
FPGA Emulation of Quantum Circuits

Ahmed Usman Khalid

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

October 2005

A thesis submitted to McGill University in partial fulfilment of the requirements of the
degree of Master of Engineering.

© 2005 Ahmed U sman Khalid

2005/10/31

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24976-5
Our file Notre référence
ISBN: 978-0-494-24976-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i

Abstract

In recent years, new and novel forms of computation employing different natural phenom

ena such as the spin of atoms or the orientation of protein molecules have been proposed

and are in the very initial stages of development. One of the most promising of these

new computation techniques is quantum computing that employs various physical effects

observed at the quantum level to provide significant improvement in certain computation

tasks such as data search and factorization. An assortment of software-based simulators of

quantum comput ers have been developed recently to assist in the development of this new

computation process. However, efficiently simulating quantum algorithms at the software

level is quite challenging since the algorithms have exponential run-times and memory

requirements. Furthermore, the sequential nature of software-based computation makes

simulating the parallel nature of quantum computation exceedingly difficult. In this the

sis, the first hardware-based quantum algorithm emulation technique is presented. The

emulator uses FPGA technology to model quantum circuits. Parallel computation avail

able at the hardware level allows considerable speed-up as compared to the state-of-the-art

software simulators as weIl as provides a greater insight into precision requirements for

simulating quantum circuits.

ii

Résumé

Ces dernières annes, de nouvelles techniques innovatrices de computation utilisant divers

types de phénomènes naturels tels que la rotation des atomes ou l'orientation des molécules

de protéine dans l'espace ont été proposées et sont présentement au stade initial de leur

développement. Une technique de computation des plus prometteuses est la computation

quantique employant différents effets physiques observés au niveau quantique. Cette tech

nique permet une amélioration significative dans certaines tâches de computation telles

que la recherche d'information et la factorisation. Un assortiment de logiciels de simulation

d'ordinateur quantique ont récemment été développés pour aider au développement de ce

nouveau processus de computation. Cependant, simuler efficacement des algorithmes quan

tiques au niveau logiciel est une tâche complexe, car ces algorithmes ncessitent une durée

d'exécution et des ressources de mémoire exponentielles. De plus, la nature séquentielle de

computation sur logiciel rend la simulation de la nature parallèle de la computation quan

tique extrêmement difficile. Dans cette thèse, le premier émulateur d'algorithme quantique

sur hardware est présenté. L'émulateur emploie la technologie FPGA pour modeler des

circuits quantiques. La computation parallèle réalisable au niveau hardware permet une

accélération considérable du temps d'exécution par rapport aux simulateurs' sur logiciels

actuels les plus puissants. Également, la technique de simulation sur hardware présente

procure plus d'information concernant la précision requise pour simuler des circuits quan

tiques.

iii

Acknowledgments

First and foremost, l would like to thank my supervisors Prof. Zeljko Zilic and Prof.

Katarzyna Radecka for giving me this opportunity to work with them. This thesis would

not have happened if not for their guidance and patience. l would also like to thank the

Microelectronics Strategic Alliance of Quebec (ReSMIQ) for their financial support for my

research work.

l am also indebted to Jean-Sebastien Chenard for his friendship and guidance through

out my research. He provided invaluable counsel with the synthesis issues of the emulator

as weIl as in the design of the seriaI communication interface to the PC. l would like to

thank Dr. Dmitri Maslov for reviewing the thesis and his comments provided considerable

polish to the final draft. l would also like to thank my friends and colleagues in the "Circle

of Truth": Sadok Aouini, Simon Hong, Carmen Au, Karthik Sundaresan, Cristian Radita,

Dani Tannir and Tarek AIHajj. Their friendship and company made the entire graduate

school experience memorable. l would also like to thank Sadok and Cristian for the French

translation of the abstracto

Finally, l would like to thank my family. My parents and my brother have been my

support throughout my life. However, never have l felt and appreciated their presence more

than during my time as a graduate student. Thank yOU.

IV

Contents

1 Introduction 1

1.1 Quantum Computation vs. Classical Computation . 2

1.2 Quantum Circuit Simulation vs. Emulation 3
1.2.1 Motivation for Emulation of Quantum Circuits. 3

1.3 Thesis Contribution. 4
1.4 Thesis Organization . 4

~-,
~

2 Background 6

2.1 Quantum Bits . 6
2.2 Entanglement 9

2.3 Quantum Gates 10

2.3.1 Single Input Quantum Gates . 10
2.3.2 Multiple Input Quantum Gates 12

2.4 Quantum Measurement 13

2.5 Quantum Algorithms as Quantum Circuits 14
2.5.1 Quantum Fourier Transform . . 14
2.5.2 Grover's Search Algorithm 15

2.6 Software-based Simulation Techniques 16
2.6.1 QuCalc: Mathematica Simulation Library 16
2.6.2 QuIDDPro: An ADD based Simulation System 17

2.6.3 HDL Based Simulation of Quantum Circuits 20

3 FPGA Emulator Design 22

3.1 Challenges in Emulating Quantum Circuits . 22
.r--,

3.2 Emulation Overview 23

Contents

3.3 Data primitives

3.3.1 Emulation of the expanded state space

3.4 Expander Circuits

3.4.1 Sequential State Space Expansion

3.4.2 GraduaI State Space Expansion

3.5 Quantum Gates

3.5.1 Optimizing Quantum Gates . .

3.6 Error Analysis and Quantum Noise Modeling

3.6.1 Single Qubit Error

3.6.2 Expanded State Space Error . . .

3.6.3 GraduaI Word length Expansion.

4 Implementation Details and Results

4.1 Software-based Gate Generator . . .

4.2 Miscellaneous Architecture Components

4.3 Emulator Mapping Results

4.3.1 Synthesizing Quantum Circuits

4.3.2 Quantum Gate Synthesis Results

4.3.3 Expander Circuit Synthesis Results

4.4 Computation Error

4.5 Quantum Circuit Benchmarks

4.6 Scaling Quantum Circuit Emulation.

5 Conclusion and Future Work

5.1 Thesis Summary ...

5.2 Future Research Work . . .

A Quantum Measurement Simulation using Quantum Frames

A.1 Quantum Measurement.

A.1.1 Projective Measurements

A.1.2 POVM: Positive Operator-Valued Measure

A.2 Frame-Based Measurements

A.2.1 Distinguishing non-orthogonal quantum states

A.2.2 Least Squares Measurements and Tight Frames

v

25

27

28
31

33

35

35

38

39

40

43

45

45

47
49

50

50

52

53

54

56

58

58

60

61

61

63

63

63

63

65

Contents

A.3 Simulation of Measurement

A.4 Case Study

References

vi

66

67

71

/r-""

vii

List of Figures

2.1 Bloch Sphere 8

2.2 Entanglement of two quantum particles . 9

2.3 Single-Input Quantum Gate 10

2.4 2-input CNOT gate 12

2.5 Quantum computation as modeled by quantum circuits 14

2.6 The quantum Fourier transform circuit . . . 15

2.7 Three qubit Grover's search algorithm ... 15

2.8 Oracles for the three qubit search algorithm 16

2.9 Circuit simulation using QuCalc 17

2.10 Vector description in QuIDDPro. 19

2.11 Matrix multiplication example using QuIDDPro 19

3.1 Modeling quantum circuits using the VHDL quantum gate library 24

3.2 Emulation architecture overview 25

3.3 Fixed-point quantum bit representation. 26

3.4 Two cases of state expansion: (a) Set of n qubits (b) Two state spaces to be

expanded into a larger one 29

3.5 State space expansion using a ripple multiplier architecture 32

3.6 GraduaI state space expansion 33

3.7 GraduaI expansion of 3-qubit state space with two qubits already expanded 34

3.8 3-qubit QFT Circuit with expander modules 35

3.9 Quantum gate error model ..

3.10 Expanded gate error model

3.11 Discretization error in a qubit

3.12 Variation of word length with state expansion

39

39

40

44

~,

List of Figures viii

4.1 UML class diagram for the gate generator software 46

4.2 Block diagram of final emulation hardware . 49

4.3 FPGA snapshot of the 3-qubit QFT circuit 50

4.4 Quantum Circuit Emulator Synthesis Flow 51

4.5 Direct state space expansion circuit synthesis 53

A.1 Projective Measurements . 64

A.2 POVM Measurements .. 65

•

ix

List of Tables

4.1 Logic CeU Usage on Altera Stratix EP1S80F1020C 51

4.2 Comparison of the direct and graduaI expansion techniques . . . 53

4.3 Error introduced by different gates for various mantissa lengths 54

4.4 QFT Benchmark 55

4.5 Grover's Search Algorithm Benchmark 55

A.1 Measurement Probabilities for \li . 68
,,~-"-

A.2 Measurement Probabilities for \lI2 70

1

Chapter 1

Introduction

The new century has ushered in a spattering of new and innovative computational plat

forms that are envisaged to one day replace the currently prevalent semiconductor-based

computers. Computation technology has spilled out of its traditional domains of electrical

engineering and computer science into new realms such as quantum physics, biology and

biomedical engineering. From storing information using the spin of photons to synthesiz

ing transistors using organic mole cules to performing large scale computation using DNA

strands, researchers are moving towards the future of computing on many different roads.

Research and development of these technologies is no longer limited to academic circles.

Companies such as IBM, HP and D-Wave Sys are working towards bringing about the next

revolution in computing in the not so distant future.

The focus of this thesis is on emulation of quantum computing. Quantum computing

uses various quantum mechanical effects such as entanglement and superposition to provide

massive performance speedup in certain types of computation problems such as data search

ing, factorization and encryption. The notion of using quantum mechanical phenomena for

computational purposes was first explored in the the 1970's and early 1980's. Quantum

computing came in to being when Richard Feynman proposed an abstract computational

model for simulating quantum physics in 1982 [1]. This was followed by proposaIs by David

Deutsch in 1985 of a general purpose quantum computer [2] and by Peter Shor in 1994 [3]

where he proposed a factorization algorithm for quantum computers. It was Shor's pub

lication that sparked widespread interest in quantum computing as it was the first large

scale problem where quantum computers would outperform their classical counterparts

2005/10/31

1 Introduction 2

significantly.

Since then, thedevelopment of quantum technologies has been underway and a variety of

different techniques are being considered to solve various hurdles facing quantum computing

[4]. Sorne of the approaches being considered are:

• Collection of ions trapped and manipulated by lasers [5],

• NMR (Nuclear Magnetic Resonance) based information processing [6],

• Semi-conductor designs such as those based on quantum dots [7],

• Superconducting electronics [8].

Quantum comput ers however, are still in their infancy. The general unavailability of

quantum comput ers has garnered interest in developing classical simulators of quantum

algorithms. However, simulation of quantum algorithms presents its own set of challenges

since simulating such phenomena in classical comput ers consumes an excessive amount of

resources. This thesis proposes an FPGA-based solution to this problem, whereby par

allel computation can be performed at a large scale in hardware resulting in significant

performance gains as compared to software-based simulators.

1.1 Quantum Computation vs. Classical Computation

Quantum computation is an evolution of a quantum system that starts with a certain

initial state. While the evolution of a quantum system can be described by a series of

Schrodinger's equations [9], a more intuitive and equivalent abstraction of the quantum

evolution is the quantum circuit model. The model breaks down the quantum system into

two components: quantum bits which are the particles that make up the quantum system

and quantum gates that are transforms that are applied on the collection of quantum bits.

Therefore, analogous to classical computing quantum bits are the units of information and

quantum gates are logical operations that can manipulate this information. However, unlike

mainstream classical computation, quantum computation is probabilistic, that is the result

of the computation cannot be achieved correctly in a finite number of steps. Furthermore,

obtaining the state of the quantum system causes the system to collapse. At same time

there is a significant probability of error in the obtained state information.

1 Introduction 3

While classical units of information can exist in a finite number of states (predominantly

binary logic is used where only the states 0 or 1 are present), quantum information can

exist in an infinite number of states. Furthermore, quantum bits can undergo a quantum

mechanical phenomenon known as entanglement whereby they can store an exponentially

large amount of information. These effects can be employed to provide significant speed-up

in computation in certain applications (such as data search and factorization).

1.2 Quantum Circuit Simulation vs. Emulation

Quantum circuit simulation involves numerical representation of the information stored in a

quantum system and applying the necessary transforms on this information, as dictated by

the quantum algorithm being simulated. The software-based simulators do not exploit the

parallelism and the effect of quantum noise that are present in real-life quantum computers.

Furthermore, since the state of the quantum circuits expands exponentially with linear

increases in number of qubits, even a modest sized quantum circuit can take ho urs , even

days to simulate.

The emulation of the quantum circuits also comprises of manipulating the mathematical

representation of quantum information. However the goal is to replicate the behavior

of the quantum algorithms when executed on a real quantum computer. This includes

the effect quantum noise at the gate-Ievel. While classical emulation of quantum circuits

faces the same problems as in the case of simulation (i.e. significant growth in resource

consumption) the added challenges are to perform computation in parallel and also recreate

extrinsic factors such as quantum noise. Simulators have been developed that employ a

programming language to describe quantum algorithms [10], [11] emulation requires that

the quantum algorithm is described in terms of gates and quantum bits. Other simulators

such as [12], [13J allow construction of quantum circuits using just gate interconnections,

however they do not provide the level of performance as the description language-based

simulators such as [lOJ.

1.2.1 Motivation for Emulation of Quantum Circuits

Quantum circuit emulation allows development of quantum algorithms in a more compre

hensive manner as compared to simulation. Emulation go es beyond just mathematically

1 Introduction 4

replicating a quantum algorithm but permits insight into more complex issues facing quan

tum computing such as quantum noise and quantum gate error. Furthermore, hardware

based emulation allows more control over the parameters of emulation such as word length

of data-primitives as well as allows computational optimizations at the gate-Ievel that are

difficult to achieve in software. This in turn leads to a deeper understanding of issues

facing classical modeling of quantum circuits. Finally, hardware-based emulation provides

a significant performance improvement compared to software simulators.

1.3 Thesis Contribution

This thesis proposes a gate-Ievel FPGA-based solution to quantum circuit simulation. Using

the analogues between the quantum and classical circuits, an emulation environment has

been created where various issues such as quantum noise and parallel computation are taken

into account. The emulator outperforms the premiere software simulators when considering

algorithm runtime. Also combining classical error analysis techniques and relating them

with quantum noise suffered by actual quantum computers, a bound on word length of

data-primitives has been derived such that the emulated circuit pro duces results similar to

those of a real quantum computer.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides a detailed background of the quantum circuit model including the

different mathematical notations used to describe quantum computation. This is followed

by an overview of different simulation techniques that have been developed for quantum

circuit simulation.

