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Abstract

The demand for mobile data is likely to grow at a pace more than envisaged in the coming
years. Further, as applications such as the internet of things (IoT) come to fruition, there
will be increased diversity in the types of devices demanding internet connectivity and
their requirements. Significant increase in data rate requirements are also expected due to
sensitive services such as Ultra High Definition (UHD) video streaming and cloud comput-
ing. To meet all these demands, physical layer waveform candidates for future generations
of communications need to be robust and inherently capable of extending into multiple
domains (space, time, frequency, users, transmission media, code etc.) to ensure efficient
utilization of resources. Multiple domains can be innately integrated into the design pro-
cess of modulation schemes by using tensors, which are multi-way arrays.

This thesis introduces a unified tensor framework, which is the foundation for multi-domain
communication systems that can be used to represent, design and analyse schemes that span
several domains. In our work, transmitted signals are represented by Nth order signal ten-
sors which are coupled, using a system tensor of order N + M, with the received signals
which are represented by another signal tensor of order M through the contracted convo-
lution. We begin with the continuous time representation of the tensor system model and
present both the strict multi-domain generalization of the Nyquist criterion for zero inter-
ference (inter-tensor and intra-tensor interference) as well as a relaxation. We present an
equivalent discrete time system model and derive tensor based linear and non-linear equal-
ization methods to combat multi-domain interference for criteria such as minimum mean
squared error and minimum peak distortion. Lastly, we present the multi-domain general-
ization of partial response signalling, or correlative coding, where controlled interference is

introduced into the design process to improve performance.



Sommaire

La demande de données mobiles devrait croitre a un rythme plus rapide que prévu dans
les années a venir. En outre, & mesure que des concepts tels que l'Internet des objets
(IoT) se concrétiseront, les types d’appareils nécessitant une connectivité Internet et leurs
exigences se diversifieront. Une augmentation significative des besoins en débit de données
est également attendue en raison de services sensibles tels que le streaming vidéo UHD
(Ultra High Definition) et le cloud computing. Pour répondre a toutes ces demandes, les
candidats aux formes d’onde de la couche physique pour les futures générations de commu-
nications doivent étre robustes et capables de s'étendre a de multiples domaines (espace,
temps, frquence, utilisateurs, supports de transmission, code, etc.) afin de garantir une
utilisation efficace des ressources. Plusieurs domaines peuvent étre intégrés de maniere
innée au processus de conception de schémas de modulation en utilisant des tenseurs, qui
sont des tableaux a plusieurs voies.

Dans ce travail, nous introduisons un cadre tenseur unifié, qui constitue la base des systemes
de communication multi-domaines pouvant tre utilisés pour représenter, concevoir et anal-
yser des systémes couvrant plusieurs domaines. Dans notre travail, les signaux transmis
sont représentés par des tenseurs de signaux du nieme ordre qui sont couplés, a l'aide
d'un tenseur de systeme d’ordre N + M, aux signaux reus qui sont représentés par un
autre tenseur de signaux d’ordre M par la convolution contractée. Nous commencgons par
la représentation temporelle continue du modele du systeme tensoriel et présentons a la
fois la généralisation multi-domaine stricte du critere de Nyquist pour linterférence zéro
(intra-tenseur et linter-tenseur), ainsi qu’une relaxation. Nous présentons un modele de
systeme a temps discret équivalent et en déduisons des méthodes d’'égalisation linéaires et
non linéaires basées sur le tenseur pour lutter contre les interférences multi-domaines pour
des criteres tels que l'erreur quadratique moyenne minimale et la distorsion de crte mini-
male. Enfin, nous présentons la généralisation multi-domaine de la signalisation a réponse
partielle, ou codage corrélatif, dans laquelle une interférence controlée est introduite dans

le processus de conception pour améliorer les performances.
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Chapter 1

Introduction

Wireless communications and the internet have been two of the most disruptive technolo-
gies in recent history and the synergetic relationship between them has led to exponential
demand for mobile communication services. As presented in the visual network index (VNI)
report released by Cisco [1], the amount of wireless data has exploded and it is predicted
to continue growing exponentially in the coming years. Significant increase in data rate
requirements are expected due to sensitive services such as Ultra High Definition (UHD)
video streaming and cloud computing. Hence, future generations of wireless communica-
tions will need to provide data rates that are orders of magnitude higher than current 4G
technologies. Moreover, with the internet of things (IoT) poised to become a reality, many
diverse devices with an eclectic mix of requirements will soon demand wireless connectiv-
ity to the internet. In order to service such a vast audience while constrained by radio
spectrum scarcity, future communication systems will need to be extremely bandwidth effi-
cient. Given these demands, it is clear that a paradigm shift is required in communication
systems of the coming generations (5G and beyond) since incremental improvements on
current (4G) systems will not suffice [2].

The use of additional domains in the design process of a communication system is an im-
portant means to improve its performance via added robustness from diversity or higher

data rates from multiplexing. For example, the addition of the space domain through the
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utilization of multiple inputs and multiple outputs (MIMO) was the logical successor of sin-
gle input single output (SISO) systems. MIMO systems boast improved link performance
as in the case of space-time coding [3] or higher data rates via spatial multiplexing such as
V-BLAST [4]. Multicarrier (MC) systems such as OFDM, GFDM and FBMC are examples
of frequency domain utilization and are significant improvements over singlecarrier (SC)
systems. The two-dimensional structure of these systems are well represented through the
use of matrices. Following this trend, it is crucial that waveform candidates for future gen-
erations of wireless communications be natively capable of extending into multiple domains
(space, time, frequency, and users to name a few) to ensure efficient utilization of resources.
The use of tensors, which are multidimensional arrays [5], allows innate integration of sev-
eral domains into the design process of modulation schemes.

The notion of tensors and tensor decompositions date back to 1927 with the work of Hitch-
cock [6]. Cattell [7] is credited for introducing the notion of the multi-way model. However,
tensors and their decompositions first gained popularity in psychometrics literature through
the works of Tucker [8] and Carroll and Chang [9]. Since then, tensors have been extensively
used in chemometrics in the food industry, in Fluorescence spectroscopy and flow injection
analysis[10, 11, 12]. In the last years, tensor applications have gained significant interest
in varied fields such as signal processing [13, 14], data mining [15], graph analysis [16],
neuroscience and computer vision [17, 18]. A tensor approach for multidimensional data
filtering is presented in [19]. Cumulant-Based Blind Identification of Under-determined
Mixtures are explored in [20]. A comprehensive overview of multi-linear algebra, tensor
products and their decompositions are provided in [5]. Solution of multi-linear equations
using tensor inversion is studied in [21] and a higher-order generalization of the Moore-
Penrose pseudo-inverse is derived in [22]. The notion of the various transposes of a tensor
is presented in [23].

Matrix decompositions are not unique in general, meaning that a particular matrix may
be decomposed in a number of different ways. In order to ensure uniqueness of a matrix
decomposition, additional constraints such as positive-definiteness or orthonormality must

be imposed. In contrast, such strong constraints are not required for a tensor to offer a
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unique decomposition due to the use of higher dimensions [24, 25]. This is one of the
reasons for the gain in popularity of tensor based approached in wireless communications
over recent years. A blind receiver using PARAFAC decompositions for DS-CDMA sys-
tems is considered in [26]. Multiple invariance sensor array processing (MI-SAP) is linked
to parallel factor (PARAFAC) analysis for both data-domain and subspace formulations
in [27]. A blind receiver that uses tensor decompositions for SIMO and MIMO OFDM
systems is presented in [28]. A space-time coding model based on a Khatri-Rao product,
dubbed KRST, was derived by combining spatial multiplexing and temporal spreading
through linear pre-coding and linear post-coding respectively [29]. A tensor based re-
ceivers for MIMO communication systems is presented in [30] and [31]. In [32], it is shown
that the received signal in oversampled CDMA and OFDM has a multidimensional struc-
ture and a constrained Block-PARAFAC model is used for blind equalization where the
constraints of the tensor model vary based on the system that is being used. Three dimen-
sional tensors are used to combine space-time coding with spatial multiplexing, dubbed
space-time multiplexing (STM) coding, in [33]. Two constrained tensor models dubbed
the PARATUCK-(Ny, N) and Tucker-(Ny, N) are introduced in [34], which are then used
to derive semi-blind receivers for MIMO OFDM-CDMA systems. A modified alternating
least squares (ALS) algorithm for estimating the matrix factors of the Kronecker product
is considered in [35], that is used for the design of MIMO wireless communication systems
using tensor modelling. Multidimensional Weiner filtering, where the n-mode unfolding of
the desired signal is expressed as a weighted combination of orthogonal vectors from the
n-mode signal subspace basis is used to determine the theoretical expression of the n-mode

Weiner filter, is described in [19].

1.1 Thesis Contribution

This thesis presents a unified tensor framework for multi-domain communication systems.
Here, the transmitted signal is represented by an Nth order tensor and the received sig-

nal is represented by an Mth order tensor. The transmitted signal tensor is coupled with
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the received signal tensor by a system tensor of order M + N using either the contracted
convolution (continuous time systems) or the contracted product (discrete time systems).
Using this framework, we present the foundations for a multi-domain point-to-point com-
munication system that can be used to represent, design and analyse future wireless or
wired communication systems. In the formulation of the tensor framework, the mathe-
matical domains of the signal and system tensors are not associated to physical domains.
This mapping is instead performed on a per application basis as required. This abstraction
makes the framework more general and hence allows a straightforward implementation of
a variety of communication systems.

Further, we present both the strict multi-domain generalization of the Nyquist criterion
for zero interference (inter-tensor and intra-tensor interference) as well as a relaxation.
Tensor based linear and non-linear equalization schemes for multi-domain interference for
metrics such as minimum mean squared error and minimum peak distortion are derived.
To demonstrate the efficacy of the tensor framework examples such as OFDM, GFDM and
FBMC are used to show how this framework can be employed to add additional domains
into the design process.

Finally, we present a method to allow a controlled amount of interference in order to achieve
improved data rates and spectral shaping. This is a multi-domain generalization of partial

response signaling, or correlative coding [36, 37| that is dubbed Tensor Correlative Coding.

1.2 Thesis Outline

Apart from the introduction above and the concluding remarks, this thesis consists of four
main chapters. The contents of these chapters are summarized as follows

Chapter 2. This chapter introduces tensors and some relevant tensor based operations.
The concept of signal tensors, which are tensors of time functions, are introduced along
with their transformations. Using the above preliminaries, the system model in this tensor
framework is described. A higher-order generalization of the Nyquist Criterion for zero

inter-symbol interference is derived.
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Chapter 3. This chapter models some of the existing waveform using the tensor framework
such as the 5G selected waveform OFDM, filter bank multicarrier (FBMC) and generalized
frequency division multiplexing (GFDM). Insights are provided on how modifications can
be made to these waveforms based on the tensor framework.

Chapter 4. This chapter introduces the discrete time equivalent system for the continu-
ous time tensor framework described in chapter 2. Using this equivalent model, different
equalization schemes are studied such as zero forcing, minimum mean squared error equal-
ization and decision feedback equalization (DFE) for both finite and infinite tensor taps.
Performance results are presented for these equalizers. Further, some performance results
from literature are reproduced using the tensor framework for the purpose of confirming
the correct operation of the simulation software.

Chapter 5. This chapter describes tensor based correlative coding where controlled inter-
symbol interference is allowed to increase data rates and for spectrum shaping. Partial
Response equalization is described where the equalizers defined in the previous chapter are

used to cancel only part of the effects of the transmission channel.



Chapter 2

Preliminary Definitions and System

Model

This chapter introduces tensors and some of their important properties. The notion of a
tensor of functions is defined, along with specific types of function tensors such as signal and
system tensors and their transformations. Using these definitions, the tensor framework
for multi-domain communication, in its most generic form is defined. Finally, a higher
order generalization of the scalar Nyquist’s criterion for zero inter-symbol interference is

presented with examples using different number of domains.

2.1 Tensors

A tensor is a multi-dimensional array of data [5]. The order of a tensor is the number of
dimensions. A vector is a tensor of order one, a matrix is a tensor of order two and tensors
of order greater than two are known as higher order tensors. Figure 2.1 shows the structure

of tensors of order 1,2,3, and 4.

Definition 2.1.1. The Contracted Product: The contracted product over K dimensions, or
modes, of an Nth order tensor A € Cl1*%2%xIN and an Mth order tensor B € C/1x/2xxJu

where I} = Jy,...,Ix = Jg with K < min(N, M) is a (N + M — 2K)th order tensor

2019/11/14
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Fig. 2.1 (a) a first order tensor (vector) (b) a second order tensor (matrix)
(c) a third order tensor of size 3 x 3 x 3 (d) a fourth order tensor of size
3X3Ix3Ix3

e c CIK+1><IK+2><...><IN><JK+1><JK+2><...JM defined as [5]

C={AB}a, ka1, K (2.1)
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where

eiK+17-~~7iN,jK+17~~-7j]vI = E E :‘A‘il7~-~7iK»iK+17--~7iN3i17~~-7iK7jK+17~~-,jM' (2'2)
i1 1K

In (2.1), the modes of contraction are the first K modes of A and B. However, it should
be noted that the modes of contraction do not have to be the same in both tensors, since
any two modes of same size can be contracted. For example, the first and second modes of
tensor A € C****5 and the second and third modes of tensor B € C?*3*4 can be contracted

to give a tensor

x == {A,g}(172;273) (23)

where
3 4
xi37j1 = Z Z‘Ai1,i27i33j1,i1,i2' (2.4)
i1=112=1

A contraction that appears commonly throughout this thesis is one where the modes of
contraction appear at the end of the first tensor and the beginning of the second. Consider
a (P + N)th order tensor A € Chx-xIpxJX.XIv and a (N + Q)th order tensor B €
ClrxxInxEix..xKq The contracted product over the last N modes of A and the first N

modes of B is a (P + Q)th order tensor €

C={A.B}pi1,. . rini,.N) (2.5)
with components
ei]_,...,ip,kl,...,kQ - Z o Z‘Ail,...,ip,jl,...,jN3j1,...,j]\],k‘l,...,kQ (26>
J1 JN
In the rest of this thesis, for the sake of brevity, we use the shorthand notation
¢={A,B}w (2.7)

to denote the contraction in (2.5).

Next, we explore a special case where the contracted product is associative. All tensor
product chains that appear in this work take the form described in this derivation and

hence are associative.
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Theorem 1. For tensors A € ClX->xIux/ixexIv B ¢ Chx-xInxKix.xKp and @ €

CKix..xKpxLi ><~-~><LQ, we have

{{‘A'7 B}(M—i—l,...,M-i—N;l,...,N)a e}(M+1,...,M+P;1,...,P) = {‘A'7 {37 e}(N—I—l,.A.,N—i-P;I,‘..,P)}(M+1,.‘.,M+N;1,A..,N)

(2.8)
Proof. Let
X = {{A, B} 1, mni,..8), Cavrgn,. v i, Py (2.9)
and
Y={A{B,Cl(ni1,. . N+P1,..P) }(M+1,..M+N:1,...N) (2.10)

with components

xi1,-~~7i1\4,117--~7lQ = E : E : ( E : E :‘Aila~~->i1\47j,1~~-7jNBj17~--’jN7k1:-~~7kP)ek17~--’kP7l1:-~~:lQ
k1 Ji JN

kp
(2.11)
and
Hn ----- inli,enlg = E : § :‘Ai1,---7iM7j1,---,jN( E E :3j1 ----- jNakl7---7kPek17---7kPall ----- lQ)
J1i JN k1 k,‘p
(2.12)

Notice that (2.11) can be re-written after removing the inner parenthesis as

xi17-~-yi]v[7l1v~-alQ = E : E : E : E :‘Ail7-~~7iM7j17--~7jN3j17~~-7jN,klv--»kPekl7-~~7kP7l1»~--7lQ (2'13)
k1

kp 71 JN

Changing the order of summation in (2.13) we get

xi17-~-yi]v[7llv~-alQ = E : E : E : E :‘A'il7-~~7i]tlyj17---7jN3j17~-v7jN,kl7---»]‘3Pek’l7-~~7kP7l1»-v-7lQ (2'14)
J1

JN k1 kp
Factoring out A from the inner summation over ky, ks, ..., kp gives
Xis,oing iyl = Z . Zﬂil,...7iM,j1,...,jN < Z . Z39'1,...,jN,k1,...,k;pekl,...,kp,ll,...,zQ>
J1 JN k1 kp
(2.15)
which is the same as (2.12) O

Definition 2.1.2. Quter Product: The outer product of two tensors A € C1*/2-*IN and

B ¢ C/r*J2xJIum ig denoted by A o B € Cl<->Inxixxm and can be represented as a
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specific case of the contracted product

AoB={A,B}oo (2.16)
The components of the outer product between A and B are
('A © 3)i1,...,l’N,j14..,j]\4 = il""’iNle"“’j]\/[ (217)

The tensor outer product is a generalization of the outer product between two vectors
(tensor of order one) resulting in a matrix (tensor of order two). For example, consider

vectors x € CV and y € C¥ then (2.16) becomes

xoy ={x,y}oo =xy" (2.18)
The tensor outer product is distributive and associative. It is not in general commutative.

For tensors A € ClvxIn B ¢ ChxxIN and € € C/v**/M we have

(A+B)oC=AocC+Bokl (2.19)

Proof.
|:(.A, + fB) o e:| = (.A + 3) _.Z,N(‘fkl._,kp

o 1.
i1...ink1...kp

= (‘Ail,...,iN + ‘-Bil,...,iN)ekl,A..,kp

= ‘A'i1,~~~7iNek17~--,kP + 3i17~~~:iNek17~--,kP

:{Ao(‘f—l—ﬁoe] O

UlyeesiN KLk P

Similarly, For tensors A € Cl>->*In B ¢ C/1**/m and @ € CK1*+*KP we have

(AoB)oC=Ao(BoC) (2.20)
Proof.

U5 IN eI M

{(Aoﬂs) oe] = (AoB). Chroin

U150y i N T 0 M KL K P

= ‘A'il,...,iNle,...,j]\{ekl,...,kp
= ‘A'h,...,iN (3 o) e)j1,-~~,jM,k17~--,kP
— {A o (3 o C)} ]

115y EN I 1505 d M KL kP
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Fig. 2.2 Pseudo-diagonal (gray) and diagonal (black) elements of a tensor
of size 3 x 3 x3x3

Definition 2.1.3. Diagonal and Pseudo-diagonal tensors: A tensor A € Clixf2-xIn ig
diagonal if

kil,..,,iN if 11 =19 = ...1N

Aiy iy = (2.21)

0 otherwise

where k is an arbitrary scalar. A pseudo-diagonal tensor is a tensor B € Cl1X->*InxIux..xIy

1. N

with components

k

i in gy L0 = 1, T2 = Jo, ... iN = JN

B (2.22)

U1y iN I 1N
0 otherwise

Authors in [21] and [22] define tensors of the form in (2.22) as diagonal tensors. However,
given the stricter, more prevalent, definition of a diagonal tensor [5] the notion of pseudo-

diagonality is used in this thesis. The non-zero entries of a pseudo-diagonal tensor are
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known as its pseudo-diagonal entries. Figure 2.2 shows a fourth order tensor of size J; x
Jo x Iy X Iy with Iy = I, = J, = J; = 3 with the pseudo-diagonal elements highlighted in
gray and diagonal elements highlighted in black. We can see that all the diagonal elements
are also pseudo-diagonal elements and hence a diagonal tensor is a pseudo-diagonal tensor

with zeroes in some of its pseudo-diagonal entries.

Definition 2.1.4. Identity tensor: We define an identity tensor of order 2N as a pseudo-

iagonal tensor Jy with entries
d 1t j ecllxlg XInxI1XIg...XIN th t

JNil ,,,,, i il = 6ilvil1 T (SiN7i/IV (2'23)
where 0, is the kronecker delta defined as
1 ifr=y
Opy = (2.24)

0 otherwise

The sub-script NV is used to denote the order of the identity tensor. For example, an identity
tensor Iy is of order 2N while J,; is of order 2M. For a tensor X € ClxfeXINXJixJaeXIm

we have

X, Iuton ={Iv, X}y =X (2.25)

Definition 2.1.5. Inner product and Frobenius norm of a tensor: The inner product of

two tensors A, B € CI**IN i defined as
(A, B) ={A,B}u, . N1..N) = Z . Z-Az'l,...,mgil,...,m (2.26)
i1 IN

The Frobenium norm of a tensor X € Cl>*In ig defined as
1
2 2
0l = (3 ) 2.2
i1 iN

Definition 2.1.6. Transpose and Hermitian of a Tensor: A matrix has two indices and
the transpose of a matrix is a permutation of these two indices. Since there are several
dimensions in a tensor, there are many permutations of its indices and hence there are
several ways to write the transpose of a tensor. Authors in [23] define the transpose of a

tensor using permutations.
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Assume the set Sy = {1,2,..., N} and o is a permutation of Sy. We denote o(j) =
i; for j = 1,2,..., N where {iy,is,...,in} = {1,2,...,N} = Sy. Since Sy is a finite
set with N elements, it has N! different permutations. Hence, discounting the identity
permutation o(j) = [1,2,..., N], there are N! — 1 different transposes for a tensor with N
dimensions or modes.

For a tensor A € Cl1*f2+*IN we define its transpose associated with a certain permuta-

tion o as AT? € Clow*lo@)*Iov) with entries

Al° A

i (1)l (2)rrdo(N)

(2.28)

11,8250 N
Similarly, the Hermitian of a tensor A € C/1*/2--XIN associated with a permutation o is de-
fined as the conjugate of its transpose and is denoted as A7 = (AT9)* € Clo)* I * o)

with entries
Al = (A7 ) = (Aiyig,in)” (2.29)

io(l)via(Z) 7"'77;0(N) - io(l))io(Q)a“wiU(N)

For example, a transpose of a third order tensor X € C/**2%!3 guch that its third mode

is transposed with the first can be written as X% where o = [3,2,1] with components

X7 i = Xi gy For two tensors A € C 22XV and B € C*/2-*Ix we have [23]
(A,B) = (AT7, BT7) (2.30)
and
Al = H‘ATJHF (2.31)

Consider a tensor Y € Clrx-*InJix..xJIu with a transposition such that the final M modes
are swapped with the first N modes can be represented by a permutation function o =
[(N+1),...(N+M),1, ... N]suchthat YJ7 . . =Y _iyji.in- Since this type
of transposition is most commonly used throughout this work, we drop the superscript o

for ease of representation and represent such a transpose by Y7 and its conjugate by Y.

For tensors A € Clx-->xInxJix..xJu gnd B € Crx-*ImuxKix..XKp o haye

({AB}(M))H = {B", A"} ) (2.32)
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Proof.
({A,?S}(M))H - ({A,B}(M)>

k1, kp ity in U1,esiN K1, kP

- E E ‘A'il,---7iN7j17---,jMBj1,---,jM,kh---,k’P

J1 Jm

_ H H

o z : z :'Ajlw-va,l'l»~~-7iNBk17--~7kP:j17~--»jM
Ji Jim

_ H H

- Z Tt Z3k17--~7kP7j17---»jA1‘Aj17---»jA17i17~--7iN
Ji JMm

= ({73H,AH}(M)) (2.33)

ki,.0kpyit,..iN

n
For the case of matrices (order-two tensors), (2.32) reduces to the familiar relation
(AB)" = B A" (2.34)
where A € C'*/ and B € C/*¥ are two matrices.
For tensors A € Cl1XXIN and B € C/r*--*ImxIixXIN e have
{B,A}v) = {A,B" } v (2.35)
Proof.
[{3%}(1\/)} =3 B iAoy
jl:"'vj]\/l il ZN
= Z tet ZBz,...iN,jl,...,j]u‘Aily-"viN
i in
= Z ce Z‘Ailv"'viNBg;7~--iN7j17~-v7jM
i in
= [{A,BT}(N)] (2.36)
J1ssdM
n

Definition 2.1.7. Tensor to Matriz Transformation: For a tensor A € CI1 XX INxJuixexJar

we define a transformation fy that transforms.A to a matrix A € CliInxJiJm guch that
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f(A) = A. Component-wise we have

A ELN N

k—1 M k—1 (2-37)
G1+ > (i—=1) I1 ),(G1+ > Ge—1) TT J1)
=2 =1 k=2 =1

11,82, EN 3 J 150 M

The subscript in fy denotes a partition of the modes of the tensor being transformed. The
product of the first N modes of the tensor becomes the number of rows of the matrix and
the product of the remaining modes of the tensor becomes the number of columns of the
matrix. For example, consider a tensor B € C2*3x4x5%6

f3(B) =B. The size of Bis (2-3-4) x (5-6) and

and a transformation f3 such that

Byt 13 Bora(i-1)46(s—1)),(14-5(m—1) (2.38)
These transformations are called column or row major formats in many computer languages
and essentially represents a particular type of matrix unfolding of a tensor. It is shown
n [21], for the case of fourth-order tensors of the form X € C/*/*Ix/ that the above
transformation function is a bijection with a bijective inverse mapping fx' to convert the
matrix A back into the original tensor A. Authors in [38] extend this result to the case of

tensors of any order.

