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Abstract 

In recent years, new and novel forms of computation employing different natural phenom

ena such as the spin of atoms or the orientation of protein molecules have been proposed 

and are in the very initial stages of development. One of the most promising of these 

new computation techniques is quantum computing that employs various physical effects 

observed at the quantum level to provide significant improvement in certain computation 

tasks such as data search and factorization. An assortment of software-based simulators of 

quantum comput ers have been developed recently to assist in the development of this new 

computation process. However, efficiently simulating quantum algorithms at the software 

level is quite challenging since the algorithms have exponential run-times and memory 

requirements. Furthermore, the sequential nature of software-based computation makes 

simulating the parallel nature of quantum computation exceedingly difficult. In this the

sis, the first hardware-based quantum algorithm emulation technique is presented. The 

emulator uses FPGA technology to model quantum circuits. Parallel computation avail

able at the hardware level allows considerable speed-up as compared to the state-of-the-art 

software simulators as weIl as provides a greater insight into precision requirements for 

simulating quantum circuits. 
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Résumé 

Ces dernières annes, de nouvelles techniques innovatrices de computation utilisant divers 

types de phénomènes naturels tels que la rotation des atomes ou l'orientation des molécules 

de protéine dans l'espace ont été proposées et sont présentement au stade initial de leur 

développement. Une technique de computation des plus prometteuses est la computation 

quantique employant différents effets physiques observés au niveau quantique. Cette tech

nique permet une amélioration significative dans certaines tâches de computation telles 

que la recherche d'information et la factorisation. Un assortiment de logiciels de simulation 

d'ordinateur quantique ont récemment été développés pour aider au développement de ce 

nouveau processus de computation. Cependant, simuler efficacement des algorithmes quan

tiques au niveau logiciel est une tâche complexe, car ces algorithmes ncessitent une durée 

d'exécution et des ressources de mémoire exponentielles. De plus, la nature séquentielle de 

computation sur logiciel rend la simulation de la nature parallèle de la computation quan

tique extrêmement difficile. Dans cette thèse, le premier émulateur d'algorithme quantique 

sur hardware est présenté. L'émulateur emploie la technologie FPGA pour modeler des 

circuits quantiques. La computation parallèle réalisable au niveau hardware permet une 

accélération considérable du temps d'exécution par rapport aux simulateurs' sur logiciels 

actuels les plus puissants. Également, la technique de simulation sur hardware présente 

procure plus d'information concernant la précision requise pour simuler des circuits quan

tiques. 
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Chapter 1 

Introduction 

The new century has ushered in a spattering of new and innovative computational plat

forms that are envisaged to one day replace the currently prevalent semiconductor-based 

computers. Computation technology has spilled out of its traditional domains of electrical 

engineering and computer science into new realms such as quantum physics, biology and 

biomedical engineering. From storing information using the spin of photons to synthesiz

ing transistors using organic mole cules to performing large scale computation using DNA 

strands, researchers are moving towards the future of computing on many different roads. 

Research and development of these technologies is no longer limited to academic circles. 

Companies such as IBM, HP and D-Wave Sys are working towards bringing about the next 

revolution in computing in the not so distant future. 

The focus of this thesis is on emulation of quantum computing. Quantum computing 

uses various quantum mechanical effects such as entanglement and superposition to provide 

massive performance speedup in certain types of computation problems such as data search

ing, factorization and encryption. The notion of using quantum mechanical phenomena for 

computational purposes was first explored in the the 1970's and early 1980's. Quantum 

computing came in to being when Richard Feynman proposed an abstract computational 

model for simulating quantum physics in 1982 [1]. This was followed by proposaIs by David 

Deutsch in 1985 of a general purpose quantum computer [2] and by Peter Shor in 1994 [3] 

where he proposed a factorization algorithm for quantum computers. It was Shor's pub

lication that sparked widespread interest in quantum computing as it was the first large 

scale problem where quantum computers would outperform their classical counterparts 
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1 Introduction 2 

significantly. 

Since then, thedevelopment of quantum technologies has been underway and a variety of 

different techniques are being considered to solve various hurdles facing quantum computing 

[4]. Sorne of the approaches being considered are: 

• Collection of ions trapped and manipulated by lasers [5], 

• NMR (Nuclear Magnetic Resonance) based information processing [6], 

• Semi-conductor designs such as those based on quantum dots [7], 

• Superconducting electronics [8]. 

Quantum comput ers however, are still in their infancy. The general unavailability of 

quantum comput ers has garnered interest in developing classical simulators of quantum 

algorithms. However, simulation of quantum algorithms presents its own set of challenges 

since simulating such phenomena in classical comput ers consumes an excessive amount of 

resources. This thesis proposes an FPGA-based solution to this problem, whereby par

allel computation can be performed at a large scale in hardware resulting in significant 

performance gains as compared to software-based simulators. 

1.1 Quantum Computation vs. Classical Computation 

Quantum computation is an evolution of a quantum system that starts with a certain 

initial state. While the evolution of a quantum system can be described by a series of 

Schrodinger's equations [9], a more intuitive and equivalent abstraction of the quantum 

evolution is the quantum circuit model. The model breaks down the quantum system into 

two components: quantum bits which are the particles that make up the quantum system 

and quantum gates that are transforms that are applied on the collection of quantum bits. 

Therefore, analogous to classical computing quantum bits are the units of information and 

quantum gates are logical operations that can manipulate this information. However, unlike 

mainstream classical computation, quantum computation is probabilistic, that is the result 

of the computation cannot be achieved correctly in a finite number of steps. Furthermore, 

obtaining the state of the quantum system causes the system to collapse. At same time 

there is a significant probability of error in the obtained state information. 
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While classical units of information can exist in a finite number of states (predominantly 

binary logic is used where only the states 0 or 1 are present), quantum information can 

exist in an infinite number of states. Furthermore, quantum bits can undergo a quantum 

mechanical phenomenon known as entanglement whereby they can store an exponentially 

large amount of information. These effects can be employed to provide significant speed-up 

in computation in certain applications (such as data search and factorization). 

1.2 Quantum Circuit Simulation vs. Emulation 

Quantum circuit simulation involves numerical representation of the information stored in a 

quantum system and applying the necessary transforms on this information, as dictated by 

the quantum algorithm being simulated. The software-based simulators do not exploit the 

parallelism and the effect of quantum noise that are present in real-life quantum computers. 

Furthermore, since the state of the quantum circuits expands exponentially with linear 

increases in number of qubits, even a modest sized quantum circuit can take ho urs , even 

days to simulate. 

The emulation of the quantum circuits also comprises of manipulating the mathematical 

representation of quantum information. However the goal is to replicate the behavior 

of the quantum algorithms when executed on a real quantum computer. This includes 

the effect quantum noise at the gate-Ievel. While classical emulation of quantum circuits 

faces the same problems as in the case of simulation (i.e. significant growth in resource 

consumption) the added challenges are to perform computation in parallel and also recreate 

extrinsic factors such as quantum noise. Simulators have been developed that employ a 

programming language to describe quantum algorithms [10], [11] emulation requires that 

the quantum algorithm is described in terms of gates and quantum bits. Other simulators 

such as [12], [13J allow construction of quantum circuits using just gate interconnections, 

however they do not provide the level of performance as the description language-based 

simulators such as [lOJ. 

1.2.1 Motivation for Emulation of Quantum Circuits 

Quantum circuit emulation allows development of quantum algorithms in a more compre

hensive manner as compared to simulation. Emulation go es beyond just mathematically 
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replicating a quantum algorithm but permits insight into more complex issues facing quan

tum computing such as quantum noise and quantum gate error. Furthermore, hardware

based emulation allows more control over the parameters of emulation such as word length 

of data-primitives as well as allows computational optimizations at the gate-Ievel that are 

difficult to achieve in software. This in turn leads to a deeper understanding of issues 

facing classical modeling of quantum circuits. Finally, hardware-based emulation provides 

a significant performance improvement compared to software simulators. 

1.3 Thesis Contribution 

This thesis proposes a gate-Ievel FPGA-based solution to quantum circuit simulation. Using 

the analogues between the quantum and classical circuits, an emulation environment has 

been created where various issues such as quantum noise and parallel computation are taken 

into account. The emulator outperforms the premiere software simulators when considering 

algorithm runtime. Also combining classical error analysis techniques and relating them 

with quantum noise suffered by actual quantum computers, a bound on word length of 

data-primitives has been derived such that the emulated circuit pro duces results similar to 

those of a real quantum computer. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 provides a detailed background of the quantum circuit model including the 

different mathematical notations used to describe quantum computation. This is followed 

by an overview of different simulation techniques that have been developed for quantum 

circuit simulation. 

Chapter 3 presents an in-depth look at the emulator architecture. Various challenges 

and hurdles were encountered in creating the emulation environment and details on how 

these challenges were over come are also presented. Finally, a thorough derivation of the 

word length bound is also presented. 

Chapter 4 evaluates the performance of the performance of the FPGA emulator and 

compares it with other software simulators. A practical vindication to the theoretical work 

presented in Chapter 3 is also provided. 
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Lastly, Chapter 5 summarizes the work and presents the conclusion to the thesis. Di

rections for future work are also suggested. 
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Chapter 2 

Background 

The quantum circuit model provides an algorithmic abstraction for the quantum compu

tation process. The model transforms the quantum physical phenomena that occur during 

the entire computation or "evolution" of the quantum system into lumped discrete events. 

A quantum system's time evolution that is normally represented using Schrodinger's equa

tions (a collection of partial differential equations) is no longer required when using quan

tum circuits [9],[14]. Instead, the quantum information is represented as astate space (also 

referred to as astate vector) that depicts the state of the entire system at any given time. 

Evolution of states is then modeled using a collection of linear transforms that appropriately 

manipulate the state vector. 

Information stored in a quantum system grows exponentially with the size of the system 

(number of quantum particles) [9],[14]. Manipulating the large state space with PDEs can 

be very resource-intensive for a simulator. Devolving the quantum computation into linear 

transforms do es provide sorne reprieve for simulators, but for large state spaces they still 

have to perform a significant amount of computation. This will be clear after reading the 

following sections. 

2.1 Quantum Bits 

Quantum bits or qubits are the fundamental units of information in quantum computing. 

Analogous to classical computing, quantum computing is the manipulation of information 

stored in qubits. Physically, qubits have been realized using electrons, trapped ions and 

molecules. The information is stored using the spin or polarization of these particles. For 

2005/10/31 
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simulation purposes though, the state of the qubit is represented mathematically by a 

vector in a finite-dimensional complex Hilbert space [9]. The major property of the Hilbert 

space is that aIl vectors belonging to that space have a well-defined inner-product. For a 

vector f belonging to the Hilbert space, the norm of f is defined by 

Ifl = Ju,!) (2.1) 

The Dirac bra-ket notation is a commonly used notation for denoting the state of the 

qubit. The notation is quite commonly used in quantum mechanics since it can conveniently 

represent the state of the system as weIl as describe operations on the system effectively. In 

the bra-ket notation, elements of H are "ket" vectors given by lx) E H. A corresponding 

"bra" vector (xl is an element of the dual space H*l. For a quantum bit though the state 

11/J) of the bit is represented using the following equation 

11/J) = nia) + !J11) (2.2) 

where n and !J are complex coefficients related by the following expression 

(2.3) 

The la) and Il) states of a qubit can be thought of as analogues to the classical bit. 

PhysicaIly, la) and Il) states refer to a particular spinjpolarity orientation of the qubit. 

However, as can be observed from Equation 2.2 and Equation 2.3, the qubit can simulta

neously be in the both la) and Il) states (an arbitrary spinjpolarity). This phenomenon 

is known as superposition and is one of the fundamental sources of speed-up in quantum 

algorithms [9],[14]. Geometrically, a qubit can be thought of as a unit vector and can have 

any value on a unit sphere. Thus, a qubit can be in an infinite number of possible states. 

A common pictorial notation for qubits is known as the Bloch sphere and an example of 

that is depicted in Figure 2.1. MathematicaIly, Equation 2.2 can be re-written as Equation 

2.4 

(2.4) 

IThe (xly) notation is the inner product between the conjugate vector of x denoted as x* and the vector 

~. y 
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Angles () and <p are related to 0: and [3 through a transformation from Cartesian to polar 

coordinates over complex number fields. 

y 

x 

Fig. 2.1 Bloch Sphere 

From a simulation point of view, only the values of 0: and [3 need to be stored and 

manipulated as they represent the information stored by the qubit. Thus, a single qubit 

can be represented as a 2 x 1 vector [0: [3JT. While the notation introduced so far is sufficient 

to describe the state of a single qubit, a more useful notation for representing the state of 

a n-qubit quantum system is as follows 

(2.5) 

where ® represents tensor product operation. The resulting state space \li is a 2n x 1 vector. 

