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Abstract 

Most traditional database systems offer secondary indexing to increase 

the performance of data reads during query execution. With the advent of 

newer, NoSQL distributed datastores, some don’t yet have a secondary 

indexing feature built in. HBase is one such distributed database system. 

It partitions tables in so-called table regions across many nodes but does 

not offer secondary indexing. Since some types of queries may benefit 

from secondary indexing in order to improve their performance, we 

endeavoured to implement such secondary indexing for HBase. In this 

thesis, we present and compare two coprocessor based secondary 

indexing implementations. 

The first implementation, Table Based Secondary Indexing, leverages 

HBase tables to store the secondary indices. Query processing in our first 

implementation is split between the client and the servers. 

Our second implementation, In Memory Secondary Indexing, relies on 

indices that are partitioned and are co-located in the main memory of the 

table regions they index. Query processing in our second implementation 

is executed solely at the server level. 

Our experimental results show that both our implementations offer a 

substantial gain in read performance over the default HBase method of 
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executing queries, which scans all table regions when executing read 

queries. 
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Résumé 

La majorité des systèmes de bases de données traditionnels ont un 

mécanisme d’indexation secondaire qui offre une performance accrue lors 

de requêtes en lecture. Du au développement récent des systèmes de 

base de données distribués, certains n’ont pas encore de mécanisme 

d’indexation secondaire. HBase est un de ces systèmes qui n’offre pas 

d’index secondaires. Dû au fait que la performance de certains types de 

requêtes peuvent bénéficier grandement des index secondaires, nous 

nous sommes engagés à créer ce mécanisme pour HBase. Dans cette 

thèse, nous faisons la présentation et la comparaison de deux solutions 

que nous avons créées qui basées sur l’utilisation des coprocesseurs de 

HBase. 

La première solution repose sur l’utilisation des tables offertes par HBase 

pour emmagasiner les index secondaires. Dans notre première solution, 

l’exécution de requêtes utilisant un index secondaire est partagée entre le 

client et le serveur. 

La seconde solution se base sur le fait que les index secondaire sont 

partitionnés pour correspondre aux régions de tables et sont co-localisées 

avec celles-ci. De plus, les index secondaires résident dans la mémoire 

active des serveurs. Dans notre deuxième solution, l’exécution de 
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requêtes utilisant un index secondaire est faite uniquement par les 

serveurs. 

Nos résultats expérimentaux montrent que nos deux solutions offrent un 

gain de performance substantiel lors d’exécutions de requêtes en lecture 

comparé à la méthode native à HBase. 
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Chapter 1 

Introduction 

 

More and more data is being collected, stored and used every day by companies 

on their customers, by bioinformatics applications [1], by sensor networks [2], by 

analytical engines [3], social network sites [4], etc.; this is known as Big Data [5]. 

Many of the traditional single machine or small cluster relational database 

management systems are not well suited to store and exploit that Big Data 

efficiently because they can’t scale well enough to handle the terabytes and even 

petabytes [6] [7] of data. Distributed database are designed to scale horizontally: 

the answer to more data to store and process is simply to add more nodes to the 

distributed database. For that reason, distributed database systems are gaining 

in popularity and are being developed to take advantage of the parallel 

processing and expanded storage multiple computers offer. One well known 

example taken from the industry is Google’s. They developed their own 
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distributed database system to accommodate their massive amount data used 

for web indexing, Google Earth and other services.  

 

Some distributed database systems are proprietary, such as Google’s BigTable 

[8] and Amazon’s DynamoDB [9]. Some others are commercially available, for 

example:  Objectivity/DB1 and ObjectStore2.  Finally some of the best-known 

open source examples are HBase [10] and Cassandra [11]. 

 

Most open source distributed databases that offer a tabular view of the stored 

data offer secondary indexing in order to speed up predicate queries that look for 

a specific subset of rows depending on the value of a secondary attribute, that is, 

for queries that do not look for rows depending on their row key. HBase does not 

support secondary indexing, and we think that such a feature would be beneficial 

to some applications and as such, we decided to implement that feature. We 

decided to implement secondary indexing in HBase by using HBase’s 

coprocessor framework (described in Section 2.1.5) in order to decouple our 

implementation as much as possible from the core HBase development which is 

in constant evolution. This allows our implemented libraries to be treated as add-

ons that can be simply plugged into an existing HBase environment and start 

                                            

1 http://www.objectivity.com/products/objectivitydb/ 

2 http://www.objectstore.com/ 
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being used without having to re-install an entire new HBase version; this also 

allows for upgrades of our implementations to be much easier to conduct. 

 

Our first implementation, Table Based Secondary Indexing, leverages standard 

HBase tables and their associated properties to store the secondary indices; as 

such, index tables may be split and distributed according to HBase’s internal 

splitting and balancing algorithms, and are thus not necessarily co-located with 

the data they index. Query processing in our first implementation is split between 

the client and the server. First, from a user query Q, our extended HBase client 

executes a first query to the server(s) hosting the index table to retrieve the 

location (rows keys) of the rows matching the user query Q’s predicate. The 

client then makes a second query to the real table requesting exactly the rows 

that have the row keys determined in the first query. These rows build the result 

set of query Q.  

Our second implementation, In Memory Secondary Indexing, relies on indices 

that are partitioned and are co-located in the main memory of the table regions 

they index. Query processing in our second implementation is executed solely at 

the server level: A user query Q will be broadcast to all the servers hosting a 

given table and each server will process the query, looking up their local indices, 
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and then return the portion of the entire result set corresponding to the data they 

host. 

 

 

1.1 Contribution 

We offer the following contributions with this thesis: 

 We design and implement two secondary indexing libraries for the HBase 

distributed database, built with the available HBase coprocessor framework: 

Table Based Secondary Indexing and In Memory Secondary Indexing. 

 

 We provide an extensive evaluation of our strategies and comparison 

between them.  

 

 

1.2 Thesis Outline 

Our thesis is organized into chapters as follows: 

 Chapter 2 covers the background information required for the 

understanding of our work. In particular, it describes the HBase distributed 

database and its architecture. 

 Chapter 3 describes our first implementation for secondary indices within 

HBase: Table Based Secondary Indexing. 



 

5 

 

 Chapter 4 describes our second implementation for secondary indices 

within HBase: In Memory Secondary Indexing. 

 In Chapter 5, the performance evaluation of both secondary indexing 

implementations is discussed. 

 Chapter 6 covers the conclusions that are drawn from and proposes 

possible enhancements to the implementations and other avenues to be 

explored for secondary indexing within HBase. 
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Chapter 2 

Background and Related Work 

 

 

2.1 Apache HBase 

2.1.1 Overview 

HBase [10] [12] is a distributed database which has been designed based on 

Google's BigTable [8], a distributed storage system for structured data. It has the 

same goal: to provide storage and retrieval functionality for Big Data. It uses 

Apache Hadoop3 and the Hadoop Distributed File System (HDFS) to store its 

data files; HDFS provides high availability for the data files via built-in replication. 

It is an Apache Software Foundation open-source project programmed entirely 

using the Java programming language. 

                                            

3 http://hadoop.apache.org/ 
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HBase is part of the NoSQL database family. NoSQL databases do not follow the 

relational model and as such do not support the SQL language. Other examples 

of NoSQL distributed databases are Apache Cassandra [11], MongoDB4 and 

Amazon’s DynamoDB [9]. 

 

The following sections provide a quick overview of traditional relational database 

management systems (RDBMS) and secondary indexing followed by HBase’s 

data format, HBase’s architecture overview and a detailed look at HBase’s 

coprocessors. 

 

2.1.2 Relational Database Management Systems and Secondary Indexing 

2.1.2.1 Data Model 

RDBMS are based on the relational model proposed by E.F. Codd [13]. Some 

examples of RDBMS are IBM DB2, Oracle RDBMS, MySQL, Microsoft SQL 

Server, Terradata, etc.  

The basis of the RDMBS’s data model is the relation which is comprised of a 

relation schema and a relation instance. The relation schema is the definition of a 

table (e.g. column names and domains for the data stored in the columns). The 

data stored in a table is called the relation instance. Figure 2.1 shows the tabular 

                                            

4 http://www.mongodb.org/ 
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view of a simple relation (Employee) used to store information (employee ID, 

social security number and name) about the employees of a company. 

 

Figure 2.1: Example of a relation 

 

In addition to the relation, RDBMS offer Constraints that are essentially 

conditions that data must satisfy in order to be stored in a table. There are 

different types of constraints such as integrity constraints and key constraints. 

Integrity constraints are defined to ensure that data stored in a table is coherent. 

In the example shown in Figure 2.1, we would want the social security numbers 

to be unique (e.g. no two employees can have the same one). In such a case, a 

constraint of type UNIQUE would be applied to the social security number 

column. Key constraints are defined as the minimal subset of fields of a table that 

identify a row uniquely. In Figure 2.1, the primary key would be the ID column 

since it is used to uniquely identify within the Employee relation. Keys are used to 

link different tables together. For example, in Figure 2.2 below, we extend the 

database containing the employees of a company from Figure 2.1 to add 

information about which office the employees work in. To do so, we add an Office 

Employee

ID : integer SocialSecurityNumber : integer FullName : string

112473 555123789 John Smith

210791 555145217 John Doe

... ... ...
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table containing the list of offices for the company comprised of an office 

identifier, an office name and the office address; the primary key of the office 

table is the ID column. We then link the employees to their offices, by entering 

the office table’s key in a new column (OfficeID) within the Employee table. When 

a table’s primary key is used in a table other than the one it is created to define 

tuple uniqueness, it is referred to as a foreign key. A foreign key, unlike a primary 

key does not need to be unique. In Figure 2.2, OfficeID is defined as a foreign 

key referencing the primary key (ID) of the Office table. In the example of Figure 

2.2, both John and Jane Doe work in the Uptown office and John Smith works in 

the Downtown office. 

