate, or resistant. 

Species identification and susceptibility testing was done following Clinical and Laboratory 

Standards Institute breakpoints and guidelines (34). We excluded samples obtained 48 hours or 

more after hospital admission or within 48 hours after hospital discharge as potentially 

nosocomial based on National Healthcare Safety Network guidelines (35) and considered all 

other samples (e.g. from emergency departments, outpatient clinics, and community clinics) as 

community-acquired. Samples with more than two bacterial species were excluded, being 

considered as contaminated (36). Since our methodology presumes that samples are independent,

we retained only the first urinary E. coli isolate from each patient. In total, we had 11,214 unique

isolates (mean: 197/month). The small percentage of susceptibility results classified as 

intermediate (0.3%) were grouped with the susceptible isolates for the purpose of analysis (“non-

resistant” isolates, e.g., see (29,37,38)). Finally, we calculated the monthly proportion of samples

resistant to ciprofloxacin.

Fluoroquinolones dispensation data

Outpatient use of fluoroquinolones was estimated using dispensation data for a randomly 

sampled, open cohort of 25% of people covered by the Régie de l’Assurance Maladie du 

Québec’s Public Prescription Drug Insurance Plan for the health region of Montreal. Our 
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subsample, covering the years 2004–2014, is drawn from a larger cohort covering 25% of the 

population of the Census Metropolitan Area of Montreal, described in detail elsewhere (39). In 

Quebec, all residents are covered for medical care and hospitalizations, and prescriptions are also

covered for residents ineligible for a private plan. These groups, which comprised nearly 49% of 

Montreal’s population in 2011 (40), include individuals 65 years of age or older, individuals

receiving social assistance, and workers and family members without access to private drug

insurance (e.g. self-employed, students, etc.). The claims database included the nature, quantity, 

and date of every drug dispensed to each individual covered under the plan, as well as 

demographic information.

We considered outpatient oral fluoroquinolone use (Anatomical Therapeutic Chemical 

Classification: J01MA) in Quebec, which comprises the following drugs: ciprofloxacin, 

levofloxacin, ofloxacin, norfloxacin, and moxifloxacin. We also considered total fluoroquinolone

use. Antimicrobial use was expressed as monthly Defined Daily Doses (41) per 1,000 inhabitant-

days, weighted by age, sex, and program type composition of individuals enrolled in the public 

drug plan, which is reported quarterly (40). We calculated DDDs assuming that all dispensed 

drugs were consumed, as antimicrobials are generally prescribed to provide one course of 

treatment for common infections.

Model fitting

For urinary E. coli, we modelled the monthly proportion of samples resistant to 

ciprofloxacin from April 2010 to December 2014 in a Bayesian dynamic linear model 

framework. The outcome (Yt), is normally distributed after a logit transformation, so we 

modelled the logit of the expected proportion of resistant samples (θt) with Gaussian white noise 

observation errors (vt):
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The expected value (θt) is decomposed as the sum of three independent components: a 

time-varying mean (μt), averaged patient characteristics (Pt), and a seasonal component (St):

We assumed the time-varying mean component follows a random walk with variance 

σμ
2 . The averaged patient characteristic component was estimated in the model as a multiple 

regression on three values in the current month: percentage of samples where the patient is male, 

mean age of patients, and percentage of samples where the patient was admitted to the hospital in

the past 30 days.

A standard way to account for seasonality is with a first-order harmonic, in our case with 

a period of 12 months. This models seasonality as a sinusoidal function of time without reference

to antimicrobial use:

We can allow the coefficients of the harmonic ( ht , 
~
h t ) to remain statistic over time 

( ht=h , 
~
h t=

~
h ) or vary according to random walks with variances σh

2  and σ~h
2 , respectively.

Alternately, the seasonal component can be represented using a transfer function of 

antimicrobial use to model how the association between use and resistance evolves over time (for

an overview of transfer functions, see (42)). Since we are interested in short-term, seasonal 

fluctuations in antimicrobial use (Dt), we first removed the trend (time-varying mean) component

from the use series using loess smoothing (“stl” function in R 3.4.4 (43), subtracting the trend 

component from the overall series). We considered use of each of the fluoroquinolones 

mentioned above, as well as total fluoroquinolone use, in turn using a number of distributed lag 

models that consider the association of fluoroquinolone use in the current month (Dt, 0) up to 

fluoroquinolone use five months ago (Dt, 5) (a six month series).
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Briefly, the transfer functions considered are as follows: the finite distributed lag model 

requires one parameter for each lagged value of antimicrobial use (44); the Almon model 

reparametrizes the finite distributed lag model by assuming the regression coefficients form a 

polynomial curve of order M (raw beta coefficients can be recovered through a transformation) 

(45); finally, the Koyck model assumes the magnitude of association with the independent 

variable is greatest in the current time and decays exponentially with the length of the lag 

(44,46). The Koyck model does not fix the lag a priori. In this study, we considered Almon 

models of order 2 or 3. These models can easily be extended to consider the use of multiple 

antimicrobials simultaneously (multivariable transfer function).