This notation is useful as it collectively represents the state of the entire quantum system 

and assists in dealing with the computational interactions between the qubits themselves. 

The advantages of this representation will be encountered in the subsequent sections. How

ever, an immediate disadvantage to this representation, from a simulation point of view, is 

that instead of dealing with 2n complex numbers for n qubits, the simulator now has to 

work with astate space of 2n complex numbers. This leads to an exponential increase in 

computation resource consumption. 
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2.2 Entanglement 

Quantum entanglement is perhaps the most exotic quantum phenomenon used in quantum 

computing. Entanglement represents a situation when two or more distinct quantum par

ticles behave in su ch a way that when one of the particles is subjected to change, a similar 

change is instantaneously applied to aIl the other entangled particles. Einstein, Podolsky 

and Rosen were the first to notice this effect in a pair of photons whereby the change in 

the spin of one photon resulted in the change of spin in the other simultaneously. 

Non-Entangled 

a I IO)+Plll) a21°)+P211) 

[) CJ 
,/ 

Âtl 00) + ~I 0 1) + A:, 1 1 0) + Â4111) 

Entanglement 

Fig. 2.2 Entanglement of two quantum particles 

Mathematically, when a collection of qubits enters a state of entanglement, the notion 

of individual qubits disappears and the system can no longer be represented as a tensor 

product of individual qubit state vectors. In the case of n entangled qubits, the state of 

the system can only be represented using a 2n x 1 vector. Thus, it becomes necessary to 

represent the quantum system in the expanded notation described in the previous section. 

For an entangled system, the computational basis states also grow exponentially. While for 

single qubits the computational basis states were just 10) and Il), for a two qubit entangled 

system the number of basis states expand to four: 100), 101), 110) and 111). However, for 

entanglement to occur the system can only be in a superposition of the 100) and 111) or 

101) and 110) states. In other superposition scenarios, the expanded state can be resolved 

into the tensor products of individual qubit states and hence the system can no longer said 
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to be entangled. 

2.3 Quantum Gates 

The quantum evolution of the system is modeled by applying a sequence of transformations 

on the quantum state space. The transformation or operations on the quantum system are 

called quantum gates. Classically, gates such as AND, OR and NOT are well known and 

any classical computation can be broken down into the operations these gates provide. 

In the quantum computation domain, all quantum algorithms can be broken down into 

constituent quantum gates that manipulate information and can deal with one or more 

units of information at one time (similar to multiple-input classical gates). 

Mathematically, quantum gates can be represented as unitary matrices (operators) that 

can be applied to the state space or qubit vectors. 

2.3.1 Single Input Quantum Gates 

Single input quantum gates are transformations that can operate on a single qubit in the 

system. Physically, these operations translate to altering the spinjpolarity of quantum 

particle, thus changing the information stored by the particle. For instance, in the case of 

the trapped-ion implementation, the spin of the ion is changed using laser-ion interactions 

[5] and this operation can be modeled by a 2 x 2 matrix. 

[;] 
Gate 
Input 

Quantum 

[.aGat~].. [: !] [; 1 
c d Gate 

Output 

Fig. 2.3 Single-Input Quantum Gate 

One of the most important single qubit gates is known as the Hadamard gate or the 

H-gate. The H-gate transform is given as follows 
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H~ U -1 1 
The H-gate's importance is paramount in that this operation can be used to place qubits 

in a state of superposition from a 10) or Il) states. As described in the subsequent sections, 

many quantum algorithms achieve their speed-up due to the fact that they can operate 

on multiple quantum states (achieved through superposition) in parallel. Physically, a 

collection of quantum particles can be prepared in a known state of spinsjpolarities and 

the particles are then subjected to the Hadamard transform in order to place them in 

superposition. 

Other common single input gates are the phase rotation gates that can alter the rotation 

of the qubit by an angle of e, the quantum NOT or X-gate that swaps the value of ex and 

f3 of a qubit and the Z-gate that fiips the sign of the f3 value of the qubit. 

Rot(e) = [1 ~o 1 X = [0 1 1 z = [1 0 1 o et 1 0 0 -1 

However, single qubit operations are represented differently when using the expanded 

state space notation to represent the quantum system. For a n qubit quantum system, each 

gate operation has to be represented by a 2n x 2n sized matrix. This matrix is unique based 

on the basic operation that the gate performs and the position of the qubit. To elaborate, 

for a 3 qubit quantum system, if the H-gate is to be applied to the second qubit at any 

time the matrix representation would be calculated by performing 1 ® H ® 1 operation. 

If the same operation had to be applied on the third qubit instead, the resulting matrix 

representation would be performed using 1 ® 1 ® H and these two operations result in two 

different matrices. 

From a simulation point of view, the process of applying these operations on astate 

space becomes exceedingly resource intensive as the size of these matrices grows exp onen

tially. While most of the quantum gates result in sparse matrices, the sheer size of the 

matrices itself causes significant problems in simulating large quantum systems. 
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2.3.2 Multiple Input Quantum Gates 

Multiple input quantum gates perform an operation on an input qubit based on the value of 

the other inputs to the gate. Thus, multiple input quantum gates are controlled operation 

gates, where the value of the control qubits determines the gates' operation on the data 

qubit. A special type of multiple input quantum gate is the "swap" gate that swaps the 

information stored in two qubits. 

Control Qubit 

Data Qubit 

Fig. 2.4 2-input CNOT gate 

The input to a multiple input quantum gate is mathematically the expanded represen

tation of an the individual quantum states. Henee, a n input quantum gate's transform is 

represented by 2n x 2n matrix. One of the most important quantum gates is the controlled

NOT gate (CNOT). In the simplest case, a two-input CNOT gate is representedby the 

following matrix 

1 0 0 0 

CNOT= 
0 1 0 0 

0 0 0 1 

0 0 1 0 

Basically, if the control qubit is in the Il) state, the gate swaps the CI: and f3 values of the 

data qubit. However, if the control qubit is in the state 10) the inputs are left unchanged. 

While this description of the gate's behavior works for the case where the control qubit 

is not in superposition, it fails to describe the behavior of the gate in the situation when 

the control qubit is in superposition. The behavior of the gate is expressed fully however, 

by the above matrix that operates on the expanded state spaee. No decision making is 

involved and the operation of that gate in this case is to swap the third and fourth entries 
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of the input state vector. The CNOT gate is however special, because in the case where 

the control qubit is in superposition and the data qubit is not, the resulting output is 

entangled. This can be understood by carefully examining the CNOT transform and a 

similar scenario can be created for generalization of CNOT gates (Toffoli gates). Due to 

the superposition states of the inputs, the quantum CNOT gate is thus more complex to its 

classical counterpart as its behavior needs to be expressed using the expanded state space. 

Multiple input gate transforms also have to be adjusted to deal with the expanded state 

space of the entire quantum system. Each gate transform depends on the position of the 

inputs and overall size of the quantum system. For controlled input gates, it is computed 

using the base transform which is, for example in the case of CNOT is the X-gate transform. 

Essentially, the control gate transform is constructed by performing the Kronecker product 

between the base transform and the identity matrix. The resulting control gate transform 

is then further expanded using the Kronecker product with the identity matrix to adjust 

its size such that it can be applied to the entire state space. 

2.4 Quantum Measurement 

Quantum computation is probabilistic. Classical probabilistic circuits output a probability 

distribution based on the inputs of the circuit, the network topology and the induced prob

ability distribution of the gates in the network. Therefore, in probabilistic computing, the 

results of computation cannot be accurately determined every time the outputs are sub

jected to measurement. This leads to probability of error in the measurement. Conversely, 

deterministic circuits are such that the results of the computation can be measured without 

error. In classical computation, deterministic circuits are mainly used and measurement 

error is not considered. 

The probabilistic nature of quantum computation, thus, differentiates it from classical 

computing significantly. Quantum algorithms have to be designed such that the results of 

the computation can be achieved with low measurement errors and often the computation 

has to be repeated a considerable number of times before the results can be measured 

with high enough probability. This advertently affects the performance of the algorithm. 

Furthermore, quantum measurement or the act of extracting information from a quantum 

system is an irreversible operation as it destroys the quantum system being measured. 

An intuitive way of understanding quantum measurements is to think of them as a 
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collection of operators on the quantum system (irreversible operators) such that the state 

of each quantum can be distinguished with sorne probability. These operators are projec

tion matrices that map information from the quantum to the classical domain with sorne 

measurement error. After measurement, the qubit loses superposition and is measured in 

either of the computational basis states. The choice of these operators and the complexity 

of the quantum system determine the resulting measurement errors. 

In the simplest case of a single qubit system, the lai and 1,81 coefficients from Equation 

2.3 represent the probability that the qubit will be measured as 10) or Il) state respectively. 

For larger systems, the problem of quantum measurement becomes more complex and have 

a fundamental impact in quantum algorithm performance. In Appendix A, more details 

about simulation and optimization of quantum measurements are provided. 

2.5 Quantum Algorithms as Quantum Circuits 

Quantum circuits are a collection of wires (qubits) and gates that depict the time evolution 

of a quantum algorithm. The qubits are prepared in a known state and introduced as 

inputs to the system. The qubits then undergo evolution depicted by the gate operations 

on them. The evolution ends when the system is subjected to a quantum measurement. A 

number of quantum algorithms have been developed in the recent few years and they have 

sparked great interest in the field. In this section, an overview of two of the most famous 

quantum algorithms is provided. 

Quantum 
Gates 

lime 

Fig. 2.5 Quantum computation as modeled by quantum circuits 

2.5.1 Quantum Fourier Transform 

The quantum Fourier transform (QFT) plays an important role in the phase-estimation al

gorithms and the Shor's factorization algorithm [15]. While the QFT itself do es not provide 
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a speedup in performing the Fourier transform on quantum information, its importance in 

other quantum algorithms makes it an interesting case-study. 

For an qubit system in state Ij) is subjected to the QFT, the output is given by 

(2.6) 

Fig. 2.6 The quantum Fourier transform circuit 

Figure 2.6, depicts the QFT circuit for a n sized quantum system. The Rk gates can 

be represented as follows 

2.5.2 Grover's Search Algorithm 

The Grover's search algorithm is the fastest search algorithm at the time of writing. It 

performs the search on a n sized database at the worst-case complexity of O( vn) [16],[9] 

and can generally speed-up many classical algorithms that use searching or route-finding 

techniques. Figure 2.7, illustrates a 3 qubit Grover's search algorithm. 

Oracle 
Gate 

Fig. 2.7 Three qubit Grover's search algorithm 
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The oracle shown in Figure 2.7 is responsible for providing the answer to the search 

query. If the query is present in the first n qubits, then the Oracle sets the oracle qubit to 

Il) state, otherwise the qubit is set to the 10) state. The oracle itself can be constructed in 

this case using a CNOT gate with inputs according to the search query. Figure 2.8, shows 

the four different oracles for the three qubit Grover's circuit shown in Figure 2.7 

Query = 00 Query = 01 Query = 10 Query = 11 

Fig. 2.8 Oracles for the three qubit search algorithm 

2.6 Software-based Simulation Techniques 

In this section, a brief summary of three software-based simulators is given. The choice of 

the simulators is based on the fact that all three use very different simulation approaches. 

At the same time, they also represent the evolution of simulation techniques that have led 

to the development of the FPGA-based emulation technique. Quantum circuit simulators 

perform the mathematical operations of quantum gates on a given set of qubit states. The 

simulators are exclusively software-based. 

2.6.1 QuCalc: Mathematica Simulation Library 

QuCalc is a simulation library written in Mathematica [13]. It makes use of the numeri

cal and symbolic power of Mathematica to describe quantum circuits and simulate them. 

QuCalc uses the standard algebraic approach to simulate the quantum circuits. The gates 

making up the circuit are described symbolically as a multi-dimensional Mathematica array. 

The transforms of those gates are then concatenated together by perform matrix-matrix 

multiplication and tensor products to create an overall transformation of the circuit. This 

becomes the more computationally expensive part of the simulation. The circuit transform 

is a matrix that can then be applied to an input state vector. In Figure 2.9 a description 

of how QuCalc can be used to construct a circuit transform is provided. 
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Fig. 2.9 Circuit simulation using QuCalc 
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QuCalc is extremely straightforward to use, and construction of the circuits is very 

intuitive. The gate positions in the circuit can have a one-to-one mapping to their position 

in the array description in QuCalc. However, building very large circuits this way is very 

cumbersome and no mechanism is provided to facilitate that function. 