Definition 2.1.8. Tensor Inverse: The group of invertible N x N matrices with matrix

multiplication is called the general linear group denoted by My n(C) [21]. Denote
Th bt davendy (C) = {A € CICX I eI s det (v (A)) # 0} (2.39)

Authors in [38] and [21] (for the special case of fourth order tensors) have shown that the
set T1, 1,,...1n.01,10,...1x (C) forms a group equipped with the contraction {} as defined
in (2.7) and the transformation fy is an isomorphism between Ty, 1, 1v.1.5...1x (C) and
M1, 1o 1), (1 Io--13) (C) . This indicates that for any tensor A € Ty, 1, 15,1 1s,....1x (C) there
exists a tensor B € Ty, 1, .1y.11.1s,....1x (C) such that [38]:

{A, B} n) = {B,A}n) =Tn. (2.40)
where Jy is the identity tensor. B is called the inverse of A and is denoted by A~

The Moore-Penrose inverse of a tensor A € Cl1*f2-xInxJixJ2.xIN which is a generalization

of the matrix Moore-Penrose inverse, is a tensor A+ € C/1x/z--xInxIixlzXIN that satisfies
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[22]:
{{A, AT ), Aty = A
{AT At ATy = AT
{A AT N = {AA )
(AT A} () = (AT A}

Fig. 2.3 Pseudo-Lower Triangular Tensor

Definition 2.1.9. Pseudo-Triangular Tensor: A tensor A € Clx->xInxIix..xIN ig defined

to be pseudo-lower triangular if

N k=1 N k—1
0 if (i3 + 2 (6, = 1) 11 &) 2 (0 + 2. (i — 1) IT 1)
= k=2 =1 k=2 I=1

A (2.41)

; S i/
(AR N ST

Wiy, i)y, Otherwise
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Fig. 2.4 Pseudo-Upper Triangular Tensor

where a;, . . are arbitrary scalars. Similarly, the tensor is said to be pseudo-upper

.,
SEN S8 el

triangular if
o N k—1 ‘ N k—1
0 if (@ + > (i = 1) [T h) < (i + 2 (i —1) IT 1)
k=2 I=1 k=2 =1

A (2.42)

- - -/ -/ =
(AIRRRR S N ST

iy, i)y, Otherwise

Shown in figures 2.3 and 2.4 are two tensors of size J; X Jo X I} X Iy with I} = [, =
J1 = Jo = 3 with their pseudo-lower and pseudo-upper triangular elements highlighted in
gray along with their pseudo-diagonal elements shown in black. It can be readily seen that
a lower triangular tensor becomes a lower triangular matrix under the tensor to matrix

transformation defined in (2.37) and a pseudo-upper triangular tensor becomes an upper

triangular matrix.

Proof. Consider a pseudo-lower triangular tensor A € Ch>-*InxIx-xIN with components
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A
by definition:

e i oy - The indices of the non-zero elements of this tensor have the following relation

(430~ D0 < o+ D6~ D T8 (2.43)

Let the matrix transformation of this tensor be fx(A) = A. The components of this matrix

are
A— N k-1 N k—1 (2.44)
(14 30 (ie=1) T1 L),(i3+ 32 (i7,—1) T1 1)
k=2 =1 k=2 =1

N k-1 N k=1
Letx =iy+ Y (ix—1) [[ Land y =4} + > (i, — 1) [[ Z;. Under the inequalities in (2.43)

k=2 =1 k=2 =1
we have

N k—1
X 221+Z(Zk - 1)HI[
k=2 =1
N k—1
<i+> (i, -D][x
k=2 =1

=y (2.45)

This implies that all non-zero elements of the tensor are present either on or below the
diagonal of the matrix A. A similar proof shows that a pseudo-upper triangular tensor

transforms into an upper triangular matrix. O

2.2 Signal and System Tensors

Definition 2.2.1. Function Tensor: A function tensor A(z) is a tensor whose components
are functions of x. Using a third order function tensor as an example, each component of

A(x) is written as A,; j ().

Definition 2.2.2. Multivariate Function tensor: A generalization of the previous defi-

nition would be the multivariate function tensor A(xy,...,z,), which is a tensor whose
components are functions of the variables z1,...,z,. Using the same example of a third
order tensor, each component can be written as.A; ; x(21, 2, ..., x,). For example, a tensor

A(t,u) is a multivariate function tensor whose components are functions of ¢ and w.
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Definition 2.2.3. Signal Tensor and System Tensors: A signal tensor X(t) is a function
tensor whose components are functions of time. A system tensor H(t,u), used to describe
linear time varying multidomain systems, is a tensor of order N+ M that couples two signal
tensors of orders NV and M respectively through a contracted linear functional. For example,
let H(t,u) € Y2V XxXXe- XN 16 3 gystem tensor that couples X(t) € Cf 2 *XN
with Y(t) € C"* > Here, CA*P is used to denote the set of tensors of size A x B

whose components are complex functions of . The output tensor Y(¢) has components

Dyrysgn (1) = Z / Ky ynpmrzsan (6 W Xg 2. 0y (w)du. (2.46)

@12 TN
Definition 2.2.4. The Contracted Convolution and Time Invariant System Tensor: A
linear time invariant system tensor J(t) is a tensor of order N + M that couples two signal
tensors of orders N and M respectively. Extending the contracted product to a contracted
convolution allows us to define the coupling of the input and output signal tensors by a

X1 xXg...xX
c Ct 1 2 N

linear time invariant system tensor. Consider a signal tensor X(t) and a

system tensor H(t) € C}1 Y2 YxXaxXa X XN The contracted convolution of tensor X(t)

and tensor H(t) is a tensor Y(t) € C*¥> MM defined as

Y(t) = {IH(t) * X(t) }mr+1,.. . M+N:1,2,..N), (2.47)

where

Dy (B) = Z Hysoyntonon (8) * Xy, oy ()

T1,.., TN
-y / T, onroran (= TV Xor o (7). (2.48)
T1y.ees TN -

Let X(t) € ;X2 X XN he g signal tensor and H(t) € C,YY2NrxXXixXex XN apq
G(t) € CPr7 722 ZpXXx¥2- XM 16 gystem tensors. It can readily be seen that the conditions
for associativity from (2.8) are also valid for function tensors since the only change is that
multiplications are replaced by convolutions and scalars with functions. If the output of

ZyXZ. X2,
€ C{yv 24P " we have

the cascade of these two systems is denoted by Z()
Z(t) = {{S(t) * H) }p,...prarst,nry * X(E) (Poa, Prnit, ) (2.49)
= {G(t) * {F(t) * X(t) } (M1, M+ N1, N) F (P41, P ML, M)
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Definition 2.2.5. The Fourier Transform of Signal Tensors: The Fourier transform of
a signal tensor is a tensor of the Fourier transforms of its individual components. If the
Fourier transforms of all the individual functions exist, then X (f) the Fourier transform of

X(t) € CI !N has components

Xoroan(f) = / X, o (e 25 0dt = F[X, (1] (2.50)

2.3 The Tensor Framework

D(t)= 3 Dlnd(t —nT) (1) R(t) YO Y[k
> (1) ] He(t) | H(t)

Fig. 2.5 System Model

Consider a tensor communication system where D[n] € CL>**I~ represents the data
to be transmitted by the nth tensor symbol. The components of D[n| may be constellation
mapped data symbols or may be precoded data symbols. An example of the latter is Tensor
Partial Response Signalling (TPRS), which is detailed in Chapter 5. Let the symbol period
be T', i.e., a data tensor is transmitted at intervals of time T". Then we can represent such
a data symbol by D[n|o(t — nT) where 6(t) is Dirac’s delta function. Let the transmit
filters, the channel and the receive filters be represented by three system tensors Hr(t) €
O xIpxhixexIn ge () ¢ Cf(lx...XKQXJlx...xJp and Hp(t) € Cflx...xINxle...xKQ. The
overall system model in the absence of noise is presented in Figure 2.5. The input to the
transmit filter is +zo:o D[n]é(t — nT). The dimension of the transmit signal tensor being
different from thg:d;TEa tensor allows a unifying representation of various schemes. For
example, P would be greater than N if the same data symbol may be sent on multiple

components of X(t). Similarly, when multiple data symbols are sent on a single component

of X(t) then P would be smaller than N. If there is a one-to-one mapping between the
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symbols and waveforms then P would be equal to N.

The transmit signal tensor of order P is

X(t) = E:{&qw njo(t —nT)} y, (2.51)
- Z {Hr(t — nT), }(N) (2.52)

The effects of the channel on the transmit signal tensor is represented by a contraction with

a channel system tensor Hq(t) of order (@ + P). The received signal R(t) € (Cf(lmeKQ i

R(t) = {Hc(t) « X(1) }p) (2.53)

The receive system tensor Hg(t) of order (N + Q) transforms the received signal tensor
R(t) into a signal tensor of the same size as the data tensor. The output of the receive

filter tensor Y(t) € (C{lXI?--XIN s

Y(t) = {Hr(t) «R(1) } @) (2.54)
From (2.54),(2.53) and (2.51) we get

Y(t) = {Hr(t) * {Hc(t) * 3C(t)} 1)
= {%R( { Z {3 (t) n)6(t —nT) }( )}
Pr)

=y {%R(t)*{J{C(t)*{%T(t)*ﬂ[nw(t—nT)}(N)} }
e oo ")) (@

Using the associativity property (2.8) we have

“+00

Y(t) = Z {{3{3@) * {Hco(t) *H'CT(t)}(P)}

n=—oo

*me@—nm}

@ ™)

= Z {3(t) * D[n]o(t — nT)}

n=—oo

= > {3t —nT), Dlnl}w) (2.55)

n=—0oo

where H(t) = {J{R(t) x {Ho(t) * fHT(t)}(p)} is the overall system tensor of order 2V
(@)
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that couples the input data stream with the output of the receiver.
1
Sampling the received signal tensor Y(¢) at a rate of T gives us the estimate of the data

tensor

Y[k] =Y(kT)

= > {H(kT —nT),Dnl}w (2.56)

n=—oo

It is important to note that no physical meaning has been attached to the mathematical
domains of the signal and system tensors in the tensor framework. This abstraction makes
the framework more general and the mapping from mathematical domains to physical
domains is done on a per application basis. The main aim of the tensor framework is
to serve as a unifying foundation that can be used to represent and design a variety of
different communication systems using several different domains. The task of mapping
physical domains to their mathematical counterparts is trivial as the basic structure of
the tensor framework remains the same for different systems. Some examples of this are
detailed in Chapter 3.

Multidimensional communication systems that exploit several domains have gained traction
in recent years. For instance, multidomain index modulation in the context of vehicle-to-
infrastructure (V2I), vehicle-to-vehicle (V2V), and high speed train communication systems
is discussed in [39]. Here, the transmitted data is mapped to the indices of the various
available domains. The domains used for transmission include the indices of transmit
antennas, receive antennas, code type, channel impulse response taps and many more
(listed in detail in [39]). Apart from this, conventional digital modulation is also used
simultaneously to improve performance. Such a system would contain several domains and
is well suited for a tensor based representation.

Inter-domain communications for in-house networks where a single transmission scheme
can be used for multiple types of wires are gaining popularity in the literature [40]. The
International Telecommunication Union (ITU) G.hn standard identified the classical in-
house mediums such as power lines, twisted-pairs and coax, to enable broadband data

communication [41]. However, a rigorous mathematical model has yet to be created for the
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study and design of such systems. Moreover, the concept of inter-domain communications
can be extended beyond indoor environments. A system that uses different transmission
media, multiple sub carriers, multiple time slots and caters to multiple users at once has
input and outputs that have five different domains. Using the tensor framework, such a
system can be modelled using fifth order tensors for the input and output and a tenth order

tensor for the channel between the two.

2.4 Tensor Nyquist Criterion

The Nyquist criterion for distortionless transmission for the scalar case is well known. A

waveform x(t) is said to satisfy the Nyquist criterion for signal interval T if
x(nT) = 6, (2.57)
where 9,, is the delta function defined as

0 ifn#0
&y = 7 (2.58)
1 itn=0
Denoting the Fourier transform of x(t) by X(f ) and using the Poisson Sum Formula [42]

— Z (f — = Z z(nT)e 72m/nT (2.59)

sz—oo

we have

— Z f—— = (2.60)

k——oo
For the matrix-vector case, a generalized Nyquist criterion has been derived in the literature
by authors of [43, 44, 45]. In this section we derive a generalization of (2.57) and (2.60),
called the Tensor Nyquist Criterion, for the multi-domain case with higher-order signal
and system tensors. We then show that the existing generalizations are specific cases of

the Tensor Nyquist Criterion.
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2.4.1 The Tensor Poisson Sum Formula and Nyquist’s Criterion for Zero

Inter-Symbol Interference

To find the multi-domain criterion for zero inter-symbol interference we begin by general-

izing the ordinary Poisson sum formula [42]. Consider a signal tensor A(t) € C/%2>1x

Define

A(t) = A(t) +§ §(t —nT) (2.61)
= i A(nT)o(t —nT) (2.62)

Taking the Fourier transform of (2.61) we get

A(f) = FIA@t) Y o(t —nT)]

+oo
=A(f)* F[ ) o(t—nT)]
v 1 7;00 n
= A(f) * ( nzZ@é(f i) (2.63)
LS ag- (264
T~ T '
Taking the Fourier transform of (2.62) we get
+oo
As(f) = F[ Y AmT)s(t - nT)]
+oo_7 A
= Y A(nT)e " (2.65)
Equating (2.64) and (2.65) we get the Tensor Poisson Sum Formula:
1 <. n o o
_ —j2rfnT
Tnz_:ooﬂ( f-) = nz_wA(nT)e J (2.66)

Expanding (2.56) we get

Ykl = Y {H(kT — nT),D[n]}w)

n=—0o0
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= {30(0), Dk} + Y {3C(KT —nT), Dlnl}e) (2.67)
n=—ocon#k

A sufficient condition to get zero interference between symbols is

HO) ifi=0
H(iT) = (2.68)
0p ifi#0
where Or is the all zero tensor. Using the Tensor Poisson’s sum formula (2.66) we obtain

the Tensor Nyquist Criterion for zero inter-symbol interference:

v n
F 3 H ) =960 =% (2.69)
where X is a non-zero tensor.
Assuming that (2.68) is satisfied we have
Y[k] = {3(0), D[k} (2.70)

whose elements are

i1
i1, iINAIN

We see that the first term in (2.71) is a scaled version of the required data symbol and the
second term represents intra-symbol interference from other data symbols within the same
data tensor. A rather strict condition which will ensure that we are able to retrieve the

transmitted data from Y[k] without any interference is

1 lfllzll,,ZN:lN
3, inin,in (0) = (2.72)
0 otherwise

This means that the tensor H(0) is an identity tensor. Combining (2.68) and (2.72) we get

Ho, .ty innin (0T) = 010 [ [ G0 (2.73)
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where

1 ifm=n
0 otherwise

Using this in (2.69) we get

T =) =90 =9y (275)

Even if the strict criterion is not met, it is still possible to recover the transmitted data
from Y[k] if certain conditions are met. Assuming that (2.68) holds then recovering the
data reduces to solving the multi-linear tensor system (2.70) for D[k]. If the inverse of
JH(0) exists, we have

DIk] = {H(0), YlK] how (2.76)

where H~1(0) can be approximated by using iterative algorithms, such as the biconjugate
gradient or Jacobi methods using tensor computations [21].

If the inverse does not exist, pseudo-inversion can be used to find the solution to the multi-
linear system (2.70). The tensors D[k] minimising |{F€(0), D[K]} vy — ‘d[k’]”fF are called
the least-square solutions of (2.70) and 5[1{:] = rggl[lkr]l H@[k:] Hi is called the minimum-norm
least square solution of (2.70) [22]. If {H(0),F(0)} () is invertible then the least-square

solution has a unique minimiser and the multilinear system is solved as [21]

DIk] = {{{I"(0), 3(0)} > H"(0) } vy Y[k vy (2.77)

Finally, if such an inversion does not exist, then the minimum-norm least square solution
of (2.70) is

D[] = {37 (0), Y[k} ) (2.78)

where H*(0) is the Moore-Pensore pseudoinverse of H(0) [22].

2.4.2 Comparison with Existing Generalisations of Nyquist’s Criterion

This section surveys existing generalisations of the Nyquist Criterion and compares them

to the Tensor Nyquist Criterion presented in this paper. The problem of interference in a
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multi-carrier system is considered in [43] and [44], that propose a constraint on the overall
system impulse response to simultaneously eliminate both ISI and cross-talk. Based on
previous work, [45] presents a multidimensional Nyquist criterion.

The general system considered in [43, 44, 45] is a multi-carrier system specified as

+o0 M
b(t) = > ) ympr(t =nT) r=12,... M (2.79)

n=—oo m=1

where a,,, is the data transmitted on the mth sub-carrier during the nth symbol and v,,,.(t)
represents the overall system impulse response consisting of the mth transmit filter, the
channel and the rth receive filter, v,,,.(t) = pn(t) * b(t) * r.(t) where p,,(t) is the mth
transmit filter, b(¢) is the channel and r,(¢) is the rth receive filter. Representing (2.79) in

vector matrix form we get

b(t) =) V(t—nT)a, (2.80)
where
[ b1 (t) ] [ Ull(t) V21 (t) e (Vs (t) | [ Qp1 ]
b(t) _ bQ.(t) V(t) _ 'Ulz'(t) Uzg.(t) . . UMQ(t) a, — Gq‘lg
| b () ] (v (1) vanr(t) oo vara(t) ] | @n |

Sampling b(t) at rate 7 we get [43]
b(kT) =Y V(T —nT)a, (2.82)
For no interference, it is required that b(k7T) = a;. The generalised Nyquist criterion to

achieve this is [43, 44]
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where I is the identity matrix. Taking the Fourier transform of V(¢) and using the Poisson’s

sum formula we get the frequency domain conditions for zero interference as [44]
+oo
n

1 o 1 v ,
T2 VU~ F=7 >p(f - T = D (= 5) = 3 Ve = bl

(2.84)
where (f) = [1(f) p2(f) - ()", 0(f) and ¥ (f) = [F1(f) 7a(f) .. Far(f)]" ave the
Fourier transforms of the transmit filters, channel and receive filters respectively. Com-
paring (2.84) with (2.75) we can see that it is a special case of the generalised Nyquist
criterion where the overall system tensor is of size M x M with components H;, ;,(t) =

Pi, (1) % b(t) xr;, (t) and the data tensor is of order one (a vector of size M) with components

d[n| = a,.



29

Chapter 3

Current Systems Modelled Using the

Tensor Framework

This chapter presents models for selected waveforms using the tensor framework as exam-
ples. Representation using the tensor framework preserves the multi-domain structure of
the transmitted data. The purpose of this chapter is to show that different communication
systems can be modelled accurately using the tensor framework and that the framework
allows extensions to higher domains, such as MIMO, of waveforms that were not originally
designed for this. Besides this, it is important to note that our tensor framework is back-
ward compatible and can be used to model systems where the transmitted and received
signals have only one (vector) or two (matrix) domains. To this end, we begin with the
treatment of OFDM systems where the transmitted data is a vector and is coupled with
the received data by a matrix. We then move on to FBMC, where the transmitted data is
a matrix and is coupled with the received data by a fourth order system tensor. Finally,
we show the representation of GFDM, where the transmitted data is a third order tensor
and the system is a sixth order tensor.

The tensor framework presented in this thesis consists of signal and system tensors that
are coupled using contracted convolutions or contracted products. Other tensor based

approaches to represent specific waveforms can be found in the literature. For example,
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MIMO OFDM is modeled using a constrainted Block-PARAFAC model in [32]. A sim-
ilar PARAFAC based model is used for joint channel estimation and data detection in
FBMC/OQAM systems in [46] where the received signal is coupled with the transmitted
data using a Khatri-Rao product. A tensor model of the GFDM transmit signal using the
PARATUCK2 decomposition is presented in [47].

3.1 OFDM

In Release 15 of 3GPP [48] it was agreed that an Orthogonal Frequency Division Multiplex-
ing (OFDM) based scheme will be used for the 5G New Radio (NR) uplink and downlink
as the main candidate with Discrete Fourier Transform Spread OFDM (DFT-S-OFDM)
being used in some cases. OFDM is a multi-carrier transmission technique which uses F
orthogonal sub-carriers simultaneously to transmit data. By making all the sub-channels
narrowband, they experience almost flat fading, making equalization very simple. The or-
thogonality of the sub-carriers ensures that there is no intrinsic inter-carrier interference
(ISI). There are F' sub-carriers with spacing Fy = % that carry data in one OFDM symbol.
The transmit signal is

+o00 F
= Z Zdnﬁdw(t—n )6327r ra—1)Fot — Z Zd"’fdemd (t —nT) (3.1)

n=—00 kg=1 n=—00 Kg=1

where d,, ., is the complex data symbol transmitted during the nth OFDM symbol on the
kath (kg = 1,...,F) sub-carrier. The filter pr, (t) = w(t)e?** "=Vt where w(t) is a

rectangular window of duration 7" defined as

1 for — 2 <t <?

0 otherwise
Under the assumption of an ideal channel, the received signal r(t) is the same as the
transmitted signal z(t). The receive filter, for the ,th subcarrier, pg, () = p*THy(—t) is
matched to the transmit filter, i.e., pg, (t) = w(—t)e?>"v=DF! The output of the receive

filter pg,, (1) is

Yr, (1) = 2(t) * pr,, (1)
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“+00 F +o00
= Z Z/ dp (T — nT) P2 0Dy, ( (¢ — 7))e2mFolsy=DE=T) g (3.3)

n=—oo kg=1" "

Sampling y,, (t) at intervals of 7" and using w(t) = w(—t) gives

“+00 a +o00
Yr, (KT) = Z Z / dy o, w(T — nT) el 2 Folka=D )y (KT — )2 Foliy=DET=7) g7

n=—oo kg=1""

(3.4)

—+00 3 +00 '
=> > / dyy g0 (T — nT)w (T — kT2 Fora=r) () g (3.5)

n=—00 kg=1" "

Since w(t) is a rectangular window of duration 1" we have y,, (K1) = d s, .
Using the tensor framework, the complex data to be transmitted on the nth OFDM symbol
Din] € CF is

D[n] = [dn,la dn,27 s 7dn,F]T (36)
with components D;[n] = d,,; for i = 1,..., F. The transmit system tensor Hp(t) € C}*¥
1s

:H:T(t) = [pTl (t)7pT2 (t)a <o PR (t)] (37)

and has components Hr, ,(t) = pr,(t) for i = 1,..., F. The transmit tensor Hp(t) converts

Dln] into a signal X(t) € C;. We can write (3.1) using the components of (3.6) and (3.7)

as X(t) =S S Hrp, ,(t —nT)D;[n] which, in tensor notation, becomes
+oo
X()) = 3 {3€e(t — nT), Dlnl}y 3.9

Under the assumption of an ideal channel the channel tensor is Hq(t) € C; = 0(t) and the
received signal R(¢) = X(t). The receive system tensor Hp(t) € CI*! is

Hr(t) = [pr, (1), Pro (1), - - PR ()] (3.9)
Using (3.7) and (3.9), we get the overall system tensor H(t) € CI*F as H(t) = {Hg(t) *
Hr(t)} ) with components

Heywa(t) = Ha,, () x Hr, (1) = pr,, () * pr,, (1), (3.10)
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Collecting the outputs of the received filters from (3.3) for all sub-carriers into a vector we

+oo
may now write the received signal tensor Y(t) € Cf as Y(t) = Y {H(t — nT),Dnl}a)
with components B

Yo, () = D D Hoayy(t =0T)Dy [ (3.11)

n=—00 kKq

Comparing Y(t) with (2.55), we can see that this is a specific case when N = 1.

