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Abstract

We show that a twistor construction of Hitchin and Ward can be adapted to study
unitons (harmonic spheres in a unitary group). Specifically, we show that unitons
are equivalent to holomorphic bundles with extra structure over a rational ruled
surface. This equivalence allows us to confirm the conjecture of Wood that unitons
are rational. These bundles are in turn representable by monads. By interpreting
the uniton construction of Ward in this setting, we are able to give an expression
for unitons of ‘simplest type’ in terms of the monad data (three matrices) using
only matrix operations. This expression yields a proof that the components of the

moduli and energy levels are one and the same for unitons of ‘simplest type’.

Résumé

Nous démontrons qu'une construction twistorielle de Hitchin et de Ward peut
étre adaptée & I’étude des unitons (des sphéres harmoniques dans un groupe uni-
taire). En particulier, nous démontrons que les unitons sont équivalents & des
fibrés holomorphes avec une structure supplémentaire sur une surface réglée ra-
tionnelle. Cette équivalence nous permet de confirmer la conjecture de Wood stip-
ulant que les unitons sont rationnels. Ces fibrés peuvent 8tre représentés par des
monades. L’interprétation de la construction de Ward dans ce contexte nous permet
d’exprimer les unitons du type “le plus simple” en termes des données monadiennes
(trois matrices) en n’utilsant que du calcul matriciel. Cette expression démontre que
les composantes des modules et niveaux d’énergie sont identifiées pour les unitons

du type “le plus simple”.

Typeset by ApS-TEX

it



PREFACE

Harmonic two-spheres in a unitary group were called unitons by Uhlenbeck [Uhl],
to suggest parallels with self-dual Yang-Mills instantons. Both are solutions to
equations from mathematical physics. They are attempts to generalise the theory of
electl'o—magnetism; their solutions representing new particles in the classical/non-
quantum sense. In Yang-Mills (or gauge) theory, physical states are measured
by fields taking values in a Lie algebra (u(l) for an electro-magnetic field) and
the Maxwell equations are replaced by a more general curvature condition. The
generalised field theory is complicated by nonlinearity /noncommutativity of the
group. In physics, harmonic maps are called chiral fields, or sigma models, and
the possible field ‘strengths’ are points in the target manifold (which may also be a
group, but is more commonly a homogeneous space such as a Grassmannian) and
the allowed classical states are given by critical values of the energy functional.

More than their shared physical background [Mi], however, one would hope that
the harmonic maps have the same beautiful (and much-studied) structure as in-
stantons. One word of caution: while unitons are of interest to mathematicians
and mathematical physics for other reasons, they are not particles as their name
may suggest, since they are defined on two dimensions and not four-dimensional
Minkowski space.

If this constitutes unitons’ ‘physical’ parentage, there is also a mathematical side
of the family. Harmonic maps are closely related to minimal submanifolds, and if
we allow branch points, the two are equivalent in two dimensions. The study of
minimal surfaces and harmonic functions goes back to the nineteenth century. The
last decades have seen a lot of work on the existence and regularity of harmonic maps

taking advantage of modern tools of analysis such as Sobolev spaces of maps. Work

Typeset by Ap4S-TEX



PREFACE v

on the general problem of ﬁnding harmonic maps between Riemannian manifolds
has been done, but the bulk of the work (as attested to by [Repl] and [Rep2]) has
considered special cases, such as maps into manifolds of negative curvature or with
restricted homotopy type, or maps of Kihler manifolds, spheres or homogencous

spaces.

The relationship between minimal surfaces and holomorphic geometry first ap-
pears in the work of Weierstrafl ([Weil], [Wei2), sec also [FoTu], [Ei, pp250-264],
and [Hi, §9]) who noticed that Enneper’s closed form solution of the minimal sur-
face equations in R® given in terms of analytic functions and quadratures could be
reformulated in terms of two holomorphic functions and their derivatives, without
quadratures. The next appearance is in the work of Calabi ([Cal], [Ca2]) who was
studying minimal embeddings of Riemann surfaces in R* and S" from the point
of view of determining which metrics on Riemann surfaces are realised as induced
metrics from such a minimal embedding. It is in this work that what is now known
as the twistor space of a target space appears implicitly. This brand of twistor
theory attempts to associate to a target space an (almost) complex manifold, with
a fixed projection onto the target space, such that harmonic maps into the target
lift uniquely to holomorphic maps from a Riemann surface into the twistor man-
ifold with an extra horizontality property. Many people (see [Rep2]) worked on
extending this result to classify harmonic spheres in other symmetric spaces. Much
of this work exploited particular properties of the target space, and thus obscured
the general nature of the problem. Incrementally, however, this work led to the
development of a general theory, best laid out by Burstall and Rawnsley [BuRa] for
the case of homogeneous spaces with special properties. For an exposition of the
mathematical development of these and related ideas see [Rep2]; for the physical

point of view see [Pe].

Applying holomorphic geometry to unitons and the global topology of the moduli
motivates this thesis. The main construction of this thesis takes this form, convert-
ing the question of studying the space of solutions of the harmonic map equations

into that of studying a space of holomorphic bundles.



vi PREFACE

As an important subtheme of the work on harmonic spheres in Grassmannians,
various people discovered a feature of the space of harmonic spheres in Grassman-
nians of particular importance to physics, namely, a method of constructing new
solutions from known solutions. Uhlenbeck calls this a Béacklund transform, oth-
ers call it a flag transform, g-transform [ChWo], positive/negative transformation
[Gul], or a dressing pseudo-action{Gu2]. It was first laid out in [ZaSha,ZaMi] as
the Riemann problem with zeros, which is actually an example of the dressing
method developed by the same school in the seventies. The point is that every
solution can be constructed beginning with constant solutions by iterating this pro-
cedure. Begun by Din and Zakrzewski [DZ] for maps into projective spaces, this
line of thought ultimately led to a unique factorisation theorem for unitons in [Uhl).
By interpreting this transform/factorisation in terms of twistor-type constructions,
Valli showed that unitons have a discrete energy spectrum, and gave another proof
of the factorisation theorem based on energy ([Val, see also [Wo]). In this case, the
twistor space turns out to be the loops on the unitary group QU(N) (see {PrSe])-an
infinite-dimensional space. Fortunately, the image of any twistor map lies in some
finite dimensional subspace determined by the uniton number. Yet another (even
shorter) proof of the factorisation theorem is given by Segal ([Se2]), who makes

stronger use of the loop group.

We already mentioned the perceived similarities between harmonic maps and
self-dual Yang-Mills fields. From the physicists’ point of view, this means that both
types of solutions display particle-like behaviour. We hope that it also means that
the methods which resolved the important problems for instantons will alsc apply
to harmonic maps. In particular, in this thesis we will attempt to apply another
type of twistor construction due to Ward [Wd3] (originally used by himself and
Hitchin for monopoles), and get results about the uniton moduli via an equiva-
lence with the space of special holomorphic bundles over a complex manifold. (The
name twistor theory is actually borrowed from the twistor programme of Penrose
in physics which has somewhat broader goals, and is concerned with one particu-

lar space, Minkowski space-time. Our twistor space, being smaller has been called
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mini-twistor space.) In [Wd1], Ward observed that self-dual Yang-Mills (SDYM)
fields could be encoded as holomorphic bundles over P? (complex projective space).
Thus solutions could be constructed from holomorphic bundles. Fortunately for
the mathematical physicists, algebraic geometers had already been studying holo-
morphic bundles over projective space (see [0SS)), and in [ADHM] these questions
were further reduced to a matter of linear algebra via the monad construction of
Horrocks [Ho| for bundles over P3. While this gave a method of constructing SDYM
fields, it did not give much information about the moduli spaces. Donaldson was
later able to show that the bundles are determined by their restriction to a P? {Dol).
Hurtubise [Hu] was then able to use this description to get topological information
by describing the bundles in terms of jumping lines rather than monads. With
the addition of heavy topological machinery, this approach yielded a proof of the
Atiyah-Jones conjecture [AtJo], see [BHMM].

In the case of unitons Ward ([Wd3]) observed that harmonic maps R? — SU(N)
could be encoded as vector bundles by a twistor construction originally used by
Hitchin for monopoles, and that for N = 2, finite-energy maps (unitons) correspond
to bundles on the compactified base space. Oriented lines in R® are parametrised by
direction (€ $?) and intercept with the tangent plane orthogonal to the direction
(€ T,5%). The set of lines through a fixed point correspond to a section of T'5?
which turns ou* to be holomorphic as a section of TP' = T'S%. (Lines through
the origin are the zero section which is holomorphic, but the choice of origin was
arbitrary, so the same holds for all sectious.) We define a double (Penrose) twistor
fibration which allows one to identify via pull-back and push-forward objects in/on

R3 with objects infon TP and vice versa

S2xR=TP op R

v N
R3 TP!
point ¢ » real section
oriented line L ) point

(V,®) < > E - TP
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where (V = d + A, ) define a Yang-Mills-Higgs field (monopole) on R® and E is a
holomorphic bundle.

Ward also shows that ‘dynamic unitons’ R**! — U{N) can be represented as
solutions to the monopole equations on R**!, These include the traditional static,
finite-energy unitons, for which he conjectures that the corresponding bundles ex-
tend to the fibrewise compactification, TP!, of TP!. For U(2) he shows this. We
won't consider dynamic unitons in this thesis, however, because we lose the corre-
spondence of finite energy and extendability to the compact base space which opens
the door to algebro-geometric methods.

The first part of this thesis is devoted to showing that, as Ward conjectured,
finite-energy, based U(N) unitons, i.e. {§: 5% — U(N)|S(0) =1}, correspond to

bundles on the compact space:

DEFINITION. A rank N, or U(N), uniton bundle, E, is a holomorphic rank N

bundle on TP which is trivial when restricted to the following curves in TP!

(1) the section at infinity
(2) nonpolar fibres (i.e, fibres above A € C* C P!)
(8) real sections of TP! ({{oriented lines through p} C TP!: p € R?})

and which i3 equipped with bundle lifts

E — ., E*

ll and l l

E 2
|

T

ﬁ

such that 8, is o one-parameter family of holomorphic transformations and & is a
norm-preservirg, antiholomorphic lift of o and the induced hermitian metric on E
resiricted to o fized point is positive definite; and o framing, ¢ € H'(P—_,Fr(E)),
of the bundle E restricted to the fibre P_y = {A = -1} C TP! such that &) = ¢.

Here ¢ and §, are fixed maps defined in Chapter II.

THEOREM A. The space of based unitons, U(N)*, is isomorphic to the space of

N-uniton bundles.
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To close the first part of the thesis, we show that this construction actually
generalises the construction of Ward for U(2) (this not being obvious, a priori) and
thereby extends his results on finiteness to rank N bundles. The effect of this is
that although our proof is far from being constructive, we can do the computations
in terms of clutching matrices as Ward did for SU(2).

As a nice corollary of this, we can affirm the conjecture of Wood [Wo] that

unitons are composed of rational functions of z,y € R%

COROLLARY B. If § : §? — U(N) is a uniton, then the composition with
U(N) — GL(N) is rational, i.e. the functions in x and y which make up the
matriz S € U(N) are rational.

Plan

Much of this thesis concerns the construction of maps between spaces of uni-

tons, bundles, monads and Bogomolny solutions. This aspect is summarised in the

diagram

Chapler |

unitons Bogomoiny
solutions
- S| |n
5 3|8
& B
5 g | =
5 | e
O 1=
monads uniton

Chapter V bundles

In the first chapter we write down the uniton equations, give the equivalence to
Bogomolny solutions, and describe the twistor correspondence upon which every-
thing else is built.

The basic construction is laid out in Chapter II. Section 1 describes coordinates
adapted to $2 x R3 and TP! ® R respectively, and time translation and the real
structures in both coordinates. The extension of the resultant bundle to the com-

pactified space TP! occupies section two and proceeds in two stages: Extending
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the bundle over nonpolar fibres and then extending to a neighbourhood of the two
missing points (A = 0,7 = oo0) and (A = 0,5 = o0) in the notation of 11.1). The
first stage uses the geometry of finiteness and time independence of the Bogomolny
system. The second stage involves showing that the d-operator defining the com-
plex structure can be smoothed by a change of gauge without losing any topology.
Finally, we show in §§3-5 that triviality over the section at infinity results from
finiteness of the uniton, that &, is constructed naturally from time independence of
the uniton, and how the real structure & encodes unitarity.

That the construction induces an isomorphism follows from the existence of an
inverse mapping, the subject of Chapter III. Section 1 explains how TP! can be
embedded in C* C P? compactifying with the addition of a singular point to become
@ C P3. Section 2 describes an algebro-geometric compact twistor fibration which
includes the original fibration. Sections 3-4 describe how the connection V and
Higes field @, constructed on R3 using holomorphic geometry, extend to 52 x R,
and how a time-independent trivialisation of the bundle can be constructed, from
which the based uniton (S? — GL{N)) may be recovered by integration. Time
invariance follows from the existence of a lift to the bundle of time translation on
TP! (§5); unitarity follows from the existence of a real structure (§6).

Chapter IV shows that our construction gives the same map as Ward’s construc-
tion in terms of clutching matrices, thereby giving a geometrical explanation of
Ward's work and showing that finite-energy maps correspond to compact bundles
in higher ranks as well. We do this by showing that Uhlenbeck’s ‘extended solution’,
Ey(z, %), which contains the uniton, is given by the ‘monodromy’ around a cycle of
complex lines. By way of application, we prove that unitons are rational, 7.e. made
up of rational functions in 2 and y, by showing that all singularities of Ex(z, Z) are
noles.

The last part of the thesis concerns a monad construction for uniton bundles

{Chapter V). A monad is a short sequence of ‘homogeneous’ bundles
0-F5GL H 0

such that ker @ = 0, coker # = 0 and ker §/im « is a vector bundle, i.e. has constant



PREFACE xi

rank. The advantage of this construction is that e and # can be given by matrices.
For example, (ng — Opn (k)!, k > 0 is given by a homogeneous order-& polynomi-
als of § x ! matrices. The moduli space is then the quotient of this complex matrix
space by the group of changes of frame of F, G, H. Unfortunately, this space is not
always very nice topologically, but there are tools to decide when it is [MFK].
The extra structure uniton bundles carry, however, complicates matters. In
§1 we sketch the properties of Hirzebruch surfaces (of which TP! is one) and fix
notation which allow us to discuss the construction of monads. We then show hiow
the basic theorem of Beilinson for constructing monads for stable bundles on PV
can be adapted to TP! (§2). (See also [Bu]). The resulting space of monads is
large and we use the action of the group in §3 to put the monad in normal form
using the special structure of the bundle: triviality over Cs, nonpolar fibres, the
lift of time translation and the real structure. We also make a seeiningly arbitrary

Jordan-type normalization resulting in

THEOREM C. The space of (framed) uniton bundles is isomorphic to a space of
monads (a subset of a complex linear spuce) quotiented by the wction of a complex
group. The action of the group can be used to put any moned into a unigue normal
form

I4+~7 TA 0 _
0= O(1,0)* (( * {13 o 7 +/\(II+71)); O(—é,l)‘
(]In —wiXt w ) OFk+N

pa Al Nl + we
—(3 A\ 62

(I[n +-wiA?  —w )
—paA® I + wo

(“‘(H +97) = A 0 —(1+4 )63 )
0 1= AMI+7m) (14 A)

where y; € gl(k/2) is nilpotent and in Jorden Normal form, wy € gl{(k/2), (2 €

» 000, 1)% =0,

Mﬁ/z’ b € M'?;z: are in normal forms (38, = [y, ws], end wy and py are deler-

mined by wy + yiw1 +wini = —0302 and pa + p2y} +11p2 = — G2y and

(wa 4+ 2/2) = (T +71) " 'm)? wi
det ( P (01— 2/2)+ 5T + "m)'l“ro)2) #0 (222)
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for all z € C.

(The line bundles O(p, ¢) are defined in Chapter V.)

The normal form we reach carries an intricate structure. Future work must
answer what information about the moduli it carries, but we will leave the discussion
of this and many other unanswered questions (notably about the moduli topology)
to the conclusion.

Chapter VI describes how the interpretation of the extended solution of Uhlen-
beck as the ‘monodromy’ of a family of cycles of complex lines shows us how to
construct the uniton corresponding to monad data of ‘simplest-type’, using only

matrix multiplication, addition and inversion.

CONSTRUCTION D. Given monad data as in Theorem C with v1 = 0, we can

construct the associated uniton as
S=(I+20Q" -20-QQ* -Q*Q)D™!, (3.7)
which has eztended solution
By = (I4+XQ* = A7)+ Q* —Q)D™! (3.8)

as an extended solution. Since all simplest-type unitons can be so constructed, all

stuch unitons have uniton number 1 or 2.

CoROLLARY E. All simplest-type unitons can be deformed continuously into

U(2) unitons. As a result, the components of U(N) are the energy levels, i.e.
WO(U(N)simplest-type) = N,

and the energy of the uniton is given by 1/2 the second Chern class of the bundle

in that case.

Finally, in Chapter VII, we review the well-known construction of unitons in

U{(2) and show how it fits into the monad picture.
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Contributions to Original Knowledge

The extension of Hitchin’s twistor construction to the compactified space, in
particular the geometry of the Cy, trivialisation and the smoothing of the J-operator
are novel. The compact twistor fibration and the resulting extension of Hitchin's
methods are also an innovation, as is the method of encoding time-independence.
The geometric explanation of Ward’s construction and proof of Wood'’s conjecture
are new. Monads for bundles over Hirzebruch surfaces were studied previously by
Buchdahl, but his construction concerns stable bundles. Our monad construction
encodes the extra structure of a uniton bundie via our normalisation. That U(2)
unitons correspond to, and can be constructed from, rational maps was known, but
the construction of general simplest-type U(N) unitons from monad data is new,

as is the calculation of o (U (N )simplest-type-
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CHAPTER I

PRELIMINARIES

1. Uniton Equations

Unitons are harmonic maps from §* 3 U(N), that is, maps satisfying

;(5- 7S+ 3 9 3,57 —3)-0 (1.1)

More generally, harmonic maps between Riemannian manifolds M and N are crit-

ical values of an energy functional  _

E(g: M = N) = [M dgl2,

which measures the infinitesimal distortion (compression/stretching) of M in N.
For example, the energy of an embedding f : R? — R3? with the standard metrics
is the energy of an ideal rubber sheet, and harmonic maps 5! — N are geodesics.
In the case of maps into a matrix group, with the standard (left-invariant) metric,

the energy takes the form
E(S) = f 577251 4 151 L spdz n ay (1.2)
R2 a-'L' 3y ' '

The uniton equations are the corresponding Euler-Lagrange equations. It is worth
noting that if a—azS = 0 they reduce to the equations of a one parameter group—a
geodesic!

From [SaUhl, Theorem 3.6], we know that harmonic maps from R? — U(N)
extend to §° iff they have finite energy, and that such maps are always smooth.
In the following, we will use this fact and work in terms of coordinates = and y on
R2. Unitons are determined by A = Aydz + Aydy (= A.dz+ A;d? in characteristic
coordinates)

cl_efl -1 a def]- -1 3} |
4, 55571 55, 55755 (1.3)
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and a choice of initial condition, So € U(N), as we can see by thinking of d + 24

as a connection, and S as a flattening gauge transformation. This gives a splitting

of the space of U(N)-unitons U(N) as
UN) =U(N) x U*(N), (1.4)

where

UH(NYE (S € UN) : S(c0) =1}

will be called the based unitons. Of course, the energy doesn’t depend on the basing

condition, and we can also write it in terms of A as
E = —SftI‘A;Ag.

Two matrices Az, 4, come from a map S : R? — U(N), in this way iff d + 24

has zero curvature (5 is the flat gauge) iff

2 %,
0 = d(24) + [24,24] = 2 {—Ay — 2 A, 424, A,,]} dz A dy.
Oz Oy ; (1.5 a)
They come from a hermonic map if in addition
a 0
=d*A = — —A,. 1.51
O=d'A= g At 54y (1.5 b)
The map S : R? — U(N) extends to a smooth map §2 — U(N) iff
A;E 224, and A;:‘l—if —£%4; (1.6)

are smooth at z = co, where we make use of complex coordinates z = z+iy, # = 1/z.

In terms of complex coordinates, the uniton equations are (any two of)

0 0

5.{4; - -a—zAs + 2[A§,A:] =0,
0
— - = 1.7
85‘42 + [A.,Az] 07 ( )
0

_A‘Z 7941z = U
oo Az + (Ax, As] =0



2. BOGOMOLNY EQUATIONS 3

1.8 Extended Solutions. We will also make use of Uhlenbeck’s extended so-

lutions E» (actually first employed in. [Po]), which encode the unitons as follows

THEOREM 1.9 [Uhl, 2.1). Let 2 C S? be a simply-connected neighbourhood and
A: Q=T @U(N). Then 24 = 571dS, with S harmonic iff the curvature of

the connection

d
Dy = (% + {1+ M)Az, -+ (1+ ATHAL) (1.10)

vanishes for all A € C*.

THEOREM 1.11 [Uhl, 2.2]. If S is harmonic and S(oo) = I, then there emists a
unique flat frame Ex : P* — U(N) of Dy for A€ C* with (a) E_; =1, (b) E: = S,
(¢) Ex(00) = 1. Moreover, E is analytic and holomorphic in A € C*.

TuEoREM 1.12 [Uhl, 2.3]. Suppoese E : C* X Q — G i3 analytic and holomorphic

in the first variable, E_1 = I, and the expressions

E;'0E, E;'8E,
1+X " 14 A1

are constent in A then S = By is harmonic.
Extended solutions are extremely useful in calculations, and we will need to refer
to all these results.
2. Bogomolny Equations

The next important rewriting of the uniton equations was Ward’s embedding
of the harmonic map equations into the hyperbolic Bogomolny equations. The

Bogomolny equations are given by
V& = «F,

where V = d + A is a connection, ® is a Higgs’ field, the curvature F = VoV =
dA + A A A and the Hodge-star is given by *dy A dt = dxxdt A de = dy, and

*da A dy = edt, (¢ = 1 on R® and ¢ = —1 on R?!), Assuming time independence of
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V and @, the equations are

7] d
efAr, @] = E;Ay - a_yA:t + [4:, 4y},
0 o
5;‘1)_*_[‘421@] = a_yAi’ +[Ay,At]a (21)
Do, o) =-2a+14,4
ay [ ¥ - am i+[ ty a:]-

Write the system (1.5) as V,A; = —V,4, and V4, = V,4,, and (2.1) as
VeAy — VA, — (A, Ay = 4, 8}, V. & =V, 4, and V@ = -V, 4,. Assuming
Ay = ad; + B4y, and & = vA: + 04y, we see that (1.5) is equivalent to (2.1) iff
Ay = t{cos(f)A; — sin(8)A4y), @ = ilcos(f)4, + sin(f)A4;) in the Euclidean case
and 4; = cos(6)A; — sin(0)A4,, ® = cos(6)4, + sin(f)A4, in the hyperbolic case;
0 < 6 < 27. In this paper, we will work on R?® instead of R2"!, because it is
geometrically easier, although it necessitates using nonunitary real folrms of gl(N).
(Since gl(N) = u(N) ® C, elements of u(N) C gl(V} are often called real. In the
following, gl(V) and GL(N) are complez.) Henceforth, we will assume the following
choice:

A= —id,, & =id,, (2.2)

corresponding to § = x/2. It is important to note that A, and ® are imaginary
(i.e. € iu(N)), as this will determine the real structure we will use on TP*.