Chapter 3 presents an in-depth look at the emulator architecture. Various challenges

and hurdles were encountered in creating the emulation environment and details on how

these challenges were over come are also presented. Finally, a thorough derivation of the

word length bound is also presented.

Chapter 4 evaluates the performance of the performance of the FPGA emulator and

compares it with other software simulators. A practical vindication to the theoretical work

presented in Chapter 3 is also provided.

1 Introduction 5

Lastly, Chapter 5 summarizes the work and presents the conclusion to the thesis. Di

rections for future work are also suggested.

6

Chapter 2

Background

The quantum circuit model provides an algorithmic abstraction for the quantum compu

tation process. The model transforms the quantum physical phenomena that occur during

the entire computation or "evolution" of the quantum system into lumped discrete events.

A quantum system's time evolution that is normally represented using Schrodinger's equa

tions (a collection of partial differential equations) is no longer required when using quan

tum circuits [9],[14]. Instead, the quantum information is represented as astate space (also

referred to as astate vector) that depicts the state of the entire system at any given time.

Evolution of states is then modeled using a collection of linear transforms that appropriately

manipulate the state vector.

Information stored in a quantum system grows exponentially with the size of the system

(number of quantum particles) [9],[14]. Manipulating the large state space with PDEs can

be very resource-intensive for a simulator. Devolving the quantum computation into linear

transforms do es provide sorne reprieve for simulators, but for large state spaces they still

have to perform a significant amount of computation. This will be clear after reading the

following sections.

2.1 Quantum Bits

Quantum bits or qubits are the fundamental units of information in quantum computing.

Analogous to classical computing, quantum computing is the manipulation of information

stored in qubits. Physically, qubits have been realized using electrons, trapped ions and

molecules. The information is stored using the spin or polarization of these particles. For

2005/10/31

,

2 Background 7

simulation purposes though, the state of the qubit is represented mathematically by a

vector in a finite-dimensional complex Hilbert space [9]. The major property of the Hilbert

space is that aIl vectors belonging to that space have a well-defined inner-product. For a

vector f belonging to the Hilbert space, the norm of f is defined by

Ifl = Ju,!) (2.1)

The Dirac bra-ket notation is a commonly used notation for denoting the state of the

qubit. The notation is quite commonly used in quantum mechanics since it can conveniently

represent the state of the system as weIl as describe operations on the system effectively. In

the bra-ket notation, elements of H are "ket" vectors given by lx) E H. A corresponding

"bra" vector (xl is an element of the dual space H*l. For a quantum bit though the state

11/J) of the bit is represented using the following equation

11/J) = nia) + !J11) (2.2)

where n and !J are complex coefficients related by the following expression

(2.3)

The la) and Il) states of a qubit can be thought of as analogues to the classical bit.

PhysicaIly, la) and Il) states refer to a particular spinjpolarity orientation of the qubit.

However, as can be observed from Equation 2.2 and Equation 2.3, the qubit can simulta

neously be in the both la) and Il) states (an arbitrary spinjpolarity). This phenomenon

is known as superposition and is one of the fundamental sources of speed-up in quantum

algorithms [9],[14]. Geometrically, a qubit can be thought of as a unit vector and can have

any value on a unit sphere. Thus, a qubit can be in an infinite number of possible states.

A common pictorial notation for qubits is known as the Bloch sphere and an example of

that is depicted in Figure 2.1. MathematicaIly, Equation 2.2 can be re-written as Equation

2.4

(2.4)

IThe (xly) notation is the inner product between the conjugate vector of x denoted as x* and the vector

~. y

2 Background 8

Angles () and <p are related to 0: and [3 through a transformation from Cartesian to polar

coordinates over complex number fields.

y

x

Fig. 2.1 Bloch Sphere

From a simulation point of view, only the values of 0: and [3 need to be stored and

manipulated as they represent the information stored by the qubit. Thus, a single qubit

can be represented as a 2 x 1 vector [0: [3JT. While the notation introduced so far is sufficient

to describe the state of a single qubit, a more useful notation for representing the state of

a n-qubit quantum system is as follows

(2.5)

where ® represents tensor product operation. The resulting state space \li is a 2n x 1 vector.

This notation is useful as it collectively represents the state of the entire quantum system

and assists in dealing with the computational interactions between the qubits themselves.

The advantages of this representation will be encountered in the subsequent sections. How

ever, an immediate disadvantage to this representation, from a simulation point of view, is

that instead of dealing with 2n complex numbers for n qubits, the simulator now has to

work with astate space of 2n complex numbers. This leads to an exponential increase in

computation resource consumption.

2 Background 9

2.2 Entanglement

Quantum entanglement is perhaps the most exotic quantum phenomenon used in quantum

computing. Entanglement represents a situation when two or more distinct quantum par

ticles behave in su ch a way that when one of the particles is subjected to change, a similar

change is instantaneously applied to aIl the other entangled particles. Einstein, Podolsky

and Rosen were the first to notice this effect in a pair of photons whereby the change in

the spin of one photon resulted in the change of spin in the other simultaneously.

Non-Entangled

a I IO)+Plll) a21°)+P211)

[) CJ
,/

Âtl 00) + ~I 0 1) + A:, 1 1 0) + Â4111)

Entanglement

Fig. 2.2 Entanglement of two quantum particles

Mathematically, when a collection of qubits enters a state of entanglement, the notion

of individual qubits disappears and the system can no longer be represented as a tensor

product of individual qubit state vectors. In the case of n entangled qubits, the state of

the system can only be represented using a 2n x 1 vector. Thus, it becomes necessary to

represent the quantum system in the expanded notation described in the previous section.

For an entangled system, the computational basis states also grow exponentially. While for

single qubits the computational basis states were just 10) and Il), for a two qubit entangled

system the number of basis states expand to four: 100), 101), 110) and 111). However, for

entanglement to occur the system can only be in a superposition of the 100) and 111) or

101) and 110) states. In other superposition scenarios, the expanded state can be resolved

into the tensor products of individual qubit states and hence the system can no longer said

2 Background 10

to be entangled.

2.3 Quantum Gates

The quantum evolution of the system is modeled by applying a sequence of transformations

on the quantum state space. The transformation or operations on the quantum system are

called quantum gates. Classically, gates such as AND, OR and NOT are well known and

any classical computation can be broken down into the operations these gates provide.

In the quantum computation domain, all quantum algorithms can be broken down into

constituent quantum gates that manipulate information and can deal with one or more

units of information at one time (similar to multiple-input classical gates).

Mathematically, quantum gates can be represented as unitary matrices (operators) that

can be applied to the state space or qubit vectors.

2.3.1 Single Input Quantum Gates

Single input quantum gates are transformations that can operate on a single qubit in the

system. Physically, these operations translate to altering the spinjpolarity of quantum

particle, thus changing the information stored by the particle. For instance, in the case of

the trapped-ion implementation, the spin of the ion is changed using laser-ion interactions

[5] and this operation can be modeled by a 2 x 2 matrix.

[;]
Gate
Input

Quantum

[.aGat~].. [: !] [; 1
c d Gate

Output

Fig. 2.3 Single-Input Quantum Gate

One of the most important single qubit gates is known as the Hadamard gate or the

H-gate. The H-gate transform is given as follows

2 Background Il

H~ U -1 1
The H-gate's importance is paramount in that this operation can be used to place qubits

in a state of superposition from a 10) or Il) states. As described in the subsequent sections,

many quantum algorithms achieve their speed-up due to the fact that they can operate

on multiple quantum states (achieved through superposition) in parallel. Physically, a

collection of quantum particles can be prepared in a known state of spinsjpolarities and

the particles are then subjected to the Hadamard transform in order to place them in

superposition.

Other common single input gates are the phase rotation gates that can alter the rotation

of the qubit by an angle of e, the quantum NOT or X-gate that swaps the value of ex and

f3 of a qubit and the Z-gate that fiips the sign of the f3 value of the qubit.

Rot(e) = [1 ~o 1 X = [0 1 1 z = [1 0 1 o et 1 0 0 -1

However, single qubit operations are represented differently when using the expanded

state space notation to represent the quantum system. For a n qubit quantum system, each

gate operation has to be represented by a 2n x 2n sized matrix. This matrix is unique based

on the basic operation that the gate performs and the position of the qubit. To elaborate,

for a 3 qubit quantum system, if the H-gate is to be applied to the second qubit at any

time the matrix representation would be calculated by performing 1 ® H ® 1 operation.

If the same operation had to be applied on the third qubit instead, the resulting matrix

representation would be performed using 1 ® 1 ® H and these two operations result in two

different matrices.

From a simulation point of view, the process of applying these operations on astate

space becomes exceedingly resource intensive as the size of these matrices grows exp onen

tially. While most of the quantum gates result in sparse matrices, the sheer size of the

matrices itself causes significant problems in simulating large quantum systems.

2 Background 12

2.3.2 Multiple Input Quantum Gates

Multiple input quantum gates perform an operation on an input qubit based on the value of

the other inputs to the gate. Thus, multiple input quantum gates are controlled operation

gates, where the value of the control qubits determines the gates' operation on the data

qubit. A special type of multiple input quantum gate is the "swap" gate that swaps the

information stored in two qubits.

Control Qubit

Data Qubit

Fig. 2.4 2-input CNOT gate

The input to a multiple input quantum gate is mathematically the expanded represen

tation of an the individual quantum states. Henee, a n input quantum gate's transform is

represented by 2n x 2n matrix. One of the most important quantum gates is the controlled

NOT gate (CNOT). In the simplest case, a two-input CNOT gate is representedby the

following matrix

1 0 0 0

CNOT=
0 1 0 0

0 0 0 1

0 0 1 0

Basically, if the control qubit is in the Il) state, the gate swaps the CI: and f3 values of the

data qubit. However, if the control qubit is in the state 10) the inputs are left unchanged.

While this description of the gate's behavior works for the case where the control qubit

is not in superposition, it fails to describe the behavior of the gate in the situation when

the control qubit is in superposition. The behavior of the gate is expressed fully however,

by the above matrix that operates on the expanded state spaee. No decision making is

involved and the operation of that gate in this case is to swap the third and fourth entries

2 Background 13

of the input state vector. The CNOT gate is however special, because in the case where

the control qubit is in superposition and the data qubit is not, the resulting output is

entangled. This can be understood by carefully examining the CNOT transform and a

similar scenario can be created for generalization of CNOT gates (Toffoli gates). Due to

the superposition states of the inputs, the quantum CNOT gate is thus more complex to its

classical counterpart as its behavior needs to be expressed using the expanded state space.

Multiple input gate transforms also have to be adjusted to deal with the expanded state

space of the entire quantum system. Each gate transform depends on the position of the

inputs and overall size of the quantum system. For controlled input gates, it is computed

using the base transform which is, for example in the case of CNOT is the X-gate transform.

Essentially, the control gate transform is constructed by performing the Kronecker product

between the base transform and the identity matrix. The resulting control gate transform

is then further expanded using the Kronecker product with the identity matrix to adjust

its size such that it can be applied to the entire state space.

2.4 Quantum Measurement

Quantum computation is probabilistic. Classical probabilistic circuits output a probability

distribution based on the inputs of the circuit, the network topology and the induced prob

ability distribution of the gates in the network. Therefore, in probabilistic computing, the

results of computation cannot be accurately determined every time the outputs are sub

jected to measurement. This leads to probability of error in the measurement. Conversely,

deterministic circuits are such that the results of the computation can be measured without

error. In classical computation, deterministic circuits are mainly used and measurement

error is not considered.

The probabilistic nature of quantum computation, thus, differentiates it from classical

computing significantly. Quantum algorithms have to be designed such that the results of

the computation can be achieved with low measurement errors and often the computation

has to be repeated a considerable number of times before the results can be measured

with high enough probability. This advertently affects the performance of the algorithm.

Furthermore, quantum measurement or the act of extracting information from a quantum

system is an irreversible operation as it destroys the quantum system being measured.

An intuitive way of understanding quantum measurements is to think of them as a

2 Background 14

collection of operators on the quantum system (irreversible operators) such that the state

of each quantum can be distinguished with sorne probability. These operators are projec

tion matrices that map information from the quantum to the classical domain with sorne

measurement error. After measurement, the qubit loses superposition and is measured in

either of the computational basis states. The choice of these operators and the complexity

of the quantum system determine the resulting measurement errors.

In the simplest case of a single qubit system, the lai and 1,81 coefficients from Equation

2.3 represent the probability that the qubit will be measured as 10) or Il) state respectively.

For larger systems, the problem of quantum measurement becomes more complex and have

a fundamental impact in quantum algorithm performance. In Appendix A, more details

about simulation and optimization of quantum measurements are provided.

2.5 Quantum Algorithms as Quantum Circuits

Quantum circuits are a collection of wires (qubits) and gates that depict the time evolution

of a quantum algorithm. The qubits are prepared in a known state and introduced as

inputs to the system. The qubits then undergo evolution depicted by the gate operations

on them. The evolution ends when the system is subjected to a quantum measurement. A

number of quantum algorithms have been developed in the recent few years and they have

sparked great interest in the field. In this section, an overview of two of the most famous

quantum algorithms is provided.

Quantum
Gates

lime

Fig. 2.5 Quantum computation as modeled by quantum circuits

2.5.1 Quantum Fourier Transform

The quantum Fourier transform (QFT) plays an important role in the phase-estimation al

gorithms and the Shor's factorization algorithm [15]. While the QFT itself do es not provide

,.

2 Background 15

a speedup in performing the Fourier transform on quantum information, its importance in

other quantum algorithms makes it an interesting case-study.

For an qubit system in state Ij) is subjected to the QFT, the output is given by

(2.6)

Fig. 2.6 The quantum Fourier transform circuit

Figure 2.6, depicts the QFT circuit for a n sized quantum system. The Rk gates can

be represented as follows

2.5.2 Grover's Search Algorithm

The Grover's search algorithm is the fastest search algorithm at the time of writing. It

performs the search on a n sized database at the worst-case complexity of O(vn) [16],[9]

and can generally speed-up many classical algorithms that use searching or route-finding

techniques. Figure 2.7, illustrates a 3 qubit Grover's search algorithm.

