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ABSTRACT

In this thesis, we study the Selmer group of the p-adic étale realization of certain

motives using Kolyvagin’s method of Euler systems [34].

In Chapter 3, we use an Euler system of Heegner cycles to bound the Selmer group

associated to a modular form of higher even weight twisted by a ring class character. This

is an extension of Nekovář’s result [39] that uses Bertolini and Darmon’s refinement of

Kolyvagin’s ideas, as described in [3].

In Chapter 4, we construct an Euler system of generalized Heegner cycles to bound

the Selmer group associated to a modular form twisted by an algebraic self -dual character

of higher infinity type. The main argument is based on Kolyvagin’s machinery explained

by Gross [27] while the key object of the Euler system, the generalized Heegner cycles,

were first considered by Bertolini, Darmon and Prasanna in [5].
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RÉSUMÉ

Cette thèse est consacrée à l’étude du groupe de Selmer de la réalisation étale p-

adique de certains motifs suivant la méthode de Kolyvagin basée sur les systèmes d’Euler

[34].

Dans la première partie de cette thèse, nous exploitons le système d’Euler des cycles

de Heegner afin de borner le groupe de Selmer associé à une forme modulaire de poids pair

différent de 2 tordue par certains caractères d’un corps de classe. Il s’agit d’une extension

du travail de Nekovář [39] basée sur l’article de Bertolini et Darmon [3].

Dans la deuxième partie de cette thèse, nous édifions un système d’Euler à partir de

cycles de Heegner généralisés et nous l’utilisons pour borner le groupe de Selmer associé

à une forme modulaire et un caractère algébrique de Hecke. L’argument principal est basé

sur l’approche de Kolyvagin telle que décrite par Gross [27] tandis que l’objet principal

du système d’Euler, les cycles de Heegner généralisés, ont été étudiés en premier par

Bertolini, Darmon et Prasanna [5].
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CHAPTER 1
Introduction

One of the most beautiful results in algebraic number theory is the class number

formula which relates local arithmetic of number fields with global arithmetic. This local-

global principle is a manifestation of a general phenomenon in arithmetic. Indeed, special

values of L-functions of algebraic varieties over number fields appear to be related to the

global geometry of these varieties. This observation gave rise to the Birch and Swinnerton-

Dyer conjecture, and more generally to the Beilinson-Bloch conjectures.

An important tool in establishing results in this area is the construction of appropriate

algebraic cycles such as Heegner cycles. They are used to construct cohomology classes

with convenient norm compatibilities satisfying the properties of Euler systems, crucial to

the study of the geometric aspect of the algebraic varieties. Kolyvagin developed the case

where the algebraic variety is an elliptic curve over Q and introduced a beautiful theory

of Euler systems. Nekovář extended the argument to p-adic étale realizations of motives

attached to classical modular forms. In my thesis, I consider first the case of a modular

form twisted by a ring class character and then the case of a modular form twisted by an

algebraic self-dual character of higher infinity type.

1.1 Introduction

Given an elliptic curve E and a number field K, the Mordell-Weil theorem implies

that

E(K)' Zr +E(K)tor,
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where r is the algebraic rank of E and E(K)tors is the finite torsion subgroup of E(K). This

gives rise to the following questions:

• When is E(K) finite, that is, when is r = 0?

• How do we compute r?

• Could we produce a set of generators for E(K)/E(K)tors?

The main insight in the field is one of the seven Millennium Prize Problems listed by the

Clay Mathematics Institute, Birch and Swinnerton-Dyer’s conjecture that the algebraic

rank of E is equal to its analytic rank, that is, the order of vanishing at s = 1 of the Hasse-

Weil L-function L(E/K,s) associated to E over K. Let

L∗(E/K,s) = ((2π)−s
Γ(s))dNs/2L(E/K,s),

where d = [K : Q], Γ(s) =
∫

∞

0 e−tts−1dt is the Γ-function and N is the conductor of E

be the completed L-function associated to E/K. The Hasse-Weil conjecture stipulates that

L(E/K,s) has analytic continuation to the whole complex plane C and L∗(E/K,s) satisfies

a functional equation of the form

L∗(E/K,2− s) = w(E/K) L∗(E/K,s),

where

w(E/K) =±1

is the global root number of E/K. Together with Birch and Swinnerton-Dyer’s conjecture,

it would imply the parity conjecture

(−1)r = w(E/K).
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The short exact sequence in Galois cohomology

0−→ E(K)/pE(K)−→ Selp(E/K)−→X(E/K)p −→ 0

relates the rank of E(K) to the size of the so-called Selmer group Selp(E/K). The

Shafarevich-Tate conjecture on the finiteness of X(E/K), the Shafarevich group of E

over K, implies that Selp(E/K) and E(K)/pE(K) have the same size for all but finitely

many primes p. This is the reason why the study of Selmer groups is a crucial step towards

the understanding of the equality conjectured by Birch and Swinnerton-Dyer.

We describe next some of the most interesting advances in this area. Coates and Wiles

[14] proved that if E has complex multiplication by the ring of integers of an imaginary

quadratic field K of class number 1 and if it is defined over F = K or F =Q, then

r(E/F)≥ 1 =⇒ ran(E/F)≥ 1.

Kolyvagin [34, 27] uses an Euler system to bound the size of the Selmer group of certain

elliptic curves over imaginary quadratic fields assuming the non-vanishing of a suitable

Heegner point. This implies that they have algebraic rank 1, and that their associated Tate-

Shafarevich group is finite. Combined with results of Gross and Zagier [28], this proves

the Birch and Swinnerton-Dyer conjecture for analytic rank 1. Using results of Kumar and

Ram Murty [38], it can be shown that the Birch and Swinnerton-Dyer conjecture holds for

analytic rank less than or equal to 1. Bertolini and Darmon adapt Kolyvagin’s descent to

Mordell-Weil groups over ring class fields [3]. We denote by rp the corank of the Selmer

group

rp = rank(HomZp(Selp∞(E/K),Q/Z)).
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In [41], Nekovář proves that if E is an elliptic curve over Q with good ordinary reduction

at p, then

w(E/Q) = (−1)rp(E/Q).

Tim and Vladimir Dokchister [20] show that if E/K has a rational isogeny of prime degree

p≥ 3, and E is semistable at all primes over p, then

w(E/K) = (−1)rp(E/K).

Skinner and Urban [51] prove that for a large class of elliptic curves,

rp = 0⇒ ords=1L(E,s) = 0.

Skinner [50] shows that if E is a semistable elliptic curve over Q that has non-split multi-

plicative reduction at at least one odd prime or split multiplicative reduction at at least two

odd primes then

rankZ(E(Q)) = 1 and |X(E)| is finite ⇒ ords=1L(E,s) = 1.

He also proves the corresponding result for the abelian variety associated with a weight

two newform of trivial character. Wei Zhang [56] proves that for a large class of elliptic

curves over Q,

rp = 1⇒ ords=1L(E,s) = 1.

No assumptions are made about the primes for which E has additive reduction. However,

the Gal(Q/Q) representation of E[p], the p-torsion points of E, is required to ramify for

certain primes of multiplicative reduction. Bhargava and Shankar [6] show that the average

size of the 5-Selmer group of elliptic curves over Q is equal to 6. Combining this with a
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new lower bound on the equidistribution of root numbers of elliptic curves, they deduce

that the average rank of elliptic curves over Q when ordered by height is less than 1 and at

least four fifths of all elliptic curves over Q have rank either 0 or 1. Furthermore, at least

one fifth of all elliptic curves in fact have rank 0. Bhargava, Skinner and Wei Zhang prove

in [7] that

lim
x→∞

|{E/Q | r(E) = ords=1L(E,s), X(E) finite , H(E)< X}|
|{E/Q | H(E)< X}|

> 66.48%,

where H(E) is the height of the elliptic curve E. In other words, a majority of elliptic

curves over Q satisfy the Birch-Swinnerton-Dyer conjecture and have finite Shafarevich

group over Q.

More generally, one can associate to a modular form f of even weight 2r and level

Γ0(N) a p-adic Galois representation A [32, 46]. For a given number field K, there is a

p-adic Abel-Jacobi map

Φ : CHr(X/K)0 −→ H1(K,A),

where

• X represents the Kuga-Sato varieties of dimension 2r−1, that is, a compact desingu-

larization of the 2r−2-fold fibre product of the universal generalized elliptic curve

over the modular curve X1(N),

• CHr(X/K)0 is the r-th Chow group of X over K, that is the group of homologically

trivial cycles on X of codimension r modulo rational equivalence,

• H1(K,A) stands for the first Galois cohomology group of Gal(K/K) acting on A.

5



The Beilinson-Bloch conjecture, which generalizes Birch and Swinnerton-Dyer’s, predicts

that

dimQp(Im(Φ)⊗Qp) = ords=rL( f ⊗K,s). (1.1)

This motivates the study of the Selmer group Selp(A/K) of A over K as Im(Φ) closely

relates to it.

In [39], Nekovář shows that

dimQp(Im(Φ)⊗Qp) = 1 (1.2)

assuming that a suitable cycle of H1(K,A) is non-torsion. Combined with results of Gross-

Zagier and Brylinski [11, 28] and results of Bump, Friedberg and Hoffstein [12], this

provides further grounds to believe the Beilinson-Bloch conjecture for analytic rank less

than or equal to 1.

We extend Nekovář’s work described in 1.2 to more general settings. Firstly, we

adapt ideas and techniques from [3] and [39] to provide a bound on the size of the Selmer

group associated to a modular form of even weight strictly larger than 2 twisted by a ring

class character. Secondly, we exploit the construction of so-called generalized Heegner

cycles by Bertolini, Darmon and Prasanna [5] to construct an Euler system attached to a

modular form twisted by an algebraic self-dual character of higher infinity type. Following

Nekovář [39], we subsequently use the tools introduced by Kolyvagin to bound the size of

the associated Selmer group.

6



1.2 First contribution

Let f be a normalized newform of level Γ0(N) where N ≥ 5, of trivial nebentype and

even weight 2r > 2 and let

K =Q(
√
−D)

be an imaginary quadratic field satisfying the Heegner hypothesis relative to N, that is,

rational primes dividing N split in K. For simplicity, we assume that |O×K | = 2. We fix

a prime p not dividing NDφ(N). Let H be the ring class field of K of conductor c with

(c,NDp) = 1 and let e be the exponent of Gal(H/K). Let

F =Q(a1,a2, · · · ,µe)

be the field generated over Q by the coefficients of f and the e-th roots of unity µe and

let OF be its ring of integers. We denote by A the p-adic étale realization of the motive

associated to f by Scholl [46] and Deligne [18] twisted by r. It will be viewed (by extend-

ing scalars appropriately) as a free OF⊗Zp module of rank 2, equipped with a continuous

OF -linear action of Gal(Q/Q). Let A℘ be the localization of A at a prime ℘ of OF divid-

ing p. Then A℘ is a free module of rank 2 over O℘, the completion of OF at ℘. For a

p-torsion Gal(H/H) module M, the Selmer group

S⊆ H1(H,M)

consists of the cohomology classes c whose localizations cv at a prime v of H lie in H1(Hur
v /Hv,M) for v not dividing N p

H1
f (Hv,M) for v dividing p

7



where H1
f (Hv,M) is the finite part of H1(Hv,M) as in [9]. In our setting, since A℘ has

good reduction at p, H1
f (Hv,M) = H1

cris(Hv,M). Note that the assumptions we make will

ensure that H1(Hur
v /Hv,A℘/p) = 0 for v dividing N. The Galois group

G = Gal(H/K)

acts on H1(H,M) hence it acts on S. Assume that p does not divide |G|. We denote by

Ĝ = Hom(G,µe) the group of characters of G and by

eχ =
1
|G| ∑g∈G

χ
−1(g)g

the projector onto the χ-eigenspace given a character χ of Ĝ. By the Heegner hypothesis,

there is an ideal N of Oc, the order of K of conductor c, such that

Oc/N = Z/NZ.

Therefore, C/Oc and C/N −1 define elliptic curves related by an N-isogeny. As points of

X0(N) correspond to elliptic curves related by N-isogenies, this provides a Heegner point

x1 of X0(N). By the theory of complex multiplication, x1 is defined over H. Let E be

the corresponding elliptic curve. Then E has complex multiplication by Oc. The Heegner

cycle of conductor c is defined as

er(graph(
√
−D))r−1

for some appropriate projector er, (see Section 3.2 for more details). Let y1 be its image

by the p-adic étale Abel-Jacobi map in H1(H,A℘/p). We denote by Fr(v) the arithmetic

8



Frobenius element generating Gal(Hur
v /Hv), and by Iv =Gal(Hv/Hur

v ). In Chapter 3 which

is submitted for publication, we prove the following statement.

Theorem 1.2.1. Assume that p is such that

Gal
(
Q(A℘/p)/Q

)
' GL2(O℘/p), (p,NDφ(N)) = 1, and p - |G|.

Suppose further that the eigenvalues of Fr(v) acting on AIv
℘ are not equal to 1 modulo p

for v dividing N. Let χ ∈ Ĝ be such that

eχy1 6= 0.

Then the χ-eigenspace Sχ of the Selmer group S has rank 1 over O℘/p.

1.3 Second contribution

Kolyvagin and Nekovář respectively use Heegner points and Heegner cycles to de-

fine a pertinent Euler system which is subsequently exploited to obtain a bound on the size

of an associated Selmer group. Bertolini, Darmon and Prasanna constructed generalized

Heegner cycles in the product of a Kuga-Sato variety with a power of a CM elliptic curve

[5]. In Chapter 4, we adapt Nekovář’s work to the setting where Heegner cycles are re-

placed by generalized Heegner cycles. This determines the left-hand side of the equality

(1.1) conjectured by Beilinson and Bloch for the étale realization of a motive attached to a

modular form twisted by an algebraic self -dual character of higher infinity type, when the

relevant generalized Heegner cycle has non-trivial image by the p-adic Abel-Jacobi map.

Let f be a normalized newform of level Γ0(N) and trivial nebentype where N ≥ 5 and

of even weight r+2 > 2. Denote by K =Q(
√
−D) an imaginary quadratic field with odd

discriminant satisfying the Heegner hypothesis, that is primes dividing N split in K. For

9



simplicity, we assume that |O×K |= 2. Let

ψ : A×K −→ C×

be an unramified algebraic Hecke character of K of infinity type (r,0). Then there is an

elliptic curve A defined over the Hilbert class field K1 of K with complex multiplication by

OK such that ψ is the Hecke character associated to A [25, Theorem 9.1.3]. Furthermore,

A is a Q-curve by the assumption on the parity of D, that is A is K1- isogenous to its con-

jugates in Aut(K1). (See [25, Section 11]). Consider a prime p not dividing NDφ(N)NA,

where NA is the conductor of A. We denote by Vf the f -isotypic part of the p-adic étale

realization of the motive associated to f by Scholl [46] and Deligne [18] twisted by r+2
2

and by Vψ the p-adic étale realization of the motive associated to ψ twisted by r
2 . More

precisely, Vψ is the ψ-isotypic component of

resK1/Q(A) = ∏
σ∈Gal(K1/Q)

Aσ

where Aσ is the σ -conjugate of A, (see Section 4.2 for more details). Let OF be the ring

of integers of

F =Q(a1,a2, · · · ,b1,b2, · · ·),

where the ai’s are the coefficients of f and the bi’s are the coefficients of the theta series

θψ = ∑
a⊂OK

ψ(a)qN(a)

10



associated to ψ . Then Vf and Vψ will be viewed (by extending scalars appropriately) as

free OF ⊗Zp-modules of rank 2. We denote by

V =Vf ⊗OF⊗Zp Vψ

the p-adic étale realization of the twisted motive associated to f and ψ and let V℘ be its

localization at a prime ℘ in F dividing p. Then V℘ is a four dimensional representation of

Gal(Q/Q) with coefficients in

End(A/Q) =⊕σ∈Gal(H/Q)Hom(A,Aσ ).

We also denote by OF,℘ the localization of OF at ℘. By the Heegner hypothesis, there is

an ideal N of OK satisfying

OK/N = Z/NZ.