In terms of performance, the simulator is limited by Mathematica as the simulation 

environment. As Mathematica is a symbolic computing package, a significant overhead is 

in the computation. While no specific benchmarks are provided for QuCalc, it is understood 

that its purpose is not to simulate large quantum circuits efficiently. QuCalc is a simple tool 

that can allow the construction of small to medium sized quantum circuits and provides a 

strong environment to algebraically and symbolically deal with issues pertinent to quantum 

circuits. 

2.6.2 QuIDDPro: An ADD based Simulation System 

QuiDDPro is one of the fastest software simulators (at the time of writing) that is based on 

describing quantum transforms in terms of decision diagrams. The circuit is described using 

a Matlab-like programming language. QuiDDPro's novelty is that it represents the ma

trices and vectors that depict quantum transforms and quantum information as Quantum 
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Information Decision Diagrams or QuIDDs. A QuIDD is essentially an algebraic decision 

diagram (ADD), that have commonly been used to logically describe classical circuits [10], 

[17]. 
Since ADDs are designed to optimize binary logic circuits, the QuiDDs require addi

tional properties to accommodate representing quantum information. First, unlike ADDs, 

a QuIDD's terminal nodes can have complex values (ADDs used for binary circuits can 

only have terminal values of 0 or 1). Secondly, in order to optimize operations on QuIDDs, 

the structure does not explicitly contain the complex values in the terminal nodes, but 

actually stores indices to an array that contains the actual terminal node values. This 

reduces computational overhead when performing operations on QuIDD-based vectors and 

matrices. Finally, the ordering of the nodes in QuIDD is such that it favors compression 

of block patterns in matrices. This optimization arises from the fact that the tensor prod

uct of quantum transforms produces highly regular block patterns. By ordering the nodes 

properly, the redundancy in the block patterns can be overcome and a sm aller decision 

diagram can be used to describe the matrix. 

An illustration of how a QuIDD can store a vector representation of a quantum state 

is shown in Figure 2.10. Here it can be observed that a 4 x 1 vector is represented using 

3 nodes. A slightly involved QuIDD is used to describe the application of the Hadamard 

transform to a two-qubit vector as shown Figure 2.11. Here the left most QuIDD represents 

the Hadamard transform on a 2-qubit system. The next QuIDD represents the 4 x 1 vector 

representing the 2-qubit system. The result of the multiplication can then be stored in just 

one terminal node. 

While the information of the quantum circuit is stored using decision diagrams instead 

of regular matricesjvectors in QuIDDPro, the actual construction of the circuit transform 

and obtaining outputs is performed using tensor products and matrix multiplication as in 

the case of QuCalc. However, the advantage using QuIDD [10] is that the tensor product 

and matrix multiplication operations are quite efficient and having a reduced representation 

such as QuIDD can lead to significant performance gains. For matrices represented by nodes 

a and b, the tensor product cornes out to be O(ab) while matrix multiplication is O((ab)2). 

QuIDDPro has a Matlab like feel and can execute scripts written in a syntax similar 

to Matlab. It supports aIl necessary quantum transforms, however the construction of a 

quantum circuit is not immediately intuitive. Quantum algorithms are constructed using 

the functions provided in QuiDDPro in the form a programming language instead of a 
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Fig. 2.10 Vector description in QuIDDPro 
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netlist. However, onee the language issues are overcome, very large quantum circuits can 

be constructed quite easily. QuiDDPro's creators have provided detailed runtime perfor

mance of the system when simulating the Grover's search algorithm. From [10], QuIDDPro 

can simulate the Grover's search algorithm with a memory complexity of O(n) and time 

complexity of O(RIAI16n I4) where R is the number iterations of the algorithm, A is the 

number of nodes in the oracle representation and n is the number of qubits. Running times 

provided in [17] for the Grover's search algorithm are less than 6 minutes for simulating a 

20 qubit circuit. 

2.6.3 HDL Based Simulation of Quantum Circuits 

Simulation of quantum circuits using a hardware description language such as VHDL [18] 

has been proposed in [19]. This technique uses analogies between the quantum circuit 

model and classical circuits to construct and simulate the quantum circuits. 

HDL simulation of quantum circuits diverges from the strongly algebraic approaches 

in the previous two simulators. As the quantum circuit model breaks down the quantum 

transform into quantum gates and quantum bits, the HDL approach can incorporate these 

architectures directly as they are congruent analogues to classical gates and bits respec

tively. 

Qubits are described as two complex numbers (using the real keyword in VHDL). The 

gates are constructed with qubits as inputs and outputs and the transform of the gate 

is described using behavioral VHDL. The quantum circuit can be constructed now by 

combining the gates using structural VHDL. 

However, the key issue here is entanglement. The previous two simulators dealt with 

the quantum circuit by expanding it to the full bases states and applying tensor products to 

achieve the final circuit transform. The expansion operation explicitly deals with entangled 

situations sinee the computational state spaee is already large enough to hold the entangled 

information. In the case of HDL simulation however, the goal is to describe the circuit 

in the simplest gates possible, and thus the presence or absence entanglement has to be 

explicitly detected and simulated. In [19], detailed entanglement extraction algorithms have 

been derived. They are able to detect when entanglement occurs or disappears. These 

are simulated using functional VHDL and have exponential complexity. This amounts to 

similar resouree usage as in the case of expanded state spaee simulators. 
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Since the simulator uses VHDL to simulate quantum circuits, the CAD simulation 

tools available for the development of classical circuits using VHDL can now be employed 

to construct quantum circuits. This involves either using structural VHDL or a graphical 

netlist creation tool. In both situations, it is straightforward how to create the circuit and 

simulate the results. 

According to [19], the runtime in the non-entangled case of simulation is O(n2
). Some 

simulation runtimes are also quoted in [19] for small quantum circuits. However, entangle

ment extraction is still complex. Overall, the simulation would also be limited to the speed 

of the VHDL simulation tool. 
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Chapter 3 

FPGA Emulator Design 

This chapter provides details of the emulator design and design choices. The challenges 

involved in performing hardware emulation of quantum circuits are laid out. This is followed 

by a description of how these challenges were overcome.1 

3.1 Challenges in Emulating Quantum Circuits 

While the underlying principles of cla.ssical circuits are weIl understood, and have been 

widely applied, the same is not true for quantum circuits. So far, quantum circuits have 

been rarely demonstrated and in rather small sizes. Although existing quantum computing 

machines employ at most 7 qubits, even such a small number of qubits are notoriously hard 

to analyze and employ in concerted quantum machines. 

Simulating quantum circuits in software is even more cumbersome than in the classical 

case. Currently available simulators like [19],[10] while providing an environment for the 

development of quantum algorithms, still greatly abstract the quantum evolution of the 

qubits. The speed of running a single simulation pass is even more critical than for clas

sical circuits. Due to little understanding of hardware modeling of quantum processes, it 

is very likely that that many changes will need to be introduced to the model itself. This, 

in consequence, would lead to several re-runs of simulations of a given quantum design. 

Therefore emulators which perform fast simulations, and can be easily re-programmed to 

account for small changes in the model of quantum processes as weIl as the design itself are 

1 Part of the work presented here has already been published in [20] 

2005/10/31 
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essential. Such capabilities can be provided by FPGA-based hardware emulators. Finally, 

using the quantum circuit model is a very intuitive way of constructing quantum algo

rithms and would greatly assist in the development of new algorithms. Thus, the emulator 

combines important quantum computing concepts and a solid development environment to 

serve as a development and test-bed for quantum algorithms. 

The first and foremost problem with quantum circuit emulation, is the mapping of 

quantum computation concepts to the digital domain. While the quantum circuit model 

creates a classical analog for quantum computing, it still possesses appreciable differences 

from classical circuits. The goal is to efficiently describe quantum circuits using a classical 

hardware description language, such that the final circuit can be synthesized on a FPGA. 

The second major challenge is to emulate the quantum circuit such that the resources 

available on the FPGA are used as efficiently as possible. Resource requirement becomes a 

serious issue with entangled systems as performing quantum evolution in a highly entangled 

system requires an exponential amount of computation. Emulating quantum circuits with 

FPGAs has an advantage that FPGAs have a large amount of logic cells (and multiple 

FPGAs can be combined for even bigger circuits) and therefore large quantum circuits 

with entangled states can be emulated easily and efficiently in terms of computation time. 

Finally, the overall architecture should still emulate the parallel evolution of the quan

tum system as closely as possible since that is one of the main motivations for performing 

quantum circuit emulation in hardware. Thus, balancing the resource usage and parallelism 

in the emulator is an important design consideration. 

3.2 Emulation Overview 

The overall design pro cess is illustrated in Figure 3.1. Quantum circuits are constructed 

from the quantum gate descriptions that are part of the emulator. The correctness of 

the circuit can be verified either by software simulation or by FPGA emulation. Thus, 

a technique has been developed for modeling quantum circuits using VHDL and then 

synthesizing the circuit in hardware to achieve performance needed to make the whole 

process more practical. 

The emulator comprises of two major components. The first is a C++ based command

line interface that has been created and is used to generate VHDL description of the gates 

required in the quantum circuit. The interface allows a fast way of calling the C++ based 
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Fig. 3.1 Modeling quantum circuits using the VHDL quantum gate library 
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functions that generate gate descriptions for gates such as the X-gate, Z-gate, Hadamard 

Gate, Rotation gates and common multiple input gates such as the controlled version of the 

single input gates and the swap gate. The interface requires the user to enter the gate name, 

system size and number of inputs and it then generates the appropriate VHDL description 

of the gate. AlI the gates created from the interface use the expanded state space notation 

for inputs and outputs. More details about the developed software are provided in the 

subsequent sections. 

The second part of the emulation environment are the data primitives defined in VHDL 

and the final circuit structural description. The data primitives are used to define complex 

number-based entities such as the qubit state vectors and the expanded state space notation. 

While aIl the gate descriptions can be generated via the software component ofthe emulator, 

the final quantum circuit model has to be created by either using structural VHDL or a 

schematic environment such as the one present in Altera's Quartus II software. 

The emulator's architecture overview is illustrated in Figure 3.2. Emulator circuitry 

on the FPGA closely follows the quantum circuit topology as a series of gates are applied 

to the qubits on the FPGA in the same order as the quantum circuit itself. However, at 

certain places in the quantum circuit a register is inserted and this sequence of registers 

allows the pipelining [21J of the entire computation. AlI these registers are controlled by 

a single global clock and the speed of the clock depends on the slowest stage [21J of the 
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quantum circuit pipeline. The registers store the state of the quantum system at a given 

point and time of the quantum evolution. The clock serves to synchronize the computation 

and can be used to de termine the total computation time. 

Furthermore, the pipelined architecture allows the quantum circuit to be quickly sim

ulated for multiple inputs thus providing a significant advantage over software simulators 

where the circuit has to be re-simulated for each set of inputs. Finally, at the end of the 

computation the final state of the quantum system is transmitted from the FPGA to a PC. 

Details about each component of the architecture are provided in the following sections. 

3.3 Data primitives 

The first step in creating the emulator is to develop a mechanism for representing quantum 

information digitally using VHDL. From Equation 2.2, the information of the qubit is 

stored in two complex numbers Œ and 13. In VHDL, there are no native data primitives to 

deal with real numbers (fioating or fixed point). Thus, the choice that had to be made was 

to represent the complex numbers using fioating point or fixed point schemes. Initially, 

a fioating point representation was considered but it was discarded because the emulator 

would have to perform considerable amount of fioating point operations and it would be 

very resource consuming ta have many fiaating point adders or multipliers in hardware. An 

architecture based on hardware reuse was also considered but that reduced the parallelism 
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in the emulator significantly. 

The other choicewas to develop a fixed point scheme for representing the real and 

imaginary parts of the complex numbers. The fixed point scheme yielded less arithmetic 

overhead at the cost of lower precision. Figure 3.3 depicts the fixed-point representation 

that was chosen for the emulator. There are two salient features of this representation 

1. According to Equation 2.3, lai and 1,81 can have a maximum value of 1. Therefore, 

an extra bit is used in the representation scheme (the second most significant bit) to 

represent the case where the Œ or (3 have a value of 1 or i unambiguously and without 

discretization errors. 

2. The length of the mantissa bit can be varied. The size of the data primitives has a 

direct relationship with the amount of resources (logic cells or Les) consumed on the 

FPGA; the designer has the ability to trade-off resource usage against precision. 

N bit Mantissa N bit Mantissa 

f3real f3imaginary 

N bit Mantissa N bit Mantissa 

Fig. 3.3 Fixed-point quantum bit representation 

Having a variable sized mantissa allows a certain amount of flexibility to the emulator. 

Depending on circuit size, precision requirements and available resources, the synthesized 

quantum circuits can be "tuned" to fit these parameters. It also opens the avenue for 

experimenting with circuit precision and modeling quantum noise that are difficult to per

form with software simulators. In [22],[23] quantum noise simulation has been suggested 

and later in this chapter more details about error analysis and quantum noise simulation 

are provided. 

