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SUMMARY 

We prove that any finitely generated group which splits as a graph of free groups 

with cyclic edge groups is hyperbolic relative to certain finitely generated sub­

groups, known as the peripheral subgroups. Each peripheral subgroup splits as 

a graph of cyclic groups. Any graph of free groups with cyclic edge groups is 

the fundamental group of a graph of spaces X where vertex spaces are graphs, 

edge spaces are cylinders and attaching maps are immersions. We approach our 

theorem geometrically using this graph of spaces. 

We apply a "coning-off" pro cess to peripheral subgroups of the universal cover 

X -+ X obtaining a space Cone(X) in order to prove that Cone(X) has a linear 

isoperimetric function and hence satisfies weak relative hyperbolicity with respect 

to peripheral subgroups. 

We then use a recent characterisation of relative hyperbolicity presented by 

D. V. Osin to serve as a bridge between our linear isoperimetric function for 

Cone(X) and a complete pro of of relative hyperbolicity. This characterisation 

allows us to utilise geometric properties of X in order to show that ?Tl (X) has a 

linear relative isoperimetric function. This property is known to be equivalent to 

relative hyperbolicity. 

KEYWORDS: Relative hyperbolicity, Graphs of free groups with cyclic edge 

groups, Relative isoperimetric function, Weak relative hyperbolicity. 



SOMMAIRE 

On prouve qu'un groupe finiement engendré qui est décomposable en graphe de 

groupes libres avec groupes d'arêtes cycliques est hyperbolique relatif à un ensem­

ble de sous-groupes finiement engendrés appelés les sous-groupes péripheriques. 

Un graphe de groupes libres avec groupes d'arêtes cycliques est le groupe fonda­

mentale d'un graphe d'espaces X où les espaces de sommets sont des graphes et 

les espaces d'arêtes sont des cylindres. On utilise une approche géometrique pour 

la démonstration de l'hyperbolicité relative en utilisant l'espace X. 

On applique aux sous-groupes péripheriques du recouvrement universel X 

un processus qui transforme les sous-groupes péripheriques en "cones" périph-
- -eriques. On obtient un espace Cone(X) et l'on démontre que Cone(X) a une 

fonction isopérimetrique linéaire. Ceci implique que l'espace X satisfait hyperbol­

icité relative faible par rapport aux sous-groupes péripheriques. 

On utilise ensuite une caractérisation plus récente de l'hyperbolicité rela­

tive présentée par D.V. Osin. Cette caractérisation est le lien entre la fonction 

isopérimetrique linéaire de Cone(X) et une preuve complète de l'hyperbolicité 

relative. On se sert de les propriétés géométriques particulières de l'espace X 

pour démontrer que 7fl (X) a une fonction isopérimetrique relative linéaire. Cette 

propriété est équivalente à la propriété d'hyperbolicité relative. 

MOTS CLÉS: Hyperbolicité relative, Graphe de groupes libres avec groupes 

darêtes cycliques, Fonction isopérimetrique relative, Hyperbolicité relative faible. 
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Chapter 1 

INTRODUCTION 

1.1. SUMMARY 

This thesis focuses on a graph of spaces X whose vertex spaces are graphs 

whose edge spaces are cylinders and whose attaching maps are immersions. The 

goal of the thesis is to prove the relative hyperbolicity of the fundamental group 

of such a space. 

We had originally planned to apply Farb's approach to relative hyperbolicity. 

This involves showing that 7rl (X) satisfies weak relative hyperbolicity with respect 

to certain subgroups and that it satisfies the Bounded Coset Penetration property 

(BCP property). In Chapter 2 we vertified a linear isoperimetric function for a 

simplicial complex corresponding to coned-off space of X. The results in Chapter 

2 of this thesis prove the first of Farb's conditions, weak relative hyperbolicity. 

More elaborate combinatorial techniques would have led to the proof that the 

BCP property was also satisfied. 

In Chapter 3 a more recent characterisation of relative hyperbolicity by Osin 

serves as a bridge between our results in Chapter 2 and a complete proof of relative 

hyperbolicity. It allows us to utilise the geometric properties of X. Indeed, 

the linear isoperimetric function we used to prove weak relative hyperbolicity is 

actually strong enough to prove that 7rl(X) has a linear relative isoperimetric 

function. This property is known to be equivalent to relative hyperbolicity. 
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1.2. G VIDE TO THESIS 

We now give a brief guide to the thesis and its main results. 

In Chapter 2 we consider the universal cover X --t X. We examine the 

structure of X and present the notion of a peripheral subspace in X as illustrated 

in Figure 1.1. A peripheral subspace is the union of a maximal collection of 

parallel edge spaces. 

FIG. 1.1. Three peripheral subspaces in X. 

We then impose a new structure on X by "coning-off" each peripheral sub­

space to form peripheral cones. Coning-off consists of adding a O-cell, called a 

conepoint, to each peripheral subspace. Then each cell in a peripheral subspace is 

joined to its corresponding conepoint by a higher dimensional cell. The resulting 

space is the coned space and is denoted Cone(X). Figure 1.2 illustrates a coned 

space with exactly three peripheral cones. 

FIG. 1.2. Coning-off peripheral subspaces in X. 
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We then study the non-singular disc diagrams D ---t Cone(X) in the coned 

space. We divide the disc diagrams into regions corresponding to peripheral cones 

in Cone(X). We build a canoncical disc diagram De ---t Cone(X) from D called 

the coned disc diagram whose regions are more efficient. We do this by using a 

sequence of disc diagrams modified from the original D ---t Cone(X). A resulting 

coned diagram is illustrated in Figure 1.3. Paths in the coned space satisfy the 

following important property: 

Lemma 1.2.1. Any combinatorial closed simple path P ---t Cone(X) is the bound­

ary path of a disc diagram De ---t Cone(X) such that Area(De) :::; KIPI where 

K = K(X) is a constant. 

This easily yields the main theorem of Chapter 2: 

Theorem 1.2.2. The coned space Cone(X) has a linear isoperimetric function. 

1.3(a) Regions in a dise dia- 1.3(b) Corresponding eoned 

gram. regions. 

FIG. 1.3. Coned disc diagram in Cone(X). 

Combined with the fact that there is a bound on the number of sides of 2-

cells of X this result proves that Cone(X) is 6-hyperbolic, and hence verifies 

weak relative hyperbolicity of 7rl(X). According to the work of Osin, instead of 

verifying BCP we use our strong linear isoperimetric function property to verify a 

different criterion and to show relative hyperbolicity of 7rl(X). We note however, 
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that it appears that more recent results of Manning-Groves are even more closely 

aligned with the method followed in this thesis. 

In Chapter 3, we use Osin's presentation of this alternative characterisation 

of relative hyperbolicity. We first introduce a similar structure to the coned space 

Cone(X) called the capped space and denoted Cap(X), illustrated in Figure 1.4. 

The space Cap(X) is built from X by the addition of a mapping cylinder for 

each cylindrical subspace of X (a cylindrical subspace in X is the quotient of 

a peripheral subspace in X by its stabilizer, this stabilizer is referred to as a 

peripheral subgroup). 

FIG. 1.4. Capped space Cap(X). 

We proceed to modify Cap(X) by collapsing cells along free faces and con­

tracting trees and intervals crossed with trees always preserving the fundamental 

group while giving the new space a desired structure. The resulting space R(X) 

is called the modified capped space because it will eventually yield a relative pre­

sentation for KI (Cap(X)) with respect to the peripheral subgroups. 

In this chapter we also give the definition of a relative presentation for a group 

and we present the definition of the 2-complex of a relative presentation to draw 

the link between the space R( X) and a relative presentation for KI (C ap( X)). 

The mapping cylinder structure of Cap(X) allows us to define three types of 

ce Ils of Cap(X). An open cell in the base X of Cap(X) is called a base cell. A 

cap is a cylindrical subspace attached to X in the pro cess of forming Cap(X) and 
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an open cell in a cap is called a cap cell. Any other open cell is called a vertical 

cell. 

Given a disc diagrarn DR -7 R(X) we define the relative area of DR to be the 

nurnber of 2-cells of DR that are rnapped to vertical 2-cells of R(X). We define 

a new rneasure of length in R(X) called peripheral length that is analogous to 

length in a relative presentation. Then, using the linear isoperirnetric function 

for a coned disc diagrarn De -7 Cone(X) we build a disc diagrarn DR -7 R(X) 

whose relative are a is bounded above by a linear function of its peripheral length. 

Proposition 1.2.3. (Osin) Let G be a finitely generated group, generated by the 

set X and let {Hl' ... , Hn} be a collection of subgroups of G. Then the following 

are equivalent: 

(1) G has finite relative presentation with respect to {Hl' ... , Hn} and its cor­

responding isoperimetric function is linear. 

(2) G is relatively hyperbolic with respect to {Hl, ... , Hn}. 

The relative area of a disc diagrarn DR -7 R(X) is used in cornbination with 

Osin's definition of the relative isoperimetric function. This characterisation is 

the property that allows us to prove the principal results of the thesis, stated 

below. 

Theorem 1.2.4. The group 7l'1 (Cap(X)) has a relative presentation with linear 

relative isoperimetric function. 

Cornbining our relative isoperirnetric function with Osin's criterion for relative 

hyperbolicity we obtain our main result: 

Main Theorem 1.2.5. The group 7l'1 (X) is relatively hyperbolic with respect to 

the peripheral subgroups. 

The thesis ends in Chapter 4 with sorne possible generalizations of our results 

as weIl as a contextualisation of the problern within current research in geornetric 

group theory. 



Chapter 2 

WEAK RELATIVE HYPERBOLICITY 

2.1. PERIPHERAL SUBSPACES IN GRAPHS OF SPACES 

Definition 2.1.1. We build a topological space X called a graph of spaces in the 

following manner. We begin with an underlying graph r x with vertex set V (r x) 

and edge set E(rx ), for every vertex v in V(rx ) there is an associated vertex 

space Xv and for every edge e in E(rx), an associated edge space Xe X J. An 

edge e in E(r x) attached at the vertices i( e) and T( e) gives way to corresponding 

attaching maps cPi(e) : Xe X {O} -t Xi(e) and cPT(e) : Xe X {l} -t XT(e)' We define X 

as the quotient of (UVEV(r
X

) Xv) U (UeEE(rx) Xe X 1) by the above identifications 

cPi(e) and cPT(e)' 

We remark that there is an obvious map X -t r x mapping each Xv to v and 

each Xe X J to e. 

Remark 2.1.2. Let X be a graph of spaces, and X -t X be a covering space, 

X is a graph of spaces in the following sense: vertex spaces of X are components 

of preimages of vertex spaces of X and open edge spaces of X are preimages of 

open edge spaces of X. 

Lemma 2.1.3. Let X be a graph of spaces and and X -t X be its universal caver, 

then the underlying graph r x of X is a tree. 

PROOF. We pick a closed based path P -t X, passing through vertex spaces 

and edge spaces alternately. There is a continuous map from X to r x mapping 

vertex spaces to points and edge spaces to intervals. If r x is not a tree then P is 
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mapped by this continuous map to an essential closed based path, contradicting 

71"1 (X) = 0 

D 

Throughout this chapter we will be considering the following particular type 

of graph of spaces X. We let X be a graph of spaces where each of its vertex 

spaces Xv is a graph, and its edge spaces Xe X 1 are cylinders, that is, each Xe 

is a circle, we also require that the attaching maps be immersions and that X 

consists of a finite number of vertex and edge spaces. We can suppose that the 

spaces are cell complexes and the maps are combinatorial. The vertex spaces Xv 

inherit the cell structure of a graph. We consider each Xe circle to consist of one 

O-cell and one 1-cell, then Xe X 1 has the cell structure of the product of these 

two cell complexes. A simple example of such a graph is illustrated in Figure 2.1 

Definition 2.1.4. A cylindrical space X, is a graph of spaces whose edge spaces 

are cylinders, vertex spaces circles and attaching maps immersions. 