We can therefore fix level Γ1(N) structure on A, that is a point of exact order N defined

over the ray class field L1 of K of conductor N . Consider a pair (ϕ1,A1) where A1 is an

elliptic curve defined over K1 with level Γ1(N) structure and

ϕ1 : A−→ A1

is an isogeny over K. We associate to it a codimension r+1 cycle on V

ϒϕ1 = Graph(ϕ1)
r ⊂ (A×A1)

r ' (A1)
r×Ar ⊂Wr×Ar

and define a generalized Heegner cycle of conductor 1

∆ϕ1 = erϒϕ1,

11



where er is an appropriate projector (4.1). Then ∆ϕ1 is defined over L1. The Selmer group

S⊆ H1(K,V℘/p)

consists of the cohomology classes which localizations at a prime v of L1 lie in H1(Kur
v /Kv,V℘/p) for v not dividing NNA p

H1
f (Kv,V℘/p) for v dividing p

where Kv is the completion of K at v, and

H1
f (Kv,V℘/p) = H1

cris(Kv,V℘/p)

is the finite part of H1(Kv,V℘/p) [9]. Note that the assumptions we make will ensure that

H1(Kur
v /Kv,V℘/p) = 0 for v dividing NNA. We denote by Fr(v) the arithmetic Frobe-

nius element generating Gal(Kur
v /Kv), and by Iv = Gal(Kv/Kur

v ). In Chapter 4 which is

submitted for publication, we prove the following statement.

Theorem 1.3.1. Let p be such that

Gal
(
K(V℘/p)

/
K
)
' AutK(V℘/p), and (p,NDφ(N)NA) = 1.

Suppose that V℘/p is a simple Aut(V℘/p)-module. Suppose further that the eigenvalues

of Fr(v) acting on V Iv
℘ are not equal to 1 modulo p for v dividing NNA. Assume the

corestriction corL1,KΦ(∆ϕ1) 6= 0 where

Φ(∆ϕ1) ∈ H1(K,V℘/p)

is the image by the p-adic Abel-Jacobi map of the generalized Heegner cycle ∆ϕ1 . Then

the Selmer group S has rank 1 over OF,℘/p.

12



One could consider other flavours of Selmer groups. Instead of studying the Selmer

group with coefficients in V℘/p, one could look at the Selmer group with coefficients in

the p-torsion submodule V [p] of V . The duality between these two types of Selmer groups

allows us to deduce information about the latter from the study of the former.
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CHAPTER 2
Preliminaries

In this chapter, we explain some of the key concepts used in Kolyvagin’s method of

Euler systems adapted to modular forms of higher even weight. We invite the reader to

consult these sections as they are referenced in Chapters 3 and 4.

2.1 Abel-Jacobi map

The Kolyvagin cohomology classes we construct are derived from the image by the

p-adic Abel-Jacobi map of (possibly generalized) Heegner cycles. We follow [1] and [5]

in the description of the Abel-Jacobi map. Consider a smooth projective variety X of

dimension d over a field K of characteristic 0. An irreducible cycle Z of codimension c is

a closed irreducible subvariety of codimension c. We denote by Zc(X) the abelian group

generated by codimension c cycles. Two cycles α,β are rationally equivalent if there is

U ⊆ P1 and γ in Zc(X×U) such that for all u ∈U , we have

γu = γ ∩Zc(X×u) and there is u0 6= u1 ∈U with γu0 = α and γu1 = β .

The cycle class map

cl : Zc(X/K)−→ H2c
et (X⊗K,Zp(c))

factors through rational equivalence. Therefore, it induces a map

cl : CHc(X/K)−→ H2c
et (X⊗K,Zp(c))

14



on the c-th Chow group CHc(X) consisting of Zc(X) modulo rational equivalence. Two

cycles α,β are homologically equivalent if cl(α) = cl(β ). We denote by CHc(X)0 the

group of homologically trivial cycles. Let i : Z ↪→ X be a closed immersion and j : U ↪→ X

an open immersion such that X is the disjoint union of i(Z) and j(U). Let F be an étale

sheaf on the étale site of X and let i! be the right adjoint of i∗. The group of sections of F

with support on Z is

Γ(X , i∗i!F ) = Γ(Z, i!F ) = ker(F (X)−→F (U)).

The étale cohomology groups of F with support on Z are

Hk
|Z|(X ,F ) : F −→ Rk

Γ(Z, i!F ).

Assume that Z is smooth over K. For 0≤ k ≤ 2c−2, we have

Hk
et(X ,F )' Hk

et(U,F ).

The long exact excision sequence in étale cohomology gives rise to an exact sequence

0−→ H2c−1
et (X ,F )−→ H2c−1

et (U,F )−→ H2c
|Z|(X ,F )

i∗−→ H2c
et (X ,F ) · · ·

−→ H2d
|Z|(X ,F )−→ H2d

et (X ,F )−→ H2d
et (U,F )−→ 0,

where

Hk
|Z|(X ,F )' Hk−2c

et (Z, i∗F (−c)).

Taking F = Zp(c), the Gysin map i∗ induces by restriction to rational cycles the cycle

class map

cl : CHc(X)−→ H2c
et (X ,Zp(c))GK
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where X = X⊗K. For Z ∈CHc(X)0, consider the diagram

0 // H2c−1
et (X ,Zp(c)) //

��

H2c−1
et (X−Z,Zp(c)) // H2c

|Z|(X ,Zp(c))0 // 0

0 // H2c−1
et (X ,Zp(c)) // EZ //

OO

Zp

OO

// 0

where

H2c
|Z|(X ,Zp(c))0 = ker( H2c

|Z|(X ,Zp(c)) −→ H2c
et (X ,Zp(c)) )

is the kernel of the Gysin map and

Zp −→ H2c
|Z|(X ,Zp(c))0 : 1 7→ Z.

Here, EZ is identified with a subquotient of

{e ∈ H2c−1
et (X−Z,Zp(c)) | Im(e) ∈ H2c

|Z|(X ,Zp(c))0 ∩ Im(Zp)}.

The p-adic Abel-Jacobi map is the map

AJet
p : CHc

0(X)−→ Ext1(Zp,H2c−1
et (X ,Zp(c))) = H1(K,H2c−1

et (X ,Zp(c)))

which associates to Z ∈CHc(X)0 the isomorphism class of EZ in the group of extensions

of Zp by H2c−1
et (X ,Zp(c)) in the category of p-adic representations of Gal(K/K).

2.2 Frobenius substitution

The choice of the primes determining the Kolyvagin cohomology classes which are

central to the proof relies on the theory of Frobenius substitution which we summarize in

this section. Let L be a finite Galois extension of F . Consider a prime q of L lying above
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an unramified prime p of F . There is an element

σ = (q,L/F) ∈ Gal(L/F)

uniquely determined by the condition that

σ(α)≡ α
N(p) mod q for all α ∈ OL,

where N(p) = |OF/p|. If qi is another prime of L lying above p then (qi,L/F) is conjugate

to (q,L/F). In particular, if L/F is an abelian extension then the set {(q,L/F), q | p}

consists of a single element

Frobp(L/F) = (p,L/F) = (qi,L/F),

the Frobenius substitution of p. When p is a real infinite place, (p,L/F) is the com-

plex conjugation τ . When p is a complex infinite place, (p,L/F) is the identity. Ce-

botarev’s density theorem which plays a crucial role in the proof of Theorem 1.2.1 and

Theorem 1.3.1 is a statement about the occurence of a conjugacy class [σ ] of an element

σ ∈ Gal(L/F) as a Frobenius substitution. Cebotarev proved that the set of unramified

prime ideals p of F such that (p,L/F) ∈ [σ ] has Dirichlet density

| [σ ] |
[L : F ]

=
| [σ ] |

|Gal(L/F)|
. (2.1)

and is hence infinite. In particular, if L/F is abelian, then the set of unramified primes

such that Frobp(L/F) belongs to [σ ] has density 1/[L : F ].

We discuss the transfer of an element from a group to a subgroup following Serre’s

development [48]. This will be applied to move the Frobenius substitution of an unramified

17



prime from a Galois group to a Galois subgroup. Let G be a group, H a subgroup of finite

index and X = G/H the set of left cosets of X . For x ∈ X , we denote by x a representative

of x in G. Assume s ∈ G and x ∈ X , then sx ∈ G has image sx in X . Therefore, if sx is a

representative of sx in X , then there exists hs,x ∈ H such that

sx = sx hs,x.

Consider the map

Ver : G−→ Hab : s 7→∏
x∈X

hs,x mod [H,H],

where the product is computed in Hab = H/[H,H]. This is a group homomorphism that

does not depend on the choice of representatives {x}x∈X . Let C be the cyclic subgroup

of G generated by s. We denote by Oα the orbits of X under the action of C and by fα

the cardinality of Oα . If xα belongs to Oα , then s fα xα = xα . This implies that given a

representative gα of xα in G, there exists hα in H such that

s fα gα = gαhα .

Therefore, it is enough to show that

Ver(s) = ∏
α

hα = ∏
α

g−1
α s fα gα mod [H,H]

to conclude that the homomorphism Gab −→ Hab −→ Gab maps s to sn. Indeed,

g−1
α s fα gα = s fα mod [G,G], and s∑α fα = sn.
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In particular, if G is abelian, we obtain a homomorphism

Ver : G−→ H : s 7→ sn.

2.3 Local class field theory

In this section, we develop certain aspects of local class field theory that are relevant

to the definition and understanding of (generalized) Heegner cycles following Cox [16]

and Gala [23]. A modulus m in a number field F is a formal product

m = ∏
p

pmp

running over the places p of F where
mp ≥ 0 is non-zero for finitely many places p

mp = 0 or 1 for infinite real places

mp = 0 for infinite complex places

Writing m as m = m0m∞, the product over finite and infinite places of F respectively, we

denote

PF,1(m) = {a ∈ F∗ | vp(a−1)≥ mp for all p | m0 and p(a)> 0 for all p | m∞}.

Let IF(m) be the set of fractional ideals of F generated by the prime ideals which do not

divide m. The ray class group of F modulo m is

Cm = IF(m)/PF,1(m).
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Assume E/F is a finite abelian extension and m is a modulus of F divisible by the primes

of F that ramify in E. Then the Artin map is the surjective homomorphism

ψ : IF(m)−→ Gal(E/F) : ∏
pi

pmi
i 7→∏

pi

(pi,E/F)mi.

A prime ideal of F splits completely in E if and only if it is in the kernel of the Artin map.

Consider the norm map

NE/F : IE −→ IF : q 7→ p f (q/p),

where p is the prime of F lying below the prime q of E and f (q/p) = [Fq : Fp] is the

residue degree. We have

NE/F(IE)⊆ ker(ψ).

Indeed, it is enough to see that

ψ(p f (q/p)) = (p,E/F) f (q/p) = 1.

Artin’s reciprocity law further states that there is a modulus m of F which satisfies the

following properties:

1. m is divisible by the primes of F that ramify in E

2. PF,1(m)⊆ ker(ψ)

3. ker(ψ)=PF,1(m) NE/F(IE(m′)), where m′ is divisible by the primes of E lying above

primes of m
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The minimal such modulus m is called the conductor of the extension. A subgroup H of

IF(m) is called a congruence subgroup modulo m if

PF,1(m)⊂ H ⊂ IF(m).

There is a unique abelian extension E of F such that the primes of F ramified in E divide

m and such that

H = PF,1(m) NE/F(IE(m′)),

where m′ is divisible by the primes of E lying above primes of m. The Artin map induces

an isomorphism

ψ : IF(m)/H −→ Gal(E/F).

In the case where m is the trivial modulus 1, the congruence subgroup H = PF,1(1) gives

rise to the Hilbert class field F1 of F , the maximal abelian unramified extension of F . In

the case where m is a product of finite places, we consider the order

Om = Z+mOK

of conductor m in an imaginary quadratic field F = K with O×K = {±1}. Let Pic(Om) be

the Picard group of Om. Then

Pic(Om)'Cl(Om)' IK(mOK)/PK,Z(mOK),

where

PK,Z(mOK) = {α ∈ OK | α ≡ a mod mOK, a ∈ Z, (a,m) = 1}.
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Since PK,Z(m) is a congruence subgroup modulo m, there is an extension Km of K, the ring

class field of K of conductor m, such that

Pic(Om)' Gal(Km/K).

The Galois group Gal(Km/K1) is the subgroup of Gal(Km/K) acting trivially on K1. There-

fore, we have

Gal(Km/K1)'
IK(mOK)∩PK(OK)

PK,Z(mOK)
' (OK/m)∗

(Z/m)∗
.

This provides a formula for the ratio of the class numbers of a ring and a suborder. The

complex conjugation τ which generates Gal(K/Q) acts on an element σ of Gal(Km/K)

by τστ−1 = σ−1 and we have

Gal(Km/Q)' Gal(Km/K)oGal(K/Q).

2.4 Brauer group and local reciprocity

The local reciprocity law is the principal tool used to transform global information

about the elements of the Selmer group into local information. We describe this law and

the Brauer group with Serre’s book [47] as a reference. The Brauer group of a field k is

the direct limit

Bk = lim−→
K

H2(K/k,K∗)
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as K runs through the set of finite Galois extensions of k. For an algebraic number field k,

let kv be the completion of k with respect to the place v of k. Then
Bkv =Q/Z for finite primes v of k,

Bkv = {0,1/2} if kv = R,

Bkv = 0 if kv = C.

The embedding k ↪→ kv induces a map

Bk −→∏
v

Bkv

that is injective by the Hasse principle. In fact Bk embeds into ⊕vBkv . Combining [47,

Theorem XII.3.2] and the corollary of [47, Proposition XIII.1.1], we obtain an exact se-

quence

0−→ Bk −→⊕vBkv
σ−→Q/Z−→ 0,

where σ(⊕vxv) = ∑v xv. If kv is a field complete under a discrete valuation with finite

residue field then we have an isomorphism

invkv : Bkv 'Q/Z.

(See [47, Proposition XIII.3.6]).

Let L be a finite extension of K of degree n for a field K that is complete with respect

to a discrete valuation v with quasi-finite residue field K (see [47, Paragraph XIII.2] for

the definition of a quasi-finite field). Let

resK,L : BK −→ BL
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be the canonical homomorphism of BK into BL. Then

invL ◦ resK,L = n · invK.

Suppose L/K is Galois with Galois group G. Then the isomorphism invK maps the sub-

group H2(L/K,L∗) of BK onto the subgroup Z/nZ of Q/Z by [47, Corollary XIII.3.2].

Assume K contains the group µn of n-th roots of unity. We choose a primitive n-th root of

unity ω identifying µn with the group Z/nZ. The exact sequence

0−→ µn −→ K∗ v−→ K∗ −→ 0,

where v(x) = xn induces the exact sequence

0−→ H2(G,Z/nZ) i−→ BK −→ BK

since H1(G,K∗) = 0. Given elements a,b of K∗ we can associate elements φa,φb of

H1(G,Z/nZ). The cup product then yields an element φaφb of H2(G,Z/nZ). We let

(a,b) = i(φaφb).

We define

(a,b)v = ω
n·invK(a,b),

an n-th root of unity which does not depend on the choice of ω by the corollary to [47,

Proposition XIV.2.6]. Assume L = K
(

a
1
n

)
, and b ∈ K∗. Artin’s reciprocity law implies

that ψ(b) = 1, (see Section 2.3). One can then deduce that

∏
v
(a,b)v = 1
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by relating the elements (a,b)v to the Frobenius substitution at the primes dividing b by

the formula

(a,b)v = (b,∗/K)(a
1
n )/a

1
n

where (b,∗/K) is an appropriate limit of (b,F/K) over increasing extensions F of K, (see

[47, Proposition XI.3] for the precise definition).

2.5 Local Tate duality

Local Tate duality is one of the main ingredients of the proof of Theorems 1.2.1 and

1.3.1. We succinctly explain the main ideas following Nekovář [39] and Tate [53]. Let

Kλ be a local field with residue field Fq and let A be a finite group with an unramified

action of Gal(Kλ/Kλ ) killed by a prime p. Assume p divides q−1 so that µp ⊂Kλ and let

A′ = Hom(A,µp). We denote by Kur
λ

, the maximal unramified extension of Kλ , by Kt
λ

, the

maximal tamely ramified extension of Kλ , and by H1
ur(Kλ ,∗), the group H1(Kur

λ
/Kλ ,∗).

The natural pairing A×A′ −→ µp yields the cup product pairing

H1(Kλ ,A)×H1(Kλ ,A
′)−→ H2(Kλ ,µp) = Z/pZ

which induces a perfect local Tate pairing

H1(Kur
λ
/Kλ ,A)×H1(Kλ ,A

′)/H1(Kur
λ
/Kλ ,A)−→ Z/pZ.

