s
— [-

»

by
¢ ' -
}. L)
’g. i Meir H. Levi
: .
§ . !
4
N - (
A thesis submitted
to the Faculty of Graduate Studies and Ressarch
in partial fulfillment
i of the requirements for the degree of
- Master of Engineering
Department of Mechanical Enginmering
McGill University
' Montreal, Canada
.2 August 19831

Copyright @ 1985, Meir H. Levi

o

INTELLIGENT REFLEXIVE INTERFALCES AND 'I'HEIFQ-AF"PLICRTIIII:INS~

-

PR e cd

po—

-3

- ii -

ABSTRACT .

-

.] !

B ~

INTELLIGENT REFLEXIVE INTERFACES AND THEIﬁ‘APPLICATIDNS

Control. tasks in an industrial process can be partitioned
into routine, re{iexive tasks, and smart computational tasks.

An Intelligent Reflexive Interface, (IRI) unit based upon

‘Binary‘hnecisiun ﬁrocessing of digital data was designed and

interfaced to a MELBO9 based microcomputer. Advantages of the
binary Deci sion method as compared to the conventional Boolean
technique are analyzed: Both the hardware concepts and BD

control algorithms are presented. 2.

o o

Two applications of IRI controllers are praesenteds

o

1. The control of a batch weighing system.

2. A prc-progessor ta scan an array of variqﬁlﬁ r-fproncq'

7
-~

‘sensars. . ”»

. Ty

IR1 applications in industrial process control
demonstrate how control may be enhanced by the reflexive-vs—~
sma;t t;sk seperation. A }alatively simple microprocessaé
takes on many of the advantagas of a multiprocessor system
when augmented by Bin;ry Decision based IRI modules. Thus it
canL be easily made to cnntroi a fairly complicated industrial

process.

s -

industriels rel

- iif - ' '
R E ?\d M_E
T

' ' [
LES INTERFACES REFLEXIFS INTELLIGENTS ET LEURS APPLICATIONS

4 -
A A . .
Las taches de controle de processus industriels peuvent

gtr- séparées en routine, taéhes réflexivas et ti3ches
d'arithmétique intelligentes. Une unité d'IAtarface Réflexif -
Intelligent (IRI) basée sur le traitement par décision binaire
de dannées digitales fut congue et interfacde Ewun micro
ordinateur a base MC&B09. Les avantages de la mdthode par

décision binaire par rapport 3 la "“twchnique Booldéenne’

. conventionelle sant analysés. Les concepts d”implémantatidn

nqt‘riclle eé d'aigcrithmes de contr8le BD sont tous deux
pr‘snntéﬁ.“

JDoux applications des cnntralaurg IRI saont présantéas:
1. LQ contrdle d'un systéme de pesage de fournéa.
2. Un pré—processeur qui balaie une matrice de capteurs 3

-@fdrence variable. ‘

Yes applications de 1°IRI aux processus de contrdle

industr els dgmontrent comment le contr8le peut étre améliar‘

par la séparaticn des thhe$ rdflexives contre intelligentes.

\ '\

Un wmicroprocesseur relativement simple acquiert plusieurs des
lvanfages d'un 5yst§ﬂb~5 processeurs multiples lorsgu’on lui
adjoint un module d’IRI basé sur les décisians binaires. Donc
o peut 4agilzpeﬁt 1'utiliser pour contr8ler des processus

tivement compliqu‘i.

- iv - ,

ACKNOWLEDGEMENTS -

- Pl

The research presented in this thesis was carried out

under the supervision of Dr. Paul J. Zsombor-Murray and Mr.

.

Louis Vroomen. The author wishes to thank both for their

excel lent advice, par“aistent g\‘:nidanccz él:ncl encourageme;\t‘f.
Speci.;slv thanks are due to Mr.. Robert D. Hudson and Mr.
Artun Kucuk whui in addition to being good friends, carried
° sout' complementary investigations which e:antr‘ibutmi materially
’ to the progress of this project. The valuable assistance of

all DATAC Labaoratory personnel is gratefully acknowledged.

S } The research was supported by grant A—4219 of the Natural

{ .

Scishces and Engineering Research Council of Canada.

gt n -

v — YA

]

«

-

1

TABLE OF CONTENTS o &QG__E_/
L g) v

ABSTRACT . ‘ . . ii
RESUME | iii
ACKNOWLEDGEMENT Av
TABLE OF CONTENTS . , e v’ k
LIST OF FIBU TABLES * / xi "
LIST OF ABBREVIATIONS ° xv
CHAPTER 1: INTRODUCTION " . P
1.1 The Computer Role in Process Control - 1.1 /J'
1.2 Diract Digitawwl Control: Boolean vs. Binary Decision 1.4 .

Alternative .
1.3 The Present Work 1.6

¢ o

CHAPTER 2: LOGIC THEORY REVIEW .
2.1 Introduction * 2.1
2.2 Combinatorial Logic | 2.2
2.3 Boolean Algebra Review ’ 2.5

2.3.1 Boolean Algebra Identities 2.6

2.3.2 Boolean Algebr%JLaws 2.6

2.3.3 D&rorgan Theorems - o - 2.7"
2.4 H-inimizatinn of Boglean Functions 2.8

2.4.1 Boolean Functions; Canonical Faorms 2.8 -

2.4.2 Karnaugh Maps) . 2.9

2.4.3 Quine-McCluskey (GM) Method v e 2.13

2.5 Sequential Logfc and Finite State Automata 2.15

)

v

B e

L]

.

2.6

) PABE .
w o
Logic Design Methods, Exasples _ 2.21
2.6.1 Industrial Control Example 2.21
2.52.2 Hard wired Implementation, Ladder Diagrams 2.1;6
2.6.3 Function Gen:ration - PLAs 2.30

CHAPTER 3: BINARY DECISION THEORY ¥,

3.3

4

AN .

Introduction Y] 3.1
Binary Decision Logic . 3.2
3.2.1 Binary Decision Programs . ' 3.2
3.2.2 BD Theorems 3.4
3.2.3 BD Boclean Equivalences 3.10
3.2.4 BD Program Properties - 3.14
Minimization of BD Programs 3.19 7
3.3.1 BD Praogram Size ‘ ‘ ¢ 3.19
3.3.2 BD Program Pruning t , I 3.20
3.3.3 Pattern Matching A1gorithn; 3,23
3:.3.4 Quine McCluskey Based Algorithas 3.24
BD Based Comparison Algorithms T 3.26
3.4.1 2-bit Comparator Implementation T 3.26
3.4.2 Multi-bit Comparators : 3.29
3.4.3 Time Codsiderations b 3.32

i —— =3 - s — s

. - vii -
\
|9
. /
. S
CHAP. 41 BD BASED MACHINES ~ ™\ v
v . “"*”“'

1
'

\
4.1 The Prototype BD Processor

4.1.1 Intraoductian
4.1.2 The Architecture of the BD Processor
4.1.3 The BD Instruction Set)
L .
4.1\ /The Operational Modes
4,2 The Hybrid Concept :
4.3 The Expanded BD Machine

4.3.1 Hardware Expansion
%

PAGE

. 4'4& |
4,11

4.13

3.14
8.17
4.17

) 4.3.1.1 The Expanded BD Processor - Overview 4.17

4.3.1.2 Expanded Inputl@and Output Banks, -

Sel‘ect;ion Logic 4.20
WP 4.3.1.3 The Clock and Interrupt Logic 4.23
;l».3.1.4 Expanded Operation—-code Db'coqtr 4.27
4.3.1.5 Auto/Manual Select lLogic -, 4.30
4.3.2 Enhanced Instruction Set . -~ 8.32
4.3.2.1 Overview |) 4.32
4.3.2.2 Input Instructions) 4,35
4.3.2.3 Output Instruﬁtions 4.36
" " 4.3.2.4 Control Instructions 4.37
4.4 The mP-BD Inte;'+ace) s 4.39
4.4.1 Interfacing Methods Overview - 4.39

. T
4.4.2 The nP-BD Parallel Interface v -A.41

4.5 Operating Modes

4.5.1 Running Mode

-

fye.

W T e

—

- viii -

- - y

4,35.2 Program Downloading/Reading t&s»d-

4.5.3 DMagnostics/Verify Made

" 4,6 Saftware Taols

4.46.1 Opérating System
4.6.2 The BD Caompiler

4.6.3 The BD Assembler . "

CHAPTER S: THE INTELLIGENT REFLEXIVE INTERFACE ,
i
S.1 The Intelligent Reflexive Interface Concept
5.2 The IRI Based Controller Arch;tecturl
5.3 The Dedicated Memor;i IR Madule
.5.3.1’The IRI Processor
S5.3.2 Program Memory
5.3.3 Byte/Word Logic (BWL) » ®
¢ 5.3.4 Clommunicat»ion Logic’
S5.3.5 Board Select Logic (BSL)
5.3.6 Controller Bus '

S.3.7 ‘'The IRI 1/0 Bus, 1/0 Interface

‘3,4 THe DMA IRI Module .

5.4.1 The DMA Module Structure
S.4.2 DMA Communication

S.5 The Shared/Dedicated Memorylduln
5.5.1 Controller Structure

’ o~
5.6 The Shared Memory IRI Module

v

S5.6.1 Controller Structure

PAGE

4. a8
4,49
4.49
4.%0

5.1

5.4

5.8

5.10
5.10
5.12
5.15
5.17
5. 20
5.21
5.23
5.24
5.27
5. 29
5.30
5.32
5.32

. ¢ i) PAGE
3.6.2 Clock and Timing : 5.32';

, \; 5.6.3 The Bus Intu;-fac. . T 5.3%
S.6.4 The Shared IRI Design .36
g : 5.56.5 The Shared cht}ax;-r ‘Operation _ 5.38
5.7 The 1/0 Modules] A ' 5.39

! 5.7.1 The Binary Module ’ . 5.39
o 5.7.2 The Analog Module ' 5.4
, 9.7.3 The Timer Module B 5.43

CHAPTER &1 APPLICATIONS

Mo

o * _ 4.1 Introduction 6.l
6.2 Industri‘al PLC, Batching Process . 6.1

| T Tea2.1 Process Description - L b

/‘ ~ 6.2.1.1 Cut—off. Points Optiaizatioﬂ 5.5

6.2.1.2 Smart/Reflexive Partition of Control - 6.6

L Functions ‘

'6.2.2 IRI Cantrolled Batch Waeighing ‘ . 6.8
— " 6.2.2.1 The IRI Based Controller Architecturs 6.9
. 6.2.2.2 Weight Monitoring by IRI - &5.11
6.3 IRI Based Scanner ‘ ‘) 6.14
- | $:3.1 A Matrix of Comparators with Variable 6.15

. ’ Reference .
N 6.3.2 Comparator Matrix Augmented with an IRI 6.17

Controller i

¢ '
b 6.3.3 The Single—-Sensor Scanner Interface - b.19

” H !

'*? ! - -)
[]
N ’)

: ' - PAGE
6.3.4 BD Scanning Algorithm - 6.23
i 6.3.5 The Line by Line Scanner Interface 6.25
i o 5.3.6 Scanner Interface with Hlmary,j 6.27
¢§ 6.3.7 Scanner Application: Contact Pressure 6.29

: Measurement o \ ,

: a

! .’ t EHAPTER '73 CONCLUSIONS !

f
7.1 Objective of the Thesis 7.1
7.1.1 BD Automata Feasibility 7.3
7.1.2 Interfacing BD Automsata with an B-bit oP 7.3
o . 7.1.3 IRI Design ' . 7.3
‘ 7.1.4 fpplying IRIs L 7.4
7.2 Future Work ~ : ~ B
N , ' .
LIST OF REFERENCES S C © L R.1
¥ <
. " 1
APPENDIX A1 MC4809 Devalopment System _ A.1
APPENDIX B: Application Software Listings B.t
APPENDIX C: BNF and ISP Definition Languages SR o5% |
\ | _ :

) .
o
3 N 4 -
) - ~ ' L 3

7

LIST OF FIGURES AND TABLES

CHAPTER 1:

Fig.

1.1:

CHAPTER 2:

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fi1g.
Fig.
Fig.

Fig.

Fig.

Fig.

2.1:

2.10:
2.11%
'Y
2.12:
2.13:

2.14:

2.15:

2.14:

INTRODUCTION

Frocess Control Hierarchical Levels.

LOGIC THEORY REVIEW i @
Fundamental bLogic Gates; Symbolic Represen
tation, Boolecan Expression, and Truth Tabl
a) OR b) AND «c) NOT d) NOR o) NAND §)
Gate Logic Implementation of Fl(a,b,c,d).
Pre- and Post—inversions; DeMorgan Theorem
Implementation.

Representation of a Logic Function f(a,b,c

-—

XOR.

)5

a) Truth Table. b) Minterms.] c) Maxterms.

F2(a,b,c,d);tkarnaugh Map Representation.
Optimal Solution with Karnaugh Maps.
Sequential Logic Machiney Typical Block Di
Differential Encoder, Logic Scheme.
Differential Encoder, a) Transition Tabla.
f T o b) State Diagram.
The Latch Flip Flop.

Single Shot.

Water Reservoir System.

Karnaugh Map for Equation 2.1i1l. >
Control System Implementation:

a) OR and AND Gates. b) NOR Gates.
Relay LQng/Ladder Diagram Notation.

Motor Starter; Ladder Diagram.-

ag.

PAGE

2.5

2.7

2.9

2.10
2.12
2.16
2.18
2.18

2.19
2.20

2.21

2.23
2.75

2.26
2.27

Fig.
Fig.
Fig.

Fig.

- wii -

,

2.17: Batch Process; Material Weighing.

2.18: Batch Process; Ladder Diagram.

2.19: Canonical Functions Implementation:
a) AND-OR Network. b) OR—-AND Network.

2.20: Multiple Functions Implementation with PLAs,

Table 2-1: Minterms Classification by Number of 1°'s.

Table 2.2: Prime Implicants for Flu,x,y,z).

CHAPTER 3: BINARY. DECISION THEORY -

Fig.

‘Fig.

Fig.

E?g.
Figqg.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

3.1: The Elementary Binary Decision Test and
Branch Operation.
3.2: The Expanded F(w,x,y,z): a) BD Diagram.
/ b) Program.
3.3t Full BD Tree Representatiaon of F(a,b) <
a) Truth Table. b) BD Tree. s
3.4: Function Execution Speed; BD vs. Boelean.
3.5: BD Diagrams of OR, AND, XOR and NOT Gates.
3.6: BD Diagram of a Toggle Flip Flop. “
3.7: BD Diagram for a Single-Bit Comparator
3.8: 4-input AND Function: Full vs. Pruned Binary
Tree Implementations.’
3.9: Hardwmired Implementation of 2-bit Comparator.
3.10:- BD Diagram for a 2-bit Comparator, \ a
a) Full Diagram. b) Minimized Diagram.

3.11: A Multi—-bit Comparison Algorithm — BD Diagram.

PAGE
2.28
2.29

2.31

2.13

2.14

3.11
3:12
3.13
3.18

3.21

3.28
3.28

S3.31;

N

)
"\‘

e

’

- xiii -

4

CHAPTER 4:" BD BASED MACHINES

Fig.
. Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

4.1:
4,.2:
4.3:
4.4
4.5:
4.6:
4.7:
4.8:
4.9:
4.10:
4.11:
4.12:
4.13:
4.14:
4.15%5:

4.16:

4,17a:

4.17b:

4.18:

4,19:

-39

Fig. 4.20:

Table 4-1:

Table 4-2:

The
The

The

“The

The
The
The
The

Tho

The Expanded Output Section.

Prdtotype BD processor - Demonstration Umt

.

Boute Machine. -

BD Processor, Block Diagram.
Input Scction.

Decision Logic Unmt. 4

BD Instruction Format.

Hybrid Scheme - Block Diagram.

Egpandad BD Processor - Block Di agram.

Expandaed Input Section. d

The Clock and Interrupt Logic (CIL).

BD

¢
"Wake—-up" Circuit - Timing Diagram.

Operation-code Decoder Block Diagram.

Decoder Timing Diagram.

Auto/Manual Select Logic.

The Extended BD Instruction Set.

The mP—-BD Inter$ace Module - Photo.

The @P-BD Interface Module - Schematic Diag.

The BDO9 Operating System - Block Diagram.
4

The BD Instruction Statemeont Fields.

Assembler Programming Example.

-

The Prototype BD Processar — ISP Definition.

The

Expanded BD,Processor - ISP Definition.

Table 4-3: The Enhanced BD Instruction Set.

Table 4-4:

The

Interface mP—BD - ISP Definition.

PAGE

4.2
4.3
4.5
4.7
4.8
4.12
4.13
4.19

4.21-

4.22
?.25
4,26
4.28
4,29
4.31

4.33

3.42
4.43
4.51
4.58
4.61

4.4
4.18
5.34
4.44

- xiv =~

. © ' PRAGE
Table 4-5: PIA MC&821 - Control Codes. 4.53
Table 4-46: Control Register - Control Codes. 4.53
Table 4-7: BD Utilities. - ' * a.54
Table 4-8: BNF Definition of the BD Assembler. 4.57
Table 4-9: Instruction Set.] 4.59

CHAPTER 5: THE INTELLIGENT REFLEXIVE INTERFACE

Fig. S.1: An IRI Based Controller - Block Diagram. 5.5
.Fig. 5.2: The Dedicated Memory IRI Module.’ . =.9
Fig. 5.3: The IRl Dedicated Program Memary.l S.11
Fig. 5.4: Byte—Word Logic -~ Block Diagram. ‘ S.13
Fig. 5;53 The IRI Communication Logic. , S. 16
Fig. S5.6: The Iéi Select Logic. ' '%.18
TFig. 5.7: The IRI Internal Address Decbding. s.19
Fig. S5.8: The IRI I/0 Interface. s.
Fig. 3.9: The DMA IRI Controller. i LF 5,23
Fig. 5.10: The DMA IRI Module. i 5.25
Fig. S.11: The DMA Support Logic. \ s.26
Fig. 5.}2: The DMA Cycle - Timing Diagram. o . 5.28

Fig. 5.13: The Shared/Dedicated Controller Architecture. 3.29

Fig. S5.14: The Sharédlnédicated IRI Mudul..‘] 5.31
Fig- 5.15: The Shared IRI Controller Architecture. 5.33
Fi1g. 5.146: mP and IRI Data Access Timing. . S.34
Fig. 5.17: The Bus Interface. 5.35
Fig. 5.18: The Shared IRI Layout. 5.37
Fig. 5.19: The Binary 1/0.modula. _ 8 s.40
Fig. 5.20: The Analog 1/0 Module.) ’ C %.42
' ’ [4
4
i '\‘
- h v

'

— @wmﬁﬂmw

\ D

Fig. 5.21:
Fig. 5.22:

Table 5-1:

PN ¢ ¢ e

i CHAPTER 6:

Fig. &.1:

i : - Fig. 6.2:
Fig. 6.3:

Fig. 6.4:

"Fig. 6.5: .

_Fig. 6.6:

Fig. &6.7:

SN ‘ Fig. 6.8:
1 ‘ ! -~

Fig. 6.9
. . Fig. &.10:

The Timer 1/0 Module. .

Timer State Diagram.

Timer ‘s Operationdl Modes.

" u
APPLICATIONS .
Q Typical Batching aqq Hixiné Process.
WEiéh Scale Control Signals.
An IRI Based Programmable Controller.
A Hulti—bit'Cnmparison BD Tree. °
Scanner and Beésnr Dynamics. \
An IR1 Based Scanner — Block Diagram.

-

The Sind;e—Sensor Scanner Interface.

The Scanning BD Tree. ' Y

The Line by Line Scanner Interface.

" Scanner Interface with Memory.

o © APPENDIX A: MC&B09 DEVELOPMENT SYSTEM

— Fig. A.1:

Table A-1:

~ Table A~2:

The SWPTC Microcomputer Development System.

The SS-50 Bus.

The SS—30 Bus.

5.44

5.46

6.2

6.4

6.10
5.12
5.16
6.18
6.21
&.24

&.26

6.28

A-z

et "

-
.

'

DBL Data Buffer Lagic

\~
LIST OF ABBREVIATIONS
S~
A/D Analog to Digital
ADC Analog to Digital Convertor
s .
ACIA Asynchronous Communication Interface Adaptor
ALE Auto, Load Enable
. A/M Auto/Manual
AML Auto Manual, Logic
BD Binary Decision . L}\
BGBRNT Bus Grant
BNF Backus Narmal Form .
BRA Branch
Ve
BREQ Bus Request
BSL Board Select Logic
BWL Byte to Word Logic ‘
CIL Clock and Interrupt Lﬁqi:
CLK Clock
coe Cut-off Point N~
CPOS “Canonical Product oé Sums
cpPu ~Centr.'al P;occgsing Unit g
CR Control Register |
cs Chip Select
CSOP Canonical Sum of Products
D/A Digital to Analog
'DAC Digital to Analog Convertor

ooty v ey

N]

L

DDC
DDLU
DE
DEL
DLU
DM

bmMA

nMAC

EOP
EOC
EPI
EQU
FF
1B
1BS

7 INT
1/0
IRI
IRIP
IRQ
1SP
LED
LIR
LS

LSB

Data Channel Low

Data Channel High
Dairect Digital Contraol
DataIDirection lLogic
Data Enable

DMA Enable Latch
Decision Logic Unit
Dadicatea Memory
Direct Memory Access
DMA Controller

End of Program

End of Conversion

Essential Prime Implicant

Equata\
ey,

Flip Fxc}b\

Input Bank

IB Select

Interrupt N ;
Input/Qutput

Intelligent Reflexive Interface
IRI Processor .
Interrupt Request
Insfructiqn Set Processor
tight Emitting Diode

Line Image Register

Least Significant

LS Byte -

et]

PN

Y i (e K

o
.

N-MOS
mP

MSB
0B
0BS
QE.
oPL
0P§
oL
0s
PC
PI
PIA

" PLA

PL.C
RAM
R/7W
SDM
SEL
SM
s6C
85
VLSF
VMA
XOR

- xviii -

N-chénnel Metal-Oxide Semiconductor

Microprocessor
Most Significant
MS Byte'

Output ﬁankh

OB Select

Output Enable
Output Long (lnotruction)
Output Short (Instruction)
Output Long {(Control Line)
OQutput Short (Control Line).
Program Counter ~

Prime Implicant

Parallel Interface Adaptor
Programmable Laogic Array “
Pragrammatile Logio Controller
Randoo{ﬁccess Memory
Read/Write ’
Shared/Dedicatod Memory
Select l
Shared'Memb?y
§tart of Conversion

Single Step

Very lLarge Scale Integration

Valid Memory Address

Exclusive OR

-

o

PR

RO

yecepest

e

£\

sy

o s WA

/ | 1.1

\

)

CHAPTER 1: INTRODUCTION

'

1.1 The Computer Role in Process Control

The application of computers in process control has

gradually increased in popularity since the first

. microprocessors were introduced in the early seventies. In the

control 1loop, process computarsvreplace caonventional control
elements such as hard-wired switching circuits, pneumatic and
hydraulic controllers. Software implemented logic control

algorithms can detect process limits and transmit on/off

control decisions to process actuators. The development .of

Digital to Analog and Analog to Digital convertors parmitted

analog cog$rol to be similarly implemented in digitalL
computers. The pracess control computer is different from
other computers because it can control a real—ti&e process
interfaced to it via sensors and process actuators. To do this
it executes programs containing various control algorithms.
Computer process contraol c%n be viewed on four

hierarchical levels, Fig. 1.1:

1. The Direct Digital Level: The computer senses and monitors

the state of the process via transducers, executes the control ’

'

algarithms and produces the necessary outputs to drive the

actuators. This is the lowest control level.

\

—y

e puwe e mmY R

MG e gy

—

requireme"ti PLANNING |

1.2

MANAGEMENT

Ig' marketing plans

o

CO-ORDINATION

P %

OPTIMIZATION

!

|

OPTIMIZATION

DIRECT DIGITAL
CONTROL

PROCESS
#1

Fig. 1.1:

'
Bl

‘;

*

4

DIRECT-DIGITAL
CONTROL

* PROCESS
2

3

Process Cantrol Hierarchic;l_LtveLs.

>

[L R T TRV

1.3

*

2. Th;‘Supervigury Control Levil: On this level, control algo-
rithms are created and modified to adapt to process con-
ditions. Supervisory control can be assisted by a simulated
model of the controlled process and an optimization program to
provide the optimum control algorithms and aeé;points to tﬁe
firgt control level. The adjustments are perfaormed in real-
time

3. %he Co-ordination level: This level exists in distributed
control systems where several processes are being controlled
simultaneously. Communication between the processes and the
necessary coordination is performed at this level.

4. The Management Level: At this top level statistical
information gathered from all processes, is applied to non-
directjcontrol considerations such as wmarket planning,
establishing raw material stock pile leveis, analysing cost
center profitabilities, etc. All these are executed off-line,
i.e., the computer dges not have to be physically connected ta

the process and need not meet real-time constraints.

The desire to achieve a rational partitioning of process
control tasks motivated this work. The idea to separate the
direct control of the procass from other tasks is 1mplementnd.
using the primitive, fast and efficient Binary Decision

}

-1intelligence. - -) \/

o AN TN ¢y

1.2 Direct Digital Control: Boolean vs. Binary Decision

Alternative — -

i
%

Shannon ([SH38] showed in 1938 how to apply Boolean
algebra in the design of switching circuits. Since then
Boolean algebra has been systematically enhanced and adopted
as the most popular logic design tool using manipulation and
Aptimizatiun procedurés such as Karnaugh maps and DeMorgan’s
thearems. Control algorithms at the DDC level are constructed

' using mostly Bocleén algebra methods. Hardwired circuitry used
to implement ~“Boolean functions has been repfaced by
programmable ’automata. Swif&hing contfol functions are
represented in the control comPuter as Boolean sum—of-products
which are evaluated in a stepwise sequential manner. Due to
its algebraic nature,. the Boolean method gained recognition as

the sole logic design and implementation tool but it has some

limitations. Speed of execution is lim?ted because the number

~ of program steps increases exponentially as the number of

binary i1input variables or program i1nputs. A second deficiency
of the Boolean method lies in the fact that Boolean functions
have single—-bit binary results or outputs.

In 1959 Lee [LES?] proposed binary-decision (BD) programs
as an alternative to Boolean representation of switching
circuits. One vof the qualities of the BD technique is the
computation speed. Lee demonstrated that a switching function

.implemented as a BD program is evaluated in a number of steps

that is equal to or less than, the number of binary inpgtN\

.

I N L

S

variables.

" Although the BD alternative to Boolean algebra was shown

to be more efficient in seyeral ways, it has not been widely
accepted by designers of electronic logic. This i1c because BD
pragrams are non-—algebraic.

Extensive theoretical BD research has been done but most
of it deals with information theory, i1mage proceasigg,
networks and connectivity [MOB2]. Sevé}al researchers followed
Llee’'s concepts. Akers [AK781 ﬁresented BD® programs in a

graphical form called BD diagrams. He compared the evéluation

of digital f?nctions by Boalean algebra with their BD .diagram

represantation. Boute, in 1976 [BO761, formulated the first °

‘kncwn design of BD controller hardware.

-

Potential superiority as regards spead of cxacution; and
lower - hardware- cost, of BD controllers over tgeir Bool ean
coqugrparts provided the incentive for resear&h\[LN79,ZH79,
HUB1,LMB2a,ZMB3] in the following BD rela?ed areas, carried
out in the DATAC computer laboratory at McGill University.

1. Development of BD optimization tools,

2. Development of BD Contraollers,

3. Applications of BD controllers, and

4. Applied BD theory.

RIECT I S

/

1.6

1.3 The Present Work

o

This thesis is a paﬁ; of DATAC's applied resaarcﬁ program
to design a BD based control module which can -handle direct
digital control} tasks efficiently and autonomously. The module
can be programmod for a Zariety of control applications. It is
intended to be a component in thé‘process 1/0 level of a
distributed control system. BD based control algorithms enable
fast response to process changes. The BD controller module is
supervised by a conventidnal cantrol computer which can
dyn;mically modify BD control programs. This control module is
meant to bhandle routine, repetitive control tasks which are
called ‘reflexive’ tasks. Al though P:eflexive tasks do not>
require complex control algorithms, Qheir frequent occurrende
makes heavy demands on a pracess computer. The module, which
has been daesigned to alleviate this large overhead is called
an Intelligent Reflexive Interface or IRI.

It is,abvious that a microbrocasscr based control system,

-«With one or more IRI modules to autonomously handle direct
reflexive digiéal control tasks, is able to perform the higher
process .control level tasks better. Thus IRIs enable a
_rnlatively low—cost' micropracessor to replace more expensive
control computers. The main processor supervises the operation
of the IRI modules by starting BD control programs and
initializing ~“their parameéé?% and by supplying new control

algorithms to IRIs, in response to any process changes which

require them. ,

N .

A" review of Boolean' algebra, related to the praocess
control applications, is given ip‘Chapter 2. This will help us
to compare BD VS, Boolean implementation of process
controllers.

BD 1logic theory is Qresented in the following chapter.
Advantages and limitations of the BD methods when applied to
the process control environment aré describod along with
examples. BD optimizatiaon techniques are briofly described. It
will be shown that the BD tecchnique is moro efficient than 1ts
Boolean counterpart. It 15 egspecially switable to control
processes having a small number of input and/or output signals
and ;équiring fast recponsps.

Chapter 4 15 a’ thorough -description of BD automata
y f)

starting with” the first DATAC prototype which was develagped
from Boute's [B0O76] design. This was our first practical tool
to investigate theooretical and applied aspocto of the BD
methods. A hybrid system cansisting of a BD machine and an 8-
bit microprocessor is described next. This system, w?ich N;I
built as part of this work, cnabled further research in
different BD related +fields ong of which is the partitioned
IR1 based system. k

The task partitioning concept, the design of the IRI

module and the IRI based control system are described in

~

Chapter S. Several design schemes are presented, highlighting.

A4
key design aspects of an IR1 based controller.

L3y

1.8 :)

Two applications of an IRI based control systems are
given in Chapter 6.’ The f1irst 1s an indust-rlal batch weighing
svetem controller. It will be shown that a conventxcna‘l, 1l ow—
cost microprocessor system augmented with’ IRI modules can
control a fairly complex process, wﬁich would otherwise need

several microprocessors or a minicomputer system. The second

application is an IRl controller serving as a pre—-processor to

increase the throughput of a variable-reference matrix
scanner.
Chapter 7 contains conclusions and saveral

recommendatians for further work. Three appendices provide
information on the MC6809 based development system (Appendix
A), 1listings of apélication sof tware (Appendax B), and a
description of the BNF and. ISP language definitions used to

. 3
formally describe BD automata and software (Appendix C).

o

el

s

CHAPTER 2: LOGIC THEORY REVIEW -

2.1 Introduction.
1

This chapter describes briefly ' the theory of
combinatgrial and sequential logic carcurts, as it applies to
industrial process control. This provides th:e necassary
background to compare Binary Pecr=ion basnd process

controllers with their Booleen counterparis.

A complex process control procedure conosachs of -~ digital

A ~
part, i.e., on/off decisions and andanalog part. The digital

part performs 1lwogical operationn upon | logic parameters. A
logic parameter 15 a binary variable which may bave cwo
distinct values: eo.q., on/off, 1/0, true or false; The s;.tata
c::f= an indoction motor is an example of a logic\parameter, S.
S=1 when the matc/xr is rupning, and 5=0 when it 1s not. S may
depend on the state of other 1logic parameters such as a
pressure limit or a stop flag. Notice that air pressure 1s an
analog paramoter, but 1t may be treated logically. Logical
operations describe the relations among circuit parameters.

In 1938 Shannon [SH3B1 applied the ruleg of Boolean
algebra to the design of logic circuits. Since then‘, extensive
Boolean methods have evolved, enabling logic design problems
to be treated systematxéally_

Logic £1rcuit5 may be divided into two categories:’
comjge natorial and t'sequentxal. Combainaterial circuit ocutputs

are Baolean functions which depend only upon the present

inputs. ’Sequenti al circuit outputs depend upon the previocus

o \ 2.2 +
states of the circuit as well ‘as the current inputs.

2.2 Combinatorial Logic

Logic operations relate the input signals of a digital

circuit to its oputput. There are si1x fundamental 1logic

. operators, which describe these operations. These can be

-

implemented with logic gates. Regardless of complexity, any
digital circui t mav he) imple~anted using these si1x basic
gates, The aorratizn of A logiz gate ~may br ~epresented by a
Boolean oxpre=sion or a2 truth fable. A truth table contains
2ll pos=ible circuit input combinaticns and their respective
outputs. A definition of eac!) logic gate follows. The symbolic

representation, Boolean expression, and truth table; are g'ivcn

in Fig. =.1:

OR -gate, Fig. 2.1a1 The output of an 0OR gate will be 1 if

2

and only if at least one of the inputs is 1. fhn 'oparat:ion is

defined as the logic s;jmmation of its 1nputs and denoted by

the + sign.

AND gate, Fig. 2.1b: The output of an AND gate will be 1 if

and only 1f all inputs are 1. The operation is defined as the

logic muitiplication of 1ts i1nputs and denoted by the ° sign.

NOT gate. Fiq. 22.1c: The output of a NOT gate is the com-

pPlement of 1ts input. If the ;nput a=0 then the ocutput =1 and
¢
if a=1 then =0, The Eomplement of a logic parameter is

denoted by placing a bar over the parameter name.

NOR and NAND gates, Fig. 2.1d & 2.1e: The operation of these

- igates the complement of the OR and AND gates respectively.

»
= -
bl P M *
i . -
. .

e 4

gy Y

PR,

2.3

EXCLUSIVE-OR (XOR), Fig. 2.1f: The output of the XOR gate is 0

if both inputs are identical and 1 if thay differ. To
generalize for any number of inputs: whenever odd number of
inputs are 1 the XOR output will be 1. The XOR gperation is
denoted by thr @ sign.

An example uning some of the above basic gates is given
in Fig. 2.2. & digital function Fila,b,c,d), Equation 2.1, is

implemented using a NOT gate, four AND gates, and an OR gate.’
Flta,b,co,d? = a-b + a*c + b-d + &-c (2. 1)

Logic implementations such as those in Fig. 2.2. may be

simplified using Boolean Algebra rules. The design guidelines

for optimal implementation are minimization of cost and
propagation delay. A good criterion for cost estimation is the
number of gate leads in a circuit. A 2-input gate wxli have
three leadg; two for the inputs and cne for the output. Thus
the above impiementation of F1l reguires 19 gate leads. The
séc?nd design guirdeline considers the time delay required for‘
the signals to pass through a gate, important in complex
circuits to eliminate race problems and to meet critical

1

timing requirements. .

—
s

\ - s

a‘b

®) NAND

¥ a _—-—-———i
a) f=a+b 00 o
— b 01 1
1 0 1
(-\\ . 1T 1 4 1
~ , a ‘ a b f
b) f=a-.b 0 0 O
‘ b 01 0
; 100
+ \ ",]]]
A - a f
c) a : f=a 0 1
- . 1 0
= ')
- '0 ‘
:) a b f
.) 2 . f=a+b 0 0
" b 1 0
\ 1 00
11 0
N a . a b f
. oe) - f=a.b 00 1
b o] 0 1 1
. " 1.0 1.
s 1 1 0
) ‘ 2 : i) , . a b f
. f) —f=a@®b 00 O
b / : 0 1 1 ’
1 0
T 1{ 0
.Fig. 2.1: Fundamental Logic Gatés; Symbaolic Representation, -
Boolean Expression .;md Truth Table.
.(‘ a) OR h) AND c) NOT d) NOR £} XOR,

ab c d

P

A

Fig. 2.2: Gate Logic Implementation of

T
HH S

a-sc

u‘\

IS

-
D

2.3 Boolean Algebra Revisw

Boolean Algebra,

operations, i3 the essential tool available to optimize logic

operators are OUOR,

' Boolean functions

>

AND and

NOT,

y

a-b + a-c + bed + a-c

4

Fl(a,b,c,d).

algo known as the mathematics of logic

circuits. Boalean variables are defined age X. £{0,1). Boolean

described in section 2.2.

can be reduced by the rdentities and laws

described in this section.