This convention allows us to associate a based uniton to time-independent solu-
tions of V& = #F on R? x R, which extend to {(z,y,t) € §% x R}: We can use the
freedom to change gauge to put any t-independent solution into the form (2.2); the
new gauge, g, is given by solving gqy-g g7 =id — Ay, 2997 = —i® — A,, which

we can do because the appropriate curvature component

0 . 0 ) 0 7
X 0 d
+1i (—(53;‘4: + [Az, Ad]) - (5@‘1’ + [Ay,@]))

= (Fey =V @)+t (Fiz — V@)

vanishes for solutions. Of course, we still have to solve §™!dS = 2A (i.c. integrate)

to get a uniton.

For future reference, we extract from the previous discussion the following
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THEOREM 2.3. The space of based unitons, U(N)*, is isomorphic to the space
of t-independent solutions {(V,®)} to the Bogomolny equations with finite energy
Jpz 1421 + [Ay|* < oo (equivalently, such that limyqiy—co A-/2% exists), which are
real in the sense that in the unique t-independent gauge such that A, = —iAy and

b =1iA,, Az, Ay €u(N).
3. Twistors

Orliented lines in R? are given Ly a direction and a displacement from the origin
perpendicular to the line’s direction. Collectively, they make up the space T5% &
TP! = Opi (2) (the exact correspondence depending on an isomorphism of 5% and P!
to be specified using stereographic projection). Reversing the direction of geodesics
corresponds to an antiholomorphic involution, 7, of TP! which is the negative of the
map on TP! induced by the antipodal map, 7*A = —1/A, on P!, The holomorphic
bundle TP! has sections = & —~ bA — £A%, where A and 7 are base and fibre
coordinates over P!\ {co}. So its section space is C3.

Let R be the trivial real line bundle. The geometry can be represented by a

twistor fibration:
SZxRI=TP' @R

e/ N 7w (3.1)
R? TP'.
The point of this construction is that there is a fwistor correspondence between so-
lutions (V, ®) to the Bogomolny equations on R and holomorphic bundles on TP*
whicl are trivial on real sections of TP!. Real sections can be defined invariantly as
sections stable under an antiholomorphic involution (a real structure). This twistor

construction is due to Hitchin [Hi], and Ward.

3.2 The Bundle. Let E = C¥ x R? be the trivial bundle over R%. Define the

bundle E — TP!, over { € TP! by

(Vi — i®)s =0,

(where the line £ C R®
is parametrised by ar-
clength, u)

E¢={seHYE) : (3.3)
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THEOREM 3.4 [Mu2,18]. If (V,®) is a unitary solution of the Bogomolny equa-
. tions V® = +F on R3, then E s in a natural way a holomorphic principal bundle
on the space of geodesics TP such that

(1) E is trivial on every real (T-invariant) section;

(2) there exists a positive-definite, antiholomorphic principel bundle involution
71 E — E lifting 7; i.e. if f s a local frame for E, and g ¢ constant change
of gauge (g € U(N)) then #(fg) = (gt~ and

(3) ToT =1d.

Conversely, every such E defines a solution of the Bogomolny equations.

(Note that this theorem has an equivalent statement in terms of the vector
bundle and its dual, and is a generalisation of [Hi, Theorem 4.2], which is stated in
a way specific to SU(2). In terms of vector bundles, the condition 7% = id becomes
™ =17.)
We will use this theorem with the gauge group GL(N,C), and conjugation § =
(g*)71, i.e. the real subgroup is U(N), but with an antiholomorphic involution &
. lifting ¢ which corresponds to the choice (2.2).

The bundle E comes with a natural d operator, i.e. an operator
§: (TP, E @ T»PTP')) — I(TP!, E @ TWtDTP!),

which satisfies a Leibnitz rule and 9% = 0. This defines a complex bundle structure
(since its flat sections will give local holomorphic framings).

The d-operator is defined as follows.

The embedding 7 : P! — R?® induces a splitting of R® x P! — P! into

TP'& < normal bundle > .

On TP? we put the restriction of 73, V. On the normal bundle, we put mp (V. —i®).
This connection pulls back to a connection along the fibre directions of P! xR* — P!,
Along the base we put the trivial connection.

. Since TP! has a complex structure, we can split T(TP!) into holomorphic and

antiholomorphic parts. The restriction of the connection to the antiholomorphic
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part, V, acts on sections of Elg and since {V,V, — i@} are involutive (as a conse-
quence of the Bogomolny equations) it induces a d-operator on E.

We have encoded unitons as solutions (V, ®) of the Bogomolny equations with
special properties (time invariance, finiteness, reality). We will show in Chapter II
that these properties correspond to properties of the bundle E — T'P!. Namely,

(1) time translation induces a one-parameter family of automorphisms of TP!
which lift to bundle maps.

(2) Finiteness translates as an extension of the bundle to the fibrewise com-
pactification of 7!, time translation extending as the trivial map over the
fibre at infinity.

(3) Reality of the Bogomolny equations translates as a real structure (a fixed
antiholomorphic principal bundle involution over an antiholomorphic invo-
lution of TP!, or a lift to 2 map F — E*) which is positive definite above

a fixed point.

Qur part real, part imaginary pair (V,®) corresponds to a different real structure
on TIP! than the one which fixes the real sections. We can almost do without the
original structure, but will need to have it around when we set about reconstructing

the uniton from the bundle.

3.5. Inverse Construction. Conversely, given such a bundle we can construct
the Bogomolny solution as in [Hi].

From the sections map

P'x C* - 0(2) = TP!

1 ]
(g, be) == 50 - bA — %c)\2

we get a pull-back of the bundle E to P! x C®. Over the open set Y of sections
over which F is trivial, we can push this bundle down from P! x ¥ to Y. Call this
bundle £ - Y.

Now put the quadratic form (db)? + (da)(dc) on the holomorphic tangent space
to C*. To a degenerate metric we can associate null planes on which the restricted

metric is degenerate, and null lines on which the restricted metric is zero. Each
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null line lies in a unique null plane (its orthogonal complement). Its null planes are
parametrised by p € TP! and given by the space of sections of TP! through p, i.e.
if p = (A,7n) then (q,b,¢) are constrained by 1 = 3(a — 20A — ¢\?). Restricted to
this plane, the metric (db)? + (2Adb + A2dc)(dc) = (db + Adc)? is degenerate. Each
null plane II\(y) inherits a flat ‘null’ connection: Let p € TP' be the uniqie point
of intersection of the family of sections IIx(y). A fixed frame of B}, induces a frame
of B Iy (y). Define Vi to be the ‘null’ connection for which this frame is covariant
constant.

Now fix a point y € Y. Some directions (lines through y in €*) may lic in two
different null planes (they correspond to sections intersecting in two distinct points),
but null lines lie in unique null planes, so we can define a holomorphic connection
on the null lines without ambiguity. The null directions form a quadric cone Q* =
{{a,b,c] € P2 : 4% 4 ac = 0} in the P of all directions. Since a connection matrix
(given by differentiating a covariant constant frame at y) is a homogeneous degree-
one, matrix-valued function of C* (the tangent plane to y € P?), it defines a section
in H°(Q*, Op2(1) ® gl(N)). The long exact sequence associated to the inclusion
Q* — P? and the fact that HO(P?,O(-1)) = 0 = H}(P?, O(—1)) tell us that such
sections are uniquely extendable to P2, In other words, this is enough to determine
uniquely a holomorphic connection at y (4.e. an element of H 0P, Opa (1)@ l(N))).
This is the connection V.

There is a second way of defining the connection. On any line in C?, pick two
points yi,y2. They correspond to two sections of TP!. Since TP' is the total
space of Op (2), they intersect in two points (with multiplicity). We get a double
point iff the sections are tangent at a point iff the line was null. To each point
y; is assoclated a connection on the corresponding hyperplane I (y:) C C" . The
original line will be the intersection of the two null planes unless it was a null line,
in which case it is only contained in the intersection. Taking the average of the two

null connections, we get a connection on the original line, i.e.

1
Vline containing ¥y,y2 — E(vl'l(yl) + Vﬂ(yg)) (36)

In the case of a null line, we get back the null connection, because any two sections
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will intersect in a double point.

In the case of a real line (a line in R® complexified) the two null planes are con-
jugate, i.e. 7 images of each other. Since this construction also gives a holomorphic
connection, which agrees with the first on null lines, it follows from the preceding
discussion that they are identical.

As mentioned above, we get a connection on R* by making the desired choice of

coordinates on €* and forgetting they are complex.

3.7 Higgs’ Field. Again there are two definitions for the Higgs’ field on C3.
(See [Hil.)

Given a fixed real structure, the null planes have adapted coordinates, one cutting
out the null lines, the other parametrising them. Call them y and =, and let them
be coordinates on a null plane II. They are not canonical, but any choice such that
dx = 0 on null lines and |dx| = 1 on nul! planes will do.

By definition, the connection V . ar.es with the flat (null) connection Vp in

the null dirvection, so they differ by a form which annihilates 7. This defines a
gl(N)-valued function ®(y, II):

V ~ Vi = i®dy,

where the ¢ is added for convenience. The null planes through a fixed point y are
parametrised by A € P'. Since @ is a holomorphic (gl( NV )-valued) function of A, it
is constant and therefore independent of the null plune chosen. Recalling the other
definition of V along a line as 1/2(Vn + V1), where the line is the intersection of

the two null planes, we can also write
®dy =1i/2(Vu - V), (3.8)

where the null plane 7II also contains the line through y tangent to 5%’ and can be
chosen uniquely.

As it turns out, we can parametrise null planes through y by A € P

Ia(y) = {(a,b,¢)|2n = a — 26X — cA?}, (3.9)
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where n = —l-(ay — 2by A — ¢, A?), and 711 corresponds to taking the antipodal point
to A, i.e. Il (y) = TI_3-1(y). Put this way, we can calculate £ L on C®. By taking

derivatives, we get (after normalising 5;)

0 1 g 1 0
8_x'"1+,\?\()‘%+2( Mg +3g)
1 - %,
__ﬁuA—l_\-((A+/\)8—w‘+(l—)\z\)at+z()\ )\) ), and .10
O _pl2 20 |
ox " 0z ot 0z
1 a 6 1 9 a
—'2-(/\ —1)%+r\-é§—;2-(1+)\ )-a-;

Since null connections are by definition flat,

0= [VY, VE] = [V +i®dy, V]
= Fn—iVad
= —2(\ = 1)(Va® — Fy) - iMVi@ - Fuy) — (1 + M)(V, & — F,)

Since @ does not depend on the null plane, we get a P! of equations parametrised

by A. Taken together, they show that V,® satisfy the Bogomolny equations on C*.

In Chapter III, we will use complex algebraic methods to understand what hap-
pens in the finite (energy) case. The space of lines, TP!, can be embedded into P? as
a quasi-projective variety. It can be compactified by adding a singular point. Since
E is trivial over the section at infinity anyway, we get a bundle over this variety
(which is a degenerate conic). Sections of TP! correspond to certain hyperplane
sections. In fact, the hyperplane sections of P? are given by (P*)*, and the sections
of TP! correspond to C* C P?. We work out a ‘complex version’ of §? x R, and
find it sitting in (P%)*. The points we need to add from P2 = P? \ C*, are just the
set of hyperplane sections restricted to which the bundle is trivial, so we do in fact

get back a (finite) uniton.
4. TP

We will be working with coordinates (A,7) and (A = 1/A,% = n/A?) on TP' =

Op (2), where ) is the usual coordinate on P! and 7 is the coordinate associated to



4, TP 11

d/d)\. The bundle TP' can be compactified by adding a section at infinity, which
means considering the injection of TP! into the projectivization P(TP' @ @) (a

holomorphic P!-fibre bundle over P).
LEMMA 4.1. P(O(2)®0(0)) — P? 1s the only fibrewise compactification of TP!.

Proor. A fibrewise compactification of Op (2) is a rational ruled surface. Since
all rational ruled surfaces (strictly speaking, relatively minimal models) are of the
form §; = P(O(j) ® O(0)) — P! for j > 0 [GriHa,p.514], it suffices to rule out
the other possibilities. If j > 3, then S; has no section with self-intersection less
than j except the section at infinity which has self-intersection ~j, so O(2), whose
sections have self-intersection two cannot be embedded. For j = 0,1, assume that
TP! could be embedded into Sj, then S; \ TP! would be a section which does not
intersect the images of the sections of TP!, which would have self-intersection two,
but the only sections with self-intersection two are sections with two (j = 0) or one
(j = 1) pole(s) which intersect all other sections (including the infinity section), so

there can be no such embedding. O

Meromorphic sections (s) of TP! give all the holomorphic sections of TP ([s,1]
in projective coordinates), except the section at infinity ([1,0]). We will use the
following notation for curves on TP!:

Py =77 () € P!) = a pfibre (silent p)
Co = {(}[0,1])} = zero section of TP!
, (22)
Coo = {(M[1,0])} = infinity section of TP*
Cn:s = {(’\s [3(’\)5 1])} .

If Y= (a, b, C) € 63, we will also write Cy for Cn:%(a—%a\-—-c,\"’)'



CHAPTER 11

THE BUNDLE

In this chapter we assume (V,®) comes from a uniton in the way specified in

Chapter I.

1. Adapted Coordinates

Dual to stereographic projection is the embedding P! «s R3:

,-(A+Z\ A= 1—AJ\) (L1)

Sl Sy Uatranpy e gy

alternatively, P! — C x R:

: ( 2 1—AX
A =, = .
T4+ A0 1+ AN

Using this inclusion we get an exact sequence of (real) bundles over P':

0— TP & TR?|,, 2 P' xR® = Np — 0,

where Npt is the normal bundle of the embedding, and

; (i>___2__3__2_?33__?__2__5\_?.
“\ON) T (T4+AX)20z (140202 T(1+ ANzt
. (8 X9 2 9 A9
o (5) - "2(1+A,‘\)2$ T Aoz "2(1+ AN)Z Ot

The isomorphism R® x P! = TP! @ Np: suggests that we find adapted coordinates
to replace z, z, t on R3. The fibre coordinate of TP @ Npr — TP! (a trivial

real line bundle) we choose will be the one associated with the canonical section

12
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Ac-i[0,1]

=1

FIG.1. The embedding of {\ € Sz} in R? induces, for all A, a splitting
of T,R? into the tangent plane and the normal line. The standard real
tangent vectors to A € C push forward to basis vectors on the plane to
which we associate the coordinate 7; the coordinate u is uniquely associ-
ated to the unit outward normal, and parametrises lines in the direction
u. The n coordinate is not well defined at the south pole, because the
bundle TP! & ((2) has a double twist, whereas the coordinate u extends

to all values of A.

(A i(A) € P! x R3, where ¢ is the embedding. We will call this coordinate u, and

ni«( %) gives us the fibre coordinate of TP! — P!. For convenience, we write out:

2 —2)2 20

z WEA)E TEAF A% | [

- —23 2 23 M

2= Gz TFa%? 1+A% 7 |, and (1.2)

t —2X —22 1=A% U

OFA07  [@FAN?  1FAX

7 1/2 —A2/2 = z
gl=1_-X/2 1/2 =2 ) z
u MAFA) MI+AN) Q-a0)/a+an/ e

Remark that 7 = 1(z — 2\t — A2), 7 = 1(Z — 2Xt — X?2), and restricted to the

29—22% - _ —2X%3424 n=1 A+AN (A2 - 1 (A+AN(A2z+3)
0Fa2 2= Az 2 1= 27 1o 1= 277 1

(away from {|A| = 1}).

plane {u =0}, z =

Recall that two antiholomorphic involutions are involved in our construction, 7
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and o. They both come from involutions of 5%; 7 restricting to the antipodal map,
and o restricting to the reflection through the equator |A\| = 1. On TP! they are
given by

A n) = (=1/X, =A%), o*(A,n) = (1/X, =A%) (1.3)

On C? they are given by
™*(a,by¢) = (, b,a), o*(a,b,c)= (¢, =b,a).

We see from these expressions that the two real structures are related to the time
invariance. Real time for one is imaginary time for the other, and real scctions of
one are (complex) time translates of real sections of the other. From this fact and
time invariance it follows that a bundle is trivial on o-real sections ¢ff it is trivial
on 7-real sections. This is enough to rewrite much of the following in terms of one
involution alone, but the relevance of two involutions is somehow a characteristic
of this problem.

The explicit twistor correspondence, associating points of TP to lines in C*, and

points of C? to sections of TP, is

(\m) € TP = {(a, be)eCin = %(a — 2b) - cv)} ,
X (1.4)
(a,b,c) € C* {(n,A) eTP :p= E(a — 2bA — c/\z)} ,

where R® — C° as

(.’E, yst) = (3’ + iyagt’m - zy)
One must check that the definitions of the two involutions are compatible with the
twistor correspondence.

From the change of coordinates calculated above, we can relate the connection

on R3? in the two coordinate systems:

2 =232 -2}
Va (A7 [+A07  ([T+AN7 V.
V. | = —222 2 —2X \vl
T Q40T (1402 (14a0)2 ‘
Ve 2A 23 1-A% v,

I+AM 1424 142
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Although we have not made the distinction, changing the R?® coordinates in a
A dependent way also affects 'z%° Geometrically, this is because vectors on TP!
are Jacobi fields in R® which are not linear. To be precise, we should have used
coordinates A, X, z,%,t and X, X, n,7,u, with A = X. The distinction will be im-
portant when we want to show that the d-operator extends to n € P! in some

neighbourhood of A = 0, because we will need to work with (5, 7, u)-coordinates.
We make use of the fact that if { and y are two choices of coordinates, d{ =

n z
Ady <= £ = A‘a%. We have calculated | 7 | = B (E ) above. It follows

ax y
U
that
, 1 0 0 0 0
E\\, 0 1 0 0 0O g
d = ”
n aB(*\ oB(* JEAE
i BN z ﬁ z B z
U t t i
80

__3_+(_?_f\_7-_u)ﬁ+L 9
v TA\a+"

So an element of the kernel of the three operators ¥V, —i®, Vg, a% is also in the

kernel of

def O 26 ) 2 ;
w=— | —=T - Ai_ - N L .
V¥ = aw ((1 oy ) AT gt )
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In these coordinates, recalling (I1.2.2)

1 0 ;0
- 2\ — —A=
Vy—id T [..A . +2 85+(1 /\/\) +‘7(1+A)(-1 + A4 )]
o2 [0 92 40
Vs = ESHT [ A ER + 75 )\at + (1 4+ N(=AA; + 4:)
8 _a (1.5)
X AA
2 20+A) (o 5y2s T\
Vi = o T @y ((2n = 22%7 + A1 + M)A,

+(229 + 277 — (1 + AN)u)4:).

Sections of the bundle E correspond to simultaneous solutions to these operators.

Roughly speaking, the system has enough solutions if it is involutive (see [Wr]).

LEMMA 1.6. The system

{vu — 4%,V E%} = {V,—i®,V;, V5)

13 involutive iff S is harmonic.

PROOF. A system of differential operators given by gener: :Lto\l.;. : olutwc aff all
Lie brackets of pairs of generating operators lie in the system, i.e. lh thb apa,n of the
generators. Of course any other set of generators is as good, and finding alternative
generators which have vanishing Lie brackets makes things simpler. That said,

remark that

J
:{(1+/\)‘V +)\(V } —z—"z‘ g'l‘(l-’r‘)\)fl;, and an
1 0 1 8 '
2—/\*{ 1+))\)V +(V )}=a—+—'a—t-|-(1+)\ )A

It follows that [V, V,—i®] = 0 iff [& +(1+ )4z, £ = +(1+A71)A4.) = 0, but since
A, and A; do not depend on t, this is the case iff S is harmonic. That the entire

system is involutive follows from the fact that (1.7) does not depend on A. O

In fact, the parametrised system of connections (& +(1+A)Asz, Z+(1+A"1)A:)
having curvature zero can be trivialised over {(},z) € C* x §2}. Uhlenbeck calls

these trivialisations extended solutions.
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2. Compactness

We are interested in extending the bundles from TP! to TP! (TP! compactified
by adding a section at co0). The problem is that V = d + A, which depends on
(A, n,u) € TP! x R, does not have a limit as 7 — oo, In the introduction we stated
that finiteness translates as the extension of the bundle to the compactification of
TP Unfortuna.tely', it is not an easy translation.

We extend the bundle in two stages, first for {0 # A 5 oo}, the ‘nonpolar’ fibres
of TP! — P!, then in neighbourhoods of the poles (i.e. A € {0,00}). The first step
is motivated by the geometry of the problem, the second relies on Sobolev methods
to give the existence of a continuous gauge in which the d-operator is smooth.

If S: P! — G is a uniton, both S(z,y) = S(z,%) and S(&,%) = S(&,§) are

continuous, where # = 1/z etc. In terms of A, this means

A —— A, (2.1)

i.e. A; has a strong vanishing property as z — oo. Writing this out in terms of 2

and y, -
2 _ 2 9
_ Y-t 2ay _
TR T 2 gy Ag, and
—2ay w? — g2

B RN R TR

we see that A, vanishes to order 2 — ¢ at infinity. In geometric terms, it means that
the ‘energy’ of the connection is concentrated around the t-axis in R® (see Fig.2),
so that when the u-axis and the {-axis are not colinear, solutions to V, —7® should
have limits as u« — oo. The limnit as u — oo gives us a natural holomorphic framing
over nonpolar fibres which extends to 7 = 00, giving us the compactification there.

Because {V;, V5,V — i®} is involutive, solutions to this system locally cor-
respond to solutions of {Vy, V5, } restricted to & plane {u = uo} for some ug. As
the figure suggests, away from the poles this makes sense for ug = oo, Near the
poles, however, this doesn’t work, and we choose ug = 0. The transition between

the resulting frames amounts to integrating V, —® from u = 0 to u = co.
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v=t S

7R e

———_
high ehergly region
< > (small valves ore

U= oo

F1G.2. A picture of R? showing the high energy cylinder, and a plane
{u = ug} for some direction A € C*,|\| # 1. From the picture, we would
expect solutions to Vy to extend to 7 = oo, and solutions of V, — ¢®
to extend to u = o0, since in these directions the connection coefficients

decrease rapidly.

2.2 C, trivialisation. We will work over compact sets
Up = {(Am)[1/k S A < kyn| £ &}, (2.3)

with & > 1, and v € S? which we obtain by by compactifying the bundle TP' &R —
TP! fibrewise by adding a section at infinity~this time we are compactifying the R

summand into an S!-bundle summand. Near this section, we will use the coordinate

4 =1/u.
LEMMA 2.4. The three operators
Ve=Va—1®, Vs, and V3
define & smooth operator

V:E) - T(E®(T'U: & TSY))

0nU=UkX{u€.S'1}.
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Proor. We must show that the operators are C'™ on some neighbourhood of

. =0

Va= —u*(Vy —id)

= 581_: - uz%—%-)- [A: + AA;]
9 2(1+ A 1 A
_ 9 14 {_ (1+ A 4.
ot 20 4+AN) | ((p=XDa+AM1+a0))2 77
_ (1+ A2y A_]
(7 = A2n)a+ A1+ X)) 7]

where we have replaced z and Z with their expressions in n,u. The reader may
verify that all the terms are smooth on some neighbourhood of & = 0. That the

other operators are smooth is easier to see, since

4 22
. 0 (1 + AN

Y AE-»
((n — X2 + A1 4+ AX))?

vanishes to order two, as well as being smooth at & = 0, and the coefficients of V;

and Vjx are linear in A, and A;. O

By the existence and uniqueness of solutions to linear ODEs, a solution § on Uy X
{& > 0} extends to Uy, X {|d| < €}, and the solution is differentiable. Alternatively,

if, for § a solution,

Soo(’\a 77) & uh_l}go 5(’\a 1, u)

exists, then over Uy, § — 5o uniformly along with its first derivatives. Furthermure,
since § satisfies V(%15 = 0 on Uy, x {a& # 0} and ||A®||cx = 0 as u — oo on U,
VO] = 8, and consequently soo(}, 7) = (), 7, & = 0) is holomorphic in these
variables.