3.2 FBMC

Filter Bank Multi-carrier is a scheme considered for 5G. There are two types of FBMC
schemes, Staggered Multitone(SMT) and Cosine-Modulated Multitone(CMT) [49]. This
section describes SMT, also known as OQAM/OFDM. The number of sub-carriers K is
assumed to be even (K = 2M) and for two consecutive sub-carriers, the time offset is
applied to the imaginary part of the QAM symbol on one sub-carrier while it is applied to

the real part of the QAM symbol on the other sub-carrier. The transmitted signal is [50]
+oo M-1

T .

t) =+v2 R t—nT il t—— —nT j2m(2m)Ft

028 5 5 (o) it~ 5 )
T R T j2m(2m+1)Ft

+ ]CQm—i-l,np(t —nT)+ C2m+1,np(t T nT) |e (3.12)

R

m,n

where T is the signalling interval, F' = £ is the sub-carrier spacing, c¢Zf , and cf,w are the
real and imaginary components of the QAM symbol ¢, ,, to be transmitted on the mth sub-
carrier during the nth multi-carrier symbol, and p(t) is a real symmetric prototype filter of
duration KT where K is the overlapping factor that denotes the number of multi-carrier
symbols that overlap in time. We introduce the following notations, as in [50], to simplify
the expression in (3.12):

_ R _ I _ I _ R
d2m,2n = Comn» d?m,Qn—l—l = Com,n> d2m+172n = Comi1,n d2m+1,2n+1 = Comtin (313)

T T
Yomon =0,  Vomont1 = 5 Yomi1,2n = 5 Yom+1,2n41 = 0 (3.14)
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Using (3.13) and (3.14) in (3.12) we get
+oo M-1

T T .
x(t) = \/5 Z Z (de,znp(t - (2n)§)€¢2m,zn + de,gan(t _ (2n + 1)§)ewzm,zn+1) eJ2m(2m)Ft

n=—oo m=0

T T A
- (d2m+1,2np(t — (2”)5)6’%’"“’2" + dom+1.2n11P(t — (2n + 1)5)6w2m+1’2"+1) eI m Dt

(3.15)
Defining A, ,,(t) = v2p(t — nL)es?™mFtevmn and substiting in (3.15) we get
+oo M-1
x(t) = ( Z Z dom 2nA2m 2n (1) + dom 2n+1A2m 2n+1(t)
n=—oo m=0
+ dom+1,20Aom+1,2n(t) + d2m+1,2n+1)\2m+1,2n+1(t)) (3.16)
k=Q k=2Q+1
Since Y (Zop + Topy1) = D>, Ty, we have from (3.16)
k=-P k=—2P
+oo 2M-—1 +oo 2M-—1
l’(t) = Z Z (dm,Qn)\an(t) + dm,2n+1/\m,2n+1(t)) = Z Z dm,n/\m,n(t)
n=—oco m=0 n=—oco m=0
+o0 2M-—1

= Z Z dm,npm(t—ng)ejwmv" (3.17)

n=—oco m=0
where p,,(t) = v/2p(t)e??™™ . The received signal is passed through an analysis filter bank
(AFB) to separate the data from different sub-carriers. The receive filter for the rth sub-

carrier, pg, (t) is matched to the transmit filter for the rth sub-carrier p.(t). i.e., we have

pr, (t) = pi(—t) = V2p(—t)e?>™Ft (p*(—t) = p(—t) as the prototype filter p(t) is real). Let
+oo

T T
<>\m,n(t)7 )\p’q<t)> = / pm(t — na)ewm’"pp(t — Q§)€ J’l/ip,th (318)

—00

where (,) denotes the inner product. In a distortion free channel, perfect reconstruction
of the data is obtained if the transmit and receive filters satisfy the real orthogonality

condition [51]:

+oo T . . T .
O B e e o R ) R S P CAT)

In other words, this means that for (m,n) # (p, q), (Am.n(t), Ap4(t)) can be purely imaginary

or zero. The received signal after passing through the receive filter corresponding to the
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rth sub-carrier is
+oo 2M-1 00

w0 =00 = Y 3 duae [ puir—nDpitr— e (320

n=—o00 m=0
Using the tensor framework, the data to be transmitted on the nth multicarrier symbol is
a tensor D(n] € C?M with components D,,[n] = dn-1),eY-D» and the overall channel
is H(t) € CH*M with components ., (t) = fj;o Pm—1)(T)D{,_1y(T — t)d7. We may now

re-write (3.20) in tensor form as
+oo  2M

= > Hl t—n— D[] (3.21)

n=—oo m=1
The signal y,.(t) is sampled at intervals of kE and multiplied by the phase term e*jwﬁk.

where Y,.(t) = y—1)(t). In tensor notation (3.21) becomes Y(t) =

This gives

i = yr<k§>ef¢nk = 3 D et / G TR A P CE
_Zdenéﬁ{ s () A }+szmnc{ A (£), A () }

Using (3.19) we get

Yoo = dyse + (Z > o S{ A (1), Ar,k(t»}) (3.23)

Since the interference in (3.23) is imaginary, the estimate of the transmitted data is cZT’k =
R{y,x}. Using tensor notation, this becomes D[k] = R{Y(LD)}.

Next, we consider the MIMO extension of FBMC. In each FBMC symbol, let there be
P independent streams of data transmitted using 2M sub-carriers, Np transmit and Ng
receive antennas. There are P synthesis filter banks, one for each stream of data. Denote
the filter for the mth sub-carrier for the pth synthesis filter bank by p,.(t). A weight
Wp, p 1s assigned to the pth SFB output for the n,th antenna. The weights w,,, are the
coefficients of a linear precoder that couples the P streams of data with the Ny transmit

antennas. Denote the data symbol for the pth stream, mth sub-carrier and nth FBMC
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symbol by d, ... As for the scalar case in (3.17), each data symbol d,, ,, ,, is multiplied by

a phase term e/¥mn. We get the transmit signal from the n,th antenna as
o0 2M—1P-1

ra) = Y 3 gl — )y (3.24)

n=—oco m=0 p=0

Denoting the channel between the n:th transmit and the n,th receive antenna by h,,, ,, (%),

the received signal on the n,th antenna is
400 2M—1P-1

T .
T, (t) = Z P e () % T, () = Z P e () Z Z Z Wy pPpm (t — nE)ejwm’ndp,m,n)
ne ne n=—oo0 m=0 p=0
(3.25)
Let ¢, pm(t) = D Py () % Wiy pPp.m (). We can then re-write (3.25) as

400 2M-1P-1

F)= 3 3 3wt ) (3.26)

n=—oco m=0 p=0

There are P analysis filter banks (AFB) at the receiver, one corresponding to each transmit
SEFB, that filter the Ny received signals r,, () and produce outputs y, ,(t). Denote the
filter for the pth AFB, n,th receive antenna and mth sub-carrier by pg, .. . (¢). The output

of the AFB is
+oo 2M—1P-1

Uonl) = 3 Dy (270, () = 3D 3T S b (0% ot = )

ny n=—oc m=0 p=0

(3.27)
If the AFB is designed to be matched to the combined channel and transmit filter banks,

*
nr,p,m

then we have pg, . . (t) =c (—t). Using the Tensor Framework, the data to be trans-

mitted on the nth multi-carrier symbol is D[n] € CP*?M with components

D,mln| = e¢<m*1>’"d(p,1)7(m,1),n forp=1,....Pom=1,...,2M (3.28)
As discussed in Chapter 2, the data tensor in the tensor framework may be constellation
mapped data symbols or data symbols with some form of precoding. In this case, the data

tensor is the latter due to the multiplication by the phase term. The transmit system tensor

H(t) € CYP2M converts D[n] into a signal tensor X(t) € CN*. The components of the
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transmit system tensor are
:H:Tnt,p,m (t) = wm’(p,l)p(pfl)’(m,l)(t) forp=1,...,.Pom=1,...,2M;n;, =1,...,Np
(3.29)
T
We may now re-write (3.24) in tensor notation as X(t) = {Hp(t — nE),ﬂ[n]}(g). The

channel system tensor is H(t) € CN**N whose components
He,, o, (t) = by (1) forn, =1,... Ngin,=1,...,Nr (3.30)

are the channel between the n;th transmit and n,th receive antenna. The output of the
channel tensor R(¢) € C;'* is R(t) = {Hc(t)*X(t) } 1y and the combined channel and trans-
mit system tensor is €(t) = {Hca(t) *Hr(t)}q) € CNr M with components €, (1) =

Zf’fcnr @) M, (8) = Zhnr ne () * W, (p-1)Pp—1),(m-1)(t) = Cn, p-1),m-1)(1). If &
system matched to the comblned channel and synthesis filter bank is used, then the receive
system tensor H g (t) € C*M*Nr is 3 () = @¥ (—t) and converts R(t) into a signal tensor

Y(t) € CI**M . The overall system tensor () € C*2M*Fx2M g
H(t) — (Hnlt) = (Hol) + Hr Db by — (€7 () €0}y (33D

with components Hyy v p.m (t) = Z € i, (Z)3C, (1) = C?p’—l),(m’—l),nr(_t)*cnra(p_l)v(m_l)(t)’

nr=1

We may now re-write (3.27), for the case when pg, .. (t) =c .. (=), as
too Np 2M P

T .
y(p 1 (m/ 1) Z Z Z Zc(p 1 m/ 1 ( t) * Cnr,(p—l),(m—1)<t - nE)ejd)(m_l)’nd(p_l)v(m_l)vn

n=—oo n,=1m=1 p=1

+o0 2M P

=2 2D Hywomll— ng)%m [n] = Yy (1) (3.32)

n=—oco m=1 p=1

Writing Y,y (t) = Z Z Z Hy s pm(t — nZ)D,,.n[n] in tensor notation gives

2
n=—oo m=1p=

=3 50— ). D}y (3.33)

n=—oo

where Ty = Z. Sampling (3.33) at intervals Ty we get

Y[k] = Y(kTp) = Z{ﬂf k —n)Ty), Dnl} e (3.34)

n=—oo
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An estimate of the data tensor D[k] € Cy**M is found by feeding Y[k] into a tensor

detector G[k] € Cp**M*2M "some of which are derived in the next section, such that

D(k] = {S[k] Y[k]} o).

3.3 Generalized Frequency Division Multiplexing (GFDM)

Generalized frequency division multiplexing (GFDM) [52] is a block-based multicarrier
modulation scheme that employs circular filtering. Consider a time-frequency resource
block of duration 7" and bandwidth B. The available bandwidth is divided into K equally-
spaced subcarriers with subcarrier spacing Ay = % [52], and the time slot is divided into
T

M subsymbols with subsymbol spacing Ty, = The relation between the subcarrier

i
spacing and the subsymbol spacing is given by ATy, = 1. The data symbol transmitted

on the mth subsymbol, and kth sub-carrier is modulated by a pulse py ., (t) given by
P (t) = wp()pr(t — mTyg)e?*™ 2% form =0,..., M —1;k=0,...,K -1 (3.35)

where pr(t) is a prototype periodic pulse shape of period T', Ty, is the duration of one sub-
symbol, T' = KTy, is the duration of the entire GFDM symbol, and wr(¢) is a rectangular

window of duration T such that

1 forte|0, T]
wr(t) = (3.36)

0 elsewhere
The rectangular window wy(t) is used to limit the final modulating pulse py ., (t) to the
interval ¢ € [0, T]. A GFDM block hence comprises of pulse shapes generated by time and
frequency shifts of a periodic prototype pulse shape followed by multiplication by a finite

time window. The transmit signal is given by
o0 K—1M-1

)= > > pralt = nT)dsmn (3.37)

n=—o0 k=0 m=0

where dj ,, ,, is the complex data transmitted during the mth subsymbol on the kth sub-
carrier and the nth GFDM symbol. Denoting the channel by ¢(¢) and the additive white
Gaussian noise (AWGN) process by v(t), the received signal is

r(t) = c(t) * z(t) + v(t)
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+oo K—-1M-1

=>. 2.2 ( * Prm (t — nT))dk,m,n +v(t) (3.38)

n=—o00 k=0 m=0

Defining second order tensors D[n] € CE*M and H(t) € C{*M with components Dy, ,,[n] =
diempn and Hy (1) = (t) * ppm(t), we re-write (3.38) using the tensor representation as

= > {3H(t = nT), D[]} + v (1) (3.39)

n=—oo

CE*M>1 where the singleton

The signal r(¢) is the input to a system tensor Hpy(t) €
dimension is used to indicate that the input to this system is a scalar function (r(t)).
If there is a bank of filters matched to the transmit filters at the receiver then we have
Hr,,.(t) = pj . (—t) whose output Y(t) € C;*M has components Yy, () = Phm(—1) % 7(t).
Extending this to the MIMO case, let P independent streams of data be transmitted
using K sub-carriers, M sub-symbols and Ny transmit antennas. Let there be N receive

antennas. Assuming that different banks of filters are used at each transmit and receive

antenna, we get the signal transmitted by the n,th antenna as
40 P K M

T, (1) = Z Z Z Z Wy o p o PT, o (t — 1T (3.40)

n=—o0o0 p=1 k=1 m=1
where d,, p, .m is the data transmitted on the nth GFDM symbol, during the mth sub-
symbol, on the kth sub-carrier and on the pth stream. Using the Tensor Framework, the
complex data to be transmitted on the nth GFDM symbol is D[n] € CI*5*M with compo-

NpXxPxKxM
e Chr

nents Dy, . m[n] = dppkm. The transmit tensor Hr(t) whose (n, p, k, m)th

component is Hrp, = wnhpant’k’m(t) converts the data tensor into a signal tensor

{Ho(t=nT),Dinl}().

The channel system tensor is He(t) € C)* N whose components ﬂ-CCth (t) are the chan-

ng,p,k,m

X(t) € CN". We write (3.40) using tensor notation as X(t) =

nel between the n;th transmit and n,th receive antenna. The output of the channel
R(t) € C'* is R(t) = {Hc(t) * X(t)}) and the combined channel and transmit tensor
C(t) € CY Mg @(1) = {Ho(t) *Hr(t) Y- If a matched filter is used at the receiver,

PXKXxMxNg
Ci

the receive system tensor Hr(t) = € (—t) € converts R(t) into a signal tensor

Y(t) € CI*F*K . The overall system tensor H(t) € CFrFXMxPxExM g

H(t) = {HR(t) * {He(t) « FHr(t) oy by = {€7 (=) * €(1) b (3.41)
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and

Y= 3 {3t —nT). D)} (3.42)

n=—0oo

Sampling (3.42) at intervals of T" gives Y[k] = Y(kT) = {H(KT — nT'),D[n]}s). An es-
timate of the data tensor D[k] € Cy*5*M s found by feeding Y[k] into a tensor detec-

tor G[k] € Cp*fxMxPxExM “gome of which are derived in the next section, such that

DIk] = {S[k], Y[k]}(3)
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Chapter 4

Detection Methods

Equalization methods for single input single output (SISO) systems have been extensively
studied in the literature [53]. Such equalizers are represented by discrete or continuous
scalar functions. For the case of more than one input, there have been several publications
on multi-channel extentions in the form of MIMO equalizers. W. Etten presents a maxi-
mum likelihood receiver for a MIMO transmission system in [54]. The notion of a matrix
matched filter is defined in [55] where a MIMO zero forcing linear equalizer is derived.
Duel-Hallen presents an optimal (in the minimum mean squared error sense) linear multi-
channel equalizer in [56]. A decision feedback equalizer is also described in [56] which is
derived using factorization of matrix spectra. J. G. Proakis et. al. present optimal and
sub-optimal detectors for multiple antenna systems for both frequency-selective and fre-
quency flat fading in [57].

Matrices are well suited for the design of systems where there are several inputs and out-
puts belonging to the same domain such as uncoded multiple antenna systems. However,
tensors are a more natural tool for systems with multiple domains at both the input and
output. For example, systems that employ space-time-frequency coding have an inher-
ent multidimensional structure and are better represented using tensors. In this chapter
we derive some tensor based equalization methods for multi-domain communication sys-

tems. We present multi-domain tensor linear equalizers that are optimized based on the
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peak distortion and minimum mean squared error criterion. Further, we present non-linear
equalization methods in the form of decision feedback equalizers (DFE). Finally, we present
some performance results for the equalizers described above and also show that equalizers
for MIMO and scalar systems are a specific case of these tensor based equalizers.

As we have seen from our discussions in Chapter 2 and Chapter 3, several current com-
munication systems are inherently multidimensional in nature and hence warrant the use
of mathematical tools that maintain this structure. Many of the developments in the ten-
sor based equalizers presented in this chapter follow a similar line of thought as those of
vector-matrix based systems allowing an extension of the existing understanding of such
systems into multiple domains. The aim of this chapter is to build a foundation that allows
one to exploit the benefits of using a tensor based approach, an example of which is shown
in Chapter 5 in the form of Tensor Partial Response Signalling (TPRS), while at the same

time dispelling the perceived complexity of tensor mathematics.

4.1 Preliminaries

We begin with some important definitions that will be used throughout this chapter.

Definition 4.1.1. D-transform of a Discrete Tensor Sequence: The D-transform of a scalar

sequence z[k] is defined as

#(D) = x[k|D" (4.1)

where D is the delay operator. A discrete tensor sequence X[k] € C** ' is a function
tensor with a discrete argument k. The D-transform of X[£] is a tensor of the D-transform

of its components defined as

X(D) =Y X[k]D" (4.2)

9

with components X;, ;. (D) =>>X;,

7777

Definition 4.1.2. Random Tensor: A tensor X € CH*-*IN ig said to be random if its

components X;, _;, are random variables. Similarly, a function tensor A(x) € (CQX'“XIN is



4 Detection Methods 42

a random function tensor if its components are random processes.

Definition 4.1.3. Mean: The mean of a random tensor sequence X[k] € C/*V is

defined as
pixlk] = E [ K] (4.3)

with components px;, [kl =B [X;, iy [F]]

.....

Definition 4.1.4. Auto-correlation and Cross-correlation of a Random Tensor Sequence:

The auto-correlation function of a random tensor sequence X[k] € (Cilx'“XIN is a tensor

Ry lk,i] € (Cf}ﬁ;)'“XINXhX”'XIN defined as
Rk, 1] = E [X[k] o X*[k — 4] (4.4)

.. |k,i], are the auto-correlation func-
..... N i1t

,,,,,

and Xy [k] is foil o

Loty UV 25 A Nty

X[k] € CPI and Y[k] € M s a tensor Ryylk, ] € CRr=*N*/xI qefined

as

[k,i]. The cross-correlation of two random tensor sequences

Ryylk,i] = E [X[k] o Y* [k — i]] (4.5)

kil =B | Xy F) Y0 [ — 1]

100y e i N T s jM[

Definition 4.1.5. Wide Sense Stationary Tensor Sequence: A random tensor sequence
X[k] € CP*'™ is said to be wide sense stationary (WSS) if its mean E [X[k]] is inde-
pendent of k and its auto-correlation E [X[k] o X*[k — i]| depends only on i.Two random
tensor sequences X[k] € Cp" 'V and Y[k] € C"’™ are jointly WSS if both X[k] and
Y[k] are WSS and their cross-correlation E [X[k] o Y*[k —i]] depends only on ¢ In the rest of
this thesis, auto-correlation and cross-correlation tensors of WSS and jointly WSS tensor
sequences are indexed by one variable (Ry[i] and Ry y[i] respectively). It can be shown
that if the input to a linear time invariant system tensor is a WSS tensor sequence, then

the output is also WSS and the input and output tensor sequences are jointly WSS.

Proof. The output of the tensor system F[k] € C; > /mxI->IN 6 4 WSS input X[k] €
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(C£1><...><]N is

Ykl = Y {H[k —n], X[n]}w) (4.6)

The mean of Y[k] is
EYK] =E[ D {Hk—nl,X[n]}w) (4.7)
= Y B [{3[k - n]. Xn]} )] (4.8)
= > {3tk —nl.E [X[n]]} ) (4.9)
= > {H[k—n), px} v (4.10)
= { > f}f[k—n],ux} (4.11)

n=—oo (N)

+o00
Since the summation is over all values of n, Y. H[k — n] does not depend on the value
n [e.9]

of k. Hence, E [Y[k]] does not depend on k.

