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Abstract

Copulas are multivariate cumulative distribution functions with uniform margins on the unit inter-
val. Bivariate extreme-value copulas embody a specific form of dependence between two uniform
random variables. These copulas are characterized by a function of a single variable called the
Pickands dependence function. This thesis is concerned with an extension of the Pickands depen-
dence function whose properties are studied.



Résumé

Les copules sont des fonctions de répartition multidimensionnelles à marges uniformes sur l’inter-
valle unité. Les copules de valeurs extrêmes bivariées traduisent une forme de dépendance spé-
cifique entre deux variables aléatoires uniformes. Ces copules sont caractérisées par une fonc-
tion d’une seule variable appelée fonction de dépendance de Pickands. Ce mémoire porte sur une
généralisation de la fonction de dépendance de Pickands, dont on étudie les propriétés.
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1
Introduction

In the statistical literature, copulas refer to multivariate cumulative distribution functions with uni-
form margins on the unit interval. This concept is used to model dependence between random
variables, as justified by Sklar’s Representation Theorem; see Sklar (1959). Although the use of
copulas for statistical modeling grew slowly at first, as documented in Genest et al. (2009), there are
now hundreds of applications of copulas in statistics and related fields, including quantitative risk
management, finance, insurance, and hydrology. See, e.g., Genest and Favre (2007) for a partial
survey and Genest and Nešlehová (2014) for a gentle introduction to the subject. General reference
books about copulas and copula modeling are Nelsen (2006) and Joe (2014); for applications to
risk management and finance, see, e.g., McNeil et al. (2015).

Bivariate extreme-value copulas are characterized by a function called the Pickands depen-
dence function; see, e.g., Genest and Nešlehová (2012) and references therein. To be specific, a
bivariate copula C : r0, 1s2 Ñ r0, 1s belongs to the extreme-value class if, and only if, there exists
a convex function A : r0, 1s Ñ r1{2, 1s such that, for all u, v P p0, 1q,

Cpu, vq “ exp
“

lnpuvqAtlnpvq{ lnpuvqu
‰

. (1.1)

In order for C to be a copula, the function A, called a Pickands dependence function, must also be
bounded above by the constant 1 and below by the function t ÞÑ maxpt, 1 ´ tq. That is, one must
have, for all t P r0, 1s,

maxpt, 1´ tq ď Aptq ď 1.

Many properties of a bivariate extreme-value copula can be deduced from those of the cor-
responding Pickands dependence function. Moreover, given the one-to-one relationship between
bivariate extreme-value copulas and Pickands dependence functions, an estimate of a copula C of
the form (1.1) can be derived from an estimate of A based on a random sample of size n from a
bivariate distribution function whose unique underlying copula is C.



Introduction

Two nonparametric estimators of A were proposed by Genest and Segers (2009), namely the
Pickands and Capéraà–Fougères–Genest (CFG) estimators, respectively denoted APn and ACFGn .
These authors studied the large-sample behavior of these estimators of A and proved, among oth-
ers, their consistency. This development naturally led Genest et al. (2011) to propose a goodness-
of-fit test for bivariate extreme-value copulas based on the distance between a rank-based, paramet-
ric estimate of the Pickands dependence function and either one of the nonparametric estimators
APn or ACFGn . Their procedures were shown to be consistent and powerful under reasonable data
generation schemes.

In the same paper, Genest et al. (2011) extended their goodness-of-fit test beyond bivariate
extreme-value copulas by considering the broader class of so-called left-tail decreasing (LTD) bi-
variate copulas. Asymptotic properties of the CFG and Pickands estimators were derived in this
context. This led the authors to generalized notions of Pickands dependence functions which arose
as the weak limits APC and ACFGC of the nonparametric estimators APn and ACFGn , respectively,
where the subscript C denotes the unique underlying LTD copula of the continuous bivariate dis-
tribution from which the data arose.

Genest et al. (2011) noted that APC and ACFGC could be Pickands dependence functions, without
C being an extreme-value copula, allowing the generation of bivariate extreme-value copulas from
other copulas. They also remarked that when APC or ACFGC is convex, the proposed goodness-of-fit
test could be inconsistent. Specifically, the test might suggest that the underlying copula of the
sample is extreme-value whereas in fact it is not. Therefore, it is interesting to study the functions
APC and ACFGC , and specifically their convexity, for an arbitrary copula C.

In Chapter 2, we will introduce formally the notions of copula and extreme-value copula, as
well as the main results concerning nonparametric estimation of copulas and Pickands dependence
functions. Chapter 3 concerns measures of dependence, which are used to assess the degree of
dependence between two variables; also reviewed there are notions and properties of tail mono-
tonicity that will play a role in the third part of the thesis.

In Chapter 4, which contains this thesis’ original contribution, we will describe some of the
properties of the function APC and ACFGC . We will first extend the results of Genest et al. (2011)
by proving several properties that these functions share with Pickands dependence functions. In
addition, we will supply new examples of copulas C for which APC is available in closed form. We
will then study the derivative of APC and use it to give analytical necessary and sufficient conditions
for the convexity of APC . At the end, we will use the notions introduced in the previous chapters to
relate the convexity of APC to the tail monotonicity properties of C.
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2
Copulas and extreme-value copulas

2.1 Definitions and basic properties
A d-dimensional copula C is a cumulative distribution function whose support is r0, 1sd and whose
univariate margins are uniform on the unit interval. An equivalent definition is given below in
probabilistic terms.

Definition 2.1 A function C : r0, 1sd Ñ r0, 1s is a d-variate copula if, and only if, there exist
random variables U1, . . . , Ud which are uniformly distributed on the interval r0, 1s and such that,
for all u1, . . . , ud P r0, 1s, Cpu1, . . . , udq “ PrpU1 ď u1, . . . , Ud ď udq.

The following are two fundamental examples of copulas.

Example 2.1 Let U1, . . . , Ud be mutually independent random variables which are uniformly dis-
tributed on the interval r0, 1s. The joint cumulative distribution function of the vector pU1, . . . , Udq

is then given, for all u1, . . . , ud P r0, 1s, by

Πdpu1, . . . , udq “ PrpU1 ď u1, . . . , ud ď udq “
d
ź

i“1

PrpUi ď uiq “ u1 ˆ ¨ ¨ ¨ ˆ ud.

This function, denoted Πd, is called the d-dimensional independence or product copula.

Example 2.2 Let U be a uniformly distributed random variable on r0, 1s. Consider the d ˆ 1 ran-
dom vector pU, . . . , Uq. LetMd denote its cumulative distribution function. Then, for all u1, . . . , ud P
r0, 1s, we have

Mdpu1, . . . , udq “ Pr pU ď u1, . . . , U ď udq

“ Pr tU ď minpu1, . . . , udqu “ minpu1, . . . , udq.



2.1 Definitions and basic properties

The copula Md is called the d-dimensional comonotonicity copula or the Fréchet–Hoeffding
upper bound. The motivation for this terminology stems from the following result, whose proof
can be found in the book by Nelsen (2006).

Theorem 2.1 Let pU1, . . . , Udq be a d-dimensional random vector with uniform marginals on r0, 1s

and let C denote its cumulative distribution function. Let u “ pu1, . . . , udq P r0, 1s
d, and define

Wd : r0, 1sd Ñ R by Wdpuq “ maxp0, u1` ¨ ¨ ¨`ud´ d` 1q. Then, the following statements hold:

a) Wdpuq ď Cpuq ďMdpuq.

b) Wd is a copula if, and only if, d P t1, 2u.

c) For all u “ pu1, . . . , udq and v “ pv1, . . . , vdq P r0, 1sd,

|Cpuq ´ Cpvq| ď
d
ÿ

i“1

|ui ´ vi|.

d) C is almost everywhere differentiable with respect to each of its variables. If Cj denotes

the first partial derivative of C with respect to the jth variable, where j P t1, . . . , du, we

have, for almost all u “ pu1, . . . , udq P r0, 1sd,

Cjpuq “ Pr

#

d
č

k“1,k ­“j

Uk ď uk

ˇ

ˇ

ˇ
Uj “ uj

+

.

The following theorem is due to Sklar (1959). It is the fundamental result which motivates
copula modeling. It is often referred to as Sklar’s Representation Theorem.

Theorem 2.2 Let X1, . . . , Xd be random variables with respective cumulative distribution func-

tionsF1, . . . , Fd. LetH denote the joint cumulative distribution function of the vector pX1, . . . , Xdq.

Then, there exists a d-dimensional copula C such that, for all x1, . . . , xd P R,

Hpx1, . . . , xdq “ C tF1px1q, . . . , Fdpxdqu .

If X1, . . . , Xd are continuous, then C is unique. Reciprocally, if C is a d-dimensional copula, then

the function H : Rd Ñ r0, 1s defined, for all x1, . . . , xd P R, by

Hpx1, . . . , xdq “ C tF1px1q, . . . , Fdpxdqu

is a cumulative distribution function on Rd, whose univariate marginals are F1, . . . , Fd.
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2.2 Nonparametric estimation

Example 2.3 Let X1, . . . , Xd be mutually independent random variables with cumulative distri-
bution functions F1, . . . , Fd, respectively. Then, the joint cumulative distribution function H of the
vector pX1, . . . Xdq is given, for all x1, . . . , xd P R, by

Hpx1, . . . xdq “ F1px1q ˆ ¨ ¨ ¨ ˆ Fdpxdq “ Πd tF1px1q, . . . , Fdpxdqu .

Example 2.4 Let pX, Y q be a random pair, and assume that X has distribution F , and Y has dis-
tribution G. Assume further that the functions F and G are continuous. Let pX1, Y1q, . . . , pXn, Ynq

be mutually independent observations from pX, Y q. Let C be the unique underlying copula as-
sociated with the distribution of pX, Y q via Sklar’s Representation Theorem. We seek to find the
copula Cpnq of pXpnq, Ypnqq, where Xpnq “ maxpX1, . . . , Xnq and Ypnq “ maxpY1, . . . , Ynq. Note
that, for all x, y P R,

Pr
 

Xpnq ď x, Ypnq ď y
(

“ Pr tX1 ď x, . . . , Xn ď x, Y1 ď y, . . . , Yn ď yu

“

n
ź

i“1

CtF pxq, Gpyqu “
“

CtF pxq, Gpyqu
‰n
.

Given that the cumulative distribution functions of Xpnq and Ypnq are F n and Gn, respectively, we
deduce that

CpnqtF pxq
n, Gpyqnu “ C

“

tF pxq, Gpyqu
‰n
.

Therefore, for all u, v P r0, 1s, Cpnqpu, vq “ tCpu1{n, v1{nqun. This calculation can be generalized
to arbitrary dimensions.

There are several well-known families of copulas. Two famous examples are the Archimedean
and the elliptical class of copulas. Key references about the class of Archimedean copulas are
Genest and MacKay (1986) and McNeil and Nešlehová (2009). For details about the class of
elliptical copulas, see, e.g., Genest et al. (2007) or Joe (2014).

In this thesis, we will mostly be interested in the family of extreme-value copulas, and focus on
the bivariate case. The definition of an extreme-value copula was already given in the Introduction;
see Eq. (1.1). Details concerning this class of copulas will be given in Section 2.4 below. Before
we proceed, we review in Section 2.2 some well-known results in parametric and nonparametric
estimation of copulas.

