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Abstract

The demand for mobile data is likely to grow at a pace more than envisaged in the coming

years. Further, as applications such as the internet of things (IoT) come to fruition, there

will be increased diversity in the types of devices demanding internet connectivity and

their requirements. Significant increase in data rate requirements are also expected due to

sensitive services such as Ultra High Definition (UHD) video streaming and cloud comput-

ing. To meet all these demands, physical layer waveform candidates for future generations

of communications need to be robust and inherently capable of extending into multiple

domains (space, time, frequency, users, transmission media, code etc.) to ensure efficient

utilization of resources. Multiple domains can be innately integrated into the design pro-

cess of modulation schemes by using tensors, which are multi-way arrays.

This thesis introduces a unified tensor framework, which is the foundation for multi-domain

communication systems that can be used to represent, design and analyse schemes that span

several domains. In our work, transmitted signals are represented by Nth order signal ten-

sors which are coupled, using a system tensor of order N + M , with the received signals

which are represented by another signal tensor of order M through the contracted convo-

lution. We begin with the continuous time representation of the tensor system model and

present both the strict multi-domain generalization of the Nyquist criterion for zero inter-

ference (inter-tensor and intra-tensor interference) as well as a relaxation. We present an

equivalent discrete time system model and derive tensor based linear and non-linear equal-

ization methods to combat multi-domain interference for criteria such as minimum mean

squared error and minimum peak distortion. Lastly, we present the multi-domain general-

ization of partial response signalling, or correlative coding, where controlled interference is

introduced into the design process to improve performance.
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Sommaire

La demande de données mobiles devrait crôıtre à un rythme plus rapide que prévu dans

les années à venir. En outre, à mesure que des concepts tels que l′Internet des objets

(IoT) se concrétiseront, les types d′appareils nécessitant une connectivité Internet et leurs

exigences se diversifieront. Une augmentation significative des besoins en débit de données

est également attendue en raison de services sensibles tels que le streaming vidéo UHD

(Ultra High Definition) et le cloud computing. Pour répondre à toutes ces demandes, les

candidats aux formes d′onde de la couche physique pour les futures générations de commu-

nications doivent être robustes et capables de s′étendre à de multiples domaines (espace,

temps, frquence, utilisateurs, supports de transmission, code, etc.) afin de garantir une

utilisation efficace des ressources. Plusieurs domaines peuvent être intégrés de manière

innée au processus de conception de schémas de modulation en utilisant des tenseurs, qui

sont des tableaux à plusieurs voies.

Dans ce travail, nous introduisons un cadre tenseur unifié, qui constitue la base des systèmes

de communication multi-domaines pouvant tre utilisés pour représenter, concevoir et anal-

yser des systémes couvrant plusieurs domaines. Dans notre travail, les signaux transmis

sont représentés par des tenseurs de signaux du nième ordre qui sont couplés, à l′aide

d′un tenseur de système d′ordre N + M, aux signaux reus qui sont représentés par un

autre tenseur de signaux d′ordre M par la convolution contractée. Nous commençons par

la représentation temporelle continue du modèle du système tensoriel et présentons à la

fois la généralisation multi-domaine stricte du critère de Nyquist pour l′interférence zéro

(intra-tenseur et l′inter-tenseur), ainsi qu′une relaxation. Nous présentons un modèle de

système à temps discret équivalent et en déduisons des méthodes d′égalisation linéaires et

non linéaires basées sur le tenseur pour lutter contre les interférences multi-domaines pour

des critères tels que l′erreur quadratique moyenne minimale et la distorsion de crte mini-

male. Enfin, nous présentons la généralisation multi-domaine de la signalisation à réponse

partielle, ou codage corrélatif, dans laquelle une interférence contrôlée est introduite dans

le processus de conception pour améliorer les performances.
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Chapter 1

Introduction

Wireless communications and the internet have been two of the most disruptive technolo-

gies in recent history and the synergetic relationship between them has led to exponential

demand for mobile communication services. As presented in the visual network index (VNI)

report released by Cisco [1], the amount of wireless data has exploded and it is predicted

to continue growing exponentially in the coming years. Significant increase in data rate

requirements are expected due to sensitive services such as Ultra High Definition (UHD)

video streaming and cloud computing. Hence, future generations of wireless communica-

tions will need to provide data rates that are orders of magnitude higher than current 4G

technologies. Moreover, with the internet of things (IoT) poised to become a reality, many

diverse devices with an eclectic mix of requirements will soon demand wireless connectiv-

ity to the internet. In order to service such a vast audience while constrained by radio

spectrum scarcity, future communication systems will need to be extremely bandwidth effi-

cient. Given these demands, it is clear that a paradigm shift is required in communication

systems of the coming generations (5G and beyond) since incremental improvements on

current (4G) systems will not suffice [2].

The use of additional domains in the design process of a communication system is an im-

portant means to improve its performance via added robustness from diversity or higher

data rates from multiplexing. For example, the addition of the space domain through the
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utilization of multiple inputs and multiple outputs (MIMO) was the logical successor of sin-

gle input single output (SISO) systems. MIMO systems boast improved link performance

as in the case of space-time coding [3] or higher data rates via spatial multiplexing such as

V-BLAST [4]. Multicarrier (MC) systems such as OFDM, GFDM and FBMC are examples

of frequency domain utilization and are significant improvements over singlecarrier (SC)

systems. The two-dimensional structure of these systems are well represented through the

use of matrices. Following this trend, it is crucial that waveform candidates for future gen-

erations of wireless communications be natively capable of extending into multiple domains

(space, time, frequency, and users to name a few) to ensure efficient utilization of resources.

The use of tensors, which are multidimensional arrays [5], allows innate integration of sev-

eral domains into the design process of modulation schemes.

The notion of tensors and tensor decompositions date back to 1927 with the work of Hitch-

cock [6]. Cattell [7] is credited for introducing the notion of the multi-way model. However,

tensors and their decompositions first gained popularity in psychometrics literature through

the works of Tucker [8] and Carroll and Chang [9]. Since then, tensors have been extensively

used in chemometrics in the food industry, in Fluorescence spectroscopy and flow injection

analysis[10, 11, 12]. In the last years, tensor applications have gained significant interest

in varied fields such as signal processing [13, 14], data mining [15], graph analysis [16],

neuroscience and computer vision [17, 18]. A tensor approach for multidimensional data

filtering is presented in [19]. Cumulant-Based Blind Identification of Under-determined

Mixtures are explored in [20]. A comprehensive overview of multi-linear algebra, tensor

products and their decompositions are provided in [5]. Solution of multi-linear equations

using tensor inversion is studied in [21] and a higher-order generalization of the Moore-

Penrose pseudo-inverse is derived in [22]. The notion of the various transposes of a tensor

is presented in [23].

Matrix decompositions are not unique in general, meaning that a particular matrix may

be decomposed in a number of different ways. In order to ensure uniqueness of a matrix

decomposition, additional constraints such as positive-definiteness or orthonormality must

be imposed. In contrast, such strong constraints are not required for a tensor to offer a
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unique decomposition due to the use of higher dimensions [24, 25]. This is one of the

reasons for the gain in popularity of tensor based approached in wireless communications

over recent years. A blind receiver using PARAFAC decompositions for DS-CDMA sys-

tems is considered in [26]. Multiple invariance sensor array processing (MI-SAP) is linked

to parallel factor (PARAFAC) analysis for both data-domain and subspace formulations

in [27]. A blind receiver that uses tensor decompositions for SIMO and MIMO OFDM

systems is presented in [28]. A space-time coding model based on a Khatri-Rao product,

dubbed KRST, was derived by combining spatial multiplexing and temporal spreading

through linear pre-coding and linear post-coding respectively [29]. A tensor based re-

ceivers for MIMO communication systems is presented in [30] and [31]. In [32], it is shown

that the received signal in oversampled CDMA and OFDM has a multidimensional struc-

ture and a constrained Block-PARAFAC model is used for blind equalization where the

constraints of the tensor model vary based on the system that is being used. Three dimen-

sional tensors are used to combine space-time coding with spatial multiplexing, dubbed

space-time multiplexing (STM) coding, in [33]. Two constrained tensor models dubbed

the PARATUCK-(N1, N) and Tucker-(N1, N) are introduced in [34], which are then used

to derive semi-blind receivers for MIMO OFDM-CDMA systems. A modified alternating

least squares (ALS) algorithm for estimating the matrix factors of the Kronecker product

is considered in [35], that is used for the design of MIMO wireless communication systems

using tensor modelling. Multidimensional Weiner filtering, where the n-mode unfolding of

the desired signal is expressed as a weighted combination of orthogonal vectors from the

n-mode signal subspace basis is used to determine the theoretical expression of the n-mode

Weiner filter, is described in [19].

1.1 Thesis Contribution

This thesis presents a unified tensor framework for multi-domain communication systems.

Here, the transmitted signal is represented by an Nth order tensor and the received sig-

nal is represented by an Mth order tensor. The transmitted signal tensor is coupled with



1 Introduction 4

the received signal tensor by a system tensor of order M + N using either the contracted

convolution (continuous time systems) or the contracted product (discrete time systems).

Using this framework, we present the foundations for a multi-domain point-to-point com-

munication system that can be used to represent, design and analyse future wireless or

wired communication systems. In the formulation of the tensor framework, the mathe-

matical domains of the signal and system tensors are not associated to physical domains.

This mapping is instead performed on a per application basis as required. This abstraction

makes the framework more general and hence allows a straightforward implementation of

a variety of communication systems.

Further, we present both the strict multi-domain generalization of the Nyquist criterion

for zero interference (inter-tensor and intra-tensor interference) as well as a relaxation.

Tensor based linear and non-linear equalization schemes for multi-domain interference for

metrics such as minimum mean squared error and minimum peak distortion are derived.

To demonstrate the efficacy of the tensor framework examples such as OFDM, GFDM and

FBMC are used to show how this framework can be employed to add additional domains

into the design process.

Finally, we present a method to allow a controlled amount of interference in order to achieve

improved data rates and spectral shaping. This is a multi-domain generalization of partial

response signaling, or correlative coding [36, 37] that is dubbed Tensor Correlative Coding.

1.2 Thesis Outline

Apart from the introduction above and the concluding remarks, this thesis consists of four

main chapters. The contents of these chapters are summarized as follows

Chapter 2. This chapter introduces tensors and some relevant tensor based operations.

The concept of signal tensors, which are tensors of time functions, are introduced along

with their transformations. Using the above preliminaries, the system model in this tensor

framework is described. A higher-order generalization of the Nyquist Criterion for zero

inter-symbol interference is derived.
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Chapter 3. This chapter models some of the existing waveform using the tensor framework

such as the 5G selected waveform OFDM, filter bank multicarrier (FBMC) and generalized

frequency division multiplexing (GFDM). Insights are provided on how modifications can

be made to these waveforms based on the tensor framework.

Chapter 4. This chapter introduces the discrete time equivalent system for the continu-

ous time tensor framework described in chapter 2. Using this equivalent model, different

equalization schemes are studied such as zero forcing, minimum mean squared error equal-

ization and decision feedback equalization (DFE) for both finite and infinite tensor taps.

Performance results are presented for these equalizers. Further, some performance results

from literature are reproduced using the tensor framework for the purpose of confirming

the correct operation of the simulation software.

Chapter 5. This chapter describes tensor based correlative coding where controlled inter-

symbol interference is allowed to increase data rates and for spectrum shaping. Partial

Response equalization is described where the equalizers defined in the previous chapter are

used to cancel only part of the effects of the transmission channel.
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Chapter 2

Preliminary Definitions and System

Model

This chapter introduces tensors and some of their important properties. The notion of a

tensor of functions is defined, along with specific types of function tensors such as signal and

system tensors and their transformations. Using these definitions, the tensor framework

for multi-domain communication, in its most generic form is defined. Finally, a higher

order generalization of the scalar Nyquist’s criterion for zero inter-symbol interference is

presented with examples using different number of domains.

2.1 Tensors

A tensor is a multi-dimensional array of data [5]. The order of a tensor is the number of

dimensions. A vector is a tensor of order one, a matrix is a tensor of order two and tensors

of order greater than two are known as higher order tensors. Figure 2.1 shows the structure

of tensors of order 1,2,3, and 4.

Definition 2.1.1. The Contracted Product: The contracted product over K dimensions, or

modes, of an Nth order tensor AAA ∈ CI1×I2×...×IN and an Mth order tensor BBB ∈ CJ1×J2×...×JM

where I1 = J1, . . . , IK = JK with K ≤ min(N,M) is a (N + M − 2K)th order tensor

2019/11/14



2 Preliminary Definitions and System Model 7

I1

(a) a

I1

I2

(b) b

I2

I1

I3

(c) c

I4

I2

I1
I3

(d) d

Fig. 2.1 (a) a first order tensor (vector) (b) a second order tensor (matrix)
(c) a third order tensor of size 3 × 3 × 3 (d) a fourth order tensor of size
3× 3× 3× 3

CCC ∈ CIK+1×IK+2×...×IN×JK+1×JK+2×...JM defined as [5]

CCC = {AAA,BBB}(1,...,K;1,...,K) (2.1)



2 Preliminary Definitions and System Model 8

where

CCCiK+1,...,iN ,jK+1,...,jM =
∑
i1

. . .
∑
iK

AAAi1,...,iK ,iK+1,...,iNBBBi1,...,iK ,jK+1,...,jM . (2.2)

In (2.1), the modes of contraction are the first K modes of AAA and BBB. However, it should

be noted that the modes of contraction do not have to be the same in both tensors, since

any two modes of same size can be contracted. For example, the first and second modes of

tensor AAA ∈ C3×4×5 and the second and third modes of tensor BBB ∈ C2×3×4 can be contracted

to give a tensor

XXX = {AAA,BBB}(1,2;2,3) (2.3)

where

XXXi3,j1 =
3∑

i1=1

4∑
i2=1

AAAi1,i2,i3BBBj1,i1,i2 . (2.4)

A contraction that appears commonly throughout this thesis is one where the modes of

contraction appear at the end of the first tensor and the beginning of the second. Consider

a (P + N)th order tensor AAA ∈ CI1×...×IP×J1×...×JN and a (N + Q)th order tensor BBB ∈
CJ1×...×JN×K1×...×KQ . The contracted product over the last N modes of AAA and the first N

modes of BBB is a (P +Q)th order tensor CCC

CCC = {AAA,BBB}(P+1,...,P+N ;1,...,N) (2.5)

with components

CCCi1,...,iP ,k1,...,kQ =
∑
j1

. . .
∑
jN

AAAi1,...,iP ,j1,...,jNBBBj1,...,jN ,k1,...,kQ (2.6)

In the rest of this thesis, for the sake of brevity, we use the shorthand notation

CCC = {AAA,BBB}(N) (2.7)

to denote the contraction in (2.5).

Next, we explore a special case where the contracted product is associative. All tensor

product chains that appear in this work take the form described in this derivation and

hence are associative.
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Theorem 1. For tensors AAA ∈ CI1×...×IM×J1×...×JN , BBB ∈ CJ1×...×JN×K1×...×KP and CCC ∈
CK1×...×KP×L1×...×LQ , we have

{{AAA,BBB}(M+1,...,M+N ;1,...,N),CCC}(M+1,...,M+P ;1,...,P ) = {AAA, {BBB,CCC}(N+1,...,N+P ;1,...,P )}(M+1,...,M+N ;1,...,N)

(2.8)

Proof. Let

XXX = {{AAA,BBB}(M+1,...,M+N ;1,...,N),CCC}(M+1,...,M+P ;1,...,P ) (2.9)

and

YYY = {AAA, {BBB,CCC}(N+1,...,N+P ;1,...,P )}(M+1,...,M+N ;1,...,N) (2.10)

with components

XXXi1,...,iM ,l1,...,lQ =
∑
k1

. . .
∑
kP

(∑
j1

. . .
∑
jN

AAAi1,...,iM ,j,1...,jNBBBj1,...,jN ,k1,...,kP

)
CCCk1,...,kP ,l1,...,lQ

(2.11)

and

YYYi1,...,iM ,l1,...,lQ =
∑
j1

. . .
∑
jN

AAAi1,...,iM ,j1,...,jN

(∑
k1

. . .
∑
kP

BBBj1,...,jN ,k1,...,kPCCCk1,...,kP ,l1,...,lQ

)
(2.12)

Notice that (2.11) can be re-written after removing the inner parenthesis as

XXXi1,...,iM ,l1,...,lQ =
∑
k1

. . .
∑
kP

∑
j1

. . .
∑
jN

AAAi1,...,iM ,j1,...,jNBBBj1,...,jN ,k1,...,kPCCCk1,...,kP ,l1,...,lQ (2.13)

Changing the order of summation in (2.13) we get

XXXi1,...,iM ,l1,...,lQ =
∑
j1

. . .
∑
jN

∑
k1

. . .
∑
kP

AAAi1,...,iM ,j1,...,jNBBBj1,...,jN ,k1,...,kPCCCk1,...,kP ,l1,...,lQ (2.14)

Factoring out AAA from the inner summation over k1, k2, . . . , kP gives

XXXi1,...,iM ,l1,...,lQ =
∑
j1

. . .
∑
jN

AAAi1,...,iM ,j1,...,jN

(∑
k1

. . .
∑
kP

BBBj1,...,jN ,k1,...,kPCCCk1,...,kP ,l1,...,lQ

)
(2.15)

which is the same as (2.12)

Definition 2.1.2. Outer Product: The outer product of two tensors AAA ∈ CI1×I2...×IN and

BBB ∈ CJ1×J2...×JM is denoted by AAA ◦BBB ∈ CI1×...×IN×J1×...×JM and can be represented as a
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specific case of the contracted product

AAA ◦BBB = {AAA,BBB}(0,0) (2.16)

The components of the outer product between AAA and BBB are(
AAA ◦BBB

)
i1,...,iN ,j1...,jM

= AAAi1,...,iNBBBj1,...,jM (2.17)

The tensor outer product is a generalization of the outer product between two vectors

(tensor of order one) resulting in a matrix (tensor of order two). For example, consider

vectors x ∈ CN and y ∈ CM then (2.16) becomes

x ◦ y = {x,y}(0,0) = xyT (2.18)

The tensor outer product is distributive and associative. It is not in general commutative.

For tensors AAA ∈ CI1×...×IN , BBB ∈ CI1×...×IN and CCC ∈ CJ1×...×JM we have(
AAA +BBB

)
◦CCC = AAA ◦CCC +BBB ◦CCC (2.19)

Proof. [(
AAA +BBB

)
◦CCC
]
i1...iNk1...kP

=
(
AAA +BBB

)
i1...iN

CCCk1...kP

=
(
AAAi1,...,iN +BBBi1,...,iN

)
CCCk1,...,kP

= AAAi1,...,iNCCCk1,...,kP +BBBi1,...,iNCCCk1,...,kP

=

[
AAA ◦CCC +BBB ◦CCC

]
i1,...,iN ,k1,...,kP

Similarly, For tensors AAA ∈ CI1×...×IN ,BBB ∈ CJ1×...×JM and CCC ∈ CK1×...×KP we have(
AAA ◦BBB

)
◦CCC = AAA ◦

(
BBB ◦CCC

)
(2.20)

Proof. [(
AAA ◦BBB

)
◦CCC
]
i1,...,iN ,j1,...,jM ,k1,...,kP

=
(
AAA ◦BBB

)
i1,...,iN ,j1,...,jM

CCCk1,...,kP

= AAAi1,...,iNBBBj1,...,jMCCCk1,...,kP

= AAAi1,...,iN

(
BBB ◦CCC

)
j1,...,jM ,k1,...,kP

=

[
AAA ◦

(
BBB ◦CCC

)]
i1,...,iN ,j1,...,jM ,k1,...,kP
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J2

I2

I1
J1

Fig. 2.2 Pseudo-diagonal (gray) and diagonal (black) elements of a tensor
of size 3× 3× 3× 3

Definition 2.1.3. Diagonal and Pseudo-diagonal tensors: A tensor AAA ∈ CI1×I2...×IN is

diagonal if

AAAi1,...,iN =

ki1,...,iN if i1 = i2 = . . . iN

0 otherwise
(2.21)

where ki1...iN is an arbitrary scalar. A pseudo-diagonal tensor is a tensorBBB ∈ CI1×...×IN×I1×...×IN

with components

BBBi1,...,iN ,j1,...,jN =

ki1,...,iN ,j1,...,jN if i1 = j1, i2 = j2, . . . iN = jN

0 otherwise
(2.22)

Authors in [21] and [22] define tensors of the form in (2.22) as diagonal tensors. However,

given the stricter, more prevalent, definition of a diagonal tensor [5] the notion of pseudo-

diagonality is used in this thesis. The non-zero entries of a pseudo-diagonal tensor are
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known as its pseudo-diagonal entries. Figure 2.2 shows a fourth order tensor of size J1 ×
J2 × I1 × I2 with I1 = I2 = J1 = J2 = 3 with the pseudo-diagonal elements highlighted in

gray and diagonal elements highlighted in black. We can see that all the diagonal elements

are also pseudo-diagonal elements and hence a diagonal tensor is a pseudo-diagonal tensor

with zeroes in some of its pseudo-diagonal entries.

Definition 2.1.4. Identity tensor: We define an identity tensor of order 2N as a pseudo-

diagonal tensor IIIN ∈ CI1×I2...×IN×I1×I2...×IN with entries

IIINi1,...,iN ,i′1,...,i′N
= δi1,i′1 · · · δiN ,i′N (2.23)

where δx,y is the kronecker delta defined as

δx,y =

1 if x = y

0 otherwise
(2.24)

The sub-script N is used to denote the order of the identity tensor. For example, an identity

tensor IIIN is of order 2N while IIIM is of order 2M . For a tensor XXX ∈ CI1×I2...×IN×J1×J2...×JM

we have

{XXX,IIIM}(M) = {IIIN ,XXX}(N) = XXX (2.25)

Definition 2.1.5. Inner product and Frobenius norm of a tensor: The inner product of

two tensors AAA,BBB ∈ CI1×...×IN is defined as

〈AAA,BBB〉 = {AAA,BBB}(1,...,N ;1,...,N) =
∑
i1

. . .
∑
iN

AAAi1,...,iNBBBi1,...,iN (2.26)

The Frobenium norm of a tensor XXX ∈ CI1×...×IN is defined as

‖XXX‖F =

(∑
i1

. . .
∑
iN

∣∣XXXi1,...,iN

∣∣2) 1
2

(2.27)

Definition 2.1.6. Transpose and Hermitian of a Tensor: A matrix has two indices and

the transpose of a matrix is a permutation of these two indices. Since there are several

dimensions in a tensor, there are many permutations of its indices and hence there are

several ways to write the transpose of a tensor. Authors in [23] define the transpose of a

tensor using permutations.
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Assume the set SN = {1, 2, . . . , N} and σ is a permutation of SN . We denote σ(j) =

ij for j = 1, 2, . . . , N where {i1, i2, . . . , iN} = {1, 2, . . . , N} = SN . Since SN is a finite

set with N elements, it has N ! different permutations. Hence, discounting the identity

permutation σ(j) = [1, 2, . . . , N ], there are N !− 1 different transposes for a tensor with N

dimensions or modes.

For a tensor AAA ∈ CI1×I2...×IN we define its transpose associated with a certain permuta-

tion σ as AAATσ ∈ CIσ(1)×Iσ(2)...×Iσ(N) with entries

AAATσ
iσ(1),iσ(2),...,iσ(N)

= AAAi1,i2,...,iN (2.28)

Similarly, the Hermitian of a tensor AAA ∈ CI1×I2...×IN associated with a permutation σ is de-

fined as the conjugate of its transpose and is denoted as AAAHσ = (AAATσ)∗ ∈ CIσ(1)×Iσ(2)...×Iσ(N)

with entries

AAAHσ
iσ(1),iσ(2),...,iσ(N)

= (AAATσ
iσ(1),iσ(2),...,iσ(N)

)∗ = (AAAi1,i2,...,iN )∗ (2.29)

For example, a transpose of a third order tensor XXX ∈ CI1×I2×I3 such that its third mode

is transposed with the first can be written as XXXTσ where σ = [3, 2, 1] with components

XXXTσ
i3,i2,i1

= XXXi1,i2,i3 . For two tensors AAA ∈ CI1×I2...×IN and BBB ∈ CI1×J2...×IN we have [23]

〈AAA,BBB〉 = 〈AAATσ,BBBTσ〉 (2.30)

and

‖AAA‖F =
∥∥AAATσ

∥∥
F

(2.31)

Consider a tensor YYY ∈ CI1×...×INJ1×...×JM with a transposition such that the final M modes

are swapped with the first N modes can be represented by a permutation function σ =

[(N + 1), . . . (N + M), 1, . . . N ] such that YYYTσj1,...,jM ,i1,...iN = YYYi1,...,iN ,j1,...,jM . Since this type

of transposition is most commonly used throughout this work, we drop the superscript σ

for ease of representation and represent such a transpose by YYYT and its conjugate by YYYH .

For tensors AAA ∈ CI1×...×IN×J1×...×JM and BBB ∈ CJ1×...×JM×K1×...×KP we have(
{AAA,BBB}(M)

)H
= {BBBH ,AAAH}(M) (2.32)
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Proof. (
{AAA,BBB}(M)

)H
k1,...,kP ,i1,...,iN

=

(
{AAA,BBB}(M)

)
i1,...,iN ,k1,...,kP

=
∑
j1

. . .
∑
jM

AAAi1,...,iN ,j1,...,jMBBBj1,...,jM ,k1,...,kP

=
∑
j1

. . .
∑
jM

AAAH
j1,...,jM ,i1,...,iN

BBBH
k1,...,kP ,j1,...,jM

=
∑
j1

. . .
∑
jM

BBBH
k1,...,kP ,j1,...,jM

AAAH
j1,...,jM ,i1,...,iN

=

(
{BBBH ,AAAH}(M)

)
k1,...,kP ,i1,...,iN

(2.33)

For the case of matrices (order-two tensors), (2.32) reduces to the familiar relation(
AB

)H
= BHAH (2.34)

where A ∈ CI×J and B ∈ CJ×K are two matrices.

For tensors AAA ∈ CI1×...×IN and BBB ∈ CJ1×...×JM×I1×...×IN we have

{BBB,AAA}(N) = {AAA,BBBT}(N) (2.35)

Proof. [
{BBB,AAA}(N)

]
j1,...,jM

=
∑
i1

. . .
∑
iN

BBBj1,...,jM ,i1,...iNAAAi1,...,iN

=
∑
i1

. . .
∑
iN

BBBT
i1,...iN ,j1,...,jM

AAAi1,...,iN

=
∑
i1

. . .
∑
iN

AAAi1,...,iNBBB
T
i1,...iN ,j1,...,jM

=

[
{AAA,BBBT}(N)

]
j1,...,jM

(2.36)

Definition 2.1.7. Tensor to Matrix Transformation: For a tensor AAA ∈ CI1×...×IN×J1×...×JM ,

we define a transformation fN that transforms AAA to a matrix A ∈ CI1...IN×J1...JM such that
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f(AAA) = A. Component-wise we have

AAAi1,i2,...,iN ,j1,...,jM

fN−→ A
(i1+

N∑
k=2

(ik−1)
k−1∏
l=1

Il),(j1+
M∑
k=2

(jk−1)
k−1∏
l=1

Jl)
(2.37)

The subscript in fN denotes a partition of the modes of the tensor being transformed. The

product of the first N modes of the tensor becomes the number of rows of the matrix and

the product of the remaining modes of the tensor becomes the number of columns of the

matrix. For example, consider a tensor BBB ∈ C2×3×4×5×6 and a transformation f3 such that

f3(BBB) = B. The size of B is (2 · 3 · 4)× (5 · 6) and

BBBi,j,k,l,m
f3−→ B(i+2(j−1)+6(k−1)),(l+5(m−1)) (2.38)

These transformations are called column or row major formats in many computer languages

and essentially represents a particular type of matrix unfolding of a tensor. It is shown

in [21], for the case of fourth-order tensors of the form XXX ∈ CI×J×I×J , that the above

transformation function is a bijection with a bijective inverse mapping f−1
N to convert the

matrix A back into the original tensor AAA. Authors in [38] extend this result to the case of

tensors of any order.

Definition 2.1.8. Tensor Inverse: The group of invertible N × N matrices with matrix

multiplication is called the general linear group denoted by MN,N(C) [21]. Denote

TI1,I2,...,IN ,I1,I2,...,IN (C) = {AAA ∈ CI1×...×IN×I1×...×IN : det(fN(AAA)) 6= 0} (2.39)

Authors in [38] and [21] (for the special case of fourth order tensors) have shown that the

set TI1,I2,...,IN ,I1,I2,...,IN (C) forms a group equipped with the contraction {}(N) as defined

in (2.7) and the transformation fN is an isomorphism between TI1,I2,...,IN ,I1,I2,...,IN (C) and

M(I1I2···IN ),(I1I2···IN )(C). This indicates that for any tensor AAA ∈ TI1,I2,...,IN ,I1,I2,...,IN (C) there

exists a tensor BBB ∈ TI1,I2,...,IN ,I1,I2,...,IN (C) such that [38]:

{AAA,BBB}(N) = {BBB,AAA}(N) = IIIN . (2.40)

where IIIN is the identity tensor. BBB is called the inverse of AAA and is denoted by AAA−1.

The Moore-Penrose inverse of a tensor AAA ∈ CI1×I2...×IN×J1×J2...×JN ,which is a generalization

of the matrix Moore-Penrose inverse, is a tensor AAA+ ∈ CJ1×J2...×JN×I1×I2...×IN that satisfies
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[22]:

{{AAA,AAA+}(N),AAA}(N) = AAA

{{AAA+,AAA}(N),AAA
+}(N) = AAA+

{AAA,AAA+}H(N) = {AAA,AAA+}(N)

{AAA+,AAA}H(N) = {AAA+,AAA}(N)

J2

I2

I1
J1

Fig. 2.3 Pseudo-Lower Triangular Tensor

Definition 2.1.9. Pseudo-Triangular Tensor: A tensor AAA ∈ CI1×...×IN×I1×...×IN is defined

to be pseudo-lower triangular if

AAAi1,...,iN ,i
′
1,...,i

′
N

=


0 if (i′1 +

N∑
k=2

(i′k − 1)
k−1∏
l=1

Il) ≥ (i1 +
N∑
k=2

(ik − 1)
k−1∏
l=1

Il)

ai1,...,iN ,i′1,...,i′N otherwise

(2.41)
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J2

I2

I1
J1

Fig. 2.4 Pseudo-Upper Triangular Tensor

where ai1,...,iN ,i′1,...,i′N are arbitrary scalars. Similarly, the tensor is said to be pseudo-upper

triangular if

AAAi1,...,iN ,i
′
1,...,i

′
N

=


0 if (i′1 +

N∑
k=2

(i′k − 1)
k−1∏
l=1

Il) ≤ (i1 +
N∑
k=2

(ik − 1)
k−1∏
l=1

Il)

ai1,...,iN ,i′1,...,i′N otherwise

(2.42)

Shown in figures 2.3 and 2.4 are two tensors of size J1 × J2 × I1 × I2 with I1 = I2 =

J1 = J2 = 3 with their pseudo-lower and pseudo-upper triangular elements highlighted in

gray along with their pseudo-diagonal elements shown in black. It can be readily seen that

a lower triangular tensor becomes a lower triangular matrix under the tensor to matrix

transformation defined in (2.37) and a pseudo-upper triangular tensor becomes an upper

triangular matrix.

Proof. Consider a pseudo-lower triangular tensor AAA ∈ CI1×...×IN×I1×...×IN with components
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AAAi1,...,iN ,i
′
1,...,i

′
N

. The indices of the non-zero elements of this tensor have the following relation

by definition:

(i′1 +
N∑
k=2

(i′k − 1)
k−1∏
l=1

Il) < (i1 +
N∑
k=2

(ik − 1)
k−1∏
l=1

Il) (2.43)

Let the matrix transformation of this tensor be fN(AAA) = A. The components of this matrix

are

A
(i1+

N∑
k=2

(ik−1)
k−1∏
l=1

Il),(i
′
1+

N∑
k=2

(i′k−1)
k−1∏
l=1

Il)
(2.44)

Let x = i1 +
N∑
k=2

(ik− 1)
k−1∏
l=1

Il and y = i′1 +
N∑
k=2

(i′k− 1)
k−1∏
l=1

Il. Under the inequalities in (2.43)

we have

x = i1 +
N∑
k=2

(ik − 1)
k−1∏
l=1

Il

< i′1 +
N∑
k=2

(i′k − 1)
k−1∏
l=1

Il

= y (2.45)

This implies that all non-zero elements of the tensor are present either on or below the

diagonal of the matrix A. A similar proof shows that a pseudo-upper triangular tensor

transforms into an upper triangular matrix.

