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Abstract

We show that a twistor construction of Hitchin and Wtu'd can be adapted to study

unitons (harmonie spheres in a unitary group). Specifically, we show tlmt unitons

are equivalent to holomorphie bundles with extra structure over a rational ruled

surface. This equivalence allows us to confirm the conjecture of Wood thal. unitons

are rational. These bundles are in turn representable by monads. By interpreting

the uniton construction of Ward in this setting, we are able to give an expression

for unitons of 'simplest type' in terms of the monad data (three matrices) using

only matrix operations. This expression yields a proof that the component,s of the

moduli and energy levels are one and the same for unitons of 'simplest type'.

Résumé

Nous démontrons qu'une construction twistorielle de Hitchin et de VVard peut

être adaptée à l'étude des unitons (des sphères harmoniques dan:' un groupe uni­

taire). En particulier, nous démontrons que les unitons sont équivalents à des

fibrés holomorphes avec une structure supplémentaire sur une surface réglée ra­

tionnelle. Cette équivalence nous permet de confirmer la conjecture de Wood stip­

ulant que les unitons so~t rationnels. Ces fibrés peuvent être représentés par des

monades. L'interprétation de la construction de Ward dans ce contexte nous permet

d'exprimer les unitons du type "le plus simple" en termes des données monadiennes

(trois matrices) en n'utilsant que du calcul matriciel. Cette expression démontre que

les composantes des modules et niveaux d'énergie sont identifiées pour les mâtons

du type "le plus simple" .

TypcscL by AMoS-TEX
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PREFACE

Harmonic two-spheres in a unitary group were called unitons by Uhlenbeck [Uhl],

to suggest parallels with self-dual Yang-Mills instantons. Both are solutions to

equations from m~.thematical physics. They are attempts to generalise the theOl'Y of

electro-magnetism, thcir solutions representing new particles in the classical/non­

quantum sense. In Yang-Mills (or gauge) theory, physical states are measured

by fields taking values in a Lie algebra (u(l) for an electro-magnetic field) and

the Maxwell equations are replaced by a more general curvature condition. The

generalised field theory is complicated by nonlinearity /noncommutativity of the

group. In physics, harmonic maps aJ.·e called chiral fields, or sigma models, and

the possible field 'strengths' are points in the target manifold (which may also be a

group, but is more commonly a homogeneous space such as a Grassmannian) and

the allowed classical states are given by critieal values of the energy functiona1.

More than their shaJ.·ed physical background [Mi], however, one would hope that

the harmonic maps have the same beautiful (and much-studied) structure as in­

stantons. One word of caution: while unitons are of interest to mathematicians

and mathematical physics for other l'easons, they are not particles as their name

may suggest, since they are defined on two dimensions and not four-dimensional

Minkowski space.

If this constitutes unitons' 'physical' parentage, there is also a mathematical side

of the family. HaJ.'monic maps aJ.·e closely related to minimal submanifolds, and if

we allow braJ.lch points, the two are equivalent in two dimensions, The study of

minimal surfaces and harmonic functions goes back to the nineteenth century. The

last decades have seen a lot of work on the existence and regularity of harmonic maps

taking advantage of modern tools of analysis such as Sobolev spaces of maps. Work

Typeset by AMoS-TEX
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on the general problem of finding harmonie maps between Ricmanninu nuulifolds

has bcen done, but the bulk of the work (as attcsted to by [Rc!,l] and [Rcp2]) has

considered special cascs, such as ma!,s into numifolds of ncgativc elll'vature or with

restricted homotopy type, or maps of Kiihler manifolds, sphercs or homogcncous

spaees.
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The rclationship betwcen minimal surfaces and holomorphie geometry first al'­

pears in the work of WeierstraB ([Weil], [Wei2], sec also [FoTu], [Ei, 1'1'250-264],

and [Hi, §9]) who notiecd that Enneper's closcd form solution of the minimal sur­

face equations in IR3 given in tenus of analytic functions and quadmtures eould hc

reformulated in terrns of two holomorphie functions and their derivatives, without,

quadratures. The next appearanee is in the work of Calabi ([Cal], [Ca2]) who was

studying minimal emheddings of Riemann surfaces in IR" and S" from the point

of view of determining whieh metrics on Riemann surfaces arc realised as induced

metries from such a minimal embedding. It is in this work that what is now Imown

as the twistor space of a target space appears implieit1y. This bmnd of t,wistor

theory attempts to assoeiate to a target space an (almost) eomplex manifold, with

a fixed projection onto the target spaee, such that harmonie maps into the target

lift uniquely to holomorphie maps from a Riemann surface into the twistor man­

ifold with an extra horizontality property. Many people (sec [Rep2]) worked on

extending this result to classify harmonie spheres in other synuuetric spaees. Mueh

of this work exploited particular properties of the target space, and thus obselll'cd

the general nature of the problem. Ineremental1y, however, this work Icd to the

development of a general theory, best laid out by Burstal1 and Rawnsley [BuRa] for

the case of homogeneous spaees with special properties. For an exposition of the

mathematieal development of these and related ideas see [Rcp2] j for the physieal

point of view see [Pel.

Applying holomorphie geometry to unitons and the global topology of the moduli

motivates this thesis. The main construction of this thesis takes this form, eonvert­

ing the question of studying the spaee of solutions of the harmonie mal' cquations

into that of studying a space of holomorphie bundles.



As an important subtheme of the work on harmonic spheres in Grassmannians,

various people discovered a feature of the space of harmonic spheres in Grassman­

nians of particulaI' importance to physics, namely, a method of constructing new

solutions from known solutions. Uhlenbeck calls this a Backlund transform, oth­

e.·s call it a f1ag transform, ô-transform [ChWo], positive/negative transformation

[GuI], or a dressing pseudo-action[Gu2]. It was first laid out in [ZaSha,ZaMi] as

the Riemann problem with zeros, which is actually an example of the dressing

method developed by the same school in the seventies. The point is that every

solution can be constructed beginning with constant solutions by iterating this pro­

cedure. Begun by Din and Zakrzewski [DZ] for maps into projective spaces, this

line of thought ultimately led to a unique factorisation theorem for unitons in [Uhl].

By interpreting this transform/factorisation in terms of twistor-type constructions,

Valli showecl that unitons have a discrete energy spectrum, and gave another proof

of the factorisation theorem based on energy ([Va], see also [Wo]). In this case, the

twistor space tu1'11s out to be the loops on the unitary group nU(N) (see [PrSe])-an

infinite-dimensional space. Fortunately, the image of any twistor map lies in some

finite dimensional subspace determined by the uniton number. Yet another (even

shorter) proof of the factorisation theorem is given by Segal ([Se2]), who makes

stronger use of the loop group.

•
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We already mentioned the perceived similarities between harmonic maps and

self-dual Yang-Mills fields. From the physicists' point of view, this means that both

types of solutions display particle-like behaviour. We hope that it also means that

the methods which resolved the important problems for instantons will also apply

to harmonic maps. In particular, in this thesis we will attempt to apply another

type of twistor construction due to Ward [Wd3] (originally used by himself and

Hitchin for monopoles), and get results about the uniton moduli via an equiva­

lence with the space of special holomorphic bundles over a complex manifold. (The

name twistor theOl'y is actually borrowed ft'om the twistor programme of Penrose

in physics which has somewhat broader goals, and is conce1'11ed with one particu­

lm' space, Minkowski space-time. Our twistor space, being smaller has been called



mini-twistor space.) In [Wdl], Ward observed that self-dual Yang-IvElls (8DYM)

fields could be encoded as holomorphic bundles over 1P'3 (complex projedive space).

Thus solutions could be constructed from holomorphic bunclles. Fortunatcly for

the mathematical physicists, algebraic geometers had already bccn studying holo­

morphic bundles over projective space (see [088]), and in [ADHM] these questions

were further reduced to a matter of linear algebra via the monad construdion of

Horrocks [Ho] fol' bundles over 1P'3. While this gave a method of constructing 8DYlvI

fields, it did not give much information about the moduli spaees. Donaldson was

later able to show that the bundles are determined by their restriction 1.0 a 1P'2 [Do].

Hurtubise [Hu] was then able 1.0 use this description 1.0 gel. topological informal.ion

by describing the bundles in terlllS of jumping lines rather than lllonads. With

the addition of heavy topological machinery, this appl'Oach yielded a proof of the

Atiyah-.Jones conjecture [AtJo], sec [BHMM].

In the case of unitons Ward ([Wd3]) observed that harmonic maps 1R2 ....; 8U(N)

could be encoded as vector bundles by a twistor construction originaUy Ilsed by

Hitchin for monopoles, and that for N = 2, finite-energy maps (unitons) correspond

to bundles on the compactified base space. Oriented lines in 1R3 are paralllctrised by

direction (E 8 2) and intercept with the tangent plane orthogonal to the direct.ion

(E Tp 8 2 ). The set of lines through a fixed point correspond to a section of T 8 2

which turns ou'. to be holomorphic as a section of TlP'l ~ T 8 2
• (Lines throllgh

the origin are the zero section which is holomorphic, but the choice of origin was

arbitrary, so the same holds for aU sections.) We define a double (Pe1ll'ose) twistor

fibration which aUows one to identify via puU-back and push-forwarcl objects in/ou

1R3 with objects in/on TlP'l and vice versa

•

•

• point
oriented line

(\7,<1»

/
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real section
point

E ....; TlP'l
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where (\7 = d +A, <1» define a Yang-Mills-Higgs field (monopole) on]R3 and E is a

holomorphie bundle.

Ward also shows that 'dynamic unitons' ]R2+! ... U(N) can be represented as

solutions to the monopole equations on !R2+!. These include the traditional static,

finite-energy unitons, for which he conjectures that the corresponding bundles ex­

tend to the fibrewise compactification, TIF!, of TIF!. For U(2) he shows this. We

won't consider dynamic unitons in this thesis, however, because we lose the corre­

spondence of fini te energy and extendability to the compact base space which opens

the door to algebro-geometric methods.

The first part of this thesis is devoted to showing that, as Ward conjectured,

finite-energy, based U(N) unitons, i.e. {8: 8 2 ... U(N)[8(O) = [}, correspond to

bundles on the compact space:

•
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•
DEFINITION. A rank N, or U(N), uniton bundle, E, is a holomorphie rank N

b'l!nllle on TIF! whieh is trivial when restrieted ta the following eurves in TIF!

(1) the section at infinity

(2) nonpolar fibres (i. e, fibres above .\ E iC* C IF! )

(3) real sections of TIF! ({ {oriented lines through p} c TIF!: p E ]R3})

and whieh is equipped 'with b'l!ndle lifts

E E

l
Dt 1 TIF!

and

E

l
TIF!

i1 E*1

l
<7 TIF!1

•

s'lleh that fit is a one-parameter family of holomorphie transformations and â is a

norm-preser'ui1'g, antiholomorphie lift of 11 and the indueed hermitian metrie on E

restricted to a fixed point is positive definitei and a framing, if; E HO(?_!, Fr(E»,

of the blmdle E restrieted to the fibre ?_! = {.\ = -l} C TIF! sueh that â(if;) = if;.

Here 11 and Ot are fixed maps defined in Chapter II.

THEOREM A. The spaee of based 'Imitons, U(N)*, is isomorphic ta the spaee of

N -lmiton b'lIndles.



To close the first part of the thesis, we show that this construction actuully

generalises the construction of Ward for U(2) (this not being obvious, a prim'i) !uld

thereby extends his results on finiteness to l'!Ulk N bundles. The effect of this is

that although our proof is far from being constructive, we can do the computations

in tenus of clutching matrices as Ward did for 8U(2).

As a nice corollary of this, we cau affirm the conjecture uf Wood [Wo] tlmt

unitons are composed of rational functions of x, y E IR.2:

•
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COROLLARY B. If 8 : 82 -> U(N) is a 1tniton, then the compo.,ition with

U(N) '-+ GL(N) is rational, i.e. the fllnctions in x and y which 1nnke 'I!P the

matrix 8 E U(N) are rational.

Plan

Much of this thesis concerns the construction of maps between spaees of uni­

tons, bundles, monads and Bogomolny solutions. This aspect is summarised in the

diagram• unitons
ChapLcr 1 Bogomolny

solutions

•

monads ~, -=_----=.,...-___ uniton
Chapter V bundles

In the first chapter we write down the uniton equations, give the equivalence to

Bogomolny solutions, and describe the twistor correspondence upon which every­

thing else is built.

The basic construction is laid out in Chapter II. Section 1 describes coordinates

adapted to 8 2 X IR.3 and TIPI El1 IR. respective1y, and time translation and the l'eal

structures in both coordinates. The extension of the resultant bundle to the corn­

pactified space TIPI occupies section two and proceeds in two stages: Extending



such that ker Q = 0, coker (3 = 0 and ker (3/ im Q is a vector bundle, i. e. has constant

the bundle over nonpolar fibres and then extending to a neighbourhood of the two

missing points ((À = 0,7) = 00) and (~= O,ry = 00) in the notation of ILl). The

first stage uses the geometry of finiteness and time independence of the Bogomolny

system. The second stage involves showing that the a-operator defining the com­

plex structure can be smoothed by a change of gauge without losing any topology.

Finally, we show in §§3-5 that triviality over the section at infinity results from

finiteness of the uniton, that 8t is constructed naturally from time independence of

the uniton, and how the real structure à encodes unitarity.

That the construction induces an isomorphism follows from the existence of an

inverse mapping, the subject of Chapter III. Section 1 explains how TrI can be

embedded inl(;J C r 3 compactifying with the addition of a singular point to become

Q c r 3
• Section 2 describes an algebro-geometric compact twistor fibration which

includes the original fibration. Sections 3-4 describe how the connection 'V and

Higgs field <P, constructed on IR3 using holomorphic geometry, extend to 52 X IR,

and how a time-independent trivialisation of the bundle can be constructed, from

which the based uniton (52 -> GL(N)) may be recovered by integration. Time

invariance follows from the existence of a lift to the bundle of time translation on

TrI (§5)j uni tarity follows from the existence of a real structure (§6).

Chapter IV shows that our construction gives the same map as Ward's construc­

tion in tenus of clutching matrices, thereby giving a geometrical explanation of

Ward 's work and showing that finite-energy maps correspond to compact bundles

in higher ranks as well. We do this by showing that Uhlenbeck's 'extended solution',

E>.(z, E), which contains the uniton, is given by the 'monodromy' around a cycle of

complex lines. By way of application, we prove that unitons are rational, i. e. made

up of rational functions in x and y, by showing that a11 singularities of E>.(z, z) are

poles.

The last part of the thesis concerns a monad construction for uniton bundles

(Chapter V). A monad is a short sequence of 'homogeneous' bundles

•

•

•
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THEOREM C. The space of (framed) uniton bundles is isomorphic to a spll.ce of

monads (a subset of a complex linear space) quotiented bl! the II.ction of a. cam/Ilex

group. The action of the group clI.n be l!sed to put any monltd into (J. unique noruULI

rank. The advantage of this construction is that a and f3 ClUl be givcn by matrices.

For example, O~N -+ Ol'N (k)l, k ~ 0 is given by a homogeneous order-/.: POlYUOllli­

aIs of j x 1matrices. The moduli space is thcn the quotient of this cOlllplex matrix

space by the group of chlUlges of frame of F, G, H. Unfortullatcly, this space is not

always very nice topologically, but there are tools to decidc when it is [MFK].

The extra structure uniton bundles carry, howevcr, complicatcs lllatters. lu

§l we sketch the properties of Hirzebruch surfaces (of which 1'11"1 is onc) and fix

notation which allow us to discuss the construction of monads. Wc thcu show how

the basic theorem of Beilinson for constructing monads for stable buudlcs ou II"N

can be adapted to #1 (§2). (See also [Bu]). The resulting space of monads is

large and we use the action of the group in §3 to put thc lllonad iu nonnal forlll

using the special structure of the bundle: triviality over C'c>o, nonpolar fibrcs, the

lift of time translation and the real structure. We also make a seemingly arbitrary

Jordan-type normalization resulting in

•
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form

o
-"(1 - -\(li +'Il)

where il E gl(k/2) is nilpotent Itnd in Jordltn Normal form, W2 E gl(k/2), (2 E

M;,j2, 82 E Mt/2' are in normal forms (282 = [il,W2], and WI and fJ2 (Lre deter·

mined by WI + itwI +Wlil = -8282 and fJ2 +fJ2"Yt + ilfJ2 = -(2(2 and

det ((W2 + z/2) - ~((H id-IiI?

fJ2



for ail zEe.

(The line bundles O(p,q) are defined in Chapter V.)

The normal form we reach carries an intricate structure. Future work must

answer what information about the moduli it carries, but we willleave the discussion

of this and many other unanswered questions (notably about the moduli topology)

to the conclusion.

Chapter VI describes how the interpretation of the extended solution of Uhlen­

beck as the 'monodromy' of a family of cycles of complex lines shows us how to

construct the uniton corresponding to monad data of 'simplest-type', using only

matrix multiplication, addition and inversion.

•
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CONSTRUCTION D. Given monad data as zn Theorem C with ")'1 = 0, we can

construet the associated uniton as

(3.7)

which has extended solution

(3.8)

•

as an extended sol'ution. Since al! simplest-type unitons can be so const'rueted, al!

such unitons have uniton number 1 or 2,

COROLLARY E. Al! simplest·type unitons can be deformed continuously into

U(2) unitons. As a result, the components of U(N) are the energy leve/s, i.e.

7l'o(U(N)simplest.type) = N,

and the energy of the 'uniton is given by 1/2 the second Chern class of the bundle

in that case,

Finally, in Chapter VII, we review the well-known construction of unitons in

U(2) and show how it fits into the monad picture.



The extension of Hitchin's twistor construction 1.0 the compactified space, in

particular the geometry of the Coo trivialisation and the smoothing of the 8-operntor

are nove!. The compact twistor fibration and the resulting extension of Hitchin's

methods are also an innovation, as is the method of encoding time-independencc.

The geometric explanation of Ward's construction and proof of Wood's conjecture

are new. Monads for bundles over Hirzebruch surfaces were studied previously by

Buchdahl, but his construction conccrns stable bundles. Our monad construct.ion

encodes the extra structure of a uniton buncHe via our normalisation. Thal. U(2)

unitons correspond 1.0, and can be constructed frol1l, rationall1laps was known, but

the construction of general simplest-type U(N) unitons frol1l monad data is new,

as is the calculation of 7l'o(U(N)simplcst-typc.

•
PREFACE

Contributions to Original Knowledge

xiii

•

•

Thanks

1 would like 1.0 thank the Applied Mathematics Department of the University \,

of Western Ontario, the Field's Institute, l'Institut de sciences mathématiques

de Montréal, FCAR, NSERC and the Mathematics and Statistics Department al.

McGill fol' their support, the AMS fol' AMS-TeX; and Arleigh Crawford, Steve New

and Aurel Wisse fol' much useful discussion.

1 would especially like 1.0 thank my supervisor Jacques Hurtubise fol' suggesting

this problem and showing me how 1.0 think about mathematics.



•

•

•

CONTENTS

Abstract

Preface

Chapter 1. Preliminaries
1. Uniton Equations

1.8 Extended Solutions
2. Bogomolny Equations
3. Twistors

3.2 The Bundle
3.5. Inverse Construction
3.7 Higgs' Field

4. TiPI
Chapter II. The Bundle
1. Adapted Coordinates
2. Compactness

2.2 Coo trivialisation
2.5 To eternity and back
2.7 Triviality over nonpolar fibres
2.10 The bundle extends

3. Triviality over the oc-section
4. Time Invariance
5. The Real Structure

5.1 On the principal bundle
5.3 On the vector bundle

6. Framing

Chapter III. Getting back the U niton
1. TiPI as a conic
2. Compact Twistor Fibration
3. The Connection and Higgs' Field

3.1 The set Y
3.2 Real Points
3.5 Pushing down the connection

4. Choosing a trivialisation of Ë ..... y
5. Time Invariance of 'il and cI>
6. Reality

6.1 Principal bundle reality

xiv

iii
iv

1
1
3
3
5
5
7
9

10

12
12
17
18
20
22
24
32
33
33
34
34
36 .

37
37
40
43
43
44
44
45
46
46
47



•

•

•

CONTENTS

6.2 Vector bundle reality

THEOREM A.

Chapter IV. 'Nard's Construction and Wood's Conjecture

1. Ward's Construction
1.2 Transition Ftmctions

2. Wood's Conjecture

COROLLARY B.

Chapter V. Monads
0.1 Hirzebruch Surfaces

1. Beilinson's Theorem
2. Normalisation

2.1 Triviality above the Infinity section
2.5 fI 0 01. = 0
2.7 Nonpolar fibres
2.11 Monad Condition
2.15 Jordan Normal Form
2.19 Triviality over the real sections (part 1)
2.24 Reality
2.28 Triviality over the real sections (part II)

THEOREM C.

Chapter VI. Construction of a Simplest-Type Uniton
1. Parametrising sections over Cco and P"
2. Parametrising sections over C:,z,o
3. Parallel Translation

CONSTRUCTION D.

4. For the Sceptical
4.1 Extended solution
4.4 Nonsingularity

COROLLARY E.

Chapter VII. Example: 52 -> U(2)
1. Rational maps
2. Meanwhile, back at the monad ranch...

Conclusion

Bibliography

xv

48

49

50
50
52
53

54

57
57
61
67
67
68
69
72
73
79
82
86

89

90
90
91
94

97

98
98
98

99

101
101
104

107

112



•
.,'

CHAPTER 1

PRELIMINARIES

1. Uniton Equations

Unitons are harmonie maps from S2 !., U(N), that is, maps satisfying

(1.1)

(1.2)

•

More generally, harmonie maps between Riemannian manifolds M and N are erit­

ieal values of an energy funetional , __

E(r/>:]y[ -+ N) = LIdr/>1
2

,

whieh measures the infinitesimal distortion (eompression/stretehing) of M in N.

For example, the energy of an embedding f : 1R2 -+ 1R3 with the standard metries

is the energy of an ideal rubber sheet, and harmonie maps SI -+ N are geodesies.

In the ease of maps into a matrix group, with the standard (left-invariant) metrie,

the energy takes the form

E(S) = ( IS-I aa SI2 +IS-I aa SI 2dx i\ dy.
J'D.' x y

The uniton equations are the eorresponding Euler-Lagrange equations. It is worth

noting that if aa" S = 0 they reduee to the equations of a one parameter group-a

geodesic!

From [SaUhl, Theorem 3.6], we know that harmonie maps from 1R2 -+ U(N)

extend to S2 iJJ they have finite energy, and that sueh maps are always smooth.

In the following, we will use this faet and work in terms of eoordinates x and y on

1R2
• Unitons are determined by A = A.dx +Aydy (= Azdz +A.dz in eharaeteristie

eoordinates)•
1

'1 (!~i~s-I~s
-y 2 ay' (1.3)



and a choice of initial condition, 50 E U(N), as we can see by thinking of d +2.4

as a connection, and 5 as a fiattening gange transformation. This gives a splitting•
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of the space of U(N)-unitons U(N) as

U(N) = U(N) x U*(N),

where

U*(N)~r{5 E U(N) : 5(00) = l}

(1.4)

will be called the based unitons. Of course, the energy doesn't depend on the basing

condition, and we can also write il. in terms of A as

E = -8JtrAzAz.

Two matrices Ax, Ay come from a map 5 : IR2 -+ U(N~ in this way iff d +2A

has zero curvature (5 is the fiat gauge) iff

• 0= d(2A) + [2A, 2AJ = 2 {aa .4y - aa Ax +2[Ax, A,/l} d,v Il dy.x y .