2.3.1 Boolean Algsbra ldentities ~

. The identities in Equations 2.2a-h rafllm:t the basic -

postul ates on which .‘Boolean algebra 'is founded. . \
X0 =0 * ‘ (2. 2a)
x°1 = x T (2.2b) e .
x40 = x - o - (2.20)) '
x+i = 1. . ‘ p K (z.20)
KX = X . I) ' p ' (2.2e) ’ 1
N+ = x s ' - ’ (2.2f) |
x-X = 0 S . (2.29)
XA = 1 ‘ ¢2.2h)

9

. 2.3.2 Boalean_ Algebra Laws

Boolean expressions may be manipulated algebraically

using the following 1aws:

(X=y)e2z = x=(y-2) associativity ' (2'.33)
(x+y)+z = x+(y+z) \ﬁz assdciativity (2.3b)
xe {y+z) = (;c-y)-b(x-z) distributivity (2.3c)y
X+(y=z) = (x+ty) ~ (x+z) distributfxvity (2. 3d)
Xy = yeox commutativity (é.3n)
X+y = y+x ’ o commutativity (2.3%)
X+x*y = x absorption (2.3q9)
x* (x+y) = x ' absorption (2.3h)
 x#Xey = x+y absorption - (2.31) .
X {x+y) = x'-y . absorption ° (2.33)
‘#
N

o e xR

T L

e At

4

’

2.3.3 IieMorgan Theor ems) s

°

The 'DeHorgan theorems relate the OR and AND operations
’

]

using pre- and post—inversions, Fig. 22.3.

"

:-+_ b7 ‘
y fax+y+z+. ..

i

x-—-——c =-I-O—. 2—"—_———
Y \ f2xey-z-... f=x+y+z+....

|
.

A,

e

X+y+Z+,.."™ Xy "Z 20z a T T .

X Y*Ze oa= XFy¥z+a.. s
»
.
-

Fig. 2.33 Pre— and Post-inversionsj

— DeMorgan Theorem Implementation.

o e gen e e

2.8 2
2.4 Minimization of Boolean Functions

2.4.1 Boolean Functions; Canonical Forms

Logic functaons may take different, edquivalent forms.
A minim - ed faorm 1S desarable. In order to define
minimization procedures one mhust begin with the most
generalized forms, the canonmical forms. Two ‘typcs are

considered: canonical sum of products (CSOP) and canonical

v

product of sums (CPOS).

Consider a 3-variable logic function, Fda,b,c). There
exist eight combinétlons of the i1nput varxgﬁleg. The outputs
are gaven by a truth téble Fig. Z2.4a. Each combination with an
output of 1 may be expressed as the product of the appropriate
input v;}iables or their complements. Any such product is
called a minterm, Fig. 2.4b. ORing all minterms resdlts in the
CSOP form of Fla,b,c), Equation 2.3.‘

-

Conver el each combanation whose output 15 O may be
Y p Y

expressed as the complement of the sum of the appropriate

) ! 4
1nput variables or their compkympnts. Any <swuch sum 15 called a

-maxterm, Fig. 2.4c.. ANDing all maxterms regultg/xn the second

i

canonical form of F{(a,b,c), the CPOS form, Equation 2.4.

-

Fta,b,c) = 3-56-C + 3-6-c + ab-c + a*b-¢ (2.3)

Fa,b,c) = (a+b+c) - (A+b+c) - (arL+E) - (3+6+c) (2.4)
< »

. N
.
. ‘
. R h N
'

-y

F

-

oy

R 2.9
<
a b c i f minterms maxterms ,
O o} (o I 1 a-b-c
O O 1 ¢ i ab-c]
(o] 1 o ! (0] a+b+c
(o] 1 1! 1 a-b-c
1 (o] (O3 (o] a+b+c
1 (0] 1! 0 a+b+C
, - _
1.1 o o) a+b+c
v
1 i ,_1 H 1 a~b-c
‘ ‘ 1
a) ‘ - b) : . c)

s

Fig. 2.4: Reﬁresentation of a Logic Function F(a,b,c);

i)

a) Truth Table. b) Minterms. c) Maxterms.

2.4.2 Kargpaugh Maps)

Farmnaugh maps are sem —graphical representations of truth

tables used to mmmize logic functions. Each sguare rep-
3

resents a minterm or a maxterm and 1s assigned a 1 or a 0 res-

pectively, Fig. 2.5, £.g.y, @ 4 1nput functiocn, F2{(a,b,c,d),

.
Equation 2.5, 15 mapped 1nto a8 4.4 array of sguarnes.

4 -
FZ(a,b,c,d) =abrd+abid+abéd+abc3+sbad+abe J+ibcd+abcd+abed 2.5)

P

I

}
*
:
1
H

2.10

Square addresses may beé assigned arbitrarily but adjacent
suares must be numbered using a Gray code i1n both the rows

and columns. Karnaugh maps wrap around two ways: top to bottom

-

and right to left, resulting 1n four adlacent squares for each

<

square.
- \
L ‘
A_/u—-—'-\
\
00 0 4 11 10,
' oe 0 0 0 i
o1 1 1 0 i
b
(N
11 { [0 1
- l{
10 1 0 0 1
\

Fig. 2.5: F2(a,b,c,d); Karnaugh Map Reﬁresentation.

The mnimization procedure 1s performed by grqypxng
together adjacent squares with i1dentical ocutput into cells (or
implicants). Pecause adjiacent squares differ only ip one
variable, asserted :in one and negated 1n the other, grouping
them together eliminates thé non—-identical vari1able.
Similarily, adsacent cells may be grouped into larggr cells

eliminating additional ‘variables. The grouping is pe}formad on

either all the 0O’ squares or all the ‘1" sguares. ,A ‘don‘t
care’ square may be included in any grouping since t.he value
of that minterm is i1rrelevant to the value of the function.
Every square cantaining the output chaosen for the grouping,
must appear (at least 1 one of the cells” but may appear in

?

mare than one cell. Y,

A prime 1mplicant (PI) is a maximal cell thatrannot be a

part of a larger cell. An essential praime implicant (EPI) is a

prime implicant that contains a square which does not belong
) bl
to another prime implicant. To abtain an optimal

simplification of the loglc-funétxnn, one first has to search

far essential prime implicants, and to group the remaxhing

sguares in prame implicants. A prime implicant is preferable
even 1f it covers an already covered square because its
address 1s shorter. Take as an example the‘Karnaugh map of

Fig. 2.6 which describes F3(a,byc,d), Equation 2.4.
19

F3ta,b,c,d) = acd+abcd+abc+acd+abd+abc Y (2.68)
. H

<
Each one of the designated groups is an essential prime
N [
implicant due to the starred squares. Therefore the optimal

solption 1s:8 - l

-~ F3(a,b,c,d) = ab 4 €d + Be : (2.7)
N

~
-

Karnaugh maps become impr'acti:al when the num{m' of

y
r

variables exceeds six.

oo

7

o

b

c
M
%
00 o1 2414 10 1§
oy M ‘l
‘
ool "o (1‘1 % i)
’“) e o
I]
LY
ol o JV1l} o 0
e Ll]
f—""l-'-‘r-,———""'\
vl 7t} ot 1)
—ul-—'dr --uu—a"/
of o 1At 1
ol AV N)
+ j

2.12

2.13

2.4.3 BQuine McCluskéy (M) Method

The @QM; method determines EPIs and Pls algorithmically.

This 15 useful when

I’

the number of parameters is large. The

method can be implemented as a computer algorithm.

’

The tabular procedure will be demonstrated by am example

taken from L[CHB21.

of Flw,x,y,z):

e -

Consider the canonical sum of minterms form

FlwyX,¥,2) SHRYZ+WXYZHWX YZ WX YZHIX Y Z +WRYZ FWX YT+ WX YZ (2.8)

-

Step 1: The minterms in their binary form (i.e., O represents

a negated

variable

and 1 an

asserted

one) are grouped

according to the number of 1 's they contain, Table 2~1.

minterm binary form nuasber of 1°s

WXy Z 0000 o]

mRyZ 0010 " .1

Wy Z 0110 2 !

w Xy Z . 1010 2

Ww Xy z o111 3 ‘
e

wxyz 1101 3 C

w Xy 2z 1110 3 .

W XYy z 1111 - 4

6tep 2: Each member from each group is compared with each
member fram the next group. Whenever adjacent minterms are
located, i.e., cantaining only one non-identical Sxt, these
minterms‘ are marked (%), meaning they are not Pls, and a new
implicant containing these minterms is entered in the first
reduction table. The non—identical bit 1is replaced by a -
{(dash), meaning that.both O and 1 are possible.

Step 3: The same procedure is performed on the first reduction

table, thus creating a second reduction table. Notice that the

adashes should be ididentical, for instance 0-10 + 1-10 = —--10

far a suzcessful merge to take place. The process is repeated

2
L4

until no adjacent minterms can be found.

s

—r

originai form ist reduction 2nd reduction
. N
. &

wXy2z WXYyZ WXYZ
02()_9_“ * 00-0 -
0010 » 0~10 » --10
0110 * ~010 * . t:;:
1010 * O11— =

o111 * ~110 * ‘
1101 * 1-10 * ' o)
1110 = -111 %

' [1111 % 11-1

11— . g

Table 2-2. Prime Impliéants for Fluyx,y,z?

2

The prime, implicants are the unchecked terms (from all
tables), thus the minimized function is:
3 \ }

. Fluwyd,y,2z) = WXZ + wxz + yzZ + Xy (2.9)

Step 4: Further ominimization of the function can be done by
performing dominant Row/Column aperations on the Pls .found in
steps 1-3. These operations cause the elimination of identical

subsets of the Pls [CHB82).

¥ -

[

2.9 Sequential Logic and Finite State Automata

A éequential circuit consists of a combinatorial part and
memory elements, - Fig. 2.7. It is often described by an

abatract mpdel called a finite state machine. The operation of

this machine may be described as a sequence oi events that
u:curaat discrete instances t,, i=1l......n. At qach mament t,
the machine reépands to same input cignals I(t) as well as to
. some historical input and, output signals J(t), producing
output signals F(t). The number of possible past hastories

may grow to be infinite, yet, they usually affect the p?esent

output F(t) in a finite number of ways only. Thus, past inputs?

are classified by examining the way in which they influéence

the machine response. These classes are called the internal

L LS

gtates of the machine or Jjust states,

_equivalent to the transitions between the states. Each arc

B —d
: .
- -2¢ 16
master clock - - '
-]) - [4
Y
———————
3 inputs i combinatortal : outputs
. e
circuits .
. | ”
. i
v . ’ o /.._/ ., ’
memory o,

elemen -

< -

Fig. 2.7: Sequential Logic Haéhine; Typical Block Diagram.
P-§) s B

The atates and transitions that' a f{pite state machine

v

goms through during its course of operation are well described

in the state diagram. The diagram consists u?yggdes equivalent

to the. machine states, and arcs connecting the nodes,

contains information with reéard to the current inputs and the

.

produced cutputs pertaining to that transition.

Similar to a truth table description of a combinatorial

circuit operation, a transition tablé describes the operation

-
<

of . a sequential machine by listing the present inputs and the
present machine state versus the present resuitxng.output and

the next ;machine state.

('..

/

" »
As a ssimple sequentiat circuit * example ¢onsider the

differential encoder in Fig. 2.8. The encoder examines a

. -

seri1al bit strg?m apda~producps a "1" output whenever two

E—

consecutive bits are different and "0 otherwiace. The mistory

of past ioput values, which estabrlishes the epzoder’s present
gtates, corrncponds to the two possible values of the previous
input bir*~. Thus the encoder 19 a Z-statec machine where the two
states are defined as 5, and Se rcorrespondiag to thﬁ‘previous

bit valuers 1 and 0 respectively, If the encoder is in state 0,

i.e., previous npult was O, and the prasent input is 1 then

the putput will be 1 and the encoder will go ta state 1. All
possible stake transitions and the associated inputs and
outputs are described in the traﬁsiéxmn table, Fig. 2.%7a and
in the state diagram, Fig. 2.%b. '

Sequential circuits may be synchronous or asynchranous.
Synchroni zation is enabled by a master clock. The sequential
operations occur only when allowed by the proper pul se edge;;

In an asynchronous circuit operations occurLat their own
r;te responding to stete transitions and tnput signals.
Because ‘they are nat‘bound to a clock speed, thess circuits
may operate faster than synchronous circuits but Fﬁey are more
prone to race hazards.

Dig:tal circuits can either be distributed in space ar

distributed in, tine. Cd%parator type A/D convertors gener ate a

1

binary equivalent of an analog voltage by comparing the 1nput .

to a retference voltage. The SAR (successive approximation
register: type uses one comparatdf and a controlled D/7A. It is

distributed in time. The parallel type uses 2"~! comparators

- 2.18

- °

i

to épn-rat- an n-bit result in one cycle. It is distributed in

space, N

0

Ty bit strean |,

1
- l
|
1

clocred
N-Fv —
‘ Q encoder
. output

-

~

|

' . ‘l
T
T ‘ l__ S S VO, — J

[

\

a)

7

> present next output -
state state

~

- - o o
o

—_ O e o

o - o

state state

Fig.‘2.9; Differential Encoder, a) Transifion Tablae.

’

b) State Diagram.

’

. ! .
: '2.19 i - ,'

v

Memory elements. The fundamental digital memory element, the

Flip

' 1)

2)

Flop (FF), features two basic properties:
It exists in one cut of two distinct states, 1.e., the FF
18 a Z-states autoraton, and

it ras one or moreswsput connectrons to force a state
AY

trans:tion. !

Digital FF- mn? be burlt é-om the basic six gates. The

simplest FF is the latch FF which 13 constructed with twa NAND

or two HNOR gates, the oytput of each is connected to one of
. / .

the

inputs of the other in the configuration shown in Fag.

i \ 1

2.10. Binary Decision légic can implement a FF simply by

connecting autput lines to input lines, as shown in Chapter 3.

(

1

2.20 ‘
¢

Single Shots. Single shots, Fig. 2.11, also called munostéble

myultivibrators, have only one stable state. A one shot logic
element 15 triggered by a fallang or rising edge of an input,

causing an output pulse whose width may be varied.

3

I - ; ' 2

input ‘
transition Y .J— | output pq]se

t ~R-C
w

w

2.4 Logic Design Mathads, Examples

2.6.1 Industrial Control Example

The Following

illustrate some of
Considor the
indicators n and

below

lavel ques

one big and one

simple

industrial

control

lylt-m‘ will

the concepts presented above.

water reseorvolrs an Fag.

B orovide a ‘TRUE® wignal when the watwer

2m and 3m respectivel y.

smali

are conmnected to two micro-switches C

N

2.12. The two leval

Two outlet valves,

and D, respectively. The switches are activated (i.e., 'TRUE")

when their respective

Fig. 2.12: Water Reservopir System.

valve is apen.

b

H~ level indicator B
Wat er
reservoir {
' H- level indicator A
11;_
L

e

, outlet
: valves

\

[Ny

Eaed

P

[T TN

water level > 3m o o0 1 1

2,22 >

The cbntrol system activates the water pumi/:D’n the

A following tconditions prevaii=

1. The water level is under 2m, regardless of the valves’
position. *
2. The water level is between 2m and 3m and the big valve

is open.

3. The water level is over 3m and both valves are open.

The. Boolean parameters A, B, C, and D represent the lcv‘{

indicators and the valve micro-switches respectively. The

pump is represented by the Boolean function S(A,B,C,D)
S=1 means the pump_is ON and §=0 the pump is OFF. The

of A,B,C and D affect the water pump in the following’

N

manner:

water level < 2m 1 1 ®) t 1

3In > water level > 2m 0 1 i x = 1

-
-
°

In all other permutations the pump should be turn.& off.

The function which starts the water pump is:

S = AB + ABC + ABCD ' (2.10)

[

. . . 2.23

Pecause B can never be 0 (i.e., water level > 3m) when
A = | (1.e., water level < 2m), a ‘don "t care’ condition
. can be assigned to B in the first minterm. The function

S(A,B,C,D) can bhe rewritten aa:

s = a +“ABC + ABCO (2.11)
) 4
]

. . |
Using the Karnaugh map in Fig. 2.13, Equation 2.11 may be

,

simplified to :

‘

. ' S=A+BC+C-DmwA+CAB+D_ . (2.12)
] c
“ . . I~
00 [- X} 11 10 -
. oo o o |71y o
“ s, ' i
'f’{' S
: o1] o o ity \
’ Y ~ ;._‘ ‘ l b i
o P O T 1 h
Loy~
a 4 + 2 P
| v '
) o by by v
. K-‘T‘-‘T—--‘-'J
baerumpommand; 1
A W
. d

3 .
Fig. 2.13: Karnaugh Map for Equation 2.11.

3

] -,

This function may be implemented by two 2-input OR gates
and 'a 2-input AND gate as shown in Fig. 2.14a. If a
raquarement for a NOR gates implementation ex;sts due to the
'universality of that gate, a maxterm implementation is

I3

preferred, thus getting:

w -
, -

S = AC LS&B ©(2.13)

And using DeMorgan thuorems;

(

S = ((A+C) + (A+B+D)) (2.14)

The implementation with _threae NOR gates is shown in.Fig.

2.14b.

%
- 2.25
(4 . . ‘ l
: \ &
A B C.D D '
B-ri) | , . . £
C-(B+D)
a) Lo < -
_‘I\Mc-(sﬂ)) RV ~
) >
b) | ’ FPC + FoGTD_= A+C-(8+D)
YA ’ ' L__‘///” _ F -
¥ ¢

»

; Fig.'2.14= Control System Implemerntation: a) OR and AND gates. : éjb
b) "NOR gates.

e 2 -

T ——

') ' 2.26 .

“ 2.6.2 Hard Wired Implementation, Ladder Diagrams

Ladder diagrams have been used,for many years to describe
logic functions. This is common in an industrial environment
where most logic used to be i1mplemented with electromechanical”
relays, Fig. 2.13. Notice that the . vertical lines are
“"equivalent to the ground (low; and voltage (high) levels of

the circuit. Each "rung” represents a lagic circuit.

&
RELAY NOTATION GATE NOTATION
‘] X
| a s
{F —] AND

——
5
W >
j:/'
=
=
o

XOR

—

o>
) w“L El,;wl

' A
' A ¢
],
<
NOY
~ e () v
Al _/ . -
- t !

Fig. 2.15: Relay Logic/Ladde¢ Diagram Notation. .

e

A simple motor starter (circuit is illustrated in Fig.
2.16. When the circuit output 1M (circled) is TRUE the motor
coil 1s energized. This output ’signal also serves as an input
to the start)seal segment operating as a FF element to

memorize or latch the momentary closing of the sté#t button.

sy “

Fig. 2.16: Motor Starter; Ladder Diagram. f‘\\\

\ A batch process of a material weighing system is shown in

Fig. 2.17. Batch ingredients are fed f;ah their respective
sto:;ge bains into the weigh scale(;) according to a proscribed

: formula. The weighed batch is then routed £a the mixer éo be

, fmixed for a specified period af time.

The ladder diagram describing some of the control
functions involved 1n the weighing and mixing process is
illustrated in Fig. 2.18. The first "rung" 15 the
implementation of . the bin 024 feeder control. Caomparator and
timer modules are used in aorder ta\monitor material weight and

batch mixing time. The process is described i1n detail in

chapter 6. 5

[

ST

- 2.28 o
- >
v % g ’ 2Lt
. . g . .
5/
! r I3}
] . - 021 022 023 o2k 025 . .
‘ i ‘ ‘ .
—-— . CONTROL SIGNALS.
g to FEED GATES .
3 / . LOAD CELL SIGNAL " '
\ Welgh Scale #03 . Q £o COMPARE MODULE
[.
. MIXER —_— N '
’ / [s > ’ ‘! N
¢ LI, 4
.v" R
. - ‘
& ' -)
o . Fig. 2.17: Batch Proctess; Material Weighing. -
< "

iz

bin . ,
o2k manual over auto timer weight bin 02k
select start stop load cut-off gatfggeeder
< b | ,
. + -1 W,
7 1106 1167 1108 002 0201 0200
’ 009
00)
bin 02k gg;:::nuu/ velight
select) module cut-off
brel cop= @
auto rem,,—\ 2> .
| | l e Value from scale #3
1004 I R is compared with
0268 25Kg cut-off point
bin .
sgitct . timer. override timer
I 15sec
l)TBl T=
) 15sec 0201
?utci weight-cap reset
i 4/" 1/" R '
lood [[v

0200 0268

Fig. 2.18: Batch Process; Ladder Diiaqra-.

PRy

 FO(X,y,2), Fl/}x,y,z), and F2(x,y), Equations 2.15a-¢, using a

2.30 / _

2.5.3 Function Generation - PLAs

Canonical forms aof logicalk functions can be qunqutcd‘
using ‘two-level networks’. A sum of products form is shown ’in:
Fig. 2.19a. In the first level each minterm is qener‘?’tsp By an
AND gate. Tho function value is generated in the sgcond level
by DORing :311 the ANMD gates outputs. Thia GMD-0R nettwork can be
used to ioplomant any digrtal functien. Simxlgrly, a canonical
product of cums form can be obtained using n;w OR—-AND network,
Fig. 2.19b. {";

Multiple*functiona' can be implemented by the ‘two level’
networks known ‘asa Programmable Laogic Arr‘aysl(PLﬁ“). Fig. 2.20
deaonstrates the realization of three digital functions

single PLA. !

FO = wyz + xyT + ¥yi + Az ‘ (2. 158

F1 -A;yzad- XYyZ + Xyz + Xyz (2. 13b)

F2 = xy + Xy : o 2150
RN

’ 3

The PLA consists buf an AND matrix and an OR matrix. The
AND matrix accepts the functions' ' variablns‘ as ?nputs and
generates the minterms. The variables é;re represented by the
horizontal lines. Each generated minterm, represented by a
vertical line, only cons:sts of those variables cannected to
it. The interconnections are indicated by a '-.Similarly,ﬁ the
OR matrix accepts the AND matrix minter;m outputs to generate

the function outputs.

2.31

KR) <
A

! \ Level 1 Level 2

1 X X% X

i .

¢ \ S‘; ‘? .

b .

Sl

H

g

("%-\

I
Y

vivivivi[@[¢

Fig. 2.19: Canpnical Functions Implementation:s
) a) AND-DR Natwork. b) OR-AND Network.
{ . ‘ v

L 4

ey
.

[S

o

i N .
' N 2.32)
! \
- . D S —— —AND-moatrix
‘ :
! .
4 "‘L{>f - L
! ' . |
et | '
| WD (VRN NDNID ORI FUSNST PR RPN, o 1
s OR'Mfrix_F e omfea e jadatet wdabuley sedesy ol F¢ .
' T Fl1 -
* L
et L F2 X
A - . [
Y —-@:: AND-matrix § ”
‘ . * e Fﬁ.
) OR- matrix e F1
— F2 ‘ L
Fig. 2.20: Multiple Functions Implementation with PLAs.
/
. »
- {
’ e d -

3.1‘
- ~~CHAPTER 331 BINARY DECISION THEORY
3.1 Introduction

BD machines are simple automata that execute Binary
\Dléisién \iﬁstrucfions to evaluate logic functions. Binary
Decision can be applied to many divafﬁe fields. Some examples
are: decision table proéramming, databases, ldentificatxan,'
pattern recogni tion, artificial 'intelliq&nca, hiofbgy,
switching theory.

) Lee’'s BD prggrah representation of Boolsan functions in
1959 [LES?) was the first known application of BD theory to
lggic déaign and switching circuits 1mpleméntatinn. Lee showé&
tht the representation of logic fgnctians by BD programs bas
some advantage over ’convent%onal Boolean repreaesentation. In
1978 Akers [AK78] introduced a treé like graphical representa-
t;EH Dé binary decision programs. These trees are sxqple‘to
visualize and understand. The dédsign of Binary Decision
proca&ss control computing &evicas was begun by Boute UB0761 in
197&6. A BD controller prototype based .on the Boute machine was
daveloped in the DATAC computer laboratory in 1979:

This chapter covers the. fundamentals of BD logxé theory
ag applicable to 1o§1c design and process control. BD theo-
rems, their propart}es and equivalence to Boolean operation;
are presented in section 3.2. Techniques to optimize BD treaes -
and programg are discussed i1n section 3.3. Presentation and
analysis of single-bit and mﬁlti—blt BD comparator p;ogrims

follows in section 3. 4.

%

o v -

\‘3.2 Binary Decision Logic ’ .

i
“

.

3.2.1 Binary Decision Pragrams b

BD programs consist of TEST % BRANCH inpfructions uhich
Ean be written asy

@ ‘ X3 A,B . (3. 1)

This reads as:

IF X THEN, A ELSE B SR
A and B are the locations of two additional instructions one
of which is chosen !o be executed next. The branching
‘decision’ is Ibaaed on\the value of the digital paraneter X,
One or moéa TEST & BRANCH instructions are executed sequen-
tigl]y before reaching a program output assignment.)

Aﬁ a simple example tﬁa 2—i1nput Boolean XOR e;}rosnian,

Equation 3.2, is described HV a BD program:

Fix,y) = Xy + uy (3.2
instruction test TRUE FALSE
e ‘ address variable branch branch
0 ! x 1 2
' 1 y Fm=0 Fal
2 y F=1 F=0

e e ———

v

o ~
’ Two exeacution steps are required to qva’luate the func-
. tion’'s value. ‘First: X is tested (by instruction #0) and based
on "its value, exther instruction #1 aor #2 1s executed. Func-

tipr output 15 ass:gned bDased on the result of trhe test c:f.y.
B prouarams may be (f‘c‘ﬁqr”ibé‘(i graphically v 0D diagrams
which <how thr.; ERANCH % TEST decision instructions as nodes
interconnpcted in A diac~am or tree form. Each cdecision node,
Fig. 3.1, may have onc or aore nodes leading to ivt but can
have no morg than two emergent branches. The test of a digital
parameter x can vwield two paossible results: & branch (for
x-'t;'ue‘) and‘ B branch (for sx='falwe’)., The branches of the
decision node can lead #ither to additional decisiop nodauﬂ or

to a final process output. ’ e ,

~

°

Fig. 3.13 The Elementary Binnry Decision Test and Branch

Operation.

3.4
Nodes of BD trees are qualified by the single parent
property, i.e., a single branch is directed to sach node. BD

diagrams as defined by Hkers may have nodes with more than one

‘branéﬁ directed to them. BD trees are therefore a subset of BD

diagrams.

3.2.2 BD Theorems . L .

- Theorem #1: Any Combinataorial Function can be svaluated by a

s

BD Program.’

Proof: Expanding thez Doolesan expression of’ any cambin;tocial
function uming the classical Shannon Exnan;ion thecrem lesads
to an equivalent BD prcéram of that function. A general
combinatorial function F(W,X,¥,Z,y...) can le expanded in a

stepwise fashion wstarting with a first {(arbitrarily chosen)

variable ‘w':
F WX Y gZyp eoe) m WEO(K ¥ gZgnond + WFLIN,Y 42y oun) (3.3)

FO and Fl represent two subfunctions dgrivgd from F when
substituting ‘w=0 and w=1 raspactivaiy. The two cases may‘b-
viewed as the ‘twn branches of. the first TEST & BRANCH
{nstruction of the BD program for the function F or the top
decisor node in the BD diagram for F. In tg; same manner FO

and. F1 may be furiher sub-di vided into two subfunctions each,

corresponding to x=1 and x=0, The complete expansion reaesults

L

in the functiop‘g BD diagram and praogram and 1is independent of .

. -

e L S]

.

‘the function size

Example: Consider

_ Equation 3. 4.

Flw,X,¥y2

8

JF S - -
F = wi(Xxz + yz + xv¥) + wixz + yZ + xy) o

or’ form.

the four variable function Flw,x,y,z) of

\

) = WXZ + wxz + YZ + XY 3.4) .

’

The first expansion step (for w) yields:

= wFO + ' wFl

separatel y:

FO = XZ + yZ + Xy

4
‘e

. The second expansi1on step (for ' x) is performed on FO and F1

k)

~ - o

\

= X(Z + yZ) + x(yZ +¥)

= %X-FOO 4+ x-FOl .

F1l = xz + yz + xy

= X(yZ) + xlz + yz + y) . X

= Xx-F10 + x-F11) v

The third expansion step (for 'y) is performed on Foo, FO1, F1l0

and Fl11 s'nparatel ys o _ . . .

) !

FOO = §(I) +'y(¥) = y-F0OOO + y-F001’

\4 ' , . -g

o e e L b T A
,

FOlL = ¥(0) +
F10 = y(0) +

Fill = 7(;) +

F010, FO11, F10O, F101, F110 and Fll]l ssparately:

F000

Foo1

- 010
Fo11

’FIOO

F101

Fi1i0

Fi1t1

«

Fig. 3.2.

Any combinatorial Boolean expressiaon has an equivalent BD

progrﬁm. Notice however that a full BD diagram and program was

obtained as
pragram
section 3.3).

a

‘'The fourth expansion

z (1)
z (1)
Z(0)
Z(1)
X))
z(1)
z(0)

z(1)

result of the Shannon Expansion.

may be reduced

y(2)

z(ofﬂ

z {0)

z(O)

z(1)

z{0Q).

z(0)

z{1)

z(1)"

ylZ + 1) = $=FO10 + y-FO11

= y-F100 + y-F101

ylz'+ 2 + 1) = ¥-F110 + y*Fi11

step (for z) is performed on FO0O, FOQOO1,

The BD diagram and its associated BD programs arQ\?iv-n in

using

The above BD

minimization techniques (see

a)

-Illlﬂ Lo][

027 025 o2k

Fig. 3.2: The Expandad F (w,x,y,z): a) Bb Di agram.

instruction

o 022

026
1/ \0

address

ON
1/ \o

tuS‘u'

. 3.7

O\q
1 ~U0

o 016

019' ' ofl
Ylo i/ Vo

\010 o

‘013
1 0

O
1/ \0

° 002
0

‘I'ooa

1 0

007 00k
()
1 0 1]

OO o [o 2
021 020 018 018 o01b olhe 012 Q12 009 008 006 005
tnstruction itnput TRUE FALSE autput
variable branch branch value(s)
TEST INPUT W 015 002
TEST INPYT % 010 003
TEST INPUT y 007 Q04
TEST INPUT 2 006 Q05
DUTPUT , -t ==
guTPUT ' -= 0 --
TEST INPUT 2 - 009 008
QUTPUT -= 1 --
ouTPUT - -- 0 --
TEST INPUT ¥ 013 oLl
TEST INPUT] 012 - 012 . 4
guTPUT ' -~ 0 --
TEST INPUT 1 014 014 P
QuUTPRUT -= 1 -
TEST INPUT X 022 01d
TEST INPUT y 019 017 }
TEST INPUT z 018 048
ouTPUT , == 0 .-
TEST INPUT 2z 021 020
ouTPUT o S "
QuTPUT -0 --
TEST INPUT y 024 023 'Y ' ‘
TEST INPUT z 025 024
ouUTPUT -—) --
guUTPUT =] ==
TEST INPUT 2 027 027 N
OUTPUT -= 1%--

.

b) Pragram;_ .

-

e

u

~

A

Theorem #2: The number of steps required to evaluate an n-—

input digital combinatorial function in a BD

machine is equal to n or less.

Proo#: The proof of this theorem can be shown graphically as

follows:

T?ke a general n-input digital function described in a Eruth
table‘with 2™ rows, each raw representing a minterm. A full BD
tree representation of such function, consisting of 2r-i

-

decision nodes and 27 output nodes provides 2" possible paths

‘leading to the 2" possible output nodes. Each path correspands

to a truth table row. The function is evaluated by traversing

fhraugh a ‘siﬁgle path. I.e., only one minterm needs ta be

evaluated. The traversal procedure is initiated biwenterlng

the top node ang stepping down according to the test result at

each decision oode wuntil an output is produced. Each leval

.

)
corresponds to One input variable. During execution there is

no repetitious examination of input variables. Hence, the

maximum number of steps is equal to the number of variables.

Example;. .

A general 2-input digital function ma; be described in(a
four-row truth table,\Fig. 3.3a. The BD tree representation of
such function, Fig. 3.3b, consisting of three decision nodes
an@ four output leaves (in rectangular shape), provides four
possible paths producing four possible outputs corresponding
to the four truth table raws. Function evaluation is done by

entering the top node and stepping down according to the test

e
¢

e

result at each decision node until an output is produced. The
path corresponding to a<b ig darkened. No path can include an
input variabLg‘ twice. Path execution i1mplies the test%ng of
each input variable once and anly once. Most digital funétions

which represent actual c#ses do not require a full BD tree

S~

description. Some paths therefore do not include all input

variables, resulting +in function evaluation in less then n

»

steps. ’
o, 3
a) o« 7

a b F(a,b)
' 0 0 £00

0 1 f01

1 0 10

: ‘ v 1 £11

o b)

f11

Fig. 3.3: Full BD Tree Representation of F(a,b),
- . a) Truth Table. b) BD Tres.

¥

ot

-

! ¢ 3.10

A 'comparison between speeds of function evaluation for
both the BD and Boolean implementations is shown graphically
in Fig. 3.4. The BD method has an upper bound for the number

of steps required to arrive at the function output which is

equal to the number of variables. The average number of steps

required for function evaluntién using Boolean Logic grows ex—
ponentially with the number of inputs as all function literals
must be evaluated and accumulated before reaching-an output..

v

/’

3.2.3 BD Boalean Equivalences

Fig. 3.5 depicts the elementary Boqléan<qombinatofial
logic operations QR, AND, XOR and NOT with th;ir equivalent BD
diagrams. Any combinaterial logic function can be described by
-& BD diagramn derived from logic primitiven.

Notice . the dashed branéheslin the OR and the AND

diagrams. In the OR diagram for example, the dashed tranch can

replace the non-dashed i branch emerging from node "a’. Buch a

_diagram can be reduced by pruning because no matter what ‘b

value is, the function value 1s 1. Similarly, the O branch

leaving node ‘a’ in the AND diagram can be pruned and replaced

v T
by the O dashed branch. BD diagram minimization techniques are

.;

.discussaed 1n section 3.3.

ki

Any sequential function can be implemented by combining

4

cémpinatorial logic elements with me@bry elements composed of

Flip Fldps. If a Flip Flép can be implemented in a BD program

+ then any saquuntiél function can be implemented.

.t

P e s SR

¥ OF TOMPUTATION STEPS
3

. 200

150

¢ - F

N

3.11

l BOOLEAN UPPER BOUND

BOOLEAN AVERAGE

4

*

AN

p—,

)

OR gate:

F(a,b) = a+b

P e o T

AND gate:

F(a,b) = a-b

XOR gate:

' F(a,b) =a+ b

Fig. 3.51 BD Diagrams of OR, AND, XOR and NOT Gates.