2.2 Signal and System Tensors

Definition 2.2.1. Function Tensor: A function tensor AAA(x) is a tensor whose components

are functions of x. Using a third order function tensor as an example, each component of

AAA(x) is written as AAAi,j,k(x).

Definition 2.2.2. Multivariate Function tensor: A generalization of the previous defi-

nition would be the multivariate function tensor AAA(x1, . . . , xp), which is a tensor whose

components are functions of the variables x1, . . . , xp. Using the same example of a third

order tensor, each component can be written as AAAi,j,k(x1, x2, . . . , xp). For example, a tensor

AAA(t, u) is a multivariate function tensor whose components are functions of t and u.
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Definition 2.2.3. Signal Tensor and System Tensors: A signal tensor XXX(t) is a function

tensor whose components are functions of time. A system tensor HHH(t, u), used to describe

linear time varying multidomain systems, is a tensor of order N+M that couples two signal

tensors of ordersN andM respectively through a contracted linear functional. For example,

let HHH(t, u) ∈ CY1×Y2...×YM×X1×X2...×XN
t be a system tensor that couples XXX(t) ∈ CX1×X2...×XN

t

with YYY(t) ∈ CY1×Y2...×YM
t . Here, CA×B

t is used to denote the set of tensors of size A × B
whose components are complex functions of t. The output tensor YYY(t) has components

YYYy1y2...yM (t) =
∑

x1x2...xN

∫ ∞
−∞

HHHy1y2...yMx1x2...xN (t, u)XXXx1x2...xN (u)du. (2.46)

Definition 2.2.4. The Contracted Convolution and Time Invariant System Tensor: A

linear time invariant system tensor HHH(t) is a tensor of order N +M that couples two signal

tensors of orders N and M respectively. Extending the contracted product to a contracted

convolution allows us to define the coupling of the input and output signal tensors by a

linear time invariant system tensor. Consider a signal tensor XXX(t) ∈ CX1×X2...×XN
t and a

system tensor HHH(t) ∈ CY1×Y2...×YM×X1×X2...×XN
t . The contracted convolution of tensor XXX(t)

and tensor HHH(t) is a tensor YYY(t) ∈ CY1×Y2...×YM
t defined as

YYY(t) = {HHH(t) ∗XXX(t)}(M+1,...,M+N ;1,2,...N), (2.47)

where

YYYy1,...,yM (t) =
∑

x1,...,xN

HHHy1,...,yM ,x1,...,xN (t) ∗XXXx1,...,xN (t)

=
∑

x1,...,xN

∫ ∞
−∞

HHHy1,...,yM ,x1,...,xN (t− τ)XXXx1,...,xN (τ)dτ. (2.48)

Let XXX(t) ∈ CX1×X2...×XN
t be a signal tensor and HHH(t) ∈ C Y1×Y2...×YM×X1×X2...×XN

t and

GGG(t) ∈ CZ1×Z2...×ZP×Y1×Y2...×YM
t be system tensors. It can readily be seen that the conditions

for associativity from (2.8) are also valid for function tensors since the only change is that

multiplications are replaced by convolutions and scalars with functions. If the output of

the cascade of these two systems is denoted by ZZZ(t) ∈ CZ1×Z2...×ZP
t , we have

ZZZ(t) = {{GGG(t) ∗HHH(t)}(P+1,...,P+M ;1,...,M) ∗XXX(t)}(P+1,...,P+N ;1,...,N) (2.49)

= {GGG(t) ∗ {HHH(t) ∗XXX(t)}(M+1,...,M+N ;1,...,N)}(P+1,...,P+M ;1,...,M)
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Definition 2.2.5. The Fourier Transform of Signal Tensors: The Fourier transform of

a signal tensor is a tensor of the Fourier transforms of its individual components. If the

Fourier transforms of all the individual functions exist, then X̆XX(f) the Fourier transform of

XXX(t) ∈ CI1×...×IN
t has components

X̆XXx1,...,xN (f) =

∫ ∞
−∞

XXXx1,...,xN (t)e−j2πftdt = F
[
XXXx1,...,xN (t)

]
(2.50)

2.3 The Tensor Framework

HHHT (t) HHHC(t) HHHR(t)

DDD(t) =
+∞∑

n=−∞
DDD[n]δ(t− nT )

XXX(t) RRR(t) YYY(t) YYY[k]

HHH(t)

Fig. 2.5 System Model

Consider a tensor communication system where DDD[n] ∈ CI1×...×IN
n represents the data

to be transmitted by the nth tensor symbol. The components of DDD[n] may be constellation

mapped data symbols or may be precoded data symbols. An example of the latter is Tensor

Partial Response Signalling (TPRS), which is detailed in Chapter 5. Let the symbol period

be T , i.e., a data tensor is transmitted at intervals of time T . Then we can represent such

a data symbol by DDD[n]δ(t − nT ) where δ(t) is Dirac’s delta function. Let the transmit

filters, the channel and the receive filters be represented by three system tensors HHHT (t) ∈
CJ1×...×JP×I1×...×IN
t , HHHC(t) ∈ CK1×...×KQ×J1×...×JP

t and HHHR(t) ∈ CI1×...×IN×K1×...×KQ
t . The

overall system model in the absence of noise is presented in Figure 2.5. The input to the

transmit filter is
+∞∑

n=−∞
DDD[n]δ(t − nT ). The dimension of the transmit signal tensor being

different from the data tensor allows a unifying representation of various schemes. For

example, P would be greater than N if the same data symbol may be sent on multiple

components of XXX(t). Similarly, when multiple data symbols are sent on a single component

of XXX(t) then P would be smaller than N . If there is a one-to-one mapping between the



2 Preliminary Definitions and System Model 21

symbols and waveforms then P would be equal to N .

The transmit signal tensor of order P is

XXX(t) =
+∞∑

n=−∞

{
HHHT (t) ∗DDD[n]δ(t− nT )

}
(N)

(2.51)

=
+∞∑

n=−∞

{
HHHT (t− nT ),DDD[n]

}
(N)

(2.52)

The effects of the channel on the transmit signal tensor is represented by a contraction with

a channel system tensor HHHC(t) of order (Q+ P ). The received signal RRR(t) ∈ CK1×...×KQ
t is

RRR(t) = {HHHC(t) ∗XXX(t)}(P ) (2.53)

The receive system tensor HHHR(t) of order (N + Q) transforms the received signal tensor

RRR(t) into a signal tensor of the same size as the data tensor. The output of the receive

filter tensor YYY(t) ∈ CI1×I2...×IN
t is

YYY(t) = {HHHR(t) ∗RRR(t)}(Q) (2.54)

From (2.54),(2.53) and (2.51) we get

YYY(t) = {HHHR(t) ∗ {HHHC(t) ∗XXX(t)}(P )}(Q)

=

{
HHHR(t) ∗

{
HHHC(t) ∗

+∞∑
n=−∞

{HHHT (t) ∗DDD[n]δ(t− nT )}(N)

}
(P )

}
(Q)

=
+∞∑

n=−∞

{
HHHR(t) ∗

{
HHHC(t) ∗ {HHHT (t) ∗DDD[n]δ(t− nT )}(N)

}
(P )

}
(Q)

Using the associativity property (2.8) we have

YYY(t) =
+∞∑

n=−∞

{{
HHHR(t) ∗ {HHHC(t) ∗HHHT (t)}(P )

}
(Q)

∗DDD[n]δ(t− nT )

}
(N)

=
+∞∑

n=−∞

{HHH(t) ∗DDD[n]δ(t− nT )}(N)

=
+∞∑

n=−∞

{HHH(t− nT ),DDD[n]}(N) (2.55)

where HHH(t) =

{
HHHR(t) ∗ {HHHC(t) ∗HHHT (t)}(P )

}
(Q)

is the overall system tensor of order 2N
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that couples the input data stream with the output of the receiver.

Sampling the received signal tensor YYY(t) at a rate of
1

T
gives us the estimate of the data

tensor

YYY[k] = YYY(kT )

=
+∞∑

n=−∞

{HHH(kT − nT ),DDD[n]}(N) (2.56)

It is important to note that no physical meaning has been attached to the mathematical

domains of the signal and system tensors in the tensor framework. This abstraction makes

the framework more general and the mapping from mathematical domains to physical

domains is done on a per application basis. The main aim of the tensor framework is

to serve as a unifying foundation that can be used to represent and design a variety of

different communication systems using several different domains. The task of mapping

physical domains to their mathematical counterparts is trivial as the basic structure of

the tensor framework remains the same for different systems. Some examples of this are

detailed in Chapter 3.

Multidimensional communication systems that exploit several domains have gained traction

in recent years. For instance, multidomain index modulation in the context of vehicle-to-

infrastructure (V2I), vehicle-to-vehicle (V2V), and high speed train communication systems

is discussed in [39]. Here, the transmitted data is mapped to the indices of the various

available domains. The domains used for transmission include the indices of transmit

antennas, receive antennas, code type, channel impulse response taps and many more

(listed in detail in [39]). Apart from this, conventional digital modulation is also used

simultaneously to improve performance. Such a system would contain several domains and

is well suited for a tensor based representation.

Inter-domain communications for in-house networks where a single transmission scheme

can be used for multiple types of wires are gaining popularity in the literature [40]. The

International Telecommunication Union (ITU) G.hn standard identified the classical in-

house mediums such as power lines, twisted-pairs and coax, to enable broadband data

communication [41]. However, a rigorous mathematical model has yet to be created for the
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study and design of such systems. Moreover, the concept of inter-domain communications

can be extended beyond indoor environments. A system that uses different transmission

media, multiple sub carriers, multiple time slots and caters to multiple users at once has

input and outputs that have five different domains. Using the tensor framework, such a

system can be modelled using fifth order tensors for the input and output and a tenth order

tensor for the channel between the two.

2.4 Tensor Nyquist Criterion

The Nyquist criterion for distortionless transmission for the scalar case is well known. A

waveform x(t) is said to satisfy the Nyquist criterion for signal interval T if

x(nT ) = δn (2.57)

where δn is the delta function defined as

δn =

0 if n 6= 0

1 if n = 0
(2.58)

Denoting the Fourier transform of x(t) by X(f), and using the Poisson Sum Formula [42]

1

T

+∞∑
k=−∞

X(f − k

T
) =

+∞∑
k=∞

x(nT )e−j2πfnT (2.59)

we have
1

T

+∞∑
k=−∞

X(f − k

T
) = 1 (2.60)

For the matrix-vector case, a generalized Nyquist criterion has been derived in the literature

by authors of [43, 44, 45]. In this section we derive a generalization of (2.57) and (2.60),

called the Tensor Nyquist Criterion, for the multi-domain case with higher-order signal

and system tensors. We then show that the existing generalizations are specific cases of

the Tensor Nyquist Criterion.
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2.4.1 The Tensor Poisson Sum Formula and Nyquist’s Criterion for Zero

Inter-Symbol Interference

To find the multi-domain criterion for zero inter-symbol interference we begin by general-

izing the ordinary Poisson sum formula [42]. Consider a signal tensor AAA(t) ∈ CI1×I2...×IK
t .

Define

AAAs(t) = AAA(t)
+∞∑

n=−∞

δ(t− nT ) (2.61)

=
+∞∑

n=−∞

AAA(nT )δ(t− nT ) (2.62)

Taking the Fourier transform of (2.61) we get

ĂAAs(f) = F [AAA(t)
+∞∑

n=−∞

δ(t− nT )]

= ĂAA(f) ∗ F [
+∞∑

n=−∞

δ(t− nT )]

= ĂAA(f) ∗ (
1

T

+∞∑
n=−∞

δ(f − n

T
)) (2.63)

=
1

T

+∞∑
n=−∞

ĂAA(f − n

T
) (2.64)

Taking the Fourier transform of (2.62) we get

ĂAAs(f) = F [
+∞∑

n=−∞

AAA(nT )δ(t− nT )]

=
+∞∑

n=−∞

AAA(nT )e−j2πfnT (2.65)

Equating (2.64) and (2.65) we get the Tensor Poisson Sum Formula:

1

T

+∞∑
n=−∞

ĂAA(f − n

T
) =

+∞∑
n=−∞

AAA(nT )e−j2πfnT (2.66)

Expanding (2.56) we get

YYY[k] =
+∞∑

n=−∞

{HHH(kT − nT ),DDD[n]}(N)
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= {HHH(0),DDD[k]}(N) +
+∞∑

n=−∞n6=k

{HHH(kT − nT ),DDD[n]}(N) (2.67)

A sufficient condition to get zero interference between symbols is

HHH(iT ) =

HHH(0) if i = 0

000T if i 6= 0
(2.68)

where 000T is the all zero tensor. Using the Tensor Poisson’s sum formula (2.66) we obtain

the Tensor Nyquist Criterion for zero inter-symbol interference:

1

T

+∞∑
n=−∞

H̆HH(f − n

T
) = HHH(0) = KKK (2.69)

where KKK is a non-zero tensor.

Assuming that (2.68) is satisfied we have

YYY[k] = {HHH(0),DDD[k]}(N) (2.70)

whose elements are

YYYl1,...,lN [k] =
∑

i1,...,iN

HHHl1,...,lN ,i1,...,iN (0)DDDi1,...,iN [k]

= HHHl1,...,lN ,l1,...,lN (0)DDDl1,...,lN [k] +
∑

i1,...,iN
i1 6=l1,...,iN 6=lN

HHHl1,...,lN ,i1,...,iN (0)DDDi1,...,iN [k] (2.71)

We see that the first term in (2.71) is a scaled version of the required data symbol and the

second term represents intra-symbol interference from other data symbols within the same

data tensor. A rather strict condition which will ensure that we are able to retrieve the

transmitted data from YYY[k] without any interference is

HHHl1,...,lN ,i1,...,iN (0) =

1 if i1 = l1, . . . , iN = lN

0 otherwise
(2.72)

This means that the tensor HHH(0) is an identity tensor. Combining (2.68) and (2.72) we get

HHHl1,...,lN ,i1,...,iN (iT ) = δi,0

N∏
k=1

δik,lk (2.73)
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where

δn,m =

1 if m = n

0 otherwise
(2.74)

Using this in (2.69) we get

1

T

+∞∑
n=−∞

H̆HH(f − n

T
) = HHH(0) = IIIN (2.75)

Even if the strict criterion is not met, it is still possible to recover the transmitted data

from YYY[k] if certain conditions are met. Assuming that (2.68) holds then recovering the

data reduces to solving the multi-linear tensor system (2.70) for DDD[k]. If the inverse of

HHH(0) exists, we have

DDD[k] = {HHH−1(0),YYY[k]}(N) (2.76)

where HHH−1(0) can be approximated by using iterative algorithms, such as the biconjugate

gradient or Jacobi methods using tensor computations [21].

If the inverse does not exist, pseudo-inversion can be used to find the solution to the multi-

linear system (2.70). The tensors D̂DD[k] minimising
∥∥{HHH(0),DDD[k]}(N) −YYY[k]

∥∥2

F
are called

the least-square solutions of (2.70) and D̃DD[k] = min
D̂DD[k]

∥∥∥D̂DD[k]
∥∥∥2

F
is called the minimum-norm

least square solution of (2.70) [22]. If {HHHH(0),HHH(0)}(N) is invertible then the least-square

solution has a unique minimiser and the multilinear system is solved as [21]

DDD[k] = {{{HHHH(0),HHH(0)}−1
(N),HHH

H(0)}(N),YYY[k]}(N) (2.77)

Finally, if such an inversion does not exist, then the minimum-norm least square solution

of (2.70) is

DDD[k] = {HHH+(0),YYY[k]}(N) (2.78)

where HHH+(0) is the Moore-Pensore pseudoinverse of HHH(0) [22].

2.4.2 Comparison with Existing Generalisations of Nyquist’s Criterion

This section surveys existing generalisations of the Nyquist Criterion and compares them

to the Tensor Nyquist Criterion presented in this paper. The problem of interference in a
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multi-carrier system is considered in [43] and [44], that propose a constraint on the overall

system impulse response to simultaneously eliminate both ISI and cross-talk. Based on

previous work, [45] presents a multidimensional Nyquist criterion.

The general system considered in [43, 44, 45] is a multi-carrier system specified as

br(t) =
+∞∑

n=−∞

M∑
m=1

anmvmr(t− nT ) r = 1, 2, . . . ,M (2.79)

where anm is the data transmitted on the mth sub-carrier during the nth symbol and vmr(t)

represents the overall system impulse response consisting of the mth transmit filter, the

channel and the rth receive filter, vmr(t) = pm(t) ∗ b(t) ∗ rr(t) where pm(t) is the mth

transmit filter, b(t) is the channel and rr(t) is the rth receive filter. Representing (2.79) in

vector matrix form we get

b(t) =
∑
n

V(t− nT )an (2.80)

where

b(t) =


b1(t)

b2(t)
...

bM(t)

V(t) =


v11(t) v21(t) . . . vM1(t)

v12(t) v22(t) . . . vM2(t)
...

...
...

...

v1M(t) v2M(t) . . . vMM(t)

 an =


an1

an2

...

anM



Sampling b(t) at rate 1
T

we get [43]

b(kT ) =
∑
n

V(kT − nT )an (2.82)

For no interference, it is required that b(kT ) = ak. The generalised Nyquist criterion to

achieve this is [43, 44]

V(iT ) = δi,0I (2.83)
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where I is the identity matrix. Taking the Fourier transform of V(t) and using the Poisson’s

sum formula we get the frequency domain conditions for zero interference as [44]

1

T

∑
n

V̆(f − n

T
) =

1

T

∑
n

p̆(f − n

T
)b̆(f − n

T
)r̆T (f − n

T
) =

+∞∑
n=−∞

V(nT )e−j2πfnT = δn,0I

(2.84)

where p̆(f) = [p̆1(f) p̆2(f) . . . p̆M(f)]T , b̆(f) and r̆T (f) = [r̆1(f) r̆2(f) . . . r̆M(f)]T are the

Fourier transforms of the transmit filters, channel and receive filters respectively. Com-

paring (2.84) with (2.75) we can see that it is a special case of the generalised Nyquist

criterion where the overall system tensor is of size M ×M with components Hi1,i2(t) =

pi2(t)∗ b(t)∗ ri1(t) and the data tensor is of order one (a vector of size M) with components

d[n] = an.
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Chapter 3

Current Systems Modelled Using the

Tensor Framework

This chapter presents models for selected waveforms using the tensor framework as exam-

ples. Representation using the tensor framework preserves the multi-domain structure of

the transmitted data. The purpose of this chapter is to show that different communication

systems can be modelled accurately using the tensor framework and that the framework

allows extensions to higher domains, such as MIMO, of waveforms that were not originally

designed for this. Besides this, it is important to note that our tensor framework is back-

ward compatible and can be used to model systems where the transmitted and received

signals have only one (vector) or two (matrix) domains. To this end, we begin with the

treatment of OFDM systems where the transmitted data is a vector and is coupled with

the received data by a matrix. We then move on to FBMC, where the transmitted data is

a matrix and is coupled with the received data by a fourth order system tensor. Finally,

we show the representation of GFDM, where the transmitted data is a third order tensor

and the system is a sixth order tensor.

The tensor framework presented in this thesis consists of signal and system tensors that

are coupled using contracted convolutions or contracted products. Other tensor based

approaches to represent specific waveforms can be found in the literature. For example,
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MIMO OFDM is modeled using a constrainted Block-PARAFAC model in [32]. A sim-

ilar PARAFAC based model is used for joint channel estimation and data detection in

FBMC/OQAM systems in [46] where the received signal is coupled with the transmitted

data using a Khatri-Rao product. A tensor model of the GFDM transmit signal using the

PARATUCK2 decomposition is presented in [47].

3.1 OFDM

In Release 15 of 3GPP [48] it was agreed that an Orthogonal Frequency Division Multiplex-

ing (OFDM) based scheme will be used for the 5G New Radio (NR) uplink and downlink

as the main candidate with Discrete Fourier Transform Spread OFDM (DFT-S-OFDM)

being used in some cases. OFDM is a multi-carrier transmission technique which uses F

orthogonal sub-carriers simultaneously to transmit data. By making all the sub-channels

narrowband, they experience almost flat fading, making equalization very simple. The or-

thogonality of the sub-carriers ensures that there is no intrinsic inter-carrier interference

(ISI). There are F sub-carriers with spacing F0 =
1

T
that carry data in one OFDM symbol.

The transmit signal is

x(t) =
+∞∑

n=−∞

F∑
κd=1

dn,κdw(t− nT )ej2π(κd−1)F0t =
+∞∑

n=−∞

F∑
κd=1

dn,κdpTκd (t− nT ) (3.1)

where dn,κd is the complex data symbol transmitted during the nth OFDM symbol on the

κdth (κd = 1, . . . , F ) sub-carrier. The filter pTκd (t) = w(t)ej2π(κd−1)F0t where w(t) is a

rectangular window of duration T defined as

w(t) =

1 for − T
2
≤ t ≤ T

2

0 otherwise
(3.2)

Under the assumption of an ideal channel, the received signal r(t) is the same as the

transmitted signal x(t). The receive filter, for the κyth subcarrier, pRκy (t) = p∗Tκy (−t) is

matched to the transmit filter, i.e., pRκy (t) = w(−t)ej2π(κy−1)F0t. The output of the receive

filter pRκy (t) is

yκy(t) = x(t) ∗ pRκy (t)
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=
+∞∑

n=−∞

F∑
κd=1

∫ +∞

−∞
dn,κdw(τ − nT )ej2πF0(κd−1)τw(−(t− τ))ej2πF0(κy−1)(t−τ)dτ (3.3)

Sampling yκy(t) at intervals of T and using w(t) = w(−t) gives

yκy(kT ) =
+∞∑

n=−∞

F∑
κd=1

∫ +∞

−∞
dn,κdw(τ − nT )ej2πF0(κd−1)(τ)w(kT − τ)ej2πF0(κy−1)(kT−τ)dτ

(3.4)

=
+∞∑

n=−∞

F∑
κd=1

∫ +∞

−∞
dn,κdw(τ − nT )w(τ − kT )ej2πF0(κd−κy)(τ)dτ (3.5)

Since w(t) is a rectangular window of duration T we have yκy(kT ) = dk,κy .

Using the tensor framework, the complex data to be transmitted on the nth OFDM symbol

DDD[n] ∈ CF
n is

DDD[n] = [dn,1, dn,2, . . . , dn,F ]T (3.6)

with components DDDi[n] = dn,i for i = 1, . . . , F . The transmit system tensor HHHT (t) ∈ C1×F
t

is

HHHT (t) = [pT1(t), pT2(t), . . . , pTF (t)] (3.7)

and has components HHHT1,i(t) = pTi(t) for i = 1, . . . , F . The transmit tensor HHHT (t) converts

DDD[n] into a signal XXX(t) ∈ Ct. We can write (3.1) using the components of (3.6) and (3.7)

as XXX(t) =
∑+∞

n=−∞
∑F

i=1HHHT1,i(t− nT )DDDi[n] which, in tensor notation, becomes

XXX(t) =
+∞∑

n=−∞

{HHHT (t− nT ),DDD[n]}(1) (3.8)

Under the assumption of an ideal channel the channel tensor is HHHC(t) ∈ Ct = δ(t) and the

received signal RRR(t) = XXX(t). The receive system tensor HHHR(t) ∈ CF×1
t is

HHHR(t) = [pR1(t), pR2(t), . . . , pRF (t)]T (3.9)

Using (3.7) and (3.9), we get the overall system tensor HHH(t) ∈ CF×F
t as HHH(t) = {HHHR(t) ∗

HHHT (t)}(1) with components

HHHκy ,κd(t) = HHHRκy (t) ∗HHHTκd
(t) = pRκy (t) ∗ pTκd (t). (3.10)
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Collecting the outputs of the received filters from (3.3) for all sub-carriers into a vector we

may now write the received signal tensor YYY(t) ∈ CF
t as YYY(t) =

+∞∑
n=−∞

{HHH(t − nT ),DDD[n]}(1)

with components

YYYκy(t) =
+∞∑

n=−∞

∑
κd

HHHκy ,κd(t− nT )DDDκd [n] (3.11)

Comparing YYY(t) with (2.55), we can see that this is a specific case when N = 1.

3.2 FBMC

Filter Bank Multi-carrier is a scheme considered for 5G. There are two types of FBMC

schemes, Staggered Multitone(SMT) and Cosine-Modulated Multitone(CMT) [49]. This

section describes SMT, also known as OQAM/OFDM. The number of sub-carriers K is

assumed to be even (K = 2M) and for two consecutive sub-carriers, the time offset is

applied to the imaginary part of the QAM symbol on one sub-carrier while it is applied to

the real part of the QAM symbol on the other sub-carrier. The transmitted signal is [50]

x(t) =
√

2
+∞∑

n=−∞

M−1∑
m=0

(
cR2m,np(t− nT ) + jcI2m,np(t−

T

2
− nT )

)
ej2π(2m)Ft

+

(
jcI2m+1,np(t− nT ) + cR2m+1,np(t−

T

2
− nT )

)
ej2π(2m+1)Ft (3.12)

where T is the signalling interval, F = 1
T

is the sub-carrier spacing, cRm,n and cIm,n are the

real and imaginary components of the QAM symbol cm,n to be transmitted on the mth sub-

carrier during the nth multi-carrier symbol, and p(t) is a real symmetric prototype filter of

duration KT where K is the overlapping factor that denotes the number of multi-carrier

symbols that overlap in time. We introduce the following notations, as in [50], to simplify

the expression in (3.12):

d2m,2n = cR2m,n, d2m,2n+1 = cI2m,n, d2m+1,2n = cI2m+1,n, d2m+1,2n+1 = cR2m+1,n (3.13)

ψ2m,2n = 0, ψ2m,2n+1 =
π

2
, ψ2m+1,2n =

π

2
, ψ2m+1,2n+1 = 0 (3.14)
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Using (3.13) and (3.14) in (3.12) we get

x(t) =
√

2
+∞∑

n=−∞

M−1∑
m=0

(
d2m,2np(t− (2n)

T

2
)eψ2m,2n + d2m,2n+1p(t− (2n+ 1)

T

2
)eψ2m,2n+1

)
ej2π(2m)Ft

+

(
d2m+1,2np(t− (2n)

T

2
)eψ2m+1,2n + d2m+1,2n+1p(t− (2n+ 1)

T

2
)eψ2m+1,2n+1

)
ej2π(2m+1)Ft

(3.15)

Defining λm,n(t) =
√

2p(t− nT
2
)ej2πmFteψm,n and substiting in (3.15) we get

x(t) =

( +∞∑
n=−∞

M−1∑
m=0

d2m,2nλ2m,2n(t) + d2m,2n+1λ2m,2n+1(t)

+ d2m+1,2nλ2m+1,2n(t) + d2m+1,2n+1λ2m+1,2n+1(t)

)
(3.16)

Since
k=Q∑
k=−P

(x2k + x2k+1) =
k=2Q+1∑
k=−2P

xk, we have from (3.16)

x(t) =
+∞∑

n=−∞

2M−1∑
m=0

(dm,2nλm,2n(t) + dm,2n+1λm,2n+1(t)) =
+∞∑

n=−∞

2M−1∑
m=0

dm,nλm,n(t)

=
+∞∑

n=−∞

2M−1∑
m=0

dm,npm(t− nT
2

)ejψm,n (3.17)

where pm(t) =
√

2p(t)ej2πmFt. The received signal is passed through an analysis filter bank

(AFB) to separate the data from different sub-carriers. The receive filter for the rth sub-

carrier, pRr(t) is matched to the transmit filter for the rth sub-carrier pr(t). i.e., we have

pRr(t) = p∗r(−t) =
√

2p(−t)ej2πmFt (p∗(−t) = p(−t) as the prototype filter p(t) is real). Let

〈λm,n(t), λp,q(t)〉 =

∫ +∞

−∞
pm(t− nT

2
)ejψm,np∗p(t− q

T

2
)e−jψp,qdt (3.18)

where 〈,〉 denotes the inner product. In a distortion free channel, perfect reconstruction

of the data is obtained if the transmit and receive filters satisfy the real orthogonality

condition [51]:

<{〈λm,n(t), λp,q(t)〉} = <{
∫ +∞

−∞
pm(t− nT

2
)ejψm,np∗p(t− q

T

2
)e−jψp,qdt} = δm,pδn,q (3.19)

In other words, this means that for (m,n) 6= (p, q), 〈λm,n(t), λp,q(t)〉 can be purely imaginary

or zero. The received signal after passing through the receive filter corresponding to the
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rth sub-carrier is

yr(t) = x(t) ∗ p∗r(−t) =
+∞∑

n=−∞

2M−1∑
m=0

dm,ne
jψm,n

∫ +∞

−∞
pm(τ − nT

2
)p∗r(τ − t)dτ (3.20)

Using the tensor framework, the data to be transmitted on the nth multicarrier symbol is

a tensor DDD[n] ∈ C2M
n with components DDDm[n] = d(m−1),ne

jψ(m−1),n and the overall channel

is HHH(t) ∈ C2M×2M
t with components HHHr,m(t) =

∫ +∞
−∞ p(m−1)(τ)p∗(r−1)(τ − t)dτ . We may now

re-write (3.20) in tensor form as

YYYr(t) =
+∞∑

n=−∞

2M∑
m=1

HHHr,m(t− nT
2

)DDDm[n] (3.21)

whereYYYr(t) = y(r−1)(t). In tensor notation (3.21) becomesYYY(t) =
∑+∞

n=−∞{HHH(t−nT
2
),DDD[n]}(1).

The signal yr(t) is sampled at intervals of k
T

2
and multiplied by the phase term e−jψr,k .

This gives

yr,k = yr(k
T

2
)e−jψr,k =

∑
n

∑
m

dm,ne
jψm,ne−jψr,k

∫ +∞

−∞
pm(τ − nT

2
)p∗r(τ − k

T

2
)dτ (3.22)

=
∑
n

∑
m

dm,n〈λm,n(t), λr,k(t)〉

=
∑
n

∑
m

dm,n<{〈λm,n, (t)λr,k(t)〉}+
∑
n

∑
m

dm,n={〈λm,n(t), λr,k(t)〉}

Using (3.19) we get

yr,k = dr,k + j

(∑
n

∑
m

dm,n={〈λm,n(t), λr,k(t)〉}

)
(3.23)

Since the interference in (3.23) is imaginary, the estimate of the transmitted data is d̂r,k =

<{yr,k}. Using tensor notation, this becomes D̂DD[k] = <{YYY(k T
2
)}.