They come from a harmonie map if in addition

d* a aA0= A = -aAx +-a y'x y

The map 5: 1R2 -+ U(N) extends 1.0 a smooth map 52 -+ U(N) iff

der 2A d A der -2AAz = - Z :, an z= - z z

(1.5 a)

(1.5 b)

(1.6)

<'Ire smooth al. z = 00, where we make use of complex coordinates z = x+iy, z = 1/z.

In terms of complex coordinates, the uniton equations are (any two of)

•
(1.7)



1.8 Extended Solutions. We will also make use of Vhlenbeek's extended so­

lutions E>. (aetualiy first employed in [Po]), whieh encode the unitons as follows•
2. BOGOMOLNY EQUATIONS 3

TIIEOREM 1.9 [Vhl, 2.1]. Let n c 52 be a simply-eonneeted neighbourhood and

A: n -> T*(n) 181 U(N). Then 204 = 5- l d5, -with 5 harmonie iff the eurvature of

the eonneetion

(LlO)

•

•

'oanishes fOT ail À E C* .

THEOREM 1.11 [Vhl, 2.2]. If 5 is harmonie and 5(00) = [, then there exists a

unique fiat Fame E>. : !pl -> U(N) of D>. for À E C* -with (a) E_ l = [, (b) El = 5,

(e) E>.(oo) = [. Moreover, E is analytie and holomorphie in À E C*.

THEOREM 1.12 [Vhl, 2.3]. SI!ppOSe E: iC* x n -> G is analytie and holomorphie

in the first variable, E_ l == [, and the expressions

are constant in À then 5 = El is harmonie.

Extended solutions are extremely useful in ealculations, and we will need to refer

to ail these results.

2. Bogomolny Equations

The next important rewriting of the uniton equations was Ward's embedding

of the harmonie map equations into the hyperbolie Bogomolny equations. The

Bogomolny equations &'e given by

where V = d + A is a eonneetion, <I> is a Higgs' field, the eurvature F = V 0 V =

dA + A 1\ A and the Hodge-st&· is given by *dy 1\ dt = dx,*dt 1\ dx = dy, and

*dx 1\ dy = edt, (e = 1 on 1R.3 and e = -Ion 1R.2.1). Assuming time independenee of



\7 and cI>, the equations are

a a
€[A"cI>] = -a A" - -aA" + [A",A y],

J:' y

a a-a cI> + [A", cI>] = -a AI + [A y, Ad, (2.1)
x y
a a-a cI> + [A y , cI>] = --aAt + [At, A,,].
Y J:

Write the system (1.5) as \7".'1" = -\7yA.y and \7"Ay = \7yA,,, and (2.1) as

\7"Ay - \7yA" - [A", Ay]= €[At, cI>l, \7 "cI> = \7 yA" and \7y cI> = -\7"A.t. Assullling

At = nA" + {3Ay, and cI> = 'l'A" +8Ay, we see that (1.5) is equiv~ùellt to (2.1) ijJ

At = i(cos(B)A" - sin(B)Ay), cI> = i(cos(B)Ay + sineB)A,,) in the Euclidean case

and At = cos(B)A" - sineB)Ay, cI> = cos(B)Ay + sineB)A" in the hyperbolic case;

a :::; B < 21r. In this paper, we will work on lR3 instead of lR2 ,1, because it is

geometrically easier, although it necessitates using nonunitary l'cal forms of gl(N).

(Since gl(N) = u(N) 0 C, elements of u(N) C gl(N) are often called l'cal. In the

following, gl(N) and GL(N) are camplex.) Henceforth, wc will assume the following

choice:

•

•
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(2.2)

•

corresponding to B = 1r/2. It is important to note that At and cI> are imaginary

(i.e. E iu(N)), as this will determine the real structure we will use on TIP'I.

This convention allows us to associate a based uniton to time-independent solu­

tions of \7 cI> = *F onlR2 x lR, which extend to {(x, y, t) E S2 X lR}: We canuse the

freedom to change gauge to put any t-independent solution into the form (2.2); the

new gauge, g, is given by solving ;yg g-I = iA t - Ay, ;"g g-I = -icI> - A", which

we cau do because the appropriate curvature component

[:x +A" + icI>, :y +Ay - iAt] = (:x Ay - :/" + [A", Ay]- [A" cI>])

+i (-(aa At + [A",Ad) - (aa cI> + [Ay,cI>]))
x y

= (F"y - \7tcI» + i(Ft" - \7ycI»

vanishes for solutions. Of course, wc still have to solve S-ldS = 2.'1 (i.e. integrate)

to get a uniton.

For future reference, we extract from the previous discussion the following



TIIEOREM 2.3. The Jpace of baud unitonJ, U(N)', iJ iJOmo:phic to the space

of t-independent JolutionJ {("\7, cI»} to the Bogomolny equations with finite energy

IIJ/.' IA xl2 + IAy l2 < 00 (p.quivalently, such that limx+iy_oo Aziz2 existJ), which are

real in the Jensp. t/ULt in the unique t-independent gauge Juch that At = -iAy and

cI> = 'iA XI A.,Ay E u(N).

•
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•

3. Twistors

Oriented lines in IR3 are given Ly a direction <md a displacement from the origin

perpendicular to the line's direction. Collectively, they make up the space T 8 2 ~

TrI = 011'1 (2) (the exact correspondence depending on an isomorphism of 8 2 and rI

to be specified using stereographie projection). Reversing the direction of geodesics

corresponds to an antiholomorphic involution, r, of TrI which is the negative of the

map on TrI induced by the antipodal map, T'À = -II>', on rI. The holomorphie

bundle TrI has sections 1/ = %- bÀ - ~ À2, where À and 1/ are base and fibre

coordinates over r I \ {oo}. So its section space is e3 .

Let IR be the trivial real line bundle. The geometry can be represented by a

twistor fibmtion:

(3.1)

TrI.

The point of this construction is that there is a twiJtor correJpondence between so­

lutions ("\7, cI» to the Bogomolny equations on IR3 and holomorphie bundles on TlP'1

which are trivial on real Jections of TrI. Real sections can be defined invariantly as

sections stable uncler an antiholol110rphic involution (a real Jtructure). This twistor

construction is due to Hitchin [Hi], and Ward.

3.2 The Bundle. Let E= eN x IR3 be the trivial bundle over IR3. Define the

bundle E -+ TlP'I, over f! E TlP'l by

•
J 0-

El = 1s EH (f!,B)

("\7" - icI»s = 0,
. (where the line f! C
. is parametrised by

clength, u)

(3.3)



THEOREM 3.4 [lvIu2,IS]. If (\7, <I» is a 'nnitnry solution of the Bog<J7/1.olny equa­

tions \7<I> = *F on 1R3
, then E i•• in a naJl'7'U1 'way a holomorphie p7'ineipl'1 bmullt:

on the spaee of geotlesics Tr1 S'l'ch thnt

(1) E is tri'vinl on every real (r-i7wa.rinnt) section;

(2) there exists a positive-tlefinite, antiholomorphie prineipnl b'l!n<lle in'vol'l!tion

f : E --> E lifting r; i. e. if f is a local frame for E, antl 9 n eon•• tnnt eh,mge

of gange (g E U(N») then f(/g) = f(/)9<-1 nntl

(3) f 0 f = itl.

•
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•

•

Conversely, every sneh E tlefines a solution of the Bogomolny equntions.

(Note that this theorem has an equivalent stat.ement in terms of the veet.or

bundle and its dual, and is a generalisatioll of [Hi, TheOl'em 4.2], which is stated in

a way specifie 1.0 SU(2). In terms of vector bunclles, the condition r 2 = id becomes

r* = r.)

We will use this theOl'em with the gauge group GL(N,q, and conjugation 9 =

(g*)-1, i.e. the real subgroup is U(N), but \Vith an antiholomorphic involution i1

lifting ()' which corresponds 1.0 the choice (2.2).

The bundle Ecornes with a natural [) operator, i. e. an operator

which satisfies a Leibnitz rule and [;2 = O. This defines a complex bunclle struet.ure

(since its fiat sections will give local holomorphie framings).

The [)-operator is defined as follows.

The embedding i : r 1 '-> 1R3 induces a splitting of 1R3 X r 1 --> rI iuto

Tr1œ< normal bundle > .

On Tr1 we put the restriction of 11'~" \7. On the normal bundle, we put 11'~" (\7" -i'1».

This connection pulls back 1.0 a connection aloug the fibre directions of rI xJR3 --> rI.

Along the base we put the trivial connection.

Sinee Tr1 has a complex structure, we can split T(Tr l ) into holomorphie and

antiholomorphic parts. The restriction of the eonnection 1.0 the antiholomorphic



Our part real, part imaginary pail' (\7, cI?) corresponds to a different real structure

on TIF! than the one which fixes the real sections. We can almost do without the

original structure, but will need to have it around when we set about reconstructing

the uniton from the bundle.

part, ~, acts on sections of Ble and since {~, \7u - icI?} are involutive (as a conse­

quence of the Bogomolny equations) it induces a 8-operator on E.

We have encoded unitons as solutions (\7, cI?) of the Bogomolny equations with

special properties (time invariance, finiteness, reality). We will show in Chapter II

that these properties correspond to properties of the bundle E -t TIF!. Namely,

(1) time translation induces a one-parameter family of automorphisms of TIF!

which lift to bundle maps.

(2) Finiteness translates as an extension of the bundle to the fibrewise com­

pactification of TIF!, time translation extending as the trivial map over the

fibre at infinity.

(3) Reality of the Bogomolny equations translates as a real structure (a fixed

antiholomorphic principal bundle involution over an antiholomorphic invo­

lution of TIF!, 01' a lift to a map E -t E*) which is positive definite above

a fixed point.

•

•
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3.5. Inverse Construction. Conversely, given such a bundle we can construct

the Bogomolny solution as in [Hi].

From the sections map

IF! X C3
-t 0(2) ~ TIF!

À,(a,b,c) H 11 = ~a - b)' - ~CÀ2_ 2

we get a pull-back of the bundle E to IF! X C3 • Over the open set Y of sections

over which E is trivial, we can push this bundle down from IF! x Y to Y. CalI this

bundle B -t Y.

Now put the quadratic form (db)2 + (da)(dc) on the holomorphic tangent space

to ca. To a degenerate metric we can associate nu11 planes on which the restricted

metric is degellerate, and lIu11 lilles on which the resti-icted metric is zero. Each



nullline lies in a unique null plane (its ort.hogonal complement.). It.s null planes /U'e

parametrised by pETrI and given by the space of sections of TrI through p, i. ".

if p = (À,11) then (a,b,c) are constrained bY'1 = ~(a - 2b,\ - c,\2). Restricted t,o

this plane, the metric (dW + (2Àdb +À2dc)(dc) = (db +Àdc? is degeneratc. Each

null plane IIÀ(y) inherits a fiat 'null' connection: Let PETri be the uniquc point

of intersection of the family of sections IIÀ(Y)' A fixed frame of El,. induces a framc

of Elrr.\(y). Define \7n to he the 'null' connection for which this framc is covariant

constant.

•
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•

•

Now fix a point y E Y. Some directions (lines through y in iC3
) may lic in two

different null planes (they correspond to sections intersecting in two distinct points),

but nulllines lie in unique null planes, so we can define a holomorphic connect.ion

on the nulllines without ambiguity. The null directions form a quadric cone Q* =

{[a, b, cl E r 2 : b2 + ac = a} in the r 2 of ail directions. Since a connection nmtrix

(given by differentiating a covariant constant framc at y) is a hOlllogencous degree­

one, matrix-valued function of iC3 (the t1ulgent plane to y E r 3 ), it defines a section

in HO(Q*, 011'2(1) ® gl(N». Thc long exact sequence associated to the inclusion

Q* '-> r 2 and the fact that HO(r2 ,0(-1» = 0= HI(r2,0(-1» tell us that such

sections are uniquely extendable to r 2 • In other words, this is enough ta determine

uniquely a holomorphic connection at y (i.e. an element of HO(r2 , 011" (1)0gl(N»).

This is the connection \7.

There is a second way of defining the connection. On any line in 1(;3, pick two

points YI, Y2. They correspond to two sections of TIl"I. Since Til" 1 is the total

space of 011'1 (2), they intersect in two points (with multiplicity). We get a double

point iff the sections are tangent at a point iff the line was null. To each point

Yi is associated a connection on the corresponding hyperplane IIÀ(Yi) C 1(;3. The

originalline will be the intersection of the two null planes unless it was IL nullline,

in which case it is only contained in the intersection. Taking the average of the two

null connections, we get a connection on the originalline, i. e.

(3.6)

In the case of a nullline, we get back the null connection, because any two sections



will intersect in a double point.

In the case of a realline (a line in 1R3 complexified) the two nul! planes are con­

jugate, i. e. r images of each other. Since this construction also gives a holomorphie

connection, which agrees with the first on nul! lines, it fol!ows from the preceding

discussion that they are identical.

As mentionec! above, we get a connection on 1R3 by making the desired choice of

coordinates on 1(;3 and forgetting they are complex.

•
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3.7 Higgs' Field. Again there are two definitions for the Higgs' field on 1(;3.

(See [Hi].)

Given a fixed real structure, the nul! planes have adapted coordinates, one cutting

out the Ilul!lines, the other parametrising them. Cali them X and 71', and let them

be coordinates on a nul! plane II. They are not canonical, but any choice such that

dX = 0 on nul!lines and Idxl = 1 on nul! planes will do.

By definition, the connection \7 . 'fT' ,es with the fiat (nul!) connection \7n in

the nul! direction, so they differ by a fonu which annihilates 71'. This defines a

gl(N)-valued function <I>(y, II):

\7 - \7Il = i<I>dX,

where the i is added for convenience. The nul! planes through a fixed point y are

parametrised by À EpI. Since <I> is a holomorphie (gl(N)-valued) function of À, it

is COllst'1Ut and therefore independent of the nuil pkne chosen. Recalling the other

definition of \7 along a line as Ij2(\7Il + \7Til), where the line is the intersection of

the two nul! planes, we can also write

where the nul! plane rII also contains the line through y tangent to :x' and can be

chosen uniquely.

As it turns out, we can parametrise nul! planes through y by À EpI:

•

<I>dx = ij2(\7n - \7Til),

II,\(y) = {(a, b, c) 1211 = a - 2bÀ - cÀ
2

} ,

(3.8)

(3.9)



where 7) = ~(ay - 2byÀ - cyÀ2
), and rIT corresponds to taking the antipodal point

to À, i.e. ITr(À)(Y) = IT_>'_l (y). Put this way, we can calculate t\ on C3. By taking

derivatives, we get (after normalising t\)•
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and
(3.10)

•

•

Since null connections are by definition fiat,

o= [V'~, V'~] = [V'x +i<I>dX, V',,]

Since <I> does not depend on the null plane, we get a IPI of equations parametrised

by À. Taken together, they show that V', <I> satisfy the Bogomolny equations on C3 •

In Chapter III, we will use complex algebraic methods to understand what hap­

pens in the finite (energy) case. The space of lines, TIPI, can be embedded into 1P3 as

a quasi-projective variety. It can be compactified by adding a singular point. Since

E is trivial over the section at infinity anyway, we get a bundle over this variety

(which is a degenerate conic). Sections of TIPI correspond to certain hyperplanc

sections. In fact, the hyperplane sections of 1P3 are given by (1P3t, and the sections

of TIPI correspond to C3 C 1P3 • We work out a 'complex version' of 8 2 x IR, and

find it sitting in (1P3)'. The points we need to add from 1P2 = 1P3 \ C3 , are just the

set of hyperplane sections restricted to which the bundle is trivial, so we do in fact

get back a (finite) uniton.

We will be working with coordinates (À, 7)) and (Â = l/À,ij = 7)/À2
) on TIPI ~

011'1 (2), where À is the usual coordinate on IP I and 7) is the coordinate associated to



d/d>'. The bundle TIFI can be compactified by adding a section at infinity, which

means considering the injection of TIFI into the projectivization IF(TIF1 EB 0) (a

holomorphie IFI-fibre bundle over IF1).•
4. Tl'l 11

•

LEMMA 4.1. IF(0(2)EBO(0)) -+ IF I is the only fibrewise compactification ofTIF I .

PIWOF. A fibrewise compactification of 011'1 (2) is a rational ruled surface. Since

ail rational ruled surfaces (strictly speaking, relatively minimal models) are of the

form Si = IF(O(j) EB 0(0)) -+ IFI for j ~ 0 [GriHa,p.514], it suffices to rule out

the other possibilities. If j ~ 3, then Si has no section with self-intersection less

than j except the section at infinity which has self-intersection -j, so 0(2), whose

sections have self-intersection two cannot be embedded. For j = 0,1, assume that

TIFI could be embedded into Si> then Si \ TIFI would be a section whieh does not

intersect the images of the sections of TIF!, which would have self-intersection two,

but the only sections with self-intersection two are sections with two (j = 0) or one

U= 1) pole(s) which intersect aU other sections (including the infinity section), so

there can be no such embedding. 0

Meromorphic sections (s) of TIFI give all the holomorphic sections of TiFI ([s,l]

in projective coordinates), except the section at infinity ([1,0]). We will use the

following notation for curves on TIFI:

•

P>. = 71'-1 (>. E IFI) = a pfibre (silent p)

Co = {().., [0, 1l)} = zero section of TIFI

Coo = {(>', [1, Dl)} = infinity section of TIF1

If y = (a, b, c) E 1(;3, we will also write C y for Cq=~(.-2b>'-CÀ2)'

(4.2)



•
CHAPTER II

THE BUNDLE

In this chapter we assume (\7, <I» cornes from a uniton in the way specified in

Chapter 1.

1. Adapted Coordinates

Dual to stereographie projection is the embedding IPI '-+ 1R3
:

•
,\ i (,\+:\ .,\-:\ 1-.-\:\)

H 1 + ,\,\ , -~ 1 + .-\:\ ' 1 + ,\,\

alternatively, IPI '-> iC X IR:

,\ i (2'\ 1-.-\:\)
H 1+.-\:\'1+.-\:\ .

Using this inclusion we get an exact sequence of (real) bundles over IP l
:

where Nl'l is the normal bundle of the embedding, and

( )

-2-
i ~ - 2 Ô -2'\ Ô -2 ,\ Ô
• Ô'\ - (1 + .-\:\)2 ôz (1 + ,\,\)2 ô'i (1 + A:\)2 ôt

. (Ô) :\2 Ô 2 Ô A Ô
~. ô:\ = -2 (1 + .-\:\)2 ôz + (1 +'\,X)2 ô'i - 2(1 + .-\:\)2 ôt'

(1.1)

•
The isomorphism 1R3 X IPI ~ TIPI El) NI'l suggests that we find adapted coordinates

to replace z, 'i, t on 1R3 • The fibre coordinate of TIPI El) NI'l --+ TIPI (a trivial

real line bundle) we choose will be the one associated with the canonical section

12
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• ÀE-i [0,1] alay

\
ÀE[O,l]

alay

alax

13

•

FIG. 1. The embedding of {À E 8 2 } in 1R3 induces, for ail À, a splitting

of Tp IR3 into the tangent plane and the normalline. The standard real

tangent vectors to À E C push forward to basis vectors on the plane to

which we associate the coordinate 7]; the coordinate u is uniquely associ­

ated to the unit outward normal, and parametrises lines in the direction

u. The 7] coordinate is not well defined at the south pole, because the

bundle TIFI ~ 0(2) has a double twist, whereas the coordinate u extends

to ail values of À.

(À,i(À)) E IFI x 1R3 , where i is the embedding. We will cali this coordinate u, and

7]i.(aa>.) gives us the fibre coordinate of TIFI --> IFI. For convenience, we write out:

(
z) ( (I+~_>'j'- -2>'
z = (1+>'>')'
t -2).

(1+>'>')'

_2>"
(1+>'>')'

2
(1+>'>')'

-2>'
(1+>'>')'

2>' ):!i; (~), and
1->'>' u
"i"+TI

(1.2)

-À2/2
1/2

À/(1 +,\X)

•
Remark that 7] = !(z - 2Àt - À2 z), il = !(z - 2Xt - X2 z ), and restricted to the

Plane {u = O} - 2"-2>"'i ;; __25.',,+29 1) = .! (1+).).)(.+>",;) - _ .! (I+).).)().'.+.;)
. ' z - (1+>'>')" - - (1+>'>')" 2 1 >.>. ' 7] - 2 1 >.>.

(away from {IÀI =1}).

Recall that two antiholomorphic involutions are involved in our construction, 'T



and u. They both come from involutions of 52; T restricting to the nntipodallllap,

and u restricting to the refiection through the equator 1,\1= 1. On TIl" 1 they are

given by•
14 II. THE BUNDLE

- - 2a*(,\, 1]) = (1/'\, -,\- in. (1.3)

•

On C3 they are given by

T*(a,b,c) = (c,b,ii), u*(a,b,c) = (c,-b,ii).

We see from these expressions that the two real structures are related to the time

invariance. Real time for one is imaginary time for the other, and real sections of

one are (complex) time translates of real sections of the other. From this fact and

time invariance it follows that a bunclle is trivial on a-real sections iJJ it is trivial

on T-real sections. This is enough to rewrite much of the following in terIl1S of one

involution alone, but the relevance of two involutions is somehow a characterist,ic

of this problem.

The explicit twistor correspondence, associating points of TIP'I to lines in C3 , and

points of C3 to sections of TIP'I , is

('\,1)) E TIPI {(a,b,c) E C3
: '1] = ~(a - 2b,\ - C,\2)} ,

(a, b, c) E C3 {(I),,\) E TIP'I : 1] = ~(a - 2b,\ - c,\2)} ,

where IR3 ~ C3 as

(x,y,t) ...... (x +iy,2t,x - iy).

(1.4)

One must check that the definitions of the two involutions are compatible with the

twistor correspondence.

From the change of coordinates ca1culated above, we can relate the connection

on IR3 in the two coordinate systems:

•



Although we have not made the distinction, changing the ]R3 coordinates in a

À dependent way also affects :>.' Geometrically, this is because vectors on TIPI

are Jacobi fields in ]R3 which are not linear. To be precise, we should have used

coordinates À,>',z,z,t and )i').',7),fj,u, with >.' = À. The distinction will be im­

portant when we want to show that the 8-operator extends to 7) E IP I in sorne

neighbourhood of À = 0, because we will need to work with (7), fj, U )-coordinates.

•
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•

We make use of the fact that if ( and X are two choices of coordinates, d( =

Adx Ç=> a~ = At te We have calculated (~) = B (~) above. lt follows

So an element of the kernel of the three operators \7 u - iq" \7 ij, :>. is also in the

kernelof



In these coordinates, recalling (1.2.2)•
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Sections of the bundle E correspond to simultaneous solutions 1.0 t,hese opemtors.

Roughly speaking, the system has enough solutions if il. is involutive (see [Wr]).

LEMMA 1.6. The system

• is involuti'ue ijJ 5 is harmonie.

PROOF. A system of differential operators given by generato;_ ','ollltive ijJ all
-.' ",

Lie brackets of pairs of generating operators lie in the system, i. e. in tht: ~pan of the

generators. Of course any other set of generators is as good, and finciiDg alternative

generators which have vanishing Lie brackets makes things simpler. That said,

remark that

(1.7)

•

It follows that ['Y ij, 'Y u -i<I>] = 0 ijJ [;" +(1+ A)A", ;. + (1 + A-1 )A.] = 0, but since

A. and A" do not depend on t, this is the case ijJ 5 is harmonie. Thal. the entire

system is involutive follows from the fact that (1.7) does not depend on Â. 0

In fact, the parametrised system of connections (;" +(1 +A)A", tz +(1 +A -1 )A.)

having curvature zero can be trivialised over {(A, z) E Co X 52}. Uhlenbeck caBs

these trivialisations extended solutions.