.
% N .

i

BENEY

T et A Ay e s

' .
- 1

Sequential 1logic implementation is dumunstratqd-in Fig.
3.6, by a Toggle Flip Flop. The FF output @ is effected by
the edge-trigered toggle input T. The lefthside ck‘the diagram
represents (O=0 and the right. side Q=1. The previous state of
the FF is memorized. in the diagram itself by the two feed-back
loops which don't pass through an output assignment block. A
switch from ojF side to tbe other will océur only when input T

changes. The- inﬁnranf description of previous states within

‘the diagram represents an additional advantage of BD aver

3

v

Fig. 3.6: BD Diagram of a Toggle Flip Flop.
e) * ’ ! ') \
, o ,

g e U PO T Y W o e,

‘compute,

- 3.14 .o

- '

Boolean sequential logic, which requires separate external

memory to store the previous output states. BD diagrams of

other combinatorial and sequentdal ?unctions may be found in

i
i

Akers CAK781.

»

3.2.4 BD Program Properties -

v

«BD pxograms have two important properties that give them
computational advantage over the Boolean logicy The ability to

1. a number of different functions in the same program, and

2. functiens with n-ary variable ocutputs.
Multi—functions Praogram

i

1

A numbar of digital functions, which share the same group

of variables or any subset of the group, can be evaluated in a

-single BD program. Consider the threes functions §t{a,b),

4

S2(a,b,c), and S3(b,c) in Equations 3.%5a,b,c which share thQIL\

variables a, b: and c.

Sti(a,b) = ab + a6 . - 7 3.50)
.) (G
52(a,b,c) = abc+ ab + be . (3.5b)
83(b,c) = b + c :) , 0 (3.5e)

o

e e W

/

»
=8
A

S1 82 S3 g] !

o 0 0o ! i o

o 0 1 1 1 1

o 1 0o t 1 o 1

o 1 +r ! 1 1 1 -

t oo !t 1 o0 o i ' ,
1 0 1 {1 o 1 \

1 1 0 1 1 /

1 1 1 ! 11

-+ - - At

s

Using Bon}aan' technique, the three functions are evalu-

ated by separately computing the sum—of-praducta for esach of
N 1

’thn. functions. A single BD program, however, can evaluate all

three functinns‘ ‘wimul taneocusly in a number of steps that is -
equal to or rléss than the number of’iﬁput variables. Input
y;riablaa in the BD.tree serve as the bFanching criteria to
(each the finél odtput. All three functions must ﬁhgre the

sam@ set of 1inputs. The output field can be extended to

produce multi-bit output, where each bit corrasponds to one

\

function. ' - o ;

/

In the abaove example, a 3-bit output field, correspcnd{ng
to the 3-bit ocutput field in tha~trd£h,table can generate the
’ %
3 functions simul taneously, 1n parallel.

\

Multiple-valued n—ary Functions T .

The aavantagn of BD over the Boolean - - method in
simul tanpous’ evaluation of several leogic functions can be
extended @o the parallcel generation of multiple‘b{tﬁ as the
ouéﬁut valuéA of a single function. This capacity to .evaluate
‘Mult1p1a~va1ued ¥unctimn5v is pussibie in PD autémata with
parallel nuéput architecture such asltha DATAC prototype’buil€7
by Holck (mee Chapter 4).

A iogic function evaluated by\a Buulaan\automhta\can have
one of two discrete values: [0,1]. The BD automata having
para}leln output architacfura, -on the other hané, can assign
geveral bits in its parallel outﬁut fiéld to reprasent the
‘value of the function. Logic funct;unﬂ, therefore, arg no
longer restri$ted to the CO,lj representation but can take
[6,1,61,11,100,101};..] values, or as many discrete values as
the size of the output field permits.

aAn implementation “of a single—pit comparatnf 1s used as
an example. Two binary bits A(aﬁd B are compared. %hrge unary
output values Q, y, and 2z may be used to describe thrae
possible comparison outcomes: A>B, ‘A;B,' and A<B. The

i
comparator truth table is:

N R f . N

.

o T -

inputs autpuép .
A. B Y x y z '
b e 4...._......-—__..—-..:_-.... ’ *
6 0 ! 0 1 0 . i
o 1 { o o 1t/ . .
1 0] ! 1 0 O .
1 t 1 0 1 o -
Generating x,y, and z by Boolean automata or by serial . .

"qrchitccturn BD automata (E.g., the Boute machine, Chapter 4,

\

' Bection 4.2.1) requires thr.-.f?nttian-:

X = AP . (3.48)

@ ¥ - A(B B
¢ = Aep |

. 14 , , A% v e

13

" Parallel architecture BD automata using parallel outputs,

can generate all three values in a single output instruction ’

<

-

‘in two eiecutian steps. The comparator BD diagram is shown in
4

Fig. 3.7. Its program may be written as:

;o TRUE FALSE
. L
0 TEST A 1 2 } X
1 TESTB “010" n100" ‘

2 TEST B "o0oL" “o10"

. ’ . { .
Fig. 3.7: BD Diagram for a Single-Bit Canparat\or.'

[4 .

.
"
3 v -
. . - -
: ~ 3.18 - |
‘ -
v ~
v .
1 N -
. . .
. ‘
R R ‘
. . PR
v
. N
- 0
. ‘ ' .
. . 3 ~
' - d
» . '
'
n~ .
. . N \
N - — S
. »
.
) > - .
M > . '
. - v
. ' «
. N '
. 1
+ ’ h
. .
‘. N - b
. . »
‘ . f
) ' ’
» .
. -
'
"
.
' ‘ -
. '
. s
. -
. e -
- ! .
. ~ .
.
. ‘
K .
' '
. N o’ .
»
. o
- . ”
5 '
[
- ' . .
. . s
- .
- -~
. . - . \ ~
)
s L . - .
. T s
" ’ .
s '
. + . '
- \ ‘
v [
B - '
' - B
. . - N
. - . -~
, - !
N ‘
: . .
[} N ‘
. . .
A A
v
N .

SN e h

U

3.19 -

3.3 Minihizataon of BD Programs

'3.3.1 BD Program Size

A full BD program (i.e., representing a fully expanded BD

tree) requires 2¢°*1*> - 1 anstructions corresponding to 2~ -~ 1

‘dGCISan nodes and 2 oputput leaves, where n 15 the numbér of
input varxagles. Thas kaind: of exponentgal growth 1s high}y
undesirable. . A 20-vari1able function requires a 2097151
instruction program. \ . .

A process represented by 20 variables 1s 'quite common,
out fortunately wmost 1+ not all practical pracesses require.
only a limited number of unique outputs which 1s much lesg
than the 2" possible ones. An rmpractical large progfam as
.described above can be avoided by:

1. Pruning the ED tree to eliminate redundané outputs and
'rmpéssxble outputs. Tree and program mxﬁlmxzatxon 'and
optimzation will be discussed 1n the ne:t section.
2. MAssembling the inputs 1nto effectively 1ndeﬁendent sub—
groups each of which has 1ts own program. As an example, the
20-variable program can be brolen-down 1nto four S-variable

independent cuby progr ams of &7 anstructirons cach. Thas

r

tremendous si1ze reduction to S92 1nstructions 1ncurs no

penalty as regard speed of execution.

3. Esecuting logrcally 1ndepondant b progr ams an the active

/égﬂWﬁrK;ng BD memory and dynamically down-loading other sub-

’

'programs from storage memory only when these are required.
hd ®

-

This 1s possxbfe in a BD machine which 15 interfaced to a

i A s Ve o

&) %

3.20

<

‘microcomputer that allows dynamic pragrém downloading (see

thapter 4).

- 3.3.2 BD Program Pruning

A full BD tree representation such as that shown in Fig.
3.1 15 only required when all paths produce uniqgue outputs; In
most practical applications the number of unique outputs is'
much less then the 27 possible aones. It was shown that as the
fumber of inputs grows, BD programs, 1mplemented as camplate
trees, increase in size exponentially. Similar to minimization
of Boolean expressions BD trees can be ‘pruned’ resulting in
an optimized tree which’ reduces the amount of program ,
instructions and execution steps.
: Consider a gaimple pruning example of thz2 {full tree *
representation of a 4-input AND gate, Fig. 3.8. The full-tree
impimmenéation requires 31 instructions. In addition,
nxécuilon of the tree will always require faur teét.& branch
steps to @etermine the output. The pruned-tree implementation,
requires only six instructions as only two possible outputs
exist, ‘1" if all Ffour inputs are 1 and 'O’ for all other
conditions. For a uniform random distribution of function
variables an average of 1.875' steps is réquirud for‘its

execution.

o o . . o °

] 0 21 0 /AR U . " 0

[‘ '
@ O O O @ O O O
X0 Y\o . 1\o 1 \o e e 1\ 1\o

[0 (0] [eICe] CelCe] Colfe] Celre] CelCe) Cece]

Fig. 3.8: 4-input AND Function:

Full vs Pruned Binary Tree Implementations.

e myTe O TR

v .
A brief review!of BD tree optimization methods devel oped

by Hudson, HKarasick and 7Van—Dr1ela[HUB2,VABZ,KABQ,HUB4] 1s

‘gi ven here. The objectives of the tree optimization are

«

twafold:
‘1.-to. obtain the most efficient BD proéramng}th regard to

program size, 1.8., mihpimization of the required memoty

storage.

2. to obtain the program that provides the shortest average
path length from program (or tree) root to output leaves,
“i{.e., mnimzation of execution time.
As the tree grows larger optimization procedures tend to
become computational intensive and time consuming. A minute of

processing time might be considered acceptable for some off-—
o

-lipe applications but it is certainly beyond real-—time

v

constraints of the process control envaronment. The time
required to execute an optimization ‘procedure should be
wéighed against process constraints and faster procedures may
be selected with possible penalty of incomplete optimizataon.
As the number of 1nputs increases and the numberaof unique
outputs decreases the optimization process requires larger
wOorking memory ancg more processing time. Only the heuristic
Pattern Matching methods presented here are acceptable in

those applications where real-time optimization 1s necessary.

+

so

3.3.3 Pattern Matching Algorithms

Pattern Matching algorithms reduce full binary trees to
near minN1mumn size by searching for redundant output

conditions. Bocause these algorithms do not reorder the arput

variables tas, for example, the Quine McCluskey based
algorithms do) they are not capable of generating optimal
trees.

"The Full Tree Reduction method described by Hudson in
[HUB2] starts from a full tree representation of the function.
An ordered truth table containing all possible permutations of
input\ variables and corresponding output states is converted
into a BD table, whose entries correspond to the tree nodes and

contain infarmation on 1left branch, right branch and from

‘pointers. A1l output qlements are gr?uped into 27-1 subsets.

Starting from the top node of the BD tree, all outputs
associated with the¢ left branch are one subzet of n/2
elements. Similarly a same size subset ig assaciated with the

right ‘&ranch. The next level is agssociated with four output

‘subsets each of which has n/4 elements, etc. Subsets of the

same size are examined for identity and similarity of their

~

elements. When a redundant subset is detected the BD table ije

pruned by removing the nodes belonging to the duplicate subset

and rerouting its pointer to the original one.

[

k]

e ” . 324
/S ’ \ 1) - /\

'i'hq! irtual Tree Reduction method developed l;y Karasick
[KAB4] doejg ﬁot néquire'the full tree BD table representation.
The genera)tion of the mx;umal BD table is accomplished through
a TECUFSI.VQ post arder traversal ﬁchem;/u:;;ch creates only
those nades that branch to'existxng nodes or teo output leaves.
The method uses :;m open hash table structure to accumulate all
internal nodes employilng concatenation aof the left and right
br.am::hi pecinters as the éntry key. For same input order, the
tree generated 1s the same as in the Full Tree Reduction
method. Workspace required for this method is limited to the
-r.'ldur.:cd tree storage requir.ement.

Differently pruned trees can be obtained from the same
function depending upon the ordering sequence of the input
set. Both Pattern Matching algorithms do not attempt to
rearder the input sequence imﬁied by the truth table.
Improvement of the Pattern Matching methods, however, may be
achieved if information is available regarding a preferrad
aorder of input data and by preprocessing of the truth table.

b

3.3.4 GQuine McCluskey Based Algorithms

Twa BD minimization aléorithms which generate optinmized
trees from the Guine McCluskey ‘reduced s£ate table' (see
chapter 2), were developed by Van Driel [VAB21: i
1. The minimum size algarithm: This algorithm generates a tree

with a minimum number of decision nodes.
2. The minimum average running time algorithm: This algarithm

&

generates a tree with the minimal average path length.

3.25 -

The re&uced state\ tg?le lists the states of input
variables for each of theré}1me implicants. Each of ;ﬁé\input
variables may have oane of three states in determ1ningj£he
value of each of thé prime implicantss

1. the variable is 1
2. the variable is O
3. the variable state does not play a role, i.e., ‘don’t

¥
care’. : J

The two algorithms apply different sets of rules
according to which the state table is examined and the
variables are selected. The optimized tree is constructed from
top node to output leaves in the samo\zequence of the selected
variables. Unlike the Pattern Matching algorithms no 5peci%ic
variable order is:'necessary as the set of rules is designed to
determine the preferable variable order from the information
given within the state tablen
) In the minimum size algorithm the first variable is the
one which has thehleast ‘don't care' conditions in the Pls as
well as the highest count of zeros op%éﬁes. In the minimum
average running time algorithm the fir {/variable ts selected
based on the maximum weighted relative information
contribution. This value is obtained from the probabilaity that
the variable can be a 1 or a 0. Subsequent variables are
selected using the same rules which are now applied to

subtables generated ‘after discrimnating on the selected

variable. The number of subtables i1ncreases with each step as
3 .

the process continues. ' oo

{

In addition tao the time required for computing the
variables from an exponentially increasing number of
subtables, the M methods require a large amountw of working
memory to store all the subtables. The Pattern Matching
algorithms on the other hand do not use tables axcept the ones

which represent the actual tree.
\ .

3.4 BD Based Comparison A’fgorithm:

Comparison- algorithms are used axtensively. A single bit
BD ' based comparator was presented earlier to show the
implementation of mul ti-—viﬂui}d funcrions. BD comparison

algorithms ' are presented in more detail in this section. The

design of p-.2-bit BD based comparator is shown in ctompari.lon

Lo
to a Boolean hardwired gate comparataor, Extension of the

singlg—bit comparator follows tg show a modular n-bit
comparator 1mplementation. A comparison with Boolean basad
comparators is presented to demonstrate the superiority of the
BD approach.

1

3.4.1 2-bit Comparator Implementation

The bhardwired circuit for a two 2-bit number comparator
1 shown 1n F1g. 3.9. Al, A0, Bl and BO represent the input
bits. X, Y, and Z are “the comparator outputs corresponding to

A>B, A=B, and A<B results, respectively.

)

- |

| e g Ty

oo

3.27

t

The comparator truth table is shown below. The output

N

IS
values X, Y, and Z may be evaluated using Boolean expressions

in Eq. 3.1l1la-c. - IO
Al A0 Bl BO X Y 1
0 o 0 0 o 1 9)
0 0 0 t 0 0 1
S 0 1 0,0 1 0 0
0 1 0 1 0t 0
1 o0 1t 0 0 1 0
/ 1 0 1 1 0 0 1
\t 3
1 1 1 o0 i 0 0
/1 S 0 1 0 o
0 X 1 X o 0 1 ,
. t X 0 X 1 00

X = don't care

x

‘ X = A1-B1 + (AL @ B1)-AO- (3.11a)
Y =« (A1 ® BL)- (A0 @ BOY (3.11b)
Z = (Al © B1)-AO-BO + A1-B1 (3.11¢)

s

Lo

Tt e R PN

3.28

Pl Bl

b)

Fig. 3.10:

BD Diagram for a 2-bit Comparator:

a) Full Diagram. b) Minimized Diagram.
J

i

T Y

x4

3.29
Thae full BD diagrgm for the 2-bit comparator, shown in
Fig. 3.10a, may be direcf{y derived from the truth table. This
full diagram can be simplified resulting in the diagram shown
in ﬁig. 3.10b. This minimized diagram consists essé;txally out
of two single-bit diagrams interconnected via the equality
branch.

The mquivalent BD program is shown'belnwL

TRUE FALSE \

e e e e, e —— r——

o TEST Al .1 \2 ‘
1 TEST Bt 3, 100"

2 TEST BL 001" 3 ‘

3 TEST A0 1 2 .

4 TEST BO “010® "100"

S TEST BO 001" “010" .

Notice that the number of execution steps can be as low
as two but never more than four. Boolean implementation on the

other hand requires separate evaluatian of x, y, and z.

J3.4.2 Multi-bit Comparators

, Multi-bit comparator algorithms are an extension of the
single bit and the 2-bit comparators. The comparison between
two digital numbers 1s a common function required in control
applications. Take a steam boiler control unit as an example.
The on/off antrol of the gas burner 1s a function of the

steam pressure.\ The:byrner function is defined by constantly

T

N

) 3.30

measuring the steam pressure aﬁd comparing it to'a predefined
set point level. A controller which can perform the numerous
comparisons in softwére, quickly enougﬁ to meet real—ti&e
constraihts, can be employed in many applications using costly
hardware—-based comparators.

‘A BD based controller can perform fast comparisons DL/
multi-bit digital numbers. The BD diagram of a general n-bit
comparison algorithm is shown in Fig. 3.11. The mast
significant ((MS) pair is compared first. If equality is
detected the K next MS pair is compared. When inequality is
detected an output is established and execution is term{natad.

The BD program consists of n segments of the single bit

program each of which branches to the next segment in case of

equality. The pragram shown below consists of 3 segments.

J

-

@ .
TRUE FALSE
0 "TEST Atn) 1 - 2
a 1 TEST Btn) 3 "A>B ’
| 2 TEST.B(n) "ACB" - 3
3 TEST A(n-1) 4 S @
4 TEST B(n-1) & “A>P"
5. TEST B(n-1) "A<B" &
& TEST A(n-2) 7 8
7 TEST B(n-2) "A=B" "R>B" ’
8 TEST B(n-2) "A<B" "A=B"

nx

A<B

Fig. 3.11: A Multi-bit Comparison Algorithm — BD Diagram.

A>B

0 o
o, ! 3
| U
) to next
comparison @
(An-Z’Bn—Z) &
\x
1 hJ -

"

3.32 . :
5
If a fourth segment is rnﬁuirnd for comparing 4-bit
numbers, the third segment (ingtructions 6,7,8) should be
modified such ;hat the eaequality outputs (A=B) are reglaccd
with the entry address of segment #4. Different bit-lengths

may be accommodated within a single program by simply altering

*

the praogram entry point.

3.4;3 Time Considerations

Two program steps are required for the execution of each
comparison sagment. If all n bits are to be compared it will
take Z2n steps to establish the comparison output. A BD machine .
oparating with IMHz clock and exa&uting\nne ingtruction in onea
clock cycle can complete a comparison of two 12-bit digital
number=s 1n 24 microseconds.

Normally, inequaiity w{ll be established\in lesg thaen 2n
steps. The MS bit raepresents 50% of the full cd?parison range,
two MS bats represent 75%, three MS bits repregent B87.5% etc.
‘As the two compared numbers approach equalityf more bits must
be examined. Thus, a comparison of two n-bit numbers m;y

require as little as two microseconds with a maximum of 2n

microsecands. s

Most real-tima applications require scan times of input
variables in the order of few mlliseconds. The above
comparison examplea shows that a BD based controller is much
faster. It can be used in simultanous execution of a number of

control tasks and due to 1ts simpxicity 1t can be employed as

a low cost solution in many contrqg applications.

CHAFP. 4: BD BASED MACHINES

il

“

This chapter describes the BD automaton from which the IRI

module was developed. A stand-alone protutype BD processor,

suggested by Le—-Ngoc [LN72] and built by Holck CZM791, is

-described fairgst. The hybrid aP-BD caoncept 1s presunted next,

fo;lowed by a detailed description of the expanded’ praototypa
BD processor. The fourth section is devoteq to the xn;erfaca
batween this processor and a microprocessor. A review of the
hybrid system's operating modes follows. Finally, the softwara
tools developed Ffor the hybrid system ar? laid out in the

sixth section.
t

4.1 Thae Prototype BD Processor

7

4.1.1 Introduction

The prototype BD procéssor built in the DATAC computer
laboratory is an extension of the Boute machine [B0761. 1t has
been used for BD programming practice, and to demonstrate some
simple controller ;pplicptions and other BD research and

development work. It is shown in Fig. 4.1.

?

i

The Bout m%chxne ‘1s the Ffirst known programmable
controller tﬁgZ}?valuates logic functions using 3D rather than
Boolean methogé- Comprising snly 7 chips, the Boute machine
archxtécture,//Fxg. 4.2, is very simple. It includes a 256 by

16-bi1t RAM for BD program storage, a presettable program

counter with 4dts preset legic, i1nput data selector addressed

4

B PR N

L ame et R
.

by the BD instruction, output latch and clock. BD proéram%
executed x'n the Boute machine consist of two i1nstructiaons
only: BRANCH and 0OUTPUT. BD instructions are executed
serially. The Branch 1nstruction tests a single 1nput
variable, the state of which determines the next executable

it nstruction. Eventually, an OUTPUT instruction places a single

bit into the output latch.

Fig. 4.1: The Prototype BD Processor — Demonstration Unit.

v

PROGRAM !
MEMORY n
d a 't » o u

N c A8

' ‘s A S A &
[4

nputs

. ' e 297 L2ar
i ' 1 0S Olact ' outputs
——— E P
. {
\ ‘ ’J 1 R
: \ Fig. 4.2: The Boute Machine.

. The DATAC prototype extends the Boute concept to

incorporate parallel evaluation of multi—bit outputs. A single

instruction is ‘executed in one clock cycle, e.q., the

selection and the test of the input variable and the branch to

‘the next i1nstruction all take place 1n one clock cycle. Unlike

)

a conventional Boolean processor which accumul ates the Boolean
combinations of the input variables in arder to arrive at the
output,, the BD ‘processor examines only one single path through
the BD tree. The execution of an n—-variable BD program
requires a maximum of n steps.' The BD processor 1s therefore
superior to conventional Baolean based controllers in those
contral applications where speed of execution 1s an important
factpr. The speed advantage become; more significant as the

number of variables increases. -

-

4.1.2 The Architecture of The BD Processor

The

block diagram, Fig. 4.3 describing the BD brocessor

—

architecture, may be divided into six functional sectiona:

3-1

Appendix B for ISP background) .

A

1. Input Section

2. Decision Laogic Unit

13

3. Cleck and Program Control

4. BD Program Storage

S. Output Section

&. Manual Control and Display. :

<

farmal definition of the BD processor is given in Table

using Instruction-set processaor (ISPY not;tion (see
4

-

Instruction

Program Memory
Program Counter
Instruction Address
Operation Cade

Input Variables)
Output Variables

Selected Input Varia.

IR<15: 0>
Mp(255: 01<15: 0> . -

PCL7:0>

]

IA<7:0> = PCL7:0>
0OP<1:0> := IR<15:14>

IV<63: 0>

P A P S Y <

av<13: 0>

VX 1= IVKIRC13:8>>

i

'Table 4—1: The Prototype BD

Procesor — ISP Definition.

: input
66 field

inputs mux.
f:::::) e

16 data sw's

system _. _ _ _ _ . _ _ _.
clock r * [
' r—-———---
| |
§ |
)
. LI
t L prog.
. 1 fremoTy
8 control sw;q
control ™1 T
I !] 28x161¢
logic pr=----, R - -~
i
T | T
. | v l —T
1 e program
: counter
|
data line f T
control line :
address line U o & o & & e o e e e e e e v ————— e =
clock line
-
Fig. 4.3: The BD Processor, Block Diagram.

"

14 field
outpug outputs
bank

“%

L I

-

Input Section

The input section shown 1n Fig. 4.4 c0651sts of 1input
buffers and selectxo; logic. As many as '64 external 1nput; may
be connected. Each input represents a process variable -which
can be addressed by an 1nput ‘"instruction durxn; program
execution. The 64 i1nputs are connected to the data i1nputs of
four- 1 of 16 74LSlSO)data selectors addressed by IR<11:8>. An
additional | of 4 dqﬁa selector afdressed by fR<13=12>\accepts

1

the four outputs of the 74LS5150 's to route one selected 1nput

to the Decision Logic Unmit.

Decision Logic Unit

The Decision Logic Unit (DLU), Fig. 4.5, consists of 5

gates. The DLU determines the state of the program counter
[

td

load line (L) according to the state of the currently selected

input line and IR(14> of the current 1nstruction. Two possible

branches are provided as follows:

1. I+ L=1, the PC 1s preset to IR<7:0> of the current i1instruc-
tion and a Jump \to another 1nstruction 1n the memary
occurs.

2. If L=0O, the PC 15 1ncremented by 1 and the next executable
1instruction 15 the one 1mmed13tely after the current

instruction.

¢ N
4.7 .
[¥ E
——d ! « IR<11-8>
oo 1 of 16 -
. 16 ' data IR<£3~123
input | {.selector
lines .
‘ TLLS150
i
' 5
y r 1Y
_——-‘
. -h 3
6 - | terte 1 of 4
input data selected inpyt
lines . |selector o] data to Decision Logic
. selector Unit o
- JThs150 7uLs151" | ‘
*
y r v
B
16 .] Of]6 .
input data
lines ; selector
] T4LS150
’ 4 r 4 \//
— v * Actual prototype is
16 - | 1ok 1o built with 1 of 8
1r_|put . data data-selector,
lines, - selector functioning as 1 of L
. . data selector \
. TLLS150
D

“

/

[

Fig. 4.4: The Input Section.

Y

d
_hla

bl15

%

D,

-~

8 bit .
program
counter

selected

Unit

input line

Decision Logic

(DLU)

Eq?. 4.%: The Decision Logic Unit:

& "

R/W and Single-Step. (see operational modes).

Clock and Pragqram Contrdl

A 1MHz clock is employéed to 'driQe the BD prototype
circuitry. The cfpck synchronizes the exécution of the BD
instructions which take only one clock cycle. The clock is
divided to supply two user selectable operating speeds: 70KHz
and O.35SHz. The 0.SHz 1s used to observe instruction execution
one at a time for debugging ,and demonstration purposés. In
addition programs can be execu}ed in Single~Step (85) mode. A
SS toggle switch, operated manually,’ provides the clock signal

#
to the system.

BD program Storage

A 256x16-bit RAM is employed.to store the executable BD
prqg:igg. The RAM is addressed by an 8-bit program counter

contrélled by the DLU. Programs can be downloaded into the

_memory via a set of 16 data switches and two control switches:

g

The Output Section

BD processor ocutputs, assigned by the output instructions,

are latched 11nto a get of 14 D-type Flip-Flop latches. The

. Dutput Enable (0OE) control switch is used to ensure that

outputs can be latched only during program execution phase.

Bit {4 and bit 15 of the instruction word are synchronized

N

with the falling edge of the clock via two monpstable multi-

¢ i

vibrators (one-shot) -~ 74L5123. Two strobes are available to

f

imbiament two types of output instruction. A short output

instruction enables only the upper six latchast‘nll 14 latches

4.10 .

are enabled by a long output instruction.

4

@
Manual Control and Display

The prototype BD processor is controlled by three sets of -
i

manual switches and monitored by two sets of LED diiplayl.

Data-Switches: 146 toggle switches are provided to manually

load the BD memory. The switches are buffered by tristate
buffers and cannot be activated during execution mode. The
eight least significant switches are also used to praeset the
program counter using the PC Load control swi tch.

t

Control Switchesa: eight control switches are provided.

~

1. Clear PC - reset PC to O.

2. R/W - directly controls the Read/Write ~input of the
pragram memory. —

3. PC Load — loads the program counter to a prasaet Addrcs:;

4. Auto Load Enable - enables automatic PC loading by the DLU.

8. 70KHz/0.5Hz —~ selects one of the +two operational clock

frequencies.

&. DE - Data Enable — enables data entry from data switchaes.
-)

7. 85 - Single Step Mode — enables the axecutio% of a single

4

instruction.

8. Clock—-0On - enables clock control of the BD processor.
° 1

Vi

- -

Input Simulation Switches: axgb€ input lines are connected to

.. these switches to simulate process inputs. They can be set to

l i4
either 0 or 1 and are addressad as 1nputs by the program
cycling 1n the BD memory.

4 -

-

Instruction Display: 16 LEDs are used to display the current

instruction at the location pointed by the program counter.

4 'e

Program—Counter Display: eight LEDs display the contents of

%

the current PC.

. P
Qutput Bank Display: 14 LEDs show the output values assigned

by the cycling BD program(s).

4.1.3 ghe BD Instruction Set y '

The BD processor é\incut-sH BD progrhms such as those
disc;ibcd in uChnptiF 3. The 16-bit lang.instruction contains
the necessary information pertaining to the address of the
input variables, node branch addresses and final function

outputs. ' The BD instruction \set consists of two INPUT

instructioné and two OUTPUT ihstructians. The instruction

farmat is shown in Fig. 4.64. }

The operation code stored in IR<13:14> is interpreted as
follows:
‘1. INPUf instructions: IRC15> = 0, IR<14> = 0 or 1. An input
variable — X addressed by IR(13:8> is tested. It value is
XORed with IR<14> to define the next executable in;tructinn

(= brapch) as follaws:

\-

§

2.

-

1

N
4,12 S
' 4
IRC1S) = 0 => X = IVCIR<13:18>> (4.1)

[' %

(IRC14> @ X) = 0 => PC <~ MpLIR<7:10>1 °
(IR<14> @ X) 1 => PC <~ PC + 1

g

OUTPUT instr x6Ns : IRK1IS> = 1. -Proc‘-mr produces

outputs as follows:

OP<110> = 10 => OV13:18> <~ IR<13:18> (4.2)
: _ PC <= IRC710> .

OP<1350> = f1 => 0OWi13:0> <~ JIR1310>
; PC <- PC + 1

- o] v b
\

' oP- ®

. CODE. ,

.-« INPUT ADDRESS

4

e reeenes LONG OUTPUT..einneeineennaneaennnen

. .SHORT OUTPUT......

weev...JUMP ADDRESS

~5 .

Fig. 4.6:1 The BD Instruction Format.

4.13

4.1.4 The Operational. Modes' : F

:

The BD processor oper;t-s in several modes to enable

program loading, verification, execution and debuqgging.
3\'
v("
Program Loading: A BD praogram describing control logic may be

loaded into the processor memary via the 16 maqual data
suitch-;. The ,Auto 1oad Enable (ALE) Switch must be in ‘off’
position to disable unintentional praéiam counter loading. The
aperator can preset the instruction address to either 0O by
clearing the program counter . or to some other desired value by

setting data switches 0-7 to the desired address and allowing
Ve

PC load via”ALE - ON.

Program Verification: Once a BD "program is entered into the

memery, it can be readJand verified before execution. This is
dane by disabling the data switches, and stepping through the
memory using the Single—Step togéla switch with the R/W switch
in Read position. The instruction. LEDs will display the storid

s

instruction. \

Program Execution: To execute BD programs stored in the memory

2l

the data switches must be disabled (DE - DOFF),and the DLU must
be activated via ALE - ON. Execution can be controlled by the
BD clock withp two optional frequencies: 70KHz or 0.5Hz. The
latter is used to monitor program execution, instruction by
instruction, at a rate conveniently perceptible to the user.

Manual execution 1s possible by disabling the clock and

€ -

activating the Single-Step toggle. - -

H 4.14

4.2 The Hybrid Concept

.
i

The Hybrid scheme, Fig. 4.7, consists of one or mor; BD

[

i

professors connected in a network with a microprocessor (mP).
The prototype BD processor was originally deéigned as a
manually controlled unit. Programs were loaded and executed
via a set of switches. In the Hybrid scheme, the BD processor
is 'interfaced to the mP via £he mP—BD i1nterface moduig. BD
programs,, data and control- signals are traqsmitted viaha bD—mP
bus ébﬁzectxng the BD processor to the mP-BD interface.module.
The mP, aystem 'consists of a conventional processor, memaory,
bulk storage and peripheral 1/0 devices. The processor and all
othe;aelements of the mP system communicate via the mP bus.

Prq;ess control tasks are often classified'asz
1. repetitive on/aff (binary) €¢asks,

2. computatiogal, optimization, data manipulation tasks, and
Sfaexterpal Communication tasks.)

The BD procesébr is bagst suited for the first class of
operations. It can ;fiectively monitor process paraﬁeters and
react to changes quickly, in a.reflexive Qanner.'Complementing
the BD processor, a high level mP hanéles_xhe other tasks
better. In‘ thé hybrid scheme, one or more BD pracessors are
monitored and supervised bﬁxéhe mP. Under normal conditions
th?y Aperate autonamously, like the stand alone version. The
mP—-BD combination offers advantages such as a more user
‘ friendly' interface to the BD, distributed processing and a BD
library in oFP memory from which programs can be dynamically

\

downloaded 1nto BD memory. .This results in-.a power ful,

- N

(.~

MP

Hg

EPROM

PIA

ROM -

-
»
o
oo : .
' o
I 8o le—f B .
"] interface}* '} #] .

13

£

BDP = BD processor

- ' " .
Fig.” 4.7: The Hybrid Scheme - Block Diagram.

‘i

>

[BO-mP ——y BDP
“—| interface 42 | [

interface #n)

input/ .

output ’
v

from/

to

process

J

416 .
| -
.l) K
flexible and ,1q¢xpensiv-’ ”sy‘*em‘ which 18 superior to

conventional ﬂacroprocessor control. &

¥
-

The Hybrid scheme needed: .
11 hardware enhancements to the BD processor and 1mplementa—/
_;\\tion of a larger instruction set, \)
2. develépmedt of the i1nterface module, and
3. development of the necessary software tools.
g &

Hardware enhancements to the BD processor 1ncluded a
larger instruction set, handshaking logic Fto handle the
communication Rbrbtocols, betwéen the mP and the BD‘gnd more
iﬁpﬁf and outpuf lines arranged in banks with bank selection
logic. Special logic -ensures compatible BD operation in both
the orxgxaal (Manﬁal) mode and in the mP-controlled (Autg)
mode as well as smooth switch-over between the modes.

The mP-BD interface module was developed‘tn handle the
bi—directional communication of data and control 'signars
between the mP and the BD processor. 1t is based on the
Parallel interface method which employs a MC6B21 Parallel
Interface Adaptor (PIA).

Software was developed to operate the BD Hybrxd,'x.e., an /
operating system to enable the mP' to control the BD—and to
transfer data. This includes the man;gement of the BD program
labrary and utilities for operator interaction. In addition a
compiler which génerates minimized BD programs, ang//:

Ed

assembler for &toding BD programs, were developed.
¢ .

»

- J
N’, . *
4.3 The Expanded BD Machine

The prototype BD processor was modified to allow it to

operate under mP control. The design retained all existing
~<
manual controls so that the original BD machine remained a

subset of the Hybrid system.

i~

4.3.1 Hardware Expansion

i
¥ ’

’ (4.3.1.1 The Expanded BD Processor - Overview

» The enhanced BD processor, shown schematically in Fig.
\
4.8, is described “Lsing Instruction-set processor (ISP)
notation in Table 4-?. The program counter, the instruction
word size, and the program memory are unaltered..The number of
input variables was increased from 44 to 256 and organized in
input banks. Similarly, the number of output varxaﬁles nas
increased) from 14 to 192 and organized in output banks. Bank
select logic was impleqfnted far both 1input andv autput
sections. The expanded Clock and Interrupt Logic (CIL) allows
BD or mP 1mitiated interrupts, controls program execution and
provides bidirectioﬁal control and st;tus signals. A new
operation—code deéoder was iﬁplemented to handle the larger
instruction uwet. The original manual BD processor céntrol
swi tches were retained, interfaced in parallel with the
corresscnding * data and control lines of the mP-BD bus. Auto/-

Manual select logic was added to enable operation 1n exther mP
:)

conti}l mode or Manual control mode. $he Auto/Manual select
\

logid avoids control ambiguities during mode transition.