Next, we consider the MIMO extension of FBMC. In each FBMC symbol, let there be

P independent streams of data transmitted using 2M sub-carriers, NT transmit and NR

receive antennas. There are P synthesis filter banks, one for each stream of data. Denote

the filter for the mth sub-carrier for the pth synthesis filter bank by pp,m(t). A weight

wnt,p is assigned to the pth SFB output for the ntth antenna. The weights wnt,p are the

coefficients of a linear precoder that couples the P streams of data with the NT transmit

antennas. Denote the data symbol for the pth stream, mth sub-carrier and nth FBMC
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symbol by dp,m,n. As for the scalar case in (3.17), each data symbol dp,m,n is multiplied by

a phase term ejψm,n . We get the transmit signal from the ntth antenna as

xnt(t) =
+∞∑

n=−∞

2M−1∑
m=0

P−1∑
p=0

wnt,ppp,m(t− nT
2

)ejψm,ndp,m,n (3.24)

Denoting the channel between the ntth transmit and the nrth receive antenna by hnr,nt(t),

the received signal on the nrth antenna is

rnr(t) =
∑
nt

hnr,nt(t) ∗ xnt(t) =
∑
nt

hnr,nt(t) ∗ (
+∞∑

n=−∞

2M−1∑
m=0

P−1∑
p=0

wnt,ppp,m(t− nT
2

)ejψm,ndp,m,n)

(3.25)

Let cnr,p,m(t) =
∑
nt

hnr,nt(t) ∗ wnt,ppp,m(t). We can then re-write (3.25) as

rnr(t) =
+∞∑

n=−∞

2M−1∑
m=0

P−1∑
p=0

cnr,p,m(t− nT
2

)ejψm,ndp,m,n (3.26)

There are P analysis filter banks (AFB) at the receiver, one corresponding to each transmit

SFB, that filter the NR received signals rnr(t) and produce outputs yp,m(t). Denote the

filter for the pth AFB, nrth receive antenna and mth sub-carrier by pRp,m,nr (t). The output

of the AFB is

yp,m(t) =
∑
nr

pRp,m,nr (t) ∗ rnr(t) =
∑
nr

+∞∑
n=−∞

2M−1∑
m=0

P−1∑
p=0

pRp,m,nr (t) ∗ cnr,p,m(t− nT
2

)ejψm,ndp,m,n

(3.27)

If the AFB is designed to be matched to the combined channel and transmit filter banks,

then we have pRp,m,nr (t) = c∗nr,p,m(−t). Using the Tensor Framework, the data to be trans-

mitted on the nth multi-carrier symbol is DDD[n] ∈ CP×2M
n with components

DDDp,m[n] = eψ(m−1),nd(p−1),(m−1),n for p = 1, . . . , P ;m = 1, . . . , 2M (3.28)

As discussed in Chapter 2, the data tensor in the tensor framework may be constellation

mapped data symbols or data symbols with some form of precoding. In this case, the data

tensor is the latter due to the multiplication by the phase term. The transmit system tensor

HHHT (t) ∈ CNT×P×2M
t converts DDD[n] into a signal tensor XXX(t) ∈ CNT

t . The components of the
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transmit system tensor are

HHHTnt,p,m
(t) = wnt,(p−1)p(p−1),(m−1)(t) for p = 1, . . . , P ;m = 1, . . . , 2M ;nt = 1, . . . , NT

(3.29)

We may now re-write (3.24) in tensor notation as XXX(t) = {HHHT (t − n
T

2
),DDD[n]}(2). The

channel system tensor is HHHC(t) ∈ CNR×NT
t whose components

HHHCnr,nt
(t) = hnr,nt(t) for nr = 1, . . . , NR;nt = 1, . . . , NT (3.30)

are the channel between the ntth transmit and nrth receive antenna. The output of the

channel tensor RRR(t) ∈ CNR
t is RRR(t) = {HHHC(t)∗XXX(t)}(1) and the combined channel and trans-

mit system tensor is CCC(t) = {HHHC(t) ∗HHHT (t)}(1) ∈ CNR×P×2M
t with components CCCnr,p,m(t) =∑

nt

HHHCnr,nt
(t) ∗HHHTnt,p,m

(t) =
∑
nt

hnr,nt(t) ∗ wnt,(p−1)p(p−1),(m−1)(t) = cnr,(p−1),(m−1)(t). If a

system matched to the combined channel and synthesis filter bank is used, then the receive

system tensor HHHR(t) ∈ CP×2M×NR
t is HHHR(t) = CCCH(−t) and converts RRR(t) into a signal tensor

YYY(t) ∈ CP×2M
t . The overall system tensor HHH(t) ∈ CP×2M×P×2M

t is

HHH(t) = {HHHR(t) ∗ {HHHC(t) ∗HHHT (t)}(1)}(1) = {CCCH(−t) ∗CCC(t)}(1) (3.31)

with componentsHHHp′,m′,p,m(t) =
NR∑
nr=1

CCC∗p′,m′,nr(−t)∗CCCnr,p,m(t) = c∗(p′−1),(m′−1),nr
(−t)∗cnr,(p−1),(m−1)(t).

We may now re-write (3.27), for the case when pRp,m,nr (t) = c∗p,m,nr(−t), as

y(p′−1),(m′−1)(t) =
+∞∑

n=−∞

NR∑
nr=1

2M∑
m=1

P∑
p=1

c∗(p′−1),(m′−1),nr(−t) ∗ cnr,(p−1),(m−1)(t− n
T

2
)ejψ(m−1),nd(p−1),(m−1),n

=
+∞∑

n=−∞

2M∑
m=1

P∑
p=1

HHHp′,m′,p,m(t− nT
2

)DDDp,m[n] = YYYp′,m′(t) (3.32)

Writing YYYp′,m′(t) =
+∞∑

n=−∞

2M∑
m=1

P∑
p=1

HHHp′,m′,p,m(t− nT
2
)DDDp,m[n] in tensor notation gives

YYY(t) =
+∞∑

n=−∞

{HHH(t− nT0),DDD[n]}(2) (3.33)

where T0 = T
2
. Sampling (3.33) at intervals kT0 we get

YYY[k] = YYY(kT0) =
+∞∑

n=−∞

{HHH((k − n)T0),DDD[n]}(2) (3.34)
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An estimate of the data tensor D̂DD[k] ∈ CP×2M
k is found by feeding YYY[k] into a tensor

detector GGG[k] ∈ CP×2M×P×2M
k , some of which are derived in the next section, such that

D̂DD[k] = {GGG[k],YYY[k]}(2).

3.3 Generalized Frequency Division Multiplexing (GFDM)

Generalized frequency division multiplexing (GFDM) [52] is a block-based multicarrier

modulation scheme that employs circular filtering. Consider a time-frequency resource

block of duration T and bandwidth B. The available bandwidth is divided into K equally-

spaced subcarriers with subcarrier spacing ∆f = B
K

[52], and the time slot is divided into

M subsymbols with subsymbol spacing Tsub = T
M

. The relation between the subcarrier

spacing and the subsymbol spacing is given by ∆fTsub = 1. The data symbol transmitted

on the mth subsymbol, and kth sub-carrier is modulated by a pulse pk,m(t) given by

pk,m(t) = wT (t)pT (t−mTsub)ej2π∆fkt for m = 0, . . . ,M − 1; k = 0, . . . , K − 1 (3.35)

where pT (t) is a prototype periodic pulse shape of period T , Tsub is the duration of one sub-

symbol, T = KTsub is the duration of the entire GFDM symbol, and wT (t) is a rectangular

window of duration T such that

wT (t) =

1 for t ∈ [0, T ]

0 elsewhere
(3.36)

The rectangular window wT (t) is used to limit the final modulating pulse pk,m(t) to the

interval t ∈ [0, T ]. A GFDM block hence comprises of pulse shapes generated by time and

frequency shifts of a periodic prototype pulse shape followed by multiplication by a finite

time window. The transmit signal is given by

x(t) =
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

pk,m(t− nT )dk,m,n (3.37)

where dk,m,n is the complex data transmitted during the mth subsymbol on the kth sub-

carrier and the nth GFDM symbol. Denoting the channel by c(t) and the additive white

Gaussian noise (AWGN) process by v(t), the received signal is

r(t) = c(t) ∗ x(t) + v(t)
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=
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

(
c(t) ∗ pk,m(t− nT )

)
dk,m,n + v(t) (3.38)

Defining second order tensors DDD[n] ∈ CK×M
n and HHH(t) ∈ CK×M

t with components DDDk,m[n] =

dk,m,n and HHHk,m(t) = c(t) ∗ pk,m(t), we re-write (3.38) using the tensor representation as

r(t) =
+∞∑

n=−∞

{HHH(t− nT ),DDD[n]}(2) + v(t) (3.39)

The signal r(t) is the input to a system tensor HHHR(t) ∈ CK×M×1
t where the singleton

dimension is used to indicate that the input to this system is a scalar function (r(t)).

If there is a bank of filters matched to the transmit filters at the receiver then we have

HHHRk,m(t) = p∗k,m(−t) whose output YYY(t) ∈ CK×M
t has components YYYk,m(t) = p∗k,m(−t)∗ r(t).

Extending this to the MIMO case, let P independent streams of data be transmitted

using K sub-carriers, M sub-symbols and NT transmit antennas. Let there be NR receive

antennas. Assuming that different banks of filters are used at each transmit and receive

antenna, we get the signal transmitted by the ntth antenna as

xnt(t) =
+∞∑

n=−∞

P∑
p=1

K∑
k=1

M∑
m=1

wnt,pdn,p,k,mpTnt,k,m(t− nT ) (3.40)

where dn,p,k,m is the data transmitted on the nth GFDM symbol, during the mth sub-

symbol, on the kth sub-carrier and on the pth stream. Using the Tensor Framework, the

complex data to be transmitted on the nth GFDM symbol is DDD[n] ∈ CP×K×M
n with compo-

nents DDDp,k,m[n] = dn,p,k,m. The transmit tensor HHHT (t) ∈ CNT×P×K×M
t whose (nt, p, k,m)th

component is HHHTnt,p,k,m
= wnt,ppTnt,k,m(t) converts the data tensor into a signal tensor

XXX(t) ∈ CNT
t . We write (3.40) using tensor notation as XXX(t) =

∑+∞
n=−∞{HHHT (t−nT ),DDD[n]}(3).

The channel system tensor is HHHC(t) ∈ CNR×NT
t whose components HHHCnr,nt

(t) are the chan-

nel between the ntth transmit and nrth receive antenna. The output of the channel

RRR(t) ∈ CNR
t is RRR(t) = {HHHC(t) ∗ XXX(t)}(1) and the combined channel and transmit tensor

CCC(t) ∈ CNR×P×K×M
t is CCC(t) = {HHHC(t)∗HHHT (t)}(1). If a matched filter is used at the receiver,

the receive system tensor HHHR(t) = CCCH(−t) ∈ CP×K×M×NR
t converts RRR(t) into a signal tensor

YYY(t) ∈ CP×F×K
t . The overall system tensor HHH(t) ∈ CP×K×M×P×K×M

t is

HHH(t) = {HHHR(t) ∗ {HHHC(t) ∗HHHT (t)}(1)}(1) = {CCCH(−t) ∗CCC(t)}(1) (3.41)
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and

YYY(t) =
+∞∑

n=−∞

{HHH(t− nT ),DDD[n]}(3) (3.42)

Sampling (3.42) at intervals of T gives YYY[k] = YYY(kT ) = {HHH(kT − nT ),DDD[n]}(3). An es-

timate of the data tensor D̂DD[k] ∈ CP×K×M
k is found by feeding YYY[k] into a tensor detec-

tor GGG[k] ∈ CP×K×M×P×K×M
k , some of which are derived in the next section, such that

D̂DD[k] = {GGG[k],YYY[k]}(3)



40

Chapter 4

Detection Methods

Equalization methods for single input single output (SISO) systems have been extensively

studied in the literature [53]. Such equalizers are represented by discrete or continuous

scalar functions. For the case of more than one input, there have been several publications

on multi-channel extentions in the form of MIMO equalizers. W. Etten presents a maxi-

mum likelihood receiver for a MIMO transmission system in [54]. The notion of a matrix

matched filter is defined in [55] where a MIMO zero forcing linear equalizer is derived.

Duel-Hallen presents an optimal (in the minimum mean squared error sense) linear multi-

channel equalizer in [56]. A decision feedback equalizer is also described in [56] which is

derived using factorization of matrix spectra. J. G. Proakis et. al. present optimal and

sub-optimal detectors for multiple antenna systems for both frequency-selective and fre-

quency flat fading in [57].

Matrices are well suited for the design of systems where there are several inputs and out-

puts belonging to the same domain such as uncoded multiple antenna systems. However,

tensors are a more natural tool for systems with multiple domains at both the input and

output. For example, systems that employ space-time-frequency coding have an inher-

ent multidimensional structure and are better represented using tensors. In this chapter

we derive some tensor based equalization methods for multi-domain communication sys-

tems. We present multi-domain tensor linear equalizers that are optimized based on the
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peak distortion and minimum mean squared error criterion. Further, we present non-linear

equalization methods in the form of decision feedback equalizers (DFE). Finally, we present

some performance results for the equalizers described above and also show that equalizers

for MIMO and scalar systems are a specific case of these tensor based equalizers.

As we have seen from our discussions in Chapter 2 and Chapter 3, several current com-

munication systems are inherently multidimensional in nature and hence warrant the use

of mathematical tools that maintain this structure. Many of the developments in the ten-

sor based equalizers presented in this chapter follow a similar line of thought as those of

vector-matrix based systems allowing an extension of the existing understanding of such

systems into multiple domains. The aim of this chapter is to build a foundation that allows

one to exploit the benefits of using a tensor based approach, an example of which is shown

in Chapter 5 in the form of Tensor Partial Response Signalling (TPRS), while at the same

time dispelling the perceived complexity of tensor mathematics.

4.1 Preliminaries

We begin with some important definitions that will be used throughout this chapter.

Definition 4.1.1. D-transform of a Discrete Tensor Sequence: The D-transform of a scalar

sequence x[k] is defined as

x̆(D) =
∑
k

x[k]Dk (4.1)

where D is the delay operator. A discrete tensor sequence XXX[k] ∈ CI1×...×IN
k is a function

tensor with a discrete argument k. The D-transform of XXX[k] is a tensor of the D-transform

of its components defined as

X̆XX(D) =
∑
k

XXX[k]Dk (4.2)

with components X̆XXi1,...,iN (D) =
∑
k

XXXi1,...,iN [k]Dk

Definition 4.1.2. Random Tensor: A tensor XXX ∈ CI1×...×IN is said to be random if its

components XXXi1,...,iN are random variables. Similarly, a function tensor AAA(x) ∈ CI1×...×IN
x is
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a random function tensor if its components are random processes.

Definition 4.1.3. Mean: The mean of a random tensor sequence XXX[k] ∈ CI1×...×IN
k is

defined as

µXXX[k] = E
[
XXX[k]

]
(4.3)

with components µXXXi1,...,iN [k] = E
[
XXXi1,...,iN [k]

]
Definition 4.1.4. Auto-correlation and Cross-correlation of a Random Tensor Sequence:

The auto-correlation function of a random tensor sequence XXX[k] ∈ CI1×...×IN
k is a tensor

RRRXXX[k, i] ∈ CI1×...×IN×I1×...×IN
(k,i) defined as

RRRXXX[k, i] = E
[
XXX[k] ◦XXX∗[k − i]

]
(4.4)

The pseudo-diagonal elements of RRRXXX[k, i], RRRXXXi1,...,iN ,i1,...,iN
[k, i], are the auto-correlation func-

tions of XXXi1,...,iN [k] and the cross-correlation between two different components XXXi1,...,iN [k]

and XXXi′1,...,i
′
N

[k] is RRRXXXi1,...,iN ,i
′
1,...,i

′
N

[k, i]. The cross-correlation of two random tensor sequences

XXX[k] ∈ CI1×...×IN
k and YYY[k] ∈ CJ1×...×JM

k is a tensor RRRXXX,YYY[k, i] ∈ CI1×...×IN×J1×...×JM
k defined

as

RRRXXX,YYY[k, i] = E
[
XXX[k] ◦YYY∗[k − i]

]
(4.5)

where RRRXXX,YYYi1,...,iN ,j1,...,jM
[k, i] = E

[
XXXi1,...,iN [k]YYYj1,...,jM [k − i]

]
.

Definition 4.1.5. Wide Sense Stationary Tensor Sequence: A random tensor sequence

XXX[k] ∈ CI1×...×IN
k is said to be wide sense stationary (WSS) if its mean E

[
XXX[k]

]
is inde-

pendent of k and its auto-correlation E
[
XXX[k] ◦XXX∗[k − i]

]
depends only on i.Two random

tensor sequences XXX[k] ∈ CI1×...×IN
k and YYY[k] ∈ CJ1×...×JM

k are jointly WSS if both XXX[k] and

YYY[k] are WSS and their cross-correlation E
[
XXX[k]◦YYY∗[k− i]

]
depends only on i In the rest of

this thesis, auto-correlation and cross-correlation tensors of WSS and jointly WSS tensor

sequences are indexed by one variable (RRRXXX[i] and RRRXXX,YYY[i] respectively). It can be shown

that if the input to a linear time invariant system tensor is a WSS tensor sequence, then

the output is also WSS and the input and output tensor sequences are jointly WSS.

Proof. The output of the tensor system HHH[k] ∈ CJ1×...×JM×I1×...×IN
k to a WSS input XXX[k] ∈
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CI1×...×IN
k is

YYY[k] =
+∞∑

n=−∞

{HHH[k − n],XXX[n]}(N) (4.6)

The mean of YYY[k] is

E
[
YYY[k]

]
= E

[ +∞∑
n=−∞

{HHH[k − n],XXX[n]}(N)

]
(4.7)

=
+∞∑

n=−∞
E
[
{HHH[k − n],XXX[n]}(N)

]
(4.8)

=
+∞∑

n=−∞

{HHH[k − n],E
[
XXX[n]

]
}(N) (4.9)

=
+∞∑

n=−∞

{HHH[k − n], µXXX}(N) (4.10)

=

{ +∞∑
n=−∞

HHH[k − n], µXXX

}
(N)

(4.11)

Since the summation is over all values of n,
+∞∑

n=−∞
HHH[k − n] does not depend on the value

of k. Hence, E
[
YYY[k]

]
does not depend on k.

The auto-correlation of YYY[k] is

E
[
YYY[k] ◦YYY∗[k − i]

]
= E

[( +∞∑
n=−∞

{HHH[n],XXX[k − n]}(N)

)
◦
( +∞∑
m=−∞

{HHH[m],XXX[k − i−m]}(N)

)∗]

=
+∞∑

n=−∞

+∞∑
m=−∞

E
[(
{HHH[n],XXX[k − n]}(N)

)
◦
(
{HHH[m],XXX[k − i−m]}(N)

)∗]
(4.12)

Using (2.35), (4.12) becomes

E
[
YYY[k] ◦YYY∗[k − i]

]
=

+∞∑
n=−∞

+∞∑
m=−∞

E
[(
{HHH[n],XXX[k − n]}(N)

)
◦
(
{XXX[k − i−m],HHHT [m]}(N)

)∗]

=
+∞∑

n=−∞

+∞∑
m=−∞

E
[(
{HHH[n],XXX[k − n]}(N)

)
◦
(
{XXX∗[k − i−m],HHHH [m]}(N)

)]
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Using the associativity property of the contracted and outer products from (2.8) and (2.20)

we get

=
+∞∑

n=−∞

+∞∑
m=−∞

E

[{{
HHH[n],

(
XXX[k − n] ◦XXX∗[k − i−m]

)}
(N)

,HHHH [m]

}
(N)

]

=
+∞∑

n=−∞

+∞∑
m=−∞

{{
HHH[n],E

[
XXX[k − n] ◦XXX∗[k − i−m]

]}
(N)

,HHHH [m]

}
(N)

=
+∞∑

n=−∞

+∞∑
m=−∞

{{
HHH[n],RRRXXX[m+ i− n]

}
(N)

,HHHH [m]

}
(N)

(4.13)

We can see that the RHS of (4.13) depends only on i and hence the LHS also depends

only on i. Since the mean of YYY[k] is constant and its auro-correlation depends only on the

difference i, it is WSS. The cross-correlation between XXX[k] and YYY[k] is

E
[
YYY[k] ◦XXX∗[k − i]

]
= E

[( +∞∑
n=−∞

{HHH[n],XXX[k − n]}(N)

)
◦XXX∗[k − i]

]

=
+∞∑

n=−∞
E
[(
{HHH[n],XXX[k − n]}(N)

)
◦XXX∗[k − i]

]
Using the associativity property of the contracted and outer products from equations (2.8)

and (2.20) we get

=
+∞∑

n=−∞
E
[{

HHH[n],
(
XXX[k − n] ◦XXX∗[k − i]

)}
(N)

]

=
+∞∑

n=−∞

{
HHH[n],E

[
XXX[k − n] ◦XXX∗[k − i]

]}
(N)

=
+∞∑

n=−∞

{
HHH[n],RRRXXX[i− n]

}
(N)

(4.14)

The RHS of (4.14) depends only on i and hence the cross-correlation of XXX[k] and YYY[k] also

depends only on i. Thus, the output and input are jointly WSS.
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Definition 4.1.6. Spectrum and Cross-spectrum of a tensor sequence: The spectrum of a

WSS tensor sequence XXX[k] ∈ CI1×...×IN
k is a tensor S̆SSXXX(D) ∈ CI1×...×IN×I1×...×IN

D defined as

S̆SSXXX(D) =
∑
i

RRRXXX[i]Di (4.15)

The pseudo-diagonal elements of S̆SSXXX(D), S̆SSXXXi1,...,iN ,i1,...,iN (D), are the spectra of XXXi1,...,iN and

the cross-spectrum between two different componentsXXXi1,...,iN andXXXi′1,...,i
′
N

is S̆SSXXXi1,...,iN ,i′1,...,i′N
(D).

The cross-spectrum of two tensor sequences XXX[k] ∈ CI1×...×IN
k and YYY[k] ∈ CJ1×...×JM

k is a

tensor S̆SSXXX,YYY(D) ∈ CI1×...×IN×J1×...×JM
D defined as

S̆SSXXX,YYY(D) =
∑
i

RRRXXX,YYY[i]Di (4.16)

where S̆SSXXX,YYYi1,...,iN ,j1,...,jM
(D) =

∑
iRRRXXX,YYYi1,...,iN ,j1,...,jM

[i]Di.

For example, consider a tensor AAA[k] ∈ CI1×...×IN
k such that all the components AAAi1,...,iN [k]

are un-correlated and have average power σ2
AAA. The auto-correlation of AAA[k] is

RRRAAA[i] = σ2
AAAIIINδ(i) (4.17)

and the spectrum of AAA[k] is

S̆SSAAA(D) = σ2
AAAIIIN (4.18)

where IIIN is the identity tensor of size I1 × . . .× IN × I1 × . . .× IN

Definition 4.1.7. Discrete System tensors: A discrete system tensor is a tensor HHH[n] ∈
CI1×...IN×J1...×JM
n that couples an input tensor sequence XXX[n] ∈ CJ1×...×JM

n with an output

tensor sequence YYY[k] ∈ CI1×...×IN
k through a discrete contracted convolution defined as:

YYY[k] =
∑
n

{HHH[n],XXX[k − n]}(M) (4.19)

Taking the D-transform of (4.19) we get

Y̆YY(D) =
∑
k

YYY[k]Dk

=
∑
k

(∑
n

{HHH[n],XXX[k − n]}(M)

)
Dk

=
∑
k

(∑
n

{HHH[n],XXX[k − n]}(M)

)
Dk−nDn
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=
∑
n

{HHH[n],

(∑
k

XXX[k − n]Dk−n
)
}(M)D

n

=
∑
n

{HHH[n]Dn, X̆XX(D)}(M)

= {
(∑

n

HHH[n]Dn

)
, X̆XX(D)}(M)

= {H̆HH(D), X̆XX(D)}(M) (4.20)

Next, we show that if the input XXX[k] to the system HHH[k] is wide sense stationary (WSS),

then we have

S̆SSYYY(D) = {H̆HH(D), {S̆SSXXX(D),H̆HH
H

(D−1)}(M)}(M) (4.21)

where S̆SSXXX(D) is the spectrum of XXX[k]. Further, X̆XX(D) and the output Y̆YY(D) are jointly WSS

with cross spectrum

S̆SSYYY,XXX(D) = {H̆HH(D), S̆SSXXX(D)}(M) (4.22)

Proof. The auto-correlation tensor of the output YYY[k] has components

RRRYYYm1,...,mN ,n1,...,nN
(i) = E

[
YYYm1,...,mN [k] ◦YYY∗n1,...,nN

[k − i]
]

= E
[(∑

m

∑
j1

. . .
∑
jM

HHHm1,...,mN ,j1,...,jM [m]XXXj1,...,jM [k −m]
)

·
(∑

n

∑
p1

. . .
∑
pM

HHH∗n1,...,nN ,p1,...,pM
[n]XXX∗p1,...,pM [k − i− n]

)]
(4.23)

=
∑
m

∑
j1

. . .
∑
jM

HHHm1,...,mN ,j1,...,jM [m]

·
∑
n

∑
p1

. . .
∑
pM

HHH∗n1,...,nN ,p1,...,pM
[n]RRRXXXj1,...,jM ,p1,...,pM

[n+ i−m] (4.24)

Taking the D-Transform of RRRYYYm1,...,mN ,n1,...,nN
[i] we get

S̆SSYYYm1,...,mN ,n1,...,nN
(D) =

∑
i

RRRYYYm1,...,mN ,n1,...,nN
[i]Di

=
∑
i

(∑
m

∑
j1

. . .
∑
jM

HHHm1,...,mN ,j1,...,jM [m]

·
∑
n

∑
p1

. . .
∑
pM

HHH∗n1,...,nN ,p1,...,pM
[n]RRRXXXj1,...,jM ,p1,...,pM

[n+ i−m]

)
Di
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=
∑
i

(∑
m

∑
j1

. . .
∑
jM

HHHm1,...,mN ,j1,...,jM [m]

·
∑
n

∑
p1

. . .
∑
pM

HHH∗n1,...,nN ,p1,...,pM
[n]RRRXXXj1,...,jM ,p1,...,pM

[n+ i−m]

)
DmD−nDn+i−m

=
∑
m

∑
j1

. . .
∑
jM

HHHm1,...,mN ,j1,...,jM [m]Dm

·
∑
n

∑
p1

. . .
∑
pM

HHH∗n1,...,nN ,p1,...,pM
[n]D−n

∑
i

RRRXXXj1,...,jM ,p1,...,pM
[n+ i−m]Dn+i−m

=
∑

j1,...,jM

H̆HHm1,...,mN ,j1,...,jM (D)
∑

p1,...,pM

H̆HH
∗
n1,...,nN ,p1,...,pM

(D−1)S̆SSXXXj1,...,jM ,p1,...,pM
(D)

(4.25)

which in tensor notation gives

S̆SSYYY(D) = {H̆HH(D), {S̆SSXXX(D),H̆HH
H

(D−1)}(M)}(M) (4.26)

The cross correlation tensor RRRYYY,XXX[i] has components

RRRYYY,XXXi1,...,iN ,j1,...,jM
(i) = E

[
YYYi1,...,iN [k] ◦XXX∗j1,...,jM [k − i]

]
= E

[(∑
m

∑
p1

. . .
∑
pM

HHHi1,...,iN ,p1,...,pM [m]XXXp1,...,pM [k −m]
)
XXX∗j1,...,kM [k − i]

)]
(4.27)

=
∑
n

∑
p1

. . .
∑
pM

HHHi1,...,iN ,p1,...,pM [m]RRRXXXp1,...,pM ,j1,...,jM
[i−m] (4.28)

Taking the D transform we get the Cross spectrum

S̆SSYYY,XXX(D) = {H̆HH(D), S̆SSXXX(D)}(M) (4.29)

Next we show that

S̆SSYYY,XXX(D) = S̆SS
H

XXX,YYY(D−1) (4.30)

Proof. The cross correlation tensor RRRXXX,YYY[i] is

RRRXXX,YYY[i] = E
[
YYY[k] ◦XXX∗[k − i]

]
(4.31)
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and has components

RRRXXX,YYYj1,...,jM ,i1,...,iN
[i] = E

[
XXXj1,...,jM [k]YYY∗i1,...,iN [k − i]

]
= E

[
XXXj1,...,kM [k]

(∑
m

∑
p1

. . .
∑
pM

HHHi1,...,iN ,p1,...,pM [m]XXXp1,...,pM [k − i−m]

)∗]
= E

[
XXXj1...kM [k]

(∑
m

∑
p1

. . .
∑
pM

HHH∗i1,...,iN ,p1,...,pM [m]XXX∗p1,...,pM [k − i−m]

)]
= E

[∑
m

∑
p1

. . .
∑
pM

HHH∗i1,...,iN ,p1,...,pM [m]XXX∗p1,...,pM [k − i−m]XXXj1,...,kM [k]
]

=
∑
m

∑
p1

. . .
∑
pM

HHH∗i1,...,iN ,p1,...,pM [m]E
[
XXX∗p1,...,pM [k − i−m]XXXj1,...,jM [k]

]
=
∑
m

∑
p1

. . .
∑
pM

HHH∗i1,...,iN ,p1,...,pM [m]

(
E
[
XXXp1,...,pM [k − i−m]XXX∗j1,...,jM [k]

])∗
=
∑
m

∑
p1

. . .
∑
pM

HHH∗i1,...,iN ,p1,...,pM [m]RRR∗XXXp1,...,pM ,j1,...,jM
[−i−m]

=
∑
m

∑
p1

. . .
∑
pM

RRRH
XXXj1,...,jM ,p1,...,pM

[i+m]HHHH
p1,...,pM ,i1,...,iN

[m] (4.32)

In tensor notation, (4.32) can be written as

RRRXXX,YYY[i] =
∑
m

{RRRH
XXX [i+m],HHHH [m]}(M) (4.33)

taking the D-transform of (4.33) we have

S̆SSXXX,YYY(D) =
∑
i

RRRXXX,YYY[i]Di

=
∑
i

(∑
m

{RRRH
XXX [−i−m],HHHH [m]}(M)

)
Di

=
∑
i

(∑
m

{RRRH
XXX [−i−m],HHHH [m]}(M)

)
Di+mD−m

=
∑
m

{
(∑

i

RRRH
XXX [−(i+m)]Di+m

)
,HHHH [m]}(M)D

−m

=
∑
m

{S̆SS
H

XXX (D−1),

(
HHHH [m]D−m

)
}(M)

= {S̆SS
H

XXX (D−1),H̆HH
H

(D−1)}(M)
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=

(
{H̆HH(D−1), S̆SSXXX(D−1)}(M)

)H
= S̆SS

H

YYY,XXX(D−1) (4.34)

Definition 4.1.8. Causality of a Discrete System Tensor Causality for scalar systems is

well known. A scalar system h[n] is said to be causal if the output y[n] depends only on

the present and past values, x[n], x[n− 1], . . ., of x[n]. However, the definition of causality

for tensor systems offers more flexibility since there are several components within each

tensor. We start with the definition of loose causality of a system tensor. A system tensor

HHH[n] ∈ CJ1×...×JM×I1×...×IN
n is said to be loosely causal if

HHH[n] = 0T for n < 0 (4.35)

The D-transform of such a system has the form

H̆HH(D) = HHH[0] +HHH[1]D +HHH[2]D2 + . . . (4.36)

Next, for system tensors whose input and output have the same dimensions, we define

strict causality. For a matrix system A[k] ∈ CN×N
k with an input v[k] ∈ CN

k , authors

in [56] define the system A[k] to be causal if the output wi[k] =
∑
n

N∑
j=1

Ai,j[n]vj[k − n]

does not depend on ‘future’ inputs vi+1[k],vi+2[k], . . . ,vN [k],v[k + 1],v[k + 2] . . ., i.e.,

Ă(D) = A[0] + A[1]D + A[2]D2 + . . . and A[0] is a lower triangular matrix. This means

that within a vector symbol v[k], there is a sequencing of the components where vj[k]

appears before vi[k] if j < i that indicates what future means. This is just one possible

sequencing of the components of v[k] and a different sequencing would result in a different

structure of A[0]. We extend this definition of causality to tensor systems. Such systems

are encountered, for example, in the case of decision feedback equalizers that take into

consideration past decisions within the same tensor symbol as well as past decisions of

previous tensor symbols, the feedback system is a strictly causal system.

Consider a system tensor GGG[n] ∈ CI1×...×IN×I1×...×IN
n with input XXX[n] ∈ CI1×...×IN

n and

output YYY[n] ∈ CI1×...×IN
n . Next, define a sequencing of the components of these input
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and output tensors such that for two components XXXi1,...,iN and XXXi′1,...,i
′
N

, XXXi′1,...,i
′
N

is a future

component if : (
i′1 +

N∑
k=2

(i′k − 1)
∏
l=k−1

Il
)
>
(
i1 +

N∑
k=2

(ik − 1)
∏
l=k−1

Il
)

(4.37)

For such a sequencing, the system GGG[n] is said to be strictly causal if a particular component

YYYi1,...,iN [n] does not depend on ‘future’ components as defined in (4.37). In such a case, GGG[0]

is a pseudo-lower triangular tensor. Thus, we have

GGG[n] = 0T for n < 0 (4.38)

and

GGGi′1,...,i′N ,i1,...,iN [0]

0 if
(
i′1 +

∑N
k=2(i′k − 1)

∏
l=k−1 Il

)
<
(
i1 +

∑N
k=2(ik − 1)

∏
l=k−1 Il

)
gi1,...,iN ,i′1,...,i′N otherwise

(4.39)

where gi1,...,iN ,i′1,...,i′N are arbitrary scalars where at least one of them is non-zero.