The auto-correlation of Y[k] is

E[dk oY k—i] =E [( > AKXk —nl}an) o (Y {ﬂ[m],x[k—i—m]}(m)*}

=> Y E [({ﬂf[n],x[k —nl}avy) o ({H[m], X[k —i — m]}(N))*}

nN=—o0 MmM=—0o0

(4.12)

Using (2.35), (4.12) becomes
+oo +oo

B oY~ i) = 30 Y B[ (19al. X0k~ b o (CClk — = ). 5w |

n=—oo Mm=—0o0

Y E[({ﬂf[n],x[k—nn(m)o({x*[k—é—ml,%H[mH(m)]

nN=—o0 MmM=—0o0
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Using the associativity property of the contracted and outer products from (2.8) and (2.20)

{{ (x[k—n]ox*[k—i—m])}( ),%H[m]} ]
N (N)
_ { H[n n]ox*[k—z'—mu}( ),%H[m]}
N (N)

e
- OO {{5{ Rxm+z—n]}(N),5{H[m]} (4.13)
()
)

we get

We can see that the RHS of (4 13) depends only on i and hence the LHS also depends
only on 7. Since the mean of Y[k| is constant and its auro-correlation depends only on the

difference 4, it is WSS. The cross-correlation between X[k| and Y[k] is

B (90K o3[k — ] =& | ( Y {5¢00). 20k — o) o X'l — 1

= Y B (O Xlk - al)n) 0 Xk 1

Using the associativity property of the contracted and outer products from equations (2.8)

and (2.20) we get

= f = H:H[”]?(x[’f_”]ox*[k_i])}(m}

$ sz}

=y {f}{[n],ka[i—n]}(m (4.14)

n=—oo

(N)

The RHS of (4.14) depends only on ¢ and hence the cross-correlation of X[k| and Y[£] also
depends only on 7. Thus, the output and input are jointly WSS. n
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Definition 4.1.6. Spectrum and Cross-spectrum of a tensor sequence: The spectrum of a

WSS tensor sequence X[k] € CI*I¥ is a tensor 8x(D) € Clx->*IwxIvx-xIN Jefined as

Sx(D) = Ry[i] D’ (4.15)
The pseudo-diagonal elements of Sx (D), gle 7777 inir iy (D), are the spectra of X;, i\ and
the cross-spectrum between two different components X;, _;, and Xj; i, 188y , ., (D)

tensor Syy (D) € Cl->InxJixxu (efined as

Sxy(D) = Zfo,y [i] D’ (4.16)

.....

are un-correlated and have average power 0. The auto-correlation of A[k] is
Rali] = 03I n0(i) (4.17)

and the spectrum of A[k] is

v

84(D) =033y (4.18)
where Jy is the identity tensor of size I} X ... X Iy X I; X ... X Iy

Definition 4.1.7. Discrete System tensors: A discrete system tensor is a tensor H[n] €
ChxInxJixJnm that couples an input tensor sequence X[n] € CJ1**7M with an output

tensor sequence Y[k] € C !~ through a discrete contracted convolution defined as:
Ylk] =D (3], X[k — nl}oy (4.19)
Taking the D-transform of (4.19) we gl,t
Y(D) = Y[k D"
k

_ ; (Xn:{ﬂ{[n},DC[k - n]}(m) Dk
- Xk: (Zn:{%[”}ax[k’ - ”]}(M))Dk_"D”
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= {F(D),X(D)} ) (4.20)
Next, we show that if the input X[k] to the system H[k| is wide sense stationary (WSS),

then we have
H

8y(D) = {H(D), {8x(D), 3 (D)} an}an (4.21)

where 8x(D) is the spectrum of X[k]. Further, X(D) and the output Y(D) are jointly WSS

with cross spectrum

8yx(D) = {F(D),8x(D)}an) (4.22)

Proof. The auto-correlation tensor of the output Y[k] has components

R sy (1) = E Yo K] 0 Y e — ]
=E ZZ Zg{ml ----- N, J15ens JM[m]xh ,,,,, Yive Uf_m])
m IMm
QO Z D SO (1] 4 S L e B O] (4.23)
n PMm
- Z Z Z:}le ----- MNJ15-- M [m]
m IM
> Z D H g IRG, sy, [0FE =] (4.24)
n pPMm
Taking the D-Transform of ngml AAAA gy 18] WE get
S Zmyml ..... S— (12
_Z<ZZ Zj{ml ~~~~~ N J1 500 ]M[m}
m Jim
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L Jm
DI DI B ) L
n pi PM
= Z Z cee Zj{ml ,,,,, MN 15000 J'M[m}Dm
m 1 Jm
’ Z Z T Zg{;l ----- TN ,P1yPM [n]D_n Z:Rxh ----- IMP1se P M [n +i = m]Dn+i_m
nop1 Pm i
= Z j.(:W’Ll ~~~~~ mN:jl 77777 j]\l <D> Z j{n1 ..... MNPy DM <D71>8xj1 ,,,,, JM P> DM (D)
JiyeensdM Pl P M
(4.25)
which in tensor notation gives
o o o CH,
8y(D) = {H(D). {8x(D), 3 (D™")}an }an) (4.26)

The cross correlation tensor Ry x[i] has components

R‘j,xil ,,,,, TN T 1seees IM (Z> = E [y“ ~~~~~ iN [k] © le ..... j]y[ [k - Z]]

= E[(Z Z Zg{u ,,,,, NP1y PM [m]xpl ~~~~~ DM [k m])x; ..... ks [k - Z])}
m p1 pPm
(4.27)
= Z Z cee Z:}Cn ----- IN D1y PM I:m:ljzxplA,“.,pjw,jl,“‘,j]w [2 - m] (428)
nop1 pPm

Taking the D transform we get the Cross spectrum
Syx(D) = {H(D),8x(D)} (4.29)
O

Next we show that
y S H

8yx(D) = 8xy(D7") (4.30)

Proof. The cross correlation tensor Ry y[i] is

Ry y[i] = E[Y[k] o X*[k — i]] (4.31)
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and has components

X1 daritein [Z] = ]E[le 77777 Jm [k]y;: ..... iN [k - ZH
= BV, bone | (Z Z Z:Hu ,,,,, in ot Xy (B — 7 — m]> }
m p1 pPMm
]1 kM (ZZ Zﬂ{ ----- IN D1y pM[ ]x* ..... pM[k_Z_m])]
m p1 PMm
= E[Z Z T Z:}CZ 77777 IN,P1y-PM [m]x; ..... DM [k — 11— m]le 77777 kn [kH
m p1 PMm
- Z Z Zg{’z ..... iN D1yeees p]\/[[ ] [x* ..... DM [k: —t—= m]le ~~~~~ JM [k]:|
m  p1 pPm
- Z Z ZJ{’Z ..... TN D1 seees DM [m] (E[xpl 77777 Pm [k ¢ m]x;l ..... ]M[ku>
m  p1 DM
= Z Z .. Zg-c;kl ’’’’’ TN P1yeees p]y{[ ] :}pl Pl im I:_Z i m]
m o p1 PM
- Z Z T ZR:?JI ,,,,, JM PP M [2 + m]j{fl 77777 DM 8150+, EN [m] (4'32)
m p1 PM
In tensor notation, (4.32) can be written as
R yi] Z{fo i+ m), 5 [m]} ) (4.33)

taking the D-transform of (4.33) we have

Sxy(D Zﬂax,,,
=" (Z{R&f i - m],sfH[m]}(M))Di
= Z (éj{ﬂ%&f i =l 5 ) ) DD
=21 (me (i +m D”m) H ] by D
= S0, (3D )

= {8 (D), %" (DY}
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=8yx(D7) (4.34)
0

Definition 4.1.8. Causality of a Discrete System Tensor Causality for scalar systems is
well known. A scalar system h[n] is said to be causal if the output y[n] depends only on
the present and past values, z[n|,z[n — 1],..., of x[n]. However, the definition of causality
for tensor systems offers more flexibility since there are several components within each
tensor. We start with the definition of loose causality of a system tensor. A system tensor

H[n] € Clrx-xJaxhix..xIn g gaid to be loosely causal if
Hn|=0p forn<0 (4.35)
The D-transform of such a system has the form
H(D) = H[0] + H[1)D + H[2]D* + ... (4.36)
Next, for system tensors whose input and output have the same dimensions, we define
strict causality. For a matrix system A[k] € Ch*" with an input v[k] € C¥, authors
in [56] define the system A[k] to be causal if the output w;[k] = > fj A, j[n]v;k —n]
does not depend on ‘future’ inputs viq[k|, viialk], ..., vy[k], V[ —: f]:i/[k +2]..,, ie,
A(D) = A[0] + A[1]D 4+ A[2]D* + ... and A[0] is a lower triangular matrix. This means
that within a vector symbol v[k|, there is a sequencing of the components where v;[k]
appears before v;[k| if j < i that indicates what future means. This is just one possible
sequencing of the components of v[k| and a different sequencing would result in a different
structure of A[0]. We extend this definition of causality to tensor systems. Such systems
are encountered, for example, in the case of decision feedback equalizers that take into
consideration past decisions within the same tensor symbol as well as past decisions of

previous tensor symbols, the feedback system is a strictly causal system.

Consider a system tensor G[n] € CL>*-xInxIx..xIn with input X[n] € CI*-*IN and

output Y[n] € Ch*-*Iv_ Next, define a sequencing of the components of these input
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X, , is a future

and output tensors such that for two components X;, ; el

and Xy

!
N NN ANE!

component if :

@+ =1 I 7) > (i +> -1 [ 1) (4.37)

I=k—1 I=k—1
For such a sequencing, the system G[n| is said to be strictly causal if a particular component

Yi....in [ does not depend on ‘future’ components as defined in (4.37). In such a case, §[0]

is a pseudo-lower triangular tensor. Thus, we have
Gn|=0r forn<0 (4.38)
and
0 if (2/1 + Z]kV:Q(Z;c i) | Il) < (il + Zg:2(ik ) | Il)

Gityeoi N s sl otherwise

Syt 0]

(4.39)

where g;, are arbitrary scalars where at least one of them is non-zero.

., .,
IN 87 ety

As an example, consider a second order input X[n| € C3*3 and a system G[n] € C3*3%3x3,

Then (4.39) becomes
0 if é +3(ih — 1) < 4y + 3(iz — 1)
St iyinin = (4.40)

Gil it i i otherwise
Figure 4.1 shows the ordering of the components of the input and the non-zero components
of the system tensor highlighted in gray. It is important to note here that the ordering
given here is just one of the many possible sequences and the structure of a strictly causal
tensor would change accordingly. However, this is the sequencing used in the rest of this
thesis.

For any system e (D), we define its purely causal part as

v

e(D)* =€[0]" +€[1]D +... (4.41)
and its anti-causal component as
€(D)” =€(D) —e(D)* (4.42)

where €[0]~ is the pseudo-upper triangular part of €[0]. For the case of matrix systems
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I
1 4 7
2 5 8
I
3 6 9

Fig. 4.1 (a) Sequencing of input components (b) non zero elements of causal
system

(4.38) and (4.39) reduce to the definitions found in [56]. A matrix filter G(D) € C¥*V that
couples a vector input x(D) € C¥ with a vector output y(D) € CY¥ through the relation
y(D) = G(D)x(D) is causal if it has the form

G(D) = G[0] + G[1]D + G[2]D* + . .. (4.43)
If, further G[0] is lower triangular, then the system G(D) is purely causal.

Both causal and strictly causal system tensors can be represented using a tensor tapped

delay line model, the structure of which is shown in Fig. 4.2.

Definition 4.1.9. Fuctoring the Spectral Tensor The factoring of a scalar spectrum S, (D)
such that S, (D) = §(D)g*(D~) with §(D) being a stable minimum phase transform is well
known in the literature [57]. Authors of [58] and [59] generalize this factorization for the
case of the spectrum of a vector. We wish to find a similar factorization for the spectrum
8x(D) € Clyx-xInxhix-xIn of o tensor X[k] € CL**IV_ It is assumed that the spectral
tensor éx(D) is rational and stable. This means that all of its components are rational and

stable transfer functions. The problem is to find a factorization
< H

8x(D) = {2(D),2" (D) }) (4.44)
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S[0]
x[k] »( X
S[1]
Yo Xk—1]
I:D }—»( X ——
S[2]
\4 A 4
] X[k 2 69 R
53]
Y xk—3
15—
5[]
@' X[k — M] il:

Fig. 4.2 Tensor Tapped Delay Line

where Q(D) € Chx-*Inxhx-xIn js causal and stable and has a stable inverse Q_l(D).

To solve the factorization problem we consider the case when an input tensor fi’(D) with
spectrum gg)(D) = Jy excites a system Q(D) From (4.21) we have that the output, say
R(D), of this system will have a spectrum

) o v v H v v H

82(D) ={2(D),{82(D),2 (D™}t = {2(D),2 (D} (4.45)
If ﬁ(D) excites a series of cascaded linear systems ‘j'l(D),‘j'Q(D), . .‘j'L(D) such that the
output of this overall system, say ﬂ(D), has an identity spectrum gu(D) = J then this
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cascade is the inverse of Q(D) We have

1

Q™'(D) = ({T2(D). Tra(D)} .- To(D) ) (4.46)

and
-1 o1

Q(D) = {{T, (D), T, (D)}ow---T7 (D)}wy (4.47)

The solution of the factorization problem is performed by a series of L tensor transforma-

tions on the spectral tensor that converts it into an identity tensor with the constraint that

each T;(D) and its inverse T; 1(D) are stable.

4.2 Linear Equalization

In this section, we investigate some linear tensor equalization architectures for systems with

multi-domain interference (both inter-tensor and intra-tensor).

4.2.1 Equivalent Discrete Time Model

D) =S""°Dln|st —n
=YDt [ xe) [

- G[m] AN Hr(1)

D, Y[k] 9(t)

Fig. 4.3 Noisy System Model

Consider the system in Figure 4.3. The data transmitted on the nth tensor sym-
bol is D[n] € Ch*-*In_ The transmit, channel and receive system tensors are Hrp(t) €
(C;]lx...xJMxle...xIN g‘fc(t) c (C{(lx...xKolex...xJM g‘CR(t) c Ctle...prxle...xKo respec-

Y )

tively, N(t) € CF***5 0 is an additive noise tensor, and X(t) € C/***/M is the output
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of the transmit system tensor and Y(t) € CtLlX“'XLP is the output of the receive system
tensor. Furthermore, G[n] € CL>*-*InxLix..xLp jg 5 discrete system tensor whose output
D[n] is the estimate of the data D[n]. The input to the receive system tensor is
R(t) = {{J{C(t) « Fr(t) by * Y Dot — nT)} +N(t)
n (N)
— {€(t — nT), Dln} ) + N(1) (4.48)
where the cascade of the transmit tensor and the channel tensor is represented by €(t) =

{FHo(t) * Hp(t) }ar) € CFxFoxhxe-Iv “The output of the receive system tensor is

Y(t) = {Ha(t) *R(1)}0) + {Ha(t) *N()} o)

= > {3(t = nT),Dlnf}v) + V(1) (4.49)

n=—oo

where H(t) € CPr*ErxIx-XIN i the overall system tensor comprising the transmit,
channel and receive system tensors, and V(t) = {Hg(t) * N(t)} o) € C/** "7, Sampling
the output Y(t) at a rate of 7, we get

Y[k =Y(rT)

= > {H(T —nT),Dnl} () + VKT

= > {H[K, Dk — nl}w) + VIK] (4.50)
where H[k] = H(kT) is the kth sample of H(t) and V[k| = {Hg(t) * N(t) } o) is the
sampled noise with autocorrelation A

Ryli] = E [V[k] o V*[k — i]] (4.51)

The D-transform of (4.50) is

Y(D) = {H(D),D(D)} ) + V(D) (4.52)

The output of §[n|, which is the estimate of the data tensor D[k], is

DIk = > {§[m], Y[k — m]}(r)
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=35 {GIm) {H[n), Dk —m — nl} } ey + > {Sm], VIk — m]}p)
= 3" S (SIm) AH[n]. Dk —m — ]y b + VIH (4.53)

The D-transform of (4.53) is
D(D) = {(D), ¥(D)}hr
= {§(D), {H(D),D(D)} ) }r) + V(D) (4.54)

The system defined by (4.53) is called the equivalent discrete time system model and is

shown in Figure 4.4.

——» H[k] —» Slk] —»
V[HT

Fig. 4.4 Equivalent Discrete Time System Model

4.2.2 Whitened matched filter

+00
Theorem 2. Consider an input X(t) = 5. X[n]é(t — nT) € C**V to a system

n=—oo

tensor A(t) € C;hx‘“XJMXIlX“'XIN. The output of this filter, corrupted by additive white
Gaussian noise, is R(t) = {A(t) *X(t)} vy +N(t) where N(¢) is a tensor whose components
are white Gaussian noise processes. Let R(t) be the input to a system tensor B(t) €
Cr NI with an output Y(t) € CH V. The per component SNR of the
samples Y(kT) = Y[k] is maximized when B(t) = A (—t).

The proof of this can be found in Appendix A.1. Assuming that the receive filter is
a Tensor Matched filter, that is matched to the combined channel and transmit tensors,
we have Hp(t) = CH(—t) e ¢/ Iv*KixKo The gyerall system tensor is H(t) =

{CH(—1) % €(t) }(0) € TN 11XIN which can be written component wise as:

g{jl ----- JNT1sesiN (t) = Z SR Zeg ,,,,, iK1y ko(_t) * ekl ----- ko,j1,--JN (t)
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—+o00
= ZZ/ €l iositsnin (T = V)€, g1, (T)AT (4.55)
o1 o Y00

For the noise tensor V(t), denote its continuous auto-correlation tensor as ®y(p) = E[V(t)o

V*(t — p)] with components

Z Z/ ll, SiNskLko (_T)Nkl7--wko(t_7—)d7—
Z Z/ Cllinktiis (ST Ny (E = p — 7')dr’
_Z ZZ Z/ / Chrkosirin (TTICL bt 1 (=)
o

Aqseesi NI Lsee I N

[Nkh kot — T):Nk/l, k (t —p—T )} drdr’
_Z ZZ Z/ / k17 kO i1yt (_T)eki,---,kbdl,---vjw(_T,)
ko K,
.¢Nk1 ,,,,, ko k5o <p+7- B T)deT (4'56>

When the components of the noise tensor N(¢) are white uncorrelated Gaussian random

processes with double sided spectral density Ny we get

Nod(p+7 —71) ifki =K ky=Fk) ....ko=FK,
K/ (p+7',—7—) = 0 ( ) ' b 2 ¢ © (457)
© 0 otherwise

Using (4.57) in (4.56) gives

+oo +0o0
q)\?il ,,,,, IN Lo Z / / k1, kO ity (_T)ekhm,ko,ﬁ ..... jN<—T,)N05(p + T, — T)deT/
k1,....ko
+oo oo
- NO Z / k‘l, ,ko,ll, e <_7_) ek’l,‘..,ko,jh...,j]\](_7—/)5<p + TI - T)deT/
ki,....ko e
+o0o
- NO Z ;;1,...,160,1'1,...,7:1\]<_T)ek17---k01j17---vjN(_(T _p))dT

k1yesko ¥ T

+oo
- NO Z / k’l, ,ko,h, e ( T)ek17~~-7k07j17~"7j]\] (p - T)dT

k1,...ko
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Making the substitution p — 7 = k gives

—0o0

®v11 AAAAA AN J1ses iN (p> - NO : : - ezl ..... KO,i1ye-ey ZN<k - p)ekl ----- ko ,J15ees ]N(k)dk
k1,....ko oo
+oo
N0 3 [ o b P s (R (458)

Comparing (4.58) with (4.55), we can see that ®y(p) = NoH(p). Sampling Py(p) and

taking its D-transform gives us the noise spectral tensor
8v(D) = NoH(D) (4.59)
The spectrum of the noise may be factorized into factor tensors as
8v(D) = No{@(D), 9" (D)} (4:60)
and using (4.60) in (4.59) gives
5(D) = {9(D).Q" (D} ) (4.61)

An example of such a factorization is provided in Appendix 3.1. (4.52) may now be re-

written as
H

Y(D) = {{Q(D), Q" (DY)}, D(D)} vy + {Q(D), N(D) } ) (4.62)

The output noise in (4.62) is coloured and is whitened by passing g(D) through a system
L1
Q (D) whose output is

2(D) = {9 (D), Y(D)} (4.63)
= {97 (D), {{2(D), 9" (D)}, D(D) by + {Q(D), N(D) b vy (4.64)
= {2 (D). ({2(D), 9" (D)}, DDy by + {2 (D). AQ(D). N(D)} )} )

Using the associativity property (2.8) we get
= ({2 (D).9(D)} ). 8" (D)}, DD) Yy + {{D (D). QD)) N(D) )
= (2" (D), D(D)} ) +N(D) (4.65)

From Theorem 2, we know that the SNR at the output of the matched filter is maximized.
However, the matched filter correlates the noise. This correlation is removed by the noise

whitening filter. Define F[k] as a sequence of tap co-efficients whose D-transform is F(D) =
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< H
Q (D71). The overall input-output relation of a system comprising of the transmit system

tensor, the multi-domain channel, the tensor matched filter and the noise whitening tensor

tapped delay line is then

= {FIn], D[k — nf}w) + NIK] (4.66)

4.2.3 Peak Distortion Criterion

Let the cascade of the the overall system H[k| and the equalizer §[k| from (4.53) be denoted
by P[k] € Cy >IN We have

v % v

P(D) ={S(D),H (D)} (4.67)
with tap co-efficients

= > {Slm].H[k —m]}(p) (4.68)

Rewriting (4.53) using (4.68) we get
DIk] Z Z{S AH[k —m —n], D]} Hp) + VIK]

Using the associativity property gives

-y {{Zg[m],ﬁ[k—m—n]} ,D[n]} + V(K]
- - (P)

(N)

= > {Plk —nl, D} + >_{§m], VIk — m]}p)
= > {P[), D[k — nl}) + >_{Sm], VIk — m]}p) (4.69)

which on expansion gives

D(k] = {P[0], m+ Y AP +Z{9 VIk=ml}py  (4.70)

n,n#0
whose components are

®1‘1 ..... IN [k] = :Pil ,,,,, TNyl N [0]®11 ..... IN [k] + Z fph ..... INJ1s I N [O]Djl ..... IN [k]

J1rIN
(J1---dN)F# @1 i)
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+ Z Z :])i17~-~7’iN7j17-~-7jN [n]i)jl,u-,jzv [k - ’I”L] + Z Z 9i17--~7iN,l1,--~,lP [k - m]l‘?llvnylP [m]

n’n#ojlv"'vj]\] m ly,...lp

(4.71)
The first term on the RHS of (4.71) is a scaled version of the required data symbol, the
second term is interference from other components within the same tensor (intra-tensor
interference), the third term is the interference from other tensor symbols (inter-tensor
interference) and the fourth term is the filtered noise. The inter-tensor interference and
intra-tensor interference combined are dubbed multi-domain interference (MDI). For an

output D [k], we define the worst case or maximal possible value of the amplitude

1N
of the combined multi-domain interference relative to the magnitude of the desired signal
sample as the peak distortion at i)“lN The peak distortion at i1, ..., 7y is then denoted

by

Iil,-‘.,iN = max (‘ Z ?il,--~7iN7117~--,jN [O]gjly-ij [k] + Z ﬂ)ih..-,iNJl,m:jN [n]Djly--ij [k - Tl]

4j1:~~~7'].N n,n#0
(J15e-2dN)F# J1yensdN
(#15-5iN)

)

(4.72)

The overall worst-case distortion is the maximum value of I;, ;. over all the outputs

UN
i1,...,1y and is denoted by

Iy = max Iy (4.73)

i1 iy

For z1,...,zp € C we have | > z;| < > |z]| with equality only when z1, ..., zy have the
same argument. When the argulments are different, the difference between the two sides
of the inequality reduces as the largest difference in argument reduces. In general, the
peak value of the distortion is achieved when for a given P[k], the components of D[k] are
such that the difference in argument between any two terms in (4.72) is minimum. If the

argument of the components are the same, then we have

Iiy....iy = max ( Z ?i17~-~7iN,j17~-~,jN [O]Dj1,~~~7j1\r [k]’+ Z Ti1,~~~,iN,j1,-~~7jN [n]:Dj17~--’jN [k_n] >
J1se-sJN n,n#0
(1N ) J1yendN

(11,-50N)

Let Djna, denote the maximum value that the modulus of a component of D[k] can take.
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Then the peak value of the distortion occurs when |D;, ;. [k]| = Dinaz. For such a case
we have
[’Ll ----- IN T Dmaz ( Z ﬂ)zl ..... IN,J1yJ N [0]‘ + Z :P’L1 ,,,,, INSJ1se0JN [TL] ) (474>
JisesJN n,n#0
(J15-0N)# J1ydN

For the scalar case where the channel and equalizer are represented by f[n] and c[n] re-

spectively, (4.73) reduces to

Iy = max(| Z q[n]d[k — n]|) (4.75)
n,n#0
+oo
where g[n] = > ¢[n]f[k —n] denotes the convolution of the channel and the equalizer. If

q[n] and d[n] are real, and the maximum value of |d[k]| is denoted by d,4., the maximum
value of (4.75) occurs when all the |d[k — n]| = dpne and the algebraic sign of d[k — n] is
the same as ¢[n]. In this case, (4.75) becomes

Iy = dmaz Y, lqln]] (4.76)

n,n#0
which is consistent with the definition of peak distortion of [60]. The aim of the first linear

equalizer is to minimize I, and this is called the Peak Distortion or Zero Forcing (ZF)
Criterion. From our previous discussions of the generalized Nyquist criterion if the overall
INJ1y- I N [k] =0 for k 7é 0
and (i1,...,in) # (J1,...,7n) and hence Iy = 0. Denote the equalizer with the optimal

system follows the strict Generalized Nyquist criterion then P;,

.....

tap coefficient tensors such that the worst case distortion is minimized by G#%[k]. From

(2.68) we have that
S ZF

P(D) =1{§" (D), HU(D)}p) =T (4.77)
or
S ZF o+
S (D)=XH (D) (4.78)
For the specific case of zero inter-tensor interference, we have H[k|] = 07 for k # 0 and
H(D) = H[0]. Hence, (4.78) becomes
S ZF -+

(D) = F" (D) = H+[0] (4.79)
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If the matched filter system is used then, using (4.66), we see that the input to the equalizer
is Z[k:] such that

Z 2{9 AFk —m—n), Dl}w v + Y _{Sn) Nk —nl}vy  (4.80)

Denoting the cascade of the equalizer §[k| and the system F[k] by R[k] = > {G[k], Flk —
n]} vy, and using the associativity property, (4.80) becomes

$ Z{{ZS Flk - m—n]}(N),ﬂ[n]} —i—Z{S[m],N[k—m]}(N)

vy m
=Y AR[k —n], D} + Z{S N[k — m]} ) (4.81)

The peak distortion from (4.72) becomes

(4.82)

If the overall system follows the strict Generalized Nyquist criterion then R, iy 1. K] =

0 for k # 0 and (iy,...,inx) # (J1,...,Jn) and hence [y = 0. This means that to minimize

the peak distortion we require that the overall system 5€(D) = Jn. Hence we have

R(D) = {$(D).F(D)} ) = I (4.83)
and the optimal zero forcing equalizer is
5" (D) =5 (D) (4.84)

4.2.4 Tensor Minimum Mean Square Error Equalization

The next equalization scheme that we look at is the equalizer that minimizes the mean
squared error between the data tensor D[k] and its estimate D[k]. Define an error tensor

&[k] = D[k] — D[k]. The mean squared error is defined as
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= Z E [|®i1 ..... ink] — ®i1 ..... in [k]|2 (4.85)
_ E[Hmk] —95[/@](]1] (4.86)

The auto-correlation tensor of the error at zero delay is Rg[0] = E [€[k] o €*[K]]. For

simplicity, we remove the index and denote this by Re. The components of Re are

When i; = ji,...,ixy = jn, (4.87) becomes
A 2
:Rg. N oy = HDH iN [k] - ml'l ,,,,, iN [kH ] (488>

MSE = Z :Rgil PN ,L.N:trace(iRg) (489)

,,,,,

T1,ee st N

We first look at the case of an equalizer with an infinite number of tensor taps, and then
move on to restricting the number of taps to M. To find the optimal tap co-efficients
we begin with a generalization of the well-known principle of linear estimation for scalar
systems [57] that the error must be uncorrelated with all the observed random variables for
the MSE to be minimized. Authors in [61] mention the orthogonality principle for MIMO

systems using matrices.