. We have shown that a solution § on {(A\,n,u) € C* x C x R} has limits as

u— +oo.
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2.5 To eternity and back. Since V, — i® is a connection on {u € S‘} for
each choice of (A,n) € TC* with coordinates (A, n), we may ask what is its mon-
odromy. {Parallel translating a frame around a closed curve is a nonsingular linear

transformation, called the monodromy.)
LEMMA. V, —1® has trivial monodromy around {u € S'}.

GEOMETRIC PROOF. We saw that V3, V,, — i® is equivalent to (I.1.7):

g 1.9
5;_'——245?-1-(14“/\).45
0 1 ¢ -1
g-i"é-/'\"é;-l-(l-l-/\ JA.

away from the points (A = 0, A = co) where (1.1.7) has singularities. Both systems
are ‘underdetermined’, since any solution can be multiplied by any holomorphic
function in 5 to give another solution. The exact function, however, may be fixed by
adding another differential operator to the system. Over {A € C*}, we can add 73%-,
and get a completely integrable system on any fibre {\ = Ag} C TP' xR (M €C),
i.e. a (full) smooth connection on E restricted to a fibre of TP! lce x R — C*, with
zero curvature,

This connection is “ree!” in the sense that it is a connection on the real tangent
space, whereas the operator V; restricted to a fibre of TP! acts on the antiholo-
morphic tangent space of TP!, and not along one real direction in the fibre as a
real connection would. We hesitate to call connections on the real tangent space
real, however, because that word is usually used to describe a connection whose
coefficients lie in some real Lie algebra (u(N)), ¢.e. which lie in a real reduction of
a complex principal bundle.

Since solutions of the augmented system are independent of ¢, we can push
the system down to {(z,E) € R2}; i.c. all solutions to the augmented system are

obtained by pulling back solutions of

5} - %,
(5;+(1+A 1)A2,5§+(1+/\)A5) (2.6)

on R%. We know from Theorem 1.1.9 that (2.6) extends to a curvature-free con-

nection on z, z € S%. Since S? is simply-connected the connection (2.6) has trivial
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monodromy around any circle, in particular circles through the point at infinity
which are the projections of the circles {u € 51} in a fibre of TP! x R — C*. (See
Fig.3.) O

////%©

F1G.3. For a fixed value of A € C*, lines parallel to % in R® are
projected onto lines on R? which are completed as circles on S? tangent

at the point at infinity.

ANALYTIC PROOF. Alternatively, let § be a solution to V, —i®, V(%1 over TC*,

such that lim,_... § = I. The monodromy around S! is then given by

soo()\:n) d__e_f ].1[11 5(/\’%“),

and is holomorphic. In other words, V, —i® is a connection on 5! for each fixed
(A,n) € TC*, so calculate its monodromy by parallel transporting I at # = 0 around
S, It is holomorphic because V, —i® and V{®1)} commute and V(°’1)|{ﬁ=0} =90.

Since V, —¢® is independent of ¢, however, it follows that § is also independent
of ¢; e

1—-2)
5 =~ A — ————— .
3(Am,u) s( N+ At,u 1 A/\t)’

hence s is also independent of t, which means it is constant along one real direction

in the n-plane (i.e. complex line). Since sq is holomorphic, it is constant. Referring
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to Fig.2, we see that that constant is arbitrarily small by considering the integral
along lines arbitrarily distant from the high-energy z = 0 axis. The next lemma

can be used to make this precise. O

2.7 Triviality over nonpolar fibres. Reconsider &, a (parametrised) solution
to the (parametrised) system (2.6). Such solutions are unique up to a choice of
framing at some point in PP!. Let that point be = = 0o and choose the fixed framing
89 = I there. Now let A vary in {1/k < |A| < k}. In terms of the coordinates A, %, u,
this framing is equivalent to the framing § = [ over © = 0. Since the family of
connections on S? is uniformly continuous in ), the resulting solution & (and hence
§) is continuous.

At u = oo, this section extends to n = oo, which defines a (trivial) bundle

structure for E over TP!

c-

The previous lemma tells us that if we trivialise by taking the frame I at u = oo
we can calculate the frame at u —uy by integrating V, —i® down from oo or up from
—o0. Since we will have to relate this bundle structure to one over the poles which
will be defined over the u = 0 slice, we will need to know that for A € C*,|A| # 1,

§ also extends to 1 = oo when u is finite. (See Fig.2.)

LEMMA 2.8. For any such A, and ugy finite,

lim 3(A,7,u0) = oA, m0) =1

L
where ng 18 arbitrary.

PROOF. One has only to integrate V, -- ¢® to infinity in the right direction
(avoiding the high-energy cylinder around the ¢ axis, see Fig, 2):

Let § be the solution with limit I as u — oo. We are given A fixed and without
loss of generality take up = 0. Substituting (2.1) into (1.5) and taking pointwise
matrix norms we get

K

Ay —i®}| < W’

for some constant K depending only on A and max {||A:|l, ||4;]| : z € P'}. We

would like to integrate V, — ¢® either from —oo to ug or from uy to co whichever
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way avoids small values of z. (See Fig.2) We can bound |z| from below by

N | ]
%&W = |1 = A%+ A0+ AN’

= | — X2 4 (ML + AN)u? +223(1 — (A3))pu
> [l min {|A1%,1} + [Auf® + 20AR(1 = [A[*)pu,

where n = (p+14p')), for some real p, p'. So the right direction is sign((1 — (AX)?)p),
and for |n| sufficiently large

K

—id|| <
Ay —i®|| < (Imf2 min {|A[, 1} 4 [Mu|2 + 2|A[2(1 — [A[4)pu)?”

(2.9)

For convenience, we assume sign(1 — (A3)?)p = 1 and drop reference to it from now

on. The set {0 < u < co} is compact, but inconveniently parametrised, so we will

work with
v = arctanu € [0, 7,
and
B 4, —id)
T gy v
Then

I < K(1+u?)
" (Inf? min {{A14, 1) 4 [Auf® 4 2fA(1 — [A[4)pu)?

follows from (2.9). Look again at the condition (V, —i®)s = 0 iff Zss7! = 4, —i®
iff %ss‘l = B,. By definition,

1B

(5(8) ~ s(a))s{a)”*

By(a) = a%}ss_l(a) = lim

b—a b—a
-1 _
= lim s(b)s(a) ]I.
b—a b—a

The function

s(bys{a)~ I 2
_dJd  b=a (CL, b) € [O?W] \A
f(a'a b) = {s’(b)bs(a.)_l a=Dhb

is continuous on the diagonal A = {b~—a =0} since if (a;,b;) is a sequence in
[0, 7] x [0, 7] converging to a point on the diagonal, then either a; # b; and we can

find ¢; 11 (1 £ k,1 £ N) between a; and b; such that

Frrlai b)) = s(bi)s(a;)~! -1 _ s(bi) — ‘S(a")_g(a,-)“1 = &'(ci r)s(a;) 7,

b; — a; b — a;
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by the mean value theorem; or f(a;,b;) = ¢'(h;)s(a;)~!. In either case they have
the same limit.

For |n| sufficiently large, || B.|| = ||f|a]] < €. Since f is continuous on a compact
domain, we can find a & such that ||f|| < 2¢ on a \/2 & neighbourhood of A C [0, 7] x
[0, 7], where § = m/n for some integer. Choosing the sequence {v;} == {0,6, 26, ..., 7},
we see that

s(vi) = s(vi—1} = s(vim1) f(vi-1,v:)(v; — v;)
(with || f(vi—1,v:)}| < 2€) and by induction that
s(vi) — 5(0) = s(0) z Tiy Wiy oo iy
i <da <o <ig <
where 1; = f(vj—_1,v;)(v; — vj-1). So

2 3

lls(ve) = s < s[>+ { Do) + [ Dom ) +...l
i=1 =1 j=1
Zics il )

1= ]
2er
1 —2erw

< IIS(O)II(

—+ 0

<ls(0)Il

as € — 0. So as |n] — o0, ||s(c0) — s(0)}| — O as required. O

Over the fibres, A € C*, the constant frame over u = oo extends in a natural way
to n = co. Over |A] = 1 we define the bundle E over 7 = oo by decreeing that the
constant section extends, although for u finite, § may have bounded discontinuities

approaching 7 = oo in one direction.

2.10 The bundle extends. Since V, —i® defines an analytic operator on R*
for all A € 5%, which in (), 7,u) coordinates has a (locally uniform) limit as n— oo,
the subspace of local frames, given by the kernel of this operator, has the structure
of a locally free sheaf over C—a complex vector bundle. There are several ways
to define a holomorphic structure on a complex bundle. One is to specify a fixed
trivialisation over open sets as a holomorphic one. The constant trivialisation at

u = oo defines the holomorphic structure away from A € {0,00}. Over a general
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set we can also specify a holomorphic structure via a J-operator. Restricted to Py,
Vi and Vi = aif,' + 1 A;d7f’ is an analytic J-operator, which defines a holomorphic

structure on E|p,. We need to do this on an open set.

TC* ={0xhsoo}=U

aDO
W
¥

o} {A=0)

Warning.: This Is & real siice,
not an elliptic curve!

F1G.4. Two pictures of real slices of TP showing the covering,.

To put these structures together, we make use of coordinate patches on TP
Ua = {(An) : A # 00, n] < o0}
Uso = {(A,7) : [A] < 1/2,7 # 0}
0o = {(3,#): 3 # o0, | < o} (2.11)
U = {(A1): Ml < 1/2,7 # 0}
U={(*n):0#X#0c0}=C"xP,

and the following subsets of C:

1}

={l7| <1}, A={]Al<1}. (2.12)

On U we take the constant frame I (= so) over C* x P!, which gives a frame 3§
over {(A,n,u) € C* x C x R} by parallel translation.

On TP, (V3,V3) is an analytic §-operator: a (local) holomorphic frame g is a
solution to g~1A;g¢ +g“1-(.;9—ﬁg =0=g"14;g +g"’13‘?;\~g, equivalently a%gg_l +4; =
0 = &gg™" + Az Such a solution exists locally iff [V, V3] = 0, i.e. iff (V,V5)

defines an operator

VO ¢®(M, E) = C°(M,E @ TOV(M)).
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Let s¢ be such a frame of solutions over Uy and §; over ffg.
Near the infinity section, however, we must work with coordinates (A, 7' = 1/5)

and (A,n' =1 /). On the first patch, the d-operator is given by

_ _ 8 (L4 A+ A 1
V' = - 2 = 3 — — a
" V1= o 2772 = 3E T e A"}
_i_(1+A)(1+AX)2{ A 4 1 A_}
o 2 (=P (=X )R
o a‘?, + BoA: + B4, (2.130)
& 41+ i -

Vi == - ALEY [(n ~ X*M)A: + (A + M7)A:]

B~ (14 M)

2(1 4+ A 7y Af'? A
_9 20+ ('Y —”-MA (2.13D)
O (14 AP [1-A%y/q (1= A7 /n")?
where for simplicity we restrict to the hypersurface v = 0.
Both operators are smooth away from #' = 0, and near ' = 0 are smooth

functions of »', 7' and %'/5’. Since A; and A; are smooth near ' = 0 {(for A € A),
the failure of the coefficients of A; and A: to be continuous or integrable depends
on the relative powers of the n' and n'/7}' factors in a series expansion. The factor
i’ /n" is integrable but not continuous and differentiation introduces a factor of 1/’
which is not even integrable. The operator Vi has this type of discontinuity; V3,
is continuous but its derivative also has an 7'/’ bounded discontinuity.

Since the discontinuity of the d-operator is mild, it is not surprising that we will
be able to find a continuous change to a holomorphic gauge, i.e. a gauge change ¢
such that 0 = A9 = ¢~1Ag + g~1d¢. integrability of the operator, however, is not
enough to assert the existence of such a gauge, since in two complex dimensions

a
e

a _
Pl a ,Jg ldT]' +
is not invertible as a map of the appropriate Sobolev spaces, and we will need to
make use of the structure of the singularity.
On C? the G-operator is not elliptic, but on C it is, and on P! it is even surjective

because its co-kernel is the kernel of its adjoint, &* = *0%, i.e. holomorphic (0,1)

forms, of which there are none. Local invertibility follows from a bump function -
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argument: given a function on a neighbourhood of a point in C, we can always
multiply by a bump function supported on a smaller neighbourhood of the point
resulting in a function which extends to P!. On P!, since 9 is surjective, we can
find a @ primitive, which is also a primitive of the original function on some smaller
neighbourhood of the point. For a complete discussion see [AtBo, 5.1,§14]. By
approaching the smoothing as a parametrised one-dimensional problem, and taking
advantage of the special form of the singularity we will be able to find a continuous
holomorphic gauge. Such gauges do not exist in general for J-operators with the

same integrability but without this particular type of singularity.

Because all the objects we will be dealing with, e.g. B;, are smooth away from
7' = 0, integrability (L%, 7.e. L? integrability of partial derivatives up to order k)
on = x A, and on fibres of = x A — A are equivalent. In fact B; € L3(A X E,gl(N))

can also be seen as a smooth map valued in a function space:
Bi € C°(A, LY(E, gl(V)). (2.14)

By taking the second view of B;, as a smooth function valued in a function space,
we reinterpret the search for a smooth gauge as a parametrised one-complex-
dimensional problem.

The basic tool for proving smoothness is the
SOBOLEV LEMMA. There are inclusions
L3(Z,gl(N)) € C°(Z,gl{N)) and
LA x Z,gl(N)) C C%A x B, gl(N))
which are continuous with respect the Sobolev and supremum norms respectively.

For our purposes, continuity of the inclusions will be very important. See

[GriHa, p86] for a proof.

LEMMA 2.15. The operator P : g — g%,gg‘l can be extended to o smooth

invertible map

P :Ii(E,GL(N,C))y — Li_,(Z,gl(N,C))
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for k > 2, where L( )o, indicates the space of based maps, g(0) = I.
PROOF. P extends to a map of Sobolev spaces because

(1) since Z is compact and L(Z) C CY(Z), we can find a constant such that
lg' || < constllg||' for ¢’ in some neighbourhood of g

(2) LY(R™) is a Banach algebra for k > n/p and L is a topological L}~ module
for 0 < j < k [AtBo,14.5].

(3) %, gives a map LY(C",GL(N,C)) — L _,(C",gl(N,C)) for all k,n.

We can calculate the derivative, DP, of P by expanding

P (go(I+g1)) = 579090 + By 9100 ~ 9190 Fm 9090 + dyolgn);
where ¢4,(g1) is tangent to the zero map (i.e. limg, |0 Lﬂfﬁgl_ll =0),

= P(go) + DP(g0)(g1) + dgo(g1)-

In particular DP(I} = a%,, so we can apply the inverse function theorem for Banach
spaces [La, [.5.1] to get an inverse to P in a neighbourhood of P(I) = 0. In fact we
can get a smooth inverse because P is smooth:

We can verify the existence‘ of higher derivatives for P either by iteratively differ-
entiating P, or by using the chain rule and remarking (a) that 5‘% and m(a,b) = ub
are linear and multilinear respectively and hence both smooth [La, 1.3.12]; and (b)
that g ++ ¢~! is smooth because it’s &*" derivative at ¢ = go is the k-linear map

@* L2(Z,gl(N,C)) — LL(E,gl(V,C)), given by

(G15eens98) = D 96 901095 90095+ 901967
o€ Sk

Note that we have made repeated use of (1) and (2) above. 0O

Unfortunately, 45 ¢ L3_,(C?,gl(N,C)), so we may not conclude immediately
that there is a continuous change of gauge which smooths A;. So we need to look
closer at the singularity.

Looking for a better gauge involves integrating Ay . In theory, we could integrate

it term by term removing the singularity one order at a time, but there is no
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guarantee that such can be done in a generic way for all harmonic maps, since we
do not know the explicit form of A, A;. We are left to integrate their coefficients
By, B, in V5. The coeflicients B; are smooth away from n' = 0 where they have a
bounded discontinuity of the type n'/7%'. We can find integrals (i.e. Cp and C; such
that 52:C; = —B),

NN -y
Co =

92 A2 — ﬁi/n!’
LX)+ AN n' 7
G="""3 ETER Ty e (218)
@A+ AN il
- 2 1— A2 /g’

which are not only continuous at ' = 0, but vanish there, because they look like
n'¢{n'/7'), where ¢ is continuous on a neighbourhood of {z € C: |2| = 1}. We can
use

g=1+CpA: + C14;,

to give A%,défg"lA,-,f g+ g‘laiﬁ, g the same continuity properties (check that the four

terms without a C; factor cancel):

(BoAs + B1As) = g~ (BoA: + BiAs)g + g-l-a%
= ByA: + B1A; + C1By[A;, Ag] + Co B, [A;, Az
—(CoA: + C1A:) (BoA: + B14;)(CoA: + Cr14s)

—BUAE—BIA;=+CD( 9 4. +333A)

& 0z
C BEA--}-B-—(?-A Cod;: + C1A:
+ C 2554 355 4s ~ (Cod: + C1A:)
7 0
—ByA: - B1A; + Gy | By A: + B3 = A:
0z o0z
17 a
+Cl( O“A +B38A):l,
where the terms B, B; arise because == aq # a-' (on u =0)
o _ _26 _ A2(1+,\/\) 0 (1+A5\)2 0 o
57 = o= T a t i eq ez % 2
def,, O
---.Bgag +Baa—§ (mod Bt)
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Jo
singularity
of the type

—
the point A 4
- T smooti
the lbre — points
7! ()

A

A-

F1g.5. A function, f, on E x A defines a map from A to the space of
functions on E by assigning to A the restriction to the fibre f{s,y:a=20)-

L?-integrability on = x A is governed by L%-integrability on fibres.

We can ignore the % terms because the connection coefficients are independent of

t.
Since each (persistant) term contains a factor Cj, A7, vanishes on ' = 0, and

is continuous. Because a%,C,— = Bj, aiﬂ,A%, is bounded but discontinuous, we see

that Af-,, € L} (U, gl(N,C)), in fact

LEMMA 2.17. The map
.A%, A — Li(Z,gl(N,C))

such that

AL (N)('o) = AL (M 7'o)
is smooth.

PROOF. We have to show (1) that the function A%, [x=, and its first ', 7' deriva-

tives, are square integrable, for all Ag € A, and (2) that a—fi\p%qA%. exist and are

in L2 for all p and .
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(1) Since

1 0

Al =g Agg+ g™ a7

is smooth away from n' = 0, and has a singularity of type n'¢(n'/7j') there, its first
derivatives in 7' or 7' may have a bounded discontinuity, which doesn’t effect the
finiteness of the L? norm. In fact, we can multiply A%, by the complement of a
bump function of arbitrarily small mass concentrated at 7' = 0, and find that the
map A%, : A — LY(E, gl(N,C)) is continuous.

(2) Since A, is smooth on {#’ # 0} we can take the A derivatives of AJ, pointwise,
i.e. when 5’ # 0

arar

g : 078" g
o 3% A = 55 25 ALlGenr)-

Examining the terms of A%, one at 2 time, we find that all partials are continuous.

For example,

ic AN 2MIH NN -y
oM 0= 2 1\2—?’]'/17’
LA+ A+ M =g (N = 7' /') + 2027/
2 (A2 =77 [n')? ’
_a_c (12N 4231 4+ M) (1 +AX) 7'
ax -t 2 X2(1 — N2t ')

Since all its partials exist and are coni;inuous, AL+ A — LE,gl(N,C)), is

smooth. O

Now we can exploit the fact that P has a smooth inverse. As a result,
§=P o AS : A — Lj(E,GL(N,C))

is a smooth map, and P(§) = A},. Composing with the continuous Sobolev embed-
ding L2 — C?, we see that § is a continuous change of gauge over U, such that
the 7'-operator in this gauge is trivial, i.e. A%? =0, and Af-'\ﬁ =§ 1 ALG+ 5! a%g

is continuous (all its ingredients are).
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Since 0 = [V3,Vy] = [aA + AA , 6,.,], it follows that A is meromorphic in '—
holomorphic, as it is continuous. Using the fact that A?\Q is smooth near {|3'| = 1},

and differentiating the Cauchy integral:

gt BIA 5\ )= / (ai%Agy(/\n)
)1
87) B\ a\ ¢ ]0 I |=1 (77 -1 O)J

we see that A?\g is smooth on {|#'| < 1}. We can then find a smooth change of

U

gauge § such that A’E\g 9 =0= A%.ﬁg. Then, sood=°fg§§ is the required holomorphic
trivialisation over Uy,.

Transition functions are now given by Ty = s5 15, Too = s215, Tooe = S3. s0.
By construction, a-T =0= a 1T, so they are holomorphic transition matrices.
They are nonsingular because the corresponding frames were constructed to be

nonsingular.

A similar construction works over the south pole.

3. Triviality over the co-section

Over nonpolar fibres, U{Py : A € C*}, we defined a holomorphic framing of E

associated to the framing f of E, such that

lim f=L

g
The smoothability of the J-operator away from the equator |A| = 1 tells us that
we can find holomorphic framings of E in neighbourhoods of (A = 0,7 = o0) and
(5\ = 0,7 = oco) which correspond to continuous framings fo and feo of E over the
appropriate regions of P! x R®. Since away from the equator limy—co Vi = 3% on
every plane u =constant, limy,_.cc fo is holomorphic in A in the usual sense, so we
can assume that lim, fo = I, We make a similar assumption about f.x,.

The transition matrices are just f~!fy and fZ! F, which don't depend on u

because f, fy and foo all solve V, — i®. Since

lim fo =1, lim fo =1L, and
=-ro0

n—c0
. # Lemma 2.8 ,.
lim f7 = m =1,
=00 H— 00

the bundle E is trivial when restricted to C's
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4, Time Invariance

Time translation (z,t) — (z,t9+1) induces a one-parameter group of transforma-
tions of TP!. In coordinates, (A, 1) — (A,7—tA). The coefficients A., A; and hence
(V,®) are independent of ¢. Another way of saying this is that they are invariant
under the group of translations of ¢. So the space of solutions to V, —i®,V3, V5,
is invariant under time translation.

On TP!, the space of oriented geodesics in R®, time translation acts by (A, 7) 3

(A, —tX). The geodesic itself is shifted with respect to the geodesic parameter u,

5 +1-—-/\3\t
U — U =L,
L4 A

So a solution 3(A,7n,u) such that (V, —i®)5 = 0 = V3§ = V3§ generates a family

of solutions

L
&M ) = 5007+ Myu = = ;\\;_\\t).

And the map §, : § — §,, is a bundle isomorphism lifting &;. Since

lim A=0= lim @,

Su=00 IO
the bundle map is just the identity over the section at infinity. One can also see
this by remarking that the section which comes from the constant frame at infinity
is preserved by the time-translation map. We will see that the specification of this

map encodes the time-independence of the uniton.

5. The Real Structure

As remarked in the introduction, in adapting Hitchin's construction, there is
some ambignity as to the real structure. On C* one thinks of the real structure
literally as a real slice: a three dimensional subspace of the real six dimensional C3,
which as a set spans the compler three dimensional C*. Any such set is the fixed
set of an antilinear involution—the real structure. The R?® of Hitchin’s original
construction is the standard real slice of standard C* (with conjugation as the real
structure). Conjugation, however, is not the appropriate real structure for our

purposes. But R® is still an snvariant set of the appropriate real structure:

o*(z,y,t) = (&7, ~F = i~ 14t).
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So when our real structure acts on £ — R3 it not only conjugates the fibres, but

reflects R® in the = — y plane.