As an example, consider a second order input XXX[n] ∈ C3×3 and a system GGG[n] ∈ C3×3×3×3
n .

Then (4.39) becomes

GGGi′1,i′2,i1,i2 =

0 if i′1 + 3(i′2 − 1) < i1 + 3(i2 − 1)

gi′1,i′2,i1,i2 otherwise
(4.40)

Figure 4.1 shows the ordering of the components of the input and the non-zero components

of the system tensor highlighted in gray. It is important to note here that the ordering

given here is just one of the many possible sequences and the structure of a strictly causal

tensor would change accordingly. However, this is the sequencing used in the rest of this

thesis.

For any system C̆CC(D), we define its purely causal part as

C̆CC(D)+ = CCC[0]+ +CCC[1]D + . . . (4.41)

and its anti-causal component as

C̆CC(D)− = C̆CC(D)− C̆CC(D)+ (4.42)

where CCC[0]− is the pseudo-upper triangular part of CCC[0]. For the case of matrix systems
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I1

I2

1

2

3

4

5

6

7

8

9

(a) a

I ′2
I2

I1
I ′1

(b) b

Fig. 4.1 (a) Sequencing of input components (b) non zero elements of causal
system

(4.38) and (4.39) reduce to the definitions found in [56]. A matrix filter Ğ(D) ∈ CN×N
D that

couples a vector input x̆(D) ∈ CN
D with a vector output y̆(D) ∈ CN

D through the relation

y̆(D) = Ğ(D)x̆(D) is causal if it has the form

G(D) = G[0] + G[1]D + G[2]D2 + . . . (4.43)

If, further G[0] is lower triangular, then the system G(D) is purely causal.

Both causal and strictly causal system tensors can be represented using a tensor tapped

delay line model, the structure of which is shown in Fig. 4.2.

Definition 4.1.9. Factoring the Spectral Tensor The factoring of a scalar spectrum S̆x(D)

such that S̆x(D) = ğ(D)ğ∗(D−1) with ğ(D) being a stable minimum phase transform is well

known in the literature [57]. Authors of [58] and [59] generalize this factorization for the

case of the spectrum of a vector. We wish to find a similar factorization for the spectrum

S̆SSXXX(D) ∈ CI1×...×IN×I1×...×IN
D of a tensor XXX[k] ∈ CI1×...×IN

k . It is assumed that the spectral

tensor S̆SSXXX(D) is rational and stable. This means that all of its components are rational and

stable transfer functions. The problem is to find a factorization

S̆SSXXX(D) = {Q̆QQ(D), Q̆QQ
H

(D−1)}(N) (4.44)
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×

×D

×D

×D

×D

+

XXX[k]

GGG[0]

GGG[1]

GGG[2]

GGG[3]

GGG[M ]

XXX[k − 1]

XXX[k − 2]

XXX[k − 3]

XXX[k −M ]

YYY[k]

Fig. 4.2 Tensor Tapped Delay Line

where Q̆QQ(D) ∈ CI1×...×IN×I1×...×IN
D is causal and stable and has a stable inverse Q̆QQ

−1
(D).

To solve the factorization problem we consider the case when an input tensor P̆PP(D) with

spectrum S̆SSPPP(D) = IIIN excites a system Q̆QQ(D). From (4.21) we have that the output, say

R̆RR(D), of this system will have a spectrum

S̆SSRRR(D) = {Q̆QQ(D), {S̆SSPPP(D), Q̆QQ
H

(D−1)}(N)}(N) = {Q̆QQ(D), Q̆QQ
H

(D−1)}(N) (4.45)

If R̆RR(D) excites a series of cascaded linear systems T̆TT1(D), T̆TT2(D), . . . T̆TTL(D) such that the

output of this overall system, say ŬUU(D), has an identity spectrum S̆SSUUU(D) = IIIN then this
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cascade is the inverse of Q̆QQ(D). We have

Q̆QQ
−1

(D) = {{T̆TTL(D), T̆TTL−1(D)}(N), . . . T̆TT1(D)}(N) (4.46)

and

Q̆QQ(D) = {{T̆TT
−1

1 (D), T̆TT
−1

2 (D)}(N), . . . T̆TT
−1

L (D)}(N) (4.47)

The solution of the factorization problem is performed by a series of L tensor transforma-

tions on the spectral tensor that converts it into an identity tensor with the constraint that

each T̆TTi(D) and its inverse T̆TT
−1

i (D) are stable.

4.2 Linear Equalization

In this section, we investigate some linear tensor equalization architectures for systems with

multi-domain interference (both inter-tensor and intra-tensor).

4.2.1 Equivalent Discrete Time Model

HHHT (t) HHHC(t) +

HHHR(t)GGG[m]

DDD(t) =
∑+∞
−∞DDD[n]δ(t− nT ) XXX(t)

RRR(t)

YYY(t)

NNN(t)

YYY[k]D̂DDk

Fig. 4.3 Noisy System Model

Consider the system in Figure 4.3. The data transmitted on the nth tensor sym-

bol is DDD[n] ∈ CI1×...×IN
n . The transmit, channel and receive system tensors are HHHT (t) ∈

CJ1×...×JM×I1×...×IN
t , HHHC(t) ∈ CK1×...×KO×J1×...×JM

t , HHHR(t) ∈ CL1×...×LP×K1×...×KO
t respec-

tively, NNN(t) ∈ CK1×...×KO
t is an additive noise tensor, and XXX(t) ∈ CJ1×...×JM

t is the output
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of the transmit system tensor and YYY(t) ∈ CL1×...×LP
t is the output of the receive system

tensor. Furthermore, GGG[n] ∈ CI1×...×IN×L1×...×LP
n is a discrete system tensor whose output

D̂DD[n] is the estimate of the data DDD[n]. The input to the receive system tensor is

RRR(t) =

{
{HHHC(t) ∗HHHT (t)}(M) ∗

∑
n

DDD[n]δ(t− nT )

}
(N)

+NNN(t)

= {CCC(t− nT ),DDD[n]}(N) +NNN(t) (4.48)

where the cascade of the transmit tensor and the channel tensor is represented by CCC(t) =

{HHHC(t) ∗HHHT (t)}(M) ∈ CK1×...×KO×I1×...IN
t . The output of the receive system tensor is

YYY(t) = {HHHR(t) ∗RRR(t)}(O) + {HHHR(t) ∗NNN(t)}(O)

=
+∞∑

n=−∞

{HHH(t− nT ),DDD[n]}(N) +VVV(t) (4.49)

where HHH(t) ∈ CL1×...×LP×I1×...×IN
t is the overall system tensor comprising the transmit,

channel and receive system tensors, and VVV(t) = {HHHR(t) ∗NNN(t)}(O) ∈ CL1×...×LP
t . Sampling

the output YYY(t) at a rate of 1
T

, we get

YYY[k] = YYY(kT )

=
+∞∑

n=−∞

{HHH(kT − nT ),DDD[n]}(N) +VVV[kT ]

=
+∞∑

n=−∞

{HHH[k],DDD[k − n]}(N) +VVV[k] (4.50)

where HHH[k] = HHH(kT ) is the kth sample of HHH(t) and VVV[k] = {HHHR(t) ∗NNN(t)}(O)

∣∣∣∣
(t=kT )

is the

sampled noise with autocorrelation

RRRVVV[i] = E
[
VVV[k] ◦VVV∗[k − i]

]
(4.51)

The D-transform of (4.50) is

Y̆YY(D) = {H̆HH(D),D̆DD(D)}(N) + V̆VV(D) (4.52)

The output of GGG[n], which is the estimate of the data tensor DDD[k], is

D̂DD[k] =
∑
m

{GGG[m],YYY[k −m]}(P )
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=
∑
m

∑
n

{GGG[m], {HHH[n],DDD[k −m− n]}(N)}(P ) +
∑
m

{GGG[m],VVV[k −m]}(P )

=
∑
m

∑
n

{GGG[m], {HHH[n],DDD[k −m− n]}(N)}(P ) + ṼVV[k] (4.53)

The D-transform of (4.53) is

ˆ̆
DDD(D) = {ĞGG(D), Y̆YY(D)}(P )

= {ĞGG(D), {H̆HH(D),D̆DD(D)}(N)}(P ) +
˘̃
VVV(D) (4.54)

The system defined by (4.53) is called the equivalent discrete time system model and is

shown in Figure 4.4.

HHH[k]
DDD[k]

+

VVV[k]

GGG[k]
D̂DD[k]

Fig. 4.4 Equivalent Discrete Time System Model

4.2.2 Whitened matched filter

Theorem 2. Consider an input XXX(t) =
+∞∑

n=−∞
XXX[n]δ(t − nT ) ∈ CI1×...×IN

t to a system

tensor AAA(t) ∈ CJ1×...×JM×I1×...×IN
t . The output of this filter, corrupted by additive white

Gaussian noise, is RRR(t) = {AAA(t) ∗XXX(t)}(N) +NNN(t) where NNN(t) is a tensor whose components

are white Gaussian noise processes. Let RRR(t) be the input to a system tensor BBB(t) ∈
CI1×...×IN×J1×...×JM
t with an output YYY(t) ∈ CI1×...×IN

t . The per component SNR of the

samples YYY(kT ) = YYY[k] is maximized when BBB(t) = AAAH(−t).

The proof of this can be found in Appendix A.1. Assuming that the receive filter is

a Tensor Matched filter, that is matched to the combined channel and transmit tensors,

we have HHHR(t) = CCCH(−t) ∈ CI1×...×IN×K1×...×KO
t . The overall system tensor is HHH(t) =

{CCCH(−t) ∗CCC(t)}(O) ∈ CI1×...×IN×I1×...×IN
t which can be written component wise as:

HHHj1,...,jN i1,...,iN (t) =
∑
k1

. . .
∑
kO

CCCHi1,...,iN ,k1,...,kO(−t) ∗CCCk1,...,kO,j1,...,jN (t)
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=
∑
k1

. . .
∑
kO

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (τ − t)CCCk1,...,kO,j1,...,jN (τ)dτ ′ (4.55)

For the noise tensor VVV(t), denote its continuous auto-correlation tensor as ΦVVV(p) = E
[
VVV(t)◦

VVV∗(t− p)
]

with components

ΦVVVi1,...,iN ,j1,...,jN
(p) = E

[∑
k1

. . .
∑
kO

∫ +∞

−∞
CCCHi1,...,iN ,k1,...,kO(−τ)NNNk1,...,kO(t− τ)dτ

·
∑
k′1

. . .
∑
k′O

∫ +∞

−∞
CCCHj1,...,jN ,k′1,...,k′O

(−τ ′)NNNk′1,...,k
′
O

(t− p− τ ′)dτ ′
]

=
∑
k1

. . .
∑
kO

∑
k′1

. . .
∑
k′O

∫ +∞

−∞

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)CCCk′1,...,k′O,j1,...,jN (−τ ′)

· E
[
NNNk1,...,kO(t− τ)NNNk′1,...,k

′
O

(t− p− τ ′)
]
dτdτ ′

=
∑
k1

. . .
∑
kO

∑
k′1

. . .
∑
k′O

∫ +∞

−∞

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)CCCk′1,...,k′O,j1,...,jN (−τ ′)

· ΦNNNk1,...,kO,k
′
1,...,k

′
O

(p+ τ ′ − τ)dτdτ ′ (4.56)

When the components of the noise tensor NNN(t) are white uncorrelated Gaussian random

processes with double sided spectral density N0 we get

ΦNNNk1,...,kO,k
′
1,...,k

′
O

(p+τ ′−τ) =

N0δ(p+ τ ′ − τ) if k1 = k′1, k2 = k′2, . . . , kO = k′O

0 otherwise
(4.57)

Using (4.57) in (4.56) gives

ΦVVVi1,...,iN ,j1,...,jN
(p) =

∑
k1,...,kO

∫ +∞

−∞

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)CCCk1,...,kO,j1,...,jN (−τ ′)N0δ(p+ τ ′ − τ)dτdτ ′

= N0

∑
k1,...,kO

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)

∫ +∞

−∞
CCCk1,...,kO,j1,...,jN (−τ ′)δ(p+ τ ′ − τ)dτdτ ′

= N0

∑
k1,...,kO

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)CCCk1,...kO,j1,...,jN (−(τ − p))dτ

= N0

∑
k1,...,kO

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (−τ)CCCk1,...,kO,j1,...,jN (p− τ)dτ
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Making the substitution p− τ = k gives

ΦVVVi1,...,iN ,j1,...,jN
(p) = N0

∑
k1,...,kO

−
∫ −∞

+∞
CCC∗k1,...,kO,i1,...,iN (k − p)CCCk1,...,kO,j1,...,jN (k)dk

= N0

∑
k1,...,kO

∫ +∞

−∞
CCC∗k1,...,kO,i1,...,iN (k − p)CCCk1,...,kO,j1,...,jN (k)dk (4.58)

Comparing (4.58) with (4.55), we can see that ΦVVV(p) = N0HHH(p). Sampling ΦVVV(p) and

taking its D-transform gives us the noise spectral tensor

S̆SSVVV(D) = N0H̆HH(D) (4.59)

The spectrum of the noise may be factorized into factor tensors as

S̆SSVVV(D) = N0{Q̆QQ(D), Q̆QQ
H

(D)−1}(N) (4.60)

and using (4.60) in (4.59) gives

H̆HH(D) = {Q̆QQ(D), Q̆QQ
H

(D−1)}(N) (4.61)

An example of such a factorization is provided in Appendix 3.1. (4.52) may now be re-

written as

Y̆YY(D) = {{Q̆QQ(D), Q̆QQ
H

(D−1)}(N),D̆DD(D)}(N) + {Q̆QQ(D), N̆NN(D)}(N) (4.62)

The output noise in (4.62) is coloured and is whitened by passing Y̆YY(D) through a system

Q̆QQ
−1

(D) whose output is

Z̆ZZ(D) = {Q̆QQ
−1

(D), Y̆YY(D)}(N) (4.63)

= {Q̆QQ
−1

(D), {{Q̆QQ(D), Q̆QQ
H

(D−1)}(N),D̆DD(D)}(N) + {Q̆QQ(D), N̆NN(D)}(N)}(N) (4.64)

= {Q̆QQ
−1

(D), {{Q̆QQ(D), Q̆QQ
H

(D−1)}(N),D̆DD(D)}(N)}(N) + {Q̆QQ
−1

(D), {Q̆QQ(D), N̆NN(D)}(N)}(N)

Using the associativity property (2.8) we get

= {{{Q̆QQ
−1

(D), Q̆QQ(D)}(N), Q̆QQ
H

(D−1)}(N),D̆DD(D)}(N) + {{Q̆QQ
−1

(D), Q̆QQ(D)}(N), N̆NN(D)}(N)

= {Q̆QQ
H

(D−1),D̆DD(D)}(N) + N̆NN(D) (4.65)

From Theorem 2, we know that the SNR at the output of the matched filter is maximized.

However, the matched filter correlates the noise. This correlation is removed by the noise

whitening filter. Define FFF[k] as a sequence of tap co-efficients whose D-transform is F̆FF(D) =
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Q̆QQ
H

(D−1). The overall input-output relation of a system comprising of the transmit system

tensor, the multi-domain channel, the tensor matched filter and the noise whitening tensor

tapped delay line is then

ZZZ[k] =
∑
n

{FFF[n],DDD[k − n]}(N) +NNN[k] (4.66)

4.2.3 Peak Distortion Criterion

Let the cascade of the the overall system HHH[k] and the equalizer GGG[k] from (4.53) be denoted

by PPP[k] ∈ CI1×...×IN×I1×...×IN
k . We have

P̆PP(D) = {ĞGG(D),H̆HH(D)}(P ) (4.67)

with tap co-efficients

PPP[k] =
∑
m

{GGG[m],HHH[k −m]}(P ) (4.68)

Rewriting (4.53) using (4.68) we get

D̂DD[k] =
∑
m

∑
n

{GGG[m], {HHH[k −m− n],DDD[n]}(N)}(P ) + ṼVV[k]

Using the associativity property gives

D̂DD[k] =
∑
n

{{∑
m

GGG[m],HHH[k −m− n]

}
(P )

,DDD[n]

}
(N)

+ ṼVV[k]

=
∑
n

{PPP[k − n],DDD[n]}(N) +
∑
m

{GGG[m],VVV[k −m]}(P )

=
∑
n

{PPP[n],DDD[k − n]}(N) +
∑
m

{GGG[m],VVV[k −m]}(P ) (4.69)

which on expansion gives

D̂DD[k] = {PPP[0],DDD[k]}(N) +
∑
n,n 6=0

{PPP[n],DDD[k − n]}(N) +
∑
m

{GGG[m],VVV[k −m]}(P ) (4.70)

whose components are

D̂DDi1,...,iN [k] = PPPi1,...,iN ,i1,...,iN [0]DDDi1,...,iN [k] +
∑

j1,...,jN
(j1...jN ) 6=(i1...iN )

PPPi1,...,iN ,j1,...,jN [0]DDDj1,...,jN [k]
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+
∑
n,n 6=0

∑
j1,...,jN

PPPi1,...,iN ,j1,...,jN [n]DDDj1,...,jN [k − n] +
∑
m

∑
l1,...,lP

GGGi1,...,iN ,l1,...,lP [k −m]VVVl1,...,lP [m]

(4.71)

The first term on the RHS of (4.71) is a scaled version of the required data symbol, the

second term is interference from other components within the same tensor (intra-tensor

interference), the third term is the interference from other tensor symbols (inter-tensor

interference) and the fourth term is the filtered noise. The inter-tensor interference and

intra-tensor interference combined are dubbed multi-domain interference (MDI). For an

output D̂DDi1...iN [k], we define the worst case or maximal possible value of the amplitude

of the combined multi-domain interference relative to the magnitude of the desired signal

sample as the peak distortion at D̂DDi1,...,iN . The peak distortion at i1, . . . , iN is then denoted

by

Ii1,...,iN = max

(∣∣∣∣ ∑
j1,...,jN

(j1,...,jN ) 6=
(i1,...,iN )

PPPi1,...,iN ,j1,...,jN [0]DDDj1,...,jN [k] +
∑
n,n 6=0
j1,...,jN

PPPi1,...,iN ,j1,...,jN [n]DDDj1,...,jN [k − n]

∣∣∣∣
)

(4.72)

The overall worst-case distortion is the maximum value of Ii1,...,iN over all the outputs

i1, . . . , iN and is denoted by

I0 = max
i1,...,iN

Ii1,...,iN (4.73)

For z1, . . . , zP ∈ C we have |
∑
i

zi| ≤
∑
i

|zi| with equality only when z1, . . . , zN have the

same argument. When the arguments are different, the difference between the two sides

of the inequality reduces as the largest difference in argument reduces. In general, the

peak value of the distortion is achieved when for a given PPP[k], the components of DDD[k] are

such that the difference in argument between any two terms in (4.72) is minimum. If the

argument of the components are the same, then we have

Ii1,...,iN = max

( ∑
j1,...,jN

(j1,...,jN )6=
(i1,...,iN )

∣∣∣∣PPPi1,...,iN ,j1,...,jN [0]DDDj1,...,jN [k]

∣∣∣∣+ ∑
n,n6=0
j1,...,jN

∣∣∣∣PPPi1,...,iN ,j1,...,jN [n]DDDj1,...,jN [k−n]

∣∣∣∣
)

Let Dmax denote the maximum value that the modulus of a component of DDD[k] can take.
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Then the peak value of the distortion occurs when |DDDj1,...,jN [k]| = Dmax. For such a case

we have

Ii1,...,iN = Dmax

( ∑
j1,...,jN

(j1,...,jN ) 6=
(i1,...,iN )

∣∣∣∣PPPi1,...,iN ,j1,...,jN [0]

∣∣∣∣+
∑
n,n6=0
j1,...,jN

∣∣∣∣PPPi1,...,iN ,j1,...,jN [n]

∣∣∣∣) (4.74)

For the scalar case where the channel and equalizer are represented by f [n] and c[n] re-

spectively, (4.73) reduces to

I0 = max(|
∑
n,n 6=0

q[n]d[k − n]|) (4.75)

where q[n] =
+∞∑

m=−∞
c[n]f [k−n] denotes the convolution of the channel and the equalizer. If

q[n] and d[n] are real, and the maximum value of |d[k]| is denoted by dmax, the maximum

value of (4.75) occurs when all the |d[k − n]| = dmax and the algebraic sign of d[k − n] is

the same as q[n]. In this case, (4.75) becomes

I0 = dmax
∑
n,n 6=0

|q[n]| (4.76)

which is consistent with the definition of peak distortion of [60]. The aim of the first linear

equalizer is to minimize Io and this is called the Peak Distortion or Zero Forcing (ZF)

Criterion. From our previous discussions of the generalized Nyquist criterion if the overall

system follows the strict Generalized Nyquist criterion then PPPi1,...,iN ,j1,...,jN [k] = 0 for k 6= 0

and (i1, . . . , iN) 6= (j1, . . . , jN) and hence I0 = 0. Denote the equalizer with the optimal

tap coefficient tensors such that the worst case distortion is minimized by GGGZF [k]. From

(2.68) we have that

P̆PP(D) = {ĞGG
ZF

(D),H̆HH(D)}(P ) = IIIN (4.77)

or

ĞGG
ZF

(D) = H̆HH
+

(D) (4.78)

For the specific case of zero inter-tensor interference, we have HHH[k] = 0T for k 6= 0 and

H̆HH(D) = HHH[0]. Hence, (4.78) becomes

ĞGG
ZF

(D) = H̆HH
+

(D) = HHH+[0] (4.79)
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If the matched filter system is used then, using (4.66), we see that the input to the equalizer

is ZZZ[k] such that

D̂DD[k] =
∑
m

∑
n

{GGG[m], {FFF[k −m− n],DDD[n]}(N)}(N) +
∑
n

{GGG[n],NNN[k − n]}(N) (4.80)

Denoting the cascade of the equalizer GGG[k] and the system FFF[k] by RRR[k] =
∑

n{GGG[k],FFF[k −
n]}(N), and using the associativity property, (4.80) becomes

D̂DD[k] =
∑
n

{{∑
m

GGG[m],FFF[k −m− n]

}
(N)

,DDD[n]

}
(N)

+
∑
m

{GGG[m],NNN[k −m]}(N)

=
∑
n

{RRR[k − n],DDD[n]}(N) +
∑
m

{GGG[m],NNN[k −m]}(N) (4.81)

The peak distortion from (4.72) becomes

Ii1,...,iN = max

(∣∣∣∣ ∑
j1,...,jN

(j1,...,jN ) 6=
(i1,...,iN )

RRRi1,...,iN ,j1,...,jN [0]DDDj1,...,jN [k] +
∑
n,n 6=0
j1,...,jN

RRRi1,...,iN ,j1,...,jN [n]DDDj1,...,jN [k − n]

∣∣∣∣
)

(4.82)

If the overall system follows the strict Generalized Nyquist criterion thenRRRi1,...,iN ,j1,...,jN [k] =

0 for k 6= 0 and (i1, . . . , iN) 6= (j1, . . . , jN) and hence I0 = 0. This means that to minimize

the peak distortion we require that the overall system R̆RR(D) = IIIN . Hence we have

R̆RR(D) = {ĞGG(D), F̆FF(D)}(N) = IIIN (4.83)

and the optimal zero forcing equalizer is

ĞGG
ZF

(D) = F̆FF
+

(D) (4.84)

4.2.4 Tensor Minimum Mean Square Error Equalization

The next equalization scheme that we look at is the equalizer that minimizes the mean

squared error between the data tensor DDD[k] and its estimate D̂DD[k]. Define an error tensor

EEE[k] = DDD[k]− D̂DD[k]. The mean squared error is defined as

MSE =
∑

i1,...,iN

E
[∣∣EEEi1,...,iN [k]

∣∣2]
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=
∑

i1,...,iN

E
[∣∣DDDi1,...,iN [k]− D̂DDi1,...,iN [k]

∣∣2] (4.85)

= E
[∥∥∥DDD[k]− D̂DD[k]

∥∥∥2

F

]
(4.86)

The auto-correlation tensor of the error at zero delay is RRREEE[0] = E
[
EEE[k] ◦ EEE∗[k]

]
. For

simplicity, we remove the index and denote this by RRREEE. The components of RRREEE are

RRREEEi1,...,iN ,j1,...,jN
= E

[
EEEi1,...,iN [k]EEE∗j1,...,jN [k]

]
= E

[(
DDDi1,...,iN [k]− D̂DDi1,...,iN [k]

)(
DDDj1,...,jN [k]− D̂DDj1,...,jN [k]

)∗]
(4.87)

When i1 = j1, . . . , iN = jN , (4.87) becomes

RRREEEi1,...,iN ,i1,...,iN
= E

[∣∣DDDi1,...,iN [k]− D̂DDi1,...,iN [k]
∣∣2] (4.88)

Using (4.88) in (4.85) gives

MSE =
∑

i1,...,iN

RRREEEi1,...,iN ,i1,...,iN
= trace(RRREEE) (4.89)

We first look at the case of an equalizer with an infinite number of tensor taps, and then

move on to restricting the number of taps to M . To find the optimal tap co-efficients

we begin with a generalization of the well-known principle of linear estimation for scalar

systems [57] that the error must be uncorrelated with all the observed random variables for

the MSE to be minimized. Authors in [61] mention the orthogonality principle for MIMO

systems using matrices.

Theorem 3. The mean squared error between a tensor DDD[k] ∈ CI1×...×IN
k and its estimate

D̂DD ∈ CI1×...×IN
k is minimized if and only if the error is uncorrelated with all the observed

tensors YYY[k] ∈ CL1×...×LM
k

E
[
EEE[k] ◦YYY∗[k − i]

]
= 0T ∀i (4.90)

where EEE[k] = DDD[k]− D̂DD[k].

The proof of this theorem can be found in appendix A.2. Using Theorem 3, we have

that the optimal multi-linear equalizer must satisfy

RRREEE,YYY[i] = E
[
EEE[k] ◦YYY∗[k − i]

]
= E

[
(DDD[k]− D̂DD[k]) ◦YYY∗[k − i]

]
= 0T (4.91)
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Component wise, (4.91) becomes

RRREEE,YYYi1,...,iN ,l1,...,lP
[i] = E

[
(DDDi1,...,iN [k]− D̂DDi1,...,iN [k])YYY∗l1,...,lP [k − i]

]
= 0 (4.92)

which implies

E
[
DDDi1,...,iN [k]YYY∗l1,...,lP [k − i]

]
= E

[
D̂DDi1,...,iN [k]YYY∗l1,...,lP [k − i]

]
RRRDDD,YYYi1,...,iN ,l1,...,lP

[i] = RRR
D̂DD,YYYi1,...,iN ,l1,...,lP

[i]

S̆SSDDD,YYYi1,...,iN ,l1,...,lP
(D) = S̆SS

D̂DD,YYYi1,...,iN ,l1,...,lP
(D) (4.93)

which in tensor notation gives

S̆SSDDD,YYY(D) = S̆SS
D̂DD,YYY(D) (4.94)

From (4.21), (4.22) and (4.30) we get the following relations:

S̆SS
D̂DD,YYY(D) = {ĞGG(D), S̆SSYYY(D)}(P ) (4.95)

S̆SSDDD,YYY(D) = S̆SS
H

YYY,DDD(D−1)

= {S̆SSDDD(D−1),H̆HH
H

(D−1)}(N) (4.96)

S̆SSYYY(D) = {H̆HH(D), {S̆SSDDD(D),H̆HH
H

(D−1)}(N)}(N) + S̆SSVVV(D) (4.97)

where S̆SSVVV(D) is the spectrum of the noise. Using (4.97),(4.96) and (4.95) in (4.94) we get

{S̆SSDDD(D−1),H̆HH
H

(D−1)}(N) = {{ĞGG(D), {S̆SSYYY(D)}(P )

=

{
ĞGG(D),

({
H̆HH(D), {S̆SSDDD(D),H̆HH

H
(D−1)}(N)

}
(N)

+ S̆SSVVV(D)

)}
(P )

(4.98)

which gives the optimal tap co-efficients for the infinite tap tensor MMSE equalizer ĞGG
MMSE

(D)

as

ĞGG
MMSE

(D) =

{
S̆SSDDD(D−1),

{
H̆HH

H
(D−1),

({
H̆HH(D), {S̆SSDDD(D),H̆HH

H
(D−1)}(N)

}
(N)

+S̆SSVVV(D)

)−1
}

(P )

}
(N)

(4.99)

If we use a tensor matched filter at the receiver along with noise whitening, then the input-

output relation is described by (4.66) and the optimal tap coefficients for this case reduce
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to

ĞGG
MMSE

(D) =

{
S̆SSDDD(D−1),

{
F̆FF
H

(D−1),

({
F̆FF(D), {S̆SSD(D), F̆FF

H
(D−1)}(N)

}
(N)

+N0IIIN

)−1
}

(N)

}
(N)

(4.100)

For a scalar system where the input is represented by d[k], the overall channel is represented

by h[k] and the filtered noise is represented by v[k], (4.99) becomes

ğMMSE(D) =
S̆d(D

−1)h̆∗(D−1)

h̆(D)S̆d(D)h̆∗(D−1) + S̆v(D)
(4.101)

The definition of the linear MMSE equalizer of (4.101), is consistent with the definition

found in [60]. Let h̆(D) consist of a channel and a matched filter. Then equation (4.61)

becomes

h̆(D) = q̆(D)q̆∗(D−1) (4.102)

and the spectrum of v̆(D) is

S̆v(D) = N0h̆(D) (4.103)

Assuming that d[k] is uncorrelated such that Rd[0] = E[d[k]d∗[k]] and Rd[i] = 0 for i 6= 0,

where Rd[i] denotes the auto-correlation of d[k]. Denoting Rd[0] by Rd, (4.101) becomes

ğMMSE(D) =
Rdh̆

∗(D−1)

h̆(D)Rdh̆∗(D−1) +N0h̆(D)
(4.104)

From (4.102) we can see that h̆(D) = h̆∗(D−1). This gives

ğMMSE(D) =
Rdh̆

∗(D−1)

h̆∗(D−1)(h̆(D)Rd +N0)
=

Rd

(h̆(D)Rd +N0)
=

1

(h̆(D) + N0

Rd
)

(4.105)

We can see that (4.105) is consistent with [60]. Further, by using the substitution D = z−1

(4.105) becomes

ğMMSE(z−1) =
1

(h̆(z−1) + N0

Rd
)

=
1

(h̆(z) + N0

Rd
)

(4.106)

which is consistent with [57].

If we further assume that components of the input tensor DDD[k] are i.i.d and uncorrelated
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with unit energy such that S̆SSDDD(D) = IIIN from (4.100) we have

ĞGG(D) =

{
F̆FF
H

(D−1),

({
F̆FF(D), F̆FF

H
(D−1)

}
(N)

+N0IIIN

)−1
}

(N)

(4.107)

As for the zero forcing equalizer, we look at the specific case of zero inter-tensor interference.