Theorem 3. The mean squared error between a tensor D[k] € (CQX'”XIN and its estimate

De (CQX'“X]N is minimized if and only if the error is uncorrelated with all the observed

tensors Y[k] € (Célx-..XLM
BlER oyl 1] =0, % o0

A

where E[k] = D[k] — D[k].

The proof of this theorem can be found in appendix A.2. Using Theorem 3, we have

that the optimal multi-linear equalizer must satisfy
Reyli] = E[E[K] 0 Y[k — i]
= E[(D[k] — D[k]) o Y*[k —i]] = Or (4.91)
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Component wise, (4.91) becomes

1] = E[(Di iy [K] = Diy i (KDY, [k —d)] =0 (4.92)

-----

which implies

..............

(D) =84, (D) (4.93)

Spy(D) =84 ,(D) (4.94)

From (4.21), (4.22) and (4.30) we get the following relations:

854(D) ={§(D).8y(D)}(r) (4.95)
SD,H(D> = S’I;,D(D_l)
= 8p(D), K" (D)) (4.96)
$4(D) = {H(D), {80(D). %" (D)} hw) + 8v(D) (4.97)
where 8y (D) is the spectrum of the noise. Using (4.97),(4.96) and (4.95) in (4.94) we get
{85(D7). %" (D)} = (1S {89 D)}p)
= { (D). {85(D).5" (D)} } +SV<D>)}
(P)

< MM
which gives the optimal tap co-efficients for the infinite tap tensor MMSE equalizer G (D)

as

§MIE {Smw—l)a {fff%—m ({fcw), {éowxﬂH<D‘1>}<N>}<N>+g"(D)) } }
(P)7 (N)

(4.99)
If we use a tensor matched filter at the receiver along with noise whitening, then the input-

output relation is described by (4.66) and the optimal tap coefficients for this case reduce
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to

~« MMSE

-1
o O H v g CH

(D) = {SD(D_I)a{:}' (D_l)v ({?(D)7{S®(D)>3: (D_l)}(N)}(N)+NOjN) } }
Ny ) (v

(4.100)

For a scalar system where the input is represented by d[k], the overall channel is represented
by hlk] and the filtered noise is represented by v[k], (4.99) becomes

GIMSE(D) — vgd(D:I)h*(D_l)v

W(D)S4(D)i (D) + 5,(D)
The definition of the linear MMSE equalizer of (4.101), is consistent with the definition
found in [60]. Let 2(D) consist of a channel and a matched filter. Then equation (4.61)

(4.101)

becomes

(D) = 4(D)q"(D™") (4.102)
and the spectrum of (D) is

S,(D) = Noh(D) (4.103)

Assuming that d[k] is uncorrelated such that R;[0] = E[d[k]d*[k]] and Rg4[i] = 0 for i # 0,
where R4[i] denotes the auto-correlation of d[k]. Denoting R4[0] by Rg4, (4.101) becomes
Rah*(D™)

GIMSE(Dy — - _ (4.104)
From (4.102) we can see that h(D) = h*(D~*). This gives
7 s -1
1
FIMSE( Dy — Rah*(D™7) _ R = (4.105)

(D Y)(WD)Rs+ No)  (R(D)Rg+ No)  (h(D) + %3)
We can see that (4.105) is consistent with [60]. Further, by using the substitution D = 27!
(4.105) becomes

1 1
gMMSE () = = (4.106)

which is consistent with [57].

If we further assume that components of the input tensor DI[k] are i.i.d and uncorrelated
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with unit energy such that gg(D) = Jy from (4.100) we have
v v H o vH -1
S(D) = {&' (D7), <{’J'(D),3r (D7)} )+ NOJN) } (4.107)
(N)

As for the zero forcing equalizer, we look at the specific case of zero inter-tensor interference.
Even for this case, the MMSE equalizer should perform better due to the presence of the

additive noise tensor. For zero inter-tensor interference, (4.107) becomes
-1
S(D) = {’J’H[O], ({3"]0],3'H[0]}(m + NOJN) } (4.108)
()

Next, consider the case where the equalizer has a finite number (M) of tensor taps
{G[i] € Cloe-xInxluxxbey i — (1., M — 1. Further, assume that the overall chan-
nel contains v + 1 tensor taps {H[i] € CFH>->Erxe>INy i — 0 1, ... v such that the

estimate of the data tensor is given by

DIk = 3 {8091k~ i} (4.100)

There is a decision delay A, such that 0 < A < M 4 v — 1, to ensure causality. This
delay is important when designing finite-length equalizers as non-causal filters cannot be
implemented in practice. For the case of infinite-length equalizers, the delay is not consid-

ered as infinite-length systems are not realizable. Hence, the tensor i)[k] is an estimate of

D[k — A]. The error tensor is
[k = DIk~ Dlk— A = S {8 Yk —i}r ~ Dk 4] (4.110)

We define a tensor Y[k] € Cp""*PP with P + 1 domains. Collecting the received

tensor for different delays Y[k], Y[k —1],...,Y[k — (M —1)] into an extended tensor Y[k] €

C e wwhere the additional domain is the delay domain, we have

Yoirinlk =Y apk—(m—1)] form=1,...,M (4.111)

MxLyx..xL
c (ck 1 P

Similarly, define extended noise tensor V[k] and extended data tensor

D[k] € CMHPICXIN guch that

ik —(@—=1)] forg=1,... .M +v
plk—(m—1)] form=1,....M (4.112)

.....
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The slice of a tensor is defined as a two-dimensional section of a tensor obtained by fixing
all but two indices [5]. For example, a tensor A € CI'*/2%Is has three slices denoted
by Ai, .. A.i,. and A._;,. Define K e C,iMXLlX"'XLPX(MH)XHX“'XIN with two additional

domains corresponding to the delays at the receiver and the transmitter such that the slice

Hoioipiinin =
Ho..piy.in[0] E Hi ipir.in[V] 0 o o v
0 :}ch...lph...iz\r [0] s g{llu-lPiln-iN [U] 0 T 0
I 0 . . 0 9{11...lpi1.--i1v [O] : ’g{ll---lPil---’iN [U]_

(4.113)

For a channel H[k] with v+1 non-zero taps, (4.50) becomes Y[k] = > {H[k], D[k—n]}n) +
n=0
V[k| with components

911 77777 lp [k] = Z Z SR Z:H:ll ~~~~~ lpyit,....IN [n]DH 77777 iN [k - n] + Vll ~~~~~ lp [k] (4'114)

n=0 11 iN

Using (4.111) and (4.114) we have

n=0 i1 in

and with (4.113) this becomes

Yotooto K] =D D> HontrtpgiveinDair i (K] + Vs 5[] (4.115)
=1 i in

which in tensor notation gives
9lH] = {56, DlH }ox -y + V1A (1.116)
Further, define an augmented tensor G € Cl*->InxMxLix..xLr “\which is a collection of

the tensor equalizer taps §[0],...,G[M — 1], whose components are

9i1 ..... in,ml1,. . lp — 9i1 ..... INT s lp[(m - 1)] for m = 1,...,M, (4-117)
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The components of D[k] of (4.109) can be written as
M—1

Dil ..... lN[k] = Z (ZZSH ..... ANy lp[m]yll ..... lp[k_m]>
m=0 ll lp

+ Z Zgh ..... ANy lp M - 1]9[1 ..... lp[k; - M + 1]

- ({9,9[k1}<p+1>)h (1.118)
hence (4.109) becomes
DIk] = {S, Y[k} p11) (4.119)
and (4.110) becomes
1K = {3, 9[H}por) — DIk — A (1120)

We wish to find the optimal co-efficients such that the mean squared error is minimized.

Using Theorem 3 we have that the optimal multi-linear equalizer must satisfy

Reyli] = E[(D[k] — D[k — A]) oY*[k —i]] =07 for [i| <M (4.121)

where 07 € Clv<-xInxLyxxLe which is equivalent to
E[(D[k] — D[k — A]) o Y7[k]] = 0Or (4.122)
— E[D[k] oY’ [k]] = E[D[k — A)) 0 Y7 [k] (4.123)

where 07 € Clv-xInxMxLix..xLe  Gubgtituting the value of D[k] from (4.119), we get

[{S, Y[k} (ps1y 0 W' [K]] = E [D[k — Al o Y7 [K] (4.124)
Denoting Rg[0] = E [Y[#] o ‘T[k]} = Ry, we have

&=
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=E {{5_{’ D[k} (1) 0 {H, i)*[k]}(fm)] +E {{5_{, D[k} (n+1) 0 V'[K]

+E {V[k] o {3, 93*[’6]}(N+1>} +E {‘_7[’“] o V'[K]

= {F€ R} 1), H vy + Ry (4.125)

where Ry = E {V[k] OV*[k:]} and Rp = E [D[k] o D [k]]. Let E [D[k — Al oY '[K]] = Rpy-
Using (4.116) gives
Rp g =E [Dlk — A o Y [K]]

=K

Dk — Ao ({ﬂ‘m‘a[k]hm H?[k]) ]

= {E [Dlk — A o DIK]], H" vy

— H
= o, 5 vy (4.126)
where ng)j) =E [Q)[k —Alo @[k:ﬂ and has components
Rpp Vi i E [Dil ..... ivlk— A]ﬂ;ﬁl ..... i’ [k — mH

(4.127)
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=Ry (4.128)

The LHS of (4.124) becomes
E [{G, Y[k} pny 0 Y (K] =

= {3, Ry} (p11) (4.129)
and the RHS of (4.124) becomes
E [Dlk — Al oY [k]] = Rpy (4.130)
Using (4.129) and (4.130), (4.124) becomes
{S. Ry} (ps1) =Ry (4.131)

To find the optimal tap co-efficients, we solve (4.131) by contracting both sides of (4.131)
by ‘.'Rg’ ! This gives

{8 Rg}(p11), Ry T pny = {Rp g, Ry pyy) (4.132)
Using the associativity property we get
{S: {Rg. Ry} }pny) = {Ro g, Ry Y Py (4.133)
Since ZRg’ 1}( p+1) = Jp41, we have the optimal tap co-efficients
Sopt = {‘Rﬂ,‘}ag{;l}(ﬂrl) (4.134)

4.2.5 Performance Analysis

In this section we present some performance measures for the detection methods described
previously. For the Minimum Mean Square Error equalizer we define the i, ..., 7yth Mean

squared error as

—~E[(D;, in[k] =Dy, in ED)Dy, iy K] (4.135)

----------
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The third term in (4.135) can be expanded as

= Z Z .. ZE[&l ..... in (91‘1 ..... iniitein MY in [k — m]) }
=0 (4.136)

where the last step is due to the fact that the error is uncorrelated with the observation.

Using (4.136) in (4.135) we get

“Ryp [0) (4.137)

Ry pli] = E[D[K] o D*[} — ]

= B[ 180 ¥k~ mhr ) 0Dk 1]
Since the noise is uncorrelated with the input, we get

= B[ 180 060Dk — m — o ) 0 Dk 1]

— Z Z{g[m], {U'C[n],E[D[/{; —m —n]oD*[k — Z'H}(N)}(p)

=> > {§[m]. {H[n], Rp[i — m — n]} ) Hp) (4.138)
The D-transform of (4.138) is

855 = {S(D) {H(D)8p(D)} )} (4.139)

7777 0
-----

found by integrating the iy, ..., iyth pseudo-diagonal element of 8¢ (D) — SDJA,(D) along
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the unit circle by setting D = e/2™/. i.e.,

1
€ir,oooiiny :/ (gﬂ(ej%f) _3D®(€j27rf)> df
0 ’ By N1 yensiN
1
= / (Sm(ejw) —{§(e), {gf(ejw)’Sw(eﬂ’rf)}(zv)}(m) df (4.140)
0 IR IR TR
The overall MSE is given by
MSE = Z €ir,..iy = trace (ng[O] — 523579[0]) (4.141)
1. 0N

For the finite tap MMSE equalizer we have
Re — E [E]K] o E[K]"]
~ & [ (18,904} — DIN) (5. 9T}y ~ D)’
= E [{S. 9} ) 0 {S" 5 W} ) {9 Y[k]} b1y 0 D7 [K]
~ DK 0 {§". Y M} (1) + DIk] o DIK’]
Using (2.35) in (4.142) we get
Re = E [{§, Y[k} p4ny 0 {976 psn) — (G, Y[k } sy 0 D[]
~ DK o {97[K], S} (ps1) + DIK o D[k (4.143)
Using the associativitiy property, (4.143) becomes
Re = {$. {Ry.S" Y pv) s — {8 Ry o }(ps)
~{Rp5.§" }p1) + Ry (4.144)

(4.142)

Substituting the optimal system tensor from (4.134) we get

:Rs,min - {{%7979{13_1}(134-1)7 {9297 ({:R'D,‘B?:R'g_l}(P-Fl))H}(P‘H)}(P‘f’l)
—{Rp 5. Ry }pr1): Ry ot pry — {Rog, ({Rog, Ry ' pa1) Ty + Ro

(4.145)
= {Rpg. Ry Ry phpen ) — 2{Rp g, ARy Ry p}prny bpen) + Rp - (4.146)
=Rp —{Rpy, {Rglvmgm}(PJrl)}(PH) (4.147)
=Rp — {gvm‘g,D}(PJrl) (4.148)
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and the minimum mean squared error becomes
MSE in = trace(Re min) = trace(Rp — {g,ﬂlgm}(pﬂ)) (4.149)

It can be shown that for a finite length equalizer with N taps, (4.145) tends to (4.137) in
the limit as N tends to infinity. i.e.,

lim Rinite — Rinf (4.150)

Nooo €, min €, min

where REMite is the error correlation tensor for the finite tap equalizer and R . is the

€, min €, min

error correlation tensor for the infinite tap equalizer. The proof of this can be found in
Appendix A 4.

As a method of verification, we reproduce some performance results from the literature
using the tensor framework. In particular, we use the results from [62] for GFDM as a
reference with which we compare our results. We begin with a brief description of the
system of [62] and then show the representation of the system using the tensor framework.
The system consists of K subcarriers and M subsymbols. denote the data on the kth
subcarrier and mth subsymbol for the nth GFDM symbol by dj . Assuming an ideal

channel and setting c(t) = d(¢) in (3.38) we get
oo K—1M-1
r) = Y D> Pt = nT)dpmn + (1) (4.151)
n=—o00 k=0 m=0
The analog processing at the receiver consists of a bank of filters pg, . (t) such that
+oo K-1M-1

Yk m/ (t) = Z Z Z ka/,m’ (t) * pk,m(t - nT>dk,m,n + nk’,m’(t>

n=—o00 k=0 m=0
+o0o K—-1M-1

= > D> demam(t = 0T )dimn + s (8) (4.152)

n=—00 k=0 m=0
where g m km(t) = Dr,, () * Diom (t) and ngs s (1) = pr,, () *v(t). Sampling (4.152) at

intervals of T" we get
+oo K—1M-1

Yr!.m/ [S] = Z Z Z qk/,m/7k7m(sT - nT)d;am’n + nk/m/(sT) (4153)

n=—o0o k=0 m=0

In GFDM, there is no inter-symbol interference between successive GFDM symbols [52].

Hence, yi m/[s] does not depend on dy, ., for n # s. Without loss of generality, we consider
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Y m[0] (i.e., s = 0) and, denoting it by yg: s, (4.153) becomes
K—1M-1

Yrm = Z Z Qe ey Dy =+ Tk (4.154)

=0 m=0
Assuming that the receive filter iskb;nd limited to B, where B is the bandwidth of one
GFDM symbol, the noise n(t) is also band limited and ny ,, are zero-mean complex Gaus-
sian random variables with variance Ny. The desired symbol from (4.154) is i 1/ k' m/ di?
and the interference from other sub-carriers and sub-symbols is Z/ > / Qi ! o @i m - As-
suming that the data symbols d,, have unit energy, the aveﬁggemznnérgy per symbol is

defined as E, = ﬁ k'zn:z' \qrr e 3. |* and the average energy per bit is ﬁ—b where N, is the

number of bits per symbol dj,,. The SNR per bit is then defined as ﬁ—g Define a ma-
trix A with components A (/4 k(m/—1),(kt+ K(m—1) = Q&/,m/ k,m and vectors y with components
Yirtk@m—1) = Yrm and d with components dyyx(m—1) = dirm. Now (4.154) can be

re-written in matrix notation as
y=Ad+n (4.155)
where n has components Ny g(m—1) = ngm. The estimate of the data is
d = By
= BAd + Bn (4.156)

The demodulation matrix B depends on the type of receiver used. For our purpose of
reproduction of results, we look at two examples of matched filtering and zero forcing
receivers for which we have B = A" and B = A" respectively [62] where ()* denotes
Moore-Penrose pseudo-inversion.

The tensor framework allows a straightforward representation of (4.154). Define a tensor
Q € CHAMxEXM with components Q' km = Qi km- We can now write (4.154) in

tensor notation as

Y={9,D}p +N (4.157)
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where D € CkKXM with components Dy, ,, = dj,,,, and N € (CkKXM with components Ny, =

ngm- LThe data is estimated by
D ={B.Y}» ={B.{2. D} }e + {B.N}p (4.158)
where B € CK*MxKxM 414 its components depend on the type of detection used. For the

matched filter system we have

B =P (4.159)

with components By krm = P, 47y and for the zero forcing case we have

B="2P" (4.160)
To show the equivalence of the tensor framework representation to the representation used
in [62] we show the performance of the two receivers discussed above and compare that
with results from Fig. 3(a) and 3(b) from [62]. The system parameters used are as defined
in Table 4.1. Figures 4.5 and 4.6 show the bit error rate (BER) results for the matched
filter and zero forcing receivers for two different roll-off factors o and % =1,...,8[dB]
averaged over 1000 GFDM symbols. We can see that the results from the tensor framework

are consistent with those from [62] for both the receivers.
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GFDM Single input Single output
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Fig. 4.5 GFDM Matched Filter Receiver
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GFDM Single input Single output
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Fig. 4.6 GFDM Zero Forcing Receiver
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Table 4.1 Table 1 of [62]

Description parameter value
Number of subcarriers K 128
Number of time slots M 5
Pulse shaping filter g Root Raised Cosine (RRC)
Roll-off factor « 0.1 and 0.5
Modulation order I 2 (QPSK)

In Fig. 4.7 we present the minimum mean squared error vs P, the number of domains
at the receiver, at SNR = 30dB. The results are averaged over 1000 channel realizations.
The input D[k] € C;*****? is a fourth order tensor with components drawn from an

i.i.d source with F;, = 1 and 16-QAM is used for modulation. Hence we have N = 4,

s
~
implying Rp = J, and Rg = J5. The noise tensor V[k] € C;**? whose components are

complex Gaussian with zero mean and variance Ny, has the same size as the received tensor
P

Ylk] € C?\?Q The channels used for the simulation contain three tensor taps (v = 2) H[0],
H[1] and H[2], whose components are randomly generated complex zero-mean uncorrelated
Gaussian random variables with unit variance per complex sample. The equalizer used for
the simulations contains M = 7 taps. Hence, we have V[k] € CI****2 Y[k] € C[****2

and H € C*2X-*2x¥9x2x-X2 a9 defined in (4.112) and (4.113) such that (4.125) and (4.126)

become
Ry = {H,H" }5) + NoTpsa (4.161)
and
Rpg = {Rpo. K }5 (4.162)
Substituting the values of Rpg and Ry from (4.161) and (4.162) in (4.145), and using
Rpg = Ré{D, gives the analytical minimum mean squared error as

-1 H
Re min = J4—{ ({fRD,p,f}CH}(ss)) A <{3{7HH}(5)+NOJ(P+1)) ; ({:Rama %H}(m) b+ )
(4.163)
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The simulations carried out consider four different number of domains at the receiver which
are summarized in Table 4.2. The simulation results are presented in Fig. 4.7. The channels
used for the simulation contain three tensor taps H[0], H[1] and H[2], whose components
are randomly generated complex zero-mean uncorrelated Gaussian random variables with

unit variance per complex sample. The simulated mean squared error is consistent with

Table 4.2 Dimension sizes of the receiver

No. of Domains | Size of Receive tensor Y[k] | Size of channel tensor H[k]
1 CQ CQX2><2><2><2
2 (C2><2 CQ><2><2><2><2><2
3 CQ><2><2 C2><2><2><2><2><2><2
4 CZ><2><2><2 (C2><2><2><2><2><2><2><2

the minimum mean squared error obtained from using (4.163). Further, for a fixed SNR
(30dB), the minimum mean squared error decreases as the number of domains at the
receiver are increased. This is because with each additional domain at the receiver, the
number of samples in the receive tensor Y[k| is doubled and hence there is better averaging
of the noise.

Another interesting conclusion that can be drawn is that performance improvements can
be made to a system by the addition of domains rather than having to increase the size of
the individual domains themselves. To illustrate this, we compute the mean squared error
for a system with a channel of size C2*2*2x2x8 " Thig system contains only one domain at
the receiver of size 8. The mean squared error for this case, at SNR = 30dB, was found to
be MSE = 8.16. From Fig. 4.7, we can see that this value of mean squared error is reached
when there are 3 domains of size 2 each at the receiver. Similarly, the mean squared error
for a system of size C2*2x2x2x16 gt SNR = 30dB was found to be M SE = 1.35. From Fig.
4.7, we can see that this value of mean squared error is reached when there are 4 domains
of size 2 each at the receiver. In summary, the MSE for a system with 3 equal domains of
size 2 reaches the same performance as a system with one large receive domain of size 8
and a system with 4 equal domains of size 2 reaches the performance of a system with one

large receive domain of size 16. This is useful when the size of a domain is constrained.
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For example, in certain cases performance improvements through the addition of frequency
or time domains might be more desirable as compared to the addition of more antennas.
Table 4.3 shows the equivalent system employing a single large domain for each of the four
systems that have been presented in Fig. 4.7.

In Fig. 4.8 we present the error rate for different equalizer tap lengths M = 2K + 1

Table 4.3 Comparison of one large receive domain and multiple smaller
receive domains.

Size of channel tensor H[k] | Size of equivalent system with one large receive domain
C2><2><2><2><2 (C2><2><2><2><2
(C2><2><2><2><2><2 CZ><2><2><2><4
C2><2><2><2><2><2><2 C2><2><2><2><8
CQ><2><2><2><2><2><2><2 CQ><2><2><2><16

(K = 3,5,7) plotted against the averaged receive SNR for the finite tap MMSE equalizer.
Also shown for comparison is the performance for of zero forcing equalizers with the same
number of taps. The energy per symbol E; is the total energy of one tensor symbol Erp
divided by the number of symbols per tensor. i.e., F, = %, and the SNR is defined as
f,—;. The input data tensor D[] is of size 2 x 2 x 2 with components drawn from an i.i.d
source, Rpli] = T3, and 4-QAM is used for modulation. The channel used consists of two
taps (v = 1). i.e., the received tensor Y[k] € C7***? only contains inter-tensor interference
from D[k — 1]. The channel is assumed to be time-invariant and known at the receiver.
For each realization of a test channel, the components of H[k| are drawn from a complex
Gaussian distribution such that each complex sample has zero mean and unit variance. In

this case (4.125) and (4.126) become
Ry = {F, K"}y + NoJs (4.164)
and

Rpg = {Rp 5, JTCH}(4) (4.165)

The coefficients of the equalizer are calculated using (4.134) and the error rate is found

by averaging MATLAB simulation results over 100 channel realizations, accumulating 250



4 Detection Methods 80

15 T T

- ¢ - Analysis
S —e— Simulation

10

MSE

O 1 1
1 2 3 4

Number of domains in Y[k]
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errors at each SNR. Table 4.4 summarizes the simulation parameters for figures 4.8 and
4.9.

