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Abstract

Copulas are multivariate cumulative distribution functions with uniform margins on the unit inter-
val. Bivariate extreme-value copulas embody a specific form of dependence between two uniform
random variables. These copulas are characterized by a function of a single variable called the
Pickands dependence function. This thesis is concerned with an extension of the Pickands depen-

dence function whose properties are studied.



Résumé

Les copules sont des fonctions de répartition multidimensionnelles a marges uniformes sur I’inter-
valle unité. Les copules de valeurs extrémes bivari€es traduisent une forme de dépendance spé-
cifique entre deux variables aléatoires uniformes. Ces copules sont caractérisées par une fonc-
tion d’une seule variable appelée fonction de dépendance de Pickands. Ce mémoire porte sur une

généralisation de la fonction de dépendance de Pickands, dont on étudie les propriétés.
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Introduction

In the statistical literature, copulas refer to multivariate cumulative distribution functions with uni-
form margins on the unit interval. This concept is used to model dependence between random
variables, as justified by Sklar’s Representation Theorem; see Sklar (1959). Although the use of
copulas for statistical modeling grew slowly at first, as documented in Genest et al. (2009), there are
now hundreds of applications of copulas in statistics and related fields, including quantitative risk
management, finance, insurance, and hydrology. See, e.g., Genest and Favre (2007) for a partial
survey and Genest and Neslehova (2014) for a gentle introduction to the subject. General reference
books about copulas and copula modeling are Nelsen (2006) and Joe (2014); for applications to
risk management and finance, see, e.g., McNeil et al. (2015).

Bivariate extreme-value copulas are characterized by a function called the Pickands depen-
dence function; see, e.g., Genest and NeSlehova (2012) and references therein. To be specific, a
bivariate copula C : [0, 1]? — [0, 1] belongs to the extreme-value class if, and only if, there exists
a convex function A : [0, 1] — [1/2, 1] such that, for all w,v € (0, 1),

C(u,v) = exp [ In(uv) A{ln(v)/ In(uv)}]. (1.1)

In order for C' to be a copula, the function A, called a Pickands dependence function, must also be
bounded above by the constant 1 and below by the function ¢ — max(t, 1 — ¢). That is, one must
have, for all ¢ € [0, 1],

max(t,1 —t) < A(t) < 1.

Many properties of a bivariate extreme-value copula can be deduced from those of the cor-
responding Pickands dependence function. Moreover, given the one-to-one relationship between
bivariate extreme-value copulas and Pickands dependence functions, an estimate of a copula C' of
the form (1.1) can be derived from an estimate of A based on a random sample of size n from a

bivariate distribution function whose unique underlying copula is C'.



Introduction

Two nonparametric estimators of A were proposed by Genest and Segers (2009), namely the
Pickands and Capéraa—Fougeres—Genest (CFG) estimators, respectively denoted AY and ASFC.
These authors studied the large-sample behavior of these estimators of A and proved, among oth-
ers, their consistency. This development naturally led Genest et al. (2011) to propose a goodness-
of-fit test for bivariate extreme-value copulas based on the distance between a rank-based, paramet-
ric estimate of the Pickands dependence function and either one of the nonparametric estimators
AP or AS¥C . Their procedures were shown to be consistent and powerful under reasonable data
generation schemes.

In the same paper, Genest et al. (2011) extended their goodness-of-fit test beyond bivariate
extreme-value copulas by considering the broader class of so-called left-tail decreasing (LTD) bi-
variate copulas. Asymptotic properties of the CFG and Pickands estimators were derived in this
context. This led the authors to generalized notions of Pickands dependence functions which arose
as the weak limits AL and ASFY of the nonparametric estimators A7 and AS¥C, respectively,
where the subscript C' denotes the unique underlying LTD copula of the continuous bivariate dis-
tribution from which the data arose.

Genest et al. (2011) noted that AL and ASF“ could be Pickands dependence functions, without
C being an extreme-value copula, allowing the generation of bivariate extreme-value copulas from
other copulas. They also remarked that when AZ or ASFC is convex, the proposed goodness-of-fit
test could be inconsistent. Specifically, the test might suggest that the underlying copula of the
sample is extreme-value whereas in fact it is not. Therefore, it is interesting to study the functions
AE and ASFC, and specifically their convexity, for an arbitrary copula C'.

In Chapter 2, we will introduce formally the notions of copula and extreme-value copula, as
well as the main results concerning nonparametric estimation of copulas and Pickands dependence
functions. Chapter 3 concerns measures of dependence, which are used to assess the degree of
dependence between two variables; also reviewed there are notions and properties of tail mono-
tonicity that will play a role in the third part of the thesis.

In Chapter 4, which contains this thesis’ original contribution, we will describe some of the
properties of the function AL and ASFC. We will first extend the results of Genest et al. (2011)
by proving several properties that these functions share with Pickands dependence functions. In
addition, we will supply new examples of copulas C' for which AL is available in closed form. We
will then study the derivative of AZ and use it to give analytical necessary and sufficient conditions
for the convexity of AZ. At the end, we will use the notions introduced in the previous chapters to

relate the convexity of AL to the tail monotonicity properties of C.



Copulas and extreme-value copulas

2.1 Definitions and basic properties

A d-dimensional copula C'is a cumulative distribution function whose support is [0, 1]¢ and whose
univariate margins are uniform on the unit interval. An equivalent definition is given below in

probabilistic terms.

Definition 2.1 A function C' : [0,1]¢ — [0, 1] is a d-variate copula if, and only if, there exist
random variables Uq, . .., Uy which are uniformly distributed on the interval [0, 1] and such that,

forall uy,...,uq € [0,1], C(uy,...,uq) = Pr(U; < uy,...,Us < ug).
The following are two fundamental examples of copulas.
Example 2.1 Let Uy, ..., U, be mutually independent random variables which are uniformly dis-

tributed on the interval [0, 1]. The joint cumulative distribution function of the vector (Uy, . .., Uy)

is then given, for all u,...,uq € [0, 1], by

My(uy, .. ug) =Pr(Up <upy... ug <ug) = Pr(U; < w;) = up X -+ X ug.

1=

i=1
This function, denoted I, is called the d-dimensional independence or product copula.
Example 2.2 Let U be a uniformly distributed random variable on [0, 1]. Consider the d x 1 ran-
dom vector (U, . .., U).Let M, denote its cumulative distribution function. Then, forall u, . .., ug €
[0, 1], we have

My(uy, ... uq) =Pr(U <ug,...,U < uy)

= Pr{U < min(uy,...,ug)} = min(uy, ..., uq).



2.1 Definitions and basic properties

The copula M, is called the d-dimensional comonotonicity copula or the Fréchet—-Hoeffding
upper bound. The motivation for this terminology stems from the following result, whose proof
can be found in the book by Nelsen (2006).

Theorem 2.1 Let (Uy, ..., Uy,) be a d-dimensional random vector with uniform marginals on [0, 1]
and let C denote its cumulative distribution function. Let u = (uy, . ..,uq) € [0,1]%, and define
Wy :[0,1]¢ - R by Wy(u) = max(0,u; + - - - +ug — d + 1). Then, the following statements hold:

a) Wa(u) < C(u) < My(u).
b) Wy is a copula if, and only if, d € {1, 2}.

c) Forallu = (uy,...,ug) andv = (v, ...,vq) € [0,1]%,
d
C(u) = C)| < . Ju; —vil.
i—1

d) C' is almost everywhere differentiable with respect to each of its variables. If C; denotes
the first partial derivative of C' with respect to the jth variable, where j € {1,...,d}, we

have, for almost all u = (uy, ..., ug) € [0,1]¢,

d
C](U)ZPF{ ﬂ Uk<UkU]:u]}
k=1k+j

The following theorem is due to Sklar (1959). It is the fundamental result which motivates

copula modeling. It is often referred to as Sklar’s Representation Theorem.

Theorem 2.2 Let X, ..., X, be random variables with respective cumulative distribution func-
tions Fy, ..., Fy. Let H denote the joint cumulative distribution function of the vector (X, . . ., Xy).
Then, there exists a d-dimensional copula C such that, for all 1, ..., x4 € R,

H(xq,...,xq) = C{Fi(z1),..., Fi(zq)}.

If X1, ..., X, are continuous, then C' is unique. Reciprocally, if C' is a d-dimensional copula, then
the function H : R — [0, 1] defined, for all z1, ..., 14 € R, by

H(Zl]’]_,...,$d) = C{Fl(xl)a-'de(xd)}

is a cumulative distribution function on R, whose univariate marginals are F\, . . . | F}.



2.2 Nonparametric estimation

Example 2.3 Let X, ..., X, be mutually independent random variables with cumulative distri-
bution functions £, ..., F}, respectively. Then, the joint cumulative distribution function H of the

vector (X7, ... Xy) is given, for all x1,..., x4 € R, by
H(l’l,. ..C(]d) = Fl(l’l) X - X Fd(xd) = Hd {F1<ZL'1), RN ,Fd(l'd)}.

Example 2.4 Let (X, Y') be a random pair, and assume that X has distribution F', and Y has dis-
tribution G. Assume further that the functions " and G are continuous. Let (X1, Y1), ..., (X,, Ys)
be mutually independent observations from (X,Y"). Let C' be the unique underlying copula as-
sociated with the distribution of (X,Y") via Sklar’s Representation Theorem. We seek to find the
copula C) of (Xn), Y(y)), where X(,,) = max(Xy,...,X,) and Y(,,) = max(Y;,...,Y,). Note
that, for all x,y € R,

Pr{X(n) <x,Y(n)<y}:Pr{X1<:U,...,Xn<x,Y1<y,...,Yn<y}

_ HC{F(Q;),G(y)} = [C{F(x),G(y)}]".

Given that the cumulative distribution functions of X, and Y(,,) are F'" and G", respectively, we
deduce that

Ca{F ()", G(y)"} = C[{F(2), Gy)}]".

Therefore, for all u,v € [0, 1], C,y (u, v) = {C(u'/™,v¥/")}". This calculation can be generalized

to arbitrary dimensions.

There are several well-known families of copulas. Two famous examples are the Archimedean
and the elliptical class of copulas. Key references about the class of Archimedean copulas are
Genest and MacKay (1986) and McNeil and Neslehova (2009). For details about the class of
elliptical copulas, see, e.g., Genest et al. (2007) or Joe (2014).