Oracle
Gate

Fig. 2.7 Three qubit Grover's search algorithm

2 Background 16

The oracle shown in Figure 2.7 is responsible for providing the answer to the search

query. If the query is present in the first n qubits, then the Oracle sets the oracle qubit to

Il) state, otherwise the qubit is set to the 10) state. The oracle itself can be constructed in

this case using a CNOT gate with inputs according to the search query. Figure 2.8, shows

the four different oracles for the three qubit Grover's circuit shown in Figure 2.7

Query = 00 Query = 01 Query = 10 Query = 11

Fig. 2.8 Oracles for the three qubit search algorithm

2.6 Software-based Simulation Techniques

In this section, a brief summary of three software-based simulators is given. The choice of

the simulators is based on the fact that all three use very different simulation approaches.

At the same time, they also represent the evolution of simulation techniques that have led

to the development of the FPGA-based emulation technique. Quantum circuit simulators

perform the mathematical operations of quantum gates on a given set of qubit states. The

simulators are exclusively software-based.

2.6.1 QuCalc: Mathematica Simulation Library

QuCalc is a simulation library written in Mathematica [13]. It makes use of the numeri

cal and symbolic power of Mathematica to describe quantum circuits and simulate them.

QuCalc uses the standard algebraic approach to simulate the quantum circuits. The gates

making up the circuit are described symbolically as a multi-dimensional Mathematica array.

The transforms of those gates are then concatenated together by perform matrix-matrix

multiplication and tensor products to create an overall transformation of the circuit. This

becomes the more computationally expensive part of the simulation. The circuit transform

is a matrix that can then be applied to an input state vector. In Figure 2.9 a description

of how QuCalc can be used to construct a circuit transform is provided.

2 Background

Circuit[{{wh 1 },{1 cnot}}]

/'
Perform tensor product
and matrix multiplication

1
-'--0
J2

Circuit o -'--
J2

Transform o -'--J2
-'-- 0
J2

1

12
1

12
o -* -* 0

Fig. 2.9 Circuit simulation using QuCalc

17

QuCalc is extremely straightforward to use, and construction of the circuits is very

intuitive. The gate positions in the circuit can have a one-to-one mapping to their position

in the array description in QuCalc. However, building very large circuits this way is very

cumbersome and no mechanism is provided to facilitate that function.

In terms of performance, the simulator is limited by Mathematica as the simulation

environment. As Mathematica is a symbolic computing package, a significant overhead is

in the computation. While no specific benchmarks are provided for QuCalc, it is understood

that its purpose is not to simulate large quantum circuits efficiently. QuCalc is a simple tool

that can allow the construction of small to medium sized quantum circuits and provides a

strong environment to algebraically and symbolically deal with issues pertinent to quantum

circuits.

2.6.2 QuIDDPro: An ADD based Simulation System

QuiDDPro is one of the fastest software simulators (at the time of writing) that is based on

describing quantum transforms in terms of decision diagrams. The circuit is described using

a Matlab-like programming language. QuiDDPro's novelty is that it represents the ma

trices and vectors that depict quantum transforms and quantum information as Quantum

2 Background 18

Information Decision Diagrams or QuIDDs. A QuIDD is essentially an algebraic decision

diagram (ADD), that have commonly been used to logically describe classical circuits [10],

[17].
Since ADDs are designed to optimize binary logic circuits, the QuiDDs require addi

tional properties to accommodate representing quantum information. First, unlike ADDs,

a QuIDD's terminal nodes can have complex values (ADDs used for binary circuits can

only have terminal values of 0 or 1). Secondly, in order to optimize operations on QuIDDs,

the structure does not explicitly contain the complex values in the terminal nodes, but

actually stores indices to an array that contains the actual terminal node values. This

reduces computational overhead when performing operations on QuIDD-based vectors and

matrices. Finally, the ordering of the nodes in QuIDD is such that it favors compression

of block patterns in matrices. This optimization arises from the fact that the tensor prod

uct of quantum transforms produces highly regular block patterns. By ordering the nodes

properly, the redundancy in the block patterns can be overcome and a sm aller decision

diagram can be used to describe the matrix.

An illustration of how a QuIDD can store a vector representation of a quantum state

is shown in Figure 2.10. Here it can be observed that a 4 x 1 vector is represented using

3 nodes. A slightly involved QuIDD is used to describe the application of the Hadamard

transform to a two-qubit vector as shown Figure 2.11. Here the left most QuIDD represents

the Hadamard transform on a 2-qubit system. The next QuIDD represents the 4 x 1 vector

representing the 2-qubit system. The result of the multiplication can then be stored in just

one terminal node.

While the information of the quantum circuit is stored using decision diagrams instead

of regular matricesjvectors in QuIDDPro, the actual construction of the circuit transform

and obtaining outputs is performed using tensor products and matrix multiplication as in

the case of QuCalc. However, the advantage using QuIDD [10] is that the tensor product

and matrix multiplication operations are quite efficient and having a reduced representation

such as QuIDD can lead to significant performance gains. For matrices represented by nodes

a and b, the tensor product cornes out to be O(ab) while matrix multiplication is O((ab)2).

QuIDDPro has a Matlab like feel and can execute scripts written in a syntax similar

to Matlab. It supports aIl necessary quantum transforms, however the construction of a

quantum circuit is not immediately intuitive. Quantum algorithms are constructed using

the functions provided in QuiDDPro in the form a programming language instead of a

2 Background 19

\

8 0 [j 2

1

0.5
1

0.5
1

0.5 0.5
1

0 1 2 3

Fig. 2.10 Vector description in QuIDDPro

l l l l 1 R. cb - - - - '-'- = 2 2 2 2
""""""""""'" l l l l 0 Co • - -

2 2 2 2
l l l l

",
",

- - -- -- 0
2 2 2 2
l 1 l l 0 - -- -- -
2 2 2 2

Fig. 2.11 Matrix multiplication example using QuIDDPro

2 Background 20

netlist. However, onee the language issues are overcome, very large quantum circuits can

be constructed quite easily. QuiDDPro's creators have provided detailed runtime perfor

mance of the system when simulating the Grover's search algorithm. From [10], QuIDDPro

can simulate the Grover's search algorithm with a memory complexity of O(n) and time

complexity of O(RIAI16n I4) where R is the number iterations of the algorithm, A is the

number of nodes in the oracle representation and n is the number of qubits. Running times

provided in [17] for the Grover's search algorithm are less than 6 minutes for simulating a

20 qubit circuit.

2.6.3 HDL Based Simulation of Quantum Circuits

Simulation of quantum circuits using a hardware description language such as VHDL [18]

has been proposed in [19]. This technique uses analogies between the quantum circuit

model and classical circuits to construct and simulate the quantum circuits.

HDL simulation of quantum circuits diverges from the strongly algebraic approaches

in the previous two simulators. As the quantum circuit model breaks down the quantum

transform into quantum gates and quantum bits, the HDL approach can incorporate these

architectures directly as they are congruent analogues to classical gates and bits respec

tively.

Qubits are described as two complex numbers (using the real keyword in VHDL). The

gates are constructed with qubits as inputs and outputs and the transform of the gate

is described using behavioral VHDL. The quantum circuit can be constructed now by

combining the gates using structural VHDL.

However, the key issue here is entanglement. The previous two simulators dealt with

the quantum circuit by expanding it to the full bases states and applying tensor products to

achieve the final circuit transform. The expansion operation explicitly deals with entangled

situations sinee the computational state spaee is already large enough to hold the entangled

information. In the case of HDL simulation however, the goal is to describe the circuit

in the simplest gates possible, and thus the presence or absence entanglement has to be

explicitly detected and simulated. In [19], detailed entanglement extraction algorithms have

been derived. They are able to detect when entanglement occurs or disappears. These

are simulated using functional VHDL and have exponential complexity. This amounts to

similar resouree usage as in the case of expanded state spaee simulators.

2 Background 21

Since the simulator uses VHDL to simulate quantum circuits, the CAD simulation

tools available for the development of classical circuits using VHDL can now be employed

to construct quantum circuits. This involves either using structural VHDL or a graphical

netlist creation tool. In both situations, it is straightforward how to create the circuit and

simulate the results.

According to [19], the runtime in the non-entangled case of simulation is O(n2
). Some

simulation runtimes are also quoted in [19] for small quantum circuits. However, entangle

ment extraction is still complex. Overall, the simulation would also be limited to the speed

of the VHDL simulation tool.

22

Chapter 3

FPGA Emulator Design

This chapter provides details of the emulator design and design choices. The challenges

involved in performing hardware emulation of quantum circuits are laid out. This is followed

by a description of how these challenges were overcome.1

3.1 Challenges in Emulating Quantum Circuits

While the underlying principles of cla.ssical circuits are weIl understood, and have been

widely applied, the same is not true for quantum circuits. So far, quantum circuits have

been rarely demonstrated and in rather small sizes. Although existing quantum computing

machines employ at most 7 qubits, even such a small number of qubits are notoriously hard

to analyze and employ in concerted quantum machines.

Simulating quantum circuits in software is even more cumbersome than in the classical

case. Currently available simulators like [19],[10] while providing an environment for the

development of quantum algorithms, still greatly abstract the quantum evolution of the

qubits. The speed of running a single simulation pass is even more critical than for clas

sical circuits. Due to little understanding of hardware modeling of quantum processes, it

is very likely that that many changes will need to be introduced to the model itself. This,

in consequence, would lead to several re-runs of simulations of a given quantum design.

Therefore emulators which perform fast simulations, and can be easily re-programmed to

account for small changes in the model of quantum processes as weIl as the design itself are

1 Part of the work presented here has already been published in [20]

2005/10/31

3 FPG A Emulator Design 23

essential. Such capabilities can be provided by FPGA-based hardware emulators. Finally,

using the quantum circuit model is a very intuitive way of constructing quantum algo

rithms and would greatly assist in the development of new algorithms. Thus, the emulator

combines important quantum computing concepts and a solid development environment to

serve as a development and test-bed for quantum algorithms.

The first and foremost problem with quantum circuit emulation, is the mapping of

quantum computation concepts to the digital domain. While the quantum circuit model

creates a classical analog for quantum computing, it still possesses appreciable differences

from classical circuits. The goal is to efficiently describe quantum circuits using a classical

hardware description language, such that the final circuit can be synthesized on a FPGA.

The second major challenge is to emulate the quantum circuit such that the resources

available on the FPGA are used as efficiently as possible. Resource requirement becomes a

serious issue with entangled systems as performing quantum evolution in a highly entangled

system requires an exponential amount of computation. Emulating quantum circuits with

FPGAs has an advantage that FPGAs have a large amount of logic cells (and multiple

FPGAs can be combined for even bigger circuits) and therefore large quantum circuits

with entangled states can be emulated easily and efficiently in terms of computation time.

Finally, the overall architecture should still emulate the parallel evolution of the quan

tum system as closely as possible since that is one of the main motivations for performing

quantum circuit emulation in hardware. Thus, balancing the resource usage and parallelism

in the emulator is an important design consideration.

3.2 Emulation Overview

The overall design pro cess is illustrated in Figure 3.1. Quantum circuits are constructed

from the quantum gate descriptions that are part of the emulator. The correctness of

the circuit can be verified either by software simulation or by FPGA emulation. Thus,

a technique has been developed for modeling quantum circuits using VHDL and then

synthesizing the circuit in hardware to achieve performance needed to make the whole

process more practical.

The emulator comprises of two major components. The first is a C++ based command

line interface that has been created and is used to generate VHDL description of the gates

required in the quantum circuit. The interface allows a fast way of calling the C++ based

3 FPG A Emulator Design

Import quantum
circuit package to

design

Construct quantum circuit
using gates provided

Simulate circuit using VHDL
simulation tools

Synthesize circuit on FPGA
for hardware emulation of

the quantum circuit

Fig. 3.1 Modeling quantum circuits using the VHDL quantum gate library

24

functions that generate gate descriptions for gates such as the X-gate, Z-gate, Hadamard

Gate, Rotation gates and common multiple input gates such as the controlled version of the

single input gates and the swap gate. The interface requires the user to enter the gate name,

system size and number of inputs and it then generates the appropriate VHDL description

of the gate. AlI the gates created from the interface use the expanded state space notation

for inputs and outputs. More details about the developed software are provided in the

subsequent sections.

The second part of the emulation environment are the data primitives defined in VHDL

and the final circuit structural description. The data primitives are used to define complex

number-based entities such as the qubit state vectors and the expanded state space notation.

While aIl the gate descriptions can be generated via the software component ofthe emulator,

the final quantum circuit model has to be created by either using structural VHDL or a

schematic environment such as the one present in Altera's Quartus II software.

The emulator's architecture overview is illustrated in Figure 3.2. Emulator circuitry

on the FPGA closely follows the quantum circuit topology as a series of gates are applied

to the qubits on the FPGA in the same order as the quantum circuit itself. However, at

certain places in the quantum circuit a register is inserted and this sequence of registers

allows the pipelining [21J of the entire computation. AlI these registers are controlled by

a single global clock and the speed of the clock depends on the slowest stage [21J of the

3 FPG A Emulator Design

Global
Clock

Quantum

Inp ut Gate

•
• c=lJ

Quantum
Gate

-

-

1 1

• Quantum
Gate

1--•
Register • Register

•
• Quantum -• Gate

Fig. 3.2 Emulation architecture overview

T o
C P

~

25

quantum circuit pipeline. The registers store the state of the quantum system at a given

point and time of the quantum evolution. The clock serves to synchronize the computation

and can be used to de termine the total computation time.

Furthermore, the pipelined architecture allows the quantum circuit to be quickly sim

ulated for multiple inputs thus providing a significant advantage over software simulators

where the circuit has to be re-simulated for each set of inputs. Finally, at the end of the

computation the final state of the quantum system is transmitted from the FPGA to a PC.

Details about each component of the architecture are provided in the following sections.

3.3 Data primitives

The first step in creating the emulator is to develop a mechanism for representing quantum

information digitally using VHDL. From Equation 2.2, the information of the qubit is

stored in two complex numbers Œ and 13. In VHDL, there are no native data primitives to

deal with real numbers (fioating or fixed point). Thus, the choice that had to be made was

to represent the complex numbers using fioating point or fixed point schemes. Initially,

a fioating point representation was considered but it was discarded because the emulator

would have to perform considerable amount of fioating point operations and it would be

very resource consuming ta have many fiaating point adders or multipliers in hardware. An

architecture based on hardware reuse was also considered but that reduced the parallelism

3 FPG A Emulator Design 26

in the emulator significantly.