2.2 Nonparametric estimation
Let X “ pX1, . . . , Xdq be a d-dimensional random vector, and assume that X1, . . . , Xd are contin-
uous univariate random variables with respective cumulative distribution functions F1, . . . , Fd. Let
C denote the unique underlying copula associated to X via Sklar’s Representation Theorem. Fur-
thermore, letXp1q, . . . , Xpnq be a random sample of size n fromX . We writeXpiq “ pXi1, . . . , Xidq

5



2.2 Nonparametric estimation

for i P t1, . . . , nu.
First assume that the margins F1, . . . , Fd are known. Then, for all i P t1, . . . , nu, set Ui “

pUi1, . . . , Uidq, where Ui1 “ F1pXi1q, . . . , Uid “ FdpXidq. It is easily seen that Un “ tU1, . . . , Unu

is a random sample from distribution C.

Definition 2.2 The empirical distribution function of the sample Un is defined to be the function
Cn : r0, 1sd Ñ r0, 1s defined, for all u1, . . . , ud P r0, 1s, by

Cnpu1, . . . , udq “
1

n

n
ÿ

i“1

1pUi1 ď u1, . . . , Uid ď udq.

Remark 2.1 The empirical function Cn is an estimate of the copula C but it is actually not a
copula itself because its margins are not uniform on the interval r0, 1s. In fact, Cn takes discrete
values in the set t0, 1{n, . . . , n{n “ 1u.

The following result is a special case of the standard functional Central Limit Theorem, also
called Donsker’s theorem; see, e.g., Donsker (1952).

Theorem 2.3 The process Cn “
?
n pCn ´ Cq converges weakly, as nÑ 8, to a centered Gaus-

sian process C whose covariance structure is given, for all u, v P r0, 1sd, by

cov tCpuq,Cpvqu “ C tminpu, vqu ´ CpuqCpvq,

where the minimum between two vectors u and v in r0, 1sd is understood component-wise.

In practice, of course, the margins F1, . . . , Fd are unknown and hence the above estimation
method, which requires the knowledge of these margins, fails. Invoking the Glivenko–Cantelli
Lemma, simple nonparametric estimators of F1, . . . , Fd are their respective empirical distributions
Fn1, . . . , Fnd, where for each j P t1, . . . , du, Fnj is defined, for all x P R, by

Fnjpxq “
1

n` 1

n
ÿ

i“1

1pXij ď xq.

Set, for all i P t1, . . . , nu, Ûi “ pÛi1, . . . , Ûidq “ pFn1pXi1q, . . . , FndpXidqq. A pseudo-random
sample from the copula C is then given by Ûn “ tÛ1, . . . , Ûnu.

Remark 2.2 The following remarks are small observations:

a) The classical definition of Fnj involves division by n rather than n ` 1. Replacing n by
n` 1 in the denominator of Fnj is to ensure that Fnj ă 1 on the entire interval r0, 1s.

6



2.2 Nonparametric estimation

b) For each i P t1, . . . , nu and j P t1, . . . , du, let Rij denote the rank of Xij within the set
tX1j, . . . , Xnju. Then,

Ûi “

ˆ

Ri1

n` 1
, . . . ,

Rid

n` 1

˙

.

In other words, Ûi is a rank-based statistic.

c) The set Ûn does not form a random sample fromC because as transpires from the above re-
lation, knowledge of all but one of Û1, . . . , Ûn implies complete knowledge of the remaining
one. For this reason, Ûn is called a pseudo-sample.

Definition 2.3 The empirical copula Ĉn is defined to be the empirical distribution function of the
set Ûn.

The following result is the rank-based version of Donsker’s result. It has a long history in the
copula literature and goes back at least to Rüschendorf (1976).

Theorem 2.4 Under suitable regularity conditions on C, the empirical copula process Ĉn “
?
n pĈn ´ Cq defined on r0, 1sd converges weakly to a process Ĉ, defined on r0, 1sd, by

Ĉpuq “ Cpuq ´
d
ÿ

i“1

CipuqCp1, . . . , 1, ui, 1, . . . , 1q.

where C is a Gaussian process on r0, 1sd whose covariance structure is given, for all u, v P r0, 1sd,

by

cov tCpuq,Cpvqu “ C tminpu, vqu ´ CpuqCpvq.

The “suitable regularity conditions” mentioned above were strong in the work of Rüschendorf
(1976) and were gradually relaxed in a series of papers. See, e.g., Genest and Nešlehová (2012) for
additional references. The following condition is the weakest to date; for more details, see, e.g.,
Segers (2012) or Genest et al. (2017).

Condition 2.3 In order for the above convergence theorem to hold, one assumes that for each
j P t1, . . . , du, the derivative Cj of C with respect to the jth variable exists and is continuous on
the set tpu1, . . . , udq P r0, 1sd : 0 ă uj ă 1u. This allows for a continuous extension of Cj to the
boundary of r0, 1sd.

7



2.4 Extreme-value copulas

2.4 Extreme-value copulas
Definition 2.4 Let C be a d-dimensional copula. We say that C is max-stable if, and only if, for

all n P N, and u P r0, 1sd, we have tCpu1{nqun “ Cpuq.

Example 2.5 The independence copula Πd is clearly max-stable. Likewise, the comonotonicity
copula Md is max-stable given that, for all n P N and u “ pu1, . . . , udq P r0, 1sd,

tMdpu
1{n
qu
n
“ tminpu

1{n
1 , . . . , u

1{n
d qu

n
“Mdpuq.

In contrast, the copula W2 is not max-stable.

Definition 2.5 A d-dimensional copula C is said to be an extreme-value copula if, and only if,
there exists a d-dimensional copula D such that, for all u P r0, 1sd, lim

nÑ8
tDpu1{nqun “ Cpuq. We

say that D is in the domain of attraction of C.

It is obvious from the above that a max-stable copula is necessarily an extreme-value copula.
The reverse is also true and stated below as a theorem. See, e.g., Joe (2014).

Theorem 2.5 A copula C is an extreme-value copula if, and only if, it is a max-stable copula.

Definition 2.6 The following notations will be used in the characterization of extreme-value cop-
ulas.

a) Let Sd denote the d-dimensional simplex tps1, . . . , sdq P r0, 1sd : s1 ` ¨ ¨ ¨ ` sd “ 1u.

b) Let ∆d denote the set tps1, . . . , sdq P r0, 1sd : s1 ` ¨ ¨ ¨ ` sd ď 1u. Note that Sd and ∆d´1

are in one-to-one correspondence.

c) A finite measure µ on the Borel sigma-field generated by Sd is called a spectral measure
if, and only if, for all j P t1, . . . , du,

ż

Sd

sjdµps1, . . . , sdq “ 1.

The following characterization theorem and its corollary are due to Pickands (1981).

Theorem 2.6 Let C be a d-dimensional extreme-value copula. Then, for all u “ pu1, . . . , udq P

p0, 1qd, one has

Cpuq “ exp

»

—

—

—

–

#

d
ÿ

i“1

lnpuiq

+

ˆB

$

’

’

’

&

’

’

’

%

lnpu1q
d
ř

i“1

lnpuiq

, . . . ,
lnpud´1q
d
ř

i“1

lnpuiq

,

/

/

/

.

/

/

/

-

fi

ffi

ffi

ffi

fl

,
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2.4 Extreme-value copulas

where B : ∆d´1 Ñ r0,8q is given, for all x1, . . . , xd´1 P ∆d´1, by

Bpx1, . . . , xd´1q “

ż

Sd

maxtω1x1, . . . , ωd´1xd´1, ωdp1´ x1 ´ ¨ ¨ ¨ ´ xd´1qudµpωq,

for some spectral measure µ on Sd.

Corollary 2.1 The following are properties satisfied by the function B:

a) Bp0, . . . , 0q “ 1, Bp1, 0, . . . , 0q “ 1, . . . , Bp0, 1, 0 . . . , 0q “ 1, . . . , Bp0, . . . 0, 1q “ 1.

b) For all px1, . . . , xd´1q P ∆d´1,

max

˜

x1, . . . , xd´1, 1´
d´1
ÿ

i“1

xi

¸

ď Bpx1, . . . , xd´1q ď 1.

c) B is a convex function.

d) Suppose that pU1, . . . , Udq has distribution C, as defined in Theorem 2.6. When B is iden-

tically equal to the lower bound given in part b), then U1 “ ¨ ¨ ¨ “ Ud almost surely, whereas

if B is identically equal to the upper bound, then U1, . . . , Ud are mutually independent.

Remark 2.3 When d “ 2, it is common to define a function A on r0, 1s by Aptq “ Bp1 ´ tq for
all t P r0, 1s. One can then write, for all u, v P p0, 1q

Cpu, vq “ exp

„

lnpuvqA

"

lnpvq

lnpuvq

*

.

From now on, we will restrict our attention to the two-dimensional case. The following result
is a specialization of Corollary 2.1 to that case.

Theorem 2.7 Let A be a continuous function on r0, 1s. Define a function C on p0, 1q2 by setting,

for all u, v P p0, 1q,

Cpu, vq “ exp

„

lnpuvqA

"

lnpvq

lnpuvq

*

,

which we extend to the boundary of p0, 1q2 so that for all u P r0, 1s, we haveCpu, 1q “ Cp1, uq “ u

and Cp0, uq “ Cpu, 0q “ 0. Then C is a copula if, and only if, A satisfies the following properties:

a) maxpt, 1´ tq ď Aptq ď 1 for all t P r0, 1s;

b) A is convex on r0, 1s.

As already mentioned in the Introduction, the function A in Theorem 2.7 is called a Pickands
dependence function. Our next result summarizes some of the well-known properties of such func-
tions. These facts are all easily derived using basic calculus; many of them are reported, e.g., by
Deheuvels (1991).

9



2.4 Extreme-value copulas

Theorem 2.8 The following properties relate A and C:

a) The mapping t ÞÑ Aptq{t is non-increasing on p0, 1s.

b) The mapping t ÞÑ Aptq{p1´ tq is non-decreasing on r0, 1q.

c) A is the upper bound if, and only if, C is the independence copula, and A is the lower

bound if, and only if, C is the comonotonicity copula.

d) Ap1{2q “ 1{2 if, and only if, Aptq “ maxpt, 1´ tq for all t P r0, 1s.

d) For all u, v P r0, 1s, uv ď Cpu, vq ď minpu, vq.

e) C is symmetric if, and only if, for all t P r0, 1s, Aptq “ Ap1´ tq.

f) C is absolutely continuous if, and only if, A is twice differentiable.

The following definition is taken from Genest and Rivest (2001).

Definition 2.7 Let C be a bivariate copula, and let pU, V q have distribution C. The distribution of
CpU, V q is called the Kendall distribution.

As mentioned by the authors, and as will be seen later, this distribution relates to Kendall’s tau,
a standard measure of the dependence between the variables U and V with joint distribution C,
whence the name. The following result is due to Ghoudi et al. (1998).

Theorem 2.9 Let C be a bivariate extreme-value copula with Pickands dependence function A.

Let W “ CpU, V q and Z “ lnpV q{ lnpUV q. The joint distribution of W and Z is given, for all

w, z P p0, 1q, by

PrpW ď w,Z ď zq

“ pw ´ w lnwq

$

&

%

z ` zp1´ zq
A1pzq

Apzq
´

z
ż

0

tp1´ tq

Aptq
dA1ptq

,

.