In this thesis, we will mostly be interested in the family of extreme-value copulas, and focus on
the bivariate case. The definition of an extreme-value copula was already given in the Introduction;
see Eq. (1.1). Details concerning this class of copulas will be given in Section 2.4 below. Before
we proceed, we review in Section 2.2 some well-known results in parametric and nonparametric

estimation of copulas.

2.2 Nonparametric estimation

Let X = (Xy,..., X ) be a d-dimensional random vector, and assume that X1, ..., X, are contin-
uous univariate random variables with respective cumulative distribution functions F, ..., F,. Let
C denote the unique underlying copula associated to X via Sklar’s Representation Theorem. Fur-
thermore, let XV ..., X be a random sample of size n from X. We write X0 = (X1, -, Xig)

5



2.2 Nonparametric estimation

forie{l,...,n}.
First assume that the margins F}, ..., F,; are known. Then, for all i € {1,...,n}, set U; =
(Uih ceey Uid)7 where Uil = F1<Xi1), ey Uid = Fd(de) Itis easily seen that Z/{n = {Ul, RN Un}

is a random sample from distribution C'.

Definition 2.2 The empirical distribution function of the sample 4, is defined to be the function
C, - [0,1]* — [0, 1] defined, for all uy, ..., uq € [0, 1], by

n

2 1(U11 < Uy, .. -7Uid < ud).

1
i3

Co(ug, ... uqg) =

Remark 2.1 The empirical function C), is an estimate of the copula C' but it is actually not a
copula itself because its margins are not uniform on the interval [0, 1]. In fact, C,, takes discrete
values in the set {0, 1/n,...,n/n = 1}.

The following result is a special case of the standard functional Central Limit Theorem, also
called Donsker’s theorem; see, e.g., Donsker (1952).

Theorem 2.3 The process C,, = 4/n (C,, — C) converges weakly, as n — o, to a centered Gaus-

sian process C whose covariance structure is given, for all u,v € [0, 1]¢, by
cov {C(u),C(v)} = C {min(u,v)} — C(u)C(v),

where the minimum between two vectors u and v in [0, 1]¢ is understood component-wise.

In practice, of course, the margins F7, ..., F; are unknown and hence the above estimation
method, which requires the knowledge of these margins, fails. Invoking the Glivenko—Cantelli

Lemma, simple nonparametric estimators of Fi, ..., Fy are their respective empirical distributions
Fo1, ..., Fhq, where for each j € {1,...,d}, F},; is defined, for all z € R, by

1
n+1

i=1

Fyi(z) =
Set, for all ¢ € {1,...,n}, U, = (Uil, e Uid) = (Fu(Xa),. .., Fra(Xia)). A pseudo-random
sample from the copula C' is then given by U, = {Ul, ceey U }.

Remark 2.2 The following remarks are small observations:

a) The classical definition of F,,; involves division by n rather than n + 1. Replacing n by

n + 1 in the denominator of F,,; is to ensure that F,,; < 1 on the entire interval [0, 1].



2.2 Nonparametric estimation

b) Foreachi € {1,...,n}and j € {1,...,d}, let R;; denote the rank of X;; within the set
{le, ce ,an}. Then,
S Ri Ria
U, = feees :
(n +1 n + 1>

In other words, 0@ is a rank-based statistic.

¢) The setf, does not form a random sample from C because as transpires from the above re-
lation, knowledge of all but one of o,....U, implies complete knowledge of the remaining

one. For this reason, I;ln is called a pseudo-sample.

Definition 2.3 The empirical copula C,, is defined to be the empirical distribution function of the
set Z/Aln

The following result is the rank-based version of Donsker’s result. It has a long history in the

copula literature and goes back at least to Riischendorf (1976).

Theorem 2.4 Under suitable regularity conditions on C, the empirical copula process C, =
(G, — C) defined on [0, 1]% converges weakly to a process C, defined on [0,1]%, by

A

C(u) = C(u) — Z Ci(w)C(1,..., 1, u;1,...,1).

where C is a Gaussian process on |0, 1]? whose covariance structure is given, for all u,v € [0, 1],
by
cov {C(u),C(v)} = C {min(u,v)} — C(u)C(v).

The “suitable regularity conditions” mentioned above were strong in the work of Riischendorf
(1976) and were gradually relaxed in a series of papers. See, e.g., Genest and Neslehova (2012) for
additional references. The following condition is the weakest to date; for more details, see, e.g.,
Segers (2012) or Genest et al. (2017).

Condition 2.3 In order for the above convergence theorem to hold, one assumes that for each
j € {1,...,d}, the derivative C; of C' with respect to the jth variable exists and is continuous on
the set {(uy,...,uq) € [0,1]¢ : 0 < u; < 1}. This allows for a continuous extension of C; to the
boundary of [0, 1]<.



2.4 Extreme-value copulas

2.4 Extreme-value copulas
Definition 2.4 Let C' be a d-dimensional copula. We say that C' is max-stable if, and only if, for
alln e N, and u € [0, 1]% we have {C(u'/™)}" = C(u).

Example 2.5 The independence copula II; is clearly max-stable. Likewise, the comonotonicity

copula M, is max-stable given that, for all n € Nand u = (uy, ..., uq) € [0,1]%,
{Ma(u!")} = {min(uy™, . uf ™))" = Ma(u).
In contrast, the copula V5 is not max-stable.

Definition 2.5 A d-dimensional copula C is said to be an extreme-value copula if, and only if,

there exists a d-dimensional copula D such that, for all u € [0,1]¢, lim {D(u'/™)}"* = C(u). We
n—ao

say that D is in the domain of attraction of C'.

It is obvious from the above that a max-stable copula is necessarily an extreme-value copula.

The reverse is also true and stated below as a theorem. See, e.g., Joe (2014).
Theorem 2.5 A copula C'is an extreme-value copula if, and only if, it is a max-stable copula.

Definition 2.6 The following notations will be used in the characterization of extreme-value cop-
ulas.

a) Let Sy denote the d-dimensional simplex {(s1,...,54) € [0,1]% : 51 + -+ + s4 = 1}.

b) Let A, denote the set {(sy,...,54) € [0,1]% : 51 + -+ + s4 < 1}. Note that Sy and Ay,

are in one-to-one correspondence.

c) A finite measure u on the Borel sigma-field generated by S, is called a spectral measure
if, and only if, for all j € {1, ..., d},

fsjd,u(sl, ooy 8q) = 1.
Sq

The following characterization theorem and its corollary are due to Pickands (1981).

Theorem 2.6 Let C' be a d-dimensional extreme-value copula. Then, for all w = (uy,...,uq) €
(0,1)%, one has

C(u) = exp {Zdlln(ui)} X B In(u) ey (1) ,



2.4 Extreme-value copulas

where B : Ay_1 — [0,00) is given, forall xy,... x4 1 € ANg_1, by
B(xy,...,0q-1) = JmaX{wlxb oy Wa—1Ta—1,Wa(l — o1 — - — x4 pdp(w),
Sq

for some spectral measure |1 on Sy.

Corollary 2.1 The following are properties satisfied by the function B:
a) B(O,...,0)=1, B(1,0,...,0)=1,...,B(0,1,0...,0) =1,...,B(0,...0,1) = 1.
b) For all (l‘l, R ,.’Ed_l) € Ad—l:

d—1
max | Ti,...,Tq_1,1 — le < B(xy,...,xq-1) < 1.
i=1
¢) B is a convex function.

d) Suppose that (Uy, . .., Uy) has distribution C, as defined in Theorem 2.6. When B is iden-
tically equal to the lower bound given in part b), then Uy = - - - = Uy almost surely, whereas

if B is identically equal to the upper bound, then Uy, . . . , Uy are mutually independent.

Remark 2.3 When d = 2, it is common to define a function A on [0, 1] by A(t) = B(1 — t) for
all t € [0, 1]. One can then write, for all u, v € (0, 1)

Cu,v) = exp [ln(uv)A{ In(v) H .

In(uv)

From now on, we will restrict our attention to the two-dimensional case. The following result

is a specialization of Corollary 2.1 to that case.

Theorem 2.7 Let A be a continuous function on [0, 1]. Define a function C on (0,1)? by setting,

forallu,ve (0,1)
Cu,v) — exp [ln(uv)A{ In(v) H ,

In(uwv)

which we extend to the boundary of (0, 1)? so that for all u € [0, 1], we have C'(u,1) = C(1,u) = u
and C(0,u) = C(u,0) = 0. Then C is a copula if, and only if, A satisfies the following properties:
a) max(t,1 —t) < A(t) < 1forallt e |0,1];
b) A'is convex on [0, 1].
As already mentioned in the Introduction, the function A in Theorem 2.7 is called a Pickands
dependence function. Our next result summarizes some of the well-known properties of such func-

tions. These facts are all easily derived using basic calculus; many of them are reported, e.g., by
Deheuvels (1991).



2.4 Extreme-value copulas

Theorem 2.8 The following properties relate A and C':

a) The mapping t — A(t)/t is non-increasing on (0, 1].

b) The mapping t — A(t)/(1 — t) is non-decreasing on [0, 1).

c) A is the upper bound if, and only if, C is the independence copula, and A is the lower
bound if, and only if, C' is the comonotonicity copula.

d) A(1/2) =1/2if, and only if, A(t) = max(t,1 —t) forallt € [0,1].

d) Forall u,v € [0,1], uv < C(u,v) < min(u, v).

e) C'is symmetric if, and only if, for all t € [0, 1], A(t) = A(1 —1).

f) C is absolutely continuous if, and only if, A is twice differentiable.

The following definition is taken from Genest and Rivest (2001).

Definition 2.7 Let C' be a bivariate copula, and let (U, V') have distribution C'. The distribution of
C(U, V) is called the Kendall distribution.

As mentioned by the authors, and as will be seen later, this distribution relates to Kendall’s tau,
a standard measure of the dependence between the variables U and V' with joint distribution C,

whence the name. The following result is due to Ghoudi et al. (1998).