We can see that there is an improvement in error performance as the number of tensor taps
in the equalizer increases. Further, the performance of the zero forcing equalizer for the
same number of taps is worse than the MMSE equalizer but the difference between their
performance decreases with increased SNR. In Fig. 4.9 we present results for a channel
with three taps (v = 2). The SER results of figures 4.9 and 4.8 exhibit a saturation for
higher values of SNR. This is because the finite tap equalizers are not able to completely
eliminate the interference even as noise vanishes. We can also see that the saturation floors
decrease as the number of equalizer taps are increased and that the flooring occurs at a
larger value of SNR. This is because the residual interference decreases as we increase the
number of equalizer taps. J. G. Proakis et al. present similar error rate saturation results
for M x N MIMO systems in [57]. M. K. Varanasi et al. show that the BER saturation
floor for overloaded CDMA systems of size K x N is a decreasing function of § = % From
the results of figures 4.8 and 4.9, we can see that the SER floors depend on the ratio of the
product of the domains of D[k] € (C,(CMM)XQXQXZ and Y[k] € CY*¥*2*2. Factoring out the

common domains, we get that the error floors are a decreasing function of
M+
B=—
where M is the number of equalizer taps and v + 1 is the number of taps in the channel.

For the results of Fig. 4.8 (v = 1) this becomes § = #! and for Fig. 4.9 (v = 2) we have

(4.166)

g = % For a fixed v, 8 decreases with an increase in the number of equalizer taps M

and hence leads to a lower error floor.
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Table 4.4 Simulation Parameters

Description Fig. 4.8 | Fig. 4.9
Number of channel taps 2 3

Size of data 2X2x2|2x2x%x2
Size of received tensor |2 X2 x2|2x2x2

Modulation 4-QAM | 4-QAM

The error performance when there is no inter-tensor interference is illustrated in Fig.
4.10. We consider the case when there is only intra-tensor interference, and hence each
component of Y[k| is a linear combination of the components of D[k]. It is assumed that
Rp[0] = J(ny and Ry[0] = NoJ(ny. The channel contains only one non-zero tap (v = 0)
H = H][0] and the equalizer also contains one tap §. The simulations are carried out for
channels of three different sizes: (2 x2Xx2x2x2x2), (2x2x2Xx2x2Xx2x2x2)and
(2X2X2x2x%x2x%x2x2x2x2x2)and the corresponding sizes of the transmit tensors
are: (2x2x2),(2x2x2x2)and (2x2x2x2x2). We can see that the performance
of the MMSE equalizer is better than the zero forcing equalizer. This is attributed to the
fact that there is significant noise enhancement due to the contraction of the noise tensor
V[k] with 5. Further, as the size of the channels, and hence the number of domains in
the receiver, increases, the MMSE equalizer performs better. This is because increasing
the number of domains, and hence the number of samples, results in better averaging of
the noise. Unlike the MMSE equalizer that optimizes the mean squared error, the zero
forcing equalizer simply eliminates the interference from the other components of the data
tensor at the expense of noise enhancement. In the three systems of Fig. 4.10, the number
of transmit domains increase at the same rate as the number of receiver domains and any
gain in performance from the additional receive domains is nullified by the additional data
being transmitted on the added transmit domains that increase the noise enhancement that
occurs when channel inversion is performed.

Comparing Fig. 4.10 with Fig. 4.8 we can see that the multi-tap equalizers perform better
even though there is more interference in the system of Fig. 4.8. It was found that in this

case as the number of equalier taps are increased, the performance of the equalizers in the
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latter improve. This is illustrated in Fig. 4.11. This is not true for the case where there
is only intra-tensor interference. To this end, Fig. 4.11 shows the variation of the mean
squared error with the number of equalizer taps at a fixed SNR of 5dB. As we can see, the
equalizer for the case where there is no inter-tensor interference (L = 1) does not benefit
from increasing the number of taps while the equalizer for L = 2 performs worse for K = 1

but improves as the number of taps are increased.
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4.3 Decision Feedback Equalization

Decision Feedback Equalization (DFE) is a non-linear equalization strategy where pre-
viously detected symbols assist in the equalization and detection of subsequent symbols.

The Tensor Decision Feedback Equalizer consists of two parts, a feed-forward system tensor
WIk] € CprInxEexLe and a feedback system tensor B[k] € Cp> v >IN —The

structure of the decision feedback equalizer is shown in Fig.4.12.

ﬂ HK] —»@H_[ki WIk] t@gﬁ Decision S =Dl -4
N[k

|

Fig. 4.12 System Model of the DFE

BIk]

Finite tap DFE

Consider the case where the feedforward system has N; tensor taps {W[i] € CTt>--*InxLix..xLp & —

0,1,..., Ny—1and the feedback filter has Nj,+1 tensor taps {B[i] € Clx-*Ivxlx.xIvy = —

0,1,..., Ny. Further, assume that the overall channel contains v + 1 tensor taps {H[i] €
ChxexInxixexIul - = () 1,... v such that the estimate of the data tensor is given by
. Nf*l Ny ~
Dl = 3 WL Ylk — 1)) — D (BLL DIk — i1}y (1.167)
i=0 =0

where fb[k] is the tensor containing decisions at time k. There is a constant delay A such
that the decision D[k] corresponds to an input D[k — A]. If the kth decision is correct we
have D[k] = D[k — A]. Define an error tensor &[k] € C**!V such that

Ny—1

E[k] = Dk]-D[k—A] = Y {W[i],'é[k—i]}(p)—Z{B[z’],@[k—z’]}(m—D[k—A] (4.168)

1=0
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Under the assumption of correct past decisions, i.e., if D[k] = D[k — A], (4.167) becomes

DIk = 3 (WL Yk~ b — D (BUL DI - A~y (4160)
and (4.168) becomes
€lH] = 3 (WL i) - Y- (B Dlk A=}~ (Dlk— AL+ {B0] Dlk- Al )

(4.170)
Defining, as for the linear equalizer case, augmented tensors Y[k] € Civf e xbe iyl e

C;NerNb)XhXMXIN, N[k] € C;]gvale'"XLP and H € CNrxLix..xLpx(Np+Ne)xlix.XIN that are

a collection of the receive tensor, data tensor, noise tensor and channel for different delays

we have
Yot aplK =Y iplk—(m—=1)] form=1,...,N; (4.171)
Dyiniplk] =Dy inlk—(g—1)] forg=1,....Ny+v (4.172)
Notr,aplkl =V, aplk— (m—=1)] form=1,...,N; (4.173)
and
Hotrotpisyin =
-g'le...lpzl...m 0] e Koy ipinin V] 0 e e 0 ]
0 Hiy o apir..iy 0] . Ko oapinin V] 0 . 0
I 0 . .. 0 3o, apiy i (0] Fy 1piy g [V]]
(4.174)

The relation between H[k], DIk], N[k] and Y[k] is Y[k] = Zi:o{ﬂ'([k],ﬂ[k — nl}vy + Nk

with components

yll ----- lp [k} = Z Z ce Z:H:h ----- lpyit,In [n]gn ----- iN [k - TL] +:Nl1 ----- lp [k] (4175)

.....

Youtroip k] =Yy ap[k — (m —1)] (4.176)
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= Z > Zf}(ll ..... v I WDy, i [k = (m = 1) = n] + Ny [k = (m = 1)]

n=0 11
Writing (4.176) in terms of (4.113),(4.172) and (4.173) gives

Nf-‘r’l)
- Z Z Z%m ottt Dain, i K]+ Noy 1 [K] (4.177)
which in tensor notation gives

Ylk] = {IC, DIK]} w41y + NIK] (4.178)
Define tensors W[k] € CQX'“X]NXN"XLM'"XLP and B[k] € (CélX"'XINX(AJFN”H)XIIX"'XIN such

that

Wi1 ..... in,mli,. . lp [1{7] = Wz’1 ..... iNdi,.ulp [k — (m — 1)] for m = 1, ey Nf (4179)

Bi i it = JN-/l po +Bir . itysirin 0] for m=A+41 (4.180)
T ivlm—A] for A+1<m <A+ Nb
We can then rewrite (4.170) using these tensors as
E[k] = {W,Y[k]} (p+1) — {B. D[k} (v+) (4.181)
The mean squared error tensor is
Re = Re[0] = E [E[K] o E[K]"] (4.182)

which can be expanded using (4.181) to give

Re =E [S[k] © S[k]*} = {3 { (fRa) - {5395,97 {Rglay'y,ﬂ)}(P—I—l)}(P-&-l)) 7BH} }
(N+1) ) (N+1)

= {B{A,B"} i) v (4.183)

where we have defined A = | Ry —{Rp 5, {Ry LRy 5} 1)} p+1)> . The detailed derivation
of this is provided in Appendix A.5. The optimal feedback filter minimizes the mean squared
error (4.183). i.e., we need to find H%intmce(ng) = H%intmce({@,{.A,?:’:H}(NH)}(NH)).
The decision at time k is aided by past decisions from previous tensors at time k — 1,k —

.,k — Nb. From (4.180), we require that Bmz ..... iy = 0for 1 < m < A and
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., o
3m,zl ,,,,, AN

with components

Tyt N

(
. o, gy

1 ifm=mn4 =1,...,9 =1y

Sl ooy it sin = (4.184)

0 otherwise

\

and a tensor T € Cl>-*Ivx(A+1)xDix..xIN with components
(

0 ifl<n<A

-----

I p forn=A+1

iy =0forl <m<AandB,,
for m = A+ 1, in terms of tensors 8 and T is {B,8}(v11) = T. Hence, to find the optimal

The requirement that B, ;i =0for1 <m < Aand B, ity = JNZ.,I ;o

g
7777 (SN E12 RIee

feedback filter, we need to solve the following constrained optimization problem:
win trace({B, {A, B Y e tven) st {B.8} e =T (4.186)
To solve this, define a tensor of Lagrange coefficients A € Clv - Inx(A+D)xlix..xIn and the
Lagrangian function
J = trace({B,{A,B" v hovan) + O, ({B,8}vin) = T) (4.187)

where {(,)) is the tensor inner product. For a tensor X = X% + jX!, extending the gradient

vector in [63], we define a corresponding tensor gradient operator V, with components

0 0
vil ..... AN ey Iy — _] (4188)
axﬁ ..... NSl axlll ..... AN U1l
The gradient of J with respect to B is
dtrace({B,{A,B" a(\, ({B,S -7
Vg = race({B, { 78@ }(N+1)}(N+1)) + (A ({B, a}%N—i-l) ) (4.189)
Using (4.188) and B = By + jB; and solving, it can be shown that
ot B,{A,B" -
race({ 7{ ;9@ }(N+1)}(N+1)) _ {3 ;-AT}(N-H) (4190)
and _
I\, ({B,8 -TJ
RS 2T _ 1 57wy (4.191)

We omit the proof of the above for the sake of brevity. Using (4.190) and (4.191) we get
Vﬁj - {B*,AT}(N+1) + {)\,ST}(]\H_D (4192)

=9y, , . form = A+1. Define a tensor 8§ € CAHNot1)xIx..xIyx(A+1)x1x...x Iy
1
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= B =—{{N.8"} i1 A v (4.193)
where in the last step we have used the fact that Af = A. If the inverse of A does not
exist, then the minimum-norm least square solution of (4.192) is

B = —{{\ 8" v, A vy (4.194)
where AT is the Moore-Pensore pseudoinverse of A [22]. Substituting for B from (4.193)

in the constraint equation {B,8} 1) = T gives

—{{{N, 8" v, AT v, 8 vy = — (A, ({87 A (v1): 8 v )t vy = T

(4.195)
which gives
X ={T, ({8 AT v 8 ) T v (4.196)
Substituting for A in (4.193) gives the optimal feedback tensor as
@opt = {7, {({{3H7A+}(N+1)73}(N+1))7173H}(N+1)}(N+1),-A71}(N+1) (4.197)
For the scalar case, T becomes a (A + 1)-length row vector t = [0...0,1], 8 becomes a
matrix
I
S=| & (4.198)
Onyx(a+1)
and the optimal feedback filter (4.197) degenerates to
bop: = t(STAS)ISTA! (4.199)

where A = Rp — RD,YR{(IRYD and bopy = [0,...,0,1,by,...,bn,]. This is consistent with
the optimal feedback filter for the SISO case in [61].
The optimal feed-forward tensor is found by using (4.197) in (A.48)

Wopt = {Boptv {R@,g,mg_l}(PH)}(NH) (4.200)

The minimum mean squared error MMSEppg is

MMSEprg = trace(Re mn) = trace({‘BOpt, {A,‘ﬁit}(]\;ﬂ)}wﬂ)) (4.201)



4 Detection Methods 93

Next, we derive the relation between the MMSE of the DFE and the MMSE of the linear
equalizer. Substituting the value of A in the error auto-correlation gives
= _ = H
Re = {93 {(R0 -~ oy &' Ruo)rn) o ) B }
V41 ) (v
= —H = _ —H
= {Bopts {Rp, Bope fvr1) fvr1) — {Bopes {Rp.g9: AR Ry.p (1) 1)y Bope Fv1) F v
(4.202)
When the number of feedback taps N, = 0, we get
_ 0 for1<m<A
3opt,, ./ i == (4203)
e 7 Iv, .. form=A+1
i NEXat N

we may write {@Opt, {ﬂ%@,‘Bit}(NH)}(NH) component wise as

(4.203)
— = H
<{3opt7 {Rp, 'Bopt}(NH)}(NH))
1”1 )"'72‘{[\]".7'17"'7j5V

= E E B, B[Dmir..inDrv i+ Bopt
P iy Mg iy Ly tN T M g1, N P ey M1 iy

M,i1,0 00N M J1,.0J N

Using

=ED @1 iy Diatn gg,..gt)

—E[Ds s [k—AD, . [k—A]=Rp, , , (4.204)

Uiy Ty sl ]y

which can be written in tensor notation as {@Opt, {(R@,@it}( N+1) J(v+41) = Rp. Following
similar lines, we can show that {@Opt,fR@,g}(NH) = Rpg and {RQ,®7BZt}(N+1) = Ryp.
Substituting these in (4.202) gives

Re = Rp — {Rp g ARG, Ry} (pr1) F(P41) (4.205)
Comparing this to (4.145), we can see that when there are no feedback taps, the error
auto-correlation for the DFE-MMSE equalizer is the same as the MMSE linear equalizer.
Fig. 4.13 shows the minimum mean squared error vs the number of domains at the re-
ceiver for different values of SNR (0, 10,20, 30)dB. The channels used for the simulation
contain three taps (v = 2) and the results are averaged over 1000 channel realizations.
The components of the three taps are randomly generated circular complex zero-mean un-

correlated Gaussian random variables with unit variance per complex sample. The input

Dlk] € C*****2 is a fourth order tensor and Rp[0] = J4. As the number of domains
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are increased, the mean squared error decreases. Moreover, the improvement in the mean
squared error performance is much greater with each additional domain. This can be seen
from the fact that going from 1 domain to 2 results in a 30% reduction in the MSE while
going from 2 to 3 domains results in a drop of over 50%. We can hence leverage domain
diversity to improve performance in situations where there are restrictions on the size of
the domains themselves. These results are consistent with the MSE results of the linear
MMSE equalizer.

As an example we consider MIMO GFDM with tensor DFE, and present some per-
formance results. The data being transmitted in the nth MIMO GFDM symbol (which
contains P = 2 streams of K subcarriers and M subsymbols) is a third order tensor
D(n] € CEXMXP with Ry = J3. There are 2 transmit and 2 receive antennas and the scalar
channel between any transmit-receive antenna pair contains 16 taps spaced ﬁ apart whose
components are independent complex Gaussian random variables with zero mean and unit
variance. The overall channel is a sixth order tensor H[n] € CEXM*PXEXMXP that, couples
the input with an output, which is another third order tensor Y[n] € CE*M*P The channel
is assumed to be known at the receiver and consists of 1 tensor tap. Further, due to the
use of a cyclic prefix, the channel does not cause interference between successive GFDM
symbols (i.e., no inter-tensor interference) but interference is caused within each GFDM
symbol. The DFE used has Ny = 1, N, = 1 and the decision delay A = 0. The ten-
sors D[n] € CHEXMxP Yin) ¢ CIXEXMXP and N[n] € CLXE*M*P have auto-correlation
Rp =34, Ry = {ﬂ:C,ﬂH}(4) + NoJy and Ry = NgJy respectively. The cross correlation
between D[n] and Y[n] is given by
H

Rpg = {Rp, K"}y = K (4.206)
Using (4.206) and the value of Ry we get the tensor
A =3, — {H" ({HH o+ NJ)) T FH b (4.207)

The feedback and feedforward filters are found by substituting (4.207) in (4.197) and then
using the optimal feedback filter in (4.200). The mean squared error is numerically eval-

uated by using (4.207) in (4.201). The averaged receive signal to noise ratio is defined
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Fig. 4.13 MSE vs number of receive domains for different SNR,
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as the ratio of the energy per tensor symbol component E, and the noise variance at the
input to the equalizer where F is the total energy of the tensor divided by the number of
components in the tensor. The other parameters used for the simulations are defined in

Table 4.5

Table 4.5 Simulation parameters for MIMO GFDM

Description parameter value
No. of subcarriers K 16
No. of time slots M 5
pulse shaping filter g Raised Cosine (RC)
roll-off factor o 1
No. of transmit,receive antennas T R 2,2
modulation order i 6 (64-QAM)

Fig. 4.14 shows the minimum MSE as a function of SNR. Results from 1000 different
channel realizations were averaged to find the mean squared error using simulations. Fig.
4.15 shows the variation of the symbol error rate with SNR. The error rate is found by
averaging MATLAB simulation results over 100 channel realizations, accumulating 250
errors at each SNR. Also shown in Figures 4.14 and 4.15 are the performance results for a
Linear MMSE equalizer with the same number of equalizer taps as the feedforward length
of the DF-equalizer and the same decision delay A = 0. From Fig. 4.14 we can see that the
decision feedback equalizer performs better than the linear equalizer and at higher SNRs,

this gap in performance increases. This result is also seen for the error rate results of Fig.

4.15 as the gap in SER increases with SNR.
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Fig. 4.14 MSE vs SNR for MIMO GFDM
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4.3.1 Infinite tap DFE

We consider the case where the receive system tensor Hg(t) is matched to the combined
channel and transmit system @€(¢) such that Hg(t) = €7(—t). The overall channel is
FH(t) = {Hg(t) * C(t) }q) = {€F(—t) x€(t)}()- The input to the decision device is

Dik] = Y _{Wlm], Y[k — ml}w) — D _{BUL, DIk — il}ov) (4.208)

where D[k] € CI**IN g the estimate of the data tensor D[k] € C>*N_ The D
transform of (4.208) is

~ A~

D(D) = {W(D),4(D)}w) = {B(D), D(D)}w) (4.209)
We assume that the components of D[k] are estimated sequentially to produce D[k]. More-

over, the decision i)il [k] is aided by previously detected components of the same tensor.

7777 IN

The ordering of the detection is as described in (4.37). We assume that previously detected
symbols are correct. With these assumptions, the feedback system Bk] thus has the form

Blk] = B[0] + B[1]D + ... (4.210)
where B[0] is a lower triangular tensor and Blk] has an infinite number of taps. The
equalizer described in this section is designed to select W(D) and B(D) such that the
mean squared errors between the estimate and the transmitted data are minimised. The
optimal MMSE-DFE feedforward and feedback systems, the complete derivation of which
can be found in the appendix A.6, are given by

WD) = (A0, () (DA Dt (4210)

B(D) = (A 0). {0 (0) " MD)A (Dt b —In  (4212)

where R(D) = {{le(D_l),JV'C(D)}(N),][(D)}(N) + NoJy with a spectral factorization
] v v H v v v H
R(D) = {M(D),M" (D™} and 8p(D) = {A(D), A (D) }w).

We define the 74, ..., 7yth Mean squared error as

=Rip_p), (0] (4.213)



4 Detection Methods 100

where R g, 5, (0] is the auto-correlation of the sequence D k| —DI[k] at zero delay. Substitut-
ing for D(D) from (4.209) and, assuming that past decisions are correct (ﬁ(D) = D(D)),

we get

1%

D(D) ~ D(D) = D(D) ~ ({W(D). J(D)} ) — {B(D), D(D)} )

= {(y = W(D) +B(D)). D(D)} ) — {W(D), V(D) } )

— {F(D),D(D)} ) + Z(D) (4.214)
where we have defined F(D) = Iy —W(D) +B(D) and Z(D) = —{W(D),{?(D)}(N). Using
(4.21) we can write the spectrum of Z(D) as

(
82(D) = {{W(D),8v(D)} ), W(D)}x) = No{{W(D),8v(D)} ), W(D)} () (4.215)

The spectrum of (4.214) can be written as

8 p_5)(D) = {{F(D),80(D)} ), F(D)} ) + No{{W(D),8v(D)} ), W(D) by (4.216)

The 4q,...,iyth Mean squared error can be calculated by integrating the i,...,iyth

pseudo-diagonal of S (gfﬁ)(D) over the unit-circle by setting D = /277, i.e.,

1
[ 8oy o =Ry 0=, (1217)

D] 5 BN 5T seees N
and the overall MSE can be calculated as

1
MSE = —— it 4.218
11-12“.[le €1 77777 N ( )

A comparison between the linear MMSE equalier and the decision feedback MMSE equalizer
is plotted in figures 4.16 and 4.17. The input ﬁ(D) € C%** has a spectrum 8p =IJn. The
equivalent channel H (D) consists of two taps 3[0] and H[1] whose components are Gaussian
random variables. In Fig. 4.16, MSE is plotted against SNR for three specific realizations
of the channel and Fig. 4.17 shows the MSE results averaged over 100 channel realizations.
The individual mean squared errors ;. ;, are calculated using (4.217) and the overall
MSE is calculated using (4.218). The additive noise is has a spectrum 8x(D) = NoJy. For
this case we have A(D) = Iy and R(D) = ﬁ(D)}(N) + NoJn. The feedforward equalizer

from (4.211) becomes
o —H
0)M (D} (4.219)
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and the feedback filter becomes

B(D) = {(M " (0)) ", M(D)}w) — I (4.220)
The averaged receive signal to noise ratio is defined as the ratio of the energy per tensor
symbol component F, and the noise variance at the input to the equalizer where F; is
the total energy of the tensor divided by the number of components in the tensor. The
performance of the linear equalizer is worse than the decision feedback equalizer. Further,
as the SNR increases, the difference in the performance between the two equalizer also
increases. Although the results for the three channel realizations are different, the gap
between the linear equalizer and the DFE increases with SNR for all the three cases. This

is consistent with the results from Fig. 4.14 where the finite tap decision feedback equalizer

was compared with the linear MMSE equalizer for MIMO GFDM.
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Chapter 5

Tensor Correlative Coding

5.1 Introduction

Classical Nyquist signaling schemes completely eliminate inter-symbol interference by de-
sign. Correlative Coding, otherwise known as Partial Response Signaling (PRS), is a
transmission method correlation is introduced between successive transmitted symbols by
allowing a controlled amount of inter-symbol interference. The objective is to shape the

spectrum of the transmitted signal by using correlative codes to achieve desirable properties.

The concept of correlative coding dates back to the 1960s. Lender [64] describes duobinary
partial response signaling as a transmission method. Several different correlative codes
were introduced and categorized based on different characteristics such as speed tolerance
and SNR degradation by Kretzmer [65]. Pasupathy et al. [36, 37] propose a general PRS
framework where the waveform generation is divided into two parts.