Let

α : H1(Kur
λ
/Kλ ,A)

∼−→ A/(φ −1)A

be the evaluation map at the Frobenius element φ where

Gal(Kur
λ
/Kλ ) =< φ > .
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Then α is an isomorphism. The exact sequence of Galois groups

0−→ Gal(Kλ/Kt
λ
)−→ Gal(Kλ/Kur

λ
)−→ Gal(Kt

λ
/Kur

λ
)−→ 0

induces the exact sequence

H1(Kt
λ
/Kur

λ
,A′)−→ H1(Kur

λ
,A′)−→ H1(Kt

λ
,A′)−→ 0,

where H1(Kt
λ
,A′) = 0 since Gal(Kλ/Kt

λ
) is a pro-q group. Therefore,

H1(Kur
λ
,A′)' H1(Kt

λ
/Kur

λ
,A′)' Hom(Z/pZ(1),A′)' Hom(µp,A′).

Hence we have an isomorphism

H1(Kur
λ
,A′) ∼−→ Hom(µp,A′).

The exact sequence of Galois cohomology groups

0−→ H1(Kur
λ
/K,A′)−→ H1(Kλ ,A

′)−→ H1(Kur
λ
,A′)φ −→ 0

allows us to identify H1(Kλ ,A′)/H1(Kur
λ
/Kλ ,A′) with

H1(Kur
λ
,A′)φ ' Hom(µp,A′)φ .

Hence, we obtain a perfect local pairing

〈 · , · 〉p : H1(Kur
λ
/Kλ ,A)×H1(Kur

λ
,A′)φ −→ Z/pZ.

Alternatively, the local Tate pairing can be viewed as a duality between invariants

(A′)φ=N(λ ) = H1(Kur
λ
,A′)φ
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of the dual of A under the action of φ and Frobenius co-invariants

A/(φ −1)A = H1(Kur
λ
/K,A)

of A.

We will be interested in the particular situation where A = A′, K is an imaginary

quadratic field and K` is its ring class field of conductor `. Since the extension Kλ`
/Kλ is

totally ramified, the generator σ` of Gal(Kλ`
/Kλ ) can be lifted to a generator

τ` ∈ Gal(Kt
λ
/Kur

λ
)' Ẑ

′
(1) = ∏

q6=`

Zq(1).

Let ζλ ,p be the image of τ` by the projection

Ẑ−→ µp.

We obtain the map β

β : H1(Kur
λ
,A)φ ∼−→ Aφ=N(λ )

as the composition of the isomorphism H1(Kur
λ
,A)φ ' Hom(µp,A)φ with the evaluation

map

Hom(µp(Kλ ),A)
φ ∼−→ Aφ=N(λ )

at ζλ ,p. This induces an isomorphism

γ = β
−1 ◦α : H1

ur(Kλ ,A)' H1(Kur
λ
,A)φ (2.2)

where elements of A/(φ −1)A are viewed as the corresponding dual elements of Aφ=N(λ ).

The map γ switches cocycles with same values on φ and τ` modulo p.
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2.6 Weil conjectures

We recall the Weil conjectures which play an important role in the study of the lo-

calization of Kolyvagin cohomology classes. We follow Mazur’s notes [36]. Consider

an abelian variety V over a field k of cardinality q and denote by kn the subfield of k of

cardinality qn. We can associate to V a zeta function

Z(V/k, t) = exp
(

∑
n

Nn(V/k)
tn

n

)
,

where Nn(V/k) is the cardinality of V (kn). This zeta function can be expressed as

Z(V/k, t) =
∏odd j det(1− tφ | H j(V ))

∏even j det(1− tφ | H j(V ))
,

where φ is the Frobenius endomorphism acting on the étale cohomology H j of V . (See

[36, Discussion 1.4,1.5]). The Weil conjectures predict the following

1. Rationality: Z(V/k, t) is a rational function of t with coefficients in Q whose poles and

zeros are algebraic integers.

2. Functional equation: If V/k is connected, proper and smooth of dimension d then the

map α 7→ qd/α is a permutation of the zeros of Z(V/k, t) and of its poles.

3. Riemann hypothesis: If α is an eigenvalue of the geometric Frobenius acting on H j(V )

for an étale cohomology H j and | · | is any archimedean absolute value then |α|= q
j
2 .
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CHAPTER 3
Kolyvagin’s method for Chow groups of Kuga-Sato varieties over ring class fields

3.1 Introduction

Let f be a normalized newform of level Γ0(N) and trivial nebentype where N ≥ 5 and

of even weight 2r > 2 and let

K =Q(
√
−D)

be an imaginary quadratic field satisfying the Heegner hypothesis relative to N, that is,

rational primes dividing N split in K. For simplicity, we assume that |O×K | = 2. We fix

a prime p not dividing NDφ(N). Let H be the ring class field of K of conductor c with

(c,NDp) = 1, (see Chapter 2, Section 2.3 for more details) and let e be the exponent of

Gal(H/K). Let F = Q(a1,a2, · · · ,µe) be the field generated over Q by the coefficients

of f and the e-th roots of unity µe. We denote by A the p-adic étale realization of the

motive associated to f by Scholl [46] and Deligne [18] twisted by r. It will be viewed

(by extending scalars appropriately) as a free OF ⊗Zp module of rank 2, equipped with a

continuous OF -linear action of Gal(Q/Q). Let A℘ be the localization of A at a prime ℘ of

OF dividing p. Then A℘ is a free module of rank 2 over O℘, the completion of OF at ℘.

The Selmer group

S⊆ H1(H,A℘/p)
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consists of the cohomology classes c whose localizations cv at a prime v of H lie in H1(Hur
v /Hv,A℘/p) for v not dividing N p

H1
f (Hv,A℘/p) for v dividing p

where H1
f (Hv,A℘/p) is the finite part of H1(Hv,A℘/p) as in [9]. In our setting, since A℘

has good reduction at p, H1
f (Hv,M) = H1

cris(Hv,M). Note that the assumptions we make

will ensure that H1(Hur
v /Hv,A℘/p) = 0 for v dividing N. The Galois group

G = Gal(H/K)

acts on H1(H,A℘/p) and preserves the unramified and cristalline classes, hence it acts

on S. Assume that p does not divide |G|. We denote by Ĝ = Hom(G,µe) the group of

characters of G and by

eχ =
1
|G| ∑g∈G

χ
−1(g)g

the projector onto the χ-eigenspace given a character χ of Ĝ.

By the Heegner hypothesis, there is an ideal N of Oc, the order of K of conductor c,

such that

Oc/N = Z/NZ.

Therefore, C/Oc and C/N −1 define elliptic curves related by an N-isogeny. As points of

X0(N) correspond to elliptic curves related by N-isogenies, this provides a Heegner point

x1 of X0(N). By the theory of complex multiplication, x1 is defined over H. Let E be

the corresponding elliptic curve. Then E has complex multiplication by Oc. The Heegner
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cycle of conductor c is defined as

er(graph(
√
−D))r−1

for some appropriate projector er, (see Section 3.2 for more details). Let δ be the image

by the p-adic étale Abel-Jacobi map of the Heegner cycle of conductor c viewed as an

element of H1(H,A℘/p). We denote by Fr(v) the arithmetic Frobenius element generating

Gal(Hur
v /Hv), and by Iv = Gal(Hv/Hur

v ). This chapter is dedicated to the proof of the

following statement:

Theorem 1.2.1. Assume that p is such that

Gal
(
Q(A℘/p)/Q

)
' GL2(O℘/p), (p,NDφ(N)) = 1, and p - |G|.

Suppose further that the eigenvalues of Fr(v) acting on AIv
℘ are not equal to 1 modulo p for

v dividing N. Let χ ∈ Ĝ be such that eχδ is not divisible by p. Then the χ-eigenspace Sχ

of the Selmer group S has rank 1 over O℘/p.

To prove Theorem 1.2.1, we first view the p-adic étale realization A of the twisted

motive associated to f in the middle étale cohomology of the associated Kuga-Sato va-

rieties. The main two ingredients of the proof are the refinement of an Euler system of

so-called Heegner cycles first considered by Nekovář and Kolyvagin’s descent machinery

adapted by Nekovář [39] to the setting of modular forms. In order to bound the rank of the

χ-eigenspace of the Selmer group Sχ , we use Local Tate duality and the local reciprocity

law to obtain information on the local elements of the Selmer group. Using a global pairing

of the Selmer group and Cebotarev’s density theorem, we translate this local information

about the elements of Sχ into global information.
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The main novelty is the adaptation of the techniques by Bertolini and Darmon in [3] to

the setting of modular forms that allow us to get around the action of complex conjugation.

Indeed, unlike the case where χ is trivial, the complex conjugation τ does not act on Sχ as

it maps it to Sχ .

3.2 Motive associated to a modular form

In this section, we describe the p-adic étale realization A of the motive associated to

f by Scholl [46] and Deligne [18] twisted by r. Consider the congruence subgroup Γ0(N)

for N ≥ 5 of the modular group SL2(Z)

Γ0(N) =

{a b

c d

 ∈ SL2(Z) | c≡ 0 mod N

}
.

We denote by Y0(N) the smooth irreducible affine curve that is the moduli space classifying

elliptic curves with Γ0(N) level structure, that is elliptic curves with cyclic subgroups of

order N. Equivalently, Y0(N) classifies pairs of elliptic curves related by an N-isogeny.

Over C, we have

H/Γ0(N) ' Y0(N)C : τ 7→
(
C/(Z+Zτ) , 〈 1

N
〉
)
.

We denote by X0(N) the compactification of Y0(N) viewed as a Riemann surface and we

let j be the inclusion map

j : Y0(N) ↪→ X0(N).

The assumption N ≥ 5 allows for the definition of the universal elliptic curve

π : E −→ X0(N).
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Let

Z2 \ (C×H)

be the universal generalized elliptic curve over the Poincaré upper half plane where (m,n)

in Z2 acts on C×H by

(z,τ) 7→ (z+mτ +n,τ).

We denote by E the compact universal generalized elliptic curve of level Γ0(N). Let Wr be

the Kuga-Sato variety of dimension r+1, that is a compact desingularization of the r-fold

fibre product

E ×X0(N) · · ·×X0(N) E ,

(see [18] and the appendix by Conrad in [5] for more details).

Fix a prime p with (p,Nφ(N)) = 1. Consider the sheaf

F = Sym2r−2(R1
π∗Z/p).

Let

Γ2r−2 = (Z/N oµ2)
2r−2 oΣr−2

where µ2 = {±1} and Σ2r−2 is the symmetric group on 2r−2 elements. Then Γ2r−2 acts

on W2r−2, (see [46, Sections 1.1.0,1.1.1] for more details.) The projector

er ∈ Z
[

1
2N(r−2)!

]
[Γ2r−2]

associated to Γ2r−2, called Scholl’s projector, belongs to the group of zero correspondences

Corr0(W2r−2,W2r−2)Q from W2r−2 to itself over Q, (see [4, Section 2.1] for more details.).
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Remark 3.2.1. The hypothesis ((2r− 2)!, p) = 1 is not necessary by a combination of

the work of Tsuji [54] on p-adic comparison theorems and Saito [43] on the Weight-

Monodromy conjecture for Kuga-Sato varieties.

Proposition 3.2.2.

H1
et(X0(N)⊗Q, j∗F )' er⊕r+1

i=0 H i
et(Wr⊗H,Z/p).

Proof. The proof is a combination of [46, theorem 1.2.1] and [5, proposition 2.4]. Note

that the proof in [46, theorem 1.2.1] involves Qp coefficients but it is still valid in our

setting, (see the Remark following [39, Proposition 2.1]).

Define

J = H1
et(X0(N)⊗Q, j∗F ).

For primes ` prime to N, the Hecke operators T` act on X0(N), which induces an endo-

morphism of H1
et(X0(N)⊗Q, j∗F ). Let A be its f -isotypic component with respect to the

action of the Hecke operators. Let

I = Ker{T−→ OF : T` −→ a`,∀` - N}.

Then A = {x ∈ J | Ix = 0} is isomorphic to J/IJ. A is a free OF ⊗Zp module of rank

2, equipped with a continuous OF -linear action of Gal(Q/Q). Hence, there is a map

eA : J −→ A that is equivariant under the action of Hecke operators and Gal(Q/Q).

Consider the étale p-adic Abel-Jacobi map

Φ : CHr(W2r−2/H)0 −→ H1(H,H2r−1
et (W2r−2⊗H,Zp(r)))
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where CHr(W2r−2/H)0 is the group of homologically trivial cycles of codimension 2r−2

on W2r−2 defined over H, modulo rational equivalence. Composing the Abel-Jacobi map

with the projector er, we obtain a map

Φ : CHr(W2r−2/H)0 −→ H1(H,J).

The Abel-Jacobi map commutes with automorphisms of W2r−2, so Φ factors through

er(CHr(W2r−2/H)0⊗Zp).

Proposition 3.2.2 implies that erHr+1(W2r−2⊗H,Zp) = 0. Since

CHr(W2r−2/H)0 = Ker(CHr(W2r−2/H)−→ Hr+1(W2r−2⊗H,Zp)),

we have er(CHr(W2r−2/H)0⊗Zp) = er(CHr(W2r−2/H)⊗Zp). Composing the former

map with the map eA : J −→ A, we get

Φ : erCHr(W2r−2/H)0 −→ H1(H,A).

3.3 Heegner cycles

Consider an integer m such that (m,cNDp) = 1. Recall that H = Kc is the ring class

field of K of conductor c. We denote by

Hm = Kcm

the ring class field of K of conductor cm for m > 1. We describe Nekovář’s construction

of Heegner cycles as in [39, Section 5].
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By the Heegner hypothesis, there is an ideal N of Ocm, the order of K of conductor

cm, such that

Ocm/N = Z/NZ.

Therefore, C/Ocm and C/N −1 define elliptic curves over C related by an N-isogeny. As

points of X0(N) correspond to elliptic curves over C related by N-isogenies, this provides

a Heegner point xm of X0(N). By the theory of complex multiplication, xm is defined over

the ring class field Hm of K of conductor cm, (see [26] for more details). Let E be the

elliptic curve corresponding to xm. Then E has complex multiplication by Ocm. Letting

graph(
√
−D) be the graph of the multiplication by

√
−D on E, we denote by ZE the image

of the divisor

(graph(
√
−D)−E×0−D(0×E))

in the Néron-Severi group NS(E ×E) of E ×E, that is, the group of divisors of E ×E

modulo algebraic equivalence. Consider the inclusion

i : E2r−2 −→W2r−2.

Then i∗(Zr−1
E ) belongs to the Chow group CHr(W2r−2/Hm)0. Denote by ym the image of

i∗(Zr−1
E ) by the p-adic étale Abel-Jacobi map

Φ : CHr(W2r−2/Hm)0 −→ H1(Hm,A)

as described in [31] and briefly explained in Chapter 2, Section 2.1. We consider two

crucial properties of the Galois cohomology classes thus obtained from Heegner cycles.
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Proposition 3.3.1. Consider cocycles yn and ym with n = `m, where ` is a prime inert in

K. Then

T`ym = corHn/Hmyn = a`ym.

Proof. Let Em be the elliptic curve corresponding to xm. Then, we have

T`(i∗(Zr−1
Em

)) = ∑
y

i∗(Zr−1
Ey

),

where the elements y ∈ Y0(N) correspond to `-isogenies Ey → Em compatible with level

Γ0(N) structure. The set {y} consists of the orbit of xn in

Gal(Hn/Hm)' Gal(Kn/Km)' Gal(K`/K1).

Let En be the elliptic curve corresponding to xn. We have

∑
y

i∗(Zr−1
Ey

) = ∑
g∈Gal(Hn/Hm)

g · i∗(Zr−1
En

) = corHn/Hmi∗(Zr−1
En

).

Since the action of the Hecke operators commutes with the Abel-Jacobi map, we obtain

T`ym = corHn/Hmyn.

The equality

T`ym = a`ym

follows from the definition of A on which Hecke operators T` act by a`.

We denote by (yn)v the image of an element yn ∈ H1(Hn,A) in H1(Hn,v,A).
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Proposition 3.3.2. Consider cocycles yn and ym with n = `m, where ` is a prime inert in

K. Let λm be a prime above ` in Km and λn the prime above λm in Kn. Then

(yn)λn = Fr(`)(resKλm ,Kλn
(ym)λm) in H1(Kλn,A).

Proof. The proof can be found in [39, proposition 6.1(2)].