 

Figure 2.2: Linking relations with keys 

 

Data stored in an RDBMS is manipulated and accessed by using a Data 

Manipulation Language (DML) and tables are created and modified by using the 

Employee

ID : integer SocialSecurityNumber : integer FullName : string

Office

ID : integer Name : string Address : string

112473 555123789 John Smith

210791 555145217 John Doe

... ... ...

3 Downtown 111, East Street

1 Uptown 2, Central Plaza

... ... ...

OfficeID : integer

1

3

...

135479 555999123 Jane Doe 1
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Data Definition Language (DDL). Both DDL and DML are subsets of the 

Structured Query Language (SQL) standard. 

 

2.1.2.1 Indexing and Secondary Indexing 

When tables become very large, looking up specific records (rows) becomes a 

costly endeavor. The naïve way of performing a search for a given, unique record 

(search on primary key) is to go through each record in the table until the record 

we’re looking for is found. In the worst case, where the record is the last of the 

table, the entire table has to be searched. An even worse case scenario is to 

search for all the records of a table that have a specific, non-unique value in one 

of their columns or even ask for a range of attribute values in such a secondary 

column (predicate query); this kind of search must always examine the entire 

table in order to return the matching records.  

To provide increased performance when looking up records in a table, RDBMS 

implement indexing services that pinpoint where the queried data resides within 

the entire table data. Lookups that use indices can have a performance increase 

orders of magnitude faster than their non-indexed counterparts. Primary keys of 

tables are always indexed; their index and any index on a set of columns that 

includes the primary key are called a primary index. Any index, other than a 

primary index, is called secondary index. For example, from Figure 2.2, if 
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employees are often looked up by their name instead of their employee id, then 

creating a secondary index on the column “FullName” would increase the search 

performance. Indices can be stored in different kinds of data structures 

depending on the type of queries they will be used for. For example, B-Trees 

work best for range queries (e.g., “Retrieve all employees aged between 25 and 

35”) but also work fairly well for equality queries (e.g., “Retrieve all employees 

working in the Downtown office”). Hash based indexes, on the other hand, are 

designed to work only for equality and inequality queries, but provide very fast 

lookups.  

 

2.1.3 HBase Table Format 

Data in HBase is stored into and accessed from tables; rows are defined by row 

key (primary key) and contain data in multiple columns. HBase has the 

particularity that the columns of each table are grouped by column family and 

within each column family, a set of qualifiers further specifies the column name 

where given data pertains; a column is the combination of column family and 

qualifier separated by a colon (:). The purpose behind this column scheme is to 

store the data pertaining to separate column families into separate files on the file 

system. The reasoning behind this column scheme is that usually, when data is 

retrieved for a row, the user only requires a subset of all the columns as opposed 
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to all the columns and as such, the data retrieval operation is optimized by 

organizing the storage of data in this way. 

Figure 2.3 shows an example of how data is organized in an HBase table. For 

example, to retrieve the counter update data of row1, the column 

counters:updates must be accessed. 

 

Figure 2.3: HBase table example rendered as a spreadsheet [12] 

 

Each of the tables in HBase (with the exception of the -ROOT- system table) may 

be partitioned into multiple regions; the partitioning criterion is the range of the 

row key and partitioning is triggered by region size. Each of a table’s regions is 

served by a separate Region Server. 

 

HBase allows queries based on row key but also predicate queries. A 

particularity of HBase is that only the column containing the row key is indexed. 

As such, queries based on row key values execute very quickly whereas queries 

based on the values contained in any other column suffer a performance penalty 

because they require a complete table scan to complete. HBase allows queries 
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based on values contained in columns other than the row key column by using a 

filtered Scan operation. Each Region Server will sequentially scan its entire table 

region and check each row against the filter on the values of the secondary 

column(s) so as to return only the matching rows to the client. 

 

2.1.4 HBase Architecture Overview 

HBase has five main components: Region Servers, a Master Server, an Apache 

Zookeeper [14] cluster, a client library and Hadoop. The architecture is depicted 

in Figure 2.4. 

 

  

 

Figure 2.4: HBase architecture overview [12] 

 



 

14 

 

Region Servers (HRegionServer in Figure 2.4) handle all the read and write 

operations to the table regions (HRegion in Figure 2.4) they are assigned. The 

most frequently accessed data of each region is stored in main memory 

(MemStore in Figure 2.4). Data is persisted into HDFS data nodes (DataNode in 

Figure 2.4). In order to increase performance, updates are written to the 

MemStore and Write-Ahead-Log (HLog in Figure 2.4) but only the Write-Ahead-

Log is flushed to HDFS during execution. HBase favors consistency over 

availability and, as such, a given region is associated with only one Region 

Server at a time. The Write-Ahead-Log is only used in case of recovery after a 

region server crashes; it contains all updates to the regions, located within their 

volatile main memory, which have not yet been flushed to HDFS. Each Region 

Server instance runs on a separate node; although not required, Region Servers 

and Hadoop DataNodes will be collocated on the same nodes in order to provide 

data locality for the region’s data files which increases performance. 

 

The Master Server (HMaster in Figure 2.4)’s task is to assign regions to Region 

Servers and to perform load balancing by shuffling regions around Region 

Servers in order to spread the load as evenly as possible. The Master Server will 

also take charge of the metadata associated with table creation, deletion and 

table alteration (creation or deletion of column families within a given table). 
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Zookeeper is another Apache project based on the paper “ZooKeeper: Wait-free 

coordination for Internet-scale systems” [14]. It provides a coordination service in 

a distributed environment. It is typically configured as a cluster and it maintains a 

list of the locations of the active Region Servers and the Master Server by way of 

a heartbeat mechanism. This ensures that there is only one Master Server 

running; a standby Master Server process exists but it will not take over as long 

as there is already an active one registered within Zookeeper. Zookeeper also 

allows the Master Server to detect the failure of a Region Server and assign the 

regions of the failed Region Server to active Region Servers; in such a case, the 

failed regions would not be available until their newly assigned Region Servers 

had opened them. 

 

Finally, the HBase client library offers an API to manage tables and read / write 

to tables. 

 

2.1.5 HBase Coprocessors 

HBase’s Coprocessor framework allows for custom code to be executed on the 

server side. There are two main categories of coprocessors: observers and 

endpoints. 
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2.1.5.1 Observers 

The observers are analogous to triggers within traditional relational databases 

systems. Custom code will execute when certain operations are done by the 

server, be it in response to a client call (e.g. deletion of a row) or due to the 

normal server lifecycle (e.g. region compaction). 

There are three types of observers: The WAL Observer, the Master Observer 

and the Region Observer.  

The WAL Observer provides hooks for custom code during processing of the 

Write-Ahead-Log.  

The Master Observer allows for the execution of custom code during operations 

managed by the Master Server such as regions moves, DDL operations on 

tables and load balancing. 

Finally, the Region Observer provides hooks into Region Server operations such 

as region splitting, DML operations on region data, flushing of data to Hadoop, 

etc. 

The coprocessors within the observer category have the particularity that they 

are chained together. For example, a first coprocessor could be in charge of 

security and either allow or deny a client’s request on a region while a second 

coprocessor could do something else once the security check has succeeded, for 
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example, maintain an index on a secondary column when data is inserted into 

the region. 

 

 

 

 

Figure 2.5 below illustrates the chaining of Region Observer coprocessors 

 

Figure 2.5: Coprocessor chaining – Region Observers [12] 

 

2.1.5.2 Endpoints 
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The Endpoint coprocessors are analogous to stored procedures within traditional 

relational databases systems. Custom code will execute when directly invoked by 

the client via a remote procedure call. 

 

 

2.1.6 HBase Version 

We built our two secondary indexing implementations against the latest alpha 

version of HBase (0.95.0). The motivation behind using an alpha version is that 

our in memory implementation uses a special type of coprocessor, the endpoint 

coprocessor, which requires the client to invoke methods via an RPC protocol. 

This RPC protocol changes radically and breaks compatibility from the latest 

stable version (0.94) and the future versions of HBase. Versions 0.94 and earlier 

use a proprietary RPC protocol and the future versions use Google’s Protocol 

Buffers to manage the RPCs. We wanted our implementations to work with the 

newest and soon to be released versions of HBase. This decision did cause a 

few problems along the way; one of them having to do with lower performance 

after a region splits. 
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2.2 Related Work  

When researching how we could implement a secondary indexing system for 

HBase, we found that different distributed database systems, Apache Cassandra 

and MongoDB, used different methods for their secondary indices which share 

some similarities with our implementations.  

 

2.2.1 Apache Cassandra 

Apache Cassandra [11] is a distributed database initially developed by 

Facebook, later by the Apache Software Foundation. It has a similar data model 

to HBase’s: it is a key-value store represented as a table and rows have columns 

and columns reside in column families. The difference resides in the fact that, in 

Cassandra, a column is part of a super column family which in turn is part of a 

column family, whereas in HBase, there are no super column families. 