The following code enlists all the data primitives in VHDL. Notice that in or der to 

vary the system precision, only the value of the constant N is changed and the circuit is 

recompiled. 
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L1BRARY ieee; 

USE ieee.std_logic_1164.all; 

PACKAGE quRecords IS 

CONSTANT N : INTEGER := 10; 

TYPE complexNum IS RECORD 
real STD_LOG1C_VECTOR(N-l downto 0); 

imaginary : STD_LOG1C_VECTOR(N-l downto 0); 

END RECORD; 

TYPE quBit IS RECORD 

alpha complexNum; 

beta : complexNum; 

END RECORD; 

TYPE complexArray IS ARRAY (integer range <» OF complexNum; 

TYPE entangledQubit IS ARRAY (integer range <» OF complexNum; 

TYPE quArray IS ARRAY (integer range <» OF quBit; 

TYPE result IS array (integer range <» of std_logic_vector(twoN-l downto 0); 

END quRecords; 

3.3.1 Emulation of the expanded state space 
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As described in Chapter 2, due to entanglement, single-qubit evolution is not sufficient 

to describe quantum computation. The same fixed point scheme is used to represent the 

complex numbers in the expanded state space representation. However, expanding the 

state space causes an exponential growth in resources. Thus, the quantum circuit has 

to be synthesized such that the state space is expanded only when absolutely necessary. 

Originally, quantum emulation begins with the the inputs represented as initial values of the 

qubits. The expanded state space notation is introduced when a multiple-input quantum 

gate is encountered. If a qubit, already in an expanded state space, is an input to a multiple 

input gate, the other input qubits are included in the state space of the originally expanded 

state. In the case where multiple expanded state spaces are inputs to a quantum gate, the 

inputs are combined into a larger state space just as the in the second situation for state 

space expansion. 
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3.4 Expander Circuits 

As shown in Chapter 2, state space expansion is a necessary operation during the emulation 

of quantum evolution. The two primary reasons for the inevitability of the use of this 

notation are: 

• Entanglement situations can only be represented using a single vector using the state 

space expansion technique, 

• The mathematical operation of multiple-input quantum gates is directly applicable 

to the expanded state vector. 

The state space operation is essentially the implementation of the operation defined in 

Equation 3.1. 

n 

® l'I/J) = l'l/Jl) ® 1'l/J2)" ® l'l/Jn) (3.1) 
i=l 

where l'l/Ji) can either be a qubit state vector or an expanded state vector. In terms of a 

general classical simulator, the state expansion operation presents two challenges: 

• Implementation of the Kronecker product operations Equation 3.1 as a large amount 

of complex multiplications have to be performed, 

• Emulation of expanded gate transforms that have to operate on the expanded state. 

There are two scenarios of state space expansion: one from a set of qubits, and the 

second from a combinat ion of state spaces. In the first case, the state space is expanded 

directly to its maximum size (2n for an n qubit system). This operation requires (n - 1) x 

2n complex multiplications to implement. Figure 3.4(a) describes the situation for state 

expansion from a set of qubits. Each À-i is computed by cycling through aIl the combination 

of a and (J values of each of the n qubits. Therefore, n - 1 complex multiplications are 

performed for each of the 2n entries of the expanded vector. 

The second case allows the state space to be gradually expanded in consequence, a larger 

state space can be constructed by combining several smaller states. When combining a 

vector of size 2m with another vector of size 2n , the total number of complex multiplications 

required is 2m+n. Figure 3.4(b) depicts the situation where two state vectors "( and cp are 
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expanded into a larger vector À. Each of the 2m entries of the À vector are computed by 

multiplying each element of the "( vector by the entire cp vector. 

The computational complexity is further exacerbated when even single qubit quantum 

gates have to be expanded so that they can operate on the expanded state space. Soft

ware simulators such as [13] ,[10] approach the problem by expanding the state-space at 

the beginning of the computation. In consequence, the rest of the computation involves 

operations on large matrices. Tec~niques involving the use of decision diagrams to reduce 

the complexity of the computation have been employed [10]; however operations on large 

circuits still require considerable time and memory usage. 

State space expansion for purposes of FPGA emulation presents bigger challenges than 

those faced by any general classical simulator of quantum circuits. In essence, the FPGA 

emulator performs computation in parallel (by executing concurrent parts of the algorithm 

at the same time), thus mimicking quantum parallelism and gaining a significant speed-up 

over software simulators. Quantum gate transform matrices are normally sparse (in most 

cases diagonal or quasi-diagonal where a significant number of non-zero entries are equal to 

one and hence require no actual complex multiplication). Therefore, they are mapped to 

hardware directly, and operate on the input state space in a non-sequential way. However, 

this design strategy becomes imprudent and impractical when performing the state space 

expansion operation for even a small number of qubits. The complex multipliers needed to 

implement directly 3.1 consume an enormous amount of resources on the FPGA (in terms 
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of logic cells) , and become impossible to synthesize beyond a modest number of input 

qubits. 

Additionally, the expanded state space emulation also causes the quantum gate imple

mentation to consume more resources. It is possible to re-factorize an expanded state space 

into smaller state vectors in the case where no entanglement is present. However it has 

been shown in [19] that the detection of the non-entanglement condition and factorization 

of the expanded state space require an exponential amount of computations themselves, 

and is non-synthesizable in hardware. 

A further constraint on the state space expansion operation is imposed by the fact that 

it has to be completed within one pipeline stage (or split over several pipeline stages). In 

consequence, a sequential operation within a pipelined architecture has to be performed. 

In order to keep the circuitry straight-forward, the clock used in the sequential operation 

has to be in phase with the global dock of the pipeline registers. Therefore, the global 

dock cyde has to be long enough for the operation to complete, possibly augmenting with 

increasingly sequential implementations of the state space expansion operations. This in 

turn extends the overall computation time. The following inequality must hold true for the 

proposed architecture to operate correctly: 

clockglobal ~ M x clockexp (3.2) 

where M is the number of sequential operations needed to be performed for state space 

expansion, and clockexp is the period of the dock driving the expander circuitry. 

There are multitudes of ways in which the expansion operation can be realized in hard

ware. Using more complex multipliers in the expander circuit reduces the number of se

quential operations (M), hence a faster global dock can be used. The disadvantage of this 

approach is the increase in the resource usage of the expander circuit. The benefit of having 

a smaller clockglobal to clockexp ratio is that built-in dock multipliers on the FPGA can be 

used to obtain clockexp without actually slowing down the global dock. Depending on the 

size of M in Equation 3.2 and the clocking capacity of the FPGA, the expander clock is 

obtained by multiplying the global dock by M. Therefore, for a fraction of the resources 

that would be consumed if the state space expansion was to be performed non-sequentially, 

the sequential approach incurs no penalty in terms of computation time. 
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FinaIly, for an arbitrary sized quantum circuit, the architecture of the expander needs to 

be scalable and parametrizable, sinee its description has to be generated in software, just as 

in the case of quantum gates. The design philosophy is thus to design an architecture for the 

expander circuits such that they perform their tasks in a sequential manner, while balancing 

the resource usage on the FPGA and the overall performance of the quantum circuit. 

Furthermore, the state spaee is also expanded only when necessary (in the case where 

multiple-input quantum gates are encountered). Therefore, unlike software simulators, 

the state space is expanded gradually whenever possible and smaller representations for 

quantum gates are used when possible. 

3.4.1 Sequential State Space Expansion 

The expansion operation can be implemented sequentially in several ways. First consider 

an element that can be used to obtain the expanded state spaee from a set of qubits. Such 

a circuit would be use fuI when the qubits are subjected to multiple input quantum gates, 

Figure 3.4(a). The range of solutions is a function of the number of multipliers used to 

realize the operation in Figure 3.4(a). In the simplest case a multiply-accumulate (MAC) 

loop is suitable to han dIe this task, requiring a clock ratio clockglobat! clockexp = (n - 1) x 2n 

to expand n qubits. The resulting slow down of the global clock is significant even for 

modest n. 

A more favorable solution from the perspective of the FPGA emulator is the one imple

menting the sequential operation using a ripple multiplier architecture. It was noted that 

the expansion operation from 3.1, can be broken down into 2n sequential steps using n - 1 

multipliers in a ripple configuration instead of just one in the case of the MAC. Note that 

n - 1 multipliers are needed sinee each entry of the expanded state vector is computed by 

performing n -1 complex multiplications between n complex numbers, which are the Œ or (3 

values of the n qubits. The output state vector is formed from the 2n possible combinat ion 

of these values. 

The algorithm depicted in Figure 3.5 depicts the operation of the ripple multiplier 

expander circuit. A count variable is used to cycle through aIl the possible combinations of 

Œ and (3 of the input qubits stored in a single dimension array qubitarray. Each combination 

of the complex values is then sent to the ripple multiplier architecture (lines 12 to 14) and 

the resulting output is stored in the expanded output vector outstate indexed by the count 
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variable. With this architecture, the clockglobal to clockexp ratio is 2n
, which is a significant 

improvement from the MAC architecture. Furthermore, it is straightforward to design a 

sc al able version of this architecture (to be generated via software) that is parametric on 

the number n of input qubits. The major issue with the ripple multiplier architecture 

is a difficulty with its synthesis due to the large logic cone from inputs to outputs. The 

synthesizer (Leonardo Spectrum running on a PC with 2GB of memory) quickly runs out 

of memory when synthesizing the expander circuit for more than 9 input qubits. However, 

at the system level, it is noted that the majority of quantum circuits comprise of single

to three-input quantum gates. Therefore, this architecture can be used for expanding the 

state space for two to three qubits without any synthesis problem. Since the qubit state 

vectors have to be expanded when subjected to a multiple-input quantum gate, only two 

or three qubit expansions need to be performed in most cases. 

1. expand_direct(start_vec,end_vec,n,qubitarray) 
2. { 
3. Il expansion of vector qubitarray 
4. Il expanded state stored in outstate 
5. count:= 0 
6. while (count not equal21\n -1) { 
7. fori=Oton-1 
8. if (count(i) equals 0) 
9. ouCcount(i) := qubitarray(i).alpha 
10. else 
11. out_count(i) := qubitarray(i).beta 
12. out_mul!:= out_cont(O) * out_cont(1) 
13. fori=1ton-1 
14. out_mul!:= out_mult * out_cont(i) 
15. outstate(count) := out_mult 
16. count := count++ 
17. } 
18. } 

Fig. 3.5 State space expansion using a ripple multiplier architecture 

The proposed architecture, however, is not suit able to coyer aIl these cases where ex

panded inputs are inputs to a multiple-input quantum gate (Figure 3.4(b)) or when a large 

quantum gate is encountered (in the case of an oracle circuit [9]). Another expander cir

cuit architecture is therefore needed that can be used to combine expanded state spaces 

together to form a larger state space. To achieve these goals the graduaI state space ex

pansion architecture is proposed that has the ability to combine smaller state vectors into 

larger ones. Thus, the final state vector is obtained by performing multiple expansions. 
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3.4.2 Graduai State Space Expansion 

The graduaI state space expansion architecture faces similar design constraints as the ex

pander architecture described ab ove. The operation of this architecture is also sequential 

as this expansion requires a significant amount of complex multiplications. Therefore, the 

goal is still to find an optimal balance between resource usage and overall computation 

time, while at the same time have a scalable and parametric architecture. 

1. expan:tgrad(state1,state2,m,n, outstate) 
2. { 
3. /1 state1 of length m and state2 of length n are 
4./1 c.xxrbined 10 fonn a larger state lledor outstate 
5. court :=0 
6. while (count no! equal m-1){ 
7. out_CDnt:= state1(count) 
8. court := court++ 
9. fork=010n-1 { 
10. out_rrull(k) := outCDnt* state2(k) 
11. outstate(count + k*m) := out_rrUI(k) 
12. } 
13. } 
14. } 

Fig. 3.6 GraduaI state space expansion 

The expander circuit takes two state space vectors as inputs as shown in Figure 3.4(b). 

One of the state space vectors can be sim ply a 2 x 1 qubit state vector. For example, 

consider a situation where statel = [Àl ... Àm] and state2 = bl ... 'Yn] are the input vectors 

to the expander circuit. The algorithm in Figure 3.6 illustrates the steps for the graduaI 

state space expansion. The controller again comprises of a counter count (lines 5 to 10) 

that is used to cycle through aIl elements of the state vector with length m. Then n 

complex multipliers, each with one entry from the state2 vector, compute n entries of the 

output state vector (lines 12 and 13). The operation of the circuit can be summarized 

as: outstate(count + k x m) = 'YkÀcount, where k E (0, n - 1). Figure 3.7 illustrates the 

architecture of graduaI state space expansion example where a two qubit expanded state 

space is combined with a third qubit (m = 4 and n = 2). 