3.4 The Euler system

Let n = `1 · · ·`k be a squarefree product of primes `i inert in K satisfying

(`i,DN pc) = 1 for i = 1, · · · ,k.

The Galois group Gn = Gal(Hn/H) is isomorphic to the product over the primes ` dividing

n of the cyclic groups Gal(H`/H) of order `+1. Let σ` be a generator of G`. We denote

by O℘, the completion of OF at a prime ℘ dividing p. Then OF ⊗Zp = ⊕℘|pO℘. Let

A℘ = A⊗OF⊗Zp O℘ be the localization of A at ℘. Denote by

yn,℘∈ H1(Hn,A℘)

the ℘-component of yn ∈ H1(Hn,A). In this section, we use Operators (3.2) considered

by Kolyvagin to define Kolyvagin cohomology classes P(n) ∈ H1(H,A℘/p) using the

cohomology classes yn ∈ H1(Hn,A) for appropriate n. Let

L = H(A℘/p)

be the smallest Galois extension of H such that Gal(Q/L) acts trivially on A℘/p. We will

denote by FrobF1/F2(α), the conjugacy class of the Frobenius substitution of the prime α

of F2 in Gal(F1/F2).

38



A prime ` will be referred to as a Kolyvagin prime if it is such that

(`,DN pc) = 1 and Frob`(L/Q) = Frob∞(L/Q),

where Frob∞(L/Q) refers to the conjugacy class of complex conjugation. Given a Koly-

vagin prime `, the Frobenius condition implies that it is inert in K. Denote by λ the

unique prime in K above `. Since λ is unramified in H and has the same image as

Frob∞(L/K) = τ2 = Id by the Artin map, it splits completely in H. Let λ ′ be a prime

of H lying above λ , then λ ′ splits completely in L as it lies in the kernel of the Artin map:

Frobλ ′(L/H) = τ
2 = Id.

The Frobenius condition also implies that

a` ≡ `+1≡ 0 mod p. (3.1)

Indeed, the characteristic polynomial of the complex conjugation acting on A℘/p is x2−1

while the characteristic polynomial of Frob(`) is

x2−a`/`rx+1/`.

The latter corresponds to the polynomial x2− a`x+ `2r−1 where we make the change of

variable x→ `rx dictated by the Tate twist r of Yp. As a consequence, we obtain the

polynomial

x2`2r−a``rx+ `2r−1 = `2r(x2−a`/`rx+1/`).
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Let

Tr` =
`

∑
i=0

σ
i
`, D` =

`

∑
i=1

iσ i
`. (3.2)

These operators are related by

(σ`−1)D` = `+1−Tr`.

We define Dn = ∏`|n D` in Z[Gn]. And we denote by red(x) the image of an element x of

H1(Hn,A℘) in H1(Hn,A℘/p) obtained by composing x with the projection

A℘−→ A℘/p.

Proposition 3.4.1. We have

Dnred(yn,℘) belongs to H1(Hn,A℘/p)Gn.

Proof. It is enough to show that for all ` dividing n,

(σ`−1)Dnred(yn,℘) = 0

in H1(Hn,A℘/p). We have

(σ`−1)Dn = (σ`−1)D`Dm = (`+1−Tr`)Dm.

Since resHm,Hn ◦ corHn/Hm = Tr`, Proposition 3.3.1 implies

(`+1−Tr`)Dmred(yn,℘) = (`+1)Dmred(yn,℘)−a`resHm,Hn(Dmred(ym,℘)).

The latter is congruent to 0 modulo p by Equation (3.1).
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Proposition 3.4.2. For n such that (n,cpND) = 1, we have

H0(Hn,A℘/p) = H0(Q,A℘/p) = 0,

and Gal(Hn(A℘/p)/Hn)' Gal(H(A℘/p)/H)' Gal(K(A℘/p)/K)' Gal(Q(A℘/p)/Q).

Proof. Indeed, Hn/Q and Q(A℘/p)/Q are unramified outside primes dividing cnD and

N p respectively, so Hn ∩Q(A℘/p) is unramified over Q. Since Q has no unramified

extensions, we obtain that Hq∩Q(A℘/p) =Q, and therefore H0(Hq,A℘/p) = H0(Q,Yp).

The hypothesis Gal(Q(A℘/p)/Q) ' GL2(O℘/p) further implies that H0(Q,A℘/p) = 0.

The result follows.

Proposition 3.4.3. The restriction map

resH,Hn : H1(H,A℘/p)−→ H1(Hn,A℘/p)Gn

is an isomorphism for (n,cpND) = 1.

Proof. This follows from the inflation-restriction sequence:

0→ H1(Hn/H,A℘/p)
in f−−→ H1(H,A℘/p) res−→ H1(Hn,A℘/p)Gn → H2(Hn/H,A℘/p)

using the fact that H0(Hn,A℘/p) = 0 by Proposition 3.4.2.

As a consequence, the cohomology classes Dnred(yn,℘) can be lifted to cohomology

classes P(n) in H1(H,A℘/p) such that

resH,HnP(n) = Dnred(yn,℘).
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Proposition 3.4.4. Let v be a prime of H. If v|N, then P(n)v is trivial. If v - Nnp, then

P(n)v lies in H1(Hur
v /Hv,A℘/p).

Proof. If v divides N, we follow the proof in [39, lemma 10.1]. We denote by

(A℘/p)dual = Hom(A℘/p,Z/pZ(1))

the local Tate dual of A℘/p. The local Euler characteristic formula [37, Section 1.2] yields

|H1(Hv,A℘/p)|= |H0(Hv,A℘/p)|× |H2(Hv,A℘/p)|.

Local Tate duality then implies

|H1(Hv,A℘/p)|= |H0(Hv,A℘/p)|2.

The Weil conjectures and the assumption on Fr(v) imply that ((A℘/p)Iv)Fr(v) = 0 where

< Fr(v)> = Gal(Hur
v /Hv)

and Iv = Gal(Hv/Hur
v ) is the inertia group. (See Section 2.6 for more details). Therefore,

((A℘/p)Iv)G(Hur
v /Hv) = (A℘/p)G(Hv/Hv) = H0(Hv,A℘/p) = 0.

To prove the second assertion, if v does not divide Nnp, we observe that

resH,HnP(n)v = Dnred(yn,℘)v′

belongs to H1(Hur
n,v′/Hn,v′,A℘/p) and Hn,v′/Hv is unramified for v′ in Hn above v.
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3.5 Localization of Kolyvagin classes

Nekovář [39] studied the relation between the localization of Kolyvagin cohomology

classes P(m`) and P(m), for appropriate m and ` by explicitly computing cocycles using

the Euler system properties. We briefly explain his development in this section.

Set up. We denote by

G1 = Gal(Q/H1), G` = Gal(Q/H`), G̃1 = Gal(Q/H+
1 ),

and Gλ1 = Gal(Q`/H1,λ1), Gλ`
= Gal(Q`/H`,λ`

), G̃λ1 = Gal(Q`/Q`),

where H+
1 is the maximal real subfield of H1. Then

G1/G` =< σ >, G̃1/G1 =< τ >, G̃1/G` = Gal(H`/H+) =< σ >o< τ >

for some σ and τ of order `+1 and 2 respectively. There is a surjective homomorphism

π : G̃λ1

res−→ Gal(Qt
`/Q`) = Ẑ

′
(1)o2Ẑ,

where

Gal(Qt
`/Q

ur
` )' Ẑ

′
(1) = ∏

q6=`

Z`

is generated by an element τ` and

Gal(Qur
` /Q`)' Ẑ

is generated by the Frobenius element φ at ` and φτ`φ
−1 = (τ`)

`. One can show that

H1(Gλ1,A℘/p) = H1(Gλ`
,A℘/p)' H1(2Ẑ,A℘/p)' (A℘/p)/((φ 2−1)A℘/p)
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and a cocycle F in Z1( Ẑ′(1)o2Ẑ, A℘/p) acts by

F(τu
` φ

2v) = (1+φ
2 + · · ·+φ

2(v−1))a+(φ 2−1)b,

where [F ] = a mod (φ 2−1)A℘/p.

Proposition 3.5.1. We have(
`+1

p
ε− a`

p

)
γ(P(m)λ1) =

a`ε/`r−1/`−1
p

P(`m)λ1 (3.3)

where γ is the map defined by (2.2), λ1 is a prime of H1 dividing `, and ε =±1. Further-

more, P(`m)λ1 is unramified at `.

Proof. We denote by

x = Dmym ∈ H1(G1,A℘/p), and y = Dmy`m ∈ H1(G`,A℘/p).

Let z = P(`m) in H1(G1,A℘/p). Then

resG1,G`
(z) = D`red(y) ∈ H1(G`,A℘/p).

For a in A℘/p, we have

D`a =
`

∑
i=1

iσ i(a) =
`

∑
i=1

i =
`(`+1)

2
≡ 0 mod p.

Therefore, resG1,Gλ`
(z) = 0, which implies that P(`m)λ1 is ramified at a place λ1 of H1

above `. Hence, using the inflation-restriction sequence

0−→ H1(Gλ1/Gλ`
,A℘/p)−→ H1(Gλ1,A℘/p)−→ H1(Gλ`

,A℘/p)−→ 0,
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we obtain

P(`m)λ1 = resG1,Gλ1
(z) = infGλ1

/Gλ`
,Gλ1

(z1)

for some

z1 ∈ H1(Gλ1/Gλ`
,A℘/p) = Hom(< σ >,A℘/p).

Since corG`,G1(y) = a`x, there is an element a in A℘/p such that

corG`,G1(y)(g1)−a` x(g1) = (g1−1)a (3.4)

for g1 in G1. It is shown in [39, section 7] that

a = z1(σ).

We let

ax = resG,Gλ1
(x), and ay = resH,Gλ`

(y).

Restricting g1 to gλ1 ∈ Gλ1 in equation (3.4) where π(gλ1) = σuφ 2v, we obtain

`

∑
i=0

ay(σ̃
−igλ1σ̃

i)−a`ax(gλ1) = (`+1)ay(gλ1)−a`ax(gλ1) = (φ 2−1)a,

where σ̃ is a lift of σ in G1/G` to G1. We have

x(gλ1) = (1+φ
2 + · · ·+φ

2(v−1))ax +(φ 2−1)bx,

& y(gλ1) = (1+φ
2 + · · ·+φ

2(v−1))ay +(φ 2−1)by.

For u = 0,v = 1, we obtain from the last three equations

(`+1)y(gλ1)−a`x(gλ1) = (φ 2−1)a+(φ 2−1)(−a`bx +(`+1)by), (3.5)
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where

(φ 2−1)(−a`bx +(`+1)by) = 0 mod p

as a` ≡ `+1≡ 0 mod p. The second property of the Euler system

ay = φ(ax) mod (φ 2−1) A℘/p

implies that
`+1

p
y(gλ1)−

a`
p

x(gλ1) =

(
`+1

p
ε− a`

p

)
x(gλ1)

where ε is such that φ ≡ τ acts by ε on ax. Therefore, by Equation (3.5),(
`+1

p
ε− a`

p

)
x(gλ1) =

φ 2−1
p

a mod p.

The characteristic polynomial of φ implies that

φ
2−a`φ/`r +1/`= 0 on A℘/p.

Therefore, (
`+1

p
ε− a`

p

)
x(gλ1) =

a`φ/`r−1/`−1
p

a≡ a`ε/`r−1/`−1
p

a.

We seek to express a= z1(σ) in terms of P(`m)λ1 = infGλ1
/Gλ`

,Gλ1
(z1) where the generator

σ of Gλ1/Gλ`
can be lifted to the generator τ` of Gλ1 = Gal(Ht

λ1
/Hur

λ1
). It is therefore

enough to apply the map γ defined by (2.2) to a to obtain P(`m)λ1 where γ switches

cocycles with same values on Frob(`) and τ`. The result follows.
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3.6 Statement

Recall that the Galois group G = Gal(H/K) where H is the ring class field of K of

conductor c acts on H1(H,A℘/p). We denoted by

Ĝ = Hom(G,µe)

the group of characters of G and by

eχ =
1
|G| ∑g∈G

χ
−1(g)g

the projector onto the χ-eigenspace given a character χ of Ĝ. We let

δ = red(y1) in H1(H,A℘/p).

Then eχδ belongs to the χ-eigenspace of H1(H,A℘/p). We recall the statement of the

theorem we prove.

Theorem 1.2.1. Assume that p is such that

Gal
(
Q(A℘/p)/Q

)
' GL2(O℘/p), (p,NDφ(N)) = 1, and p - |G|. (3.6)

Suppose further that the eigenvalues of Fr(v) acting on AIv
℘ are not equal to 1 modulo p

for v dividing N. Assume χ ∈ Ĝ is such that eχδ is non-zero. Then the χ-eigenspace Sχ

of the Selmer group S has rank 1 over O℘/p.

Set up of the proof. Consider the prime λ of K lying above a prime ` inert in Q and

let λ ′ be a prime of H above λ . The self-duality of A℘/p given by

A℘/p' Hom(A℘/p,Z/pZ(1)),
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where Hom(A℘/p,Z/pZ(1)) is the Tate dual of A℘/p and local Tate duality as explained

in Section 2.5 gives a perfect pairing

〈., .〉λ ′ : H1(Hur
λ ′ /Hλ ′,(A℘/p)I

λ ′ )×H1(Hur
λ ′ ,A℘/p)−→ Z/pZ,

where Iλ ′ = Gal(Hλ ′/Hur
λ ′ ) and O℘-linear isomorphisms

{H1(Hur
λ ′ ,A℘/p)}dual ' H1(Hur

λ ′ /Hλ ′,(A℘/p)I
λ ′ )' (A℘/p)I

λ ′/(φ −1). (3.7)

where φ is the arithmetic Frobenius element generating Gal(Hur
λ ′ /Hλ ′). Recall that the

Selmer group S ⊆ H1(H,A℘/p) consists of the cohomology classes whose localizations

lie in H1(Hur
v /Hv,A℘/p) for v not dividing N p and in H1

f (Hv,A℘/p) for v dividing p.

Here, H1
f (Hv,A℘/p) is the finite part of H1(Hv,A℘/p) as in [9]. We denote by

resλ : H1(H,A℘/p)−→⊕λ ′|λ H1(Hλ ′ ,A℘/p)

the direct sum of the restriction maps from H1(H,A℘/p) to H1(Hλ ′,A℘/p) for λ ′ dividing

λ in H. Restricting resλ to the Selmer group, we obtain the following map

resλ : S−→⊕λ ′|λ H1(Hur
λ ′ /Hλ ′,(A℘/p)I

λ ′ ).

Taking the (Z/p)-linear dual of the previous map and using isomorphism (3.7), we obtain

a homorphism

ψ` :⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)−→ Sdual.

Let

X` = Im(ψ`)
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be the image of ψ` in Sdual . We aim to bound Sdual from above by using the Kolyvagin

classes P(n) introduced in Section 3.4 to produce explicit elements in the kernel of ψ`.

3.7 Generating the dual of the Selmer group

Lemma 3.7.1. We have

H1(Aut(A℘/p),A℘/p) = 0.

Proof. Sah’s lemma [35, 8.8.1] states that if G is a group, M a G-representation, and g an

element of Center(G), then the map x −→ (g−1) x is the zero map on H1(G,M). In our

context, since

g = 2I ∈ Aut(A℘/p)

belongs to Center(Aut(A℘/p)), we have that g− I = I is the zero map on the group

H1(Aut(A℘/p),A℘/p) and the result follows.

Proposition 3.7.2. There exists a prime q such that q is a Kolyvagin prime, and such that

resβ ′eχδ 6= 0,

where β ′ is a prime dividing q in H.

Proof. For the purpose of this proof, we denote the cocycle eχδ by c1 and the Galois group

G(L/H) by G. By Proposition 3.4.4, c1 belongs to Sχ . The restriction map

r : H1(H,A℘/p)−→ H1(L,A℘/p)G = HomG(L,A℘/p)

is injective. Indeed, Proposition 3.4.2 and Proposition 3.7.1 imply that

Ker(r) = H1(H(A℘/p)/H,A℘/p) = 0.
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Consider the evaluation pairing

r(Sχ)×Gal(Q/L)−→ A℘/p

and let GalS(Q/L) be the annihilator of r(Sχ). Let LS be the extension of L fixed by

GalS(Q/L) and denote by GS the Galois group Gal(LS/L). We obtain an injective homo-

morphism of Gal(H/Q)-modules

r(Sχ) ↪→ HomG(GS,A℘/p).