The other choicewas to develop a fixed point scheme for representing the real and

imaginary parts of the complex numbers. The fixed point scheme yielded less arithmetic

overhead at the cost of lower precision. Figure 3.3 depicts the fixed-point representation

that was chosen for the emulator. There are two salient features of this representation

1. According to Equation 2.3, lai and 1,81 can have a maximum value of 1. Therefore,

an extra bit is used in the representation scheme (the second most significant bit) to

represent the case where the Œ or (3 have a value of 1 or i unambiguously and without

discretization errors.

2. The length of the mantissa bit can be varied. The size of the data primitives has a

direct relationship with the amount of resources (logic cells or Les) consumed on the

FPGA; the designer has the ability to trade-off resource usage against precision.

N bit Mantissa N bit Mantissa

f3real f3imaginary

N bit Mantissa N bit Mantissa

Fig. 3.3 Fixed-point quantum bit representation

Having a variable sized mantissa allows a certain amount of flexibility to the emulator.

Depending on circuit size, precision requirements and available resources, the synthesized

quantum circuits can be "tuned" to fit these parameters. It also opens the avenue for

experimenting with circuit precision and modeling quantum noise that are difficult to per

form with software simulators. In [22],[23] quantum noise simulation has been suggested

and later in this chapter more details about error analysis and quantum noise simulation

are provided.

The following code enlists all the data primitives in VHDL. Notice that in or der to

vary the system precision, only the value of the constant N is changed and the circuit is

recompiled.

3 FPG A Emulator Design

L1BRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE quRecords IS

CONSTANT N : INTEGER := 10;

TYPE complexNum IS RECORD
real STD_LOG1C_VECTOR(N-l downto 0);

imaginary : STD_LOG1C_VECTOR(N-l downto 0);

END RECORD;

TYPE quBit IS RECORD

alpha complexNum;

beta : complexNum;

END RECORD;

TYPE complexArray IS ARRAY (integer range <» OF complexNum;

TYPE entangledQubit IS ARRAY (integer range <» OF complexNum;

TYPE quArray IS ARRAY (integer range <» OF quBit;

TYPE result IS array (integer range <» of std_logic_vector(twoN-l downto 0);

END quRecords;

3.3.1 Emulation of the expanded state space

27

As described in Chapter 2, due to entanglement, single-qubit evolution is not sufficient

to describe quantum computation. The same fixed point scheme is used to represent the

complex numbers in the expanded state space representation. However, expanding the

state space causes an exponential growth in resources. Thus, the quantum circuit has

to be synthesized such that the state space is expanded only when absolutely necessary.

Originally, quantum emulation begins with the the inputs represented as initial values of the

qubits. The expanded state space notation is introduced when a multiple-input quantum

gate is encountered. If a qubit, already in an expanded state space, is an input to a multiple

input gate, the other input qubits are included in the state space of the originally expanded

state. In the case where multiple expanded state spaces are inputs to a quantum gate, the

inputs are combined into a larger state space just as the in the second situation for state

space expansion.

3 FPG A Emulator Design 28

3.4 Expander Circuits

As shown in Chapter 2, state space expansion is a necessary operation during the emulation

of quantum evolution. The two primary reasons for the inevitability of the use of this

notation are:

• Entanglement situations can only be represented using a single vector using the state

space expansion technique,

• The mathematical operation of multiple-input quantum gates is directly applicable

to the expanded state vector.

The state space operation is essentially the implementation of the operation defined in

Equation 3.1.

n

® l'I/J) = l'l/Jl) ® 1'l/J2)" ® l'l/Jn) (3.1)
i=l

where l'l/Ji) can either be a qubit state vector or an expanded state vector. In terms of a

general classical simulator, the state expansion operation presents two challenges:

• Implementation of the Kronecker product operations Equation 3.1 as a large amount

of complex multiplications have to be performed,

• Emulation of expanded gate transforms that have to operate on the expanded state.

There are two scenarios of state space expansion: one from a set of qubits, and the

second from a combinat ion of state spaces. In the first case, the state space is expanded

directly to its maximum size (2n for an n qubit system). This operation requires (n - 1) x

2n complex multiplications to implement. Figure 3.4(a) describes the situation for state

expansion from a set of qubits. Each À-i is computed by cycling through aIl the combination

of a and (J values of each of the n qubits. Therefore, n - 1 complex multiplications are

performed for each of the 2n entries of the expanded vector.

The second case allows the state space to be gradually expanded in consequence, a larger

state space can be constructed by combining several smaller states. When combining a

vector of size 2m with another vector of size 2n , the total number of complex multiplications

required is 2m+n. Figure 3.4(b) depicts the situation where two state vectors "(and cp are

3 FPG A Emulator Design

q1# [~:l [2.1 q2- [p~l Expander
Multiple Input

• Quantum
• Circuit Gate · q~ [fi:1

(a)

[Xl [Â~ 1 Mo" .. ,"~ Expander Quantum
Circuit Gate

[.!l (bl

Fig. 3.4 Two cases of state expansion: (a) Set of n qubits (b) Two state
spaces to be expanded into a larger one

29

expanded into a larger vector À. Each of the 2m entries of the À vector are computed by

multiplying each element of the "(vector by the entire cp vector.

The computational complexity is further exacerbated when even single qubit quantum

gates have to be expanded so that they can operate on the expanded state space. Soft

ware simulators such as [13] ,[10] approach the problem by expanding the state-space at

the beginning of the computation. In consequence, the rest of the computation involves

operations on large matrices. Tec~niques involving the use of decision diagrams to reduce

the complexity of the computation have been employed [10]; however operations on large

circuits still require considerable time and memory usage.

State space expansion for purposes of FPGA emulation presents bigger challenges than

those faced by any general classical simulator of quantum circuits. In essence, the FPGA

emulator performs computation in parallel (by executing concurrent parts of the algorithm

at the same time), thus mimicking quantum parallelism and gaining a significant speed-up

over software simulators. Quantum gate transform matrices are normally sparse (in most

cases diagonal or quasi-diagonal where a significant number of non-zero entries are equal to

one and hence require no actual complex multiplication). Therefore, they are mapped to

hardware directly, and operate on the input state space in a non-sequential way. However,

this design strategy becomes imprudent and impractical when performing the state space

expansion operation for even a small number of qubits. The complex multipliers needed to

implement directly 3.1 consume an enormous amount of resources on the FPGA (in terms

3 FPGA Emulator Design 30

of logic cells) , and become impossible to synthesize beyond a modest number of input

qubits.

Additionally, the expanded state space emulation also causes the quantum gate imple

mentation to consume more resources. It is possible to re-factorize an expanded state space

into smaller state vectors in the case where no entanglement is present. However it has

been shown in [19] that the detection of the non-entanglement condition and factorization

of the expanded state space require an exponential amount of computations themselves,

and is non-synthesizable in hardware.

A further constraint on the state space expansion operation is imposed by the fact that

it has to be completed within one pipeline stage (or split over several pipeline stages). In

consequence, a sequential operation within a pipelined architecture has to be performed.

In order to keep the circuitry straight-forward, the clock used in the sequential operation

has to be in phase with the global dock of the pipeline registers. Therefore, the global

dock cyde has to be long enough for the operation to complete, possibly augmenting with

increasingly sequential implementations of the state space expansion operations. This in

turn extends the overall computation time. The following inequality must hold true for the

proposed architecture to operate correctly:

clockglobal ~ M x clockexp (3.2)

where M is the number of sequential operations needed to be performed for state space

expansion, and clockexp is the period of the dock driving the expander circuitry.

There are multitudes of ways in which the expansion operation can be realized in hard

ware. Using more complex multipliers in the expander circuit reduces the number of se

quential operations (M), hence a faster global dock can be used. The disadvantage of this

approach is the increase in the resource usage of the expander circuit. The benefit of having

a smaller clockglobal to clockexp ratio is that built-in dock multipliers on the FPGA can be

used to obtain clockexp without actually slowing down the global dock. Depending on the

size of M in Equation 3.2 and the clocking capacity of the FPGA, the expander clock is

obtained by multiplying the global dock by M. Therefore, for a fraction of the resources

that would be consumed if the state space expansion was to be performed non-sequentially,

the sequential approach incurs no penalty in terms of computation time.

3 FPGA Emulator Design 31

FinaIly, for an arbitrary sized quantum circuit, the architecture of the expander needs to

be scalable and parametrizable, sinee its description has to be generated in software, just as

in the case of quantum gates. The design philosophy is thus to design an architecture for the

expander circuits such that they perform their tasks in a sequential manner, while balancing

the resource usage on the FPGA and the overall performance of the quantum circuit.

Furthermore, the state spaee is also expanded only when necessary (in the case where

multiple-input quantum gates are encountered). Therefore, unlike software simulators,

the state space is expanded gradually whenever possible and smaller representations for

quantum gates are used when possible.

3.4.1 Sequential State Space Expansion

The expansion operation can be implemented sequentially in several ways. First consider

an element that can be used to obtain the expanded state spaee from a set of qubits. Such

a circuit would be use fuI when the qubits are subjected to multiple input quantum gates,

Figure 3.4(a). The range of solutions is a function of the number of multipliers used to

realize the operation in Figure 3.4(a). In the simplest case a multiply-accumulate (MAC)

loop is suitable to han dIe this task, requiring a clock ratio clockglobat! clockexp = (n - 1) x 2n

to expand n qubits. The resulting slow down of the global clock is significant even for

modest n.

A more favorable solution from the perspective of the FPGA emulator is the one imple

menting the sequential operation using a ripple multiplier architecture. It was noted that

the expansion operation from 3.1, can be broken down into 2n sequential steps using n - 1

multipliers in a ripple configuration instead of just one in the case of the MAC. Note that

n - 1 multipliers are needed sinee each entry of the expanded state vector is computed by

performing n -1 complex multiplications between n complex numbers, which are the Œ or (3

values of the n qubits. The output state vector is formed from the 2n possible combinat ion

of these values.

The algorithm depicted in Figure 3.5 depicts the operation of the ripple multiplier

expander circuit. A count variable is used to cycle through aIl the possible combinations of

Œ and (3 of the input qubits stored in a single dimension array qubitarray. Each combination

of the complex values is then sent to the ripple multiplier architecture (lines 12 to 14) and

the resulting output is stored in the expanded output vector outstate indexed by the count

3 FPGA Emulator Design 32

variable. With this architecture, the clockglobal to clockexp ratio is 2n
, which is a significant

improvement from the MAC architecture. Furthermore, it is straightforward to design a

sc al able version of this architecture (to be generated via software) that is parametric on

the number n of input qubits. The major issue with the ripple multiplier architecture

is a difficulty with its synthesis due to the large logic cone from inputs to outputs. The

synthesizer (Leonardo Spectrum running on a PC with 2GB of memory) quickly runs out

of memory when synthesizing the expander circuit for more than 9 input qubits. However,

at the system level, it is noted that the majority of quantum circuits comprise of single

to three-input quantum gates. Therefore, this architecture can be used for expanding the

state space for two to three qubits without any synthesis problem. Since the qubit state

vectors have to be expanded when subjected to a multiple-input quantum gate, only two

or three qubit expansions need to be performed in most cases.

1. expand_direct(start_vec,end_vec,n,qubitarray)
2. {
3. Il expansion of vector qubitarray
4. Il expanded state stored in outstate
5. count:= 0
6. while (count not equal21\n -1) {
7. fori=Oton-1
8. if (count(i) equals 0)
9. ouCcount(i) := qubitarray(i).alpha
10. else
11. out_count(i) := qubitarray(i).beta
12. out_mul!:= out_cont(O) * out_cont(1)
13. fori=1ton-1
14. out_mul!:= out_mult * out_cont(i)
15. outstate(count) := out_mult
16. count := count++
17. }
18. }

Fig. 3.5 State space expansion using a ripple multiplier architecture

The proposed architecture, however, is not suit able to coyer aIl these cases where ex

panded inputs are inputs to a multiple-input quantum gate (Figure 3.4(b)) or when a large

quantum gate is encountered (in the case of an oracle circuit [9]). Another expander cir

cuit architecture is therefore needed that can be used to combine expanded state spaces

together to form a larger state space. To achieve these goals the graduaI state space ex

pansion architecture is proposed that has the ability to combine smaller state vectors into

larger ones. Thus, the final state vector is obtained by performing multiple expansions.

3 FPGA Emulator Design 33

3.4.2 Graduai State Space Expansion

The graduaI state space expansion architecture faces similar design constraints as the ex

pander architecture described ab ove. The operation of this architecture is also sequential

as this expansion requires a significant amount of complex multiplications. Therefore, the

goal is still to find an optimal balance between resource usage and overall computation

time, while at the same time have a scalable and parametric architecture.

1. expan:tgrad(state1,state2,m,n, outstate)
2. {
3. /1 state1 of length m and state2 of length n are
4./1 c.xxrbined 10 fonn a larger state lledor outstate
5. court :=0
6. while (count no! equal m-1){
7. out_CDnt:= state1(count)
8. court := court++
9. fork=010n-1 {
10. out_rrull(k) := outCDnt* state2(k)
11. outstate(count + k*m) := out_rrUI(k)
12. }
13. }
14. }

Fig. 3.6 GraduaI state space expansion

The expander circuit takes two state space vectors as inputs as shown in Figure 3.4(b).

One of the state space vectors can be sim ply a 2 x 1 qubit state vector. For example,

consider a situation where statel = [Àl ... Àm] and state2 = bl ... 'Yn] are the input vectors

to the expander circuit. The algorithm in Figure 3.6 illustrates the steps for the graduaI

state space expansion. The controller again comprises of a counter count (lines 5 to 10)

that is used to cycle through aIl elements of the state vector with length m. Then n

complex multipliers, each with one entry from the state2 vector, compute n entries of the

output state vector (lines 12 and 13). The operation of the circuit can be summarized

as: outstate(count + k x m) = 'YkÀcount, where k E (0, n - 1). Figure 3.7 illustrates the

architecture of graduaI state space expansion example where a two qubit expanded state

space is combined with a third qubit (m = 4 and n = 2).