The choice of the number of multipliers used in this architecture is determined exp er

imentally based on observing various quantum circuit topologies at the system level. In 

many cases such as the quantum Fourier transform (QFT) [9], adder [24] and Grover's 

oracle circuits [16], a large state vector combines with a smaller state. The tradeoff be-
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tween resource constraints and circuit performance leads to two choices. One represents a 

fast design, with the number of multipliers equaling the length of larger state vector ("1 in 

Figure 3.4(b)). In the alternative approach, the saving of the resources is obtained through 

the use of a sm aller number of multipliers that equal the length of the smaller state vector 

(4) in Figure l(b)). 

The proposed architectures allow performing the expansion within a pipeline stage effi.

ciently in terms of resources consumed on the FPGA and the penalty in overall computation 

time. It is scalable and parametrizable, thus satisfying all the requirements of the expansion 

circuitry. The major advantage of the proposed expansion techniques is seen at the system 

level. The notion of a graduaI state space expansion provides considerable improvement in 

the performance of the emulator for many topologies such as the QFT and quantum adder 

circuits. 

Figure 3.8 depicts the 3-qubit QFT circuit that uses the proposed state space expansion 

technique (the expander modules 1 and 2 are implementations of algorithms depicted in 

Figure 3.5 and 3.6 respectively). In this example, the state space is expanded in two stages 

permitting Hadamard (Hl) and rotation (R2) gates to operate on sm aller state spaces, thus 

saving a considerable amount of resources. 
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In this section details about the optimization and design decisions with regards to the 

emulation of quantum gates are provided. An in-depth analysis of the design of three 

important quantum gates is undertaken in this section. 

3.5.1 Optimizing Quantum Gates 

The basic single input quantum gate descriptions can be easily created using the data 

primitives defined previously. Instead of performing matrix multiplication with the input 

state vector, the gates are designed such that they make use of the matrix structure and 

only the necessary complex multiplications are synthesized. For gates such as the X-gate or 

CNOT gate, the matrix elements are only 0 and 1. Furthermore, there is only one non-zero 

element in each row of the matrix. These gates can then be implemented without any 

complex multiplications since they simply swap elements in the state vector. The swaps 

can be performed by using simple structural VHDL commands. On the other hand, the 

Hadamard gate has a full matrix description and in this case the matrix multiplication is 

inevitable. 

However, when these gates are applied to the expanded state space vector, the matrix 

descriptions are large (2n x 2n for a n-sized system) and usually sparse. Thus, it becomes 

necessary to implement the gates' operation on the state vector using the matrix structure 

and minimizing the number of complex multiplications. The following three case studies 

look at the implementation of the H-gate, CNOT gate and the controlled rotation gates 

to further illustrate the implementation of different gate architectures on the FPGA. It is 
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important to illustrate the implementation of these gates in detail since it would help to 

justify the performance analysis of the emulator presented in Chapter 4. 

Emulation of the CNOT Gate 

In the expanded state space notation, the CNOT gate has a similar matrix structure as 

that of a single input NOT gate albeit at a larger scale. The matrix describing a 3 qubit 

generalization of the CNOT gate (Toffoli gate) where the NOT operation is applied to the 

third qubit is as follows: 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

eN OTpos3size3 (e) = 
0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

As can be observed from the above matrix, the operation of the CNOT gate can be 

implemented by performing a simple swap of the seventh and eighth entries of the input 

state vector. The following code illustrates this optimization: 

USE WORK.QURECORDS.ALL; 

ENT1TY CNOTGATE3posOnuminput3 1S 

PORT ( 

input: IN entangledQubit(7 downto 0); 

output : OUT entangledQubit(7 downto 0) 
) ; 

END CNOTGATE3posOnuminput3; 

ARCHITECTURE CNOTGATE3_structural OF CNOTGATE3posOnuminput3 1S 

BEGIN 
output (0) <= input(O); 
output (1) <= input (1) ; 

output (2) <= input(2); 

output (3) <= input(3); 
output (4) <= input(4); 

output (5) <= input (5) ; 

output (7) <= input(6); 
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output(6) <= input(7); 

END CNOTGATE3_structural; 
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Thus, in terms of resources used on the FPGA, the CNOT gate can be implemented 

with no resource consumption (see Chapter 4). This is particularly advantageous since 

generalizations of CNOT gates form the univers al set of quantum boolean gates whereby 

any other boolean quantum gate can be constructed as a sequence of CNOT gates [25]. 

Particular circuits such as the quantum full adder comprise of CNOT gates only. Thus, by 

having a very efficient representation of the CNOT gate, a whole class of quantum circuits 

can now be efficiently emulated in hardware. While CNOT gates themselves do not incur 

a resource cost, they do have an initial cost in that they only operate on expanded state 

spaces. Therefore, the cost of the CNOT operation is in the implementation of expander 

circuits. However, due to the hardware-reuse approach used in the construction of the 

expander circuits, the overall operation of CNOT gates is very efficient in terms of resource 

usage. 

Emulation of the Hadamard Gate 

As described earlier, the H-gate is an important quantum gate and is commonly present 

in many quantum circuits. The following matrix describes the H-gate representation for a 

gate that is to be applied on the second qubit of a 3-qubit system. 

1 0 1 0 0 0 0 0 vrz vrz 
0 1 0 1 0 0 0 0 vrz vrz 
1 0 1 0 0 0 0 0 vrz -vrz 
0 1 0 1 0 0 0 0 

Hpos2size3 = vrz -vrz 
0 0 0 0 1 0 1 0 vrz vrz 
0 0 0 0 0 1 0 1 

vrz vrz 
0 0 0 0 1 0 1 0 vrz -vrz 
0 0 0 0 0 1 0 1 

vrz -vrz 
If the same operation is performed on larger state vectors, it is observed that each 

row still only contains two non-zero elements. Each entry in the output state vector of 

the gate is always the result of two complex multiplications and one complex addition. 

Using the matrix structure, the H-gate operation can be translated in a sequence of simple 
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complex multiplications and additions. Consequently, the Hadamard gate consumes far 

more resources than the CNOT gate for instance. 

Emulation of Controlled Rotation Gates 

The controlled rotation gates are used in the QFT circuit. For example in the 3-qubit 

implementation of this gate, where the first qubit controls the third one, the following 

matrix describes the gate's operation 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

CROTpos3size3(O) = 
0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 eiO 0 

0 0 0 0 0 0 0 eiO 

In general, the rotation matrix is always a diagonal matrix, thus each matrix-rowjstate 

vector multiplication involves a single complex multiplication. The eiO term is expressed 

in its square form eiO = a + ib and is represented in hardware using the complexNum data 

primitive. This term is given as an extra input in the gate VHDL entity description. The 

VHDL description of this gate is significantly less resource intensive compared to the H-gate 

since far fewer complex number operations have to be performed. 

3.6 Error Analysis and Quantum Noise Modeling 

As mentioned earlier, the data primitives and gate coefficients are described using a fixed

point scheme. The fixed-point scheme introduces a significantly large data representation 

or discretization error compared to traditional fioating-point representation schemes. While 

the fixed-point scheme has been developed such that it can represent quantum information 

effectively, the effect of the discretization error on quantum computation requires a doser 

look. Understanding the discretization error can also lead to the determination of the word 

length for a particular sized quantum system. 
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In an actual quantum computer, the quantum computation suffers from two major 

sources of errors: interaction of the quantum system with the environment that causes a 

disruption in quantum parallelism (decoherence) and inaccuracies in quantum gates [22]. 

While these errors are not present in their actual form while emulating the quantum circuit, 

the discretized error can be modeled such that the output results of the emulator are 

equivalent or no worse than those from an actual quantum computation. 

3.6.1 Single Qubit Error 

The two main sources of discretization error are the qubit representation itself and the gate 

coefficients. The error model of a quantum gate operating on a single qubit is depicted in 

Figure 3.9. Here, 8 is the error in the input that is propagated and augmented with error 

E, the discretization error of the matrix coefficients representing the given gate. 

Quantum Gate 

Fig. 3.9 Quantum gate error model 

The error model can be expanded as in Figure 3.10. Then, the multiple sources of 

an error are added linearly. This model is used to evaluate the error at each gate in the 

network. 

ir~;~~!~l + I-:[::!l-:-:[:~:~l-:I--[~~l-Il=[;:: 1 
Actual Value j Input Error Gate Computation : 

j Imprecision Error j 

l _____________________________________________ ~~r_o.r ____________________________________________________ J 

Fig. 3.10 Expanded gate error model 
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1 ----------_.J 

Absolute 
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Fig. 3.11 Discretization error in a qubit 

The absolute error E is thus, 
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(3.3) 

where Cl:e and (Je are described in Figure 3.10. These error values affect the probability of 

the qubit to be in 10) or Il) state when the qubit is subjected to a quantum measurement. 

The qubit can be considered as a three dimensional unit vector in Figure 3.11 - while 

two dimensions are needed for Cl: and {J, the third dimension is attributed to the use of 

complex numbers. The representation error in the qubit is then given as the absolute 

difference between the true and discretized positions of the vector representing the qubit. 

3.6.2 Expanded State Space Error 

While the above description of error is sufficient for a single qubit evolution, when deal

ing with expanded quantum state spaces it is more complex to understand the notion of 

"closeness" between the actual and discretized state spaces. Furthermore, gate error also 

becomes more cumbersome as the transformation matrix grows exponentially in size. 

The closeness between quantum states is defined as jidelity F [22], [23J 
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(3.4) 

In the case of analyzing error in two quantum states, 1 cp) is the actual quantum state 

and l'l/J) is the quantum state subjected to error (discretization). The concept of fidelity is 

then involved in the gate evolution of the quantum system by defining an error rate per 

quantum gate [23]. The error rate is defined as 

I-F 
Error Rate = ----c;- (3.5) 

where G is the total number of gates that the quantum state is subjected to. The gate 

error rate has been studied [26], [27] and for decoherence and gate inaccuracy reasons it 

was shown to be between 10-5 and 10-3 . The following analysis uses this concept of gate 

error to provide a relationship between word length, gate error and circuit size (in terms 

of total number of qubits). The above quantities can be used to de al with quantum noise 

and gate error rates dealing with quantum noise directly (in actual quantum systems) have 

been derived in [26],[22]. However, in the case of the emulator the only source of error in 

the computation is the discretization error. Therefore, agate error model based on the 

discretization error introduced per gate is required. 

The precision error in each word (real or imaginary part of the complex number) is 2-L 

where L is the number of bits in the mantissa of the fixed point number (total word length 

is thus L + 2). The precision error in the overall quantum number is therefore f = 2-L ",fi. 
This can be trivially derived by considering the complex number as a two dimensional 

vector and calculating the magnitude difference between the actual and discretized complex 

number vectors. It can also be assumed as worst case, that each operation (multiplication 

or addition) adds this error to the complex number. From the previous sections, it can be 

observed that sorne gates such as the CNOT gate do not introduce any error in the state 

vector, while on the other extreme, gates such as the H-gate perform multiple operations 

on each complex number in the state vector. Therefore, a reasonable choice for gate error 

modeling, is such agate that linearly adds f to each term in the state vector. This is do ne 

by applying a rotation matrix that affects an values of the state vector. This could be a 

diagonal matrix containing a non-zero real number at each entry. This amounts to one 

multiplication on the real and imaginary part of each entry in the state vector per gate. 

Consider a quantum system comprising of N qubits. The length of the full expanded 
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state space vector is thus n = 2N . Let E be the final error in each term of the output state 

'I/J) of the quantum system su ch that 

(3.6) 

Theorem 1. The word length L required for simulating the quantum evolution of an N 

qubit system in the expanded state space is: 

(N + 1)/2 ~ L ~ (N + 35)/2. (3.7) 

Proof. Assume l'P) = [À1 ... Àn]T is the actual error-free output of the quantum circuit. Here 

Ài are complex numbers such that ~~1 IÀil2 = 1. The fidelity can now be computed 

between the state vector l'P) and l'I/J) as follows 

F - Il ('PI'I/J) 112 

ÀHÀl + E) + ... + À~(Àn + E) 

- 1 + E(Ài + ... + À~) 

The error rate can now be expressed using the above expression for F and Equation 3.6 as 

ErrorRate (1- F) (E(Ài + ... + À~)) max ~ =max G 

max(Ài + ... + À~) ~ 

The maximum value of the error rate occurs for Ài = 1 ~I = 1 )nI and can be deter

mined by partial differentiating the equation ~~=1 IÀil2 = 1 for each Ài' The error rate is 

thus, 

( nl~l) ErrorRate = E :: = 5n2-L = 2(N-2L+l)/2 (3.8) 
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From [22], [23] the above error rate maybe as high as 10-5 to 10-3 . Therefore, the 

following bound can be determined for the word length in terms of the number of qubits 

10-5 ~ Error Rate ~ 10-3 

10-5 ~ 2(N-2L+1)/2 ~ 10-3 

-17 <li-L+l< 
- 2 2 - -10 

N+21 
~L~ 

N +35 
2 2 

o 

3.6.3 GraduaI Word Iength Expansion 

The word length for an arbitrary sized circuit (in terms of number of gates) can be computed 

using the bound given by Equation 3.7. Note that the above analysis can be applied to other 

fixed- and floating-point representations by using the appropriate unit round-off expression. 