For each model, we estimated the posterior distribution of the parameters using Markov 

chain Monte Carlo (MCMC) as implemented in the nimble (47) package (version 0.6-10) in R. 

The 95% posterior credible intervals for each parameter is presented after 500,000 iterations with

a thinning interval of 5 and 10% burn-in. The time-varying mean (µt) and transfer function (St) 

parameters were estimated in a block using automated factor slice sampling, which substantially 

speeds convergence in correlated state-space models (48,49).

Model selection

We considered a total of 26 models (6 types of antimicrobial use × 4 possible transfer 

functions + static harmonic model + random harmonic model). Models were compared using 
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widely applicable information criterion (50), a generalization of Akaike information criterion 

commonly used to evaluate the model fit while penalizing complexity. Smaller values indicate 

better model fit.

Ethics

We obtained ethics approval from each participating institution according to the Multi-

Centre Research Ethics Review Mechanism of the Quebec Ministry of Health and Social 

Services (MP-37-2018-3758).

RESULTS

Model selection

Table 1 shows the best transfer function model (using widely applicable information 

criterion) for each type of antimicrobial use, plus the two harmonic models. The overall best 

model included total fluoroquinolone use with a third order Almon model transfer function. 

Models for all but ofloxacin and norfloxacin use compared favourably to the harmonic models 

that did not consider antimicrobial resistance. The predicted values for resistance in the best 

model among the fitted ones are compared with the observed values in Figure 1A.

Time-varying mean

The mean level of resistance appeared to decrease from about 18.5% in the beginning of 

the study period (April 2010) until reaching a trough of about 17.2% in late 2011. After this, the 

mean climbed back to around 18.5% by mid-2012 (Figure 1B).

Patient characteristics

On the logit scale, the estimated regression coefficients (for a 1 unit increase) with 95% 

credible intervals (CI) were: mean age in years (0; 95% CI: -0.024, 0.024), percentage of isolates
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where the patient was admitted to the hospital in the past 30 days (0.016; 95% CI: -0.012, 0.044),

and percentage of isolates where the patient was male (0.013; 95% CI: -0.003, 0.030) (Figure 

1C).

Seasonality

Fluoroquinolone resistance tended to show a seasonal pattern, with higher resistance 

between November to March and the lowest value around September (Figure 1A). Total 

fluoroquinolone use (Figure 2) was highly seasonal, with total use being lowest in July and 

highest from October to February (Figure 3). This suggests a time-lagged association of 1 to 2 

months, which is exactly what is predicted by the model. A positive correlation was noted 

between total fluoroquinolone use lagged by 1 (0.257; 95% CI: 0.072, 0.438) and 2 (0.261, 95% 

CI: 0.110, 0.412) months (Figure 4A). These figures indicate the expected change in the logit of 

the proportion of resistance from a 1 unit change in total fluoroquinolone use in Defined Daily 

Doses per 1,000 inhabitant-days. The transfer function component of the model is plotted in 

Figure 4B.

The seasonality of levofloxacin use and moxifloxacin use closely followed the overall 

pattern of use for fluoroquinolones, whereas ciprofloxacin differed somewhat (Figure 3). Since 

ofloxacin and norfloxacin are prescribed much less compared to the other three drugs, estimation

of their seasonal trends was more susceptible to sampling error.

DISCUSSION

In this study, we used a dynamic linear model to decompose ciprofloxacin resistance in 

community-acquired urinary E. coli infections in the city of Montreal, Quebec, Canada between 

April 2010 and December 2014 into three components: a time-varying mean, a component based

on averaged patient characteristics, and seasonal variation as represented by lagged 
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fluoroquinolone use in Montreal. Compared to traditional autoregressive integrated moving 

average models for time series, this approach has the advantage of allowing us to estimate the 

long-term trend at the same time as the association between antimicrobial use and resistance 

across time. Additionally, the use of the Almon model to impose a biologically plausible 

correlation structure on the coefficients for lagged antimicrobial use allowed us to estimate these 

relationships using fewer parameters in the model.