Theorem 2.9 Let C' be a bivariate extreme-value copula with Pickands dependence function A.
Let W = C(U,V) and Z = In(V)/In(UV). The joint distribution of W and Z is given, for all
w, z € (0,1), by

Pr(W <w,Z < 2)

z z

—(w—wlnw) 4 =+ 2(1 z)‘j&) - J t(;(_t)t) dA(t) b 4w J t(}q(_t)t) A (1),

Corollary 2.2 The following are immediate consequences of the previous proposition:

a) Forallw € (0,1),

1
Pr(W < w) =w— 1—f

0

tH1 —t)
A(t)

dA'(t) p winw.

b) Forall z € (0,1),
Pr(Z <z)=z+2(1—2)A'(2)/A(2).

10



2.5 Estimation of the Pickands dependence function

c) Assuming that A is twice differentiable, we have that, for all w, z € (0,1),
Pr(W <w|Z = z) = p(z)w + {1 — p(2)} (w — wlnw),

where
p(2) = Z(ié)Z)A”@)/Q’(z),

and
Q(z) =Pr(Z < 2).

Table 2.1 lists some parametric families of Pickands dependence functions that induce bivariate

extreme-value copulas.

Table 2.1: Pickands Dependence Functions of Some Parametric Extreme-Value Copulas.

Family Dependence Function Parameter and Range
Cuadras—Augé max (1 —60t,1 — (1 —1)0) 0e0,1]
Galambos 1—{t70+ (1 —t)" )10 e (0,0)
Gumbel-Hougaard {t0 + (1 —¢)9}1/° e (1,0)
Hiisler-Reil (1—=t)P(A + 55 In 14) + 1PN + 55 In 1) A e (0,00)

2.5 Estimation of the Pickands dependence function

Let (X1,Y1),...,(Xp,,Y,) be a random sample from a bivariate cumulative distribution function
H, with continuous margins F' (for X) and G ( for Y) assumed to be at first, known and extreme-
value copula C' with dependence function A. Then (F'(X;),G(Y1)),...,(F(X,),G(Y,)) form a

random sample from C'. Define, foralli € {1,...,n}and ¢ € (0, 1),

—InF(X;) —InG(Y;
Q(t)zmin{ n F( ), nG( )}
1—t t
It can then be shown that for all ¢ € {1,...,n}, (;(¢) is exponentially distributed with parameter

A(t). Indeed, for all z > 0,
Pr{¢(t) >z} = Pr{F(X;) <e 07 Q(Y)) <e @} = Ce 17D 7)) — exp {—zA(t)} .

Note that for all ¢t € [0,1], E{(;(t)} = A(t) and E{In(;(t)} = —y — A(t), where + is the

Euler—Mascheroni constant. We therefore can get a moment estimate of A(t) by considering the

11



2.5 Estimation of the Pickands dependence function
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Figure 2.1: Pickands Dependence Functions for Several Parametric Families of Extreme-Value
Copulas
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2.5 Estimation of the Pickands dependence function

Galambos Gumbel Hiisler Reilt
o] R ] o] i
ol 7| —— G=0 o] T T A= | —— L=0 ]
- T | T Bm2 cttt L=04 ﬁ’
e | E | Lmi d
-] ; 5 - I Lm2 H
= (= | e iy
o~ I It
! i
1 F ||.
¥ 1 {'
| M
o | o _| ' i
= — | — — ] = '
= ™ I hi3 o - ol
= I = ! = fif
= : = | = R
E’ o _| |_r E’ o _| |- E ‘I',-'!
— i — [} v
i i _.; r
: .rI o s /
! p e
- A'::' - r .--"'P‘ﬂ .—-"r
L A el e
P f.—-'__-
e i e T ::-J-’
=T o — o -
I I I I I I T T T I I I I I I I I I
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

t t t

Figure 2.3: Plots of A(t)/(1 — t) for Several Parametric Families of Extreme-Value Copulas.

following estimators A” and ASFC, respectively defined, for all ¢ € (0, 1), by
1¢ B
APy =4 =) (¢ :
70 {n > >}

and

ASTE(t) = exp {—7 - %iln Ci(t)} :

If the margins F" and GG are unknown, as in most practical situations, we estimate them through

their (rescaled) empirical nonparametric counterparts defined, for all x,y € R, by

1
n+1-

2

. L)
=1

Fn(x) = l(Xi < 1’)7 Gn(y) = n+1
—1 v

Foreachi € {1,...,n}, we then set U, = F,(X;) and Vi, = G, (Y;). Consider the empirical copula
C., of C based on the pseudo-sample (U, V1), . . ., (Uy, V,,) explicitly defined, for all u, v € [0, 1],
by
A 14 - .
(u,v) - Z ( u v)

i=1

13



2.5 Estimation of the Pickands dependence function

1.0

0.5

0.6

0.4

0.z

0.0

6=05
- aft
o ]
o o 00
000%
w© o &
o o0 £
=]
000 %a Qg
coo @
g © 9g0°
o _| o
o o 0O a0
- o
-~ &
o %, 0
o
= 1" % 4
o =] o
° 8
o
o 000
o~ o
o—& ° ®®
o %
=} o o
o
o
Q] o o
o
1T 1T 1T T 1
00 04 028
U

Figure 2.4: 100 Realizations from the Galambos Copula for Different Values of 6.

o 0
oo
Con
% o
o 5

00 02 04 08 028 1.0

]

Figure 2.5: 100 Realizations from the Gumbel Copula for Different Values of 6.

1.0

0.s

0.6

0.4

n.z

0.0

1.0

08

04

0.2

0.0

B=4

% ©HE
o=
[u] [n]
GDDDD@D
ol o
3
o
‘-_'Sou (=]

[n]

00 02 0.4 06 02 1.4

]

1.0

08

04

0.2

6=500

g=2a0
. ¢
o §
Eﬁm
R i
L F
o g

0y 02 04 06 08 1.4

l

14



2.5 Estimation of the Pickands dependence function

n=0548 =1 Bo=2 n=50
(=1 L= [ 2
= o ED = DDD - n:ﬂ@ —
o o5 2
o D%@, =l o & DD%DD
o oo
R Zq "eo® 24 R El
Enﬁg DE = o 'E' a "PDC%'
] o o ™o a
b " DD oo 2 w
i} o [ 0 o wo_| |
= cgn':'n =] d oo o = 7o .:.dp = @
- - - 0% oo > . D%Dn = &
@ DDEP?;.D @' o o
= = -+ _| =+ _| - _|
D_%‘:‘D% DDD = D%Q a o =] 63 o @ S 3
i £ I & em g
o o
™ o %EDD [ D.:.D o N_SlnDDD L] [u]
o | ad” o om o o Dnﬂd{.—‘ o D:'DDD':% o |
[u] DDQ, oo 'j:'cuj
DESD uE‘D - %DED
o _|oe A E—D oo o 0% 4 [=T -]
= 1T T 1T 171 1T 1T T 171 1T T T T1T°1 = 1T T T 11
00 04 08 00 04 08 o0 04 08 00 04 08
U U U U

Figure 2.6: 100 Realizations from the Hiisler—Reifl Copula for Different Values of .

Define, for all ¢ € (0,1),

11—t t

@@w=mm<‘mUi‘m”>,

and define a new version of A” and ACFC based on the pseudo-sample (U1, V1), . . . , (

xﬁm={ Z@w},

The following result, due to Genest and Segers (2009), gives a representation of the rank-based

S|

and

estimators AZ and ASF in terms of the empirical copula.

Theorem 2.10 We have, forall t € (0, 1),

15



2.5 Estimation of the Pickands dependence function

and

dz

zIn(x)

1
AnCFG(t) =exp | —y— f{é’n(xl_t,xt) —1(z > 6_1)}
0

It is interesting to look at the asymptotic properties of the above estimators. The theory was
developed by Genest and Segers (2009). The following theorems, quoted from their paper, sum-
marize the asymptotic properties of both estimators, when the margins are known and when they

are not. The first result concerns the case where the margins are known.

Theorem 2.11 Assume that A is twice continuously differentiable. Define AV = \/n (AP — A)

and ACYC = \/n (ASFC — A). Asn — o, AL o AP and ACTY « ACTY jn C[0,1], where
the weak limits are defined, for all t € [0, 1], by

AP(t) = —A(t)? j Cle't, oty 2,
i
0
and
0 d
ACFG () — 4 f 1t ¢y 9%
()= A | e S
0

where C is a Gaussian random field with covariance structure given, for all u,v,u',v" € [0, 1], by
cov {C(u,v),C(u',v")} = C {min(u, ), min(v,v")} — C(u,v)C(u',0").
The following theorem is an analog of the previous one when the margins are unknown.

Theorem 2.12 Define AY = \/n (AP —A) and ASFC = \/n (ASFC — A). Under Condition 2.3, the
process C,, = \/n (C,, — C) converges weakly to a process C on [0, 1]? defined, for all u, v € [0, 1],
by

A

C(u,v) = C(u,v) — Cy(u,v)C(u, 1) — Ca(u,v)C(1,v),

where C is a Gaussian random field on [0, 1]* with covariance structure given, for all u,v,u’ v €

[0, 1], by
cov {C(u,v),C(v',v")} = C {min(u, ), min(v,v")} — C(u,v)C(u',0").

If A is twice continuously differentiable, then Af and ASF @ converge weakly, as n — o, in C[0,1]

16



2.5 Estimation of the Pickands dependence function

to AT and ACFC respectively defined, for all t € [0,1], by

1

AP () = —A(t)? J@(wlt,xt) de
x
0
and
0 d
ACFG (1 _ ANood—t ¢ z
A (t)—A(t)f(C(m ,x)xlnx.
0

A proof of this theorem is given in the paper by Genest and Segers (2009). As will be seen
later, a generalized version of the previous theorem was established by Genest et al. (2011).
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Measures of association

The notion of independence of random variables is well known and specifically defined in proba-

bility theory. However, there are several ways in which dependence can be measured.

3.1 Measures of association

The oldest and best known measure of association between two random variables is Pearson’s
correlation coefficient. Let X and Y be two random variables with finite second moment and

strictly positive variance. The Pearson correlation coefficient of the pair (X,Y") is given by

cov(X,Y)
var(X)var(Y)

PXyYy =

The basic properties of the Pearson coefficient are the following:

a) |pxy| < 1.
b) |pxy| = lifand only if Y = aX + b for some a,b € R with a # 0. The sign of a is the

same as the sign of p.
C) Pax+bey+a = sign(ac)pxy forall a,b,c,d € R.

d) pxy = pv.x.