P

Instruction \ IRK15:0>

Program Memory r \ MpQZSS:O](%S:O)
Program Counter ’ \ PCLK7:0>
Instruction Address \ IA<7:0> == PCL7:0>
input Variables”) N IVK15:0>

input Bank \ IBL15:01<15:0>
Output Variables N OV<11:0>

OBL15:03<11:0>

Ou{put Bénk \
Selected Input Varia. \ X z= IV<¥R<11:B>> ‘
Input Bank Reqister N\ IBr<3:0> |:= IR<11;8>
Output Bank Regxsb;r \ OBr<3:0>(:= IR<11:8>

\

IRC15:12>

Clock & Interrupt Logic CIL<3:0> :

Table 4-2: The Expanded BD Procesor - ISP Definition.

4

to/from to/from data bus

(N 1. t 4
) : I! l X
1] .ﬁ]
i, "
- ~——-d 6 ! .
system i%@il‘n‘ip: VN L 16 data sv's 1 ——— _[TH bank | _
clock U 00
logic | I !
g s
[| !
1! ‘ ! b
| : [: :
| — |
T R il i sl el (] AR e L SN
— L1y r_it_.r__:.k , ory y { '
0 oo - !

—Jinput iﬂ:;?l <o inrﬂ f?.c: x| 256x16 ::;th I N ryen
IGHg banks .| (expanded) N T ! RAM & output - arlx —_— l6x12
nputs . [8 Control “'q I 1081C ! field

- 3 :
T : ;]— - ™ : » :‘ bank outputs
oad > 2 =
: L2 - program” ' J
p i M4y counter : J : .
} 0
1 ! T .
data limne t f | | .

——————— . control line ! ! :

——+ o= — — address line - et e e e St e —— —— ——— s
—rr—d 1= clock line : - o

. . 15
-~ -
'A
Fig. 4.8: The. Expanded BD Processor - Block Diagram.)
p g .
. .

[}
[

6TV

4.3.1.2 Expanded Input and Output banks, Selection Logic

To separate inputs from various processes, or different
parts of one process, the 236 possible 1nput lines are grouped
into 16 1nput panks, IBI[15:01<15:0>. This i1ncrdases input
capacity and si&bllfies the i1nstruction structure as aonly 4-
b1t 1nput}addressx%§,is required. It does require the program
to select the apprapriate input bank, i1ncurring a penalty of
one clock cycle.

Field input lines are connected to 1 of 16 74L5150 data-
selectora via opto-isolators, Fig. 4.9. The 1input lzge
address, 1IR<11:8> of the input instruction, 1s Eopnemted to
the four data-select inputs of all IB data-selectors. The 1&
outputs generated by the ib‘aata—sélectors are connectid to a
secandary Lﬂof 167741 5150 data—-selector.

:The address indicated by IR<11:8> of the input bank
instruction, is latched into the Input Bank Register IBr<3:0>
when this instruction is executed. The latched address is
ccnnected to the four data-select inputs of the secondary
74{.5150 thereby selegting the line to be tested by the DLU.

The i6 output banks O0BL15:013<11:0> accommodate 12
parallel outputs 0OV<11:0> *fach. The output variables are
latghed into 74574 'FFs by the output instructions. An
output bank with the select logic }s shown in Fig. 4.10. The
selected bank " is indicated by the output bank regirster
0OBr<3:0>, during the execution of the output bank select
instruction (IR<11:8> => 0Br<3:0>). The latched address is

connected to the four binary—coded inputs of two’4—to~lbq

demultiplexers, The activated output of éach demultiplexor

INPUT BANK SELECT

input
bank
address
from
IR<11-8>

16
input
1ines

16
input
lines

4. 21

bank 15

r . |
- E A » Q-]
e 7475 B .
™ latch ¢) o r
— ' D . .
| msl——{>°
S lIIIG bank’' 0 enable
. IR<11-8>
. 1 of 16 Vee
: data E;
. selecto >'—
- pasiso f‘—>——'
bank 0 : o p
124
. ;...{::::;-—-—-4- 2
. : @
. s ’ \
— 5 bank 15 enable
. 1 of 16 . selected input
) data) to Decision Logic
™~ Unit
. selector l/
74LS150

Fig. 4.9: The Expanded Input Swection.

[J
- from IR&1-0>
bank 0
OUTPUT BANK D enable Ovell>
SEL‘ECT , + Qo0 —
[} ! —— A 01 bank 'l M _M\
output enabie 7475
bank 7475 B N Lateh L OV<9>
atc
gddress 93— raten c N By Vs8>
!R(]]"B’ | D .
.. « bank 15 '
SHORT 2 _&gﬂé 10
{ ; 74154 ‘ N wer>
3 / : : . - (_ 7475 0V
QUTPUT 0V<S -
ENABLE + . bank 0 [N 1atch p———2-{ PROCESS
& enable | | 0V<d>
Qo . E
. - |
8 blef
¢ - 0V<3>]
7 D .
. e 7475 _M’—..
uTPUT bank 19 Ov<ls
%m ’(‘3% 5 nab 1 jlatch
. G q (] V<> ~
74154 E
| IR |
. bank 1 -
Jatches
\ 9
| —.
Fig. 4.10:z The Expanded Output Section.

-

4.23

serves ad the enable signal to the upper (OV<11:8>) and lower
(OV°7:0>) sections of the output bank. The upper demultiplexer
is enabled during a short output instruction while both are

enabled during the 1long output instruction. The 0E (QOutput
ph

¢)
Enable) signal serves as a second enable signal to prevent

output alterations unless the BD machine is executing a

>

program.

L]

4.3.1.3 The Clock and Interrupt Logic

The Clock and Interrupt Lagic (CIL) is shown in Fig.
4.11. The CIL handles BD and mP interrupt functions, operator—
interrupts, the wake-up and BD monitaoring functions. By means
of this logié both the mP and the BD are able to gain each
other’'s attention. As a slave processor, the BD is always
monitored by the mP via the CIL in order %o detect BD failure.
Using the wake-up circuit of the CIL the mP is able to restart
the BD processor.

When an interrupt instruction ias executed the BD
generates an interrupt that is transmitted to‘the mP via the
bus interrupt line CAl (see interfacing section), while
toggting a J-K Flip.Flop (@ -> L). 'Upon recaiving ar’
interrupt, the mP completes its current execution cycle(s) and
jumps to an 1i1nterrupt handling routine which jidentifies thg
type of interrupt and sgveﬁ the current mP registers on the
system's stack..-It then executes a polling routine to iqantify
which device 1ssued the interrupt and upon detectxné a BD
interrupt it E;spands by raising the éTOP flag. Control is

then passaed to BD09 to service the interrupt (see section

-

4.46.1). The MC4B09 processor may require about 40-50 cycles

before responding to the BD interrupt. BD interrupt

instrqctions normally branch to the EOP instruction of the

program. As the mP is unable to detect and identify the

interrupt and raise the STOP flag within this time framEp?thel

toggle FF action prevents any subsequent EOP instruction from

stopping the BD machine until the i1nterrupting prcgr?m is re—

executed, the interrupt is repeated and the J-K Flip Flop is

toggled again (@ -> H). This results in a low gignal at the D

'input of a D Flip Flop. The next EOP instruction, clocks this

Flip Flop which disables the BD clock. The logit fulfills

three requirementsa:

1. The mP acknowledges the interrupt signal.

2. The interrupting BD prograb and all other programns complete
their normal execution.

3. The handshaking cycle is completed by disabling the
BD-CLK-ON signal, informing the oF that the BD clock is

stopped.

o

'Y The omP interrupts the|BD processor by samply raising the
STOP flag. The D input of the D' Flip Flop is then triggerad
and similar to the sec9qd part of the BD interrupt cycle, the
next EDOP signal clocks the D Flip Flop disabling the BD clock..
This 1logic ensures that the interrupted BD program completes
its normal course of execution before the BD processor is
halted. The EB:ECE:EE signal acknowi-dges the stopﬁing of the

clock.

——

INTERRUPT

»

5 STOP/ v
FLAG! } F RUN Il Jl FLAG
SWIT . : s
' - *j""" /
" D1
J-K FF cTr|
D-FF 0
> clk D
INTERRUPT o . _.} :
W76 clk
» . THTS Vee
" T ! Lfar 2
i = - 2A
_ E0P L]

- Single-
Lo 8D CLOCK | Shot
51 D CLOC F_)—- 28

rom BD CLOCK

Th123

to BD LOGIC

»1=Miz 80 CRYSTAL -

Fig.

4.11:

The Claock and Interrupt Logic.

Y

SZ -

. Tha timing diragram for the BD "wake-up" circuit is shown
in }19. 4.12. The edge triggered circuit connected to the P
input of "the D Flip Flop is used by the mP to start the BD
processor. This "wake—dp" circuit senses when the STOP flag is
lowered by the aoP and provgdes a short (150 ns) HLH pulse
presett{hg the D ?lip Flop and thus enabling the BD clock,

The §B:Etfzﬁﬁﬂ,sxgna1 is generated by a retriggerable
monostable multivibrator. It 1nforms ~the mP that the BD
processor is in running mode, i.e., whether or not the clock
is enabled. This signal 1s active if:

1. the BD clock circuit is functianal,

2. the Manual stop line is deactivated, and .

3. no interrupts have occurred.

STOP
FLAG o

MANUAL _____
STOP /RUN |

. , R-C !
Ve INPUT

§
|
. R=C [. , "
— |
OUTPUT - :\\ . | | N

D ~ FF
* P INPUT

Fig. 4.12: BD "wake;up“ Circuit - Timing Diagram.

4.27

By switching to the Manual mode (see Auto/Manual logic)
and activating the Stop/Run switch, the operator can manually
halt or start the BD processor. The manual Reset button clears

the D Flip—Flop.

4.3.1.4 Expanded Operation-code Decoder

The operation—code decoder examines bits .IR<15:12>
synchronized with the BD clock to generate e req;ir.d
signals for each of the implemented BD instructions. ‘

Input Testing instructions are interlocked with the Auto
Load Enable (ALE) to prevenf execution when downloading
programs (see agperating modes section). AND anq NANDVbates

i
,are employed to decode the additional instructions as shown in

Fig. 4.13. -)
Instruction execution requires one clock cycle. Fig. 4.14
,depicts the axecutionlﬁyclc of a BD instrucﬁion in relation to
the /rising and falling edges of the BD clock pulse. An
_insﬁruction cycle is initiated with the rising edge of the BD
cloék. A 74123‘ monostable multivibrator generates an
uqéonditional clock strobe interlocked with IR<13> and IR<14>
oé the instruction word“and synchronized with the falling edge

of the 'BD cloék. All generated outputs are activated by the

strobe.

cLx D15 Dlé D13 D12

[T

STROEE

L Q1 q2

L

£

v

/0P code = 1100

"'\ LONG OUTPUT .
|/ or sode a 1000

"

{ClX-D15-D14)

(CIX 'D1%)

EOP

} L
|/ op code u 1010
J

PO

.
>

[o
o
L] BANK SWITCH
Op code o 1110
r L " N INTERRUPT
o
/ op code o 1101
e
-
HT D

Fig. 4.13: .0peration-code Decoder Block Diagram.

~

wA

i»

T

g

!
L |

\ Ld
-~
4.29
A}
1
¢ %
<&
INSTRUCTION TYPE
INPUT 'INPUT ++] sop, LONG oUTPUT BANK SWITCH, INTERRUPT,
(BRANCH IF (BRANCH IF (BRANCH NEVER) JUMP, SHORT OUTPUT
) SELECTED INPUT=1) SELECTED INPUT=0) . (BRANCH ALWAYS)

, .
1 w i | | :]
i i { i] i I I
i f ‘ i { I X SYNCHRONOU§ WITH CLOCK|®

} -
)) | I : =[| i |
: T] | | i : {
) : : : ' - I SYNCHRONOUS WITH cLock |
] | ¢ ' I' : |
! 1 \] 1 |
I i ! ! | |

i ! | 1 Asmcunouo‘gs TRANSITIONS
' + | : l |
|
!

SYNCHRONOUS WITH CLOCKI

|
|
T
{
|
)
|

h-_.j____...__....-——----——15.-.--———-1

|
[!
! |
| 1 L__g
| ' I) ¢
| i | !)
I [\ I | smcunouou% WITH CLOCK
|) : L ! | n . n " l ‘ A
j o I ‘ [;) l
' : | : l | ! 1
| 1) i
‘ l ! | oo srncunouou% WITH CLOCK,
]] N T T t N ™
. ,J

I3

b 3

4.3.1.5 Auto/Manual Select Logic

4 The Auto/Manual Select Logic (AML) is schematxcaliy shown
in Fig. 4.15.‘ The BD system can be operated fully in Manual
mode. The AML allows smooth switching—over from one mode to
the other by toggling a single Autos/Manual selector (A/AM)
switch causing no anterruption to the BD operation.

When Manual mode is selected, the AML disables the m?
control and data signals and enables_ the manual control and
data switches and vice-versa when Auto mode is selected. The
mP control signals are connected to the BD log}c via 74LS244
tristate drivers whose enable lines are directly connecénd fc
the A/M switch. The tristate outputs are connected to a set of
2-input AND gates. Each buffered wP control signal is .
connected to one AND gate input while the equivalent Manual
signal goes to the other. \

In Auto mode all switches are inoperative. The normally-
low input to each of the awitches 1s driveﬁ high by the A/M
switch and thus, regardless of switch position their outputs
are high and the mP signals appear at the‘AND gate outputs. In
Manual mode the mP signal tristates are disabled and their
outputs are driven high and the signals +from the manual
gwitches appear at the AND gate outputs.

The A/M switch output is also used in the mP-BD interface
module to select the appropriate data tranceivers 1/0 staté.
In Manual mode no data transfer can occur between the mP and
the .BD because the Enéble sighals to the data channels drivers
in the interface module are kept high. Indthe Auto mode manual

data switches are disabled because the Data Enable Switch
' .

output is similarily forced high. @

TO STOP SYSTEM T0

\ €IL FLAG LY LoAD cLOCK MANUAL BD CORTROL

;
=
{ _J/
avol
10 D-aAg
NI 1D010=0H P

Vee AN MARUAL R/W AUTO PRESET SINGLE . RESET
SWITCH RUN/STOP MEMORY LOAD PC STEP PC
ENABLE

Fig. 4.15: Auto/Manual Select Logic.
<>

HANUAL CLOCK
DATA RATFE
SWITCH SFLICTOR *
ENABI E

~%

[S 4

4.3.2 Enhanced Instruyction Set

4,.3.2.1 Overview

Five new instructions were added ta the original BD in-
structiaons and the four existing ones were slightly modified.
The new set 1s shown in Figy/ 4.16 in a Karnaugh map form. The
operation—-code was extended from two bits to four bits:,
IRC15:12>. The input variable address is now four bits only:
IR<C11:8>, instead of the orig:inal six bits. Output
1n5t;uctions were also modified. A short output consists of

four data bits: IR<11:8> the laong output consists of 12 bits

IRC11:0>, Inp%t bank and output bank addresses are coded in

-

the 4-bit segment: IR<11:8>. The Jump address of the next
instruction remains in IR<7:0>. N !
All BD instructions are.summarized iq Table 4-3. They may
be divided into three groups: !
1. input instructions, ,

2. autput instructians, and

3. control instructions *

Input instructions include an input .bank gelect
instruction -~ IBS, for selecting the active input bank, and
two instructians — INO and IN1 for testing input lines. Dgtpbt
instructions include an output bank select i1nstruction —wﬁBS,‘
which selegts the active autput bank, and two instructions -
gPS and O0OPL, which assign parallel output values to process
parameters. Three control instructions were implemented: the

interrubt instruction - INT, by which the BD géins mP atten-

tion,

-

S

tRe. end—o%—proéram instruction - EOP, used as the last

instruction of each program to ensure complete execution of

critical instruction segquences after an interrupt has occur- .
o

red, and the branch instructxoﬁ - BRA, an unconditional jump.

00

01

11

T o—— TN

00 01 11 10
' v
i npu t t e s
‘)
input t e s
output output
interrupt branch bank
short i select
I
output \ input
‘ not used | bank o. p
long \ select

Fig. 4.16: The Extended BD Instruction Set.

. t:n /

bl5 - A
bl4 - B
b13 - C

bl2 - D

Pt

-

- - = =y e A= = = 4 8 e O o S e e = T e e e am e e -

operand &

- oy e S R o e AW S S e = R Y e e Y e e = e e o e e A -

b00xx 4 INO ot

i : PJ

est 1nput line IN
ump 1 IN=0

S e e B R

! Olxx VOINL Lot

H H HE

est 1nput line IN

uop 1§ IN=T

IN address!

___ -

Vo101l P IBS 1

nput bank SEIﬁsi

bits

IB address!

- an e . e M W e e e e T N MR e e S A W e e e S am e S W G W R o e am e e -

bits

J T T T et i T

| 1100 ! OPS !
! ; !
! 1000 ! @PL !
: : :
I"III;-"‘E'&;;"I"
L1101 ¢ OINT

———— s o s -y = - e . e A A = o 4 A e e M A o e e e M e e e A e W e

uncondirtional

branch

info. :

- — - ——— - v = = . —— = = e M = = S = = S = e e A oy e e = . = v A

Table 4-3:

The Enhanced BD Instruction Set.

&
\‘f}

% %

4.35

4.3.2.2 Input instructiaons

IBS -~ Input Bank Select: A BD praocessor accommodates up to 16

input banks. The IBS }nstruction, Equation 4.3, supplies four
high order address bits IR<11:B>; i.e., the bank address.
There must be at least one 1BS instruction in each BD program.
IR<7: 0> .points to the next ¥n5tructxcn. All subsequent INi a?d
INO instructions address one of 16 1npﬁ£ lines i1n the bank
salected by the most recently executed IBS. Input ilnes in
another bank may be tested after executing another IBS.
OP<3:0> = 1011 => ~ IBr<3:0> <- IRC11:8> (4.3)
Pé <— MpLIRK710>1

INO, IN1 - Input Line Test: INO and IN1 represent the BD node

operation where a binar;winputhQalug determines which one of
two posslblé branches will be followed. The tec;ed input line
is .addressed by IR<11:8)>. The next executable instructxén is
defined by the selected input value X and may be either the
next sequential instruction or the one pointed to by IR<7:0>.
If X is O then the next executable instruction will be. the one
in PC#+1 for INO and the one in IR(7:0> for INI- If X is 1 the
reverse , is true. The above logic is achieved via the DLU
controlled program counter and 1s described by Equation 4.4.
When the PC load line - Lpc 1s high the PC ocutput is

incremented by one and when the Lpc 15{1ow 1t is preset to the

va’ of 1ts inputs which are connected to IR<7:0>. Equation

. 4.4 describes the relations between bl4, bl5 o+ the op-codg,l

\

the IV value, the ALE signal, the BD clock, and the Lpc.

¢IR<14> @ X)-ALE-CLK (4.4)

'IRC15>=0 => Lpc

Lpc = O => PC <~ MpLIR<7:0>1

Lpc = 1 > PC <~ PC + 1

where X = IWIR<11:8>>

4.3.2.3 Qutput inpstructions

OBS - Output Bank Select: The BD procaessor accaomodates up to

16 output banks, each with 12 output lines. Similar to input
bank selection, the 0BS instruction, Egquation 4.5, activates
an output bank. “An 0BS must occur at least once in any'Bé
program with outputs. IR{11:8> indicates which of the 14 banks
becomes active. IR{7:0> points to the next instruction to be

\\executed. All subsequent OPS and OPL instructions output their

parallel output values to the active bank only.

kY -

OP<3:0> = 1110 => 0Br<3:0> <~ IR<11:8> (4.35)

N

PC <~- MpLIR<7:0>1

\

OPS, OPL - Output Shaort and Dutput Long: Each of the oautput

banks can issue 12 0OVs to the process. An output i1nstruction

assigns the 0OVs i1n parallel. OPS, Equation 4.6, assxgnShvalges
f to the upper four bits of the output bank - IR<11:8>, the

lower eigﬁt OVs are not affected. The next executable instruc-

tion is pointed td. by IR<7:0>. “OPl., Equation 4.7, assigns all

» ' v

4.37

12 bits in the bank - IR<11:0>. The nexi executable instruc-

!

tion is the next sequential one in memory.

COP<3:20> = 1100 => 0V<11=8> <—(1R<11=B> ‘ . (4.6)
5 - PC <- HpCIR(?:O)J

OP<3:0> = 1000 => OVSL11:10> <~ IR<11:0> . (8.7)
o«
PC ¢~ C + 1

N » ¢

4,3.2.4 Control Instructions\é

3

13

INT - BD Interrupt: The interrupt instruction, Equation :.B,

is u:né by the BD processor to gain the attention of the

micgoprocessor. Such an interrupt is designed to occur in one

T ‘

of the following cases:

1. Process conditions require another BD program tao be down-—
o loaded.

'2. BD tree is large aﬁd‘the boundaries of a memnory resident

segment were reachad thus a request to doawnload the next

-

segment is issued.
3. Process conditions require mP intervention, alarm signils

-to operatar or other tasks which the BD processor cannot

perform.

. IRC<7:0> points to the next executable instructiaon which’

narmally is EOP. .

’ DP(i:O} = 1101 = CIL(3:0> <~ IR<153}2> (4.8
. . PC <— MpLIR<720>]

A

- 4,38

a

EOF - End of P(ggrhm;‘The' EOP instruction, Equatibﬁ 4.9, is a
lngidal termination of a BD program. 1t is usedto-prevent
incomplete program execution 1n cases whén the program issues
an interrupt to the mP or is interrupted either by the nP or
manually by‘the operator. IR<11:0> are used to 1indicate to the
mP peceasary 1nformatidn pertaining to the BD program and
passible interrupts. These can be transferred to the mP via an
output. bank (conventionally, bank 0O) directly to a PIA i1nput.
“The EOFP 1instruction provides the control sigpal requirgd by
the CIL and does npt affect ény ather BD logic OF outputv
signals. The next executable instruction is the next sequen-—
tial one. In a sectored memory 5tructh;e, if EOP is notithe
last instrugtxon in the sector, the next sequential instruc-

tion will normally be a jump to the first instructipn in the

next memory sector. |
[.
[

A :)
OP<(3: 0> = 1010 => CIL<3:0> <— IR<C15:12> ' (4.9)

0BLO1<11:0> <~ MpCIR<11:0>]
PC <- PC + 1

BRA — Unconditional Branch: The branch instruction, Equation

%
4,10, is unconditional. The next executable instruction is

pointed to by IR<7:0>. The execution of this instruction does

not alter any outputs nor active banks. It 1s used to transfer
N S
program control when the previous 1n5tructiog{dues not have

this capability e.g., OPL, or after an input i1nstruction where

i

both branches require jumps.

© 4,39

OP<320> = 1111 => * PC <~ MpLIRC(73:0>] . (4.10)

1

' 4.4 The mP-BD Intarface

-

4.4.1 Interfacing Methods Overview

Interfacing 1s defined as connecting one device in a
system \w{th another so they become one aoperational unit. A
microprocessor system consists of the CPU which com;nunicatcs
with all other (system ‘components via interface units. System
components are memaory modules , bulk storage devices,
terminals, printers, additional processors, BD machines, etc.
The CPU is the master device and all controlled components are
slave .devices. Three common interfacing schemes are the
‘parallel’’, the 's;zrial', and the ‘direct’ interfaces. The
three methods differ, from each other in their hardware
complexity, | software requirements and transfer
characteristics. Interfacing the BD processor to a mP can be

done in any one of the three ways.

Parallel Interface .

The ’parallel’ interface employs a number of data lines,

one line per bit of some multibit unit, e.9., a byte. The aP.

4

recerves or transmits all bitse of a data unit, on the
communication bus 'data lines, simultaneously. The Motorola

MC6BOO family of B-bit microprocessor product includes the

"MC&821 which is a dedicated N-MOS parallel interj’-aca’dnvicn

known as a PIA (Parallel Interface Adaptor). The PIA contains

Py

’

2

4.40

two bi-directional B8-bit registers which are connected to the
outgide world and can be accessed by the mP. It can transf:;
interrupt signals and has extensive programmap}e capabilities
to facilitate 1nterfacing tasks [AWB0]. Speed of transfer is

very high but bus lines must be kept short, usually no longer

than 20-30 feet.

Serialglnterface

o

. A ‘serial’ interface transfers pdgia

ith one transmit

line and one receive line and a n mi:r control lines. All

erefore bogh the sender

~

bits are transferred Beriallv/ggd

and the receiver must have Berial to péFéTIE& and parallel to
serial conversion logic. Berial interface ;hi;; are 7¢ailabl¢
for almost 'any mP family. A qood\gﬁample ia thé/ﬁﬂbﬂso ACIA
(Asynchronous Communication Interféza\\eg9p€6?). A serial
interface can transmit data over longer distances and' with
less cabling than a parallel one. Physical lines may sxtend up
to one hundred feet, telephone lines, i1ncluding microwave
links, may be used to connect devices which aré m les apart. A
serial interface is not suxtable for wvery high spu;q
applications. Serial interfaces are commonly used to interface
operator terminal devices and some have. gained world
sfandarQ?zatxon. The most common serial standard 1s the R5232C
which ;s specified to operate at speeds from 110 to 19200
serial bits per second asynchronously. Synchronous se}lal
interfaces ;re faster. The MC&EB32 SSDA (Synchronous Serial

Data Adapter) supports transfer rates of 1.5 Megabits per

second. This 1nterface is desirable in high performance data

‘memory resources.

li1nks and incorporates buffering to allow some synchronization

error margin.

Direct Interface

A device connected to the mP bus, without i1nterface
logac, 1s said to be i1nterfaced ‘directly’. The mP bus is a
set of address, data, contreol and power lines arranged in a
more or less systematic way that operates under strict
commynication protocols. A direct bus communication is prefer—
rable whenever possible due to standardization of communica-—
tion, accessibility, speed, and modularity. The slave device
Tust be able to decode bus signals 1n the same way as
interface modules do. A device yQich is directly connected to
the bus may be accessed by the mP via a single instruction.
Direct memory transfers may be easily 1mplemented and total
system flexibility 19 i1ncreased. Implementation of DMA methods
implies that the slave device can exercise control over the

bus at certain times. This provides flexibliity by sharing

)

’

/

4.4.2 The mP—BD Padallel Interface

The parallel 1nterface 5che¢é was chosen for the Hybrad
mP-BD scheme. The i1nterface module shown in Fig. 4.17 employs
a MC6821 PIlA and an B8-bit write—only control register (CR) for
transferring all necessary data and control signals to the BD
processor. Both the PIA and the CR are under program control.
They appear in the memory mapped /0 structure of the micro-~

processor system as five addresses.

s

.

)

q
»

-

B =
s y et~
to/from e 8D
mP L ——
L
——— bl -
76245 Fa—wm g
.] }
D<15: 0>
- T
- t . L
e
s o
bttt
pa e
L =
-
. . 74245 Ragt——i
"
Péo : .
o - + 1 B :
. 1 5| TEST gNPUTS
=‘
¢ ° . i <~
N PA7 374246 ft—m
— T_-c ﬁ .
s ¢ o - FROM
PBO - P OUTPUT
. : l—— | BANK O
fettpmee
PIA] -—
. I7azaa “
| g,
ik E CAl INT —<
— -
«d 9 3 CA2 fjw - >
ol S CB1l —>
= = , BB=CLOCK-ON
ol 8 4 Qesu ©B2 (— ,
v «af O
2 [1
&t <l .
8l & 3 '
<} a
a.l A [- %
= IW [t] en— 1,1 R R '
. pres C AR
A/M _STATIUS. -
BD, CLK . STATUS
STOP -
Ys ra
Al [HAN . LOAD . BC >
‘ ITPUT ENABLE }
74273 [AUTO.LOAD.ENABLE : Y o

Fig. 4.17b: The mP-BD Interface Module - Schmﬂatic Di agranm.

LA

o

o

The formal ISP definitiaoan of the parallel interface 1s

given in Table 4-4.
. &

>

4
Bi-Directional Data Register \ DR<11:0>

Ul}i-Diractional Data Register \ DR<1G5: 82>

Write—-Only Control Register \ CR<{7:0>
— Interrupt Flagqg \ INT |
End of Program \ EQP 4
Single Step Strobe (PIA) ~ \ S8
BD Memory R/W Strobe (PIA) \ R/W
BD Clock ON \ BB-CLR-ON
Buffer Enable Flag " (EN
Data Dirdction Flag \ DIR
BD Stop Flag \ STOP
. ..
I
{
4 [

Table 4-4: The mP-BD Interface - 18P Definition.

Data Channels

There are +two parallel. 16-bit data channels between the
mP and the BD processor. Data channel #1 1s connected to two
7415245, 16-bit bidirectional tranceivers between port A and
port B of the PIA and the data inputs of the BD program
memory. Data channel #2 employs twa 7405244 unidirectional
tristate drivers, connected to part A and port B 1n parallel
to the two 74L5245. aof channel #1. This second channel
transfers four test bits from the mP to the BD machine and the

12-bit output of bank O from the BD machine to the aP.

¥
~

Control Channel

Four PIA control 1lines (CALl, CA2, CB1l, CB2) and eight
control register lines are used by both mP and BD praocessor to
handle all communication tasks. Not all control signals
generated by the mP are connected to the BD processor. S;veral
are used to control the interface module, The mP controls the
data direction of data channel #1 and the activation of either
one of the data channels vig CR<O> and CR<1>. The mP STOP

flag, used to interrupt the BD processor and to respond to BD

- s
interrupt, 1is issued on CR<4>. The BD interrupt line connects

CA1 and BD CLK ON to CBl. The SS (Single-Step), R/W (BD

read/wrzfe); PC (presét program counter), 0E (output

t

and ALE {auto load enable) are additional control

are generated by the mP and sent to the BD

1

through CA2, , CR<S>, CR<&>, and CR<7>, respectively. CR<2>

and CR«<3> are ed internally by the interface module to

indicate the current status of the Auto/Manual selector and

the BD Clock. The Auto/Manual Select signal indicating whether
J

the BD processor 1§ currently operating in Manual mode or

under mP control, 1s transferred by the BD processor to the mP

via CEl. A transition in either the A/M or the BD-CLK-ON

generates a CBl interrupt.

mP bus Connection ~

The Interface module 1s Tonnected to the 85-30% bus, a

sub—-set of the 55-50% bus. The 8-bit data bus 1s connected to

-

the data 1nput of the PIA. mP bus control signals connected to

>

the PIA are the R/ﬁ; RFSET, IR and ENABLE. The upper 12 bits
of the 16-b1it addresg bus are decoded externally to the
interface board into an I/0 SEL line. The lower four bits are
decoded on board to generate the four PIA addresses and the CR

t

address.

4.5 Operating modes

The hybrid system can operate in one of the following

modes:
1. Running
2. Program Downloading/Reading

3. Diagnostics/Verify

& »

pr—

This is a mP bus standard used by many MC468BOx systems.

Detailed description is given in éppendix A.

Normally the system is operatinb in running mode and 1s
moni toring/controlling an external process. The other modes
are required to 1load and start programs and to execute
diqgnogtic routines. All modes are initiated and controlled

3

by the operating system via the communication PIA and the

control register.

~—

4.5.1 Running Mode

Initration of the running maode 1s done via the start-up
procedure. Lowering the §STOP +flag triggers the wake-up
circuit incorporated in . the Clock ané Interrupt logic of the
BD processor. The program—-counter must be cleared or presét
to a specific address by the microprocessor prior to start-up.

During running mode the STOP flag is kept low ané BD
programs are continuously executed on a cyclic basis. The Aﬁto
Load Enable (ALE) is kept high permitting BD instrutticps to
affect the DLU which controls the PC Auto Lozd line. The

I3

a 4
OQutput Enable is kept high enabling outpui 1nstructions to

access the selected output bank. Data buffers on the
interface board are in high impedance atate preventing
unintentional data transfers. The BD interrupt, BD-CLK-UN, A/M

selector, and the STOP line are the'only active con?rol lines

between the mP and the BD. Interruption of the running mode

c;n occur in the following cases:

1. To handle specific process conditions, the BD processor
needs a new program or program segment.

2. The mF suspects a malfunction in the BD operation.

In botH cases an i1nterrupt 1s 1ssued, the BD-mP bus becomes

1}
active as a result and data transfers can occur. \ L

4.5.2 Program Downloading/kheading Mode

In these two modes data 1s transfered between the mP and
the BD processor. The mF downloads a BD program to the BD
memorly by presetting the Frogram Counter to the first address
of the program. The Data-dar. and Enable bi-dar. gxgnals are
set wvia the control regirster and data 15 transmitted by
placing both MS and ILLS bytes 1n the FPIA ports and strobing the
R/W line. The S8 line then 1ncrements the PC to the next
sequential addr ess. Output Enable 1s V(ept low during
downloading to prevent any output alteration and ALE 15 kept
low to prevent BD instruction execution.

In the reading mode the mP reads the BD memory contents,
This may "happen 1n one of the following cases: .

1. A malfunction 15 suspected and the BD memory contents must
be compared w:th a copy kept 1n the mF's BD program
library. ‘

2. An 1nterrupt has occurred and the mF wishes to read the

status of the 1qterrupted program available 1n output bank

©- . ’ — @
All control signals are 1dentical tp those used 1n thé

downloading mode except that R/a and .Data-dir are reversed.

Ay

© 4,49

-,

4.5.3 Diagnostic/Verify Mode

A hardware test program, permanently residing in the top
sector of the BD memory, is executed evelty cycie to detect
primary hardware malfunctions. Upon such a detection the mP

is interrupted and a complete diagnostic program is

o

:
downloaded. The BD hardware can be cﬁeckeq by altering the mP

controlled four test inputs and abserving the resulting

4

outputs 1n bank O.

4.6 Software Tools . ‘ - ’ }

’ ’

- s

Three dedicated =oftware packageﬁf were eveloped to
operate the BD processor in ‘the hybrid énvironment and to
facilitate BD- software develcpﬁentz /

1. BD operating system (BDO?), ° \

i

2. BD compgikr, and
3. BD assembler. l
The BD operating sysfém is<uuuﬁrnd to handle all bhard-
‘ware cnqtrol functions that opéra&%}the‘two processors as one
operational wunit as welllas BD goftware management functions.
The BD cuﬁpiler and the BD assembler a;e software developpent‘
‘tools which eliminate the tedious task of coding BD programs -
directly. The compirler converts a tfuth table rep;esentation
of the proceés into an optimized BD tree program. The assem—
bler facilaitates programing tasks "by enabling the user to
program with a symbolic inséructian set raéher than object

P
code.