The following synthesis mIes are derived from Equation 3.7: 

• Quantum gates must be synthesized with the expanded precision representation de

pending on the size of the state space the gate is operating on, 

• The output of the expander circuits should also use the expanded precision represen

tation by padding the inputs with the necessary zeros before expansion. 

The above mIes along with the error bound allow the synthesis of the quantum circuit 

for a particular error requirement. For example, Figure 3.12 illustrates the word lengths 

needed to emulate the test circuit from Figure 3.8. The graduaI word length expansion 

allows conserving resources by synthesizing gates operating on a reduced state space with 

a smaller word length. This enhancement however is modest. For a 3-qubit QFT circuit 

this optimization yields an improvement of 1. 7%. Due to the relatively small change in 

word length with increases in circuit size, the improvement would grow less gradually with 

circuit size. 
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Chapter 4 

Implementation Details and Results 

This chapter encapsulates several important consequences regarding the operation of the 

emulator. The particulars ofthe automated code generation tool to describe quantum gates 

and extracting emulation results from the emulator to the PC are laid out. More details 

regarding the choice of fixed-point numbers and their effect on quantum circuit emulations 

are provided. Furthermore, an ensemble of quantum circuits are created using the emulator 

to verify its viability as a potent emulation technology. Finally, the performance of emulated 

circuits is compared to other software-based simulators. All this would reveal that the 

emulation technique is not only an evolution of quantum circuit simulators but also opens 

up new avenues and insights into this very complex problem. 1 

4.1 Software-based Gate Generator 

The large variety of gate transforms necessitates automation of the process of describing 

the gate transform in VHDL. To that end, a C++ application has been created that 

using command-line instructions from the designer, outputs the VHDL implementation of 

the required gate. Figure 4.1 depicts the UML class diagram [28J of the gate generator 

software. 

C++ was chosen for the object-oriented encapsulation it provides and for the code reuse 

opportunities. Figure 4.1, depicts only some of the gates that can be created using the gate 

generator. All the quantum gates that can be generated using the software are child classes 

1 Part of this work has been published in [20]. 



4 Implementation Details and Results 46 

GateGenerator 
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+GateGenerationMenuO 
+ExceptionO 
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1 1 
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n 
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+QuantumGateO 
+CreateTransformO 
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+printVHDLO : void +printVHDLO : void +printVHDLO : void 

Fig. 4.1 UML class diagram for the gate generator software 
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of the QuantumGate class. This polymorphic structure is particularly useful, since it allows 

code reuse and also formalizes the addition of new gates to the generator. A new gate class 

would simply have to implement the print VHDL() function that would translate the gate's 

transform to VHDL. 

The transform itself is created using the CreateTransform() function in the Quantum

Gate class. The transform is objectified using the matrix class. Depending on the size, 

numlnputs and databitpos (for the case of multiple input gates) attributes, the kron() func

tion is called by the CreateTransform() function to create the final matrix representation of 

the quantum gate. The kron() fun ct ion in the matrix class is an efficient implementation of 

the Kronecker product [29] and can quickly generate large matrices. While this approach 

introduces a pre-processing step before the actual emulation of the quantum circuit (unlike 

other quantum circuit simulators), once the gates descriptions have been generated, they 

can be reused multiple time and for different quantum algorithms. 

The command-line interface makes this technique more accessible. The user simply has 

to specify the gate code (an acronym based on the gate name that can be referenced easily 

through the help menu in the interface), the size of the quantum system and the position 

of the qubit (the top most position is set to 0). OptionalIy, for multiple input gates, the 

user also has to specify the number of inputs of the gates, and the position of the data 

qubit as welI). AlI of these parameters are input as a single command (space delimited) 

and the generator outputs the VHDL description of the required gate. The output file is a 

complete description and can be compiled and synthesized using FPGA CAD tools. 

4.2 Miscellaneous Architecture Components 

The final step in the FPGA emulation of a quantum circuit is to retrieve the final quantum 

state from the FPGA to the PC. The final quantum state of the qubits can then be sub

jected to quantum measurements in software (see Appendix A for more details on quantum 

measurement simulation). Depending on the size of the quantum system and the expanded 

state space, the data that has to be transferred from the FPGA to the PC can be signif

icantly large. Various PC communication proto cols such as USB, parallei port and seriaI 

port (RS-232) can be used to send data to the PC. While the USB communication is the 

fastest way to transfer data, due to the unavailability of USB communication on the FPGA 

development platform that was available, it was decided to use the RS-232 port instead. 
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The development of seriaI communication for the emulator serves as a guideline for other 

communication techniques that may be use instead of seriaI RS-232 communication. 

The first step to achieve seriaI communication between the PC and the FPGA was 

to implement a universal asynchronous receiverjtransmitter (UART) controller [30]. The 

UART controller takes in a byte of data and sends it one bit at a time to the PC. Due to 

the varying size of the data set and data primitives, the UART is designed to work with 

various sizes of total input data. The UART then takes 4 bits of data, converts them to 

an ASCII character and sends it serially to the PC. On the PC side the data is stored on 

a file and can then be converted to real numbers. 

SeriaI communication can occur at a variety of speeds [30] and for this a customized 

clock divider circuit using behavioral VHDL has also been developed. The UART clock is 

much slower than the global system clock, and sending the data to the PC is much slower 

(except perhap~ for very large quantum circuits) than the actual computation of the final 

quantum state. Since there are a variety of PC communication techniques available, the 

emulator results presented later in this chapter do not include time required to send the data 

to the PC. The time for seriaI communication however, can be determined unequivocally. 

Based on the total length of the final state vector M, the number of bits per entry of the 

state vector 2N where N is the number of bits assigned for the real or imaginary part of the 

complex number and the baud rate for the seriaI communication (bytes per second), the 

time for sending the data to the PC tcomm can be determined from the following equation 

Mx 2N x 10 10 
tcomm = b d = totalcharacter s x b d 

4 x au rate au rate 
(4.1) 

For example a 16 qubit circuit, using N = 18 (16 bits for the mantissa of the fixed 

point number), it would take 51.2 seconds to transmit the data from the FPGA to the PC. 

This number, obviously grows exponentially wh en simulating a larger number of qubits 

and therefore, a faster communication protocol (such as USB 2.0 with data rates up to 480 

Mbps [31]) would be more practical in that case. 

The entire emulation scheme is shown in Figure 4.2. The quantum circuit controller, 

essentially determines the start and end of a quantum system evolution. For circuits such 

as the Grover's search algorithm, where the data iterates through the circuit, the controller 

has to wait for the exact number of clock cycles (of the global clock) before notifying the 

UART controller to start sending the output of the circuit to the PC. The total clock cycles 
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are determined by the number of pipeline stages in the circuit (and the iterations of the 

data in the case of Grover's search algorithm), 

A number of push buttons on the FPGA development board were also used. The 

buttons can be used to start and reset the emulation as well as choose the inputs to the 

quantum circuit. A set of inputs is loaded into memory (ROM) on the FPGA during 

synthesis. The push-button updates the address line on the ROM to select which input is 

sent to the circuit. This mechanism is convenient and neeessary sinee entering the initial 

values for a large number of qubits is cumbersome. 

4.3 Emulator Mapping Results 

In this section, details about the synthesis of the various components of emulator are 

provided along with experimental evidence of the various synthesis techniques discussed in 

Chapter 3. The techniques presented in this thesis offer the me ans of undertaking quantum 

circuit emulations in FPGAs by including the quantum gate library and expander circuits, 

like most quantum software simulators [10J. No changes to standard FPGA mapping and 

the overall design fiow are required. Figure 4.3 show the FPGA mapping of the 3-qubit 

QFT circuit. The parallel and pipelined architecture of the circuit is clearly evident . 

. ~-------------------------------- ._-_._-_ .. _-
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Fig. 4.3 FPGA snapshot of the 3-qubit QFT circuit 

4.3.1 Synthesizing Quantum Circuits 

The quantum circuit emulator uses a tradition al four stage VHDL to FPGA fiow illustrated 

in Figure 4.4. However, the synthesis and optimization stage (stage 2) requires the a 

considerable amount of processing time as the synthesizer optimizes the quantum circuit's 

mapping based on area and speed parameters. In order to improve on the time spent during 

this stage, the optimization (FPGA level block placement and functionality) for individual 

quantum gates is saved and can be reused for different quantum circuits. This effectively 

bypasses the stage 2 of the fiow and only the routing stage is necessary for circuits using 

pre-synthesized gates. 

4.3.2 Quantum Gate Synthesis Results 

Quantum gates, unlike classical gates, have a uniquely different transform matrix depending 

on the ordering of the inputs. This is especially evident when single input quantum gates 

operate on an input in the expanded state space. The gate transform depends on the size 

of the inputs and the position of gate's input in the expanded set. However, as described in 

detail in Chapter 3 these gate transforms have similar matrix topologies. This similarity in 

the transforms translates to the fact that resources consumed by a quantum gate depend on 

the size of the expanded state vector. Furthermore, the resource consumption is oblivious 

to changes in the position of the actual qubits the gate is operating on. The creation of 

different quantum gates for different mantissa lengths is conveniently handled via the soft-
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ware scripts. The software scripts automaticaIly generate the correct VHDL code depicting 

the transform in an efficient number of complex multipliers that can then be mapped to the 

FPGA directly. Table 4.1 depicts the logic ceIl usage for the quantum gates in the library 

for the mantissa size of 12-bits. The device chosen is the Altera Stratix EP1S80F1020C. 

The simulation tool used is ModelSim and Leonardo Spectrum was employed to obtain 

synthesis results. 

Table 4.1 Logic CeU Usage on Altera Stratix EPlS80F1020C 

Circuit / Gate Single Input 3-qubit 4-qubit 5-qubit 
Expanded Expanded Expanded 

Input Input Input 
Hadamard Gate 643 1588 3069 4227 
Rotation Gate 442 442 1588 2011 
CNOT Gate 0 0 0 0 
X-Gate 0 0 0 0 
Z-Gate 0 0 0 0 

As can be observed, the CNOT gates do not occupy any resources themselves as they are 

implemented as simple bit vector swap operations on the FPGA. However, they do incur a 
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significant resource cost in the computation because the gates only operate on inputs in the 

expanded state space form. Therefore, resources are consumed by expander circuits and all 

the gates subsequent to the CNOT gate in the circuit also have to be expanded to deal with 

the expanded input. As X-gates and Z-gates also do no involve any adderjmultiplier units 

they do not consume any resources. On the other hand, Hadamard gates and rotation gates 

do require more resources as when the input size scales up more adderjmultiplier units are 

consumed. 

4.3.3 Expander Circuit Synthesis Results 

Expander circuits are necessary to convert a set of individual qubit vectors into an expanded 

state space vector. Two state space expansion circuitry designs were considered. The direct 

expansion technique basically expands a set of qubits within one pipeline stage using a 

ripple-multiplier architecture. The major disadvantage of this technique is that it results in 

a logic-cone that is difficult to synthesize beyond a small number of qubits. The synthesizer 

software runs out of memory when synthesizing the direct expansion circuit for more than 

nine qubits (running on a high performance PC with 2.0 GHz AMD Opteron processors 

and 2GB of RAM). Furthermore, from observing various quantum circuit topologies we 

realize that direct expansion is only required at most for a set for two or three qubit since 

most quantum circuits comprise of twojthree input quantum gates. Figure 4.5 depicts the 

direct expansion circuitry synthesis results for varying numbers of qubits. The mantissa 

length in all cases is 12 bits. Note that the resource usage grow linearly until six qubits, 

beyond which the synthesizer starts having problems with the large logic co ne and the 

resource usage grows exponentially from then on. 