Our three-component model captured the trend in ciprofloxacin resistance fairly well, 

although there was some variance left unexplained. The mean was relatively smooth, with a 

notable decrease in 2011 (Figure 1B). Although the patient characteristic component suggests a 

higher proportion of recently hospitalized individuals and a higher proportion of men are 

associated with greater resistance, the credible intervals of both coefficients included zero 

(Figure 1C). Both of these associations have been observed previously on an individual patient 

level (51,52), but the month-to-month differences in averaged patient characteristics (such as the 

proportion of women in the sample) is relatively small, making it more difficult to more 

precisely estimate these coefficients in a relatively short time series.

We found that community use of all but two fluoroquinolones (ofloxacin and norfloxacin)

in our dataset predicted seasonal patterns in resistance better than generic harmonic models, but 

total fluoroquinolone use was the single best predictor. The observation that fluoroquinolone use 

is highest throughout the influenza season is not a coincidence, as these drugs are often 

prescribed for influenza, both inappropriately (for the viral infection) and appropriately (to 

combat secondary bacterial infections (53–55)). The association between use and resistance was 

lagged by 1 to 2 months. A particularly notable example of this relationship occurred in 

September of 2011, the lowest value in the series for ciprofloxacin resistance (Figure 1A), which 
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was preceded by a large drop in use in July of 2011 (Figure 2). Generally, the strength of this 

association translated into fluctuations within 2 percentage points from the mean.

The results regarding antimicrobial use are consistent with previous research. Sun and 

colleagues (29) reported that the strongest correlation between fluoroquinolone use and the 

prevalence of ciprofloxacin resistance occurred with a 1-month lag, which is similar to what we 

observed. Vernaz et al. (28), studying the incidence (rather than prevalence) of ciprofloxacin-

resistant infections in Geneva, reported that use of ciprofloxacin lagged by 1 month and 

moxifloxacin lagged by 4 months showed the strongest correlations. Finally, Gallini et al. (27) 

investigated the correlation between levofloxacin use in the community and ciprofloxacin 

resistance in nosocomial infections in a French university hospital. This correlation occurred on a

longer time scale, with a lag of 12 months. Individual fluoroquinolone use is also a risk factor for

acquiring a resistant infection (56), although community use may be more important than 

individual use (57).

Our study had a number of limitations. First, with an ecological study, we cannot make 

causal inferences from our data, although the biological plausibility of the observed association 

is obvious. Our drug prescription database covers only those on the public prescription plan in 

Montreal, whereas our resistance dataset includes all community-acquired urinary E. coli isolates

tested at the McGill University Health Centre, which may include individuals living outside of 

the city of Montreal. The public plan has near complete coverage for individuals 65 and older, 

where fluoroquinolone use is concentrated (e.g., in Canada, people aged 60+ account for 

approximately 70% of ciprofloxacin prescriptions (58)). People under 65 on the public plan 

probably differ from the general population in this age group (59), which may include their usage

patterns of antimicrobials. Since we de-trended (removed the mean) antimicrobial use before 

analysis, these concerns would only be serious if they affected seasonal patterns, rather than 
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mean use. In our dataset, seasonal patterns of use were similar across age groups (Web Figure 1).

A caveat to the use of a claims database is the assumption that drug dispensation reflects use, 

even though we cannot be sure who is actually consuming dispensed drugs. Finally, it would 

have been advantageous to be able to include consumption and resistance data from multiple 

communities across the province.

Despite the myriad ways in which resistance can be maintained in the absence of 

selective pressure from antimicrobial use, resistance mechanisms are still generally costly 

(15,60). Our study supports the notion that ciprofloxacin resistance responds to changes in 

fluoroquinolone use. While the strategy of restricting prescribing has had some success (61,62), 

cases like the rapid emergence of quinolone resistance in a remote Amazon community where 

quinolones were never prescribed (and antimicrobial usage is minimal) (63) should provoke 

urgency to find additional strategies for combating antimicrobial resistance (64). Nonetheless, 

antimicrobial stewardship campaigns to reduce fluoroquinolone usage, particularly in the 

community setting, are likely to be a valuable tool in the global struggle against this public 

health crisis.
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Table 1. Model selection for the seasonal component of ciprofloxacin resistance in urinary E. 

coli isolates from Montreal, Quebec (2010–2014). Dt : antibiotic use; St : seasonal component; 

WAIC: widely applicable information criterion. The best transfer function model for each type of

antimicrobial use, plus two harmonic models disregarding antimicrobial use, are contrasted with 

the best overall model (bolded).