[

-

Ay

-
LF Y

'4.5.1 Operating System = o

The BDO% , operating sasystem, Fi1g. 4.18, is‘wriéten in
MC6809 assembler and works in conjunction with thé mP Disk
Dperaﬁ{gg//ﬁygfém - FLEXO9%. It resides in the mP memory and
under normal running conditions is dormant.s By means of inter-
rupts the BDO9 can be activated, 1n which case the interrupt
is decoded and appropriate action follaws. The BDOY contains
the following modules:

1. Real Time Executive
2. Interrupt Decoder
3. BD Library Manager
4. BD Memory Manager
5. Hardware Drivers

6. Utilities.

Real-time Executive: The Real-—-time Executive ﬁ;qige; the oper-~

ation of the BDO9. The mP recognizes a BD interrupt, sets tha

STOP flag and passes the control ;to . BDO9. The Real-time

\

Executive executes the interrupt decoder ﬁo determine the
source of interrubt.kﬁll interrupts are channeled via a single
\1nterrupt line,- fﬁa, and tre#fed on a ’firgf—in first-ocut”
basis. '

o

Interrupt Decoder: There are four types of interrupts: opera-

X

tor, BD program, hardware malfunction, and mP interrupt. The

decoder decodes which type of interrupt occurred and polls any

additional information associated with the interrubt. The
¥

A

#TradeMark of Technical Systems Consultants Inc.,

\

3

G -

-3

3 -
-
[\

-
- ‘ N

SOFTWARE INTERRUPTS
) . . - INTERRUPY HARDWARE INTERRUPTS
! DECODER OPERATOR REQUEST 0

‘ ’ L REAL-TIME CLOCK

) . . REAL TIME
‘- : EXECUTIVE
, ’ *
’ ‘ ! ' 1 i -
' ’ - \ ' ~
n ’ BD" , aP aP OPERATOR
PROGRAN , LIBRARY PROGRAM LIBRARY INTERFACE
SCHEDULER , HANACER SCHEDULER MANACER |- executIve | -
D) DISK - w DISK
MEMORY ,OPERATING MEMORY OPERATING .
MANAGER SYSTEM MANAGER SYSTEM .]
L] N e
D . .
HARDWARE } -))]
DRIVERS: -

.Fig. 4.18: The BD0O? Operating System — Block Diagram.

<
s . - '
.
Y

BD Library Manaqer: The BD Library Manager employs the FLEXO9

.disk drivers to access the disk bassd storage memory device in

which the library containing all BD progrims’ ig stored.. The

- . P ‘ -

T -

primary drivers are the READ and the WRITE which allow the
transfer of stored information to the mP memory and v;ce
versa. A directory of all programs, containming information
bertalnxng to program’ location and‘length, is maintained to
facilitate library “houske®wng ™ and prov{de quick retrieval

A

in response to real-time requests.

BD Memory Manager: A directory to keep track of the current

DFcupancy ot QD memory 1S maxntgined by the Bﬁ memory manager.
Anytime a new program i1s added to ghe BD memory the manager
ensures that it 'will occupy only previously vacant memory
regions. Load address dependent code\isralso generated at this

time. (

Hardware Drivers: These are low-level routines which csntrpl
the‘ modes of the éD processor 1n response to Real-time
Executive commands. Each routine handles one operating mode.
Control settings for the different BD operating modes are

summarilzed in Table 4-5 +for the PIA and Table 4—&6 for the
. s X

X
Control Register.

[

Utilities: A set’ of command utilities is available to the

operator &pon invoking the BD0% operator interrupt. Via this

‘set of commands, Table 4-7, the operator is able to monitor

"the status of the BD protessor, read or alter the BD p?ogram

'

memory, create new library programs by accessing the compiler

-

or assembler and activating amy of the hardware drivers.

3

B0 Comaunication PIA DATA SINGLE R/W PIACRA PIACRE
aperation from -, to REGISTERS STEP code tode
mode A B (CA2) (CB2) (HEX) (HEX)
RUN BD -> aP INFUT INPUT H H M) 30
§TOP BD - mP INFUT INPUT H H 3D 3D
RESET PC mF -> BD DUTPUT OUTPUT H-L-H H 35 3D
LOAD MEM. P - BD QUTPUT OUTPUT H H-L-H 3D 35
READ MEM. BD -3 nP INPUT INPUT H H 3D 30
SINGLE STEP N/A N/A N/A H-L-H H 35 3D
VERIFY BD -5 mP INPUT INPUT H H 3D 30
T W= digital level high L = digital level low

Table 4-35: P1A MC6821 - Control Codes.

-

o ALE OF PRESET STOP BD-CLK A/M . VER DIR CODE
operation . .
node CR7 CR& CRS CR4 CR3 CR2 CR1 CRO (HEX)
RUN " H H H L H H HooL EE
STOP H H H oL H - H L ' Fé
RESET PC L L H-L-H H L H H o H 17
‘LDAD MEM. L H Ho L H HoH 37
READ MEM. L H A . H L H BooL 36
SINGLE STEP H H H W L H H- oL Fé
VERIFY H H H L H H L L ac

H = digital level high L = digital level low

Table 4—-6: Control Register -~ Control Codes.

[

COMMAMD UTILITY

- - A ap - -

CREATE MODULE
DOWNLOAD MODULE
GET MODULE

PRINT MODULE

SAVE MODULE

COMPILE NEW PROGRANM

SAVE NEW PROGRAM
ST0P BD

LOAD MEMORY
RESET BD PC

READ BACK MEMORY
RUN BD

VERIFY HARDWARE

DESCRIPTION

o en it - v w— e e g o A e o e e T e e e R e e oy e oo

converts a generic BD program to an address-
dependent run module

stops BD processor (1f running), transfers module
to BD memory, and restarts BD processor
retrieve a module from the library

prints hardcopy of program/module

gaves a module 1 library

generates new generic BD control algoritha
save generic program in library
halts BD processor

‘writes into BD program memory ,
changes BD program counter to a desired address
examines BD program memory

restarts BD processor Co

loads and executes dxagnéstlés progras .

»

4.6.2 The BD Compiler

The BD compiler has two functions: &////

1. The conversion of a truth table representation o# the
control problem i1nto an executable BD program, and

2. The generation an bptlleEd version of the BD program.

The creation of BD object code, ready to be downloaded
into the BD memory or stored in the BD laibrary, consists of 4
steps:
Gtep #1: BD Table Generation: This 1s a computer model of the
binary ‘tree generated from the truth table describing the
control problem.
Step #2: BD Table Pruning: A pattern matching algorithm 1s
employed to locate repetitious patterns i1n the original truth
table output column. Subsets of identical complementary or
non-complementary output statés are identified 1n the BD table
and redundant nodes are removed.
Step #3: Pseudo-code Generation: The pruned table 15 restored
to an intermediate state before the actual BD code generation.
Step #4: Machine Code Generation: In this final compilation

step the actual object code is géﬁerated to be stored in the
»

«

BD program library. °

- A

4.5.3 The BD Assembler ' .

The BD assembler 1language was developed to generate BD
object code from symbolic source code and to eliminate the
need to write BD programs in hexadecimal or binary object
code. Although the BD compiler éene}ates ablect code from a

truth table representation of the control problem, direct

/

4.56

source coding, using \the BD assembler, is preferrable if
control 1logic 1s given in the form of equations, ;Eate—
assignments, or a flow-chart.. .
The BD assembler 1s designed to handle free format

statements. There are three types of statementﬁi

1. BD instruction statements,

2. directive statements, and '

I. cpmment statements.

'

Delimiters are used to separate the fields. CR and LF, are
the statement delimiters. -

The‘ BD assembler language i; defined using thé Backus
Normal Form (BNF) naotation in Tagle 4-8. BNF 15 a metal anguage
first 1ntroduced)to déscribe the Algul\languaée in a formal
manne: LBN711. A metalanguage uses characters, not used by-
the defined language, to describe its carrect grammar. ’

The BNF primary symbols and conventions are as follows

[GEALD]:

Ay

1. Three lspecial primary symbpls are used to represent the

{uilowxngx .

& =~ .
a. :1:= means 'Ils defined as’

b. < > delimits the name of a string, i.e., set of
entities, and -
c. | means ‘or else’, i.e., 1t separates alternatives.
2. All other symbols denocte themselves.
3. Symbols, strings, or names following 1n succession i1n any
combination, tmplicitly specaify codcatenatxon,»x.a., and.

4. The order of applications of operations is: concatenation, -,

then alternatives, then the definition symbol.

‘5. Unless otherwise stated -the syntax equation 1s to be

applied in left-to-right order.

A more detailed description of the BNF notation 1s given

in Appendic C.

(letter’ 1=
{digit> R
{alphnus> 1=
{name> - HEES
{number’ 1=

(field del1m>
<{delia>
{statm. delinm>
{pointer delim’
{value qual>
{directive>
{operand>
{label
{manemonic>
{address>
<{pointer>

LI I

s w8 se we er se aw
H

[1]

48 e 8% s e o8 as BN as s ge

H

{instruction>

~

<instruc. stat> ::=

{directive statr::=

{(comment qual> ::=
{camment stat> ::=

- - = o - -

1)213141516:718B1910

aii:i:er>:<dxgxt>
< er><alphnum><{alphanum><alphnum><{alphnum><alphund>!:

(letter>Calphnum><alphnum><alphnum>{alphnun’!
(letter><alphnum,<ajphnuas<alphnum>;
¢letter?<alphnum><alphnum>! .
(letter><alphnun)! d
(lettler)

<d1gx}v:(dxgxt)(dlglt):<dzgxt)<d1 1tX<digat)

{space » i
(field delia> .

“(CR,LF)>

$17%

{EQU>]

{name)|<{number>i{{value qual.>{number)

{name> .

CINOX Y CINLDY ICOPSY ! COPLYICIBS> I <OBS>I{INT>I{EOP>!<BRA)
{number>i<{value qual.>{number)

{name>i<{address>

Amnemonicr{delim>{operand><{pointer delim><{pointer>,
{mnemonic>{delim><operand>!
{mneacnic>{(delimn><pointer delimd>{poirnter> -

{label ><{f1eld delim>{instruction>!
(field delim>Cinstruction>

<nane><d1rective§<qual141er>(value> .
v
{comaent qual’><(string) v

I R . e e T R R

Table 4—-8: .BNF Definition of The BD Assembler.
. b !

4.58

Instruction Statements

The BD ainstruction statement(jﬁay include up to four

separate fields, Fig. 4.19:

1. The label field,

.

2. The instruction name or code — mnemonic,

3. The operand, and ,

g .
4. The pointer to next instruction (jump address).

A

. R
$rccmmm e m——————— hemmm——— ,emm——— dmmm—— —————————— drmmmmbma o ——— ¥
! LABEL { MNEMONIC | OPERAND } POINTER !
LR R R R btk R P R ot o o m o - e mmacm—m——— - ‘;-——’-F

Fig. 4.19: The BD Instruction Statement Fields.. -,

e o

Instruction fields are 5eparatéd Sy a field delimiter
which is a spgce. The lpointer field is identif;ed by an
addi tional pointer delinmiter.

Field #1 -~ Labels are optional. A label should consist of
maximum & characters and should be unique. It may be referred
to by more than one instruction, ar not at all. A field
delimrter should be entered in the field if no label is used
and ‘the instruction address will be the next sequential

lacation.

Field #2 - IR<15-11> must always exist. Table 4-9 contains ’

rS

instruction mnemonics, i.e., the op—codes.

o

N e

Field #3 - IR<11-8> aor IR<K11-0> describes operands whenever
. they are_required. s The required operands are: 1nput address,

I1/0 bank address, output value, interrupt code.

Field #4 - IR<7-0>, in those instructions which contain a jump

address, contains the next address either as an explicit

numerical value or implicatly as a Symbolic label name. If a

pointer 1s required but 1s not specified, the assembler will
generate a pointer to the next sequential i1nstruction.
Operand names as well as addregs labels may be defined

using the EQU directive.

L}

- - o - > S . o o B b e e AL L - A W e aw o

MNEMONIC/Objy~code OPERAND JUMP POINTER
INO $0-1%p 1nput addr. yes
181 $4-1-3p input addr. . yes
&g 0PS $C-S-jp output value: yes
OPL $8-LLL output value no
IBS "$€-B-)p 1nput bank addr. ' yes o *
» 0BS $B-B-3p output bank addr. yes
BRA $F-x~-Jp nane . yes
INT $D-c-)p interrupt code yes)]
EOQP. $A-PROG program i1nformation no

L N e e e L el e e e R R R

I=1nput addr, S=shart output LLL=long output
B=bank addr,. x=don 't care c=interrupt code
Jp=Jjubp pointer PROG=program i1nformation

------- e e o e o e e e e TR e o e o o o S o h e e = T - - -y - -

9

-~ Table 4-9: Instruction Set.

*

Similar to MC6809 assembler, the walue type may be
indicated by one of the follaowihg qualifiers:
1. Binary number - %,
2. Decimal number - no quallfxergkhnd
3. Hexadecimal nuﬁéer - $.

The EOU directive can also assign a value to a unigue &

/

ASC!I character name. ﬂ////
e ¥ TN

Delimiters

Except * for the pointer field, a blank 1s used as the

.

deli@iter between the fields. The °: colon character should
- Ry
precede the pointer.

v v

Directive Statements 79\\\

EQU is used to assign names to addresses of

instructions, input and output banks, and input lines, and to
™~

valyes of output assignments,)interrupt and program codes.

There are three fields in an EQU statement:

S
1. name field — must start 'in first column
2. mnemonic - EQU
3. value field - contains the value and its qualifier

The fields are separated by the field delimiters.

s

Comment Statements

4
ot

the

Comment

first

¢

__.\'

statements may be inserted anywhere as long as

character 15 ' (exclamation mark).

will 1gnore any string following a comment qualifier.

Fig.

assembler.

4,20 depicis a

simple program wraitten

e e e e o v e T e v = - o e Am o P = = e e m = R e e - = A e e - e = m A -

Input Variables Assignaent

t

ALS
Al4
ALl
A2
B1%
Bl14
B13
B12

BEBIN

EQU
£EQU
EQu
EQU
EQU
EQU
EQ
EQU

ANC1SS
INCLAD
INC13D
INC127Y
INCT >
INCG
INCS D
INC4>

1BS 000
0BS 002

Coapare faour pairs of binary nuabers:
continue to next pair. Otherwise, check the corresponding B,.
If Bo 25 0 1ssue 3 unique output pattern 1dentifying the parr and

1/0 Bank Assignment

‘

' Input Bank Selection
' Output Bank Selection

continue to next pair. Jump to NEXT when cycle campleted.

INO AL1S
INt BES
OPL %040
INO A1 4
IN{ B14
OPL $0720
INO ALS
IN1 B13
OPL $010
INO A12
INI B12
OPL %010
BRA

tABL 4
tAB14

T
tABL3
1AB13

tAB12
:tAB12

© sAB11

tABLL

.

T

4

-

[3

1f the A, nusber 18 0

in

The assembler

BD

1A

—

The assembler generates object godc us1nNg a two;pass
method. The first pass generates the label table assigning
addresses to all labels found either in the EQU lines or {n
the 1label fields. All addresses are assigned using an initial

P counter of O. Partial mnemaonic decoding is done as well. The

second pass completes the decoding by assigning the right

address to the object code. The generated program 1s a non-—

conditioned one, 1.2., BDO9 has to offset all addresses in

ordér to install the program in a memory segment other than O.

t
i

5.1 ‘ C
CHAPTER S: THE INTELLIGENT REFLEXIVE INTERFACE

3.1 The Intelligent Reflexive Interface Concept
A

The distribution of processing power eirther by employing
- ot N
several processors or by integratlnggprocessing capabilitie

N

into peripheral 1/0 hardware i1s preferred aover a centralized -
archi tecture for the following reasons:

1. Speed. Tasks are exefuted céncurrently.

i
2. Reliybzlity. A higher degree of system security ip .

»

achieved. 'The failure of one processor doass not affect the

t
\

operation of the remaining processors. Redundant processors:

can be employed in critical applications.

3. Versatxlity. A well designed distributed gsyatem is
aglaptable to a large variety of applications. N (/'\J
Computer interface modules can perform complex I/0

functions., Dedicated hardware now performs many tasks which
*"”‘/p'reviously were handled by software. An exampla is a disk
interface module. The i1interface contains a dedicated mP to
execute disk data transfer operations. The master mP merely

e

isgsues an imtiation command a’md’ all sub—-tasks are executed

~

autjpnon{ously by the interface.] \
control environment a wide variety of 1/0 *

In a process
tasks exist. Implementing distributed intelliagence ukxng a
dedicated 1i1nterface similar to the smart disk controller is
inferr1or to a general purpose interface which is a,d;ptablgn te -

different procegses.

5.2

- -

. rd

There are two typua-df process control* activities:
1. routine scanning and control, and
2. smart tasks, involving’ arithmetic and intensive compu-
tation.‘)
%

Routine control tasks detect process changes and take the
necessary action(s). These tasks are defined as ‘reflexive’.
l.e., thay are repetitious, often urgent, stimulus-response
sequences governed by logical tests that tend no£ to change
with var}xng process parameters.

BD bawed hardware handles Direct D%gital Control (DDC)
level reflexive tasks efficiently. This was the motive for

developing an 1ntelligent 1/0 interface module, simple enough

to handle reflaexive tasks very quickly. Efficient distributed

proceassing is achieved by employing a number of these 1/0.

modyles, ali controlled and supervised by a master micro-
processar. Resident BD‘programs adapt the module to a variety
of process control tasks. This 1/0 interface is called an
Intelligent Reflexive Interface (IRI;.

” The IRI should havé the following capabilities:
1. "Reflexive processing - Monitqriné of process sxgnals and
generation of output sigdals,‘in response to process changes,

must occur in a real-time.

2. Programmability - The. reflexive ‘i1ntelligence', i.e.,,

decision making lo?icg must be easily adaptable to different

procasses and to different control:- ranges within the same

Y
®

process.

3. Independence - It must be able to handle most taskl.

autonomously, i.e., without main processor intervention.

.

1 [

5.3

-

Control decisions, depending upon their frequency and

complexity, are categoéxéed and processed in one of the

fes o

following ways:
* 1) Reflexive decisions —~ . frequent control tasks thh'maxnly
binary, on-off signals, handled

, independently by an IRI module.
2) Ref}-xiQ;—lid.d decisions - less frequent control tasks,
handled by anm IRIX "module with
assi;tance of the aP. ‘ o
. 3) Smart decisions - ;rithmntic calculations, contrgi
}) ' ' algorithms and data manipulations,
modifications of IRI programs, atc.

handled by the mP.

A

reasons:
1. Speed — Binary Decision logic has natural bit processing
capability and very few gating levels and thus achieves

very high processing speed.

2. PragradmaQillty ~ different control applications can be
accommodated with ease.
3. Low cost - BD hardware is very. simﬁlu. ' .

3

A system employing a high level microprocaessor with one

or mare BD based IRI modules was developed. It is similar in.

some ways i% the hybrid system. The IRI is connected directly
to the main system bus; there is no interveﬁxng parallel
interface module. Modularity and memory organization péomotes
fast proéram transfers between the mP and the IRI‘s BD

proceksurs. The IRI intelligence embedded in BD programs can

Use - of BD ’intelligence is attractive for a number of

A}

be dynamically altersed to adapt to new situations. Syatem

\'modula%ity is an impdrtant fagtar 1n the process environment

7

5.2 The IR! Based Controller Arcﬁit;cture

as processes differ in size and processing power requirements.

\ N

\

The parallal ,architecturé of an IRi based controller is
shdwn in Fig.>5.;. Several fRI modules are connacteq\directly
to the main contro;ler’bus together with the master processaor,
‘iﬁt-rnal memory, interface to bulk storage, sarial interfaces
to operitor consoles and parallel inter#acés té cpu cﬁntrollad
,i/O. Thé mairn bus consists of data, address and control lines

accessible to all bus residents.

§

\\ Eaéh‘ IRI module has ' a Binary Decision IRI processor
(IRiP) on boérd. This is the BD processor presented in’Chapter
a, wi th alight modifications to adapt 1t to the IRI
environment. Thg IRI sérvas as a slave processor, 1.e., its
operation is controlled and superyiged by, the controllaer
master processor. Each IRI card is connected to a set of 1/0
ca;as via a secondary IRI 1/0 bus. The IRI 1/0 bus consi sts of
data and control liﬁes generated by the IRIP.' A large number
of IRI wnodules "can be incorporated . with a single master
‘processor. ‘Each 1RI module can accommodate as many as 16 I)O}

cards.

/

5.5,

Fig. S.1: An IRI Based Controller -

) T"?f“‘ “ .
I Y - T T
¥) T o
PIA [— fk=—{Ir1 1 £
b ' E 1 i
\ 1
| . E
3 { Y em—— .
ey
0 IR 2 1/0 BUS 1/0 MODULES D
W : \ :
EPROM -
M K>)
¥ IRI N

Block- Di agram.

o/

The prototype 1IRI «sontroller was designed using the

MC6809 B-bit mcroprocessor. Other microprocessors can serve

‘"as the controller master processor as long as they support

\

memory mapped I/0.
" Four IRI controller versions, with different oemory
organization and master-slave communication structure, were
designed. The IRIP and the IRI I/0 interfaces are identical in
all versidns. They are: - - o ' i .

1. The Dedicated Memory (DM) IRI,

2. The DMA IRI, ’ _

.3. The Shared/Dedicated Memory (SDM) IRI,’

4, The Shared Mamory (SM) IRI.) - .

The DM version was designed with the IRIP memqry on

board, simlar ‘tao the Hyﬁrid architecture, used for storing
the BD program;. bnly the IRI may address fhis memory. The.mé
can access it71ndirectly. The DMA version 1s an enhancemant of
the .DH IRI which incorpofates the necessary logic to enable

DMA tranafers. The SDM version allow; direct addressing of the
IRI memory by the oP. A dynamic memory 5cheﬁe.i5 offered by
\the SM version where the IRIP can dynamically access any
predefined mP memory segment. The mP.can instantly alter the
active %RI memory segment within the controller memory map, as

the process requires.

To accommodate standard process requiremants thrle'tybés

°
N

of IRI I1/0 interface cards were designed:. .
1. Binary 1/0,
2. Analog/Binary 1/0,

3. Timers. A

.
~

Other ip.cial I1/0 cards can be accommodated.

v
1/0 communication is handled in four waysi

1. IRI 1/0 {mm=s=mmm==)> Process

of

2, P 1/0 <[(======z==z=) Process
I. mP 1/0 (==mmsmma==) IRI 1/0 '
4. IRl 1/0 <{=========) [RI 1/0

This vergatile communication scheme covers a wide variety

~

control confiqurations:

1.1t allows an IRI module to directly communicate with the -

process via itd4 own I/0 cards when handling control tasks

autonomously.) ' .
It allows the mF to directly communicate with the process

via its own non-IRI1 1/0 interface (e.g., a PIA) when han-

-

dling mP dedicated tasks.
It allows the mP to communicate with the IRI via their
respective 1/0 cards when shared tasks are executed.

Similarily,. it allows two IR]ls to communicate via their own

-
E

1/0 cards.

5.3 Tha Dedicated Memory IRI Madule

The Dedicated Memory {(DM) IRI moduie has 1ts own program
mamory. This memory 15 dedicated to the IRl because it:
1. serves the IRIP for BD programs storage and execution, and
2. 1t does not exist 1n the mP memory map.
The memory can be directly addressed by the IRIP via the
DLU controlled program counter. The aoP addresses the IRI
memory indirectly by operating on the IRI program counter.
This 1s the si1mplest 1mplementation which is closely related
to the hybrid module described i1n Chapter 4.
Fig. 5.2 shows the module layout. The IRIP is the central
component on the module. Connected to the the I[RIP areas i
1.‘Prog;am Memory .and 1ts Program Counter, N
2. Byte/Word Lﬁgxc;
3. Communication Logic,
4, Board Select Logic, and
,S. IRI 1/0 Interface. ®
Two versions of the Dedicated memory IRl were des:i:gned
for the §S5-30 and for the SS5-50 bus (S%E Appendix A),
respecti vely. The module requires less then 16 locations in
the system’'s 1/0 map and theréfnre 1t can reside on the SS$-30
'busL which provides four bits for 1qterna1 addressing along
with an'already,decoded Board Select signal. The SS-50.version
is not limited to the addkesses available by the S5-30 bus but

it requires Board Selection Logic to be incorporéted‘on board.

/o

BUS

q‘r__lml___

>

-

{a v

1/0 INTERFACE

LS

ORTEIEEEPREEPRE [BEPEE

r
t
i
H

- - g o

el —————

iz

|
|
PRSPPI WY

lllll J
2
5 P
' 1
m)
"""' _
' i !
S Y Vgt
J-l"‘..d. """ P ot o o e - S g - —— 4
1 ' :
{ M [
O SR g

=

data lines
—em- — 3ddress lines
eem—=—- control lines

g v T

PIA

The Dedicated Memory IRI Layout.

5.2:

Fig.

S5.10

5.3.1 The IRI Processor

f/' Th@ IRIP is the Expanded Binary Decision processor
.described 1n detail in Chapter 4. It consists of three blocks,
the DLU, the op-code decoder and the CIL (shown externally to
the IRIFP 1n Fig. 5.2). It cycles through the BD programs
stored in the IRI memory, scanning process i1nputs and i1ssuing
outputs determined by the QD algorithms.

An 1nterrupt code capability was added to provide the aP
with ainterrupt i(nformation, previously provided b# the EQOP
instruction. The 4-bit code stored 1n bits <11-8> of the
iﬁterrupt instruction is transmitted t? the mP via the stékﬁ;
ragis@er. The remainder of the instruction Set was unaltered
(see saction 4.3.2).

5.3.2 Program Memory

BD instructions are 16 bits while the nP data bus 1g

wight bits wide. 1In the hybrid scheme B8-bhit to 16-bit

compatibility was handled by the PIA which accepts 8-bit data

input and 15 capable of transmitting 146 parallel bits. In the
4

IR1 structure, where direct memary to memory data transfer is

p
' reéequired, segmentation of the IRI .program memory and Byte/Word
‘logic are employed. . k
The 256x1&-bit static RAM shown in Fié. 5.3 1s divided

into two sections; the most significant (MS) é%ﬁ bytes ?nd the

least significant (LS) 254 bytes. Dedicated By;e;aora logic

(see section 35.3.3) was developed to enable writing/reading

ane Qyte at a. time when the mP accesses the\memory, :nd

reading two bytes simultanedusly, i.e.y a whole BD instruction

L d

. S5.11 -

word, when the IRIP accesses the memory. Memory words are
addressed by eight primary address lines (IA<{7:0>) generated
by the program counter. Single bytes can be accessed by
asserting the Chip Select (CS) i1nput of the desired memory
segment. The Byte/Word logic enables one CS i1nput at a t;Pe

when the mP accesses the memory and both CS i1nputs when the

IRIP accesses the memory.

o <[16 e — T :
\ \
J ‘Y'
| 2x MC6810 2x MC6810
1 256 x8 - 256 x° 8
N ‘
1 LSB " MsB

‘ . r™t cg R/ﬁ €8s R/ﬁ

from . 3

~B ADDRESS bit
PC AL 1 g
<vr \vr
to/from
‘ -1 *1 DATA BUS
' . ’ i EN EN R/W R/W buffers

LSB MSB ISR MSB
FROM BYTE/WORD LOGIC"

e

- - A

Fig; 5.3: The IRI Dedicated Program Memory.

o - »

5.12

~

5.3.3 Byte/Word Laogic (BWL) Y

The BUWL circuit controls data transfers between the mP
memory and the IRI memoryix The MC6B09 sends data over am B-bit
data bus. The IRIinternal data bus is 16-bit wide. The BWL
therefore channels the mP 8-bit bytes i1nto the apprppriate BD
16-bxt word and vice-versa.

The block diagram, Fi1g9. 5.4, shows the main camponents of
the BWL. It consists of Data Direction L.ogic (RDL) and D;ta
BQ#fer Logic (DBL). The BUWL controls:

a) the direction ané enable 1pputs of the two B8-bit bi-
directional tri-state data Quffers connecting the IRI 16-bit
data bus to the controller 8-bit data bus, and

b) the enahle (Chip Select) and R/W inputs of the IRI memory.

The BWL makes use of the following signals in executing

its functions: , . %
- \
1. R/W — The mP Read/Write bus line defines the data transfer
A\
direction. g

!

2. DCL ~- Data Channel Low. The address of.the LS data channel

to the IRI memory. ,

I. DCH — Data Channel High. The address of the MS data channel

to the IRI memory.

[

A Ay \
4. BD-CLK-ON — This signal produced by the Clock and Interrupt
Logic _(see Chapter 4) enanles mP access to the IRI
memory when the internal IR1 clock is not on.

’

5§13

7

R/W DCL DCH BD-CLK-ON .
——{>c \ ENABLE LSB
A ' ~™ (DATA BUFFERS)

‘ENABLE MSB .
— (DATA BUFFERS)

« , ENABLE LSB
> (MEMORY)
N “ 3
RN ENABLE MSB
(MEMORY)

R/ LSB (MEMORY)
DIR LSB (BUFFERS)

n

R/N MSB (MEMORY)
" DIR MSB (BUFFERS)

v

N
kY

. '
o’
)
’

Ty

5.14

-
LY

., -mP Data Transfer: The mP activates the PC Preset line via the

communication PIlA (section 5.3.4) to preset the program
cnunéer and then 1ncrements the program counter via the SS
(Single-Step - CA2) to access the next two bytes. The SS
' s;gnal along with alternate addressing of the data channels
are employed to access single bytes of the IRT memory. The PC
provides the eight MS bits of the 9-bit memory address while
thé ninth LS bit is defined by the data éhannel.being
addressed. The data direction 1s determined by the R/W signal

" from the controller bus. Data buffers are enabled only if:

1. The BD clock 1s not on, i.e., the IRI1 is not 1n running or

v

coon d{agndstic mode and theksP can access its memory, and

2. One of the data channels 15 addressed by the mP. Only one
- o channel 1s enabled at a time.

- b The R/W J1nputs to the LSB and MSB segments of the memory
R aée separateiy controlled. During memory READ operation both
R/W inputs aré asserted so that both LS and M5 bytes can be
read. However, only one of the bytes will be channelled to the
mP bus as only one set of data buffers can be en;bled by
either DCL or DCH. During a WRITE operation however, only oné
R/W input (tg the addressed 'segment) will be_ngggfed. The
pther ‘R/W input remains asserted to prevent the writing of
) ' ' non—-valid data to the second segment (although the data
'‘buffers to that segment are disabled, the data lines are
floating and a WRITE oée?ation will result 1n writing non-

~

valid data into the memory). - .

ax

3.15

[y

. a
IRl memory access: The IRIP has Read accéss during running or

diagnostics modes only. The BD-CLK-ON- masks the mP enable
signals to the memory CS inputs such that both segments are
enabled and a 14&-bit word can be addressed. The memory R/W

-

inputs are always asserted. \
A

S5.3.4 Communication Logic

A @CéBZl‘ PiA, Fig.,s 5.3, handliss communication tasks
" between the mP and the IRI. Port A is designated.as an input
port reflecting the contents of the status register. Port B,
is designated as an ocutput port providing control signals to-
the BD processor. The control signals are:

1) STOP Flag,

2) P.C. Preset,

3 Adtu Load Enablae, .
" 4) Output Enable, and o ~

5-8) four Test Inputs. .) . .

Interrupt signals transmitted via CAl bx\the }RIP aﬁd via'
the STOP flag by the wP pLovide handshaking ﬁptwaeﬁ the IRIP
ana the mP. The 4-bit 1interrupt caode 1s fatched.xnto the
status register andzcan be decoded as 16 different i1nterrupts
by the mP. The CB1 line 1s used by the,mP to detect the s@atus
of the IRI clock. CA2 158 usmd as sxnglc—st-pg;ignal to

increment the program counter.

interrupt .

STATUS

>

Lol P
‘ni.

reg.

IR<11.8>

single step

Pous

BD-CLA-0

Q

2R 2]

=
RESET

-
¥
~
S

ALE

0%

4. +est innu§$
v

" not used

£ - & IDO
tn/from <<;; :> '
* DATA BUS N i
AD _ Irso
- AL A=s1
A2 ‘
A3 cs
$2
FHARL E
{ f*om BOL;
”~

XXXC
XXXD

Fig. S.5: The IRI Communication Logic

?1°5

5.3.5 Board Select Lagic (BSL) ') /

o

-

from the four LS bits of the mP\address bus. These are:
1. Control/Status PIA -~ 4
2. Data Channel Low and High - 2 Lo

‘ \
- The 12 M§S address bits are used to decode the module global

AN

address.
‘ The dedicated wmemory)} IRI module is designed in two
versions; the SS~36 version which has the module address
decoded external to }he m&dule, 1.8., t@ﬁ‘bus Board Select
sigral serves as the module SEL signal, and the S5-50 version
‘dZ:Zh has all decoding performed on board.

The SS8-50 version 15 a umversal one and does not
restrict the module to a specific bus slot. The module address
is decoded by connecting the 12 MS bits of the 1é6-bit address

/ bus to a set of comparators (XOR gates pachlaged 1n two
| 74L5688) 1n parallel with 12 user selected DIP switches, Fig.
S.6. The comparators output lines are wire—-ored tolform the
SEL line. The SEL line 1s actavated only 1f all address lines
‘correspond to the usér defined board address.

The decoding 1logic of the si1x internal 4ddresses, Fig.

5.7, 1is identical in both the S55-30 and the 55-50 vercions.

' The SEL sagnal is a1nterlocked with the internal address

decoding. : s

- }
fim IRI wmodule requires six i1nternal addresses decoded

*1‘\;‘ -

1 7kLS688 package

1

Fig. 5.6: The IRI Select Logic.

L} . <

5-19'

e PIA-C 82
PIA-cs80
csl
T *“—PIA—RSl
’ _ o PIA-RS0
: . DCL
, ’ DCH
\ 4) ‘ ;
SEL - from BSL (55-50 version)
from S5-30 bus (8S-30 version)
PIA - port A: XXXC
XXXD
. port B: XXOE
OF - |
pCL - X0 b
DCH - oo :

Fig. S5.73 The IRI

Internal Address Decoding.,

%5.3.4 The Controller Bus

1

] Thc'proggtype IRI controller is éiéigned around the SS-
bus or its SS-30 subset [AWBO1. The bus is the standardized
communicationu mechénism by which system modulariéy can be
achieved. The bus cnnsistslof address, data, control and power
lines.

Bus organization requires that devices connected to it.
will be classxfled either as master or slave. TheAmP is
normally the bus master. It may ga}n the attention of an IRI
module (which is a slave) by placing its address on the bus. A
slave device, therefore, must have a unique set of addresses.

A device can tranafer data to\a second one via the data bus.

The connection of each device to the data bus must be bufferaed

‘'s0 only one device can have access to it at a time. In certain

cases the master device can delagate a slave ‘davic- to .

temporarily hecome the bus mast?r, e.9., in DMA mode. TQ: SS5-
50 and the SS-30 busses are designed for the Motorola 6800
familily or microprocessors and their support interfaces.
Appendix A describes the signals and their functions for both

h|
busses.

B

%5.3.7 The IRI 1/0 Bus, 1/0 Interface
1 1 ’

Process ' communication takes place via the IRI

‘modules. Up to 16 modules may be connected to a 25 line 1/0

bus originating at the IRI. The bus iicludes the following

signa{s:

1. DO-Di1l. These 12 data lines transmit the LS 12 bits of the

current ingstruction word. The 11/0 module extracts the
addresses of the Input Bank, Output Bank and Input Line from
<1li£8>. The 12 data lines are also connected to the output
bank to be latched during an OPS - output short (K11-8>) or
OPL - output long (<11-0>) instruction. N
2. INSel. The selected 1nput (during an input test instruction
execution) is returned on the INSel line.
3. Control 1lines: Output Short (0S), Cutput Long (O, Input
Bank Select (IBSel) and Output Bank Select (dbSel). k

Fig. 5.8 shows the IRI 1/0 interface ;ectxun on the IRI
module. The 1/0 part is caommon in desigq to all IRI versions.
The interface consists of 18 unidirectional tristate drivers
which are permanently enabled. The Hrivers are interfaced to a
26 pin edge connector to which a flat ribbon is connected. The
cable is connected to all 1/0 cards \via simlar edge
connactors.