 

Cassandra also uses a table partitioning scheme in order to provide scalability. 

Where HBase uses range partitioning based on the row keys, Cassandra 

partitions its tables using a type of consistent hashing [15] derived from the 

Chord [16] distributed hash table on row keys. 
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Another main difference between HBase and Cassandra is that from the 

perspective of Brewer’s (CAP) Theorem [17] [18], HBase’s architecture satisfies 

the CP (Constistency and Partition Tolerance) properties and Cassandra 

satisfies the AP (Availability and Partition Tolerance) properties. 

 

Cassandra’s secondary indexing implementation stores secondary indices in 

hidden tables. This method has similarities with both our implementations. It uses 

tables just as our Table Based Secondary Indexing implementations described in 

Chapter 3. These index tables are partitioned and co-located with the data they 

index. We do this partitioning and co-locating of indices in our second 

implementation, In Memory Secondary Indexing, described in Chapter 4. 

 

2.2.1 MongoDB 

MongoDB [19] is a fairly different type of distributed database. Unlike HBase and 

Cassandra, MongoDB’s data model is document oriented. Instead of storing key 

values to have a tabular representation, it offers an interface to read, write and 

run queries on JSON structures. These documents are grouped into collections. 

Documents in a collection are not required to have the same schema. 
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MongoDB offers a secondary indexing feature in the sense that any field of a 

JSON [20] document can be indexed within a collection. There is always a 

primary index on the mandatory and unique _id field of each document. 

MongoDB stores its secondary indices in B-Tree data structures. The MongoDB 

indices are partitioned so that each shard (partition) manages its index. 

MongoDB’s documentation strongly advises to have the secondary indices reside 

in RAM when using MongoDB in order to achieve optimal performance. This 

partitioning and in memory approach is similar to our second implementation, 

described in Chapter 4, for which each HBase table region manages its own 

RAM resident secondary indices. 
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Chapter 3 

Table Based Secondary Indexing 

 

 

3.1 Introduction 

This chapter describes the first approach we used to provide secondary indexing 

in HBase, which was to use HBase tables to store an inverted index [21]. 

 

Our implementation uses two types of specialized HBase tables in addition to the 

standard HBase user table. The first one is the Index Table which stores the 

inverted index for a specific column of a specific user table. The second type of 

table is the Master Index Table which stores information about which table has 

indices on which of its columns. 
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To manage the two types of special tables and their contents, we implemented 

three types of region coprocessors: an HTable Index Coprocessor which 

processes events on regular user tables, an Index Table Coprocessor which 

updates the index stored in Index Tables and the Master Index Table 

Coprocessor which manages the Master Index Table. 

 

Figure 3.1 below provides an overview of what our solution looks like in the form 

of an example. A given table (T1), which contains user data, has one of its 

columns (column A) indexed. The inverted index for column A of table T1 is held 

in table I1. The information of which table holds the inverted index for a given 

column is stored in the Master Index Table. In our specific example, the 

information about the location of the index for column A of table T1 is held as 

tuple (“T1”, (“IDXCOL:A”, “I1”)) in region M2 of Table M. This metadata is used 

by each HTable Index Coprocessor (HIC), that runs on table regions containing 

user data, to determine which column is indexed for the table region it is attached 

to as well as which table contains the index for that column in order to maintain 

the indices.  Each of the tables, T1, M and I1 can be split into a number of 

regions and each of these regions has its own instance of the corresponding 

coprocessor attached to it.  
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Figure 3.1: Table Based Secondary Indexing Overview 

 

The prepackaged HBase client has been extended in order to provide the 

methods required for our indexing solution. The added methods allow creating 

and deleting indices on given columns for given tables as well running optimized 

queries based on these indices. 

 

3.2 Specialized Tables 

This section describes in more detail the contents and structure of the two types 

of specialized tables, we created for our table based secondary indexing solution: 

the Master Index Table and the Index Table. 
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HIC : HTable Index Coprocessor
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3.2.1 Metadata Storage 

The metadata containing the information required for our solution about which 

column(s) of which table(s) have indices reside in the Master Index Table (MIT), 

named __sys__indextable.  

 

The structure of The Master Index Table is as follows: the row ids are the names 

of the tables for which secondary indices exist and there is one column family, 

idxcol, which contains a column for each of the indexed columns of the user 

tables; the name of a column is the concatenation of the user table’s column 

family containing the column to index and the column name.  

 

A cell in the Master Index Table, for a specific row/column combination, contains 

the name of the Index Table containing the inverted index for the column. 

 

Figure 3.2 below shows an example of the Master Index Table for a system that 

has a table named usertable that has one of its columns (family1:col2) indexed 

and another table, T2 with column A:X also indexed. 
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Figure 3.2: Example of a Master Index Table 

 

 

 

3.2.2 Index Storage 

The Index Tables store the inverted index for a specific column of a specific 

table. The name of an Index Table results from the concatenation of the name of 

the table, the column family name and the column name where the values to be 

indexed reside and the __idx suffix. 

 

The structure of the Index Tables is simple, it has only one column family idx and 

one column within that column family pr: The contents of an Indexed Table T1 is 

as follows: given an index on column C of table T2, the row ids in T1 are the 

distinct values found in C and the data stored in idx:pr within T1 is a serialized 

Java TreeSet containing the row ids from T2 where the distinct values are 

located.  

__sys__indextable

Row id

usertable

T2

idxcol

family1col2

usertablefamily1col2__idx

AX

T2AX__idx
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We chose the TreeSet object, which is based on the Red-Black tree data 

structure, to store the row ids instead of a plain list because of performance 

reasons: 

This implementation provides guaranteed log(n) time cost for the basic 

operations (add, remove and contains). [22] 

 

Figure 3.3 below shows an example of an Index Table containing the inverted 

index of values stored in column family:col2 of table usertable. In that example, 

rows row1 and row2 of table usertable both contain the value value1 in column 

family:col2. 

 

Figure 3.3: Example of an Index Table 

 

 

3.3 Specialized Region Coprocessors 

Our coprocessor driven table based secondary indexing solution relies on three 

types of region coprocessors which provide us with some hooks where we can 

run custom code when modifications occur to the region’s data. These are the 

usertablefamily1col2__idx

Row id

value1

idx

pr

Serialized TreeSet(row1,row2)
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HTableIndexCoprocessor, the IndexTableCoprocessor and the 

MasterIndexTableCoprocessor. This section will describe in details how 

these coprocessors function and how they react to changes to the regions they 

observe. 

 

Our solution started with a naïve implementation that did not take care of being 

optimal in terms of performance. This first implementation was then optimized as 

much as possible in order to see if it would make coprocessor driven table based 

secondary indexing a viable, production grade, solution. 

 

3.3.1 Intercepting Client Operations 

The HTableIndexCoprocessor extends the class BaseRegionObserver. 

As such, instances of HTableIndexCoprocessor run on regions. This 

particular type of coprocessor will be active only on standard user tables. Its goal 

is to intercept client calls that update the contents of the region it is attached to 

and send updates to the corresponding index tables if any of the intercepted 

client calls apply to an indexed column.  

The client calls that we intercepted in our implementation were the Put and 

Delete operations; this is done by overriding the prePut() and preDelete()  
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of the BaseRegionObserver which are executed before the actual update in 

the regular table’s data takes place. 

 

The first thing that needs to occur whether the intercepted operation is a Put or a 

Delete is to check if any of the indexed columns are affected by the operations. 

Our first, naïve implementation did a lookup in the Master Index Table every time 

a Put or Delete operation was intercepted in order to retrieve the list of indexed 

columns. This incurred a non-negligible delay to the entire operation and 

therefore was one of the first areas to be optimized in our final implementation. 

The final implementation uses a local list of indexed columns which is loaded up 

when the coprocessor starts and gets updated only when a modification occurs 

in the contents of the Master Index Table. The update mechanism is described in 

the MasterIndexTableCoprocessor section below. 

 

3.3.1.1 Put Operation Interception 

In the case where a Put operation has been intercepted and the 

HTableIndexCoprocessor has asserted that the operation will have an effect 

on one or more of the indexed columns within the table, the 

HTableIndexCoprocessor executes a Get operation locally to retrieve the 

current values contained for the row to be updated. From the inspection of the 
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current column values for the row to be updated, one of two sequences of 

actions may ensue.  

The first and simplest of sequences occurs when the current row does not 

contain any value for an indexed column to be updated. The second sequence 

occurs when the current row already contains a value for an indexed column and 

the Put operation will change that value.  

 

In the simpler case where no value already exists in the indexed column, the 

HTableIndexCoprocessor will send a tweaked Put operation to the 

appropriate Index Table to add the current row id into the index. The tweaked Put 

operation overrides the normal one by setting a special value (type_-00001-

_put) in the field normally reserved for the column name. The rest of the 

tweaked Put operation’s fields retain their original signification: the row is the new 

value for the indexed column and column family remains idx. It is safe to hijack 

the column name field because the column name plays no part into pinpointing 

which region the Put operation is destined to, and there is only one known 

column in an Index Table. The reason why we use this method is that we need 

the actual index update to be executed at the region server of the index and not 

at the region server of the user table, thereby minimizing traffic between the 

regions and spreading the computing time. Once the index is updated, the 
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prePut() method completes and control is given back to the region server so 

the Put initiated by the client can complete.  