St Dt WAIC

Harmonic (static) None -30.57

Harmonic (random) None -30.59

Almon (order 3) Ciprofloxacin -32.45

Almon (order 3) Levofloxacin -35.20

Almon (order 3) Moxifloxacin -33.48

Koyck Norfloxacin -29.84

Almon (order 2) Ofloxacin -30.52

Almon (order 3) Total fluoroquinolones -35.98
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Figure 1. Expected value and non-seasonal components of the dynamic linear model for 

ciprofloxacin resistance in urinary E. coli samples from Montreal, Quebec (2010–2014). A) 

Expected proportion of resistance (solid) with 95% credible interval; observed proportion of 

resistance (dashed). B) Time-varying mean of proportion of resistance with 95% credible 

interval. C) Regression coefficients for averaged patient characteristics on the logit scale.
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Figure 2. Total fluoroquinolone use in Montreal, Quebec (2010–2014), lagged by 2 months.
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Figure 3. Seasonality of the use of several fluoroquinolones in Montreal, Quebec. Seasonality is 

calculated as the the average difference for each month between observed use and mean use 

(calculated by loess smoothing) in an 11-year time series (2004–2014). Values are given as 

Defined Daily Dose (DDD) per 1,000 inhabitant-days. A 95% confidence interval is given (n = 

11 for all months).
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Figure 4. Correlation between time-lagged total fluoroquinolone use and monthly proportion of 

ciprofloxacin resistance in urinary E. coli isolates from Montreal, Quebec and the transfer 

function component of the dynamic linear model. A) Correlation between time-lagged 

fluoroquinolone use and the proportion of resistance on the logit scale. The regression 

coefficients represent the expected change in the logit of the proportion of resistance from a 1 

unit change in total fluoroquinolone use in Defined Daily Doses per 1,000 inhabitant-days at a 

particular lag. B) The transfer function component of the dynamic linear model on the logit scale.
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Web Figure 1. Seasonality of total fluoroquinolone use in Montreal, Quebec by age group. 

Seasonality is calculated as the the average difference for each month between observed use and 

mean use (calculated by loess smoothing) in an 11-year time series (2004–2014). Values are 

given as Defined Daily Dose (DDD) per 1,000 inhabitant-days. A 95% confidence interval is 

given (n = 11 for all months).
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5. Discussion

5.1. Interpretation of results
The two manuscripts comprising this thesis examined the question of antimicrobial resistance in 

urinary E. coli from different angles. In the first manuscript, we examined several individual 

predictors of resistance to six different antimicrobials, namely age, sex, and recent 

hospitalization. We also looked at geographic, seasonal, and annual variability in three cities 

across the province of Quebec between the years of 2010 and 2017. In the second manuscript, we

re-examined seasonal and temporal trends in ciprofloxacin resistance in Montreal, Quebec 

through the lens of time series analysis. In this second analysis, we considered population-level 

fluoroquinolone use as a potential predictor of monthly changes in resistance, comparing the 

model fit using fluoroquinolone consumption data to a generic sinusoidal model without 

reference to these data.

The primary result of the first analysis was that there is clinically important variation in the 

probability of having a resistant infection across cities and patient populations. For most types of 

antimicrobials, men tended to be more vulnerable to resistant infections; this was also true of 

individuals hospitalized in the previous 30 days. In most cases, age did not strongly correlate 

with the probability of resistance, but ciprofloxacin was a notable exception. The cumulative 

effects of these covariates can result in dramatically different expected probabilities of resistance 

across patients requiring empirical antimicrobial therapy. For example, according to our model, a

community-acquired isolate from an 18-year-old, not recently hospitalized, female patient in 

Montreal has an 8% (CI: 7%, 9%) probability of ciprofloxacin resistance, whereas a samples 

from a male, recently hospitalized patient of the same age has a 15% (CI: 13%, 17%) probability.