We are interested in extending the bundles from Tr1to fil (Tr1compactified

by adding a section at 00). The problem is that "il = d + A, which depends on

(À,7),u) E Tr1 x IR, does not have a limit as 7) -> 00. In the introduction we stated

that finiteness translates as the extension of the bundle to the compactification of

Tr1• Unfortunate1y, it is not an easy translation.

We extend the bundle in two stages, first for {O f À f oo}, the 'nonpolar' fibres

of fil -> rI, then in neighbourhoods of the poles (i. e. À E {O, oo}). The first step

is motivated by the geometry of the problem, the second relies on Sobolev methods

to give the existence of a continuous gauge in which the 8-operator is smooth.

If S : r l -> Gis a uniton, both S(x,y) = S(z,z) and S(z,Ê) = S(:Î;,!Î) are

continuous, where z= 1/z etc. In terms of A= this means

i.e. A= has a strong vanishing property as z -> 00. Writing this out in terms of x

and y,

•

•

2. COMPACTNESS

2. Compaetness

17

(2.1)

•

we see that A= vanishes to order 2 - € at infinity. In geometric terms, it means that

the 'energy' of the connection is concentrated around the t-axis in 1R3 (see Fig. 2),

so that when the u-axis and the t-a.-ds are not colinear, solutions to "il u - iol> should

have limits as u -> 00. The limit as u -> 00 gives us a natura! holomorphic framing

over nonpolar fibres which extends to '7 = 00, giving us the compactification there.

Because {"il ij, "ilÀ" "ilu - iol>} is involutive, solutions to this system locally cor­

respond to solutions of {"ilij, "ilÀ'} restricted to a plane {u = ua} for sorne Ua. As

the figme suggests, away from the poles this makes sense for Ua = 00. Near the

poles, however, this doesn't work, and we choose Ua = O. The transition between

the resulting franles anlOunts to integrating "il u - iol> from U = 0 to U = 00.



•
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u=1.i

t=(7

liiqll enerqy req!im
{smalll'aiues a,-z

•

FIG. 2. A picture of IR3 showing the high energy cylinder, ane! a plane

{u = ua} for some direction À E iC*, IÀl l' 1. From the picture, we would

expect solutions to \7q' to extend to 11 = 00, and solutions of \7" - i<I>

to extend to u = 00, sinee in these directions the connection coefficients

decrease rapidly.

2.2 Cco trivialisation. We will work over compact sets

(2.3)

with k > 1, and u E SI which we obtain by by compactifying the bundle TIPI œIR -;

TIPI fibrewise by adding a section at infinity-this time we are compactifying the IR

summand into an SI-bundle summand. Near this section, we will use the coore!inate

û = l/u.

LEMMA 2.4. The thTee operatoTs

define a smooth operatoT

•



PnOOI'. We must show that the operators are Coo on sorne neighbourhood of

û= 0:•
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•

•

'ijTi = -u2(\7 u - i<I»

= ~ _ u22(1 +,\) [A. ;\A-]
ôû 1 +,\,\ • + z

= ~ _ 2
2(1+ ,\) [-~A' - ;\ k]

ôû u 1 +,\,\ z2· z2 z

_~_ 1+'\ [ (1+,\;\)4 A-
- ôû 2(1 +Ü) ((7) - ,\27))û + '\(1 +Ü))2 z

(1 +'\;\)4 ]
((ij _ ;\27))û + '\(1+ Ü))2 A, ,

where we have replaced z and z with their expressions in 7), u. The reader may

verify that all the terms are smooth on sorne neighbourhood of û = O. That the

other operators are smooth is easier to see, sinee

vanishes to order two, as well as being smooth at û = 0, and the coefficients of \7 11

and \7 J. are linear in A z and A,. 0

By the existence and uniqueness of solutions to linear ODEs, a solution 8 on Uk X

{û > O} extends to Uk X {lû! < €}, and the solution is differentiable. Alternatively,

if, fol' 8 a solution,

8 00(À,7)) ~r lim 8('\,I/,U)
u-oo

exists, then over Uk, 8 --+ 800 uniformly along with its first derivatives. Furthermû~e,

since 8 satisfies \7(0,1)8 = 0 on Uk X {û f O} and IIA(O,I)llcl --+ 0 as u --+ 00 on Uk,

\7(O,I)!ü=O = a, and consequently 800 (À, 1/) = s('\,7),û = 0) is holomorphic in these

variables.

We have shown that a solution 8 on {(À,7),u) E C* X C x IR} has limits as

11--+ ±oo.



2.5 To eternity and back. Since \7" - i<I> is a connection on {It E SI} for

each choice of (A, 1/) ETC' with coore!inates (A, ,/), we may ask what is its Illon­

odromy. (Parallel translating a frame arOllne! a closee! curvc is a nonsinglilar lincar

transformation, called the monodrOlny.)

•
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•

•

LEMMA. \7" - i<I> kas trivial rnonodrorny around {u E SI}.

GEOMETRIe PROOF. We saw that \7ij, \7" - i<I> is equivalent to (1.1.7):

8 1 8
- - -A- +(1 +A)A,
8z 2 8t -
8 1 8 _1
8z + 2A Dt + (1 +,\ )A,

away from the points (A = 0, A= 00) where (1.1.7) has singularities. Both systems

are 'underdetermined', since any solution can be multipliee! by any holomorphic

function in 1] to give another solution. The exact function, however, may be fixee! by

adding another differential operator to the system. Over {A E C*}, we can ae!e! gt,
and get a completely integrable system on any fibre {,\ = Ao} C TiPI XIR (Ao E e),

i. e. a (full) smooth connection on E restrictee! to a fibre of TlP'llc' x IR -+ C*, wit,h

zero curvature.

This connection is "real" in the sense that it is a connection on the real tangent

space, whereas the operator \7 'i restrictee! to a fibre of TIP'I acts on the antiholo­

morphic tangent space of TIP'I , ane! not along one real direction in the fibre as a

real connection would. We hesitate to call connections on the real tangent space

real, however, because that word is usually usee! to e!escribe a connection whose

coefficients lie in some real Lie algebra (u(N)), i.e. which lie in a real ree!uction of

a complex principal bundle.

Since solutions of the augmentee! system are ine!epenclent of t, we can push

the system down to {(z,z) E 1R2 }; i.e. ail solutions to the augmentee! system are

obtained by pulling back solutions of

(2.6)

on 1R2 . We know from TheOl'em 1.1.9 that (2.6) extends to a curvaturc-frce con­

neetion on z, z E S2. Since S2 is simply-connected the connection (2.6) has trivial



monodrorny around any circle, in particular circles through the point at infinity

which are the projections of the circles {u E SI} in a fibre of TiPI x IR -+ C*. (See

Fig. 3.) 0•
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la
au

•

•

•

FIG. 3. For a fixed value of À E C', lines parallel to :u in IR3 are

projected onto lines on 1R2 which are completed as circles on S2 tangent

at the point at infinity.

ANALYTIC PROOF. Alternatively, let S be a solution to \7 u -i<p, \7(0,1) over TC',

such that limu_ oo S= n. The monodromy around SI is then given by

soo(À,I]) ~l lirn s(À,I],u),
1L--OO

and is holomorphic. In other words, \7u - i<p is a connection on SI for each fixed

(À, 1]) ETC' , so calculate its monodromy by parallel transporting nat û = 0 around

SI. It is holomorphic because \7u - i<p and \7(0,1) commute and \7(O,I)I{û=o} = [J.

Since \7 tl - i<p is independent of t, however, it follows that S is also independent

oft; i.e.

( 1-ÀÀ)s(À,I],u)=s À,I]+Àt,u- -t;1+ ÀÀ

hence Soo is also independent of t, whiclI means it is constant along one real direction

in the II-plane (i. e. complex line). Since Soo is holomorphic, it is constant. Referring



1.0 Fig. 2, we see that that constant is arbitrarily small by considering the illt.egral

along lines arbitrarily distant from the high-energy z = 0 axis. The next lel1lnla

can be used to malœ this precise. 0•
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•

•

2.7 Triviality over Iionpolar fibres. Reconsic1er SA, a (parametrisec1) solution

1.0 the (parametrised) system (2.6). Such solutions are unique up to a choice of

framing al. some point in ri. Let that point be :: = 00 and choose the fixec1 framing

SA = li there. Now let À vary in {1/ k < IÀI < l.:}. In tenns of the coorc1inates À,11, Il,

this framing is equivalent 1.0 the framing s = [ over u = 00. Since the family of

connections on 8 2 is uniformly continuous in À, the resulting solution SA (mld hence

s) is continuous.

At u = 00, this section extends ta 'l = 00, which defines a (trivial) buncl1e

structure for È over Trllc· .

The previous lemma tells us that if we trivialise by taking the frame li at, Il = 00

we can calculate the frame al. u -Ua by integrating \7" -iiI> down from 00 or up from

-00. Since we will have ta relate this buncl1e structure ta one over the pales which

will be defined over the u = 0 slice, we will ncce! ta know that for ÀE C', IÀI ,p 1,

s also extends ta 11 = 00 when 'Il is fini te. (Sec Fig. 2.)

LEMMA 2.8. For any Juch>., and ua jinite,

where 'la iJ arbitrary.

PROOF. One has only 1.0 integrate \7" -- iiI> ta infini 1.y in the right dircction

(avoiding the high-energy cylinder around the taxis, sce Fig. 2):

Let s be the solution with limit [ as u -> 00. We arc given À fixed and without

loss of generality take ua = O. Substituting (2.1) into (1.5) and taking pointwisc

matrix norms we gel.

liA" - iiI>11 ~ 1~~2'

for some constant ]{ depending only on À and max {IIAill, IIAil1 : z E rI}. Wc

wouldlike ta integrate "il" - iiI> either from -00 ta ua or from ua 1.0 00 whichcvcr



•
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way avoids small values of z. (5ee Fig. 2) We can bound Izi from below by

(1 + À;W - 2
4 Izl2 = b- ,\2 i) + À(l + ÀÀ)ul

= \7) - À2iil2 + IÀ(l + Ü)u12 + 2À:X(1 - (ÀW)pu

> JI7J2min{IÀI4,1} + IÀul2 +2IÀI2(1-IÀI4)pu,

23

The fun.ction

•

•

where'l = (p+ip')À, for sorne real p,p'. 50 the right direction is sign((l-(Ü)2)p),

and for l'II sufficiently large

For cOllvenience, we assume sign(l- (À:X)2)p = 1 and drop reference to it from now

on. The set {O::; u ::; oo} is compact, but inconveniently parametrised, so we will

work with

v =arctan u E [0, rr],

and

B <!!fdu (A _ ''''')
v - dv u t..,.

Then
1((1 +u2

)

IIBvll::; (1'I12 min{IAJ4,1} + IAul2 +2IAI2(1-IAI4)pu)2

follows from (2.9). Look again at the condition (\7u -i<I»s = 0 iff :u ss-I = Au -i<I>

iff ;',SS-I = B v. By definition,

Bv(a) = ~ss-I(a) = Hm (s(b) - s(a))s(a)-I
âv b_CL b - a

1
. s(b)s(a)-I - li

=l1n b .
b-a - a

{

.(b)'(CL)-'-i (a b) E [0 rr]2 \ D.
f( a b) - b CL ' ,

, - s'(b)s(a)-I a = b

is continuous on the diagonal D. = {b - a = O} sinee if (ai, bi) is a sequence in

[0, rr] X [0, rr] converging to a point on the diagonal, then either ai # bi and we can

find Ci,kt (1 ::; k, 1::; N) between ai and bi such that

f ( b ) S(bi)s(ai)-l - li S(bi) - s(ai) ()-I '( ) ( )-1
kt ai, i = b = b s ai = s Ci,kt s ai ,

i - ai i - ai
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•

•

by the mean value theoremj or I(ai, bi) = S'(bi)s(ai)-I. In either case they have

the same limit.

For 11)1 sufliciently large, IIBvl1 = Ilfl" Il < €. Since I is continuous on a compact

domain, we ean find a ,s such that Ilfll < 2€ on a ',1'2 ,s neighbourhood of 6. C [0,71"] X

[0,71"], where,s = 7I"/nforsomeinteger. Choosing the sequence {Vi} = {0,,s,2,s, ... ,7I"},

we see that

(with III(vi-l,vi)11 < 2€) and by induction that

s(Vi) - seO) = seO) L 7I"i,7I"i, .. ·7I"i,

il <i2<.. ·<ik <i

as € -> O. So as 1171-> 00, Ils(oo) -s(O)II-> 0 as required. D

Over the fibres, ÀE C' , the constant frame over U = 00 extends in a nlttural way

to 1) = 00. Over IÀI = 1 we define the bundle È over 1) = 00 by deereeing that the

constant section extends, although for u fini te, smay have bounded discontinuities

approaehing 1) = 00 in one direction.

2.10 The bundle extends. Since \7 u - i<I> defines an analytic operator on 1R3

for aU À E 8 2
, which in (À, 1), u) coordinates has a (locaUy uniform) limit as '1-> 00,

the subspace of local frames, given by the kernel of this operator, has the structure

of a 10caUy free sheaf over C-a complex veetor bundle. There are severa! ways

to define a holomorphie structure on a eomplex bundle. One is to speeify a fixed

trivialisation over open sets as a holomorphie one. The constant trivialisation at

u = 00 defines the holomorphie structure away from À E {O, oo}. Over a general



set we can also specify a holomorphie structure via a 8-operator. Restricted to Po,

\1q and \1 q' = a~' +~Aidij' is an analytic 8-operator, which defines a holomorphie

structure on EIPo• We need to do this on an open set.•
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Trr;* ={O~À~"" }=u

{À=} {À=O}

Warning: This is a rea/ s/ice.
not an elliptic clJrve/

{À=O} {À=}

FIG. 4. Two pictures of real slices of TrI showing the covering.

To put these structures together, we make use of coordinate patches on TrI

• Uo = {(A,1)): A# 00, 11)1 ~ oo}

Uoo = ((A, 1)) : lAI < 1/2,1) # O}

ÛO = {(:\, fi) : :\ # 00, lfil ~ 00 }

Ûoo = {(:\, fi) : 1:\1 < 1/2, fi # O}
U = {(A, 1)) : 0 # A# oo} = C x rI,

and the following subsets of C:

(2.11)

(2.12)

•

On U we take the constant frame li (= soo) over C* x IFI, which gives a frame s
over {(A, 1), u) E C* x C x IR} by parallel translation.

On TrI, (\1q, \1x) is an analytic 8-operator: a (local) holomorphie frame 9 is a

solution to g-1 Aqg +g-1 :q 9 = 0 = g-1 AXg +g-1 :>.g, equivalently :qgg-l +A q =

0= :>.gg-1 +Ax. Such a solution exists locally if! [\1 q, \1X] = 0, i.e. if! (\1q, \1X)

defines an operator



Let 80 be such a frame of solutions over Uo and 80 over Ûo.

Near the infinity section, however, we must work with coordinates (À, 1)' = 1/1))

and (Â, ry' = lN). On the first patch, the 8-operator is given by•
26 II. THE BUNDLE

(2.13a)

(2.13b)

•

•

where for simplicity we restrict to the hypersurface u = O.

Both operators are smooth away from '1)' = 0, and near '1)' = 0 are smooth

functions of Il'Ji' and fi' /'1)'. Since A z and A~ are smooth near 1"/ = 0 (for À E A),

the failure of the coefficients of Az and A~ to be continuous or integrable depends

on the relative powers of the '1)' and 1)'N' factors in a series expansion. The factor

fi' /1"/ is integrable but not continuous and differentiation introduces a factol' of 1/'1)'
which is not even integrable. The operator 'V li' has this type of discontinuitYi 'VA'

is continuous but its derivative also has an 'ry' /'1)' bounded discontinuity.

Since the discontinuityof the 8-operator is mild, it is not surprising that we will

be able to find a continuous change to a holomorphie gauge, i. e. a gauge change 9

such that 0 = Ag = g-l Ag + g-18g. integrability of the operator, however, is not

enough to assert the existence of such a gauge, since in two complex dimensions

is not invertible as a map of the appropriate Sobolev spaces, and we will need to

make use of the structure of the singularity.

On C2 the 8-operator is not el1iptic, but on iC it is, and on rI it is even surjective

because its co-kernel is the kernel of its adjoint, 8* = *8*, i.e. holomorphie (0,1)

forms, of which there are none. Local invertibility fol1ows from a bump function



argument: given a function on a neighbourhood of a point in C, we can always

multiply by a bump function supported on a smaUer neighbourhood of the point

resulting in a function which extends to Pl. On pl, since â is surjective, we can

find a âprimitive, which is also a primitive of the original function on some smaUer

neighbourhood of the point. For a complete discussion see [AtBo, 5.1,§14]. By

approaching the smoothing as a parametrised one-rlimensional problem, and taking

advantage of the special form of the singularity we will be able to find a continuous

holomorphic gauge. Such gauges do not exist in general for â-operators with the

same integrability but without this particular type of singularity.

•
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Because aU the objects we will be dealing with, e.g. Bi, are smooth away from

ri' = 0, integrability (L~, i.e, LI' integrability of partial derivatives up to order k)

on 3 x A, and on fibres of 3 x A --> A are equivalent. In fact Bi E L6(A x 3, gl(N))

can also be seen as a smooth map valued in a function space:

By taking the second view of Bi, as a smooth function valued in a function space,

we reinterpret the search for a smooth gauge as a parametrised one-complex­

dimensional problem.

The basic tool for proving smoothness is the

•
Bi E COO(A,L~(3,gl(N)). (2.14)

•

SOBOLEV LEMMA. There are inclr!sions

L~(3, gl(N)) C CO(3, gl(N)) and

L5(A x 3,gl(N)) c COCA x 3,gl(N))

'Which (Lre contin'uo'us 'With respect the Sobolev and supremum norms respective/y.

For our purposes, continuity of the inclusions will be very important. See

[GriHa, p86] for a proof.

LEM MA 2.15. The operator P g ...... /}~, gg-I can be extended to a smooth

in'IJertible map



for k > 2, where LL( )0, indicates the space of based maps, g(O) = IL

PROOF. P extends to a map of Sobolev spaces because

(1) since 3 is compact and LL(3) C CI(3), we can find a constant such that,

Ilg'-111 < constllgll' for g' in some neighbourhood of 9

(2) Lf(lR.n
) is a Banach algebra for k > n/p and L} is a topological L~- module

for 0 ::; j ::; k [AtBo,14.5].

(3) 8~' gives a map LWCn
, GL(N, iC)) -> LLI (Cn,gl(N, iC)) for all 1.', n.

We can calculate the derivative, DP, of P by expanding

•
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•

•

where </>go(gl) is tangent to the zero map (i.e. limlgtl_o q,',~~i,) = 0),

In particular DP(Il) = 8~" so we can apply the inverse function theorem for Banach

spaces [La, 1.5.1] to get an inverse to P in a neighbourhood of P(ll) = O. In fact wc

can get a smooth inverse becausc P is smooth:

We can verify the existence of higher del'ivatives for P either by itel'atively diffcl'­

entiating P, or by using the chain mIe and remarking (a) that 8;' and m(a, b) = ab

are linear and multilinear respectively and hence both smooth [La, 1.3.12]; and (b)

that 9 >-> g-I is smooth because it's kth derivative at 9 = go is the k-lineal' map

EBk LL(3,gl(N,iC)) -> LL(3, gl(N, iC)), given by

( ) '""' -1 -1 -1 -1gl, ... , gk >-> L.J go g".(1 )go 9".(2)gO ... 9".(k)90 •
crESk

Note that we have made repeated use of (1) and (2) above. 0

Unfortunately, Aij' ri: LLI(C2,gl(N,iC)), so we may not conclude immediately

that there is a continuous change of gauge which smooths Aij" So we need to look

closer at the singularity.

Looking for a better gauge involves integl'ating Aij'. In theory, we couIc! integrate

it term by term removing the singulal'ity one order at a time, but there is no
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(2.16)

2. COMPACTNESS

guarantee that such can be done in a generic way for al! harmonie maps, since we

do not know the explicit form of A., A•. We are left to integrate their coefficients

Bo, BI in \1'j' The coefficients Bi are smooth away from .,,' = 0 where they have a

bounded discontinuity of the type .,,' /ii'. We can find integrals (i. e. Co and CI such

that iJ~' Ci = -Bi),

C _ (1 + À)(l + ,\,\)2 -Àrl'
0- 2 À2_.,,'/.,,"

C = (1+À)(1+,\,\)2 (_ 'J.: _ ~')
1 2 À2(1 - À2.,,'1"1') À2

(1 + À)(l + ,\,\)2 ii'
=-

2 1- À2.,,'/.,,"

•

which are not only continuous at 17' = 0, but vanish there, because they look like

.,,'</>(.,,'/ii'), where </> is continuous on a neighbourhood of {z E C: Izi = 1}. We can

use

•

•

9 = 1 + CoA. + CIAf ,

to give A~, c::rg- IA;;, 9+g-I iJ~' 9 the same cOllt,inuity properties (check that the four

terms without a Ci factor cancel):

(BoA. +BIAf)g = g-I(BoA. +BIA~)g +g-I a~,g

= BoA. +BIA~ +CIBo[A., A~] +CoBI[A f , 04.1

- (CoA. +CIA~)(BoA. +BIA~)(CoA. +CIAf )

- BoA. - BIA. +Co (B2~A. +Ba~A.)
• z ai· ai·

+CI (B2 :ZA~ +Ba :iA~) - (CoA. + CIA~)

[-~A.-BIA~+~(~:Z~+~~A.)

+cI (B2:ZAf +Ba:iAf )] ,

where the tenus B2 ,Ba arise because iJ~' =f. :~: (on u = 0)

a -2 a À2(1+ ÀA)2 a (1+ À>')2 a a
ai)' =-." ai) == 2(À2 - 17'1"1')2 ai + 2(1 - À2i)'1"1')2 ai (mod m)

der a a a
=B2 ai +Ba âÊ (mod m)'
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singularity
oft/le tvpe

11/11

the point Â

the fibre
Jt"~l(Â)

smootlz
points

•

•

FIG. 5. A function, i, on 3 x A defines a map from A to the space of

functions on 3 by assigning to >'0 the restriction to the fibre i{(À,"):)"=Ào]'

Lt-integrability on 3 x A is governed by Lt-integrability on fibres.

We can ignore the tt terms because the connection coefficients are independellt of

t.

Since each (persistant) term contains a factor Ci, A~I vanishes on ri' = 0, and

is continuous. Becr.use éi~1 Ci = Bi, éi~1 A~I is bounded but discontinuous, we see

that A~I E L~(Uoo,gl(N,C), in fact

LEMMA 2.17. The map

A~I :A ...... Li(3,gl(N,C)

such that

is smooth.

PROOF. We have to show (1) that the function A~IIÀ=Ào and its first 7)', il' deriva­

tives, are square integrable, for al! >'0 E A, and (2) that ;ÀP;À qA~I exist and are

in L~ for all p and q.



•
(1) Since

2. COMPACTNESS

Ag - -lA -1 a
il' - 9 il'9 + 9 afj' 9
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is smooth away from 7)' = 0, and has a singularity of type rl'</>(7)'/fj') there, its first

derivatives in 7)' or fj' may have a bounded discontinuity, which doesn't effect the

finiteness of the L2 norm. In faet, we can multiply A~, by the complement of a

bump funetion of arbitrarily small mass concentrated at 7)' = 0, and find that the

map A~, : A -; Li(3,gl(N,iC)) is continuous.

(2) Since A~, is smooth on {7]' i O} we can take the À derivatives of A~, pointwise,

i.e. when 1]' i 0

Examining the terms of A~, one at a time, we find that aU partials are continuous.