 

Figure 3.4 is an example sequence diagram where col1 is indexed, col2 is not 

indexed and there is no value in col1 for row row1. In this example, the user table 

is contained within one region (Region A) but the index table for col1 is split into 

two regions; Region B contains the inverted index of col1 for value z and Region 

C the one for value x. The client puts a row row1 with col1 =x and col2=y. In this 

case, only one extra remote operation is incurred by using our table based 

secondary indexing solution. 

 

Figure 3.4: Sequence for a Put that updates an empty indexed cell 

 

In the case where a value already exists in the indexed column, an extra 

operation will need to be executed in order to remove the existing index 

Region B – Index Table:  
col1=z

HBase Client HRegion HTableCoprocessor HRegion HRegion
put(row1, col1=x, col2=y)

prePut(row1,
 col1=x, col2=y)

Region A – Usertable: col1 
empty

Region C – Index Table:  
col1=x

put(z, row1, ‘type_-00001-_put’)

put(return)

result:= 
get(row1)

prePut(return)

put(row1, 
col1=x, col2=y)

put(return)
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reference to the updated row for the existing value prior to adding a reference to 

the updated row for the new column value. In this scenario, the 

HTableIndexCoprocessor will first send a tweaked Put operation to the 

appropriate Index Table to remove the row id from the index of the current value. 

This tweaked Put operation also overrides the normal one by setting a special 

value (type_-00001-_del) in the field normally reserved for the column name 

and sets the current value of the indexed column in the row field, thereby sending 

a request to the region which contains the inverted index of the current value to 

remove the reference to the row for that value.  

Once this first operation has been completed, the indexing system is effectively 

in the state where the simpler sequence described previously can be executed, 

therefore, the tweaked Put operation of type type_-00001-_put can be sent. 

 

Figure 3.5 is an example sequence diagram where col1 is indexed, col2 is not 

indexed and col1 has an initial value of z for row row1. In this example, the user 

table is contained within one region (Region A) but the index table for col1 is split 

into two regions; Region B contains the inverted index of col1 for value z and 

Region C the one for value x. The client puts a row row1 with col1 =x and col2=y. 

In this case, two extra remote operations are incurred by using our table based 

secondary indexing solution. 
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Figure 3.5: Sequence for a Put that updates a non-empty indexed cell 

 

3.3.1.2 Delete Operation Interception 

In the case where a Delete operation has been intercepted and the 

HTableIndexCoprocessor has asserted that the operation will have an effect 

on one or more of the indexed columns within the table, the 

HTableIndexCoprocessor executes a Get operation locally to retrieve the 

current values contained for the row to be updated. The 

HTableIndexCoprocessor will then send a tweaked Put operation to the 

appropriate Index Table to remove the row id from the index of the current value 

for each indexed value that will be deleted. This tweaked Put operation also 

overrides the normal one by setting a special value (type_-00001-_del) in the 

Region B – Index Table:  
col1=z

HBase Client HRegion HTableCoprocessor HRegion HRegion
put(row1, col1=x, col2=y)

prePut(row1,
 col1=x, col2=y)

Region A – Usertable: 
col1=z

Region C – Index Table:  
col1=x

put(z, row1, ‘type_-00002-_del’)

put(x, row1, ‘type_-00001-_put’)

put(return)

put(return)

result:= 
get(row1)

prePut(return)

put(row1, 
col1=x, col2=y)

put(return)
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field normally reserved for the column name and sets the current value of the 

indexed column in the row field, thereby sending a request to the region which 

contains the inverted index of the current value to remove the reference to the 

row for that value. 

Figure 3.6 is an example sequence diagram where both col1 and col2 are 

indexed; col1 has an initial value of z for row row1 and col2 has an initial value of 

x. In this example, the user table is contained within one region (Region A), the 

index table for col1 is in Region B and the index table of col2 is in Region C. The 

client deletes columns col1 and col2 from row row1. In this case, two extra 

remote operations are incurred by using our table based secondary indexing 

solution. 

 

Figure 3.6: Sequence for a Delete that updates non-empty indexed cells 

 

Region B – Index Table:  
col1=z

HBase Client HRegion HTableCoprocessor HRegion HRegion
delete(row1, col1, col2)

preDelete(row1,
 col1, col2)

Region A – Usertable: 
col1=z

Region C – Index Table:  
col2=x

put(z, row1, ‘type_-00002-_del’)

put(x, row1, ‘type_-00002-_del’)

put(return)

put(return)

result:= 
get(row1)

preDelete(return)

delete(row1, 
col1, col2)

delete(return)
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3.3.2 Updating the Indices 

The IndexTableCoprocessor extends the class BaseRegionObserver. 

As such, instances of IndexTableCoprocessor run on regions. This 

particular type of coprocessor will be active only on Index Tables. Its goal is to 

manage the update of the index contained within the region. 

This goal is achieved by intercepting two special types of Put operations that are 

sent by HTableIndexCoprocessor when values of indexed columns are 

updated.  

Upon receiving a Put operation of type type_-00001-_del or type_-00001-

_put, the HTableIndexCoprocessor first acquires a lock on the row 

containing the index for the requested value. Then, it runs a Get operation on the 

local Region to retrieve the serialized TreeSet containing the index. Once 

retrieved and de-serialized, the index is updated accordingly, i.e. the reference is 

added or removed from the TreeSet structure depending on the type of Put 

operation being processed. Once the update is completed, the TreeSet 

containing the updated index is serialized and a local Put operation is issued to 

the local region in order to put the index back into the Index Table. Finally the 

row lock is released and the index processing is complete. 
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Figure 3.7 below is an example sequence diagram where column col1 of table 

Usertable is indexed; col1 has an initial value of z for row row1. In this example, 

the user table is contained within one region (Region A), the index table for col1 

is in Region B. The client deletes columns col1 and col2 from row row1. In this 

case, one extra remote operation is incurred by using our table based secondary 

indexing solution. 

 

Figure 3.7: Sequence for a removal of an entry in an index. 

 

3.3.3 Maintaining Indexing Metadata 

The MasterIndexTableCoprocessor extends the class 

BaseRegionObserver. As such, instances of this coprocessor run on regions. 

This particular type of coprocessor will be active only on the Master Index Table. 

Its goal is to manage the update of the index contained within the region and 

Region B – Index Table:  
col1=z

HBase Client Region A – Usertable: col1=z HTableCoprocessorHRegion

delete(row1, col1, col2)
put(z, row1, ‘type_-00002-_del’)

delete(return)

prePut(z, row1, pr,
 ‘type_-00002-_del’)

get(z)

get(return)

lock(z)

removeFromIdx(row1)

put(z, idx)

put(return)

unlock(z)

delete(row1, 
col1, col2)

put(return) prePut(return)
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notify the running HTableIndexCoprocessor instances when they need to 

refresh their cached metadata about what columns are indexed. Updates to the 

metadata are issued by our modified HBase client when an index is either 

created or deleted on a column of a given table. 

We introduced this coprocessor as part of the optimization of our first naïve 

implementation in order to minimize the lookups needed by the 

HTableIndexCoprocessor instances to decide whether a received operation 

has an impact on an indexed column or not; prior to the introduction of this 

coprocessor, a lookup was done for every intercepted operation. 

To distribute the notification from the MasterIndexTableCoprocessor to all 

the regions, which can be spawned dynamically by HBase when a region is split, 

we used the open source group communication library named JGroups5.   

We configured JGroups to provide reliable and totally ordered message multicast 

over TCP. We decided to use TCP because it is supported in a wider range of 

environments whereas IP multicast may not be. Since messages occur with a 

very low frequency, each time an index is created or deleted, the overhead for 

TCP is not a factor that would prevent us from using that type of transport. 

Upon startup, each MasterIndexTableCoprocessor and 

HTableIndexCoprocessor join a channel named 

                                            

5 JGroups - A Toolkit for Reliable Multicast Communication,  http://www.jgroups.org/ 
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MasterIndexUpdateCluster. The MasterIndexTableCoprocessor 

instances send notification messages whenever and update is done to the 

Master Index Table over that channel and  

each HTableIndexCoprocessor instances listens for the notifications over 

the channel and update their indexed column lists whenever they receive a 

notification. 

Figure 3.8 depicts the architecture of the notification sent in reaction to updates 

to the Master Index Table to each HTable Index Coprocessor in the system using 

JGroups. 

 

Figure 3.8: Notification architecture for updates to the Master Index Table. 
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3.4 Extended HBase Client Operations 

In order to make use of the secondary indexing we created a class named 

HIndexedTable which extends the HBase HTable class; this table is part of 

the HBase client. We did not override any of the HTable methods; this provides 

us with backwards compatibility. Instead, we added methods such as 

createIndex(), deleteIndex() and getBySecondaryIndex(). 

 

 

3.4.1 Creating A Column Index 

To create an index on a column for a given table T1, a user must invoke the 

createIndex() method with the column name as a parameter which in turn, 

does the operations described below.  

 

First, it creates a table to contain the new index, T2. The name given to T2 is the 

result of the concatenation of T1’s name, the column family containing T1’s 

column to be indexed, T1’s column name to be indexed and the __idx suffix. 

 

Once T2 has been successfully created, the client launches a Map/Reduce [23] 

job that will populate T2 using Hadoop’s Map/Reduce framework.  