5.1 On the principal bundle. One way to understand how the real structure
on E arises is to work with frames rather than sections. This is because the real
structure on £ comes from the real structure on the complex group (GL(N) in our
case), which induces a real structure on the trivial principal bundle of frames of
E over R3. The real structure fixes a real subgroup, and is X — (X*)™! in the
case of U(NN), which is both an involution and antiholomorphic with respect to the

natural complex structure of GL(N). A frame of E, either locally, or at a point, is

an invertible solution, f, to

(Vegti 2 4e —1®)f =0. (5.2)
Everything here lives in gl(N), so we can apply the transformation
. ==zt
X— —f-1Xf1

to (5.2) to get a new equation, which since i4,,i®, 4;, A, € u(N), gives

) o 9 N, Faye
(a%+bar-+c-é;+aA$+bAy—cAt—z<I))(f )"t =0.

Pulling back by ¢, and using the fact that 4., A,, A;, ® are independent of £, we
get

(vab%+bi_‘:% - i(I))(g*f)'_l = 0.

o

-

So the real structure on the principal bundle R® x GL(N) induces an antiholomot-
phic involution of the principal bundle of frames of E — TP! which covers ¢ and
which conjugates the natural frames above real sections (i.¢. (frame)(frame)*~!
in a unitary frame). The specific form of this conjugation is important-—other

conjugations correspond to different real groups, i.e. GI(NV,R),U(n, N — n) ete.

5.3 On the vector bundle. Alternatively, we can express the real structure in
terms of F and E*. To avoid any confusion we will use { for conjugate transpose

in this paragraph. A section of F is the same as a section, 3, of E which satisfies
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(Vi —1®0)3 = 0. Similarly, we can identify a section of E*, as a section # of E* such
that 7(3) is constant on A lines, z.e. constant in . In terms of the standard frames

of E and E*, 7(3) is just matrix multiplication. It follows from

il g . 0

0= -a—u'f:(.g) = a?‘ ST "a;g (5.4)
= 25 (A~ i2)3)
d .

= (g7 = F(4u —i8)) - 5

that 7 represents a section of E* iff it satisfies

J. .
3! — (A, —1®) = 0.

Since Az, Ay,1A,;,1® € u(N), this is true iff

0= £~T - (A--a.u + i(I))f-T = %FT + (Ao-ﬂ - z‘I')FT

Since Az, Ay, Ay, ® are t-independent, this is true #ff
a

Oyl

U*FT + (Ag_u - i@)d*i‘vf = 0,

i.e. iff *#! represents a section of E. This defines an antilinear lift :

E &, E*
A A
TPl 2, TP

To invert this second construction in terms of the the dual bundle, we need to fix
coordinates. Fixing a choice of Ag € C* allows us to do this, because we can take
the standard framing of CV at A = g and u = oo, to define a fixed frame of E
over Py, and hence over Co.

Finally, an antiholomorphic isomorphism V — V* is equivalent to a nonde-
generate sesquilinear form on V. (A holomorphic map would give a holomor-
phic metric.) As such, we have a well-defined notion of signature. In our case,
o fixes {(A\,%):|Al = 1,7 € {0,00}} and other points as well. At a fixed point
(A eta), 6 : Ejy ) — El?&u) reduces to r — rf - _, in terms of dual frames, and

&(r)r =»Tr 2 0 implies & is positive definite.
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Since we will show that given either of these real structures on E, we can get

back the reality of V and @, the two real structures are equivalent.

6. Framing

Finally, let p be any fixed point of ¢ contained in P_;. We take as the framing
above this point the solution to (V, —i®)¢ = 0 along the line p C R® with
lim ¢ =1

U==00

Since p is fixed by ¢, the real structure X — X*~! takes solutions of ¥V, —i® along

p to solutions, and maps our particular solution to itself. Since E|p_, is trivial,
HY(P_,, Fr(E)) =2, Fr(E,)
is an isomorphism. This defines the ‘unitary’ framing
¢ € H'(P-1, Fr(E))

of the definition.



CHAPTER lII

GETTING BACK THE UNITON

Given a holomorphic bundle on TP!, trivial over real sections, the section at
infinity, and fibres Py : 0 £ ) # oo with a (fixed) bundle isomorphism lifting time
translation, which is the identity over the section at infinity and one of the two real
structures, we would now like to construct a uniton. From Chapter I we know it
suffices to construct a solution to the Bogomolny equations, independent, of ¢, which
extends to z = oco. Hitchin has already explained how bundles on TP? give solutions
to the Bogomolny equations over R®. For independence of ¢t and extendability to
z = oo we need to use the additional structure. Extendability to z = oo, not
surprisingly, results from the extendability to a trivial bundle over the section at

infinity. Time independence results from the lifting of §;, time translatior.-

FiG.6. The conic @ showing (a) a section of TP!, (b) the singular
point at infinity and (c) a fibre.
1. TP! as a conic
As a preliminary step, we show that TP can be embedded into P as the non-

37
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singular subset of a conic. Consider the conic @ given in homogenous coordinates

@, 3,7,6 on P? by B = —4ay. This conic has a singular point at [0,0,0,1]. Now
consider the map f: TP! — @ given by

(A7) = [1,-24, =2, =2y] = [a, 8,7, §] (1.1)
(X,3) ~ [=32,23,1, 23,

The map f extends to a rational map on TP! mapping the section at infinity to
the singular point. Since the bundle is trivial over the section at infinity, when
we collapse this section the bundle descends to another bundle f,E on Q. More

precisely,

LEMMA 1.2. Pull-back of bundles (E' — f*E') from Q back to TP! is an iso-

morphism onto the set of bundles on ﬁl, trivial over the section at infinity, Cu.

PRrRoOF. Pullback of bundles is injective. (Push forward is a left inverse of pull
back.) We only have to show it is surjective—that every bundle trivial on Cq is
the pullback of a bundle on Q. Let E" — TP! be trivial on Ceo. Away from Ceo, f
is bijective, so E" pushes forward to a bundle on @ away from the singular point.
We shall use the Theorem on Formal Functions to push forward a trivialisation of
E" in a neighbourhood of Cy to a trivialisation of f, E” in a neighbourhood of the
singular point f,(Cw). So fxE" is a bundle (a locally trivial sheaf) whose image is
E", proving surjectivity.

Locally, the section at infinity, C'e, looks like the zero section of Opi (—2). Given
local coordinates (A, 7'), and (A = 1/A\, 7' = A%y} on O(—2), a transition matrix

for E" is given over the intersection, {\ € C*}, as

I+7'(6() A '),

where ¢ is a polynomial matrix. Since ' = A\%', we can express this in terms of

two polynomials as

T+7'(¢' (M ') + 8" (4, 7))
=L+ 7¢' (0 7))+ 526"(A, 1),
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but not uniquely, as ' = 5\27}’ etc. We can use this property to show inductively
that the bundle must be trivial on all formal neighbourhoods of Ceus, by showing
that such a transition matrix in C'I(C'c(,g),GL(N ), for any k > 0, is actually a
coboundary, splitting as a product of holomorphic changes of gauge, 1.e. it is the
image of something in C”(Cc(,g), GL{N)).

(k—1)

A bundle is trivial on the (k—1)st formal neighbourhood, C5;™ ", iff its transition

matrix has the form

I+7'%(¢)

in some gauge. Using the fact that ¢ can be split as ¢ = &'(A,n') + ¢"(},#'), we

can make a change of gauge:

(I[__ ??lkqbr)(]l +- nlk(él + QSN))(H _ ﬁlkj\qubH)
=]+ 1]'2k(¢'¢" . ¢;(¢r + ¢H) _ é"(qsf + ¢H))’

Ek-1  Tnductively, we get a trivialisation of E"(¥),

showing that it is trivial on C
which is the same as 2 maximal rank section of Hom(E®N, ") over the k'" for-
mal neighbourhood (Cgf)), for k arbitrarily large. Now the Theorem on Formal

Functions {Ha, II1.11.1] says that
FeHom(EBN  E") 004 =, Ii_anHO(C'ég),Hom(S@N,E”)).

We have shown that the RHS has a maximal rank element. The LHS is the set
of all sections of Hom(E®YN, E") on a neighbourhood of £71([0,0,0,1]) = Ces, up
to formal equivalence, i.e. germs of sections. It must contain an element corre-
sponding to the maximal-rank element of the RHS. That element is a section on
some neighbourhood of the section at infinity which is nondegenerate on the infinity
section. Since the determinant function is continuous, it must be nondegenerate
on some neighbourhood where it gives a trivialisation. This trivialisation pushes
forward to give a trivialisation of fxE" in a neighbourhood of the singular point,

so in particular, f,E" is a bundle. O

The same construction would work with any bundle trivial over a rational curve

of negative self-intersection embedded in a surface, because the splifﬁing of ¢ would
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go through. A theorem of Castelnuovo tells us that the new surface will be smooth

iff the curve has self-intersection —1, in which case we are just blowing down (see

[Ha, Theorem V.5.7]).

The point of this construction, is that it tells us what happens to deforied real
sections in the limit (as #— oo, for example). A hyperplanein P?, aa+8b+vyc+6d =

0, restricted to 7 can be written
ao —2Mba — Nac—ad =0 or — Nya+ 23yb+ yezipyd = 0.

When d # 0, we can use affine coordinates a/d, b/d, ¢/d or just restrict to the plane
d =1 and to pull back these sections to TP! we restrict to the affine plane {o = 1}

(see (1.1)). In TP! coordinates, the hyperplane section (a,d,¢,1) is
1 2
N = 3(a — 2bX — €A*),

a holomorphic section of TP

But what about the P? of hyperplanes with d = 0? From Fig. 6, we can see that
these are just the hyperplanes which include the singular point. Such intersections
solve ac+bfB+cy = 0 and —4ay = 82, so they solve a®a? +(2uc+4b*)ay+c*+* = 0.
When 5% + ac = 0 or b = 0 the solution is a double line. In general we get two lines

intersecting in the pinch point:

a’a + (ac + 20 £ 2bv/ac + bz) v =0,

a’bf = (—azc + ac + 20 £ 2by/ac + b2) .
So the correct way to complete the set of holomorphic sections of TP! is not by
adding a section at infinity (which, it turns out, is not a holomorphic section of

TP! — P') but by adding a P? worth of closed subvarieties of TP!, given by the -

union of the section at infinity and two fibres with multiplicity.

2. Compact Twistor Fibration

Let X ¢ P3xP3" be the variety cut out by 2 +4a~y = 0 and aa+bF+cy+dé = 0,

where a, b, ¢, d are homogeneous coordinates on the space of hyperplane sections of



2. COMPACT TWISTOR FIBRATION 41

FI¢.7. The embedding of TP! — Q C P?® maps the section at infinity
to a singular point. Hyperplane sections of @ pull back to sections, Cy,

of TP?, or to unions Py, U Co U Py, if they contain the singular point.

P?, P3* = P2, The double (twistor) fibration

X
™/ N\ T2 (2.1)
TP! ey Q P — 3
allows us to define a bundle over
Y = {y € P*: Ely, is trivial}. (2.2)

Pull back the bundle E to X, and push it forward to a sheaf over ¥ with stalks
E|, = H(X,,E). By definition, H*(X,, E) has constant dimension over Y. This
is not true for X\Y. In the following y will be assumed to be in Y. Since the bundle
E restricted to real sections of TP?, given by {y = (¢,b,¢,1) : b = b,a = —&}; the
section at infinity; and fibres over 0 # A # oo, is trivial, ¥ contains a neighbourhood

of this set.

That E is in fact a bundle, i.e. locally trivial, follows from a

T}{EU‘R'_EM (GRAUERT) [Ha, II1.12.9]. Let f : X — Y be a projective morphism
of Noetherian schemes with Y integral, and let E be a coherent sheaf on X, flat
over Y. Then if hi(y, E) is constant on Y, for some i, R fu(E) is locally free on

Y, and for every y the natural map

Rf.(E) ® k(y) — H'(X,, Ey)
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s an tsomnorphism.

Both X and Y are varieties over C, and hence integral Noetherian schemes [Ha,
I1.3.2.1]. A map f : X — Y of schemes is projective if it factors through the
projection Py — Y. Over C, P"y = P* x Y, so f is projective by definition. Since
E 1s a bundle, it is locally trivial, not just coherent. If we can show that F is flat
over Y, then we will have shown Eis locally trivial (a vector bundle), since Y is
included in the set on which h%(y, E) is constant.

Flatness is a transitive property, and (X, E) — (X,0Ox) is flat [Ha, I11.9.2).
Theorem [Ha, 111.9.9] says that (X,Ox) — (Y, Oy) is flat iff

P,(m) = dimg H*(X,, Oy, (m))

is independent of y € ¥ for m » 0. We can compute Py(m) from the long exact

homology sequence associated to the embedding X, C P*
0= Op(~Xy) = Op = Ox, = 0. (2.3)

Since @ is cut out by a quadric, X, = @ Ny is also a quadric in P? (of degree two)
and Op(—X,) = Op(—2). Plug this into the long exact sequence associated to
(2.3
0— HO(Pza O]pz(m - 2)) - Ho(ﬂﬂa (D]I*"2 (m)) - HU(Xya o;\'y (m))
o HY(B, Opa(m — 2)) — H (B2, Ops (m)) — H1(X,, Ox, (m)).

According to Theorem B, for some suitably large po, HY(M,O(H" @ E)) =0, for
all ¢ > 0, and g > po. In particular, H'(Opz(m — 2)) = 0 for m > my, hence

r*(Ox,(m)) = h*(Op(m)) — k*(Opz (m — 2))

which is independent of y.

We now have a way of getting back from a bundle on TP! to a holomorphic bundle
on Y. One may well wonder how constructing a holomorphic bundle over a complex
domain of unknown shape cai be seen as ‘getting back’ to a uniton, which we saw

was equivalent to a real connection on a trivialised bundle over $2 x R. In fact,
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YR projects onto S x R, and the bundle over ¥ will turn out to be trivial there.
To define the connection, however, we will employ algebro-geometric machinery,
hence the complexification. Real structures (antiholomorphic involutions) on C?
can be encoded as a choice of holomorphic coordinates, for example on C* NY take
T = a+e,y = i{a—c),t = b, with iespect to which the involution is just conjugation.
A holomorphic bundle is given by holomorphic sections/transition matrices in these
coordinates; forgetting that they are complex-valued, we get a real-analytic bundle

on R3. The saine is true for metrics, connections etc.

3. The Connection and Higgs’ Field

The construction of the connection ¥V from Chapter I also defines a connectior
on Y. The trouble is that we want a connection on 5% x R, or §2, but Yg cannot
contain any such set since $? is not the real slice of any complex variety. We must

show that we can still push V down by a map Yp — S? x R.

3.1 The set Y. To summarise what we know about Y

(1) Finite real points are in ¥: {[a,4,8,1] € CC CP*:a € C, be R} =fix(r)N
C? C Y since E is trivial on 7-real sections of TP!. (In fact t-invariance of
E implies fix(¢) C {[e,b,&,1]: a,b € C} C Y, as well.)

(2) For infinite points, we know precisely that

¥ NP?*,, o = {hyperplane sections which contain neither Py nor Pa}
_ {0, X2) eCF x C)
= (A1, A2) ~ (A2, A1)
= {[a,b,¢,0} € P**1\ oo : ac # 0}

=~ P2\ (P! v PY).

By virtue of our choice of C* C P3*, we know that the P? at infinity is the set of
hyperplane sections of @ through the singular point. Furthermore, any two such
hyperplane sections either have a line in common or meet only at the singular point.
From either definition of the connection, it's clear that the evaluation at the singular
point gives a covariant constant frame of E over Y N P2*,¢ 0o- This is exactly the

property which allows us to push the connection down to S2.
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3.2 Real Points. We know that finite real points are in ¥'. We must caleu-
late the infinite ones. The involution 7 acts on P3* by 7(a,b,c,d} = (&,b,a,d),

so the real points of ¥ N P%*,, « are {{a,t,a,0]}, which we can also think of as

{(/\, A e ]P’l} / ~. Either way, we see that
YR n RPazt*oo = RP2 \ {[pt]} )

the Moebius strip. So
Ye = RP°\ {[pt]}. (3.3)

We can similarly calculate the level set

Yen{t=0} = RIn{t=0} U (RPE\{[pt]})Nn {t =0}
= R? U {[a,0,a,0] : a # 0} ‘n
— R2 U Sl ("'4)
= RP?

3.5 Pushing down the connection. Let
m:RP? - §°

be the real blow-down of the circle at infinity in R P? to the infinite point in S2.

We push the connection down by pushing down covariant constant frames along
lines. This can be done if the inverse images of points are trivialised by covariant
constant frames, which is true in our case because evaluation at the pinch point of
@ gives such a frame over the circle at infinity.

It will follow from the proof of t-invariance of (V,®) on R? that the extension
of the connection from R? to S? implies the extension of (V, &) from R® to §2 x R.
Specifically, we know from the discussion of the Bogomolny normalisation following
(L.2.2) that we can put any #-invariant pair {V, ®) satisfying the Bogomolny equa-
tions on R? into the form 4; = —i4y, ® = iA,, so that the finiteness of A, and A,
at infinity certainly imply the finiteness of A, and ®.

REMARK 3.6. It is interesting to note the parallel with the proof of compactifi-
cation in the last chapter. The point (z,%,t) on R® pulls back to [2,1t,2,1] € P?,

The former can be thought of as a coordinate patch on §? x R, which is covered

&
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by two patches, the other one in terms of # rather than z. Thinking of them as
complex numbers, (z,#,1) also give coordinates on a patch of P?, but if we try to
compute the transition to the other patch (in terms of homogenous coordinates) we
get

[2,it, 2,1] = [1/4,4t, 2, 1] = (1,45, 2/ %, 3].
The ‘coordinate’ 3/7 corresponds to the real S? at infinity which appeared as the

singularity type on the @ operator when we tried to extend it to TP

4. Choosing a trivialisation of & —» Y

Let Ag = —1. The bundle E is trivial over the fibre Py, C ﬁl, so evaluation
at any point gives an isomorphism of HY(Py,, E) with C¥. Fix the isomorphism

coming from evaluation at (Ag,00). We get a map £ — CV, defined on fibres by

EII = HG(CIJ!E) %" HD(C?J U Py, E)

fixed framing ¢

Lowt

=5 HY(Pyy, B) » CN, (4.1)

where we use the canonical isomorphisms coming from restriction. This is well
defined because, y is either a finite point (a section of TP!) and intersects Py, in a
point, or it is infinite in which case it meets the fibre at one point or on the whole
fibre, in which case evaluation at any point of the fibre gives the same answer, again

because E is trivial there. This map gives a trivialisation

- P
E -2, CVxY

l l

Y —— Y
id

The value of this trivialisation is that in this framing the translation action &,

ifts to idx &,:
Esy = H'(8:Cy, B) =2 Es,c,0p, —e H(Ps,, E) =CV

| i | [ 5=t

.Ey:HO(Cy!E) '%al’ Ecynpy *—E'LL HO(PM:E)=CN
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The fact that the last é; is the identity comes froxh the fact that 8, fixes the bundle
over the section at infinity, and hence must fix the bundle over non-polar fibres of
TP! (over which the bundle is trivial). Note that Y is a time-translation indepen-
dent set, because isomorphic bundles over P! have the same splitting type.

It’s not hard to see that if E — TP! was constructed from a uniton as in the last

chapter, then we have just reconstructed the original framing of the trivial bundle

CN.

5. Time Invariance of V and @

The connection V was constructed by considering flat frames along null sections.
Consider again the flat frame given by evaluation at (Ag,79), which defines a con-
nection on a null plane through y. Translating by ¢, we get a null plane through
y + t: the sections of TP! through (Ao, %0 + 2Xet) (plus the special sections which
include Py,). By definition, the flat frame is carried by é; into another flat frame.

Specifically, a flat frame over II, is given as the inverse image of a frame f,
f € E(ha,m0) &= H'(Cy, E) = E,.

Since 1 )
E(\o,m0) +——— H(Cy,E)=E,

a,l 5,1
al -
E(Xo,m0 — thg) +——— H%(Cysy, E) = Eyy
commutes, flat frames are sent to flat frames. Hence the null connections are
invariant under 5;,. Now V and ® are defined in terms of these connections, so

they must perforce also be invariant. In terms of the special trivialisation, ¥, the

connection matrices and the matrix representing @ are independent of ¢.

6. Reality

It is sufficient to show that the constructed connection and Higgs field satisfy
our reality condition on a dense subset of Y. For simplicity we choose to work on
¥ NCP. We can also assume that E comes from (E, V,®) which are independent

of time. It remains to show that they are real given either real structure on E.
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6.1 Principal bundle reality. We first assume that the principal bundle of
. frames of E comes with a fixed antiholomorphic involution, &, lifting o which is
given in a unitary frame as X + X'~! on the fibres of fix(¢). As was true for &,

and F, & induces a map on the bundle of frames of £, Fr(E) 2 GL(N):
Fr(Ey) = H(Cy, Fr(E)) & H%(Cyyy, Fr(E)) = Fr(Eqy),

which acts on a moving frame, f(y) € HY(Cy, Fr(E)), by f +— & o f o 5, giving
another moving frame f' € H°(Cy(yy, Fr(E)). If f is holomorphic, so is its image,
which is the composition of one holomorphic and two antiholomorphic maps. The
same argument as for oy holds, and shows that & pulls back constant frames of the
null connection on II to constant frames of the null connection on ¢II, and hence
the null connections back to corresponding null connections.

In particular, if o(y) = y, then a frame f gets sent to &(f) where 5(f)|, = (_fz-,jt_1

in any unitary basis. So if f is a covariant constant frame for V = d+ A4 in direction

X, then &(f) is covariant constant for V in direction o(X) so

. Ax|y = if'f“l

ox v
Ayirly = =—oi(f) - 5(f)
cr(X)ly"' ao.(x)a(f)a(f) .
_ 8
- 8a(X)(f) ft v
_ g
_ _ ft-1
-9
B E)a(X)f ! Y
- ‘40(Xt y
Since o(Z) = Z, a(-é%) = -a%- and o(£) = — £ (see (1.3)) we have

Ax = "“.‘1::, Ay —_ _.2!_.;, At = 4‘-1:-

Reality for & either follows from ¢ invariance (as it implied the extension of ® to
. $?) or directly:
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Since 2@6% = 1(Vn — V), and @ is independent cf the null plane II, we might

as well take o(II) = II, i.e. II) for A = 1 in the notation of section 3.5, then
8 L

3% — — 5> and

~2i(y) 5 = (V1 = Vo],

0
=~ (Vv

0

= —Qi(i’('y)t%,

i.e. ® = ® as required. To sum up,
Az, Ay, 1A, i® € u(N).

6.2 Vector bundle reality. If, however, we choose to work with the real struc-
ture which maps the bundle to its dual, we need to do a bit more work. In the same
way that we constructed V and @, we can construct a connection and Higgs field on
the dual bundle E* (both bundles are the trivial CV¥ bundle, but the connections
are different). We know how to trivialise E, and since E and B* are trivial on the
same sets, taking a dual frame to the fixed frame of E at A = —1, and 5 = o0, and
using it to define a frame for E* in the same way that we defined the framing of
E, we get dual frames over an open subset of C* containing R®.

By their very definition, the null-connections Vi and V{** are dual to each
other: the flat sections of E and E4"®! given by evaluation at a point (of fﬁl&’]) are
dual to each other iff the frames of E and E"% at the point are. If r and s arc

coordinates of flat frames along X, given in terms of dual frames of E4"* and E ,

g, ,,,_ 0.,
0= 55(1"s) = 55 (r(s)
=ﬁv's+rﬁs

= (—T'Ag{““l)s +r(—Axs)
— Adual = -—At.