For example,

~C _ (1 +Ü? +2X(1 +À)(1 +ÀX) -À7)'
DN 0 - 2 À2 - fi'1'7'

(1 + À)(1 + Ü? -7)'(À2 - fj' N) + 2À2r1'
+ 2 (À2_fj'/7),)2'

~C _ (1 + ÀX)2 +2:\(1 + À)(1 +ÀX) 7)'
aN 1 - 2 X2(1 - X27)' /'1')'

Since all its partiais exist and are continuous, A~, : A -; Li(3,gl(N,iC)), is
, ~

smooth. 0

Now we cau exploit the fact that P has a smooth inverse. As a result,

is a smooth map, and P(g) = A~,. Composing with the continuous Sobolev embed­

ding L~ '-> Co, we see that 9 is a contilt'UOUS change of gauge over U00' such that

the fj'-operator in this gauge is trivial, i.e. A~r = 0, and Alù = g-I Alg + g-I :>.g
is continuous (all its ingredients are).



Since 0 = ['\7X, '\7;;'] = [;À +A1ii , a~' J, it follows that A1ii is meromorphic in 1/'­

holomorphic, as it is continuous. Using the fact that A1ii is smooth near {Il/'\ = I},

and differentiating the Cauchy integral:

( a ka 'A9ii(' ')\8 j 8 k 8 1 - , 1 aÀ a;: X A,11 À-À
- - ~A~9(Ào,1/0)= . - '.
81]' â,\ 8.\ À 1,,'1=1 (Il' -1/'0)3

we see that A1ii is smooth on {11]'\ < I}. We can then find a smooth change of

gauge 9such that A1iiii = 0 = A~rÎl. Then, Soo(~rggg is the requirecl holomorphic

trivialisation over U00'

Transition functions are now given by To= sols, Too = s·;;.,1s, Tooo = s~,1so.

By construction, :;;T* = 0 = ;ÀT*, so they are holomorphic transition matrices.

They are nonsingular because the corresponding frames were constructed to be

nonsingular.

A similar construction works over the south pole.

•
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3. Triviality over the oo-section

Over nonpolar fibres, U{PÀ : À E C*}, we clefined a holomorphic framing of E

associated to the framing i of if;, such that

lim i = l
u-oo

The smoothability of the 8-operator away from the equator IÀI = I tells us that

we can find holomorphic framings of E in neighbourhoods of (.\ = 0,1] = 00) and

(Â = O,ry = 00) which correspond to continuous framings io and ioo of if; over the

appropriate regions of !pl x IR,3. Since away from the equator lim,,_oo '\7X, = a~' on

every plane u=constant, lim~_oo io is holomorphic in À in the usual sense, so we

can assume that lim~_oo io = l We make a similar assumption about ioo.
The transition matrices are just i- I io and j;;} i, which don't depend on u

because i, io and ioo all solve '\7 u - i<li. Since

lim io = n, lim ioo = n, and
11-00 '1-00

1· f- Lemma 2.8 l' Tlm = lm = Jl,
f1-00 u_oo

the bundle E is trivial when resh'icted to Coo.



Time translation (z, t) ...... (z, to+t) induces a one-parameter group of transforma­

tions of TIPI. In coordinates, (A, 1]) ...... (A, 1] - tA). The coefficients A., Az and hence

('V, <I» are independent of t. Another way of saying this is that they are invariant

under the group of translations of t. 50 the space of solutions to 'V IL - i<I>, 'Vij, 'Vx'

is invariant under time translation.

On TIPI, the space of oriented gcodesics in IR.3, time translation acts by (A, 1]) ~

(A,1] - tA). The geodesic itself is shifted with respect to the geodesic parameter u,

0, l-Ü
Il ...... U + t.

1+ >.>.
50 a solution s( A, 17, u) such that ('V" - i <I»s = 0 = 'V ijs = 'VX, s generates a family

of solutions

•
5. THE REAL STRUCTURE

4. Time Invariance
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l-Ü
st(A,1],u) = s(>.,1] + At,u - -t).

1 + >.>.
And the map 8t : s ...... St, is a bundle isomorphism lifting Ot. Since

lim A = 0 = lim <I>,
:-00 ::-00

the bundle map is just the identity over the section at infinity. One can also see

this by remarking that the section which cornes from the constant frame at infinity

is preserved by t.he time-translation map. We will see that the specification of this

map encodes the time-independence of the uniton.

5. The Real Structure

As remarked in the introduction, in adapting Hitchin's construction, there is

some ambignity as to the real structure. On iC3 one thinks of the real structure

literally as a real slice: a tluee dimensiomù subspace of the real six dimensional iC3
,

which as a set spans the complex three dimensional iC3 • Any such set is the fixed

set of an antilinear involution-the real structure. The IR.3 of Hitchin's original

construction is the standard real slice of standard iC3 (with conjugation as the real

structure). Conjugation, however, is not the appropriate real structure for our

purposes. But IR.3 is still an invariant set of the appropriate real structure:

(1*(X, y, t) = (x, y, -t = i-1it).



80 when our real structure acts on E -> 1R3 it not only conjugates the fibres, but

ref1ects 1R3 in the x - y plane.•
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5.1 On the principal bundle. One way to understand how the real structUl'e

on E arises is to work with frames rather than sections. This is because the real

structure on Ecornes from the real structure on the complex group (GL(N) in our

case), which induces a real structure on the trivial principal bl1ndle of fmmes of

Ë over 1R3
• The real structure fixes a l'eal sl1bgroup, and is X ...... (X·)-t in the

case of U(N), which is both an involution and antiholomorphic with respect to the

natural complex structure of GL(N). A frame of E, either locally, or at a point, is

an invertible solution, j, to

•

(\7 a.J!..+b.J!..+c.J!.. - i<J»j = O.
Oa:: Dy Dt

Everything here lives in gl(N), so we can apply the transformation

_ _ t

X ...... -f-IXf-1

to (5.2) to get a new equation, which since iAt,i<J>,Ax,Ay E u(N), gives

(aaa +ba
a +Caa +aAx +bAy - cAt - i<J»(j·)-1 = O.

X y t

(5.2)

•

Pulling back by (7, and using the fact that Ax, Ay, At, <J> are independent of t, we

get

80 the real structure on the principal bundle 1R3 x GL(N) induces an antihoiomol'­

phic involution of the principal bundle of frames of E --> TIPI which covers (7 and

which conjugates the natural frames above real sections (i.e. (frame)...... (framet- 1

in a unitary frame). The specific form of this conjugation is important-other

conjugations correspond to different realgroups, i.e. GI(N, IR), U(n, N - n) etc.

5.3 On the vector bundle. Alternatively, we can express the real structure in

terms of E and E·. To avoid any confusion we will use t for conjugate transpose

in this paragraph. A section of E is tpe same as a section, S, of Ë which satisfies



(V'" - i<I»s = O. Similarly, we can identify a section of E*, as a section l' of E* such

that 1'(.5) is constant on À lines, i.e. constant in u. In terms of the standard frames

of if; and if;*, 1'(s) is just matrix multiplication. It follows from•

•

5. THE REAL STRUCTURE

°
a _( _) a _ _+ _ a_= -1' 8 = -1' . 8 l' • -8au au au

= ~ 1'. S+ 1'. (-(A" - ilf!)s)

= (~1' - 1'(A" - ilf!». sau
that l' represents a section of E* iff it satisfies

~ l' - 1'(A" - ilf!) = O.

Since A.. A y, iAt, ilf! E u(N), this is true iff

o= ~1't - (A + ilf! )1~t = ~1't + (A - ilf! )1'tau -u." au U." .

Since A.. A y , At, If! are t-independent, this is true iff

~. e. iff a*l~t represents a section of E. This defines an antilinear lift 0-:

35

(5.4)

u
<->

E*
~

TIP'I

•

To invert this second construction in tenus of the the dual bundle, we need to fix

coordinates. Fixing a choice of Ào E iC* allows us to do this, because we can take

the standard framing of eN at À = Ào and u = 00, to define a fixed frame of E

over P>'o, and hence over Coo.

Finally, ,ID autiholomorphic isomorphism V -> V* is equivalent to a uonde­

generate sesquilinear form on V. (A holomorphie map would give a holomor­

phie metric.) As such, we have a well-defined notion of signature. In our case,

a fixes {(À,II): IÀI = 1,7) E {O,oo}} and other points as weIl. At a fixed point

(À, eta), ù : EI(>"',l -> EI(>..~) reduces to l' ...... r t . _, in terms of dual frames, and

Ù(I')I' = rtl';::: 0 implies Ù is positive definite.



Since we will show that given either of these real structures on E, we can get

back the reality of \7 and iI>, the two real structures are equivalent.•
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6. Framing

Final1y, let l' be any fixed point of 0' contained in P-1. We take as the framing

above this point the solution to (\7 Il - iiI»,p = 0 along the Hne l' C 1R.3 with

lim,p=l
1t-OO

Since l' is fixed by 0', the real structure X J-> X*-1 takes solutions of \7" - ·iiI> along

l' to solutions, and maps our particular solution to itself. Sincc Elp_ 1 is trivial,

is an isomorphism. This defines the 'unitary' framing

of the definition.



•

•

CHAPTER III

GETTING BACK THE UNITON

Given a holomorphie bundle on TrI, trivial over real sections, the section at

infinity, and fibres P). : 0 f= >. f= 00 with a (fixed) bundle isomorphism lifting time

translation, which is the identity over the section at infinity and one of the two real

structures, we would now like to COllstruct a uniton. From Chapter 1 we know it

suffices to COllstruct a solution to the Bogomolny equations, independent of t, which

extends to z = 00. Hitchin has already explained how bundles on TrI give solutions

to the Bogomolny equations over IR3• For independence of t and extendl10ility to

z = 00 we need to use the additional structure. Extendability to z = 00, not

surprisingly, results from the extendability to a trivial bundle over the section at

infinity. Time independence results from the lifting of Ct, time translatioT'..

a
b c

•

FIG. 6. The conie Q showing (a) a section of TrI, (b) the singular

point at infinity and (c) a fibre.

1. TrI as a conic

As a preliminary step, we show that TrI can be embedded into r 3 as the non-

37



singular subset of a conic. Consider the conic Q given in homogenous coordinates

01., (3,Î,Ii on 1P3 by (32 = -401.")'. This conic IlllS a singular point at [0,0,0,1]. Now

consider the map 1 : TIPI --+ Q given by•
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(>',7) H [1,-2>,,_>,2,-21/] = [0I.,(3,Î,8]

(Â,7i) H [_Â2,2,\,l, 21Îl.

(1.1)

•

•

The map 1 extends to a rational map on TrI mapping the section at infini t,y to

the singular point. Since the bunc\le is trivial over the section at infinity, when

we collapse this section the bundle descends to anotller bundle I.E on Q. More

precisely,

LEMMA 1.2. Pull-back of bundles (E' H f* E') from Q back to TrI is (Ln i80­

morphism onto the set of bundles on TIPI, trivial over the section at infinity, Coo.

PROOF. Pullback of bundles is injective. (Push forward is a left inverse of pull

back.) We only have to show it is surjecti've-that every bundle trivial on Coo is

the pullback of a bundle on Q. Let E" -> TrI be trivial on Coo. Away from Coo, 1
is bijective, so E" pushes forward to a bundle on Q away from the singular point.

We shall use the Theorem on FormaI Fllnctions to push forward a trivialisation of

E" in a neighbourhood of Coo to a trivialisation of I.E" in a neighbourhood of the

singular point 1.(Coo ). SO I.E" is a bundle (a locally trivial sheaf) whose image is

E", proving surjectivity.

Locally, the section at infinity, Coo, looks like the zero section of 011'1 (-2). Given

local coordinates CÀ, 7)'), and (Â = 1/À, r,' = >,27)') on O( -2), a transition matrix

for E" is given over the intersection, {>, E iC*}, as

H 7)'(q,(>'),7)',r,'»,

where q, is a polynomial matrix. Since r,' = >,2.,.1', we can express this in terrns of

two polynomials as

H7)'(q,' (>', 7)') +q," (,\, ii')

=K+ 7)'q,'(À,"'/) +r,'Â2q,"(Â,r,'),



but not uniquely, as .,,' = ~2il' etc. We can use this property to show inductively

that the bundle must be trivial on a11 formai neighbourhoods of Coo , by showing

that such a transition matrix in Cl(C'~),GL(N)), for any k > 0, is actually a

coboundary, splitting as a product of holomorphic changes of gauge, i. e. it is the

image of something in COl C'~), GL(N)).

A bundle is trivial on the (k-l )st formai neighbourhood, C~-l), iffits transition

matrix has the form

•
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in sorne gauge. Using the fact that q, can be split as q, = 1>'(À,1)') + q,"(~, il'), we

can make a change of gauge:

(ll - l/,k q,')(ll + .",k (q,' + q,"))(ll _ lr k~2k q,")

= ll+ 1/,2k(q,'q/' - q,'(q,' + <p") - <p"(<p' + <p")),

showing that it is trivial on C'~k-l). Inductively, we get a trivialisation of E"(k),

which is the same as a maximal rank section of 'H.om(t: fJJN , E") over the kth for­

mai neighbourhood (C~\ for k arbitrarily large. Now the Theorem on Formai

Functions [Ha, III.ll.l] says that

i (<,fJJN E")/\ ,: l' HO(C(k) 'l.J (<,fJJN E"))
... 11.0111 c. , [0,0,0,1] ~~ 00 " ",am c., .

We have shawn that the RHS has a maximal rank element. The LHS is the set

of all sections of 'H.om(t:fJJN , E") on a neighbourhood of i-I([O, 0, 0, 1]) = Coo , up

to formal equivalence, i. e. germs of sections. It must contaln an element corre­

sponding to the maximal-rank element of the RHS. That element is a section on

sorne neighbourhooc1 of the section at infinity which is nondegenerate on the infinity

section. Sinee the determinant function is continuous, it must be nonc1egenerate

on some neighbourhood where it gives a trivialisation. This trivialisation pushes

forwarc1 to give a trivialisation of i.E" in a neighbourhood of the singular point,

so in particular, i.E" is a bundle. 0

The sanIe construction woulc1 work with any bundle trivial over a rational curve

of negative self-intersection embedded in a surface, because the splitting of <p would



go through. A theorem of Castelnuovo tells us that the new surface will be smooth

if! the curve has self-intersection -1, in which case we aœ just blowing down (see

[Ha, Theorem V.5.7]).•
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The point of this construction, is that il. tells us what happens 1.0 dcfonned l'cal

sections in the limit (as t-> 00, for example). A hyperplanc in 1F3 , aa+{3b+rc+6d =

0, restricted 1.0 Q can be written

Whcn di 0, wc can use affine coordinatcs ald, bld, cid or just restrict 1.0 the plane

d = 1 and 1.0 pull back these sections 1.0 TIFI wc restrict 1.0 the affine plane {ct = 1}

(sec (1.1)). In TIF I coordinates, the hyperplane section (a, b, c, 1) is

a holomorphic section of TIFI .

But what about the 1F2 of hyperplanes with d = O? From Fig. 6, wc can see that,

these are just the hyperplanes which include the singular point. Such intersections

solve aa+b{3+q = 0 and -4œy = {32, so they solve a2a 2+(2ac+4b2)œy+c2,2 = O.

When b2 + ac = 0 01' b = 0 the solution is a double line. In general we gel. two lines

intersecting in the pinch point:

a2a + (ac + 2b2 ± 2bJac + b2 ) , = 0,

a2b{3 = ( _a2c + ac + 2b2 ± 2bJac + b2) ,.

50 the correct way 1.0 complete the set of holomorphie sections of TIF1 is not by

adding a section al. infinity (which, il. tums out, is not a holomorphie section of

TiPI -> IFI) but by adding a 1F2 worth of closed subvarieties of TiPI, given by the

union of the section al. infinity and two fibres with multiplicity.

2. Compact Twistor Fibration

Let X C 1F3 X lP'3* be thevariety eut out by {32+4a, = Oandaa+b{3+q+do = 0,

where a, b, c, d are homogeneous coordinates on the space of hyperplane sections of



•
C""

1).,

2. COMPACT TWISTOR FIBRATION

}"
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FIG. 7. The embedding of Tpl -+ Q C p3 maps the section at infinity

to a singular point. Hyperplane sections of Q pull back to sections, Gy,

of TIPI, or to unions PÂ' U Goo U PÂ, if they contain the singular point.

1P3, p3' ~ p3. The double (twistor) fibration

•
x

11'1 ./

Tpl '-> Q

allows us to define a bundle over

(2.1)

(2.2)

•

y = {y E p3' : Eix, is trivial} .

Pull back the bundle E to X, and push it forward to a sheaf over Y with stalks

Ely = HO(Xy,E). By definition, HO(Xy,E) has constant dimension over Y. This

is not true for X \ Y. In the following y will be assumed to be in Y. Since the bundle

E restricted to real sections of Tpl, given by {y = (a, b, c, 1) : b = b, a = -ë} i the

section at infinitYi and fibres over 0 =1= À =1= 00, is trivial, Y contains a neighbourhood

of this set.

That E is in fad a bundle, i. e. locally trivial, follows from a

THEOi<8M (GRAUERT) [Ha, 111.12.9J. Let f : X -+ Y be a projective morphism

of Noetherian schemes with Y integra!, and let E be a coherent sheaf on X, fiat

over Y. Then if hi(y,E) is constant on Y, for some i, Rif,(E) is locally free on

Y, and for every y the natura! map



Both X and Y are varieties over C, and hence integral Noethcrian schemes [Ha,

11.3.2.1]. A map f : X -> Y of schemes is projective if it. factors through the

projection jp>Ry -> Y. Over C, lP'u y = lP'u x Y, so f is projective by definition. Since

E is a bundle, it is locally trivial, not just coherent. If wc can show that E is fiat

over Y, then we will have shown ft is locally trivial (a vcctor bundlc), sincc Y is

included in the set on which hO(y, E) is constant.

Flatness is a transitive property, and (X, E) -> (X, Ox) is fiat [Ha, 111.9.2].

Them'cm [Ha, III.9.9] says that (X, Ox) -> (1",0\.') is fiat iff

•
42

is an isomorphism.
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Py(m) = dimcHU(Xy,Ox,(m))

is independcnt of y E Y for m ~ O. We can compute Py(m) from the long exact

homology sequence associated to the embedding X y C 1P'2:

(2.3)

Since Q is cut out by a quadric, X y = Qn y is also a quadric in 1P'2 (of dcgrce two)

and 011" (-Xy ) = 011" (-2). Plug this into the long cxact scquence associatcd t.o

(2.3)

0-> HO (1P'2, Oll',(m - 2)) -> HO(1P'2, 011" (m)) ..... HO(Xy,Ox, (m))

..... Hl (1P'2, 011" (m - 2)) -> Hl (1P'2, 01P" (m)) -> Hl (Xy,Ox, (m)).

According to Theorem B, for some suitably largc Jlo, H'I(lvI, O(HI' 181 E)) = 0, for

all q > 0, and Jl > Jlo. In particular, H1(0Il',(rn - 2)) = 0 for rn > mu, hcncc

which is independent of y.

We now have a way of getting back from a bundle on TrI to a holomorphic bundle

on Y. One may weil wonder how constructing a holomorphie bundle over a eomplex

domain of unknown shape c,... be seen as 'getting baek' to a uniton, whieh we saw

was equivalent to a real eonnection on a trivialised bundle over 8 2 x IR. In fact,



YIR projects onto S2 X IR, and the bundle over Y will turn out to be trivial there.

To defiue the connection, however, we will employ algebro-geometric machinery,

heuce the complexification. Real structures (antiholomorphic involutions) on C3

cau be encoded as a choice of holomorphie coordinates, for example on C3 n y take

x = a+c, y = i(a-cl, t = b, with lespect to which the involution is just conjugation.

A holomorphie bundle is given br holomorphie sections/transition matrices in these

coordinatesj forgetting that they are complex-valued, we get a real-analytic bundle

on 1R3 • The same is true fol' metrics, connections etc.

•
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3. The Connection and Higgs' Field

The construction of the connection 'il from Chapter l also defines a connectiop

on Y. The trouble is that we want a connection on S2 X IR, or S2, but YIR cannot

contain any such set since S2 is not the real slice of any complex variety. We must

show that we can still push 'il down by a map YI!! ...... S2 X R.

3.1 The set Y. To summarise what we know about Y:

(1) Finite real points are in Y: {[a, b, a, 1] E C3 C p3 : a E C, b E IR} =fix(T) n
C3 c Y since E is trivial on T-real sections of Tpl. (In fact t-invariance of

E implies fix(a) C {[a, b, a, 1] : a, b E te} c Y, as weIl.)

(2) For infinite points, we know precisely that

Y n phM 00 = {hyperplane sections which contain neither Po nor Poo}

(= {(À1 ,À2 ) E C' x C*})
(À I ,À2 ) ~ (À2 ,À I )

= {[a, b, c, 0] E p2\1 00 : ac # o}

~ p2 \ (pl V pl).

By virtue of our choice of C3 c p3', we know that the 1P'2 at infinity is the set of

hyperplane sections of Q through the singular point. Furthermore, any two such

hyperplane sections either have a line in common 01' meet only at the singular point.

From either definition of the connection, it's clear that the evaluation at the singular

point gives a covariant constant frame of E over Y n p2.al 00' This is exactly the

property which allows us to push the connection down to S2.



3.2 Real Points. We know that finite real points are in Y. We must CIÙCU­

late the infinite ones. The involution T aets on r3> by T(a, b, c, d) = (ë, ii, a, cÏ),

so the real points of Y n r 20
al 00 IU'e {[a, t, a, O]}, which we CIUl also think of as

{(À,-X-l): À E ri} /~. Either way, we see that

•
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the Moebius strip. So

ri>; ~ IR,p3 \ {[pt]} .

We can similarly calculate the level set

(3.3)

ri>;n{t=O} =
=
=
=

1R,3 n{t=D}
1R,2

1R,2

IR,p2

u
u
u

(lR,p2 \ ([pt]}) n {t~.., D}
{[a,D,a,D]: a f O}

8 1 (M)

•

•

3.5 Pushing clown the connection. Let

be the real blow-clown of the cil'de at infinity in IR,p2 to the infinite point in 8 2 •

We push the conneetion clown by pushing down covariant constant frames along

lines. This can be done if the inverse images of points are trivialised by covariant

constant frames, which is truc in our case because evaluation at the pinch point of

Q gives such a frame over the cil'de at infinity.

It will follow from the proof of t-invariance of ('\7, <I!) on 1R,3 that the extension

of the connection from 1R,2 to 8 2 implies the extension of ('\7, <I!) from 1R,3 to 8 2 X IR.

Specifically, we know from the discussion of the Bogomolny normalisation following

(1.2.2) that we can put any t-invarÏlmt pair ('\7, <I!) satisfying the Bogomolny equa­

tions on 1R3 into the form At = -iAy, <I! = iAx , sa that the finiteness ofAx and Ay

at infinity certainly imply the finiteness of At and <I!.

REMARK 3.6. It is interesting to note the parallel with the proof of compactifi·

cation in the last chapter. The point (z,z,t) on 1R3 pulls back to [z,it,z, 1] E r 3
•

The former can be thought of as a coordinate patch on 8 2 X IR, which is coverecl



by two patehes, the other one in tenus of z rather than z. Thinking of them as

cornplex numbers, (z,z,t) also give coordinates on a patch of IF3 , but if we try to

compute the transition to the other patch (in terrns of homogenous coordinates) we

get

•
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•

[z,it,z,1] = [1/z,it,Ê,1] = [1,itz,z/Ê,z].

The 'coordinate' z/Ê corresponds to the real SI at infinity which appeared as the

singularity type on the aoperator when we tried to extend it to TIFI .