 

40 

 

The mapper we implemented, IndexMapper, extends the TableMapper class 

which uses an HBase table as an input; in our case, it uses Table T1 as an input. 

For each row, IndexMapper‘s map() method retrieves the row id (RID) and the 

value (Vi) contained in the column that is to be indexed then outputs the tuple (Vi, 

RID). The Map/Reduce framework then processes the outputs of 

IndexMapper‘s map() method and generates the map V -> ListRID where ListRID 

is a list of RID associated with each Vi. 

The reducer we implemented, IndexReducer, extends the TableReducer 

class which uses an HBase table as an output; in our case, table T2 is the output 

table. IndexReducer receives a tuple (Vk, ListRID) for each entry in the map 

previously created by the Map/Reduce framework. For each of the tuples 

received, IndexReducer creates a new Java TreeSet object, fills it with the 

contents of the ListRID then inserts a new row into T2 where the row id is Vk and 

the value is the generated TreeSet. 

 

Finally, createIndex()’s last task is to insert an entry in the Master Index 

Table indicating that there is an index for T1’s specified column. 

 

Figure 3.9 below shows an example sequence diagram of a map/reduce request 

done during index creation. In this example, HBase nodes are co-located with 
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HDFS nodes. Table T1 which contains a column to be indexed is split into two 

regions (T1A and T1B) and Index Table I1 which has been allocated region I1B. 

The requests to create the index table and add an entry into the Master Index 

Table have been omitted from the figure to keep the diagram more compact. 

 

Figure 3.9: Map/Reduce index creation sequence diagram. 

 

3.4.2 Deleting  A Column Index 

To delete an index on a column C1 for a given table T1, a user must invoke the 

deleteIndex()method with the column name as a parameter which in turn, 

does the two following operations. 
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First, a request is issued to delete the cell at row T1 column idxcol:C1 from the 

Master Index Table. This, as a side effect, updates the indexed columns list 

within the HTable Index Coprocessors. Therefore, no more accesses will be 

made to the Index Table holding the index to be deleted. 

 

To complete the removal of an index, once the index’s metadata has been 

removed from the Master Index Table, the request to delete the actual table 

holding the index for column C1 of table T1 is issued.  

 

3.4.3 Query Using An Index 

The getBySecondaryIndex() method, invoked with the column name and the 

value to query, performs the SQL equivalent of a WHERE clause on a single 

column with a given value; the query must be done on an indexed column. This 

method was primarily implemented to test the performance of queries, by 

comparing them with Scan operations issued with a specific filter on a column.  

 

A filtered Scan operation will traverse the entire table and return the rows where 

the filter matches a given column’s content; the filtering is done on the region 

server side. 
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The getBySecondaryIndex() method will instead, first query the index table for a 

specific column to retrieve all the rows where the queried value exists, then query 

the table for all the returned rows. The multiple row query is optimized within the 

standard HBase client by executing a batch query. 

 

Figure 3.10 illustrates the sequence of actions taken when an invocation to the 

getBySecondaryIndex()  method occurs. In this example, a user application 

wants all the rows where column C1 is x. The Get operation issued of the index 

table returns the list row IDs for the rows that match the query “C1 = x” then the 

actual rows are retrieved from the two regions where they reside and returned to 

the user application. 

 

Figure 3.10: getBySecondaryIndex() sequence diagram. 
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Chapter 4 

In Memory Secondary Indexing 

 

 

4.1 Introduction 

This chapter describes the second approach we used to provide secondary 

indexing in HBase.   

 

We decided to do a second type of secondary indexing implementation that 

would not have some of the drawbacks our first implementation had.  

 

The basic idea is that indices are partitioned into region indices in such a way 

that each table region has its own index. These region indices are stored in each 

Region Server’s main memory to minimize performance impact. With this, we 
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achieve several things. First, we reduce the amount of network traffic required by 

our first implementation. This is true because no requests are needed between 

different region servers to either maintain an index or query an index as each 

region is responsible for its indices. We also removed the requirement for the 

client to first do the index lookup then query the actual table for the data using 

the information retrieved from the index lookup. We achieved this by having each 

region server process the index lookup from a client query using their co-located 

indices and return the queried data; all the client needs to do is send the query in 

parallel to all region servers and await, then combine the results.  

A second advantage is a lower write overhead. We keep the index in a 

specialized memory structure and only persist it when a region gets closed or 

split in order not to have to rebuild the indices the next time the regions are 

restarted. 

 

Our in memory implementation, like the table based implementation, uses one 

type of specialized HBase table to store the indexing system’s metadata, the 

Master Index Table.  

 

The region indices are maintained and accessed by two types of coprocessors 

running on user data regions. One of them, the HTable Index Coprocessor, 
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maintains the region’s index once it exists. The other coprocessor, the Index 

Coprocessor Enpoint, receives requests directly from a client and allows it to 

create and delete an index as well as run queries that take advantage of the 

index. 

 

Figure 4.1 provides an overview of what our solution looks like. Table T1 

represents a table containing user data and table M is the Master Index Table. 

Each of the tables T1 and M is split into a number of regions. T1’s regions are 

spread across 2 region servers. One column is indexed (column A) for the 

specific user data table T1; this meta data is stored in the Master Index Table 

(Table M) and used by each HTable Index Coprocessor and Index Coprocessor 

Enpoint. The inverted index for column A of table T1 is partitioned for each region 

T1n and stored in the region servers’ main memory.   
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Figure 4.1: In Memory Indexing Overview 

 

The structure of the Master Index Table is identical to the one used for the Table 

Based Secondary Indexing solution described in section 3.2.1 Metadata Storage. 
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4.2 Region Index Structure and Storage 

Figure 4.2 below shows the class diagram for the in memory index. It consists of 

four classes, the RegionIndexMap class, the RegionIndex class, the 

RegionColumnIndex class and the RowIndex class.  

 

Figure 4.2: Region Index Class Diagram 
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4.2.1 Region Index Map 

An HBase Region Server may serve more than one region. For that reason, the 

RegionIndexMap class has been designed as a simple singleton containing a 

map of all the RegionIndex objects for a given Region Server; the internal map is 

addressed by region name. It does not provide any functionality other than 

getting, adding and removing RegionIndex objects from its internal map. 

All the RegionIndexMap methods are synchronized using a reentrant reader-

writer lock in order to provide thread safety. 

 

4.2.2 Region Index 

The RegionIndex class’s purpose is to hold the index for a given region and 

provide methods to manipulate, serialize and query the index. 

The region’s index is contained in an internal map of RegionColumnIndex 

objects, one map entry per indexed column, addressed by column name.  

Methods have been implemented to create ((add()) and delete (remove()) an 

index on a specific column. The RegionIndex’s add() method fully scans the 

region in order to generate the index data prior to adding it to the internal map 

whereas the remove() method simple removes the entry from the internal map. 

A RegionIndex also offers methods for querying the region while taking 

advantage of the index (filterRowsByCriteria()). 
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When a region reaches a certain predetermined size threshold, HBase’s Region 

Server splits that region in two new regions. When this happens, a region’s index 

has to be split in such a way that each newly created region will have its 

corresponding index. For that reason, a method has been implemented in the 

RegionIndex class that splits (split()) the region index. The split method marks 

the RegionIndex as being split and no further operations are allowed on it; an 

exception is raised if any attempt is made to access that index. 

 

RegionIndex objects are serialized and persisted to HDFS when a region is 

closed and as such, RegionIndex and all the objects it contains implement 

specific deserialization methods for their transient attributes. 

 

All the methods of the RegionIndex class are synchronized using a reentrant 

reader-writer lock in order to provide thread safety. 

 

 

 

4.2.3 Region Column Index 

A RegionColumnIndex object contains the index for a single indexed column of a 

given region. It contains an internal map Vi  Rj where the Vi are the distinct 
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values stored in the indexed column and Rj are RowIndex objects containing the 

row ids where these values are located. 

RegionColumnIndex offers methods to add and remove entries from the index as 

well as perform the parts of queries based on criteria which are specific to an 

indexed column (filterRowsByCriteria()).. 

 

4.2.4 Row Index 

The RowIndex class’s purpose is a wrapper around a Java TreeSet object used 

to store an ordered list of row ids. It also provides the functionality to compress 

that set when a certain configurable size threshold is reached in order to 

conserve memory; doing so decreases significantly the performance but may be 

an acceptable tradeoff in some circumstances. 

 

4.3 Specialized Region Coprocessors 

Our In Memory Secondary Indexing solution relies on two types of region 

coprocessors. One provides us with some hooks where we can run custom code 

when modifications occur to the region’s data, the HTableIndexCoprocessor. 

The other is called explicitely by the client via remote procedure calls, the 

IndexCoprocessorInMemEndpoint. This section will describe in details how 



 

52 

 

these coprocessors function and how they react to changes to the regions they 

observe and respond to client requests. 

 

4.3.1 Intercepting Client and Server Operations 

The HTableIndexCoprocessor extends the class BaseRegionObserver. 

This particular type of coprocessor will be active only on standard user data 

tables. Its many functions include: intercept client operations that update the 

contents of the region it is attached to, and then update the index for the region if 

required, as well as intercept the region server open, split and close operations in 

order to load, split and persist the index. 