Even for this case, the MMSE equalizer should perform better due to the presence of the

additive noise tensor. For zero inter-tensor interference, (4.107) becomes

ĞGG(D) =

{
FFFH [0],

(
{FFF]0],FFFH [0]}(N) +N0IIIN

)−1
}

(N)

(4.108)

Next, consider the case where the equalizer has a finite number (M) of tensor taps

{GGG[i] ∈ CI1×...×IN×L1×...×LP
i }, i = 0, 1, . . . ,M − 1. Further, assume that the overall chan-

nel contains v + 1 tensor taps {HHH[i] ∈ CL1×...×LP×I1×...×IN
i }, i = 0, 1, . . . , v such that the

estimate of the data tensor is given by

D̂DD[k] =
M−1∑
i=0

{GGG[i],YYY[k − i]}(P ) (4.109)

There is a decision delay ∆, such that 0 ≤ ∆ ≤ M + v − 1, to ensure causality. This

delay is important when designing finite-length equalizers as non-causal filters cannot be

implemented in practice. For the case of infinite-length equalizers, the delay is not consid-

ered as infinite-length systems are not realizable. Hence, the tensor D̂DD[k] is an estimate of

DDD[k −∆]. The error tensor is

EEE[k] = D̂DD[k]−DDD[k −∆] =
M−1∑
i=0

{GGG[i],YYY[k − i]}(P ) −DDD[k −∆] (4.110)

We define a tensor ȲYY[k] ∈ CM×L1×...×LP
k with P + 1 domains. Collecting the received

tensor for different delays YYY[k],YYY[k− 1], . . . ,YYY[k− (M − 1)] into an extended tensor ȲYY[k] ∈
CM×L1×...×LP
k , where the additional domain is the delay domain, we have

ȲYYm,l1,...,lP [k] = YYYl1,...,lP [k − (m− 1)] for m = 1, . . . ,M (4.111)

Similarly, define extended noise tensor V̄VV[k] ∈ CM×L1×...×LP
k and extended data tensor

D̄DD[k] ∈ C(M+v)×I1×...×IN
k such that

D̄DDq,i1,...,iN [k] = DDDi1,...,iN [k − (q − 1)] for q = 1, . . . ,M + v

V̄VVm,l1,...,lP [k] = VVVl1,...,lP [k − (m− 1)] for m = 1, . . . ,M (4.112)



4 Detection Methods 66

The slice of a tensor is defined as a two-dimensional section of a tensor obtained by fixing

all but two indices [5]. For example, a tensor AAA ∈ CI1×I2×I3 has three slices denoted

by AAAi1,:,:,AAA:,i2,: and AAA:,:,i3 . Define H̄HH ∈ CM×L1×...×LP×(M+v)×I1×...×IN
k with two additional

domains corresponding to the delays at the receiver and the transmitter such that the slice

H̄HH:,l1,...,lP ,:,i1,...,iN =

HHHl1...lP i1...iN [0] . . . HHHl1...lP i1...iN [v] 0 . . . . . . 0

0 HHHl1...lP i1...iN [0] . . . HHHl1...lP i1...iN [v] 0 . . . 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

0 . . . . . . 0 HHHl1...lP i1...iN [0]. . .HHHl1...lP i1...iN [v]


(4.113)

For a channel HHH[k] with v+1 non-zero taps, (4.50) becomes YYY[k] =
v∑

n=0

{HHH[k],DDD[k−n]}(N)+

VVV[k] with components

YYYl1,...,lP [k] =
v∑

n=0

∑
i1

. . .
∑
iN

HHHl1,...,lP ,i1,...,IN [n]DDDi1,...,iN [k − n] +VVVl1,...,lP [k] (4.114)

Using (4.111) and (4.114) we have

ȲYYm,l1,...,lP [k] = YYYl1,...,lP [k − (m− 1)]

=
v∑

n=0

∑
i1

. . .
∑
iN

HHHl1,...,lP ,i1,...,IN [n]DDDi1,...,iN [k − (m− 1)− n] +VVVl1,...,lP [k − (m− 1)]

and with (4.113) this becomes

ȲYYm,l1,...,lP [k] =
M+v∑
q=1

∑
i1

. . .
∑
iN

H̄HHm,l1,...,lP ,q,i1,...,IND̄DDq,i1,...,iN [k] + V̄VVm,l1,...,lP [k] (4.115)

which in tensor notation gives

ȲYY[k] = {H̄HH,D̄DD[k]}(N+1) + V̄VV[k] (4.116)

Further, define an augmented tensor ḠGG ∈ CI1×...×IN×M×L1×...×LP , which is a collection of

the tensor equalizer taps GGG[0], . . . ,GGG[M − 1], whose components are

ḠGGi1,...,iN ,m,l1,...,lP = GGGi1,...,iN ,l1,...,lP [(m− 1)] for m = 1, . . . ,M, (4.117)
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The components of D̂DD[k] of (4.109) can be written as

D̂DDi1,...,iN [k] =
M−1∑
m=0

(∑
l1

. . .
∑
lP

GGGi1,...,iN ,l1,...,lP [m]YYYl1,...,lP [k −m]

)
=
∑
l1

. . .
∑
lP

GGGi1,...,iN ,l1,...,lP [0]YYYl1,...,lP [k] + . . .

+
∑
l1

. . .
∑
lP

GGGi1,...,iN ,l1,...,lP [M − 1]YYYl1,...,lP [k −M + 1]

=
∑
l1

. . .
∑
lP

ḠGGi1,...,iN ,1,l1,...,lpȲYY1,l1,...,lP [k] + . . .+
∑
l1

. . .
∑
lP

ḠGGi1,...,iN ,M,l1,...,lpȲYYM,l1,...,lP [k]

=

(
{ḠGG, ȲYY[k]}(P+1)

)
i1,...,iN

(4.118)

hence (4.109) becomes

D̂DD[k] = {ḠGG, ȲYY[k]}(P+1) (4.119)

and (4.110) becomes

EEE[k] = {ḠGG, ȲYY[k]}(P+1) −DDD[k −∆] (4.120)

We wish to find the optimal co-efficients such that the mean squared error is minimized.

Using Theorem 3 we have that the optimal multi-linear equalizer must satisfy

RRREEE,YYY[i] = E
[
(D̂DD[k]−DDD[k −∆]) ◦YYY∗[k − i]

]
= 0T for |i| ≤M (4.121)

where 0T ∈ CI1×...×IN×L1×...×LP , which is equivalent to

E
[
(D̂DD[k]−DDD[k −∆]) ◦ ȲYY∗[k]

]
= 0T (4.122)

=⇒ E
[
D̂DD[k] ◦ ȲYY∗[k]

]
= E

[
DDD[k −∆]) ◦ ȲYY∗[k]

]
(4.123)

where 0T ∈ CI1×...×IN×M×L1×...×LP . Substituting the value of D̂DD[k] from (4.119), we get

E
[
{ḠGG, ȲYY[k]}(P+1) ◦ ȲYY

∗
[k]
]

= E
[
DDD[k −∆] ◦ ȲYY∗[k]

]
(4.124)

Denoting RRRȲYY[0] = E
[
ȲYY[k] ◦ ȲYY∗[k]

]
= RRRȲYY, we have

RRRȲYY = E
[
ȲYY[k] ◦ ȲYY∗[k]

]
= E

[(
{H̄HH,D̄DD[k]}(N+1) + V̄VV[k]

)
◦
(
{H̄HH,D̄DD[k]}(N+1) + V̄VV[k]

)∗]
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= E
[
{H̄HH,D̄DD[k]}(N+1) ◦ {H̄HH

∗
,D̄DD
∗
[k]}(N+1)

]
+ E

[
{H̄HH,D̄DD[k]}(N+1) ◦ V̄VV

∗
[k]

]
+ E

[
V̄VV[k] ◦ {H̄HH∗,D̄DD∗[k]}(N+1)

]
+ E

[
V̄VV[k] ◦ V̄VV∗[k]

]
= {{H̄HH,RRRD̄DD}(N+1),H̄HH

H}(N+1) +RRRV̄VV (4.125)

where RRRV̄VV = E
[
V̄VV[k] ◦ V̄VV∗[k]

]
and RRRD̄DD = E

[
D̄DD[k] ◦ D̄DD∗[k]

]
. Let E

[
DDD[k −∆] ◦ ȲYY∗[k]

]
= RRRDDD,ȲYY.

Using (4.116) gives

RRRDDD,ȲYY = E
[
DDD[k −∆] ◦ ȲYY∗[k]

]
= E

[
DDD[k −∆] ◦

(
{H̄HH,D̄DD[k]}(N+1) + V̄VV[k]

)∗]
= {E

[
DDD[k −∆] ◦ D̄DD[k]

]
,H̄HH

H}(N+1)

= {RRRDDD,D̄DD,H̄HH
H}(N+1) (4.126)

where RRRDDD,D̄DD = E
[
DDD[k −∆] ◦ D̄DD[k]

]
and has components

RRRDDD,D̄DDi1,...,iN ,m,i
′
1,...,i

′
N

= E
[
DDDi1,...,iN [k −∆]DDD∗i′1,...,i′N [k −m]

]
Assuming the data tensors are uncorrelated, we get

RRRDDD,D̄DDi1,...,iN ,m,i
′
1,...,i

′
N

=

E
[
DDDi1,...,iN [k −m] ◦DDD∗i1,...,iN [k −m]

]
if m = ∆ and i1 = i′1, . . . , iN = i′N

0 otherwise

(4.127)

Further, we have

RRRȲYY,DDD = E
[
ȲYY[k] ◦DDD∗[k −∆]

]
= E

[(
{H̄HH,D̄DD[k]}(N+1) + V̄VV[k]

)
◦DDD∗[k −∆]

]
= {H̄HH,E

[
D̄DD[k] ◦DDD∗[k −∆]

]
}(N+1)

= {H̄HH,
(
E
[
DDD[k −∆] ◦ D̄DD∗[k]

])H
}(N+1)

=

(
{E
[
DDD[k −∆] ◦ D̄DD[k]

]
,H̄HH

H}(N+1)

)H
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= RRRH
DDD,ȲYY (4.128)

The LHS of (4.124) becomes

E
[
{ḠGG, ȲYY[k]}(P+1) ◦ ȲYY

∗
[k]
]

= E
[
{ḠGG, (ȲYY[k] ◦ ȲYY∗[k])}(P+1)

]
=

{
ḠGG, (E

[
ȲYY[k] ◦ ȲYY∗[k]

]
)

}
(P+1)

= {ḠGG,RRRȲYY}(P+1) (4.129)

and the RHS of (4.124) becomes

E
[
DDD[k −∆] ◦ ȲYY∗[k]

]
= RRRDDD,ȲYY (4.130)

Using (4.129) and (4.130), (4.124) becomes

{ḠGG,RRRȲYY}(P+1) = RRRDDD,ȲYY (4.131)

To find the optimal tap co-efficients, we solve (4.131) by contracting both sides of (4.131)

by RRR−1
ȲYY

. This gives

{{ḠGG,RRRȲYY}(P+1),RRR
−1
ȲYY
}(P+1) = {RRRDDD,ȲYY,RRR

−1
ȲYY
}(P+1) (4.132)

Using the associativity property we get

{ḠGG, {RRRȲYY,RRR
−1
ȲYY
}(P+1)}(P+1) = {RRRDDD,ȲYY,RRR

−1
ȲYY
}(P+1) (4.133)

Since RRR−1
ȲYY
}(P+1) = IIIP+1, we have the optimal tap co-efficients

ḠGGopt = {RRRDDD,ȲYY,RRR
−1
ȲYY
}(P+1) (4.134)

4.2.5 Performance Analysis

In this section we present some performance measures for the detection methods described

previously. For the Minimum Mean Square Error equalizer we define the i1, . . . , iNth Mean

squared error as

εi1,...,iN = E
[∣∣DDDi1,...,iN [k]− D̂DDi1,...,iN [k]

∣∣2]
= E

[
(DDDi1,...,iN [k]− D̂DDi1,...,iN [k])(DDDi1,...,iN [k]− D̂DDi1,...,iN [k])∗

]
= E

[
DDDi1,...,iN [k]DDD∗i1,...,iN [k]

]
− E

[
D̂DDi1,...,iN [k]DDD∗i1,...,iN [k]

]
− E

[
(DDDi1,...,iN [k]− D̂DDi1,...,iN [k])D̂DD

∗
i1,...,iN

[k]
]

(4.135)
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The third term in (4.135) can be expanded as

E
[
(DDDi1,...,iN [k]− D̂DDi1,...,iN [k])D̂DD

∗
i1,...,iN

[k]
]

= E
[(

DDDi1,...,iN [k]− D̂DDi1,...,iN [k]

)(∑
m

∑
i1

. . .
∑
iN

GGGi1,...,iN ,i1,...,iN [m]YYYi1,...,iN [k −m]

)∗]
=
∑
m

∑
i1

. . .
∑
iN

E
[
EEEi1,...,iN

(
GGGi1,...,iN ,i1,...,iN [m]YYYi1,...,iN [k −m]

)∗]
= 0 (4.136)

where the last step is due to the fact that the error is uncorrelated with the observation.

Using (4.136) in (4.135) we get

εi1,...,iN = E
[
DDDi1,...,iN [k]DDD∗i1,...,iN [k]

]
− E

[
D̂DDi1,...,iN [k]DDD∗i1,...,iN [k]

]
= RRRDDDi1,...,iN ,i1,...,iN

[0]−RRR
D̂DD,DDDi1,...,iN ,i1,...,iN

[0] (4.137)

To find RRR
D̂DD,DDDi1,...,iN ,i1,...,iN

[0] we write the cross-correlation

RRR
D̂DD,DDD[i] = E

[
D̂DD[k] ◦DDD∗[k − i]

]
= E

[(∑
m

{GGG[m],YYY[k −m]}(P )

)
◦DDD∗[k − i]

]
Since the noise is uncorrelated with the input, we get

= E
[(∑

m

{GGG[m],
∑
n

{HHH[n],DDD[k −m− n]}(N)}(P )

)
◦DDD∗[k − i]

]
=
∑
m

∑
n

{GGG[m], {HHH[n],E
[
DDD[k −m− n] ◦DDD∗[k − i]

]
}(N)}(P )

=
∑
m

∑
n

{GGG[m], {HHH[n],RRRDDD[i−m− n]}(N)}(P ) (4.138)

The D-transform of (4.138) is

S̆SS
D̂DD,DDD = {ĞGG(D), {H̆HH(D)S̆SSDDD(D)}(N)}(P ) (4.139)

For a tensorAAA[k] ∈ CI1×...×IN
k withD-transform ĂAA(D), we haveAAAi1,...,iN [0] =

∫ 1

0
ĂAAi1,...,iN (ej2πf )df ,

where ĂAAi1,...,iN (ej2πf ) is found by setting D = ej2πf . Hence, the i1, . . . , iNth MSE can be

found by integrating the i1, . . . , iNth pseudo-diagonal element of SSSDDD(D) − SSS
DDD,D̂DD(D) along
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the unit circle by setting D = ej2πf . i.e.,

εi1,...,iN =

∫ 1

0

(
SSSDDD(ej2πf )− SSS

DDD,D̂DD(ej2πf )

)
i1,...,iN ,i1,...,iN

df

=

∫ 1

0

(
SSSDDD(ej2πf )− {ĞGG(ej2πf ), {H̆HH(ej2πf ), S̆SSDDD(ej2πf )}(N)}(P )

)
i1,...,iN ,i1,...,iN

df (4.140)

The overall MSE is given by

MSE =
∑
i1...iN

εi1,...,iN = trace

(
RRRDDD[0]−RRR

D̂DD,DDD[0]

)
(4.141)

For the finite tap MMSE equalizer we have

RRREEE = E
[
EEE[k] ◦EEE[k]∗

]
= E

[(
{ḠGG, ȲYY[k]}(P+1) −DDD[k]

)
◦
(
{ḠGG, ȲYY[k]}(P+1) −DDD[k]

)∗]
= E

[
{ḠGG, ȲYY[k]}(P+1) ◦ {ḠGG

∗
, ȲYY
∗
[k]}(P+1) − {ḠGG, ȲYY[k]}(P+1) ◦DDD∗[k]

−DDD[k] ◦ {ḠGG∗, ȲYY∗[k]}(P+1) +DDD[k] ◦DDD[k]∗
]

(4.142)

Using (2.35) in (4.142) we get

RRREEE = E
[
{ḠGG, ȲYY[k]}(P+1) ◦ {ȲYY

∗
, ḠGG

H}(P+1) − {ḠGG, ȲYY[k]}(P+1) ◦DDD∗[k]

−DDD[k] ◦ {ȲYY∗[k], ḠGG
H}(P+1) +DDD[k] ◦DDD[k]∗

]
(4.143)

Using the associativitiy property, (4.143) becomes

RRREEE = {ḠGG, {RRRȲYY, ḠGG
H}(P+1)}(P+1) − {ḠGG,RRRȲYY,DDD}(P+1)

− {RRRDDD,ȲYY, ḠGG
H}(P+1) +RRRDDD (4.144)

Substituting the optimal system tensor from (4.134) we get

RRREEE,min = {{RRRDDD,ȲYY,RRR
−1
ȲYY
}(P+1), {RRRȲYY, ({RRRDDD,ȲYY,RRR

−1
ȲYY
}(P+1))

H}(P+1)}(P+1)

− {{RRRDDD,ȲYY,RRR
−1
ȲYY
}(P+1),RRRȲYY,DDD}(P+1) − {RRRDDD,ȲYY, ({RRRDDD,ȲYY,RRR

−1
ȲYY
}(P+1))

H}(P+1) +RRRDDD

(4.145)

= {RRRDDD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,DDD}(P+1)}(P+1) − 2{RRRDDD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,DDD}(P+1)}(P+1) +RRRDDD (4.146)

= RRRDDD − {RRRDDD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,DDD}(P+1)}(P+1) (4.147)

= RRRDDD − {ḠGG,RRRȲYY,DDD}(P+1) (4.148)
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and the minimum mean squared error becomes

MSEmin = trace(RRREEE,min) = trace(RRRDDD − {ḠGG,RRRȲYY,DDD}(P+1)) (4.149)

It can be shown that for a finite length equalizer with N taps, (4.145) tends to (4.137) in

the limit as N tends to infinity. i.e.,

lim
N→∞

RRRfinite
EEE,min = RRRinf

EEE,min (4.150)

where RRRfinite
EEE,min is the error correlation tensor for the finite tap equalizer and RRRinf

EEE,min is the

error correlation tensor for the infinite tap equalizer. The proof of this can be found in

Appendix A.4.

As a method of verification, we reproduce some performance results from the literature

using the tensor framework. In particular, we use the results from [62] for GFDM as a

reference with which we compare our results. We begin with a brief description of the

system of [62] and then show the representation of the system using the tensor framework.

The system consists of K subcarriers and M subsymbols. denote the data on the kth

subcarrier and mth subsymbol for the nth GFDM symbol by dk,m,n. Assuming an ideal

channel and setting c(t) = δ(t) in (3.38) we get

r(t) =
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

pk,m(t− nT )dk,m,n + v(t) (4.151)

The analog processing at the receiver consists of a bank of filters pRk,m(t) such that

yk′,m′(t) =
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

pRk′,m′ (t) ∗ pk,m(t− nT )dk,m,n + nk′,m′(t)

=
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

qk′,m′,k,m(t− nT )dk,m,n + nk′,m′(t) (4.152)

where qk′,m′,k,m(t) = pRk′,m′ (t) ∗ pk,m(t) and nk′,m′(t) = pRk′,m′ (t) ∗ v(t). Sampling (4.152) at

intervals of T we get

yk′,m′ [s] =
+∞∑

n=−∞

K−1∑
k=0

M−1∑
m=0

qk′,m′,k,m(sT − nT )dk,m,n + nk′,m′(sT ) (4.153)

In GFDM, there is no inter-symbol interference between successive GFDM symbols [52].

Hence, yk′,m′ [s] does not depend on dk,m,n for n 6= s. Without loss of generality, we consider
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yk′,m′ [0] (i.e., s = 0) and, denoting it by yk′,m′ , (4.153) becomes

yk′,m′ =
K−1∑
k=0

M−1∑
m=0

qk′,m′,k,mdk,m + nk′,m′ (4.154)

Assuming that the receive filter is band limited to B, where B is the bandwidth of one

GFDM symbol, the noise n(t) is also band limited and nk′,m′ are zero-mean complex Gaus-

sian random variables with variance N0. The desired symbol from (4.154) is qk′,m′,k′,m′dk′,m′

and the interference from other sub-carriers and sub-symbols is
∑
k 6=k′

∑
m6=m′

qk′,m′,k,mdk,m. As-

suming that the data symbols dk,m have unit energy, the average energy per symbol is

defined as Es = 1
KM

∑
k′,m′
|qk′,m′,k′,m′|2 and the average energy per bit is Es

Nb
where Nb is the

number of bits per symbol dk,m. The SNR per bit is then defined as Eb
N0

. Define a ma-

trix A with components A(k′+K(m′−1),(k+K(m−1) = qk′,m′,k,m and vectors y with components

yk′+K(m′−1) = yk′,m′ and d with components dk′+K(m′−1) = dk′,m′ . Now (4.154) can be

re-written in matrix notation as

y = Ad + n (4.155)

where n has components nk+K(m−1) = nk,m. The estimate of the data is

d̂ = By

= BAd + Bn (4.156)

The demodulation matrix B depends on the type of receiver used. For our purpose of

reproduction of results, we look at two examples of matched filtering and zero forcing

receivers for which we have B = AH and B = A+ respectively [62] where ()+ denotes

Moore-Penrose pseudo-inversion.

The tensor framework allows a straightforward representation of (4.154). Define a tensor

QQQ ∈ CK×M×K×M with components QQQk′,m′,k,m = qk′,m′,k,m. We can now write (4.154) in

tensor notation as

YYY = {QQQ,DDD}(2) +NNN (4.157)
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where DDD ∈ CK×M
k with components DDDk,m = dk,m and NNN ∈ CK×M

k with components NNNk,m =

nk,m. The data is estimated by

D̂DD = {BBB,YYY}(2) = {BBB, {QQQ,DDD}(2)}(2) + {BBB,NNN}(2) (4.158)

where B̄BB ∈ CK×M×K×M and its components depend on the type of detection used. For the

matched filter system we have

BBB = PPPH (4.159)

with components BBBk′,m′,k′m = PPP∗k,m,k′,m′ and for the zero forcing case we have

BBB = PPP+ (4.160)

To show the equivalence of the tensor framework representation to the representation used

in [62] we show the performance of the two receivers discussed above and compare that

with results from Fig. 3(a) and 3(b) from [62]. The system parameters used are as defined

in Table 4.1. Figures 4.5 and 4.6 show the bit error rate (BER) results for the matched

filter and zero forcing receivers for two different roll-off factors α and Eb
N0

= 1, . . . , 8[dB]

averaged over 1000 GFDM symbols. We can see that the results from the tensor framework

are consistent with those from [62] for both the receivers.
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Fig. 4.5 GFDM Matched Filter Receiver
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Table 4.1 Table 1 of [62]

Description parameter value

Number of subcarriers K 128
Number of time slots M 5
Pulse shaping filter g Root Raised Cosine (RRC)

Roll-off factor α 0.1 and 0.5
Modulation order µ 2 (QPSK)

In Fig. 4.7 we present the minimum mean squared error vs P , the number of domains

at the receiver, at SNR = 30dB. The results are averaged over 1000 channel realizations.

The input DDD[k] ∈ C2×2×2×2
k is a fourth order tensor with components drawn from an

i.i.d source with Es = 1 and 16-QAM is used for modulation. Hence we have N = 4,

implying RRRDDD = III4 and RRRD̄DD = III5. The noise tensor VVV[k] ∈ C
P︷ ︸︸ ︷

2×...×2
k , whose components are

complex Gaussian with zero mean and variance N0, has the same size as the received tensor

YYY[k] ∈ C
P︷ ︸︸ ︷

2×...×2
k . The channels used for the simulation contain three tensor taps (v = 2)HHH[0],

HHH[1] and HHH[2], whose components are randomly generated complex zero-mean uncorrelated

Gaussian random variables with unit variance per complex sample. The equalizer used for

the simulations contains M = 7 taps. Hence, we have V̄VV[k] ∈ C7×2×...×2
k , ȲYY[k] ∈ C7×2×...×2

k

and H̄HH ∈ C7×2×...×2×9×2×...×2
k as defined in (4.112) and (4.113) such that (4.125) and (4.126)

become

RRRȲYY = {H̄HH,H̄HHH}(5) +N0IIIP+1 (4.161)

and

RRRDDD,ȲYY = {RRRDDD,D̄DD,H̄HH
H}(5) (4.162)

Substituting the values of RRRDDD,ȲYY and RRRȲYY from (4.161) and (4.162) in (4.145), and using

RRRDDD,ȲYY = RRRH
ȲYY,DDD

, gives the analytical minimum mean squared error as

RRREEE,min = III4−{
(
{RRRDDD,D̄DD,H̄HH

H}(5)

)
, {
(
{H̄HH,H̄HHH}(5)+N0III(P+1)

)−1

,

(
{RRRDDD,D̄DD,H̄HH

H}(5)

)H
}(P+1)}(P+1)

(4.163)
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The simulations carried out consider four different number of domains at the receiver which

are summarized in Table 4.2. The simulation results are presented in Fig. 4.7. The channels

used for the simulation contain three tensor taps HHH[0], HHH[1] and HHH[2], whose components

are randomly generated complex zero-mean uncorrelated Gaussian random variables with

unit variance per complex sample. The simulated mean squared error is consistent with

Table 4.2 Dimension sizes of the receiver

No. of Domains Size of Receive tensor YYY[k] Size of channel tensor HHH[k]

1 C2 C2×2×2×2×2

2 C2×2 C2×2×2×2×2×2

3 C2×2×2 C2×2×2×2×2×2×2

4 C2×2×2×2 C2×2×2×2×2×2×2×2

the minimum mean squared error obtained from using (4.163). Further, for a fixed SNR

(30dB), the minimum mean squared error decreases as the number of domains at the

receiver are increased. This is because with each additional domain at the receiver, the

number of samples in the receive tensor YYY[k] is doubled and hence there is better averaging

of the noise.

Another interesting conclusion that can be drawn is that performance improvements can

be made to a system by the addition of domains rather than having to increase the size of

the individual domains themselves. To illustrate this, we compute the mean squared error

for a system with a channel of size C2×2×2×2×8. This system contains only one domain at

the receiver of size 8. The mean squared error for this case, at SNR = 30dB, was found to

be MSE = 8.16. From Fig. 4.7, we can see that this value of mean squared error is reached

when there are 3 domains of size 2 each at the receiver. Similarly, the mean squared error

for a system of size C2×2×2×2×16 at SNR = 30dB was found to be MSE = 1.35. From Fig.

4.7, we can see that this value of mean squared error is reached when there are 4 domains

of size 2 each at the receiver. In summary, the MSE for a system with 3 equal domains of

size 2 reaches the same performance as a system with one large receive domain of size 8

and a system with 4 equal domains of size 2 reaches the performance of a system with one

large receive domain of size 16. This is useful when the size of a domain is constrained.
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For example, in certain cases performance improvements through the addition of frequency

or time domains might be more desirable as compared to the addition of more antennas.

Table 4.3 shows the equivalent system employing a single large domain for each of the four

systems that have been presented in Fig. 4.7.

In Fig. 4.8 we present the error rate for different equalizer tap lengths M = 2K + 1

Table 4.3 Comparison of one large receive domain and multiple smaller
receive domains.

Size of channel tensor HHH[k] Size of equivalent system with one large receive domain

C2×2×2×2×2 C2×2×2×2×2

C2×2×2×2×2×2 C2×2×2×2×4

C2×2×2×2×2×2×2 C2×2×2×2×8

C2×2×2×2×2×2×2×2 C2×2×2×2×16

(K = 3, 5, 7) plotted against the averaged receive SNR for the finite tap MMSE equalizer.

Also shown for comparison is the performance for of zero forcing equalizers with the same

number of taps. The energy per symbol Es is the total energy of one tensor symbol ET

divided by the number of symbols per tensor. i.e., Es = ET
8

, and the SNR is defined as

Es
N0

. The input data tensor DDD[k] is of size 2 × 2 × 2 with components drawn from an i.i.d

source, RRRDDD[i] = III3, and 4-QAM is used for modulation. The channel used consists of two

taps (v = 1). i.e., the received tensor YYY[k] ∈ C2×2×2
k only contains inter-tensor interference

from DDD[k − 1]. The channel is assumed to be time-invariant and known at the receiver.

For each realization of a test channel, the components of HHH[k] are drawn from a complex

Gaussian distribution such that each complex sample has zero mean and unit variance. In

this case (4.125) and (4.126) become

RRRȲYY = {H̄HH,H̄HHH}(4) +N0III4 (4.164)

and

RRRDDD,ȲYY = {RRRDDD,D̄DD,H̄HH
H}(4) (4.165)

The coefficients of the equalizer are calculated using (4.134) and the error rate is found

by averaging MATLAB simulation results over 100 channel realizations, accumulating 250
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Fig. 4.7 Minimum Mean Squared Error versus number of receive domains
for a system with 4 transmit domains of size 2 each
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errors at each SNR. Table 4.4 summarizes the simulation parameters for figures 4.8 and

4.9.

We can see that there is an improvement in error performance as the number of tensor taps

in the equalizer increases. Further, the performance of the zero forcing equalizer for the

same number of taps is worse than the MMSE equalizer but the difference between their

performance decreases with increased SNR. In Fig. 4.9 we present results for a channel

with three taps (v = 2). The SER results of figures 4.9 and 4.8 exhibit a saturation for

higher values of SNR. This is because the finite tap equalizers are not able to completely

eliminate the interference even as noise vanishes. We can also see that the saturation floors

decrease as the number of equalizer taps are increased and that the flooring occurs at a

larger value of SNR. This is because the residual interference decreases as we increase the

number of equalizer taps. J. G. Proakis et al. present similar error rate saturation results

for M × N MIMO systems in [57]. M. K. Varanasi et al. show that the BER saturation

floor for overloaded CDMA systems of size K×N is a decreasing function of β = K
N

. From

the results of figures 4.8 and 4.9, we can see that the SER floors depend on the ratio of the

product of the domains of D̄DD[k] ∈ C(M+v)×2×2×2
k and ȲYY[k] ∈ CM×2×2×2

k . Factoring out the

common domains, we get that the error floors are a decreasing function of

β =
M + v

M
(4.166)

where M is the number of equalizer taps and v + 1 is the number of taps in the channel.

For the results of Fig. 4.8 (v = 1) this becomes β = M+1
M

and for Fig. 4.9 (v = 2) we have

β = M+2
M

. For a fixed v, β decreases with an increase in the number of equalizer taps M

and hence leads to a lower error floor.
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Fig. 4.8 Finite Tap MMSE Equaliser for a channel with L=2



4 Detection Methods 83

0 5 10 15 20

SNR, dB

10-6

10-5

10-4

10-3

10-2

10-1

100

S
y
m

b
o
l 
E

rr
o
r 

R
a
te

MMSE K = 3

MMSE K = 5

MMSE K =7

ZF K = 3

ZF K = 7

ZF K = 5

Fig. 4.9 Finite Tap MMSE Equaliser for a channel with L=3
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Table 4.4 Simulation Parameters

Description Fig. 4.8 Fig. 4.9

Number of channel taps 2 3
Size of data 2× 2× 2 2× 2× 2

Size of received tensor 2× 2× 2 2× 2× 2
Modulation 4-QAM 4-QAM

The error performance when there is no inter-tensor interference is illustrated in Fig.

4.10. We consider the case when there is only intra-tensor interference, and hence each

component of YYY[k] is a linear combination of the components of DDD[k]. It is assumed that

RRRDDD[0] = III(N) and RRRVVV[0] = N0III(N). The channel contains only one non-zero tap (v = 0)

HHH = HHH[0] and the equalizer also contains one tap GGG. The simulations are carried out for

channels of three different sizes: (2× 2× 2× 2× 2× 2), (2× 2× 2× 2× 2× 2× 2× 2) and

(2× 2× 2× 2× 2× 2× 2× 2× 2× 2) and the corresponding sizes of the transmit tensors

are: (2× 2× 2), (2× 2× 2× 2) and (2× 2× 2× 2× 2). We can see that the performance

of the MMSE equalizer is better than the zero forcing equalizer. This is attributed to the

fact that there is significant noise enhancement due to the contraction of the noise tensor

VVV[k] with HHH−1. Further, as the size of the channels, and hence the number of domains in

the receiver, increases, the MMSE equalizer performs better. This is because increasing

the number of domains, and hence the number of samples, results in better averaging of

the noise. Unlike the MMSE equalizer that optimizes the mean squared error, the zero

forcing equalizer simply eliminates the interference from the other components of the data

tensor at the expense of noise enhancement. In the three systems of Fig. 4.10, the number

of transmit domains increase at the same rate as the number of receiver domains and any

gain in performance from the additional receive domains is nullified by the additional data

being transmitted on the added transmit domains that increase the noise enhancement that

occurs when channel inversion is performed.