A complimentary state space expansion circuit is then needed to merge sm aller state 

spaces when necessary. This leads to a graduaI state space expansion technique whereby 

. the computation state space is gradually expanded and only when necessary. This is un

like the general software simulation approach where aIl the qubits are represented in the 

expanded state space at the beginning of the computation. The gradual state space expan

sion technique greatly improves performance. Table 4.2 illustrate the difference between 

these two design philosophies by using a 3-qubit QFT circuit as a test-case. As can be 

observed with the graduaI state space expansion technique leads to an 18.5% improvement 

in resource usage and 11.3% improvement in computation time. 
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Table 4.2 Comparison of the direct and gradual expansion techniques 

Logic Cell Usage Computation Time [ns] 
Direct Expansion 13829 110.8 
GraduaI Expansion 11271 97.65 

4.4 Computation Error 

53 

In Chapter 3 a detailed error analysis has been provided that relates classical computation 

error when simulating quantum circuits with the error suffered by real quantum circuits in 

the form of quantum noise. It has been determined in [26], [27] that if the error introduced 

per gate is in the range 10-5 and 10-3 the computation can take place successfully. Using 

the limits on gate error and classical error analysis techniques, a bound on the size of 

the classical word length needed to mimic real-life quantum computation successfully has 

been derived. In this section, the actual results of the application of the error bounds is 

produced. This provides an experimental validation to the theoretical results presented in 

Chapter 3. 

The error introduced per gate can be experimentally determined by comparing the 

computed output of a synthesized gate and using the fidelity expression in Equation 3.4. 
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Table 4.3 presents the error introduced by each quantum gate for various mantissa lengths 

with the error bound found expressed in Equation 3.7 (using N = 3). 

Table 4.3 Error introduced by different gates for various mantissa lengths 

Gate Name 11 bits 12 bits 17 bits 18 bits 
Hadamard gate 6.48 x 10-4 1.57 X 10-4 1.68 X 10-5 0.90 X 10-5 

Controlled Rotation gate 6.53 x 10-4 1.63 X 10-4 1.71 X 10-4 0.95 X 10-5 

CNOT gate 0 0 0 0 
Z-gate 0 0 0 0 

As can be observed that the actual error per gate for the various gates is weIl within the 

tolerance for successful quantum computation. The CNOT gates themselves do not incur 

error directly (the bit vector swap operation does not incur any precision error) , but the 

error is implicitly present in the form of the expansion operation itself. At the system level 

we see that the emulated output has high fidelity. For instance in the case of a 3-qubit QFT 

circuit using a 12-bit mantissa the resulting output has an absolute error of 2.06 x 10-4 

which is comparable to the actual gate error of the Hadamard and controlled rotation gates 

that form the circuit. 

The above results also vindicate the choice of fixed-point numbers for depicting quantum 

information within the emulator. The main con cern with this choice was that the error 

incurred in computation due to the discretization of the gate coefficients and qubit values 

would make emulation impractical with fixed point numbers. From the above results, it is 

evident that this is not the case. 

4.5 Quantum Circuit Benchmarks 

In this section a comparison of the emulator's performance with the eminent software 

simulator QuIDD [10] is provided. The QFT circuit and Grover's se arch algorithm are 

used as test-cases for performance comparison. Apart from the fact that these circuits 

are two of the most important one's that have been developed so far, the topologies of 

the circuits require more resources than most of the other algorithms developed so far 

and therefore they also serve as good stress tests. Table 4.4 compares the emulator with 

QuIDD when simulating the QFT circuit. Table 4.5 provides another benchmark using 

the Grover's search algorithm. The timing results of the emulator were obtained from the 

~~--- ---- -------------------------------------------------------------~ 
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plaee-and-route synthesis proeess in Leonardo Spectrum. QuiDD-based simulations were 

executed on a 2 GHz 64-bit Opteron unit with 2 GB of RAM and using the Redhat Linux 

operating system. The timing results of the algorithms were clocked using native QuIDD 

profiling functions. 

Table 4.4 QFT Benchmark 

Number of Qubits LC Usage FPGA Emulator [ns] QuIDD[ns] 
3 11271 97.65 2.13 x 107 

4 16687 127.80 6.06 x 107 

5 21898 147.80 1.2 x 108 

Table 4.5 Grover's Search Algorithm Benchmark 

Number of Qubits LC Usage FPGA Emulator [ns] QuIDD[ns] 
3 14284 97.65 3.40 x 107 

4 23525 255.10 6.00 x 107 

5 30121 286.80 1.59 x 108 

As can be observed the FPGA emulator outperforms QuIDD by several orders of mag

nitude. It is important that the computation times mentioned here are ones that involve 

just the actual computation of the output of the circuit and do not take into account time 

for quantum measurement. The quantum measurement time would be more significant for 

the emulator as data has to be transferred from the FPGA back to the PC. That time is 

sim ply a function of the data transfer proto col being used. 

Another interesting observation is the way computation time is scaling up with circuit 

size. The increase in the case of the QFT is essentially due to the fact that addition al 

pipeline stages have been introdueed for larger circuits. In the case of the Grover's search 

algorithm, the increase of a 3-qubit circuit to a 4-qubit one is greater not only because 

of additional pipeline stages but also because the 4-qubit circuit requires two iterations 

to suceessfully complete the se arch as opposed to one iteration in the 3-qubit case.' The 

differenee between the 4-qubit and 5-qubit circuits is less significant sinee the number of 

iterations required are the same for both circuits. Conversely, QuIDD's computation time 

also scales up even more significantly with increases in circuit size. Therefore, as long as 

a circuit can be synthesized to the FPGA it should outperform QuIDD because of the 

emulator's parallel architecture and hardware-Ievel arithmetic computation. 
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4.6 Scaling Quantum Circuit Emulation 

The results presented in the previous section are a proof of concept that FPGA-based 

emulation of quantum circuits is viable and has a significantly lower computation run

time when compared to the leading software simulator. Ultimately though, the emulation 

environment's purpose is to emulate large scale quantum circuits and in this section a qual

itative analysis at the different aspects of the emulator is undertaken to determine how weIl 

the overall architecture scales up. 

Using a top-down approach, consider the overall architecture of the quantum circuit. 

EssentiaIly, it is a pipelined architecture and as quantum circuits increase in size, more 

pipeline stages are added to the circuit. The only critical issue with a pipelined archi

tecture is timing and with the robust dock distribution system of today's leading FPGA 

technologies, this issue should not be any hinderance to constructing larger quantum cir

cuits. Furthermore, while the pipelined architecture enforces stringent timing requirements, 

it also decouples the computation into constituent parts. This fact is critical because larger 

quantum circuits can be spread over multiple FPGAs by splitting up the pipeline stages 

over different FPGA units. A global dock synchronizing the operations on an the FPGAs 

can then be used to retain the cohesive nature of the overall pipeline. 

At the next level consider the components that make up the quantum circuit, that is 

quantum gates and expander circuits. Using the graduaI state space expansion technique, 

the state space expansion operation should not be a constriction on the construction of 

larger quantum circuits. Since the operation is divided over multiple pipeline stages (at 

the. discret ion of the designer) it is architecturally quite benign. As far as quantum gates 

are concerned, the most commonly used one is the CNOT gate and that itself does not 

consume any resources on the FPGA. On the other extreme, Hadamard gates can consume 

a significant amount of resources when operating on large state vectors, however for most 

quantum circuits the Hadamard gates are applied at the beginning of the computation to 

individual qubits and therefore they no longer consume an exorbitant amount of resources. 

However, as illustrated by the expander circuit architectures, a hardware reuse design 

approach is possible within the paraIleljpipelined architecture of the emulator and it can 

be applied to Hadamard gates as weIl. 

At the lowest level, the emulator comprises of fixed-point adders and multipliers. Larger 

.~ quantum circuits require more addersjmultipliers. FPGA technology is scaling up rapidly 
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and potentially custom platforms comprising of multiple FPGAs can be constructed to 

provide the necessary resources for larger quantum circuits. The word length expansion 

techniques proposed in Chapter 3 can be used to optimize the resource consumption of the 

addersjmultipliers as the state space expands within a large quantum circuit. 

Finally, it is important to note that the design of the emulator allows flexibility in the 

way quantum circuits can be constructed. From quickly generating various architecture 

descriptions through software to flexible state space expansion techniques to having the 

ability to vary the word length of data primitives, the emulator has been designed such 

that it can adapt to the architectural challenges of large scale quantum circuits. 
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Chapter 5 

Conclusion and Future Work 

This thesis focuses on the design, implementation and evaluation of a FPGA-based quantum 

circuit emulator. The emulator uses a pipelined architecture, to emulate the parallelism in 

quantum computation as weIl as the time evolution of a quantum system. Optimizations 

based on computer architecture, sparse-matrix computation and the natural properties of 

quantum circuits were employed to produce a scalable platform for quantum computation 

that outperforms software-based simulators by several orders of magnitude. Furthermore, 

the emulator also takes into account the efIect of quantum noise and gate error on the 

computation, both of which are difficult to reproduce in software. At the same time, the 

implementation of the emulator provides a deeper understanding of the issues involved in 

quantum circuit modeling such as word-length of the data-primitives and gradual state 

space expansion based on quantum circuit topology. 

5.1 Thesis Summary 

In Chapter 1 a brief history of quantum computing is provided. Quantum computing is 

one of the most promising new forms of computing that is being heralded as the future of 

computation. Interest in this form of computing is multidisciplinary and research in the 

notion of using the spinjpolarization of particles exhibiting quantum mechanical properties 

to store information has been ongoing for almost two decades now. However, the unavail

ability of quantum comput ers has led to the development of software based quantum circuit 

simulators. Simulating quantum circuits using classical computers on the other hand, is 

computationally expensive as quantum algorithms require exponential resources on classi-

2005/10/31 
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cal computers as opposed to polynomial resources on real quantum computers. Emulation 

of quantum circuits is next described as a more detailed modeling approach compared to 

simulation that can be accelerated by performing computation in parallel at the hardware 

level. 

Details of the quantum circuit model are described in Chapter 2. The analogous nature 

of quantum circuits (in terms of bits and gates) with classical circuits is used to provide a 

convenient understanding of this new computational model. Quantum mechanical princi

pIes of superposition and entanglement as used in quantum computing are also described. 

The Dirac bra-ket notation as weIl as the expanded state space notation used to depict infor

mation stored by a quantum system are then introduced. Two famous quantum algorithms: 

the quantum Fourier transform (QFT) and Grover's search algorithm are introduced and 

they serve as examples and benchmarks in the rest of the thesis. Finally, a brief survey of 

three software simulators of quantum circuits and the various techniques they employ to 

optimize quantum circuit simulation is undertaken. 

Chapter 3 describes in detail the architecture of the emulator and the various opti

mizations used to efficiently synthesize quantum circuits on the FPGA. The concept of 

graduaI state space expansion is introduced whereby the state space is expanded gradually 

when necessary as opposed to software simulators that execute quantum algorithms on a 

fully expanded state space. The novelty of this technique is that it significantly reduces 

the amount of computation involved and details of two circuits that perform state space 

expansion are provided. 

Next, sparse-matrix and hardware-reuse based optimization techniques are described 

that allow efficient implementation of different quantum gates on the FPGA. This is fol

lowed by a detailed error analysis of the computation being performed based on the fixed

point data representation scheme used by the emulator. This classical error analysis is 

then combined with quantum gate error and quantum noise analysis to produce a bound 

on the word-length of data primitives. As the emulator architecture allows flexibility in 

word-length, a word-length expansion paradigm is proposed that allows modeling the effect 

of quantum noise and gate error on quantum computation. 

Lastly, in Chapter 4 actual synthesis results of various quantum circuits are provided 

along with experimental results that vindicate the choice of the optimizations and theoret

ical analysis laid out inChapter 3. The chapter begins with the description of a software 

gate generation tool that outputs VHDL descriptions of various quantum gates based on 



5 Conclusion and Future Work 60 

the parameters provided by the user. The performance of the emulator is compared with 

an eminent software simulator and it is shown that the emulator outshines the software 

simulator in terms of computation runtime by sever al orders of magnitude. It is empiri

cally proven that the FPGA-based emulator is a viable and effective platform for quantum 

circuit modeling. 

5.2 Future Research Work 

The FPGA-based emulator as it stands now is a complete test-bed for quantum circuit 

emulation. However, more avenues of enhancing the emulator's performance still remain 

open. An important enhancement to the emulator would be more CAD level support for 

synthesizing quantum circuits. Currently, regular CAD tools are used to synthesize quan

tum circuits. However, research and development of CAD tools specifically designed to 

synthesize massively parallel architectures, fixed-point multipliersjadders and swap opera

tions could lead to significantly faster quantum circuits that consume less resources on the 

FPGA. Another possibility is synthesis of quantum circuits over multiple FPGA's and the 

development of a multiple FPGA test-bed to synthesize large-scale quantum circuits. 