 

The client operations that we intercepted in our implementation were the Put and 

Delete operations; we did this by implementing the prePut() and 

preDelete() methods. The region open, split and close operations are 

intercepted, respectively by implementing the postOpen(), preSplit() and 

postClose(). These specific methods are overridden methods of the 

BaseRegionObserver in our HTableIndexCoprocessor. 
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4.2.1.1 Region Open Operation Interception 

After a region is started by a region server but just before it is made available to 

clients, the region server invokes the postOpen() method of all the 

coprocessors attached to that region. Our implementation takes advantage of 

this hook into the region server startup sequence to load the region’s index into 

memory. This is done by reading a specifically named file from HDFS which 

contains the compressed serialized index for the opened region. In case the file 

does not exist or is corrupted, the entire region is scanned in order to recreate 

the index in memory; this can be a lengthy operation but should only occur in 

cases of recovery after a region server has crashed. 

 

4.2.1.2 Region Close Operation Interception 

After a region is closed by a region server but just before it is stopped and 

unloaded from memory, the region server invokes the postClose() method of 

all the coprocessors attached to that region.  

Our implementation uses this step in the HTableIndexCoprocessor to persist 

the compressed RegionIndex object corresponding to the region being closed to 

HDFS in the same directory where the region data files are stored. Doing this 

speeds up region bootstrapping since a full index rebuild will not be necessary.  

Also, by using that specific HDFS location, we ensure that the index file will be 
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available to any region server that will be elected to serve the region once it is 

started again.  

The last step that is done is to remove the closed region’s RegionIndex from the 

RegionIndexMap since the region it indices will be unloaded and no longer 

available until it is restarted. 

 

4.2.1.3 Region Split Operation Interception 

Upon intercepting a split operation, the HTableIndexCoprocessor splits the 

current region’s RegionIndex into two RegionIndex objets by using the same split 

point the region server will use to split the regions.  Once the index is split, it is 

serialized and persisted to HDFS using a specific filename pattern that will be 

recognized by the daughter regions that result from a region split when they start 

up. Finally, the parent’s RegionIndex is removed from the RegionIndexMap since 

the region it indices will be unloaded and no longer exists. 

 

4.2.1.4 Put Operation Interception 

When a Put operation is intercepted and the HTableIndexCoprocessor has 

asserted that the operation will have an effect on one or more of the indexed 

columns within the region, the HTableIndexCoprocessor executes a Get 

operation locally to retrieve the current values contained for the row to be 
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updated. From the inspection of the current column values for the row to be 

updated, one of two sequences of actions may ensue.  

 

The first and simplest of sequences occurs when the current row does not 

contain any value for an indexed column to be updated. The second sequence 

occurs when the current row already contains a value for an indexed column and 

the Put operation will change that value.  

 

In case where no value already exists in the indexed column, the 

HTableIndexCoprocessor retrieves the affected RegionColumnIndex from 

the RegionIndex and invokes the add() method on it which effectively adds the 

new reference to the new value’s row id in the index. 

If the Put operation’s effect is to modify an existing cell’s value for an indexed 

column, the HTableIndexCoprocessor will first invoke the 

removeValueFromIdx() on the appropriate RegionColumnIndex to remove the old 

value’s reference to the row id before invoking the add() method. 

 

Figure 4.3 below is an example sequence diagram where col1 is indexed, col2 is 

not indexed and there is no value in col1 for row row1. In this example, the user 

table is contained within one region (Region A). The client puts a row row1 with 
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col1 =x and col2=y. This diagram shows the fact that each Put operation incurs 

an added random read operation (Get on the local region) to determine whether 

the current row contains a value in col1. Note however that no extra network 

latency is involved in this scenario to manage an indexed column vs. a non-

indexed one due to the fact that the index data is co-located with the region data. 

 

Figure 4.3: Sequence for a Put that updates an empty indexed cell 

 

4.2.1.5 Delete Operation Interception 

Upon intercepting a Delete operation, the HTableIndexCoprocessor 

determines whether that the operation will have an effect on one or more of the 

indexed columns within the table. If this is the case, the 
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put(row1, col1=x, col2=y)

prePut(row1,
 col1=x, col2=y)

Region T11 – Usertable: 
col1=z

prePut(return)

put(row1, 
col1=x, col2=y)

put(return)

get(row1)

get(return)

Region Server A

RegionIndexMap

get(T11)

get(return)

RegionIndex(T11)RegionColumnIndex(col1)RowIndex(x)

get(col1)

get(return)add(x, row1)

add(return)

add(row1)

add(return)
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HTableIndexCoprocessor executes a Get operation locally to retrieve the 

current values contained for the row to be updated. The 

HTableIndexCoprocessor then retrieves the affected RegionColumnIndex 

from the RegionIndex and invokes the removeValueFromIdx()  method on it 

which effectively removes the reference to the deleted value’s row id in the index. 

Figure 4.4 is an example sequence diagram where col1 is indexed and col2 is 

not; col1 has an initial value of z for row row1. In this example, the user table is 

contained within one region (Region A). The client deletes columns col1 and col2 

from row row1. This diagram shows the fact that each Delete operation incurs an 

added random read operation (get on the local region) to determine whether the 

current row contains a value in col1. No extra network latency is involved in this 

scenario to manage an indexed column vs. a non-indexed one. 
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Figure 4.4: Sequence for a Delete 

 

4.3.2 Index Management and Querying 

The IndexCoprocessorInMemEndpoint implements the 

CoprocessorService interface and as such, it offers methods that are 

remotely and explicitly invoked by the client. There are three methods available 

to a client in this coprocessor: createIndex(), deleteIndex() and 

execIndexedQuery(). These methods respectively allow a client to create and 

delete and index on a column of a table and run a query that will take advantage 

of the index. 
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Our implementation extends HBase’s HTable and offers access to these remote 

procedures. 

 

4.3.2.1 Creating an Index 

To create an index on a given column of a table, one invokes the 

createIndex() method of our extended HBase client. This method first checks 

that the Master Index Table exists, if not, it creates it. The method will then 

update the Master Index Table in order to persist the information that a given 

column of a given table is indexed. The last operation the client’s 

createIndex() method does is, for each region server serving a region of the 

table for which the column is to be indexed, to remotely invoke 

IndexCoprocessorInMemEndpoint‘s createIndex() method in parallel. 

When a IndexCoprocessorInMemEndpoint‘s createIndex() method is 

invoked, it gets the region’s existing RegionIndex from the RegionIndexMap or 

creates and adds a new one to the map if it doesn’t exist. It then adds a new 

RegionColumnIndex to the RegionIndex if it doesn’t already exist. 

 

4.3.2.2 Deleting an Index 

To delete an existing index on a given column of a table, the deleteIndex() 

method of our extended HBase client must be invoked. The method first updates 
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the Master Index Table in order to persist the information that a given column of 

a given table is no longer indexed. The client’s deleteIndex() method then, 

for each region server serving a region of the table for which the column is no 

longer to be indexed, remotely invokes IndexCoprocessorInMemEndpoint‘s 

deleteIndex() method in parallel. 

 

When a IndexCoprocessorInMemEndpoint‘s deleteIndex() method is 

invoked, it gets the region’s existing RegionIndex from the RegionIndexMap then 

removes the corresponding  RegionColumnIndex from that RegionIndex. 

 

4.3.2.3 Querying a Table Using an Index 

Our extended HBase client offers the possibility to query a table and return the 

rows where a specific value is contained in one or more indexed columns. The 

closest native HBase operation to this is a filtered Scan operation. The difference 

resides in the fact that a filtered Scan will need to traverse the entire table 

whereas our indexed queries only access the stored rows that match the query 

criteria. Our implementation is thus expected to offer a better performance, 

especially when the ratio of matching rows to total rows is small. 
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In order to perform an indexed query, a user of our extended client creates an 

IndexedQuery object which contains a list of criteria that suits their purpose, a 

flag specifying whether the criteria are joined by logical AND or OR operators 

and optionally a list of columns to be included in the result. We based our design 

of the criteria on the filters that can be used by HBase native operations in order 

to offer a familiar interface to the users of our client. This IndexedQuery object is 

then passed to the execIndexedQuery() method. This client method will, in turn, 

remotely invoke each execIndexedQuery()  method of the target table’s 

region’s IndexCoprocessorInMemEndpoint endpoint coprocessor in parallel 

and wait until it collected all the results before presenting the combination of the 

results to the user. This also offers a performance and scalability advantage over 

the filtered Scan operation given the fact that the filtered Scan processes regions 

sequentially and our query mechanism does so in parallel. 

 

On the server side, when a IndexCoprocessorInMemEndpoint endpoint 

coprocessor has its execIndexedQuery()  method invoked, it will first ensure 

that at least one of the criteria within the query applies to an indexed column and 

if so split the criteria list into two lists: one list containing criteria on indexed 

columns and another on non-indexed columns. The first list is used to scan the 
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index and retrieve the row ids of the rows matching the criteria. The second list is 

transformed as a list of HBase filters. 

The method then performs a series of Get operations by using each row id 

identified from the index and, if necessary (AND operator used to join the criteria 

together) the list of HBase filters. These results are packed into a list and 

returned to the client. 
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Chapter 5 

Experimental Results 

 

5.1 Introduction 

In this chapter, we evaluate the performance of both our coprocessor driven 

secondary indexing systems for HBase described in the previous two chapters. 