If the male patient is instead 65 years of age, this probability jumps to 33% (CI: 31%, 36%).
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Geographic variability was large, even though our study sites comprised three cities in the same 

province. For instance, after accounting for other factors, the prevalence of ciprofloxacin 

resistance community-acquired isolates in Montreal averaged around 20%, whereas Rimouski 

averaged around 8%, with Quebec City in the middle. The samples from Quebec City (covering 

both major hospital networks) and from Rimouski (covering the only area hospital) are expected 

to be relatively representative, whereas the sample from the MUHC (only one of the major 

hospital networks in Montreal), may not be representative of the prevalence of resistance in 

Montreal, especially given that the MUHC is a major reference centre for urology. Nonetheless, 

the MUHC serves a large portion of the population of Montreal, so these findings highlight the 

importance of local susceptibility profiles in making decisions about empirical therapy.

Annual trends in resistance were fairly consistent in community-acquired but not hospital-

acquired samples. In community-acquired samples, resistance declined or held steady from the 

beginning of the study period (2010) until 2013, after which the prevalence of resistance 

increased. We noted a slight decline from 2010 to 2011 in ciprofloxacin resistance. Two distinct 

seasonal patterns emerged, one for community-acquired isolates and one for nosocomial isolates.

In the former, resistance tended to peak in late winter and early spring; in the latter, resistance 

tended to slump in the summer, although this pattern was less pronounced.

These results generally replicated the results of previous findings about individual risk factors for

antimicrobial resistance in urinary E. coli. However, the analysis did not generally show large 

differences in the prevalence of resistance between nosocomial and community-acquired isolates,

which has been reported in many previous studies. Many previous studies did not directly 

account for differences in patient characteristics in their estimates of susceptibility between these

two groups of isolates (as we have done here). We believe this explains a substantial proportion 
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of the variation between the two groups, at least in our study. The conclusion to draw from this 

first analysis and the previous weight of evidence is that there is a need for physicians, especially

general practitioners, to be able to access region-specific antimicrobial resistance profiles. 

Ideally, a model-based clinical decision support system would integrate local, regional, and 

national data on antimicrobial resistance, as well as any available patient-specific data, in order 

to develop information to guide the selection of empirical therapy for UTIs and other infections.

The second analysis sought to illuminate the temporal trends noted in ciprofloxacin resistance for

community-acquired E. coli isolates. The time series methods supported the temporal results of 

the first analysis using logistic regression (although we could only examine up to the end of 2014

in this analysis). Specifically, the dynamic linear model revealed a dip in the mean prevalence of 

resistance in 2011, as shown with the simpler method. The main result of the analysis showed 

that higher rates of resistance in late fall to early spring were preceded by elevated 

fluoroquinolone consumption in the 1 or 2 months prior, supporting the speculative explanation 

in the first analysis.

We were not able to fully replicate the results of the first analysis with respect to patient 

characteristics. Although the associations with the proportion of males and the proportion of 

recently hospitalized patients in the monthly sample trended in the expected directions, the 

credible intervals crossed the null. This can probably be explained by the fact that there was too 

little variance in averaged patient characteristics across months to reliably detect these 

associations in a time series of the length we modelled.

Historically, fluoroquinolones (specifically ciprofloxacin and levofloxacin) have been heavily 

prescribed for urinary tract infections, as well as being among the most commonly prescribed 

antimicrobials overall. This analysis supports the notion that fluoroquinolone resistance follows 
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fluoroquinolone use at the community level. These results should encourage the further adoption 

of antimicrobial stewardship campaigns to preserve the efficacy of these life-saving drugs. 

Currently, these campaigns are more commonplace in hospitals, but a strong effort must be made

to reach general practitioners and specialists in the community, where the vast majority of drugs 

are dispensed. Prescribing practices regarding fluoroquinolones for UTIs are particularly ripe for 

change given the high volume prescriptions involved (and thus high potential for impact) and 

recent warnings by the FDA about the potentially disabling side effects of these antimicrobials, 

recommending against their use for uncomplicated infections. However, addressing the overuse 

of broad-spectrum fluoroquinolones alone is unlikely to slow the rising levels of resistance to 

more narrowly targeted therapies such as TMP/SMX. Due to the high economic costs and 

potential for serious sequelae (such as renal damage) resulting from UTIs, we must explore new 

ways of maintaining the effectiveness of these drugs, especially as novel pharmacological 

solutions remain elusive.