Remark 2.1.5. Any graph of free groups with cyclic edge groups is the funda­

mental group of a space X as defined above, that is its vertex spaces are graphs 

and its edge spaces are cylinders. Figure 2.1 illustrates the canonical construction 

of such a graph of spaces when a presentation for a group. We consider the group 

F2 *zF2 given by the presentation (a,b,c,d 1 aba- 1b-1 = cdcd). 



( 

> a 

» b 

) 

C> c 

C>C> d 

FIG. 2.1. Construction of a graph of spaces. 

The construction above produces a graph of spaces whose fun­

damental group is F2 *z F2 given by the presentation (a, b, c, d 1 

aba-1b-1 = cdcd). 

9 

Now consider our case, X is a graph of spaces whose of edge spaces are cylin­

ders, vertex spaces graphs, attaching maps immersions and is comprised of a finite 

number of edge and vertex spaces. We are interested in its universal coyer X ---* 

X. By Lemma 2.1.3 it is a tree of spaces, in the sense that its underlying graph 

is a tree. The vertex spaces Xv are universal covers of the graphs in X, and are 

thus trees. The edge spaces Xe X lare universal covers of edge spaces in X and 

are thus strips made up of 2-cells whose boundary paths are homeomorphic to 

circles. The universal coyer X inherits its cell structure from the base space X. 

Figures 2.2 and 2.3 illustrate the structure of X. The underlying graph fx is a 

tree, as mentioned previously. 



.... 

! ! ! 
f- 0 () 

FIG. 2.2. Construction of universal cover of graph of spaces 

The base space is a graph of spaces X, with edge space cylinder and 

vertex spaces graphs. Arrows on each 1-cell represent immersed 

attaching maps. The universal covers of each component of X are 

indicated above them. The universal cover of X is constructed by 

gluing these universal covers together, as illustrated in Figure 2.3. 

10 

.... 



.' .' 

.' 
f 

2.3(a) Gluing strips (univers al cover of 

cylinder) to trees (universal cover of 

graph). 

. . . 

. . .. 

2.3(b) Resulting universal cover. 

. .. 

FIG. 2.3. Construction of universal cover of graph of spaces 

Using the example in Figure 2.2 we show how spaces are glued 

together to form the universal cover. 

11 

. ... 
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Lemma 2.1.6. Let X be a graph of spaces whose edge spaces are cylinders, vertex 

spaces graphs and attaching maps immersions. The 2-cells in its universal cover 

X are homeomorphic to closed discs. 

PROOF. The prooffollows from the structure of X as a tree of spaces. See Figure 

2.3 for an illustration of such 2-cells. o 

We are now interested in another way of decomposing our space X into sub­

spaces. To do so, we introduce the notion of a peripheral subspaces of X. 

Definition 2.1. 7. Two edge spaces in X are immediately parallel if they intersect 

in an infinite line. 
- -Two edge spaces E = Xe X 1 and E' = Xe' X 1 are parallel if there exists a sequence 

of edge spaces E = Eo, El, ... , Ek = E' such that Ei and Ei+1 are immediately 

parallel for aIl 0 ~ i ~ k. 

Definition 2.1.8. A peripheral subspace in X is the union of edge spaces in a 

maximal collection of parallel edge spaces. 

Definition 2.1.9. The stabilizer of a peripheral suspace in X is a peripheral 

subgroup and the quotient of a peripheral subspace in X by its peripheral subgroup 

is an associated cylindrical subspace. 

Remark 2.1.10. The quotient of a peripheral subspace in X by its stabilizer 

is a cylindrical space as in Definition 2.1.4. Peripheral subspaces in X cover 

cylindrical spaces of X. 

Theorem 2.1.11. Peripheral subspaces in X intersect in finite line segments. 

Moreover the length of the intersection of any two peripheral subspaces in X zs 

bounded by a constant k = k(X). 

PROOF. We recall that the underlying graph rx of X is a tree. We then note 

that a peripheral subspace in X is made up of parallel edge spaces so a peripheral 

subspace corresponds to a subtree in r x' Since the intersection of two subtrees 

of a tree is a tree, then the intersection of two distinct peripheral subspaces 

corresponds to a subtree in r x' Since each edge space lies in a single peripheral 
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subspace in X, any two peripheral subspaces cannot intersect in an edge of r x 
so they must intersect in a single vertex in r x' or have empty intersection. A 

vertex in r x corresponds to a vertex space in X, a tree. So the intersection of 

two peripheral subspaces is the intersection of two periodic lines in a tree. This 

intersection must be either finite or the two periodic lines are equal. If the two 

Hnes were equal then the two peripheral subspaces could not have been distinct. 

So peripheral subspaces in X intersect in finite line segments. Since the underlying 

graph of X is finite, that is, there are finitely many possible periodic lines and 

thus finitely many intersections of periodic Hnes, then there is therefore a bound 

K = K(X) on the length of the intersection of any two peripheral subspaces in 

X. o 

2.2. ALTERNATE VIEWPOINT ON PERIPHERAL SUBGROUPS 

In this section we take a different approach to describing peripheral subgroups. 

This discussion aims to enrich the reader's understanding of peripheral subgroups 

however we shaH not require the results of this section in subsequent sections. 

Let X be a graph of spaces where each vertex space is a graph, each edge 

space is a cylinder and an attaching maps are immersions. Using X, we build 

the induced graph of spaces X' whose connected components are the cylindrical 

subspaces of X as in Definition 2.1.9. The induced graph of spaces X' has the 

following properties: 

(1) The edge spaces of X' are the edge spaces of X 

(2) The vertex spaces of X' are circles 

Each attaching map of X factors through an immersed circle. Simple (non­

periodic) immersed circles are in one-to-one correspondance with conjugacy classes 

of maximal cyclic subgroups of the fundamental groups of vertex spaces of X. The 

vertex spaces of X' correspond to these conjugacy classes. The attaching maps 

of X' will also be immersions since attaching maps of X are. An example of a 
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graph of spaces X and its induced graph of spaces X' is sketched below in Figure 

2.4. 

~ , 1 

, · .... 0 
ft" r 

~, fJ 
~-'d 0 .... 

o 
'\ 

2.4(a) Graph of spaces X. 2.4(b) lnduced graph of spaces X' 

FIG. 2.4. Induced graph of spaces. 

The space X' is comprised of disjoint graphs of cyc1ic groups. The connected 

components Xi of X' are the cylindrical subspaces of X and the peripheral sub­

groups are the fundamental groups of the cylindrical subspaces. In Chapter 3 we 

will prove that 7rI X is hyperbolic relative to the collection of peripheral subgroups 

We will now give an example of how peripheral subgroups can be "read off" 

from graphs of groups. 

Example 2.2.1. Let G = (a, b, s, t, U 1 ([a, bj2)S = [a, b], at = a2
, bU = a3

). We 

consider the graph of spaces X with fundamental group G and the induced graph 

of spaces X'. Both X and X' are illustrated illustrated in Figures 2.5 and 2.6 

below. We can see that X' has two connected components, the cylindrical sub­

spaces, thus G has two peripheral subgroups. 

The peripheral subgroups are easily "read-off" from the induced graph of 

spaces X', they are given by Pl = (a, b, s 1 ([a, b]2)s = [a, b]) and P2 ::;:: (a, b, t, U 1 



FIG. 2.5. Graph of spaces X whose fundarnental group is G 

(a, b, s, t, u 1 ([a, b]2)S = [a, b], at = a2 , bU = a3). 

u 

FIG. 2.6. The induced graph of spaces X' with two cylindrical subspaces. 

2.3. CONING OFF X 

In this section we introduce the notion of a coned space. 

15 

Definition 2.3.1. Let Pj C X be a peripheral subspace. We define the peripheral 

cane assaciated ta Pj by Conej = (Pj x [0, l])/(Pj x {1}). We work cornbinatorially 

viewing Conej as a cell cornplex. Every O-cell in Pj is joined to a new cornrnon 0-

cell by a 1-cell, we call this cornrnon O-cell the canepaint assaciated ta Pj. Attached 
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to every 1-cell in Pj is a triangular 2-cell whose boundary is composed of the l-ceU 

in Pj as weIl as two l-cells that meet the conepoint associated to Pj. The pro cess 

of building Canej is caIled coning off P. By coning off every peripheral subspace 

Pj in X we form Cane(X) = X UPj=Pjx{O} Canej which we caU the coned space. 

We repeat that the O-cells added to X to form in Cane(X) are the conepoints, 

the new 1-cells are in one-to-one correspondance with the O-cells of the peripheral 

subspaces of X and the new 2-cells are in one-to-one correspondance with the 

1-cells of the peripheral subspaces of X. 

' .. 
' .. 

2.7(a) Peripheral subspaces in X. 
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2. 7(b) Coning off the peripheral subspaces 

FIG. 2.7. Building peripheral cones. 

In Figure (a) two peripheral subspaces are illustrated, the bold line 

indicates the infinite intersection of three edge spaces belonging to 

the same peripheral subspace. In Figure (b) we cone off peripheral 

subspaces. 

Definition 2.3.2. We distinguish between three types of 1-cells in Cane(X). A 

horizontal l-cell in Cane(X) is a 1-cell whose interior lies entirely in an edge 

space of X, a vertical l-cell in Cane(X) is a l-cell whose interior lies entirely in 
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a vertex space of X and a cane l-cell in Cone(X) is a l-cell with an end point 

that is a conepoint. 

Vertical 

Horizontal 

Cone 

• Cone point 

• O-cell 

FIG. 2.8. Vertical, horizontal and cone 1-cells in a peripheral cone. 

Theorem 2.3.3. Peripheral canes in Cone(X) intersect in finite line segments. 

The length of the intersection between any two peripheral canes is bounded by a 

constant k = k(X). 

PROOF. Since co ne 1-cells cannot lie on the boundary of two peripheral cones, 

then the pro of follows directly from Theorem 2.1.11. The bound on the length of 

the intersection between any two peripheral cones is the same as the bound on 

the length of the intersection between any two peripheral subspaces. 0 

2.4. DIse DIAGRAMS AND REGIONS 

In this section we recall the definition of a disc diagram. We will also define a 

new structure inside a disc diagram in the coned space Cone(X) called a region. 

Definition 2.4.1. A disc diagram D is a finite, simply-connected 2-complex 

embedded in R 2 . A disc diagram is non-singular if it is homeomorphic to the 
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unit dise. We will denote the set of 1-cells of D by ID and the set of O-cells of D 

by GD. 

Definition 2.4.2. A dise diagram D in X is a combinatorial map D - X where 

D is a dise diagram and X is a cell complex. By eombinatorial we mean that 

open i-cells of D map homeomorphically to open i-cells of X. 

Definition 2.4.3. A dise diagram is a finite 2-complex in R2 and has a topological 

boundary denoted 8D. The boundary path of a dise diagram D is a combinatorial 

path in the topological boundary of D, starting at a l-cell, that travels either 

once or twice through each l-cell on the topological boundary. A l-cell on the 

topological boundary is traversed once if it lies on the topological boundary of a 

2-ceIl, otherwise it is traversed twice. The order in which l-cells incident to the 

same O-cell are traversed is chosen to be c10ckwise from the first of the incident 

1-cells in question traversed. We denote the boundary path of a dise diagram D 

by 8p D. The length of a boundary path 8p D is the total number of 1-cells that 

appear in 8p D, sorne l-cells appear more than once in this count. We denote the 

length of the boundary path 8p D by 18pDI. (See Figure 2.9) 

",...- ...... ,. , , , , , 
-' "-

------, 

FIG. 2.9. Boundary path of a disc diagram. 

The boundary path is indicated by the dashed line, 1(8p D)I=12. 