The first part of this chapter describes our environment, hardware and software, 

as well as the benchmarking tool used to collect performance results. The last 

part contains the performance results and their comparison to HBase without 

using indices obtained from different test configurations. 
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5.2 Experimental Test Bed 

Our experiments were conducted on a cluster of 2 nodes. Each node is a virtual 

machine running on the same physical machine (host). Each virtual machine has 

the same specifications as shown in Figure 5.1 

Host Configuration 

CPU  Intel(R) Core(TM) i7-3820 @ 
3.6GHz  

RAM 64 GB 1600MHz  

Storage 300GB SATA-3 10K RPM HDD 

Operating System Windows 7 Ultimate, 64-bit SP1 

Virtualization Software 

Product VMWare® Workstation 

Version 9.0.0 

Virtual Machines 

CPU / Node 1 CPU / 2 Cores 

RAM / Node 8GB (Dedicated) 

Storage Local – 20GB 

Operating System CentOS 6.3 (Final)  

 Figure 5.1: Test Bed Host Environment 

 

Each node runs Hadoop 1.0.3 which accesses the local disk. HBase is 

configured to use Hadoop’s HDFS for storage. Hadoop, HBase and our extended 

HBase client run using the 64 bit version of Java Runtime Environment 1.6. 
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5.2.1 Detailed Test Configuration 

We use the default HBase settings in our tests except where we increase the 

heap size for our region servers to 2GB so as to provide enough memory for the 

large data sets loaded during testing. 

 

Testing of both the Table Based Secondary Indexing implementation and the  

In Memory Secondary Indexing implementation have been done on the 

development version 0.95 of HBase. 

 

 

5.2.2 Benchmarking Suite 

For our tests, we used the Yahoo! Cloud Serving Benchmark (YCSB) tool. 

YCSB’s default workloads involve inserting 100% randomized byte arrays as cell 

data. For our purposes, this type of workload did not offer the necessary control 

with respect to the number of occurrences of a specific data item for a given 

indexed column. For that reason, we created our own workload generator. 

Instead of randomizing the data bytes to be inserted into the table, our workload 

generator reads from a dictionary file and, if required by a parameter, selects one 

word at random to be inserted, in a given column, a configured amount of times 

relative to the total number of rows inserted. This allows us to collect data for 



 

66 

 

questions such as: “How well does our implementation work with queries that are 

fulfilled by a small amount of rows vs. a large amount of rows for the same table 

size?” 

 

5.3 Methodology 

For both our implementations, we ran the same types of tests in order to evaluate 

and compare their performance vs. the default HBase client operations as well as 

vs. each other. 

For all the tests, we warmed up Hadoop and HBase by running the tests once 

before starting the actual test runs for metrics collection. This ensured that the 

Java machines were properly warmed up. We configured the heap sizes of the 

Java machines running Hadoop and HBase to start at their maximum capacity in 

order to prevent the latency that occurs when they are dynamically adjusted at 

runtime. 

We ran each test a total of three consecutive times, not including the warm-up, 

and used the average of the collected performance metrics as our result. 

 

5.4 Motivation 

The goal of our experiments is to determine the viability of our implementations 

by determining if the costs of write operations to an indexed table vs. a non-
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indexed table are reasonable. Our tests also allow us to verify that the gains in 

performance for queries leveraging the index are substantial enough to justify the 

performance hit taken by the write operations. 

 

5.5 Experimental Results 

In this section, we will first present the performance evaluation of the Table 

Based Secondary Indexing implementation we described previously in chapter 3. 

This will be followed by the performance evaluation of the In Memory Secondary 

Indexing implementation described in chapter 4. 

 

5.5.1 Evaluation of Table Based Secondary Indexing 

5.5.1.1 Writes 

For the evaluation of our Table Based Secondary indexing implementation, we 

first wanted to compare the performance between writing to an indexed table vs. 

writing to a non-indexed one. At the same time, we also wanted to evaluate the 

impact of the number of identical entries for a given indexed column on write 

operation throughput while keeping the total number of writes fixed. More 

identical occurrences in an indexed column have the consequence to make 

larger entries in the index table for a given value and we wanted to measure what 

effect this would have. First we ran the test using only one region server to host 
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both the user data table and the index table. We then proceeded to run the same 

test using two region servers, one having the user data table and the other 

hosting the index table.  

For this test, we executed 800 000 writes into the user table having 0.5%, 1%, 

3%, 5%, 7% and 10% of identical occurrences of a randomly selected value in 

the indexed column and collect the average throughput. Each of these series of 

writes was executed on: 

 An indexed user data table having one indexed column out of ten columns 

using batched write operations; 

 A non-indexed user data table, using batched write operations; 

 A non-indexed user data table, not using batched write operations; 

The results of the tests executed on one region server are shown in Figure 5.2. 

 

Figure 5.2: Average write throughput vs. identical occurrences – 1 Resource Server 
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Figure 5.3 below shows the results of the same tests on two separate region 

servers, one hosting the user data table and the other hosting the index table. 

 

Figure 5.3: Average write throughput vs. identical occurrences - 2 Resource Servers 

We can see from Figures 5.2 and 5.3 that the average write throughput 

performance is greatly degraded when comparing the writes executed within a 

batch in a non-indexed table vs. an indexed one. The performance degradation is 

not as noticeable when comparing writes that are not batched; in this scenario, at 

best, the average write throughput on the indexed table is 80% of the non-

indexed one. 

The steep performance degradation between batched inserts on an indexed 

table compared to a non-indexed table can be explained in part by the fact that, 
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are intercepting from the client is part of a batch process or not. This limitation 

forces our implementation, for consistency reasons, to update the table 

containing the index in a non-batched manner. This in turn has the effect that all 

write operations sent to the indexed table are done outside of the batch process 

at the region server level even if the client requested them to be done in a batch.  

When comparing non-batched writes in a non-indexed table vs. batched writes in 

an indexed table, the small performance degradation is consistent with the 

overhead to update the index when writing to a table.  

 

We also notice from Figures 5.2 and 5.3 the fact that the number of identical 

occurrences of an indexed value does have a major impact. The average 

throughput decreases with the increase of identical indexed values. Moreover, at 

some point, HBase crashes when the index for a specific value becomes too big. 

This occurs past 3% of identical occurrences when executed on one region 

server and past 1% when executed on two region servers. This is due to the fact 

that our benchmarking tool sends write request very quickly one after another 

and causes the big index to be re-written at a very fast pace. This, in turn, causes 

the Hadoop HDFS to run out of resources which has the unfortunate 

consequence to crash HBase’s. It occurs earlier on a two region server setup 

because of the extra network latency involved in the HDFS file replication 
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between nodes which causes Hadoop to run out of resources earlier since they 

are tied up longer. Of course, we simulate an extreme situation where updates to 

the same row happen quickly. If there isn’t a flood of update requests for the big 

index entry, the problem does not occur; unfortunately HBase on HDFS does not 

appear to provide a way of throttling that type of request as of version 0.95. 

 

5.5.1.2 Reads 

The second type of tests we ran was to see what performance improvements we 

could get on table queries by using our indexing implementation (described in 

section 3.4.3) vs. using the default HBase functionality. For a client to get results 

for a query of type “Get all rows where value in column X is A”, HBase uses a 

filtered scan. This means that, without an index, the entire table is scanned and 

only the values matching the filter are returned in the scanner to the client, also, 

the different regions of a table are scanned sequentially. 

To test this, we used the indexed tables containing 0.5%, 1%, 3%, 5%, 7% and 

10% of an identical value in the indexed column. Note that we first loaded non 

indexed tables with the data, then created the index using a map-reduce job; the 

map reduce job involved in the index creation does not cause the resource drain 

problem described above since index entries are written sequentially and only 

once (there is no constant rewriting).  
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We ran queries on these tables of the type “Get all rows where value in the 

indexed column is A”. We set A to be the identical value contained in 1.4%, 5%, 

7% and 10% of the rows in the indexed column. To these cases, we also added 

the cases where A does not exist or exists only once in the indexed column. We 

executed the series of tests for the case where all regions, both for the user data 

table and the index table, are hosted by one Region Server and then where 

these regions are spread evenly across two Region Servers. We then collected 

the response times that the queries took to return the full result set. 

 

The results of the test for one Region Server are shown in Figure 5.4 below. 

 

Figure 5.4: Filtered Scan vs. Indexed Query Graph – 1 Resource Server 
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scan method in percentage. A value below 100% means that the indexed version 

takes longer than a filtered scan.  

Occurrence of queried 

value  in indexed columns 

Filtered Scan (s) Get By Index (s) Relative efficiency 

0 times 1.96 0.04 4900% 

1 time 1.89 0.06 3150% 

0.5% of rows 2.30 0.50 460% 

1% of rows 2.24 0.91 246% 

3% of rows 2.58 2.56 101% 

5% of rows 2.89 3.33 87% 

7% of rows 3.25 4.41 74% 

10% of rows 3.89 5.95 65% 

Table 5.1: Filtered Scan vs. Indexed Query Table - 1 Resource Server 
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The results of the test executed on two Region Servers are shown in Figure 5.5 

below. 

 

Figure 5.5: Filtered Scan vs. Indexed Query Graph – 2 Resource Servers 
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Table 5.2 below shows the tabular view, which includes the relative efficiency of 

our implementation compared to the filtered scan method in percentage of the 

results collected from the execution of the tests on two Region Servers. 