Further, if X and Y are independent, px y = 0. The converse is, however, false.

To define the sample counterpart of py y, let (Xi,Y7), ..., (X,,Y,) be mutually independent
observations and set X = (X; + -+ + X,,)/nand Y = (Y; + --- + Y,,)/n. Then pxy can be
estimated by

ST XY, — nXY

=1

rxy n n _ ’
\/ZXE—nXQ\/Z Y2 —nY?
=1 i=1




3.1 Measures of association

The following concept leads to a different way of measuring the association between two ran-
dom variables X and Y.

Definition 3.1 Let (X,Y") be a continuous random pair. Let (X3, Y]) and (X5, Y3) be two inde-
pendent copies of (X, Y'). The pairs (X7, Y]) and (X5, Y3) are said to be concordant if, and only if,
(X7 — Xo) (Y1 — Y32) > 0; they are said to be discordant if, and only if, (X; — X3)(Y1 — Ys) < 0.

Note that because X and Y are assumed to be continuous, one does not need to worry about

the cases X; = X5 and Y; = Y5, which occur with probability zero. Therefore,

The notions of concordance and discordance can be exploited to define another traditional

measure of association called Kendall’s tau.

Definition 3.2 The Kendall’s tau for the pair (X, Y) is defined as the difference of the probability

of concordance and the probability of discordance, viz.

Txy = Pr{(X; — X2)(Y1 — Y3) > 0} — Pr{(X; — X5)(Y1 — Y32) < 0}
=2Pr{(X; — Xo)(Y1 - Y2) > 0} — 1
S APHX, — Xo > 0,Y; — Yo > 0) — 1.

The following result is obvious from the above, upon conditioning on the pair (X7, Y}).

Theorem 3.1 Let (X,Y') be a continuous pair of random variables, with joint cumulative distri-

bution function H and unique underlying copula C'. Then

11
Txy = —1+ 4JJC(U, v)dC(u,v).
0 0

Because Tx y depends only on the copula C, it is common to refer to it as T¢.

An alternative proof of this proposition can be found in the book by Nelsen (2006). Note that
if (U, V) is a random pair with distribution C, then 7c = —1 + 4E(W).

Example 3.2 Here are the numerical values of Kendall’s tau for some specific copulas.

a) For the independence copula II, we have
11
Te=—1+ 4ffuvdudv = 0.
00
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3.1 Measures of association

b) Consider the Fréchet-Hoeffding lower bound W, given by W (u,v) = max(u + v — 1,0)
for all u,v € [0, 1]. Then

11 1
Tw = —1+4f max(u+v —1,0)dW (u,v) = —1+4Jmax(u+1—u—1,0)du =1
0 0

0

¢) Consider the Fréchet-Hoeffding upper bound M, given by M (u,v) = min(u,v) for all
u,v € [0,1]. Then
11 1
™ = —1+ 4f min(u, v)dM (u,v) = =1 + 4Jmin(u,u)du =1.
0 0

0

d) Consider the Farlie-Gumbel-Morgenstern copula with parameter ¢ € [—1, 1], defined for
all u,v € [0, 1] by
Co(u,v) = uv + Ouv(l — u)(1 — v).
Note that the corresponding density is given, for all u, v € [0, 1], by

2

dCy(u,v) = EEs

Co(u,v) =14 0(1 — 2u)(1 — 2v).
Therefore, it can be shown easily that

11

20 20
Tc, = —1 + 4fng(u,v)ng(u,v) =—-1+4 O+ =
00

36 9

In order to simplify calculations, a simpler formula for Kendall’s tau can be found in Nelsen
(2006) for the case where the copula is absolutely continuous. A more general result can be found
in Li et al. (2002).

Theorem 3.2 Let C be a copula. Then

11
Tc=1—-4 0C(u,v) 9C(u,v) dudv.
ou
00

ov

Next, we introduce the margin-free analog of Pearson’s correlation coefficient. Elimination of
the marginal effect is achieved by applying the probability integral transformation and leads to the

so-called “grade correlation coefficient” better known as Spearman’s rho.
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3.1 Measures of association

Definition 3.3 Let (X, Y') and (X1, Y7) be two continuous independent random vectors such that
X ~ X with distribution " and Y ~ Y} with distribution G. Assume that (X, Y") has cumulative
distribution function H and (X1, Y7) is a pair of independent random variables. Spearman’s rho of
the pair (X, Y) is then defined to be

pxy = 3[Pr{(X = X))(Y = Y1) > 0} — Pr{(X — X3)(¥ — ¥) < 0}].

Theorem 3.3 In the same setting as above, if C denotes the copula of (X,Y') and by noticing that
the independence copula is the copula of (X1,Y1), we have

11
pPXY = 1QJJ{C(U, v) —uv} dudv.
00

It is hence convenient to write pxy = pc. One can also show that

fl flC(u, v)dudv = Jl flude(u,v).

A proof of this identity, generally attributed to Hoeffding, can be found in the book by Nelsen
(2006). Based on this result, it is immediate that if (X, Y") is a continuous random pair with margins
Fand G, then (U, V) = (F(X),G(Y')) has cumulative distribution function C' and hence

E(UV) = ffude’(u,v),

while E(U) = E(V) = 1/2 and var(U) = var(V') = 1/12. Accordingly,
pxy = corr(U, V).
Example 3.3 Here are the numerical values of Spearman’s rho of some families of copulas.

a) Consider the independence copula II. It is immediate that

11
Pr = 12Jf(uv — uv)dudv = 0.
00

21



3.1 Measures of association

b) Consider the Fréchet-Hoeffding lower bound W, given by W (u,v) = max(u + v — 1,0)
for all u,v € [0, 1]. Then

1

11
pw = 12JJuvdW(u,v) -3 = 12fu(1 —u)du — 3 = —1.
00 0

¢) Consider the Fréchet-Hoeffding upper bound M, given by M (u,v) = min(u,v) for all
u, v € [0,1]. Then

1

11
pM = 12]fuvdM(u,v) —3= 12Ju2du—3 =1
00 0

d) Consider the Farlie-Gumbel-Morgenstern copula with parameter ¢ € [—1, 1] defined, for
all u,v € [0,1], by
Co(u,v) = uv + Ouv(l — u)(1 — v).
Recall that the corresponding density satisfies, for all u, v € [0, 1],

2

dCy(u,v) = ERE

Co(u,v) =14 0(1 — 2u)(1 — 2v).

Therefore, one can easily deduce that

11

pc = 12JJ{UU + wvf(1 — 2u)(1 — 2v)} dudv = g
00

This result was first published by Schucany et al. (1978).

The following definition is taken from Scarsini (1984).

Definition 3.4 Let (X, Y") be a continuous pair of random variables whose copula is C'. A measure
of association x of X and Y (denote kx y or k¢) is called a measure of concordance if, and only

if, it satisfies the following properties:
a) Kx,y exists for every continuous pair (X, Y);
b) Rxyy = Ry, X,
©) |kxyl <15
d) kxx = —kx-x = 1;
e) kx,y = 01if X and Y are independent;

f) R_Xxy = Rx-y = —RX)>
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3.2 Positive quadrant dependence

g2) ki < K¢ for all copulas C' and K such that K < C' point-wise;

f) if {(Xn,Yn)},5, is a sequence of continuous random vectors with respective copulas C,,,

which converges point-wise to a copula C, then k¢, — K¢ asn — .

Theorem 3.4 Kendall’s tau and Spearman’s rho are measures of concordance. Furthermore, if Y

and X are continuous, and Y is almost surely an increasing (resp. decreasing) function of X, then

Rxy = kpy = 1 (I"@Sp. Rxy = kw = —1).

3.2 Positive quadrant dependence

Definition 3.5 Let (X, Y") be a pair of continuous random variables with joint cumulative distri-
bution function H, unique underlying copula C', and marginals F" and G for X and Y, respectively.

The variables X and Y are said to be positive quadrant dependent (PQD) if, and only if,
Voger H(z,y) = F(x)G(y).
It is easy to show that X and Y are PQD, written PQD(X, Y), if, and only if,
Ve Clu,v) = uwv.
It is immediate that the independence copula I is PQD. Other examples are provided below.

Example 3.3 Consider the Fréchet—Hoeffding upper bound M. It is a PQD copula, given that, for

all u,v € [0,1], w > wv and v = wv, and hence M (u,v) = uv.

Example 3.4 Consider the Farlie-Gumbel-Morgenstern copula, with parameter § € [—1,1] de-
fined, for all u, v € [0, 1], by

Co(u,v) = uv + Ouv(l — u)(1 — v).
This copula is PQD if, and only if, 6 € [0, 1].

Example 3.5 The Fréchet—Hoeffding lower bound W is not a PQD copula. In fact we have, for
all u,v € [0, 1], W(u,v) < uv, and for example, W (1/2,1/4) = 0 but I1(1/2,1/4) = 1/8.

Below is a collection of easily established facts mentioned, e.g., in the book by Nelsen (2006).

Theorem 3.5 We have the following properties for a PQD pair of continuous random variables
(X,Y) with copula C'

a) PQD(X,Y) if, and only if, E{f(X)g(Y')} = 0 for all (almost everywhere) non-decreasing
functions f and g on Ran(X) and Ran(Y"), respectively.
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3.3 Diagonal copulas

b) Any measure of concordance of C' is non-negative. In particular, Kendall’s tau of C' is

non-negative and Spearman’s rho of C' is non-negative.

c) PQD(X,Y) if, and only if,

Veower Pr(X <zlY <y)Pr(Y <y) =Pr(Y <y|X <2)Pr(X <z) > zy.

3.3 Diagonal copulas

In developments to follow, we will need to call on the notion of diagonal copula. Here are a defi-

nition and some basic facts about these mathematical objects reported by Nelsen (2006).

Definition 3.6 Let C be a bivariate copula. The diagonal of C' is defined to be the function ¢ :
[0,1] — [0, 1] given, for all z € [0, 1], by dc(2) = C(z, 2).

Theorem 3.6 The diagonal é¢c of a copula C satisfies the following conditions:

a) d¢(0) = 0and 6c(1) = 1;

b) forallt € [0,1], max(2t — 1,0) < dc(t) < t, and 6c(t) = t for all t € [0, 1] if, and only
if, C'= M;

c) forallty,ty € [0,1] such that t; < ts, 0 < dc(tz) — dc(t1) < 2(ts — ty).