-

` w

z
ż

0

tp1´ tq

Aptq
dA1ptq.

Corollary 2.2 The following are immediate consequences of the previous proposition:

a) For all w P p0, 1q,

PrpW ď wq “ w ´

$

&

%

1´

1
ż

0

tp1´ tq

Aptq
dA1ptq

,

.

-

w lnw.

b) For all z P p0, 1q,

PrpZ ď zq “ z ` zp1´ zqA1pzq{Apzq.

10



2.5 Estimation of the Pickands dependence function

c) Assuming that A is twice differentiable, we have that, for all w, z P p0, 1q ,

PrpW ď w|Z “ zq “ ppzqw ` t1´ ppzqu pw ´ w lnwq,

where

ppzq “
zp1´ zq

Apzq
A2pzq{Q1pzq,

and

Qpzq “ PrpZ ď zq.

Table 2.1 lists some parametric families of Pickands dependence functions that induce bivariate
extreme-value copulas.

Table 2.1: Pickands Dependence Functions of Some Parametric Extreme-Value Copulas.

Family Dependence Function Parameter and Range
Cuadras–Augé maxp1´ θt, 1´ p1´ tqθq θ P r0, 1s

Galambos 1´ tt´θ ` p1´ tq´θu´1{θ θ P p0,8q

Gumbel–Hougaard ttθ ` p1´ tqθu1{θ θ P p1,8q

Hüsler–Reiß p1´ tqΦpλ` 1
2λ

ln 1´t
t
q ` tΦpλ` 1

2λ
ln t

1´t
q λ P p0,8q

2.5 Estimation of the Pickands dependence function
Let pX1, Y1q, . . . , pXn, Ynq be a random sample from a bivariate cumulative distribution function
H , with continuous margins F (for X) and G ( for Y ) assumed to be at first, known and extreme-
value copula C with dependence function A. Then pF pX1q, GpY1qq, . . . , pF pXnq, GpYnqq form a
random sample from C. Define, for all i P t1, . . . , nu and t P p0, 1q,

ζiptq “ min

"

´ lnF pXiq

1´ t
,
´ lnGpYiq

t

*

It can then be shown that for all i P t1, . . . , nu, ζiptq is exponentially distributed with parameter
Aptq. Indeed, for all x ě 0,

Pr tζiptq ą xu “ PrtF pXiq ď e´p1´tqx, GpYiq ď e´txu “ Cpe´p1´tqx, e´txq “ exp t´xAptqu .

Note that for all t P r0, 1s, E tζiptqu “ Aptq and E tln ζiptqu “ ´γ ´ Aptq, where γ is the
Euler–Mascheroni constant. We therefore can get a moment estimate of Aptq by considering the

11



2.5 Estimation of the Pickands dependence function 12

Figure 2.1: Pickands Dependence Functions for Several Parametric Families of Extreme-Value
Copulas

Figure 2.2: Plots of Aptq{t for Several Parametric Families of Extreme-Value Copulas.



2.5 Estimation of the Pickands dependence function

Figure 2.3: Plots of Aptq{p1´ tq for Several Parametric Families of Extreme-Value Copulas.

following estimators APn and ACFGn , respectively defined, for all t P p0, 1q, by

APn ptq “

#

1

n

n
ÿ

i“1

ζiptq

+´1

,

and

ACFGn ptq “ exp

#

´γ ´
1

n

n
ÿ

i“1

ln ζiptq

+

.

If the margins F and G are unknown, as in most practical situations, we estimate them through
their (rescaled) empirical nonparametric counterparts defined, for all x, y P R, by

Fnpxq “
1

n` 1

n
ÿ

i“1

1pXi ď xq, Gnpyq “
1

n` 1

n
ÿ

i“1

1pYi ď yq.

For each i P t1, . . . , nu, we then set Ûi “ FnpXiq and V̂i “ GnpYiq. Consider the empirical copula
Ĉn of C based on the pseudo-sample pÛ1, V̂1q, . . . , pÛn, V̂nq explicitly defined, for all u, v P r0, 1s,
by

Ĉnpu, vq “
1

n

n
ÿ

i“1

1pÛi ď u, V̂i ď vq.

13



2.5 Estimation of the Pickands dependence function 14

Figure 2.4: 100 Realizations from the Galambos Copula for Different Values of θ.

Figure 2.5: 100 Realizations from the Gumbel Copula for Different Values of θ.



2.5 Estimation of the Pickands dependence function

Figure 2.6: 100 Realizations from the Hüsler–Reiß Copula for Different Values of λ.

Define, for all t P p0, 1q,

ζ̂iptq “ min

˜

´ ln Ûi
1´ t

,
´ ln V̂i
t

¸

,

and define a new version of APn and ACFGn , based on the pseudo-sample pÛ1, V̂1q, . . . , pÛn, V̂nq, by

APn ptq “

#

1

n

n
ÿ

i“1

ζ̂iptq

+´1

,

and

ACFGn ptq “ exp

#

´γ ´
1

n

n
ÿ

i“1

ln ζ̂iptq

+

.

The following result, due to Genest and Segers (2009), gives a representation of the rank-based
estimators APn and ACFGn in terms of the empirical copula.

Theorem 2.10 We have, for all t P p0, 1q,

ÂPn ptq “

$

&

%

1
ż

0

Ĉnpx
1´t, xtq

dx

x

,

.

-

´1

,

15



2.5 Estimation of the Pickands dependence function

and

Ân
CFG

ptq “ exp

»

–´γ ´

1
ż

0

tĈnpx
1´t, xtq ´ 1px ą e´1qu

dx

x lnpxq

fi

fl .

It is interesting to look at the asymptotic properties of the above estimators. The theory was
developed by Genest and Segers (2009). The following theorems, quoted from their paper, sum-
marize the asymptotic properties of both estimators, when the margins are known and when they
are not. The first result concerns the case where the margins are known.

Theorem 2.11 Assume that A is twice continuously differentiable. Define AP
n “

?
n pAPn ´ Aq

and ACFG
n “

?
n pACFGn ´ Aq. As n Ñ 8, AP

n ù AP and ACFG
n ù ACFG in Cr0, 1s, where

the weak limits are defined, for all t P r0, 1s, by

AP
ptq “ ´Aptq2

1
ż

0

Cpx1´t, xtq
dx

x
,

and

ACFG
ptq “ Aptq

1
ż

0

Cpx1´t, xtq
dx

x lnx
,

where C is a Gaussian random field with covariance structure given, for all u, v, u1, v1 P r0, 1s, by

cov tCpu, vq,Cpu1, v1qu “ C tminpu, u1q,minpv, v1qu ´ Cpu, vqCpu1, v1q.

The following theorem is an analog of the previous one when the margins are unknown.

Theorem 2.12 Define ÂP
n “

?
n pÂPn´Aq and ÂCFG

n “
?
n pÂCFGn ´Aq. Under Condition 2.3, the

process Ĉn “
?
n pĈn´Cq converges weakly to a process Ĉ on r0, 1s2 defined, for all u, v P r0, 1s,

by

Ĉpu, vq “ Cpu, vq ´ C1pu, vqCpu, 1q ´ C2pu, vqCp1, vq,

where C is a Gaussian random field on r0, 1s2 with covariance structure given, for all u, v, u1, v1 P

r0, 1s, by

cov tCpu, vq,Cpu1, v1qu “ C tminpu, u1q,minpv, v1qu ´ Cpu, vqCpu1, v1q.

IfA is twice continuously differentiable, then ÂP
n and ÂCFG

n converge weakly, as nÑ 8, inCr0, 1s

16



2.5 Estimation of the Pickands dependence function

to ÂP and ÂCFG respectively defined, for all t P r0, 1s, by

ÂP
ptq “ ´Aptq2

1
ż

0

Ĉpx1´t, xtq
dx

x

and

ÂCFG
ptq “ Aptq

1
ż

0

Ĉpx1´t, xtq
dx

x lnx
.

A proof of this theorem is given in the paper by Genest and Segers (2009). As will be seen
later, a generalized version of the previous theorem was established by Genest et al. (2011).

17



3
Measures of association

The notion of independence of random variables is well known and specifically defined in proba-
bility theory. However, there are several ways in which dependence can be measured.

3.1 Measures of association
The oldest and best known measure of association between two random variables is Pearson’s
correlation coefficient. Let X and Y be two random variables with finite second moment and
strictly positive variance. The Pearson correlation coefficient of the pair pX, Y q is given by

ρX,Y “
covpX, Y q

a

varpXqvarpY q
.

The basic properties of the Pearson coefficient are the following:

a) |ρX,Y | ď 1.

b) |ρX,Y | “ 1 if and only if Y “ aX ` b for some a, b P R with a ‰ 0. The sign of a is the
same as the sign of ρ.

c) ρaX`b,cY`d “ signpacqρX,Y for all a, b, c, d P R.

d) ρX,Y “ ρY,X .

Further, if X and Y are independent, ρX,Y “ 0. The converse is, however, false.
To define the sample counterpart of ρX,Y , let pX1, Y1q, . . . , pXn, Ynq be mutually independent

observations and set X̄ “ pX1 ` ¨ ¨ ¨ ` Xnq{n and Ȳ “ pY1 ` ¨ ¨ ¨ ` Ynq{n. Then ρX,Y can be
estimated by

rxy “

n
ř

i“1

XiYi ´ nX̄Ȳ

c

n
ř

i“1

X2
i ´ nX̄

2

c

n
ř

i“1

Y 2
i ´ nȲ

2

.



3.1 Measures of association

The following concept leads to a different way of measuring the association between two ran-
dom variables X and Y .

Definition 3.1 Let pX, Y q be a continuous random pair. Let pX1, Y1q and pX2, Y2q be two inde-
pendent copies of pX, Y q. The pairs pX1, Y1q and pX2, Y2q are said to be concordant if, and only if,
pX1 ´X2qpY1 ´ Y2q ą 0; they are said to be discordant if, and only if, pX1 ´X2qpY1 ´ Y2q ă 0.

Note that because X and Y are assumed to be continuous, one does not need to worry about
the cases X1 “ X2 and Y1 “ Y2, which occur with probability zero. Therefore,

Pr tpX1 ´X2qpY1 ´ Y2q ą 0u ` Pr tpX1 ´X2qpY1 ´ Y2q ă 0u “ 1.

The notions of concordance and discordance can be exploited to define another traditional
measure of association called Kendall’s tau.

Definition 3.2 The Kendall’s tau for the pair pX, Y q is defined as the difference of the probability
of concordance and the probability of discordance, viz.

τX,Y “ Pr tpX1 ´X2qpY1 ´ Y2q ą 0u ´ Pr tpX1 ´X2qpY1 ´ Y2q ă 0u

“ 2 Pr tpX1 ´X2qpY1 ´ Y2q ą 0u ´ 1

“ 4 PrpX1 ´X2 ą 0, Y1 ´ Y2 ą 0q ´ 1.

The following result is obvious from the above, upon conditioning on the pair pX1, Y1q.

Theorem 3.1 Let pX, Y q be a continuous pair of random variables, with joint cumulative distri-

bution function H and unique underlying copula C. Then

τX,Y “ ´1` 4

1
ż

0

1
ż

0

Cpu, vqdCpu, vq.