In this chapter we describe a method to allow controlled interference in multiple domains
using the tensor framework. Such a scheme will be called Tensor Partial Response Signaling

(TPRS) or tensor correlative coding.
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5.2 System Model

Consider a complex linear time invariant system H(t) € CP*->INxI-xIN et the in-
put to this system be a sequence of uncorrelated data tensors, spaced at intervals of T,
S Dn)é(t — nT) € Ch*>I¥ with a spectrum 8p (D) € CL*-*IvxI1XexIN “The output of
t%is system is N

= 3 {3(t — nT), Dl ) (5.1)

which, when sampled at intervals of T gives

+00 +00
X[k] = X(kT) = > {H(ET —nT),D[nl}v) = Y {H[k —n],Dnl}) (5.2)
with components
N-1
xil ..... in [k] = Z Z 5tz'1 ..... AN iy [n}:Di'l ..... iy [k - ”] (5-3)
n=0d{,...,i’
In the D domain, (5.2) becomes
X(D) = {H(D),D(D)}w) (5.4)

Let the system JH () be a cascade of two systems F(t ( ) and G(t). The system F(¢) is a tensor
tapped delay line with N taps, such that F(t) = Z F[n)o(t — nT). The D-transform of
the tensor tapped delay line F[n| is

F(D) =S FnD" (5.5)

Proposition 1. If the system §(¢) follows the strict tensor Nyquist criterion then the
samples of H(t) are Fn]. i.e.,
H(nT) = Fn| (5.6)

Proof. The tensor tapped delay line may be denoted as a sum of N impulses as:
Z F[n]6(t — nT) (5.7)
The system tensor H(t) is

H(t) ={S(t) «F ()}
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{S(@t) * (]:Z:s'[nw(t - nT)) v

-1

=2

{S(t —nT),Fln|}w (5.8)

3
Il
=)

Since G(t) follows the strict Tensor Nyquist Criterion, sampling (5.8) at intervals of T we

have
N—-1

H(KT) = Y {S(KT —nT),Fn]}w)
— F[k] (5.9)
O

The D-transorm of H[k] is H(D) = " H[k] D' = F(D). The relation (5.4) thus becomes

X(D) = {ﬁ(D),i)(D)}(N). Using (4.21), the relation between the spectrum 8x(D) and
the system F(D) is

8x(D) = {F(D), {8(D).F" (D"} = {F(D).F (D} (5.10)
where the last step is because the data tensor D[k] has spectrum g@(D) = Jy. This means
that the spectrum of fi'(D) depends only on the tapped delay line F (D). The TPRS system
thus has two parts. The tapped delay line F (D) that is used to shape the spectrum gx(D)
and the system G(¢) which is used to band-limit the resulting system function H(t). For
a given F(D), different choices of §(t) result in different overall system functions H(#).
However, as long as §(f) meets the generalized Nyquist criterion, H[k] = F[k]. Fig. 5.1
shows the system model of the TPRS system.

5.3 Tensor Correlative Codes

5.3.1 Structure of the TPRS polynomial

The cross-spectrum gx(D) can be controlled by changing the structure of the TPRS system
F (D). In its most general form, the TPRS system introduces correlation among all the

components of the data tensor and also the components of previous data tensors. A compo-
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\ 4

D p------ > D

Dk]
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Dk — 1] Dk — 2] Dk — M)]
F0] 711 F72) FIN -1
—> —

+

Fig. 5.1 TPRS System Model

nent X;, [k] hence contains controlled intra-tensor interference from D; iy [k] as well

N
as inter-tensor interference from N — 1 preceding data tensors D[k —1],..., D[k — N +1].
By using different TPRS systems F (D) and imposing restrictions such as, for example, only
allowing intra-tensor interference in the output X[k], the shape of the spectrum 8x(D) can
be manipulated. Denote the frequency response of the spectrum by gx(w) = gx(D) | p—eier.

Using this, we can write the components of the frequency response as
o H

er ine il ] (w) = Z 3'117--~7Z'Nyj17~--»jN(D)?jl,...,j]\],ill,...,i/]v(D71> (511>

J1y-5IN D=elwT

Spectral nulls at different values of w are desirable for specific applications. To create

a spectral null at a frequency w’ in component (iq,...,iy,%,...,¢y) of 8(w), we require
o v H
71 _ . .
that > Fip,ingienin (D)Fjjnit it (D7) p_grrr = 0. In this section, we present
1IN

different TPRS systems and illustrate them using the specific case of a fourth order TPRS

c C2><2><2><2

polynomial F(D) whose input is an uncorrelated sequence D(D) € C%? and

output is fi(D) € CH*® with the desired spectrum gx(D) € C3# 22,
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Classl: Degenerate TPRS

The first class of TPRS systems that we consider is one where F[k] containts only one
non-zero tap F[0]. ie., F[k] = Or for k # 0. This implies that the components within
a tensor X[k| are correlated but successive tensors are uncorrelated. The tensor X[k] =

{F10], D[k} () has components
X inlk] = Z Firoin it z"N[O]fDi'l ..... zgv[k] (5.12)

!
D] ey N

Sx, . ZN(D): Z 3'1»1 ----- AN J1smes jN?ﬁ ..... TN ety (513)
J1

This means that the spectrum does not depend on D and the frequency response g(w)
is flat. Further, by changing the structure of F[0], the correlation introduced may be
restricted to certain domains. We illustrate this with two example TPRS systems. Figures
5.2 and 5.3 show the spectrum of X (D) and the components of the TPRS system used are
listed in Table.5.1. The code used in Fig. 5.2 is such that each component of X[k] is a
linear combination of all the components of D[k]. In Fig. 5.3, the code used restricts the
correlation to a single domain. Here, the component X;, ;, [k] = 22: Firininin|0]Diy 4, [K] and
the TPRS code is e

0 ifi # j

Firingn 0l = Q1 if iy = j1,i0 = jo (5.14)
0.5 otherwise

An example of restricting the correlation to a single domain is when frequency domain
correlation is introduced in a MIMO multi-carrier transmission system. Such a code has
been shown to suppress inter-carrier interference caused by Doppler frequency shift in
MIMO OFDM systems [66]. Such a system has a TPRS system as described by the code

used for Fig. 5.3 when there are two antennas and two sub-carriers.
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Fig. 5.2 Spectrum for no inter-tensor interference, case 1
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Fig. 5.3 Spectrum for no inter-tensor interference, case 2
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Table 5.1 Structure of the Class 1 TPRS System

Component | Fig. 5.2 | Fig. 5.3
Fria 1 1
Fi110 0.5 0.5
Fii21 0.25 0
Fii122 0.125 0
Fi011 0.5 0.5
Fio12 1 1
Fi1221 0.125 0
Fi222 0.25 0
Foi11 0.25 0
Fo112 0.125 0
Foi21 1 1
3:'2’172 2 0.5 0.5
Foo11 0.125 0
Fo012 0.25 0
Foo21 0.5 0.5
Fonoo 1 1

Class 2: Pseudo-diagonal TPRS

In the second class of TPRS systems considered, F (D) is pseudo-diagonal. All the taps

F(1],...,F[N —1] are hence pseudo-diagonal tensors. A component X;, ;. [k] only contains

interference from components of D[k—1],..., D[k— N +1]. This means that the correlation
introduced is restricted to the same component in successive data tensors. The components

of X[k| are

in[k —n] (5.15)

-----

-----
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We know that F;, ...y (D) = 0 for 44 # ji,...,in # jy since F(D) is a pseudo-

diagonal tensor. The components of the spectrum from (5.16) hence become

W(DVF, (DT i =iy =y

(5.17)
Equation (5.17) implies that 8x(D) is a pseudo-diagonal tensor. This means that the

IR IRV

components X;,

..........

it. For example, consider a fourth order pseudo-diagonal TPRS system F (D) with pseudo-

diagonal components

Fr111(D)=1+D (5.18)
Fr12:(D)=1— D? (5.19)
Fra12(D) = (1+ D)? (5.20)
Fo000(D)=1—D* (5.21)

Let the output of this system be X(D) € C22. Since F(D) is a pseudo-diagonal tensor,
the spectrum gx(D) is also pseudo-diagonal. Table. 5.2 summarizes the pseudo-diagonal
components of this TPRS system and the corresponding pseudo-diagonal components of
the spectrum. Denote the frequency response of the spectrum by g(w) = g(D)| DT
Shown in Fig. 5.4 are the components |[Sx(w)| for T = 1. The components of F(D) were

Table 5.2 Structure of the Class 2 TPRS system

COHlpOIlGIlt (il,ig,jl,jg) g:'ibiz,jl,jz(D) xi17i2»j1aj2 (D)
1,1,1,1 1+D (1+D)(1+ %)
1,2,1,2 1 — D? (1-D»)(1— ()%
2,1,2,1 (1+ D)? (1+ D)*(1+ 2-)
2,2.2.2 1—D* (1-DYH(1 - (50"

chosen such that all the pseudo-diagonal components of the spectrum contain nulls at +.

We can see that the pseudo-diagonal elements |gx1,1,1,1(w)’ and \gx271,2’1(w)| have different
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roll-off rates. This is because .’;‘"27172,1(D) contains two zeros at w = =£7. |§x17271’2 (w)| and

|gx2’2,272 (w)| contain additional spectral nulls at w = 0 and w = 0, £7 respectively.

Class3: TPRS

As we have seen, class 1 systems can be used to manipulate the level of the spectrum and
cross-spectrum components of gx(D) and class 2 systems can be used to shape the pseudo-
diagonal components of Sx(D) The third class of TPRS systems is the most general and
there are no restrictions on the structure of the taps F[k]. Such a TPRS system can be used
to simultaneously shape the spectrum of fi:llzN(D) and the cross spectrum of fi:,llN(D)

and fizflsz(D) The frequency response of gx(D) is

3 N o H .
Sxil """" iN’i/l 7777 l/]V (w) = Z ?ilv---viN7j17"-7jN(D)?jl,...7jN,i/17...,i9V (D ) ) (5'22)
1N D=eseT
As an example, the spectrum of the output of a TPRS system F(D) € C2*22%2 is shown

in Fig. 5.5. The components of gx (w) that correspond to the cross-spectrum are represented
by dashed lines and the components that correspond to the spectrum are represented by
solid lines. The system used in this case is designed such that the spectrum of Xy 1[k]
has a null at w = £, the spectrum of X1 2[k] has a null at w = 0, the spectrum of
Xs3121[k] has spectral nulls at w = 7,0 and the spectrum of X, 52 2[k] has spectral nulls
at w=0,+7, 7.

It is important to note that different systems can be designed to have the same spectral
terms but different cross-spectrum terms. To this end, shown in Fig. 5.6 is the output of
a different TPRS system .";"z(D). As we can see, the pseudo-diagonal elements of éx(D)
have the same frequency response for both the cases but the other components (which
correspond to the cross-spectrum) are vastly different. This means that it is possible to
manipulate the cross-spectrum without having to compromise on the shape of the spectrum
itself. Such a feature is useful in situations where different applications require the same
spectral shape but different cross-spectra. The TPRS systems used in figures 5.5 and 5.6
are detailed in Table. 5.3.
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Fig. 5.4 Spectrum of X for pseuo-diagonal F (b)
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Table 5.3 Structure of the Class 3 TPRS System

Component | Fig. 5.5 Fig. 5.6
Fi11a 1+D 1+D
3'171,172 0 05(1 -+ D)
3:1’1’271 05(]. + D) 0

Frio2 0 0

Fi211 0.5(1—=D) |0.5(1—D)
Fi212 (1-D) (1-D)
Fi2021 0.125 0

5172’272 0.25 0

Foi1a 0.25 0

Foi12 0.125 0

Fai21 (1 — D?%) (1 - D?)
Far100 0.5(1 — D?%) | 0.5(1 — D?)
Foonn 0 0

Faro10 0.5(1—D% |0

Fooo1 0 0.5(1 — D%)
Foooo (1-DY (1- DY
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Fig. 5.5 Spectrum and Cross-spectrum components of gx(D)
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Fig. 5.6 Modified TPRS system that preserves the spectrum while changing

the cross-spectrum
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Chapter 6

Conclusion

This thesis presented a unified tensor framework, which can be used to represent, design
and analyse communication systems that span several domains. No distinctions have been
assigned to the domains of the systems and the general framework presented can be used
for a myriad of communication systems. The transmitted signals are represented by Nth
order signal tensors which are coupled, using a system tensor of order N + M, with the
received signals which are represented by another signal tensor of order M through the
contracted convolution. The notion of a tensor of functions forms the basis for the def-
inition of signal and system tensors. A generalization of the Nyquist’s criterion for zero
inter symbol interference was derived which allows unifying treatment of interference from
several domains, dubbed multi domain interference (MDI). It was shown that for the tensor
case, a relaxation of the Nyquist Criterion is possible that allows recovery of data sym-
bols even in the presence of intra-tensor interference. The tensor framework was used to
model existing systems such as OFDM, GFDM and FBMC. Using the tensor framework,
an example higher domain extension for GFDM and FBMC was derived where different
filters are used at the analysis and synthesis filter banks of each antenna. These examples
demonstrate the utility of our tensor framework.

Further, linear and non-linear tensor based equalizers were derived for different criterion

such as peak distortion and minimum mean squared error. The performance of the min-
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imum mean squared linear equalizer was found to be better than that of the zero forcing
equalizer, which is consistent with the scalar case. For the linear MMSE, the mean squared
error decreases as the number of domains at the receiver are increased while keeping the size
of each domain the same. This implies that domain diversity can be leveraged to improve
performance in cases where there are restrictions of the size of any particular domain, as is
often the case in practice due to bandwidth limitations (frequency domain) or restrictions
on the number of antennas (space domain). The performance of the Decision Feedback
Minimum Mean Squared (DF-MMSE) equalizer is better than the linear MMSE equalizer.
Further, the mean squared error decreases as the number of domains at the receiver are
increased while keeping the size of each domain the same. Finally, the notion of partial
response signaling was extended to multi-domain systems in the form of Tensor Partial Re-
sponse Signaling (TPRS). Here, a multi-domain tensor tapped delay line is used to shape
the spectrum of the transmitted signal to achieve desirable spectral properties. It was
found that controlled interference from within the same tensor (intra-tensor interference)
changes the level of the spectrum while maintaining a flat frequency response. Controlled
interference from successive data tensors allows the placement of spectral nulls. Combining
the two allows for manipulation of both the shape and the level of the spectrum of the
transmitted signal. Moreover, it was found that the cross-spectrum of the components of
the transmitted signal can be shaped independently of the spectrum and different TPRS

polynomials can be designed that result in the same spectrum but different cross-spectrum.
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Appendix A

Some Proofs

A.1 Proof of Theorem 2

+00
Consider an input X(t) = > X[n]é(t — nT) € C**V to a system tensor A(t) €

n=—oo

¢ Il xIn e gutput of this filter, corrupted by additive white Gaussian noise, is
R(t) = {A(t)*X(t)} vy +N(t) where N(t) is a tensor whose components are white Gaussian
noise processes. Let R(t) be the input to a system tensor B(t) € C/* "IN it
an output Y(¢t) € C/***/N The per component SNR of the samples Y(kT) = Y[k] is
maximized when B(t) = A (—t).

Proof. The tensor Y(t) can be written as
9(t) = {B(t) * {A() * X(0) by Fany + {B(8) * N (@) Fany

= > {€(t —nT),X[n]}) + V(1) (A1)

n=—oo

where €(t) = {B(t) x A(t) } ) and V(t) = {B(t) * N(¢) }ar). Sampling at intervals of kT°

gives

+o00
Ykl = > {€[k —n], X[n]} ) + VIK] (A.2)
with components
911 ----- IN [k] = eil ----- IN 1IN [O]xll ----- IN [k] +gi1 ----- IN [k] +V11 ----- iN [k] (A 3)

2019/11/14



A Some Proofs 121

where
+oo
jzl ..... iN [k] = Z ezl ..... AN ety [O]xz’l ..... iy [k]+ Z Z e7,1 ..... AN ety [k'_n]xz’ ..... iy [n]
Vs AL IN ”:;ISO iy

(A4)

.....
.....

-----

2
7 N (0] [ 2. (A.5)
iy TR, TRV (K]
whete By, iy = E[Xs. X5 iN]_ We may expand {eh ..... AN i z‘N[O]‘z as
+o0
2 2
}eil ..... INLILyee z’N[OH :| Z / Bil ..... AN T 10 jM(t>‘Aj1 77777 TMT15eess iN(_t)dﬂ (A.6)
TN ) Ve

The denominator of (A.5) can be expanded, using E[Nj, .\, (t)Nj s (p)] = Nod(t — p)

when (jy,...,70m) = (41, ..., 7%) and 0 otherwise, as

.....

+00 +oo
LS [ B 0N (T =0 S [ B 0N (T~ )
Jieda Y T gheghy T T
+00 +oo
= No Z / 31'1 ----- UNSJ15eJ M (t)B; ..... TN J1yee s M (p)d(t - p)dtdp

+o00
= No Z /|'.le ~~~~~ INJ15ees J'M(t)‘2dt (A7)
J

15000 M g

Using (A.6) and (A.7) in (A.5) we get

.....
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Using the Cauchy-Schwartz inequality from Appendix A.3 this becomes

+00 9 +00 9
(Z f “Ail---ile---jM(t)‘ dt Z f ‘le---ijl---kP<t>‘ dt)Eil ----- iN

J1--JM —00 Ji---jM —oo

o] 2
NO ‘ Z fj_oo |Bll ~~~~~ IN 15 J M (t)| dt
J1yeosdM
400 9
Z f }‘Ai1~~~iNj1~~-jM(t)| thh ,,,,, iIN
J1.--JM —00
_ A9

- (A.9)

with equality when B;, ;.. () = Af This means that the SNR

Jlgeers T M 1 5eees ZN(_t)

attains its maximum value when B(t) = A¥ (—t). O

A.2 Proof of Theorem 3

Consider the general system where a data sequence D[k] € Cilx“'XIN is the input to a
channel H[k] € Cpr7 > Farxhx->IN and is corrupted by additive noise V[k] € Cy*> "

The observation Y[k] € Cp* > is

Y[kl = Y {H[m]. Dk —m]}) + V[K] (A.10)

The estimate of the data sequence is
+o0o
DIk] = > _{S[m], Y[k — m|} ) (A.11)
m=0

where §[m] € Chx-xInxLix..xLa  Denote the error by &[k] = D[k] — D[k] We wish to
prove that for the §G[m] that minimizes the mean squared error between the estimate and

the data, the error is uncorrelated with the observation. i.e., we wish to show that if
E [E[k] 0 Y*[k —i]] = 07 for all i (A.12)
then the error is minimized in the mean squared sense. Consider the general system where

a data sequence D[k] € C/** '™ is the input to a channel F[k] € C*~*Frxnx-XIN apq

is corrupted by additive noise V[k] € CLV ¥ The observation Y[k] € Cp* M is

Ykl = D {Hm], Dk —ml}) +VIK] (A.13)

m=—0o0
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The estimate of the data sequence is

= {8Im]. Ylk — m}ban (A14)

where §[m] € Chx-xInxLix-xLa  Denote the error by &[k] = D[k] — D[k] We wish to
prove that for the G[m] that minimizes the mean squared error between the estimate and
the data, the error is uncorrelated with the observation. i.e., we wish to show that if

E [E[k] 0 Y*[k —i]] = 07 for all i (A.15)

then the error is minimized in the mean squared sense.

Proof. Assuming that the equalizer co-efficients are complex, the equalizer tensor may be
written as §[m] = A[m] + jB[m]. Extending the gradient vector in [63], we define a

corresponding tensor gradient operator V, with components

0

U1 5oy BNl ar [

Vip,in iy = A (A.16)

L
] OB i Y]

Define the cost function
J(§) = trace(E[€[K] Z ZJE inin KIES i [K]] (A.17)

Due to the quadratic nature of the error surface, ﬁndlng a stationary point assures global
optimization of the cost function [63]. Minimizing the cost function is thus a convex
unconstrained optimization problem [67] and can be solved be equating each component of

the gradient tensor of the cost function to zero:

VZ'1 ----- iN,m7l1,---7lMJ<90pt) =0 (A18)
Let us consider one particular component of the gradient tensor where the indices have
values i}, ..., ¢y, m/,l],... l};. From (A.17) we get
Vi’l,.,.,iN,m N ,lﬁwj(g) = vzl, BRI (N L Z 811, i ;kl lN[ H
'517 7'LN
El 22 & v K€ iylK]
_ Tl N
OAG, it 1]

N OER iy Cinin [KIET i [F]]
] 83'/ My [m/]

! /
[T N Y
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08i,...i kﬁ;‘ in K o 08 Sf i
_E[ aAl’ 7N[ ] 1~~-N[/] +j83 15t N 1---IN p
G OR g, [] iy (177
08, in[K] O&], iy K]
—ml N Ty 8* ) k’ 1IN 8Z ; ]{]
E['Z Oyttt 1] i ]+8‘Ai'1 ity el 11V v A
L geeey IN 1 FEREELS VLSRR
08, .in K] 08}, ixlK]
& inlk = &i ivlk
" OBy .t i l;w[m/]] il F OBy, in 1y lgw[m']] o K]
(A.19)
The first term on the right hand side of (A.19) can be expanded as
Tk
Y et
G OA i, (]
a{z Z 911...7;]\/[1..11\{[m]yll..‘lM[k_m]_Dil...iN[k]}
— Z m l1...l1\/[ 8* . [k]
»- OA i ittt V] N
11,0y N

I3 DA,

U1 ey iN m ll...l]\/[ SRR ZN’ll

=Yy, [k —m1&; 4 [K]
Similarly we have
0€; i [kl
Lt 81 7 k - */ / k— /87:/ i ]{j
a‘A’z/l ..... zﬁv,l/p-..,lM[m/] 1'”N[ ] yll"'lM[ m] l“‘N[ ]
0&i.inlk] . : Ry
0By ., i@,l’liv..,l’M [m’]jsil'”i’v k] = 79y, [k = 018G K]
= Yy, [k =& . [K]
and,
08 vkl o ,
Z OBir,..ir. l,lN lh[m/]jeil...iN[kj] = —j¥ . [k —m]j€ i [K]
i - I

= HZ...I/M [k — m/]ei’l...igv (%]

Substituting these in (A.19) we get

Vit i by J(8) = E Yy, [k — )& o (K] + Y5y [k —m/]€y i [K]

(A.22)

(A.23)
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— Yo, [k =& o Tkl + Y5y [k —m/1€x i [K]

= E [2Y;, . [k —m1€ i, [F]
=2E [%’1---% [k —m'|€ i, [£]] (A.24)

The optimal §[m] is found by equating (A.24) to 0 for all values of ¢, ... i\, m/, I},... ).
This gives
E [HZ _____ u, k= m'|&y .y [K]] =0 forall é,... iy, m' 1},... 1y (A.25)
We can see that the LHS of (A.25) is the auto-correlation between the error and the
observation. We have
v K1Y [k—m/]] =0 forall i}, ... i, m/,1},... 1}
(A.26)
Since (A.26) holds for all values of m’, we can write this in tensor notation as
Re y[m] = E [E[k] 0 Y[k — m]]
=0r (A.27)
Showing that for the optimal §[m], the error is uncorrelated with the observation. This

can be considered as a tensor orthogonality condition. O

A.3 A Cauchy-Schwartz Inequality

For two tensors A(t) € C/* /™ and B(t) € C/**/M the following inequality holds:

Z /‘A'Jl ]M 31 JM dt Z /“AJI ]M ‘ dt Z /‘3]1 ]M ‘ dt

J1dM g T dM oe T dM g

(A.28)

Proof. Let A be a complex scalar. We have

0< Z / e ( )+)\gj1...jM(t)‘2dt

Jr M o
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Z/wmwmwzﬂ%mwwwthmzﬁw

T IM oo T JM o JreJM g

(A.29)

+oo
Choose A=y . . f Aj, o (#)B5, ., (t)dt where y € R. This gives

<‘ Z / T JM jl JM dt| Z /lﬁﬂl JM |dt>

J1edM g J1edM g

+wz/hmmmw Z/wmwt (230

J1-- M _ g Ji---Jm_ o
400
Let p= ‘ E f Ajl"'jA4 )3j1 JM )dtf’ r= Z f |Bj1-~~jM(t)|2dt and
J1-JM —O0 J1---JM —0OO