The design of the 1/0 modules themselves i1s i1ndependent

of the controller type and is presented in section 5.7.

[

& Vec
o~ GND

IR<T:0> *

from .) « from
IRI 1/00 -
IR<11:8> E* - CARDS
_output short D -
output long - -
IBSel -] .
. 0BSel - , - .

INSel we <}‘ : ‘

Fig. 5.8: The IRI 1/0 Interface

zzs

5.4-The DMA IR1 Medule

‘The DMA IR1 module 1s the Dedirated Memory IRI described
1in section 5.3, with additional logic allowing i1t to operate

1n a DMA data transfer environment. In an zz: controller

system with DMA capabil:ities, Fig. 5.9, data trapnsfegrs to and

~

from the IRl modules are performed by a DMA controller (DMAC)

provided on board the mF module. DMA transfers are fast and

require limited aoP involvement. The DMAC employed is the

MC6B844. The IR1 requires DMA support laogic to conform to the

DMA protocol during data transfers.

OMAC MEMORY IRI
mP

DATA 4

ADDRESS AN L
_CONTROL N

S.4.1 The DMA Module Structure

The DMA IRI wmodule 135 shown 1n Fig. S5.10. It has in

addation to the Dedicated Memory wversion héhdware, the DMA

™

support logic, Fig. 5.11. The dedicated DMA support logic

ensures control of .i1nternal memory addresses during DMA

\ . 1
transfers. This logit i1ncludes:

1. A DMA Enable Latch (DEL). This signal, latched by the mP

during 1niti1alization of DMA session, 1informs the IRI i1nternal.
logic that 1t 15 now selected fo;.the duration of the DMA
session. This 1s required Lecausé the address bus 1s golné to
ba\ioccupxed throughout the sessﬁon pointing to the source or
dest;n?txon of the data in the mé éemory. . The BE[1s
equivalent to the SEL signal of the fx%sg version.

2, Deselection Logic. When the DMA session ends DEL has to be
deselected. This 1s accomplished by aetec£1ng the status of BA
(Bus Available) signal on the bus.

3. Program Counter Control. During data transfer initial-
ization the mP presets the IRI program counter. The program
counter has to be i1ncremented after every two bytes transfer.

This. 15 accomplished by detecting the AO cycle and toggling

the SS (Single-Step) when an A0 falling edge 1s detected.

-

5.25

-

\ °
[4
N 4
—
| >
TR,
¢ m H
)] “
w | v wwn
Q . t o w
& A R &
vm | S | —_no
-) | mr
o \ : R Sse
= { .o U © 3%%
-~ L ' %)
H = pe— {
= A 2l]
- 1 . _ '
| E = x| ! | |1
[} !
m & SR . i
" I
b a N |
1 ; d. | .
b _
EIE——— !)
& “)
r B
1 w !
llllll o !
|
llll —
po- - - 1
3 ! g
1 !
oo e _ m
<] . o
i ' B PN SRR L R
4 3 S I RS Sy S -
] ' ' H
1 - - J lllll q———— P e - —— hakahetai L e o} e o s
1 ") ' “ |
- S B
g = = = @ . e - o o -
] —
i
lllllllllllllll ﬂil'l'b' s m
———— -~ 3
] M —d S
Q a-
-
. 3 _
2)

|
ADDRESS

/

The DMA IRI Module.

9.10:

Fig.

mP RESET BGFNT SEL(non-DMA)
!
. clr !
ENABLE
g
o "= to BWL
DEL e Jclk Q
(from BSLz ’
J-K FF
H

y
‘3
A

\

r\ _ Single Step
| ™to IRIP

)

Y Bingle Step
{from PIA)

| R ,
(from PIA) ‘ ' . R/W

to BWL °

oP R/W

e , . X
/ ' 5.27

4

S.4.2 DMA Communication

4

‘”\ Tg; M0684; DMAC is capable of taking control of the main
bu% and generating all bus signals required for transfering
data. DMA data transfer d not requiré the mP to execute
several i1nstructions per transferred byte as 1t normally does
&hr1né rprogrammed\data transfer. DMA rates of 1 Mbyte/sec can
be achieved.

The wP initiates the transfer by:

1. preéetting the IRI program counter aﬁd imitializing the DMA
support logic,

2. loading the DMA controller with the starting address and
the length of the data block, and

I. passing the bus control to the DMA controller.

The DMA cycle is shown 1n the timing diagram in Fig.
5.12. After the mP i1nitializes the DMAC for a specific data
transfer, the latter i1ssues DMA request signal (DMA/REQUEST is
negated). The mP gets off the bus by asserting the DMA Grant
(DMA/ GRANT) signal. The DMAC takes control, places the first
memory address on the bus and activates R/W to def;ne the
transfer direction. The Enable 1line ()2 of the 6809 tlock)
synchronizes the transfer which is excuted at 1 Byte/cycle.
The IRI detects the bus signals BA, BGRNT and A0 to
synchronize the data channeling to/from the pragram memory.
Upon transfer completion, BREE 15 deasserted and bus coniro}

is returned to the mP. The mP will then reactivate the IRI as

i

o

required. .

last mP

.Fig. 5.12: The DMA Cycle - Timing Diagram.

e \ cycle
92 T
ENABLE
HALT/DMA /
REQUEST 1)¥
11
DMA — al
GRANT
N
5
oy y
_VMA \ j‘ \
— * — - ' A \
R/ P/ J\ DMA H DMA_H DMA /
ADDRESS ey
BUS mP) = (DMAHDMA}—}DMA/\
Bs s - (oa »——o)| o)
BUS e DMA (oma) DMA

-

¥

\\

8Z2°S

T

5.5 The Shared/Dedicated Memory

Both Dedicated and DMA IRI versions are designed with an
independent BD memory which is not part of the mP mamory. In
the Shared/Dedicated controller structure, Fig. 5.13, the IRI
memary 1ig deslgned to be a parﬁ aof the mP memory and thus

\ .
occupies a segment in the owverall system memory map. The

memory maY”’E, directly shared by both the mP and the IRI by

connecting | hoth address busses to the memory via buffers.
K

" Under normal IRI running conditions the mP is denied access to

the IRI memory segment. The mP may access the memory while
the IRIP 1s halted. The shared/dedicated memary offers

flexible mP-IRI opecption.
R

§P R , IRI IR |

i DATA BUS n
J1 J 1 J

ADDRESS BUS

Fig. 5.13: The Shared/Dedicated Controller Architecture.

5. 30

%.5.1 Controller Structure .

This version shown i1n Fig. 5.14, is deﬁigﬁud only for the
55-30 bus because all 16 address lines are required.
Modifications tq/ the Board GSelect Logic of the Dedicated
memory version were made toﬁallow direct addressing of all 3512
bytes. Address and data buffer control logic enable the mP to
access the memory of one IRI processor at a time. Data
transfers between the mP and the IRIs are essentially memory
to memary transfers as the mP controls both IRI memary and its
own memory via direct addressing.

During IRI running mode, its program memory is addressed
by the IRIP via the program counter. The output of the program
counter is buffered by eight tristate drivers enabled by the
BD-CLK-ON Fignal. Upon an interrupt and the stopping of the
IR{P, access 1s granted to the aoF which can now read the

program memory or download new programs via direct bus

addressing. e, -
Byte/NmF Logic ensures that one memory byte at the time
is accessed nder mP addressing and baoth LS and MS byfés are

being accessed when the IRIP 1s addressing the memary. During
mP access all nine LS address lines are connected to the
memory and single bytes are being addressed. When the IRIb
accesses the memory, the BUWL buffers the LS bit of the address
bus, AO. The program counter address lines are equivalent to

Al—-AB and ane word (two bytes) 1s addressed at a time.

S.31.

o b ' ——
o : 1u1l " A4 lJF I
v——-—t losd | T)T '
. : a
, :> f :——D P“ROG.RAM
IRIP PC ¢ Ag MEMQRY
51 '
e ’
MS8 * LSB
1]
- R cs «R/F es
Tt
status
buffers -1
1t ,
PIA
N : 4
1 BWL
sel
BSL -
PA
AO-AT
)
V4
R/ to/from to/from

DATA BUS

-Fig. 5.14: The Shared/Dedicated IRI Module.

ADDRESS BUS

¢

data
buffers

o

B

3.32

S.4 The Shared Memory IRI Module

This wversion of the IRI contraller may be also called a
‘dual prbcessor’ system since only one IRI (slave processor)
and one mP (master processor) are implemented. The two phase

clock provides a separate phase to each of the processors sa

that they are ‘invisible’ to one another,.

1 4

85.6.1 LController Structure

Fig. 5.15 depicts the Shared Controller architecture, The
two processors, the mP and the IRI share the same system bus
to access common (ahared) memory. The mP may access memory
during ¢2 of a '2-—-pha5‘e system clock while the IRI haa access
during 1. This makes the mP and the IRI invisible to each
/other during bus . access. Addi tional IRIs cannot be
‘accommodated because the IRI memory, acfive during process
cpntrol ses510n, 15 accessed via the single system bus. .

The controller consists of Clock and Control Logic which

. provide the timing signals to both processors and to the other

bus residents. The IRI can only access the memory for Aggdxng
N
data, 1.e., accessing 1ts executable BD program. . \.

~

The IRI and the mP may be mounted on the same board which

ccontains all necessary memory and peripheral interfaces, or

may be connected to the system bus. .

" 4‘37.

43

° CLOCK/ |
[} CONTROL C
o —v

ADDRESS

BUS ~

INTERFACE o
DATA DATA ,

~

DATA ADDRESS CLOCK/CONTROL

L 3
Fig. 5.15: The Shared IRI Controllar Architecture.

9.6.2 Claock and Timing

The systeém has & 2 fHz crystal clock. Its frequency is
halved with a toggle Flip Flop. Fig. 5.16 depicts the system
timing si1gnals related to d:z access functions. N;:m-

overl apping ¢1 and ¢2 are generated. To avoird averlapping high

.clock 51gna7'15., ¢2 1s stretched and kept in 1ts low state

beyond the high-to-low transition of (bl by i1nserting 6 gate
delays 1n.1ts clock circuit. This ensures complete separation

of bus acccess between the two processaors.

master
clock

memory
clock

5.34

2x ¢2

$1 -

$2

—

address,
R/W

IRI

ZZ;;;Q mP

R

IRI

R/, , mP

!

read data

IRI

Wi,

mP

J//r

write data

IRI

T s

mP

/11,

Fig. S5.16: mP and IRI Data Access Timing.

5.35

85.4.3 The Bus Interface

The Bus Interface, shown i1n the block diagram Fig. 5.17,
permits the two proéessors too share memory. Dﬁdxcated
processor resources (such as memory mapped 1/0) are accessed
via the same interface. It consists of an address buffering
section, data buffering section and R/W and VMA buffers. The

IRl appears as memory to the nmP.

‘ , : ADDRESS|____ to
) ADDRESS
M DRIVERS BUS
mP N
< DATA) (
DQIA
. | Ran-
T C QVERS . to/from
ADDRESS R/W VMA }/ { C::> DATA
BUS
IRI ~
< DATA CLOCK™

Fig. 5.17: The Bus Interface.

)

5.36

Each processor is interfaced wvia 16 unidirectional
address drivers, plus tﬁo unidirectional drivers for R/W and
UMA. The IRI R/W is tied high, in the READ state. The data
buffering section consists of eight data tranceivers for the
mP data channel and eight unidirectional data drivers for the
IRI data channel. All buffers are enabled by their appropriate
processor clock phase. R/W determines data direction. VMA
signal is narmally ‘low’. It is asserted only to deny bus
access when external devices otger then the mP or the IRI,
(p.g9.y bulk storage DMAC) request access to the bus.

a

5.6.4. The Shared IRI Design

The Shared IRI, Fig. S5.18, retains BD and 1/0 capabili-

ties 1identical to previous versions. It consists of the IRIP,
v J

the 8-bit program counter, the CIL, the BWL, status register,

communication PIA, address decoder and page register.

The IRIP 1s the BD processor employed in all other

versions of the IRI. Tﬂé*ﬁ;ogram counter‘provides a two byte
BD 1i1nstruction address. I.e., 1t is connec%ad to bus address
lfnes, Al1-AB. A0 1s provided by the BWL which also latches the
retrieved LS byte of the instruction until the MS byte 1s
retriaved.(The page register 1is an B-bit write-only register
addressable by the mP. Seven bits are employved to assign
address }1nes A9~-A15. This 1s necessary since the IRl can only
addre 3/ 312 b&tes. This allows the mP to install a BD memory
imageﬁ/1n a specitic memory page and then‘;et the IRI page to

acceis that i1image. Communication and status are i1dentical to
p7ézxous versions.

L] *——}
CIL

IR<15:0>

—

b

status

:

IRIP

IR<T:0>

conmunication
PIA

¢\

. h

PC Al - A8

decoder

U

——rpage re 1sterJ

BWL

’ t

'to ADDRESS BUS

N

buffers

U

mP direct to/from

address DATA BUS -

Fig. S5.18: The Shared IRI Léyout.

L5 °S

Although both processors are capable of contralling the
system’'s bus, the IRI ig a slave processor because all 1its
operations are 1nitiated and monitored by the mP. The IRI can
be addressed directly by the mP as follows:

1. Communication PIA - port A - control and test (2 addresses)
port B ~ status (2 addresses)

2. Page register (1 address)

5.6.5 The Shared Controller Operation o

The mP initializes the IRI by setting the memory page ing
the page register, presetting the program counter and lowering
the STOP flag. The IRI goes into running mode accessing main
system memory during 1. It needs 2 cycles to fetch an
instruction. Normal IRI execution takes place while the aP is
free to perform 1ts own tasks. The mP must be prevented from
unintentionally altering active IRI memory. Ta madify an IRI
program the mP must follow normal 1nterrupt procedures and
halt the IRI first.

The IRI requests a new program by i1nterrupting the mP. I+
* that prﬁgram resides 1n system memory, the mP only has to

alter the page register and restart the IR.._

Conclusion: Given the two processor limitation, a modular

system design camnnot be achieved. Nevertheless, BD program
alteration can take place the fastest i1n this m1 N1 mum hardware
configuration. [t promises to be a good evaluatxcﬁ system amed
development facility for control systems designers to explore

the capabilities of BD based machines. e

5.39
Y) IS
S.7 The 170 Modules

IRl 1/0 modules provide process i1nterface. They reside on
the IRI 1/0 bus (see section 5.3.7). The Binary 1/0 maodule is
the principal one and forms the basis for the Analog and Timer

madul es.

5.7.1 The Binary Module

The module shown 1n Fig. S5.19 contains one output bank
(0B), one 1nput bank (IB), selector logic, bank latches and
buffers. The module is connected via the 1/0 bus to the IRI
and wvia saignal conditioning units to the process inpu:ts and

¥

outputs. -~

Qutput bank. The 12 field output latches are connected via
opto—~isolators to field output 1lines. When)an aPS, short
ougput, instruction is executed by the IRI, the pper four
latches of the selected 0B output array conform to IR<11:8>
of the data lines. In an OPL, long output,'1n5truction all lé
latcheé confaorm to IR<11:0>. Outputs can only be affected
when the IRI 1s executing a program 1in the'runnxng mode.

»
S -

Input bank. This bank cantains 16 field input lines connected
to a data selector. Four bitg, IR{11:8>, serve as address

lines to the data selector, which selects one 1nput71ine for

testing by the IRI.

\

-t £ %
»

datd lines
cemmee=== coOntrol lines

OUTPUT BANK

r->

e s

InSel

IB LATCHES

5.19: The Binary 1/0 module.

IB DIP SW’'S
SELECT LOGIC

—-——
]
|
|
Fig.

Q
OB DIP SW'S
[R<11-0>

SELECT LOGIC

- -1 0B LATCHES
1 Eahiaitn Rt

PRI P |

L/

A

Selector logic. One IRl wmay handle up to 16 0OBs and 16 IBs.

A 4-bat code defines each bank. Two 4-bit latched registers

are used to hold the current address codes. The 0BSel and

. IBSel signals, from the respective bank select instructiorf of
the IRI, are used to latch the current bank code. An 8-DIP-

switch package 1s used to assign 0B and IB codes..- Dedicated

-)

selector 1logic compares the assigned OB and IB codes with the
latched values, and outputs the appropriate enable signals.
Thus, only a selected bank will be affected by an 1/0

instruction.

S.7.2 The Analog Module o

This module, Fig. 5.20, contains all functions of the
Binary 1/0 module with the addition of Analog to Digital

conversion circuitry. Four “analog input channels and four

©

analog output channels are implemented. The desired channel 1s,

selected externally by four select bits (these may be provided

by via another /0 card). Analog input is digitized by a 10—

‘bit A/D convertor whose output is connected to 10 of the 16

inputs of the input bank. The IRI 1ssues S0OC (Start of
Conversion) to the A/D via the output bank and detects the EOC
(End of Conversion) which is connected to one of the remaining
six 1nput lines. The digitized value :s latched and trans-—

mitted to the IRI via 10 LS i1nput lines.

4

5.42
< " ‘
€
L ANALOG CHANNELS
D/A e
e
— \}
soc c}ha.nn.:.l.ul:s&.
[o 1
' EOC
e
- g
) yJ
Vv - - |En [
BINARY 170 MODULE - e
. A
! I i 4 ANALOG
_ e - IRPUT
s CHANNELS
/\> :
to/fram BINARY INPUTS
IRI ‘;r
-~ b]
" ! f g
N \ ’
: N

-

Fig. 5.20:- The Analog 1/0 Module.

7

%

A

-

.~ b

Eight LS output bits may be converted by the %/A

convertor to their equivalent analog value which is connected

-

to the process via tHe selected channel. Three ana g9
channels are available as field outputs. Thﬁ fpurth one can be
uiod internally as a se:t point for comparison with a selected

analaog input channel yhnn. required. The comparison is
AT 3
executed using an analoqg comparator on board and the result

L4 * »
is available to the IRI via an input line. The remaining

'

input and output 1lines ‘may 4bg used for monfforing binary

>

signals in addition to the analog ones. ,

; .
S.7.3 The Timer Module .

The Timer module shown in Fig. 5.21 enables timing
fudctinnl to be cx.cet.d in hardware ynder ths IRI control.
The module consists of eight 355 hardware éiucrl“uhos- timing
intervals are hand-set by a potentiometer. Three MS output
bits are. used by the IRI to adér.ss a3 toB demul tiplexor
which generates the timing request signal R for each of the
timers. The fourth bit is the data selector enable. ™

A timer’'s state changes from'inactivn to active when its
timing requcsé sign;l R is asserted. The flag, T->1 r.&ains
#or the duratioﬁ of the timing 1n3\rva1. R remains asserted
during the timing interval and after its expiry. The timer

becomes inact;ve and ready for a new timing assignment when

thelIRI resets it.

" 1

r

-

-
Rpe

[n A

M T2 J|T3

T4 TS5 | {76

17

X 3 [

{ X

‘3to 8
DEMULTI~
PLEXOR

‘,

BINARY I/0 MODULE

ee
elow

R + R'T

T+ (RT)

5.43

The timer can be viewed as a firnite-state automaton with
three distinguishable states:’)
1. 1T =« ipactive (rl-ldy for a timing inignmor‘\t),
2. M - timing, and

3. X - wxpired ¢i.e., timing completed).

The state diagram describing all possible transitions’

among the three states is shown in Fig. 5.22. ‘

The IRI detects both T and R-T in order to unambigously
.lt;ll:'rli-h the state of a timer. Instead of conﬁ.cting both
signals to the IRI input bank (i.e., requiring.146 inputs for
the eight timrlr), ‘Fy an out,put. signal caommog to all timnr; is
used to mask .ith-r T (when F is 0) or R*T (when F .is 1),
thus enabling the IRI to. monitor both T and R-T via a single
inpu‘t line. x

Opnrltional‘ mdn‘s and varul;l. states o-f\a timer are

sunmarized in Table 5.4:

»

Mode R T F _RT_ - '
Inactive 0 O O 0.
N S
N\Timing 1 1 O 1
' 1 (o] \ ,
Expired , 1 0 O o -
' 1 1
 Illggal 0 1 x -x

% Table S~13 Timsar's Opsrational Modes. //

-

B3 . .

Lt c&{ﬁ

[P

o h o R

r

14

~

)

CHAPTER 631 APPLICATIONS

-

6.1 Introduction : 4
: {
In this chapter two pplications are presented to
. A Y
demonstrate the advantage of an IRI based controller over a

conventional mP based control system. The first example is the

control of a"n industri

¥ :

shows how an

batch weighing and mixir;g process. It

\ ‘ /
d hybrid lowers cost .and complexity of
. control hardware. Tha second application shows how an IRI pre-
processor increases variable reference matrix sensor data

throuthué so that it can 'track quickly changing dynamic
situations. .) ‘ e

~

)
6.2 Industrial PI:C, Batching Process .

6.2.1 Process Description v

ﬁtch waighing and mixing are common to many industrial
processes: e.g., Chlﬂi:llh, food,. textile, glass and cc}n-nt
production. Fig. 6.1 shows a typical fnoq or animal feed plant .
mixing process. i ’

The production line includcs‘a
20-25 ingredient (raw matnrialx))ﬁ bins,
2-3 1liquid tanks,
2-3 weigh scales of di fferent ranges,
1-2 flow—meters, '
1-2 mixers,

Q 074 surge bins,

10-15 finished products storage bins, conveyors and feeders.

it

Al

inGrepienT Biffs,

-

—waae

7

SURGE BIN

|

Fig. 6.1: A Typical Batching Lnd Mixing Préccss.

-

4 R) -)

L

1
The process of producing a batch involves three stages:

1. weighing the ingredisnts according to a prescribad batch
formula, ’ . ‘

2. miximng the batch for a prescribed period of time, and

- routing it to a dgiiénaicd'-toraqc bin for further p;oc.s-

sing or delivery. /

J g | RER
" All scales can ucigh simultanecusly. Once- a batch has
‘cleared the scales it is transfered to the nixing stage andx
. thl¢ next one may ba started., The procos: is r.qunntxal but

pipulxnchj/A complex system may have msany weighing lines and
batch processing stations, ahil- a simple dne, such as a baq
packaging station, may contain only one weighing line.

Fig. 6.2 shoas a4 typical weigh scale with its associated
control signals and timing diagram. Material weight is

‘mca-urnd in' the scales by a straingauge type load-cell. The
weighing part of the proE.gs involv:: three phases:
T 1..Maperial feedj coarse,
" 2. Material- feed; fine, and
3. Scale discharging.

To achieve minimum deviation from targ:t weight at
maximum feed rate, a* ingredient 1: fed to a weigh scale in
two stages; coarse_ and ,fino. The control system which
‘gpcratas the feeders is provided 3}th coarse and fine cuat-off
points (c.o0.p.). These are d-ti;minud by the nature of the

ingredient and its afterflow characteristics and are
y .

constantly updated to correct actual weight deviations.

) e

-, -

-3

+

bin level 1'n3‘1' cator

Y

fine gate on

~ COarse gate on

fine gate - __E:‘
—

coarse gate , — —

L)

K\ ﬁ ﬂ-;]Oad'ce]])
disch. gate c -4 discharge gate on
4
_J .
\stand-stil1 M_J
coarse feed' |] | ! g

fine feed __l | .

discharge -_1 , | 5’,I -

|l.__coarse yfine empt co L
d mode - 'mode’' "mode <
atch wertg

The control system verifies :calwnpty-conditim prior
to fesd initializa¥ion, and registers t;r- weight on the
scale. It then closes the dischargc(gate and opens both
coarse and fine feed gates. Thc weight is mnitor-d contin-
uously u&til it reaches the coarse c.0.p., whan the coarss
feed gate closes. The system continues 1n the fine fesd made
u;-\til the fine c.o.p-. is reached. After closing the fine feed
gate, the Ic:t:mtr't:l system waits ta ensure that all flowing
material which was downstream of the gate has .come to rest on
the scale. Aft-rw«rc:!sY the actual weight is measured and
compared with the target weight. The difference is used by a

C.O;p. .adjustment algorithm to im_prm’m the accuracy of future

batches:
<

6.2.1.1 Cut-off Points Optimization

0y

Fine and coarse cut-off points are adjusted, after each

weighing, according to an optimization algorithm which aims

t::: -

a) minimize the difference between- a;:tual weight and target’

waight, and
b) maximize the fraction of weighing time spend in coarse mode

80 as to shorten the weighing cycle. : :

An ingredient target weight is prescribed by tha batch

Sy

formula. Cut-off pc.intsﬂ are d%amic, paraneters, aasigned ‘as
percentage value per ingr-dionnt. The fine c.o.p. is set at
slightly less then. th-’/ 'targct weight to compensate for
material which flows 1(:0 the scale after the fuding 'ga:tq

closed. The coarse c.o.p.” is set to a point which can vary

&

-y

6\.6 N

A

between 807 and 95% of the target’weight. To achieve faster

ks - .
weighing the coarse c.o.p. is adjusted to increase the toarse
portion of the weighing interval. This can be done as long as

the material flow charactnristic_s remain stable and larger

~
v

waighing errors do not occur as a result of the shorter fire:
weighing interval. For example, one simple weighing algoritha
invokes an earl 1er fine c.o.p. i¥ an overnxght occured. The
adjustment might typxcal ly :hort!n thn fine feed interval by a
percentage, say, 40%Z of the measured _ovcrw.ight error. In the

case. of shortfnl.l, the ad?ustmmt might extend the fine feed

‘ithrval byl the estimated’' time needed to ;upply the entire

underweight amount. A/ more elaborate algorithm aight incor-

-

pératl statistics and 1'4' dyﬁamic model of the material flow

process. It is desirable that a weighing error converges to

. Zero. Weighing algori thms have been developed: for many

applications. 1‘{\\- design or selection of an algorithm depends’

on the material stability, weighing restrictions, i.e.,

-

nagative 'cm)_ positive tolerances and other factors. Real-tiae

cC.0.p. optimization takes place while scales are discharging.
S L,
Optimization tasks are not subject to real—-time constraints. as
N

thos} imposed by DDC response requirements.

* »

&~

b.2.1.2 Smart/Rnflnxivﬁ Partition of Control Functions

2 L4

In order to illustrate the advantage of using an IRl
v .

based controller in such a batch weighing process, the control

functions will be divided into reflexive, reflexive—aided and

smart categgries as described in chapter S.

.)

Reflex:1ve

-1

Tasks:

Monitor
Monitor

Monitor

weight during feeding
weight during discharge
system parameters:

gate positions,

air-pressure, etc. 1

Detect and annunciate malfunctions

Control

T - Control

mixing time

routing to storage binsg

w

Reflexive—aided Tasks:

Initiation of new weighing sequences

Treatment of process irregularities and mal unctions

8
T

Smart Tasks:

Supervision of Interface Prbcessors

Operator interaction

Maintenance of data bases:

-~

Registﬁ@tion and updating of actual weights

ingredients - €.0.p.%, tolerances
batch formul ae
production data

bin-material data, etc.

C.o.p. adjustments and optimization

Optimization of formula

Bin assignment, Scale assignment

..

Generation of statistical data

6-2.2 IR1 Controlled Batch Weighing

A microcomputer-only control system 1s capable of per-
forming the control tasks described above. The number of
scales that can ;Se controlled and the number of other para-
meters that can be monitored 1s limited by the complexities of
the operations and the speed of the process. In addition, any
supervisory task such as synchronization aof parallel
operations, data management, optimization of batch formula,
etc., will be delayed‘whlle the cpu is occupied with process
tasks. Several microcomputers may be required to control a
complex procaess each of which is dedicated to a separate part
of the process. An additional microcomputer may be employed
for supervimion, statistics and optimization. One commercial
system [(IAB1] employs a large cnmputgf system, i.e., a mini-
computer or even a mainframe, to handle control tasks and a
backup caomputer which handles optimization and other off-line
tasks during normal operating conditions.

A gingle microcaomputer ?uqm-nted with IRI modules can
perform tasks which conventionally employ large computer
control systems. By partiéioning the control tasks and by
letting the IRI modules perform the reflexive ones, the cpu is
relieved from routine but time critical monitoring and control

tasks. Smart, supervisory tasks are thus' handled more

efficiently. - . -

~f

Due to the +fast scanning capabilities of the BD
proce;sor, a single IRI is able to simultaneous handle
parallel operations without i1ncurring any time penalty. E.g.,
the weighing operation may be controlled by an IRI which at

the same time monitors material levels in ingredient bins and

sufficient air pressure in pneumatic feed lines.

&

6.2.2.1 The IRI Based Controller Architecture .

An IRI based modular programmable cant?gller, Fig. 6.3,
used to control the process described in section 6.2.1,
employs one mFP with four IRI modules. Three IRI modules are
asgigned to cuntgol three weigh—scales simultancoﬁsly, as well
as to monitor their respective feeders, ingredient bin sendors
and other p.arém-ters. The ﬂ;mr;th JRI .cqontruls‘the migin‘ﬁ"
operatidn and the batch routdﬁb ;o the proper satoaorage bin.

Each of the u‘;gh-scale IRIs contains as many binary I1/0
cards ‘as needed for on/off c;ntrol. One Analog 1/0 card is
employved +for the weigh-scale load—c;ll signal monitoring,
whose signal is also provided, via a dedicated PIA, tao the mP.
Via another PIA, the aP provides‘pach of the IRIs wit‘ the
current c.o.p. In addition to monitoring the weight, the IRI
monitors and controls the scale feeders wvia binary 1/0.

The mixing IRI employs a t:mer card to control the mixing
time.™ The mP supervi;es the mix%ng Dper;tiun via the
downloaded BD pfogram. The IRl issues the control signals to
empty the mixer and Feété-the batgh to its next destination.
In addition, it commuhicates with the other IRIs‘via gheif

-

binary I1/0 cards to permit scale discharge to the mixer.

T e—

STORAGE]
g MEMORY

BUS

CONTROLLER

PIA

,.// to/from

=" SCALE #1

Py

r

- to/from

- SCALE #2

1

|

to/from
SCALE #3

kK— IrI #

5
’

to/from

—t MIXING &

ROUTING

IRI 1/0 Modules:

B - Binary
T - Timer
A/D- Analog

Fig. &.31 An IRl Based Programmable Controller.

[N

b.11

6.2.2.2 Weight'ndﬁitoring by IRI:

Current weigh-scale charges have to be constantly
measured and compared to their c.o.p. Measurement rate is
determined by the permitted weight tolerance and by the feeder
throughput. A binary sequential comparison technique which
replaces the arithmetic computation used by, microcomputers,
reduces monitaoring time considerably. ' “

An IRI module, employing two input banks compares two 12—
bit Linary numbers, one is the actual weight provided via‘oﬁ
A/D from the load-cell, and the other is the c.o.p. furnished
by ,the mP via a PIA. The BD comparison tree i: shown in Fig.
6.4 along with its associated BD program. This program is
executed on a cyclis basic with additional antrol programs
(see Appendix B) which monitor other. process parameters. The
mP waitse for an ‘end of weighing phase’ ﬁn{crrupt to takwe
action <(change f¢.o0.p. or download new program). The MC4809
weight control‘assombl-r routines are listed in Appendix B.

Because the actual weight is less then the c.o.p.
throughout’ the weighing cycle, comparison always starts with
the most significant bits. A one bit comparison is sufficient
until the act@al weight reaches hil{ C.0.p., two bits suffice
until 757 of c.o.p., and s0 on. With a 12-bit wcigﬁt repre—
sentation, the full 12-bit comparison tree is executed qﬁly
when the . weight is at or vcryuclosc to c.o.p. Even the full
comparison uil{ not exceed 24 clockcycles. More gignificantly,
only a few :lBEE’cycl.s are neaded most of the time for each
load-cell comparison, allowing one IRl to concurrently surv.‘
many u-ithcalns;' ‘

.

A - cut-off point . B0 Program
8 - actual weight 0000 1BSel

0001 0BSel

0010 TEST(1) A, Jump to 0101
oon TEST(O) 8, Jump to 0110
* 0100 BRA to 00110100 (A<B)
) 0101 TEST(0) B, Jump to 00110101 (A>8)

* 0110 TEST(1) A,y Jump to 1001
o1 TEST(0) B,.; J#mp to 1010
1000 BRA to 00110100 (A<B)

; \
' 1001 TEST(0) B,_; jump to 00110101 (A>8)
. R ' 1010,

= N ‘ :

ﬁ / , 1 . .
to next .
comparison

(An-Z'Bn-Z) ’. ¢

»

A<B - A>B .
* . 00110100 OUTPUT A<B Jjump to Interrupt
: 00110101 OUTPUT'A>B Jump to EOP 4
00110110 OQUTPUT A=B Jjump to Interrupt
00110111 —Interrupt
00111000 EOP .

1

Fig. 6.41 A Multi-bit Comparison BD Trwws——

-

6.13

The mP canl read the current w,ight at any time because
the A/D output is also available via a PIA port. Under normal
runnning\ conditions this occurs only when a "comparison-
completed” signal is sent by the IRI. The mP goes into a
check—-loop to verify stand-still condition. It then registers
the final actual weight and issues a signal to the IRI to ope:7
the discharge gate. The IRI handshakes with the mP and the
latter registers the weight, deducts the residue weight' that
existed in the scale before feeding and saves the value for
datg management purposes. Cut-off point adjustment is done at
this stage in case of deviation +{rom target weight. The
discharge gate is opened by the IRI, which then monitors
weight until the scale is empty. .

The P initiates and supervises the operation. The
operator lnf;cts the formula to be produced and the mP, using
the necessary information available in the formula and

LS

ingredients file, provides the IRIs with the ingredient
weights, cut—-off points and operation sequences. '

&.14

6.3 IRI Based Scanner
£

t

The IRI's capacity to proceass digital signals quickly is
exploited in this second gpplication example. The IRl basaed
control system is used to pre-process signals detected by an
array. or matrix of biﬁary sensors. The sensors compare a
measured parameter with a controlled reference parameter thch
is dynamically varied. Such.variable reference sensors can bé
qpviseq‘to measure many different physical properties.- The IRI
praepracessor functions to incr;asn the system’'s measurement

rate and allows °‘transducer arrays to be wused in dynamic

‘applicgtions.

A matrix of comparatars, with variable refersnce, can be—

used to measure the values of an analog parameter at a number
X

of spatially distributed points, e.g., the pressure disfribu—

tion over a surface. Existing, conventional methods. for para-

«

meter mapping use:

a) a single/ analog transducer multiplexed to a number of
points in the domain, or
b) individual transducers distributed at various points.

The fiimer methdd is spesd limited by the switching. and

settling tige, K of the multiplexed analog system. Individual

analog trangducers are capable of fast measurement (but at the

high cost of many transducers.

. /
’ .15

/

‘ i

A compromise between the high cost and complexity of an
individual tfgnsducer matrix and the limited scanning speed of
a multipllxdz transducer, can be achieved by using a binary
’ comparator matrix 'with the very fast BD based IRI pre-

processor. N N

N

One practical application in which this BD based IRI
multiplexor approach can be uséd, Es %o map, for diagnostic
' therapeutic purposes, the contact pressure under a seated
patient, suffering from neurophysiological disorder.