Definition 2.4.4. A l-cell in a disc diagram D is internat if it on the common 

boundary of two 2-cells of D, otherwise it is a boundary l-eell. The union of 

aIl boundary l-cells forms the topological boundary of D. A boundary l-cell 

is a singular l-eell if it does not belong to the boundary of a 2-cell of D. We 
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note that a non-singular disc diagram does not contain any singular 1-cells. In 

a disc diagram D we denote the set of boundary 1-cells of D by lew and the 

set of internaI 1-cells by I intD . Similarly we calI a O-celIlying on the topological 

boundary of Da boundary O-eell otherwise we calI it an internal O-eell and den ote 

the set of boundary O-cells by GaD and the set of internaI O-cells by GintD . 

Remark 2.4.5. If a disc diagram D is non-singular then lâpDI = IIaDI. 

The following lemma is the disc diagram version of the Lyndon-Van Kampen 

Lemma, a proof can be found in [MeC]. 

Lemma 2.4.6. Let P ---+ X be a eombinatorial closed path in a spaee X. Then 

P ---+ X is nullhomotopie iff P is the boundary path of some dise diagram D ---+ X. 

From now on we will only consider disc diagrams in the coned space D ---+ 

Cone(X) that are non-singular. Thus the length of the boundary path of D 

will coincide with the total number of boundary 1-cells of D as mentioned in 

Remark 2.4.5. This assumption will simplify sorne computations and will not 

affect eventual results about isoperimetric functions as Theorem 2.8.4 will later 

demonstrate. We now partition the open 2-cells of D by defining a new structure 

in a disc diagram called a region. 

Definition 2.4.7. Two open 2-cells in a disc diagram D ---+ Cone(X) are loeally 

region equivalent if their boundaries share a 1-cell and both 2-cells map to the 

same peripheral cone in Cone(X). Two open 2-cells C and C'are region equivalent 

if there exists a sequence of open two ce Ils C = Co, Cl, ... , Ck = C' such that Ci 

and CHI are locally region equivalent for aIl 0 ~ i ~ k. Region equivalence gives 

rise to an equivalence relation on open 2-cells of D. We calI its equivalence classes 

region classes. 

Definition 2.4.8. We describe a subcomplex of a disc diagram D ---+ Cone(X) 

in the following way: begin with a region class of open 2-cells. Include in the 

subcomplex any open 1-cell of D lying on the boundary of two locally region 

equivalent open 2-cells in the chosen region class. Then include aIl O-cells of D 



20 

with the property that aIl its incident l-cells lie on the boundary of two locally re­

gion equivalent open 2-cells in the chosen region class. The subcomplex described 

is called an open region of D. 

Definition 2.4.9. The closure of an open region of D is called a region of D. 

Remark 2.4.10. By construction, regions of D are connected along l-cells and 

are thus planar surfaces. 

• \ 

2.1O(a) Dise diagram D ~ Cone(X). 

2.10(b) Regions of D. 

. ... 1.-..-

FIG. 2.10. Regions of D given by map D ---* ConeeX) 

In part (a) the labeled l-cells describe the combinatorial map to 

Cone(X). Two distinct peripheral con es of Cone(X) are indicated, 

they intersect in a l-cell. In part (b) the boundaries of regions are 

indicated using bold lines, they are determined by which peripheral 

cones the 2-cells are mapped to. 
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Remark 2.4.11. Given a disc diagram D -t Cone(X), by Lemma 2.1.6 and by 

the construction of Cone(X), boundaries of open 2-cells in Cone(X) are embed­

ded circles. Therefore the boundaries of open 2-cells of D have the same property. 

2.5. JUSTIFIED DIse DIAGRAMS 

Given a combinatorial closed path P -t Cone(X), our goal in this section is 

to establish the existence of a disc diagram D -t Cone(X) with the following 

properties : 

(1) opD = P 

(2) Regions of D intersect aD in at least one 1-cell. 

(3) Regions of D are simply-connected. 

(4) The intersection of any two regions of D is a possibly empty arc whose 

length is bounded by a uniform constant. 

Definition 2.5.1. In Definition 2.3.2 we introduced vertical, horizontal and 

cone 1-cells in Cone(X). Similarly, for a disc diagram D -t Cone(X) a verti­

cal/horizontal/cane l-cell of D as a 1-cell of D that maps to a vertical/horizontal/cone 

l-cell of Cone(X). 

Remark 2.5.2. Only vertical l-cells in Cone(X) can sit on the boundary of two 

2-cells belonging to different peripheral subspaces. Thus by the definition of a 

region we can assert that only vertical l-cells of D can lie on the intersection of 

two distinct regions of D. 

Lemma 2.5.3. Given a combinatorial closed path P -t Cone(X) there exists a 

disc diagram D -t Cone(X) such that opD = P and each region of D intersects 

aD in at least one l-cell. 

PROOF. Since Cone(X) is simply-connected then by the Van Kampen Lemma 

there exists a disc diagram D -t Cone(X) such that opD = P. If 0 has the 

property that regions intersect aD in at least one l-cell then we are done. Other­

wise we pick a region R with boundary oR that does not intersect aD in at least 

one l-cell. By Remark 2.5.2 only vertical l-cells can lie on the intersection of 
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two distinct regions. This implies that l-cells in BR are either vertical l-cells, or 

l-cells belonging to BD. By hypothesis R does not intersect BD in any l-cell, so 

BR must consist entirely of vertical 1-cells each mapping to the same peripheral 

cone in Cone(X). The boundary BR therefore maps to a tree Tin X. Let S be 

a path along BR which is the boundary path of a disc diagram E c D such that 

Re E. We remove the interior of E and consider quotient (D-Int(E))jS ---.-+ T, 

where the map S ---.-+ T cornes from the map from BR to the tree T, see Figure 

2.11. We note that BR -=f 0 since E 2 contains no closed surfaces. 

2.11(a) Boundary of a region 

in D. 

2.11(b) Region replaced by a 

tree. 

FIG. 2.11. Removal of a region that does not intersect aD. 

The remaining complex is still a disc diagram in Cone(X). The region without 

the desired property has been removed without affecting the boundary path of 

the disc diagram. Since the number of regions has decreased we can repeat this 

pro cess and we eventually will have a disc diagram with boundary path P whose 

regions aIl intersect the boundary in at least one 1-cell. o 

Lemma 2.5.4. Let D ---.-+ Cone(X) be a dise diagram such that every region of 

D intersects BD in at least one l-cell, then each region of D is simply-connected. 

PROOF. By Remark 2.4.10, regions in D are planar surfaces. We consider a 

region R in D, its topological boundary oR is a graph in the plane. We define 
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the outerboundary BoR of R as the union of connected components of BR that 

have access to the point at infinity. We first daim that BR = BoR. This follows 

from the fact that every region of D must intersect BD in at least a l-cell, therefore 

BoR n BD contains at least one l-cell. In addition aIl 2-cells in a region intersect 

another 2-cell in the same region along a l-cell. Therefore any pair of 2-cells of 

Rean be joined to each other by a sequence of 2-cells in R each intersecting each 

other in a l-cell of R, the pair of 2-cells are said to be gallery-connected. If we 

pick a l-cell d in BR that is not in BoR then it lies on the boundary of a 2-cell c 

in a region R' distinct from R, and it cannot lie in BD. If c is gallery-connected 

to a 2-cell intersecting BD in a l-cell then d lies in BoR because it has access to 

the point at infinity. Therefore the 2-cell c in R' cannot be gallery-connected to 

BD contradicting the fact that aIl regions intersect the boundary of D in at least 

a l-cell. We have thus established that BR = BoR. We now daim that BoR ~ 8 1
, 

this follows from the fact that 2-cells in the same region are gallery-connected. 

We can thus assert that regions in D are simply-connected. o 

Remark 2.5.5. Since regions in D are simply-connected, their boundary paths 

are defined identically to boundary paths of dise diagrams. See Definition 2.4.3. 

The boundary path of a region R is denoted BpR. 

Lemma 2.5.6. Given a combinatorial closed path P ---* Cone(X) there exists a 

dise diagram D ---* Cone(X) with boundary path BpD = P such that every region 

intersects BD in at least one l-cell and each region is simply-connected. 

PROOF. The proof of this Lemma follows directly from Lemma 2.5.3 and Lemma 

2.5.4. o 

Definition 2.5.7. We recall that each l-cell in a dise diagram D ---* Cone(X) can 

be thought of as having a label and orientation, determined by how it is mapped 

to Cone(X). A backtrack on the boundary BR of a region R of D is a sequence 

of two adjacent l-cells on BR of the form ee- l where e is and e- l have the same 

label but opposite orientations. 
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Theorem 2.5.8. Given a eombinatorial closed path P ---+ Cone(X) there exists 

a dise diagram D ---+ Cone(X) with apD = P sueh that eaeh region interseets aD 

in at least one l-eell, eaeh region is simply-eonneeted and D has the property that 

there are no baektraeks on the boundary of any region. 

PROOF. By Lemma 2.5.6 given a combinatorial closed path P ---+ Cone(X) there 

exists a disc diagram D ---+ Cone(X) with boundary path apD = P such that ev­

ery region intersects aD in at least one 1-cell and each region is simply-connected. 

We will define a pro cess that will modify D by removing backtracks on the bound­

ary of a region. The resulting structure Dl will remain a disc diagram in Cone(X) 

with ap D1 = P. 

If the backtrack lies on aD then fold the pair of 1-cells forming the backtrack 

together and push them out of the disc diagram so that they form a spur but 

preserve the boundary path of D. Otherwise for any pair of 1-cells that form a 

backtrack on the boundary of R and an adjacent region R' we apply the following 

steps: 

(1) Replace the pair of 1-cells, by the closed path formed by the concatenation 

of two copies of the pair of 1-cells. See Figure 2.12 (b). 

(2) Fold the original pair of 1-cells together to form a single 1-cell, fold the 

new copy of the 1-cells together to form a second 1-ce11. 

(3) Push the first 1-cell into the first region R, and push the second 1-cell into 

the adjacent region R'. The backtrack is no longer on the boundary path 

of either of the regions. See Figure 2.12 (c). 

(4) If the pro cess creates a 1-cell that does not lie on the boundary of a 2-cell 

in D, it is ignored. See Figure 2.12 (d). 

By this pro cess we rem ove a backtrack from the intersection of two regions. 

The boundary path of the disc diagram is preserved by this method of removal of 

backtracks. In addition Dl preserves from D the properties that its regions are 

simply-connected and they each intersect 8D1 in at least a l-cell. The resulting 

disc diagram Dl is a disc diagram in Cone(X) because the boundary paths of 



2.12(a) A backtrack in D. 

2.12(c) Folding and pushing­

in backtrack. 

2.12(b) Copying backtrack. 

2.12(d) 19noring a l-cell. 

FIG. 2.12. Removal of backtrack in D. 
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each 2-ceIl in D have not been ehanged in the process. Since the dise diagram D 

is finite, by applying this proeess to every baektraek on the boundary of a region 

we obtain the dise diagram Dl ---+ Cone(X) with opDI = P satifying aIl required 

conditions. D 

Remark 2.5.9. It can be shown using a similar argument to the proof of the 

simple-connectedness of regions that the intersection of any two regions of a disc 

diagram D is a line segment. 

Proposition 2.5.10. If a disc diagram D ---+ Cone(X) has the property that 

there is no backtrack on the boundary oR of any region R of D then there exists 

a constant K = K(X) such that for any two regions of D the length of their 

intersection is less than or equal to K. 
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PROOF. We consider a disc diagram D -+ Cone(X) such that there is no back­

track on the boundary of any region of D. We want to show that the length of 

the intersection of any two regions is bounded above. By Theorem 2.3.3, we know 

that there is a bound K = K(X) on the length of the intersection of any two 

peripheral cones in Cone(X). The intersection of two regions in D must map to 

the intersection of two peripheral cones in Cone(X) by the definition of a region. 