Proof. We establish each one of these claims in turn.

a) We have 6¢(0) = C'(0,0) = 0and d¢(1) = C(1,1) = 1.

b) We have that max(u + v — 1,0) < C(u,v) < min(u,v) for all u,v € [0,1]. Plugging
u = v = t in the previous inequality, we get max(2¢t — 1,0) < d¢(t) < t. Assume that, for
all t € [0, 1], 0c(t) = t. Then,

Vuwelo,1]  min(u,v) = dc{min(u,v)} = C{min(u,v), min(u,v)} < C(u,v).

Since for all u,v € [0,1], C(u,v) < min(u,v), then for all uw,v € [0,1], C(u,v) =
min(u, v).

¢) Assumethat 0 < t; <ty < 1. Then d¢(t2)—0c(t1) = C(ta,t2)—C(t1,t1) = 0. Furthermore,
Clta, te) — C(t1,t1) < tog —t1 + 1ty —t1 = 2(ta — t1).

The following result is due to Fredricks and Nelsen (1997).
Theorem 3.7 Let 0 be a function from [0, 1] to |0, 1] that satisfies the following three properties:

a) forallte[0,1], 6(t) <t
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3.4 Tail and stochastic monotonicities

b) 6(1) =1
c) forallty,ts € [0,1] such that t; < to, 0 < dc(tz) — oo (t1) < 2(ts — ty).

Then, there exists a copula C whose diagonal is §. In particular, we can take, for all u,v € [0, 1],

C(u,v) = min [u, v, {6(u) +d(v)}/2].
Such a copula is called a diagonal copula with diagonal .

Theorem 3.8 Let C be a diagonal copula, with diagonal . Then C' is a PQD copula if, and only
if, 6(t) = t* forall t € [0,1].

Proof. Assume that C' is a PQD copula. Then, for all ¢ € [0,1], (t) = C(t,t) > t x t = t2
Reciprocally, assume that the diagonal C'is PQD. Hence for all ¢ € [0, 1], C(¢,t) = min{t, §(t)} =
t? and therefore, for all ¢ € [0, 1], §(¢) = t%. ]

Theorem 3.9 Let C be a symmetric copula with diagonal d, and let Cs be the diagonal copula
arising from 6. Then we have that, for all u,v € [0, 1], C(u,v) < Cs(u,v).

Proof. We already know that for all w,v € [0, 1], C'(u,v) < min(u,v). It remains to show that

C(u,v) < {d(u) + d(v)} /2. Note that

C'{min(u, v), max(u,v)} + C' {max(u, v), min(u, v)}

< C {min(u, v), min(u, v)} + C {max(u, v), max(u,v)} .
Therefore, 2C (u, v) < C(u,u) + C(v,v), which proves the claim. O

3.4 Tail and stochastic monotonicities

Definition 3.7 Let X and Y be random variables. The following definitions are statements about

the tail monotonicity of (X, Y).

a) Y is left-tail decreasing in X, denoted LTD(Y'|.X), if, and only if, Pr(Y < y|X < z)isa

non-increasing function of x for all y.

b) Y is right-tail increasing in X, denoted RTI(Y'|X), if, and only if, Pr(Y > y|X > z)isa
non-decreasing function of z for all y.

The concepts of LTD(X|Y) and RTI(X|Y) can be defined in a similar way.

Remark 3.1 Any of the above four properties implies positive quadrant dependence of X and Y.
Furthermore, if the random variable (X, Y") is exchangeable, then LTD(Y'|X) and LTD(X|Y") are
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3.4 Tail and stochastic monotonicities

equivalent, and so are RTI(X|Y") and RTI(X|Y"). They are respectively denoted by LTD(X,Y")
and RTI(X,Y").

The tail monotonicities of a pair (X, Y") of continuous random variables with copula C' have
equivalent statements in terms of C'. This is recalled next. The proof of this theorem can be found
in the book by Nelsen (2000).

Theorem 3.10 Let (X,Y") be a continuous random pair with copula C. Then

a) LTD(Y |X) if, and only if, for any v € (0, 1), C(u, v)/u is non-increasing in v and if, and
only if, for any v € (0,1), 0C(u,v)/0u < C(u,v)/u for almost every u € (0, 1).

b) RTI(Y|X) if, and only if, for any v € (0,1), {v — C(u,v)}/(1 — u) is non-increasing in u
and if, and only if, for any v € (0, 1), 0C(u,v)/du = {v — C(u,v)}/(1 —v) for almost every
ve(0,1).

c) LTD(X|Y) if, and only if, for any u € (0,1), C(u,v)/v is non-increasing in v and if, and
only if, for any u € (0, 1), 0C(u,v)/0v < C(u,v)/v for almost every v € (0, 1).

d) RTUX|Y) if, and only if, for any u € (0,1), {u — C(u,v)}/(1 — v) is non-increasing in v
and if, and only if, for any u € (0, 1), 0C(u,v)/0v = {u—C(u,v)}/(1 —v) for almost every
ve (0,1).

Remark 3.2 Here are some remarks about the above four properties.

a) Any of the four properties above implies positive quadrant dependence of C; see, e.g.,
Nelsen (2006).

b) Let C and K be two copulas and let € (0, 1). Assume that C' and K satisfy any one of the
properties above. Then the mixture copula Cy = 0C + (1 — 0) K satisfies the same property.
To see this, assume for example that C' and K satisfy RTI(X]Y"). To show that Cj satisfies
it as well, note that

u — Cy(u,v) _ U~ C(u,v)

1—w 1—w

u— K(u,v)

1—v 7

+(1-0)

which is non-increasing in v for all u, as it is the sum of two non-increasing functions in v

for all w.

c) The four properties do not in general imply one another.

Definition 3.8 Let X and Y be continuous random variables. We say that

a) Y is stochastically increasing in X, denoted SI(Y'|X), if, and only if, Pr(Y > y|X = x)

is a non-decreasing function of z for all y.
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3.4 Tail and stochastic monotonicities

b) X is stochastically increasing in Y, denoted SI(X |Y), if, and only if, Pr(X > z|Y = y)

is a non-decreasing function of y for all x.

The proof of the following theorem can be found in the book by Nelsen (2006).

Theorem 3.11 Suppose that X,Y are two continuous random variables with copula C'. The fol-

lowing results hold true:

a) IfSY(Y|X), then LTD(Y | X) and RTI(Y |X).

b) IfSI(X|Y), then LTD(X|Y') and RTI(X|Y).

c) SI (Y|X) if, and only if, for all v € (0, 1), 0C(u,v)/du is non-increasing in v and if, and
only if, for all v € (0, 1), C(u,v) is a concave function of .

d) SI(X|Y) if, and only if, for all u € (0, 1), 0C(u,v)/0v is non-increasing in v and if, and

only if, for all u € (0,1), C(u,v) is a concave function of v.

It is not hard to see that if C' and K are two copulas satisfying, e.g., SI(Y'|X), then the mixture
copula Cy = 0C + (1 — 0)K, 0 € (0, 1) satisfies it as well.

Definition 3.9 Let (X, Y) be a pair of continuous random variables. Assume that X has distribu-
tion F' and that Y has distribution GG. The upper tail dependence coefficient, denoted A\, is the

following limit (if it exists):
Ay = ltlTr{l Pr{Y > G '(t)|X > F'(t)}.

The lower tail dependence coefficient, denoted A, is the following limit (if it exists):
A = 1}%1131«{1/ <G X < FH)}

Theorem 3.12 Let (X,Y) be a pair of continuous random variables with margins F and G, re-
spectively, and let C' be the unique copula of (X,Y"). Then the upper and lower tail dependence
coefficients (if they exist) depend only on C, viz.
1-C(tt
)\U =2— lim &
t—1- 1—t

and

A = lim C(t, )/t

t—0t
A proof of this statement can be done by direct calculations; see, e.g., Nelsen (20006).
One notices that any two copulas with the same diagonal section have the same lower and upper

tail dependence coefficient, and that these coefficients lie in the interval [0, 1].
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3.5 Dependence properties of extreme-value copulas

Remark 3.3 It is not hard to see that if C' is a copula with diagonal d¢, then
Ay =2—0p(17), Ap=0,(07).

Example 3.5 Here are some examples:
a) For the independence copula, it is clear that \;; = A\, = 0. Any two continuous random
variables whose copula is II are independent, and hence have no dependence.
b) If M denotes the Fréchet—Hoeffding upper bound, which is the case of total dependence,
one has A\;, = \yy = 1.

c) If W denotes the Fréchet—Hoeffding lower bound, one has A\;, = Ay = 0; hence this copula
exhibits no tail dependence although any two continuous random variables whose copula is
C are dependent.

3.5 Dependence properties of extreme-value copulas

Let C be an extreme-value copula with Pickands dependence function A : [0, 1] — [1/2, 1]. Recall
that for all u,v € (0, 1), we have

C(u,v) = exp [ln(uv)A{ In(v) }] .

In(uw)

The following result gives analytical expressions for Kendall’s tau and Spearman’s rho for

bivariate extreme-value copulas. These results are reported, e.g., by Ghoudi et al. (1998).

Theorem 3.13 Let C be an extreme-value copula with Pickands dependence function A.

a) Kendall’s tau for C'is
1

(-t .,
T = deA (t).

0

b) Spearman’s rho for C'is

1
= —3+12J;dt
’ ) a1

Proof. Both results are proved by Ghoudi et al. (1998). The first involves computing the Kendall

distribution and its expectation. For Spearman’s rho, we present an alternative proof. We need to

11
JJC(u,v)dudv.
00
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3.5 Dependence properties of extreme-value copulas

We introduce the following change of variables:
r=Inuw, y=In()/In(uww),

so that u = ¢*~%) and v = €. Computing the Jacobian, and making the necessary substitutions

in the integral, we get

Wl

which easily reduces to

8%0

1 o0
exp{rA(y)} (—ze®)dxdy fjexp —z{ A(y) + 1 }] zdzdy,
00

p+3 1
— = | ———= dy.
2 ) )+ 1
This concludes the argument. L]

We now look at the dependence and tail properties of C'. First observe that C' is PQD. Indeed,
for all u,v € (0, 1),

Inv Inv

0<A <1, lmuw<0 = InwA > Inuv
In uv In uww

and hence for all u, v € (0, 1),

C(u,v) = exp(lnuv) = uv.