Because τX,Y depends only on the copula C, it is common to refer to it as τC .

An alternative proof of this proposition can be found in the book by Nelsen (2006). Note that
if pU, V q is a random pair with distribution C, then τC “ ´1` 4EpW q.

Example 3.2 Here are the numerical values of Kendall’s tau for some specific copulas.

a) For the independence copula Π, we have

τπ “ ´1` 4

1
ż

0

1
ż

0

uvdudv “ 0.
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3.1 Measures of association

b) Consider the Fréchet–Hoeffding lower bound W , given by W pu, vq “ maxpu` v ´ 1, 0q

for all u, v P r0, 1s. Then

τW “ ´1` 4

1
ż

0

1
ż

0

maxpu` v´ 1, 0qdW pu, vq “ ´1` 4

1
ż

0

maxpu` 1´ u´ 1, 0qdu “ ´1.

c) Consider the Fréchet–Hoeffding upper bound M , given by Mpu, vq “ minpu, vq for all
u, v P r0, 1s. Then

τM “ ´1` 4

1
ż

0

1
ż

0

minpu, vqdMpu, vq “ ´1` 4

1
ż

0

minpu, uqdu “ 1.

d) Consider the Farlie–Gumbel–Morgenstern copula with parameter θ P r´1, 1s, defined for
all u, v P r0, 1s by

Cθpu, vq “ uv ` θuvp1´ uqp1´ vq.

Note that the corresponding density is given, for all u, v P r0, 1s, by

dCθpu, vq “
B2

BuBv
Cθpu, vq “ 1` θp1´ 2uqp1´ 2vq.

Therefore, it can be shown easily that

τCθ “ ´1` 4

1
ż

0

1
ż

0

Cθpu, vqdCθpu, vq “ ´1` 4
9` 2θ

36
“

2θ

9
.

In order to simplify calculations, a simpler formula for Kendall’s tau can be found in Nelsen
(2006) for the case where the copula is absolutely continuous. A more general result can be found
in Li et al. (2002).

Theorem 3.2 Let C be a copula. Then

τC “ 1´ 4

1
ż

0

1
ż

0

BCpu, vq

Bu

BCpu, vq

Bv
dudv.

Next, we introduce the margin-free analog of Pearson’s correlation coefficient. Elimination of
the marginal effect is achieved by applying the probability integral transformation and leads to the
so-called “grade correlation coefficient” better known as Spearman’s rho.
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3.1 Measures of association

Definition 3.3 Let pX, Y q and pX1, Y1q be two continuous independent random vectors such that
X „ X1 with distribution F and Y „ Y1 with distribution G. Assume that pX, Y q has cumulative
distribution function H and pX1, Y1q is a pair of independent random variables. Spearman’s rho of
the pair pX, Y q is then defined to be

ρX,Y “ 3 rPr tpX ´X1qpY ´ Y1q ą 0u ´ Pr tpX ´X1qpY ´ Y1q ă 0us .

Theorem 3.3 In the same setting as above, if C denotes the copula of pX, Y q and by noticing that

the independence copula is the copula of pX1, Y1q, we have

ρX,Y “ 12

1
ż

0

1
ż

0

tCpu, vq ´ uvu dudv.

It is hence convenient to write ρX,Y “ ρC . One can also show that

1
ż

0

1
ż

0

Cpu, vqdudv “

1
ż

0

1
ż

0

uvdCpu, vq.

A proof of this identity, generally attributed to Hoeffding, can be found in the book by Nelsen
(2006). Based on this result, it is immediate that if pX, Y q is a continuous random pair with margins
F and G, then pU, V q “ pF pXq, GpY qq has cumulative distribution function C and hence

EpUV q “
1
ż

0

1
ż

0

uvdCpu, vq,

while EpUq “ EpV q “ 1{2 and varpUq “ varpV q “ 1{12. Accordingly,

ρX,Y “ corrpU, V q.

Example 3.3 Here are the numerical values of Spearman’s rho of some families of copulas.

a) Consider the independence copula Π. It is immediate that

ρπ “ 12

1
ż

0

1
ż

0

puv ´ uvqdudv “ 0.

21



3.1 Measures of association

b) Consider the Fréchet–Hoeffding lower bound W , given by W pu, vq “ maxpu` v ´ 1, 0q

for all u, v P r0, 1s. Then

ρW “ 12

1
ż

0

1
ż

0

uvdW pu, vq ´ 3 “ 12

1
ż

0

up1´ uqdu´ 3 “ ´1.

c) Consider the Fréchet–Hoeffding upper bound M , given by Mpu, vq “ minpu, vq for all
u, v P r0, 1s. Then

ρM “ 12

1
ż

0

1
ż

0

uvdMpu, vq ´ 3 “ 12

1
ż

0

u2du´ 3 “ 1.

d) Consider the Farlie–Gumbel–Morgenstern copula with parameter θ P r´1, 1s defined, for
all u, v P r0, 1s, by

Cθpu, vq “ uv ` θuvp1´ uqp1´ vq.

Recall that the corresponding density satisfies, for all u, v P r0, 1s,

dCθpu, vq “
B2

BuBv
Cθpu, vq “ 1` θp1´ 2uqp1´ 2vq.

Therefore, one can easily deduce that

ρC “ 12

1
ż

0

1
ż

0

tuv ` uvθp1´ 2uqp1´ 2vqu dudv “
θ

3
.

This result was first published by Schucany et al. (1978).

The following definition is taken from Scarsini (1984).

Definition 3.4 Let pX, Y q be a continuous pair of random variables whose copula is C. A measure
of association κ of X and Y (denote κX.Y or κC) is called a measure of concordance if, and only
if, it satisfies the following properties:

a) κX,Y exists for every continuous pair pX, Y q;

b) κX,Y “ κY,X ;

c) |κX,Y | ď 1;

d) κX,X “ ´κX,´X “ 1;

e) κX,Y “ 0 if X and Y are independent;

f) κ´X,Y “ κX,´Y “ ´κX,Y ;

22



3.2 Positive quadrant dependence

g) κK ď κC for all copulas C and K such that K ď C point-wise;

f) if tpXn, Ynquně1 is a sequence of continuous random vectors with respective copulas Cn,
which converges point-wise to a copula C, then κCn Ñ κC as nÑ 8.

Theorem 3.4 Kendall’s tau and Spearman’s rho are measures of concordance. Furthermore, if Y

and X are continuous, and Y is almost surely an increasing (resp. decreasing) function of X , then

κX,Y “ κM “ 1 (resp. κX,Y “ κW “ ´1).

3.2 Positive quadrant dependence
Definition 3.5 Let pX, Y q be a pair of continuous random variables with joint cumulative distri-
bution functionH , unique underlying copula C, and marginals F andG forX and Y , respectively.
The variables X and Y are said to be positive quadrant dependent (PQD) if, and only if,

@x,yPR Hpx, yq ě F pxqGpyq.

It is easy to show that X and Y are PQD, written PQD(X, Y ), if, and only if,

@u,vPr0,1s Cpu, vq ě uv.

It is immediate that the independence copula Π is PQD. Other examples are provided below.

Example 3.3 Consider the Fréchet–Hoeffding upper bound M . It is a PQD copula, given that, for
all u, v P r0, 1s, u ě uv and v ě uv, and hence Mpu, vq ě uv.

Example 3.4 Consider the Farlie–Gumbel–Morgenstern copula, with parameter θ P r´1, 1s de-
fined, for all u, v P r0, 1s, by

Cθpu, vq “ uv ` θuvp1´ uqp1´ vq.

This copula is PQD if, and only if, θ P r0, 1s.

Example 3.5 The Fréchet–Hoeffding lower bound W is not a PQD copula. In fact we have, for
all u, v P r0, 1s, W pu, vq ď uv, and for example, W p1{2, 1{4q “ 0 but Πp1{2, 1{4q “ 1{8.

Below is a collection of easily established facts mentioned, e.g., in the book by Nelsen (2006).

Theorem 3.5 We have the following properties for a PQD pair of continuous random variables

pX, Y q with copula C:

a) PQDpX, Y q if, and only if, EtfpXqgpY qu ě 0 for all (almost everywhere) non-decreasing

functions f and g on RanpXq and RanpY q, respectively.
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3.3 Diagonal copulas

b) Any measure of concordance of C is non-negative. In particular, Kendall’s tau of C is

non-negative and Spearman’s rho of C is non-negative.

c) PQDpX, Y q if, and only if,

@x,yPR PrpX ď x|Y ď yqPrpY ď yq “ PrpY ď y|X ď xqPrpX ď xq ě xy.

3.3 Diagonal copulas
In developments to follow, we will need to call on the notion of diagonal copula. Here are a defi-
nition and some basic facts about these mathematical objects reported by Nelsen (2006).

Definition 3.6 Let C be a bivariate copula. The diagonal of C is defined to be the function δC :

r0, 1s Ñ r0, 1s given, for all z P r0, 1s, by δCpzq “ Cpz, zq.

Theorem 3.6 The diagonal δC of a copula C satisfies the following conditions:

a) δCp0q “ 0 and δCp1q “ 1;

b) for all t P r0, 1s, maxp2t ´ 1, 0q ď δCptq ď t, and δCptq “ t for all t P r0, 1s if, and only

if, C ”M ;

c) for all t1, t2 P r0, 1s such that t1 ď t2, 0 ď δCpt2q ´ δCpt1q ď 2pt2 ´ t1q.

Proof. We establish each one of these claims in turn.

a) We have δCp0q “ Cp0, 0q “ 0 and δCp1q “ Cp1, 1q “ 1.

b) We have that maxpu ` v ´ 1, 0q ď Cpu, vq ď minpu, vq for all u, v P r0, 1s. Plugging
u “ v “ t in the previous inequality, we get maxp2t ´ 1, 0q ď δCptq ď t. Assume that, for
all t P r0, 1s, δCptq “ t. Then,

@u,vPr0,1s minpu, vq “ δCtminpu, vqu “ Ctminpu, vq,minpu, vqu ď Cpu, vq.

Since for all u, v P r0, 1s, Cpu, vq ď minpu, vq, then for all u, v P r0, 1s, Cpu, vq “
minpu, vq.

c) Assume that 0 ď t1 ď t2 ď 1. Then δCpt2q´δCpt1q “ Cpt2, t2q´Cpt1, t1q ě 0. Furthermore,
Cpt2, t2q ´ Cpt1, t1q ď t2 ´ t1 ` t2 ´ t1 “ 2pt2 ´ t1q.

The following result is due to Fredricks and Nelsen (1997).

Theorem 3.7 Let δ be a function from r0, 1s to r0, 1s that satisfies the following three properties:

a) for all t P r0, 1s, δptq ď t;
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3.4 Tail and stochastic monotonicities

b) δp1q “ 1;

c) for all t1, t2 P r0, 1s such that t1 ď t2, 0 ď δCpt2q ´ δCpt1q ď 2pt2 ´ t1q.

Then, there exists a copula C whose diagonal is δ. In particular, we can take, for all u, v P r0, 1s,

Cpu, vq “ min ru, v, tδpuq ` δpvqu {2s .

Such a copula is called a diagonal copula with diagonal δ.

Theorem 3.8 Let C be a diagonal copula, with diagonal δ. Then C is a PQD copula if, and only

if, δptq ě t2 for all t P r0, 1s.