Therefore if the length of the intersection of two regions in D is larger than K 

this implies the presence of a backtrack on the intersection of the two regions, a 

contradiction. D 

Definition 2.5.11. The constant K = K(X) in the previous proposition is called 

an overlap constant for the regions of D. 

Definition 2.5.12. A disc diagram D -+ Cone(X) with the following properties: 

(1) Each region intersects aD in at least one 1-cell. 

(2) Each region is simply-connected. 

(3) There exists an overlap constant for the regions ofD. 
~ ~ 

is called a justified disc diagram in Cone(X). It is denoted D J -+ Cone(X). 

Corollary 2.5.13. Given a combinatorial closed path P -+ Cone(X) there exists 

a justified disc diagram DJ -+ Cone(X) such that opDJ = P. 

PROOF. The pro of of this Corollary follows directly from Proposition 2.5.10 and 

Theorem 2.5.8. D 

2.6. HOLLOWED DIAGRAMS 

Definition 2.6.1. Given a justified disc diagram DJ -+ Cone(X). We build a 

hollowed diagram, denoted D H, as follows: 

(1) Each region in DJ is regarded as a single 2-cell. 

(2) All O-cells of valence 2 that remain once each region has been regarded as 

a 2-cell are ignored. 
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This two step pro cess is illustrated in Figure 2.13. We note that each 2-cell of 

D H corresponds to a single region in D J and there is at most one 1-cell lying on 

the intersection of two 2-cells in D H . 

2.13(a) D J -+ 

Cone(X) with four 

regions. 

2.13(b) Each region re­

garded as 2-cell. 

2.13 ( c) Ignoring O-cells 

of valence 2. 

FIG. 2.13. Construction of DH from DJ 

Our next goal is to bound the total number of 1-cells of D H by the number of 

boundary 1-cells of D H. To establish this bound we first prove sorne basic resul ts 

about finite trees. 

Lemma 2.6.2. Let T be a finite tree with edge set E and vertex set V and 

let L denote the set of leaves in T. If all non-leaf vertices have valence 3 then 

lEI ~ 21LI· 

PROOF. This proof is a simple induction on the number of vertices in the tree, 

based on the notion of rooted trees. In a tree with 1 vertex, there are no edges 

and no leaves, thus the base case is easily established. We now suppose that for 

any tree T with edge set E, leaf set L and vertex set V, with non-Ieaf vertices 
" 

having valence 3 and IVI ~ n - 1 that lEI ~ 21LI. We take a new tree T with 

edge set E, leaf set L and vertex set V, with non-Ieaf vertices having valence 3 

and IVI = n. We root this tree at a leaf rand recall the notion of parents and 

siblings. For any vertex v E T we define its parent to be a vertex to which it is 

connected by an edge and whose distance to the root r is smaller than that of 

v. Similarly we define a child of v to be a vertex to which v is connected by an 
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edge and whose distance to the root r is greater than that of v. We now pick a 

vertex Va of maximal distance from the root r, Va is necessarily a leaf. Con si der 

the parent vp of Va, it is a vertex of valence 3 since it cannot be a leaf, and it 

must have a child VI different than Va that is itself a leaf. If VI is not a leaf than 

this contradicts the maximal distance of Va from r. We consider the tree obtained 

by the removal of the leaves Va and VI and their incident edges, it is a tree with 

n - 2 vertices, 2 fewer edges and one fewer leaf (vp is now a leaf). By induction 

hypothesis JEJ - 2 ::; 2(JLJ - 1) leading to the desired result JEJ ::; 2JLJ. 0 

Corollary 2.6.3. Let T be a finite tree with edge set E, vertex set V and let L 

denote the set of leaves in T. If all non-leaf vertices have valence greater than 2 

then JEJ ::; 2JLJ. 

PROOF. We transform a tree satisfying the property that an its non-leaf vertices 

have valence greater than 2 into one whose non-leaf vertices an have valence 

exactly three. We exp and the tree by replacing any vertex of valence greater 

than 3 with an edge. We do this in such a way that one adjacent vertex of the 

new edge has valence three, and the other adjacent vertex has valence three or 

greater (see Figure 2.14). We continue this pro cess until every vertex has valence 

three. In doing so, we only augment the number of edges in the tree and we dont 

affect the number of leaves thus Lemma 2.6.2 will give the desired result. 0 

---~ 

FIG. 2.14. Expansion of a vertex of valence 5. 

AlI non-leaf vertices of the resulting graph have valence 3. The 

number of leaves remains unchanged while the number of edges is 

increased. 
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Definition 2.6.4. Given the l-skeleton of a hollowed diagram DH . By removing 

every open 1-cell on the boundary of DH we obtain a planar graph denoted CH. 

This graph is called the internal graph of DH . 

Definition 2.6.5. Given an internaI graph CH of a hollowed diagram D H. Ver­

tices in CH that correspond to boundary O-cells of DH are called boundary vertiees, 

the set of boundary vertices of CHis denoted VôD H • The number of boundary 

vertices lVôDHI is equal to IOôDHI, the number of boundary O-cells of D H . Ver­

tices in CH that are not boundary vertices are internal vertiees, the set of internaI 

vertices of CH is denoted VintDH' See Figure 2.15. 

2.15(a) Hollowed diagram 

DH . 

2.15(b) Graph CH with one 

internaI vertex. 

FIG. 2.15. Construction of graph CH 

Lemma 2.6.6. Given a justified dise diagram DJ --t Cone(X) and assoeiated 

hollowed diagram D H, the internal graph CH of D H is a forest. 

PROOF. Each 2-cell in DH corresponds to a region in DJ. Since each region in 

DJ intersects aDJ in at least one l-cell, then each 2-cell of DH intersects aDH 

in at least one 1-cell. The internaI graph CH has no cycles, since at least one 

edge has been removed from any cycle in D H while building CH. The removal 

of certain 1-cells from DH could result in CH not being a connected graph, thus 

CH is a forest. o 
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Theorem 2.6.7. Let GH be the internal graph of the hollowed diagram DH as­

soeiated to the justified dise diagram DJ ---+ Cone(X). We denote the edge set of 

G H by EG, then IEGI :::; 210ôDHI. 

PROOF. By Lemma 2.6.6, GH is a forest, without loss of generality we assume 

G H is a tree. We know that the internaI vertices of G H (those that do not 

correpond to boundary O-cells of DH ) must have valence greater than 2, since in 

the pro cess of building DH aIl O-cells of valence 2 are removed. Thus any leaf in 

G H is a boundary vertex. However sorne boundary vertices of G H may not be 

leaves, in fact they might have valence 2, as illustrated in Figure 2.15. We will 

modify the graph G H so that the number of boundary vertices of G H is equal 

to the number of leaves of the new graph (see Figure 2.16). We modify GH in 

the following way : if v is a boundary vertex with degree greater than 1 then we 

add an edge and a corresponding leaf, if v is already a leaf than it remains in the 

graph unchanged. This pro cess leads to a graph G H whose number of leaves is 

equal to the number of boundary vertices of G H and whose non-leaf vertices aIl 

have valence greater than 2. We recall that IVôDH 1 = IOÔDH 1 and we note that 

the number of edgeslEGI of CH is larger or equal to IEGI. In addition, CH has 

the property that each non-leaf vertex has degree greater than 2 so by Corollary 

2.6.3 IEGI :::; IEGI :::; 21VôDH I = 210ÔDHI. 0 

Corollary 2.6.8. Given a justified dise diagram D J ---+ Cone(X) and an assoei-

ated hollowed diagram DH, 1 I intDH 1 :::; 2IIôDHI. 

PROOF. The internaI graph GH of DH has the property that its number of edges 

IEGI is equal to 1 I intDH l, since CH is created by removing the boundary l-cells 

of D H. The number IOÔDHI of boundary O-cells of DH is less than or equal to 

the number 1 IÔDH 1 of l-cells on the boundary of DH . Theorem 2.6.7 established 

that 1 I intDH 1 :::; 210ôDHI, combining with the fact that IOÔDH 1 :::; 1 IÔDH 1 we get the 

desired result that 1 I intDH 1 :::; 21 I ôDH 1. 0 



2.16(a) D H . 2.16(b) Graph 

GH· 

2.16(c) GH , edge 

added at non-Ieaf 

external vertex. 

FIG. 2.16. Construction of graph GH . 

2.7. CONSTRUCTION OF THE CONED DISC DIAGRAM 
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In this section we will introduce a series of disc diagrams aIl built from the 

original justified disc diagram DJ -+ Cone(X) and associated hollowed diagram 

D H . They are used to construct a final disc diagram De -+ Cone(X). 

Definition 2.7.1. Given a hoIlowed diagram D H associated to the justified disc 

diagram DJ -+ Cone(X), we create a new disc diagram called Du by subdividing 

the internaI 1-cells of DH while preserving its boundary. We do this by adding 

the O-cells of valence 2 that were ignored in the pro cess of building D H from D J, 

we only add O-cells on internal1-cells so that 8pDH = 8pDu (see Figure 2.17). 

Since we assume disc diagrams are non-singular then 1 IaDu 1 = 1 IaDH 1 however 

IIDH 1 ::; IIDu 1· 

Lemma 2.7.2. Let Du be the dise diagram assoeiated to hollowed diagram DH 

and justified disc diagram D J -+ Cone(X) with overlap constant k, then 11Dui :S 

3k lIaDul· 

PROOF. The boundary 1-cells of DH are not subdivided when building Du so 

1 IaDu 1 = IIaDHI· The internal1-cells of Du come from the subdivision of internaI 

1-cells of DH in accordance to the boundaries of regions of D J . The length of the 



2.17(a) Justified dise 

diagram DJ. 

2.17(b) Associated 

hollowed diagram D H . 

2.17(e) Subdivide in­

ternail-cells of DH to 

form Du 

FIG. 2.17. Construction of Du from DH and DJ. 
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intersection of any two regions in D J is at most k, sin ce k is the overlap constant 

for DJ. Thus eaeh 1-eell of DH will be subdivided into at most k new 1-eells to 

form Du so that IIDul ::; kIIDHI. Combining with Corollary 2.6.8 we get IIDul ::; 

klIDH 1 = k(IIintDH 1 + 1 IÔDH 1) ::; k(2I I ôDH 1 + 1 IÔDH 1) = 3kllôDH 1 = 3kllôDu 1 0 

Definition 2.7.3. Let Du be the dise diagram assoeiated to hollowed diagram 

DH and justified dise diagram DJ --t Cone(X), we build a new dise diagram 

called Dv by taking Du and subdividing boundary 1-cells so that the boundary 

of Dv is the same as the boundary of D J. This pro cess is illustrated in Figure 

2.18. 

2.18(a) Justified dise 

diagram DJ. 

2.18(b) Associated 

dise diagram Du. 

2.18(e) Subdivide 

boundary l-cells of 

Du to form Dv 

FIG. 2.18. Construction of Dv from Du and DJ. 
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Lemma 2.7.4. Let Dv be the disc diagram associated to Du, the hollowed dia­

gram DH, and the justified disc diagram D J -+ Cone(X) with overlap constant 

k, then IIDvl ~ 3kllaDvl. 

PROOF. The disc diagram Dv is built by subdividing boundary 1-cells of Du. 

We denote the total number of 1-cells added to the boundary of Du to form Dv 

by lAI so that IIDvl = IIDul + lAI and 1 laD v 1 = 1 IaDu 1 + lAI. By Lemma 2.7.2 we 

get IIDvl = IIDul + lAI ~ 3klIaDui + lAI ~ 3k(IIaDul + lAI) = 3klIaDvl· 0 

Construction 2.7.5. Given a disc diagram Dv associated to justified disc dia­

gram D J -+ Cone(X) we describe the construction of a new disc diagram De. 