One can also verify that C' is right-tail increasing (RTI) and left-tail decreasing (LTD). These
properties can be checked directly, although it was shown by Garralda-Guillem (2000) that C' is
stochastically increasing, which is stronger than all of the above properties.
Finally, we compute below the lower and upper tail dependence coefficients for C'. We notice
that, for all ¢ € (0, 1),
Sc(t) = C(t,t) = 24072,

and hence &,(t) = 2A(1/2)t?41/2~1 Therefore,
AL =2 - 24(1/2)

and \y = 0if A(1/2) > 1/2 while Ay = 1 if A(1/2) = 1/2. The latter case corresponds to the
Fréchet—Hoeffding upper bound.
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Main results

Convergence properties of the Pickands and Capéraa—Fougeres—Genest estimators /15 and ASF ¢
have been proved by Genest and Segers (2009). This result was extended to a broader class of
copulas than those which are extreme-value by Genest et al. (2011). This was first done by noticing
that the estimators flff and ASF @ could be defined for any copula, and not necessarily an extreme-

value copula. Indeed, one can define, for any ¢ € [0, 1],

. -1
Az =4 [euan T
T
0

and

1

ASEC(t) = exp | —y — f {Ca' 2" -1z > e ")} do
© ’ xIn(z)
0

The following result is due to Genest et al. (2011).

Theorem 4.1 Let C' be a copula that is left-tail decreasing in each variable given the other, i.e.,
C satisfies LTD(Y | X') and LTD(XY"). Assume further that C has a continuous density. Then, as
n — o, /n (AP — AB) w AL and \/n (ASFG — AGFG) ws AGFS, where for all t € (0,1),

1

A _ dx
AE() = —(AE@) [ claah) T
0
1 d
ACFG(;\ _ ACFG 1-t ¢y 9%
AEro(n) = 480 [ ot et S

0

and C a Gaussian random field on [0,1]* with covariance structure given, for all u,v,u’ v €



4.1 Basic analytical properties and examples

[0, 1], by
cov {C(u,v),C(v/,v")} = C {min(u, ), min(v,v")} — C(u,v)C(u',0").

As shown by Genest et al. (2011), the functions AL and ASFC can be used to generate extreme-
value copulas. For example, if C' belongs to the Farlie-Gumbel-Morgenstern family, AL and ASF¢
are Pickands dependence functions, given that they are both convex and are point-wise bounded by
the functions ¢ — max(¢,1 —¢) and ¢ — 1 on [0, 1]. They generate extreme-value copulas, known
respectively as FGM-P and FGM-CFG families. Further, they can also be used to test whether an
LTD copula is an extreme-value copula.

Several properties of Pickands dependence functions are retained by AL and ASFC, as men-
tioned by Genest et al. (2011). We will show that AL retains several additional properties of
Pickands dependence functions, and we will study this function in detail. Analytical necessary
and sufficient conditions will be given so that AZ is convex.

Let C' be an arbitrary copula and suppose that C' is positive quadrant dependent (PQD), i.e.,
Vuweo1] C(u,v) = uv.
As is well known, we also have
Vuveo] C(u,v) < min(u,v) = M(u,v).

Therefore, the following integral always exists and is non-zero:
1
1< f C(a'", ") da/w < min{1/£,1/(1 — 1)},
0

As we will focus exclusively on the function AZ from here on, we henceforth drop the superscript
P and set, for all ¢ € [0, 1],

1
Ac(t) = 1/J C(z'" 2" da/x. 4.1)
0
The map Acx : [0,1] — [1/2,1] is then well defined and Ax > A, point-wise. Furthermore,
Ac(t) < 1forallt e [0,1] when C is PQD.

4.1 Basic analytical properties and examples

A few elementary properties of A- were mentioned by Genest et al. (2011). They are properties

a)—c) of the following result, which lists additional analytical facts about Ac.
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4.1 Basic analytical properties and examples

Theorem 4.2 The function Ac defined in (4.1) satisfies the following properties:

a) If C(u,v) = wv forall u,v € [0, 1], then max(t,1 —t) < Ac(t) < 1 forallt e [0,1].

b) If C(u,v) = C(v,u) forall u,v € [0,1], then Ac(t) = Ac(1 —t) forall t € [0, 1].

c) If C'is an extreme-value copula with Pickands dependence function A, then Ac = A.

d) If C and D are two PQD copulas, and for all u,v € [0,1], C(u,v) < D(u,v), then for all
te[0,1], Ac(t) = Ap(t).

e) If C and D are two PQD copulas, then the function Cy defined on [0,1]* by Cy = 0C +
(1 —0)D, where 0 is parameter in (0, 1), is a POD copula, and for all t € 0, 1],

_ Ac(t)Ap(t)
 0Ap(t) + (1 0)Ac(t)

Agy(t)

Proof. We establish each claim in turn.

a) Notice that uv < C(u,v) < min(u,v) for all u,v € [0, 1] and hence, if ¢ € [0, 1], then, for

any x € [0, 1], we have, by plugging x'~* and z* for v and v, respectively,
r <O 2") <min(z', 2h).

Consequently, dividing by z and integrating, we find

1

1
1
1= |dx< < Jmin 7t 2 Y de.
OJ Ac(t) ) ( )

Therefore, A (t) < 1. Furthermore, given that

1 1

1
Jmin(x_t, 2" dr < min Jx_tdx, Jmt_lda: = min{1/(1 —¢), 1/t},
0 0 0
and hence we have, for all ¢ € [0, 1], max(¢,1 —t) < Ac(t) < 1.
b) Assume that C' is symmetric. Then, for all ¢ € [0, 1], we have

1 1
dx dx 1

:JC(mlt,l’t) : :JC(mt,xlt) g

0 0

Ac(t)
c) If C is an extreme-value copula with Pickands dependence function A, then, for all u,v €

(0,1), we have
C(u,v) = exp [ln(uv)A{ln(v)/ln(uv)}],
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4.1 Basic analytical properties and examples

and hence

1

I 1—t td$_fA(t)—1 1

Ac(t)_JC(x ,x)x— x dx = :
0

Therefore, Ac(t) = A(t) forall ¢ € [0, 1].
d) Assume that for all u, v € [0, 1], C(u,v) < D(u,v). Then, forany t € [0, 1] and all x € [0, 1],

which implies that
1 1
d
JC(:clt, z') =g fD(:clt, r') —=
T
0 0

and hence, for all t € [0, 1], Ac(t) = Ap(t).

e) Itis clear that Cy is a distribution function, as it is the mixture of two distributions. To check

that it is a copula, we observe that, for all u € [0, 1],
Co(u,1) = 0C(u,1) + (1 = 0)D(u,1) = bu + (1 — O)u = u,
and, for all v € [0, 1],
Co(1,v) =0C(1,v) + (1 = 0)D(1,v) =0v + (1 — 0)v = v.
Therefore, if C' and D are PQD, we have, for all u, v € [0, 1],
Co(u,v) = 0C(u,v) + (1 —0)D(u,v) = Ouv + (1 — §)uv = uv.

Furthermore, for all ¢ € [0, 1],

A09 (t) T
1 d 1 d
- QJC(:vl_t,xt) -0 fD(xl_t,xt) &
X Xz
0 0
1 1
—0 +(1-0 ,
Acm
We deduce that, for all ¢ € [0, 1],
Ac(t)Ap(t)

ACe (t)



4.2 Shared properties with Pickands dependence functions

This concludes the argument. ]

Example 4.1 In general, the function A¢ is not analytically tractable. However, there are cases
where one can get a closed form for A-. Here are two examples.

a) In Genest et al. (2011), the function A is computed for the Farlie-Gumbel-Morgenstern
copula (Morgenstern, 1956). It is stated there that if Cy(u,v) = uv + Quv(l — u)(1 — v) for
all u,v € [0, 1] and some 6 € [0, 1], then

22 — 2%t — 4
202 — 2t — 4 + (3t2 — 3t)0

AC@ (t) =

b) We will generalize the example in the previous part. Consider the copula defined, for all
u,v € [0, 1], by
Cool(u,v) =uv + Guv*(1 —u)(1 —v),
where « € [1,0) and 6 € [0, 1]. For this copula, which is a generalization of the Farlie—
Gumbel-Morgenstern copula, we find, for all z, ¢ € (0, 1),

Coo(z' 10"y =2+ 02°(1 — 21 — 2™ ) =2+ 02°(1 + 2 — 2* — 2'7),

and Lt
—Ce,a(l’x ) =140 "1 +2—2" —2'").
Therefore,
1
jwmzlw(h Lo )
x a a+1 a4+t a—t+1

O ala+ D) {-t*+t+ala+ 1)} + 2a+ 1)0(—t* + 1)
ala+ 1) {-2+t+ a(a+1)} '

We conclude that, for all ¢ € (0, 1),

ala+ 1) {-*+t+ala+1)}
(a+ D) {-?+t+ala+1)}+ 2a+1)0(—t2+ 1)

ACG,a (t) = Q

4.2 Shared properties with Pickands dependence functions

The following properties are satisfied by any Pickands dependence function. The first two proper-
ties have been used in the study of Archimax copulas and the derivation of the Kendall distribution
for extreme-value copulas; see Capéraa et al. (2000) and Charpentier et al. (2014), as well as
Ghoudi et al. (1998).
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4.2 Shared properties with Pickands dependence functions

Theorem 4.3 The following statements hold true:

a) The function t — Ac(t)/t is non-increasing on (0, 1].
b) The functiont — Ac(t)/(1 — t) is non-decreasing on [0, 1).
c) If Ac(1/2) = 1/2, then Ac(t) = max(t,1 —t) forallt € [0,1].

Proof. To prove claim a), first observe that if A > 1, then, for all ¢ € [0, 1], we have Aq(t) <
AAc(t/)). Indeed, from the definition of A and upon setting u = — In(z), one finds

1 0 0
1 _ 1—¢ 6\ _ J —u(l-t) _—ut _ lf —v(1-t)/\ _—vt/\
A0 —JC(J? o) = | Ce ,€ }du-A Ce € }dv,
0 0 0

where the last identity is justified by the change of variable v = Au. Now observe that because
A>=landte|[0,1],onehas 1 —¢/A > (1 —t)/A > 0 and hence

1 1
> —
Ac(t)

1
—v(1-t/A) —vt/A d
C{e , € }U——)\ SN

>
St—3

Now to see that the function ¢ — A (t)/t is non-increasing on (0,1], let 0 < ¢; < ¢ < 1.