The choice of the number of multipliers used in this architecture is determined exp er

imentally based on observing various quantum circuit topologies at the system level. In

many cases such as the quantum Fourier transform (QFT) [9], adder [24] and Grover's

oracle circuits [16], a large state vector combines with a smaller state. The tradeoff be-

3 FPGA Emulator Design

Adjusted
Clock

Controller

Expander
Module

outstate(count) outstate(count+m)

Fig. 3.7 GraduaI expansion of 3-qubit state space with two qubits already
expanded

34

tween resource constraints and circuit performance leads to two choices. One represents a

fast design, with the number of multipliers equaling the length of larger state vector ("1 in

Figure 3.4(b)). In the alternative approach, the saving of the resources is obtained through

the use of a sm aller number of multipliers that equal the length of the smaller state vector

(4) in Figure l(b)).

The proposed architectures allow performing the expansion within a pipeline stage effi.

ciently in terms of resources consumed on the FPGA and the penalty in overall computation

time. It is scalable and parametrizable, thus satisfying all the requirements of the expansion

circuitry. The major advantage of the proposed expansion techniques is seen at the system

level. The notion of a graduaI state space expansion provides considerable improvement in

the performance of the emulator for many topologies such as the QFT and quantum adder

circuits.

Figure 3.8 depicts the 3-qubit QFT circuit that uses the proposed state space expansion

technique (the expander modules 1 and 2 are implementations of algorithms depicted in

Figure 3.5 and 3.6 respectively). In this example, the state space is expanded in two stages

permitting Hadamard (Hl) and rotation (R2) gates to operate on sm aller state spaces, thus

saving a considerable amount of resources.

3 FPG A Emulator Design

Qubit3
(j)

"'C Q)
c:::
Ctl :::l

Qubit2 ~ -g
___ --+w :21---+---'" +-----1~_+

Qubit1

Q)
"'C
c:::
Ctl

----------------~x~-~-~~~ W

Fig. 3.8 3-qubit QFT Circuit with expander modules

3.5 Quantum Gates

35

In this section details about the optimization and design decisions with regards to the

emulation of quantum gates are provided. An in-depth analysis of the design of three

important quantum gates is undertaken in this section.

3.5.1 Optimizing Quantum Gates

The basic single input quantum gate descriptions can be easily created using the data

primitives defined previously. Instead of performing matrix multiplication with the input

state vector, the gates are designed such that they make use of the matrix structure and

only the necessary complex multiplications are synthesized. For gates such as the X-gate or

CNOT gate, the matrix elements are only 0 and 1. Furthermore, there is only one non-zero

element in each row of the matrix. These gates can then be implemented without any

complex multiplications since they simply swap elements in the state vector. The swaps

can be performed by using simple structural VHDL commands. On the other hand, the

Hadamard gate has a full matrix description and in this case the matrix multiplication is

inevitable.

However, when these gates are applied to the expanded state space vector, the matrix

descriptions are large (2n x 2n for a n-sized system) and usually sparse. Thus, it becomes

necessary to implement the gates' operation on the state vector using the matrix structure

and minimizing the number of complex multiplications. The following three case studies

look at the implementation of the H-gate, CNOT gate and the controlled rotation gates

to further illustrate the implementation of different gate architectures on the FPGA. It is

•
r-

r

3 FPG A Emulator Design 36

important to illustrate the implementation of these gates in detail since it would help to

justify the performance analysis of the emulator presented in Chapter 4.

Emulation of the CNOT Gate

In the expanded state space notation, the CNOT gate has a similar matrix structure as

that of a single input NOT gate albeit at a larger scale. The matrix describing a 3 qubit

generalization of the CNOT gate (Toffoli gate) where the NOT operation is applied to the

third qubit is as follows:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

eN OTpos3size3 (e) =
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

As can be observed from the above matrix, the operation of the CNOT gate can be

implemented by performing a simple swap of the seventh and eighth entries of the input

state vector. The following code illustrates this optimization:

USE WORK.QURECORDS.ALL;

ENT1TY CNOTGATE3posOnuminput3 1S

PORT (

input: IN entangledQubit(7 downto 0);

output : OUT entangledQubit(7 downto 0)
) ;

END CNOTGATE3posOnuminput3;

ARCHITECTURE CNOTGATE3_structural OF CNOTGATE3posOnuminput3 1S

BEGIN
output (0) <= input(O);
output (1) <= input (1) ;

output (2) <= input(2);

output (3) <= input(3);
output (4) <= input(4);

output (5) <= input (5) ;

output (7) <= input(6);

,
r~'

3 FPGA Emulator Design

output(6) <= input(7);

END CNOTGATE3_structural;

37

Thus, in terms of resources used on the FPGA, the CNOT gate can be implemented

with no resource consumption (see Chapter 4). This is particularly advantageous since

generalizations of CNOT gates form the univers al set of quantum boolean gates whereby

any other boolean quantum gate can be constructed as a sequence of CNOT gates [25].

Particular circuits such as the quantum full adder comprise of CNOT gates only. Thus, by

having a very efficient representation of the CNOT gate, a whole class of quantum circuits

can now be efficiently emulated in hardware. While CNOT gates themselves do not incur

a resource cost, they do have an initial cost in that they only operate on expanded state

spaces. Therefore, the cost of the CNOT operation is in the implementation of expander

circuits. However, due to the hardware-reuse approach used in the construction of the

expander circuits, the overall operation of CNOT gates is very efficient in terms of resource

usage.

Emulation of the Hadamard Gate

As described earlier, the H-gate is an important quantum gate and is commonly present

in many quantum circuits. The following matrix describes the H-gate representation for a

gate that is to be applied on the second qubit of a 3-qubit system.

1 0 1 0 0 0 0 0 vrz vrz
0 1 0 1 0 0 0 0 vrz vrz
1 0 1 0 0 0 0 0 vrz -vrz
0 1 0 1 0 0 0 0

Hpos2size3 = vrz -vrz
0 0 0 0 1 0 1 0 vrz vrz
0 0 0 0 0 1 0 1

vrz vrz
0 0 0 0 1 0 1 0 vrz -vrz
0 0 0 0 0 1 0 1

vrz -vrz
If the same operation is performed on larger state vectors, it is observed that each

row still only contains two non-zero elements. Each entry in the output state vector of

the gate is always the result of two complex multiplications and one complex addition.

Using the matrix structure, the H-gate operation can be translated in a sequence of simple

3 FPG A Emulator Design 38

complex multiplications and additions. Consequently, the Hadamard gate consumes far

more resources than the CNOT gate for instance.

Emulation of Controlled Rotation Gates

The controlled rotation gates are used in the QFT circuit. For example in the 3-qubit

implementation of this gate, where the first qubit controls the third one, the following

matrix describes the gate's operation

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

CROTpos3size3(O) =
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 eiO 0

0 0 0 0 0 0 0 eiO

In general, the rotation matrix is always a diagonal matrix, thus each matrix-rowjstate

vector multiplication involves a single complex multiplication. The eiO term is expressed

in its square form eiO = a + ib and is represented in hardware using the complexNum data

primitive. This term is given as an extra input in the gate VHDL entity description. The

VHDL description of this gate is significantly less resource intensive compared to the H-gate

since far fewer complex number operations have to be performed.

3.6 Error Analysis and Quantum Noise Modeling

As mentioned earlier, the data primitives and gate coefficients are described using a fixed

point scheme. The fixed-point scheme introduces a significantly large data representation

or discretization error compared to traditional fioating-point representation schemes. While

the fixed-point scheme has been developed such that it can represent quantum information

effectively, the effect of the discretization error on quantum computation requires a doser

look. Understanding the discretization error can also lead to the determination of the word

length for a particular sized quantum system.

3 FPG A Emulator Design 39

In an actual quantum computer, the quantum computation suffers from two major

sources of errors: interaction of the quantum system with the environment that causes a

disruption in quantum parallelism (decoherence) and inaccuracies in quantum gates [22].

While these errors are not present in their actual form while emulating the quantum circuit,

the discretized error can be modeled such that the output results of the emulator are

equivalent or no worse than those from an actual quantum computation.

3.6.1 Single Qubit Error

The two main sources of discretization error are the qubit representation itself and the gate

coefficients. The error model of a quantum gate operating on a single qubit is depicted in

Figure 3.9. Here, 8 is the error in the input that is propagated and augmented with error

E, the discretization error of the matrix coefficients representing the given gate.

Quantum Gate

Fig. 3.9 Quantum gate error model

The error model can be expanded as in Figure 3.10. Then, the multiple sources of

an error are added linearly. This model is used to evaluate the error at each gate in the

network.

ir~;~~!~l + I-:[::!l-:-:[:~:~l-:I--[~~l-Il=[;:: 1
Actual Value j Input Error Gate Computation :

j Imprecision Error j

l ___ ~~r_o.r __ J

Fig. 3.10 Expanded gate error model

- ---------------------------

•
•

•

3 FPG A Emulator Design

1 ----------_.J

Absolute
Error

Fig. 3.11 Discretization error in a qubit

The absolute error E is thus,

40

(3.3)

where Cl:e and (Je are described in Figure 3.10. These error values affect the probability of

the qubit to be in 10) or Il) state when the qubit is subjected to a quantum measurement.

The qubit can be considered as a three dimensional unit vector in Figure 3.11 - while

two dimensions are needed for Cl: and {J, the third dimension is attributed to the use of

complex numbers. The representation error in the qubit is then given as the absolute

difference between the true and discretized positions of the vector representing the qubit.

3.6.2 Expanded State Space Error

While the above description of error is sufficient for a single qubit evolution, when deal

ing with expanded quantum state spaces it is more complex to understand the notion of

"closeness" between the actual and discretized state spaces. Furthermore, gate error also

becomes more cumbersome as the transformation matrix grows exponentially in size.

The closeness between quantum states is defined as jidelity F [22], [23J

3 FPG A Emulator Design 41

(3.4)

In the case of analyzing error in two quantum states, 1 cp) is the actual quantum state

and l'l/J) is the quantum state subjected to error (discretization). The concept of fidelity is

then involved in the gate evolution of the quantum system by defining an error rate per

quantum gate [23]. The error rate is defined as

I-F
Error Rate = ----c;- (3.5)

where G is the total number of gates that the quantum state is subjected to. The gate

error rate has been studied [26], [27] and for decoherence and gate inaccuracy reasons it

was shown to be between 10-5 and 10-3 . The following analysis uses this concept of gate

error to provide a relationship between word length, gate error and circuit size (in terms

of total number of qubits). The above quantities can be used to de al with quantum noise

and gate error rates dealing with quantum noise directly (in actual quantum systems) have

been derived in [26],[22]. However, in the case of the emulator the only source of error in

the computation is the discretization error. Therefore, agate error model based on the

discretization error introduced per gate is required.

The precision error in each word (real or imaginary part of the complex number) is 2-L

where L is the number of bits in the mantissa of the fixed point number (total word length

is thus L + 2). The precision error in the overall quantum number is therefore f = 2-L ",fi.
This can be trivially derived by considering the complex number as a two dimensional

vector and calculating the magnitude difference between the actual and discretized complex

number vectors. It can also be assumed as worst case, that each operation (multiplication

or addition) adds this error to the complex number. From the previous sections, it can be

observed that sorne gates such as the CNOT gate do not introduce any error in the state

vector, while on the other extreme, gates such as the H-gate perform multiple operations

on each complex number in the state vector. Therefore, a reasonable choice for gate error

modeling, is such agate that linearly adds f to each term in the state vector. This is do ne

by applying a rotation matrix that affects an values of the state vector. This could be a

diagonal matrix containing a non-zero real number at each entry. This amounts to one

multiplication on the real and imaginary part of each entry in the state vector per gate.

Consider a quantum system comprising of N qubits. The length of the full expanded

3 FPG A Emulator Design 42

state space vector is thus n = 2N . Let E be the final error in each term of the output state

'I/J) of the quantum system su ch that

(3.6)

Theorem 1. The word length L required for simulating the quantum evolution of an N

qubit system in the expanded state space is:

(N + 1)/2 ~ L ~ (N + 35)/2. (3.7)

Proof. Assume l'P) = [À1 ... Àn]T is the actual error-free output of the quantum circuit. Here

Ài are complex numbers such that ~~1 IÀil2 = 1. The fidelity can now be computed

between the state vector l'P) and l'I/J) as follows

F - Il ('PI'I/J) 112

ÀHÀl + E) + ... + À~(Àn + E)

- 1 + E(Ài + ... + À~)

The error rate can now be expressed using the above expression for F and Equation 3.6 as

ErrorRate (1- F) (E(Ài + ... + À~)) max ~ =max G

max(Ài + ... + À~) ~

The maximum value of the error rate occurs for Ài = 1 ~I = 1)nI and can be deter

mined by partial differentiating the equation ~~=1 IÀil2 = 1 for each Ài' The error rate is

thus,

(nl~l) ErrorRate = E :: = 5n2-L = 2(N-2L+l)/2 (3.8)

t

•

3 FPG A Emulator Design 43

From [22], [23] the above error rate maybe as high as 10-5 to 10-3 . Therefore, the

following bound can be determined for the word length in terms of the number of qubits

10-5 ~ Error Rate ~ 10-3

10-5 ~ 2(N-2L+1)/2 ~ 10-3

-17 <li-L+l<
- 2 2 - -10

N+21
~L~

N +35
2 2

o

3.6.3 GraduaI Word Iength Expansion

The word length for an arbitrary sized circuit (in terms of number of gates) can be computed

using the bound given by Equation 3.7. Note that the above analysis can be applied to other

fixed- and floating-point representations by using the appropriate unit round-off expression.

The following synthesis mIes are derived from Equation 3.7:

• Quantum gates must be synthesized with the expanded precision representation de

pending on the size of the state space the gate is operating on,

• The output of the expander circuits should also use the expanded precision represen

tation by padding the inputs with the necessary zeros before expansion.

The above mIes along with the error bound allow the synthesis of the quantum circuit

for a particular error requirement. For example, Figure 3.12 illustrates the word lengths

needed to emulate the test circuit from Figure 3.8. The graduaI word length expansion

allows conserving resources by synthesizing gates operating on a reduced state space with

a smaller word length. This enhancement however is modest. For a 3-qubit QFT circuit

this optimization yields an improvement of 1. 7%. Due to the relatively small change in

word length with increases in circuit size, the improvement would grow less gradually with

circuit size.