We denote by s the image of r(c1) in HomG(GS,A℘/p).

If s(G+
S ) = 0, then as s belongs to S±, we have

s : G−S −→ A℘/p±,

where A℘/p± are the ± eigenspaces of A℘/p with respect to the action of τ . On the one

hand, the eigenspace A℘/p± is of rank one over O℘/p. On the other hand, by Proposition

3.4.2 and Assumption (3.6),

G = G(L/H)' GL2(O℘/p).

Hence, A℘/p± has no non-trivial G-submodules and s(G−S ) = 0, that is s = 0. This is a

contradiction because c1 6= 0 in Sχ as c1 is not divisible by p in Sχ . As a consequence, we

have that s(G+
S ) 6= 0, where

G+
S = Gτ+1

S = {hτh | h in GS}= {(τh)2 | h in GS}.

50



Therefore, there exists h in GS such that c1((τh)2) 6= 0. Consider the element τh in

Gal(LS/Q). Cebotarev’s density theorem, (see Chapter 2, Theorem 2.1 for more details)

implies the existence of q in Q such that

Frobq(LS/Q) = τh

and such that (q,cpND) = 1. In particular, q is a Kolyvagin prime since res|L(τh) = τ .

For β in L above q, we have that

Frobβ (L
S/L) = (τh)2

generates the local extension LS/L at β . This implies that resβ ′c1 does not vanish for

β ′ = β ∩H.

We consider the restriction d of an element c of H1(H,A℘/p) to H1(F,A℘/p). Then

d factors through some finite extension F̃ of F . We denote by

F(c) = F̃ker(d)

the subextension of F̃ fixed by ker(d). Note that F(c) is an extension of F .

Consider the following extensions

I01 = I0I1

I0 = F(red(y1,℘))Gal

55

I1 = F(Dqred(yq,℘))Gal

jj

F = Hq(A℘/p)
V1

55

V0

ii
V

OO
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where the abbreviation Gal indicates taking Galois closure over Q. We define

V0 = Gal(I0/F), V1 = Gal(I1/F), and V = Gal(I0I1/F).

We have an isomorphism of Aut(A℘/p)-modules V0 'V1 ' A℘/p. Let

Iχ

0 = F(eχ red(y1,℘))Gal and Iχ

1 = F(eχDqred(yq,℘))Gal.

We denote by V χ

0 and V χ

1 their respective Galois groups over F . We will show that

V χ = Gal(Iχ

0 Iχ

1 /F)'V χ

0 ×V χ

1 .

Proposition 3.7.3. The extensions Iχ

0 and Iχ

1 are linearly disjoint over F.

Proof. Linearly independent cocycles c1,c2 of H1(Hq,A℘/p) over O℘/p can be viewed as

linearly independent homomorphisms h1,h2 in HomGal(F/Hq)(V,A℘/p) over O℘/p. The

restriction map

H1(Hq,A℘/p)Gal(F/Hq) (r)−→ H1(F,A℘/p)Gal(F/Hq)

is injective. Indeed, combining Proposition 3.4.2 with Proposition 3.7.1 that implies that

H1(K(A℘/p)/K,A℘/p) = 0,

we obtain that

Ker(r) = H1(F/Hq,A℘/p) = 0.

Furthermore, cocycles of H1(F,A℘/p)Gal(F/Hq) factor through

H1(I01/F,A℘/p)Gal(F/Hq) = HomGal(F/Hq)(I01/F,A℘/p).

52



Consider the extension Iχ

0 ∩ Iχ

1 of F . It is a Gal(F/Hq)-submodule of A℘/p. The hypoth-

esis resβ ′eχ red(y1,℘) 6= 0 implies that

resβ ′eχ red(Dqyq,℘) 6= 0

by (3.3.2). On the one hand, since resβ ′eχ red(Dqyq,℘) is ramified, eχDqred(yq,℘) does

not belong to Sχ . On the other hand, eχ red(y1,℘) 6= 0 belongs to Sχ by Proposition 3.4.4.

Therefore Iχ

0 ∩ Iχ

1 = 0 since A℘/p is a simple Gal(F/Hq)-module. Note that the cocycles

c1 and c2 cannot be linearly dependent either since one of them belongs to Sχ while the

other one does not.

For a subset U ⊆V , we denote by

L(U) = {` rational prime |Frob`(I01/Q) = [τu],u ∈U}.

Note that a rational prime ` in L(U) is a Kolyvagin prime as

Frob`(H(A℘/p)/Q) = res|H(A℘/p)Frob`(I01/Q) = τ

since u ∈U . In fact, it satisfies

Frob`(Hq(A℘/p)/Q) = res|Hq(A℘/p)Frob`(I01/Q) = τ.

Hence, a prime above ` in H splits completely in Hq. Indeed, it lies in the kernel of the

Artin map because of the Frobenius condition

Frob`(Hq/H) = τ
|D(H/Q)| = τ

2 = Id,
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where |D(H/Q)| is the order of the decomposition group D(H/Q), also the order of the

residue extension. Similarly, a prime above ` in Hq splits completely in Hq(A℘/p); it lies

in the kernel of the Artin map because of the Frobenius condition

Frob`(Hq(A℘/p)/Hq) = τ
|D(Hq/Q)| = τ

2 = Id.

Proposition 3.7.4. Assume U+ generates V+. Then {X`}`∈L(U) generates Sdual .

Proof. The proof consists of the following steps:

1. An element s of S can be identified with an element h of HomG(F,A℘/p).

2. To show the statement of the theorem, it is enough to show that resλ (s) = 0 for all

` ∈ L(U) implies s = 0.

3. The assumption resλ (s) = 0 for all ` ∈ L(U) implies that h vanishes on U+.

4. The assumption U+ generates V+ implies h = s = 0.

1. Let s be an element of S. For the purpose of this proof, we denote

G = Gal(H(A℘/p)/H)' GL2(O℘/p).

We denote by h the image of s by restriction in

H1(F,A℘/p)G ⊂ HomG(Gal(F/F),A℘/p).

Here, restriction can be viewed as the composition of the following two restriction maps

H1(H,A℘/p)
(r1)−−→ H1(H(A℘/p),A℘/p)G (r2)−−→ H1(F,A℘/p)G.
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Combining Proposition 3.4.2 and 3.7.1 we obtain that

Ker(r1) = H1(H(A℘/p)/H,A℘/p) = 0.

By Proposition 3.4.2, we have

Gal(Hq(A℘/p)/H(A℘/p))' Gal(Hq/H)' Z/(q+1)Z.

On the one hand, the group G acts trivially on Gal(Hq(A℘/p)/H(A℘/p)). On the other

hand, A℘/p is simple as a G-module. Hence,

Ker(r2) = HomG(Gal(F/H(A℘/p)),A℘/p)' HomG(Hq/H,A℘/p) = 0

since such a G-homomorphism maps an element of Gal(Hq/H) to a G-invariant element

of A℘/p, that is, to 0.

2. By Isomorphism (3.7), local Tate duality identifies ⊕λ ′|λ H1(Hur
λ ′ ,A℘/p) with

⊕λ ′|λ H1(Hur
λ ′ /Hλ ′,(A℘/p)I

λ ′ ).

So if we show that

{resλ}`∈L(U) : S−→ {⊕λ ′|λ H1(Hur
λ ′ /Hλ ′,(A℘/p)I

λ ′ )}`∈L(U)

is injective, then the induced map between the duals

{⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)}`∈L(U) −→ Sdual

would be surjective. Hence, it is enough to show that resλ (s) = 0 for all ` ∈ L(U) implies

s = 0.
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3. Consider ˜I01, the minimal Galois extension of Q containing I01 such that h factors

through Gal( ˜I01/F). Let x be an element of Gal( ˜I01/F) such that x|I01 belongs to U .

By Cebotarev’s density theorem, there exists ` in L(U) such that Frob`( ˜I01/Q) = [τx].

The hypothesis resλ (s) = 0 implies that h(Frobλ ′′( ˜I01/F)) = 0 for λ ′′ above ` in F since

Frobλ ′′( ˜I01/F) is a generator of the local extension of Gal( ˜I01/F) at λ ′′. In fact,

Frobλ ′′( ˜I01/F) = (τx)|D(F/Q)| = (τx)2 = xτx = 2x+,

where |D(F/Q)| is the order of the decomposition group D(F/Q), and is also the order

of the residue extension and x+ =
1
2

xτx. Therefore, h(x+) = 0 for all x ∈ Gal( ˜I01/F) such

that x|I01 belongs to U .

4. The hypothesis U+ generates V+ then implies that h vanishes on Gal( ˜I01/F)+. Hence,

Im(h) lies in A℘/p−, the minus eigenspace of A℘/p for the action of τ which is a free

O℘/p-module of rank 1. In particular, it cannot be a proper non-trivial G-submodule of

A℘/p. Therefore, h = 0 which implies s = 0.

Next, we study the action of complex conjugation on the χ-component of the cocycles

yq,℘.

Proposition 3.7.5. There is an element σ0 in Gal(Hq/K) such that

τeχyq,℘ = εχ(σ0)eχyq,℘,

where −ε is the sign of the functional equation of L( f ,s).

56



Proof. [39, proposition 6.2] that uses a result in [26] states that

τyq,℘ = εσ0yq,℘ (3.8)

for some σ0 in Gal(Hq/K). Since τ acts on an element g of G by

τgτ
−1 = g−1,

we have

τeχ =
1
|G| ∑g∈G

τχ
−1(g)g =

1
|G| ∑g∈G

χ(g−1)g−1
τ =

1
|G| ∑g∈G

χ
−1(g−1)g−1

τ = eχτ.

Also,

eχσ0 =
1
|G| ∑g∈G

χ
−1(g)σ0g =

1
|G| ∑g∈G

χ(σ0)χ
−1(σ0g)σ0g = χ(σ0)eχ .

Therefore, applying eχ to Equation (3.8) yields

τeχyq,℘ = εχ(σ0)eχyq,℘.

Let us look at the action of complex conjugation on V χ =V χ

0 V χ

1 . For (v0,v1) in V0V1,

we use the identity τDq =−Dqτ mod p to obtain

τv0τ(eχy1,℘) = εχ(σ0)τv0(eχy1,℘).

τv1τ(eχDqyq,℘) =−τv1Dqτ(eχyq,℘) =−εχ(σ0)τv1(eχDqyq,℘).
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When χ = χ , for (x,y) in V χ

0 V χ

1 ,

τ(x,y)τ = (εχ(σ0)τx,−εχ(σ0)τy).

In this case, we define

U = {(x,y) in V0×V1|εχ(σ0)τx+ x,−εχ(σ0)τy+ y generate A℘/p}.

When χ 6= χ , for (x,y,z,w) in V χ

0 V χ

0 V χ

1 V χ

1 =V,

τ(x,y,z,w)τ = (εχ(σ0)τy,εχ(σ0)τx,−εχ(σ0)τw,−εχ(σ0)τz).

In this case, we define

U = {(x,y,z,w) in V χ

0 V χ

0 V χ

1 V χ

1 |εχ(σ0)τx+ y,−εχ(σ0)τz+w generate A℘/p}.

In both cases, Proposition 3.7.3 and Congruence (3.1) imply that U+ generates

V+ 'V+
0 ×V+

1 ' O℘/p×O℘/p' A℘/p.

Let ` be a prime in L(U), and let λ be the prime of K lying above it.

Proposition 3.7.6. The elements

resλ eχP(`) and resλ eχP(`q)

generate ⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)χ .

Proof. We have

⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)χ '⊕λ ′|λ

(
(A℘/p)I

λ ′/(φ −1)
)χ
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since the former is isomorphic to its dual by Isomorphism (3.7). The module

⊕λ ′|λ
(
(A℘/p)I

λ ′/(φ −1)
)χ

is of rank at most 2 over O℘/p, hence, so is ⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)χ . The Frobenius condi-

tion on ` implies that

resλ eχ red(y1,℘) and resλ eχDqred(yq,℘)

are linearly independent over ⊕λ ′|λ A℘/p. Indeed, if they were linearly dependent then, in

the case χ = χ ,

(resλ eχ red(y1,℘))(τx)2
− resλ eχ red(y1,℘)

and (resλ eχDqred(yq,℘))(τy)2
− resλ eχDqred(yq,℘)

where Frob`(I01/Q) = τu = (τx,τy) would also be linearly dependent. The Frobenius

condition implies that

Frob`(I
χ

0 /F) = xτx = (τx)2 and Frob`(I
χ

1 /F) = yτy = (τy)2

generate A℘/p, which yields a contradiction as (τx)2 acts on the element resλ eχ red(y1,℘)

generating the local extension of Iχ

0 over F by

(resλ eχ red(y1,℘))(τx)2
− resλ eχ red(y1,℘)

and (τy)2 acts on the element resλ eχDqred(yq,℘) generating the local extension of Iχ

1 over

F by

resλ eχDqred(yq,℘))(τy)2
− resλ eχDqred(yq,℘).
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Similarly, in the case χ 6= χ ,

(resλ eχ red(y1,℘))xτ y− resλ eχ red(y1,℘)

and (resλ eχDqred(yq,℘))zτ w− resλ eχDqred(yq,℘)

where Frob`(I01/Q) = τu = (τx,τy,τz,τw) would also be linearly dependent. The Frobe-

nius condition implies that

Frob`(I
χ

0 /F) = xτy = (τx)(τy) and Frob`(I
χ

1 /F) = zτw = (τz)(τw)

generate A℘/p, which yields a contradiction.

Equation (3.3) implies that if resλ eχP(`q) and resλ eχP(`) were linearly dependent

then

resλ eχP(q) = resλ eχDqredyq,℘ and resλ eχP(1) = resλ eχ redy1,℘

would be linearly dependent as well.

3.8 Bounding the size of the dual of the Selmer group

In what follows, we study the modules X χ

` for ` in L(U).

Proposition 3.8.1. We have

∑
λ ′|`|n
〈sλ ′, resλ ′P(n)〉λ ′ = 0.

Proof. The proof follows [39, proposition 11.2(2)] where both the reciprocity law, (see

Chapter 2, Section 2.4 for more details) and the local ramification properties of P(n) in

Proposition 3.4.4 are used.

Proposition 3.8.2. The element ψ`(resλ eχP(`q)) generates X χ

` over O℘/p for ` in L(U).
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Proof. The image of resλ eχP(`) by the map

ψ` :⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)χ −→ X χ

`

is the homomorphism from Sχ to Z/p given by:

eχs 7→ ∑
λ ′|λ
〈eχsλ ′,eχP(`)λ ′〉λ ′.

Proposition 3.8.1 implies that

∑
λ ′|λ
〈eχsλ ′,eχP(`)λ ′〉λ ′ = 0.

Hence, the image by ψ` of resλ eχP(`), one of the two generators of

⊕λ ′|λ H1(Hur
λ ′ ,A℘/p)χ

by Proposition 3.7.6, is trivial.

Proposition 3.8.3. The modules X χ

` that are non-zero are all equal for ` ∈ L(U).

Proof. Proposition 3.8.1 implies that

∑
λ ′|λ
〈eχsλ ′,eχP(`q)λ ′〉+ ∑

β ′|β
〈eχsβ ′,eχP(`q)β ′〉= 0.

Hence,

ψ`(resλ eχP(`q))+ψq(resβ eχP(`q)) = 0.

If ψ`(resλ eχP(`q)) = 0, then by Proposition 3.8.2, X χ

` = 0. Otherwise, since

ψ`(resλ eχP(`q))
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generates X χ

` over O℘/p, we have that

−ψ`(resλ eχP(`q)) = ψq(resβ eχP(`q)) ∈ X χ
q

is non-zero. Therefore, the non-trivial element ψq(resβ eχP(`q)) generates a rank 1 module

X χ
q over O℘/p and X χ

` = X χ
q .

In what follows, we prove theorem 1.2.1.

Proof. By Proposition 3.7.4, the set {X χ

` } generates Sdual,χ as ` ranges over L(U). Hence,

the set {X χ

` } generates Sdual,χ as ` ranges over L(U), where, by Proposition 3.8.2, the mod-

ules X χ

` that are non-zero are of rank 1 over O℘/p and are all equal. Hence, rank(Sχ)≤ 1.

Also, eχ red(y1,℘) belongs to Sχ by Proposition 3.4.4 and is not divisible by p in Sχ . In-

deed, this follows from the hypothesis on eχ red(y1,℘) and Proposition 3.7.5 where χ(σ0)

is a root of unity since Gal(H/K) is a finite group. This implies that rank(Sχ)≥ 1. There-

fore,

rank(Sχ) = rank(Sdual,χ) = 1.