Then setting A = t5/t; > 1 and using the previous relation, we find

or, equivalently, Ax(t2)/ta < Ac(t1)/t1.
To establish claim b), let A > 1 be fixed. Then, for all ¢ € [0,1], we have Ac(1 — t) <
AAc(1 —t/X).The proof uses similar arguments, substitutions and inequalities as the above proof.

Indeed, we have

1 0
; — o1t d_x _ f —ut ,—u(1-t)
Ag(l—t)_JC(x’m )— = | C(e ™ e )du
0 0

o
_ % fc{evt/)\’ efv(lft)/)\}dv
0

o0
> % JC{G_Ut/A7 e—v(l—t/A)}dU _

0

1
Mol -t/

Therefore, if A > 1, then Ac(1 —¢) < AMAg(1 —t/A) forall ¢ € [0, 1].
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4.2 Shared properties with Pickands dependence functions

To verify that the function t — Ac(t)/(1 — t) is non-decreasing on [0, 1), let 0 < ¢; < to < 1.
Then1 >1—1¢ > 1—ty > 0. Hence setting A = (1 —¢;)/(1 — t2) > 1 and using the previous

relation, we find

1—1% 1—1%
Ac{l — (1 —t1)} < Ac |1 — =
1 — t2 m
and hence
1—-1%
Ac(t) < Ac(ta),
1—1ts

which implies that
Ac(t) _ Ac(ta)
1—t;  1—ty
Finally, let us consider claim c). Assume that A-(1/2) = 1/2. Let ¢ € [0, 1/2]. Then

Ac(0) < Ac(t) < Ac(1/2)

1-0 ~1—¢t ~1-1/2

and hence
Ac(t)
1—t

which implies that Ax(t) = 1 —t on [0, 1/2]. Next, let ¢ € [1/2, 1]. Then

Ac(1) < Ac(t) - Ac(1/2)

1 t 12

1< <1,

and hence Aq(t) =t on [1/2,1]. This concludes the argument. O
The following result gives an analytical property of Ac.

Theorem 4.4 A is Lipschitz on any subinterval [c,d| < (0,1) and hence is almost everywhere
differentiable on (0, 1).

Proof. The following function fo : [0,1] — R, fo(t) = 1/Ac(t). Let ¢ < t1 < ty < d. As shown
in Nelsen (2006) and stated in Theorem 2.1, we have

|C(u,v) — C(u', )| < |u—u|+|v—"1]
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4.2 Shared properties with Pickands dependence functions

for all u, uw'v, v’ € [0, 1]. Therefore,

|Ac(tz) — Ac(ts)| = fcztl) - fc%b) =

< |fo(ty) = fo(ta)|

fo(ty) — fe(ts)
fo(ty) fo(tz)

< J|C{€u(1tl), e*Utl} . C«{efu(lftz)7 efut2}|du

o0
< J‘|6—u(1—t1) — e 1 t2 | + |€ t1 6—ut2|du
0

+ (1—d)2}<t2_t1)'

This concludes the argument.

Theorem 4.5 For almost every t € [0, 1],

— Ap(t) = xe—r(l—t)fC(t)Ol{e—m(l—t)fc(t)’e_mfc(t)t}dx

S——s

o)
_ f pe= o Oy e=s1-0Fc(®) =atfc )y

0

Proof. First observe that, for almost all ¢ € (0, 1), we have
0
fé(t) _ Jueu(lt)cl{eu(lt)’ efut} . utC {6 u(1—t) 7ut}du
0
After making the substitution u = x fo(t), we find

fC xre z(1-t)fe(t C {e_x(l t)fc(t) lefc(t)t}daj

o0
_ J xe*wtfc(t)Cz{efw(lft)fc(t),e*wtfc(t)}dx]
0
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4.2 Shared properties with Pickands dependence functions

and hence
0
_ AL = f” S1=01c (00, (= 1-0fcl) o=2foly gy
0
o0
_ J pe el 0y {e=s(-01c(t) g=atfe() gy
0
This concludes the argument. ]

Example 4.2 Let C' be an extreme-value copula with Pickands dependence function A. That is,

for all u,v € (0, 1), we have

C(u,v) = exp [{In(uwv) A{ln(v)/In(uv)}].

The partial derivatives of C' with respect to u and v are respectively given (almost everywhere)

’ Culu,v) = a_u Clu,v) = i [A {1?((12)} - 11111((53) A {11111((53) H Clu, )
" Co(u, v) = a% Clu,v) % [A{ 11?(&3)} 4 1?(22) A {ILD(% H Clu, v).

It has been previously shown that Ax(t) = A(t) for all ¢ € [0, 1]. Then we must have A (t) =
A'(t) for almost all ¢ € [0, 1]. We verify this result as follows. First,

o0

J et 1I=010O 0 {o=s(1-0fc(®) =afo®t) gy

0
o0
J:ce 2(1=0fct)gr(1=DIc® (A1) — tA'(t)} exp {—z fo () A(t)} dx
0

_ J ©{A(t) — tA(t)} e de = A(t) — tA(1),

0
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4.3 Characterizations of copulas with A-(1/2) € {1/2,1}

Second,

e}
f —atfe By fe=r1=0fcl) =2fe(®t) gy
0

pe tte®ertiolt {A( Y+ (1 —0)A ()} exp{—zfc(t)A(t)} dx

2 {A®) + (1 — A ()} e da = A(t) + (1 — ) A'(t).

We conclude that, for all ¢ € (0, 1),

—Ac(t) = A(t) —tA' () — {A(t) + (1 =) A'(1)} = —A'(%).

4.3 Characterizations of copulas with A-(1/2) € {1/2,1}

The following proposition allows us to give a characterization of copulas C' such that Ax(1/2) =1
and Ac(1/2) = 1/2.

Theorem 4.6 The following statements hold true:

a) Ac(1/2) = 1if, and only if, the diagonal section ¢ of C' is given by d¢c(z) = 2% for all
e [0,1].
b) Ac(1/2) = 1/2 if, and only if, for all u,v € [0,1], C(u,v) = min(u, v).
Proof. First consider claim a). One direction is clear. For, if ¢ (z) = 22 for all z € [0, 1], then

1

1
Cl(x 1/2 1/2
d
1/2 f Jx
0

0

Now assume that A-(1/2) = 1. Then

der =1
T

Jl C(Il/z, Il/Q)
0

or equivalently,

1
1/2 ,.1/2
j{M_l}daj:Q
x
0

The fact that C' is PQD implies that C'(z'/2, 2'/2) /z > 1 for all x € [0, 1], and hence we must then
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4.4 Analytical necessary and sufficient conditions for the convexity of Ao

have C'(z'/2, 2'/2) /z = 1 for all z € [0, 1] or equivalently 6¢(z'/2) = z for all z € [0, 1] and hence
dc(z) = 2% forall z € [0, 1].

Turning to claim b), we have already seen in Theorem 4.3 that Ay, (t) = max(¢,1 — ¢) for all
t € [0, 1]. To establish the other implication, note that if A-(1/2) = 1/2, then

T

1

12 .1/2
J—C(x i )dx=2.
0

Making the substitution z = s2, we deduce that

1
JC’(S,S) ds = 1
0

S

or, equivalently, that
1
J{C(s,s)/s — 1}ds = 0.
0

Now, given that C'(s, s) < s forall s € [0, 1], we must have C'(s, s) = s forall s € [0, 1] and hence
dc(s) = s forall s € [0, 1]. Therefore, we have C(u,v) = min(u,v) for all w,v € [0, 1]. This

concludes the argument. ]

4.4 Analytical necessary and sufficient conditions for the con-

vexity of Aqx
Theorem 4.7 Define the functions gc, ke : (0,1) — R by setting, forall t € (0,1),

gc(t) = g;e*z(l—t)fc(t)cl{ef:t(lft)fc(t), efwfc(t)t}dx

S——3s

and

oo
ko (t) — J pe= o0 Oy ema(1-DFe®) (=atic Oy
0

The following statements hold true:

a) Foralmost allt € (0,1), go(t) = Ac(t) — tAL(t) and ko (t) = Ac(t) + (1 — ) AL ().
b) If Ac is twice differentiable, then Ac is convex if, and only if, g¢ is non-increasing and if,

and only if, k¢ is non-decreasing.

c) If C'is symmetric, then, for almost all t € [0,1], go(t) = k(1 —t).
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4.4 Analytical necessary and sufficient conditions for the convexity of Ao

Proof. To establish claim a), consider the function & : (0, 0) x [0, 1] — [0; c0) defined by
0
h(a,t) = fC’{e_“(l_t)o‘, e~ Y du.
0

Notice that by the change of variable v = aw in the previous integral, we get

Mast) = = fol).

Therefore, the function A is differentiable with respect to o, and

2 hat) =~ felt)

oo
Moreover,
©
% h(a,t) = —(1 —t) Jue“(lt)a(]l{e“(lt)a’ e} dy
0

(X}
—t Jue—utcycr2{e—u(l—t)oz7 e_“to‘}du.
0

Setting o = fc(t) in the two expressions for dh(a, t)/da, we get, for all ¢ € [0, 1],
—(1 = t)go(t) — the(t) = —Ac(t).

We also know that, for almost all ¢ € (0,1), A, (t) = kc(t) — go(t). Combining the previous two
equations, and solving for k¢ and g, we get that, for almost all ¢ € (0, 1),

ko(t) = Ac(t) + (1 - 1) A (1),

and
go(t) = Ac(t) — tAL(t).

Turning to claim b), assume that A¢ is twice differentiable. Then A is convex if, and only if,
forall t € (0,1), AZ(t) = 0. Notice that g;,(t) = —tAZ(t) and that k. (t) = (1 — t)AZ(t). The
conclusion is then immediate.