Comparing Fig. 4.10 with Fig. 4.8 we can see that the multi-tap equalizers perform better

even though there is more interference in the system of Fig. 4.8. It was found that in this

case as the number of equalier taps are increased, the performance of the equalizers in the
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latter improve. This is illustrated in Fig. 4.11. This is not true for the case where there

is only intra-tensor interference. To this end, Fig. 4.11 shows the variation of the mean

squared error with the number of equalizer taps at a fixed SNR of 5dB. As we can see, the

equalizer for the case where there is no inter-tensor interference (L = 1) does not benefit

from increasing the number of taps while the equalizer for L = 2 performs worse for K = 1

but improves as the number of taps are increased.
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Fig. 4.11 MSE for different equalizer tap lengths
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4.3 Decision Feedback Equalization

Decision Feedback Equalization (DFE) is a non-linear equalization strategy where pre-

viously detected symbols assist in the equalization and detection of subsequent symbols.

The Tensor Decision Feedback Equalizer consists of two parts, a feed-forward system tensor

WWW[k] ∈ CI1×...×IN×L1×...×LP
k and a feedback system tensor BBB[k] ∈ CI1×...×IN×I1×...×IN

k . The

structure of the decision feedback equalizer is shown in Fig.4.12.

HHH[k]
DDD[k]

+

NNN[k]

WWW[k]
YYY[k]

+
+

Decision

BBB[k]

−

D̂DD[k] D̃DD[k] = DDD[k −∆]

Fig. 4.12 System Model of the DFE

Finite tap DFE

Consider the case where the feedforward system hasNf tensor taps {WWW[i] ∈ CI1×...×IN×L1×...×LP , i =

0, 1, . . . , Nf−1 and the feedback filter hasNb+1 tensor taps {BBB[i] ∈ CI1×...×IN×I1×...×IN}, i =

0, 1, . . . , Nb. Further, assume that the overall channel contains v + 1 tensor taps {HHH[i] ∈
CI1×...×IN×J1×...×JM}, i = 0, 1, . . . , v such that the estimate of the data tensor is given by

D̂DD[k] =

Nf−1∑
i=0

{WWW[i],YYY[k − i]}(P ) −
Nb∑
j=0

{BBB[j],D̃DD[k − j]}(N) (4.167)

where D̃DD[k] is the tensor containing decisions at time k. There is a constant delay ∆ such

that the decision D̃DD[k] corresponds to an input DDD[k −∆]. If the kth decision is correct we

have D̃DD[k] = DDD[k −∆]. Define an error tensor EEE[k] ∈ CI1×...×IN
k such that

EEE[k] = D̂DD[k]−DDD[k−∆] =

Nf−1∑
i=0

{WWW[i],YYY[k−i]}(P )−
Nb∑
j=0

{BBB[i],D̃DD[k−i]}(N)−DDD[k−∆] (4.168)
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Under the assumption of correct past decisions, i.e., if D̃DD[k] = DDD[k −∆], (4.167) becomes

D̂DD[k] =

Nf−1∑
i=0

{WWW[i],YYY[k − i]}(P ) −
Nb∑
j=0

{BBB[j],DDD[k −∆− j]}(N) (4.169)

and (4.168) becomes

EEE[k] =

Nf−1∑
i=0

{WWW[i],YYY[k−i]}(P )−
Nb∑
j=1

{BBB[j],DDD[k−∆−j]}(N)−
(
DDD[k−∆]+{BBB[0],DDD[k−∆]}(N)

)
(4.170)

Defining, as for the linear equalizer case, augmented tensors ȲYY[k] ∈ CNf×L1×...×LP
k ,D̄DD[k] ∈

C(Nf+Nb)×I1×...×IN
k , N̄NN[k] ∈ CNf×L1×...×LP

k and H̄HH ∈ CNf×L1×...×LP×(Nf+Nb)×I1×...×IN that are

a collection of the receive tensor, data tensor, noise tensor and channel for different delays

we have

ȲYYm,l1,...,lP [k] = YYYl1,...,lP [k − (m− 1)] for m = 1, . . . , Nf (4.171)

D̄DDq,l1,...,lP [k] = DDDi1,...,iN [k − (q − 1)] for q = 1, . . . , Nf + v (4.172)

N̄NNm,l1,...,lP [k] = VVVl1,...,lP [k − (m− 1)] for m = 1, . . . , Nf (4.173)

and

H̄HH:,l1,...,lP ,:,i1,...,iN =

HHHl1...lP i1...iN [0] . . . HHHl1...lP i1...iN [v] 0 . . . . . . 0

0 HHHl1...lP i1...iN [0] . . . HHHl1...lP i1...iN [v] 0 . . . 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

0 . . . . . . 0 HHHl1...lP i1...iN [0]. . .HHHl1...lP i1...iN [v]


(4.174)

The relation between HHH[k], DDD[k], NNN[k] and YYY[k] is YYY[k] =
v∑

n=0

{HHH[k],DDD[k − n]}(N) + NNN[k]

with components

YYYl1,...,lP [k] =
v∑

n=0

∑
i1

. . .
∑
iN

HHHl1,...,lP ,i1,...,IN [n]DDDi1,...,iN [k − n] +NNNl1,...,lP [k] (4.175)

Using the components of ȲYYm,l1,...,lP from (4.171) and the relation (4.175) we have

ȲYYm,l1,...,lP [k] = YYYl1,...,lP [k − (m− 1)] (4.176)
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=
v∑

n=0

∑
i1

. . .
∑
iN

HHHl1,...,lP ,i1,...,IN [n]DDDi1,...,iN [k − (m− 1)− n] +NNNl1,...,lP [k − (m− 1)]

Writing (4.176) in terms of (4.113),(4.172) and (4.173) gives

ȲYYm,l1,...,lP [k] =

Nf+v∑
q=1

∑
i1

. . .
∑
iN

H̄HHm,l1,...,lP ,q,i1,...,IND̄DDq,i1,...,iN [k] + N̄NNm,l1,...,lP [k] (4.177)

which in tensor notation gives

ȲYY[k] = {H̄HH,D̄DD[k]}(N+1) + N̄NN[k] (4.178)

Define tensors W̄WW[k] ∈ CI1×...×IN×Nf×L1×...×LP
k and B̄BB[k] ∈ CI1×...×IN×(∆+Nb+1)×I1×...×IN

k such

that

W̄WWi1,...,iN ,m,l1,...,lP [k] = WWWi1,...,iN ,l1,...,lP [k − (m− 1)] for m = 1, . . . , Nf (4.179)

B̄BBi′1,...,i
′
N ,m,i1,...,iN

=


0 for 1 ≤ m ≤ ∆

IIINi′1,...,i′N,i1,...,iN
+BBBi′1,...,i

′
N ,i1,...,iN

[0] for m = ∆ + 1

BBBi′1,...,i
′
N ,i1,...,iN

[m−∆] for ∆ + 1 < m ≤ ∆ +Nb

(4.180)

We can then rewrite (4.170) using these tensors as

EEE[k] = {W̄WW, ȲYY[k]}(P+1) − {B̄BB,D̄DD[k]}(N+1) (4.181)

The mean squared error tensor is

RRREEE = RRREEE[0] = E
[
EEE[k] ◦EEE[k]∗

]
(4.182)

which can be expanded using (4.181) to give

RRREEE = E
[
EEE[k] ◦EEE[k]∗

]
=

{
B̄BB,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H
}

(N+1)

}
(N+1)

= {B̄BB, {AAA, B̄BBH}(N+1)}(N+1) (4.183)

where we have defined AAA =

(
RRRD̄DD−{RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
. The detailed derivation

of this is provided in Appendix A.5. The optimal feedback filter minimizes the mean squared

error (4.183). i.e., we need to find min
B̄BB
trace(RRREEE) = min

B̄BB
trace({B̄BB, {AAA, B̄BBH}(N+1)}(N+1)).

The decision at time k is aided by past decisions from previous tensors at time k − 1, k −
2, . . . , k − Nb. From (4.180), we require that B̄BBm,i′1,...,i

′
N ,i1,...,iN

= 0 for 1 ≤ m ≤ ∆ and
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B̄BBm,i′1,...,i
′
N ,i1,...,iN

= IIINi′1,...,i′N,i1,...,iN
for m = ∆+1. Define a tensor SSS ∈ C(∆+Nb+1)×I1×...×IN×(∆+1)×I1×...×IN

with components

SSSm,i′1,...,i′N ,n,i1,...,iN =

1 if m = n, i1 = i′1, . . . , i
′
1 = i′N

0 otherwise
(4.184)

and a tensor TTT ∈ CI1×...×IN×(∆+1)×I1×...×IN with components

TTTi1,...,iN ,n,i′1,...,i′N =

0 if 1 ≤ n ≤ ∆

IIINi1,...,iN ,i′1,...,i′N
for n = ∆ + 1

(4.185)

The requirement that B̄BBm,i′1,...,i
′
N ,i1,...,iN

= 0 for 1 ≤ m ≤ ∆ and B̄BBm,i′1,...,i
′
N ,i1,...,iN

= IIINi′1,...,i′N,i1,...,iN
for m = ∆ + 1, in terms of tensors SSS and TTT is {B̄BB,SSS}(N+1) = TTT. Hence, to find the optimal

feedback filter, we need to solve the following constrained optimization problem:

min
B̄BB
trace({B̄BB, {AAA, B̄BBH}(N+1)}(N+1)) s.t. {B̄BB,SSS}(N+1) = TTT (4.186)

To solve this, define a tensor of Lagrange coefficients λλλ ∈ CI1×...×IN×(∆+1)×I1×...×IN and the

Lagrangian function

J = trace({B̄BB, {AAA, B̄BBH}(N+1)}(N+1)) + 〈λλλ, ({B̄BB,SSS}(N+1) − TTT)〉 (4.187)

where 〈(, )〉 is the tensor inner product. For a tensor XXX = XXXR + jXXXI , extending the gradient

vector in [63], we define a corresponding tensor gradient operator ∇, with components

∇i1,...,iN ,l1,...,lM =
∂

∂XXXR
i1,...,iN ,l1,...,lM

− j ∂

∂XXXI
i1,...,iN ,l1,...,lM

(4.188)

The gradient of J with respect to B̄BB is

∇B̄BBJ =
∂trace({B̄BB, {AAA, B̄BBH}(N+1)}(N+1))

∂B̄BB
+
∂〈λλλ, ({B̄BB,SSS}(N+1) − TTT)〉

∂B̄BB
(4.189)

Using (4.188) and B̄BB = B̄BBR + jB̄BBI and solving, it can be shown that

∂trace({B̄BB, {AAA, B̄BBH}(N+1)}(N+1))

∂B̄BB
= {B̄BB∗,AAAT}(N+1) (4.190)

and
∂〈λλλ, ({B̄BB,SSS}(N+1) − TTT)〉

∂B̄BB
= {λλλ,SSST}(N+1) (4.191)

We omit the proof of the above for the sake of brevity. Using (4.190) and (4.191) we get

∇B̄BBJ = {B̄BB∗,AAAT}(N+1) + {λλλ,SSST}(N+1) (4.192)
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=⇒ B̄BB = −{{λλλ∗,SSSH}(N+1),AAA
−1}(N+1) (4.193)

where in the last step we have used the fact that AAAH = AAA. If the inverse of AAA does not

exist, then the minimum-norm least square solution of (4.192) is

BBB = −{{λλλ∗,SSSH}(N+1),AAA
+}(N+1) (4.194)

where AAA+ is the Moore-Pensore pseudoinverse of AAA [22]. Substituting for BBB from (4.193)

in the constraint equation {B̄BB,SSS}(N+1) = TTT gives

−{{{λλλ∗,SSSH}(N+1),AAA
−1}(N+1),SSS}(N+1) = −{λλλ∗, ({{SSSH ,AAA−1}(N+1),SSS}(N+1))}(N+1) = TTT

(4.195)

which gives

−λλλ∗ = {TTT, ({{SSSH ,AAA−1}(N+1),SSS}(N+1))
−1}(N+1) (4.196)

Substituting for λλλ in (4.193) gives the optimal feedback tensor as

B̄BBopt = {TTT, {({{SSSH ,AAA+}(N+1),SSS}(N+1))
−1,SSSH}(N+1)}(N+1),AAA

−1}(N+1) (4.197)

For the scalar case, TTT becomes a (∆ + 1)-length row vector t = [0 . . . 0, 1], SSS becomes a

matrix

S =

 I(∆+1)

0Nb×(∆+1)

 (4.198)

and the optimal feedback filter (4.197) degenerates to

bopt = t(SHAS)−1SHA−1 (4.199)

where A = RD−RD,YR−1
Y RYD and bopt = [0, . . . , 0, 1, b1, . . . , bNb ]. This is consistent with

the optimal feedback filter for the SISO case in [61].

The optimal feed-forward tensor is found by using (4.197) in (A.48)

W̄WWopt = {B̄BBopt, {RRRD̄DD,ȲYY,RRR
−1
ȲYY
}(P+1)}(N+1) (4.200)

The minimum mean squared error MMSEDFE is

MMSEDFE = trace(RRREEE,min) = trace({B̄BBopt, {AAA, B̄BB
H

opt}(N+1)}(N+1)) (4.201)
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Next, we derive the relation between the MMSE of the DFE and the MMSE of the linear

equalizer. Substituting the value of AAA in the error auto-correlation gives

RRREEE =

{
B̄BBopt,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H

opt

}
(N+1)

}
(N+1)

= {B̄BBopt, {RRRD̄DD, B̄BB
H

opt}(N+1)}(N+1) − {B̄BBopt, {RRRD̄DD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1), B̄BB

H

opt}(N+1)}(N+1)

(4.202)

When the number of feedback taps Nb = 0, we get

B̄BBopti′1,...,i
′
N
,m,i1,...,iN

=

0 for 1 ≤ m ≤ ∆

IIINi′1,...,i′N,i1,...,iN
for m = ∆ + 1

(4.203)

Using (4.203) we may write {B̄BBopt, {RRRD̄DD, B̄BB
H

opt}(N+1)}(N+1) component wise as(
{B̄BBopt, {(RRRD̄DD, B̄BB

H

opt}(N+1)}(N+1)

)
i′1,...,i

′
N ,j
′
1,...,j

′
N

=
∑

m,i1,...,iN

∑
m′,j1,...,jN

B̄BBopti′1,...,i
′
N
,m,i1,...,iN

E[D̄DDm,i1,...,iND̄DD
∗
m′,j1,...,jN

]B̄BBopti′1,...,i
′
N
,m,i1,...,iN

= E[D̄DD(∆+1),i′1,...,i
′
N
D̄DD
∗
(∆+1),j′1,...,j

′
N

]

= E[DDDi′1,...,i
′
N

[k −∆]DDD∗,j′1,...,j′N [k −∆]] = RRRDDDi′1,...,i
′
N
,j′1,...,j

′
N

(4.204)

which can be written in tensor notation as {B̄BBopt, {(RRRD̄DD, B̄BB
H

opt}(N+1)}(N+1) = RRRDDD. Following

similar lines, we can show that {B̄BBopt,RRRD̄DD,ȲYY}(N+1) = RRRDDD,ȲYY and {RRRȲYY,D̄DD, B̄BB
H

opt}(N+1) = RRRȲYY,DDD.

Substituting these in (4.202) gives

RRREEE = RRRDDD − {RRRDDD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,DDD}(P+1)}(P+1) (4.205)

Comparing this to (4.145), we can see that when there are no feedback taps, the error

auto-correlation for the DFE-MMSE equalizer is the same as the MMSE linear equalizer.

Fig. 4.13 shows the minimum mean squared error vs the number of domains at the re-

ceiver for different values of SNR (0, 10, 20, 30)dB. The channels used for the simulation

contain three taps (v = 2) and the results are averaged over 1000 channel realizations.

The components of the three taps are randomly generated circular complex zero-mean un-

correlated Gaussian random variables with unit variance per complex sample. The input

DDD[k] ∈ C2×2×2×2
k is a fourth order tensor and RRRDDD[0] = III4. As the number of domains
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are increased, the mean squared error decreases. Moreover, the improvement in the mean

squared error performance is much greater with each additional domain. This can be seen

from the fact that going from 1 domain to 2 results in a 30% reduction in the MSE while

going from 2 to 3 domains results in a drop of over 50%. We can hence leverage domain

diversity to improve performance in situations where there are restrictions on the size of

the domains themselves. These results are consistent with the MSE results of the linear

MMSE equalizer.

As an example we consider MIMO GFDM with tensor DFE, and present some per-

formance results. The data being transmitted in the nth MIMO GFDM symbol (which

contains P = 2 streams of K subcarriers and M subsymbols) is a third order tensor

DDD[n] ∈ CK×M×P
n with RRRDDD = III3. There are 2 transmit and 2 receive antennas and the scalar

channel between any transmit-receive antenna pair contains 16 taps spaced T
KM

apart whose

components are independent complex Gaussian random variables with zero mean and unit

variance. The overall channel is a sixth order tensor HHH[n] ∈ CK×M×P×K×M×P
n that couples

the input with an output, which is another third order tensor YYY[n] ∈ CK×M×P
n . The channel

is assumed to be known at the receiver and consists of 1 tensor tap. Further, due to the

use of a cyclic prefix, the channel does not cause interference between successive GFDM

symbols (i.e., no inter-tensor interference) but interference is caused within each GFDM

symbol. The DFE used has Nf = 1, Nb = 1 and the decision delay ∆ = 0. The ten-

sors D̄DD[n] ∈ C1×K×M×P
n , ȲYY[n] ∈ C1×K×M×P

n and N̄NN[n] ∈ C1×K×M×P
n have auto-correlation

RRRD̄DD = III4, RRRȲYY = {H̄HH,H̄HHH}(4) + N0III4 and RRRN̄NN = N0III4 respectively. The cross correlation

between D̄DD[n] and ȲYY[n] is given by

RRRD̄DD,ȲYY = {RRRD̄DD,H̄HH
H}(4) = H̄HH

H
(4.206)

Using (4.206) and the value of RRRȲYY we get the tensor

AAA = III4 − {H̄HH
H
,
(
{H̄HH,H̄HHH}(4) +N0III4

)−1
,H̄HH}(4)}(4) (4.207)

The feedback and feedforward filters are found by substituting (4.207) in (4.197) and then

using the optimal feedback filter in (4.200). The mean squared error is numerically eval-

uated by using (4.207) in (4.201). The averaged receive signal to noise ratio is defined
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Fig. 4.13 MSE vs number of receive domains for different SNR



4 Detection Methods 96

as the ratio of the energy per tensor symbol component Es and the noise variance at the

input to the equalizer where Es is the total energy of the tensor divided by the number of

components in the tensor. The other parameters used for the simulations are defined in

Table 4.5

Table 4.5 Simulation parameters for MIMO GFDM

Description parameter value

No. of subcarriers K 16
No. of time slots M 5

pulse shaping filter g Raised Cosine (RC)
roll-off factor α 1

No. of transmit,receive antennas T,R 2,2
modulation order µ 6 (64-QAM)

Fig. 4.14 shows the minimum MSE as a function of SNR. Results from 1000 different

channel realizations were averaged to find the mean squared error using simulations. Fig.

4.15 shows the variation of the symbol error rate with SNR. The error rate is found by

averaging MATLAB simulation results over 100 channel realizations, accumulating 250

errors at each SNR. Also shown in Figures 4.14 and 4.15 are the performance results for a

Linear MMSE equalizer with the same number of equalizer taps as the feedforward length

of the DF-equalizer and the same decision delay ∆ = 0. From Fig. 4.14 we can see that the

decision feedback equalizer performs better than the linear equalizer and at higher SNRs,

this gap in performance increases. This result is also seen for the error rate results of Fig.

4.15 as the gap in SER increases with SNR.
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4.3.1 Infinite tap DFE

We consider the case where the receive system tensor HHHR(t) is matched to the combined

channel and transmit system CCC(t) such that HHHR(t) = CCCH(−t). The overall channel is

HHH(t) = {HHHR(t) ∗CCC(t)}(Q) = {CCCH(−t) ∗CCC(t)}(Q). The input to the decision device is

D̃DD[k] =
∑
m

{WWW[m],YYY[k −m]}(N) −
∑
j

{BBB[j],D̂DD[k − j]}(N) (4.208)

where D̂DD[k] ∈ CI1×...×IN
k is the estimate of the data tensor DDD[k] ∈ CI1×...×IN

k . The D

transform of (4.208) is

˜̆
DDD(D) = {W̆WW(D), Y̆YY(D)}(N) − {B̆BB(D),

ˆ̆
DDD(D)}(N) (4.209)

We assume that the components of D̃DD[k] are estimated sequentially to produce D̂DD[k]. More-

over, the decision D̂DDi1,...,iN [k] is aided by previously detected components of the same tensor.

The ordering of the detection is as described in (4.37). We assume that previously detected

symbols are correct. With these assumptions, the feedback system BBB[k] thus has the form

BBB[k] = BBB[0] +BBB[1]D + . . . (4.210)

where BBB[0] is a lower triangular tensor and BBB[k] has an infinite number of taps. The

equalizer described in this section is designed to select W̆WW(D) and B̆BB(D) such that the

mean squared errors between the estimate and the transmitted data are minimised. The

optimal MMSE-DFE feedforward and feedback systems, the complete derivation of which

can be found in the appendix A.6, are given by

W̆WW(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1, {M̆MM
−H

(D−1), ĂAA
H

(D)}(N)}(N)}(N)}(N) (4.211)

B̆BB(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1{M̆MM(D), ĂAA
−1

(D)}(N)}(N)}(N)}(N) − IIIN (4.212)

where R̆RR(D) = {{ĂAA
H

(D−1),H̆HH(D)}(N), ĂAA(D)}(N) + N0IIIN with a spectral factorization

R̆RR(D) = {M̆MM(D),M̆MM
H

(D−1)}(N) and S̆SSDDD(D) = {ĂAA(D), ĂAA
H

(D−1)}(N).

We define the i1, . . . , iNth Mean squared error as

εi1,...,iN = E
[∣∣DDDi1,...,iN [k]− D̃DDi1,...,iN [k]

∣∣2]
= E

[
(DDDi1,...,iN [k]− D̃DDi1,...,iN [k])(DDDi1,...,iN [k]− D̃DDi1,...,iN [k])∗

]
= RRR(DDD−D̃DD)i1,...iN ,i1,...,iN

[0] (4.213)
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where RRR(DDD−D̃DD)[0] is the auto-correlation of the sequence DDD[k]−D̃DD[k] at zero delay. Substitut-

ing for
˜̆
DDD(D) from (4.209) and, assuming that past decisions are correct (D̆DD(D) =

ˆ̆
DDD(D)),

we get

D̆DD(D)− ˜̆
DDD(D) = D̆DD(D)− ({W̆WW(D), Y̆YY(D)}(N) − {B̆BB(D),

ˆ̆
DDD(D)}(N))

= {
(
IIIN − W̆WW(D) + B̆BB(D)

)
,D̆DD(D)}(N) − {W̆WW(D), V̆VV(D)}(N)

= {F̆FF(D),D̆DD(D)}(N) + Z̆ZZ(D) (4.214)

where we have defined F̆FF(D) = IIIN −W̆WW(D)+B̆BB(D) and Z̆ZZ(D) = −{W̆WW(D), V̆VV(D)}(N). Using

(4.21) we can write the spectrum of Z̆ZZ(D) as

S̆SSZZZ(D) = {{W̆WW(D), S̆SSVVV(D)}(N),W̆WW(D)}(N) = N0{{W̆WW(D), S̆SSVVV(D)}(N),W̆WW(D)}(N) (4.215)

The spectrum of (4.214) can be written as

S̆SS(DDD−D̃DD)(D) = {{F̆FF(D), S̆SSDDD(D)}(N), F̆FF(D)}(N) +N0{{W̆WW(D), S̆SSVVV(D)}(N),W̆WW(D)}(N) (4.216)

The i1, . . . , iNth Mean squared error can be calculated by integrating the i1, . . . , iNth

pseudo-diagonal of S̆SS(DDD−D̃DD)(D) over the unit-circle by setting D = ej2πf . i.e.,∫ 1

0

S̆SS(DDD−D̃DD)i1,...iN ,i1,...,iN
(ej2πf )df = RRR(DDD−D̃DD)i1,...iN ,i1,...,iN

[0] = εi1,...,iN (4.217)

and the overall MSE can be calculated as

MSE =
1

I1 · I2 . . . IN

∑
i1,...,iN

εi1,...,iN (4.218)

A comparison between the linear MMSE equalier and the decision feedback MMSE equalizer

is plotted in figures 4.16 and 4.17. The input D̆DD(D) ∈ C2×2
D has a spectrum S̆SSDDD = IIIN . The

equivalent channel H̆HH(D) consists of two tapsHHH[0] andHHH[1] whose components are Gaussian

random variables. In Fig. 4.16, MSE is plotted against SNR for three specific realizations

of the channel and Fig. 4.17 shows the MSE results averaged over 100 channel realizations.

The individual mean squared errors εi1,...,iN are calculated using (4.217) and the overall

MSE is calculated using (4.218). The additive noise is has a spectrum S̆SSNNN(D) = N0IIIN . For

this case we have ĂAA(D) = IIIN and R̆RR(D) = H̆HH(D)}(N) + N0IIIN . The feedforward equalizer

from (4.211) becomes

W̆WW(D) = {(M̆MM
(d)

(0))−1,M̆MM
−H

(D−1)}(N) (4.219)
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and the feedback filter becomes

B̆BB(D) = {(M̆MM
(d)

(0))−1,M̆MM(D)}(N) − IIIN (4.220)

The averaged receive signal to noise ratio is defined as the ratio of the energy per tensor

symbol component Es and the noise variance at the input to the equalizer where Es is

the total energy of the tensor divided by the number of components in the tensor. The

performance of the linear equalizer is worse than the decision feedback equalizer. Further,

as the SNR increases, the difference in the performance between the two equalizer also

increases. Although the results for the three channel realizations are different, the gap

between the linear equalizer and the DFE increases with SNR for all the three cases. This

is consistent with the results from Fig. 4.14 where the finite tap decision feedback equalizer

was compared with the linear MMSE equalizer for MIMO GFDM.
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Chapter 5

Tensor Correlative Coding

5.1 Introduction

Classical Nyquist signaling schemes completely eliminate inter-symbol interference by de-

sign. Correlative Coding, otherwise known as Partial Response Signaling (PRS), is a

transmission method correlation is introduced between successive transmitted symbols by

allowing a controlled amount of inter-symbol interference. The objective is to shape the

spectrum of the transmitted signal by using correlative codes to achieve desirable properties.

The concept of correlative coding dates back to the 1960s. Lender [64] describes duobinary

partial response signaling as a transmission method. Several different correlative codes

were introduced and categorized based on different characteristics such as speed tolerance

and SNR degradation by Kretzmer [65]. Pasupathy et al. [36, 37] propose a general PRS

framework where the waveform generation is divided into two parts.

In this chapter we describe a method to allow controlled interference in multiple domains

using the tensor framework. Such a scheme will be called Tensor Partial Response Signaling

(TPRS) or tensor correlative coding.
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5.2 System Model

Consider a complex linear time invariant system HHH(t) ∈ CI1×...×IN×I1×...×IN
t . Let the in-

put to this system be a sequence of uncorrelated data tensors, spaced at intervals of T ,∑
n

DDD[n]δ(t− nT ) ∈ CI1×...×IN
T with a spectrum S̆SSDDD(D) ∈ CI1×...×IN×I1×...×IN

D . The output of

this system is

XXX(t) =
+∞∑

n=−∞

{HHH(t− nT ),DDD[n]}(N) (5.1)

which, when sampled at intervals of T gives

XXX[k] = XXX(kT ) =
+∞∑

n=−∞

{HHH(kT − nT ),DDD[n]}(N) =
+∞∑

n=−∞

{HHH[k − n],DDD[n]}(N) (5.2)

with components

XXXi1,...,iN [k] =
N−1∑
n=0

∑
i′1,...,i

′
N

FFFi1,...,iN ,i′1,...,i′N [n]DDDi′1,...,i
′
N

[k − n] (5.3)

In the D domain, (5.2) becomes

X̆XX(D) = {H̆HH(D),D̆DD(D)}(N) (5.4)

Let the system HHH(t) be a cascade of two systems FFF(t) and GGG(t). The system FFF(t) is a tensor

tapped delay line with N taps, such that FFF(t) =
N−1∑
n=0

FFF[n]δ(t − nT ). The D-transform of

the tensor tapped delay line FFF[n] is

F̆FF(D) =
N−1∑
n=0

FFF[n]Dn (5.5)

Proposition 1. If the system GGG(t) follows the strict tensor Nyquist criterion then the

samples of HHH(t) are FFF[n]. i.e.,

HHH(nT ) = FFF[n] (5.6)

Proof. The tensor tapped delay line may be denoted as a sum of N impulses as:

FFF(t) =
N−1∑
n=0

FFF[n]δ(t− nT ) (5.7)

The system tensor HHH(t) is

HHH(t) = {GGG(t) ∗FFF(t)}(N)
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= {GGG(t) ∗
(N−1∑

n=0

FFF[n]δ(t− nT )

)
}(N)

=
N−1∑
n=0

{GGG(t− nT ),FFF[n]}(N) (5.8)

Since GGG(t) follows the strict Tensor Nyquist Criterion, sampling (5.8) at intervals of T we

have

HHH(kT ) =
N−1∑
n=0

{GGG(kT − nT ),FFF[n]}(N)

= FFF[k] (5.9)

The D-transorm of HHH[k] is H̆HH(D) =
∑
i

HHH[k]Di = FFF(D). The relation (5.4) thus becomes

X̆XX(D) = {H̆HH(D),D̆DD(D)}(N). Using (4.21), the relation between the spectrum S̆SSXXX(D) and

the system F̆FF(D) is

S̆SSXXX(D) = {F̆FF(D), {S̆SSDDD(D), F̆FF
H

(D−1)}(N)}(N) = {F̆FF(D), F̆FF
H

(D−1)}(N) (5.10)

where the last step is because the data tensor DDD[k] has spectrum S̆SSDDD(D) = IIIN . This means

that the spectrum of X̆XX(D) depends only on the tapped delay line F̆FF(D). The TPRS system

thus has two parts. The tapped delay line F̆FF(D) that is used to shape the spectrum S̆SSXXX(D)

and the system GGG(t) which is used to band-limit the resulting system function HHH(t). For

a given F̆FF(D), different choices of GGG(t) result in different overall system functions HHH(t).

However, as long as GGG(t) meets the generalized Nyquist criterion, HHH[k] = FFF[k]. Fig. 5.1

shows the system model of the TPRS system.

5.3 Tensor Correlative Codes

5.3.1 Structure of the TPRS polynomial

The cross-spectrum S̆SSXXX(D) can be controlled by changing the structure of the TPRS system

F̆FF(D). In its most general form, the TPRS system introduces correlation among all the

components of the data tensor and also the components of previous data tensors. A compo-
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Fig. 5.1 TPRS System Model

nent XXXi1,...,iN [k] hence contains controlled intra-tensor interference from DDDi′1,...,i
′
N

[k] as well

as inter-tensor interference from N − 1 preceding data tensors DDD[k − 1], . . . ,DDD[k −N + 1].

By using different TPRS systems F̆FF(D) and imposing restrictions such as, for example, only

allowing intra-tensor interference in the output XXX[k], the shape of the spectrum S̆SSXXX(D) can

be manipulated. Denote the frequency response of the spectrum by S̆SSXXX(ω) = S̆SSXXX(D)|D=ejωT .