Recall that & was constructed in the original frame of E as conjugate transpose

followed by pull-back by o. Above the point p = (A = —1,75 = oc), the constructed
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& also was given by conjugate transpose (with respect to a framing of E|, and its
dual on E44¥|c ). Conversely, a & with this property induces & : E « Eval which
is conjugate transpose with respect to the coordinates associated to the fixed frame
at p. Finally, the form (v,w) +— &(v)(w) is positive definite on E iff it is so on E|,
since rank, signature and nullity are continuous.

We defined null connections in terms of flat frames coming from evaluation of
HY(Cy, E) at a point—the null planes consisting of those sections which intersected
the chosen point, The involution ¢ acts on those points, which induces an action
on the corresponding null-planes and flat frames. The involution & also acts on
E and hence on frames of E over a point, sending them to frames of E4"¥ over
the conjugate point. This in turn induces an action on flat frames over conjugate
null planes, so that if Vr = 0, then V§'3(& or o0 ¢) = 0, which holds as well for
Vi + V. and V‘I'I'”" + Vﬂ‘ff‘l. This pives a convenient way of calculating A and
Adual,
aé;{ pp 1

A%l — (5 50 00)7?
4l = (Foroo)” o

-y 0
=c" ((1"‘) laa*XTT)

Ay =

(oroa)

since A, 49" are t-independent. (Note that at the second line, we use the fact
that an involution & is positive definite iff 5(r)s = rts in terms of dual bases.) In
particular, 4,,4,,74,; € u(N). To show i® € u(N), recall that 2i®dy = Vi~ V1,
but that @ is independent of the null-plane II. Choose II such that ;% is in the
z — y-plane. Then as above we find ®44* = —®, and 2;@du! = (2iP)1,

To sum up, we have proven

THEOREM A. The space of bused unitons, U(N)*, is isomorphic to the space of

rank N unston bundles.



CHAPTER IV

WARD’S CONSTRUCTION AND WOOD’S CONJECTURE

We are now ready to describe the link with the construction of Ward. The value
of this is that Ward’s construction involves only the factoring of a transition matrix
(¢.e. solving the Riemann-Hilbert problem) and no differential equations. In addi-
tion to its metaphysical significance, this result allows us to affirin the conjecture

of Wood that unitons have rational functions in 2 and y as entries.

1. Ward’s Construction

Let E — TP' be a uniton bundle. Theorem A allows us to assume that E was
constructed from a uniton, S, via (V,®), a solution to the Bogomolny equations.
We are trying to find some intrinsic definition for § on R® x P! which can be
pushed down to TP and interpreted as a construction for S. For this we will need
the extended solution of Uhlenbeck:

Recall that, in Chapter II, to show that the bundle E extended to the compact-
ified fibres of TC*, we made use of a solution § on {(z,%,%,A) € R x C*}, pulled
back from a solution (Ey) of the system D (see (IL.2.5)) on {(z,A) € §2 x C'}.

This extended solution directly encodes the uniton:

THEOREM [UhL2.2]. If S is harmonic and S{oco) = I, then there exists ¢ unique
flat frame Ey : P! — U(N) for Dy with (o) E_; =1, (b) Ey = S, (¢) Ex(c0) = L.

Moreover, E is analytic and holomorphic in A € C*.

In Lemma 1.2.8 we showed that the solution § on R® x C* pushed down to a
trivialisation of E|p¢ which we called the C' trivialisation. Now we will think of

the solution as the expression of the pull back of the trivialisation in terms of the

50
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‘constant’ CV trivialisation.

E\
mICN-triv. +——— 73 Coo-triv.
compare

TC* xR
™/ Ny T2
CN.triv. R3 TC*  Coo-triv.

A point y € R3 corresponds to a real section of TP! and we can push down the CV-
frame over y to a trivialisation of E|g,. Since D_; = (£, ), the pulled-back Ces
and CV trivialisations differ by a constant on {A = —1}, and if the Coo-trivialisation
is chosen to agree with the framing ¢ € H%(P-,, Fr(E)) then the constant is I. So
the trivialisations of E|¢, all agree with the Co trivialisation along P_;. From this
we see that the comparison Ex(z, Z) can be pushed down by 7 to the comparison
at (A, = 1/2(z — A?2)) of the Cy, trivialisation and the CV trivialisation along
Elc, 1,0-

If we choose the two trivialisations to agree with the framing along P_;, then

E, is just the ‘monodromy’ around the cycle of PY’s:

these lines are trivialized

by the C,-trivialization ™

Coo |
Py,
&ffﬂ)
Ex(z) is given by the
comparison of the two \
trivializations here these lines are trivialized

by the C" -trivialization

F1G. 8. Compare the trivialisations at their point of intersection.

To make this precise, what we are calling a ‘monodromy’ is actually the failure to
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commute of a cycle of homomorphisms given by the restriction map:

E.\,oo restr HU (C‘om E) restr E..] oo
restrT ‘[restr
H(Py, E) HY(P_,,E) (1.1)

restrl J’restr

restr

Ex,z/2-at-222/2) = H“(C(:,.;'t),E) — E(~1,2:/241-3/2)

beginning at H°(P-,, E) and going clockwise. The ‘monodromy’ is independent of
the choice of initial value, up to conjugation, as one would expect, since a change
of framing of the bundle acts by conjugation on the uniton. We fix it by computing

the ‘monodromy’ of the fixed frame ¢ € HO(P-,, Fr(E)).
1.2 Transition Functions. Ward’s construction assumes the hundle is given
by a transition matrix, so consider the covering of TP given by
U={AeCyeC},
ﬁ:{iec,ﬁec},
U'={)eC,p' eC},
o ={leciec}.

(1.3)

The bundle E is determined by transition matrices T, T, T' which map fixed frames
of E over U to U, over U to U’, and over U to U’ respectively. Because E has

certain triviality properties, we can choose the fixed frames such that

T e, =1,
T'|p, =1, and (1.4)
Tlp., =1

If the bundle is trivial when restricted to a complex line (P!), then a framing
above a point of the line extends uniquely to a nonvanishing frame on the line,
because in this case evaluation

HO(E’I,QN)ﬂ&CN =N

point —
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is an isomorphism. We will think of this as defining a parallel translation within
the line.

In terms of these frames parallel translation from a point on P (in terms of
the U frame) to a point on P-; (in terms of the U frame) along P; U Coo U P_;
is given by L. Since the bundle is trivial above real sections, we can get a split-
ting of T, i.e. analytic functions H : {(z, zZt)eR3 X € C} — GL(N), and H:
{(2,%,t) € R® X € (F'\ {0})} — GL(X), such that

TH)(z,%,t) = Hy(z,%,1).

Parallel translation from P, N Cy (in terms of the U frame) to P_; N Cy (U frame)

along C| is given by

H_((v)H: (y)™" (= Eily) = S(@v)), (1.5)

which gives the same formula for the uniton as in [Wd3,18]. One must verify that
this doesn’t depend on the choice of splitting.

Finally, we note that Ward actually takes two framings, along P; and P_;. One
framing would be equivalent to the restrictions (1.4). By taking two framings he
does away with the basing condition. This is an important point if one wants
to choose a different type of basing condition (other than S(eo) = I), to encode

Grassmannian solutions, for example.

2. Wood’s Conjecture

Noting that all known examples of unitons were matrices of functions raticnal
in ¢ and y (equivalently z and ), Wood conjectured that this is always the case
([Wo]). While it is true that the Bogomolny solution (V,®) constructed from a

uniton bundle are algebraic objects there is no reason to believe that the integration
S71dS = 2(A.dz + A:d3)

preserves rationality. Continuing S analytically, or equivalently, integrating A, we
can’t even rule out multivaluedness if A is holomorphic on nonsimply-connected

domains.
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The concrete expression (1.5), however, shows that S extends to Y NC? (a Zariski
open set), and using (1.5) and the jumping-line normal form for transition matrices

(see [Hu] and [New] for proofs) we can prove

COROLLARY B. If § : §% — U(N) is a uniton, then the composition with
U(N) — GL(N) is rational, i.e. the functions in z and y which make up the
matriz S € U(N) are rational.

For unitons of ‘simplest type’, we will be able to give an explicit formula for S

in Chapter VI which is obviously rational.

PROOF. Since the solution is t-invariant, we can ignore the third dimension.

We want to show Ex(z,%Z) = H_1(z,2)H(z,Z) is a rational gl(N)-valued func-
tion on {(z,Z) € P x P'}. A function is rational iff it is meromorphic iff it is
meromorphic when restricted to the sets of a covering of P! x P!, and a function
is meromorphic iff its only singularities are poles. Thus we can answer a global
question with a local answer.

Consider the family of open sets

{U::u = {(zaw) € P! x Pz # %o, W ?l: EU}"oE]Pl}.

Any three sets cover P! x P!, Symmetry allows us to consider any one set:

We will prove that S is meromorphic on Uy, which corresponds to our choice
of coordinates on S%2. Working with new coordinates (z,%) — (1/(z — a),1/(z -
@)) amounts to working on the set U,. The functions S agree on the overlap
because analytic continuation is unique, and both the change of coordinates and
the continuation defined by (1.5) are analytic.

The expression (1.5) defines S on R?, but extends just as well to C* with potential
singularities at the jumping lines. To see that they are poles, pull back the transition
matrix T by

¢:C? x P* — TP!
(2,2) x (A) = (A, = z — 22%),
If (z,%,0) represents a jumping line of type (ky < kz <--- < kn) (Le. E|C(,,;,.) o

O(k1) ® --- O(kn)), then we can make a holomorphic change of frame on some
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neighbourhood of the point so that T has the form

Pj —ki—1

T C = Y pa(nEe
. a=—"k;41

zThkN
where pj-a are holomorphic functions. A section of E|, is given by (u?,...,u)!

ul = 3% i such that

a=0

ul

Ty, M| is holomorphic in 1/A,

uN

which puts conditions on {uj}. Expanding the columns of T - v in Laurent series
in ), the conditions come from the coufficients of positive terms in A (A}, ¢ > 0),
which we can see are linear in u;.

In particular, from the last row: z7*¥ 4 must be holomorphic in 1/}, so u¥
must be polynomial in X of degree at most ky. By induction on i — N we see that
w’ is polynomial for all j, although the degree of u is not bounded by k; in general.

Since the remaining coefficient conditions are linear we can write them as a
matrix. We can make a further reduction of that matrix by solving for some of
the coefficients: Remark that the terms uJA*, ¢ > k; figure only in coefficients of
T - u of positive order in A, hence are determined by uJ', with j' > j, and a < k;.
We can solve for them, getting something polynomial in the coefficients of p and .
linear in the coefficients of u. For each such coefficient, we can reduce the matrix
of conditions by one row and one column. We call the resulting matrix, I'(y),
the section matrix. It bas Efil(k,' + 1)* (summing only positive terms) columns,

corresponding to the 3 (k; 4+ 1)* coefficients:

1,1 12 N N N\t
(TS PR T PO 7 A A 7Y A I

and Zfil(—k.- —1)* rows corresponding to coefficients of (T - u); of positive order

less than —&;. The difference

N
#columns - #rows = Z(k; +1) =¢;(E) + N.

1=1 e
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In particular, our section matrix has N more columns than rows. The number of
sections of E|¢, = corankI'(y). Since h*(ON) = N, we see that I'(y) has maximal
rank at non-jumping lines, C,. After possible shuffling of the uf’s, assume that T
has the form

N (-k-0)T N
—

ie=1
—

b
T = r 1

where I" is invertible (and square). Then a moving frame H is given by

h

' . =17
H=1: , where (ul) = (I‘ 1.,,,11‘ ) ,
uN/ :

which is meronorphic in p}a, which are in turn holomorphic in z, # and t.

H=TH

is then also meromorphic in 2, # and ¢, so H~! is meromorphic on C2. It follows
that in a neighbourhood of the point, S = H-'H is meromorphic, hence has only

poles. [



CHAPTER V

MONADS

Now that we have shown that unitons are equivalent to holomorphic bundles over
’_Fl_l"’l, we are in a position to investigate the moduli space. To do this we will exploit
monads as in [Do]. For a more general account of monads, see [0SS], where, in
particular, they prove Beilinson's theorem, the main tool for showing the existence
of a monad representation for holomorphic bundles on PV,

A monad is a complex of uniform bundles, whose cohomology is the desired bun-
dle. For example, semistable two-bundles E — P? trivial on a line are expressable

as the cohomology of a linear complex
0 — O(=1)F % O*+N 2, o)k - 0,
where « is injective and 8 is surjective, i.e.
E 2 ker f/ima.

They can then be represented by three k x (k-4 N) and three (k 4 N) x k matrices,
uniquely, up to the action of GL(k) x GL(2k + N) x GL(k) (another theorem from
[OSS]). We will obtain a similar but more complicated result because we are working

on a bundle of projective spaces rather than a simple projective space.

0.1 Hirzebruch Surfaces. In the introduction, we remarked that TP! can be
obtained by projectivising O(2) @ O over P!. Buchdahl studies such projectivisa-
tions in {Bu], where he gives a monad description for stable bundles, of a kind due
originally to Beilinson. We use some of his notation.

For any sheaf F' on ﬁl, define the family of sheaves

F(p,q) = F @ Oz (pCo + qPy,),

57
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where Cy is the zero section and Py, is some fixed fibre (all of which are rationally

. equivalent). By Ogp,(pCo + ¢P»,) we mean the line bundle given by the divisor
pCo + qPy,. Define Ogpu i (P, )P 14 ) = {075 (9,9) ® P3O (P, ¢ ), where
p1,p2 are the projections TP! x TP! — TP!.

This gives a complete description of line bundles on TP' since all subvarieties
of TP! are linearly equivalent to combinations of fibres and the zero section. In
particulé,r O(Cx) = 0(1,-2) and O(0,1) = 7*(Op(1)). From the Leray spectral
sequence, we see that complex analytic cycles generate the singular homology of
TP, (This is not the case in general since complex analytic cycles occur only in even
dimensions.) In fact, cup product is given by intersection of generic subvaricties,
and since H 4(?@,@ is generated by a single element, or alternatively, since all
points on TP! are rationally equivalent, we will think of H* (’fﬁ"’] ,Z) = Zpt], where
[pt] is any point. Similarly we will take [TP'] to be a generator of HY (’fﬁ”‘ ,Z), and
Co and Py, to generate Hz(ﬁl,Z).

In the construction that follows, we will encounter many cohomology groups with

. values in E twisted by the sheaves O(p, ¢}, some appearing as obstruction groups,
others in the monad itself. We will now compute some needed cohomology groups.

Since TP! is two complex dimensional, bundles above TP! have only two Chern

classes, c; and cy. Since we can think of ¢y as an integer (the number of points).

Let
ca(E) = k([pt])-
The first class can be written ¢;(E) = pCq + ¢P»,. Since E is trivial on nonpolar

fibres (Py,, Ao € C*), 0 = c1(E|p,,) = p. Since E is trivial on real sections,
0=ci(E|c,)=¢. So

ci(E) = 0.

LEMMa 0.2.
H°(E(p,q)) =0 - when p<0or2p+¢<0
H*(E(p,q)) =0 when p+2>00r2p+¢+4>0,

and similarly for E* in place of E.
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PRroOF. Let s € H'(E(p,q)). If p <0, then
Slncnpolar fibre € HD(OPI (}D)N) = 0.

Since such fibres span an open subset of TP?, s = 0.
If 2p 4+ ¢ < 0, then since a real section has intersection 2 with the zero section,

a.nd intersection one With any ﬁbre
Sl . e HO ‘:I D L N — 0
real section ( 128 ('-'p T l]') ) _ V.

Again, real sections trace out an open subset of ﬁl, sos=0.

The same is true of sections of E*, since E* is trivial on any subset on which E
is trivial.

We use the Adjunction Formula [Ha, V.1.5] for curves in surfaces 2g¢c — 2 =
C - (C + Kg) to determine Kz, , the canonical bundle. Let Keg = aPs, + 8Co.
Then gy, = 0= gc, and Py, Py, = 0 and Co-Cy = 2 implies b = Py Kgp = —2,
a+2b=Cy- Kgp = —-2—-2=—4. 5o

Kz = 0(-2,0).
By Serre Duality
H*(E(pq)) & H(E(p,q)" ® K)*

= H(E*(-p—2,~9))
=0 if —p—2<00r2(—p-2)+(-¢)<0. O

We get information about H!(E(p, ¢)) using the Hirzebruch-Riemann-Roch The-

orem [Ha, A.4.1]:
RO(F) = hY(F) + h*(F) = x(F) = deg(ch(F) - td(TX™))n,

i.e. the number of points in the intersection of the characteristic classes given (on

twog-dimensional manifolds) by
—~ 1
Ch(F) = ra.nk F[TPI] + (5] (F) + ;(cl '€ — 202)[pt]

— 1 1
td(F) = [TF] + 5er + 75 (] +ea)lpt]
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in particular
$d(TX) = [TP!] — %K,\- + %(K? + o) = [TP!] - %I{,\- + x(Ox).
But, according to [Ha, V.2.4] if D - Py, > 0,
Hi(TP',0(D)) = H (P!, »,O(D)).

In particular, H"(Oﬁ,l) > Hi{Op) = Cif i = 0 and 0 otherwise. So X(Om) =1,

and
td(TTP') = [TP'] + Co + 1[pt].

Since O(p, ¢) is a line bundle ¢; = 0, so

, ~ 1
ch(O(p, ) = [TP'] + (pCy + ¢Py,) + 5(2102 + 2pg).

Hence

X(O(p, q)) = deg(({TP'] + pCo + 4P, + (» + pg)[pt]) - (TP} + Cy + [pt]))2
=1+42p+q+pq+p

and

X(E(p,q)) = deg(ch(E) ch(O(p, ) td(TTP')),
= deg(N[TP] — k[pt]) - (TB"] + (p + 1)Co + ¢Px, + x(O(p, 0)[pt])2
=—k+N{P* +pg+2p+q+1).

So, in particular

RY(B(0,-1)) = E*(E(0, -1)) + h*(E(0, -1)) ~ x(E(0, -1))
=0+0—(—k)
=k
h(E0,-2)=k+N (0.3)
W (B(-1,-2)) =k
RYE(-1,-1)) = k.
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COROLLARY 0.4, If E — TP! is trivial on generic fibres and sections, then
CQ(E) 2 0 -

Proor. This is clearly implied by our calculation of ¢2(E) = AY(E(—1,-2))
which as the dimension of a module must be nonnegative. The only facts about E we

used to do this computation were the triviality over generic fibres and sections. O

1. Beilinson’s Theorem

The basic idea behind Beilinson’s theorem is to construct a Koszul resolution,

that is, an exact sequence of coherent sheaves
O—PC_J' —*C.,J‘.i.] —* e *—"Co =OX>(X —POA — 0

over the product of a space with itself, where A is the corresponding diagonal.
Given a bundle E on X, pull it back by one of the projections to X x X, and tensor
it by this sequance. Then, the direct image (under either projection) of the last
term is the original bundle, while the direct and higher direct images of the other
terms are constant under the projection under which we pulled back E, but under
the other projection we get sheaves with values in twisted cohomology groups of E.

The idea is to apply the standard resolution of the diagonal in PY x P¥ to both
the fibre and base of the bundle

Pl—-——rﬁl

&

P! .
The resulting Koszul resolution is
O(0,-1)0,-1) (@)
0 — O(-1,-1)(-1,-1) == @ LN, SN Ongg — 0, (1.1)

O(-1,0)(-1,0) ™

where

so=A-X (=A®1-1@X) and

si=qn-79 (=9®1-1@7"),
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can be thought of as sections of p7O0(0,1) ® p;O(0,1) and p;O(1,0) ® p3O(1,0)
respectively. One must check that it is exact. {See also [GriHa, p688].) Truncating,

and tensoring with piE, we get a complex

Cuz = p;E ®p:0(—1, —1) ® ]J;O(—l, _1)1

C™' = piE ® (p10(0,-1) ® p30(0,~1) & p} O(~1,0) @ p3O(—1,0))
C’ = plE.

To get a monad, we use the spectral sequences in hypercohomology of this comn-
plex associated to the projection p;, as in [EGA II1,0.12.4]. Namely, let H?(p2,C*)
be the complex of sheaves associated to the presheaves

U c TP w RZ_(CP),

Pa*

where R} .(F) can be defined as the sheaf associated to the presheaf U C TP —

Hq(pgl(U)s F)i | (Ci CP‘H)
P (o _ Ker —
B (C") = im(Cr—1 — Cr)’

th

i.e. the p*' cohomology of the complex C*. The hypercohomology of p; and C* is

then the limit of two spectral sequences with the following Fy terms

B = HI(HP(ps, C*)),

L

E%’q = HP(P%HQ(C*))(: Rziz(H(qof the complex)(c\‘*)))'

It is easy to compute "E, since the complex C* is a truncated exact sequence.
We get
Oa-., @p1E g=0
9WC*) = TH 1
H'(C) { 0 otherwise.

Using the fact Oa~, @ p1E = Oag, ® p2E, we can conclude

EPO = R‘;z(OA,-.’

TRl

@mE)

E p=20
0 otherwise.

= Rgz(oAﬁ: ) ®E= {

We know from [EGA III] that E; also converges to the bundle E, since "E does.
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Using R, .«(pjL @ psM) = HY(L}® M we compute

0 — HP(E(-1,-1)) @ O(-1,-1)
E}' = HY (i» H?(E(0,-1)) @ O(0,~1) @ H?(E(-1,0)) ® O(-1, o)) ,
S HI(E)QO =0

i€

- ker v :
kerpg {72 we  commuy

P . Ve ker v :
E = ker i T coimuy

ker j1o -lk—::\L:-g coim vy.
Using this machinery, then, one can show that classes of bundles have monad
descriptions by showing that enough cohomology groups appearing in the spectral
sequence vanish to reduce it to a short complex. See [0SS, p246] for examples of
this over IP".
In our case, H'(E(p,q)) = 0 when p < 0 or 2p + ¢ < 0, and H*(E(p,q)) = 0
when p+2 > 0or 2p+ ¢ +4 > 0. And after some experimentation, we discover

that putting E(0,—1) in place of E, the complexes with ¢ = 0,2 vanish, and the

spectral sequence reduces to
E(0,-1) = H0 —» O(-1,-1)* = 0(-1,00 @ O(0,-1)**N = 0% — 0).
We have completed the first step in proving the

THEOREM 1.2, Any N-bundle E — ﬁl, trivial on nonpolar fibres, real sections

and the section ot infinity has ¢ monad representation

O(-1,1)* 5
0—-0O(-1,00" =% g 00,1 -0,
ay Ok+N B2

a=(al +aj) adn+ af + a2X +adA?),
| = (Bn + By + BIA+ BYA%, By + By N), (1.3)
where o} € gl(k), o} € ﬂf[,f_,_N,ﬁ{ € gl{(k),Bi e .Mf"'N, a 18 injective, [ is surjective

and 0 = foa =B oa; + fr0oas. A homomorphism of such bundles is represented

by e monad homomorphism:

0 —— O(-1,0 —— O(-L, 1) O*N —— 0(0,1)) —— 0

Al BlC\iD El

0 —— O(=1,0 —— O(-1,1)k 0 OF+N —— 0(0,1)) —— 0;
(1.4)
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in the case of an isomorphism,
(4,B,C = Co + C1A, D, E) € GL(E)* x (M, )? x GL(k + N) x GL(%)} .
Monad isomorphisms are a group with multiplication given by
(A,B,C,D,E)o (A", B',C",D',E"Y=(4A4',BB',CB' + DC',DD', EE"),

whose action on the monad (1.3) is given by

af BagA'l

ol Bald~!

ol _ DadA~!

al DalA™! 4 CoalfA™! ’

05% Da%,‘l_l -+ Coa}A_] - C]C\!IIJ.A._I

o Da3A™! + CiajA™!
B8 EBB~!
g E}B-! — ERICoB™!
ﬁf _ Eﬂ?B_l - EﬂgCLB_] — Eﬁ%C{]B_] (1 5)
g EpB~t — EBIC1 B! '
B3 Ef D!
B3 EBID™!.