4. Choosing a trivialisation of Ë --> Y

Let Ao = -1. The bundle E is trivial over the fibre P>'o C TIFI, 50 evaluation

at 111lY point gives an isornorphism of HO(P>.o, E) with eN. Fix the isomorphism

corning from evaluation at (Ao, 00). We get a map E --> eN, defined on fibres by

(4.1)

where we use the canonical isomorphisms coming from restriction. This is weil

defined because, y is either a finite point (a section of TIF I ) and intersects P>'o in a

point, or it is infinite in which case it meets the fibre at one point or on the whole

fibre, in which case evaluation at any point of the fibre gives the same answer, again

beeause E is trivial there. This map gives a trivialisation

E

1
y

tJ1·\0
l eN xY

1
y

id

The value of this trivialisation is that in this framing the translation action Ot

lifts to idxo,:

Ë61y = HO(o,Cy,E) cval
1 E6,c,np.\o

eval HO(P>'o,E) = eN1
~ ~

SIl SIl ls.=id

• Ey = HO(Cy,E) eval
Ec,np.\o

eval
HO(P>'o,E) = eN1

~ ~



The fact that the last 8t is the identity cames from the fact that 8, fixes the bundle

over the section at infinity, and hence must fix the bundle over non-polar fibres of

TrI (over which the bundle is trivial). Note that Y is a time-translation indepen­

dent set, because isomorphic bundles over IPI have the same splitting type.

It's not hard to see that if E -> TiPI was constructed from a uniton as in the lust

chapter, then we have just reconstructed the original framing of the trivial bundle

eN.

•
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•

5. Time Invariance of \1 and q,

The connection \1 was constructed by considering fiat frames along nu11 sections.

Consider again the fiat frame given by evaluation at (>'0,1/0), which defines a con­

nection on a nu11 plane through y. Translating by t, we get a nu11 plane through

y + t: the sections of TIPI through (>'0,1/0 +2>'ot) (plus the special sections which

include P>.,). By definition, the fiat frame is carried by 8t into another fiat frame.

Specifica11y, a fiat frame over II>., is given as the inverse image of a frame f,

Since
eval

•

E(>'o, 1)o - t>.o) 1 eval HO(Cy+t,E) = È y+t

commutes, fiat frames are sent to fiat frames. Hence the nu11 connections are

invariant under 8i. Now \1 and q, are defined in terms of these connections, so

they must perforee also be invariant. In tenus of the special trivialisation, \If >., the

connection matrices and the matrix representing q, are independent of t.

6. Reality

It is sufficient to show that the constructed connection and Higgs field satisfy

our reality condition on a dense subset of Y. For simplicity we choose ta work on

y ne3 • We can also assume that E comes from (E, \1, q,) which are indepenclent

of time. It remains to show that they are l'cal given either real structure on E.



6.1 Principal bundle reality. We first assume that the principal bundle of

frames of Ecornes with a fixed antiholomorphic involution, ü, lifting u which is

given in a unitary frame as X H Xt- I on the fibres of fix(u). As was true for 8t

and E, ü induces a map on the bUll(l1e offrames of E, Fr(E) ~ GL(N):

•
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•

which acts on a moving frame, f(y) E HO(Cy,Fr(E)), by f H Ü 0 fou, giving

another moving frame f' E HO(Ccr(y),Fr(E)). If fis holomorphie, so is its image,

which is the composition of one holomorphie and two antiholomorphic maps. The

same argument as for 8t holds, and shows that â pulls back constant frames of the

null connection on II to constant frames of the null connection on u II, and hence

the null connections back to corresponding null connections.
--t-I

In particular, if u(y) = y, then a frame f gets sent to ü(f) where ü(l)[y = (ly)

in any unitary basis. So if f is a covariant constant frame for \1 = d+.4 in direction

X, then âU) is covariant constant for \1 in direction u(X) so

= ô f f-I
ôu(X)

= _ .4cr(X tl
y

y

•
Since u(tx) = tx' uC:y) = t y and u(;t) = -;t (see (1.3)) we have

Reality for ~ either follows from t invariance (as it implied the extension of ~ to

52) or directly:



Sinee 2<1> lx = i(Y'n - Y'Tn), and <1> is independent cf the null plane II, we might,

as weil take O'(II) = II, i. e. II.\ for À = 1 in the notation of section 3.5, then

a a d
8X = - 8x' an•
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•

•

i. e. <Î>t = <1> as required. To sum up,

6.2 Vector bUlldle reality. If, however, we choose 1.0 work with the real st,ruc­

ture which maps the bundle 1.0 its dual, we need 1.0 do a bit more work. In the same

way that we constructed Y' and <1>, wc ean construct a connection and Higgs field on

the dual bundle B* (both bundles are the trivial I(;N bundle, but the eonnect.ions

are different). We know how 1.0 trivialise E, and sinee E and E* are trivial on the

same sets, taking a dual frame 1.0 the fixed frame of E al. À = -1, and '7 = 00, and

using il. 1.0 define a frame for B* in the same way that we defined the framing of

E, we gel. dual frames over an open subset of 1(;3 containing IR3 •

By their very definition, the null-connections Y'n and Y'~nlll arc dual 1.0 eaeh

other: the fiat sections of Band Bdnal given by evaluation al. a point (of TIF]) are

dual 1.0 each other iff the frames of E and E dnlll al. the point are. If ',. and 8 arc

coordinates of fiat frames along X, given in tenus of dual frames of Ednal and E ,

===? Adnlll = _At.

Recall that Ô' was eonstructed in the original frame of B as eonjugatc transpose

followed by pull-back by 0'. Above the point p =(À = -1,1) =00), the eonstructed



Ü also was given by conjugate transpose (with respect to a framing of Elp and its

dual on Eduu1Ic=). Conversely, a ü with this property induces ü : Ë5 <-> Ë5du.! which

is conjugate transpose with respect to the coordinates associated to the fixed frame

at p. Finally, the form (v, w) ...... â(v)(w) is positive definite on Ë5 ifJ it is so on El p

since rank, signature and nullity are continuous.

We defined null connections in tenus of fiat frames coming from evaluation of

HO(Cy , E) at a point-the null planes consisting of those sections which intersected

the chosen point. The involution (J acts on those points, which induces an action

on the corresponding null-planes and fiat frames. The involution ü also acts on

E IUld hence on frames of E over a point, sending them to frames of E du•1 over

the conjugate point. This in turn incluces an action on fiat frames over conjugate

null planes, so that if \7nr = 0, then \7~u.l(ü 0 r 0 (J) = 0, which holds as weil for

\711 + \7 Til and \7~u.1 + \7~&.I. This gives a convenient way of calculating A and

Aduul:

•

•
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since A, Adu.1 aret-independent. (Note that at the second line, we use the fact

that an involution (j is positive clefinite ifJ Ü(7')S = rts in terms of dual bases.) In

pm·ticular, A" A y,iA t E u(N). To show i\I> E u(N), recall that 2i\I>dX = \7n - \7Tn,

but that \I> is independent of the null-plane II. Choose II such that tx is in the

x - y-plane. Then as above we find \I>du.1 = -\I>, and 2i\I>du.l = (2i\I»t.

To sum up, we have proven

TIIEOREM A. The space of based 'Imitons, U(N)*, is isomorphic to the space of

rtLnk N 'Imiton b'/!1!llles.



•
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CHAPTER IV

WARD'S CONSTRUCTION AND WOOD'S CONJECTURE

We are now ready 1.0 describe the link with the construction of Wm·d. The value

of this is that Ward's construction involves only the factoring of a transition matrix

(i.e. solving the Riemann-Hilbert problem) and no differential equations. In addi­

tion 1.0 its metaphysical significance, this result allows us 1.0 affinn the conjectme

of Wood that unitons have rational functions in x and y as entries.

1. Ward's Construction

Let E -t TiPI be a uniton bundle. Theorem A allows us 1.0 assume that E was

constructed from a uniton, 8, via (\7, cp), a solution 1.0 the Bogomolny equations.

We are trying 1.0 find some intrinsic definition for 8 on IR3 x ri which cau be

pushed down 1.0 TrI and interpreted as a construction for 8. For this wc will necd

the extended solution of Uhlenbeck:

Recall that, in Chapter II, t~ show that the bundle E extended 1.0 the compact­

ified fibres of TC', we made use of a solution s on {(z,z,t,>') E IR3 x Co}, pulled

back from a solution (E),) of the system D), (see (11.2.5)) on {(z, >.) E 8 2 x C*}.

This extended solution directly cncodes the uniton:

THEOREM [Uhl,2,2]. If 8 is harmonie and 8(00) = [, then the,'e exists IL 1Lniq'ae

fiat frame E), : rI -t U(N) for D), with (a) E_ I = [, (b) El = 8, (e) E),(oo) = [.

M oreover, E is analytie and holomorphie in >. E C* .

In Lemma 1.2.8 we showed that the solution s on IR3 x C* pushed down 1.0 a

trivialisation of EITê* which we called the Coo trivialisation. Now we will think of

the solution as the expression of the pull back of the trivialisation in terms of the

50



•
1. WARD'S CONSTRUCTION

'constant' CN trivialisation.

.".,N· E). .c .
7I"1~ -tnv.' l 71"2 oo-tnv.

compare

TC' X ]R

SI

71"1 /

CN-triv. ]R3 TC' Coo-triv.

•

A point y E ]R3 corresponds to a real section of TIP'I and we can push down the CN _

frame over y to a trivialisation of Elc,. Since D_1 = (:z' :z)' the pulled-back Coo

and CN trivialisations differ by a constant on {>. = -1}, and if the Coc-trivialisation

is chosen to agree with the framing ri> E HO(P_I,Fr(E)) then the constant is n. So

the trivialisations of Elc, all agree with the Coo trivialisation along P_ I • From this

we see that the comparison E). (z, z) can be pushed down by 71"2 to the comparison

at (>., '7 = 1/2(z - >.2z)) of the Coo trivialisation and the CN trivialisation along

Elc(""O) .

If we choose the two trivialisations to agree with the framing along P_ I , then

E). is just the 'monodromy' around the cycle of IP'I,S:

tllese li/leS are trivialized
/ by the C"" -trivializatic)I]~

1

Elz) is given by tlle
comparison of the two
trivializations here \ th~se lines are trivialized

ln) the c;N -trivialization

•
FIG. 8. Compare the trivialisations at their point of intersection.

To make this precise, what we are calling a 'monodromy' is actually the failure to
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commute of a cycle of homomo1'phisms given by the restriction map:• E).,eo
restr HO(Ceo,E) rcstr E_ 1,oo

restrr 1restr

HO(P)., E) HO(P_J,E) (1.1 )

restrl lrcstr

E().,z/2 -).t-).2 '/2)
restr

HO(C(:",t), E)
restr

1 E( _1 ,:/2+t-,/2),,

beginning at HO (P-l, E) and going clockwise. The 'monodromy' is independent, of

the choice of initial value, up to conjugation, as one would expect, since a change

of framing of the bundle acts by conjugation on the uniton. We fix it by comput,ing

the 'monodromy' of the fixed frame <P E HO(P_I,Fr(E)).

1.2 Transition Functions. Wa1'd's construction assumes the bundle is given

by a transition matrix, so conside1' the cove1'ing of TIP'I given by

•
U={ÀEiC,l/EiC},

Û = {~ E iC, 1Î E iC} ,

U' = {À E iC, 'l' E iC} ,

Û' = {~ E iC,ll' E iC} .

(1.3)

The bundle E is determined by transition matrices T, T, T' which map fixed frames

of E over U to Û, ove1' Û to Û', and ove1' U to U' respectively. Because E has

certain triviality properties, we can choose the fixed frames such that

. '-11 nTTT c"" = ,

T'lp, = n, and

Tlp_. = n.

(1.4)

•
If the bundle is trivial when rest1'icted to a complex Hne (IP'I), then a framing

above a point of the line extends uniquely ta a nonvanishing frame on the line,

because in this case evaluation



is an isomorphism. We will think of this as defining a parallel translation within

the line.•
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In tenns of these frames parallel translation from a point on Pl (in terms of

the U frame) to a point on P- 1 (in tenns of the Û frame) along Pl U Goo U P_ I

is given by [. Since the bundle is trivial above real sections, we can get a split­

ting of T, i. e. analytic functions H : {(z, z, t) E 1R3, À E <C} -> GL(N), and Îi :

{(z, z, t) E IRa, À E (rI \ {D})} -> GL(N), such that

TH>.(z,z,t) = Îi>.(z,z,t).

Parallel translation from PI n Gy (in terms of the U frame) to P_1 n Gy (Û frame)

along Gy is given by

(1.5)

•

•

which gives the same formula for the uniton as in [Wd3,18]. One must verify that

this doesn't depend on the choice of splitting.

Finally, we note that Ward actually takes two framings, along Pl and P-l . One

framing would be equivalent to the restrictions (1.4). By taking two framings he

does away with the basing condition. This is an important point if one wants

to choose a different type of basing condition (other than 8(00) = [), to encode

Grassmannian solutions, for example.

2. Wood's Conjecture

Noting that ail known examples of unitons were matrices of functions rational

in x and y (equivalently z and z), Wood conjectured that this is always the case

([Wo]). While it is true that the Bogomolny solution (V,cI» constructed from a

uniton bundle are algebraic objects there is no reason to believe that the integration

8-1d8 = 2 (A:dz +Azdz)

preserves rationality. Continuing 8 analytically, or equivalently, integrating A, we

can't even rule out multivaluedness if A is holomorphie on nonsimply-connected

domains.



The conet'ete expression (1.5), however, shows that 5 extends to YniC3 (a Zm'iski

open set), and using (1.5) and the jumping-line normal form for trmlsitionlllatrices

(see [Hu] and [New] for proofs) we can prove•
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COROLLARY B. If 5 : 52 -> U(N) is a 'lLniton, then the composition with

U(N) '-+ GL(N) is rational, i.e. the fnnctions in x and y which ma.l.:e np the

matrix 5 E U( N) a,re rational.

For unitons of 'simplest type', we will be able to give an explicit formula for 5

in Chapter VI which is obviously rational.

PROOF. Since the solution is t-invariant, we CM ignore the third dimension.

We want to show E>.(z,z) = H_I(z,z)H>.(z,z) is a rational gl(N)-valued func­

tion on {(z, z) E IP'I X IP'I}. A fnnetion is rational ifJ it is meromorphic ifJ it is

meromorphic when restricted to the sets of a covering of IP'I x IP'I, and a funetion

is meromorphic ifJ its only singularities are poles. Thus we can answeI' a global

question with a local answer.

Consider the family of open sets

{Uzo= {(z,w) E IP'I X IP'I: z # Za,W # za} zoEll'l}'

Any three sets coyer IP'I x IP'I. Symmetry allows us to consider any one set:

We will prove that 5 is meromorphic on Uoo , which corresponds to our choice

of coordinates on 52. Working with new coordinates (z, z) 1-> (l/(z - a), l/(z ­

a» amounts to working on the set U". The functions 5 agree on the overlap

because analytic continuation is unique, and both the change of coorc1inates and

the continuation defined by (1.5) are analytic.

The expression (1.5) defines 5 on IR2 , but extends just as weil to iC2 with potential

singularities at the jumping lines. To see that they are poles, pull back the transition

matrix T by

(z, z) x (À) -> (À, '7 = z - zÀ2
).

If (z,z,D) represents a jumping line of type (I.:I ~ k2 ~ ... ~ kN) (i.e. Elc("z.'l ~

O(kll EB ... O(kN», then we CM make a holomorphic change of frame on sorne
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neighbourhood of the point so that T has the form

z-kt

55

T=

o

-kj-l

p~ = L p~"(z, z)À"
a=-kj+l

•

•

where p~" are holomorphic functions. A section of Ely is given by (u!, ... ,uN)l,

ui = L::'o ut,À" such that

T(y, À) (:~) is holomorphic in II À,

which puts conditions on {ut,}. Expanding the columns of T . u in Laurent series

in À, the conditions come from the c0dficients of positive terms in À (Ài, i > 0),

which we can see are linear in u~.

In particular, from the last row: z-kNuN must be holomorphic in II..\, so uN

must be polynomial in À of degree at most kN . By induction on i - N we see that

ui is polynomial for all j, although the degree of ui is not bounded by ki in general.

Since the remaining coefficient conditions are linear we can write them as a

matrix. We can make a further reductioll of that matrix by solving for some of

the coefficients: Remark that the tenns ut,À", a > ki figure only in coefficients of

T·u of positive order in ..\, hence are determined by uf, with j' > j, and a ~ ki'

We can solve fol' thel1l, getting s0l1lething polynomial in the coefficients of p and

linear in the coefficients of u. For each such coefficient, we can reduce the matrix

of conditions by one row and one column. We cali the resulting matrix, r(y),

the section matrix. It has L:;;'! (ki +1)+ (summing only positive terms) colul1lns,

corresponding to the L:(k; + 1)+ coefficients:

(
!! ! 2 N N N )1

1l0'Ub""Uk1'UO'''''UO ,UI "",UkN '

and L:;;'! (-ki -1)+ rows correspollding to coefficients of (T· u); of positive order

less than -ki. The difference

N

#columns - #rows = L(ki +1) = c!(E) +N.
i=)
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In particular, our section matrix has N more eolumns than rows. The number of

sections of EIc, = eorankf(y). Since hO(ON) = N, we see that f(y) has mllxinnù

rank at non-jumping lines, Cy • After possible shuffiing of the 'Il!. 's, assume tin\.!. f

has the fonn

56

•

where f' is invertible (and square). Then a moving frame H is given by

. (fI-If")where (u;,) = f;' l ,

whieh is meromorphie in P}a, whieh are in turn holomorphie in z, z and t.

•
Îl=TH

is then also meromorphie in z, z and t, so Îl-I is meromorphie on (;2. It fol1ows

that in a neighbourhood of the point, S = Îl-I H is meromorphie, henee has only

poles. 0

•
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CHAPTER V

MüNADS

Now that we have shown that unitons are equivalent to holomorphie bundles over

TiPI, we are in a position to investigate the moduli space. To do this we will exploit

monads as in [Do]. For a more general account of monads, see [OSS], where, in

particular, they prove Beilinson's theorem, the main tool for showing the existence

of a monad representation for holomorphie bundles on r N .

A monad is a complex of uniform bundles, whose cohomology is the desired bun­

dIe. For example, semistable two-bundles E -> r 2 trivial on a line are expressable

as the cohomology of a linear complex

where a is injective and f3 is surjective, i. e.

E ~ ker f3/ im a.

They can then be represented by three k x (k +N) and three (k +N) x k matrices,

uniquely, up to the action of GL(k) x GL(2k +N) x GL(k) (another theorem from

[OSS]). We will obtain a similar but more complicated result because we are working

on a bundle of projective spaces rather than a simple projective space.

0.1 Hirzebruch Surfaces. In the introduction, we remarked that TrI can be

obtained by projectivising 0(2) Ef:l 0 over rI. Buchdahl studies such projectivisa­

tions in [Bu], where he gives a momtd description for stable b'llldles, of a kind due

originally to Beilinson. We use some of his notation.

For any sheaf F on TrI, define the family of sheaves

F(p, q) = F l8i 0Tu" (pCo+qP>.o),

Si



In the construction that follows, we will encounter many cohomology groups wit.h

values in E twisted by the sheaves O(p, q), sorne appearing as obstruction groups,

others in the monad itself. We willnow compute sorne needed cohomology groups.

Since TrI is two complex dimensional, bundles above TIFI have only two Chern

classes, CI and C2. Sinee we can think of C2 as an integer (the number of points).

where Co is the zero section and P)"o is sorne fixed fibre (all of which are rationally

equivalent). By 0Tll'l (pCo + qP)"o) we mean the !ine bundle given by the divisor

pCo + qP)"o' Define 0Tll'l xfi>' (p, q)(p', q') = pj0 fi>l (p, q) 181 P:;0fi>l (p', q'), where

PI, P2 are the projections TIFI X TrI -> TrI.

This gives a complet.e description of line bundles on TrI sinee all subvlU·iet.ies

of TIFI are linearly equivalent to combinations of fibres and the zero section. In

particular O(Coo ) = 0(1, -2) and 0(0,1) = 71'*(011'1 (1)). From the Leray spectral

sequence, we see that complex analytic cycles generate the singular homology of

TrI. (This is not the case in general since complex analytic cycles occU!' only in even

dimensions.) In fact, cup product is given by intersection of generic subvarieties,

and sinee H 4 (TIF I , Z) is generated by a single element, or alternatively, since al!

points on TrI are rationally equivalent, we will think of H4(TrI , Z) = Z[pt], where

[pt] is any point. Similarly we will takc [TIFI ] to be a generator of HO(TrI,Z), and

Co and P)"o to generate H 2 (TIF I
, Z).

•

•
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Let

c2(E) = k([pt]).

The first class can be writtcn CI (E) = pC'o + qP>.o' Since E is trivial on nonpolar

fibres (P>'o, Ào E C*), 0 = cI(E!p,,) = p. Sinee E is trivial on real sections,

0= cI(Elco ) = q. So

LEMMA 0.2.

and similarly for E* in place of E.•
HO(E(p, q)) = 0
H2(E(p, q)) = 0

. when
when

p < 0 or 2p +q < 0
P + 2 > 0 or 2p + q + 4 > 0,
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PIlOOF. Let s E HO(E(p, q)). If p < 0, then

59

•

•

Since such fibres span an open subset of TiPI, s == O.

If 2p +q < 0, then since a real section has intersection 2 with the zero section,

and intersection one with any fibre

Again, real sections trace out an open subset of TIFI, so S == O.

The same is true of sections of E*, sinee E* is trivial on any subset on which E

is trivial.

We use the Adjunction Formula [Ha, V.l.5] for curves in surfaces 2gc - 2 =
C . (C + K5) to determine KTf/Il the canonical bundle. Let KTf/t = aP)" + bCo.

Then gp" = 0 = gc, and P)" .p)" = 0 and Co ,Co = 2 implies b = P)" ·KTif>t = -2,

a +2b = Co . KTif>t = -2 - 2 = -4. So

KTf/1 = O(-2,0).

By Serre Duality

H2 (E(p, q)) ~ HO(E(p, q)* @ K)*

= HO(E*( -p - 2, -q))

= 0 if - p - 2 < 0 or 2(-p - 2) + (-q) < O. 0

We get information about HI(E(p, q)) using the Hirzebruch-Riemann-Roch The­

orem [Ha, A.4.1]:

i. e. the number of points in the intersection of the characteristic classes given (on

twoc-dimensional manifolds) by

- 1
ch(F) = rankF[TIFI] +cI(F) + 2(cl . CI - 2C2)[pt]

- 1 1
td(F) =[TIFI]+ 2cI + 12(cî +C2)[pt]
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in particulaI.'
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•

But, according ta [Ha, V.2.4] if D . PAo 2:: 0,

In particular, Hi(Ow') ~ Hi (Oll'l ) = te if i = °and °otherwise. Sa X(Ow 1 ) = 1,

and

Since O(p, q) is a line bundle C2 = 0, sa

-, 1 2
ch(O(p,q)) = [Til' 1+(pCu +qPAo) + '2(2p +2pq).

Hence

x(O(p, q)) = deg(([TIl"] +pCo +qPAo+ (p +pq)[pt]). ([Tr'J +Cu + [pt])h

= 1 +2p +q +pq +p2,

and

X(E(p,q)) = deg(ch(E) ch(O(p,q)) td(TTr')h

= deg(N[TIl"] - k[pt])· ([TIl"] + (p+ l)Co +qPAo +X(O(p,q))[ptlh

= -k +N(p2 +pq +2p+q +1).

Sa, in particulaI.'

•

h'(E(O, -1)) = hO(E(O, -1)) +h2(E(0, -1)) - X(E(O, -1))

=O+O-(-k)

=k

h'(E(O, -2)) = k +N

h'(E( -1, -2)) = k

h'(E( -1, -1)) = k.