Proof. Assume that C is a PQD copula. Then, for all t P r0, 1s, δptq “ Cpt, tq ě t ˆ t “ t2.
Reciprocally, assume that the diagonal C is PQD. Hence for all t P r0, 1s, Cpt, tq “ mintt, δptqu ě

t2 and therefore, for all t P r0, 1s, δptq ě t2. l

Theorem 3.9 Let C be a symmetric copula with diagonal δ, and let Cδ be the diagonal copula

arising from δ. Then we have that, for all u, v P r0, 1s, Cpu, vq ď Cδpu, vq.

Proof. We already know that for all u, v P r0, 1s, Cpu, vq ď minpu, vq. It remains to show that
Cpu, vq ď tδpuq ` δpvqu {2. Note that

C tminpu, vq,maxpu, vqu ` C tmaxpu, vq,minpu, vqu

ď C tminpu, vq,minpu, vqu ` C tmaxpu, vq,maxpu, vqu .

Therefore, 2Cpu, vq ď Cpu, uq ` Cpv, vq, which proves the claim. l

3.4 Tail and stochastic monotonicities
Definition 3.7 Let X and Y be random variables. The following definitions are statements about
the tail monotonicity of pX, Y q.

a) Y is left-tail decreasing in X , denoted LTDpY |Xq, if, and only if, PrpY ď y|X ď xq is a
non-increasing function of x for all y.

b) Y is right-tail increasing in X , denoted RTIpY |Xq, if, and only if, PrpY ą y|X ą xq is a
non-decreasing function of x for all y.

The concepts of LTDpX|Y q and RTIpX|Y q can be defined in a similar way.

Remark 3.1 Any of the above four properties implies positive quadrant dependence of X and Y .
Furthermore, if the random variable pX, Y q is exchangeable, then LTDpY |Xq and LTDpX|Y q are
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3.4 Tail and stochastic monotonicities

equivalent, and so are RTIpX|Y q and RTIpX|Y q. They are respectively denoted by LTDpX, Y q
and RTIpX, Y q.

The tail monotonicities of a pair pX, Y q of continuous random variables with copula C have
equivalent statements in terms of C. This is recalled next. The proof of this theorem can be found
in the book by Nelsen (2006).

Theorem 3.10 Let pX, Y q be a continuous random pair with copula C. Then

a) LTDpY |Xq if, and only if, for any v P p0, 1q, Cpu, vq{u is non-increasing in u and if, and

only if, for any v P p0, 1q, BCpu, vq{Bu ď Cpu, vq{u for almost every u P p0, 1q.

b) RTIpY |Xq if, and only if, for any v P p0, 1q, tv ´ Cpu, vqu{p1´ uq is non-increasing in u

and if, and only if, for any v P p0, 1q, BCpu, vq{Bu ě tv´Cpu, vqu{p1´ vq for almost every

v P p0, 1q.

c) LTDpX|Y q if, and only if, for any u P p0, 1q, Cpu, vq{v is non-increasing in v and if, and

only if, for any u P p0, 1q, BCpu, vq{Bv ď Cpu, vq{v for almost every v P p0, 1q.

d) RTIpX|Y q if, and only if, for any u P p0, 1q, tu´ Cpu, vqu{p1´ vq is non-increasing in v

and if, and only if, for any u P p0, 1q, BCpu, vq{Bv ě tu´Cpu, vqu{p1´ vq for almost every

v P p0, 1q.

Remark 3.2 Here are some remarks about the above four properties.

a) Any of the four properties above implies positive quadrant dependence of C; see, e.g.,
Nelsen (2006).

b) Let C andK be two copulas and let θ P p0, 1q. Assume that C andK satisfy any one of the
properties above. Then the mixture copula Cθ “ θC ` p1´ θqK satisfies the same property.
To see this, assume for example that C and K satisfy RTIpX|Y q. To show that Cθ satisfies
it as well, note that

u´ Cθpu, vq

1´ v
“ θ

u´ Cpu, vq

1´ v
` p1´ θq

u´Kpu, vq

1´ v
,

which is non-increasing in v for all u, as it is the sum of two non-increasing functions in v
for all u.

c) The four properties do not in general imply one another.

Definition 3.8 Let X and Y be continuous random variables. We say that

a) Y is stochastically increasing in X , denoted SIpY |Xq, if, and only if, PrpY ą y|X “ xq

is a non-decreasing function of x for all y.
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3.4 Tail and stochastic monotonicities

b) X is stochastically increasing in Y , denoted SIpX|Y q, if, and only if, PrpX ą x|Y “ yq

is a non-decreasing function of y for all x.

The proof of the following theorem can be found in the book by Nelsen (2006).

Theorem 3.11 Suppose that X, Y are two continuous random variables with copula C. The fol-

lowing results hold true:

a) If SI(Y |X), then LTDpY |Xq and RTIpY |Xq.

b) If SI(X|Y ), then LTDpX|Y q and RTIpX|Y q.

c) SI pY |Xq if, and only if, for all v P p0, 1q, BCpu, vq{Bu is non-increasing in u and if, and

only if, for all v P p0, 1q, Cpu, vq is a concave function of u.

d) SIpX|Y q if, and only if, for all u P p0, 1q, BCpu, vq{Bv is non-increasing in v and if, and

only if, for all u P p0, 1q, Cpu, vq is a concave function of v.

It is not hard to see that if C and K are two copulas satisfying, e.g., SIpY |Xq, then the mixture
copula Cθ “ θC ` p1´ θqK, θ P p0, 1q satisfies it as well.

Definition 3.9 Let pX, Y q be a pair of continuous random variables. Assume that X has distribu-
tion F and that Y has distribution G. The upper tail dependence coefficient, denoted λU , is the
following limit (if it exists):

λU “ lim
tÒ1

PrtY ą G´1ptq|X ą F´1ptqu.

The lower tail dependence coefficient, denoted λL, is the following limit (if it exists):

λL “ lim
tÓ0

PrtY ď G´1ptq|X ď F´1ptqu.

Theorem 3.12 Let pX, Y q be a pair of continuous random variables with margins F and G, re-

spectively, and let C be the unique copula of pX, Y q. Then the upper and lower tail dependence

coefficients (if they exist) depend only on C, viz.

λU “ 2´ lim
tÑ1´

1´ Cpt, tq

1´ t
.

and

λL “ lim
tÑ0`

Cpt, tq{t.

A proof of this statement can be done by direct calculations; see, e.g., Nelsen (2006).
One notices that any two copulas with the same diagonal section have the same lower and upper

tail dependence coefficient, and that these coefficients lie in the interval r0, 1s.
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3.5 Dependence properties of extreme-value copulas

Remark 3.3 It is not hard to see that if C is a copula with diagonal δC , then

λU “ 2´ δ1Cp1
´
q, λL “ δ1Cp0

`
q.

Example 3.5 Here are some examples:

a) For the independence copula, it is clear that λU “ λL “ 0. Any two continuous random
variables whose copula is Π are independent, and hence have no dependence.

b) If M denotes the Fréchet–Hoeffding upper bound, which is the case of total dependence,
one has λL “ λU “ 1.

c) IfW denotes the Fréchet–Hoeffding lower bound, one has λL “ λU “ 0; hence this copula
exhibits no tail dependence although any two continuous random variables whose copula is
C are dependent.

3.5 Dependence properties of extreme-value copulas
Let C be an extreme-value copula with Pickands dependence functionA : r0, 1s Ñ r1{2, 1s. Recall
that for all u, v P p0, 1q, we have

Cpu, vq “ exp

„

lnpuvqA

"

lnpvq

lnpuvq

*

.

The following result gives analytical expressions for Kendall’s tau and Spearman’s rho for
bivariate extreme-value copulas. These results are reported, e.g., by Ghoudi et al. (1998).

Theorem 3.13 Let C be an extreme-value copula with Pickands dependence function A.

a) Kendall’s tau for C is

τ “

1
ż

0

tp1´ tq

Aptq
dA1ptq.

b) Spearman’s rho for C is

ρ “ ´3` 12

1
ż

0

1

tAptq ` 1u2
dt.

Proof. Both results are proved by Ghoudi et al. (1998). The first involves computing the Kendall
distribution and its expectation. For Spearman’s rho, we present an alternative proof. We need to
compute

1
ż

0

1
ż

0

Cpu, vqdudv.
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3.5 Dependence properties of extreme-value copulas

We introduce the following change of variables:

x “ lnuv, y “ lnpvq{lnpuvq,

so that u “ exp1´yq and v “ exy. Computing the Jacobian, and making the necessary substitutions
in the integral, we get

ρ` 3

12
“

1
ż

0

0
ż

´8

exp txApyqu p´xexqdxdy “

1
ż

0

8
ż

0

exp r´xtApyq ` 1 usxdxdy,

which easily reduces to

ρ` 3

12
“

1
ż

0

1

tApyq ` 1u2
dy.

This concludes the argument. l

We now look at the dependence and tail properties of C. First observe that C is PQD. Indeed,
for all u, v P p0, 1q,

0 ď A

ˆ

ln v

lnuv

˙

ď 1, lnuv ď 0 ñ lnuvA

ˆ

ln v

lnuv

˙

ě lnuv

and hence for all u, v P p0, 1q,

Cpu, vq ě expplnuvq “ uv.

One can also verify that C is right-tail increasing (RTI) and left-tail decreasing (LTD). These
properties can be checked directly, although it was shown by Garralda-Guillem (2000) that C is
stochastically increasing, which is stronger than all of the above properties.

Finally, we compute below the lower and upper tail dependence coefficients for C. We notice
that, for all t P p0, 1q,

δCptq “ Cpt, tq “ t2Ap1{2q,

and hence δ1Cptq “ 2Ap1{2qt2Ap1{2q´1. Therefore,

λL “ 2´ 2Ap1{2q

and λU “ 0 if Ap1{2q ą 1{2 while λU “ 1 if Ap1{2q “ 1{2. The latter case corresponds to the
Fréchet–Hoeffding upper bound.
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4
Main results

Convergence properties of the Pickands and Capéraà–Fougères–Genest estimators ÂPn and ÂCFGn

have been proved by Genest and Segers (2009). This result was extended to a broader class of
copulas than those which are extreme-value by Genest et al. (2011). This was first done by noticing
that the estimators ÂPn and ÂCFGn could be defined for any copula, and not necessarily an extreme-
value copula. Indeed, one can define, for any t P r0, 1s,

APCptq “

$

&

%

1
ż

0

Cpx1´t, xtq
dx

x

,

.

-

´1

,

and

ACFGC ptq “ exp

»

–´γ ´

1
ż

0

 

Cpx1´t, xtq ´ 1px ą e´1q
( dx

x lnpxq

fi

fl .

The following result is due to Genest et al. (2011).

Theorem 4.1 Let C be a copula that is left-tail decreasing in each variable given the other, i.e.,

C satisfies LTDpY |Xq and LTDpX|Y q. Assume further that C has a continuous density. Then, as

nÑ 8,
?
n pÂPn ´ A

P
Cq ù ÂP

C and
?
n pÂCFGn ´ ACFGC q ù ÂCFG

C , where for all t P p0, 1q,

ÂP
Cptq “ ´tA

P
Cptqu

2

1
ż

0

Cpx1´t, xtq
dx

x
,

ÂCFG
C ptq “ ACFGC ptq

1
ż

0

Cpx1´t, xtq
dx

x lnx
,

and C a Gaussian random field on r0, 1s2 with covariance structure given, for all u, v, u1, v1 P



4.1 Basic analytical properties and examples

r0, 1s, by

cov tCpu, vq,Cpu1, v1qu “ C tminpu, u1q,minpv, v1qu ´ Cpu, vqCpu1, v1q.