•

t

•

t

3 FPG A Emulator Design

11:S:L:S:18

Qubit3

11.5 ~ L ~ 18.5

ID"-
"0 ID cm :::J

12:S: L:S: 19

Qubit2 ~ -g
___ -++!w ~+--...... -+ +--_1-....,

Qubit1

ID
"0
C
m

----*-----mxx~-~-~~ w

Fig. 3.12 Variation of word length with state expansion

44

•

•
t

•
,

45

Chapter 4

Implementation Details and Results

This chapter encapsulates several important consequences regarding the operation of the

emulator. The particulars ofthe automated code generation tool to describe quantum gates

and extracting emulation results from the emulator to the PC are laid out. More details

regarding the choice of fixed-point numbers and their effect on quantum circuit emulations

are provided. Furthermore, an ensemble of quantum circuits are created using the emulator

to verify its viability as a potent emulation technology. Finally, the performance of emulated

circuits is compared to other software-based simulators. All this would reveal that the

emulation technique is not only an evolution of quantum circuit simulators but also opens

up new avenues and insights into this very complex problem. 1

4.1 Software-based Gate Generator

The large variety of gate transforms necessitates automation of the process of describing

the gate transform in VHDL. To that end, a C++ application has been created that

using command-line instructions from the designer, outputs the VHDL implementation of

the required gate. Figure 4.1 depicts the UML class diagram [28J of the gate generator

software.

C++ was chosen for the object-oriented encapsulation it provides and for the code reuse

opportunities. Figure 4.1, depicts only some of the gates that can be created using the gate

generator. All the quantum gates that can be generated using the software are child classes

1 Part of this work has been published in [20].

4 Implementation Details and Results 46

GateGenerator

+HelpMenuO
+GateGenerationMenuO
+ExceptionO

1

1 1

Expander
* - *

+create _expanderO
+printVHDLO QuantumGate

1 matrix
-numlnputs : int

n
-row: int

-transform -col: int
-size: int 1

-**buf : double
-qbitnumber : int +kronO : void
+QuantumGateO
+CreateTransformO
+printVHDLO : virtual void

t;;. t;> t;;.

CROTgate CNOTgate Hgate
-databitpos : int -databitpos : int

+printVHDLO : void +printVHDLO : void +printVHDLO : void

Fig. 4.1 UML class diagram for the gate generator software

..
•

~ ..• 4 Implementation Details and Results 47

of the QuantumGate class. This polymorphic structure is particularly useful, since it allows

code reuse and also formalizes the addition of new gates to the generator. A new gate class

would simply have to implement the print VHDL() function that would translate the gate's

transform to VHDL.

The transform itself is created using the CreateTransform() function in the Quantum

Gate class. The transform is objectified using the matrix class. Depending on the size,

numlnputs and databitpos (for the case of multiple input gates) attributes, the kron() func

tion is called by the CreateTransform() function to create the final matrix representation of

the quantum gate. The kron() fun ct ion in the matrix class is an efficient implementation of

the Kronecker product [29] and can quickly generate large matrices. While this approach

introduces a pre-processing step before the actual emulation of the quantum circuit (unlike

other quantum circuit simulators), once the gates descriptions have been generated, they

can be reused multiple time and for different quantum algorithms.

The command-line interface makes this technique more accessible. The user simply has

to specify the gate code (an acronym based on the gate name that can be referenced easily

through the help menu in the interface), the size of the quantum system and the position

of the qubit (the top most position is set to 0). OptionalIy, for multiple input gates, the

user also has to specify the number of inputs of the gates, and the position of the data

qubit as welI). AlI of these parameters are input as a single command (space delimited)

and the generator outputs the VHDL description of the required gate. The output file is a

complete description and can be compiled and synthesized using FPGA CAD tools.

4.2 Miscellaneous Architecture Components

The final step in the FPGA emulation of a quantum circuit is to retrieve the final quantum

state from the FPGA to the PC. The final quantum state of the qubits can then be sub

jected to quantum measurements in software (see Appendix A for more details on quantum

measurement simulation). Depending on the size of the quantum system and the expanded

state space, the data that has to be transferred from the FPGA to the PC can be signif

icantly large. Various PC communication proto cols such as USB, parallei port and seriaI

port (RS-232) can be used to send data to the PC. While the USB communication is the

fastest way to transfer data, due to the unavailability of USB communication on the FPGA

development platform that was available, it was decided to use the RS-232 port instead.

4 Implementation Details and Results 48

The development of seriaI communication for the emulator serves as a guideline for other

communication techniques that may be use instead of seriaI RS-232 communication.

The first step to achieve seriaI communication between the PC and the FPGA was

to implement a universal asynchronous receiverjtransmitter (UART) controller [30]. The

UART controller takes in a byte of data and sends it one bit at a time to the PC. Due to

the varying size of the data set and data primitives, the UART is designed to work with

various sizes of total input data. The UART then takes 4 bits of data, converts them to

an ASCII character and sends it serially to the PC. On the PC side the data is stored on

a file and can then be converted to real numbers.

SeriaI communication can occur at a variety of speeds [30] and for this a customized

clock divider circuit using behavioral VHDL has also been developed. The UART clock is

much slower than the global system clock, and sending the data to the PC is much slower

(except perhap~ for very large quantum circuits) than the actual computation of the final

quantum state. Since there are a variety of PC communication techniques available, the

emulator results presented later in this chapter do not include time required to send the data

to the PC. The time for seriaI communication however, can be determined unequivocally.

Based on the total length of the final state vector M, the number of bits per entry of the

state vector 2N where N is the number of bits assigned for the real or imaginary part of the

complex number and the baud rate for the seriaI communication (bytes per second), the

time for sending the data to the PC tcomm can be determined from the following equation

Mx 2N x 10 10
tcomm = b d = totalcharacter s x b d

4 x au rate au rate
(4.1)

For example a 16 qubit circuit, using N = 18 (16 bits for the mantissa of the fixed

point number), it would take 51.2 seconds to transmit the data from the FPGA to the PC.

This number, obviously grows exponentially wh en simulating a larger number of qubits

and therefore, a faster communication protocol (such as USB 2.0 with data rates up to 480

Mbps [31]) would be more practical in that case.

The entire emulation scheme is shown in Figure 4.2. The quantum circuit controller,

essentially determines the start and end of a quantum system evolution. For circuits such

as the Grover's search algorithm, where the data iterates through the circuit, the controller

has to wait for the exact number of clock cycles (of the global clock) before notifying the

UART controller to start sending the output of the circuit to the PC. The total clock cycles

4 Implementation Details and Results

Global
C' 't Ircui

1
Push-Buttons

1

Clock

date Up
R

Ad
OM
dress

Input ROM

StartlReset r--

Emulation

Quantum
Circuit

Controller

1 1.
Circuit J

Input Quantum
Circuit

Clock
Oivider for

UART

UART

1

Clock

UART ln
Controller

Seriai
put to
PC

r--

Fig. 4.2 Block diagram of final emulation hardware

49

are determined by the number of pipeline stages in the circuit (and the iterations of the

data in the case of Grover's search algorithm),

A number of push buttons on the FPGA development board were also used. The

buttons can be used to start and reset the emulation as well as choose the inputs to the

quantum circuit. A set of inputs is loaded into memory (ROM) on the FPGA during

synthesis. The push-button updates the address line on the ROM to select which input is

sent to the circuit. This mechanism is convenient and neeessary sinee entering the initial

values for a large number of qubits is cumbersome.

4.3 Emulator Mapping Results

In this section, details about the synthesis of the various components of emulator are

provided along with experimental evidence of the various synthesis techniques discussed in

Chapter 3. The techniques presented in this thesis offer the me ans of undertaking quantum

circuit emulations in FPGAs by including the quantum gate library and expander circuits,

like most quantum software simulators [10J. No changes to standard FPGA mapping and

the overall design fiow are required. Figure 4.3 show the FPGA mapping of the 3-qubit

QFT circuit. The parallel and pipelined architecture of the circuit is clearly evident .

. ~-------------------------------- ._-_._-_ .. _-

4 Implementation Details and Results 50

Fig. 4.3 FPGA snapshot of the 3-qubit QFT circuit

4.3.1 Synthesizing Quantum Circuits

The quantum circuit emulator uses a tradition al four stage VHDL to FPGA fiow illustrated

in Figure 4.4. However, the synthesis and optimization stage (stage 2) requires the a

considerable amount of processing time as the synthesizer optimizes the quantum circuit's

mapping based on area and speed parameters. In order to improve on the time spent during

this stage, the optimization (FPGA level block placement and functionality) for individual

quantum gates is saved and can be reused for different quantum circuits. This effectively

bypasses the stage 2 of the fiow and only the routing stage is necessary for circuits using

pre-synthesized gates.

4.3.2 Quantum Gate Synthesis Results

Quantum gates, unlike classical gates, have a uniquely different transform matrix depending

on the ordering of the inputs. This is especially evident when single input quantum gates

operate on an input in the expanded state space. The gate transform depends on the size

of the inputs and the position of gate's input in the expanded set. However, as described in

detail in Chapter 3 these gate transforms have similar matrix topologies. This similarity in

the transforms translates to the fact that resources consumed by a quantum gate depend on

the size of the expanded state vector. Furthermore, the resource consumption is oblivious

to changes in the position of the actual qubits the gate is operating on. The creation of

different quantum gates for different mantissa lengths is conveniently handled via the soft-

4 Implementation Details and Results 51

VHDL created description
using automated code

generation tool

~~
Compile/synthesize
VHDL code to circuit

netlist

~>
Place-and-route

to FPGA
technology

~~
Program
FPGA

Fig. 4.4 Quantum Circuit Emulator Synthesis Flow

ware scripts. The software scripts automaticaIly generate the correct VHDL code depicting

the transform in an efficient number of complex multipliers that can then be mapped to the

FPGA directly. Table 4.1 depicts the logic ceIl usage for the quantum gates in the library

for the mantissa size of 12-bits. The device chosen is the Altera Stratix EP1S80F1020C.

The simulation tool used is ModelSim and Leonardo Spectrum was employed to obtain

synthesis results.

Table 4.1 Logic CeU Usage on Altera Stratix EPlS80F1020C

Circuit / Gate Single Input 3-qubit 4-qubit 5-qubit
Expanded Expanded Expanded

Input Input Input
Hadamard Gate 643 1588 3069 4227
Rotation Gate 442 442 1588 2011
CNOT Gate 0 0 0 0
X-Gate 0 0 0 0
Z-Gate 0 0 0 0

As can be observed, the CNOT gates do not occupy any resources themselves as they are

implemented as simple bit vector swap operations on the FPGA. However, they do incur a

4 Implementation Details and Results 52

significant resource cost in the computation because the gates only operate on inputs in the

expanded state space form. Therefore, resources are consumed by expander circuits and all

the gates subsequent to the CNOT gate in the circuit also have to be expanded to deal with

the expanded input. As X-gates and Z-gates also do no involve any adderjmultiplier units

they do not consume any resources. On the other hand, Hadamard gates and rotation gates

do require more resources as when the input size scales up more adderjmultiplier units are

consumed.

4.3.3 Expander Circuit Synthesis Results

Expander circuits are necessary to convert a set of individual qubit vectors into an expanded

state space vector. Two state space expansion circuitry designs were considered. The direct

expansion technique basically expands a set of qubits within one pipeline stage using a

ripple-multiplier architecture. The major disadvantage of this technique is that it results in

a logic-cone that is difficult to synthesize beyond a small number of qubits. The synthesizer

software runs out of memory when synthesizing the direct expansion circuit for more than

nine qubits (running on a high performance PC with 2.0 GHz AMD Opteron processors

and 2GB of RAM). Furthermore, from observing various quantum circuit topologies we

realize that direct expansion is only required at most for a set for two or three qubit since

most quantum circuits comprise of twojthree input quantum gates. Figure 4.5 depicts the

direct expansion circuitry synthesis results for varying numbers of qubits. The mantissa

length in all cases is 12 bits. Note that the resource usage grow linearly until six qubits,

beyond which the synthesizer starts having problems with the large logic co ne and the

resource usage grows exponentially from then on.

A complimentary state space expansion circuit is then needed to merge sm aller state

spaces when necessary. This leads to a graduaI state space expansion technique whereby

. the computation state space is gradually expanded and only when necessary. This is un

like the general software simulation approach where aIl the qubits are represented in the

expanded state space at the beginning of the computation. The gradual state space expan

sion technique greatly improves performance. Table 4.2 illustrate the difference between

these two design philosophies by using a 3-qubit QFT circuit as a test-case. As can be

observed with the graduaI state space expansion technique leads to an 18.5% improvement

in resource usage and 11.3% improvement in computation time.

4 Implementation Details and Results

18000r----,----,-----,----,-----,-----,-----,

" CI

16000

14000

12000

~ 10000

~
~ 8000

6000

3 4 5 6
Number of Qubits

7 8 9

Fig. 4.5 Direct state space expansion circuit synthesis

Table 4.2 Comparison of the direct and gradual expansion techniques

Logic Cell Usage Computation Time [ns]
Direct Expansion 13829 110.8
GraduaI Expansion 11271 97.65

4.4 Computation Error

53

In Chapter 3 a detailed error analysis has been provided that relates classical computation

error when simulating quantum circuits with the error suffered by real quantum circuits in

the form of quantum noise. It has been determined in [26], [27] that if the error introduced

per gate is in the range 10-5 and 10-3 the computation can take place successfully. Using

the limits on gate error and classical error analysis techniques, a bound on the size of

the classical word length needed to mimic real-life quantum computation successfully has

been derived. In this section, the actual results of the application of the error bounds is

produced. This provides an experimental validation to the theoretical results presented in

Chapter 3.

The error introduced per gate can be experimentally determined by comparing the

computed output of a synthesized gate and using the fidelity expression in Equation 3.4.

4 Implementation Details and Results 54

Table 4.3 presents the error introduced by each quantum gate for various mantissa lengths

with the error bound found expressed in Equation 3.7 (using N = 3).