Remark 3.8.4. Because the p-adic Abel-Jacobi map factors through the Selmer group,

(see [39, Proposition 11.2.1] for a proof)

Φ
χ : CHr(W2r−2/H)

χ

0 ⊗O℘/pO℘−→ Sχ ,

Theorem 1.2.1 implies that rankO℘/p(Im(Φχ)) = 1.

Remark 3.8.5. In Kolyvagin’s argument for elliptic curves E over Q and certain imaginary

quadratic fields K, the non- triviality of the Heegner point yK in E(K)/pE(K) for suitable
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primes p immediately implied the non-triviality of yK in Selp(E/K). In our situation,

even though the p-adic Abel-Jacobi map is conjectured to be injective, it is non-trivial

to check whether a non-trivial Heegner cycle in the Chow group has non-trivial image in

H1(H,A℘/p).
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CHAPTER 4
On the Selmer group attached to a modular form and an algebraic Hecke character

4.1 Introduction

Kolyvagin [34, 27] constructs an Euler system based on Heegner points and uses it to

bound the size of the Selmer group of certain (modular) elliptic curves E over imaginary

quadratic fields K assuming the non-vanishing of a suitable Heegner point. In particular,

this implies that

rank(E(K)) = 1,

and the Tate-Shafarevich group X(E/K) is finite. Bertolini and Darmon adapt Kolyva-

gin’s descent to Mordell-Weil groups over ring class fields [3]. More precisely, they show

that for a given character χ of Gal(Kc/K) where Kc is the ring class field of K of conductor

c,

rank(E(Kc)
χ) = 1

assuming that the projection of a suitable Heegner point is non-zero. Nekovář [39] adapts

the method of Euler systems to modular forms of higher even weight to describe the image

by the Abel-Jacobi map Φ of Heegner cycles on the associated Kuga-Sato varieties, hence

showing that

dimQp(Im(Φ)⊗Qp) = 1

assuming the non-vanishing of a suitable Heegner cycle. In Chapter 3, we combined

these two approaches to study modular forms of higher even weight twisted by ring class
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characters of imaginary quadratic fields and showed that

dimQp(Im(Φ)⊗Qp) = 1

assuming the non-vanishing of a suitable generalized Heegner cycle. In this chapter, we

study the Selmer group associated to a modular form of even weight r+2 and an unram-

ified algebraic Hecke character ψ of infinity type (r,0). The case of a Hecke character of

infinity type (0,0) corresponds to the setting of Nekovář’s work [39] and its generalization

in Chapter 3. Our setting involves the generalized Heegner cycles introduced by Bertolini,

Darmon and Prasanna in [5].

Our motivation stems from the Beilinson-Bloch conjecture that predicts that

dimQ(Im(Φ)⊗Q) = ords=r+1L( f ⊗θψ ,s),

where θψ is the theta series associated to ψ [44, 32].

Let f be a normalized newform of level Γ0(N) where N≥ 5 and even weight r+2> 2.

Denote by K =Q(
√
−D) an imaginary quadratic field with odd discriminant satisfying the

Heegner hypothesis, that is primes dividing N split in K. For simplicity, we assume that

|O×K |= 2. Let

ψ : A×K −→ C×

be an unramified algebraic Hecke character of K of infinity type (r,0). Then there is an

elliptic curve A defined over the Hilbert class field K1 of K with complex multiplication

by OK such that ψ is the Hecke character associated to A by [25, Theorem 9.1.3]. Fur-

thermore, A is a Q-curve by the assumption on the parity of D, that is A is K1- isogenous

to its conjugates in Aut(K1). (See [25, Section 11]). Consider a prime p not dividing
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NDφ(N)NA, where NA is the conductor of A. We denote by Vf the f -isotypic part of the p-

adic étale realization of the motive associated to f by Scholl [46] and Deligne [18] twisted

by r+2
2 and by Vψ the p-adic étale realization of the motive associated to ψ twisted by r

2 .

More precisely, Vψ is the ψ-isotypic component of

resK1/Q(A) = ∏
σ∈Gal(K1/Q)

Aσ

where Aσ is the σ -conjugate of A, (see Section 4.2 for more details). Let OF be the ring

of integers of

F =Q(a1,a2, · · · ,b1,b2, · · ·),

where the ai’s are the coefficients of f and the bi’s are the coefficients of the theta series

θψ = ∑
a⊂OK

ψ(a)qN(a)

associated to ψ . Then Vf and Vψ will be viewed (by extending scalars appropriately) as

free OF ⊗Zp-modules of rank 2. We denote by

V =Vf ⊗OF⊗Zp Vψ

the p-adic étale realization of the tensor product of Vf and Vψ and let V℘ be its localization

at a prime ℘ in F dividing p. Then V℘ is a four dimensional representation of Gal(Q/Q)

with coefficients in

End(A/Q) =⊕σ∈Gal(H/Q)Hom(A,Aσ ),

(see Section 4.2). We also denote by OF,℘ the localization of OF at ℘.
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By the Heegner hypothesis, there is an ideal N of OK satisfying

OK/N = Z/NZ.

We can therefore fix Γ1(N) level structure on A, that is a point of exact order N defined

over the ray class field L1 of K of conductor N . Consider a pair (ϕ1,A1) where A1 is an

elliptic curve defined over K1 with level N structure and

ϕ1 : A−→ A1

is an isogeny over K. We associate to it a codimension r+1 cycle on V

ϒϕ1 = Graph(ϕ1)
r ⊂ (A×A1)

r ' (A1)
r×Ar

and define a generalized Heegner cycle of conductor 1

∆ϕ1 = erϒϕ1,

where er is an appropriate projector (4.1). Then ∆ϕ1 is defined over L1. We consider the

corestriction

P(1) = corL1,KΦ(∆ϕ1) ∈ H1(K,V℘/p)

where Φ is the p-adic étale Abel-Jacobi map. The Selmer group

S⊆ H1(K,V℘/p)
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consists of the cohomology classes which localizations at a prime v of K lie in H1(Kur
v /Kv,V℘/p) for v not dividing NNA p

H1
f (Kv,V℘/p) for v dividing p

where Kv is the completion of K at v, and

H1
f (Kv,V℘/p) = H1

cris(Kv,V℘/p)

is the finite part of H1(Kv,V℘/p) [9]. Note that the assumptions we make will ensure that

H1(Kur
v /Kv,V℘/p) = 0 for v dividing NNA. We denote by Fr(v) the arithmetic Frobenius

element generating Gal(Kur
v /Kv), and by Iv = Gal(Kv/Kur

v ).

Theorem 1.3.1. Let p be such that

Gal
(
K(V℘/p)

/
K
)
' AutK(V℘/p), and (p,NDφ(N)NA) = 1.

Suppose that V℘/p is a simple AutK(V℘/p)-module. Suppose further that the eigenvalues

of Fr(v) acting on V Iv
℘ are not equal to 1 modulo p for v dividing NNA. Assume P(1) 6= 0

in H1(K,V℘/p). Then the Selmer group S has rank 1 over OF,℘/p.

To prove Theorem 1.3.1, we first consider the p-adic étale realization of the twisted

motive V associated to f and ψ in the middle étale cohomology of the associated Kuga-

Sato varieties. This provides us with a p-adic Abel-Jacobi map that lands in the Selmer

group S. Next, we construct an Euler system of generalized Heegner cycles which where

first considered by Bertolini, Darmon and Prasanna in[5]. These algebraic cycles lie in the

domain of the p-adic Abel Jacobi map. In order to bound the rank of the Selmer group

S, we apply Kolyvagin’s descent using local Tate duality, the local reciprocity law, an

appropriate global pairing of S and Cebotarev’s density theorem.
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Our development is an adaptation of Nekovář’s techniques [39] and Gross’ exposition

of Kolyvagin’s method of Euler systems [27]. The main novelty is that the algebraic Hecke

character ψ is of infinite type. In particular, the Galois representation associated to V is

four-dimensional.

4.2 Motive associated to a modular form and a Hecke character

In this section, we describe the construction of the four dimensional Gal(Q/Q)-

representation

V℘ = (Vf ⊗OF⊗Zp Vψ)℘,

where ℘ is a prime of F dividing p.

Denote by Y1(N) the affine modular curve over Q parametrising elliptic curves with

level Γ1(N). Let j : Y1(N) ↪→ X1(N) be its proper compact desingularization classifying

generalized elliptic curves of level Γ1(N).. The assumption N ≥ 5 allows for the definition

of the generalized universal elliptic curve π : E −→ X1(N). Denote by Wr the Kuga-Sato

variety of dimension r+1, that is a compact desingularization of the r-fold fiber product

of E over X1(N). We let W be the 2r+1-dimensional variety defined by

W =Wr×Ar.

We denote by [α] the element of EndK1(A)⊗ZQ corresponding to an element α of K.

Consider the projectors

e(1)A =

(√
−D+[

√
−D]

2
√
−D

)⊗r

+

(√
−D− [

√
−D]

2
√
−D

)⊗r

, e(2)A =

(
1− [−1]

2

)⊗r

and

eA = e(1)A ◦ e(2)A
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in Q[End(A)]r. These projectors e(1)A , e(2)A and eA belong to the group of correspondences

Corr0(A,A)Q from A to itself, (see [4, Section 2] for more details). Let

Γr = (Z/N oµ2)
r oΣr

where µ2 = {±1} and Σr is the symmetric group on r elements. Then Γr acts on Wr,

(see [46, Sections 1.1.0,1.1.1] for more details.) The projector eW in Z
[

1
2Nr!

]
[Γr] as-

sociated to Γr, called Scholl’s projector, belongs to the group of zero correspondences

Corr0(Wr,Wr)Q from Wr to itself over Q, (see [4, Section 2.1]). Recall that the hypoth-

esis (r!, p) = 1 is not necessary by a combination of the work of Tsuji [54] on p-adic

comparison theorems and Saito [43] on the Weight-Monodromy conjecture for Kuga-Sato

varieties. Let

er = eW eA, (4.1)

be the projector in the group of zero correspondences Corr0(W,W ))Q from W to itself over

Q. We consider the sheafs

F = j∗Symr(R1
π∗Zp) and FA = j∗Symr(R1

π∗Zp)⊗ eAHr
et(Ar,Zp).

Proposition 4.2.1. The étale cohomology group

H1
et(X1(N)⊗Q,FA)

is isomorphic to

erH2r+1
et (W ⊗Q,Zp) = er⊕r+1

i=0 H i
et(W ⊗Q,Zp)
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and

H1
et(X1(N)⊗Q,F )⊗ eAHr

et(Ar,Zp).

Proof. The proof is a combination of [46, theorem 1.2.1] and [5, proposition 2.4]. Note

that the proof in [46, theorem 1.2.1] involves Qp coefficients but it is still valid in our

setting, (see the Remark following [39, Proposition 2.1]).

Let B = Γ0(N)/Γ1(N). We define

Ṽ = eBH1
et(X1(N)⊗Q,F )(r+1)

where eB = 1
|B|∑b∈B b. Given a rational prime ` coprime to N, the Hecke operator T` acts

on X1(N) [46], inducing an endomorphism of Ṽ . Letting

I = Ker{T−→ OF : T` 7→ a`b`, ∀` - NNA},

we can define the ( f ,ψ)-isotypic component of Ṽ by

V = {x ∈ Ṽ | Ix = 0}.

Hence, there is a map m : Ṽ −→ V that is equivariant under the action of Hecke opera-

tors T`, for ` not dividing NNA and under the action of the Galois group Gal(Q/Q). The

f -isotypic component of eBH1
et(X1(N)⊗Q,F )( r

2 +1) gives rise (by extending scalars ap-

propriately) to Vf and eAHr
et(Ar,Zp)(

r
2) gives rise to Vψ . They are free OF⊗Zp-modules of

rank 2. Hence, V℘ = (Vf ⊗OF⊗Zp Vψ)℘ is a four dimensional representation of Gal(Q/Q)

with coefficients in

End(A/Q) =⊕σ∈Gal(H/Q)Hom(A,Aσ ).
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4.3 p-adic Abel-Jacobi map

We use Proposition 4.2.1 to view the p-adic étale realization of the twisted motive

V associated to f and ψ in the middle étale cohomology of the associated Kuga-Sato

varieties.

Consider the p-adic étale Abel-Jacobi map

Φ : CHr+1(W/Ln)0 −→ H1 (Ln,H2r+1
et

(
W ⊗Q,Zp(r+1)

))
,

where CHr+1(W/Ln)0 is the group of homologically trivial cycles of codimension r+ 1

on W defined over the compositum Ln of the ring class field Kn of K of conductor n and

L1, modulo rational equivalence. (See Chapter 2, Section 2.1 for more details on the Abel-

Jacobi map). Composing the Abel-Jacobi map with the projectors er and eB, we obtain a

map

Φ : CHr+1(W/Ln)0 −→ H1(Ln,Ṽ ).

In fact, Φ factors through er(CHr+1(W/Ln)0⊗Zp) as the Abel-Jacobi map commutes with

correspondences on W . Combining Proposition 4.2.1 which implies that

erH2r+2(W ⊗Q,Zp) = 0,

with the definition of

CHr+1(W/Ln)0 = Ker(CHr+1(W/Ln)−→ H2r+2(W ⊗Q,Zp(r+1))),

we deduce that

er(CHr+1(W/Ln)0⊗Zp) = er(CHr+1(W/Ln)⊗Zp).
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Hence, composing Φ with m : Ṽ −→V , we obtain

Φ : er(CHr+1(W/Ln)0⊗Zp)−→ H1(Ln,V ),

which is T[Gal(Ln/Q)]-equivariant.

Beilinson and Bloch’s conjectures. Beilinson and Bloch formulated conjectures

about values of L-functions that arise from algebraic varieties, that is, motivic L-functions

at integers. Bloch [8] defined a regulator map

r : K2(X)−→ H1(X(C),C∗)

for any curve X over C, where K2(X) is the K2 group of X and H1(X(C),C∗) is the de

Rham cohomology group of X(C). More generally, Beilinson defined a regulator map

r : H1
M(X ,Q(n))−→ H i+1

D (X⊗R,R(n))

from the motivic cohomology of X , that is, a suitable piece of the K-theory of X , to the

Deligne cohomology of X . The L-function L(hi(X),s) associated to the i-th cohomology

hi(X) of the Chow motive h(X) associated to X is expected to satisfy a functional equation

relating its values at s and i+1−s. Beilinson’s conjectures [2] relate the order of vanishing

of L(hi(X),s) at i+1−n with the dimension of H i+1
D (X⊗R,R(n)).

In our setting, as explained in [33] [44, section 6] and [32], Beilinson and Bloch

conjecture that

dimQ(Im(Φ)⊗Q) = ords=r+1L( f ⊗θψ ,s).

(See [9] for more details). Kolyvagin’s results [34] combined with those of Gross and

Zagier [28] prove the Birch and Swinnerton-Dyer conjecture for analytic rank less or equal
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to 1. This is the particular case where the modular form f is associated to an elliptic curve

and ψ is the trivial character. Nekovář’s results [39, 40] that correpond to the setting

where ψ is trivial provide further evidence towards a p-adic analog of the Beilinson-Bloch

conjecture of the form

dimQp(Im(Φ)⊗Qp) = ords=r+1Lp( f ,s)

due to Perrin-Riou [15, section 2.8], [42]. In this thesis, we provide a sufficient condition

for dimQp(Im(Φ)⊗Qp) = 1. Since Shnidman [49] relates the order of vanishing of the

p-adic L-function Lp( f ⊗θψ ,s) at s = r+1 to the height of the image by the p-adic Abel-

Jacobi map of a generalized Heegner cycle of conductor 1, we obtain a p-adic analog of

the statement conjectured by Beilinson and Bloch in Corollary 4.9.4.

4.4 Generalized Heegner cycles

We describe the construction of generalized Heegner cycles following Bertolini, Dar-

mon and Prasanna [5]. Consider pairs (ϕi,Ai) where Ai is an elliptic curve defined over K1

with level N structure defined over L1 and

ϕi : A−→ Ai

is an isogeny over K. Two pairs (ϕi,Ai),(ϕ j,A j) are said to be isomorphic if there is a K-

isomorphism α : Ai −→ A j satisfying α ◦ϕi = ϕ j. Let IsogN (A) denote the isomorphism

classes of pairs (ϕi,Ai) with ker(ϕi)∩A[N ] trivial. For (ϕi,Ai) in IsogN (A), we associate

a codimension r+1 cycle on V

ϒϕi = Graph(ϕi)
r ⊂ (A×Ai)

r ' (Ai)
r×Ar ⊂Wr×Ar
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and define a generalized Heegner cycle

∆ϕi = erϒϕi.