Each O-cell in Dv corresponds to a single O-cell in D J and thus corresponds to 

a O-cell in Cone(X). The new disc diagram is formed by modifying every 2-cell 

of Dv using a pro cess described below. There are 3 possible modifications of a 

two-cell a of Dv depending on the following cases: 

(1) No O-cell of a corresponds to a conepoint of Cone(X). 

(2) Exactly one O-cell of a corresponds to a conepoint of Cone(X). 

(3) More than one O-cell of a corresponds to a conepoint of Cone(X). 

In case (1) we modify the2-cell a by first adding one new 1-cell for every O-cell 

in a, one endpoint of each newly added 1-cell is identified to its corresponding 

O-cell in a. We also add a O-cell a c to a and identify to it the remaining end point 

of each new 1-cell. Triangular 2-cells are added in one-to-one correspondance 

with the original 1-cells of a. This pro cess is illustrated in Figure 2.19. 

In case (2) there is one O-cell p of a that corresponds to a conepoint of 

Cone(X). We begin by joining every O-cell of Œ to p by adding new l-cells. 

Sorne O-cells of a will already by joined to p by a 1-ceIl, these are left unchanged. 

The new triangular 2-cells are added in one-to-one correspondance with the origi­

nal1-cells of a that were not already incident to p (l-cells that did not correspond 

to cone 1-cells in Cone(X)). The pro cess is illustrated in Figure 2.20. 



2.19(a) Dise diagram 

Dv. 

2.19(b) Modifying 2-

eell of Dv to form De. 

FIG. 2.19. Building De case (1). 

2.20(a) Dise diagram 

Dv. 

2.20(b) Modifying a 2-

cell of Dv to form De. 

FIG. 2.20. Building De case (2). 
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In case (3) there are tWQ or more O-cells of a that correspond to a conepoint 

of Cone(X). We proceed by identifying each of the O-cells of a corresponding 

to conepoints to each other. Consequently sorne incident 1-cells are identified 

if they correspond to the same cone 1-cell of Cone(X). The 2-cell a is thus 

possibly divided into multiple 2-cells, each with at most one O-cell corresponding 

to a conepoint of Cone(X). Thus case (1) or (2) can be applied to each new 2-cell 

created during the subdivision of a. This pro cess is illustrated in Figure 2.21. 

The final disc diagram De is obtained by modifying every 2-cell of Dv using 

the appropriate case of the three cases described above. 



" " " 

1 
1 

" ,,1f ~ 

2.21(a) A 2-cell of Dv 

with O-cells corresponding 

to conepoints. 

2.21 (b) Identifying 

O-cells corresponding 

to conepoints and 

sorne incident 1-cells. 

FIG. 2.21. Building De case (3). 

2.21(c) Adding cells 

to each new 2-cell ac­

cording to cases (1) 

and (2). 
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Definition 2.7.6. The disc diagram De described in the previous construction 

is called the eoned dise diagram and each subcomplex of De that is the result of 

the modification of a 2-cell of Dv is called a eoned region. 

Theorem 2.7.7. Let De be a eoned dise diagram eorresponding to justified dise 
~ ~ 

diagram DJ -t Cone(X) then De is a dise diagram in Cone(X). In addition, 

8pDe = 8pDJ. 

PROOF. We first give the map De -t Cone(X). The coned disc diagram De is 

built from Dv by taking each 2-cèll of Dv and building coned regions. The 2-cells 

in Dv are in one-to-one correspondance with regions in D J and the boundaries 

of 2-cells in Dv are identieal to those of their eorresponding regions in D J. Sinee 

DJ maps eombinatorially to Cone(X), we have an obvious way of mapping com­

binatorially the boundaries of coned regions of De into Cone(X). In Cone(X) 

each O-cell in the base of a peripheral cone is attached to a conepoint by a l-cell 

and triangular 2-cells are in one-to-one correspondance with l-cells in the base of 
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the peripheral cone. Each coned region of De agrees with this structure by con­

struction~giving a combinatorial map from De -t Cone(X) mapping each coned 

region of De into a peripheral cone of Cone(X). Finally, opDe = opDJ follows 

from the construction of De from the disc diagrams Dv, Du, DH and DJ. D 

2.8. LINEAR ISOPERIMETRIC FUNCTION FOR Cone(X) 

Definition 2.8.1. The area of a disc diagram D is the number of 2-cells in D, it 

is denoted Area(D J. Similarly the area of a region R in D is the number of 2-cells 

of Rand it is denoted A rea(RJ. 

Definition 2.8.2. The area, Area(P), of a combinatorial closed path P -t X is 

the minimum are a of a disc diagram whose boundary path is P. 

Definition 2.8.3. An isoperimetric function of a space X is a function f : N -t 

N defined by 

f(n) = max{Area(P) 1 P -t X, IPI :::; n} 

where P is a nullhomotopic, combinatorial, closed path in X. 

Lemma 2.8.4. Suppose that for any combinatorial, closed, nullhomotopic, simple 

path P -t Cone(X) we have Area(P) :::; klPI where k = k(X) is a constant. 

Then for any combinatorial, closed, nullhomotopic path P -t Cone(X) we have 

Area(P) :::; kiPI. 

PROOF. We take an arbitrary combinatorial, closed, nullhomotopic path P -t 

Cone(X). We will proceed by induction on the length of the path IPI. For the 

base case, if IPI = 0, then Area(P) = O. We now suppose that for combinatorial 

closed path P, with IPI :::; n-l, we have Area(P) :::; kiPI. Now take combinatorial 

closed path P with IPI = n. If it is a simple path, then Area(P) :::; klPI by 

assumption. Suppose it is not a simple path, consider a disc diagram D with 

boundary path opD = P, since P is not simple then opD passes through at least 

one singular boundary edge in OD. We change the basepoint of our boundary path 

if necessary so that it begins at this singular boundary edge. Then the boundary 
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path is the concatenation of two paths, opD = 0102, where 01 passes through the 

singular boundary edge and 02 does not. We note that 01 and 02 are chosen so 

that they are both non-ernpty closed paths with length srnaller than that of opD. 

See Figure 2.22. 

2.22(a) ôpD. 2.22(b) Separating 

ôpD into Ô1 and Ô2. 

FIG. 2.22. Decornposing singular boundary path. 

By the definition of the area of a path, Area(?) ::; Area(od + Area(02)' By 

induction hypothesis, since 1011 < IPI and 1021 < IPI then Area(ol) ::; kl011 and 

Area(02) ::; k1021. 80 cornbining these inequalities we get Area(P) ::; klo1 1 + 
kl021 = k(lo1021) = kl?l. We have thus shown that Area(?) ::; kl?1 for arbitrary 

cornbinatorial, closed, nullhornotopic path ? -t Cone(X). D 

Lemma 2.8.5. Let De be the coned disc diagram associated to the justified disc 

diagmm DJ ---+ Cone(X) with overlap constant k. Then Area(Dc) ::; 6klIaDcl. 

PROOF. We denote the total nurnber of l-cells lying on the boundary of a coned 

region of De by 1 RDe 1. Each l-cell lying on the boundary of a coned region of 

De lies on the cornrnon boundary of at rnost two 2-cells so Area(De) :S 2IRDel. 

We rernark that IRDel = IIDvl by the construction of De giving us Area(Dc) ::; 

21RDei = 2IIDvl. Since DJ is assurned to be non-singular and opDJ = opDv = 

opDe then Dv and De are also non-singular, so 1 IaDv 1 = 1 IoDe 1. Cornbining with 

Lernma 2.7.4 we have Area(De) ::; 21IDvi ::; 6klIaDv = 6klIaDel. D 
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Theorem 2.8.6. The coned space Cone(X) has a linear isoperimetric function. 

PROOF. We eonsider an arbitrary eombinatorial, c1osed, nullhomotopie simple 

path P --1 Cone(X). By Corollary 2.5.13 there exists a justified dise diagram 

DJ --1 Cone(X) with overlap constant k sueh that P = opDJ. We then eonsider 

the eorresponding eoned dise diagram De whose boundary path opDe = opD J = 

P. By Lemma 2.8.5, Area(De) :::; 6kl1ôDcl, but by assuming P is simple and thus 

that dise diagrams are non-singular, 1 I ôDc 1 = IOpDel = IPI. By definition of the 

area of a path Area(opDc) :::; Area(De), so Area(opDe) :::; 6klopDel. We have 

shown that Area(P) :::; 6klPI for arbitrary eombinatorial, c1osed, nullhomotopie 

simple path P --1 Cone(X). We ean therefore apply Lemma 2.8.4 and eonc1ude 

that for any eombinatorial, closed, nullhomotopie path P --1 Cone(X) we have 

Area(P) :::; 6k1PI. Thus the funetion f(n) = 6kn is a linear isoperimetrie funetion 

of Cone(X). 0 



Chapter 3 

RELATIVE HYPERBOLICITY OF 7r1X 

3.1. THE CAPPED SPACE 

In this chapter we again consider a graph of spaces X where each of the vertex 

spaces is a graph, each edge space a cylinder, the attaching maps are immersions 

and the number of vertex and edge spaces is finite. We will mostly be working 

. with the universal coyer X ----t X. 

Definition 3.1.1. Given a map f : A ----t Y, the mapping cylinder of f is the 

quotient space Mf = ((AxI)UY) subject to the equivalence relation (a, 1) rv f(a). 

Definition 3.1.2. We recall Definition 2.1.8 of a peripheral subspace in X, the 

union of edge spaces of a maximal collection of parallel edge spaces of X . The 

stabilizer of a peripheral suspace in X is a peripheral subgroup and the quotient of 

a peripheral subspace in X by its peripheral subgroup is an associated cylindrical 

subspace. 

Remark 3.1.3. Given an associated cylindrical subspace Cp, it is by definition 

the quotient of a peripheral subspace P by its stabilizer, the peripheral subgroup 

Stab( P), moreover the fundamental group 11"1 ( Cp) = Stab( P). 

Definition 3.1.4. We view X as a cell complex and we take the quotient of each 

peripheral subspace by its peripheral subgroup to get the associated cylindrical 

subspaces {Cj}jEJ, where Cj = Pj/Stab(Pj) and j E J is the index set of orbits 

of peripheral subspaces Pj. Each associated cylindrical subspace maps into X 

by a map f{ Cj ----t X. We form the mapping cyl in der ({ Cj x I}jE] U X) of 

f = Uh where f is the map f : UCj ----t X with f ICj= fj· The map f attaches 
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the associated cylindrical subspaces to X by the fj maps. The resulting space 

is the capped space and is denoted Cap(X). The capped space Cap(X) has an 

obvious cell structure, in particular each Cj x 1 has an induced cell structure, it 

is made up of a 2-complex inherited from Cj which we calI the cap crossed with 

an interval 1. The space X is referred to as the base. 

Definition 3.1.5. We distinguish between several different types of l-cells and 

2-cells in the capped space Cap(X). An open l-cell/2-cell in the base X is called 

a base l-cell/2-cell. An open l-cell/2-cell in a cap is called a cap l-cell/2-cell. An 

open l-cell/2-cell that is neither a base nor a cap l-cell/2-cell is called a vertical 

l-cell/2-cell. 

3.2. A MODIFICATION OF Cap(X) 

In this section we will make a series of modifications to the capped space 

Cap(X) = Mo, introducing intermediate spaces Ml, M2' M3 as we modify, and 

finally obtaining the space M4 = R(X). At each stage 7rI M i c:::,; 7rIMi-l' the space 

R(X) will thus have the same fundamental group as Cap(X). 