+oo
> o f |Aj1._jM(t)‘2dt such that

J1-jM —00
0 < pry* + 2py + ¢ (A.31)
Since (A.31) is a non-negative quadratic polynomial, the discriminant is non-positive. i.e.,
(2p)? — 4prq < 0 or p < rq. Substituting for p,q and r gives (A.28) with equality when
Bir,oinirenind 8) = A5 iy i (1) O

-----

A.4 Proof of Equation 4.148

We wish to show that for a finite length equalizer with N taps, (4.145) tends to (4.137) in
the limit as N tends to infinity. i.e.,

lim Rfnite — Rinf (A.32)

€, min € min
N—o0 ’ ’

where Rgnrlrffn is the error correlation tensor for the finite tap equalizer and fREfmn is the

error correlation tensor for the infinite tap equalizer.

finite

Proof. Denote the RHS of (4.148) by fRﬁnI;fe and the finite tap equalizer by G . The

m
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components of this tensor are

finit finite ¥
:R'E?r;lieni il il = Ry, i sil il _Z Z 921, ,1N,m,l1,...,lpE[ym:llum,lP[k]g’ilpm,i/]\;}

Sfinite

Writing the components of G and g[k] in terms of the components of Gi"* and Y[k]

gives

Remmin, oy =Ro —Z > St MU E [ ap [k =MDy (K]

m=0 ll, ,lp

(A.33)
As the number of taps M tends to inﬁnity, this becomes

Remin, o = RO —Z Z G etrtp M [0 ip [k = m]Dis s [K]]

=Ro, e B[ Y SIS Yk = m]Di L (K]

----------

m=011,...lp

(A.34)
Writing the components of either side of (4.131) gives

finite ~ . ~
Z 9117 JN,mvllwaPfR"Jm,llw_’ RN _52'937'5- TR <A35)

myli,...,lp

which can be written in terms of §*[m] Y[m] and D[m] as

> g M EMap [k — m)Yy [k — )] = BIDs, iy (K000 [k — )]

-----

(A.36)
lrp[m/_m] andE[ i1, JN[ ]yll, Sl [

m']] = fRDv’dzl ., [m']. Using this, we may write (A.36) in tensor form as y {G*[m'], Ry[m/—
m|}py = Rpy[m’]. The D-transform of this equation is
< finite % v
{§  (D),8y(D)}p) =Spy(D) (A.37)

Comparing (A.37) with (4.95), we can see that when there are an infinite number of taps,

the finite length equalizer §ii*[m] = G"[m] where §™[m| denotes the infinite length
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equalizer. Substituting this in (A.34) gives

I S) S S St sl el ]
e (A.38)
Since Zoz Z Sm’fm’m hoaplmYn p [k —m] = D, [k], (A.38) becomes
m=01,..,
Rgnéltfn pointhihe D iy iy _E[:bil ----- iNDi’l ~~~~~ iy [k”: Rﬂil ,,,,, i il _:Rf)[k],:Dil’”_,iN,illwiév
(A.39)
which can be written, in tensor notation, as ﬂlgnr‘rffn Rp — fRﬂD. Since Rp and Rp p are
short-hand for Rp[0] and Rp p[0] respectively, the RHS of this is the same as the RHS of
(4.137). O

A.5 A derivation for the Finite Tap DFE

Starting from the RHS of (4.182) and using (4.181), we have
E [E[K] o E[k]"] = E [{W. Y[k]} (p11) — {B, DIk]} 1)) © (W, Y[k} pr) — {B, @[k]}(N+1))*]
=B [{W. Y[k} ps1) o {W" 9 [k]}par) — (W, YLK} Py © {B7, D[k by
—{B j[k‘]} N+1) O{W Y K1} prny + { ®[ ]}(NH)O{3 D’ [k ]}N+1)]
(A.40)
Using (2.35) in (A.40) we get
E[E[K] 0 €K' = E [(W. 9k} o (W i) = (WYMo © (DI B Jovan
~{B. DI} © {9 W} by +{B. DM} vy © (DM, B" )
(A.41)
Using the associativitiy property, (A.41) becomes

E [E[k] 0 E[K]'] = {W, {E Yk oY [¥] ,WH}(pH)}

_ {@,{E [D[k] Oy*[kH’WH}(P“)}(N 1)

n {3,{}3 [@[k] OD*[kung}(N—&-l)}(N 1)

- {w, {E[9[k] o DK] JSH}(NH)}

(P+1) (P+1)
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- < H - = H
= {W. Ry, W }pin by = {W ARy 5. B Fven bpr
= < H = = H
—{B. AR5 5. W }psbve) +{B,{R5, B" } v v (A.42)
which can be written, by adding and subtracting {B, HRp g, {Ry, 5213717@}(13“)}(13“) , @H}(NH)}(NH)
from (A.42), as

E [E[k] o K] = (W, {Rg. W }p i) b pan) — {W, {Ry5, B Jovin bepey)
—{B. {Rpg. W }pan) ven) + {B, {Rp. B Y v by
+{B, {{Ro g, {R;" Ry.p} P} o1 B Fovn v
—{B. {{Ro 3. {R5 " Ry 0} (1)} (p41). B Hivin vy

= {737 { <me —{Rp3 {91;1»933,@}<P+1)}(P+1))73H} }
(N+1)

< ~H < —H
+{W ARG, W} o bpry — W ARy 5, B fvany b prn)

- < H = _ —H
—{B, {Ro5. W }psntoviny + {B. {Rp9, {Ry 1 Ry p} povy Fprn)s B vy Yy
(A.43)

(N+1)

Taking out the common terms gives

E [€[K] o E[k]"] = {73, { (.‘R,J —{Rpy. {9%;17939,9}<P+1>}<P+1>)»BH}(N+1)}

(N+1)

+{W, <{RQ,WH}(P+1) - {929,9377_3H}(N+1>> Hpr)

—{{B.{R55. Ry Y prvy) I v, <{fRy7W}(P+1> + {Ry,Dv:BH}(NH)) )
(A.44)

which on simplifying gives

€[] 0 E[K] = {B, {(Ro~ Rog 12" Ryoherrnhiren ,ﬂf’}( )}
N+1) ) (ny1)

+{ (W —{B, {3393,9,9%91}<p+1>}m+1>> , {Rg, (VVH —{®y", {5’29,@;7_3}<N+1>}<P+1>) } }
P+1) ) (P+1)
(A.45)
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Using fR; =Ry and R,g{,b = Rpy we get

E [E[k] o Ek]"] = {73, { (RD —{Rp 3, {R917R‘J,®}(P+1)}(P+1))’@H}(N )}
0 (v

H
+{ <W —{B, {%,yﬂgl}(pm}(mn) {Ry, (W —{B, {Rm,yvmgl}(PH)}(NH)) } }
(P+1)7 (P+1)

(A.46)
We wish to find tap coefficient tensors that minimise mean squared error (MSE) which is
the trace of Re. To find the optimal tap co-efficient tensors, using Theorem 3, we set the

error uncorrelated to the observation (i.e., E [€[k] o Y[k]*] = Or) and using (4.181) we get

E [E[k] o Y[k]*] = E [({Way[k]}(P-i-l) - {371)[@}(N+1)) o Y[k]*]

= {W.Rg}p+1) — {B. Rp g+
=0p (A.47)
which gives
W = {‘Ba {R@,Qamgl}(P—H)}(N—H) <A48)
From (A.48) we have (’W - {g,{RD’H,:R.gl}(p+1)}(N+1)> = Or. By substituting this in
(A.46) we get (4.183).

A.6 Decision Feedback Equalizer

The derivation of the optimal feedforward and feedback systems of the infitnite tap DFE
depends on the factorization of spectral tensors. We assume that the spectrum of the input
D(D) has a factorization

§5(D) = {A(D), A" (D)} ) (A.49)
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such that ./Zl(D) is causal with a stable and causal inverse. We can see that if ﬁ(D) is the
input to a system jlil(D), the output

o v -1 o

WD) = {4 (D), DDy (4.50)
is WSS and white, and using (4.21), we get the spectrum 8y (D) = Jy. To simplify the
derivation we now re-state the input-output relation (4.52), using (A.50), as

Y4(D) = {H(D),{A(D), U(D)}x} ) + V(D) (A.51)

Further, to find the dependence of the input to the decision device D(D) on U(D) we

decompose the feedforward and feedback systems into a cascade of systems such that

W(D) = {T(D), A" (D)} ) (A.52)
B(D) = {€(D), A4 (D)} (A.53)

The input to the decision device (4.209) can now be re-written as

~ ~

D(D) = {f‘<D>>§(D)}(N) —{€(D),U(D)} ) (A.54)
where i
Y(D) = (A" (D), Y(D)} ) (A.55)

~

and 'lcl(D) = ./vlil(D), i)(D) is the sequence of estimates of the past components of 'li(D)
The equalization problem now changes to finding a feedforward system f‘(D) and a feedback
system @(D) such that the mean squared error between the estimate 'ICL(D) and the input
ﬁ(D) is minimized. Since .,Zl_l(D) is a causal system and ﬁ(D) is a purely causal system,

e (D) has to be a purely causal system. Assuming that past decisions are correct, we have

{€(D), U(D)} ) = (D), U(D)} v (A.56)

~
9

Substituting (A.51) in (A.54) and using (A.56) we have the estimate D(D) in terms of

U(D) given by

D(D) = (({{FD).A" (D7)}, D)) AD) i, ~ €(D) ) LDy
+{T(D) A (D7), V(D) Yo

_ {(ﬂ“cw) - é(D)) D)y + V(D) (A57)
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where

K(D) = {{{L(D), A" (D)}, H (D) oy, AD) } ) (A.58)

H:{ (D ){le(D D, V(D }y }vy- Notice that V( ) is the

and the noise sequence V( ) )
output of a system {I'(D), A (DY} for an input V(D). Hence using (4.21), we get

the spectrum g{,(D) as

85(D) = {{({f<D>7AH<D—1>}<N>),évm ({f‘w—l),fwnm) by (A59)

We know, from (4.59), that the spectrum 8y = NoH(D). Substituting this in (A.59) and

using the associativity property gives

v H

55(D) = {{({f<D>,AH<D-1>}<N>),Noicw)}m, ({f<D—1>,A <D>}<N>) by

_ No{{({mD),AH(Dl)}(m) F(D)} ) ({A<D>,1“‘H<Dl>}<m) .
— Nof ({{f<D>,AH<D1>}<N>,ﬂ(D)hm,A(D)}m),f‘H<D1>}<N>
— No{K(D), T (D)} (A.60)

The difference between the estimate and the input is

~
V)

D(D) — D(D) = {(K(D) — €(D) — A(D)), U(D)}n) + {L(D), A" (D7), (D)} ) b
(A.61)

Using Theorem 3, for the mean square error to be minimized we require
E[(D[k] — D[k]) oY [k —i]] =0 for all i (A.62)
and
R plil = E[(D[k] — D[K]) o W[k — i]] = Op for i >0
(A.63)
-

R(®_9)7uil N [’L] = E[(D“ 7777 iN [k] — Dh ..... iN [k]) O uI;I IN [k — ZH = O fOI' Id < [u
(A.64)
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where I; = (i'1+Z]kV:2(i§g— DIy L) and I, = (4 3N (e =D Tl ey I;). Comparing
(A.64) with (4.38) and (4.42), we can see that this constraint is equivalent to requiring that

Ry [0 = O (A.65)
where :Rz;)—ﬂ)),u[o] is the purely causal part of R g 4[0]. From (4.41), we get that the
purely causal part of the cross-spectrum g?@f@)’u = fR(g_m w0+ Rp_pyy[1] + - ... Using

(A.63) and (A.64), we get gz;j_pm = Or. Notice that (A.61) describes the input-output
relation for an input U(D) to a system K (D) —€(D) —A(D) with an output 5(D) —D(D).
Using (4.22), we can find the cross-spectrum between the output and input of such a system
as g(®_9)7u(D) = {(ilu(f(D) —€(D) — .A(D)),gu(D)}(N). Since U(D) is has a spectrum
gu(D) = Jy, setting the purely causal part of the cross-spectrum to zero is equivalent to
the purely causal part of (D) — €(D) — A(D) being set to zero. Thus the constraint is

equivalent to

v V)

(X(D) — €(D) — A(D))" = 07 (A.66)

From which, since é(D) is purely causal, we get the feedback filter

€(D) = (K(D) - A(D))* (A.67)
To find the feedforward filter I'( D) we substitute (A.50),(A.55) and (A.57) into the orthog-
onality constraint (A.62). This gives

Y(D) = {A" (D7), {F(D), {AD), WD) ko by by + F4T (D7), V(D) ko, (A68)
Define systems P[k] and X[k] such that their D-transforms are {le(D_l), {ﬁ(D),.A(D)}(N) v
and ./ZlH(Dfl) respectively. Q[k] and respectively. We know that from (4.19) the contracted
product of two tensors in the D-domain is the contracted convolution in the time domain.

Using this, we write the inverse D-transform of (A.68) as

Yk =D PmUk —m]+ ) X[n]V[k — n] (A.69)

Further, Define systems Q[k] and O[k] such that their D-transforms are {(X(D) — €(D) —
./Zl(D)) and {f‘(D),.;lH(Dfl)}(N) respectively. We can write the inverse D-transform of
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(A.61) as
D[] — D[k] = > QmJU[k —m] + > _ O[n]V[k —n] (A.70)

m

The criterion of (A.65) then becomes

E[() QmU[k—m]+> " 0[n]V[k—n])o(Y  Plm/Uk—m'—i]+>  X[n'[V[k—n'—i])] = 0r
" ' " ' (A.71)

On expanding and noticing that 'L([k] and V[k] are uncorrelated we get

ZQ [Ry[m’ +i—m +Zo [Ru[m’ + i — m)X" [m'] = 0y (A.72)

Since the spectrum of U[k] is Sy (D) = JN, we have Ryi] = Or for i # 0 and Ry[0] = In.
Using this, we get

Z{Q [PH[i +m]} +ZZ{{0 |, Ru[m’ + i —m], X7 [i + m]} vy }ovy = Or (A.73)

Taking the D-transform of (A.73) and using 8y = NoH(D) and X(D) = ./ZlH(D_l) gives
e u v y
8(9) 2§ = ={Q(D),P" (D7)} ) + No{O(D){F(D), A(D)} ) } ) = Or (A.74)

Replacing the values of fP(D) and Q(D) gives

Spmyg = 12(D).2" (D)) + NofE(D) {A" (D7) AFUD)IA" (D)} )} b
= {Q(D).?" (D)} + NofB(D), 2" (D)} v} (A.75)
Multiplying both sides by (P (D))" gives
Q(D) + NoI'(D) = K(D) — €(D) — A(D) + NoI'(D) = 07 (A.76)

Substituting (A.67) in (A.76) and using the property Z(D) =Z (D) +2Z (D) gives

) — €(D) —A(D) + NoT'(D)

K(D) — (X(D) = A(D))* — A(D) + No['(D)

K(D) - %" (D) + A" (D) — A(D) + Nol'(D)

=X (D)—A (D)+ NI(D) (A.77)

K(D

Substituting (A.58) in (A.77) gives

(A.
X (D) - A (D)+ N[(D)
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v v o — o4 o —

= ({{{T(D), A" (D7) by, F(D) ), AD) b))~ = A (D) + No( (D) + T (D))

— -

— <{f‘(D),52(D)}(N)) + —A (D) + Ny (D) (A.78)

where R(D) = {{./ZI.H(D_l),I}vC(D)}(N),./Zl(D)}(N) + NoJy. Equating this to Or gives

(EO) RO} = -NE(D)* + A(D) (A79)
Notice that if the system jl(D) is excited by an input with spectrum .‘JEC(D) and its output
is corrupted by noise with spectrum NyJy, then the spectrum of the output is the tensor

R(D). Since R(D) is a spectrum, it can be factored as
. H

R(D) = {M(D),M"(D™")}) (A.80)

where M(D) is causal with a causal and stable inverse. Denote the tensor containing the

o(d o
pseudo-diagonal components of a tensor 8(D) by 8! )(D). Since A(D) is causal, its anti-
v v (d )
causal component A(D)~ is A )(0). This means that the purely causal component of I'( D)
is zero since the left hand side of (A.79) is anticausal. We may thus re-write (A.79) as

I - (@)
(D12 D)w) =470 (A81)
Using (A.80) and the fact that R(D) and jl_l(D) are both causal and stable, we get
. o (d) o d), Ly e H
L(D) = {A(0), {M (0))™", M (D7)} } (A.82)

We know, by definition, that R(D) = {{A" (D), F(D)}x), A(D)} ) + NoJy. This can

be written as
R(D) ~ NoJy = {{A" (D7), 5(D)} (), A(D) } ) (A.83)
Contracting both sides of (A.83) with I'(D) gives
{B(D), R(D) — NoJn) by = {T, {{A" (D), F(D)} ), AD) ) o) (A.84)

Comparing this to (A.58) we get K(D) = {I'(D), (R(D) — NoIn)}ny. Substituting this in
(A.67) gives
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= ({T(D).R(D)} )" — NoI' (D) — A" (D) (A.85)
Since P(D) is anti-causal and A (D) is purely causal, we get
€(D) = ({I'(D), R(D)} )+ — A(D) (A.86)
Using (A.80) and (A.82) this can be written as
e(D) = £4"(0), {3 (0) ", D))}y — A (D) (A87)

The next step is to use €(D) and I'(D) to find the actual feedback and feed-forward systems
W(D) and B(D). Substituting (A.82) in (A.52) we get

W(D) = {4 (0), {01, ¢ (D71, A" (D)} v by Fow by (A.88)
and substituting (A.87) in (A.53) we get
B(D) = {4 (0), {0 (0)) " (D), A (D)} vy b vy by — T (A.89)

2019/11/14
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Appendix B

Miscellaneous

B.1 Spectral Factorization of a Tensor

As an example of spectral factorization, we show the factorization of a 2 x 2 x 2 x 2 tensor
H(D) = {Q(D), QH(D_l)}(Q). The component functions of H(D) are given below followed
by the components of the factor tensor Q(D) A MATLAB script, which can be obtained
from the author or his supervisor, was used to compute the factor tensor Q(D) The factor
tensor Q(D) is computed iteratively using a generalization of the method detailed in [58]
by contracting the original tensor ¥ (D) with transformation tensors until the result is an

identity tensor. i.e., on the ith step we compute

&,(D) = {T.(D). {&,1(D), T, (D)} 2} (B.1)

where ®o(D) = H(D). The transformation tensors T;(D) are chosen to remove the poles
from the components of the spectrum tensor, reduce it to a tensor with numerical elements
(the components do not depend on D) and then finally to the identity tensor. This is
accomplished with the help of the spectralfact command in the MATLAB Control Systems

v

Toolbox. The factor tensor Q(D) is computed using (4.47) as
o1

Q(D) = {{F, (D), T, (D)}, T7 (D)}a) (B.2)
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To verify that the factorization was performed correctly, we compare
3,504(0) — ({2(D).27(D )} )
irjik,l

with a threshold e = 107°. This is done to allow for small errors that may occur due to the

MATLAB floating point computations.

(B.3)

Eijrl =

Below, we present the components of the spectrum ﬂjC(D) followed by the components of

the factor tensor Q(D). The substitution D = z~! is made in the following:

K _ (0—31)2*4+(1421)234(26+3.497e—154) 22 +(1—24) z— (1.665¢— 16 —34)
[1111] = 2
K _ (141d) 24+ (5+4.441e—156) 23 — 22— (8.882e—15—6i) 2+(3+3.997e—151)
[1112] = 2
K _ (0420) 234+ (T+10) 22+ (14+4.774e—151) 2—(2.56 Te— 16 —14)
[1121] = >
(0414) 2%+ (4+14) 23+ (24 14) 22+ (T+124) 2+ (3—21)
z2
K 324 (4.163e—16461) 25 — 224 (5—3.393e—154) 2+ (1—14)
[1211] = 2
K _ (242i)224+(1148.882e—164) 2+ (2—2i)
[1212] = >
K _(0418) 24+ (2—1.776e—151) 2% — (2.88Te—15—41) 2% +(14+24) 2+ (6 —14)
[1221] = >

Hpi =

(1420) 224 (13+14) 2+ (2—44)

Hpag = ~

K _ (0—1d)23+(14+2.859e—150) 224+ (7—14) z+(1.443e—15—23)
[2111] = 52

K _ (641d)24 4+ (14—24) 23— (1.11e—15+44) 22 +(2+3.22e—154) 2+ (1.943e— 16— 14)
[2112] = 23

5 _ (04108)22+(54+1.796e—164) 2+(9.352e—16—104)
[2121] =

z
—(2—60) 2%+ (18—21) 23+ (6—41) 22+ (2431) 2— (6.106e— 16+17)

Hioig) = i)

Higory = (3+2i)24+(7_12i)23+(2_11)222+(4—1i)z—(2.226—16+1i)

gy = HADZH3-10:40-2)

Higoon = (0+1i)z4+(2*31')23+(6424i)z2+(18+2i)z—(2+6i)

H — 22204+ (1420)2° +(28+2.887e—150) 2+ (1—2i)2—(2+5.829e— 161)
[2222] = 1

The components of Q(D) are:
(1.24440.90714) 2%+ (1.047+0.017884) z— (0.2901 —0.075061)

Qi = g

0 _ (0.6037—0.09844i) 23— (0.662—0.19467) 22+ (0.2456—0.042231) z— (0.1873+0.053974)
1112 = g

0  (1.598—2.85) 24 (0.4016-+0.851)
121 =

z

Q12 = —(0.126—0.25954) 23 — (0.1497+0.17957) 22+ (1.463—0.026024) z— (0.187340.053974)
1122] = 3

(0.5452—3.6054) 22— (0.08818—0.38981) 2+ (0.543-+0.2152i)
2
z

Qo =



B Miscellaneous 139

(0.94994-0.57131) 23+ (1.009+0.72834) 22 +(0.05367—0.31574) z—(0.01227—0.016071)

Q219 = =

Q _ (1.253—1.6114)2—(0.2525—1.6114)
[1221] = >

Q _ (1.705—0.038641) 2% +(2.72240.068791) 22 — (0.4154+0.046227) z— (0.01227—0.016077)
[1222] = poc;

Q _ (2.507—0.19557)224(0.1541—0.1037i) 2+(0.3394+0.29914)
[2111] = 2

Q[ = —(0.7295+0.57617) 234(0.9594+4-0.5259) 22 +(0.6389+0.072857) z+(0.1312—0.022661)
2112] = 3

Q _ (0.178640.42150) z+(1.821+0.578517)
[2121] = .

Q _ —(0.5714+1.3224)23+(1.86+1.0177) 22+ (0.58+0.32814) 2+ (0.1312—0.022661)
[2122] = 3

Q _ (0.086864-0.29534)22+(1.16—0.0070574) z-+(0.753—0.28824)
[2211] = 2

Q _ (1.5140.60164) 23 +(1.29—0.59064) 224-(0.07483—0.018684) 2+(0.12474-0.007697)
[2212] = 3

Q _ (1.22442.649i) 24 (4.776—0.64957)
[2221] = >

Q[ | = (0.32294-2.1764) 234+ (1.572—0.84081) 22 — (0.01939+0.34327) z+(0.124740.007697)
2222 = 23

B.2 Simulation Program User Guide

This appendix details the software that was used to generate the simulation and analytical
results in this thesis. The software can be obtained from the author or his supervisor. The
software distribution consists of one main folder and two sub-folders. The first sub folder
contains a library of general functions and the second sub folder contains matlab files that
produce the figures of this thesis. The matlab file that produces a certain figure is named
after the figure as it appears in this thesis. The tensor library is a directory that consists of
functions that perform tensor operations and are used throughout all the simulations and
analytical results. Each matlab file is titled based on the operation that it performs. For
example, the matlab file titled ”tensor_contraction.m” is a function that takes two tensors
as its input and returns their contracted product over a specified number of domains as
its output. These functions are required to run the matlab files that produce the figures
and it is hence important to maintain the structure of the folders as they are. Most of the
error rate results are obtained by simultaneously simulating for different SNRs on different

instances of MATLAB. The final curves are obtained by collecting the results of these runs.
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To reproduce a particular figure from the thesis, simply run the corresponding MATLAB
file with the default settings. A comprehensive README document is provided along with

the software distribution that details each matlab file with instructions on how to run them.
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