(0.3)



COROLLARY 0.4. If E -> TrI is trivial on generic fibres and sections, then

c2(E) :::: O.•
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•

PROO!'. This is clearly implied by our calculation of c2(E) = hl(E( -1, -2))

which as the dimension of a module must be nonnegative. The only facts about E we

used to do this computation were the triviality over generic fibres and sections. 0

1. Beilinson's Theorem

The basic idea behind Beilinson's theorem is to construct a Koszulresolution,

that is, an exact sequence of coherent sheaves

0-> C_j -> C-HI -> '" -> Co = OXxx -> OA -> 0

over the product of a space with itself, where .6. is the corresponding diagonal.

Given a bundle E on X, pull it back by one of the projections to X x X, and tensor

it by this sequ:~nce. Then, the direct image (under either projection) of the last

tenu is the original bundle, while the direct and higher direct images of the other

terms are constant under the projection under which we pulled back E, but under

the other projection we get sheaves with values in twisted cohomology groups of E.

The idea is to apply the standard resolution of the diagonal in rN X r N to both

the fibre and base of the bundle

11"1 •

The resulting Koszul resolution is

0-> 0(-1,-1)(-1,-1) ~
"

0(0, -1)(0, -1)
EEi

O( -1,0)(-1,0)

',(Ell)
---> 0 -> OA- -> 0,

80 TIP1
(1.1)

•
where

So = ..\ -..\' (=..\ 1811 - 1181..\') and

SI = "1 - 7/' (= 7/ 1811-1 181 "l'),



can be thought of as sections of prO(O, 1) <Si p~O(O, 1) and pjO(l,O) <Si p~O(l, 0)

respectively. One must check that it is exact. (See also [GriHa, p688].) Truncating,

and tensoring with prE, we get a complex•
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•

C-2 = prE@prO(-l,-l)<Sip;O(-l,-l),

C- I = prE <Si (prO(O,-l) <Si p;O(O, -1) EIl prO(-1,0) <Si p;O( -1,0)),

CO =prE .

Ta get a monad, we use the spectnù sequences in hypercohomology of this com­

plex associated ta the projectionp2' as in [EGA III,0.12.4]. Namely, let '}-{.1'(p2,C·)

be the complex of sheaves associated ta the presheaves

where Rf".(F) can be defined as the sheaf associated ta the presheaf U C Tri H

fI\p2" 1(U), F)j
ker(CI' -+ CP+I)

Hl'(C*) = ,
im(CI,-I -+ CI')

z.e. the plh cohomology of the complex Co. The hypercohomology of P2 and C* is

then the limit of two spectral sequences with the fol1owing E2 tenliS

E~q = Hq('}-l1J(P2,C'*)),

'E~q = W(P2,H"(C'*))(= R::,(H(of lhe complex)(C*))),

It is easy ta compute 'E, since the complex C* is a truncated exact sequence.

We get
q=O

otherwise.

•

Using the fact 011- 181 p*IE = 011-, 181 P2E, we can conc1ude
TIPI "IF'

p=O
otherwise.

We know from [EGA III] that E2 also converges ta the bundle E, since 'E does.
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Using Rj".(pjL <:9 piM) = H'l(L) <:9 M we compute

(

0-> HP(E( -1, -1» <:9 O(-1, -1) )
'Er' = H'l ..!:, HT'(E(O, -1» <:9 0(0, -1) EI1 HP(E( -1, 0» <:9 O(-1, 0) ,

~ H!'(E) <:9 0 -> a
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z.e.

•

ker "2 ker v, coim V2
,. im 11-2

'E
2
!''l = ker "1 ker V, calm v

r im ILl 1

ker 1"0 ker VQ COlm vo.
1ffilto

Using this machinery, then, one can show that classes of bundles have monad

descriptions by showing that enough cohomology groups appearing in the spectral

sequence vanish to reduce it to a short complex. See [OSS, p246] for examples of

this over IP'n.

In our case, HO(E(p, q» = a when p < a or 2p + q < 0, and H 2 (E(p, q» = a
when p + 2 > a or 2p +q +4 > O. And after some experimentation, we discover

that putting E(O, -1) in place of E, the complexes with q = 0,2 vanish, and the

spectral sequence reduces ta

E(O, -1) = H(O -> 0(-1, _l)k -> O( -1, O)k EI1 0(0, _l)k+N -> Ok -> 0).

We have completed the first step in proving the

TilEOREM 1.2. Any N -b'undle E -> TiPI, tri'vial on nonpolar fibres, real sections

and the section at infinity has a monrul representation

O( -1, l)k
O->O(-l,O)k~ EI1 ~O(O,l)k->O,

'" Ok+N {J,

(1.3)

•

where 0:\ E gl(k),o:~ E Mt+N,f3i E gl(k),f3~ E M:+N, a is injective, 13 is surjective

and a= 13 a 0: = 131 0 al +13200:2, A homomorphism of such bundles is represented

by a monad homomorphism:

0-->1 0(-1,O)k -->. 0(-1,1)k El1 0k+N
---JI O(O,l)k ---->10

Al B1C,,"LD El
a -->. 0(-1, o)k • 0(-1, l)k EI1 Ok+N 1 O(O,l)k ---->1 0;

(1.4)
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in the case of an isomorphism,
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Monad isomorphisms are a gTO'ltp with m'ltltipliClLtion gi-veTI. by

(A,B,C,D,E) 0 (A',B',C',D',E') = (A.A',BE',CB' +DC',DD',EE'),

whose action on the monad (1.3) is given by

•

Ba~A-I

Ba]A-1
DagA-I

Da~A-I+Coa~A-1

Da~.4.-1 +Coa]A-1+Clü~A-l
Da~A-I +C1a]A-1

/3~ E/3~B-I

/31 E/31 B-1
- E/3~CoB-1

/3i E/3iB-I - E/3~CIB-l - E/3iCoB- 1

/3: ...... E/3:B-1 - E/3iC1B- 1

/3~ E/3gD-I
/3i E/3iD-1

•

(1.5)

•

PROOF. First we show that a and /3 have the specified form. Think of the maps

ai, /3i as matrices of sections of line bundles O(p, q).

Using the coordinates À, ,/, etc., as above, O(p, q) has transition functions

CO( {,\ # 00,11 # O}, O(p, q)) 1

l}-Il

CO({,\ # 00,11 # oo} ,O(p,q))

À' -,l l>.-2p-'1

C°({..\ # 0, '1 # O}, O(p, q)) 1 CO({,\ # 0,'1 # oo} ,O(p,q))
il- P

sending

I; a/m ..\' /'I/ p- m l/- J'

I; a/m,\l'I m

À'-'l 1À-2p-q

L: alm.À.'2p-I-2ml]'1,-m t I; alm),2p+q-I-2T1li7'''
,;-1'

from which we derive bounds on 1and m. In fact,

hO(O(p,q)) = # ((l,m) : 0:::; m,O:::; 1:::; 2(p- m),l- q:::; 2(p-m)}.



To sec the second part consider two bundles over TrI. If the bundles F, F' are

represcnted by mOllads, }.JI, M', then a homomorphism of monads•
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M:O ]( " L b
N1 1 1

l lf l, ,
M' :0 ](' " L' b N'

induccs a well-defined map
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--->1 0

--->10,

F = ker b/ im a --> ker b' / im a' = F'

of bundlcs. Every map cornes from a monad map in this way if

vanish, sec [088, Lemma II.4.1.3], which may be verified by applying the vanishing

lemma and the cxplicit calculation of x(O(p, q)).

The formula for au isomorphism is argued as were the forms of 0 and (3. 0

As we are interested in bundles up to isomorphism, we will use the group of

monad isomorphisms to put a general monad }.JI into normal form, thus choosing

a special representative of each isomorphism dass of monads. From this normal

form wc can hope to read off information about the bundle just as putting a linear

transformation into Jordan normal form allows one to read off the eigenvalues and

identify the irreducible invariant spaces.

Finally, we are interested in bundles with additional si:rueture: fixed bundle

isomorphisms lifting the real structure a, a framing above sorne fixed point and

time translation 6,. A monad (0,/3) is pulled-back by lit: (>',1]) H (>',1] - t>.) to a

monad

•

•

HO(L* ® ]('), HO(N* ® L'), HI(N* ® ]('),

HI(L* ® ]('), HI(N* ® L'), H 2(N* ® ](') (1.6)

(1.7)



And the pull-back by (7 : (À, 11) >-> (1/>', ->'21ï) is (7* MOP =

•
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((a; + a~À, -ag17 + a~ +a~À + a~À2)t,

(-i3rl1 + i3r + i3f À + i3! À2,i3~ + i3gÀ)) . (1.8)

We can represent the additional structure of the bundle as a fixed monad iso­

morphism (.J..,Ë,ë,iJ,È) sending (7*Mop to (0:",(3"); (At,Bt,C"Dt,E,) sending

(0:, (3) 1.0 8;(0:, (3); and a choice of frame over some point. Remark that 8/ and (7

send fibres te.- fibres, sections 1.0 sections, and hence preserve O(i,j). As 1.0 the

frame, we know from the many triviality properties of the bunclle that picking any

two points we can specify a 'path' along curves above which the bunclle is trivial

and get an equivalence of the two fnunes, so we might as weil choose a point which

simplifies the process of normalising the bunclle. Again, since the bundle is trivial

on nonpolar fibres, we can also choose a frame of EI?,o' The monad restriet,ecl 1.0

•
this fibre is

O( _1)"
o--> 0 (-Il --=O~l--->1 EB

o,(Ao) Ok+N
13."," 0
~\..I~,

13,

1.0 which is associated the sequence

Il
o

01

•

Il
o

50 a framing is given by an injection

(1.9 )

•

i. c. if> E Mf:+N such that ((3g + (3~ Ào) . if> = O. For notational simplicity, wc choosc

Ào = -1. Finally, we note that the group of monad isomorphisms acts on the

representation of the framing by
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2. Normalisation
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•

Normalising such a monad is best clone in a sugar shack, where it can be boiled

down until it gets sticky. This is carriecl out incrementally, using the special struc­

ture we know E has. Although the computations are tedious, the idea is very

simple. If a group acts on a space, the quotient by the action is the space of orbits.

The action is free if! ail orbits are isomorphic to the group. If a special represen­

tative can be chosen from each orbit uniquely in sorne smooth fashion (i. e. so that

the representatives are a continuous section of the projection of the total space

onto the quotient), then the quotient is isomorphic to the space of special forms.

In our case the action is only free if we inclucle the framing. The action of GL(N)

via conjugation on gl(N) is a simple example of an action, where the quotient is

isomorphic to the set of matrices in Jordan normal form, but in this case the action

is not free. The complication fol' us is that we need to work by stages, reducing at

each stage to a proper set of 'special' 1110nads acted on by a proper subgroup (the

stabiliser) of the original group, and it is easy to lose sight of the purpose of the

reductions.

2.1 Triviality above the Infinity section. Let E' = E(O, -1)lcoo ' Since

Elcoo is trivial, E' ~ O(_I)N has no sections. We use this to get information about

ag and f3r. Restricting the monad to Coo and twisting by 0(-1) (equivalently,

twisting by 0(0, -1) first) we get

(Note: twisting cloesn't effect a, /3, so we won't rename them.) To any monad is•
0 ..... O(_I)k (2.2) •.



o ----->
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associated a display,•
o

O(-l)k

Il
-----> O( _l)k
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0 0

l l
ker fi E'

l l
Ok El1 O( _l)k+N 1 coker 0'

If3 If3

Ok ok

l l
0 0

----->1 0

--->1 0 (2.3)

•

which has exact rows and columns.

Since E' ~ O(-l)N, HO(E' ) = 0 = HI(E' ). From the long exact sequences

associated to the first row and last column, then, we see that HO (ker fi) = 0 =
f3

HI(kerfi) and HO (coker0') ~ HO(Ok). Looking at the last column: since nonzero

sections of Ok have no zeros, neither CalI sections of coker 0'. From the second row,

we see that sections of coker 0' come from sections of Ok El1 O( -1 )k+N, which are

parallletrised by (u, 0), u E rck • If (u, 0) represents a section of coker 0', then it luc~

a zero as a section of coker 0' iff it is in the image of 0'. If this never happens, and

given that 0' is injective, 0'2 must be injective (iff O'~ has rank k). Meanwhile, the
f3

second column tells us that HO(Ok El1 O(_l)k+N) ~ HO(Ok), i.e. fi? is invertible.

We can use the action of the group to put the monad in the form

2.5 f3 0 cr = O. We can break down the condition f3 0 Cl< = 0 by considedng

where Dl E Mf;' and D2 E GL(N), and A, 13 and C are unrestrieted as before.

•

°_ ( [. kxk )0'2 -
ONxk

which has as stabiliser, the subgroup with

E=B, (2.4)
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coefficients of >. i'li separately; we obtain

o= fi~aJ +l1ia~

o= fiia~ + l1~a~

0= fiiai + I1ra~ + I1ga~ + l1ia~

0= firai + I1M + figa~ + fiia~

o= fi~ai +l1ia~.

With the normalisations we have already made we see that
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_ n.O
- ~I

•
We have

PROPOSITION 2.6. The bundle E -> TrI is trivial over Coo if! it has a monad

representlLtion of the form

It is unique ILp to an isomorphism of the form (1.4) restrieted to the subgroup (2.4).

2.7 Nonpolar fibres. The restriction of E to a fibre PÀo, for some >'0 E C', is

given by a monad over PÀo ~ rI:

O( _l)k
o-> 0 (-1)k _"....:1_+_"..:.:_Ào4, E9

",(À,) Ok+N

_ _f31:...:(_ÀO..:.)--+ ",k 0
1 V -Jo •

f3hf3i À o

•
Since E is trivial over nonpolar fibres, this monad has N nonvanishing sections.

Using the same long exact S"lquenees as in the last section, sinee HI(O( -1)) = 0,

we see that these sections are isomorphic to sections of ker fi, which are naturally

contained in the sections of O( _l)k E9 Ok+N. Since the first summand has no

sections, we see that HO(ker fi) ~ ker(,8g+fii >'0)' In particular, we see that fig+fii >'0



is surjective for Ào E iC*, otherwise ker (3 would have more than N sections. And

a~ + aJ.xo must also be surjective, otherwise (a) the injectivity of 0, (b) (300 = 0

and (c) dim ker (32 (Ào) = N would force some section of ker (3/ im a to have a zero,

but sections of trivial bundles have no zeros. Binee al (Ào) is invertibIc and B acloS

on it by multiplication, we can use the action of B to set it equal to any invertibic

matrix. We take Ào = -1 and set

•
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•

•

a~ - 01 = n => (3g - .aJ = (n, X),

where X E Mt, resulting in a restriction to the subgroup with

B=A.

Bince the remaining gr0up acts on (32 (Ào) by

we can make the norm~JisationX = 0, again fol' Ào = -1, resulting in the reduction

to

From the condition ((3g - (3Ü</J = 0 on </J, the representation of t.he framing (1.9),

we see that

</J = (~ ), y E GL(N).

We can use the action of D 2 to set Y = l This corresponds to the reduction from

the group of bundle isomorphisms to the subgl'Oup of isomorphisms preserving a

fixed framing.

We could use the action of A to put a~ into .Jordan normal form, then 0,1 = ay - n
would be as weIl. Binee a~ +ai À is invertible for À E Co, wc see their only possible

eigenvalues are 0 and 1. Assume without loss of generality that
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where '(i is nilpotent and therefore li + li is invertible. Let

ko = rank(li + 10),

k l = rank(li + Il).
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•

The stabiliser of this block form is GL(kJl EEi GL(k2 ). We cau now use GL(k2 ) to

put li+ 11 into Jordan normal form and GL(kl ) to put li +10 into transpose Jordan

normal form, i.e. '(0 Ctl) is zero except for possible l's on the sub(super)diagonal.

The reason for this choice will be apparent when we consider reality of the monad.

Since the stabiliser-of a matrix in Jordan normal form is not trivial, this does

not reduce the action of A completely, but to sorne subgroup

In this thesis we will give special attention to the case when li = 0, in which case

the stabiliser is GL(kl ) EEi GL(k2 ). We will cali these monads of 'simplest type'.

We are left with the unrestricted action of the subgroup corresponding to C,

which acts on a~ by

(
F ) (F-1

a~ 1-> G li a~ G- I ) +Co (li +10 Il) (F-
I

G- I )'

Since 10 is invertible, we can use this action to put

H H

a~ into the form (0 ~:)

•
which is fixed by the action of Co = (0 Cb), q E M;:N. Sirnilarly, C acts on a~

and we can use CI to put

(

PI
a~ into the form P2

(JI



which is stabilised by CI =(Cl, 0), c; E Mt~N. The subgroup \Vith C =(Cl, ),q)

continues to act on o:~ via

o:~ 1-> (F G Jo:~ (F- I

G- 1 ) + (C:([+')'o)rl, C~([+')'I)G-l)

which can be used to set

•
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o:~ to zero,

(2.8)
132=(0:1 ((1+),))

which fixes the remaining action of Co and CI' As the stabiliser of the normal form

(
[+(l+),ho 0 )

0:1 = 0 ),[ + ([ + ),hl

(

[17+ PI ),2 WI)
0:2 = P2),2 [17 + W2

/11 ),2 /12

we are left with (A,B,C,D,E) =

• Fin some subgroup of GL(kl ), G in sorne subgroup of GL(k2 ).

PROPOSITION 2.10. A b'undle E gi'Ven by the monad (1.3) CIL7/, be put into the

form (2.8) iff it is tri'vial on the section at infinity and the nonpolar fib1'es. Thi"

form is stabilised by the subgroup of monad isomorpitisms given by (2.9).

2.11 Monad Condition. Consicler the restriction of E to the section Co:

•
From the fact (3 0 0: = 0, we extract:

((31 + (32), + (33),2) ((J[ + ')'0) + ')'0), )
1 1 l ')'1+([+')'1),

+ ((Pl +1'OP1 -(1 0,),\'+(-(01)1-(1 0,),\: ("'1 +1'0"'1-(1 0')+(-(0"'1 -(1 0,),\) = o.
(1'1 P' -(, 0,),\'+(p'+1'l p, -(, 01)'\ (1'1",,-(, 0,)+(",,+1'1 "" -(,0,)'\
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Comparing coefficients of À, we derive the following forms for
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(2.12)f3î = 0,1 (0(:JI = 0•
and the relations

(1 01=bo,pd

(2 01 = P2 +P2io + ,IP2
(2.13)

(2 02 = bl,W2]'
'1'0 a bundle E, then, we have associated a monad

where ,i E gl(ki) are nilpotent and in (transpose) Jordan normal form, PI,W2 E

gl(ki), (2,(1 E Ml.! and 01,02 E Mf:., and P2,WI are determined by" (, O. This

representation is unique up 1,0 the action of FE Stab" GL(kl ), G E Stab'l GL(k2 )

whose action on (2.14) is given by

•
(

H7J +PIA2 -WI)
_____...2...._-...:p..:2_A_

2
__H...:l/_+_W_2:..:....__•__--+1 0(0, 1)k --+ 0

(
-(H + '0) -,DA (1 +A)(I)-,1 -(H ,dA (1+ A)(2

(2.14)

•
2.15 Jordan Normal Form. We now turn our attention 1,0 W2, O2, and (2,

which describe the bundle behaviour al, the north pole (A = 0). The behaviour

near the south pole will similarly depend on PI, 01, (l, and in the real case il, will

mirror the behaviour al, the other pole.

We will need the following



•
74

LEMMA. Ld

then
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1

a +"1
E glU), (2.16)

{

i-
l

}
8tab Jj (a) = L b;Ni E GLU) : bi E iC =

1=0

bo

where

PROOF.

N=

o 1

o
1
o

•
Ji(a)=aR+N,

and aR is in the centre of GLU), so

8tabJj (al = 8tabN .

Let X E 8tabN, then XN (NX) is just X shifted to the right (up) with the first

column (Jast row) replaced with zeros.

(XN - NX)lrn = XI-l,rn - XI,rn-l,

so X is Toeplitz (has single valued (sub/super) diagonals).

for m > O. 80 X is upper diagonal. If bi is the value of the i 1h super diagonal,

X =L. b;Ni
, as required. 0

If Y is made up of 1similar Jordan blocks, then elements of the stabiliser will he

blocks of the form

•
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LEMMA. Binee

detX = (detX)i,

where X/Ill = b~/m), X is in'vertible iff X is.

PROOF. Examining the formula

k,

detX = L IIXV(i),i
VESk2 i=l

we see that the Il tenll vanishes unless

v(l), vU +1), ... , v((l-l)j +1) E {l,j + 1, ... , (l-l)j +1}
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•

because X has block upper-triangular form. A v of this form corresponds to a

vanishing tenn iff v(i), vU + i), ... , I/((A - l)j + i) E {i,j + i, ... , (A - l)j + i},

for i = 1, ... , j. We see that v corresponds to a vanishing term unless v E (SA)i.

Omitting the vanishing terms, we are left with

A i
detX = L II II b~,(m)m = (det b~m/. 0

V=(Vl,. .. ,Vj )E(S,d j m=! i=l

The stabiliser of a matrix in block Jordan normal form splits into X E GL(1) and

the remaining nilpotent part. After a possible reordering of blocks the stabiliser of

a generalmatrix in Jordan normal form can be put iuto block diagonal form with

blocks of the fonn X corresponding to the set of Jordan blocks with the same size

and eigenvalue.

Applying this to Stab"" we can use the GL(1) part of each block of Stab", to

put the corresponding submatrix of W2 into Jordan normal form. If 1'1 = 0, we can

of comse put all of W2 into Jordan normal form. As the stabiliser of this normal

form, we are left with the subgroup of Stab", given by restricting the GL(/) parts

to be block Jordan stabilisers. The injectivity of al>.=o, q=a now implies that for

each set of similar Jordan blocks with eigenvalue a of the submatrix of W2 the first

columns of



of each Jordan block must be linearly indepene!ent, and therefore represent, a point

of a Grassmannian. Choosing an appropriate representative, say the stuudnrd "ep­

resentatives of the Schubert cycles, we can use the GL(l) action of the st,abiliser to

put those columns in that form, further reducing the stabiliser. Then we Cl\U use

the nilpotent part of the embedded stabiliser to make the other columns under the

Jordan blocks of Il orthogonal to the first columns, using either the hermitian or

Euclidean metric on Ck+N.

Repeating this process, we are left with the columns of

•
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•

•

which start Jordan blocks of Il in normal form, with stabiliser the nilpotent part.

of the stabiliser of Il. Since the resulting columns of

which start Jordan blocks of Il are linearly independent, we can use the action of

this nilpotent part to make the remaining columns orthogonal to the first. columns,

resulting in a normal form stabilisee! by {li}.

The same procedure can be appliee! to Pl, and 81, but with transpose .Jordan

normal forms for reasons which will be apparent.

Special Case hi = 0J. We will now give more explicit details of the above nor­

malisation in the case when li = 0, bath to make the above clearer and ta proviele

the coordinate elescriptions which we will need in the next two chapters.

Since G aets on W2 by conjugation, we can put W2 into Jordan normal fornl.

If we agree to a lexicographical ordering of C, we can fix the oreler of the .Jordan

blocks up to a permutation of blocks with the same rank and eigenvalue. Unless W2

is diagonalisable with distinct eigenvalues, its .Jordan form has a nonzero stabiliser,

which continues to act on 82 and (2. Once we divide W2 into groups of .Jordan

blocks, each group with a distinct eigenvalue and rank, we get a corresponeling

elecomposition of Ck, into subspaces. They are the invariant subspaces of the



stabiliser (under the standard action of GL(k2 ) on Ck2 ), sa we may consider them

one at a time.