Remark 3.2.1. Each modification that is performed to obtain intermediate 

spaces consists of collapsing cells along free faces, contracting trees and con­

tracting trees crossed with intervals. Therefore in each intermediate space, the 

cells correspond to cells in the original space Cap(X). Thus without ambiguity, 

we continue to refer to cells in intermediate complexes as base, cap or vertical 

cells according to their origin in Cap(X). 
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Modification 3.2.2. Given the capped space Cap(X) we note that every 2-cell 

of X lies in a unique associated peripheral subspace and thus a unique cylindrical 

subspace in X, each 2-cell in the base of Cap(X) thus corresponds to a unique 

2-cell in a unique cap. Since every 2-cell in the base is a free face of a 3-cell 

corresponding to that unique 2-cell and cap, we may therefore collapse along 

each such free face. The l-skeleton of the base remains. Figure 3.1 illustrates this 

modification. The resulting space is a 2-complex denoted Ml. 

3.1(a) A 2-cell 

in the base of 

Cap(X). 

3.1 (b) Collaps­

ing along free 

face. 

,.,- ......... ,. .... 

.......... - -". 

3.1(c) The 1-

skeleton of the 

base of Cap(X) 

remains. 

FIG. 3.1. Modification of Cap(X) to pro duce Ml. 

Modification 3.2.3. Given the space Ml we pick a maximal tree n in the base. 

Its pre-image in the set of caps (under the mapping cylinder attaching map) is 

a forest, in particular in every cap Cj the pre-image of n is a forest Fj. We 

consider every forestcross interval Fj xI, then we contract Fj x t for aIl values of 

t. The tree Tb in the base is simultaneously contracted to a point. The base now 

consists of a unique O-cell. Figure 3.2 illustrates this modification. The resulting 

complex is denoted M 2 • 
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3.2(a) Part 3.2(b) 3.2(c) 3.2( d) Two 2-cells 

of maximal Three Contraction corresponding 

tree in base selected cap of pre-image to bold cells in 

and its l-cells in (l-skeleton). Figure (b) added 

pre-image in boldo to Figure (c). 

cap. 

FIG. 3.2. Modification of Ml to pro duce M 2 • 

Modification 3.2.4. Given the space M2' we select a maximal tree in each cap. 

We contract each maximal tree to a point. We note that the contractions only 

take place in the caps Cj' This modification is illustrated in Figure 3.3. The 

resulting complex is denoted M3' 

3.3(a) I-skeleton in M 2 same 

complex as in Figure 3.2. 

Maximal tree in cap indi­

cated in boldo 

3.3(b) Contraction of 

maximal tree leads to 

2-complex M3' 

FIG. 3.3. Modification of M 2 to pro duce M3' 
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Modification 3.2.5. Given the space M3, for every cap cross interval Cj xl we 

pick a vertical l-cell and contract it to a point (the earlier modification pro cesses 

guarantee the existence of at least one vertical l-cell in each Cj x 1). This 

modification is illustrated in Figure 3.4. The resulting complex is called the 

modified capped space and denoted R(X) or M4' 

---

, , -~ -'". -. : 

l::... .. ..... i:;:::F::·;.··· 
............. 

3.4(a) Complex from 

Figure 3.3, vertical 1-

cell to be contracted is 

boldo 

..... . '. . . . . 

3.4(b) l-skeleton ofre­

sulting complex M4 = 

R(X). 

FIG. 3.4. Modification of M3 to pro duce M4 = R(X). 

3.3. A RELATIVE PRESENTATION FOR 1Tl(Cap(X)) 

In this section we review the notion of the relative presentation of a group as 

presented in [Os], and we find that the geometry of the modified capped space 

R(X) yields an obvious relative presentation for 1I"1(Cap(X)) = 1I"1(R(X)) with 

respect to peripheral subgroups of X. 

We first review basic definitions pertaining to the relative presentation of a 

group. We will then utilise the geometric structure of the space R(X) to derive 

a relative presentation for 11"1 (C ap( X)). 

Definition 3.3.1. Let Y be a subset of a group a, and H a subgroup of a. We 

say that Y is a relative generating set of a with respect to H if a is generated by 
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Yu H. More generally, Gis generated by Y relative to a collection of subgroups 

{Hi}iEI if it is generated by YU (UiEI Hi) . 

Definition 3.3.2. Let G be a group, {HihEI a collection of subgroups of Gand 

Y a relative generating set of G with respect to {Hi hEI. We consider the free 

product Z = F(Y) * (*iEIHi), where F(Y) is the free group freely generated 

by Y. Since Z is a free product it can be presented by the disjoint union of 

presentations for its factors. Narnely, let Hi have presentation (HiISi) for each i. 

Then (Y U (UiEI Hi) 1 UiEI Si) is a presentation for Z. Let R be a set of elernents· 

in Z. The group G has a relative presentation (F(Y) * (*iEI Hi)) / R with respect 

to the subgroups {HihEI if (Y U (UiEI Hi) 1 UiEI Si, R) is a presentation for G. 

Each elernent in the set R is called a super-relator. 

We can relate the relative presentation of a group to the geornetric structure 

of a corresponding space by using a relative presentation to forrn a cell-cornplex. 

This cell cornplex is introduced in the following definition. 

Definition 3.3.3. Given a group G with relative presentation (F(Y)*( *iEIHi))/ R 

we build a 2-cornplex. For each i E 1 let Ki be a based space with 71"1 (Ki) rv Hi 

and for each y E Y let Ly be a based circle. Let W be the based wedge of the Kï's 

and Ly's along their basepoints. Each super-relator in R can be represented by 

a cornbinatorial c10sed path in the l-skeleton of W. We attach a super 2-cell to 

W for each super-relator in R along its corresponding cornbinatorial c10sed path. 

The resulting space Ris called the 2-complex of the relative presentation. By the 

Seifert-Van Karnpen Theorern 71"1(W) rv ( F(Y) * (*iEIHi)) and 71"1(R) ~ G. 

Theorem 3.3.4. There exists a relative presentation of 71"1 (Cap(X)) with respect 

to the peripheral subgroups such that the 2-complex of this relative presentation is 

isomorphic to the modified capped space R(X). 

PROOF. We first give a description of R(X) to show that it is isornorphic to the 

2-cornplex of sorne relative presentation. It will then be c1ear that this particular 

relative presentation is in fact a relative presentation for 71"1 (Cap(X)) with respect 

to the peripheral subgroups as required. 
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The modified capped space R(X) is a based wedge W of cell complexes (see 

Figure 3.4 (b)) along with a set S of 2-cells each attached to the l-skeleton of 

W along a combinatorial closed path. The space W is a wedge of based loops 

and based 2-complexes. The loops arise from single base l-cells or single vertical 

l-cells. The 2-complexes arise from the cap cells. The 2-cells in S arise from the 

vertical 2-cells of C ap( X). 

We recall that the modified capped space R(X) has the same fundamen­

tal group as Cap(X) whereas each cell complex in W consisting entirely of 

cap cells has the fundamental group of a corresponding associated cylindrical 

subspace of X. The fundamental group of an associated cylindrical subspace 

Ck = (Pk)/Stab(Pk) is the peripheral subgroup Stab(Pk)' 

The structure that we have just described agrees with the definition of a 2-

complex of a relative presentation, namely a relative presentation for 7f1 (Cap(X)) 

with respect to the peripheral subgroups. 

We can give explicitely this relative presentation. Each based 2-complex of W 

consisting entirely of cap cells has fundamental group 7f1 (Ck) = Stab(Pk) where 

Ck is an associated cylindrical subspace corresponding to the cap 2-complex. The 

set of based loops in W that arise from base l-cells or vertical l-cells corresponds 

to a set of elements A = {aihEI of 7f1(Cap(X)). The set (UkEKStab(Pk) uA) 

freely generates 7f1 (C ap( X)). Moreover each 2-cell in S represents a combina­

torial closed path in W and hence corresponds to a relator over the alphabet 

UkEK Stab(Pk) U A. This set of corresponding relators R is in fact the set 

of super-relators making (F(A) * (*kEKStab(Pk)))/R a relative presentation of 

7f1(Cap(X)) with respect to the peripheral subgroups {Stab(Pk)}kEK. Moreover 

our earlier discussion describes how the 2-complex of the relative presentation 

( F (A) * (* kEK Stab( Pk) ) ) / R is in fact isomorphic to the modified capped space 

R(X) as desired. 0 
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3.4. PERIPHERAL LENGTH 

Definition 3.4.1. Given a combinatorial path P in Cap(X) or III Mi where 

1 :S i :S 4, we will decompose p as the concatenation of certain combinatorial 

subpaths. The decomposition p = PlP2 ...... Pe where each Pi is either a maximal 

subpath in the l-skeleton of a cap, a single base l-cell or a single vertical l-cell 

is the peripheral decomposition of p. Each Pi is a peripheral syllable of p and the 

peripheral length of p is the number .e of peripheral syllables in the peripheral 

decomposition of p. We denote the peripherallength of p by Iplpl' 

The non-cap length of a path p in Cap(X) or in Mi where 1 :S i :S 4 is the 

number of l-cells in p that are not cap l-cells, equivalently it is the number of 

peripheral syllables that are either a single base l-cell or a single vertical l-cell. 

We denote the non-cap length of p by Iplne' 

We recall that ce Ils in spaces Mi are classified in accordance to their origin 

in the space Cap(X). This is why the notion of peripheral and non-cap length 

applies to the spaces Mi as weIl as the space Cap(X). 

Definition 3.4.2. Let PR be a path in R(X). The space R(X) arises from a 

series of modifications to intermediate spaces beginning with the capped space 

Cap(X). A path PA in Cap(X) who, after the four modifications described in 

Modifications 3.2.2 to 3.2.5 results in the path PR is a path in Cap(X) leading 

to PRo Similarly if a path Pi in Mi where 0 :S i :S 4 is the result of one of the 

Modifications 3.2.2 to 3.2.5 applied to a path Pi - 1 in M i - 1 then Pi - 1 is a path 

leading to Pi' 

Theorem 3.4.3. Given a combinatorial closed path PR ---+ R(X), there exists a 

path PA in Cap(X) leading to PR and a constant k = k(X) su ch that IPAlne :S 

klPRlpl' 

PROOF. Let the path PR have peripherallength e with peripheral decomposition 

PIP2 ... Pe so each Pi is either a maximal subpath in the l-skeleton of a cap, a 

single base l-cell or a single vertical l-cell. We show the existence of a path 
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PA in Cap(X) leading to PR and establish the desired inequality by studying 

individually each of the Modifications 3.2.2 to 3.2.5. 

We first note that given a vertex Vi in a path in Mi, if Vi is the result of a 

contraction of a tree in Mi-l then we can recover a subpath of the contracted 

tree in Mi that was contracted to Vi. 

We build a path in P3 -t M3 by recovering from certain vertices of PR any 

verticall-cell that was contracted to a point in Modification 3.2.5. The path P3 is 

formed by adding these vertical l-cells to the path PR in the place of the vertices 

that are the result of a contraction. A new peripheral syllable corresponding to a 

verticall-cell is potentially added to the beginning and the end of each peripheral 

syllable in PR, therefore IP31nc ::; IP31pl ::; IPRlpl + 21 PRIpl = 31PRIpl = 3e. 

We next build a path P2 in M2 by recovering from certain vertices of P3 any 

subpath that was contracted to a point in Modification 3.2.4. This modification 

consists of contracting a set of maximal trees {1j} in caps of M 2 . The path P2 

is formed by replacing the vertices that are the result of such a contraction by 

the corresponding subpath in a cap. Since aIl subpaths added consist only of cap 

ceIls, then the non-cap length of P2 and P3 are identical and IP21nc = 1P31nc ::; 3.e. 

Modification 3.2.3 consists of contracting a maximal tree n in the base of Ml 

as weIl as contracting trees crossed with intervals, where each tree is a component 

of the pre-image of Tb. We build a path Pl in Ml again by first recovering from 

certain vertices of P2 any subpath in the base of Ml or in one of its caps that was 

contracted to a point in P2 • We can also recover from certain vertical l-cells of 

P2 a vertical l-cell that was identified to it when the trees crossed with intervals 

were contracted. 