[4

6.3.1 A Matrix of Comparators with Variable Reference

A comparator matrix consisting of simple inexpensive
digital " transducers was constructed. It compares the external
parameter, P,, with a common internal reference parameter
which moﬁotonically intr-a;-s -or’ d-criasbs-(aver the
measursment range, P, such that if P.<P.,, the oﬁtput is O, and
if Pa>=P, the output is 1. By labeling the occu:rencn of the
transition with the .internal reference parameter value, a
table of external parameter valdes can be cbtainad.

,Tbc dynamic behaviour qf‘tho binary sensor is illustrated
by the series of events associated with the occurence of a
transition, Figt 6.5. 1f coincidence between the refarénce and
the measured paramatn: occurs at time t,, thé‘sensar will make
a transition later, at t., where t-t., is a measure of the
sensor threshald. Scanning might hgg detect the transition
until another delay, ta—te, has elapsed. The monitoring
aystem issues the command to méasure ;ﬁe reference value at

tay 50 the measured value is dehivud from tHE refsrence value

b.16 B
"V\/
)

. NS
at t., which might differ considerably from the tru?\,\valuo

/ \ ‘

which existed at t,. For accurate rnsui\ts, especial y'in a

/ N
dynamic environment, it is important to minimize these dﬂzlays\
] 7 >‘

\ o
S
K\

. ta - Pe== Ei)
' tt ~ transi®ion
! td ~ detectian
oy v t_ - measurement
ot t.t , TIME

TIME

Fig. 6.3: Scanner and Sensor .Dynaﬁ:i:s.
. ;

] 4

6.3.2 Comparator Matrix Augmented with an IRI Controller

]

A compafatar matrix system, capable of fast sampling, can
be configured by employing an IRI based controller to monitor
segsor transitions. The BD based 1IRIs scan all sensors
rapidly, detect sensor transitions and assign an input meas-
urement reading to each sensor1transition with minimal delay.

The IRI based controllers presented here arg designed

9 arpund a 16x146 sensor matrix, i.e., 256 sensors. IRl systems
are modular and can be wmasily adapted to different matrix

sizes.

The IRI scanner controller block diagram is shown in Fig.

v,

&.6. Each IRl controls a segmnent of four matrix lines, 14
sensors each. I.e., four IRI\mﬁdulas are required. Each IRI
employs a number of binary 1/0 modules connected to the matrix
via a special scanner interface. Three IRI controllers with
different scanning algorithms and scanner interface structures
were designed:

1. The Single—-Sensor Scanner Interface

2. The Line by Line Scanner Interface

3. Scann’r Interface with Memory

Elements common to all three scanner interfaces are the

Line Image Registers (LIR) which store the statu; of all
sensors., connected tao the interface by accumulating sensor
'transitions throughout the measurement cycle. Using infor-
mation stored iﬁ the LIRs, the scanning algorithm ignares

‘sensors whose transition took place before a previous scan.

MAIN BUS

6.18

//’
%
1/de=llst / '
SCANNER Variable
ADC Reference
D n
KA PIAC FACE
K]
>/ . T %
a 4
A 1RIO
K PIA
1/9 /9" SCANNER .
- - _ From sensors
‘ INTER-
17 =
S /G
J *
K IRl
A PIA3[™ oo
‘ {
| Y

To additional
IKI's and PIA's

d

Fig. &.61 An IRl Based Scanner - Block Diagram.

2

L 4

~

\

The three designs can be described by the hanﬁar 1n which
the 1IRI] pf;processars report their findings to the mP. ﬁﬁ the
Singfé—Sensor version a single transition is reported e;ch
t}me it 15 detected. In the Line by Line version a complete
matrix 1line is reported if one or more transitiaon occurred 1n

the 1lide. Ih the Memory version all transitions, i.e., their

corresponding reference values, are stored in the 1nterface

.
3 ’

and are transmitted to the mP for post-processing at the
completion of the measurement cycle. .
The variable reference signal may be analog or digital
depending upon the application. If an externii source
generates the reference such as air pressure (see example;
saection ;.3.6) then the analog variable raferun;? signal has
Eo be digitized by an ﬁDC. The ADC output is»redBrdedluhen—
ever a transition is detecte&: In applications using vol tage
comparators, the\‘re{érenca may be generated.by a micro or BD
driven DAC, in which case the digital reference value is

[

already availatte. ’ :

4.3.3 The Single-Sensor Scanner Interface

The Single-Sensor Interface ig shown in Fig. &.7. éngw
interface card is dadicated to one IRI module which monitors a h
four line reqgion of the matrix, each line has 14 sensors. The
scanner interface contains four LIRs comﬁnsed of S—-R iatches
which store the image of a 16 sensor line. Four 4 to 16 de-
wultiplexors are connected to- the data inputs of the four

LIRs. AQ additional 2 to 4 demultiplexor uses the 2-b§t line

address to generate a signal which enables ond of the 4 to 16

J

b

)

X

o

4820

~demu1t1plexors. The 8-bit latch accepés the digitized
reference value at 1ts inpdts and latches it when enabled bY
the IRI.
What follows is a brief dgscrtption of how the IRI, wv:ia
)// the scanning algorithm elabora{;d in &.3.4, below, treats the
sensor auxiiiary interface. The IRI compares each sensor with
1ts corfresponding historical bit stored in the LIR., If a
sensor transit{on had alreadz occurred, és indicated Qy the
caorresponding LIR bit, that sensor’'s input ‘line is ignared,
i.e., not checked by the scannihg algorithm. When the IRI
encounters an up-to-now undetected sensor transition- the
following activities ensue:
1. The current digitized reference value is stored in the 8-
bit latch, connected to the mP via a PIA.

]
2. The sensar’'s address is transmitted to the mP via a PIA.
R,

4

3. The corresponding LIR bit is updiied.
. The mP stores the reference value against the 6-bit
sensor address, compnsyd of a 2-bit line number and a 4-bit
position in the line, in its memory to be past-processed at
the end of the measurement cycle.aln addition, the relative
sensor location is tfansmitted'to all four demultiplexors, one

]
of which, addressed by the line number, is enabled via the 2

to 4 demultiplexor.

\
v

-~

PIA'—ﬁ‘.

" 8Ivit digitized Py

Am L] L] L[] [) L] .
2 l’i bi 2toli \\
ne 1.8 to -~ -
| DEMUX _1 8-bit latch
J K : 3
0BO L-bit sensor locat %
1 i
\
| 4 to 16 DEMUX L to 16 DEMUX (L to 16 DEMUX b to 16 DEMUX
PIA T— | = |, . J
| ‘ 1 1
LIR O’ LIR 1 , LIR 2 LIR 3
IBO IB1 IB2 1B3 IBL 185 1B6 IB7

. Fig. 4.7: The Single-Sensor Scannér Interface.

~

£

1Z

Each IRl therefore requires:

1. Eight i1nput banks, two for each sensor line and i1ts corres—

-

ponding LIR.

2. Onea common autbgt bank which trangﬁits the 4-bit sensor
location and the 2-bit line address to the interface and to
the mP. ‘

3. A second butput bank and an additional input bank to com—

¢ municate with the mP and to repcrt the current line status.

The mP uses the six output bits, connected to one si&e of
a PIA, as the reference value storage address, The reference
value itself is available at the other side of the PIA. The
IRl is temporarily disabled using &n interrupt-<handshaking
routine until the mP has read the PIA.

This scheme incurs the least amount of mlcroéomputar
overhead but requires a gaignificant amount of external
hardware, i.e., nine i1nput banks, two output banks, four LIRs
and ohe PIA for each IRI. Apsing a | MHz clock for both the
131 an& the micro, this scheme can resolve the éntxrc l6x16
matrix in less than 10 mspc. A considerable disadvantage is

that only one-transition is reported at a time. An IRI which

is waiting fo report a detéfted transition is idle while the

mP responds ta other IRI%. In the meantime additional

a3

transitions, under the scrutiny of the idle IRI, may occur. An

unfavorable sequence of events may result in an unreasonable

delay before certain sensor transitions are detected.

‘

6.3.4 BD Scanning Algorithm)

The scanning algorithm was designed té serve two
purposes: — . .
1. To quickly detect a transition of a binary sensor. This
transition, which ofcurs when the variable reference reaches
the Jlevel of the measured parameter at the location of the
sensor, 1is of paramount importance because it identifies the
value of the measured parameter which is latched by the IRI
aﬁd transmitted to the micro.

2. To increase scanning speed by eliminating all previously

activated sensors from the scanning cycle.

—

Throughout the scanning cycle _the ED routine continuocusly
compares an input‘ from a binary sensor (éi;i with its
historical status stor;d in the LIR (Axx). Fig. 4.8 dgpictl A
the ¢tree and its associated BD routine for scanning eight
Sensors. Except mfor some minor difflrnnces, in the outpgt
structure, this rqutin‘ is similar for all proposed schemes.
All schemes use four IRIs, each of which scans four lines of
16 sensors. each. éach line is scanned in two stag:s. It takes
only one clock cycle to determine that no transition has yet
occurred, and two clock cycles. to detect a transition and
issue the necessary output. If the LIR indicates a previous
transition, no output is generated. As a result all IRI

-~

outputs contain only those sensors that have undergone
transition s;nce the last ocutput.

. In addition to the scamning routine, additional BD
programs are rcﬂirid _for 1/0 bank switching, communication

with the microprocessor and special hardware control.

Input Bank 3 L

8r [1]o]

13

8 LIR Bits (Axx) 8 Sensors (Bxx)

Main Scan Subroutfne:
ORG: 100
BEGIN . IN1:ABS A7
INO1ABS B7 _
o oPL $080
ABS6 IN13ABS A&
Ny INO3IABS B&
w_ OPL $040
ABS “—IN1iAB4 AS
tgzmu BS
o] i $020
AB4 %mss AL .
- INOIABRS B4
. orL £010
AB3 IN11AB2 A3
. INO:1 AB2 B3
oOPL £008
AB2 IN1:AB{ AZ
INOrAB1 B2
oPL 004 ,
ABL IN1:ABO Al
! INO:ABO B1
’ oPL $002
- ABO IN1sBS ' AD
INOYBS RO ‘.
oPL $001
BRA1 BS
8s <BANK SWITCH ROUTINE> -

6.3.5 The Line by Line Scanner Interface

This version, Fig, 6.9, is designed to overcoms the delay
problem of the single transition algorithm used in the Single—
Sensor Interface by reporting’ up to 16 transitions at one
time. The interface structure eliminates all of the 4 to. 16
demultiplexors and some of the input banks, necessery in the
first version, by using tristate buffers at the LIRs' inputs
instead of the demultiplexors.

As in the previous version, each line has a dedicated

N\&IR, but these LIRs are buffered and cannot be accessed during

their inactive state. The currently scanned line is the only

active line, i.e., the LIR buffers and the input tristate

buffers are activated by the line bits generated by the line
address using a 2 to 4 demultiplexor. Only two output and two
input banks are required for the four sensor lines. An
addit;anal input and output bank is required, as bnfor-, for
the current linnlstatus and microcomputsr communications.

\hll 146 sensors arse scanned each tise. An outpqt is
generatied aéd the LIRs are updated if at least ong new
transition was detected. Up to 168 bite are reported via twd
sides ;f a PIA to ihc micro. The digitized rc*o?-nc. value,
four bits indicating 1IRI and line numbnraand the number of

transitions i; transmitted via a second PIA.

-

>

OB1 8 LS Bits

-0B0 0 MS Bits

Fig. 6.9t The Line by Line Scanner Interface.
]

. | T 1
o ¢ 8t 8 8 o 0 l ¢ a0 e 0 o * & 0 e & i “ e 8 o 0 ¥]
1 : 1 1 | ‘ A
PIA __1‘ LIR O k—i LIR 1 e LIR 2 - LIR 3 . .
. i | |
1Bl ~= : ; '
L}
| { ‘
IBO0 we-- ! ! . - !
IB2 | ,}- o ! ' ’
; e i 2 to -:_----_—_----l {
OB a2 dine BikS fnepy T T T S s LT T T T o oSS Rt

-y e e s e w—

9Z°9

&6.27

In the single sensor ver;ion reference values were stoéed
against sensor addr;sses at trangsition time, thus-matrix
mapping was a straightforwara task. Iﬁ this'vqrsion a whole
line image is stored in the mP memory against the reference
value where each stored image only differs from the previous
stored image ‘in those bits which have changed. This method
therefore requires some pustproccssiné agter the whole mgirix\
has been scanned. Using standard ! ‘MHz hardware a 16x16|
matrix can be resolved in less than 20 msec. Ev;n.though this
is * slower than the singlc,transitiuq method, th;ﬂprobabifity
6# a large d'hay between transition occugrence and d-t;ction
has been considerably rcduccd.* The hardwar,,rcquirc& for- this
scheme is three input banks, three output b;nks, four LIRs and

two PIAs per IR].

~

&

\

6.3.6 Scanner Interface With Memory

The limiting factcr in both aforementioned m-tho&gxis'th-
microcomputer. The detect-interrupt-load—store \snddnnéi,
requires: i number of clock cycles. Using faster mPs (e.g., 2
’ MHz) will improve the situation slightly. On the other hand BD
based IRI hardware ?an easily operate at 10 or 20 MHz. In
thosc applications that are time critical, e.g., imaén
conversion, the following scheme, Fig. 6.10, is préﬁu;nd.

/ 2

) | B o

6-bit address

to/from > -1 64 x 8
[/
P < . 8-bit data RAM
- — g f - P
8-bit digitiz}{;\ []
ADC == ! |
t I
2 line bits .{ 2toh - = h
: 2ok o ?', 8-bit late JAN
©] * *« s € & s @ ’
0B > h-bit on

L]

|

4 to 16 DEMUX‘J

. o e o & e

LIR O

n‘ao l

-IB1

A

mi
L to 16 DEMUX

LIR 1

Vo

IB2 - IB3

-

9

h to 16 BEHIAX

—

IBY IBS

Fig. 6.10: Scanner Interface With Memory.

4 to 16 DEMUX

LIR 3

R

IB6 IB7

8z°9

The interface structure is identical to the Single-Sensor
4

interface except that an additional 64x8 RAM memory .L@
installed in the interface and is connected to tﬁ- reference
value latch. The 6&-bit sensor address, 4-bits to locate the
sensor in a line, 2-bits to determine which line, generated in
a~ way similar to thaéiused in the first Single-Sensor scheme,
is used here to store the current digitized reference in this
RAM. The RAM is accessible by the mP €thirough a DMA channel,

a countjz indicates that

and it can be downioaded as soon a

all 256 sensors have undergone transi addition, this

scheme permits an increase in re ution simply by using a

wider ADC to measure the reference and by using wid AM

memory to store the values.

As no interaction is required between the IRIs /and the

micro during the scanning phase, ;}l\sz\:i;:jgﬂxglﬁ;s can be
stored, using a 1 MHz clock, in less than ®C. '
\ .

6.3.7 Scanner Application: Contact Pressure Measurement

A practical situation to which an IRI baqnd'scannur may
be applied is the mapping of cnniact pressure on the human
body while seated or recumbent tV§B3]. Consider the known
medical problem of contact pressure exerted, for extended
perio? of pi;;f by, for example, a whenlqbair‘seat upon an
immébilizedﬁ patient. The mapping\ of the pressure over the
contact surface can help in properly dasigding‘the whesl-chair
seat and adapting it to specific patients. Existing mapping

N :

methods employ a few surface transducers and hakn measurements

L4

. at these few points.

6.30
.) E

The IRI scanner methods described above appear to be
suited to this application. Speed is the main bensfit of
scanning this matrix with BD intelligence. Snapiﬁot pressure
maps can be succesfully obtained notwithstanding patient
fidgeting. Applying the IRI version with Memory, for example,
requires minimal mP intervention during the acquisition aof
data, small memory requirements for both mP programs and
storage and thus a minimal system can be configured. This is
of partfcular impartance‘for a sel fcontained clinical version
of the pressure scanner.

The IRI based system compares very favourably with Vega's
conventional 8-bit 'microcomputer ;chnmq for sinil;; data
n:qu;sition system [VEGB3l. Vega mapped the 16 x 16 matrix by
repeatediy storing binary matrix images, and the rnlatuh
pressure readings. Vega's method nesded 1large data memory, and
took considerable time to measure (up to 460 mlt;.). buc to
the signal preprocessing by the BD processor and filtering by
the LIRs, an IRI scanner requires minimal memory . storage and

-

only several millissconds to accomplish the matrix mapping-
< /,

. tl!k- ' - /

Larger sensor J matrices can ‘Zc simply served with

additional IRl modules. The -proposed scanner system is not

limited to pressure mapping. It can be used for example, to

process images or to -map temperature distribution. o

CHAPTER 7: CONCLUSIONS
7.1 O0Objective of the Thesis

The work presented in this thesis exploits the advantages
of BD automata \to design a low-cost, fast, programmable 1/0
interface module; the Intelligent Reflexive Interface. The
abjective of the research was to design a fast, powerful and
inexpensive family of modular programmable controllers that
incorporate one or more IRl modules and a higher level
microprocesior. The following goals were set:
1. Jo study the feasibility of using BD automata in con-
junction with a microprocessor and identify the advantages, in
control applications, offered by this configuration, compared
to Boolean based microprocessors.
2. ‘To interface the protgtfpe~8p machine built by Holcl in
DATAC to an 8-bit MC6BO? mP anbling the implementation of
Hudson‘s BD .operating syqtém and compiler and to test the
operation of the two processors.
3. To deiign a novel modular 1ntel}ignnt 170 interface module
- the IRI. }
4. To apply IRI based controllers to a pair of widely

different types of application. . .

7.1.1 BD Automata Feasibility

It was\shown that BD methods have inherent advantages o/v\e_r

tHeir Boblegn

counterparts in terms of program execution
speed, computatlion throughput and simplicity of implementa-—
-tion. Several BD advantages were demongtrated:
1. Spead of execution has linear upger bound as compared to
the Boolean exponent\ial baund.
2’. MulZ:ple functions of the same variables can be
|

evaluated simultanocusly.

3. Multi-valued functians can be generated.

It was also shown that any logic function, combinatorial
or sequential, can be implemented in a BD prbgram. /\(
The core of the BD automajon was shown to have an
extremely simple structure; 5 lo\gc gates. This implies
-minimal signal propagation delays as well /’as low cost

implementation. {) \

Bgcause the size of BD programs tends_ to grow expo-
nentially, if no minimization techniques are applied, a stand-
alone BD automaton was found to be particn‘xlarly suited to
applications involving many 1ndependent processes, each of
whic.h has a limited number of input bits.

The Bl? automaton in conjunction with a high level nmicro-
processor can overcome program size limitations by having the

micrn&ocessér dynémlcally download new prc;grdms as_ required

by process conditions,

7.3

7.1.2 Interfacing BD Automata with an 8-bit mP

The feasibility of a high-level microprocessor working 1in
conjunction with ‘\;a sBD automaton was demonstrated with the
hardware interface and the develaopment of operating scrftw:are.
It was shaown that the two processors complement each otheri and
can operate independently as well as i1nterrupt each other when
required. The design of the multi—processing, schéme was
succesfully appl 1&Gh The hardware work was complemented by the
implementation of the BD compiler and the BDO9 pperating
system. The hybrid scheme is fully functional Tand is
extensively used in the DATAC Lab. Further development of the
optimizing compiler, an application to the control of an

. . : b4
inverted pendulum and other control projects are in progress.

7.1.3 IRI Design

1

et

BD automata can " be best exploited i€ control tasks are’
partitioned based upon their nature and complexity. The task
partitioning toncept is employed in the design of the modular

Intelligent Reflexive Interfaces.
\

In designing the IRI module and the overall 1IRI based.
system architecture the main objective w’as‘ to abtain highest
control throughput with & minimzed hardwaré configuration. It
was shown that the IRI module acting as a reflexive 1/0
processor, a programmed BD machine, resp"bnd's quickly and inde-

%

.
pendently in process control environment. o *

The %D automaton employed 1n the h§br1d scheme was
upgraded and redesigned to enable direct 1nterfacin9 to the
main processor bus. The IRI module does not need a separate
parallel interface. Four of IRI kodule versions were designed:
Dedicated, DMA, Shared/Dedigated and Shared. .All versions
employ the enhanced BD processor as the IRI processor. These
di fferent hardware configurations demonstrate design flexi-
bility in adapting to different applications. As an example,
the Shared version, with a fxngle IRI module, 1s suitable to
specialized”&ontrol applications which are limited 1n parallel
processing requirements but do require very short response

time. e 7.

7.1.4 Applying IRIs

Control task partitioning is the major concept behind the

IRI based Programmable Controllers proposed in this thesis.

Their objective is twofold: N

\

1. Maximizing controller throughput with minimized hardware

configuration.

2. Achieving a yery fast real-time response.

-
iR

The concept of control tasks partxtioning)was demonstrated

1n\a batch weighing application to show how simple IRI modules
\,

can) enhance system’'s performance by autonomously handling

rogtine but time consuming monitoring and control tasks.

ey

IRIs 1mplemented 1n an i1ndustrial PLC can reduce system

scan time, therefore enabling more 1nput/output variables to

. »

be accomodated. Processes that require multiple, cpu based,
N o

PLCs for parallel processing to reduce system’'s scan time, can

enj)oy the benefit of a low—cost multiple processing using

-

several IRI modules.

The industrial weighing apﬁi?cétion demons;r;ted this
distributed control concept by having each IRI control a
different 1nterrelated segment of the process. In addition to
IR1 supervision and co-ordination, higher level control tasks
such as control algorithms and set—paints optimization,
statistics gathering and data management, are performed by the
master processor.

The second dpplication demonstrated the benefits of using
IRI1 binary multiplexors in simplifying sensor cabling,
réﬁucing data storage requirement and increasing frequency
response. The IRI scanner compares very favourably with a
conventional mxcroprocessQf/based scanner, both speedwise and
data storage requirments. Fﬁrger sensor matrices can be simply
served ?ith additional IRI modules. The propoéed §§anner
system i; not limited to pressure mapping. It can QF used for
example, to process images or to map temperature distribution.

Future work will extéend Vega’'s analysis cf,senbor dynamics,

»

evolve improved sampling algorithms to adjust reference signal

limits so as to increase accuracy by reducing scanning delays.

7.2 Future Work
.
’

Future work will take two directions:

1. Enhancement of BD architecture and the IRI module.
2. Applications development using the IRI concept.

The concepts presented in this thesis can be further
devel oped to meet commercial requirements., Industrial
application of BD processor is still in gestation. Further
development can overcome ;émaining limitations. One area that
can be attacked 'is the addressing capability of the BD
praocessor. Shared ﬂemary structure enpbles the sharing of
larger memory with ease. This requires;‘hdressns laonger than
8-bits which can be implemented‘ by either changing the'BD
instruction length or with special, multi-word addressing
winstructions.

Implementation of the BD processor in a singleiLLSI
microchip 1s another challenging task which was ihitiated by
Vega and Li ([VEB2]. Availability4of such a functional unit
will enable more compact hardware packaging of IRI based
controllers:

IRI based controllers ma; be épplied in numerous fields.
E.Q.y distributed cnnt;ol and hierarchical m<i-lgvel
control. Robotic systems may also be candidates. Each axis of
motion provide; a natyral site for control by an IRI module,
under microprocessor supervision. Additional BD processors can’

be used in, K hierarchical fashion to analyze and control

displacement, velocity and acceleration.
li

- L1ST OF REFERENCES

»

(AK?781

[LAWBO]

s

(BASY]

[BN711

[(BO761

(CE791]

(CHB21

1

El

S.B. Akers, "Binary Decision Diagrams", IEEE Trans-
actions on Computers, Vol. C-27, no. 6, 1978, pp. S09-

S16.

B.A. Artwick, "Microcomputer Interfacing", Prentice

Hall, Englewood Cliffs, NJ, 1980.

C. Backus, "The Syntax and Semantics of The Proposed
Algebraic Language", Proc. UNESCO Conf. Information

Processing, Paris, June 1959, pp. 123-132.

C,6. Bell, A. Newell, "Computer Structures: Readings

-

and Examples”, McGraw Hill, New-York, NY, 1971.

R.T. Bﬁutc, "The Binary Decision Machine as Program-
mable Controller”, Euromicro N;wslettcr, Vol. 1, #2,
1976, pp. 16-22.

- ’ . <
E. Cerny, D. Mange, E. Sanchez, "Synthesis of Minimal
Binary Decision Treses", ,IEEE Transactions ,on

Computers, Vol C-28, No. 7, July 1979, pp. 472-482.

P.M. Chirlian, "Digital Circuits with Microprocessor

Applicaiions", Matrix Publishers, Beaverton, OR., 1982

-

,

LDABS3]

[GE&691]

LHE731

(HUSla)

(HUB1b]

(HUB21

M. Davio, J.P. Deschamps, A. Thayse, "Digital Sys£ems
with Algorithm Implementation", John _ Wiley & Sons,
N.Y., 1983.

/ B
C.W. Gear, ,"Computer Drganizatién and Programming”,

McGraw Hill, New York, 19649, pp. 362-348.

H. Hellerman, "Digital " Computer System Prin&iples",

McGraw Hill, New York, 1973, pp. 112-115.

R. Hubson, L.d. Vrocmen, P.J: Znombor-ﬁurﬁfy and T.
Le—Ngoc, "A Hybrid Binary-Dccisjbn/ﬂicroproc-s!or
Programq,bl.dContrullcr“] Proc. of Fourth IASTED Int‘l
Symp., Cairo, September 1981, pp. 109-114.

~

R. Hudson, L.J. Vrpomen, P.J. Zsombor—Murray "Indus—l

\

e

trial Applications of a A Hybrid Binary-Decision/-
Microprocesso} Pragrammqgré Controller"”, Proc. 1IEC & C
’Conf., Toraonto, Oct. 19;1, pp. 116-117.

R. Hudson, P.J. Zsombor—-Murray and L.J. Vroomen,
?Dpcrating System for Hybrid{BD/mP‘Programmable
Cantroller”, Proc. of Twentieth ISMHIInt‘l Symp. on
Mini and Microcomputers, Cambridge, MA., July 1982,

pp. 1-4. ' ‘ .

*

LHUBA4]

C1AB1]

LKAB4]

EKH701

£KyB2]

C(KU83]

‘McGraw-Hill, New-York, 1970

N v

{\‘ . Iy
R. Hudson, L.J. Vroomen, and M. ﬁarasick, “Binary
Decision Program Optimization Algorithms", Proc. of
Twﬁqu;EaFfﬁ Int°1 Symp. on Mini and Microcomputers,

Bari, Italy, June 1984, pp. S51-55.
b

"Computer Controlled Weighing and Batching Installa-

tions", Industrie Automation, Wage und Prozesstechnik

GMBH, Heidelberg, W. Germany, 1981

M. Karasick, "Binary . Decision Tree Reduction",

Technical Report S0OCS-84.16, McGill University, School
of Computer Science, October 1984. 1

)

+

Z. Kohavi, "Switching and Finite Automata Theory",
€

A.C. Kucuk, P.J. Zlombnr—ﬂurray§ and 'L.J. Vroomen,
"Process Control Using a Binary Decision/Microproc—-
essor Hybrid", Proceedings of Twentieth ISHﬁ Int’l

Syhposgum on Mini and 'Microcomputers, Cambridge,

MASS., July 1982.)

A.C. Kucuk, P.J. Zsombor-Murray and L.J. Vroomen, "A

'Binary—Decisiqn Controlled Robotic Balancer", Proc.

CAN/CAM Conference Applied Mechanics, Saskatoon, SK,

May 1983, pp. B855-8356.

.

(LES?1]

\\/[LMBZaJ

a

o

C.Y. Lee, ‘”Repr!slnﬁltiun of Switching Circuits by
Binary-Decision Programs", B-ll’Syqtemt Tech. J., July

1959, pp. 985-999. \\\

I

.

M.H. Levi and R. Hudson, “Binary Ducision—nicrop}oc—

" essor Interface", Memo 82-3, DATAC .Computer Laborato-

[LM82b]

[(LM831

LLN793

tMDB801

(MDB21

'ry, Montreal, April 1982.

M.H. Levi, L.J. Vroomen and P.J. Zsombor—-Murray,
"Modul ar Programmable Controllers using an Intelligent
Reflexive Interface” Proc. of Twentieth ISMM Int°1

Symp. on Mini aqd Microcoﬁput.rs, Cambridge, MA.; July

- AN

1982, pp. B-11.

M.H. ani} LiJ. Vroomen and P.J. ZIsombor-Murray,
"Modular Pragrammable Controllers using an Inftllig-nt
Reflexive Interface”, Int‘l Journal of Mini and Micro-

COmputlr‘l v Vﬂl .’ 5' '1 9 DDC- 1983’ pp - 1 —6.

T. La-Ngoc, P.J. Zsombor—ﬂurfay and L.J. Vroomen, "A
Binary-Decision Approach to Industrial Programmable

Contrdllers”, Proc. of the Int’l Symp. Mci:urumnnt and °

. ' L , .
Control, Grencble, June 1979, pp. 37-61.

"The 584 User Manual®”, Gould Inc. ﬂog{can°biv., 1492.

R.A ﬂhitlhousc, “184/384° MODICON PC Manual", Gould

Inc. Modicon Div., 1982.

tmMoB21

tPAB21

LPE72]

CSH383

(TABG11

[vAB21

N
.-

LVEB21

‘1, %2, pp. 9-2%.

B.M.E. Moret, "Decision Trees and Diagrams", ACM

Computing . Surveys, Vol. 14, No. 4, December 1982, pp.

-

S593-623.

v N N

T. Pavlidis, "Algor:&rs for Graphics and Image Proc-:

essing”, Computer Science Press,' Rockville, MD, 1982,

J.B. Peatman, "The Design of Digital Systems", McGraw-

Hill Co., New-York, NV, 1972.

'

C.E. Shannon, "A Symbolic - Aralysis of i Relay. and

'Switching Circuits", Trans. AIEE, Vol.'S7, 1938, pp.

(
713-723.

A
’

R.L. Tabachnick, P.J. Ziombar—ﬂurr-y, L.J. Vrooman and
T. La-Ngoc, "Sequence Controllers with Staﬁdard Hard-
ware and Custom Firmware", IEEE MICRO, May %‘781, vol.

°

4

C.J. Van Driel,, "éi nary Decision Compiler Algorithms",
Mechani ca; Engi nnlr'-i ng Rin-lrch Laboratories Memo
82-2, McBGill University, Montreal, August 1982.

»

M. Vaga and T.F. Li, "Design of a VLSI Circuit. for the

t

Processor of a Binary-Decision 'Machine", Internal

Report, DATAC Computer Laboratory, Montreal, May 1982.

t

[VEBSI]

{ZM791

M.P. Vaga, "Contact Pressure Measurements With Pres-
surized Force Switches", M. Eng. Thewis, McGiIll

University, Montreal, October 1983.

L
t

P.J. Zsombor-Murray, L.J. Vroomen, T. Le-Ngoc and P.
Holck, "A Binary Decision Based Programmable Control-

ler", Proc. of the Second Int’l Symp. on Mini and

‘Microcomputers, Fort Lauderdale, December 1979, Vol.

1&2M83$J

5’ ”2’ pp. 60‘—'65- -

|
1

A ‘
P.J. Zsombor-Murray, L.J. Vrooman, R. Hudson, T. Le-

Ngoc and P. Holck, "Binary Decision Based Programmable

Controllers - Part 1", 1EEE Micro, Vol. 3, #4, August

. .,1983, pp. &7-83.

{ZMB83b1

i

. (ZMB3c1

P.d. ZsombaF~Mprrayi L.J. Vroomen, R}:Hudsun, T. Le=
Nqbc and P. Holck, "Binary Duci:{nn Based Programmable
Controlleérs - Part 2", IEEE Micro, Yol. 3, #5, October
1983, pp. 16-26.

P.J. Zsombor-Murray, L.J. Vroomen, R. Hudson, T. Le-
Ngoc and P. Holck, "Binary Decision Based Prog?a&mahlo
Controllers - Part 3", IEEE Micro, Vol. 3, #&,
Dcc-mSQr 1983, pp. 24-3%.

A

-

APPENDIX A: THE MC6809 BASED DEVELOPMENT SYSTEM

Tha development system used in thip resaearch project
consists of a MC4809 based SWTPC*+ microcomputer and the
FLEXO9#% disky operating system. A brief description of both
the hardware and the operating system is given in this

appendix:

System's Hardware

-

The SWTPC microcomputer is shown in Fig. A.1. It consists

ot
1. Main system containing & 2 MHz MC4BO9 CPU, 356K of RAM, &K -

®

of EPROM and parallol and smrial intcrfaccs.
2. Dual floppy disk driv-,
3. Operator consocle,
4, Printer. -

~

Th- “interface hardware, dn’ign-d in this project, was
implemented using wire-wrap type prototype cards. . o h

The system’'s mother boa;d contains the system bus;-s to
connect the different modules into one operational uﬁit. The
B56-350 main system’'s bus Nas 7 slots, the secondary SS-30 1/0
bus - 8 ;lot-\ The CPU‘aﬁd RAM cards reside in the SS5-350 bus.
_ Peripheral interfaces are connacted to the S5-30 bus.:
biQ.lop-d prut%typq cards may beo :onncétnd to ;ith-r bus. The
BD parallel int;rfacn card was designed and implemented using

/

GWTPC is a Trademark of Southwast Technical Prods. Corp.

LY

#x FLEX is a Trademark of Technical Systems Cnnsultanﬁ)\{::: .

r°

~ '
o~ R .

-

-~

v

the 95—30 bus. Both busses have gained world recognition and
are employed by several other microcomputers [(AW8B01.
A detailed description of‘the SS5-50 and the SS5-30 busses-
is given below. Each of the busses consists of 3 sub-busses:
1. the data bus,
2. the address bus, and
3. the control bus.
In additiaon power and ground lines are provided.
The pinout of S5-50 bus is given in Table Ail. The DO -
D7 lines f;}m the data bus which carries 8 inverted data bits.
The A0 - A1S lines form the address bus capable of’
addressing 64K dcmo}y'locitions. The 4 User-Defined lines may
be employed to sxtend the address bus to 20-bit addrasses (1
MB of addr;sscd memory)-. \ |
Power linnsuytu all the system's modules are . 7-8V
unrugﬁlntdﬂ. used to generate standard TTL voltage level of
sV, +/-1&V regulated to +/-12V by serial int.r#.cn and

dynamic memories, and common ground linss to be shared by all

modul es.

{ - 8
9 - 24
25,26,27
28,29,30
31,32

33

34

35

. 36
s
) 38
39

40
41
42
43
4% .
45

- > o e o A e G G W S R R WP 46 L AP S G A G e S R G e e T T W e W

The

enabling

ara:

+/-16V
INDEX

_/ Table A-1: The SS5-50 Bus.

control bus

communication

UNR

.

Data Bus (inverted)

Address Bus

Coamon 6round

Power (regulated to 5V on board)

Power (regulated to +/-12V on board)

Module Orientattion

Meaory Ready (strech E - slow dev.)

Busy (R-Mod-W cycle)

Interrupt

Fast Interrupt

Phase 1: H to L = valid addresses

Enable (phase 2) data valid HL - W
LH - R

Valid Memory Address
Read/Write

Reset

Bus Available

-Bus status

Halt processor7, exernal bus control

Bus request)

consists of several control lines

protocols and bus arbitration. These

1. MR - Memory Ready, streches the E phase of the clock up to

10 microsec to allow interfacing to slow devices.