PROOF. First we show that o and § have the specified form. Think of the maps

ai, f; as matrices of sections of line bundles O(p, ¢).

Using the coordinates A, n, etc., as above, O(p, ¢) has transition functions

CO{A # 00, # 0}, 0(p,q)) —— CO({)# 00,7 # 00}, O(p, 1))

,\J-ql lA-ﬁp-q

C°L{A # 0,1 #0},0(p, 0)) — Co{A #£ 0, # 0}, 0(p, q))

sending
- n=?
z alm/\”'r),p m —_— E almA’TIm

,\r-qJ’ lA-zr-q

~ i ~ — -~ Y N, ~
Z a-lm)\ 2p—l—2mnlp m z almA2p+q { ZmT’m
il

from which we derive bounds on ! and m. In fact,

RAO(p, ) = #{(1,m) :0 < m,0 < 1< 2p=m),l — ¢ S Ap—m)}.
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To see the sccond part consider two bundles over TP!. If the bundles F,F' are

represented by monads, M, M’, then a homomorphism of monads

M:0 y I N b, N y 0
| IEA|
M 0 VK L N ; 0,

induces a well-defined map
F =kerb/ima — kerd'/imd' = F'
of bundles. Every map comes from a monad map in this way if

HY(I* @K', HYN*@lL'), H.N'QK",
H(L*@K"), HY(N*©L'), HYN*®K' (1.6)

vanish, see [OSS, Lemma I1.4.1.3], which may be verified by applying the vanishing
lemma and the explicit calculation of x(O(p, ¢))-

The formula for an isomorphism is argued as were the forms of @ and 8. O

As we are interested in bundles up to isomorphism, we will use the group of
monad isomorphisms to put a general monad M into normal form, thus choosing
a special representative of each isomorphism class of monads. From this normal
form we can hope to read off information about the bundle just as putting a linear
transformation into Jordan normal form allows one to read off the eigenvalues and
identify the irreducible invariant spaces.

Finally, we are interested in bundles with additional siructure; fixed bundle
isomorphisms lifting the real structure ¢, a framing above some fixed point and
time translation §,. A monad (a,3) is pulled-back by é: : (A\,7) = (A, —tA) to a

monad

(ad+ai, adn + o + (a3 +tad)A + a3 A?),
(Bin+ 81 + (B3 +A)A + BIN%, B + B X). (1.7)
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And the pull-back by o : (A, ) — (1/X, =A2§) is * M°P =

((&] +a3r, —aan + a3 +a3A + &%),

(=Bl + 87+ B1A + BN, By + B2 N) (1.8)

We can represent the additional structure of the bundle as a fixed monad iso-
morphism (.ﬁi,é,é,ﬁ,ﬁ) sending o*M°? to {a?,87); (A, By, Cy, Dy, Ey) sending
(e, 8) to 67 (e, B); and a choice of frame over some point. Remark that §; and o
send fibres tr. fibres, sections to sections, and hence preserve O(i,7). As to the
frame, we know from the many triviality properties of the bundle that picking any
two points we can specify a ‘path’ along curves above which the bundle is trivial
and get an equivalence of the two frames, so we might as well choose a point which
simplifies the process of normalising the bundle. Again, since the bundle is trivial

on nonpolar fibres, we can also choose a frame of Ejp, . The monad restricted to
this fibre is ‘
o(-n*
0= 0(-1) 25 & ZL0%0,
az(ro)  @mk+N B2

to which is associated the sequence

O(-1)*F
HO(O(-1)") — o —%:—» HY(OF) —— HY(O(-1)F)
ll H H
0 HO(@I:H’V) 0

So a framing is given by an injection
CV 2 ker (B2 + Bido) C OFFV, (1.9)

Le. g EM ﬂ_ w such that (83 + B3A) - ¢ = 0. For notational simplicity, we choose
Xo = —1. Finally, we note that the group of monad isomorphisms acts on the

representation of the framing by

¢ D71 .
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2. Normalisation

Normalising such a monad is best done in a sugar shack, where it can be boiled
down until it gets sticky. This is carried out incrementally, using the special struc-
ture we know E has. Although the computations are tedious, the idea is very
simple. If a group acts on a space, the quotient by the action is the space of orbits.
The action is free iff all orbits are isomorphic to the group. If a special represen-
tative can be chosen from each orbit uniquely in some smooth fashion (i.e. so that
the representatives are a continuous section of the projection of the total space
onto the quotient), then the quotient is isomorphic to the space of special forms.
In our case the action is only free if we include the framing. The action of GL(N)
via conjugation on gl(N) is a simple example of an action, where the quotient is
isomorphic to the set of matrices in Jordan normal form, but in this case the action
is not free. The complication for us is that we need to work by stages, reducing at
each stage to a proper set of ‘special’ monads acted on by a proper subgroup (the

. stabiliser) of the original group, and it is easy to lose sight of the purpose of the

reductions.

2.1 Triviality above the Infinity section. Let E' = E(0,—1)|c,. Since
E|c,, is trivial, E' & O(—1)N has no sections. We use this to get information about
o) and BY. Restricting the monad to Co and twisting by O(—1) (equivalently,
twisting by O(0, —1) first) we get

Ok
By k
@ — O 5 0. (2.2)

)k Q?'l'ﬂ'tk
o} O(=1)HN A+8E

0 — O(=1

. (Note: twisting doesn’t effect @, f, so we won't rename them.) To any monad is
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associated a display,

0 0
0 —— (9(-—1)"' —2 ker B _— E — 0
0 ~—— O(~-1)) —=— O*HO(-1)**N 1 cokera —— 0 (2.3)
B t
Ok —
0 0

which has exact rows and columns.

Since B/ = O(-1)¥, HYE') = 0 = H'(E'). From the long exact sequences
associated to the first row and last column, then, we see that H%(ker ) = 0 =
H(ker 8) and H?(coker a) é H(O%). Looking at the last column: since nonzero
sections of @* have no zeros, neither can sections of coker &. From the second row,
we see that sections of coker a come from sections of OF @ O(—1)*+¥, which arc
parametrised by (u,0), u € C¥. If (1,0) represents a section of coker a, then it has
a zero as a section of coker a #ff it is in the image of a. If this never happens, and
given that « is injective, az must be injective (iff af has rank k). Meanwhile, the
second column tells us that H'(OF @ O(=1)¥+N) £ HO(O%), ie. B9 is invertible.
We can use the action of the group to put the monad in the form

8= (o) #=(n,

On xck

which has as stabiliser, the subgroup with

— A DI e
D_(O Dz), E =B, (2.4)

where D; € MY and D; € GL(N), and A, B and C' are unrestricted as hefore.

2.5 foa = 0. We can break down the condition S o a = 0 by considering
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coefficients of Ain? separately; we obtain

0= flay + fray
0=pAla) + Bray
0= fia} + By
0= Blaf + Bial + frof + B0y
0= fiag + fioq + Brof + fraf
0= Bia] + fra.

With the normalisations we have already made we see that
I i
8 ()= () =et

PROPOSITION 2.6. The bundle E — TP! is trivial over Coo iff it has ¢ monad

We have

representation of the form

ST 11) | .
N ﬁz(o)"]ﬂbz(o Ao : O(él) (]I)T}'i‘ﬁ:‘}‘ﬂf’\"'ﬂf)‘?

Ok+N BI+81A

» OF > 0.

0 — O(-1)

( g) y+altoiitaia?

It i3 unique up to an isomorphism of the form (1.4) restricted to the subgroup (2.4).

2.7 Nonpolar fibres. The restriction of E to a fibre Py, for some Ag € C*, is
given by a monad over Py, & P

o(-1)*

@

0 1
k 01+C!1AQ
1) [1] 1
a2{Ao) Ok+N  B2+81 0

00— O(— LGN, LN

Since E is trivizl over nonpolar fibres, this monad has N nonvanishing sections.
Using the same long exact sequences as in the last section, since H(O(-1)) = 0,
we see that these sections are isomorphic to sections of ker 8, which are naturally

contained in the sections of O(—1)* @ OFN. Since the first summand has no

sections, we see that H D(kex B) = ker( 89+ r\ol).. In particular, we see that 83483 A
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is surjective for Ay € C*, otherwise ker § would have more than N sections. And
a? + a1 )Xo must also be surjective, otherwise (a) the injectivity of «, (b) Boa =0
and (c} dimker 85(Ap) = N would force some section of ker 8/ im « to have a zero,
bui sections of trivial bundles have no zeros. Since a;(\g) is invertible and B acts
on it by multiplication, we can use the action of B to set it equal to any invertible

matrix. We take A\ = —1 and set

ai-ai=1 = f-f=(X),

where X € M}, resulting in a restriction to the subgroup with
B=A.
Since the remaining group acts on f2(Ag) by
(ai1(Ao), X)) (Aar(Ae)A™!, Aai(Mo)(—DA™T + AXT),

we can make the normalisation X = 0, again for Ag = —1, resulting in the reduction

to

Dy =0.

From the condition (89 — B1)é = 0 on ¢, the representation of the framing (1.9),

we see that

b= (}0,) Y € GL(N).

We can use the action of Dj to set ¥ = I. This corresponds to the reduction from
the group of bundle isomorphisins to the subgroup of isomorphisms preserving a

fixed framing.

We could use the action of A to put af into Jordan normal form, then o} = oY -1
would be as well. Since & + ] A is invertible for A € C*, we see their only possible

eigenvalues are 0 and 1. Assume without loss of generality that

o _{I+m 1 {7
al_( *n)’ a‘_( I[+*n)’
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where +; is nilpotent and therefore ¥ 4 4; is invertible. Let

kg = rank(lI + ‘Tu),
ky = rank(I + 1)

The stabiliser of this block form is GL(k;) & GL(k2). We can now use GL{k;) to
put I+ +; into Jordan normal form and GL(A;) to put I 4+, into transpose Jordan
normal form, i.e. vy (71) is zero except for possible 1’s on the sub(super)diagonal.
The reason for this choice will be apparent when we consider reality of the monad.

Since the stabiliser«of a matrix in Jordan normal form is not trivial, this does

not reduce the action of A completely, but to some subgroup

T

{A = (F c)} < GL(k1) ® GL(k3).

In this thesis we will give special attention to the case when 4; = 0, in which case
the stabiliser is GL(%k;) & GL(k2). We will call these monads of ‘simplest type’.
We are left with the unrestricted action of the subgroup corresponding to C,

which acts on a} by

F

-1 -1
]

Since 4y is invertible, we can use this action to put

ki ko

3 >
w1 I k]
) into the form 0 wp T ke
62 1 N

which is fixed by the action of Co = (0 Cp), Cj € M ,{“:'N . Similarly, C acts on o3
and we can use C) to put

/1
o into the form | p2 0],

6
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which is stabilised by C1 = (€}, 0), C] € Mg, The subgroup with C = (C}, AC})

continues to act on a? via

F
F-! _ -
o ( G )aﬁ( G—l) + (CL{T+ )P, Cy(I+7)G™)
I
which can be used to set
a% to zero,

which fixes the remaining action of Cp and Cy. As the stabiliser of the normal form

al:(]l'i‘(l‘l‘/\)"yo 0 )
0 A]I+(I[+/\)')’1 ﬁ1=][n+ﬁ]1+ﬁ12)‘+6i51\2 ()S)
Iy + p1 A2 Wy 2,
Qg = p2A? I+ wo Pr=(ar ((1+2))
612 8,

we are left with (4,B,C,D,E) =

((F o) (7 G)=(0),(F G I), (F G)) 29

F in some subgroup of GL(k:), G in some subgroup of GL(k2).

PROPOSITION 2.10. A bundle E given by the monad (1.3) can be put into the
form (2.8) iff it is trivial on the section @l infinity and the nonpolar fibres. This

form is stabilised by the subgroup of monad isomorphisms given by (2.9).

2.11 Monad Condition. Consider the restriction of F to the section Cp:

(I+70) + 704 ) .
0 O(~1)* ( n+ (), Y
p1A? W QN
(P2/\2 w'z)
6122 6,
(BHBIMBIAY) , OF S 0.
(-(II+70)—~70/\ (1+/\)CJ)
— =@+ (1A

From the fact 5o o = 0, we extract:

(I+70) +7A
@+ o (BT )

(p1+10p1—C18)0 4+ (1001 —$101)A%  (witvow: —C182)+(rowr —C1 82) A
(v102—Cob1 ) A2+ (patr1p2—=C201)2%  (nwa=C282)+(watviwg~(2682) A
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Comparing coefficients of A, we derive the following forms for

0 —w 0
1 1 2 3 _ 1 9
ﬂ: - (0 Wo )s ﬁl —05 61 - (_PZ 0) (2.1.‘)

and the relations
181 = [0, p1]

€201 = p2 + 270 + 1102

(2.13)
€162 = w1 +yow1 +wim

(282 = [11,w2).

To a bundle E, then, we have associated a monad

((11+ Yo} + Yo A ) .
O(-1,1)*
I A ,
0 = O(~1,0)* R Ut VAV
Iy + p1 A2 Wi Ok+N
paX? 7l + we
6, 22 0,

(1[7? +pA - )

—p2A  In+uwn — 0(0,1)F =0 (2.14)
(—(]H-’Yo)—’)fo)‘ (1+,\)Cl)
—n = {I+y)d 1+ A

where v; € gl(k;) are nilpotent and in (transpose) Jordan normal form, p;,w2 €

gl(k:), C2,C1 € MY and 8,8, € MY, and pa,w; are determined by v, ¢, 6. This
representation is unique up to the action of F' € Stab., GL(k1), G € Stab., GL(k2)

whose action on (2.14) is given by

pr— Fp F™ pa s GpoF7H,
wp o FunG™ we o Gue G2,
91 b= 91F_1, 92 = 62G_1,

G~ Fe, G2 — GG

2.15 Jordan Normal Form. We now turn our attention to wg,fz, and (s,
which describe the bundle behaviour at the north pole (A = 0). The behaviour
near the south pole will similarly depend on p;, 81,1, and in the real case it will
mirror the behaviour at the other pole.

We will need the following
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LEMMA. Let
a+7n 1
a+ ’
Iila) = 3 € gl(y), (2.16)
1
a-+n
then
bD bl bj—}
j—1 . 5 :
Stab_]j(a) = {Z biN’ = GL(“}) . b,‘ e (C} — bo . : ,
=0 ., b]
by
where
01
N= 0
1
0
Proor.

Ji(a) =al + N,
and el is in the centre of GL(j), so
Stab z;(q) = Staby .

Let X € Staby, then XN (NX) is just X shifted to the right (up) with the first
column (last row) replaced with zeros.

(XN = NX)im = Xi—1,m — Xtym—1,
so X is Toeplitz (has single valued (sub/super) diagonals).

0=Xom=Xi,m-1=Aomz==Xpm1,1

for m > 0. So X is upper diagonal. If b; is the value of the i*! super diagonal,
X =5 N i as required. O

If Y is made up of I similar Jordan blocks, then elements of the stabiliser will be

blocks of the form
THING SN
X=|nu*N



2. NORMALISATION 75

LEMMA. Since
det X = (det X)’,

where X = b((,h"), X is invertible iff X is.

Proor. Examining the formula

ka2
det X = Z HXV(,'),,-

VESy, i=1

we see that the v term vanishes unless
v, v(f+ 1), (-1 + D) e{li+1,...,(I-1)j +1}

because X has block upper-triangular form. A v of this form corresponds to a
vanishing term iff v(8),v(5 + ©),...,v((A = 1)j +1) € {1, +1,..., (A —1)j + 1},
for + = 1,...,7. We see that v corresponds to a vanishing term unless v € (S4).

Omitting the vanishing terms, we are left with

det X = 3 HHb"'("‘)’" (detb2™y . O

Y=(014eyv ) E(S4) M1 i1

The stabiliser of a matrix in block Jordan normal form splits into X € GL(I) and
the remaining nilpotent part. After a possible reordering of blocks the stabiliser of
a general matrix in Jordan normal form can be put into block diagonal form with
blocks of the form X corresponding to the set of Jordan blocks with the same size
and eigenvalue.

Applying this to Stab,,, we can use the GL({) part of each block of Stab,, to
put the‘ corresponding submatrix of we into Jordan normal form. If v; = 0, we can
of course put all of w; into Jordan normal form. As the stabiliser of this normal
form, we ave left with the subgroup of Stabg, given by restricting the GL(I) parts
to be block Jordan stabilisers. The injectivity of a|y=0,,=a now implies that for
each set of similar Jordan blocks with eigenvalue a of the submatrix of w; the first

columns of
W

w2
B2
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of each Jordan block must be linearly independent, and therefore represent a point
of a Grassmannian. Choosing an appropriate representative, say the standard »ep-
resentatives of the Schubert cycles, we can use the GL(!) action of the stabiliser to
put those columns in that form, further reducing the stabiliser. Then we can use
the nilpotent part of the embedded stabiliser to make the other columns under the
Jordan blocks of v; orthogonal to the first columns, using either the hermitian or
Euclidean metric on C*V.
Repeating this process, we are left with the columns of
wy

w2
b2

which start Jordan blocks of v; in normal form, with stabiliser the nilpotent part

of the stabiliser of v;. Since the resulting columns of

W)
W2

02

which start Jordan blocks of v are linearly independent, we can use the action of
this nilpotent part to make the remaining columns orthogonal to the first columns,
resulting in a normal form stabilised by {I}.

The same procedure can be applied to p;, and 8;, but with transpose Jordan

normal forms for reasons which will be apparent.

Special Case (v; = 0). We will now give more explicit details of the above nor-
malisation in the case when v; = 0, both to make the above clearer and to provide
the cocrdinate descriptions which we will need in the next two chapters.

Since G acts on we by conjugation, we can put wp into Jordan normal form.
If we agree to a lexicographical ordering of C, we can fix the order of the Jordan
blocks up to a permutation of blocks with the same rank and eigenvalue. Unless wy
is diagonalisable with distinct eigenvalues, its Jordan form has a nonzero stabiliser,
ﬁhich continues to act on 6, and (3. Once we divide w; into groups of Jordan
blocks, each group with a distinct eigenvalue and rank, we get a corresponding

decomposition of C*2 into subspaces. They are the invariant subspaces of the



2. NORMALISATION 77

stabiliser (under the standard action of GL(k;) on C*2), so we may consider them
one at a time.

Assume for the moment that wy has A Jordan blocks of one type, i.e.

Jj(a)
Ji(a)

Wa =

Ji(a)
The injectivity of o imposes an independence condition on §. At A = 0,7 = —a,

In 4+ w, is singular, in particular the first, j 4 1st, 2j + 1st ... columns are zero, so

a|r=0,y=—1(b1 €x, 41 + b2eg, j+1+ - + b}lek-l-{-j(f‘l—])-l-l)

((1(”1 (92)1 -+ 52(92)]‘4.1 +... )) I k (9(—1,1)k

( 0 ) 1k € &
bi(62)1 + ba(B2)j41 + ...

N OMN | A=0

n=-a
Since a is injective, we see that (82)1 A(82)j41 A+ - A(f2)a-1)j4+1 # 0. Similarly, the
surjectivity of 3 at the same point implies that (3} A(CL)FFIA- - A(gHIATIIHT £ 0,
where ¢ = (¢1, ().

An element X € Stab,,, (as computed in the Lemma) acts on

((82)1,(62)415- - -, (82)j-1y41) € M, and
((C1)i=12 ((h)2jmts- > (CD)1m1) " € M

via the standard action of 4l € GL(A), i.e. by taking linear recombinations. So

we should think of 8; and (> as defining points on a Grassmannian:
MY /GL(A) & Gran.

If wy has Jordan blocks of different rank but the same eigenvalue, then we get an
element of an enlarged flag manifold (actually the space of linearly independent
subspaces with prescribed ranks).

In any case, within each invariant block, we can use the action of b5 to put
0 p

(€)1, (63)j415 -+ (€3)jA—1)41)
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into some normal form, say the one which gives coordinates on the Schubert cycles
[GriHa,1.5]. This reduces the stabiliser to the subgroup with 4™ = 1.

There are two ‘standard’ metrics on CV each of which can be used to put (2 into
a normal form. If we put the hermitian metric on CV, we can use the remaining

action of the stabiliser to put

(S (¢) PN () PR (S TTETORNS W { (3 T () PRTINN (c) RUWIIWRS bl

This shows that the data (3 describe a point in the orthogonal bundle to the uni-
. e AN
versal bundle contained in ch,\. .
Alternatively, we can put the holomorphic or Euclidean metric on €V, In this
case we have to worry about null vectors, so the same procedure docsn’t work. In-
stead we have to consider the usual coordinate patches of Gr a,n. If ({¢3), (¢3), .. )

is in Schubert cycle form, i.e.

i iy ia
i l l
0 0 1 = * 0 = 0
0 0 0 O 0 1 = * 0
0 0 0 0 0 0 0 0 1

Then we can put

{(C§)25 (Cé)-?i AR (Cé).?) (Cé)j'i'?: v } C {ch 1€igsea ey By }-Lholo"mmhic . (2.17)

Apply this procedure to each invariant subspace of Stab,,,, and we are left with
a normalised monad which uniquely represents the bundle E, i.e. its stabiliser in
the group of monad isomorphisins is the trivial subgroup. We can apply the same
procedure to p; using the action of F', but for real reasons, it will be better to put

it into an equivalent normalisation whose form will be dictated in the next section.

PROPOSITION 2.18. Bundles E — TP! trivial on real sections, the section af
infinity and nonpolar fibres, with a fized framing end ¢ lift, b, of time translation
are uniquely represented by monads (2.14) in Jordan normal form as described

abnve.

Proor. We have shown that these bundle properties determine the monad nor-

mal form, it remains to show that the monad form completely determines the lift
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of time translation: Time translation is a one parameter group of monad isomor-
phisms mapping the pulled-back monad into this normal form. Since a), 89, 82, o

are pulled back to themselves, we see the group is restricted to
A4 =B =E=D/=1L
And since a} and of are pulled back to themselves,

0 . 1
CQJCYI =0 <" Cu,:(l’l = Co,g

Cl,ta} =0 < C'],:cl'(]] = Cy,e.

Finally, (§;a)3 = a2 + ta) implies (C1,03 + Co o)A = tad implies

t(][-i—'}’g)—] 0 0 0
C1,g = 0 0], Cujg =10 t(]I-l-‘yl)—l . O
0 0 0 0

So, in this normal form, time translation is completely determined, as we would

expect since there is only one isomorphism of E preserving the framing,.

2.19 Triviality over the real sections (part I). While we encoded triviality
on generic sections into the monad, we did not explicitly encode triviality above
real sections. In this section we will uncover the condition for a monad to represent
a bundle trivial over the real sections, and in section (2.28) we will show that when
~; = 0 this condition is implied by the other monad conditions.