Using this, we can write the components of the frequency response as

S̆SSXXXi1,...,iN ,i′1,...,i′N
(ω) =

∑
j1,...,jN

F̆FFi1,...,iN ,j1,...,jN (D)F̆FF
H

j1,...,jN ,i
′
1,...,i

′
N

(D−1)

∣∣∣∣
D=ejωT

(5.11)

Spectral nulls at different values of ω are desirable for specific applications. To create

a spectral null at a frequency ω′ in component (i1, . . . , iN , i
′
1, . . . , i

′
N) of S̆SS(ω), we require

that
∑

j1,...,jN

F̆FFi1,...,iN ,j1,...,jN (D)F̆FF
H

j1,...,jN ,i
′
1,...,i

′
N

(D−1)|D=ejω′T = 0. In this section, we present

different TPRS systems and illustrate them using the specific case of a fourth order TPRS

polynomial F̆FF(D) ∈ C2×2×2×2 whose input is an uncorrelated sequence D̆DD(D) ∈ C2×2
D and

output is X̆XX(D) ∈ C2×2
D with the desired spectrum S̆SSXXX(D) ∈ C2×2×2×2

D .
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Class1: Degenerate TPRS

The first class of TPRS systems that we consider is one where FFF[k] containts only one

non-zero tap FFF[0]. i.e., FFF[k] = 0T for k 6= 0. This implies that the components within

a tensor XXX[k] are correlated but successive tensors are uncorrelated. The tensor XXX[k] =

{FFF[0],DDD[k]}(N) has components

XXXi1,...,iN [k] =
∑

i′1,...,i
′
N

FFFi1,...,iN ,i′1,...,i′N [0]DDDi′1,...,i
′
N

[k] (5.12)

The D transform of FFF[k] is F̆FF(D) = FFF[0] and the spectrum S̆SSXXX(D) has components

S̆SSXXXi1,...,iN ,i′1,...,i′N
(D) =

∑
j1,...,jN

FFFi1,...,iN ,j1,...,jNFFF
H
j1,...,jN ,i

′
1,...,i

′
N

(5.13)

This means that the spectrum does not depend on D and the frequency response S̆SS(w)

is flat. Further, by changing the structure of FFF[0], the correlation introduced may be

restricted to certain domains. We illustrate this with two example TPRS systems. Figures

5.2 and 5.3 show the spectrum of X̆XX(D) and the components of the TPRS system used are

listed in Table.5.1. The code used in Fig. 5.2 is such that each component of XXX[k] is a

linear combination of all the components of DDD[k]. In Fig. 5.3, the code used restricts the

correlation to a single domain. Here, the component XXXi1,i2 [k] =
2∑

j2=1

FFFi1,i2,i1,j2 [0]DDDi1,j2 [k] and

the TPRS code is

FFFi1,i2,j1,j2 [0] =


0 if i1 6= j1

1 if i1 = j1, i2 = j2

0.5 otherwise

(5.14)

An example of restricting the correlation to a single domain is when frequency domain

correlation is introduced in a MIMO multi-carrier transmission system. Such a code has

been shown to suppress inter-carrier interference caused by Doppler frequency shift in

MIMO OFDM systems [66]. Such a system has a TPRS system as described by the code

used for Fig. 5.3 when there are two antennas and two sub-carriers.
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Fig. 5.2 Spectrum for no inter-tensor interference, case 1
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Fig. 5.3 Spectrum for no inter-tensor interference, case 2
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Table 5.1 Structure of the Class 1 TPRS System

Component Fig. 5.2 Fig. 5.3
FFF1,1,1,1 1 1
FFF1,1,1,2 0.5 0.5
FFF1,1,2,1 0.25 0
FFF1,1,2,2 0.125 0
FFF1,2,1,1 0.5 0.5
FFF1,2,1,2 1 1
FFF1,2,2,1 0.125 0
FFF1,2,2,2 0.25 0
FFF2,1,1,1 0.25 0
FFF2,1,1,2 0.125 0
FFF2,1,2,1 1 1
FFF2,1,2,2 0.5 0.5
FFF2,2,1,1 0.125 0
FFF2,2,1,2 0.25 0
FFF2,2,2,1 0.5 0.5
FFF2,2,2,2 1 1

Class 2: Pseudo-diagonal TPRS

In the second class of TPRS systems considered, F̆FF(D) is pseudo-diagonal. All the taps

FFF[1], . . . ,FFF[N−1] are hence pseudo-diagonal tensors. A component XXXi1,...,iN [k] only contains

interference from components of DDD[k−1], . . . ,DDD[k−N+1]. This means that the correlation

introduced is restricted to the same component in successive data tensors. The components

of XXX[k] are

XXXi1,...,iN [k] =
N−1∑
n=0

FFFi1,...,iN ,i1,...,iN [n]DDDi1,...,iN [k − n] (5.15)

For such a system, the spectrum of X̆XX(D) from (5.10) has components

S̆SSXXXi1,...,iN ,i′1,...,i′N
(D) =

∑
j1,...,jN

F̆FFi1,...,iN ,j1,...,jN (D)F̆FF
H

j1,...,jN ,i
′
1,...,i

′
N

(D−1) (5.16)
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We know that FFFi1,...,iN ,j1,...jN (D) = 0 for i1 6= j1, . . . , iN 6= jN since FFF(D) is a pseudo-

diagonal tensor. The components of the spectrum from (5.16) hence become

S̆SSXXXi1,...,iN ,i′1,...,i′N
(D) =

F̆FFi1,...,iN ,i1,...,iN (D)F̆FF
∗
i1,...,iN ,i1,...,iN

(D−1) if i1 = i′1, . . . , iN = i′N

0 otherwise

(5.17)

Equation (5.17) implies that S̆SSXXX(D) is a pseudo-diagonal tensor. This means that the

cross-spectrum of XXXi1,...,iN (D) and XXXi′1,...,i
′
N

(D) is 0. Further, the spectrum of the individual

components XXXi1,...,iN (D) depends only on F̆FFi1,...,iN ,i1,...,iN (D) and can be shaped by varying

it. For example, consider a fourth order pseudo-diagonal TPRS system F̆FF(D) with pseudo-

diagonal components

F̆FF1,1,1,1(D) = 1 +D (5.18)

F̆FF2,1,2,1(D) = 1−D2 (5.19)

F̆FF1,2,1,2(D) = (1 +D)2 (5.20)

F̆FF2,2,2,2(D) = 1−D4 (5.21)

Let the output of this system be X̆XX(D) ∈ C2×2. Since F̆FF(D) is a pseudo-diagonal tensor,

the spectrum S̆SSXXX(D) is also pseudo-diagonal. Table. 5.2 summarizes the pseudo-diagonal

components of this TPRS system and the corresponding pseudo-diagonal components of

the spectrum. Denote the frequency response of the spectrum by S̆SS(ω) = S̆SS(D)
∣∣
D=e−jωT

.

Shown in Fig. 5.4 are the components |S̆SSXXX(ω)| for T = 1. The components of F̆FF(D) were

Table 5.2 Structure of the Class 2 TPRS system

Component (i1, i2, j1, j2) F̆FFi1,i2,j1,j2(D) S̆SSXXXi1,i2,j1,j2 (D)

1, 1, 1, 1 1 +D (1 +D)(1 + 1
D∗

)
1, 2, 1, 2 1−D2 (1−D2)(1− ( 1

D∗)
2)

2, 1, 2, 1 (1 +D)2 (1 +D)2(1 + 1
D∗)

2

2, 2, 2, 2 1−D4 (1−D4)(1− ( 1
D∗)

4)

chosen such that all the pseudo-diagonal components of the spectrum contain nulls at ±π.

We can see that the pseudo-diagonal elements |S̆SSXXX1,1,1,1(ω)| and |S̆SSXXX2,1,2,1(ω)| have different
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roll-off rates. This is because F̆FF2,1,2,1(D) contains two zeros at ω = ±π. |S̆SSXXX1,2,1,2(ω)| and

|S̆SSXXX2,2,2,2(ω)| contain additional spectral nulls at ω = 0 and ω = 0,±π
2

respectively.

Class3: TPRS

As we have seen, class 1 systems can be used to manipulate the level of the spectrum and

cross-spectrum components of S̆SSXXX(D) and class 2 systems can be used to shape the pseudo-

diagonal components of S̆SSXXX(D). The third class of TPRS systems is the most general and

there are no restrictions on the structure of the taps FFF[k]. Such a TPRS system can be used

to simultaneously shape the spectrum of X̆XXi1,...,iN (D) and the cross spectrum of X̆XXi1,...,iN (D)

and X̆XXi′1,...,i
′
N

(D). The frequency response of S̆SSXXX(D) is

S̆SSXXXi1,...,iN ,i′1,...,i′N
(ω) =

∑
j1,...,jN

F̆FFi1,...,iN ,j1,...,jN (D)F̆FF
H

j1,...,jN ,i
′
1,...,i

′
N

(D−1)

∣∣∣∣
D=ejωT

(5.22)

As an example, the spectrum of the output of a TPRS system F̆FF(D) ∈ C2×2×2×2 is shown

in Fig. 5.5. The components of S̆SSXXX(ω) that correspond to the cross-spectrum are represented

by dashed lines and the components that correspond to the spectrum are represented by

solid lines. The system used in this case is designed such that the spectrum of XXX1,1,1,1[k]

has a null at ω = ±π, the spectrum of XXX1,2,1,2[k] has a null at ω = 0, the spectrum of

XXX2,1,2,1[k] has spectral nulls at ω = ±π, 0 and the spectrum of XXX2,2,2,2[k] has spectral nulls

at ω = 0,±π
2
,±π.

It is important to note that different systems can be designed to have the same spectral

terms but different cross-spectrum terms. To this end, shown in Fig. 5.6 is the output of

a different TPRS system F̆FF2(D). As we can see, the pseudo-diagonal elements of S̆SSXXX(D)

have the same frequency response for both the cases but the other components (which

correspond to the cross-spectrum) are vastly different. This means that it is possible to

manipulate the cross-spectrum without having to compromise on the shape of the spectrum

itself. Such a feature is useful in situations where different applications require the same

spectral shape but different cross-spectra. The TPRS systems used in figures 5.5 and 5.6

are detailed in Table. 5.3.
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Fig. 5.4 Spectrum of X̆XX for pseuo-diagonal ˘FFF(D)
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Table 5.3 Structure of the Class 3 TPRS System

Component Fig. 5.5 Fig. 5.6
FFF1,1,1,1 1 +D 1 +D
FFF1,1,1,2 0 0.5(1 +D)
FFF1,1,2,1 0.5(1 +D) 0
FFF1,1,2,2 0 0
FFF1,2,1,1 0.5(1−D) 0.5(1−D)
FFF1,2,1,2 (1−D) (1−D)
FFF1,2,2,1 0.125 0
FFF1,2,2,2 0.25 0
FFF2,1,1,1 0.25 0
FFF2,1,1,2 0.125 0
FFF2,1,2,1 (1−D2) (1−D2)
FFF2,1,2,2 0.5(1−D2) 0.5(1−D2)
FFF2,2,1,1 0 0
FFF2,2,1,2 0.5(1−D4) 0
FFF2,2,2,1 0 0.5(1−D4)
FFF2,2,2,2 (1−D4) (1−D4)
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Fig. 5.5 Spectrum and Cross-spectrum components of S̆SSXXX(D)
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Fig. 5.6 Modified TPRS system that preserves the spectrum while changing
the cross-spectrum
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Chapter 6

Conclusion

This thesis presented a unified tensor framework, which can be used to represent, design

and analyse communication systems that span several domains. No distinctions have been

assigned to the domains of the systems and the general framework presented can be used

for a myriad of communication systems. The transmitted signals are represented by Nth

order signal tensors which are coupled, using a system tensor of order N + M , with the

received signals which are represented by another signal tensor of order M through the

contracted convolution. The notion of a tensor of functions forms the basis for the def-

inition of signal and system tensors. A generalization of the Nyquist’s criterion for zero

inter symbol interference was derived which allows unifying treatment of interference from

several domains, dubbed multi domain interference (MDI). It was shown that for the tensor

case, a relaxation of the Nyquist Criterion is possible that allows recovery of data sym-

bols even in the presence of intra-tensor interference. The tensor framework was used to

model existing systems such as OFDM, GFDM and FBMC. Using the tensor framework,

an example higher domain extension for GFDM and FBMC was derived where different

filters are used at the analysis and synthesis filter banks of each antenna. These examples

demonstrate the utility of our tensor framework.

Further, linear and non-linear tensor based equalizers were derived for different criterion

such as peak distortion and minimum mean squared error. The performance of the min-
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imum mean squared linear equalizer was found to be better than that of the zero forcing

equalizer, which is consistent with the scalar case. For the linear MMSE, the mean squared

error decreases as the number of domains at the receiver are increased while keeping the size

of each domain the same. This implies that domain diversity can be leveraged to improve

performance in cases where there are restrictions of the size of any particular domain, as is

often the case in practice due to bandwidth limitations (frequency domain) or restrictions

on the number of antennas (space domain). The performance of the Decision Feedback

Minimum Mean Squared (DF-MMSE) equalizer is better than the linear MMSE equalizer.

Further, the mean squared error decreases as the number of domains at the receiver are

increased while keeping the size of each domain the same. Finally, the notion of partial

response signaling was extended to multi-domain systems in the form of Tensor Partial Re-

sponse Signaling (TPRS). Here, a multi-domain tensor tapped delay line is used to shape

the spectrum of the transmitted signal to achieve desirable spectral properties. It was

found that controlled interference from within the same tensor (intra-tensor interference)

changes the level of the spectrum while maintaining a flat frequency response. Controlled

interference from successive data tensors allows the placement of spectral nulls. Combining

the two allows for manipulation of both the shape and the level of the spectrum of the

transmitted signal. Moreover, it was found that the cross-spectrum of the components of

the transmitted signal can be shaped independently of the spectrum and different TPRS

polynomials can be designed that result in the same spectrum but different cross-spectrum.
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Appendix A

Some Proofs

A.1 Proof of Theorem 2

Consider an input XXX(t) =
+∞∑

n=−∞
XXX[n]δ(t − nT ) ∈ CI1×...×IN

t to a system tensor AAA(t) ∈

CJ1×...×JM×I1×...×IN
t . The output of this filter, corrupted by additive white Gaussian noise, is

RRR(t) = {AAA(t)∗XXX(t)}(N) +NNN(t) where NNN(t) is a tensor whose components are white Gaussian

noise processes. Let RRR(t) be the input to a system tensor BBB(t) ∈ CI1×...×IN×J1×...×JM
t with

an output YYY(t) ∈ CI1×...×IN
t . The per component SNR of the samples YYY(kT ) = YYY[k] is

maximized when BBB(t) = AAAH(−t).

Proof. The tensor YYY(t) can be written as

YYY(t) = {BBB(t) ∗ {AAA(t) ∗XXX(t)}(N)}(M) + {BBB(t) ∗NNN(t)}(M)

=
+∞∑

n=−∞

{CCC(t− nT ),XXX[n]}(N) +VVV(t) (A.1)

where CCC(t) = {BBB(t) ∗AAA(t)}(M) and VVV(t) = {BBB(t) ∗NNN(t)}(M). Sampling at intervals of kT

gives

YYY[k] =
+∞∑

n=−∞

{CCC[k − n],XXX[n]}(N) +VVV[k] (A.2)

with components

YYYi1,...,iN [k] = CCCi1,...,iN ,i1,...,iN [0]XXXi1,...,iN [k] + IIIi1,...,iN [k] +VVVi1,...,iN [k] (A.3)

2019/11/14
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where

IIIi1,...,iN [k] =
∑

i′1,...,i
′
N 6=i1,...,iN

CCCi1,...,iN ,i′1,...,i′N [0]XXXi′1,...,i
′
N

[k]+
+∞∑

n=−∞
n6=k

∑
i′1,...,i

′
N

CCCi1,...,iN ,i′1,...,i′N [k−n]XXXi′1,...,i
′
N

[n]

(A.4)

We define the per component SNR γi1,...,iN at the sampled output of the system BBB(t) as the

ratio of the power of the desired symbol XXXi1,...,iN [k] and the power of the noise VVVi1,...,iN [k].

The intra-tensor and inter-tensor interference is contained in IIIi1,...,iN [k] and is not considered

in this definition of the SNR. We have

γi1,...,iN =

∣∣CCCi1,...,iN ,i1,...,iN [0]
∣∣2Ei1,...,iN

E[VVVi1,...,iN [k]VVV∗i1,...,iN [k]]
(A.5)

where Ei1,...,iN = E[XXXi1,...,iNXXX
∗
i1,...,iN

]. We may expand
∣∣CCCi1,...,iN ,i1,...,iN [0]

∣∣2 as∣∣CCCi1,...,iN ,i1,...,iN [0]
∣∣2 =

∣∣ ∑
j1,...,jM

∫ +∞

−∞
BBBi1,...,iN ,j1,...,jM (t)AAAj1,...,jM ,i1,...,iN (−t)dt

∣∣2 (A.6)

The denominator of (A.5) can be expanded, using E[Nj1,...,jM (t)Nj′1,...,j
′
M

(p)] = N0δ(t − p)
when (j1, . . . , jM) = (j′1, . . . , j

′
M) and 0 otherwise, as

E[VVVi1,...,iN [k]VVV∗i1,...,iN [k]]

= E[
∑
j1...jM

∫ +∞

−∞
BBBi1...iN j1...jM (t)NNNj1...jM (kT − t)dt

∑
j′1...j

′
M

∫ +∞

−∞
BBB∗i1...iN ,j′1...j′M

(p)NNN∗j′1...j′M (kT − p)dp]

= N0

∑
j1,...,jM

∫ +∞

−∞

∫ +∞

−∞
BBBi1,...,iN ,j1,...,jM (t)BBB∗i1,...,iN ,j1,...,jM (p)δ(t− p)dtdp

= N0

∑
j1,...,jM

+∞∫
−∞

|BBBi1,...,iN ,j1,...,jM (t)|2dt (A.7)

Using (A.6) and (A.7) in (A.5) we get

γi1,...,iN =

∣∣ ∑
j1,...,jM

∫ +∞
−∞ BBBi1,...,iN ,j1,...,jM (t)AAAj1,...,jM ,i1,...,iN (−t)dt

∣∣2Ei1,...,iN
N0

∑
j1,...,jM

+∞∫
−∞
|BBBi1,...,iN ,j1,...,jM (t)|2dt

(A.8)
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Using the Cauchy-Schwartz inequality from Appendix A.3 this becomes

γi1,...,iN ≤
(
∑

j1...jM

+∞∫
−∞

∣∣AAAi1...iN j1...jM (t)
∣∣2dt ∑

j1...jM

+∞∫
−∞

∣∣BBBj1...jMk1...kP (t)
∣∣2dt)Ei1,...,iN

N0

∑
j1,...,jM

∫ +∞
−∞ |BBBi1,...,iN ,j1,...,jM (t)

∣∣2dt
=

∑
j1...jM

+∞∫
−∞

∣∣AAAi1...iN j1...jM (t)
∣∣2dtEi1,...,iN

N0

(A.9)

with equality when BBBi1,...,iN ,j1,...,jM (t) = AAA∗j1,...,jM ,i1,...,iN (−t). This means that the SNR

attains its maximum value when BBB(t) = AAAH(−t).

A.2 Proof of Theorem 3

Consider the general system where a data sequence DDD[k] ∈ CI1×...×IN
k is the input to a

channel HHH[k] ∈ CL1×...×LM×I1×...×IN
k and is corrupted by additive noise VVV[k] ∈ CL1×...×LM

k .

The observation YYY[k] ∈ CL1×...×LM
k is

YYY[k] =
+∞∑

m=−∞

{HHH[m],DDD[k −m]}(N) +VVV[k] (A.10)

The estimate of the data sequence is

D̂DD[k] =
+∞∑
m=0

{GGG[m],YYY[k −m]}(M) (A.11)

where GGG[m] ∈ CI1×...×IN×L1×...×LM . Denote the error by EEE[k] = D̂DD[k] −DDD[k] We wish to

prove that for the GGG[m] that minimizes the mean squared error between the estimate and

the data, the error is uncorrelated with the observation. i.e., we wish to show that if

E
[
EEE[k] ◦YYY∗[k − i]

]
= 0T for all i (A.12)

then the error is minimized in the mean squared sense. Consider the general system where

a data sequence DDD[k] ∈ CI1×...×IN
k is the input to a channel HHH[k] ∈ CL1×...×LM×I1×...×IN

k and

is corrupted by additive noise VVV[k] ∈ CL1×...×LM
k . The observation YYY[k] ∈ CL1×...×LM

k is

YYY[k] =
+∞∑

m=−∞

{HHH[m],DDD[k −m]}(N) +VVV[k] (A.13)
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The estimate of the data sequence is

D̂DD[k] =
+∞∑
m=0

{GGG[m],YYY[k −m]}(M) (A.14)

where GGG[m] ∈ CI1×...×IN×L1×...×LM . Denote the error by EEE[k] = D̂DD[k] −DDD[k] We wish to

prove that for the GGG[m] that minimizes the mean squared error between the estimate and

the data, the error is uncorrelated with the observation. i.e., we wish to show that if

E
[
EEE[k] ◦YYY∗[k − i]

]
= 0T for all i (A.15)

then the error is minimized in the mean squared sense.

Proof. Assuming that the equalizer co-efficients are complex, the equalizer tensor may be

written as GGG[m] = AAA[m] + jBBB[m]. Extending the gradient vector in [63], we define a

corresponding tensor gradient operator ∇, with components

∇i1,...,iN ,m,l1,...,lM =
∂

∂AAAi1,...,iN ,l1,...,lM [m′]
+ j

∂

∂BBBi1,...,iN ,l1,...,lM [m′]
(A.16)

Define the cost function

J(GGG) = trace(E[EEE[k] ◦EEE∗[k]]) =
∑
i1

. . .
∑
iN

E
[
EEEi1...iN [k]EEE∗i1...iN [k]

]
(A.17)

Due to the quadratic nature of the error surface, finding a stationary point assures global

optimization of the cost function [63]. Minimizing the cost function is thus a convex

unconstrained optimization problem [67] and can be solved be equating each component of

the gradient tensor of the cost function to zero:

∇i1,...,iN ,m,l1,...,lMJ(GGGopt) = 0 (A.18)

Let us consider one particular component of the gradient tensor where the indices have

values i′1, . . . , i
′
N ,m

′, l′1, . . . , l
′
M . From (A.17) we get

∇i′1,...,i
′
N ,m

′,l′1,...,l
′
M
J(GGG) = ∇i′1,...,i

′
N ,m

′,l′1,...,l
′
M
E[
∑

i1,...,iN

EEEi1,...,iN [k]EEE∗i1...iN [k]]

=

∂ E[
∑

i1,...,iN

EEEi1,...,iN [k]EEE∗i1...iN [k]]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]

+ j
∂ E[

∑
i1,...,iN

EEEi1,...,iN [k]EEE∗i1...iN [k]]

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
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= E[
∑

i1,...,iN

∂EEEi1,...,iN [k]EEE∗i1...iN [k]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
+ j

∂EEEi1,...,iNEEE
∗
i1...iN

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
]

= E[
∑

i1,...,iN

∂EEEi1,...,iN [k]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEE∗i1...iN [k] +

∂EEE∗i1...iN [k]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEEi1...iN [k]

+
∂EEEi1...iN [k]

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
jEEE∗i1...iN [k] +

∂EEE∗i1...iN [k]

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
jEEEi1...iN [k]]

(A.19)

The first term on the right hand side of (A.19) can be expanded as∑
i1,...,iN

∂EEEi1,...,iN [k]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEE∗i1...iN [k]

=
∑

i1,...,iN

∂
{∑

m

∑
l1...lM

GGGi1...iN l1...lM [m]YYYl1...lM [k −m]−DDDi1...iN [k]
}

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEE∗i1...iN [k]

=
∑

i1,...,iN

∑
m

∑
l1...lM

∂
{

(AAAi1...iN l1...lM [m] + jBBBi1...iN l1...lM [m])YYYl1...lM [k −m]−DDDi1...iN [k]
}

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEE∗i1...iN [k]

= YYYl′1...l′M [k −m′]EEE∗i′1...i′N [k] (A.20)

Similarly we have

∂EEE∗i1...iN [k]

∂AAAi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
EEEi1...iN [k] = YYY∗l′1...l′M

[k −m′]EEEi′1...i′N [k] (A.21)

,

∂EEEi1...iN [k]

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
jEEE∗i1...iN [k] = jYYYl′1...l′M [k −m′]jEEE∗i′1...i′N [k]

= −YYYl′1...l′M [k −m′]EEE∗i′1...i′N [k] (A.22)

and, ∑
i1...iN

∂EEE∗i1...iN [k]

∂BBBi′1,...,i
′
N ,l
′
1,...,l

′
M

[m′]
jEEEi1...iN [k] = −jYYY∗l′1...l′M [k −m′]jEEEi′1...i′N [k]

= YYY∗l′1...l′M
[k −m′]EEEi′1...i′N [k] (A.23)

Substituting these in (A.19) we get

∇i′1,...,i
′
N ,m

′,l′1,...,l
′
M
J(GGG) = E

[
YYYl′1...l′M [k −m′]EEE∗i′1...i′N [k] +YYY∗l′1...l′M

[k −m′]EEEi′1...i′N [k]
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−YYYl′1...l′M [k −m′]EEE∗i′1...i′N [k] +YYY∗l′1...l′M
[k −m′]EEEi′1...i′N [k]

]
= E

[
2YYY∗l′1...l′M [k −m′]EEEi′1...i′N [k]

]
= 2E

[
YYY∗l′1...l′M

[k −m′]EEEi′1...i′N [k]
]

(A.24)

The optimal GGG[m] is found by equating (A.24) to 0 for all values of i′1, . . . , i
′
N ,m

′, l′1, . . . , l
′
M .

This gives

E
[
YYY∗l′1,...,l′M

[k −m′]EEEi′1...i′N [k]
]

= 0 for all i′1, . . . , i
′
N ,m

′, l′1, . . . , l
′
M (A.25)

We can see that the LHS of (A.25) is the auto-correlation between the error and the

observation. We have

RRREEE,YYYi′1,...,i
′
N
,m′,l′1,...,l

′
M

[−m′] = E
[
EEEl′1,...,l′M [k]YYY∗l′1,...,l′M [k−m′]

]
= 0 for all i′1, . . . , i

′
N ,m

′, l′1, . . . , l
′
M

(A.26)

Since (A.26) holds for all values of m′, we can write this in tensor notation as

RRREEE,YYY[m] = E
[
EEE[k] ◦YYY∗[k −m]

]
= 0T (A.27)

Showing that for the optimal GGG[m], the error is uncorrelated with the observation. This

can be considered as a tensor orthogonality condition.

A.3 A Cauchy-Schwartz Inequality

For two tensors AAA(t) ∈ CJ1×...×JM
t and BBB(t) ∈ CJ1×...×JM

t the following inequality holds:∣∣∣∣ ∑
j1...jM

+∞∫
−∞

AAAj1...jM (t)BBBj1...jM (t)dt

∣∣∣∣2 ≤ ∑
j1...jM

+∞∫
−∞

∣∣AAAj1...jM (t)
∣∣2dt ∑

j1...jM

+∞∫
−∞

∣∣BBBj1...jM (t)
∣∣2dt
(A.28)

Proof. Let λ be a complex scalar. We have

0 ≤
∑
j1...jM

+∞∫
−∞

∣∣AAAj1...jM (t) + λBBBj1...jM (t)
∣∣2dt
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=
∑
j1...jM

+∞∫
−∞

∣∣AAAj1...jM (t)
∣∣2dt+ |λ|2

∑
j1...jM

+∞∫
−∞

∣∣BBBj1...jM (t)
∣∣2dt+ 2<

{
λ∗
∑
j1...jM

+∞∫
−∞

AAAj1...jM (t)BBB∗j1...jM (t)dt

}
(A.29)

Choose λ = y
∑

j1...jM

+∞∫
−∞

AAAj1...jM (t)BBB∗j1...jM (t)dt where y ∈ R. This gives

0 ≤
(∣∣ ∑

j1...jM

+∞∫
−∞

AAAj1...jM (t)BBB∗j1...jM (t)dt
∣∣2 ∑
j1...jM

+∞∫
−∞

∣∣BBBj1...jM (t)
∣∣2dt)y2

+ 2y
(∣∣ ∑

j1...jM

+∞∫
−∞

AAAj1...jM (t)BBB∗j1...jM (t)dt
∣∣2)+

∑
j1...jM

+∞∫
−∞

∣∣AAAj1...jM (t)
∣∣2dt (A.30)

Let p =
∣∣ ∑
j1...jM

+∞∫
−∞

AAAj1...jM (t)BBB∗j1...jM (t)dt
∣∣2, r =

∑
j1...jM

+∞∫
−∞

∣∣BBBj1...jM (t)
∣∣2dt and

q =
∑

j1...jM

+∞∫
−∞

∣∣AAAj1...jM (t)
∣∣2dt such that

0 ≤ pry2 + 2py + q (A.31)

Since (A.31) is a non-negative quadratic polynomial, the discriminant is non-positive. i.e.,

(2p)2 − 4prq ≤ 0 or p ≤ rq. Substituting for p,q and r gives (A.28) with equality when

BBBi1,...,iN ,j1,...,jM (t) = AAA∗j1,...,jM ,i1,...,iN (−t).

A.4 Proof of Equation 4.148

We wish to show that for a finite length equalizer with N taps, (4.145) tends to (4.137) in

the limit as N tends to infinity. i.e.,

lim
N→∞

RRRfinite
EEE,min = RRRinf

EEE,min (A.32)

where RRRfinite
EEE,min is the error correlation tensor for the finite tap equalizer and RRRinf

EEE,min is the

error correlation tensor for the infinite tap equalizer.

Proof. Denote the RHS of (4.148) by RRRfinite
EEE,min and the finite tap equalizer by ḠGG

finite
. The
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components of this tensor are

RRRfinite
EEE,mini1,...,iN ,i

′
1,...,i

′
N

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

−
M∑
m=1

∑
l1,...,lP

ḠGG
finite

i1,...,iN ,m,l1,...,lP E
[
ȲYYm,l1,...,lP [k]DDDi′1,...,i

′
N

]
Writing the components of ḠGG

finite
and ȲYY[k] in terms of the components of GGGfinite and YYY[k]

gives

RRRfinite
EEE,mini1,...,iN ,i

′
1,...,i

′
N

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

−
M−1∑
m=0

∑
l1,...,lP

GGGfinite
i1,...,iN ,l1,...,lP

[m]E
[
YYYl1,...,lP [k −m]DDDi′1,...,i

′
N

[k]
]

(A.33)

As the number of taps M tends to infinity, this becomes

RRRfinite
EEE,mini1,...,iN ,i

′
1,...,i

′
N

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

−
∞∑
m=0

∑
l1,...,lP

GGGfinite
i1,...,iN ,l1,...,lP

[m]E
[
YYYl1,...,lP [k −m]DDDi′1,...,i

′
N

[k]
]

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

− E
[ ∞∑
m=0

∑
l1,...,lP

GGGfinite
i1,...,iN ,l1,...,lP

[m]YYYl1,...,lP [k −m]DDDi′1,...,i
′
N

[k]
]

(A.34)

Writing the components of either side of (4.131) gives∑
m,l1,...,lP

ḠGG
finite

i1,...,iN ,m,l1,...,lP
RRRȲYYm,l1,...,lP ,m

′,l′1,...,l
′
P

= RRRDDD,ȲYYi1,...,iN ,m′,l
′
1,...,l

′
P

(A.35)

which can be written in terms of GGGfinite[m],YYY[m] and DDD[m] as∑
m,l1,...,lP

GGGfinite
i1,...,iN ,l1,...,lP

[m]E[YYYl1,...,lP [k −m]YYYl′1,...,l′P [k −m′]] = E[DDDi1,...,iN [k]YYYl1,...,lP [k −m′]]

(A.36)

Notice that E[YYYl1,...,lP [k−m]YYYl′1,...,l′P [k−m′]] = RRRYYYl1,...,lP ,l
′
1,...,l

′
P

[m′−m] and E[DDDi1,...,iN [k]YYYl1,...,lP [k−
m′]] = RRRDDD,YYYl1,...,lP ,l

′
1,...,l

′
P

[m′]. Using this, we may write (A.36) in tensor form as
∑

m{GGGfinite[m′],RRRYYY[m′−
m]}(P ) = RRRDDD,YYY[m′]. The D-transform of this equation is

{ĞGG
finite

(D), S̆SSYYY(D)}(P ) = S̆SSDDD,YYY(D) (A.37)

Comparing (A.37) with (4.95), we can see that when there are an infinite number of taps,

the finite length equalizer GGGfinite[m] = GGGinf[m] where GGGinf[m] denotes the infinite length
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equalizer. Substituting this in (A.34) gives

RRRfinite
EEE,mini1,...,iN ,i

′
1,...,i

′
N

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

−E
[ ∞∑
m=0

∑
l1,...,lP

GGGinf
i1,...,iN ,l1,...,lP

[m]YYYl1,...,lP [k−m]DDDi′1,...,i
′
N

[k]
]

(A.38)

Since
∞∑
m=0

∑
l1,...,lP

GGGinf
i1,...,iN ,l1,...,lP

[m]YYYl1,...,lP [k −m] = D̂DDi1,...,iN [k], (A.38) becomes

RRRfinite
EEE,mini1,...,iN ,i

′
1,...,i

′
N

= RRRDDDi1,...,iN ,i
′
1,...,i

′
N

−E
[
D̂DDi1,...,iNDDDi′1,...,i

′
N

[k]
]
= RRRDDDi1,...,iN ,i

′
1,...,i

′
N

−RRR
D̂DD[k],DDDi1,...,iN ,i

′
1,...,i

′
N

(A.39)

which can be written, in tensor notation, as RRRfinite
EEE,min = RRRDDD −RRR

D̂DD,DDD. Since RRRDDD and RRRDDD,DDD are

short-hand for RRRDDD[0] and RRRDDD,DDD[0] respectively, the RHS of this is the same as the RHS of

(4.137).