As shown by Genest et al. (2011), the functionsAPC andACFGC can be used to generate extreme-
value copulas. For example, ifC belongs to the Farlie–Gumbel–Morgenstern family,APC andACFGC

are Pickands dependence functions, given that they are both convex and are point-wise bounded by
the functions t ÞÑ maxpt, 1´ tq and t ÞÑ 1 on r0, 1s. They generate extreme-value copulas, known
respectively as FGM-P and FGM-CFG families. Further, they can also be used to test whether an
LTD copula is an extreme-value copula.

Several properties of Pickands dependence functions are retained by APC and ACFGC , as men-
tioned by Genest et al. (2011). We will show that APC retains several additional properties of
Pickands dependence functions, and we will study this function in detail. Analytical necessary
and sufficient conditions will be given so that APC is convex.

Let C be an arbitrary copula and suppose that C is positive quadrant dependent (PQD), i.e.,

@u,vPr0,1s Cpu, vq ě uv.

As is well known, we also have

@u,vPr0,1s Cpu, vq ď minpu, vq ”Mpu, vq.

Therefore, the following integral always exists and is non-zero:

1 ď

ż 1

0

Cpx1´t, xtq dx{x ď mint1{t, 1{p1´ tqu.

As we will focus exclusively on the function APC from here on, we henceforth drop the superscript
P and set, for all t P r0, 1s,

ACptq “ 1
M

ż 1

0

Cpx1´t, xtq dx{x. (4.1)

The map AC : r0, 1s Ñ r1{2, 1s is then well defined and AC ě AM point-wise. Furthermore,
ACptq ď 1 for all t P r0, 1s when C is PQD.

4.1 Basic analytical properties and examples
A few elementary properties of AC were mentioned by Genest et al. (2011). They are properties
a)–c) of the following result, which lists additional analytical facts about AC .
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4.1 Basic analytical properties and examples

Theorem 4.2 The function AC defined in (4.1) satisfies the following properties:

a) If Cpu, vq ě uv for all u, v P r0, 1s, then maxpt, 1´ tq ď ACptq ď 1 for all t P r0, 1s.

b) If Cpu, vq “ Cpv, uq for all u, v P r0, 1s, then ACptq “ ACp1´ tq for all t P r0, 1s.

c) If C is an extreme-value copula with Pickands dependence function A, then AC “ A.

d) If C and D are two PQD copulas, and for all u, v P r0, 1s, Cpu, vq ď Dpu, vq, then for all

t P r0, 1s, ACptq ě ADptq.

e) If C and D are two PQD copulas, then the function Cθ defined on r0, 1s2 by Cθ “ θC `

p1´ θqD, where θ is parameter in p0, 1q, is a PQD copula, and for all t P r0, 1s,

ACθptq “
ACptqADptq

θADptq ` p1´ θqACptq
.

Proof. We establish each claim in turn.

a) Notice that uv ď Cpu, vq ď minpu, vq for all u, v P r0, 1s and hence, if t P r0, 1s, then, for
any x P r0, 1s, we have, by plugging x1´t and xt for u and v, respectively,

x ď Cpx1´t, xtq ď minpx1´t, xtq.

Consequently, dividing by x and integrating, we find

1 “

1
ż

0

dx ď
1

ACptq
ď

1
ż

0

minpx´t, xt´1qdx.

Therefore, ACptq ď 1. Furthermore, given that

1
ż

0

minpx´t, xt´1qdx ď min

¨

˝

1
ż

0

x´tdx,

1
ż

0

xt´1dx

˛

‚“ mint1{p1´ tq, 1{tu,

and hence we have, for all t P r0, 1s, maxpt, 1´ tq ď ACptq ď 1.

b) Assume that C is symmetric. Then, for all t P r0, 1s, we have

1

ACptq
“

1
ż

0

Cpx1´t, xtq
dx

x
“

1
ż

0

Cpxt, x1´tq
dx

x
“

1

ACp1´ tq
.

c) If C is an extreme-value copula with Pickands dependence function A, then, for all u, v P
p0, 1q, we have

Cpu, vq “ exp
“

lnpuvqAtlnpvq{lnpuvqu
‰

,
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4.1 Basic analytical properties and examples

and hence

1

ACptq
“

1
ż

0

Cpx1´t, xtq
dx

x
“

1
ż

0

xAptq´1dx “
1

Aptq
.

Therefore, ACptq “ Aptq for all t P r0, 1s.

d) Assume that for all u, v P r0, 1s,Cpu, vq ď Dpu, vq. Then, for any t P r0, 1s and all x P r0, 1s,

Cpx1´t, xtq ď Dpx1´t, xtq,

which implies that
1
ż

0

Cpx1´t, xtq
dx

x
ď

1
ż

0

Dpx1´t, xtq
dx

x

and hence, for all t P r0, 1s, ACptq ě ADptq.

e) It is clear that Cθ is a distribution function, as it is the mixture of two distributions. To check
that it is a copula, we observe that, for all u P r0, 1s,

Cθpu, 1q “ θCpu, 1q ` p1´ θqDpu, 1q “ θu` p1´ θqu “ u,

and, for all v P r0, 1s,

Cθp1, vq “ θCp1, vq ` p1´ θqDp1, vq “ θv ` p1´ θqv “ v.

Therefore, if C and D are PQD, we have, for all u, v P r0, 1s,

Cθpu, vq “ θCpu, vq ` p1´ θqDpu, vq ě θuv ` p1´ θquv “ uv.

Furthermore, for all t P r0, 1s,

1

ACθptq
“

1
ż

0

Cθpx
1´t, xtq

dx

x

“ θ

1
ż

0

Cpx1´t, xtq
dx

x
` p1´ θq

1
ż

0

Dpx1´t, xtq
dx

x

“ θ
1

ACptq
` p1´ θq

1

ADptq
,

We deduce that, for all t P r0, 1s,

ACθptq “
ACptqADptq

θADptq ` p1´ θqACptq
.
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4.2 Shared properties with Pickands dependence functions

This concludes the argument. l

Example 4.1 In general, the function AC is not analytically tractable. However, there are cases
where one can get a closed form for AC . Here are two examples.

a) In Genest et al. (2011), the function AC is computed for the Farlie–Gumbel–Morgenstern
copula (Morgenstern, 1956). It is stated there that if Cθpu, vq “ uv ` θuvp1´ uqp1´ vq for
all u, v P r0, 1s and some θ P r0, 1s, then

ACθptq “
2t2 ´ 2t´ 4

2t2 ´ 2t´ 4` p3t2 ´ 3tqθ
.

b) We will generalize the example in the previous part. Consider the copula defined, for all
u, v P r0, 1s, by

Cθ,αpu, vq “ uv ` θuαvαp1´ uqp1´ vq,

where α P r1,8q and θ P r0, 1s. For this copula, which is a generalization of the Farlie–
Gumbel–Morgenstern copula, we find, for all x, t P p0, 1q,

Cθ,αpx
1´t, xtq “ x` θxαp1´ xtqp1´ x1´tq “ x` θxαp1` x´ xt ´ x1´tq,

and
Cθ,αpx

1´t, xtq

x
“ 1` θxα´1p1` x´ xt ´ x1´tq.

Therefore,

1
ż

0

Cθ,αpx
1´t, xtq

x
dx “ 1` θ

ˆ

1

α
`

1

α ` 1
´

1

α ` t
´

1

α ´ t` 1

˙

“
αpα ` 1q t´t2 ` t` αpα ` 1qu ` p2α ` 1qθp´t2 ` tq

αpα ` 1q t´t2 ` t` αpα ` 1qu
.

We conclude that, for all t P p0, 1q,

ACθ,αptq “
αpα ` 1q t´t2 ` t` αpα ` 1qu

αpα ` 1q t´t2 ` t` αpα ` 1qu ` p2α ` 1qθp´t2 ` tq
.

4.2 Shared properties with Pickands dependence functions
The following properties are satisfied by any Pickands dependence function. The first two proper-
ties have been used in the study of Archimax copulas and the derivation of the Kendall distribution
for extreme-value copulas; see Capéraà et al. (2000) and Charpentier et al. (2014), as well as
Ghoudi et al. (1998).
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Theorem 4.3 The following statements hold true:

a) The function t ÞÑ ACptq{t is non-increasing on p0, 1s.

b) The function t ÞÑ ACptq{p1´ tq is non-decreasing on r0, 1q.

c) If ACp1{2q “ 1{2, then ACptq “ maxpt, 1´ tq for all t P r0, 1s.

Proof. To prove claim a), first observe that if λ ě 1, then, for all t P r0, 1s, we have ACptq ď
λACpt{λq. Indeed, from the definition of AC and upon setting u “ ´ lnpxq, one finds

1

ACptq
“

1
ż

0

Cpx1´t, xtq “

8
ż

0

Cte´up1´tq, e´utudu “
1

λ

8
ż

0

Cte´vp1´tq{λ, e´vt{λudv,

where the last identity is justified by the change of variable v “ λu. Now observe that because
λ ě 1 and t P r0, 1s, one has 1´ t{λ ě p1´ tq{λ ě 0 and hence

1

ACptq
ě

1

λ

8
ż

0

Cte´vp1´t{λq, e´vt{λudv “
1

λACpt{λq
.

Now to see that the function t ÞÑ ACptq{t is non-increasing on p0, 1s, let 0 ă t1 ď t2 ď 1.
Then setting λ “ t2{t1 ě 1 and using the previous relation, we find

ACpt2q ď
t2
t1
AC

ˆ

t2
t2{t1

˙

or, equivalently, ACpt2q{t2 ď ACpt1q{t1.
To establish claim b), let λ ě 1 be fixed. Then, for all t P r0, 1s, we have ACp1 ´ tq ď

λACp1´ t{λq.The proof uses similar arguments, substitutions and inequalities as the above proof.
Indeed, we have

1

ACp1´ tq
“

1
ż

0

Cpxt, x1´tq
dx

x
“

8
ż

0

Cpe´ut, e´up1´tqqdu

“
1

λ

8
ż

0

Cte´vt{λ, e´vp1´tq{λudv

ě
1

λ

8
ż

0

Cte´vt{λ, e´vp1´t{λqudv “
1

λACp1´ t{λq
.

Therefore, if λ ě 1, then ACp1´ tq ď λACp1´ t{λq for all t P r0, 1s.
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4.2 Shared properties with Pickands dependence functions

To verify that the function t ÞÑ ACptq{p1´ tq is non-decreasing on r0, 1q, let 0 ď t1 ď t2 ă 1.
Then 1 ě 1 ´ t1 ě 1 ´ t2 ą 0. Hence setting λ “ p1 ´ t1q{p1 ´ t2q ě 1 and using the previous
relation, we find

ACt1´ p1´ t1qu ď
1´ t1
1´ t2

AC

˜

1´
1´ t1
1´t1
1´t2

¸

and hence
ACpt1q ď

1´ t1
1´ t2

ACpt2q,

which implies that
ACpt1q

1´ t1
ď
ACpt2q

1´ t2
.