Table 4.3 Error introduced by different gates for various mantissa lengths

Gate Name 11 bits 12 bits 17 bits 18 bits
Hadamard gate 6.48 x 10-4 1.57 X 10-4 1.68 X 10-5 0.90 X 10-5

Controlled Rotation gate 6.53 x 10-4 1.63 X 10-4 1.71 X 10-4 0.95 X 10-5

CNOT gate 0 0 0 0
Z-gate 0 0 0 0

As can be observed that the actual error per gate for the various gates is weIl within the

tolerance for successful quantum computation. The CNOT gates themselves do not incur

error directly (the bit vector swap operation does not incur any precision error) , but the

error is implicitly present in the form of the expansion operation itself. At the system level

we see that the emulated output has high fidelity. For instance in the case of a 3-qubit QFT

circuit using a 12-bit mantissa the resulting output has an absolute error of 2.06 x 10-4

which is comparable to the actual gate error of the Hadamard and controlled rotation gates

that form the circuit.

The above results also vindicate the choice of fixed-point numbers for depicting quantum

information within the emulator. The main con cern with this choice was that the error

incurred in computation due to the discretization of the gate coefficients and qubit values

would make emulation impractical with fixed point numbers. From the above results, it is

evident that this is not the case.

4.5 Quantum Circuit Benchmarks

In this section a comparison of the emulator's performance with the eminent software

simulator QuIDD [10] is provided. The QFT circuit and Grover's se arch algorithm are

used as test-cases for performance comparison. Apart from the fact that these circuits

are two of the most important one's that have been developed so far, the topologies of

the circuits require more resources than most of the other algorithms developed so far

and therefore they also serve as good stress tests. Table 4.4 compares the emulator with

QuIDD when simulating the QFT circuit. Table 4.5 provides another benchmark using

the Grover's search algorithm. The timing results of the emulator were obtained from the

~~--- ---- ---~

4 Implementation Details and Results 55

plaee-and-route synthesis proeess in Leonardo Spectrum. QuiDD-based simulations were

executed on a 2 GHz 64-bit Opteron unit with 2 GB of RAM and using the Redhat Linux

operating system. The timing results of the algorithms were clocked using native QuIDD

profiling functions.

Table 4.4 QFT Benchmark

Number of Qubits LC Usage FPGA Emulator [ns] QuIDD[ns]
3 11271 97.65 2.13 x 107

4 16687 127.80 6.06 x 107

5 21898 147.80 1.2 x 108

Table 4.5 Grover's Search Algorithm Benchmark

Number of Qubits LC Usage FPGA Emulator [ns] QuIDD[ns]
3 14284 97.65 3.40 x 107

4 23525 255.10 6.00 x 107

5 30121 286.80 1.59 x 108

As can be observed the FPGA emulator outperforms QuIDD by several orders of mag

nitude. It is important that the computation times mentioned here are ones that involve

just the actual computation of the output of the circuit and do not take into account time

for quantum measurement. The quantum measurement time would be more significant for

the emulator as data has to be transferred from the FPGA back to the PC. That time is

sim ply a function of the data transfer proto col being used.

Another interesting observation is the way computation time is scaling up with circuit

size. The increase in the case of the QFT is essentially due to the fact that addition al

pipeline stages have been introdueed for larger circuits. In the case of the Grover's search

algorithm, the increase of a 3-qubit circuit to a 4-qubit one is greater not only because

of additional pipeline stages but also because the 4-qubit circuit requires two iterations

to suceessfully complete the se arch as opposed to one iteration in the 3-qubit case.' The

differenee between the 4-qubit and 5-qubit circuits is less significant sinee the number of

iterations required are the same for both circuits. Conversely, QuIDD's computation time

also scales up even more significantly with increases in circuit size. Therefore, as long as

a circuit can be synthesized to the FPGA it should outperform QuIDD because of the

emulator's parallel architecture and hardware-Ievel arithmetic computation.

4 Implementation Details and Results 56

4.6 Scaling Quantum Circuit Emulation

The results presented in the previous section are a proof of concept that FPGA-based

emulation of quantum circuits is viable and has a significantly lower computation run

time when compared to the leading software simulator. Ultimately though, the emulation

environment's purpose is to emulate large scale quantum circuits and in this section a qual

itative analysis at the different aspects of the emulator is undertaken to determine how weIl

the overall architecture scales up.

Using a top-down approach, consider the overall architecture of the quantum circuit.

EssentiaIly, it is a pipelined architecture and as quantum circuits increase in size, more

pipeline stages are added to the circuit. The only critical issue with a pipelined archi

tecture is timing and with the robust dock distribution system of today's leading FPGA

technologies, this issue should not be any hinderance to constructing larger quantum cir

cuits. Furthermore, while the pipelined architecture enforces stringent timing requirements,

it also decouples the computation into constituent parts. This fact is critical because larger

quantum circuits can be spread over multiple FPGAs by splitting up the pipeline stages

over different FPGA units. A global dock synchronizing the operations on an the FPGAs

can then be used to retain the cohesive nature of the overall pipeline.

At the next level consider the components that make up the quantum circuit, that is

quantum gates and expander circuits. Using the graduaI state space expansion technique,

the state space expansion operation should not be a constriction on the construction of

larger quantum circuits. Since the operation is divided over multiple pipeline stages (at

the. discret ion of the designer) it is architecturally quite benign. As far as quantum gates

are concerned, the most commonly used one is the CNOT gate and that itself does not

consume any resources on the FPGA. On the other extreme, Hadamard gates can consume

a significant amount of resources when operating on large state vectors, however for most

quantum circuits the Hadamard gates are applied at the beginning of the computation to

individual qubits and therefore they no longer consume an exorbitant amount of resources.

However, as illustrated by the expander circuit architectures, a hardware reuse design

approach is possible within the paraIleljpipelined architecture of the emulator and it can

be applied to Hadamard gates as weIl.

At the lowest level, the emulator comprises of fixed-point adders and multipliers. Larger

.~ quantum circuits require more addersjmultipliers. FPGA technology is scaling up rapidly

,r-, 4 Implementation Details and Results 57

and potentially custom platforms comprising of multiple FPGAs can be constructed to

provide the necessary resources for larger quantum circuits. The word length expansion

techniques proposed in Chapter 3 can be used to optimize the resource consumption of the

addersjmultipliers as the state space expands within a large quantum circuit.

Finally, it is important to note that the design of the emulator allows flexibility in the

way quantum circuits can be constructed. From quickly generating various architecture

descriptions through software to flexible state space expansion techniques to having the

ability to vary the word length of data primitives, the emulator has been designed such

that it can adapt to the architectural challenges of large scale quantum circuits.

58

Chapter 5

Conclusion and Future Work

This thesis focuses on the design, implementation and evaluation of a FPGA-based quantum

circuit emulator. The emulator uses a pipelined architecture, to emulate the parallelism in

quantum computation as weIl as the time evolution of a quantum system. Optimizations

based on computer architecture, sparse-matrix computation and the natural properties of

quantum circuits were employed to produce a scalable platform for quantum computation

that outperforms software-based simulators by several orders of magnitude. Furthermore,

the emulator also takes into account the efIect of quantum noise and gate error on the

computation, both of which are difficult to reproduce in software. At the same time, the

implementation of the emulator provides a deeper understanding of the issues involved in

quantum circuit modeling such as word-length of the data-primitives and gradual state

space expansion based on quantum circuit topology.

5.1 Thesis Summary

In Chapter 1 a brief history of quantum computing is provided. Quantum computing is

one of the most promising new forms of computing that is being heralded as the future of

computation. Interest in this form of computing is multidisciplinary and research in the

notion of using the spinjpolarization of particles exhibiting quantum mechanical properties

to store information has been ongoing for almost two decades now. However, the unavail

ability of quantum comput ers has led to the development of software based quantum circuit

simulators. Simulating quantum circuits using classical computers on the other hand, is

computationally expensive as quantum algorithms require exponential resources on classi-

2005/10/31

5 Conclusion and Future Work 59

cal computers as opposed to polynomial resources on real quantum computers. Emulation

of quantum circuits is next described as a more detailed modeling approach compared to

simulation that can be accelerated by performing computation in parallel at the hardware

level.

Details of the quantum circuit model are described in Chapter 2. The analogous nature

of quantum circuits (in terms of bits and gates) with classical circuits is used to provide a

convenient understanding of this new computational model. Quantum mechanical princi

pIes of superposition and entanglement as used in quantum computing are also described.

The Dirac bra-ket notation as weIl as the expanded state space notation used to depict infor

mation stored by a quantum system are then introduced. Two famous quantum algorithms:

the quantum Fourier transform (QFT) and Grover's search algorithm are introduced and

they serve as examples and benchmarks in the rest of the thesis. Finally, a brief survey of

three software simulators of quantum circuits and the various techniques they employ to

optimize quantum circuit simulation is undertaken.

Chapter 3 describes in detail the architecture of the emulator and the various opti

mizations used to efficiently synthesize quantum circuits on the FPGA. The concept of

graduaI state space expansion is introduced whereby the state space is expanded gradually

when necessary as opposed to software simulators that execute quantum algorithms on a

fully expanded state space. The novelty of this technique is that it significantly reduces

the amount of computation involved and details of two circuits that perform state space

expansion are provided.

Next, sparse-matrix and hardware-reuse based optimization techniques are described

that allow efficient implementation of different quantum gates on the FPGA. This is fol

lowed by a detailed error analysis of the computation being performed based on the fixed

point data representation scheme used by the emulator. This classical error analysis is

then combined with quantum gate error and quantum noise analysis to produce a bound

on the word-length of data primitives. As the emulator architecture allows flexibility in

word-length, a word-length expansion paradigm is proposed that allows modeling the effect

of quantum noise and gate error on quantum computation.

Lastly, in Chapter 4 actual synthesis results of various quantum circuits are provided

along with experimental results that vindicate the choice of the optimizations and theoret

ical analysis laid out inChapter 3. The chapter begins with the description of a software

gate generation tool that outputs VHDL descriptions of various quantum gates based on

5 Conclusion and Future Work 60

the parameters provided by the user. The performance of the emulator is compared with

an eminent software simulator and it is shown that the emulator outshines the software

simulator in terms of computation runtime by sever al orders of magnitude. It is empiri

cally proven that the FPGA-based emulator is a viable and effective platform for quantum

circuit modeling.

5.2 Future Research Work

The FPGA-based emulator as it stands now is a complete test-bed for quantum circuit

emulation. However, more avenues of enhancing the emulator's performance still remain

open. An important enhancement to the emulator would be more CAD level support for

synthesizing quantum circuits. Currently, regular CAD tools are used to synthesize quan

tum circuits. However, research and development of CAD tools specifically designed to

synthesize massively parallel architectures, fixed-point multipliersjadders and swap opera

tions could lead to significantly faster quantum circuits that consume less resources on the

FPGA. Another possibility is synthesis of quantum circuits over multiple FPGA's and the

development of a multiple FPGA test-bed to synthesize large-scale quantum circuits.

On the other end of the spectrum, the effect of quantum error-correction algorithms

within the emulation environment can be investigated. The FPGA emulator can also be

potentially modified to be used in practical applications of quantum computing such as

quantum cryptography.

r

Appendix A

Quantum Measurement Simulation

using Quantum Frames

61

Quantum measurement is a complex pro cess that has serious implications on quantum

algorithm performance. Therefore, in developing a simulation environment for quantum

computers it is important to take in account the effect of measurements on the system. To

this end, a software based quantum measurement simulator has been developed that applies

the frame-based measurement technique to the emulated output of quantum circuits. 1

A.l Quantum Measurement

Quantum evolution follows from the second postulate of quantum mechanics which states

that an evolution of a closed quantum system over time is described by a unitary operator.

Thus astate l'!/J') at time t 2 is related to an earlier state l'!/J) bya unitary matrix U.

l'!/J') = UI'!/J) (A.l)

The postulate assumes that the evolution of closed quantum system is being considered.

Quantum circuits are considered to be c10sed systems in which quantum gates apply unitary

transformations to the quantum state as it progresses through time. However, at the end of

a quantum algorithm the system is no longer closed as it is subjected to a measurement so

that its state can be determined (the result of the computation). At this point the system

1 Part of the work presented here has already been published in [32]

2005/10/31

A Quantum Measurement Simulation using Quantum Frames 62

is no longer closed and the evolution is no longer guaranteed to be unitary.

At this point a third postulate of quantum mechanics is introduced which defines quan

tum measurements in a formaI manner. The postulate states that quantum measurements

are a collection of measurement operators Mm where m is the measurement outcome that

may occur in our system. The probability that result m occurs upon measuring a quantum

system 1'ljJ) is given by the equation

(A.2)

It can be observed from the above postulate that measuring quantum systems is a prob

abilistic process. The measurement operators firstly must meet the completeness equation:

(A.3)
m

For example, if a single qubit 1'ljJ) = alO) + ,B11) is measured the probability of measuring

o and 1 is lal2 and 1,BI2 respectively. In order to measure these states the measurement

operators are constructed as Mo = 10)(01 and Ml = Il)1(11. It is easily checked that these

operators satisfy the completeness equation. Thus, when these operators are applied on the

system, the resulting state depends on the probability defined by the a and ,B coefficients.

Suppose a system having l'ljJi) (1 ::; i ::; n) orthonormal states is prepared in the ith

state. If a measurement operator Mi defined such that Mi = l'ljJi)('ljJil and is applied to

the prepared states then p(i) = ('ljJiIMil'ljJi) = 1. Thus, this state can be measured with

certainty.

However, the restriction imposed by quantum measurements is that aIl the states l'ljJi) 1
must be orthogonal in or der to distinguish them successfully. The probability of error in

distinguishing non-orthogonal states is not zero. This causes significant measurement errors

wh en results of the quantum computation are in non-orthogonal quantum states (as in the

case of the QFT algorithm).

A Quantum Measurement Simulation using Quantum Frames 63

A.1.I Projective Measurements

Projective measurements are described by an observable M, which is an observable Hermi

tan operator on the state space of the system being observed. The spectral decomposition

of M is given by

(A.4)
m

where Pm is a projector on to the eigenspace of M with eigenvalue m. The probability of

measuring out come m is now

(A.5)

Thus, projective measurements are a special case of postulate 3 where the corresponding

measurement vector Mm is forced to be Hermitan and MmMm, = 8m8m,Mm.

A.1.2 POVM: Positive Operator-Valued Measure

POVM are the complete set Em where Em is a positive operator such that

(A.6)

Algebraically POVM completely satisfy postulate 3. The key aspects of POVM is that

aIl their elements are positive and that I:m Em = 1 which is the completeness equation.