Occurrence of queried 

value  in indexed columns 

Filtered Scan (s) Get By Index (s) Relative efficiency 

0 times 1.87 0.04 4675% 

1 time 1.87 0.06 3117% 

0.5% of rows 2.36 0.51 463% 

1% of rows 2.48 0.97 256% 

3% of rows 2.75 2.12 130% 

5% of rows 2.99 3.02 99% 

7% of rows 3.52 4.49 78% 

10% of rows 4.11 5.23 79% 

Table 5.2: Filtered Scan vs. Indexed Query Table – 2 Resource Servers 

 

We can see, from Figures 5.4 and 5.5 as well as Tables 5.1 and 5.2, that the 

performance of the queries is greatly improved when using our indexing 

implementation. Also, the smaller the amount of rows matching the query, the 

faster the response time and performance gain is. We notice that past a certain 

result set size, the indexed query becomes slower than a filtered scan. There are 

two reasons for that. First, the larger the result set is, the larger the amount of 

data from the index table that has to be transferred to the time, which costs in 
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time. Secondly past a certain result set size, a filtered scanner offers a better 

performance than a series of multiple get operations. A scan benefits from 

loading the table in large blocks whereas with get operations, each one of them 

has to first locate the block where the data resides, load the block, and then 

retrieve the data. When this occurs, the effect may be mitigated by spreading the 

user data table’s regions over multiple region servers to take advantage of the 

parallel nature of multiple get commands vs. the sequential nature of scans. We 

can observe that the indexed query performs considerably better one two regions 

servers compared to having only one region server.  
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5.5.2 Evaluation of In Memory Secondary Indexing 

5.5.2.1 Writes 

For the evaluation of our In Memory Secondary indexing implementation, we first 

wanted to compare the performance between writing to an indexed table vs. 

writing to a non-indexed one. At the same time, we also wanted to evaluate the 

impact of the number of identical entries for a given indexed column on write 

operation throughput while keeping the total number of writes fixed. More 

identical occurrences in an indexed column have the consequence to make 

larger entries in the index for a given value and we wanted to measure if this 

factor would have as much an effect as the one experienced using the Table 

Based Secondary Indexing. 

For this test, we executed 800 000 writes into the user table having 0.3%, 0.5%, 

1%, 3%, 5%, 7% and 10% of identical occurrences of a randomly selected value 

in the indexed column and collect the average throughput. Each of these series 

of writes was executed on: 

 An indexed user data table having one indexed column out of ten columns 

using batched write operations; 

 An indexed user data table having one indexed column out of ten columns 

using non-batched write operations; 

 A non-indexed user data table, using batched write operations; 
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 A non-indexed user data table, using non-batched write operations; 

The results of the test runs are shown in Figure 5.6 below. 

 

Figure 5.6: Average write throughput vs. identical occurrences 

 

We can see from Figure 5.6 that the average write throughput performance 

degradation is not so extreme, more so when inserts are not executed as part of 

a batch. Writes executed against an indexed table have an average throughput 

of 70% of those executed against a non-indexed table when batched and 89% 

when not batched. We can also see that the number of identical occurrences of a 

value in the indexed column has no significant impact to the performance. 

The main cause of the performance degradation in this implementation is the 

local read that occurs for each write involving one or more indexed columns as 
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described in section 4.2.1.4. When writes are not batched, they are expensive 

and in comparison the random read’s cost is not so significant. 

 

5.5.2.2 Reads 

The second type of tests we ran was to see what performance improvements we 

could get on table queries by using our in memory indexing implementation 

(described in section 4.3.2.3) vs. using the default HBase functionality. 

To test this, we used the indexed tables resulting from the previous test that 

contained 1.4%, 5%, 7% and 10% of an identical value in the indexed column. 

We ran queries on these tables of the type “Get all rows where value in the 

indexed column is A”. We set A to be the identical value contained in 0.5%, 1%, 

3%, 5%, 7% and 10% of the rows in the indexed column. To this we also added 

the case where A does not exist in the indexed column. We then collected the 

response times that the queries took to return the full result set. Due to the highly 

parallelizable nature of the indexed queries, we ran the series of tests in 

scenarios where the user data table’s regions were hosted either on one or two 

region servers.  
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The results of the test executed in the scenario where all the user data table’s 

regions were hosted on one region server are shown in Figure 5.7 below. 

 

Figure 5.7: Filtered Scan vs. Indexed Query – 1 Resource Server 
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The same results in tabular format showing the relative efficiency between the 

Filtered Scan and the Indexed Query are shown in Table 5.3 below. 

Occurrence of queried 

value  in indexed columns 

Filtered Scan (s) Get By Index (s) Relative efficiency 

0 times 1.99  0.03  6633% 

0.5% of rows 2.28  0.26  877% 

1% of rows 2.39  0.45  531% 

3% of rows 2.78  1.52  182% 

5% of rows 3.12  2.31  135% 

7% of rows 3.55  3.30  108% 

10% of rows 3.69  4.75  78% 

Table 5.3: Filtered Scan vs. Indexed Query Table – 1 Resource Server 

The results of the test executed in the scenario where all the user data table’s 

regions were hosted on two region servers are shown in Figure 5.8 below. 

 

Figure 5.8: Filtered Scan vs. Indexed Query – 2 Resource Servers 
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Again, the same results in tabular format showing the relative efficiency between 

the Filtered Scan and the Indexed Query are shown in Table 5.4 below. 

Occurrence of queried 

value  in indexed columns 

Filtered Scan (s) Get By Index (s) Relative efficiency 

0 times 1.70 0.03 5667% 

0.5% of rows 1.99 0.25 796% 

1% of rows 2.08 0.42 495% 

3% of rows 2.42 1.19 203% 

5% of rows 2.73 2.06 134% 

7% of rows 3.17 2.93 108% 

10% of rows 3.95 4.01 99%  

Table 5.4: Filtered Scan vs. Indexed Query Table – 2 Resource Servers 

We can see, from Figures 5.7 and 5.8 and Tables 5.3 and 5.4, that the 

performance of the queries is greatly improved when using our indexing 

implementation. Also, the smaller the amount of rows matching the query, the 

faster the response time and performance gain is. Past a certain result set size, a 

scanner offers a better performance than a series of multiple get commands; this 

causes the indexed query to become slower than a filtered scan. When this 

occurs, the effect may be mitigated by spreading the user data table’s regions 

over multiple region servers to take advantage of the parallel nature of multiple 

get commands vs. the sequential nature of scans. We can observe the scalability 
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of the indexed query from the results gathered from tests executed using one 

region server versus the ones executed using two region servers. 

These results were what we expected because when using the indexed query, 

the table does not need to be fully scanned to retrieve the matching rows and the 

operations of the indexed query are executed in parallel if the data matching the 

query happens to be distributed among multiple regions. 
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5.5.3 Comparison of our implementations 

Both our implementations offer good performance increase when running queries 

that take advantage of the secondary index although the in memory indexing 

implementation offers the best performance of the two. This can be explained by 

the fact that, in the case of the in memory secondary indexing, the client does not 

need to first receive a set of row ids as the first step before sending the requests 

to get the rows for these row ids. This saves on network latency and the 

overhead of querying two tables instead of just one. 

 

In the case of write operations, our in memory implementation is far superior in 

terms of performance to our table based one and provides good performance 

even when dealing with batch modifications. Moreover, our in memory 

implementation does not cause HBase to crash because the only time the index 

is written to HDFS is when a region is closed or split. 

 

Overall, our in memory implementation offers the best performance and reliability 

which makes it the most viable solution. The downside is that one must take into 

account the extra RAM needed to host the index when doing the sizing for region 

servers. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusions 

Distributed Database Systems are becoming more pervasive with the emergence 

of big data and cloud computing. Some of these distributed database systems 

are within the open source realm and are still in their infancy with respect with the 

features they offer. 

 

In this thesis, we presented two implementations of a secondary indexing feature 

for HBase, a table based implementation which uses HBase tables to store 

indices and an in memory implementation were the indices are stored in main 

memory. 
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We analyzed our implementations and compared them between each other as 

well as with HBase’s default mechanism for running queries. Both our 

implementations offered a marked improvement on read queries based on a 

secondary column value up to a certain point where scanning the entire table 

became more efficient. We found that for both implementations, we could push 

this point further away by partitioning the tables containing indexed columns into 

more regions in order to take advantage of the parallelism our query mechanism 

exploits. This fits perfectly with HBase’s method for providing scalability which is 

to split tables regions as they grow and distribute them across region servers. 

Finally, we confirmed that our in memory implementation offered the best read 

performance gain to write performance degradation ratio and was the most 

reliable solution. 
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6.2 Future Work 

In this thesis, we did not implement any fault tolerance for the data modification 

operation interceptions (Put and Delete). That means that if a modification to a 

table fails, the update to the index will not be rolled back and it will contain what 

should have been modified in the actual user data table. Both implementations 

for secondary indexing may be updated to take advantage of a planned feature 

for the HBase’s Coprocessor framework (HBase Project’s JIRA ref: HBASE-

5827) which will provide error handlers for operations that perform writes. As it is 

now, there is no straightforward and efficient way to apply rollbacks either on a 

modification to the table after a failure to update the index or a rollback on the 

index after a failure to update the table.  

 

Neither of our implementations supports multiple versions of the data: only the 

latest version of a given cell is stored in the index. Some applications may need 

to use the multiple version features HBase provides and as such, it could be a 

beneficial addition to our implementations. 
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