The basic idea is that a bundle over P! with ¢; = 0 is trivial iff it has no sections
after twisting with O(—1) . Time invariance of the bundle means we only need to
consider real sections with ¢ = 0. Restricting the monad to such a real section, and
twisting by O(—1) gives

O(~2)*

0032 @ Ly ok
az 0(_1)k+N B2

We can derive the long exact sequences

0 — H(ker f) — HY(O(=2)*  O(-1)*"¥) =0 — H(O*) = H'(ker §) — ...
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which implics H(ker #) =0, and
0= H'(ker ) — BY(B(-1)) 2 H'(O(=3)*) = H'(ker ) — ...

which implies H°(E(~1)) = 0 iff a : H}(O(-3)*) — H(ker 8} is injective.
For the space H'(O(—3)*) we will take

(@7 = (E+70) T y0ap) A +apd ™2 ) (e o

A+ (@ - T+ 7) Imaf A2 ) 14 =
as representative cocycles. In terms of power series, C(ker §) is the set of Laurent
power series of (k+k+N) vectors which converge on A € C*, lying pointwise in the
kernel of 8. To get H! we have to factor out by series convergent on A € C (positive

power series) and A € C* U oo (negative power series), i.e. taking into account the

’ twisting of the vector bundles, by the sets

A

Liiz0 dA!
e,\‘: €kerf ), and

2aizo | fA

\ 2

( et
Zig—z (d)\i>
eX! €kerf ;. (2.20)
Yico1 (f)\'_)
L gA'

We see immediately that any coefficients of A™! in the first (¢,d) component

.

persist under this quotienting, but the other coefficients may or may not, their
fate being tangled in the structure of ker 8, i.e. after composing with ker§ —
O(-2)* @ O(-=1)**V | the images B(c1 A, d1A~%) € H(O(=2)* ® O(~1)*tN) are
nonzero, while the other images are zero meaning that their images in C1(QO(-2)* @
O(-~=1)**N) split, so we still have to determine whether they split in ker 8. Since
their images in C!(ker ) are linearly independent of the images of cocycles of

- 1 A1 g ol A =2
the form ( ag’ﬂ )\t;}’o—) (ch;zla\_17Ta€:,2l\A_2 ) (whose ¢ and d coefficients of A=, A™2

respectively are zero) the kernel of a is contained in the span of these second



2. NORMALISATION 81

cocycles. The image of these cocycles under o is

—(I+ o) ypab A~ 4 ah A2
N\ A - L+ ) maf A

( (A3 I+ 90) — (I + Y0) " 0 )ah
= (=22 (T + 1)y + T+ 1 ))al y (2.21)
(Wod, + Wia!

where
ATZE AT (T4 o) M0 + (01~ §) = Apr = E)(I+70)
Wo = p2 — Apa(E+ 7o) g )
01 — 201 (T4 v0) 170

(&1

—A‘zwl(ll + 71)—171 + X"lw_l
Wi= | -A2(we + E)T+7) "1+ AN we + )+ 2T+ 7)) — ,
—A720 (L4 1) + A6,
The kernel of this map on H! is the inverse image of the coboundaries d(C°(ker 8)).
So our cocycle is mapped to zero iff its a-image is of the form X + X, where X
and X are in the sets (2.20) respectively. As a result of twisting by @(—1), these
two sets are independent so there is no ambiguity as to the splitting:

(—70(E+70)‘170a'2) ( (T4 vo0)ahA~2 )
I+ 71)af . ~n(I+ 1) nafA?

X=| [ (=220 \ |+ X=| (3 5xeah + A\ wppad |,
paxody = AzX10] A7Hwz + 2/2)x1af
91)(00:'2 ’\-1923(1“’1’
where o =T — MI+70) Y90 and x1 =1 - A7H I+ 7).
The existence of this splitting tells us that (2.21) represents the zero class in
HYO(-2)* @ O(=1FN), Tt is zero in H!(ker 8) iff 0 = B(X) = —A(X). We find
that o will be injective #ff

B( 3“() - (WI(I +1)ay + ((p1 — 5/21(1[ + o) + '%70(][ + o)~ o) ah ) £0
v ~((w2 +2/2)A+71) = s +m) " m)a] — p2voa;

for all z, € C, equivalently, :ff

2) — £((IT+m)"'m)? wy

det { (02 1+2/2) = 2(( et 0 (2.22
© ( p2 (p1 = 2/2) 4+ 5((T+ 7o) 70)? #0 (222)
for all z € C. Since we haven’t used the specific form of the Jordan normalisé.tion,

we have



82 V. MONADS

PROPOSITION 2.23. A monad in the form (2.14) represents a bundle which is
triviel over real sections iff the real determinant (2.22) is nonvanishing as o function

of z € C.

REMARK. If 4; = 0, the condition (2.22) is equivalent to the condition
Blan=z/2 0 ¢|azooi=—372 #0 forall z € C,

which is certainly necessary for E|c,, . ,, to be trivial. The analogous condition for
monads describing bundles on P is easily seen to be sufficient as well. This is not

as easy in our case because of the extra twist in the monad.

2.24 Reality. We will work with the real structure given as a map
a* E°P E*,

where op indicates the opposite (conjugate) complex structure. Since E* satisfies
the same triviality and additional properties as E, we can represent £* as a monad
M with all the normalisations we made on E. We can also dualise the monad
for E by taking the dual of the exact sequences in the display which reverses the
direction of the maps and transforms O(p, ¢) into O(—p, —q), its dual. This results
in a monad for E* which is unfortunately not easy to work with. For example, one
may check that it doesn’t satisfy the conditions required for monad isomorphisms

to be in bijection with bundle isomorphisms.

We would prefer to work with a monad M of the same form as M because then
finding a bundle map is equivalent to finding a monad map, but we will need to use

the dual monad M* to determine M:

PROPOSITION 2.25. If E is given by a monad M in the form (2.14) then its dual
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E* is given by @ monad M:

(]I+'Tct))+"f(t)’\ 0 ) k
t I i O(_l'fl)
O(—l,O)k 0 T +( +71)’\ ; @ :
In+piA?  —p Ok+N
—wiX® gl +wj
Gy

(11714-,05/\2 +Pé)
wiA? In + wi

(—@+ﬁ)—%A (1+ 28
-1+ TN 1+ A)8

» (0, 1)*.

PROOF. The bundle E is given by a monad M to which is associated a display.
By dualising the display (taking the duals of spaces and the transpose of maps)
we see that E* is given by a dual monad, M*, We will construct a singular map
of monads M — M* which induces a singular map of bundles. One may check
that monads of the form M™* don’t have the nice properties with respect to maps
that our usual monads have, i.e. the obstruction groups to the existence of monad
representatives for bundle maps, ete. (1.6) fail to vanish. As a result, we must guess

bundle maps and prove that they have the desired properties directly.

Consider the map of monads f = (f1, f2. f3): M — M*:

o (In+piX% o
O(—l, 1)A ( 2 I 4
O(=1,0)* W . @ w1 ntwal, o, 1)k
Intpid®  —ph OF+N (-W (1+A)"§)
—wiA? pltwh (1+A)6;
—GAT =g
f1J' lf: J'fa
b A7 ot
(e ) ou,-1 w
0(0, —1)* 2 I/, e » O(1,0)F

-W Ok+N (1111+p'1)\2 TS )
(I+M)¢0 (1+2)¢5 wid? o opl4e) 6
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AL
flz"( ]I)
221 0
(0) ‘( I 0) O(-L1 O, ~1)*
fa= AL 0 0 0 : b — &
I 0 0 0 Ok—!-N Ok+N
0 0 0 0 (L+MI

(1)

IE VAR 0
W= o/t o . . .
0 41+ (4412

where

This is a map of monads with singularities, but away from the bad points,

{A € {0,-1,00}}, it is a valid monad map and gives an isomorphism

- f .
Elgp(refo~1,001) = E 1781\ (ref0,~1,001)"

We will show that it has a pole and zero along P, and P_; respectively, and hence
represents a bundle map which is (14 A) times a bundle isomorphism, which implies
our proposition.
Over nonpolar fibres, the first monad has natural representatives for a triviali-
sation, namely
(0)
(T+I+ 1+ A7) 6la acCV
(L 0+ (1+ A7) 6ka '
a
These sections are mapped to sections of the second monad which give equally
natural trivialisations away from P.; where they have a zero.
Over sections Cy=: \ Poo, where —z/2 is not an eigenvalue of wq, we can find

equally good sections trivialising E*:

0
(—(1 + A)(wi + z)‘lﬂéa)
((1 + I+ 1+ X)r1)7H(6f - ph{ws + 2)'195)a) aeCV
0

a
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These sections are mapped by f to sections

(,\2(1 F I+ (1 4+ A8, - bl +2) 716 )a

: )
aeCV

0
(*(1 + M{wh + z)“lﬁﬁa.a)

which have no poles on A € C but have a zero at A = —1. Since the set of
eigenvalues of ws is closed in C, we can put these two results together and sce that
f is holomorphic on a neighbourhood of Py miuus a set of codimension two. In this
way, Hartog’s Theorem then implies that f is holomorphic on TP \ Poo, with a
simple pole at P_;.

Similarly, we can find sections on a dense sct of sections =12 which have no
zeros or poles on A € C but whose images under f have a zero at A=—1anda
pole at A = 0. It follows that f Lias a pole and zero at Py and P_, respectively, so

F/(1 + ) is the required bundle isomorphism. O

By the correspondence theorem for monads and bundles, the real structure is
then given by a monad map of ¢*M°P to M*. (We use op to indicate the oppo-
site, i.e. conjugate, complex structure.) Since the opposite complex structure is
given by taking the conjugates of frames and of transition matrices (i.e. the monad
construction is natural with respect to conjugation) it is given by the conjugate
monad.

To determine the normalised monad for o*E°P (i.e. with the opposite complex
structure), we pullback by ¢ the normalised monad M and conjugate everything,

as computed in (1.8):

((I[ + o)A + Fo ) k
_ _ O(-1,1)
A4 (I !
0 — O(—I,O)k N1A+(L+5) , ®
—In+ 5 @ A2 Ok+N
'{Eg —7]][:]- 52)\2
0, B, 22

(—]In + 1 —iDy A2 )
—p2 —I + @ A
(—(]I + F0)A + %o 1+ A)él )
A+ ({I4+%) (14 2)¢

» 0(0,1)* = 0 (2.26)
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which one sees disturbs the normal form (2.14). For ¢*M°P to be isomorphic to
M we must be able to put ¢*M°P into the normal form (2.14) at which point if
p1, wy, 87 and 8, are all in ‘Jordan normal form’, they must be equal as a result
of the uniqueness of the monad representative, ¢.e. Proposition 2.18. In particular,

this is only possible if

by = ko = /2.

Given this, the group element

=i /2 —Hkn) I
H 1 0 b} A/z
(—sz ) (—Hm ()

puts (2.26) into normal form. The result is that

Iy

™)
"\ Lrya

In

Yo = 7?3 Pl = "w;: pz= PE, w = w;, (o = —6;, 0, = —Cf (227)

(Use the reality of § and ¢ and the reality of (2.13) to see the second and third
conditions.) As a result, if 1, 62, (2, wy are in ‘Jordan normal form’ g, 61, (1, M1

must be in a conjugate normal form.

2.28 Triviality over the real sections (part IT). As promised, we will now

prove

LEMMA 2.29, The determinant condition (2.22) i3 implied by the other monad

conditions when v = 0.

ProoF. Imposing reality (i.e. (2.27)) and 7, = 0, condition (2.22) becomes

9 _ x
det (“’2_2;234 e Efi? /2)*) £0forall z € C. (2.30)

We proceed in two steps. First we show that the determinant can be decomposed
into a sum of subdeterminants each of which is real and nonnegative. When —22
is not an eigenvalue of wq, the sum has an obvious nonzero term. In the second
step, we find a nonnegative term in the expression for the determinant in the case
that —2z is an eigenvalue. In this step we will need to use the injectivity of o and

surjectivity of 3.
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To calculate the determinant we will use the fact that the determinant of a

product is the product of the determinants. Specifically, we will multiply the matrix

(2.30) by
* ~ /-]
(P (w2 +2/2) P*) on the left,
and by

(P —(wr + 3/2)*_11,) on the right,
where P € GL(k/2) is such that #2P has orthogonal columns, equivalently, such
that P*636, P is diagonal with nonnegative eigenvalues. Let the diagonal elements
be YiyY2e-0 3 Yiy2-

The determinant of the resulting matrix,

I -XXx*
2,
(diag(m,yz,...) I ) (2.31)
will be

A
1/ (!Pr* [ le: + z/2|2f-') (2.82)
i=1

times the original, (2.30).
Now we calculate the determinant by expanding by minors. The first k/2
columns have at most two nonzero elements, and it’s not hard to see that the

determinant decomposes into a sum of 2¥/2 subdeterminants:

Z (H ya) detXX;A

AC{1,2,..,k/2} \e€A

where Y44 indicates the submatrix (X;; : (¢,7) € Ax A

To see that det{XX*).44 is real and nonnegative, let Q4 be a nonsingular ma-
trix such that X*Q has orthogonal columns (i.e. Q4 represents column operations
putting it into this form). Then @*XX*@Q is diagonal with nonnegative cigenval-
ues and hence has real nonnegative determinant, as is det Q@* = det Qdet Q" =
| det Q|2.

If —2z is not an eigenvalue, the summand (2.32) det(X X*)gg = (2.32) is positive,

and hence so is the determinant. It remains to find a nonzero summand when -2z
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is an eigenvalue, In this case the factor (2.32) has a zero, so we have to find a term
with the appropriate pole.

If -2z is a given cigenvalue of w2, we can assume without loss of generality that
wq has [ blocks with this eigenvalue and that they are the first [ blocks of w,, with
sizes ji,...,j1. Let

v(iiy=jg1+j2+ -+ria+land J=j5 4+ + 7.
As a result of the surjectivity of 3, we can assume without loss of generality that (2
is in the normal form specified above, i.e. that the last rows beside Jordan blocks
with the same ecigenvalue are mutually orthonormal and that the intervening rows
are orthogonal to those rows. This is equivalent to the requirement that the j;,
42", ... rows and columns of (2} are zero except for a 1 on the diagonal.

As a result of the injectivity of o implies that the first, »(2)"¢, ... columns of
#2 are independent, and we may therefore assume without loss of generality that
P44 is nonsingular, and C4 > P(C4), where A = {1,#(2),¥(3),...} and C# is
the space of vectors spanned by the a'! standard basis vector of C*/2, for ¢ € A.

As a result of the assumed property of P,
det X X% 4 = det P4 ((we +2/2) " oo {wy + 2/2)*_1).4.4 Paa
= | det Paal® det ((w2 + 2/2) ™ (205 (we + 2/2)* 1) 4 4-
The assumed normalisation of (; allows us to assert that

(w2 +2/2)7 (oG5 (w2 + 2/2)71) 4 = ding(lar +2/2|7%1 |ay + 22722, )
+ terms of ‘lower order’

:th

by which we mean that the :*" row contains no other power of (a; + z/2) of degree

—j; or lower, and that the 7" column contains no other power of (a; + z/2) of

degree —j; or lower. As a result
o + /22 det (w2 +2/2) 7" G5 (w2 + 2/2)*71) 4, = L.

Since the eigenvalue a; was chosen arbitrarily, it follows that the determinant con-
dition (2.22) is always satisfied for monads satisfying the reality, time translation

and other triviality conditions. O
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We have proven

THEOREM C. The space of (framed) uniton bundles is isomorphic to « space of
monads (a subset of a complez linear space) yuotiented by the action of a complex

group. The action of the group can be used to put any monad into a unique normal

form
E+)+1 0 ) .
O(-1,1)*
0 A(T '
0 — O(—1,0)* = 7+ A+ ) } @
Ly — wiA? wi (Ok+N
pg)\Q 1]]I+w2
—(3 A2 8,

In+ —wiX? —uwy )
—paX? In 4 we

(—(I[-Fﬂ)—)\‘ri" 0 —(1+A)95)
0 —n=M+n) (T+A)¢

where v, € gl(k/2) is nilpotent and in Jordun Normal form, wy € gl(k/2), ¢; €

» 0(0,1)F — 0,

M}{/z, 82 € MJ},, are in normal forms (262 = [y1,ws], and w1 end py are deter-

mined by wy + yiw +win = —0502 and py + 2yt + 112 = —C263 and

(w2 + 2/2) = 3(T+m) ') wi
e ( n o 512 St ) 0 2

for all z € C.



CHAPTER VI

CONSTRUCTION OF A SIMPLEST-TYPE UNITON

Having shown that unitons can be represented by monadé, we now reconstruct
the unitons from a monad of simplest type, closing the circle unitons — Bogomolny
solutions — uniton bundles — monads. The key is the link to the original construc-
tion of Ward (Chapter IV), which gives the extended solution as the monodromy of
the bundle E around a cycle of complex lines. To construct the extended solution
in this manner, we need fixed frames of E restricted to the lines, Co, C:z,0, Pr

(for z in C and A in C*).

1. Parametrising sections over C, and P,

Recall that a monad with v; = 0 restricted to C is

I
O(1)*
o—>o’~‘-(———f\ﬁ» (ea) I » O(1)F — 0.
I OF+N (—]I (1+ A )
( 1[) “AL (14 A)G
0 0

From this we obtain the long exact sequences
0 — HO(ker ) — H(O1)* @ OF+Ny 2 HO(O(1)¥) — 0, and
0 — HYO*) % H(ker 8) — H(E) — 0.
The first sequence tells us that
ker Byo = H'(ker 8) = {((‘(ff)“)) :a € CHN }

and the second sequence tells us

(- (%))
imapyo = N (Go 0 :ap € CF
;)

90
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(Recall that a;(A) = —B; ((4,0)').) Together they tell us that

—~(1+ A)Cia
—(1+ AGra

o)

Similarly, the restriction of the monad to Py for A € C*:

HYE|c )= caeCN ) =CV, (1.1)

O(-1*
0— 0= o 2000
Gz 0L-+N B2

leads to the isomorphisms

(0)
HY(Py, E) & H(P,, ker ) = ((1(1++/\§)]@)‘C‘2‘a) aeCV b=, (12)

o

2. Parametrising sections over C, :

gy

Unfortunately, this case is a little bit more complicated. Since the extended
solution is time-independent, it is enough to compute it for ¢ = 0, so we will only

concern ourselves with such sections. In this case the monad restricts to

(I[ )\I[) O(-1)*

0— 0(—2)k ' 48]
22+ (=2/2+ p1)A? (162 Ok+N
C291/\2 (2/2"}‘&)2)—2/2/\2
8, )\? ()
(z/2+(-2/2+p1))\2 —(162 )
—GON (/2 +w2) ZE2N) | o0y o,

(—E (14+ M) )

=Ml (14 MG
The fact that H!(O(=2)}*) # 0 means that we cannot think of sections of E as
sections of ker #. Some sections will be contributed by H(O(-2)F). To compute

a basis of sections, we will have to look at the exact sequence of complexes of Cech

cochains with respect to the cover

{Un = {A# 0} ,U; = (A £0}}
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0 —— COO(=2)) —2 CO(ker 8) —Lm CHE) —— 0
d“l d”l dEl (2.1)
0 —— CYO(-2)*) —2 CM(ker f) —2s CUE) — 0
and essentially trace through the proof of the snake lemma. Since a?, d* and o?
are all injective (from the definition of a monad and the fact that H(O(-2)) = 0},
we can factor out the image of C%(O(—-2)) in the first two columns resulting in the
modified complex
or
0 —  Cker f)/a(C(O(-2)%)) L= C°(E) —0
dml dEl (2.2)
L 1
0 —H'(O(-2)") < C(ker f)/a (d*(C(O(-2") Lo CI(E) —0.

Then
HY(E) = ker d® = ker (p*' 0 d”') € CO(ker 8)/a(C°(O(-2)*)),
which, since the bottom row is still exact,
= (@) (@"(H (O(-2")).

It’s casy to see what the image of a!’ : looks like. If we use the standard

representatives for
o[£ A
moEh={(15 ) neecn],

the image of o’ is

fat
g
ATHES + Gbag) + My — 2/2)f € C(ker B).
A"Hwa +2/2)g + M6 F - 59)
AGL f+ A7 8:g

In calculational terms, we take the quotienting by C°(0(-2)) to mean that
X = ((a,b)(c,d,e)) € T(Uy, ker f) satisfies & = 0 and b = by (i.e. does not depend
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'!"!

on A) and X = ((&.,5), (&,d, é)) € D(U;, ker B) satisfies @ = @p and b = 0, which is
compatible with the choice of basis for H'(O(—2)*). This normalisation allows us

!?A ;

then f = @g and ¢ = by. Since X and X are local sections of ker 3, we have relations

_ -~ —=(1029 —c+ (1 + A)(1e
0=800= (14 oy a4 )
_ariy [ Mer —E2)f ATz [2f — a4 (14 N)Gé
Oﬁﬂ(k)—( =A(201f — M+ (1 + A)Gaé )

which yield relations

c=(1+A)ie—Cibay
d=(+1)(é— (26, f
d=((1+4A)z2e—Caeo) /A —2/2 Xg
((A +1)Gé -~ Qleo) JA+z2/2 Af
0= (w2 +2/2)g + Caeo

0={(p1 —2/2)f + C1é0.

(23)

I1

Using the first four relations, we calculate

()
. g
d*(X,X) = ((1+A)cle—clezg+A((A—l+1)clé—cléo)+»\-1z/2f) ,

(14 A)ae = Caeo) /A = 2/2hg + (A71 -+ 1)Caé — a6, f
e+ é

from whose last row we see that d?(X, X) = a!(fA~?, gA~1) implies that

-~ ~

€p = —¢p, € = 91f, €] = 925],

and these are all the relations we can derive, z.¢. if X and X satisfy these relations,
dP(X,X) = o (f371, gA7Y).
Putting it together, we see that on the open set where —2z does not correspond

to an eigenvalue of wy, respectively 2% of p;, H%(E) is parametrised by ey € CV,
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i.e. the map CV — C%ker ) given by ey — (Po(es), —d1(eo))

4]
( (-—(z/2+w2)"1‘:230> \

(14+X)6i{eot+Ad1(m —5/2)—1Cleu)+Cle2(=/2+w2)_lCzeo
((14+2)¢2(eatA81{p1—3/2) "1 Creo) —Crea) [A+E/2A(2/24ws) " ¢z eq (24)
eot A8 (p1—5/2)"reo

/
/ (;\(m-f/?)'lﬂ.’teo) \

0
((A+1)¢1(—eo—A8a(z/2+4w2) " ¢ze0)+G1e0) /At Az/2(p1 ~2/2) "1 €0
(A+1)¢a(—eo—A02(z/2+w2) " Cae0)=C2b1(p1—2/2) " C1e0
\ —eg—AB2(zf24w3) " izeg )

induces an isomorphism CV — HY(C(; z,0), E).

REMARK 2.5. We have actually only calculated parametrisations of E restricted
to an open set of sections. This is sufficient for the construction to follow, since by
the definition of the monad the monodromy is analytic, and hence determined by an
open set. Restricted to the closed set of sections Cf; z o) for z an eigenvalue of —2w,,
however, it doesn't follow immediately that the space of sections has dimension N,
nor that those sections don’t have zeros at A = 0,00, In fact, if we try to derive
these properties we find that they require the nonvanishing of the same determinant

(V.2.22) (with y; = 0) we found in the last chapter.

3. Parallel Translation

We defined the extended solution Ej as the ‘monodromy’ (i.e. failure to com-

mute) of the cycle of isomorphisms:

Ej o S HYCo, B) — B
LT It
H°(P,E) HY(P_,,E)

restr

En:ja-stmrrzz) e HY(C(s 5,000 E) ——— E(_1:/041-3/2)-

As with traditional monodromies, choice of a different starting point or frame effects

the extended solution by a conjugation. We can fix it by specifying a framing at
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a point or alternatively over Cop or P_y (but not over Ci. : ), because it moves).
Of course going around the other way gives the inverse solution. We will base our
monodromies at the fixed frame ¢ € H°(P-;, Fr(E)). Since the extended solution
is independent of ¢, we can greatly simplify the calculation by asswming ¢ = 0 in
the following.