The path Pl is then built by replacing vertices and vertical l-cell of P2 that 

were the result of contractions by the corresponding recovered subpath or vertical 

l-cell. The replacing of vertical l-cells by new on es will not affect the peripheral 

length or the non-cap length of g and any replacing of a vertex by a subpath 

in a cap will not affect the non-cap length of Pl. However replacing a vertex 
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in the base by a subpath can affect the non-cap length of Pl. A vertex can be 

replaced by a subpath in the base of Ml consisting of at most Db base 1-cells 

where Db is the diameter of the tree n. Such a subpath in the base can be added 

to each non-cap peripheral syllable of P2 , since any subpath in a cap is joined to 

a subpath in the base by a vertical 1-cell (when in Ml). 

We thus have IPllne ::; IP21ne + IP21neDb ::; 31 P31ne + 31P31neDb = 3e + 3eDb = 

3e(Db + 1). 

The first modification, consists of collapsing 2-cells along free faces. The 1-

skeleton of Cap(X) and Ml are thus the same. We can pick a path PA in Cap(X) 

that leads to Pl after Modification 3.2.2, by sim ply considering the path Pl as 

a path in Cap(X). Since by construction each Pi is a path leading to the path 

PHI then PA is a path leading to PRo Since Modification 3.2.2 does not affect 

length of paths then IPAlne = IPllne ::; 3e(Db + 1), let k = 3(1 + DB) then 

IPAlne ::; ke = klPRlpl. 0 

Definition 3.4.4. The path PA leading to PR constructed in Theorem 3.4.3 is 

called the canonical path leading ta PRo 

3.5. DIse DIAGRAM IN Cap(X) 

In this section we will re-encounter the coned space Cone(X) that was in­

troduced in Definition 2.3.1. We will naturally calI upon the main results from 

Chapter 2 pertaining to disc diagrams in Cone(X), in particular, coned dise di­

agrams. The goal of this section is to produce a dise diagram in R(X) from 

a eoned dise diagram in Cone(X), while preserving important properties of the 

eoned dise diagram pertaining to area. 

Definition 3.5.1. Given the universal eover X -t X, we now define Cap(X) in 
~ ~ 

analogy to Cap(X). For eaeh peripheral subspace P of X let ip : P -t X be the 

inclusion map. Let f = U ip, that is, f : uP -t X where f Ip= i p. Then we 

let Cap(X) = Mf where Mf is the mapping eylinder of the map f. The space 

Cap(X) is ealled the capped universal caver. 
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Remark 3.5.2. The capped universal cover Cap(X) is the universal cover of the 
...---...-

capped space, that is, Cap(X) = Cap(X). 

Definition 3.5.3. The capped universal coyer Cap(X) is a mapping cyl in der 
~ ~ 

where P x 1 is identified to X for every peripheral subspace P of X. In analogy 

to Cap(X), the space X is the base and each peripheral subspace P in P x 1 is 

a cap. Any cell that is neither in the base nor a cap is a vertical cell. 

Remark 3.5.4. There is a quotient map CPcap : Cap(X) -+ Cone(X) defined by 

identifying each cap to a conepoint. 

Definition 3.5.5. We let PR -+ R(X) be a combinatorial closed path, and PA -+ 

Cap(X) the canonical path leading to PR' We lift the path PA to the path 

PA -+ Cap(X). Using the map CPcap from Remark 3.5.4 that identifies caps to 

conepoints, we obtain a combinatorial closed path Pc in Cone(X). The path Pc 

is called the cane path assaciated ta PRo 

Remark 3.5.6. Since caps in Cap(X) collapse to conepoints then the length of 

the path Pc is equal to the non-cap length of the path PA. 

Our next goal is to modify a disc diagram in the coned space with boundary 

path Pc to obtain a dise diagram in the modified capped space R(X) with bound­

ary path PR, where Pc -+ Cone(X) is the cone path associated to PR -+ R(X). 

We begin with a combinatorial closed path PR -+ R(X) and consider its 

canonical path PA -+ Cap(X) leading to PR and the eone path Pc -+ Cone(X) 

associated to PRo 

In Section 2.8 we saw that given a combinatorial closed path P -+ Cone(X), 

there exists a disc diagram D -+ Cone(X) with boundary path 8p D = P and 

Area(D) :S klPI, where k = k(X) is a constant. We called this dise diagram the 

eoned dise diagram eorresponding to the path P (see Definition 2.7.6). 

We take the cone path Pc associated to PR and form the coned disc diagram 

eorresponding to Pc which we denote De. As mentioned above, the coned disc 

diagram has the properties that 8pDc = Pc and Area(Dc) :S klPcl where k = 

k(X) is sorne constant. 



50 

We will eventually transform Dc into a disc diagram in R(X). The first step 

is to produce a disc diagram in Cap(X) with boundary path PA. This will be 

done by expanding O-cells of De corresponding to conepoints into disc diagrams 

in Cap(X) that correspond to caps collapsed in the pro cess of mapping Cap(X) 

to Cone(X) by the map cPcap. The following theorem gives the pro cess for the 

modification of the coned disc diagram Dc into a disc diagram in Cap(X). 

Definition 3.5.7. Given a disc diagram in the modified capped space D --+ R(X), 

the relative area of D is the number of 2-cells of D that are mapped to vertical 

2-cells of R(X). The relative area of D is denoted Arearel(D). 

Theorem 3.5.8. Let PR --+ R(X) be a combinatorial closed path, let PA --+ 

Cap(X) be the canonical path leading to PR and let Pc --+ Cone(X) be the cone 

path associated to PR with corresponding coned disc diagram De --+ Cone(X). 

There exists a disc diagram DA --+ Cap(X) such that opD A = PA and ArearezeD:;.) = 

Arearel(Dc). 

PROOF. We will transform the disc diagram De --+ Cone(X) into a disc diagram 

in Cap(X) with boundary path P:t.- During this pro cess no vertical 2-cells of De 

will be removed, nor will any vertical 2-cells be added, in this way Arearel(D A) = 

Arearel(Dc). 
---The path PA is mapped to the path Pc by the map cPcap that identifies caps 

in Cap(X) to conepoints, thus we will only be concerned with O-cells of De that 

correspond to conepoints in Cone(X). 

Given a O-cell c in De corresponding to a conepoint there are two cases to 

consider: 

(1) c is an internaI O-cell. 

(2) c is a boundary O-cell. 

In case (1) (see Figure 3.5) any 1-cells adjacent to c are cone 1-cells, they 

describe a sequence of triangles about c whose base is a closed path in the pe­

ripheral subspace associated to c. We remove c from De and replace it by a copy 

of the closed path in the peripheral subspace. This will agree with the structure 
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of Cap(X). Since peripiheral subspaces are simply-connected this closed path 

can be filled to form a dise diagram in Cap(X). The boundary path of the dise 

diagram De is unchanged by this operation since c was internaI, in addition only 

cap 2-ceUs are used to fiU a closed path in a peripheral subspace, so the relative 

area of De remains unchanged. 

3.5(a) Conepoint in 

interior. 

Closed 3.5(b) 

path replacing 

conepoint. 

3.5(c) Filling 

closed path. 

FIG. 3.5. Dise diagram in Cap(X) from a dise diagram in 

Cone(X), case (1). 

In case (2) c is on the boundary of De, thus the boundary path of De will 

be atfected by our modification. We first assume that De is non-singular (see 

Figure 3.6). As in case (1) aU 1-cells adjacent to c are cone 1-cells and they 

describe a sequence of triangles about c. In this case the base of the triangles 

form a connected path p in the peripheral subspace corresponding to c, however 

the path is not closed since c is not internaI. We proceed by replacing c by a copy 

of the path p so that the path p is now on the boundary of the disc diagram. 

However we must assure that the new dise diagram has boundary path PA and 
~ 

P is not necessarily a subpath of PA. We therefore consider the endpoints of p, 

that describe a subpath q of PA joining them. The subpath q is concatenated 
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to p since they have the same endpoints forming a closed path in a peripheral 

subspace. The closed path ean be filled to form a dise diagram in Cap(X). In 

this way q lies on the boundary of the dise diagram as required and no vertieal 

2-eells are added to the dise diagram henee preserving relative area. 

3.6(a) One O-ceIl correspond­

ing to conepoint on bound-

ary. 

"" .. ---- ....... 

3.6(c) Adding q a corre­

sponding subpath of PA. 

3.6(b) Path p in peripheral 

subspace replacing O-cell. 

3.6( d) Filling closed path. 

FIG. 3.6. Dise diagram m Cap(X) from a dise diagram m 

Cone(X), ease (2), non-singular De. 



3.7(a) Singular dise diagram 

De. 

3.7(e) Path eorresponding to 

path in peripheral subspaee. 

3.7(b) O-eell pulled apart to 

illustrate cone l-cells. 

3.7(d) Adding subpaths of 

PA to form a closed path. 

3.7(e) Filling closed path to form dise di­

agram in Cap(X). 

FIG. 3.7. Dise diagram in Cap(X) from a dise diagram in 

Cone(X), case (2), singular De. 
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We lastly consider case (2) where De is singular (see Figure 3.7). Any l-cells 

adjacent to c are cone l-cells, at least one of which is singular. The cone l-cells 

describe a sequence of triangles whose base is a disconnected family of paths 

each in the same peripheral subspace. We again want to replace c by a closed 
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combinatorial path in a peripheral subspace. We will do this by joining each of 

the paths in the base of the triangles to form a single closed path. The path 

in the base of the triangles describe endpoints of subpaths of PA that must be 

added. Using in addition the fact that any singular co ne 1-cell figures twice in the 

boundary path of the disc diagram, we can find subpaths of PA joining the paths 

in the base of the triangles, forming a closed path. We replace the conepoint by 

our newly constructed closed path and fill it to form a disc diagram in Cap(X). 

Only the subpaths of PA will be part of the boundary of the disc diagram. Again 

the relative area of De has not been aft'ected by this process. 

By applying the pro cesses described in cases (1) and (2) to aIl O-cells of De 

corresponding to conepoints we build a disc diagram DA ---> Cap(X) such that 
~ ~ ~ 

opDA = PA and Arearel(DA) = Arearel(De ). D 

Definition 3.5.9. The disc diagram DA obtained in Theorem 3.5.8 is called the 

eapped dise diagram in Cap(X). 

3.6. DISe DIAGRAM IN R(X) 

In this section we will construct a disc diagram DR ---> R(X) using the capped 

disc diagram DA ---> Cap(X) built in the previous section. We will relate the 

relative area of DR to the peripheral length of its boundary path in order to 

establish a relative isoperimetric inequality. 

Construction 3.6.1. Let PR be a combinatorial closed path in R(X), let PA --7 

Cap(X) be the canonical path leading to PR and let Pe be the co ne path asso­

ciated to PR with associated coned disc diagram De. We consider the capped 

disc diagram DA --7 Cap(X) with the properties opDA = PA and Arearel(DA) = 

Arearel (De). U sing the capped disc diagram DA we naturally obtain a disc di­

agram DA --7 Cap(X) such that op(D A) = PA. The Modifications 3.2.2 to 3.2.5 

map Cap(X) to R(X), we apply the modification to DA by collapsing appropriate 

cells and we obtain a disc diagram DR ---> R(X). Since PA is the canonical path 

leading to PR then Op DR = PRo 
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Definition 3.6.2. The disc diagrarn DR obtained in Construction 3.6.1 is called 

the modified capped disc diagram in R( X). 

Lemma 3.6.3. Let DR ---+ R(X) be the modified capped disc diagram corre­

sponding to the combinatorial closed path PR ---+ R(X). There exists a constant 

K = K(X) such that Arearel(DR) :::; KIPRlpl. 