On the other end of the spectrum, the effect of quantum error-correction algorithms 

within the emulation environment can be investigated. The FPGA emulator can also be 

potentially modified to be used in practical applications of quantum computing such as 

quantum cryptography. 
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Quantum measurement is a complex pro cess that has serious implications on quantum 

algorithm performance. Therefore, in developing a simulation environment for quantum 

computers it is important to take in account the effect of measurements on the system. To 

this end, a software based quantum measurement simulator has been developed that applies 

the frame-based measurement technique to the emulated output of quantum circuits. 1 

A.l Quantum Measurement 

Quantum evolution follows from the second postulate of quantum mechanics which states 

that an evolution of a closed quantum system over time is described by a unitary operator. 

Thus astate l'!/J' ) at time t 2 is related to an earlier state l'!/J) bya unitary matrix U. 

l'!/J' ) = UI'!/J) (A.l) 

The postulate assumes that the evolution of closed quantum system is being considered. 

Quantum circuits are considered to be c10sed systems in which quantum gates apply unitary 

transformations to the quantum state as it progresses through time. However, at the end of 

a quantum algorithm the system is no longer closed as it is subjected to a measurement so 

that its state can be determined (the result of the computation). At this point the system 

1 Part of the work presented here has already been published in [32] 

2005/10/31 
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is no longer closed and the evolution is no longer guaranteed to be unitary. 

At this point a third postulate of quantum mechanics is introduced which defines quan

tum measurements in a formaI manner. The postulate states that quantum measurements 

are a collection of measurement operators Mm where m is the measurement outcome that 

may occur in our system. The probability that result m occurs upon measuring a quantum 

system 1'ljJ) is given by the equation 

(A.2) 

It can be observed from the above postulate that measuring quantum systems is a prob

abilistic process. The measurement operators firstly must meet the completeness equation: 

(A.3) 
m 

For example, if a single qubit 1'ljJ) = alO) + ,B11) is measured the probability of measuring 

o and 1 is lal2 and 1,BI2 respectively. In order to measure these states the measurement 

operators are constructed as Mo = 10)(01 and Ml = Il)1(11. It is easily checked that these 

operators satisfy the completeness equation. Thus, when these operators are applied on the 

system, the resulting state depends on the probability defined by the a and ,B coefficients. 

Suppose a system having l'ljJi) (1 ::; i ::; n) orthonormal states is prepared in the ith 

state. If a measurement operator Mi defined such that Mi = l'ljJi)('ljJil and is applied to 

the prepared states then p(i) = ('ljJiIMil'ljJi) = 1. Thus, this state can be measured with 

certainty. 

However, the restriction imposed by quantum measurements is that aIl the states l'ljJi) 1 
must be orthogonal in or der to distinguish them successfully. The probability of error in 

distinguishing non-orthogonal states is not zero. This causes significant measurement errors 

wh en results of the quantum computation are in non-orthogonal quantum states (as in the 

case of the QFT algorithm). 
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A.1.I Projective Measurements 

Projective measurements are described by an observable M, which is an observable Hermi

tan operator on the state space of the system being observed. The spectral decomposition 

of M is given by 

(A.4) 
m 

where Pm is a projector on to the eigenspace of M with eigenvalue m. The probability of 

measuring out come m is now 

(A.5) 

Thus, projective measurements are a special case of postulate 3 where the corresponding 

measurement vector Mm is forced to be Hermitan and MmMm, = 8m8m,Mm. 

A.1.2 POVM: Positive Operator-Valued Measure 

POVM are the complete set Em where Em is a positive operator such that 

(A.6) 

Algebraically POVM completely satisfy postulate 3. The key aspects of POVM is that 

aIl their elements are positive and that I:m Em = 1 which is the completeness equation. 

POVM are a powerful formalization of the quantum measurement operator. They are less 

restrictive than the general measurement vectors and their construction is more intuitive. 

A.2 Frame-Based Measurements 

In this section a brief discussion on the problem of distinguishing non-orthogonal states 

and a possible solution based on tight frames is given. 

A.2.I Distinguishing non-orthogonal quantum states 

As described in the previous section, if a quantum system has non-orthogonal states then 

distinguishing between these states has a probabilistic error. For a quantum system con-
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taining 'l/Ji quantum states (1 ::; i ::; n) and POVM elements are (/Ji, then the probabilistic 

error can be described as 

(A.7) 

If aIl the states 'l/Ji are orthonormal then choosing /Li = 'l/Ji results in Pe = O. However, Pe 

will be non-zero for non-orthogonal pure quantum states. Thus, a fundamental problem in 

quantum mechanics is to construct measurements optimized to distinguish between a set 

of non-orthogonal pure quantum states. 

'1/2 

PH - -- -- - - - - - - - -- -- -- ----.. 

Fig. A.1 Projective Measurements 

Figure 2 depicts one the major problem in projective measurement. For simplicity the 

complex dimension (which leads to a three dimensional figure like that of a Bloch Sphere) 

is ignored. f.-t ...... and f.-tl are the measurement vectors while 'l/Jl, 'l/J2 and 'l/J3 are the states that 

are to be measured. Due to the orthogonality restriction, the quantum states can only be 

projected on to the orthogonal measurement vectors. A measurement for instance could 

project 'l/Jl or 'l/J2 to f.-tl and it would not be possible to distinguish between the two quantum 

states. 

Figure A.2 shows how POVM measurement vectors can be devised so they aIlow for less 

probability error than standard measurements. POVM vectors are not restricted to be or

thogonal. Here, the quantum states 'l/J1, 'l/J2 and 'l/J3 can be projected on to the non-orthogonal 

measurement vectors f.-tl, f.-t2 and f.-t3· The choice of measurement vectors determines the 

probability error of detection. One possible solution to determining the measurement vec

tors is to formulate this problem as a quantum detection problem in which, measurement 
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vectors are constructed to minimize the probability of detection error or more generally 

the Bayes' cost (the amount of times an algorithm will be repeated in order to reduce the 

detection error to zero). Attempts to achieve a solution based on direct optimizations on 

these conditions is difficult and as yet an unsolved problem . 

A.2.2 Least Squares Measurements and Tight Frames 

An alternative optimization criterion has been proposed known as the squared error cri

terion. Measurement vectors are chosen to minimize the sum of the squared norms of 

the error vectors, where the ith error vector is defined as the difference between the ith 

state vector and the ith measurement vector. This optimized measurement is knows as the 

least-squares measurement (LSM). 

Tight frames are generalized bases comprising of /-li vectors 1 ~ i ~ n in the Hilbert 

space such that 

n 

L I(X,/-li)1 2 
= jJ211xW (A.8) 

i=l 

and jJ > O. 

Tight frames can contain redundant elements (like POVM) which can be modeled to 

optimize for LSM. Thus, it is desirable to construct tight frames which have vectors /-li 
designed to minimize the error 

n 

E = L ([.li, [.li) (A.9) 
i=l 
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where l2i = 'lfJi - /-li· 

The quantum frame being constructed is the constrained least-squares frame where /3 
and the frame vectors are chosen to satisfy the squared error criterion. The construction 

of the frame begins with a set of quantum states grouped in a matrix w. The first step is 

to compute the value of /3 used to constrain the frame. This is obtained as follows 

(A. ID) 

where r is the rank of the state matrix and Tr is trace of the resulting matrix. Next the 

frame itself can be expressed in terms of the state matrix and /3. 

(A.11) 

where the ot operation is Moore-Penrose psuedo-inverse [29] and x* is the conjugate trans

pose of x. 

The squared error is then given by 

r 

E = L(/3 - O"i)2 (A.12) 
i=l 

where O"i are the non-zero positive eigen-values of the state matrix, obtained using a SVD 

operation on w. 
Thus, given a matrix whose columns represent possible states of a quantum system a 

frame matrix can be constructed whose columns represent measurement vectors constructed 

to reduce the squared error given above. 

A.3 Simulation of Measurement 

The two major differences between POVM and standard quantum measurements are that 

the vector /-li of the frame (considering its duality with POVM as described in [33]) do not 

. have to be normalized or orthogonal. A POVM is a set of operators. These operators can be 

constructed from the columns of the frame by performing an outer product on the columns. 

Thus, operator Ai constructed from the ith column of the frame can be constructed as 

(A.13) 
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The probability of observing the ith outcome for a given state 'ljJ is given by 

(A.14) 

The sum of these probabilities for all the observables should be equal to one. One check 

to see if the generated frame is correct is that 

FF* = f32pu (A.15) 

where Pu is the projector on to the quantum space. 

One of the motivations for working with frame-based measurement techniques is that 

it is a closed-form optimization of the state detection problem and hence can be simulated 

along with quantum algorithms on a classical computing system. The closed form nature 

of this optimization is an important advantage because constructing optimal standard 

measurement vectors is an NP-complete problem. 

Quantum measurements are a key part of a quantum algorithm. In classical algorithms 

obtaining the data from the algorithm is normally a trivial exercise and has no bearing 

on the usefulness and performance of the algorithm. However, in quantum computing 

the measurement is the key to algorithm performance and usability. For example, in the 

Grover's search algorithm, the performance of the algorithm is computed to be O(..;n) 
where n is the size of the database being searched, only because at least ..;n measurements 

have to be performed to obtain the result of the search with high probability. 

A.4 Case Study 

In this section an example is provided to illustrate the working of frame-based quantum 

measurement. To illustrate the simplicity of the pro cess , the technique is applied it to a 

q-ary logic system. The example provided in this section subjects a quantum ternary bit 

to frame-based measurement. For this purpose, Equations 2.2 and 2.3 can be extended to 

ternary logic: 

1'ljJ) = alO) + (311) + ,12) (A.16) 

where a, f3 and, are complex coefficients related by the equation. 
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(A.17) 

A quantum system based on a single quantum-ternary bit is depicted by the following state 

matrix \]i 

(

1/vf:3 1/vf:3 0 ) 
\]i = 1/ vf:3 1/ vf:3i VI 

1/vf:3 1/V3 1/V3 

This matrix is now subjected to the frame measurement procedure. Using the state 

matrix the resulting frame is 

( 

0.67 + O.Oli 

F = 0.40 - 0.21i 

0.09 + 0.22i 

0.32 + O.Olli. -0.39 - 0.06i ) 
-0.27 + 0.452 0.48 - 0.04 

0.50 - 0.28i 0.56 + 0.06 

The columns of the frame matrix F are the measurement vectors optimally close to the 

quantum states in a least squares sense. The squared error calculated is 0.877. The sum 

of aIl the probabilities adds up to one using the following expression 

3 

L 1 (/Lil'l/J) 1
2 

= 1 
i=l 

where 'l/J can be any one of the quantum states and /Li are the frame vectors. Table A.1 

details the probabilities of measurement for each quantum state using each of the measure

ment operators. 

Table A 1 Measurement Probabilities for \li . 
/LI /L2 /L3 

'l/JI 0.634 0.163 0.203 

'l/J2 0.163 0.766 0.071 

'l/J3 0.203 0.071 0.726 

As can be observed from Table A.1, frame-based measurements do not allow error-free 

state detection. For instance, if the system is in state 'l/JI using measurement vector /LI 



• 
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gives approximately 63% probability that 'lfJI will be correctly identified while the other 

two states are have a much lower probability of detection by /-lI. A similar situation exists 

when the system is in states 'lfJ2 or 'lfJ3 and measurement vectors /-l2 or /-l3 respectively are 

used to perform the measurement. Thus, frame-based measurement vectors would not allow 

the deterministic detection of quantum states in just one measurement as there are non

zero probabilities of detection for every state when subjected to each of the measurement 

vectors. Therefore, a number of measurements have to be performed [34], before a high 

enough probability of detection can be be observed. 

An extension to the square-error optimization has been developed in [35]. This extension 

is known as the weighed-squared error. Instead of optimizing for the squared error for aIl 

the quantum states, certain states that have been prepared with a higher probability of 

detection could be given more weight in the optimizing procedure. It has also been shown 

that for systems which exhibit strong symmetry, the measurement vectors generated are 

optimal and have very low erroI. To illustrate this, a set of symmetric states is chosen 

(similar to Fig. 3) . 

The frame generated in this case is 

( 

-0.547 

F = -0.611 

0.611 

0.947 -0.547) 
o 0.611 

o -0.611 

and the squared error is 0.009 which is far less than in the previous case. Table A.2 

depicts the probabilities of measurement in the new situation. The effect of symmetry 

can be observed from the probability distribution of the measurements. In this situation 

measurement vectors J-ll and J-l3 are optimal to detect states 'l/Jl and 'l/J3 respectively. Mea

surement vector /-l2 is optimal for observing the basis state 'lfJ2 and by symmetry has an 

equal probability of observing either 'lfJI or 'lfJ3. 
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1 

r Table A.2 Measurement Probabilities for W2 

1-lI J-l2 J-l3 

'l/Jl 0.7 0.2 0.1 
'l/J2 0.2 0.6 0.2 
'l/J3 0.1 0.2 0.7 
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