This description of the extended solution is well-suited to the monad representa-
tion since we have been able to calculate explicit parametrisations of the spaces of
sections E over nonpolar fibres and over a dense set of sections of TP! (including
the section at infinity).

Lety : P! — TP parametrise one of the above sections or fibres. The paramectri-

sation of E restricted to such a line is a map

T :CN x P! - ker 8
¥, cN - kel‘ﬁl,p(p).

Evaluation is given by composing with the quotient map

ker Blpy — ker Bpy/ imalpy = Elpy-

If ' and ©? parametrise lines which intersect at ¥!(p;) = ¢ = 1*(p2), then the
map HO(!(P!), E) — H(4?*(P'), E) given by evaluation at ¢ maps a € CV to
b € CV such that ¥ (o) = T2, (b)( mod imalyj. Since the maps ¥ and o are
analytic, the resulting evaluation map is as well, and in practice is easy to calculate.

We begin with the hardest case, the map H°(C(, :0), E) — H*(Px,E). The
images of T, : HY(Py, E) = C* @ C**Y are all contained in the second summand,
i.e. their first components are zero. To calculate the translation from H 0(C2500: B)
to H(P», E) we have to put the cocycle representative (2.4) into this form. We
can take either the local section over Uy or the local section over U;. To the former

we have to add

0
« ()\"l(wz + 2/2)~ (zeq )
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to get the representative

0
0

(14 A)i(eo + Mi(pr — 2/2) " Creo) + (1 + A71)C162(w2 + 2/2) " e
(14 A1 )z(eo + A1 (py — 2/2)" (1e0)
ey + Ay (Pl — 5/2)_1C160 + A_leg(wg + 2/2)_1C260

of the form (1.2). So in terms of the chosen trivialisations, the translation

\I’;l oW, : HU(C(- ',0)) — HU(P,\)

%
-y

is
I+ Mi(py — 2/2)7 G+ A7 0y (w2 + 2/2) 7 . (3.1)

By the same method of translating by the image of a we calculate the parallel
translation from sections above Cx to sections above Py to be the identity in the
chosen bases.

Putting these together, we get

Ey=(I+A0:1(~2/24p1)7 1+ A7 102(2/2 + w2) 1 (2) ™!
(I—6:(=%/2 + p1) "¢t — 62(2/2 + w2) 71 (2)

= (=, oy (NI ) (5;))‘1

. . (H~(91, 62) ((pl ~EA (wo +Z/2)"1) (g;))

and imposing reality, we get

By =(T-X2{(02(2/2+w2) ™ )" + A7102(2/2 + wp) "2 (g) !
(L+ (62(2/2+w2) 7 (2)" — 02(2/2 +w2) "1 2)- (3.2)
Let
= 0,(z/2 +QJ2)_1C2. (3.3)

Then
01(pr — 2/2)7 1 = -0
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by the reality conditions. The monad condition ({262 = 0) implies
Q0 =0=0Q",

The matrices 20* and Q*§) are hermitian and hence have real eigenvalues. Since
they are normal and commute with each other, they are simultaneously dingonal-

isable. To summarise, we can find a unitary (but nonconstant!) frame so that

Q= (g %) (3.4)

in block form, where €' is not necessarily square, and Q'Q"™ and Q"™ Q' are diagonal.
From this picture we see that the eigenvalues of QQ* and 2*Q are all nonnegative.

It follows that

DY 1 Q0" + 9*Q (3.5)

has eigenvalues bounded away form zero, so we can invert it.
One remarks that Q and Q* both commute with D. Since D is independent of A,
D commutes with (I4+AQ*—A719), as does D1, That the inverse of [~ A*+A~1Q
is
(I=2Q" +271Q) = I+ AQ* = 2~1Q)D™! (3.6)

follows from

(I-A0Q" + /\-IQ)(I[ + AQ" - /\_IQ) =D,
We have shown

CONSTRUCTION D. Given monad data as in Theorem C with vy = 0, we can

construct the associeted uniton as
§=(I+20" —20-QQ* - Q*Q)D~!, (3.7)
which has eztended solution
Ey=(I+A0* - A71Q)(I+Q* - Q)D~! (3.8)

as an eztended solution. Since all simplest-type unitons can be so constructed, all

such unitons have uniton number 1 or 2.
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4, For the Sceptical

4.1 Extended solution. We can check that S satisfies the uniton equations
directly, but it is much easier to check the equations for the extended solution.
Using
7, o 0

= O* ~ -l - —-1 QQ* x - -—
—Q' =0, >-D7'= ( + Q' 2-)D™!

and commutativity of D™ and Q, we can calculate

_ ! g 5. Ex=D"" (——?—Q - ﬂsm* + Q*QQ + Q*im ) D™ (4.3a)

and
-1 g -1 _2 __a_ 0 * _a_ * -1
1+AEA s B =D7 507 - 500+ Q0" + -0 ) DT, (43D)

verifying that E, is in fact an extended solution. (See Theorem 1.1.12.)

4.4 Nonsingularity. We can also check that S is nonsingular. In fact, we will
show that E) is nonsingular on {(},z) € C* x lP’l}

We can make a unitary (but not holomorphic) change of gauge so that Q22* and
Q*Q are ciagonal and  is block diagonal of the form (3.4). Let j be the size of
the first block of zeros, eqﬁivalently, the height of Q. In such a frame, the (z,7)th
element of 0* is the squared norm of the ith row of ', |Q'|2, and the (i+7, i4j)th
element of Q*Q is the squared norm of the ¢th column of {’. That the off-diagonal
elements of QQ* are zero implies that the rows of Q' are orthogonal; the columns
of Q' are similarly orthogonal, and together, these imply that Q' is square.

Since D has positive real eigenvalues, it has a positive square root. Since D is

diagonal in this frame, we can write D'/? explicitly as

D2 = ding(v/T+ Q7] I+ Q7,41+ Q412 4/1+ 042
Using the commutativity of D and €2, we can write Ej in the form

Ey=(I+ A0 -1/20)D71(I+ Q" - Q)
= (D72 +.AQ*D7/? = 1/AQD~'2Y(D/? + D72Qx - D/2Q),
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In terms of our diagonalising basis, the multiplication by D=!/2 on the left, re-
spectively right, acts on © or Q* by scaling each row, respectively column, X, by
(14 |X|%)7Y/2, with the result that norms of the rows and columns are bounded

by 1 and therefore {2} and |Q2*| are bounded by N. It follows that
|Eal < 3N(1+ A+ 1/|A].
Applying a similar argument to
ES'=(1-Q"+Q)(I-2Q"+1/AQ)D™,

we see that |E;1| is similarly bounded. Together, the two conditions imply that

E) is nonsingular on P! x C*.

COROLLARY E. All simplest-type unitons can be deformed continuously into

U(2) unitons. As a result, the components of U(N) are the energy levels, i.e.
WO(U(N)shnplcst-type) = N,

and the energy of the uniton is given by 1/2 the second Chern class of the bundle

in that case.

PROOF. As is well known, and will be demonstrated in the next chapter, U(2)
unitons factor through a P! C U(2), and hence are parametrised by rational maps
P! — P! and embeddings P! — U(2). The space of rational maps has components
given by degree. Holomorphic maps P! — P! are the same as line bundles over P!
and degree corresponds to the Chern class of the bundle. By a theorem of Valli
[Va, Theorem 3] this is the same as the energy of the uniton.

Given a set of monad data, we will give a path in the space of monads without the
condition (V.2.22) to a monad whose corresponding uniton bundle is decomposable
into a trivial bundle and a uniton bundle of rank two. Since the construction of the
uniton from the monad data is continuous with respect to the matrix norms, our
path preserves energy. Since energy is discrete, and the energy levels of U(2) are
its components, it will follow that the components of I{(N) are its energy levels as

well.
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The path itself is simple. Let the monad be given by wsy, 6; and (2, and the
eigenvalues of the Jordan blocks of wy be given by ay,a2,...,ar,

If we perturb the eigenvalues of ws so they are distinct, the injectivity of o and
surjectivity of 8 reduce to the condition that the first columns of §; under Jordan
blocks and the last rows of (; beside Jordan blocks be nonzero, These can be
deformed to be colinear and the other rows and columns can be made zero, then
the row and column can be rotated by GL(N} into the forms (0,+,0,...,0) and
(#,0,...,0)" respectively.

If g, is a path in GL(NV) such that

1

=L o=, @Y% =010 .. 0),
0
3Ne¢ is the minimum nonzero distance |a; —a;| between eigenvalues, and f: [0,1] —
C, is a path between 0 and 1 in C such that no two colinear columns of (» or
two colinear rows of 8; have f(¢)/(1 — f(t)) as their ratio, then the deformation

(w2,82,C2)(t) (0 <t < 1) is given by

(L.,'(t) = ¢a; + et

_ . if (62); is the first column
(62)i(2) = { (1= f()ge(Ba)i + 7(t)ge(52 uner its Jordan block

(1 —1)ge(62); otherwise

_ 1 —1  if({2): is the last row be-
(= FENG)ige” + F()(C)ngs side its Jordan block

(1 — t)(C2)igi™? otherwise

Such a monad corresponds to a uniton bundle which is decomposable into the

(G)i(t) = {

sum of a U(2) uniton bundle and a trivial bundle, and hence a U(2) uniton.

Alternatively, remark that Q is of the form
Qo
0 0
where © € gl(2), and as a result S is of the form

(5 1)

where S € U(2). O



CHAPTER VII

EXAMPLE: S* — U(2)

This section treats the simplest case: U(2) unitons given by rank two uniton
bundles. It is well known that such maps factor through spheres, and hence are
closely linked to the rational maps. We will give an ahistorical proof that based
unitons correspond to rational maps (P! -+ P!), and show that the action of U(2)
on U(2)* by conjugation (§ — USU™*) corresponds to the usual GI(2) action on
rational maps, i.e. the correspondence is equivariant. We then show that this is the
same map as given by Construction D, and we prove that the determinant condition

(V.2.22) is implied by the other monad conditions in the U(2) case.

1. Rational maps
From [Uhl] we know that S : §* — U(N) is an n-uniton for n < N. As a result,
harmonic maps S : S? — U(2) arc 1-unitons, which have a simple form.

THEOREM [UhL,9.3]. S: Q — U(N) is ¢ one-uniton iff § = Q(z —#1), Q €
UN), 7* = =, #2 = 7, rank® is constant, 710r = 0, i.e. 7 is projection onto a

holomorphic subbundle of @ x CV.

We can see the decomposition § = Q(m — 71} as a composition of three maps.

In the middle is the inclusion
P! = Grp; 4, U(2):7€Gryy o 7 —7t.

In terms of 2, a coordinate on P?,

[(z) = 7y — 7t = — (1'2'25 22 ) (1.1)



102 VIL. EXAMPLE: 52 — U(2)

Now we can identify holomorphic subbundles, 7 ¢ C?, as 7y, for some rational
function f : P! — P!. Finally, we can left-translate harmonic maps Lg : § — @S.

Summarising, a general one uniton is a composition
P Lt dpe) 22 pe)
where f € RatP!, Q € U(2).

LEMMA 1.2. This decomposition iz unique!

Another way of looking at this decomposition is that the image of a harmonic
map is an embedded sphere (5?), and the harmonic map is just a rational map of
spheres. The question is, is the association to @ € U(2) of an embedded sphere
injective? Since left translation is a group action, we can ask the stronger question,
is {Q|QGrz,1 = Gra,1} = {I}. In fact it is {£I}, and we can calculate the action of
L

(DI = A

1 2
L (CCuacme | sy
CIEmN 22U -1+ (-ya-yn )
= I(~1/2)

to be I composed with the antipodal map (z — —1/%), which is of degree —1. So up
to orientation, left translation of spheres is not free, but acting on oriented spheres,
it 1s, i.e, if we were considering both holomorphic and antiholomorphic maps the

decomposition would not be unique, but for rational maps it is.

PROOF. We use the fact that S € Gry,; C U(N) satisfies S? = I (in fact this
is equivalent to S being in Grp; for some i). Let QGrz; = Grzs. Then for all

I(z) € Gro,1, (QI(2))* = L. This puts conditions on @. In particular

o= (3 8) () = (e )

== (o, ) = (o tm o)

I=(QI(-d))" = (Q (—z’ i))2 B (——qz%qj 313:) ilq(gi—quZ) '
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We see immediately that gigs =1, 2 = 0, @3 = 0, ¢f = 1 = ¢} which implies
Q=4I O

So the space of U(2)-unitons is
U(2) = U(2) x RatPL.

Rational maps can be written as p(z)/¢(z), with (p,¢) = 1. Their topological
degree is given by max {degp,degqg} (always positive, because holomorphic maps

preserve orientation). They contain the based maps

Rat* = {f € Rat : f(c0) =0} = {q((; (p,q) =1, ngp<deng

Various groups act on Rat via the action of PGL(2,C) given by

a b) P, wtb
¢ d) ¢ wtdd
This map preserves degree because GL(2) is connected and degree components are

disjoint. Rat is a Rat® bundle over P!, given by
rat : Rat — P': f = f(o0).

PGL(2,C) acts on P! by

c

(a b) [2,y] = [az + by, ez + dy],

making Rat — P! an equivariant bundle.

(P € PGL(2,C) : P(Rat*) = Rat*} = {(i 3)}

Conjugation acts on the U(N)* component of U(N) = U(N) x U(N)*, the space
of U(N) unitons. In this case U(2)” = Rat P,

CramM. Ifp/q € RatP! gnd U = (g g) € U(2) then

Cq+ Dp)

Ur=1I
Ul(p/q) (Aq+Bp
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Proor., Write

I(p/q)=p1.,iqq(;ﬁ _qﬁ) (1 —1) (;13 _q?)"
orerr = —=v (¢ D) (0 L) (e 7))
1

1 Ag+ Bp —-Ap+ Bj

~ pp+4¢i \Cq+Dp —-Cp+Dg -1
Ag+Bp —Ap+B7\’
Cq+Dp -Cp+Dg) -’

Then

The claim follows from the facts that for U € U(2)

(Aq + Bp)(Aq + Bp) 4+ (Cq + Dp)(Cq + Dp)
= (A4 + CC)qG+(AB + CD)pg + (AB + CD)pi + (BB + DD)pp
= pp + 44,
and

Cg+Dp __—Ap+Bg
Ag+Bp ~  -Cp+Dj

0=p*(CD+ AB) + pg(CC ~ DD + AA ~ BB) + ¢*(-CD — AB). O

. 10y
This action is not free, it has stabiliser {¢*’I}. An element (e eigz) acts

on f € Rat by f — ¢¥f2=%) f_ s this the same S? action induced by the freedom

to choose gauges when integrating the Bogomolny solutions?

2. Meanwhile, back at the monad ranch...

We have another description of 4(2) and we would like to relate the two. Think
of U(2)* = U(2)/U(2) as the space of monads with N = 2. The second Chern class

gives a stratification

uey = u(z)z.,z.‘
kJ2
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The quantity k/2 is also the jumping type of E|p,. Degree gives a stratification

Rat = U Rat;.
J

The map U{2)/U(2) — Rat of Construction D preserves this stratification.

Recall the Jordan block normalisation of a simplest-type monad M, given by the
data ws,f2,(2. From the fact that monads are complexes, we saw that (28, = 0,
but both (2 and 8, must be nonzero if @ and 4 are to be injective and surjective
respectively at A = 0 and n =an eigenvalue of wy. It follows that the column space
of §; and row space of (; are one dimensional, and that they are perpendicular to
one another with respect to the Euclidean metric on C2. From the discussion of the

normalisation, we see that the Jordan blocks of wy have distinct eigenvalues, and

the monad will be given by

le(al)
Wy = )
JiL(aL)
0, = (i)(1,0,...,0,1,0,....,0), (2.1)

(€2)3,-1

=] @0 (= 1)
(€2)5, -1

generically, where ((2)§ # 0 for all 7. Putting this rank condition into the determi-
nant (V.2.22), we can give another proof that it is always satisfied for simplest-type

U(2) monads of simplest type. In fact,

2

A A i
(v.2:22) = [T (ai + 2/ { 14+ 30 (i +2/2)7 Gy i
=1

i=1 =]

= l¢|* + Ip|?

where f = p/q as below.
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In the case b = 0, we calculate

0=t +2/27 0= (§ F) (25)
where ; ] ,
L dis (z—a,) i~j-1 .
=L 2.6
Z Z AL . (2.6)

is a based rational map of degree k/2. We see that

S=(—1f {)(ff {)(wf 1+ff')_1
__ v (1-ff of
‘ﬂ_ff‘(—zf' 1—ff>'

This is equivalent to (1.1) under a change of frame and of basing condition.

REMARK 2.8. We see from this calcula**on that ell U(2) unitons are of simplest
typel

REMARK 2.9. To understand the general uniton moduli, we should exploit this
bundle structure. Of course, the general moduli are not bundles over P! but are

made of bundles over Grassmannians and flag manifolds glued together along the

real subvarieties given by the determinant condition.



CONCLUSION

In this thesis we have developed a tool for studying unitons, i.e. a correspon-
dence which identifies harmonic maps 5% — U(N) with framed holomorphic uniton
bundles over TP! with extra structure, and with a monad description of those bun-
dles. It is reasonable to ask how useful this tool is. Does it help answer the three

types of questions concerning unitons:

(1) construction question: Is there a ‘reasonable’ procedure for constructing
some or all unitons?

(2) local questions: Are they smooth? Are they composed of rational functions?
How can we calculate their energies? When do they factor through a totally-
geodesic imbedding of a Grassmannian?

(3) global questions: What energy values are possible? Find a complete sct
of invariants, ¢.e. quantities which determine the connected components.
Calculate m;(U(N)), Hi(U(N)). Is the inclusion U(N) — U(N + 1) a ho-
motopy /homology isomorphism up to some dimension depending on N7
Can we measure its failure to be an isomorphism? Does U(N) admit a

complex structure?

Of course, these questions should be posed in the context of previous results and
methods. A less quantifiable question is how well we understand unitons. This
encompasses all of the previous questions, but also asks whether we can integrate
the various approaches into a whole. Can we interpret energy, uniton number efc. in
terms of all the known constructions? Does our construction suggest new questions

or new approaches to established problems?

107
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Construction. In [Wo], Wood amplifies Uhlenbeck’s uniton factorisation, and
relates it to the flag-transform metho_d for Grassmannian solutions, thereby giving
an algorithm for constructing harmonic maps from holomorphic maps into Grass-
mannians using only algebraic operations, differentiation and integral transforms.
Constructing the uniton from bundle data, i.e. by factoring a transition matrix, is
an advance over integral transforms, but it still requires one to know which transi-
tion matrices are allowed. The construction from the monad data for simplest-type
unitons using only matrix operations is much more straight forward, but needs to

be extended to the general case.

Local Questions. Based on his parametrisation of U(3) unitons, and numeri-
cal calculations for higher rank, Wood conjectured that unitons were composed of
rational functions, our construction allows us to verify this for all ranks. As con-
cerns energy, we were able to show that for simplest-type unitons it is given by the
second Chern class of the bundle, something easy to read off the monad data. We
also showed that these unitons can only have uniton number 1 or 2. To be able to
read off the uniton number from the monad data we have to find the meromorphic
section of E — TP! which corresponds to the ‘Uhlenbeck normalisation’ of the
extended solution which seems central to the determination of the uniton number
in both Uhlenbeck’s and Segal’s work.

We know that the space of unitons contains spaces of harmonic spheres in Grass-
mannians. If we could tell when a uniton factors through a Grassmannian, we could
construct Grassmannian solutions as we did unitons. This may be determined by

a condition on the jumping type of the bundle, or on the structure of the monad.

Global Questions. These are the least known, Using Uhlenbeck’s factorisa-
tion, Valli showed that the energy spectruin of unitons is discrete, and can be nor-
malised to be positive integers, thereby linking energy and uniton number, Since
the energy functional is continuous, this result implies that the moduli space has
countably many components, As a result of our retraction of U(N )simplest.type tO
U(2), energy levels are the same as components, 7.e. wg(U(NV )simplest-type) = N.

The other work in this direction is the work of Guest and Ohnita [Gu0O2] which
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uncovers deformations of harmonic maps from one-parameter subgroups of the loop
group acting on Uhlenbeck’s extended solution via a dressing action. The main
obstacle to this method is the possibility of ‘bubbling off’ of harmonic spheres
resulting in a deformation which fails to be continuous. This method was used by
Guest to show that certain unitons can be deformed so that their image is contained
in a unitary group of strictly smaller rank, and in particular, that unitons with
images in a projective space are always homotopic in the space of such unitons to
a uniton with image in P2, Based on this result Crawford [Cra] has shown that the
components of harmonic spheres in complex projective space are given by energy
and degree alone. It would be interesting to try to write these deformations in
terms of the monad data. This might help answer the question of when unitons

factor through Grassmannians.

This thesis suggests that the moduli components () are the same as energy
levels. This would follow from an extension of the deformation of simplest-type
unitons into U(2), or from an extension of the proof that the determinant condition

(V.2.22) is, in general, implicit in the other monad conditions.

It also opens up two related methods of investigation of the higher homotopy of
the moduli space. One is to investigate the space of framed jumps, the second is
to study the space of monads. As mentioned in the preface, both methods were
used in studying instanton moduli and in particular in proving the Atiyah-Jones
conjecture. Of course, the uniton situation is somewhat different. Uniton bundles )
have two fixed jumping lines (the polar fibres) in a ruling of TP!, and from the
monad description of simplest-type bundles we can read off that they are jumps of
length one in the language of [BHMM], z.c. they cease to jump on the first formal
neighbourhoods of the jumping lines. It should be possible to calculate the uniton in
terms of a transition matrix for one jump and a choice of framing along the infinity
section. From such an expression, one would hope to read off the relationship
between jumping line and uniton data. For example, one might find that restricted
types of jumps correspond to Grassmannian solution, or perhaps adding a uniton

could be interpreted as some sort of tensor product of bundles in this way.
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CONCLUSION

This work certainly improves our understanding of unitons since it gives a new

construction for general unitons in terms of uniton bundles and for simplest-type

unitons in terms of monads, reducing the problem to linear algebra, it answers an

open question about the rationality of the constituent functions, and it allows us

to calculate To(U(N Jsimplest-type )y Put it leaves many stimulating questions unan-

swered.

(1} What is the link between our construction and the method of Uhlenbeck

(2)

(3)

(4)

(5)

(6)

worked on by many people in the uniton case and also in the Grassmannian
case?

What is the link to the loop group methods of Segal [Se2], which give U(N)
a complex structure?

Can the deformation of simplest-type unitons into U(2) unitons be extended

to general unitons. In other words, can the isomorphism

mo(U(2)) = mo(U{N )simplest-type):
be extended to an isomorphism
mo(U(2)) — mo(U(N)).
Given k > 0, is there an Ny such that the map
mp(U(Ny)) = m(U(N))

induced by the inclusion U{Ny) — U(N) is an isomorphism for all N > N;?
Are simplest-type unitons the same as one unitons? Is the uniton number
the size of the largest block in the Jordan decompeosition of 4,7 If this were
so, we could compute the homotopy of the type-components and use the
long exact sequence in homotopy to compute the homotopy of the moduli
space.

Can the determinant condition (V.2.22) be simplified? Eliminated? Or
perhaps reduced to checking for a finite number of values of z.

Can the monad description be interpreted as a sort of cell complex descrip-

tion of #(N)? If so, how are the cells glued together.
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(7) Which jumps are allowed and how may they be glued in to construct a
uniton bundle?

(8) Is there an expression for the uniton in terms of a transition matrix for the
jump and framing?

(9) Is energy given by the multiplicity of the jump at Py/Ps, and the uniton

number given by the degree of the first formal neighbourhiood on which it

jumps down?
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