5.2. Strengths and limitations
The main advantage of this project was the use of rigorous statistical methods to analyze the 

associations of interest. Our hierarchical, model-based approach allowed us to transcend the 

dimensional limitations of contingency tables and to account for correlations between the six 

types of resistance in our analysis. This methodology was both biologically justified and 

statistically useful, especially when estimating associations for antimicrobials for which 

resistance is rare (e.g., nitrofurantoin and tobramycin). In the time series analysis, the use of 

dynamic linear models gave us a fuller picture of trends in ciprofloxacin resistance than we 

might have obtained using traditional ARIMA methods. We were able to decompose annual and 
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seasonal trends as well as investigate the role of averaged patient characteristics in the sample, 

which was a novel addition.

We also benefited from having access to three relatively long, complete datasets from four 

separate institutions in Quebec. Many previously published antimicrobial susceptibility profiles 

use a short time frame—often a year or less—at a single institution, which results in a small 

sample size and no possibility of making temporal inferences. Conversely, our antimicrobial 

resistance dataset spanned several institutions and nearly eight years.

Limitations in our dataset meant we were unable to explore some questions of clinical interest. 

For example, we had no information on symptoms, thus we were unable to separate 

asymptomatic bacteriuria from symptomatic UTI. It would have also been beneficial to be able 

to include personal antimicrobial use and comorbidities like diabetes in the analysis. The nature 

of the dataset also made misclassification of some nosocomial isolates as community-acquired 

likely, since we could not identify patients who were admitted to hospitals outside of the network

where their samples were tested. We also likely misclassified some recently hospitalized patients 

as not having been hospitalized, which would diminish the magnitude of the association with this

risk factor. These types of misclassification would have been more prevalent in the two major 

cities in our study, as opposed to Rimouski, where there are fewer hospitals in the surrounding 

region.

A limitation in the time series analysis concerned the source of the fluoroquinolone dispensation 

data, namely individuals enrolled in the public drug prescription plan. This group covers slightly 

less than half of the population of Montreal and may not be representative of the population 

under 65. However, the public plan is representative of individuals over 65, the age group in 

which fluoroquinolone use is concentrated. Furthermore, since we were interested in short-term, 
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seasonal fluctuations in consumption as opposed to the absolute amounts, the fact that seasonal 

patterns of use were similar across age groups provides yet more evidence that our database was 

sufficient to address our research question.

5.3. Areas for future research
The quotidian wish of every researcher is to have had more data. Longer antimicrobial resistance

time series from more institutions in more places would allow risk factors for antimicrobial 

resistance to be calculated ever more precisely, and would help to illuminate the commonalities 

and differences in resistance risk across time and space. Additionally, longer time series would 

make it easier to study the association between community antimicrobial use and resistance in 

hospitals, a more indirect association that necessarily takes place on a longer time scale than the 

community-to-community association studied here.

The advent of large, standardized health databases makes research comparing health outcomes, 

like antimicrobial resistance, across geographic and patient populations easier than ever before. 

Bayesian hierarchical methods, which are more accessible and computationally feasible than 

ever before, are perfectly suited for a provincial or national system producing localized 

antimicrobial susceptibility profiles to support clinical decision making regarding empirical 

therapy. In this framework, physicians could have access to a locally relevant antimicrobial 

resistance profile specific to the patient population at hand, with the underlying model 

incorporating not only local but also provincial and national data to inform estimates.

Finally, the approaches used in the two analyses comprising this thesis are very applicable to 

infections other than urinary E. coli and could help inform empirical therapy in these contexts as 

well.
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6. Conclusion
Resistance to common antimicrobials in urinary E. coli isolates in Quebec varied substantially by

geography, time, and patient population. Resistance tended to be higher in men, patients who had

been recently hospitalized, and in the case of ciprofloxacin resistance, older patients. The 

magnitude of these differences was significant enough to potentially influence the optimal 

selection of empirical therapy. In the future, this model-based approach to susceptibility profiles 

could be incorporated into a decision-support system for clinicians.

In Montreal, fluoroquinolone consumption explained seasonal fluctuations in ciprofloxacin 

resistance with a lag of 1 to 2 months. These results support the proposition that ciprofloxacin 

resistance is modifiable by limiting fluoroquinolone prescriptions, the rationale for antimicrobial 

stewardship campaigns.

This research demonstrates the utility of standardized susceptibility testing results and 

sophisticated modelling approaches to make general and locale-specific inferences about the 

prevalence of and risk factors for many types of antimicrobial resistance. There is a great 

opportunity for increased collaboration between hospitals, governments, and researchers in order

to provide the most relevant resistance profiles to guide empiric therapy and target antimicrobial 

stewardship campaigns.
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