2. BO - Busy, asserted by the mP during Read/Modify/Write .

cycle to deny external access to the Lus.

’

A.5
4

3. IRQG, FIRG - int!rrgpt and fast interrupt.

4. Q@ - phase 1| of the clock, leads E by 90 degrees. High to

Low transition i1indicates a valid deress on the bus.

S. E - phase 2 of the clock, used to validate data - on

falling edge when write and on rising edge when read.

6. VMA - valid memory address.

7. R/N - Read/Write, defines the direction of data between

memory and mP or interface. -

8. BA,BS - Bus Available and Busg Status, indicate normal bus

operation (0,0), interrupt acknowledge (0,1), sync acknow*

‘ledge (1,0), and halt acknowledge (1,1).

9. HALT.- Used by bus deviceg other then the mP to halt the oP

and gain

control over the bds.

10. BR - Bus Request, Similar to Halt but for short term bus

control.

The SS-30 bus is a subset of the SS-50. Its pinout is

given in
additian,
which is

used for

Table A-2. It provides 4 LS address fines only. In
each bus slot contains a dééuged I/0 SEL signal
equivalent to the MS 12 address lines. The bus is

interfacing with system’'s poripﬁerals that do not

require more then 14 dedicated addresses for their operations.

Other bus signals are similar to the S85-50 ones.

c A6
L
BUS PINOUT "SIBNAL FUNCTION
10,11,1,2 RS0-RS3 Register Select lines (A0-A3)
. 3,4 “+/-16V UNR Power
3,6 GND Comson Ground
7 INDEX Module Drientation
8 irRQ Interrupt
9 FIRQ Fast Interrupt
12 -,19 DO-D7 Data Bus (non-i1pverted)
20 E Enable (phase 2) data valid HL - M
_ ,7 LH - R
21 R/W Read/Nrite
22,23 ° 7-8V UNR Power (requlated to 5V)
24 - 28 110-9600 Baud Rate
29 RST Reset .
30 70 SEL 1/0 Selact ‘

.
————————————————————————————————— - P e e - - - e - G o = = - - - =S =P e -

¢

Table A-2: The SS—30 Bus.

System's Software

A brief descgiption of the FLEXO9 disk operating system

and i iccompanying software development tools is given

below.

The FLEXQ09 consists of three main parts:
1. File Managemant System (FMS),
2. D%sk Drivers, and

1

J. Utilities.

FMS handles file storaqge and remaval from disk as waell as
disk space allocation. It- is?’ the 1link betwaen the
microcomputer and the disk drivers which cggtrol the actual
disk hardware. FMS communicates via File Control Blocks (FCB).
The FCB contains file information, e.g., file name, disk
drive, etc. An FCB 15 assigned to a file whenever it is opened
by the operating system for reading ?:<y/iting. FLEXO? allows
for ‘'multiple files to be opened siertﬁnenusly.

The disk drivers are interface routines between FLEX0?9
FMS and the disk hardware to control the floppy disks. They
are'bexngdg@%led by FLEXO9 whenever a disk access is required.

They can be called by user written programs. E.g., the BDO9

operating system calls these drivers when retrieving or saving

BD programs on disk. The drivers’ calling program u-ﬁ\{b.
MC4BO? A and B accumulators and the X index register to pass
information ;uch as FCB address, address on the floppy disk
(indicaﬁgg by track and sector numburs{. The -;;ﬁ disk drivers
ares

1. READ - rcéds a single sector

2. WRITE — writes a single sector

3. VERIFY - verifies that a sector just written has no CRC

arraor

4. SELECT - sele€fts the drive to be accaessed

S. CHECK — checks if¥ drive is ready
A Y

R4

7 AY

A.8 |

-

-

The FLEXO9 utility set allows the most commonly used disk’
operations +to be executed in a single command. When a command
is called, FLEXO9? checks the disk directory, loads the
carresponding program into RAM» memory and passes control to
the grogram. Uppn termination of program execution, control is
returned !D:a FLEXO'?.. Commonly used utilitiea are:

1. DIR - lists the directory of all files on disk
2. COPY - copys a file from aone disk to another
3. SAVE - saves content of memory on disk

4. DELETE - deletes a file from disk

5. EDIT - editd a disk fihlol

Other anv.lopmnj: tools are the Assembler and ;:hc
Debugger. The FLEX09 68C9 Mnemonic Assembler is directly
‘ilntcrfacnd to the FLEXOY disk operating system., It accnp'ts-
Motorola 6809 mnemonics. The source language code is ?to_rod as
a text file on disk. The Assembler generates cbject code from
the source program in 2 passes. The object code is saved on
disk separately and can be loaded into memory and lpmcut‘-d.

FLEX09 offers an 3:.1 lent debugging facility called
DEBUG. DEBUG enables the exacution .0of a program in a stepwise

” O *
manner tb detect errors. All CPU registers are displayed at

each -step allowing the user to monitor and verify the correct

o

register contents. . oL

In. addition to the/ abov'-'k operating system, the.
microconbﬁt-r emplays an EPROM resident monitor called V-BUG.
V-BUG contains a boot-strap routine to initiate FLEXO9 f.r"on
disk. upon power—up and it enables low fevel control of, the

system's hardware such as:

*

Yo

13

«\

1. View/Modi fy RAM contents,
2. View/Modify CPU registers,
3. Loading and Executing actual object code, and

4. Some debugging tools.

All the above tools were extensively used in all phases

of the BD hardwars and sof tware development.

APPENDIX B: APPLICATION SOFTWARE LI S'l" INGS

This appendix includes 1listings of several IRI control
routines for the batch weighing, section B.1, and *Ar a
single—sengor version of the variable r.{er('lmﬂ comparator
matrix scanner, section B.2.)

The following batch weighing routines are includeds

1. Monitoring process parameters: Main line air-pressure.

2, Monitoring m\in/max lavel indicators of 4 ingredient bins.

3. w-iqht cycle &ontrnl: nonxtorxng material weighing in
Coarse and Fine modes,

{
Scale feeding and discharge.

The following IR; scanning routines are included:
1. IRI -/canning of 4-line sectipw®of a 16x16 sensor matrix,.

2. Banl/nu tching routine to be us.d by the lcanninq

.,._A-Pb/ori theam.

E}

Input and output vari-lblls are assigned at the beginning

of the routines. e
M

\

—

\

'!Ql!!liili}llf’il’&li‘liilﬁ’illi&ii*l!ll*l*i*liiiilii*llil!i{il*

*

IRI #3: Process Monitoring and Control of a Weighing Cycle #

*

'l'i‘ﬁilll}l!§.I§§§{llliili'i*lii*i'}&iiil!I*G*Giiiili!*{i’l‘li*l

;

Input Bank #0:

- - - . - - -

' input Variablcs assignments: ; \

internal testing i1nputs (line 0 to line 3)

Y
general pracess paraseters (line 4 to line 1b)

IRP EGQU INC4>

'
'
)
t
A
'
gsv
'
C
t
'

FIN

EQL INCKSD

§ EQU INC9>

EQU IN<C10?

CCOPY EQU INC1S®)

. FCO
'

!
!
!
!
LCt

)

- LEC2

L3
LC
LS
LCb

PV EQU. INC1S)

Input Bank #1

EQU INCO>
EQU INCI1D
EQU INC2)
EQU INC3D
ERQU INCA)
EQU INCS>
EQU INCSD
JEQU INCKTD>

1 EQU INCB>
2 EQU INC?D

COP3 EQU INC1OY

4 BEQU INCLDD
5 EQU INC12)°

COP6 EQU INCLIZD
COP7 EUU INCIM)

1

8 EQU INKID

‘ main air pressure jine indicator

' Stand Sti1ll Validation from aP :via PIA

' internal switch - set by the IRI output bank 003, used
for deteraining the return address at the end of the

comparison routine when used in coarse waighing sode.
!%3an| as CORS - when usad in fine weighing aode

' coarse cut-off-point is valid (from aP via P1A) -
' fine cut-off-point }s valid (fros aP via PIA)

B LS bits = 8-bit input of weighscale load cell A/D

N

|V

.8 MS bits = 8-bit cut off point value froe PIA .

b

Input Bank #2: feeder positions (i-on, 0-off)

- - - - - -

FDC21 EQU JNCO) . !
!- bin 21 feeder fine actual position

FOF21 EQU IN<C1>
FDC22 EQU INC2)

- e S R - - - - - -

bin Z1 fesder coarse actual pasition .

bin 22 feader coarse actual pogition

o

e " . .
B.3 -

'FDF22 EQU INC(3)
FDC23 EQU INCA)
FOF23 EQU INCS
_FDC24 EQU INC&)

' bin 22 feeder fine actual position v

' binv23 feeder coarse actual position

' bin 23 feeder fine actual position

! .bin 24 fesder coarse actual position
FDF24 EQU INC7> ' bin 24 feeder fine actual position
FIC21 EQU INCBY ' ‘bin 21 fesder coarse image' position
FIF21 EQU INC9> ' bin 21 feader fine isage position
FIC22 EQU INC10> ' bin 22 feeder coarsecimage position
FIF22 EQU INCI1Y ' bin 22 feeder fine isage position
FIC23 EQU IN<C12> ' bin 23 feeder coarse 1eage position
FIF23 EQU INC13> ' bin 23 feeder fine " image position
FIC24 EQU INCIA> ' bin 24 feader coarse 1mage position
FIF24 EQU INC13> ' bin 24 feeder fine ismage position
L}

! Inpyt Bank #3: lcénl indicators (l-on, 0-0{#)

bin 21 miniaum level 1ndicator
bin 21 maximum level indicator
MIN22 EQU IN<2) bin 22 miniaus level indicator .
MAX22 EQU INCD bin 22 maxisum level indicator

MIN21 EQU IN<O>
]
[
!
MIN23 EQU IN<C4> ¢ bin 23 minisus level indicator
]
]
(|
1

MAX21 EQU INCIDD

MAX23 EQU INCH bin 23 saxisum level indicator

MIN24 EQU INC6) bin 24 minisum level indicator

MAX24 EQU INCT) bin 24 maxisua level indicator .o

WDCA1 EQUY IN<B) Weigh~Scale #1 discharge gate actual position
! ‘ . . (1-open, O-closed)
MIXAL EQU, INC8> ! Mixer actual state (1-on, 0-off)

MIXDC EQU INCB8> ! Mixer discharge gate actual position (1-open, “-closed)
! 12- not used S ’ - ’

WDCI! EQU INCB)> ' MWepgh-Scale #1 discharge gate image position

! ’ {1-open, O0-~closed)

MIXI! EQU INC8)> ! Mixer image state (1-on, .0-0ff) '

WDCI! EQU IN<C8> ' HMixer discharge gate image position (i1-open, O-closed)

' 16~ not used . . e
] ‘ . .

! Qutput Varaiables assignments:

o Duiput Bank #1:
! cqmemccncaneaa - '
L a1l feeder actuators are tied to thoir‘corrcgﬁbndinq 18age tnput lires .
1 QUCO) bin 21 feeder coarse actuator (1-on, O-off) - FDC2]
1 QU<C1Y bin 21 feeder fine actuator (1-on, O-off) - FDF21
1'0U<2> bin 22 fesder coarse actuator (1-on, O-off) - FDC22
| 0UC3> bin 22 feeder fine actuator (1-on, O-off) - FDF22
' QUC4> bin 23 feeder coarse actuator (l-on, 0-off) - FDC23
' DUCS)> bin 23 feeder fine actuator (1-on, 0-off) - FDF23
P 0UCS> bin 24gfeeder coarse actuator {(l-on, 0-aoff) - FDC24
' QUC7> bin 24 feeder fine actuator (1-on, O-off) - FDF24
1 QUC8> bin 21 ainisums level indicator warning (1-on, O-off) - MLI12i
' DUC9Y bin 21 maximus level indicator warning (1-on, O-off) WLI721
' QUC10> bin 22 minimue level indicator warning (i1-on, O-off) - MLI122
! QUCIL) bin 22 maximua leval indicator warning (i-on, 0-off) Xt12122
' - -

w——

' ﬁutpdt Bank #2

i
1
i
i
1
i
!
h QUKD
t
1
]
1
'
'

bin 21 coarse fesder

bing 2! fine

teeder

bin 22 coarse feeder

bin 22 fine

feeder

bin 23 coarse fesder

bin 23 fine

{lldcr'

bin 24 coarse fesder

bin 24 fine -

teadar

bin 23 minimun level
bin 23 maxi1maum level

<10> bin 24 minimum level
_QUCLL) bin 24 maximus level

t Output Bank #3

[aocmwae
.

QU<
0u¢2>
U3
Ques>
oS
au<s>

ou¢7> - C "
- connected to input bank 0, bit <9> (see bank O assignments)
- copnected. to input bank 0, bit <100

Qu<¢a>

B.4 |

alare condition (1-on, 0-off) - FRCI21
alare condition (1-on, 0-ofé) - FDFI21
alare condition (1-an, O-off) - FDCI22
alara condition f(l-an, 0-off) - FOFZ22
ilarw condition (t-on, 0-off) - FDCI23
alarms condition (1-on, O-off) ~ FDF123
alara condition (1-on, O0-off) - FDC124
alirs condition (1-on, O-o#f) - FDF124
indicator warning (1-om, O-off) - MLIZ23
indicator warning (i-on, O-off) - XLII23.
indicator warning (i-on, O-off) - MLI124

indi1cator “warning (l-on, O-off) - XLI1Z24 -

weigh scale discharge gate actuatar (1-on, 0-off) - WDCAL
maxer discharge gate actuator (1-on, O-off) - MXDAL
weigh scale discharge gate alara condition (1-on, ‘0-off) - WDC11

mixer discharge gate alars condition (1-on, O-off) - MIXDI

{see bank 0 assignasnts)

0Us10> - conpnected to aP PIA t6 indicate coarss weighing is cospleted

OU<il) - connected to aP PlA

’

,

tao indicate fine weighing is comspleted

sagasannenndns ond of /0 assigneants #EFERREEREIAEERNERIRNRRNENESS

Monitoring Process Parameters:

|
1
|
'
k]
'
!
!
! oW
1
)
1
1
'
)
1
1

0P8 002

e e a————— e mmeemm————

MONIT1 1BS 000
0BS 000
INO AIRP 1 LEVEL
oPL 001 .
INT 0001 1END

]

LEVEL IBS 001 .

: . 0BS 001 -

INt MIN21 eXL21
DPS 001

L2t INO MAX21/ 3ML22
oPS 002

ML22 INT MIN22Z sXL22

’ 0Ps 003 .

XL22 INO HAX22 - sML23
ORS .004

ML23 0BS 002
INE-MIN23 5XL23

. 0PS 001
xL21 INO MAXK23 :ML24 °

3

- -

tcheck air pressure sain line
‘pressure is low; annunciate operator
! issue interrupt level 41 to P

! minisus level indicators sust be oN
' annunciate operator and continue

-+ saxisus level dindicators aust be OFF

!
A\
{
8

. L
! switch output bank - L

b

ML22

xL2z .

FDPOS

END2
1

BEGINW

" - CORCOP

COARSE
FINCOP

FINE

" §STILL

SsTiLz2
)

éNDZ
! N

IN

. OP§

INO
0pP$

185
0BS
INO
OPL

* BRA

EQOP

‘"t Weighing

1BS
INO
0BS

OPL

0bs
]

BRA

0BS
ORL
IBS
INO
08s
oPS

BRA

- 0BS

oPL
188
ING
08S
1§
OPL

INO

EOP

MIN24
003
MAX24
004

002 .
002
FDC21
00!

s XL24 .

1 FDPOS

sFF21°

" 1 BEGINMW
<

Cycle Control:

t - - - - - ok - --

000
CCOPV .
001
003
003 '
001

cupcor

001
002
000
FCOPY
003
002

CMPCOP
001
000
000
gV
003
000
001 -
S5V

v

+

s CORCOP

s FINCOP

1 SSTILL

:SSTIL2

B.S

' monitor ingredient feeder positions
b

“ ' EQP jump addrgss i1s set by the Operating
Systea to the beginning of next routine

i

(weighing ingredient from bin #2010 -

"t wait for valid coarse cut-off-point
! actuate both bin #21 coarse & fidc/f@cdcrs

set a return snitch;‘bit {8> of output,
bank 3 is tied to bat <9) -of input bank 0

serving as a “latech® to semorize the return
address to COARSE s
! jump to comparison routine

)

! coarse C.G6.p. has been reached
! close coarse feeder, fine feeder stays open
S

! wait for valid fine cut-off-point

'Mgiot a return switchj bit <9) of output
bank 3 is tied to bit (10> of input bank 0
serving as a "latch™ to memorize the peturn
address to FINE
! jump to comparison routine
' fine c.0:p. has been reached.
! close fine feeder .

1 wait for stand-sti1ll validation

! open discharge-.gate
"wait for stand-still validation
(aP verifies scale espty and records tare
weight)

! EOP juep address 1s set by the Operating
System to the beginning of next routine

6

t IRl - 8-~bit Comparison Routine

' - - - - - -
b N

"START!

" BITH

LCos

BIT7

LCo7

BITS

LCOs

BITS

LCoS
]

BIT4

LCo4 .

BIT3

LCo3

BIT2

-LC02
L}

18§
GBS

INL
INO

.BRA

IND

INIL
INO
BRA

INO
N}
INO
BRA
1NO
INt
INO
BRA
INO
INI
JINO
BRA
INO
INI
INO
BRA
INO
INt

INO
BRA

INO

001

tore
Lcs

Lc8

cap7
LC7

LC7

COPb
LCé

LCé

coPs
LCcS

.

LCS
cop4
Lc4

LCS

caep3
LC3 ¢

LC3

cor2
LC2

LC2

sL.CO8
:QIT7
1 CMPEND
18178
t1LCO7
1BITé
:CMPEND
zBlT7
1LCO6
1BITS
1CMPEND
1BITé
1LCOS
18174
tCMPEND

1BITS

" 1LCO4

1BIT3
t LMPEND

tBITA
:LCO3
tBIT2
t CMPEND
1BITI
1LCO2
tBIT)
1 CMPEND
1BIT2

¥

select 1/0 banks for comparison routine

' Compare the current weight with the coarse c.o.p.

start with MS bit

both bits are O - proceed to next bit
- terminate

weight 18 greater than c.o0.p.

comparison

weight is lesser than c.o.p. - restart froms

this b1t

both bits are '0 - proceed to next bit
weight is greater than c. Q.ps - tlratnate

caaparison

weight .is lesser than c.o0.p. - restart from

this bit

both bits are 0 ~ proceed to next bt
neighit is greater than c.o.p. - terainate

coaparison

»

weight is lesser than c.0.p. - rcstart froa

this bit,

both bits are 0 - procesd to next bit
neight is greater than c.o.p. - terainite

comparison

weight is lesser than c.0.p.

this bt

both bits are 0 - procesd to next bit
weight is greater than c.0.p. - tnrnxnatl

comparison

i

L]

S

- restart from

weight is lesser than c.o.p., - restart fros

this bit

both bits are 0 - pracesd to next bit
weight is greater than c.o.p. - tersinite

comparison

weight is lesser than c.o. P - restart froe

this bit

bath ths are 0 - procesd to next bit
d ucxght is greater thin c.o.p. - terainate

comparison

°

s

Ay

weight is lesser than c.o.p. - rc:tart fros

this bit

1

.

BIT1t

LCot
1
BITO

[]

LLoo
'l

1

CHPEND

FNDCHP

v Ve o e ocwm

INt
INO
BRA

IN1
INO
BRA

INO

IBS
0BS
INO
0Ps

BRA

INO

0Ps

corl
1C1

COPoO
LCo

LCO

000

003
COR
004

FIN
008

BRA -

INT
EOP

004

B.7

tLCOY i
:+BITO ' both bits are 0 - proceed to next bit
s CMPENRD ! n,}ght 1s greater than c.o.p. - terminate
gomparison , .
sBITY !-weight 15 lesser than c.o.p. - restart froms
_ this bit
:1LCOO v]
s CMPEND ! both bits are ¢ - termrnate comparison
sCMPEND . ' weight 1s greater than c.o.p. - tersinate
. comparison
sBITO ' weight 1s lesser than c.o0.p. - restart fros
this b1t L
' comparison coapleted check for return '
addraess
s FNOD)
) ' 1nfora aP Coarse mode 1s cospleted
a aP send f1ne c.o0.p.
s COARSE '
s ENDCHP .
-V infors.aP Fine sode is coapleted
aP waits for stand-still, record actual
. weight and validate stand-still (via PIA to
- 88V input) ¥
tFINE -)
t EOP " ! ERROR} no return address’)
b
N L4
\ »

'lli!Gllliil’ll*lf!}§!§G§§§iiiillilillbiilliiiﬁbiii!ll'&lllliliill

IR1 #l: Pre-processing data detected from 4 rows af 16 sensar
each 1n a 16x16 variable reference sensor matrix -
single sensor version

& W e W

Y S R Y X R R R XX IR XIS TSR STTS RS ARSI RRSRERRA S SRS R S 2

- . . e = = e -

Input Variables assigneents:

Input Banks 0 to 71

- - -

t

' 0

! Each bank: 8 LS bits = 8 matrix sensors

! i 8 M5 bits = 8 correspanding LIR bits (see: Fi1g. 4.8, page 6.24)
' /f Sensors = Bnn ’

' LIR bits = Ann
]

1]

4

]

row #1 - igput banks 0 and 1
row #2 ~ input banks 2 and 3
row 83 - input banks 4 and 3
row #4 - input banks 6 and 7
' .
BO EQU INCOD !

Bl EQU INCID

B2 EQU IN(2> \

B3 EQU INC3)

B4 EQU INC4)>

BS EQU INKS)

B& EQU INCO&)

B? EQU INC7>)

B9 EQU INCO> . . k
B9 EQU INCI1) ’

B10 EQU INCK2)

Bl EQU INCD

B12 EQU INCA) ')

B13 EQU INCS)

B14 EQU INCH)

B1S EQU INCT) " @
]

A0 -EQU INCB) .

Al EQU IN9)

A2 EQU!INCIOD

A3 EQU INCID)

A4 EQU INCID)

AS EQU INCIZ) R .

A6-EQU INC1W®)
A7 EQU INKLS)
AB EQU IN
A9 EQU INC®) ,
A10 EQU INC10) N
Al1 EQU INCLD) .

A12 EQU INC12>

AL3 EQU INCID)

Al4 EQU INCLIA)

A1S €0V INKIS)

s ®

.-
B.9
' Input Bank #9:
| eeacoccccaccce=ca
LINEO EQU INCO)
LINE1 EQU INCI> ‘ —_
LINE2 EQU INC2) C
LINES EQU INCID :
i
r
LGMSSW EQU INC®> ' LS or MS switch from output bank 1
'
1
1
' Input Bank #10:
| wccmecanw— —-—-—
' 1nternal testing inputs (line O to line 3)
J -~
' general process parameters (line 4 to line 14)
]
!
]
' Qutput Variables assignasnts:
! memcwe= L e e e e T S
i
! Qutput Bank #0
| mmm e mwwwwoew- -
'ouK2: 1D ' line address .
' 0U<Cl1L:8) ' Sensor address i1n line (2:1)>
' .
; e S

Output Bank #1

[, B H

1 0U 'switch to 1ndicate whether the MS 8 sensors were scanned (on)
! or the LS5 8 sensors were scanned ggif)

] t

Tensssnsasnsass ond of 1/0 assignments t’llliiiiiiliiii!li'!!l!lli*ii

! .

' IR] scanner main routine

START

]
'

STARTI

LIN]
LINZ2

LIN3

1

]

)

t
STACHP
)

ABL4

ABL3

 ABI2

0BS
APL
l

000
000

! Select line O

start scanning algorithe

IBS

- 0BS

INT

INO
oPL
1BS
BRA
INO
OPL
18§
BRA.
INO:
oPL
18§
BRA
1IN0
0PL
188
BRA

EOP!

when this routine 1s
1n output bank O and

9
0

0002

LINEO
$000

0
STACHP
LINEIL
$001

2)
STACHP
LINE2
$002

4
STACHP
LINE3
$003

6 .
STACMP

INt ALS

INO BIS
OPS $F

INL Al4
1IN0 B1%
OPS $E

INt A13
1IN0 B13
OPS " $D

IN A12
INO B12

sLINO

:EOPI

s LING
«LIN2
t LIN3

tLING

Line cosparison routine:

:ABl4

:ABl4
¢ NXTLN
tAB13
tAB13
s NITLN
:AB12
tAB12
s NXTLN
tABLL .
1AB1Y

! Xnterrupt aP and jump to EOP!
aP will resume operation after
the registration of #ensor address
and variabhle reference value.

! select ltne O
! select line |
. 4@'

! salect 1ine 2

! select lane 3

called, line nusber 1s assigned
first line tnput ‘bank 1s selected

' test LIR bit, goto next bit 1f transition
had already occured . -

' bit 15 - report transition detected
¢ é

' bit 14 - report transition detected -

- -
t bit 13 - report transition detected

i

AB11
AB10
ABY

ABB

BS1

LSC;P
ABS
ABS
AB4
ABY .
AB2
aBl

ABO

BS2

oP% $C

IN1
ING
oPs
IN1
INO
oPS
IN]
INO
0PS
IN1
INO
OPS

0BS
aps
BRA

INY
1NO
oPS
IN}
INO
OPS
INI
INO
oPS§
INt
INO
gPs
INI
INO
oPS
INI
INO
OPS
N
INO
oPs
IN
INO
oP§

0BS
OPS

BRA

Al
B11
B
A10
B10
$a
A9
BY
$9
Y]
B8
$8

001
$01
BANKSN

A7
B7
$7
Ab
Bé
$6
A3
B3
$5
A4
B4
$4
A3
B3
$3
A2
B2
$2
At
B1
$1
A0
BO
$0

1

00

P

s NXTLN
tAB1O
:ABLO
s NXTLN
:+ ABY

: ABY

s NXTLN
: ABB

s+ ABB

s NXTLN
:+ BSI

: BS1

¢t NXTLN

s ABS
1 ABS
s NXTLN
s ABS
: ABS
s NXTLN
1 AB4
1 ABA
s NXTLN
3 AB3
: ABJ
¢t NXTLN
1 AB2
s AB2
tNXTLN

s NXTLN
: B§2
: B§2

s NXTLN

t BANKSHW

B.11

bit

bit

bit

bit

bit

12 - report transition detected

11 - report transaition detected

10 - report transitton detected

9 - report transition detected

‘8 - report transition detected

set switch to 1ndicate MS B sensors scanned
branch to bank switch routine

bit

b1t

bit

bit

bit

bit

it

bit

turn

7 - report trangition detected
4

7

/
6 - report transition detected

5 - report transition detected

4

4 - report transition detected

report transition d;tected

(%]
i~

.

2 - report transition detected
{ - report transition detected
Q - report transition detected

2 £

off the MS/LS switch \

ot

IS

' Bank switch

BANKSW

LLINO

LLLINO

LLIND

LLLINI

LLIN2

LLLIN2

LLIN3

LLLIN3

routine

] @ emememcammae - e-w-o---
‘IBS 9
08S 1
INO LINEO sLLINI
INO LSMSSW :LLLINI
0PS 0
185 1 s LSTWP——
0PS 1
1BS 0 :STACHP
INO LINEO :LLIN2
INO LSMSSH sLLLINZ
0PS 0
1BS 1 : LSCMP
oPs 1
.1BS 0 1STACHP
INO LINEO tLLIN3
INO LSMSSW sLLLIN3
OPS 0
IBS 1 1 LSCHP
0PS 1
1BS © :STACMP
INO LINEO tLLINO
INO LSMSSW :LLLINO
apPs 0 t
8BS 1 1LSCHP
0PS 1
1BS 0 : STACHP

B.1

2

is 1t lipe O

ts tt NS B sensors, tf not line | 1s
turn-off LM/MS switch

branch to scan LS B sensors of line O\ \
turn-on LS/MS switch

branch to scan MS 8 sensors of line O

1s 1t line ! : .

15 it MS B sensors, 1f not line 2 1s next
turn-ofé LM/MS switch

branch to scanLS 8 ¥easars of line |

turn-on LS/MS switch

brznch to scan MS B sensors of l}ne {

1

1 it line 2 i’

is it M§ 8 sensors, 1f not line 3 13 next
turn-off LN switch

branch to scan LS B sensors of line 2
turn-on LS/MS switch

branch to scan M5 8 sensors of line 2

18 it line 3

is 1t MS B sensors, if not line 0 1s next
turn-off LM/NS switch

branch to scan LS 8 sensors of line 3

turn-on LS/MS switth 4
branch to scan MS B sensors %f line 3
A,
- J
13
fo .

-

The following special BNF symbols are used: .

APPENDIX C: BNF, ISP

Both BNF (Backus Normal Form) and ISP (Instruction Set
Processor) are languages'uscd to describe computer operatfons.
They are used within the body of this report to describé the

.| .
operations of the BD ahtdqata. The BNF defines source language

PR .
syntax while the ISP describes computer hardware organization

v 3

interrelated to 1ts operations.

C.1 The Backus Normal Form Language
/

TL- BN% is a metalanguage used té;dgscribé the grammar
and syntax of another language. It was developed back in {?59
to desGribe the syntax of ALGOL &0 [BAS9). Within the family
of "context free" Janquagés it is the most commonly used
[6E69,HE731. FORTRAN 77 for example has been entirely defined
using an exterided version of the BNF lfnguagn. The BNF 18 used
in this uorﬁ to define thé correct gyntax of the BD assembler
language. .

The BNF language consists of a set of special symbols and

a number of definition rules. - Y

b I 4

1

1. 3¢= implies "1s8 defined as"”

2. ; 'implxes " or else

.

L
3. ¢ > delimts the string or name of the defined

parameter
. T
Example: <DIGIT> 3= 1121314!......9:0

CI 2

which implies that the word DIGIT 1s de{iﬁed as ei1ther one of

: the 10 digits.’

Newly defined words or symbols can be used 1in subsequent
- deflnxfﬁ\\rx\ The word DIGIT, for 1nstanc¢, may be used later

1n theAﬂcfinis)on of other words containing several digits.

v &

The BNF definition rules are:

1. New woards or symbols may be defined using the BNF special

symbols and/or pr-vio&sly defined words or symbols.

2. Words or symbols that follow 1n Succession in any

(combination imply concatenation, i.e. namel "and" name2
etc.
L , /’\
3. Concatenatioh preceseds "br" operation .)

f
. ’

4. The syntax equation 1s written in the left to right order.

»

v

A ;ource language is defined by first defining all p
primitive symbols. The syntax definition of an up to 6~
character word, commonly used to denote program parameter'name
in many high level languages, 1s used as a simple example. A
‘earameter name ‘as such may he constructjg from any cambination
of alphabetic charachters and digits.~First, the primitives'
LETTER and DIGIT are defined. These are used to define the
alphanumeric cha(acter- LETDIG agp intermediate subnames.

’

Finaly, the paramter NAME syntax is given based on the

previously ‘defined subhames primitives: #

<DIBIT> t3= 1121314).......910
<LETTER> 132 AIBICID eceencanarenaeaaXlViZ

<LETDIG> 11= <DIGIT>!I<LETTER> o

<SUBNAMES> 1:= <LETDIG><LETDIG>

<SUBNAMEL> :1= <LETDIG><LETDIG>(LETDIG> . _ -
<NAME > 1e= <Cé?fsnyrttsvvene<L;tnlszigg§1155$<susuanes>:

—— o
it e, a
» -

<LETTER><(SUBNAMEL > | <LETTER>{SUBNAMES >< SUBNAMES > !

<LETTER><SUBNAMES)<S?BNAMEL>

e . . N
" EEERN

Notice that thae defined syntax for the ;:3aﬁe€;r name

NAME : ’ .

1. requires alphabetic letter as the first character
2. allows uppercase letters only

. 3. allows any iaegth from 1 to 6 characknra.

v

—-——

Dualifiers,'\spchial symbols and sentence syntax are

defined in similar way. Tha BNF syntax definitions are part of

the high level source program compiler. Proééam logic
éorrcctnesg cannot be deafined as s;lt.ma?ically as program
syntax unless the language is built to a specific 1imited
application. Thcr.@nre‘ general purpose Q1qh level linguagc
compiléfs can only detect grammatical syntax errors in source
code uhii- detecting, program laqic'error: is a. task left to

the programmer.

C.2 The Instruction Set Processor

- '

]

‘Similar to the BNF which is i1ndependent of the language
whose\syntax and grammar it definess the ISP is 1ndlp-ndqat of
the computer architecture who}a ergan!;ation and opgriéiona it
dascribes. The ISP [BN711, is a metalanguage con:ist1n§'043
declarations; '

There ;&e two main classes of declarations:
l.kbecl;ratian of hardware architecture
o 2. Declaration of processor actioas or oparations.
Described by . tﬁ.‘ declarations are: memory organization,
processor ragisters, data types, data opqyations; processor
instructions. '
Each ISP declaration, describing a part-.of the computer
hardware, consists of:
1. The full part nane,
2. An assigned abbreviated name, and

3. A functional |description (e.g. part size, numbering
Fi

i.qunnc.).

" 715F special symbols ares

{

1. " \' " gseparatas the full name from its ddclarl&

abbreviation, “ o

2. " 1= " indicates content assignm;nt, i.e., the content of j;S
part A is assigned to part B.

3. " = > " indicates action sequenca. \

4, "< > and "{ 1" these brackets contgin information about

-
’
~

C.& |
\ \

szu'ana ﬁhmbering schemes of ﬁ;mory arrays’a&d

‘registers.

w,ow

action.

. Examplé #1:

v

~

indicat-s\én assignment which is a result of an

. !

A declaration describing the BD program memory is:

Instruction memory \ MpL25%5:01<15:10)

Meaning: 1.

2.

3-

Example #23

)

Instruction Addrass \ IA<710> 3= PC<710>

.- —~

Meaning: 1.,

2.

Mp is the abbreviation assigned to describe the
instruction memory.. '
The memory has c.lll.numb-rqd‘from 0 to 2353.
Each memory cell is lé—bit‘lang. The bits are
numbered from O to 15.
&

The assignment of the Program Counter contht to

the instruction address is declared as follows:

- N - - -
- -~ - 4w - 4

AP—

'IA is the abbreviation assigned to the
instruction address. .-
PC is the program counter register (assignmant of

&

abbreviation should have been done iﬁ previous
declaration) ‘

énth IA and PC are B-bit in size, bits are
numbered from ¢ to 7.

The content of PC is addigned to 1A.

Example #3: The action implied by a certain operation code 1in

-

the processor 1anruction may be declarged as

followsi : .

~

IR1S> = 0 =3 X <~ IVKIR<13:8>>
(IRC14> @ X) = 0. => PC <~ MpLIR<(7:0>]
(IR<14> @ X) = 1 => PC <~ PC + 1

M 1]
Meaning: 1. If bit 18 of the instruction word is 0, then the

‘ input variableﬁlv whose address is indicated by
g bits 8 to 13 of the instruction uérd IR is
i assigned to X representing the selected input.
2. The second action dnp.an on the result of XORing
bit 14 of the IR with the selected input X. A O
result causes the lower B bits of the IR to be

assignad to the PC. A 1 rasult causes the PC to be

incrensnted by 1.

s
'

- Thq‘ ISP description of a éﬁnvcntinnai computer is very
complex and may require several hundr;d ‘'declarations. An
indication as to the simplicity of the BD processor is ihc fact

that it can be described by less than 20 declarations.