POVM are a powerful formalization of the quantum measurement operator. They are less

restrictive than the general measurement vectors and their construction is more intuitive.

A.2 Frame-Based Measurements

In this section a brief discussion on the problem of distinguishing non-orthogonal states

and a possible solution based on tight frames is given.

A.2.I Distinguishing non-orthogonal quantum states

As described in the previous section, if a quantum system has non-orthogonal states then

distinguishing between these states has a probabilistic error. For a quantum system con-

l

•

r

A Quantum Measurement Simulation using Quantum Frames 64

taining 'l/Ji quantum states (1 ::; i ::; n) and POVM elements are (/Ji, then the probabilistic

error can be described as

(A.7)

If aIl the states 'l/Ji are orthonormal then choosing /Li = 'l/Ji results in Pe = O. However, Pe

will be non-zero for non-orthogonal pure quantum states. Thus, a fundamental problem in

quantum mechanics is to construct measurements optimized to distinguish between a set

of non-orthogonal pure quantum states.

'1/2

PH - -- -- - - - - - - - -- -- -- ----..

Fig. A.1 Projective Measurements

Figure 2 depicts one the major problem in projective measurement. For simplicity the

complex dimension (which leads to a three dimensional figure like that of a Bloch Sphere)

is ignored. f.-t and f.-tl are the measurement vectors while 'l/Jl, 'l/J2 and 'l/J3 are the states that

are to be measured. Due to the orthogonality restriction, the quantum states can only be

projected on to the orthogonal measurement vectors. A measurement for instance could

project 'l/Jl or 'l/J2 to f.-tl and it would not be possible to distinguish between the two quantum

states.

Figure A.2 shows how POVM measurement vectors can be devised so they aIlow for less

probability error than standard measurements. POVM vectors are not restricted to be or

thogonal. Here, the quantum states 'l/J1, 'l/J2 and 'l/J3 can be projected on to the non-orthogonal

measurement vectors f.-tl, f.-t2 and f.-t3· The choice of measurement vectors determines the

probability error of detection. One possible solution to determining the measurement vec

tors is to formulate this problem as a quantum detection problem in which, measurement

l

• •

1

r

I~'

A Quantum Measurement Simulation using Quantum Frames

, , , , , , , , , ,
\.

/12

Fig. A.2 POVM Measurements

65

vectors are constructed to minimize the probability of detection error or more generally

the Bayes' cost (the amount of times an algorithm will be repeated in order to reduce the

detection error to zero). Attempts to achieve a solution based on direct optimizations on

these conditions is difficult and as yet an unsolved problem .

A.2.2 Least Squares Measurements and Tight Frames

An alternative optimization criterion has been proposed known as the squared error cri

terion. Measurement vectors are chosen to minimize the sum of the squared norms of

the error vectors, where the ith error vector is defined as the difference between the ith

state vector and the ith measurement vector. This optimized measurement is knows as the

least-squares measurement (LSM).

Tight frames are generalized bases comprising of /-li vectors 1 ~ i ~ n in the Hilbert

space such that

n

L I(X,/-li)1 2
= jJ211xW (A.8)

i=l

and jJ > O.

Tight frames can contain redundant elements (like POVM) which can be modeled to

optimize for LSM. Thus, it is desirable to construct tight frames which have vectors /-li
designed to minimize the error

n

E = L ([.li, [.li) (A.9)
i=l

• • • •

1

•

A Quantum Measurement Simulation using Quantum Frames 66

where l2i = 'lfJi - /-li·

The quantum frame being constructed is the constrained least-squares frame where /3
and the frame vectors are chosen to satisfy the squared error criterion. The construction

of the frame begins with a set of quantum states grouped in a matrix w. The first step is

to compute the value of /3 used to constrain the frame. This is obtained as follows

(A. ID)

where r is the rank of the state matrix and Tr is trace of the resulting matrix. Next the

frame itself can be expressed in terms of the state matrix and /3.

(A.11)

where the ot operation is Moore-Penrose psuedo-inverse [29] and x* is the conjugate trans

pose of x.

The squared error is then given by

r

E = L(/3 - O"i)2 (A.12)
i=l

where O"i are the non-zero positive eigen-values of the state matrix, obtained using a SVD

operation on w.
Thus, given a matrix whose columns represent possible states of a quantum system a

frame matrix can be constructed whose columns represent measurement vectors constructed

to reduce the squared error given above.

A.3 Simulation of Measurement

The two major differences between POVM and standard quantum measurements are that

the vector /-li of the frame (considering its duality with POVM as described in [33]) do not

. have to be normalized or orthogonal. A POVM is a set of operators. These operators can be

constructed from the columns of the frame by performing an outer product on the columns.

Thus, operator Ai constructed from the ith column of the frame can be constructed as

(A.13)

t

t

•

t

A Quantum Measurement Simulation using Quantum Frames 67

The probability of observing the ith outcome for a given state 'ljJ is given by

(A.14)

The sum of these probabilities for all the observables should be equal to one. One check

to see if the generated frame is correct is that

FF* = f32pu (A.15)

where Pu is the projector on to the quantum space.

One of the motivations for working with frame-based measurement techniques is that

it is a closed-form optimization of the state detection problem and hence can be simulated

along with quantum algorithms on a classical computing system. The closed form nature

of this optimization is an important advantage because constructing optimal standard

measurement vectors is an NP-complete problem.

Quantum measurements are a key part of a quantum algorithm. In classical algorithms

obtaining the data from the algorithm is normally a trivial exercise and has no bearing

on the usefulness and performance of the algorithm. However, in quantum computing

the measurement is the key to algorithm performance and usability. For example, in the

Grover's search algorithm, the performance of the algorithm is computed to be O(..;n)
where n is the size of the database being searched, only because at least ..;n measurements

have to be performed to obtain the result of the search with high probability.

A.4 Case Study

In this section an example is provided to illustrate the working of frame-based quantum

measurement. To illustrate the simplicity of the pro cess , the technique is applied it to a

q-ary logic system. The example provided in this section subjects a quantum ternary bit

to frame-based measurement. For this purpose, Equations 2.2 and 2.3 can be extended to

ternary logic:

1'ljJ) = alO) + (311) + ,12) (A.16)

where a, f3 and, are complex coefficients related by the equation.

A Quantum Measurement Simulation using Quantum Frames 68

(A.17)

A quantum system based on a single quantum-ternary bit is depicted by the following state

matrix \]i

(

1/vf:3 1/vf:3 0)
\]i = 1/ vf:3 1/ vf:3i VI

1/vf:3 1/V3 1/V3

This matrix is now subjected to the frame measurement procedure. Using the state

matrix the resulting frame is

(

0.67 + O.Oli

F = 0.40 - 0.21i

0.09 + 0.22i

0.32 + O.Olli. -0.39 - 0.06i)
-0.27 + 0.452 0.48 - 0.04

0.50 - 0.28i 0.56 + 0.06

The columns of the frame matrix F are the measurement vectors optimally close to the

quantum states in a least squares sense. The squared error calculated is 0.877. The sum

of aIl the probabilities adds up to one using the following expression

3

L 1 (/Lil'l/J) 1
2

= 1
i=l

where 'l/J can be any one of the quantum states and /Li are the frame vectors. Table A.1

details the probabilities of measurement for each quantum state using each of the measure

ment operators.

Table A 1 Measurement Probabilities for \li .
/LI /L2 /L3

'l/JI 0.634 0.163 0.203

'l/J2 0.163 0.766 0.071

'l/J3 0.203 0.071 0.726

As can be observed from Table A.1, frame-based measurements do not allow error-free

state detection. For instance, if the system is in state 'l/JI using measurement vector /LI

•
r
•

A Quantum Measurement Simulation using Quantum Frames 69

gives approximately 63% probability that 'lfJI will be correctly identified while the other

two states are have a much lower probability of detection by /-lI. A similar situation exists

when the system is in states 'lfJ2 or 'lfJ3 and measurement vectors /-l2 or /-l3 respectively are

used to perform the measurement. Thus, frame-based measurement vectors would not allow

the deterministic detection of quantum states in just one measurement as there are non

zero probabilities of detection for every state when subjected to each of the measurement

vectors. Therefore, a number of measurements have to be performed [34], before a high

enough probability of detection can be be observed.

An extension to the square-error optimization has been developed in [35]. This extension

is known as the weighed-squared error. Instead of optimizing for the squared error for aIl

the quantum states, certain states that have been prepared with a higher probability of

detection could be given more weight in the optimizing procedure. It has also been shown

that for systems which exhibit strong symmetry, the measurement vectors generated are

optimal and have very low erroI. To illustrate this, a set of symmetric states is chosen

(similar to Fig. 3) .

The frame generated in this case is

(

-0.547

F = -0.611

0.611

0.947 -0.547)
o 0.611

o -0.611

and the squared error is 0.009 which is far less than in the previous case. Table A.2

depicts the probabilities of measurement in the new situation. The effect of symmetry

can be observed from the probability distribution of the measurements. In this situation

measurement vectors J-ll and J-l3 are optimal to detect states 'l/Jl and 'l/J3 respectively. Mea

surement vector /-l2 is optimal for observing the basis state 'lfJ2 and by symmetry has an

equal probability of observing either 'lfJI or 'lfJ3.

A Quantum Measurement Simulation using Quantum Frames 70

1

r Table A.2 Measurement Probabilities for W2

1-lI J-l2 J-l3

'l/Jl 0.7 0.2 0.1
'l/J2 0.2 0.6 0.2
'l/J3 0.1 0.2 0.7

r

---,
!

r-"

71

References

[1] R. Feynman, "Simulating Physics with Computers," International Journal of Thoer
tical Physics, p. 467, 1982.

[2] D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum
computer," Proceedings of the Royal Society of London Series A, p. 97, 1985.

[3] P. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring,"
Symposium on Fundamentals of Computer Science, pp. 124-134, 1994.

[4] "A Quantum Information Science and Technology Roadmap," Report of the Quantum
Information Science and Technology Experts Panel, 2005.

[5] R. Hughes and et al., "The Los Alamos Trapped Ion Quantum Computer Experiment,"
Fortschritte der Physik, pp. 329-362, 1997.

[6] D. Cory, R. Lafiamme, and et al., "NMR Based Quantum Information Processing:
Achievements and Prospects," Fortschritte der Physik Special Issue, p. 298, 2000.

[7] A. Imamoglu, D. Awschalom, and et al., "Quantum information processing using
quantum dot spins and cavity QED," Physics Review Letters, p. 4204, 1999.

[8] M. Bocko, A. M. Herr, and M. Feldman, "Prospects for quantum coherent computation
using superconducting electronics," IEEE Transactions on Applied Superconductivity,
pp. 3638-3641, 1997.

[9] M. A. Nielsen and 1. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[10] G. Viamontes, 1. L. Markov, and J. Hayes, "Improving Gate-Level Simulation of Quan
tum Circuits," Quantum Information Processing, vol. 2, no. 5, pp. 347-380, 2003.

[11] B. Oemer, "Classical Concepts in Quantum Programming," quant-ph/021110, 2003.

[12] 1. G. Karafyllidis, "Quantum Computer Simulator based on the Circuit Model of
Quantum Computation," IEEE Transaction on Circuits and Systems l, 2005.

References

[13] F. Phillips, "Quantum Computation," The Mathematica Journal, 200l.

[14] J. Gruska, Quantum Computing. Osborne McGraw-Hill, 1999~

[15] P. Shor SIAM Journal of Computing, p. 1484, 1997.

[16] L. Grover Physics. Rev. Letter, pp. 325-328, 1997.

72

[17] G. Viamontes, 1. L. Markov, and J. Hayes, "High Performance Simulation of Quantum
Computation using QuIDDs," Proceedings of Quantum Communication, Measurement
and Computation (QCMC), pp. 311-314, 2002.

[18] P. J. Ashenden, The Designer's Guide ta VHDL, 2nd Edition. Sams; lst ed, 1987.

[19] M. Uderescu, L. Prodan, and M. Vladutiu, "Using HDLs for describing quantum
circuits: a framework for efficient quantum algorithm simulation," in Conference on
Computing Frontiers, pp. 96-110, 2004.

[20] A. U. Khalid, Z. Zilic, and K. Radecka, "FPGA Emulation of Quantum Circuits," in
IEEE International Conference on Computer Design, pp. 310-315, 2004.

[21] J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer Architecture: A Quan
titative Approach. Morgan Kaufmann, 2002.

[22] K. M. Obenland and A. Despain, "Simulating the Effect of Decoherence and Inaccura
cies on a Quantum Computer," Proceedings of the lst NASA Conference on Quantum
Computation and Quantum Communication, pp. 447-459, 1998.

[23] M. A. Nielsen, "The entanglement fidelity and quantum error correction," quant
phj9606012, 2004.

[24] V. Vedral, A. Barenco, and A. Ekert, "Quantum networks for elementary arithmetic
operations," quant-phj9511 018, 1995.

[25] J. J. Vartianinen, M. Mottonen, and M. Salomaa, "Efficient decomposition of quantum
gates," quant-phj0312218, Apr 2004.

[26] J. Preskill, "Reliable Quantum Computers," Proceedings of the Royal Society London
Series A, pp. 385-410, 1998.

[27] E.Knill, R. Laflamme, and W. Zurek, "Threshold Accuracy for Quantum Computa
tion," quant-phj961 0011, 1996.

[28] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering - Conquering
Complex and Changing Systems. Prentice Hall, 2000.

References 73

[29] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins Press, 1996.

[30] J. Campbell, C Programmer's Guide to Serial Communications. Morgan Kaufmann,
2002.

[31] J. Campbell, USB Complete: Everything You Need to Develop Custom USB Periph
erals. Lakeview Research, 2nd edition, 2001.

[32] A. U. Khalid, Z. Zilic, and K. Radecka, "Quantum state detection and quantum
frames," in 13th International Workshop on Post-Binary ULSI Systems, pp. 66-70,
May 2004.

[33] Y. Eldar and G. Forney, "Optimal Tight Frames and Quantum Measurement," IEEE
Transactions on Information Theory, pp. 599-610, 2002.

[34] C. Helstrom, Quantum Detection and Estimation Theory. Academic Press, 1976.

[35] Y. Eldar and G. Forney, "On Quantum Detection and the Square-Root Measurement,"
IEEE Transactions on Information Theory, pp. 858-872, 2001.