Finally, let us consider claim c). Assume that ACp1{2q “ 1{2. Let t P r0, 1{2s. Then

ACp0q

1´ 0
ď
ACptq

1´ t
ď
ACp1{2q

1´ 1{2

and hence
1 ď

ACptq

1´ t
ď 1,

which implies that ACptq “ 1´ t on r0, 1{2s. Next, let t P r1{2, 1s. Then

ACp1q

1
ď
ACptq

t
ď
ACp1{2q

1{2
,

and hence ACptq “ t on r1{2, 1s. This concludes the argument. l

The following result gives an analytical property of AC .

Theorem 4.4 AC is Lipschitz on any subinterval rc, ds Ă p0, 1q and hence is almost everywhere

differentiable on p0, 1q.

Proof. The following function fC : r0, 1s ÞÑ R, fCptq “ 1{ACptq. Let c ď t1 ă t2 ď d. As shown
in Nelsen (2006) and stated in Theorem 2.1, we have

|Cpu, vq ´ Cpu1, v1q| ď |u´ u1| ` |v ´ v1|
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4.2 Shared properties with Pickands dependence functions

for all u, u1v, v1 P r0, 1s. Therefore,

|ACpt2q ´ ACpt2q| “

ˇ

ˇ

ˇ

ˇ

1

fCpt1q
´

1

fCpt2q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

fCpt1q ´ fCpt2q

fCpt1qfCpt2q

ˇ

ˇ

ˇ

ˇ

ď |fCpt1q ´ fCpt2q|

ď

8
ż

0

|Cte´up1´t1q, e´ut1u ´ Cte´up1´t2q, e´ut2u|du

ď

8
ż

0

|e´up1´t1q ´ e´up1´t2q| ` |e´ut1 ´ e´ut2 |du

ď

"

1

c2
`

1

p1´ dq2

*

pt2 ´ t1q.

This concludes the argument. l

Theorem 4.5 For almost every t P r0, 1s,

´ A1Cptq “

8
ż

0

xe´xp1´tqfCptqC1te
´xp1´tqfCptq, e´xfCptqtudx

´

8
ż

0

xe´xtfCptqC2te
´xp1´tqfCptq, e´xtfCptqudx.

Proof. First observe that, for almost all t P p0, 1q, we have

f 1Cptq “

8
ż

0

ue´up1´tqC1te
´up1´tq, e´utu ´ ue´utC2te

´up1´tq, e´utudu.

After making the substitution u “ xfCptq, we find

f 1Cptq “ fCptq
2
”

8
ż

0

xe´xp1´tqfCptqC1te
´xp1´tqfCptq, e´xfCptqtudx

´

8
ż

0

xe´xtfCptqC2te
´xp1´tqfCptq, e´xtfCptqudx

ı
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4.2 Shared properties with Pickands dependence functions

and hence

´ A1Cptq “

8
ż

0

xe´xp1´tqfCptqC1te
´xp1´tqfCptq, e´xfCptqtudx

´

8
ż

0

xe´xtfCptqC2te
´xp1´tqfCptq, e´xtfCptqudx.

This concludes the argument. l

Example 4.2 Let C be an extreme-value copula with Pickands dependence function A. That is,
for all u, v P p0, 1q, we have

Cpu, vq “ exp
“

tlnpuvqAtlnpvq{lnpuvqu
‰

.

The partial derivatives of C with respect to u and v are respectively given (almost everywhere)
by

C1pu, vq “
B

Bu
Cpu, vq “

1

u

„

A

"

lnpvq

lnpuvq

*

´
lnpvq

lnpuvq
A1

"

lnpvq

lnpuvq

*

Cpu, vq

and
C2pu, vq “

B

Bv
Cpu, vq “

1

v

„

A

"

lnpvq

lnpuvq

*

`
lnpuq

lnpuvq
A1

"

lnpvq

lnpuvq

*

Cpu, vq.

It has been previously shown that ACptq “ Aptq for all t P r0, 1s. Then we must have A1Cptq “
A1ptq for almost all t P r0, 1s. We verify this result as follows. First,

8
ż

0

xe´xp1´tqfCptqC1te
´xp1´tqfCptq, e´xfCptqtudx

“

8
ż

0

xe´xp1´tqfCptqexp1´tqfCptq tAptq ´ tA1ptqu exp t´xfCptqAptqu dx

“

8
ż

0

x tAptq ´ tA1ptqu e´xdx “ Aptq ´ tA1ptq.
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Second,

8
ż

0

xe´xtfCptqC2te
´xp1´tqfCptq, e´xfCptqtudx

“

8
ż

0

xe´xtfCptqextfCptq tAptq ` p1´ tqA1ptqu exp t´xfCptqAptqu dx

“

8
ż

0

x tAptq ` p1´ tqA1ptqu e´xdx “ Aptq ` p1´ tqA1ptq.

We conclude that, for all t P p0, 1q,

´A1Cptq “ Aptq ´ tA1ptq ´ tAptq ` p1´ tqA1ptqu “ ´A1ptq.

4.3 Characterizations of copulas with ACp1{2q P t1{2, 1u

The following proposition allows us to give a characterization of copulas C such that ACp1{2q “ 1

and ACp1{2q “ 1{2.

Theorem 4.6 The following statements hold true:

a) ACp1{2q “ 1 if, and only if, the diagonal section δC of C is given by δCpzq “ z2 for all

z P r0, 1s.

b) ACp1{2q “ 1{2 if, and only if, for all u, v P r0, 1s, Cpu, vq “ minpu, vq.

Proof. First consider claim a). One direction is clear. For, if δCpzq “ z2 for all z P r0, 1s, then

1

AC p1{2q
“

1
ż

0

Cpx1{2, x1{2q

x
dx “

1
ż

0

dx “ 1.

Now assume that ACp1{2q “ 1. Then

1
ż

0

Cpx1{2, x1{2q

x
dx “ 1

or equivalently,
1
ż

0

"

Cpx1{2, x1{2q

x
´ 1

*

dx “ 0.

The fact that C is PQD implies that Cpx1{2, x1{2q{x ě 1 for all x P r0, 1s, and hence we must then
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have Cpx1{2, x1{2q{x “ 1 for all x P r0, 1s or equivalently δCpx1{2q “ x for all x P r0, 1s and hence
δCpzq “ z2 for all z P r0, 1s.

Turning to claim b), we have already seen in Theorem 4.3 that AMptq “ maxpt, 1 ´ tq for all
t P r0, 1s. To establish the other implication, note that if ACp1{2q “ 1{2, then

1
ż

0

Cpx1{2, x1{2q

x
dx “ 2.

Making the substitution x “ s2, we deduce that

1
ż

0

Cps, sq

s
ds “ 1

or, equivalently, that
1
ż

0

tCps, sq{s´ 1uds “ 0.

Now, given that Cps, sq ď s for all s P r0, 1s, we must have Cps, sq “ s for all s P r0, 1s and hence
δCpsq “ s for all s P r0, 1s. Therefore, we have Cpu, vq “ minpu, vq for all u, v P r0, 1s. This
concludes the argument. l

4.4 Analytical necessary and sufficient conditions for the con-
vexity of AC

Theorem 4.7 Define the functions gC , kC : p0, 1q ÞÑ R by setting, for all t P p0, 1q,

gCptq “

8
ż

0

xe´xp1´tqfCptqC1te
´xp1´tqfCptq, e´xfCptqtudx

and

kCptq “

8
ż

0

xe´xtfCptqC2te
´xp1´tqfCptq, e´xtfCptqudx.

The following statements hold true:

a) For almost all t P p0, 1q, gCptq “ ACptq ´ tA
1
Cptq and kCptq “ ACptq ` p1´ tqA

1
Cptq.

b) If AC is twice differentiable, then AC is convex if, and only if, gC is non-increasing and if,

and only if, kC is non-decreasing.

c) If C is symmetric, then, for almost all t P r0, 1s, gCptq “ kCp1´ tq.

40



4.4 Analytical necessary and sufficient conditions for the convexity of AC

Proof. To establish claim a), consider the function h : p0,8q ˆ r0, 1s ÞÑ r0;8q defined by

hpα, tq “

8
ż

0

Cte´up1´tqα, e´utαudu.

Notice that by the change of variable v “ αu in the previous integral, we get

hpα, tq “
1

α
fCptq.

Therefore, the function h is differentiable with respect to α, and

B

Bα
hpα, tq “ ´

1

α2
fCptq.

Moreover,

B

Bα
hpα, tq “ ´p1´ tq

8
ż

0

ue´up1´tqαC1te
´up1´tqα, e´utαudu

´ t

8
ż

0

ue´utαC2te
´up1´tqα, e´utαudu.

Setting α “ fCptq in the two expressions for Bhpα, tq{Bα, we get, for all t P r0, 1s,

´p1´ tqgCptq ´ tkCptq “ ´ACptq.

We also know that, for almost all t P p0, 1q, A1Cptq “ kCptq ´ gCptq. Combining the previous two
equations, and solving for kC and gC , we get that, for almost all t P p0, 1q,

kCptq “ ACptq ` p1´ tqA
1
Cptq,

and
gCptq “ ACptq ´ tA

1
Cptq.

Turning to claim b), assume that AC is twice differentiable. Then AC is convex if, and only if,
for all t P p0, 1q, A2Cptq ě 0. Notice that g1Cptq “ ´tA

2
Cptq and that k1Cptq “ p1 ´ tqA2Cptq. The

conclusion is then immediate.
Finally, to prove claim c), assume thatC is symmetric. Then we have, for all t P r0, 1s,ACptq “

ACp1 ´ tq. Differentiating both sides with respect to t, we deduce that, for almost all t P p0, 1q,

41



4.5 Probabilistic arguments concerning AC

A1Cptq “ ´A
1
Cp1´ tq. Therefore, we get that, for almost all t P r0, 1s,

gCp1´ tq “ ACp1´ tq ´ p1´ tqA
1
Cp1´ tq

“ ACptq ` p1´ tqA
1
Cptq “ kCptq.

This concludes the argument. l

4.5 Probabilistic arguments concerning AC

Theorem 4.8 Let C be a copula and pU, V q have distribution C. For any fixed t P p0, 1q, define

the random variable

ξptq “ min t´plnUq{p1´ tq,´plnV q{tu .

Then, for all t P p0, 1q, ACptq “ 1{ECtξptqu, where EC denotes the expectation under the assump-

tion that pU, V q „ C.

Proof. For all x ě 0, we have

Pr tξptq ě xu “ Prrmint´plnUq{p1´ tq,´plnV q{tu ě xs

“ PrtU ď e´xp1´tq, V ď e´xtu “ Cte´xp1´tq, e´xtu.

Given that, for all t P r0, 1s, ξptq is almost surely non-negative, we have that

EC tξptqu “
8
ż

0

Pr tξptq ě xu dx “

8
ż

0

Cte´xp1´tq, e´xtudx.

It follows that, for all t P r0, 1s, ACptq “ 1{ECtξptqu. This concludes the argument. l

We now give a probabilistic interpretation for the following result.

Theorem 4.9 The following statements hold true:

a) If Cpu, vq “ Cpv, uq for all u, v P r0, 1s, then ACptq “ ACp1´ tq for all t P r0, 1s.

b) If C is an extreme-value copula with Pickands dependence function A, then AC “ A.