Denote by DAi the element

(graph(ϕi)−0×A−deg(ϕi)(Ai×0)) in NS(Ai×A),

where NS(Ai×A) is the Néron-Severi group of Ai×A. Let us assume that the index i of Ai

indicates that End(Ai), which is an order in OK , has conductor i. Then ∆ϕi is defined over

the compositum of the abelian extension K̃ of K over which the isomorphism class of A is

defined, with the ring class field Ki of conductor i. (See Chapter 2, Section 2.3 for more

details). Since K̃ is the smallest extension of K1 over which Gal(K/K̃) acts trivially on

A[N ], it is equal to the ray class field L1 of K of conductor N . Therefore, ∆ϕi is defined

over

Li = L1Ki.

Then

∆ϕi = Dr
Ai

belongs to CHr+1(W/Li).

In fact, ∆ϕi is homologically trivial on W as shown in [5, proposition 2.7].

In the rest of this section, we consider elements (ϕi,Ai) and (ϕ j,A j) in IsogN (A).

Lemma 4.4.1. Consider the map

g× I : Ai×A−→ A j×A,
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where g is an isogeny of elliptic curves and I is the identity map. Then

(g× I)∗DAi = deg(g)

√
deg(ϕi)

deg(ϕ j)
DA j .

Proof. We denote the intersection pairing of two divisors by a dot. We have

(g× I)∗DAi · (g× I)∗DAi = deg(g)2DAi ·DAi,

where

DAi ·DAi

= (graph(ϕi)−0×A−deg(ϕi)Ai×0) · (graph(ϕi)−0×A−deg(ϕi)Ai×0)

= graph(ϕi) ·graph(ϕi)+0×A ·0×A+deg(ϕi)Ai×0 ·deg(ϕi)Ai×0

−2graph(ϕi) ·0×A−2graph(ϕi) ·deg(ϕi)Ai×0+2deg(ϕi)Ai×0 ·0×A

= 0+0+0−2deg(ϕi)−2deg(ϕi)+2deg(ϕi)

=−2deg(ϕi).

In the previous computation, the equality graph(ϕi) · graph(ϕi) = 0 follows from the im-

plication

(x,ϕi(x)) = (x,ϕi(x)+P) =⇒ P = 0

for a translation of ϕi(x) by some quantity P. Hence,

(g× I)∗DAi · (g× I)∗DAi =−2deg(g)2 deg(ϕi).

Since (g× I)∗DAi = kDA j where A j = g(Ai) and k > 0, we also have

(g× I)∗DAi · (g× I)∗DAi = k2DA j ·DA j =−2k2 deg(ϕ j).
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The equality −2deg(g)2 deg(ϕi) =−2k2 deg(ϕ j) then implies that

k = deg(g)

√
deg(ϕi)

deg(ϕ j)
,

and

(g× I)∗DAi = deg(g)

√
deg(ϕi)

deg(ϕ j)
DA j .

4.5 Euler system properties

We study certain global and local norm compatibilities of generalied Heegner cycles

satisfying the properties of Euler systems.

We have OF ⊗Zp =⊕℘i|pOF,℘i where OF,℘i is the completion of OF at the prime ℘i

dividing p. Recall that V℘ = (Vf ⊗OF Vψ)℘ where ℘ is a prime of F dividing p. Let

GV = Aut(V℘/p).

For a Galois representation V ,

F(V )

will designate the smallest extension of F such that Gal(F/F(V )) acts trivially on V .

We denote by Frobv(F1/F2) the conjugacy class of the Frobenius substitution of the

prime v ∈ F2 in Gal(F1/F2) and by Frob∞(F1/Q) the conjugacy class of the complex con-

jugation τ in Gal(F1/Q). A rational prime ` is called a Kolyvagin prime if

(`,NDNA p) = 1 and a`b` ≡ `+1 ≡ a2
` −b2

` +2 ≡ 0 mod p. (4.2)
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Let

L = K(V℘/p).

Condition (4.2) is equivalent to

Frob` (L(µp)/Q) = Frob∞ (L(µp)/Q) , (4.3)

where µp is the group of p-th roots of unity. Indeed, it is enough to compare the charac-

teristic polynomial of the complex conjugation (x2− 1)2 = x4− 2x2 + 1 acting on V℘/p

with roots −1 and 1, each with multiplicity 2, with the twist by r+1 of the characteristic

polynomial of the Frobenius substitution at ` acting on V℘/p with roots

α1α3, α1α4, α2α3, and α2α4

satisfying

α1α2 = `r, α1 +α2 = b`, α3α4 = `r+1, α3 +α4 = a`.

The characteristic polynomial of Frob(`) acting on V℘/p is

(x−α1α3)(x−α1α4)(x−α2α3)(x−α2α4)

= (x2− (α1α3 +α1α4)x+α
2
1 α3α4)(x2− (α2α3 +α2α4)x+α

2
2 α3α4)

=
(
x2−α1a`x+ `r+1

α
2
1
)(

x2−α2a`x+ `r+1
α

2
2
)
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We use the equality (α1+α2)
2 = α2

1 +α2
2 +2α1α2 that is b2

`−2`r = α2
1 +α2

2 to conclude

that the latter equals

x4− (α2a`+α1a`)x3 +
(
`r+1

α
2
1 + `r+1

α
2
2 +α1α2a2

`

)
x2

− `r+1 (
α1a`α2

2 +α2a`α2
1
)

x+ `2r+2
α

2
1 α

2
2

= x4−a`b`x3 +
(
`r+1b2

` −2`2r+1 +a2
``

r)x2− `2r+1a`(α1 +α2)x+ `4r+2

= x4−a`b`x3 +
(
`r+1b2

` −2`2r+1 +a2
``

r)x2− `2r+1b`a`x+ `4r+2.

To twist this characteristic polynomial by `r+1, it is enough to map x 7→ `r+1x. We obtain

`4r+4x4−a`b``3r+3x3 + `2r+2 (`r+1b2
` −2`2r+1 +a2

``
r)x2− `3r+2b`a`x+ `4r+2

= `4r+4
(

x4− a`b`
`r+1 x3 +

`r+1b2
` −2`2r+1 +a2

``
r

`2r+2 x2− b`a`
`r+2 x+

1
`2

)
.

On the one hand, using the congruences

a`b` ≡ `+1 ≡ a2
` −b2

` +2 ≡ 0 mod p,

we find that the characteristic polynomial

x4−2x2 +1

of the complex conjugation τ acting on V℘/p is congruent to the characteristic polynomial

of Frob(`) acting on V℘/p. On the other hand, comparing the action of the Frobenius

element Frob` and the complex conjugation τ on ζp, where ζp is a p-th root of unity, we

obtain

ζ
`
p = Frob`(ζp) = Frob∞(ζp) = ζ

−1
p .
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This implies that `≡−1 mod p. As a consequence, Condition (4.2) is necessary to satisfy

Equality (4.3).

Let n = `1 · · ·`k be a squarefree integer where `i is a Kolyvagin prime for i = 1, · · · ,k.

Then the extensions L1 and Kn are disjoint over K1 and

Gn = Gal(Ln/L1)' Gal(Kn/K1).

The Galois group Gal(Kn/K1) is the product over the primes ` dividing n of the cyclic

groups G` =Gal(K`/K1) of order `+1. We denote by σ` a generator of G`. The Frobenius

condition on ` implies that it is inert in K. Denote by λ the unique prime in K above `.

Writing n as n = `m, we have that λ splits completely in Lm since it is unramified in Lm

and has the same image as Frob∞(L/K) = τ2 = Id by the Artin map. A prime λm of Lm

above λ ramifies completely in Ln. We denote by λn the unique prime in Ln above λm.

Consider the image of ∆ϕn by the Abel-Jacobi map

Φ : CHr+1(W/Ln)0 −→ H1(Ln,V ).

Proposition 4.5.1. Consider (An,ϕn) ∼ (Am,ϕm) ∈ IsogN (A) where n = `m for an odd

prime `. Then

T`Φ(∆ϕm) = corLn,LmΦ(∆ϕn) = a`b`Φ(∆ϕm).

Proof. By [45, corollary 11.4],

T`(∆ϕm) = ∑
ni

∆ϕni
,

where the generalized Heegner cycles ∆ϕni
correspond to elements (Ani,ϕni) ∼ (Am,ϕm)

in IsogN (A) for elliptic curves Ani that are `-isogenous to Am respecting level N structure.
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These elliptic curves Ani correspond to gAm where

g ∈ Gal(Ln/Lm)' Gal(Kn/Km)' Gal(K`/K1).

Hence

∑
ni

∆ϕni
= ∑

g∈Gal(Ln/Lm)

g∆ϕn = corLn,Lm(∆ϕn) = a`b`∆ϕm ,

where the last equality follows from the action of T` on V . Finally, we apply Φ which

commutes with T` to obtain T`Φ(∆ϕm) = corLn,LmΦ(∆ϕn).

For an element c∈H1(F,M), we denote by resv(c)∈H1(Fv,M) the image of c by the

restriction map H1(F,M)−→ H1(Fv,M) induced from the inclusion

Gal(Fv/Fv) ↪→ Gal(F/F).

Proposition 4.5.2. Consider (An,ϕn),(Am,ϕm) ∈ IsogN (A) where n = `m. Then

resλnΦ(∆ϕn) = kFrob`(Ln/Lm)resλmΦ(∆ϕm)

for k = `

√
deg(ϕi)

deg(ϕ j)
.

Proof. The Eichler-Shimura relation consists of the local congruence

Frob`+Frobt
` ≡ T` mod `

on X0(N) where Frob` is the Frobenius morphism and Frobt
` is the morphism dual to Frob`.

For elliptic curves over OLn , we have

Frobt
` ≡ ` Frob−1

` ≡ ` Frob` mod λn
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because |OLn/λn| = `2. Since λm completely ramifies in Ln, we have OLm/λm ' OLn/λn.

Hence,

T`(Am) = ∑
σ∈G(Ln/Lm)

σAm ≡ ∑
σ∈G(Ln/Lm)

An ≡ (`+1)An mod λn.

Therefore, we have Frob`(Am)≡ An mod λn. By Proposition 4.4.1, this implies

(Frob`× I)∗DAm ≡ kDAn mod λn

where k = `

√
deg(ϕi)

deg(ϕ j)
from which the result follows.

4.6 Kolyvagin cohomology classes

We denote by

Φ(∆ϕn)℘∈ H1(Ln,V℘)

the image of Φ(∆ϕn) ∈ H1(Ln,V ) by the map H1(Ln,V ) −→ H1(Ln,V℘) induced by the

projection V →V℘. Let

yn = red(Φ(∆ϕn)℘) ∈ H1(Ln,V℘/p)

be the image of Φ(∆ϕn)℘∈H1(Ln,V℘) by the map H1(Ln,V℘)−→H1(Ln,V℘/p) induced

by the projection V℘→ V℘/p. We use certain operators (4.4) defined by Kolyvagin in

order to lift the cohomology classes yn ∈ H1(Ln,V℘/p) to Kolyvagin cohomology classes

P(n) ∈ H1(K,V℘/p), for appropriate n.

Lemma 4.6.1. For all n,

H0(Ln,V℘/p) = H0(L1,V℘/p) = 0

and Gal(Ln(V℘/p)/Ln)' Gal(L1(V℘/p)/L1)' Gal(K(V℘/p)/K).
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Proof. The extensions Ln/L1 and L1(V℘/p)/L1 are unramified outside primes dividing nc

and NAN p. Therefore, Ln∩L1(V℘/p) is unramified over L1 and is hence contained in L1,

the maximal unramified extension of K of conductor N . Hence,

H0(Ln,V℘/p) = H0(L1,V℘/p).

The result follows by the assumption on p which implies that H0(L1,V℘/p) = 0.

Proposition 4.6.2. The restriction map

resL1,Ln : H1(L1,V℘/p)−→ H1(Ln,V℘/p)Gn

is an isomorphism.

Proof. This follows from the inflation-restriction sequence

0→ H1(Ln/L1,V℘/p)
in f−−→ H1(L1,V℘/p) res−→ H1(Ln,V℘/p)→ H2(Ln/L1,V℘/p),

since H0(Ln,V℘/p) = 0 by Lemma 4.6.1.

Let

Tr` =
`

∑
i=0

σ
i
`, D` =

`

∑
i=1

iσ i
`. (4.4)

They are related by

(σ`−1)D` = `+1−Tr`. (4.5)

Define

Dn = ∏
`|n

D` ∈ Z[Gn].
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Proposition 4.6.3.

Dnyn ∈ H1(Ln,V℘/p)Gn.

Proof. It is enough to show that for all ` dividing n,

(σ`−1)Dnyn = 0.

We have

(σ`−1)Dn = (σ`−1)D`Dm = (`+1−Tr`)Dm,

where the last equality follows by Relation (4.5). Since resLm,Ln ◦ corLn,Lm = Tr`,

(`+1−Tr`)Dmred(Φ(∆ϕn)℘)

= (`+1)Dmred(Φ(∆ϕn)℘)−Dma`b`red(Φ(∆ϕm)℘)

≡ 0 mod p.

by Proposition 4.5.1 and Condition 4.2.

As a consequence, the cohomology classes Dnyn ∈ H1(Ln,V℘/p)Gn can be lifted to

cohomology classes c(n) ∈ H1(L1,V℘/p) such that

resL1,Lnc(n) = Dnyn.

We define

P(n) = corL1,Kc(n) in H1(K,V℘/p).

Proposition 4.6.4. Let v be a prime of L1.

1. If v|NAN, then resv(P(n)) is trivial.

2. If v - NANnp, then resv(P(n)) lies in H1(Kur
v /Kv,V℘/p).
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Proof. 1. We follow the proof in Chapter 3 Proposition 3.4.4. We denote by

V℘/pdual = Hom(V℘/p,Z/pZ(1))

the local Tate dual of V℘/p. The local Euler characteristic formula [37, Section 1.2] yields

|H1(Kv,V℘/p)|= |H0(Kv,V℘/p)|× |H2(Kv,V℘/p)|.

Local Tate duality then implies

|H1(Kv,V℘/p)|= |H0(Kv,V℘/p)|2.

The Weil conjectures and the assumption on Fr(v) imply that ((V℘/p)Iv)Fr(v) = 0 where

< Fr(v)> = Gal(Kur
v /Kv)

and I = Gal(Kv/Kur
v ) is the inertia group. (See Section 2.6 for more details). Therefore,

H0(Kv,V℘/p) = ((V℘/p)Iv)Fr(v) = 0.

2. If v does not divide NnpNA, then

resL1,v,Ln,v′ resvc(n) = resv′Dnyn ∈ H1(Ln,v′/Ln,v′,V℘/p)

for v′ above v in Ln. The exact sequence

· · · −→ H1(Lur
n,v′/Ln,v′,(V℘/p)Iv)−→ H1(Ln,v′,V℘/p) res−→ H1(Ln,v′/Lur

n,v′,V℘/p)−→ ·· ·

allows us to view the cohomology class resv′Dnyn that belongs to Ker(res) as an element in

H1(Lur
n,v′/Ln,v′,V℘/p). The isomorphism Ln,v′ ' L1,v hence implies that resvc(n) belongs

to H1(Lur
1,v/L1,v,V℘/p).
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4.7 Global extensions by Kolyvagin classes

We construct a global pairing of the Selmer group that will subsequently be used

to relate local and global information about the elements of the Selmer group and we

consider extensions of L by Kolyvagin cohomology classes c and P(q), where P(q) will

play a crucial role in the proof of Theorem 1.2.1.

Lemma 4.7.1. We have

H1(Aut(V℘/p),V℘/p) = 0.

Proof. First note that if p - |Aut(V℘/p)|, then H1(Aut(V℘/p),V℘/p) = 0. If p divides |G|,

then since V℘/p is irreducible as an Aut(V℘/p)−module, Dickson’s lemma [52, Theo-

rem 6.21] implies that Aut(V℘/p) contains SL2(Fq) for some q. In particular, it contains

2I where I is the identity map. Therefore, by Lemma 3.7.1, the map x 7→ (2I− I)x = Ix is

the zero map on H1(Aut(V℘/p),V℘/p) and the result follows.