Finally, to prove claim c), assume that C' is symmetric. Then we have, forall ¢ € [0, 1], Ac(t) =
Ac(1 — t). Differentiating both sides with respect to ¢, we deduce that, for almost all ¢ € (0, 1),
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4.5 Probabilistic arguments concerning A

AL (t) = —A(1 — t). Therefore, we get that, for almost all ¢ € [0, 1],

go(1—1) = Ac(1— ) — (1 = )AL~ 1)
= Ac(t) + (1 — )AL (t) = ko (t).

This concludes the argument. L]

4.5 Probabilistic arguments concerning A.
Theorem 4.8 Let C be a copula and (U, V') have distribution C. For any fixed t € (0, 1), define

the random variable

£(t) =min{—(InU)/(1 —t),—(InV)/t}.
Then, forallt € (0,1), Ac(t) = 1/Ec{{(t)}, where Ec denotes the expectation under the assump-
tion that (U, V') ~ C.

Proof. For all x > 0, we have

Pr{{(t) = z} = Prlmin{—(InU)/(1 —t), —(In V) /t} > x|
_ PI‘{U < e—x(l—t)’ V< e—xt} _ C«{e—x(l—t)’ e—xt}‘

Given that, for all ¢ € [0, 1], £(¢) is almost surely non-negative, we have that

0 0

Ec {&(t)} = JPr {€(t) = x}da = JC’{e_m(l_t), e "Ydx.
0 0
It follows that, for all ¢ € [0, 1], Ac(t) = 1/Ec{£(¢)}. This concludes the argument. ]

We now give a probabilistic interpretation for the following result.

Theorem 4.9 The following statements hold true:

a) If C(u,v) = C(v,u) for all u,v € [0, 1], then Ac(t) = Ac(1 —t) forall t € [0, 1].

b) If C is an extreme-value copula with Pickands dependence function A, then Ac = A.

Proof. To establish claim a), assume that C' is symmetric. Then, for all ¢ € [0, 1],

Ec {¢(1)} = E¢ {min {-(InU)/(1 — 1), =(In V)/t}}
= E¢ [min {—(InV)/(1 =), —(InU)/t}]

—Eo{¢(1- 1)},
Hence, for all ¢t € [0, 1], Ac(t) = Ac(1 —t).
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To establish claim b), assume that C' is an extreme-value copula with Pickands dependence
function A. We know that, for all ¢ € (0, 1), £(¢) follows an exponential law with mean 1/A(t).
Therefore, Ec{¢(t)} = 1/A(t) and hence, for all ¢ € [0,1], Ac(t) = A(t). This concludes the

argument. ]
A probabilistic argument can also be used to give a proof of the following result.

Theorem 4.10 The following statements hold true:

a) The functiont — Ac(t)/t is non-increasing on (0, 1].

b) The functiont — Ac(t)/(1 — t) is non-decreasing on [0, 1).

We note that the proofs are similar, due to common properties of expectations and integrals.

Proof. To establish claim (i), let 0 < ¢; < 5 < 1. Note that

Ec{¢(t)} = Ec [min {—In(U)/(1 = t1), = In(V) /t1}]

= %EC lmin {— ln(U)ﬁ, - ln(V)/tQ}}
< %EC [min{— In(U)/(1 — ), — In(V) /£}]
< %Ec{ﬁ(tz)}-

and hence Ac(tg)/tg < Ac(tl)/tl. We note that t1/(t2 — tltg) = 1/(t2/t1 —tg) < 1/(1 — tg), which
has been used in the first inequality.

The proof of claim b) is similar and left to the reader. OJ

4.6 Counterexamples for convexity
If C'is a PQD copula such that A¢(1/2) = 1, then the diagonal J¢ of C' must satisfy 6o (z) = 22

for all z € [0, 1]. Using this result, we will find a copula C' such that A¢ is not convex. First of all,
we ensure that ¢ (z) = z* for all z € [0, 1] and hence that A¢(1/2) = 1. We then find a point in
to € (0,1) such that A(ty) # 1. This will ensure that A¢ is not convex.

Lemma 4.1 Let A : [0, 1] — [0, 1] be a convex function such that for all t € [0, 1], max(t,1—t) <
A(t) <1, and A(0) = A(1) = 1. Then A(1/2) = 1 if, and only if, A(t) = 1 forall t € [0,1].

Proof. Assume that A(1/2) = 1. Let ¢ € [0, 1/2]. We write 1/2 as a convex combination of ¢ and

1, viz.
L1 =2
2 21—t 21—t
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4.6 Counterexamples for convexity

Using the convexity of A, we deduce that

::Aﬂﬂ)<2u{¢)A@%+;£f;

A(1),

which implies that

At) = {2(1 —t)} {1 - 21(1__2;} ~1,

and hence A(t) = 1forall ¢ € [0, 1]. A similar argument holds if ¢ € [1/2, 1], by expressing 1/2 as

a convex combination of 0 and ¢. Thus we can conclude. O
Consider the copula C, defined, for all u, v € [0, 1], by
C,(u,v) = min{u, v, (u* + v?)/2}.
Notice that C'is a PQD diagonal copula. For all z € [0, 1], we have
C (22, 2Y?) = min(zV?, 22, z) = z

and hence
1

1
1/2 ,.1/2
;:fwdx:fdle,
Ac*(l/Q) x

0 0
Accordingly, Ac, (1/2) = 1.1t can be easily seen that, for all z € [0, 1],

1 1
C*(JI2/3,Z‘1/3) = min {x1/37 x2/37 E <x4/3 + I2/3)} _ 5 (:E4/3 + C(1,2/3)'
Consequently,
L 1s, 13
= - + Jdz =9/8
Ao 1/3 2 f = e =9

and hence Ac, (1/3) = 8/9. Therefore, in view of the previous lemma, we can conclude that A¢,

is not a convex function. ]

Theorem 4.11 Let 0 € (0, 1) be a parameter and consider the mixture copula Cy = 0C,+(1—0)11
Then Ac, is non-convex for all 6 € (0, 1).

Proof. As shown before we have, for all ¢ € (0, 1),

Ac, (1)
0+ (1—0)Ac,(t)

AC@ (t) =
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4.6 Counterexamples for convexity

Note that Ac,(1/2) = 1 but that, at the same time,

8/9 1
O+(1—-60)8/9 1+6/8

Ag,(1/3) =

Further note that, for any y € (8/9,1), one can find 6 € (0, 1) such that Ac,(1/3) = y. Finally,
observe that if C' is a symmetric PQD copula such that Ac(1/2) = 1, then Ac(t) = A, () for all
t € [0,1]. O

Theorem 4.12 There exists a symmetric copula C which is stochastically increasing and for which

Ac is not convex.

Proof. We consider the mixture of two symmetric extreme-value copulas. As shown before, tail
monotonicities and stochastic monotonicities are preserved under mixtures. Therefore, any mixture
of two symmetric extreme-value copulas is stochastically increasing.

Let C5 be the Gumbel-Hougaard copula defined, for all u, v € (0, 1), by

Cs(u,v) = exp{(| lnu]3 + \lnv\3)1/3}.

This is an extreme-value copula with Pickands dependence function As : [0, 1] — [1/2, 1] defined,
forall ¢ € [0, 1], by
As(t) = /(1= 1)3 + 3.

Consider the mixture C' = C5/2 + I1/2. Therefore, for all ¢ € [0, 1], we have

240, (1)
Aolt) = T3

The derivative of A¢, defined for all ¢ € (0, 1), is given by

, At — 2
(3t2 — 3t + 1)?3{(3t> — 3t + 1)/3 + 1}

We have A (0) = —1/2 and A} (0.2) < —0.56, which implies that the derivative is not non-

decreasing, and hence A¢ is not convex. ]
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Conclusion

This thesis was concerned with bivariate extreme-value copulas. The first chapter introduced the
problem that appeared in Genest et al. (2011). The convexity of a generalization of the Pickands
dependence function, which we denoted by AL, where C' denotes the underlying copula, was
the subject of our study. Genest et al. (2011) realized that the convexity of A% will lead to an
inconsistency in a test based on the Pickands estimator.

In Chapter 2 we introduced the notion of a copula, which is defined to be a distribution on
the d-dimensional unit cube, with uniform margins. We then recalled several analytical properties
of a copula, including uniform continuity properties, as well as the Fréchet—Hoeffding upper and
lower bounds. Further, we related the conditional distributions of a copula to its partial derivatives.
Then, we introduced the notion of an empirical copula and its asymptotic properties. Afterwards,
we introduced extreme-value copulas and focused on the bivariate case. We gave examples of such
copulas, and saw that they are characterized by a univariate function defined on [0, 1] called the
Pickands dependence function. This function is a convex function on [0, 1], bounded point-wise
by t — max(t,1 — t) and t — 1. We also mentioned that this function dictates the behavior of the
extreme-value copula. Furthermore, we introduced the Pickands and Capéraa—Fougeres—Genest
estimators and mentioned their asymptotic properties.

Chapter 3 consisted of studying measures of dependence and correlation between two random
variables. We introduced Spearman’s p and Kendall’s 7 of two random variables X and Y, and
saw that they depend only on their copula. We also introduced the concepts of tail monotonicities
and stochastic ordering of copulas, and proved that many of these properties are preserved by
mixtures. Finally, we introduced upper and lower tail dependence coefficients and computed them
for extreme-value copulas.

In Chapter 4, we presented our main results, relating to the generalized Pickands dependence
function, which we denoted As. We sought to extend the results of Genest et al. (2011). After

establishing obvious properties of A¢, we proved that the map ¢ — A (t)/t is non-increasing and
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Conclusion

that the function ¢ — Ag(t)/(1 — t) is non-decreasing. These properties are also satisfied by a
Pickands dependence functions and play an important role in establishing properties of bivariate
extreme-value copulas. We further showed that A is differentiable almost everywhere in (0, 1).
In the last part of the thesis, we tried to characterize the copulas such that A-(1/2) = 1/2. This
happens if, and only if, C' is the Fréchet—Hoeffding upper bound, just as in the case of the Pickands
dependence function. However, if A-(1/2) = 1, then one can only infer about the diagonal of
C, which must agree with the diagonal of the independence copula. Using this fact, we found an
example of a copula C' for which A¢ is not convex. We also studied the derivative and deduced
a closed form for the derivative of Ax by using a substitution, which allows us to circumvent the
usual rules of differentiation. We then gave necessary and sufficient conditions in order for A to

be convex. An interesting problem is to try to find families of copulas for which A is convex.
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