Proof. To establish claim a), assume that C is symmetric. Then, for all t P r0, 1s,

EC tξptqu “ EC tmin t´plnUq{p1´ tq,´plnV q{tuu

“ EC rmin t´plnV q{p1´ tq,´plnUq{tus

“ EC tξp1´ tqu .

Hence, for all t P r0, 1s, ACptq “ ACp1´ tq.
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To establish claim b), assume that C is an extreme-value copula with Pickands dependence
function A. We know that, for all t P p0, 1q, ξptq follows an exponential law with mean 1{Aptq.
Therefore, ECtξptqu “ 1{Aptq and hence, for all t P r0, 1s, ACptq “ Aptq. This concludes the
argument. l

A probabilistic argument can also be used to give a proof of the following result.

Theorem 4.10 The following statements hold true:

a) The function t ÞÑ ACptq{t is non-increasing on p0, 1s.

b) The function t ÞÑ ACptq{p1´ tq is non-decreasing on r0, 1q.

We note that the proofs are similar, due to common properties of expectations and integrals.

Proof. To establish claim (i), let 0 ă t1 ď t2 ď 1. Note that

EC tξpt1qu “ EC rmin t´ lnpUq{p1´ t1q,´ lnpV q{t1us

“
t2
t1

EC
„

min

"

´ lnpUq
t1

t2 ´ t1t2
,´ lnpV q{t2

*

ď
t2
t1

EC rmint´ lnpUq{p1´ t2q,´ lnpV q{t2us

ď
t2
t1

ECtξpt2qu.

and henceACpt2q{t2 ď ACpt1q{t1. We note that t1{pt2´ t1t2q “ 1{pt2{t1´ t2q ď 1{p1´ t2q, which
has been used in the first inequality.

The proof of claim b) is similar and left to the reader. l

4.6 Counterexamples for convexity
If C is a PQD copula such that ACp1{2q “ 1, then the diagonal δC of C must satisfy δCpzq “ z2

for all z P r0, 1s. Using this result, we will find a copula C such that AC is not convex. First of all,
we ensure that δCpzq “ z2 for all z P r0, 1s and hence that ACp1{2q “ 1. We then find a point in
t0 P p0, 1q such that Apt0q ‰ 1. This will ensure that AC is not convex.

Lemma 4.1 LetA : r0, 1s Ñ r0, 1s be a convex function such that for all t P r0, 1s, maxpt, 1´tq ď

Aptq ď 1, and Ap0q “ Ap1q “ 1. Then Ap1{2q “ 1 if, and only if, Aptq “ 1 for all t P r0, 1s.

Proof. Assume that Ap1{2q “ 1. Let t P r0, 1{2s. We write 1{2 as a convex combination of t and
1, viz.

1

2
“

1

2p1´ tq
t`

1´ 2t

2p1´ tq
1.
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4.6 Counterexamples for convexity

Using the convexity of A, we deduce that

1 “ Ap1{2q ď
1

2p1´ tq
Aptq `

1´ 2t

2p1´ tq
Ap1q,

which implies that

Aptq ě t2p1´ tqu

"

1´
1´ 2t

2p1´ tq

*

“ 1,

and hence Aptq “ 1 for all t P r0, 1s. A similar argument holds if t P r1{2, 1s, by expressing 1{2 as
a convex combination of 0 and t. Thus we can conclude. l

Consider the copula C‹ defined, for all u, v P r0, 1s, by

C‹pu, vq “ mintu, v, pu2 ` v2q{2u.

Notice that C is a PQD diagonal copula. For all x P r0, 1s, we have

C‹px
1{2, x1{2q “ minpx1{2, x1{2, xq “ x

and hence

1

AC‹
p1{2q

“

1
ż

0

C‹px
1{2, x1{2q

x
dx “

1
ż

0

dx “ 1.

Accordingly, AC‹
p1{2q “ 1. It can be easily seen that, for all x P r0, 1s,

C‹px
2{3, x1{3q “ min

"

x1{3, x2{3,
1

2
px4{3 ` x2{3q

*

“
1

2
px4{3 ` x2{3q.

Consequently,

1

AC‹
p1{3q

“
1

2

1
ż

0

px1{3 ` x´1{3qdx “ 9{8

and hence AC‹
p1{3q “ 8{9. Therefore, in view of the previous lemma, we can conclude that AC‹

is not a convex function. l

Theorem 4.11 Let θ P p0, 1q be a parameter and consider the mixture copulaCθ “ θC‹`p1´θqΠ.

Then ACθ is non-convex for all θ P p0, 1q.

Proof. As shown before we have, for all t P p0, 1q,

ACθptq “
AC‹

ptq

θ ` p1´ θqAC‹
ptq

.
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Note that ACθp1{2q “ 1 but that, at the same time,

ACθp1{3q “
8{9

θ ` p1´ θq8{9
“

1

1` θ{8
.

Further note that, for any y P p8{9, 1q, one can find θ P p0, 1q such that ACθp1{3q “ y. Finally,
observe that if C is a symmetric PQD copula such that ACp1{2q “ 1, then ACptq ě AC‹

ptq for all
t P r0, 1s. l

Theorem 4.12 There exists a symmetric copulaC which is stochastically increasing and for which

AC is not convex.

Proof. We consider the mixture of two symmetric extreme-value copulas. As shown before, tail
monotonicities and stochastic monotonicities are preserved under mixtures. Therefore, any mixture
of two symmetric extreme-value copulas is stochastically increasing.

Let C3 be the Gumbel–Hougaard copula defined, for all u, v P p0, 1q, by

C3pu, vq “ exptp| lnu|3 ` | ln v|3q1{3u.

This is an extreme-value copula with Pickands dependence functionA3 : r0, 1s Ñ r1{2, 1s defined,
for all t P r0, 1s, by

A3ptq “
3
a

p1´ tq3 ` t3.

Consider the mixture C “ C3{2` Π{2. Therefore, for all t P r0, 1s, we have

ACptq “
2AC3ptq

1` AC3ptq
.

The derivative of AC , defined for all t P p0, 1q, is given by

A1Cptq “
4t´ 2

p3t2 ´ 3t` 1q2{3 tp3t2 ´ 3t` 1q1{3 ` 1u
2 .

We have A1Cp0q “ ´1{2 and A1Cp0.2q ă ´0.56, which implies that the derivative is not non-
decreasing, and hence AC is not convex. l
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5
Conclusion

This thesis was concerned with bivariate extreme-value copulas. The first chapter introduced the
problem that appeared in Genest et al. (2011). The convexity of a generalization of the Pickands
dependence function, which we denoted by APC , where C denotes the underlying copula, was
the subject of our study. Genest et al. (2011) realized that the convexity of APC will lead to an
inconsistency in a test based on the Pickands estimator.

In Chapter 2 we introduced the notion of a copula, which is defined to be a distribution on
the d-dimensional unit cube, with uniform margins. We then recalled several analytical properties
of a copula, including uniform continuity properties, as well as the Fréchet–Hoeffding upper and
lower bounds. Further, we related the conditional distributions of a copula to its partial derivatives.
Then, we introduced the notion of an empirical copula and its asymptotic properties. Afterwards,
we introduced extreme-value copulas and focused on the bivariate case. We gave examples of such
copulas, and saw that they are characterized by a univariate function defined on r0, 1s called the
Pickands dependence function. This function is a convex function on r0, 1s, bounded point-wise
by t ÞÑ maxpt, 1´ tq and t ÞÑ 1. We also mentioned that this function dictates the behavior of the
extreme-value copula. Furthermore, we introduced the Pickands and Capéraà–Fougères–Genest
estimators and mentioned their asymptotic properties.

Chapter 3 consisted of studying measures of dependence and correlation between two random
variables. We introduced Spearman’s ρ and Kendall’s τ of two random variables X and Y , and
saw that they depend only on their copula. We also introduced the concepts of tail monotonicities
and stochastic ordering of copulas, and proved that many of these properties are preserved by
mixtures. Finally, we introduced upper and lower tail dependence coefficients and computed them
for extreme-value copulas.

In Chapter 4, we presented our main results, relating to the generalized Pickands dependence
function, which we denoted AC . We sought to extend the results of Genest et al. (2011). After
establishing obvious properties of AC , we proved that the map t ÞÑ ACptq{t is non-increasing and
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Conclusion

that the function t ÞÑ ACptq{p1 ´ tq is non-decreasing. These properties are also satisfied by a
Pickands dependence functions and play an important role in establishing properties of bivariate
extreme-value copulas. We further showed that AC is differentiable almost everywhere in p0, 1q.

In the last part of the thesis, we tried to characterize the copulas such that ACp1{2q “ 1{2. This
happens if, and only if, C is the Fréchet–Hoeffding upper bound, just as in the case of the Pickands
dependence function. However, if ACp1{2q “ 1, then one can only infer about the diagonal of
C, which must agree with the diagonal of the independence copula. Using this fact, we found an
example of a copula C for which AC is not convex. We also studied the derivative and deduced
a closed form for the derivative of AC by using a substitution, which allows us to circumvent the
usual rules of differentiation. We then gave necessary and sufficient conditions in order for AC to
be convex. An interesting problem is to try to find families of copulas for which AC is convex.
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X. Li, P. Mikusiński, M.D. Taylor, Some integration-by-parts formulas involving 2-copulas, In:
C.M. Cuadras, J. Fortiana, J.A. Rodríguez-Lallena (Eds.), Distributions With Given Marginals
and Statistical Modelling, Springer, Dordrecht, 2002.

A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques and
Tools, Princeton University Press, Princeton, NJ, 2015.

A.J. McNeil, J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and `1-norm
symmetric distributions, Ann. Statist. 37 (2009) 3059–3097.

D. Morgenstern, Einfache Beispiele zweidimensionaler Verteilungen, Mitteilungsbl. Math. Statist.
8 (1956) 234–235.

R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2006.

J. Pickands, Multivariate extreme value distributions, Proceedings of the 43rd session of the Inter-
national Statistical Institute, Vol. 2 (Buenos Aires, 1981) 49 (1981) 859–878, 894–902.

49



BIBLIOGRAPHY

L. Rüschendorf, Asymptotic distributions of multivariate rank order statistics, Ann. Math. Statist.
4 (1976) 912–923.

M. Scarsini, On measures of concordance, Stochastica 8 (1984) 201–218.

W.R. Schucany, W.C. Parr, J.E. Boyer, Correlation structure in Farlie–Gumbel–Morgenstern dis-
tributions, Biometrika 65 (1978) 650–653.

J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assump-
tions, Bernoulli 18 (2012) 764–782.

A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8
(1959) 229–231.

50


	Introduction
	Copulas and extreme-value copulas
	Definitions and basic properties
	Nonparametric estimation
	Extreme-value copulas
	Estimation of the Pickands dependence function

	Measures of association
	Measures of association
	Positive quadrant dependence
	Diagonal copulas
	Tail and stochastic monotonicities
	Dependence properties of extreme-value copulas

	Main results
	Basic analytical properties and examples
	Shared properties with Pickands dependence functions
	Characterizations of copulas with AC(1/2) "4A74C20 1/2, 1 "5A75C28 
	Analytical necessary and sufficient conditions for the convexity of AC
	Probabilistic arguments concerning AC
	Counterexamples for convexity

	Conclusion
	Bibliography