Assume for the moment that W2 has A Jordan blacks of one type, i. e.•
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The injectivity of 0' imposes an independence condition on O. At À = 0, TI = -a,

n'li +W2 is singular, in particular the first, j + Ist, 2j + Ist ... columns are zero, so

O(-l,l)k
EB

Ok+N À=O
TI =-a

•

•

Since 0' is injective, we see that (02li 1\ (02)i+l 1\ ... 1\ (02)(A-lli+l #- O. Similarly, the

surjectivity of f3 at the same point implies that ((1)11\( (1 )i+11\• . .1\((1 )(A-l Ji+l #- 0,

where(=((l, (2)/'

An clement X E Stabw2 (as computed in the Lemma) acts on

((02)1,(02)i+1, .. ' ,(02)j(l-ll+1) E Mf, and

(((~)j-l,((~hj-l,... ,((~)jl-1)/ E M~

via the standard action of b&'" E GL(A), i.e. by taking linear recombinations. Sa

we should think of O2 and (2 as defining points on a Grassmannian:

Mf /GL(A) ~ GrA,N.

If W2 ha>; Jorclan blocks of different rank but the same eigenvalue, then we get an

element of an enlarged flag manifold (actual1y the space of linearly independent

subspaces with prescribed ranks).

In allY case, within each invariant block, we can use the action of b&m to put



into some normal form, say the one which gives coorc!inates on the Schubert cycles

[GriHa,1.5]. This recluces the stabiliser to the subgroup wit.h b~'" = l

There are two 'standard' metrics on eV each of which can be usecl to put (2 into

a normal form. If we put the henuiti!Ul metric on eN, we can use the remaining

action of the stabiliser to put

•
78 V. MONADS

{((I) (çol) ((') ((1) } C {( 0') (") (0') \.1h.,mlli'"2 2, 2 3,···, 2 il 2)+2,·" Ç2 l, Ç2 j+1, •.. , Ç2 j(A-I)+ 1 J •

This shows that the data (2 describe a point in the orthogonal bunclle to the uni­

versai bundle contained in e~,.,\,N'

Alternatively, we can put the holomorphie or Euclidean metric on eV. In this

case we have to wony about null vectors, so the same procedure doesn't. worle In­

stead we have to consider the usual coordinate patches of Gr.A,N. If (((1), ((1), ... )'

is in Schubert cycle form, i. e.

i, i, i 3

l l l

(! 0 1 '" * 0 * * 0 *

)0 0 0 0 1 * * 0 * ...• 0 0 () 0 0 0 () 1 *

Then we can put

{( l'I) (1'1) (li) (l") } C { }.1ho'omo,p'd.":.2 2, '::.2 3,···, ')2 j, ":,2 i+2,... e'it , ei2' ... , eio • (2.17)

•

Apply this procedure to each invariant subspace of Stabw" and we are left with

a normalisec! monad which uniquely represents the bundle E, i.e. its stabiliser in

the group of monad isomorphisms is the trivial subgroup. We can apply t.he saUle

procedure to Pl using the action of F, but for real reasons, it will be better to Jlut.

it into an equivalent normalisation whose form will be dictated in the next section.

PROPOSITION 2.18. Bundles E -+ TiFI t1'i'uial on real sections, the sedion lLi

infinity and nonpolar fibres, with a fixed frtL""ing and a lift, 6" of time translation

are uniquely represented by monads (2.14) in Jordan normal form tL.~ deuri/wd

ab'lve.

PROOF. We have shown that these bundle properties determine the monac!nor­

mal form, it remains 1.0 show that the monad form completeJy c!etermines the lift



of time translation: Time translation is a. one parameter group of monad isomor­

phisms mapping the pulled-back monad into this normal form. Since ct 1, fJr, fJ2, ct3
are pulled back 1.0 themselves, wc sec the group is restricted 1.0•
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•

And since cti and a~ are pulled back 1.0 themselves,

Finally, (8;a)~ = a~ + tag implies (Cl,ta~ +Co,taJ)A;-1 = tag implies

So, in this normal form, time translation is completely determined, as we would

expect since there is only one isomorphism of E preserving the framing.

2.19 Triviality over the real sections (part 1). While we encoded triviality

on generic sections into the monad, we did not explicitly encode triviality above

real sections. In this section we will uncover the condition for a monad 1.0 represent,

a bundle trivial over the real sections, and in section (2.28) we will show that when

,i = Othis condition is implied by the other monad conditions,

The basic idea is that a bundle over rI with Cl = 0 is trivial ifJ il. has no sections

after twisting with O(-1) . Time invariance of the bundle means we only need 1.0

consider real sections with t = O. Restricting the monad 1.0 such a real section, and

twisting by O(-1) gives

We can derive the long exact sequences

•

O( _2)k
Ef)

O( _1)k+N



•
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which implics HO(kcr (3) = 0, and
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which implics HO(E(-l» = 0 iff lX: HI(O(-3)k) -+ HI (ker (3) is injective.

For the space Hl (O( _3)k) we will take

as representative cocycles. In tenus of power series, Cl (ker (3) is the set of Laurent

power series of (k+k+N) vectors which converge 011 À E C', lying pointwise in the

kernel of f3. To get Hl we have to factor out by series convergent on À E C (positive

power series) and À E C* U 00 (negative power series), i. e. taking into account the

twisting of the vector bundles, by the sets

• E ker f3 , and

E ker f3 (2.20)

•

We see i111111ediatcly that any coefficients of À-1 in the first (c, d) cOlllponent

persist under this quotienting, but the other coefficients may or lllay not, their

fate being tangled in the structure of ker f3, i. e. after composing with ker (3 '->

O( _2)k EB O( _l)k+N, the images (3(CI À-1, dl '\ -2) E HI(O(_2)k EB O(_l)k+N) are

nonzero, while the other images are zero meaning that their images in CI(O(_2)k EB

O(_l)k+N) split, 50 we still have to determine whether they split in ker (3. Since

their images in Cl (ker (3) are linearly independent of the images of cocycles of

(-en +,o)-l,oap-1 + a~..\-2) . -1-2
the forlll "\-1 (n )-1 ,,\ -2 (whose c and d coefficlents of..\ ,..\

al" - + Il lIaI"
respectively are zero) the kernel of lX is contained in the span of these second



•
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cocycles. The image of these cocycles under 0' is

where

81

(2.21)

The kernel of this map on HI is the inverse image of the coboundaries d( Co (ker (3».

Sa our cocycle is mapped ta zero ifJ its O'-image is of the form X +X, where X

and X are in the sets (2.20) respectively. As a result of twisting by O( -1), these

two sets are independent sa there is no ambiguity as ta the splitting:•
X=

•

where xo =][- '\(][+'i'0)-1'i'0 and XI =][- ,\-I(][+'i'I)-I'i'I.

The existence of this splitting tells us that (2.21) represents the zero class in

HI(O( _2)k EB O( _l)k+N). It is zero in HI (ker (3) ifJ 0 = (3(X) = -(3(X). WC find

that 0' will be injective ifJ

for all z, E C, equivalently, ifJ

det ((W2 + zj2) - H(H 'i'1)-I'i'I?
P2

for all z E C. Sinee wc haven't used the specifie form of the .Jordan normalisation,

we have



PROPOSITION 2.23. A monad in the form (2.14) represents a bundle which is

trivial o'oer real sections if! the real determinant (2.22) is nonvanishing as a function•
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•

•

of z E C.

REMARK. If 'Yi = 0, the condition (2.22) is equivalent to the condition

,81>.,~=Z/2 0 al>.=00,;'=-./2 =f 0 for aIl z E C,

which is certainly necessary for EIc(,.z.o) to be trivial. The analogous condition for

monads describing bundles on r N is easily seen to be sufficient as weIl. This is not

as easy in our case because of the extra twist in the monad.

2.24 Reality. We will work with the real structure given as a map

17* EOP -> E*,

where op indicates the opposite (conjugate) complex structure. Since E* satisfies

the same triviality and additional properties as E, we can represent E* as a monad

M with all the normalisations we made on E. We can also dualise the monad

for E by taking the dual of the exact sequences in the display which reverses the

direction of the maps and transforms O(p,q) into O(-p, -q), its dual. This results

in a monad for E* which is unfortunately not easy to work with. For example, one

may check that it doesn't satisfy the conditions required for monad isomorphisms

to be in bijection with bundle isomorphisms.

We would prefer to work with a monad Mof the sanle form as M because then

finding a bundle map is equivalent to finding a monad map, but we will need to use

the dual monad M* to determine M:

PROPOSITION 2.25. IfE is gi'oen by a monad Min the/oTm (2.14) then its dual



•
E* is gi-ven by a rnonad û:
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•
PROOF. The bundle E is given by a monad M to which is associated '" display.

By dualising the display (taking the duals of spaces and the transpose of maps)

we see that E* is given by a dual mOllad, M*. We will construct a sillgular map

of monads NI -+ M* which induces a sillgular map of bundles. One may check

that monads of the form M* don't have the nice properties with respect to maps

that our usual monads have, i. e. the obstruction groups to the existence of monad

representatives for bundle maps, etc. (1.6) fail to vanish. As a result, we must guess

bundle maps and prove that they have the desired properties clirectly.

Consider the map of monads f = (h, h, h) : Û -+ M*:

O(-1, 1l CI) + p1-\2 pt )
W wt ,X2 [1) -:w~

0(-1,0)k 1 0(0,1)kœ 1

(rr~+pp" -pl ) Ok+N ( _ W (1+.\)0\)
-wt ),2 '1n+w; (1+.\)0\

-çt ..\2 -çi

,,1 112 Ifa

C,,+pi.\' -pl ) 0(1, _1)k-t<Jt À2 n71+W~ W
0(0, _1)k œ 1 0(1,Ol• (I+.\)Ç~~I+À)Çi)

Ok+N C~+piÀ' p\ 0: À')
wi..\2 7Jn+w~ 0',



•
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where

12=

(0)
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0(1, _1)'(:
....; EB

Ok+N

•

This is a map of monads with singularities, but away from the bad points,

{À E {O, -1,00n, it is a valid monad map and gives an isomorphism

_ f

EITii>1\PE{O,-I,oo}} ~ E*ITii>1\PE{o,_I,oo}}'

We will show that it has a pole and zero along Fc,., and P-1 respectively, and hence

represents a bundle map which is (1 +À) times a bundle isomorphism, which implies

our proposition,

Over nonpolar fibres, the first monad has natural representatives fol' a triviali­

sation, namely

These sections are mapped to sections of the second monad which give equally

natural trivialisations away from P-1 where they have a zero.

Over sections C~=: \ Poo, where -z/2 is not an eigenvalue of W2, we can find

equally good sections trivialising Et:

•



•
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These sections are mapped by f to sections

(

(..\2(1 +..\)([ +(1 +..\hD~I«(lI- pHw~ + Z)-I(I~)a)) aE eN

( -(1 + ..\)(w~ + z)-I(I~aa)

85

•

whie.h have no poles on ..\ E e but have a zero at ..\ = -1. Sinc.e the sct of

eigenvalues of W2 is dosed in e, we Œn put these two results togethcr and see t1mt,

f is holomorphie. on a neighbourhood of Po miuu,s a set of codimcnsion two. In this

way, Hartog's Theorem then impiies that f is holomorphie. on TIP'I \ Poo, with a

simple pole at P-1,

Similarly, we can find sections on a dense set of sections C,,=,>., which have no

zeros or poles on ~ E e but whose images under f have a zero at ~ = -1 and a

pole at ~ = O. It follows that f has a pole and zero at Poo and P_ I respective1y, so

f /(1 +..\) is the required bundle isomorphism. D

By the correspondenc.e them'em for monads and bundles, the real structure is

then given by a monad map of 0'* MOP to M*. (We use op to inc1icate the oppo­

site, i. e. c.onjugate, complex structure.) Sinc.e the opposite c.Dmplex structure is

given by taking the conjugates offrames and of transition matrices (i. e. the monad

construction is natural with respect to conjugation) it is given by the conjugate

monad.

To determine the normaIisedmonad for 0'* EOP (i.e. with the opposite complex

structure), we pullback by 0' the normalised monad M and conjugate everything,

as computed in (1.8):

0--> 0(-1, O)k

• (2.26)



which one secs disturbs the normal form (2.14). For a* lv/oP to be isomorphic to

IV! we must be able to put a* MOP into the normal form (2.14) at which point if

PI, W2, 81 and 82 are ail in '.Jordan normal form', they must be equal as a result

of the uniqueness of the monad representative, i.e. Proposition 2.18. In particular,

this is only possible if

•
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Given this, the group clement

puts (2.26) into normal form. The result is that

(2.27)

•
(Use the reality of 8 and ( and the reality of (2.13) to see the second and third

condit,ions.) As a result, if 'YI, 82, (2, W2 are in 'Jordan normal form' 'Yo, lil , (1, Pl

must be in a conjugate normal fonll.

2.28 Triviality over the real sections (part II). As promised, we will now

l'l'ove

LEMMA 2.29. The determinant condition (2.22) is implied by the other monad

conditions when 'YI = O.

PRaO!'. Imposing reality (i.e. (2.27)) and 'YI = 0, condition (2.22) becomes

(2.30)

•

We proceed in two steps. First we show that the determinant can be decomposed

into a sum of subdeterminants each of which is real and nonnegative. When -2z

is not an eigenvalue of W2, the SU111 has an obvious nonzero term. In the second

step, we find a nonnegative tenu in the expression for the determinant in the case

that -2z is an eigenvalue. In this step we will need to use the injectivity of Cl< and

surjectivity of {3.



To ealculate the determinant we will use the faet that the determinllnt. of a

produet is the pl'Oduel. of the determinants. Speeifieal1y, we will lllu\t.iply t.he lllatrix•
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04

(2.30) by

(
p*(WZ+Z/2)-1 )

P* on the left,

and by

(P -(wz +Z/2)*-1 p) on the right,

where P E GL(k/2) is sueh that ()zP has orthogonal eolulllns, equiv,ùent.ly, sneh

that P*(}2(}ZP is diagonal with nonnegat.ive eigenvalues. Let the diagonal clement.s

be YI, Yz,·.·, Yk/Z'

The determinant of the resulting lllatrix,

( diag(YI ~Yz, ... )
-XX*)

li '
(2.31 )

•

•

will be

(2.32)

times the original, (2.30).

Now we ealeulate the determinant by expanding by minors. The first. k/2

eolumns have al. most two nonzero elements, and it's not hard 1.0 sec that the

determinant deeomposes into a sum of 2k / 2 subdeterminants:

L (II Yrt) detXXÂA
AC{I,2, ... ,k/Z} rtEA

where Y,4A indieates the submatrix (Xij : (i,j) E A x A.

To see that det(XX*)AA is real and nonnegative, let QA be a nonsingular ma­

trix sueh that X*Q has orthogonal eolumns (i.e. QA represents eolumn operations

putting il. into this form). Then Q* X X*Q is diagonal with nonnegative eigenval­

ues and hence has real nonnegative determinant, as is deI. QQ* = deI. Q deI. Q* =

IdetQI Z
•

If -2z is not an eigenvalue, the summand (2.32) det(X X*)00 = (2.32) is positive,

and hence so is the determinant. Il. remains 1.0 find a nonzero summand when -2z



is an eigenvalue. In this case the factor (2.32) has a zero, sa we have ta find a term

with the appropriate pole.

If -2z is a given eigenvalue of W2, we can assume without loss of generality that

W2 has 1blocks with this eigenvalue and chat they are the first 1blacks of W2, with

sizesh, ... ,il. Let

•
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•

•

veil = h +iz +... +ii-l + land J = h +... +il,

As a result of the surjectivity of f3, we can assume without loss of generality that (2

is in the normal form specified above, i. e. that the last rows beside Jorc1an blacks

with the same eigenvalue are mutually orthonormal and that the intervening rolVs

are orthogonal ta those rows. This is equivalent to the requirement that the h st,

izlld, ... rows and columns of (2(2 are zero except for a l on the diagonal.

As a result of the injectivity of a implies that the first, V(2)lId, ... columns of

(Jz are independent, and we may therefore assume without loss of generality that

PAA is nonsingular, and CA ::> P(CA ), where A = {l, v(2), v(3), . .. } and CA is

the space of vectors spanned by the ath stanc1ard basis vector of Ck / 2 , for a E A.

As a result of the assumed property of P,

detXXÂA = detPÂA ((W2 +Z/2)-\2G(W2 + z/2)*-I)AA PAA

= 1det PAA 1
2 det ((W2 + z/2)-1(2(;(W2 +z/2)*-I) AA .

The assumec1normalisation of (2 allows us ta assert that

+ terms of 'Iower arder'

by which we lllean that the i th row contains no other power of (al +z /2) of degree

-jj or lower, anc1 that the i th column contains no other power of (al + z/2) of

c1egl'ee -ji or lowel'. As a result

Since the eigenvalue al was chosen arbitrarily, it follows that the determinant con­

dition (2.22) is always satisfiec1 for monads satisfying the l'eality, time translation

and othel' triviality conditions. 0



THEOREM C. The space of (framed) 1t1~iton bnndles is isomorphic to IL .'pa,ce of

monads (a S1Lbset of a complex linea,' space) q'cLotiented by the action of IL complex

gmnp. The action of the gronp can be 'ILscd ta p1Lt any monad into a 'ILniq'lLC normlL/

form

• vVe have proven
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•
where 1'1 E gl(k/2) is nilpotent ILnd in JordlLn Normal form, W2 E gl(J.:/2), (2 E

M';j2, /12 E M{;f2' are in normal forms (2/12 = [,1,W2], and Wl ILnd P2 a"c detcI'­

mined by W1 + 1'ÎW1 + Wl/1 = -/12/12 and P2 + P21'Î + 1'IP2 = -(2(2 ILnd

clet ((W2 + z/2) - ~((][+1'l)-I1'd
P2

•

for al! z E iC.



•

•

CHAPTER VI

CONSTRUCTION OF A SIMPLEST-TYPE UNITON

Having shown that unitons can be represented by monads, we now reconstruct

the unitons from a monad of simplest type, closing the circle unitons -> Bogomolny

solutions -> uniton bundles -> monads. The key is the link to the original construc­

tion of Ward (Chapter IV), which gives the extended solution as the monodromy of

the bundle E around a cycle of complex lines. To construct the extended solution

in this manner, we need fixed frames of E restricted to the Enes, Coo , Cz,z,o, P>.

(for z in C and À in C·).

1. Parametrising sections over Coo and P>.

Recall that a monad with 'Yi = 0 restricted to Coo is

-À[

•

From this we obtain the long exact sequences

0--> HO (ker (3) --> HO(O(l)k EB Ok+N).!.. HO(O(l)k) --> 0, ane!

0--> HO(Ok) ~ H O(ker(3) --> HO(E) --> O.

The first sequence tells us that

ker (3H' = HO (ker (3) = { C-(~r)) :a E Ck+N}

and the second sequence tells us

90
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(Recall that Œl(A.) = -rh ((A.,O)').) Together they tell us that

Similarly, the restriction of the monad to P>. for À E C':

!n

(1.1)

0-> O(-l)k ~
<l,

leads to the isomorphisms

O( _l)k

ED
CJk+N

•

•

2. Parametrising sections over C:,:,0

Unfortunately, this case is a little bit more complicated. Sillce the extcllc1ed

solution is time-independent, it is enough to compute it for t = 0, so wc will only

concern ourselves with such sections. In this case the mOllad restricts to

The fact that Hl (O( _2)k) of 0 means that we cannot think of sections of E as

sections of ker (3. Some sections will be contributed by Hl(O( _2)k). To compute

a basis of sections, we will have to look at the exact sequence of complexes of ëech

cochains with respect to the cover

{U>. = {.\ of oo} ,U>. = {.\ of Dl},



(2.1)

---tIO

VI. CONSTRUCTION 01' A SIMPLEST-TYPE UNITON

CO( O( _2)k) ,,"
1 CO(ker (3)

cl"1 cl~1
1 CI(O(-2)k) ,,'

1 CI(ker(3)o ---t

o ---t

92

•
and essentially trace through the proof of the snake lemma. Since aD, d" and al

are ail injective (from the definitioll of a monad and the fact that HO(O( -2)) = 0),

we can factor out the image of CO(O(-2)) in the first two columns resulting in the

modified complex

0 CO(ker (3)/a(CO( O(-2l))
pO'

CO(E) -+0-+ --+
Ë!!

cl~'1 clE1 (2.2)

o -+HI(O(-2)k) ,," CI(ker (3)/al (d" (CO(O( _2)k))) p"
CI(E) -+0.--t --+

Then

• which, since the bottom row is still exact,

It's easy to sec what the image of ail : looks like. If wc use the standard

representatives fol'

the image of a II is

• In calculational terms, wc take the quotienting by CO(O( -2)) to mean that

X = ((a,b)(c,d,e)) E r(U,\,ker(3) satisfies a = 0 and b = bD (i.e. does not depend
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on A) and X = ((â,b),(ê,J,ê)) E r(U~,ker,8) satisfies â = âo ,md b= 0, which is

compatible with the choicc of basis for HI(O( _2)k). This normalisation allows Ils

to see that if

1 (fA-
I

) _ 1f3(,," '~.) _ "+X'a gA- I -( ."-,A -."-

then f = âo and g = bD. Since X and"\: are local sections of ker,8, we have relations

which yield relations

•

c = (1 + A)(le - (1 (hg

J = (Â + 1)(2ê - (2f!If

d = ((1 +A)(2e - (2eO) / A- z/2 Ag

ê = ((Â + l)Çlê - (Iêo) /Â + z/2 Âf

0= (W2 + z/2)g + (2eO

0= (PI - z/2).f + (Iêo.

Using the first four relations, we calculate

(2.3)

(fA
g
-

I
)

(

(1 +A)ÇI e - (1 f!2g +A((A-1 + l)ÇI ê - (1 êo) + >.. -1 Z/2.f)
((1 +A)Ç2e - (2eO) / >.. - z/2~g +(A -1 -1- 1)Ç2ê - (2f!If

e+e

•

from whose last row we see that df3 (X, X) = al (f>.-l, gA -1) implies that

and these are all the relations we can derive, i. e. if X and X satisfy these relations,

df3 (X,X) = al(fA- I , gA-I).

Putting it together, we see that on the open set where -2z does not correspond

to an eigenvalue of W2, respectively 2z of PI, HO(E) is parametrised by eo E eN,



,.c. the rnap eN -t COCker (3) given by Co H (,po(eo), -,pl (co))

•
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(2.4)

•

•

induces an is01l10rphism eN -t HO(C(z,:,o),E).

REMARJ( 2.5. We have actually only calculated parametrisations of E restricted

to an open set of sections. This is sufficient for the construction to follow, since by

the defini tion of the monad the monodromy is analytic, and hence determined by an

open set. Restrictecl to the closecl set of sections C(z,:,O) for z an eigenvalue of -2W2,

however, it doesn't follow immediately that the space of sections has dimension N,

nor that those sections don't have zeros at À = 0,00. In fact, if we try to derive

these properties we find that they require the nonvanishing of the same determinant

(V.2.22) (with "YI = 0) we found in the last chapter.

3. ParaUel Translation

We definecl the extendecl solution E>. as the 'monodromy' (i.e. failure to com-

mute) of the cycle of isomorphisms:

E>.,oo
restr HO(Coo,E) restr E_1,oo

restrr rrestr

HO(?>" E) HO(P_1,E)

restr1 1restr

El>.,z /2->'t->.' :/2)
restr HO(C(z,:,t),E)

restr
E( -1,z/2+t-:/2)'1 1

As with traclitionalmonoclromies, cllOice of a different starting point or frame effects

the extenclecl solution by a conjugation. We cau fix it by specifying a framing at



a point or alternatively over Coo or P_ I (but not over C(:,:,I» because il. moves) .