PROOF. We let PA ---+ Cap(X) be the canonical path leading to PR and let 

Pe be the cone path associated to PR with corresponding coned disc diagrarn 

De. We recall that the rnodified capped disc diagrarn DR has the property that 

opDR = PRo We now review the construction of DR starting with the coned disc 

diagrarn De. 

In Theorern 3.5.8 we used De to build a new di sc diagrarn DA ---+ Cap(X) 
~ ~ 

with opDA = PA, we showed that Arearel(DA) = Arearel(Dc). In Section 2.7 we 

saw that the coned disc diagrarn Dc has the property that Area(Dc) ::; klPcl for 

sorne constant k = k(X) and that opDc = Pc. Since Arearel(Dc) ::; Area(De) 

we obtain the inequality Arearez(.8~) = Arearel(Dc) :::; Area(De) ::; klPel. 

In the construction of DR frorn DA we collapse cells and thus we lose area. 
~ ~ 

This rneans Area(DR) :::; Area(D A) and Arearel(DR) :::; Arearel(D A)' We recall 

that the path Pe has no cap l-cells, since the rnap c!Jeap : Cone(X) ---+ Cap(X) 

identifies all cap cells to a point. We therefore have IPel = 1~lne = IPAlne and so 

Area(Dc) ::; klPel = klPAlne' By Theorern 3.4.3 there exists a constant k'=k'(X) 

such that IPAlne ::; k'IPRlpl. 

Cornbining the above inequalities we have 

< Area(De) 

We thus obtain the desired result Arearel(DR) ::; KIPRlpl where K = kk'. 0 
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3.7. RELATIVE LINEAR ISOPERIMETRIC FUNCTION AND RELA­

TIVE HYPERBOLICITY 

In this section we give the definition of a relative isoperimetric function and 

relate it to the relative area of a disc diagram in the modified capped space R(X). 

We will then show that a bound on the relative area of a disc diagram in R(X) 

will give a relative linear isoperimetric function for ?rI (Cap(X)) and conclude that 

?rI (X) is relatively hyperbolic. 

Definition 3.7.1. [Os] Let C be a group with relative presentation (F(Y) * 
(*iEI Hi)) / R. We recall there is a natural homomorphism cp : Z = (F(Y) * 

(*iEI Hi))-+ C. We say the function f : N -+ N is a relative isoperimetric 

function of (F(Y) * (*iE1Hi))/R if for every word W oflength IWI S; nover the 

alphabet UiEI Hi U y mapped to the identity in C, the word W represents the 

same element in Z as a product of k ::; f(n) conjugates of superrelators. That 

is, there exists an expression W =z rr;=1 Z;I R;zj where Zj E Z, R; E Rand 

k S; f(n). 

Theorem 3.7.2. The group ?r1(Cap(X)) has a relative presentation with linear 

relative isoperimetric function. 

PROOF. In Theorem 3.3.4 we produced a relative presentation for ?r1(Cap(X)) 

from the space R(X). Indeed a relative presentation for ?r1(Cap(X)) with re­

spect to the peripheral subgroups was given by (F(A) * (*kEKStab(Pk)))/R. The 

space R(X) is a wedge W of cell complexes, certain cell complexes Hk arising 

from cylindrical subspaces Ck (caps) with ?rI (Ck) = Stab(Pk) and a set of loops 

represented by the set A of elements of ?rI Cap(X) arising from vertical or base 

l-cells. Each super-relator in R represents an attaching map of a super 2-cell 

along a path in the l-skeleton of W. 

Let W be a word oflength IWI ::; nover the alphabet A U(UkEKStab(Pk)) rep­

resenting the identity in ?rI (Cap(X)). This word is represented by a combinatorial 

closed path PR -+ R(X). By definition the peripherallength of PR is sm aller or 
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equal to the length of the word W, that is !PR!pl = !W! ~ n. We consider the mod­

ified capped disc diagram DR -+ R(X) corresponding to PR' By Theorem 3.6.3 

there exists a constant K = K(X) such that Arearel(DR) ~ KIPRlpl = KIWI. 

We will use DR to show that W is the same element in Z = (F(A)*( *kEKStab(Pk))) 

as the product or Arearel(DR) conjugates of super-relators. We first build a disc 

diagram by removing aIl 2-cells from DR that mapped to super 2-cells of R(X). 

We recall that every su ch super 2-cell corresponds to a super-relator in R. The 

removal of a 2-cell in DR is done by first travelling along a path. The path is 

the concatenation of three subpaths Pl, P2 and PlI. The first subpath Pl begins 

at the base point b on the boundary of DR and travels to the boundary path 

of sorne super 2-cell. The subpath P2 continues by travelling exactly once along 

the boundary path of the super 2-cell. The third subpath PlI travels along Pl 

in the opposite direction back to the basepoint. The path PIP2PI I represents a 

word over the alphabet UkEK Stab(Pk) uA where M = Arearel(DR). The path P2 

represents a super-relator Ri in R and Pl represents sorne word Zi E Z, we thus 

represent the word by ziR;1 Z;l. We travel along a path P that circles around 

each super-relator from DR (see Figure 3.8(a)). The path P corresponds to a 

word Wp = rr~l ziRiz;1 representing an element of 71'1 (Cap(X)) with the index 

M = Arearel(DR ) (the number of super 2-cells removed). We cut along this path 

P removing each super 2-cell (see Figure 3.8(b)). The boundary path of the re­

maining disc diagram is the concatenation of the original path PR representing 

the word W and the path P representing the word Wp = rr:l ZiRiZ;l. Since 

aIl super 2-cells have been removed from the disc diagram then the fact that 

the concatenation of these two paths is a combinatorial closed path represent-

ing words W and Wp translates to W = TI~l Ziriz;l with equality in the group 

(F(A) * (*kEKStab(Pk))). 

We therefore have shown that for the word W of length IWI ::; n we have 

an expression W = TI:l ZiRiZ;l with at most M = Arearel(DR ) terms. But 
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Arearel(DR ) :S KIPlpl :S KIWI :S Kn. So the function f(n) = Kn is a rela­

tive linear isoperimetric fun ct ion of 71'1 (Cap(X)) with respect to the peripheral 

subgroups for the relative presentation (F(A) * (*kEKStab(Pk))) 1 R. 

3.8(a) A dise diagram in 

R(X) with 2 super 2-cells 

3.8(b) The dise diagram obtained by removal of 

super 2-cells 

o 

Proposition 3.7.3. [Os] Let G be a finitely generated group, generated by the 

set Y and let {Hl) "') Hn} be a collection of subgroups of G. Then the following 

are equivalent: 

(1) G has finite relative presentation with respect to { Hl) "') H n} and its cor­

responding relative isoperimetric function is linear. 

(2) G is relatively hyperbolic with respect to {Hl) "') Hn}. 

Corollary 3.7.4. The group 71'1 (Cap(X)) is relatively hyperbolic with respect to 

the peripheral subgroups. 

PROOF. In Theorem 3.7.2 we showed that 71'1(Cap(X)) has a relative presen­

tation with respect to the peripheral subgroups and its corresponding relative 

isoperimetric function is linear. Since 71'1 (Cap(X)) is finitely presented then by 

Proposition 3.7.3 it is relatively hyperbolic with respect to the peripheral sub-

groups. o 
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Main Theorem 3.7.5. The group 7fl(X) is relatively hyperbolic with respect to 

the peripheral subgroups. 

PROOF. It is clear by the mapping cylinder cell structure of Cap(X) that it can 

be deformation retracted to X. Therefore 7fl(X) rv 7fl(Cap(X)), so 7fl(X) is 

relatively hyperbolic with respect to the peripheral subgroups. 0 



Chapter 4 

CONCLUSION 

4.1. POSSIBLE EXTENSIONS OF RESULTS 

There exist several combination theorems for word-hyperbolic groups, most 

notably that of Bestvina and Feighn in [BF]. More recently, Dahmani generalized 

their work to relatively hyperbolic groups. In this section we will state one of 

Dahmani's combination theorems for relatively hyperbolic groups and explain 

how it relates to our results. We will then state sorne conjectures which we hope 

could be proven using generalizations of the combinatorial arguments presented 

throughout this thesis. 

Theorem 4.1.1. [Dah] Let r be the fundamental group of an acylindrical finite 

graph of relatively hyperbolic groups, whose edge groups are fully quasi-convex 

subgroups of the adjacent vertex groups. Let G be the family of the images of 

the maximal parabolic subgroups of the vertex groups, and their conjugates in r. 
Then, (r, G) is a relatively hyperbolic group. 

Note that we have quoted Dahmani's theorem directly, here a group is hyper­

bolic relative to its parabolic subgroups, we have used the term peripheral instead 

of parabolic throughout this thesis. The term acylindrical means that there is a 

number k such that the stabilizer of any segment of length k in the Basse-Serre 

tree is finite. 

Let us examine Theorem 4.1.1 in our context, namely where vertex groups 

are free groups and edge groups are cyclic. The acylindrical condition implies 

that each of our peripheral subgroups are cyclic. Thus r is hyperbolic relative 
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to a set of cyclic subroups and is thus word-hyperbolic. In our context, though 

vertex groups and edge groups are quite limited, by not imposing the acylindrical 

condition we get a much richer interaction between edge groups. This leads 

to the definite failure of word-hyperbolicity and the need to include non-cyclic 

peripheral subgroups for relative hyperbolicity. In conclusion, Oahmani's very 

strong hypotheses totally precludes any interesting relatively hyperbolic behavior. 

We now discuss two generalizations of our results. For sim pli city we restrict 

ourselves by preserving the hypothesis that aIl edge groups are cyclic. We then 

first let vertex groups be word-hyperbolic and then consider a second case when 

vertex groups are relatively hyperbolic. 

Let X be a graph of word-hyperbolic groups with cyclic edge groups. We let 

Vx den ote the collection of conjugacy classes maximal cyclic subgroups of vertex 

groups of X. A representative of an element of Vx is called relevant if sorne edge 

group of X is conjugated into it. 

We build an induced graph of groups X' with the following properties: 

(1) The vertex groups of X' are the relevant representatives of elements of Vx 

(2) The edge groups of X' are the edge groups of X 

Each connected component Xi of X' is a cylindrical graph of groups. The 

natural map Xi ~ X' is an induced ?rI-injection. The fundamental group of each 

Xi is a peripheral subgroup of X'. 

Conjecture 4.1.2. The fundamental group of the graph of groups X with word­

hyperbolic vertex groups and cyclic edge groups is hyperbolic relative to the pe­

ripheral subgroups of X'. 

We now turn to the case where X is a graph of relatively hyperbolic groups 

with cyclic edge groups. Each vertex group of X is hyperbolic relative to a set 

of peripheral subgroups. We let Vx denote the set of peripheral subgroups of 

aH vertex groups of X together with the set of aH conjugacy classes of maximal 

cyclic subgroups of vertex groups of X that do not conjugate into a peripheral 

subgroup. A reprsentative of an element of Vx is called relevant if sorne edge 



62 

group of X is conjugated into it. We note that conjugates intersect uniquely 

because peripheral subgroups are malnormal [Gro]. 

We build an induced graph of groups X' with the following properties: 

(1) The vertex groups of X' are the relevant representatives of elements of Vx 

(2) The edge groups of X' are the edge groups of X 

Each connected component Xi of X' is called a cylindrical graph of groups. 

The natural maps Xi -* X' are ?rI-injections and the fundamental group of each 

Xi is a peripheral subgroup. An example of a graph of relatively hyperbolic groups 

with cylic edge groups and its induced graph of groups is illustrated in Figure 

4.1. 

4.1(c) Graph of relatively hyper­

bolic groups with cyclic edge groups 

" r:::D~ O~ 

4.1(d) Induced graph of groups 

Conjecture 4.1.3. The fundamental group of the graph of groups X with rela­

tively hyperbolic vertex groups and cyclic edge groups is hyperbolic relative to the 

peripheral subgroups of X'. 
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