A.5 A derivation for the Finite Tap DFE

Starting from the RHS of (4.182) and using (4.181), we have

E
[
EEE[k] ◦EEE[k]∗

]
= E

[
({W̄WW, ȲYY[k]}(P+1) − {B̄BB,D̄DD[k]}(N+1)) ◦ ({W̄WW, ȲYY[k]}(P+1) − {B̄BB,D̄DD[k]}(N+1))

∗]
= E

[
{W̄WW, ȲYY[k]}(P+1) ◦ {W̄WW

∗
, ȲYY
∗
[k]}(P+1) − {W̄WW, ȲYY[k]}(P+1) ◦ {B̄BB

∗
,D̄DD
∗
[k]}(N+1)

− {B̄BB,D̄DD[k]}(N+1) ◦ {W̄WW
∗
, ȲYY
∗
[k]}(P+1) + {B̄BB,D̄DD[k]}(N+1) ◦ {B̄BB

∗
,D̄DD
∗
[k]}(N+1)

]
(A.40)

Using (2.35) in (A.40) we get

E
[
EEE[k] ◦EEE[k]∗

]
= E

[
{W̄WW, ȲYY[k]}(P+1) ◦ {ȲYY

∗
,W̄WW

H}(P+1) − {W̄WW, ȲYY[k]}(P+1) ◦ {D̄DD[k]∗, B̄BB
H}(N+1)

− {B̄BB,D̄DD[k]}(N+1) ◦ {ȲYY
∗
[k],W̄WW

H}(P+1) + {B̄BB,D̄DD[k]}(N+1) ◦ {D̄DD
∗
[k], B̄BB

H}(N+1)

]
(A.41)

Using the associativitiy property, (A.41) becomes

E
[
EEE[k] ◦EEE[k]∗

]
=

{
W̄WW,
{
E
[
ȲYY[k] ◦ ȲYY∗[k]

]
,W̄WW

H}
(P+1)

}
(P+1)

−
{
W̄WW,
{
E
[
ȲYY[k] ◦ D̄DD∗[k]

]
, B̄BB

H}
(N+1)

}
(P+1)

−
{
B̄BB,
{
E
[
D̄DD[k] ◦ ȲYY∗[k]

]
,W̄WW

H}
(P+1)

}
(N+1)

+

{
B̄BB,
{
E
[
D̄DD[k] ◦ D̄DD∗[k]

]
, B̄BB

H}
(N+1)

}
(N+1)
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= {W̄WW, {RRRȲYY,W̄WW
H}(P+1)}(P+1) − {W̄WW, {RRRȲYY,D̄DD, B̄BB

H}(N+1)}(P+1)

− {B̄BB, {RRRD̄DD,ȲYY,W̄WW
H}(P+1)}(N+1) + {B̄BB, {RRRD̄DD, B̄BB

H}(N+1)}(N+1) (A.42)

which can be written, by adding and subtracting {B̄BB, {{RRRD̄DD,ȲYY, {RRRȲYY,RRRȲYY
−1
,D̄DD
}(P+1)}(P+1), B̄BB

H}(N+1)}(N+1)

from (A.42), as

E
[
EEE[k] ◦EEE[k]∗

]
= {W̄WW, {RRRȲYY,W̄WW

H}(P+1)}(P+1) − {W̄WW, {RRRȲYY,D̄DD, B̄BB
H}(N+1)}(P+1)

− {B̄BB, {RRRD̄DD,ȲYY,W̄WW
H}(P+1)}(N+1) + {BBB, {RRRD̄DD, B̄BB

H}(N+1)}(N+1)

+ {B̄BB, {{RRRD̄DD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1), B̄BB

H}(N+1)}(N+1)

− {B̄BB, {{RRRD̄DD,ȲYY, {RRR−1
ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1), B̄BB

H}(N+1)}(N+1)

=

{
B̄BB,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H
}

(N+1)

}
(N+1)

+ {W̄WW, {RRRȲYY,W̄WW
H}(P+1)}(P+1) − {W̄WW, {RRRȲYY,D̄DD, B̄BB

H}(N+1)}(P+1)

− {B̄BB, {RRRD̄DD,ȲYY,W̄WW
H}(P+1)}(N+1) + {B̄BB, {{RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1), B̄BB

H}(N+1)}(N+1)

(A.43)

Taking out the common terms gives

E
[
EEE[k] ◦EEE[k]∗

]
=

{
B̄BB,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H
}

(N+1)

}
(N+1)

+ {W̄WW,

(
{RRRȲYY,W̄WW

H}(P+1) − {RRRȲYY,D̄DD, B̄BB
H}(N+1)

)
}(P+1)

− {{B̄BB, {RRRD̄DD,ȲYY,RRR
−1
ȲYY
}(P+1)}N+1,

(
{RRRȲYY,W̄WW}(P+1) + {RRRȲYY,D̄DD, B̄BB

H}(N+1)

)
}(P+1)

(A.44)

which on simplifying gives

E
[
EEE[k] ◦EEE[k]∗

]
=

{
B̄BB,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H
}

(N+1)

}
(N+1)

+

{(
W̄WW− {B̄BB, {RRRD̄DD,ȲYY,RRR

−1
ȲYY
}(P+1)}(N+1)

)
,

{
RRRȲYY,

(
W̄WW

H − {RRR−1
ȲYY
, {RRRȲYY,D̄DD, B̄BB}(N+1)}(P+1)

)}
(P+1)

}
(P+1)

(A.45)
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Using RRRH
ȲYY

= RRRȲYY and RRRH
ȲYY,D̄DD

= RRRD̄DD,ȲYY we get

E
[
EEE[k] ◦EEE[k]∗

]
=

{
B̄BB,

{(
RRRD̄DD − {RRRD̄DD,ȲYY, {RRR−1

ȲYY
,RRRȲYY,D̄DD}(P+1)}(P+1)

)
, B̄BB

H
}

(N+1)

}
(N+1)

+

{(
W̄WW− {B̄BB, {RRRD̄DD,ȲYY,RRR

−1
ȲYY
}(P+1)}(N+1)

)
{RRRȲYY,

(
W̄WW− {B̄BB, {RRRD̄DD,ȲYY,RRR

−1
ȲYY
}(P+1)}(N+1)

)H}
(P+1)

}
(P+1)

(A.46)

We wish to find tap coefficient tensors that minimise mean squared error (MSE) which is

the trace of RRREEE. To find the optimal tap co-efficient tensors, using Theorem 3, we set the

error uncorrelated to the observation (i.e., E
[
EEE[k] ◦ ȲYY[k]∗

]
= 0T ) and using (4.181) we get

E
[
EEE[k] ◦ ȲYY[k]∗

]
= E

[(
{W̄WW, ȲYY[k]}(P+1) − {B̄BB,D̄DD[k]}(N+1)

)
◦ ȲYY[k]∗

]
= E

[
{W̄WW, ȲYY[k]}(P+1) ◦ ȲYY[k]∗

]
− E

[
{B̄BB,D̄DD[k]}(N+1) ◦ ȲYY[k]∗

]
= {W̄WW,E

[
ȲYY[k] ◦ ȲYY[k]∗

]
}(P+1) − {B̄BB,E

[
D̄DD[k] ◦ ȲYY[k]∗

]
}(N+1)

= {W̄WW,RRRȲYY}(P+1) − {B̄BB,RRRD̄DD,ȲYY}(N+1)

= 0T (A.47)

which gives

W̄WW = {B̄BB, {RRRD̄DD,ȲYY,RRR
−1
ȲYY
}(P+1)}(N+1) (A.48)

From (A.48) we have

(
W̄WW − {B̄BB, {RRRD̄DD,ȲYY,RRR

−1
ȲYY
}(P+1)}(N+1)

)
= 0T . By substituting this in

(A.46) we get (4.183).

A.6 Decision Feedback Equalizer

The derivation of the optimal feedforward and feedback systems of the infitnite tap DFE

depends on the factorization of spectral tensors. We assume that the spectrum of the input

D̆DD(D) has a factorization

S̆SSDDD(D) = {ĂAA(D), ĂAA
H

(D−1)}(N) (A.49)
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such that ĂAA(D) is causal with a stable and causal inverse. We can see that if D̆DD(D) is the

input to a system ĂAA
−1

(D), the output

ŬUU(D) = {ĂAA
−1

(D),D̆DD(D)}(N) (A.50)

is WSS and white, and using (4.21), we get the spectrum S̆SSUUU(D) = IIIN . To simplify the

derivation we now re-state the input-output relation (4.52), using (A.50), as

Y̆YY(D) = {H̆HH(D), {ĂAA(D), ŬUU(D)}(N)}(N) + V̆VV(D) (A.51)

Further, to find the dependence of the input to the decision device
˜̆
DDD(D) on ŬUU(D) we

decompose the feedforward and feedback systems into a cascade of systems such that

W̆WW(D) = {Γ̆ΓΓ(D), ĂAA
H

(D−1)}(N) (A.52)

B̆BB(D) = {C̆CC(D), ĂAA
−1

(D)}(N) (A.53)

The input to the decision device (4.209) can now be re-written as

˜̆
DDD(D) = {Γ̆ΓΓ(D),

˜̆
YYY(D)}(N) − {C̆CC(D),

ˆ̆
UUU(D)}(N) (A.54)

where
˜̆
YYY(D) = {ĂAA

H
(D−1), Y̆YY(D)}(N) (A.55)

and
ˆ̆
UUU(D) = ĂAA

−1
(D),

ˆ̆
DDD(D) is the sequence of estimates of the past components of ŬUU(D).

The equalization problem now changes to finding a feedforward system Γ̆ΓΓ(D) and a feedback

system C̆CC(D) such that the mean squared error between the estimate
ˆ̆
UUU(D) and the input

ŬUU(D) is minimized. Since ĂAA
−1

(D) is a causal system and B̆BB(D) is a purely causal system,

C̆CC(D) has to be a purely causal system. Assuming that past decisions are correct, we have

{C̆CC(D),
ˆ̆
UUU(D)}(N) = {C̆CC(D), ŬUU(D)}(N) (A.56)

Substituting (A.51) in (A.54) and using (A.56) we have the estimate
ˆ̆
DDD(D) in terms of

ŬUU(D) given by

˜̆
DDD(D) = {

(
{{{Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N),H̆HH(D)}(N), ĂAA(D)}(N) − C̆CC(D)

)
, ŬUU(D)}(N)

+ {Γ̆ΓΓ(D), {ĂAA
H

(D−1), V̆VV(D)}(N)}(N)

= {
(
K̆KK(D)− C̆CC(D)

)
, ŬUU(D)}(N) +

˜̆
VVV(D) (A.57)
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where

K̆KK(D) = {{{Γ̆ΓΓ(D), ĂAA
H

(D−1)}(N),H̆HH(D)}(N), ĂAA(D)}(N) (A.58)

and the noise sequence
˜̆
VVV(D) = {Γ̆ΓΓ(D), {ĂAA

H
(D−1), V̆VV(D)}(N)}(N). Notice that

˜̆
VVV(D) is the

output of a system {Γ̆ΓΓ(D), ĂAA
H

(D−1)}(N) for an input V̆VV(D). Hence, using (4.21), we get

the spectrum S̆SSṼVV(D) as

S̆SSṼVV(D) = {{
(
{Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N)

)
, S̆SSVVV}(N),

(
{Γ̆ΓΓ(D−1), ĂAA

H
(D)}(N)

)H
}(N) (A.59)

We know, from (4.59), that the spectrum S̆SSVVV = N0H̆HH(D). Substituting this in (A.59) and

using the associativity property gives

S̆SSṼVV(D) = {{
(
{Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N)

)
, N0H̆HH(D)}(N),

(
{Γ̆ΓΓ(D−1), ĂAA

H
(D)}(N)

)H
}(N)

= N0{{
(
{Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N)

)
,H̆HH(D)}(N),

(
{ĂAA(D), Γ̆ΓΓ

H
(D−1)}(N)

)H
}(N)

= N0{
(
{{Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N),H̆HH(D)}(N), ĂAA(D)}(N)

)
, Γ̆ΓΓ

H
(D−1)}(N)

= N0{K̆KK(D), Γ̆ΓΓ
H

(D−1)} (A.60)

The difference between the estimate and the input is

ˆ̆
DDD(D)− D̆DD(D) = {(K̆KK(D)− C̆CC(D)− ĂAA(D)), ŬUU(D)}(N) + {Γ̆ΓΓ(D), {ĂAA

H
(D−1), V̆VV(D)}(N)}(N)

(A.61)

Using Theorem 3, for the mean square error to be minimized we require

E[(D̂DD[k]−DDD[k]) ◦ ỸYY
∗
[k − i]] = 0 for all i (A.62)

and

RRR(D̂DD−DDD),UUU[i] = E[(D̂DD[k]−DDD[k]) ◦UUU∗[k − i]] = 0T for i > 0

(A.63)

RRR(D̂DD−DDD),UUUi1,...,iN ,i
′
1,...,i

′
N

[i] = E[(D̂DDi1,...,iN [k]−DDDi1,...,iN [k]) ◦UUUH
i′1,...,i

′
N

[k − i]] = 0 for Id < Iu

(A.64)
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where Id =
(
i′1+

∑N
k=2(i′k−1)

∏
l=k−1 Il

)
and Iu =

(
i1+

∑N
k=2(ik−1)

∏
l=k−1 Il

)
. Comparing

(A.64) with (4.38) and (4.42), we can see that this constraint is equivalent to requiring that

RRR+

(D̂DD−DDD),UUU
[0] = 0T (A.65)

where RRR+

(D̂DD−DDD),UUU
[0] is the purely causal part of RRR(D̂DD−DDD),UUU[0]. From (4.41), we get that the

purely causal part of the cross-spectrum S̆SS
+

(D̂DD−DDD),UUU = RRR+

(D̂DD−DDD),UUU
[0] +RRR(D̂DD−DDD),UUU[1] + . . .. Using

(A.63) and (A.64), we get S̆SS
+

(D̂DD−DDD),UUU = 0T . Notice that (A.61) describes the input-output

relation for an input ŬUU(D) to a system K̆KK(D)−C̆CC(D)−ĂAA(D) with an output
ˆ̆
DDD(D)−D̆DD(D).

Using (4.22), we can find the cross-spectrum between the output and input of such a system

as S̆SS(D̂DD−DDD),UUU(D) = {
(
K̆KK(D) − C̆CC(D) − ĂAA(D)

)
, S̆SSUUU(D)}(N). Since ŬUU(D) is has a spectrum

S̆SSUUU(D) = IIIN , setting the purely causal part of the cross-spectrum to zero is equivalent to

the purely causal part of K̆KK(D) − C̆CC(D) − ĂAA(D) being set to zero. Thus the constraint is

equivalent to

(K̆KK(D)− C̆CC(D)− ĂAA(D))+ = 0T (A.66)

From which, since C̆CC(D) is purely causal, we get the feedback filter

C̆CC(D) = (K̆KK(D)− ĂAA(D))+ (A.67)

To find the feedforward filter Γ̆ΓΓ(D) we substitute (A.50),(A.55) and (A.57) into the orthog-

onality constraint (A.62). This gives

˜̆
YYY(D) = {ĂAA

H
(D−1), {H̆HH(D), {ĂAA(D), ŬUU(D)}(N)}(N)}(N) + {ĂAA

H
(D−1), V̆VV(D)}(N) (A.68)

Define systemsPPP[k] andXXX[k] such that theirD-transforms are {ĂAA
H

(D−1), {H̆HH(D), ĂAA(D)}(N)}(N)

and ĂAA
H

(D−1) respectively. QQQ[k] and respectively. We know that from (4.19) the contracted

product of two tensors in the D-domain is the contracted convolution in the time domain.

Using this, we write the inverse D-transform of (A.68) as

ỸYY[k] =
∑
m

PPP[m]UUU[k −m] +
∑
n

XXX[n]VVV[k − n] (A.69)

Further, Define systems QQQ[k] and OOO[k] such that their D-transforms are {(K̆KK(D)− C̆CC(D)−
ĂAA(D)) and {Γ̆ΓΓ(D), ĂAA

H
(D−1)}(N) respectively. We can write the inverse D-transform of
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(A.61) as

D̂DD[k]−DDD[k] =
∑
m

QQQ[m]UUU[k −m] +
∑
n

OOO[n]VVV[k − n] (A.70)

The criterion of (A.65) then becomes

E[(
∑
m

QQQ[m]UUU[k−m]+
∑
n

OOO[n]VVV[k−n])◦(
∑
m,

PPP[m′]UUU[k−m′−i]+
∑
n′

XXX[n′]VVV[k−n′−i])] = 0T

(A.71)

On expanding and noticing that UUU[k] and VVV[k] are uncorrelated we get∑
m,m′

QQQ[m]RRRUUU[m′ + i−m]PPPH [m′] +
∑
m,m′

OOO[m]RRRUUU[m′ + i−m]XXXH [m′] = 0T (A.72)

Since the spectrum of UUU[k] is S̆SSUUU(D) = IIIN , we have RRRUUU[i] = 0T for i 6= 0 and RRRUUU[0] = IIIN .

Using this, we get∑
m

{QQQ[m]PPPH [i+m]}(N) +
∑
m

∑
m′

{{OOO[m],RRRUUU[m′ + i−m],XXXH [i+m]}(N)}(N) = 0T (A.73)

Taking the D-transform of (A.73) and using S̆SSVVV = N0H̆HH(D) and X̆XX(D) = ĂAA
H

(D−1) gives

S̆SS(DDD−DDD),ỸYY = {Q̆QQ(D), P̆PP
H

(D−1)}(N) +N0{ŎOO(D){H̆HH(D), ĂAA(D)}(N)}(N) = 0T (A.74)

Replacing the values of P̆PP(D) and Q̆QQ(D) gives

S̆SS(DDD−DDD),ỸYY = {Q̆QQ(D), P̆PP
H

(D−1)}(N) +N0{Γ̆ΓΓ(D), {ĂAA
H

(D−1), {H̆HH(D)ĂAA
H

(D−1)}(N)}(N)}(N)

= {Q̆QQ(D), P̆PP
H

(D−1)}(N) +N0{Γ̆ΓΓ(D), P̆PP
H

(D−1)}(N)}(N) (A.75)

Multiplying both sides by (P̆PP
H

(D−1))−1 gives

Q̆QQ(D) +N0Γ̆ΓΓ(D) = K̆KK(D)− C̆CC(D)− ĂAA(D) +N0Γ̆ΓΓ(D) = 0T (A.76)

Substituting (A.67) in (A.76) and using the property Z̆ZZ(D) = Z̆ZZ
+

(D) + Z̆ZZ
−

(D) gives

K̆KK(D)− C̆CC(D)− ĂAA(D) +N0Γ̆ΓΓ(D)

= K̆KK(D)− (K̆KK(D)− ĂAA(D))+ − ĂAA(D) +N0Γ̆ΓΓ(D)

= K̆KK(D)− K̆KK
+

(D) + ĂAA
+

(D)− ĂAA(D) +N0Γ̆ΓΓ(D)

= K̆KK
−

(D)− ĂAA
−

(D) +N0Γ̆ΓΓ(D) (A.77)

Substituting (A.58) in (A.77) gives

K̆KK
−

(D)− ĂAA
−

(D) +N0Γ̆ΓΓ(D)
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= ({{{Γ̆ΓΓ(D), ĂAA
H

(D−1)}(N),H̆HH(D)}(N), ĂAA(D)}(N))
− − ĂAA

−
(D) +N0(Γ̆ΓΓ

+
(D) + Γ̆ΓΓ

−
(D))

=

(
{Γ̆ΓΓ(D), R̆RR(D)}(N)

)−
+−ĂAA

−
(D) +N0(Γ̆ΓΓ

+
(D) (A.78)

where R̆RR(D) = {{ĂAA
H

(D−1),H̆HH(D)}(N), ĂAA(D)}(N) +N0IIIN . Equating this to 0T gives(
{Γ̆ΓΓ(D), R̆RR(D)}(N)

)−
= −N0Γ̆ΓΓ(D)+ + ĂAA(D)− (A.79)

Notice that if the system ĂAA(D) is excited by an input with spectrum H̆HH(D) and its output

is corrupted by noise with spectrum N0IIIN , then the spectrum of the output is the tensor

R̆RR(D). Since R̆RR(D) is a spectrum, it can be factored as

R̆RR(D) = {M̆MM(D),M̆MM
H

(D−1)}(N) (A.80)

where M̆MM(D) is causal with a causal and stable inverse. Denote the tensor containing the

pseudo-diagonal components of a tensor S̆SS(D) by S̆SS
(d)

(D). Since ĂAA(D) is causal, its anti-

causal component ĂAA(D)− is ĂAA
(d)

(0). This means that the purely causal component of Γ̆ΓΓ(D)

is zero since the left hand side of (A.79) is anticausal. We may thus re-write (A.79) as(
{Γ̆ΓΓ(D), R̆RR(D)}(N)

)−
= ĂAA

(d)
(0) (A.81)

Using (A.80) and the fact that R̆RR(D) and R̆RR
−1

(D) are both causal and stable, we get

Γ̆ΓΓ(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1, (M̆MM
H

(D−1))−1}(N)}(N) (A.82)

We know, by definition, that R̆RR(D) = {{ĂAA
H

(D−1),H̆HH(D)}(N), ĂAA(D)}(N) + N0IIIN . This can

be written as

R̆RR(D)−N0IIIN = {{ĂAA
H

(D−1),H̆HH(D)}(N), ĂAA(D)}(N) (A.83)

Contracting both sides of (A.83) with Γ̆̆Γ̆Γ(D) gives

{Γ̆̆Γ̆Γ(D), (R̆RR(D)−N0IIIN)}(N) = {Γ̆ΓΓ, {{ĂAA
H

(D−1),H̆HH(D)}(N), ĂAA(D)}(N)}(N) (A.84)

Comparing this to (A.58) we get K̆KK(D) = {Γ̆̆Γ̆Γ(D), (R̆RR(D)−N0IIIN)}(N). Substituting this in

(A.67) gives

C̆CC(D) = (K̆KK(D)− ĂAA(D))+

= ({Γ̆ΓΓ(D), (R̆RR(D)−N0IIIN)}(N) − ĂAA(D))+
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= ({Γ̆ΓΓ(D), R̆RR(D)}(N))
+ −N0Γ̆ΓΓ

+
(D)− ĂAA

+
(D) (A.85)

Since Γ̆ΓΓ(D) is anti-causal and ĂAA
+

(D) is purely causal, we get

C̆CC(D) = ({Γ̆̆Γ̆Γ(D), R̆RR(D)}(N))
+ − ĂAA(D) (A.86)

Using (A.80) and (A.82) this can be written as

C̆CC(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1, (M̆MM(D))}(N)}(N) − ĂAA
+

(D) (A.87)

The next step is to use C̆CC(D) and Γ̆ΓΓ(D) to find the actual feedback and feed-forward systems

W̆WW(D) and B̆BB(D). Substituting (A.82) in (A.52) we get

W̆WW(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1, {M̆MM
−H

(D−1), ĂAA
H

(D)}(N)}(N)}(N)}(N) (A.88)

and substituting (A.87) in (A.53) we get

B̆BB(D) = {ĂAA
(d)

(0), {(M̆MM
(d)

(0))−1{M̆MM(D), ĂAA
−1

(D)}(N)}(N)}(N)}(N) − IIIN (A.89)

2019/11/14



137

Appendix B

Miscellaneous

B.1 Spectral Factorization of a Tensor

As an example of spectral factorization, we show the factorization of a 2× 2× 2× 2 tensor

H̆HH(D) = {Q̆QQ(D), Q̆QQ
H

(D−1)}(2). The component functions of H̆HH(D) are given below followed

by the components of the factor tensor Q̆QQ(D). A MATLAB script, which can be obtained

from the author or his supervisor, was used to compute the factor tensor Q̆QQ(D). The factor

tensor Q̆QQ(D) is computed iteratively using a generalization of the method detailed in [58]

by contracting the original tensor H̆HH(D) with transformation tensors until the result is an

identity tensor. i.e., on the ith step we compute

Φ̆ΦΦi(D) = {T̆TTi(D), {Φ̆ΦΦi−1(D), T̆TT
H

i (D−1)}(2)}(2) (B.1)

where Φ̆ΦΦ0(D) = H̆HH(D). The transformation tensors T̆TTi(D) are chosen to remove the poles

from the components of the spectrum tensor, reduce it to a tensor with numerical elements

(the components do not depend on D) and then finally to the identity tensor. This is

accomplished with the help of the spectralfact command in the MATLAB Control Systems

Toolbox. The factor tensor Q̆QQ(D) is computed using (4.47) as

Q̆QQ(D) = {{T̆TT
−1

1 (D), T̆TT
−1

2 (D)}(2), . . . T̆TT
−1

L (D)}(2) (B.2)
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To verify that the factorization was performed correctly, we compare

Ei,j,k,l =

∣∣∣∣HHHi,j,k,l(D)−
(
{QQQ(D),QQQH(D−1)}(2)

)
i,j,k,l

∣∣∣∣ (B.3)

with a threshold ε = 10−6. This is done to allow for small errors that may occur due to the

MATLAB floating point computations.

Below, we present the components of the spectrum H̆HH(D) followed by the components of

the factor tensor Q̆QQ(D). The substitution D = z−1 is made in the following:

HHH[1111] = (0−3i)z4+(1+2i)z3+(26+3.497e−15i)z2+(1−2i)z−(1.665e−16−3i)
z2

HHH[1112] = (1+1i)z4+(5+4.441e−15i)z3−z2−(8.882e−15−6i)z+(3+3.997e−15i)
z2

HHH[1121] = (0+2i)z3+(7+1i)z2+(14+4.774e−15i)z−(2.567e−16−1i)
z

HHH[1122] = (0+1i)z4+(4+1i)z3+(2+1i)z2+(7+12i)z+(3−2i)
z2

HHH[1211] = 3z4−(4.163e−16+6i)z3−z2+(5−3.393e−15i)z+(1−1i)
z2

HHH[1212] = (2+2i)z2+(11+8.882e−16i)z+(2−2i)
z

HHH[1221] = (0+1i)z4+(2−1.776e−15i)z3−(2.887e−15−4i)z2+(14+2i)z+(6−1i)
z

HHH[1222] = (1+2i)z2+(13+1i)z+(2−4i)
z

HHH[2111] = (0−1i)z3+(14+2.859e−15i)z2+(7−1i)z+(1.443e−15−2i)
z2

HHH[2112] = (6+1i)z4+(14−2i)z3−(1.11e−15+4i)z2+(2+3.22e−15i)z+(1.943e−16−1i)
z3

HHH[2121] = (0+10i)z2+(54+1.796e−16i)z+(9.352e−16−10i)
z

HHH[2122] = −(2−6i)z4+(18−2i)z3+(6−4i)z2+(2+3i)z−(6.106e−16+1i)
z3

HHH[2211] = (3+2i)z4+(7−12i)z3+(2−1i)z2+(4−1i)z−(2.22e−16+1i)
z2

HHH[2212] = (2+4i)z2+(13−1i)z+(1−2i)
z

HHH[2221] = (0+1i)z4+(2−3i)z3+(6+4i)z2+(18+2i)z−(2+6i)
z

HHH[2222] = −2z4+(1+2i)z3+(28+2.887e−15i)z2+(1−2i)z−(2+5.829e−16i)
z2

The components of QQQ(D) are:

QQQ[1111] = (1.244+0.9071i)z2+(1.047+0.01788i)z−(0.2901−0.07506i)
z2

QQQ[1112] = (0.6037−0.09844i)z3−(0.662−0.1946i)z2+(0.2456−0.04223i)z−(0.1873+0.05397i)
z3

QQQ[1121] = (1.598−2.85i)z+(0.4016+0.85i)
z

QQQ[1122] = −(0.126−0.2595i)z3−(0.1497+0.1795i)z2+(1.463−0.02602i)z−(0.1873+0.05397i)
z3

QQQ[1211] = (0.5452−3.605i)z2−(0.08818−0.3898i)z+(0.543+0.2152i)
z2
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QQQ[1212] = (0.9499+0.5713i)z3+(1.009+0.7283i)z2+(0.05367−0.3157i)z−(0.01227−0.01607i)
z3

QQQ[1221] = (1.253−1.611i)z−(0.2525−1.611i)
z

QQQ[1222] = (1.705−0.03864i)z3+(2.722+0.06879i)z2−(0.4154+0.04622i)z−(0.01227−0.01607i)
z3

QQQ[2111] = (2.507−0.1955i)z2+(0.1541−0.1037i)z+(0.3394+0.2991i)
z2

QQQ[2112] = −(0.7295+0.5761i)z3+(0.9594+0.5259i)z2+(0.6389+0.07285i)z+(0.1312−0.02266i)
z3

QQQ[2121] = (0.1786+0.4215i)z+(1.821+0.5785i)
z

QQQ[2122] = −(0.5714+1.322i)z3+(1.86+1.017i)z2+(0.58+0.3281i)z+(0.1312−0.02266i)
z3

QQQ[2211] = (0.08686+0.2953i)z2+(1.16−0.007057i)z+(0.753−0.2882i)
z2

QQQ[2212] = (1.51+0.6016i)z3+(1.29−0.5906i)z2+(0.07483−0.01868i)z+(0.1247+0.00769i)
z3

QQQ[2221] = (1.224+2.649i)z+(4.776−0.6495i)
z

QQQ[2222] = (0.3229+2.176i)z3+(1.572−0.8408i)z2−(0.01939+0.3432i)z+(0.1247+0.00769i)
z3

B.2 Simulation Program User Guide

This appendix details the software that was used to generate the simulation and analytical

results in this thesis. The software can be obtained from the author or his supervisor. The

software distribution consists of one main folder and two sub-folders. The first sub folder

contains a library of general functions and the second sub folder contains matlab files that

produce the figures of this thesis. The matlab file that produces a certain figure is named

after the figure as it appears in this thesis. The tensor library is a directory that consists of

functions that perform tensor operations and are used throughout all the simulations and

analytical results. Each matlab file is titled based on the operation that it performs. For

example, the matlab file titled ”tensor contraction.m” is a function that takes two tensors

as its input and returns their contracted product over a specified number of domains as

its output. These functions are required to run the matlab files that produce the figures

and it is hence important to maintain the structure of the folders as they are. Most of the

error rate results are obtained by simultaneously simulating for different SNRs on different

instances of MATLAB. The final curves are obtained by collecting the results of these runs.
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To reproduce a particular figure from the thesis, simply run the corresponding MATLAB

file with the default settings. A comprehensive README document is provided along with

the software distribution that details each matlab file with instructions on how to run them.
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