Of course going around the other way gives the inverse solution. We will base our

monodromies al. the fixed frame 1> E HO(P_I , F7·(E)). Since the extcndcd solution

is independent of t, we can greatly simplify the calculation by assuming t = 0 in

the following.

This description of the extended solution is well-suited 1.0 the monad reprcscnta­

tion since we have been able 1.0 calculate explicit parametrisations of the spaces of

sections E over nonpolar fibres and over a dense set of sections of TrI (inc!uding

the section al. infini1.Y).

Let 1jJ : rI -> TiPI parametrise one of the above sections or fibres. The paramctri­

sation of E restricted 1.0 snch a line is a map

•
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W : r[f X rI -> ker f3

WI, : r[f -> ker f31,p(p) •

Evaluation is given by composing with the quotient mal'

If ,pl and 1jJ2 parametrise lines which intersect al. 1jJI (PI) = q = ,p2 (P2), then the

mal' HO(1jJI(r l ),E) -> HO(1jJ2(r l ),E) given by evaluation al. q maps a E eN 1.0

b E eN such that W1,(a) == W~2(b)( mod imalq). Since the maps W and a are

analytic, the resulting evaluation mal' is as well, and in practice is easy 1.0 calculate.

We begin with the hardest case, the mal' HO(C(:,:,O), E) -> HO(P)" E). The

images of Wp : HO (P)" E) -> ek œek+N are all contained in the second surnmand,

i.e. their first components are zero. To calcülate the translation from HO(C(:,:,O)' E)

1.0 HO(P)" E) we have 1.0 put the cocycle representative (2.4) into this form. Wc

cau take either the local section ovcr U), or the local section over Uj., To the former

we have 1.0 add



ta get the representative

•
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of the form (1.2). 50 in terms of the chosen trivialisations, the translation

is

(3.1)

•

By the same mcthod of translating by the image of Cl< we calculate the parallel

translation from sections above 0 00 to sections above P>. to be the identity in the

chosen bases.

Putting these together, we get

and imposing reality, we get

•

E>. = ([ - À (82(z/2 +W2r J(2)* +À-182(z/2 +W2)-1 (2)-1

(H (82(z/2 +W2)-J(2)* - 82(z/2 +W2)-1(2)'

Let

Then

(3.2)

(3.3)
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by the reality conditions. The monad condition ((202 = 0) implies

!ln = 0 = n*n*.

9i

The matrices n!l* and !l*n are hermitian and hence have real eigenv,ùues. Sincc

they are normal and commute with each other, they are simultaneously diagonal­

isable. To summarise, we can fine! a unitary (but nonconstant!) frame so that

(3.4)

in block form, where n' is not necessarily square, and !1'!ll> ane! nl>!1' are diltgonal.

From this picture we see that the eigenvalues of !l!l* ,Uld n*!l are aU nonnegat.ive.

It follows that

*

(3.5)

•
has eigenvalues bounded away form zero, so wc can invert it.

One remarks that n and !l* bot.h commute with D. Since D is indepcndcnt of À,

D commutes with (n+Àn*- À-1 !l), as does D-1 • That the inverse oU- À!l*+À-1!l

IS

(3.6)

follows from

We have shawn

CONSTRUCTION D. Civen rnonad data as m Theorern C 'with 'YI = 0, we ean

construct the aS80ciated uniton as

as an extended solution. Bince ail sirnplest.type unitons can be so construeted, ail

such unitons have uniton nurnber 1 or 2.•

s = (n + 2!l* - 2n - n!l* - !l*n)D-I
,

which has extended solution

E>. = (n + À!l* - À-1 n)(n + n* - !l)D- 1

(3.7)

(3.8)
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4.1 Extended solution. We can check that S satisfies the uniton equations

directly, but it is llluch easier to check the equations fol' the extended solution.

Using

~n- = 0,
ôz

•
and cOlllmutativity of D-I and n, we can calculate

and

(4.3b)

verifying that E>. is in fact an extendecl solution. (See Theorem 1.1.12.)

•
4.4 Nonsingularity. We can also check that Sis nonsingular. In fact, we will

show that E>. is nonsingular on {(À, z) E C* X ri}.
We can lllake a unitary (but not holomorphic) change of gauge so that nn- and

non are diagonal and n is block diagonal of the form (3.4). Let j be the size of

the first block of zeros, equivalently, the height of n. In such a frame, the (i, i)th

element of nn- is the squared norm of the ith row of n', ln'i I2, and the (i+j, i+j)th

element of non is the squared norm of the ith column of n'. That the off-diagonal

elements of nn- are zero implies that the rows of n'are orthogonal; the columns

of n'are similarly orthogonal, and together, these imply that n' is square.

Since D has positive real eigenvalues, it has a positive square l'Oot. Since D is

diagonal in this frame, we can write DI/2 explicitly as

•
Using the commutativity of D ,md n, we can write E>. in the form

E>. = (E +Àn- - 1/Àfl)D-I (E +n- - fl)

= (D- I / 2 +Àfl-D- I / 2 _ 1/ÀflD- I / 2 )(D- I / 2 +D-1/ 2n- _D-1/ 2 fl).



In terms of our diagonalising basis, the multiplication by D-I!2 on the left, re·

spectively right, acts on II or ll* by scaling each row, respectively column, X, by

(1 + IXI2)-1!2, with the result that non11S of the rows and columns are bounded

by 1 and therefore Illi and 1î!*1 are bounded by N. It follows that

•
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•

Applying a similar argument to

we see that IE>:II is similarly bounded. Together, the two conditions imply that,

E>. is nonsingular on IP'I x C* .

COROLLARY E. Ali simplest·type 'Imitons can be deformed contimLOn.,ly into

U(2) nnitons. As a resnlt, the components of U(N) are the energy leveZs, i.e.

71"O(U(N)simp!cst.type) = N,

and the energy of the nniton is given by 1/2 the second Chern class of the IJ'lmille

in that case.

PROOF. As is weil known, and will be demonstrated in the next chapter, U(2)

unitons factor through a IP'I C U(2), and hence are parametrised by rationalmaps

pl --> IP'I and embeddings IP'I '-> U(2). The space of rational maps has components

given by degree. Holomorphic maps IP'I --> IP'I are the same as lille bundles over IP'I

and degree corresponds to the Chern class of the bundle. By a theorem of Valli

[Va, Theorem 3] this is the same as the energyof the uniton.

Given a set of monad data, we will give a path in the space of monads without the

condition (V.2.22) to a monad whose corresponding uniton bundle is decomposable

into a trivial bundle and a uniton bundle of rank two. Since the construction of the

uniton from the monad data is continuous with respect to the matrix norms, our

path preserves energy. Since energy is discrete, and the energy levels of U(2) are

its components, it will follow that the components of U(N) are its energy levels as

weil.



The path itself is simple. Let the monad be given by W2, O2 and (2, and the

eigenvalues of the Jordan blocks of W2 be given by al, a2, ... , aL.

If we perturb the eigenvalues of W2 so they are distinct, the injectivit~, of a and

surjectivity of (3 reduce to the condition that the first columns of O2 under Jordan

blocks and the last rows of (2 beside Jordan blocks be nonzero. These can be

deformed to be colinear and the other rows and columns can be made zero, then

the row and column can be rotated by GL(N) into the forms (0, *, 0, ... ,0) and

(*,0, ... ,0)' respectively.

If g, is a path in GL(N) such that

go ~ '. g, (")' ~ (1). «,)Ng,' ~ (0 1 0 .. . 0 ).

3N€ is the minimum nonzero distance lai -ail between eigenvalues, and f : [0,1] ->

C, is a path between 0 and 1 in C such that no two colinear columns of (2 or

two colinear rows of O2 have f(t)/(l - f(t)) as their ratio, then the deformation

(W2,02,(2)(t) (0 ~ t ~ 1) is given by

•

•
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ai(t) = ai + Et

{

(1- f(t))g, (02)i + f(t)g,(02h if (02)i is thefirst column
(02)i(t) = under its Jordan block

(1 - t)g,(02)i otherwise

{

(1- f(t))((2)i9ï l + f(t)((2)N9ï 1 i~((2)i is the last row be-
((2)i(t) = slde lts Jordan block

(1 - t)( (2);gï1 otherwise

Such a monad corresponds to a uniton bundle which is decomposable into the

SUIll of a U(2) uniton bundle and a trivial bundle, and hence a U(2) uniton.

Alternatively, remark that n is of the form

where nE gl(2), and as a result S is of the form

where S E U(2). 0



•
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CHAPTER VII

EXAMPLE: 8 2
-1 U(2)

This section treats the simplest case: U(2) unitons given by rank two unit.on

bundles. lt is well known that such maps factor through spheres, and hencc arc

closely linked to the rational maps. Wc will give "ln ahistorical proof that based

unitons correspond to rational maps (IP'I -1 IFI), and show that the action of U(2)

on U(2)* by conjugation (8 H U8U*) corresponds to the usuaI GI(2) action on

rational maps, i. e. the correspondencc is equivariant. Wc then show that this is the

same map as given by Construction D, and wc prove that the determinant condit,ion

(V.2.22) is implied by the other monad conditions in the U(2) case.

1. Ratiollal maps

From [Uhl] we know that 8 : 82
-1 U(N) is an n-uniton fol' n < N. As a reslllt,

harmonic maps 8 : 82
-1 U(2) are 1-11nitons, which have a simple form.

TUEOREM [Uhl,9.3]. 8: l1 -1 U(N) is a one-uniton iff 8 = Q(71" - 71".L), Q E

U(N), 71"* = 71", 71"2 = 71", rank71" is constant, 71".L[)71" = 0, i.e. 71" is projection onto a

holomorphie subb'undle of l1 x eN.

We can see the decomposition 8 = Q( 71" - 71".L) as a composition of threc maps.

In the middle is the inclusion

IF I = Gr2,1 c:. U(2) : 71" E Gr2,1 H 71" - 71".L.

In terms of z, a coordinate on IP'I,

•
71"z = 1: zz C) cr

( ) ( )
*.L 1 -z -z

71"z=l+zz 1 1 '

.L 1 (1 - zz
I(z) = 71"z-71"z = l+zz 2z

101

2z )
zz -1 . (1.1)



Now we can identify holomorphie subbundles, 'Ir C 1(;2, as 'Irf, for sorne rational

function f : rI -> rI. Final!y, we can left-translate harmonie maps LQ : S H QS.•
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Summarising, a general one uniton is a composition

rI .L, rI !.., U(2)~ U(2)

where f E Rat rI, Q E U(2).

LEMMA 1.2. This decomposition i" unique!

Another way of looking at this decomposition is that the image of a harmonie

map is an embedded sphere (S2), and the haJ.'lnonic map is just a rational map of

spheres. The question is, is the association to Q E U(2) of an embedded sphere

injective? Since left translation is a group action, we can ask the stronger question,

is {QIQGr2,1 = Gr2,d = {n}. In fact it is {H}, and we can calculate the action of

L-u:

(-n)I(z) = (-l/z)(-l/z) ( 1 (l-ZZ _2Z))
(-l/z)(-l/z) l+zz 2z zz-l

1 (-(-l/Z)(-l/Z) + 1 2(-1/z) )
= (-l/z)(-l/z) 2(-1/z) -l+(-l/z)(-l/z)
=I(-l/z)

to be l composecl with the antipodal map (z H -l/z), which is of degree -1. So up

to orientation, left translation of spheres is not free, but acting on oriented spheres,

it is, i. e. if we were consiclering both holomorphie and antiholomorphic maps the

decomposition would not be unique, but for rationalmaps it is.

PROOF. We use the fact that SE Gr2,1 C U(N) satisfies S2 = n(in fact tbis

is equivalent to S being in Gr2,i for sorne il. Let QGr2,1 = Gr2,l. Then for al!

I(z) E Gr2,1, (QI(z))2 = n. This puts conditions on Q. In particular



Q=±l 0

We see immediately that qlq.\ = 1, q2 = 0, q3 = 0, qr = 1 = q~ which implics

•
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So the spaee of U(2)-unitons is

U(2) ~ U(2) x Rat ri.

Rational maps ean be written as p( z) j q( z), with (p, q) = 1. Theil' topological

degree is given by max {deg p, deg q} (always positive, beeause holomorphie maps

preserve orientation). They eontain the basecl maps

" { {P(z) )Rat = f E Rat: f(oo) = a} = q(z): (p,q) = l,clegp < degq J'

Various groups aet on Rat via the aetion of PGL(2,q given by

(
ab) : !? 1-> ap +bq .
c d q cp+ dq

This map preserves clegree because GL(2) is conneetecl and clegree eomponcnts are

disjoint. Rat is a Rat" bundle over ri, given by

rat: Rat -> ri: f H f(oo).

PGL(2,q aets on ri by

(~ ~): [x,y] H [ax +by,cx +dy],

making Rat -> ri an equivariant bunclle.

{P E PGL(2,Q: P(Rat") = Rat"} = {(~ ~)}.

Conjugation aets on the U(N)" component of U(N) = U(N) x U(N)", the spaee

of U(N) unitons. In this case U(2)" ~ Rat ri.

CLAIM. If pjq E Rat rI and U = (~ ~) E U(2) then

" (Cq+DP)UI(pjq)U =1 Aq+Bp .
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PROOF. Write

1 .(q
I(plq) = pp+qq p -!) (1 ) (q -!)*

q -1 p q

Then

UI(plq)U* = .. 1 U (q -!) (1 ) (U (q -!))*
pp + qq P q -1 p q

1 (Aq+BP -AP+Bij)(l )
= pp+qq Cq+Dp -Cp+Dij -1

(
Aq+BP -AP+Bij)*
Cq+Dp -Cp+Dq

The daim follows from the facts that for U E U(2)

(Aq +Bp)(Aq +Bp) + (Cq +Dp)(Cq +Dp)

=(AA +Cë)qij + (AB +CD)pq + (AB +ëD)pij + (BB +DD)pp

=pp +qij,

• and

iff

Cq+Dp
=

Aq+Bp
-Ap+Bij
-Cp+Dij

•

0= p2(ëD + AB) +pq(Cë - DD +AA - BB) +q2( -CD - AB). 0

This action is not free, it has stabiliser {e i9 [}. An element (e
i9l

ei9') acts

on f E Rat by f 1-+ ei (9,-91l f. Is this the same SI action induced by the freedom

to choose gauges when integrating the Bogomolny solutions?

2. Meanwhile, back at the monad ranch.•.

We have another description of U(2) and we would like to relate the two. Think

of U(2)* = U(2)IU(2) as the space of monads with N = 2. The second Chern dass

gives a stratification

U(2)* =UU(2)k/2'
k/2



•
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The quantity k/2 is also the jumping type of El?,. Degree gives a stratification

Rat = URatj.
j

105

The map U(2)/U(2) -> Rat of Construction D preserves this stratification.

Recall the Jordan block normalisation of a simplest-type monad 111, given by the

data w2, O2, (2. From the faet that lllonads are complexes, we saw that (202 = 0,

but both (2 and O2 must be nonzero if ct and f3 are to be injective and surjective

respectively at ,\ = °and1J =an eigenvalue of W2. It follows that the colllmn space

of O2 and row space of (2 are one dimensional, and that they are perpendicular to

one another with respect to the Euclidean metrie on 1[2. From the discussion of the

normalisation, we see that the Jordan blocks of W2 have distinct eigenvailles, and

the monad will be given by

•
_ (Jit(a!) )

W2 - ,

Jh(ad

O2 = 0) (1,0, ... ,0,1,0, .... ,0),

((2)1,-1

(2= ((2)6 (-b 1)
((2);,-1

(2.1 )

•

generically, where ((2)b i °for all i. Putting this rank condition into the determi­

nant (V.2.22), we cau give another proofthat it is always satisfied for simplest-t,ype

U(2) monads of simplest type. In fact,

(V.2.22) =gI(ai + z/2)12j
; (1 + ~~(ai +z/2t'(:(i)+I_1 2)

= Iql2 + Ipl2

where f = p/q as below.
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In the case b = 0, wc ca1culate

(2.5)

where
D j;-l ('" )i ( )I;-j-I

'"" ~ .,2 j Z - ai
f(z) = - LJ L (_ .)1;

i=O ;'=0 z a t

is a based rational map of degree k/2. We sec that

p
- -,

q
(2.6)

•

•

This is equivalent to (1.1) under a change of frame and of basing condition.

REMARK 2.8. Wc see from this ca1cula':,.,n that all U(2) unitons are of simplest

type!

REMARK 2.9. To understand the general uniton moduli, we should exploit this

bundle structure. Of course, the general moduli are not bundles over rI but are

made of bundles over Grassmannians and flag manifolds glued together along the

real subvarieties given by the determinant condition.
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CONCLUSION

In this thesis we have developed a 1.001 for studying unitons, i. e. a eorrespon­

dence which identifies harmonic maps 8 2 --> U(N) with framed holomorphie uni t,on

bundles over TIPI with extra structure, and with a monad deseription of those bun­

dies. It is reasonable 1.0 ask how useful t;his tool is. Does il. help answer the three

types of questions concerning unitons:

(1) construction question: Is there a 'reasonable' procedure for constructing

sorne or all unitons?

(2) local questions: Are they smooth? Are they composed of rational funet.ions?

How can we calculate their energies? When do they factor through a t,otally·

geodesic imbedding of a Grassmannian?

(3) global questions: What energy values are possible? Find a complete set

of invariants, i. e. quantities which determine the connected components.

Calculate 'Tr;(U(N)), Hi(U(N)). Is the inclusion U(N) --> U(N +1) a ho­

motopy/homology isomorphism up 1.0 sorne dimension depending on N?

Can we measnre its failure 1.0 be an isomorphism? Does U(N) admit a

complex structure?

Of course, these questions should be posed in the context of previous results and

methods. A less quantifiable question is how weil we understand unitons. This

encompasses all of the previous questions, but also asks whether we can integrate

the various approaches into a whole. Can we interpret energy, uniton number etc. in

terms of all the known constructions? Does our construction suggest new questions

or new approaches 1.0 established problems?

107



Construction. In [Wo], Wood amplifies Uhlenbeck's uniton factorisation, and

relates it to the f1ag-transform method for Grassmannian solutions, thereby giving

an algorithm for constructing harmonic maps from holomorphic maps into Grass­

mannians using only algebraic operations, differentiation and integral transforms.

Constructing the uniton from bundle data, i. e. by factoring a transition matrix, is

an advance over integral transfol1us, but it still requires one to know which transi­

tion matrices are allowed. The construction from the monad data for simplest-type

unitons using only matrix operations is much more straight forward, but needs to

be extended to the general case.

•
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Local Questions. Based on his parametrisation of U(3) unitons, and numeri­

cal calculations for higher rank, Wood conjectured that unitons were composed of

rational functions, our construction allows us to verify this for al! ranks. As con­

cerns energy, we were able to show that for simplest-type unitons it is given by the

second Chern class of the bundle, something ea.~y to read off the monad data. We

also show.ed that these unitons can only have uniton number 1 or 2. To be able to

read off the uniton number from the monad data we have to find the meromorphic

section of E -> TrI which corresponds to the 'Uhlenbeck normalisation' of the

extendecl solution which seems central to the cletermination of the uniton number

in both Uhlenbeck's and Segal's work.

We know that the space of unitons contains spaces of harmonic spheres in Grass­

mannians. If we coulcl tell when a uniton factors through a Grassmannian, we could

construct Grassmannian solutions as we did unitons. This may be c1etermined by

a conclition on the jumping type of the bundle, or on the structure of the monad.

Global Questions. These are the least known. Using Uhlenbeck's factorisa­

tion, Valli showecl that the energy spectrum of unitons is discrete, and can be nor­

malised to be positive integers, thereby linking energy and uniton number. Since

the energy functional is continuous, this result implies that the moduli space has

countably many components, As a result of our retraction of U(N)simplest-type to

U(2), energy levels are the same as components, i.e. 7l"o(U(N)simplest-type) = N.

The other work in this direction is the work of Guest and Ohnita [Gu02] which



uncovers deformations of harmonic maps from one-parameter subgroups of the loop

group acting on Uhlenbeck's extended solution via a dressing action. The main

obstacle 1.0 this method is the possibility of 'bubbling off' of harmonic spheres

resulting in a deformation which fails 1.0 be continuous. This lllethod was used by

Guest 1.0 show that certain unitons cau be deforllled so thal. their image is coutlliued

in a unitary group of strict1y smaller rlmk, and in particular, that unitons with

images in a projective space arc always homotopic in the space of such unitons 1.0

a uniton with image in r 2• Based on this result Crawford [Cra] has shown that the

components of harmonic spheres in complex projective space arc given by energy

and degree alone. It would be interesting 1.0 try 1.0 write t,hese deformations in

terms of the monad data. This might help answer the question of when unit,ous

factor through Grassmannians.

•
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This thesis suggests that the moduli components (1l'o) are the same as energy

levels. This would fol1ow from an extension of the deformation of simplest-type

unitons into U(2), or from an extension of the proof that the determinant condition

(V.2.22) is, in general, implicit in the other monad conditions.

It also opens up two related methods of investigation of the higher homotopy of

the moduli space. One is 1.0 investigate the space of framed jumps, the second is

1.0 study the space of monads. As mentioned in the preface, both methods were

used in studying instanton moduli and in particular in proving the Atiyah-.Jones

conjecture. Of course, the uniton situation is somewhat different. Uniton bundles

have two fixed jumping lines (the polar fibres) in a ruling of TrI, and from the

monad description of simplest-type bundles we can read off that they are jumps of

length one in the language of [BHMM], i. e. they cease 1.0 jump on the first formal

neighbourhoods of the jumping lines. It shoulcl be possible 1.0 calculate the uniton in

terms of a transition matrix for one jump and a choice of framing along the infinity

section. From such an expression, one would hope 1.0 read off the relationship

between jumping line and uniton data. For example, one might find that restricted

types of jumps correspond 1.0 Grassmannian solution, or perhaps adding a unit.on

could be interpreted as some sort of tensor product of bundles in this way.



This work certainly improves our understanding of unitons since it gives a new

construction for general unitons in terms of uniton bundles and for simplest-type

unitons in terms of monads, reducing the problem to linear algebra, it answers an

open question about the rationality of the constituent functions, and it allows us

to calculate 'lro(U(N)silnplest.typc), but it leaves many stimulating questions unan­

swered.

•

•

•
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(1) What is the link between our construction and the method of Uhlenbeck

worked on by many people in the uniton case and also in the Grassmannian

case?

(2) What is the link to the loop group methods of Segal [Se2], which give U(N)

a complex structure?

(3) Can the deformat.ion of simplest·type unitons into U(2) unitons be extended

to general unitons. In other words, can the isomorphism

'lro(U(2)) --> 'lro(U(N)simplest.type),

be extended to an isomorphism

'lro(U(2)) --> 'lro(U(N)).

Given k > 0, is there an Nk such that the map

induced by the inclusion U(Nk) '--> U(N) is an isomorphism for all N ~ Nk?

(4) Are simplest-type unitons the same as one unitons? Is the uniton number

the size of the largest block in the Jordan decomposition of il? If this were

so, we could compute the homotopy of the type-components and use the

long exact sequence in homotopy to compute the homotopy of the moduli

space.

(5) Can the determinant condition (V.2.22) be simplified? Eliminated? Or

perhaps reduced to checking for afinite number of values of z.

(6) Can the monad description be interpreted as a sort of cell complex descrip­

tion of U(N)? If so, how are the cells glued together.



(7) Which jumps are allowed and how may they be glued in 1.0 construct a

uniton bundle?

(8) Is there an expression for the uniton in terms of a transition matrix for t,he

jump and framing?

(9) Is energy given by the multiplicity of the jump al. Pol Poo, and the unit.on

number given by the degree of the first formalneighbourhood on which il.

jumps down?
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