We recall the statement of theorem 1.3.1.

Theorem 1.3.1. Let p be such that

Gal
(
K(V℘/p)

/
K
)
' AutK(V℘/p), and (p,NDφ(N)NA) = 1.

Suppose that V℘/p is a simple AutK(V℘/p)-module. Suppose further that the eigenvalues

of Fr(v) acting on V Iv
℘ are not equal to 1 modulo p for v dividing NNA. If P(1) is non-zero,

then the Selmer group S has rank 1 over OF,℘/p.

Local Tate duality and the reciprocity law translate local properties of Kolyvagin’s

cohomology classes into local properties of elements of the Selmer group. This local
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information will be transferred to global one using a global pairing of the Selmer group.

One can then conclude using Cebotarev’s density theorem.

We denote the Galois group Gal(L/K) by G. The restriction map

r : H1(K,V℘/p)−→ H1(L,V℘/p)G = HomG(Gal(Q/L),V℘/p)

has kernel

Ker(r) = H1(K(V℘/p)/K,V℘/p) = H1(Aut(V℘/p),V℘/p) = 0

by Lemma 4.7.1. Hence, we can identify an element c ∈H1(K,V℘/p) with its image r(c).

Consider the evaluation pairing

[ , ] r(S)×Gal(Q/L)−→V℘/p. (4.6)

We denote by GalS(Q/L) the annihilator of r(S). Let LS be the extension of L fixed by

GalS(Q/L) and GS the Galois group Gal(LS/L).

We consider the restriction d of an element c of H1(K,V℘/p) to H1(L,V℘/p). Then

d factors through some finite extension L̃ of L. We denote by

L(c) = L̃ker(d)

the subextension of L̃ fixed by ker(d). Note that L(c) is an extension of L.

Remark 4.7.2. The element y1 belongs to S by Proposition 4.6.4. Also, L(y1) is a subex-

tension of LS. Indeed, assume ρ ∈ GalS(Q/L), then [s,ρ] = 0 for all s ∈ S. Hence, y1

defines a cocycle of S by

ρ −→ ρ(y1)− y1 = 0.
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This implies that ρ fixes L(y1), a subfield of LS.

We have Gal(L(y1)/L)'V℘/p and we denote by I = Gal(LS/L(y1)).

LS

L(y1)

I
88

L = K(V℘/p)
V℘/p

ff
GS

OO

Lemma 4.7.3. There is an isomorphism of OF,℘/p-modules mapping resλ P(m`) where λ ′

divides ` in K to resλ P(m). Also, resλ P(`) is ramified for all such λ .

Proof. This is an adaptation of Section 3.5 in Chapter 3 that uses the properties of the

Euler system considered in Proposition4.5.1 and Proposition 4.5.2.

Lemma 4.7.4. There is a Kolyvagin prime q such that

Frobq(LS/Q) = τh, h ∈ Gal(LS/L), hτ+1 /∈ I and resβ ′y1 6= 0

for some prime β ′ in K above q.

Proof. Let q be a Kolyvagin prime such that

Frobq(LS/Q) = τh, h ∈ Gal(LS/L), hτ+1 /∈ I.

Note that the restriction of τh to L is τ . Assume q splits completely in L(y1). Then for a

prime β ′ of L(y1) above q, we would have that

Frobβ ′(L
S/L(y1)) = (τh)2,

88



a contradiction since Frobβ ′(LS/L(y1)) belongs to I while hτ+1 = (τh)2 /∈ I. Hence q does

not split completely in L(y1). Therefore, since q splits completely in L and does not ramify

in L(y1), there is a prime β in L1 above q such that |L(y1)β ′′ : Lβ ′|> 1 for a prime β ′ of L

above β and a prime β ′′ of L(y1) above β ′. This implies that

resβ y1 6= 0.

Consider the following extensions

H2 = H0H1

H0 = L(c)

66

H1 = L(P(q))

hh

L = K(V℘/p)
V℘/p

66

V℘/p

gg

We define Vi = Gal(Hi/L) for i = 0,1,2. We have an isomorphism of Aut(A℘/p)-modules

V0 'V1 'V℘/p.

Lemma 4.7.5. The extensions LS and H1 are linearly disjoint over L.

Proof. It is enough to prove that LS∩H1 = L as linear disjointness for Galois extensions

is equivalent to disjointness. The Frobenius substitution ρ̃ of q in Gal(Lt/Lur) is such that

[s, ρ̃] = 0 for all s ∈ S,

since s is unramified at q.
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Lemma 4.7.3 implies that P(q) ramifies at q and resβ P(q) is mapped under an iso-

morphism to resβ y1 6= 0. Hence

ρ̃(P(q)) 6= 0.

As a consequence, LS∩L(P(q)) 6= L(P(q)). For all c generating LS over L, we have

Gal(L(c)∩L(P(q))/L) is a GV − submodule of V1 'V℘/p.

Therefore, Gal(L(c)∩L(P(q))/L) is trivial.

4.8 Complex conjugation and local Tate duality

We study the action of complex conjugation on the image by the p-adic Abel-Jacobi

map of generalized Heegner cycles and consider the pairing induced by the action of the

complex conjugation and the local Tate pairing.

Lemma 4.8.1. There is an element σ in Gal(K j/K) such that

τΦ(∆ϕ j)℘ = ε
r
LσΦ(∆ϕ j)℘,

where −εL is the sign of the functional equation of L( f ,s), and k = 2

√
deg(ϕi)

deg(ϕ j)
.

Proof. Using [26] which shows that τA j = WN(σA j) for some σ in G(K j/K), we obtain

by Proposition 4.4.1

(τ× I)∗(Dr
A j
) = kDr

τ(A j)
= kDr

WN(σA j)

where k = 2

√
deg(ϕi)

deg(ϕ j)
. Consider the map

W × I : WN×A−→WN×A : ((E,P),A)−→ ((E/〈P〉,P′),A),
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where P′ is such that the Weil pairing < P,P′ > of P with P′ satisfies < P,P′ >= ζN for

some choice ζN of an N-th root of unity ζN . Note that W has degree N. Also,

W∗ f (τ)dτdz = εLN f (τ)dτdz.

This implies as in [39, Proposition 6.2] that

(W × I)∗Dr
WN(σA j)

= ε
r
LNrDr

WN(σA j)
,

while Proposition 4.4.1 implies that the former equals Nr

√
deg(ϕi)

deg(ϕ j)

r

Dr
σA j

. Hence,

Dr
WN(σA j)

= k1ε
r
LDr

σA j
,

where k1 =

√
deg(ϕi)

deg(ϕ j)

r

. Applying Proposition 4.4.1 to the map (σ × I), we obtain

(σ × I)∗(Dr
A j
) = k2Dr

σA j
,

where k2 = deg(σ)r

√
deg(ϕi)

deg(ϕ j)

r

= k1. Hence, Dr
WN(σA j)

= εr
L(σ × I)∗(Dr

A j
) and

(τ× I)∗(Dr
A j
) = ε

r
Lk(σ × I)∗(Dr

A j
).

Therefore

τΦ(∆ϕ j)℘ = ε
r
LkσΦ(∆ϕ j)℘.

Remark 4.8.2. The non-trivial Kolyvagin class P(1) belongs to S+ε where

ε = ε
r
L.
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Indeed, y1 is non-zero by the hypothesis on Φ(∆ϕ1)℘ and belongs to S+ε by Lemma 4.8.1.

Using the relation τD` = −D`τ mod p, it can also be deduced from Lemma 4.8.1 that

P(n) belongs to the (−1)ω(n)ε−eigenspace where ω(n) is the number of distinct prime

factors of n.

Given a Kolyvagin prime `, the Frobenius condition implies that is inert in K. We

denote by λ the prime of K lying above `. As explained in Chapter 2, Section 2.5 using

local Tate duality, we have a perfect local pairing

〈 . , . 〉λ : H1(Kur
λ
/Kλ ,(V℘/p)Iλ )×H1(Kur

λ
,V℘/p)−→ Z/p,

where Iλ = Gal(Kλ/Kur
λ
) and OF,℘-linear isomorphisms

{H1(Kur
λ
,V℘/p)}dual ' H1(Kur

λ
/Kλ ,(V℘/p)Iλ ).

We denote by

resλ : H1(K,V℘/p)−→ H1(Kλ ,V℘/p)

the restriction map from H1(K,V℘/p) to H1(Kλ ,V℘/p). When the complex conjugation

τ acts on a module M, we denote by M+ and M− the + and − eigenspaces of M with

respect to the action of τ .

Lemma 4.8.3. The action of complex conjugation induces non-degenerate pairings of

eigenspaces

〈., .〉±
λ

: H1(Kur
λ
/Kλ ,(V℘/p)Iλ )±×H1(Kur

λ
,V℘/p)± −→ Z/p.
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Proof. It is enough to show that the + and − eigenspaces are orthogonal. For cocycles c1

and c2 in the + and − eigenspaces respectively, we have

〈c1,c2〉τλ ′ = 〈c
τ
1,c

τ
2〉λ ′ = 〈c1,−c2〉λ ′ =−〈c1,c2〉λ ′.

Furthermore, 〈c1,c2〉τλ ′ = 〈c1,c2〉λ ′ since τ acts trivially on H2(Kλ ,µp) = Z/p. The case

where c1 and c2 are in the − and + eigenspaces is similar.

Lemma 4.8.4. We have

G+
S = {(τh)2, h ∈ GS}, I+ = {(τi)2, i ∈ I}.

Proof. On the one hand, Gτ+1
S ⊆ G+

S as

G(τ+1)(τ−1)
S = Gτ2−1

S = Id.

On the other hand, since p is odd, 2 is an automorphism of GS. Therefore, if h ∈ G+
S , then

h = (h1/2)τ+1 ∈ Gτ+1
S .

Hence,

G+
S = Gτ+1

S = {hτ+1 = (τhτ
−1) h, h ∈ GS}.

The same proof applies for I.

4.9 Reciprocity law and local triviality

We use the reciprocity law in Proposition 4.9.1, local Tate duality in Proposition 4.8.3,

Cebotarev’s density theorem 2.1, and the global pairing of the Selmer group (4.6) to prove

theorem 1.3.1.
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Lemma 4.9.1. We have

∑
λ |`|n
〈sλ ,resλ P(n)〉λ = 0.

Proof. The proof follows [39, proposition 11.2(2)] where both the reciprocity law, (see

Chapter 2, Section 2.4 for more details) and the ramification properties of P(n) in propo-

sition 4.6.4 are used.

Proposition 4.9.2. We have S−ε is of rank 0 over OF,℘/p.

Proof. Consider the Kolyvagin class P(`) where ` is a Kolyvagin prime satisfying

Frob`(LS/Q) = τh, h ∈ GS, h /∈ Gal(LS/L(y1)).

We have that P(`) belongs to the−ε−eigenspace by Remark 4.8.2. Then by Lemma 4.7.3,

there is an isomorphism sending resλ P(`) to resλ P(1). The same argument as the one for

q implies that

resλ P(1) 6= 0.

Let s be an element of S−ε . Lemma 4.9.1 and Lemma 4.8.3 imply

∑
λ |`
〈resλ s, resλ P(`)〉−ε

λ
= 0.

Since resλ P(`) 6= 0, the non-degeneracy of the local Tate pairing implies that resλ s = 0.

Hence, [s,Frobλ (LS/L1)] = 0, that is [s,(τh)2] = 0. By Cebotarev’s density theorem, (see

Chapter 2, Theorem 2.1 for more details) and Lemma 4.8.4, this statement is true for all h

in G+
S − I+. The homomorphism s : GS −→V℘/p induces a GV -homomorphism of groups

s : G+
S −→V℘/p.
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Therefore, the vanishing of s on G+
S − I+ implies the vanishing of s on G+

S . As a conse-

quence, we obtain a GV -homomorphism

s : G−S −→V℘/p±.

The modules V℘/p± are of rank 2 over OF,℘/p. Since V℘/p has no non-trivial GV -

submodules, we have s(G−S ) = s = 0.

Proposition 4.9.3. We have S+ε is of rank 1 over OF,℘/p.

Proof. Let ` be a Kolyvagin prime such that

Frob`(LS/Q) = τi, i ∈ Gal(LS/L(y1))

and such that

Frob`(L(P(q))/Q) = τ j, j ∈ Gal(L(P(q))/L), jτ+1 6= 1.

These two Frobenius conditions are compatible because the extensions LS and L(P(q)) are

linearly disjoint by Lemma 4.7.5. Consider the Kolyvagin class P(`q) which belongs to

the ε−eigenspace by Remark 4.8.2. We have

resλ P(q) 6= 0

for λ above ` in K. Indeed, the Frobenius condition

Frobλ (L(P(q))/K) = jτ+1 = (τ j)2 6= 1
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implies that λ does not split completely in L(P(q)). By Lemma 4.7.3, this implies that

resλ P(`q) 6= 0.

The Frobenius condition in LS/Q implies that ` splits completely in L(y1), so that

resλ y1 = 0.

Then by Lemma 4.7.3, resλ P(`) = 0. Hence, P(`) belongs to the Selmer group, in fact to

S−ε . As a consequence of Proposition 4.9.2, P(`) = 0 implying

resβ P(`) = 0.

Therefore by Lemma 4.7.3,

resβ P(`q) = 0.

Let s ∈ S+ε . By Lemma 4.9.1 and Lemma 4.8.3,

∑
λ |`
〈resλ s, resλ P(`q)〉+ε

λ
+∑

β |q
〈resβ s, resβ P(`q)〉+ε

β
= 0.

Hence,

∑
λ |`
〈resλ s, resλ P(`q)〉+ε

λ
= 0.

The non-degeneracy of the local Tate pairing implies that

resλ s = 0.

Therefore, [s,Frobλ (LS/Kλ )] = 0, that is

[s,(τi)2] = 0.
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This is true for all i ∈ I by Cebotarev’s density theorem and Lemma 4.8.4. As a conse-

quence, the homomorphism s : I −→V℘/p reduces to a GV -homomorphism

s : I− −→V℘/p±,

where V℘/p+ and V℘/p− are free of rank 2 over OF,℘/p. Therefore, since V℘/p have no

non-trivial GV -submodules, s(I−) = s(I) = 0. This implies that

s ∈ HomGV (Gal(LS/L)/I,V℘/p)' HomGV (V℘/p,V℘/p)' OF,℘/p.

Therefore by Remark 4.8.2,

rank(S) = 1.

Corollary 4.9.4. Assume that f is ordinary at p. Under the hypotheses of Theorem 1.3.1,

if L′p( f ⊗θψ ,r+1) 6= 0 then S is of rank 1 over OF,℘/p.

Proof. By [49, Theorem 1], the non-vanishing of L′p( f ⊗ θψ ,r + 1) implies the non-

vanishing of the image by the p-adic Abel-Jacobi map of the generalized Heegner cycle

Φ(∆I)℘ of conductor 1, where I is the identity map. Since corestriction is injective, this

implies that P(1) 6= 0. Hence, by Theorem 1.3.1, S is of rank 1 over OF,℘/p.
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CHAPTER 5
Conclusion

5.1 From analytic rank to algebraic rank

Let φ : X0(N) −→ E be a modular parametrisation of an elliptic curve E over Q

with conductor N which maps the cusp infinity of X0(N) to the identity on E. Let x1

be a Heegner point of conductor 1 on X0(N) attached to K. By the theory of complex

multiplication, x1 belongs to the Hilbert class field K1 of K. Let yk = TrK1/Kyk. Gross-

Zagier [28] proved that yK has infinite order if and only if

L(E/K,1) = 0 and L′(E/K,1) 6= 0.

Combined with Kolyvagin’s result that

yK has infinite order ⇒ rank(E(K)) = 1,

one can conclude that

L′(E/K,1) 6= 0⇒ rank(E(K)) = 1.

Nekovář [39] adapted Kolyvagin’s method to modular forms f of higher even weight.

In [40], he proved a p-adic version of the Gross-Zagier formula relating the first derivative

of a p-adic L-function of f at the central point and the p-adic height of a Heegner cycle.

This result is due to Perrin-Riou in weight 2. As a consequence, Nekovář obtains a p-adic

form of the conjecture of Beilinson and Bloch.
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In [49], Shnidman relates the order of vanishing of the p-adic L-function of a modular

form f twisted by an algebraic Hecke character at central critical points to the height of

associated generalized Heegner cycles. Combining this with theorem 1.3.1 of Chapter 4,

we obtain a p-adic version of the Beilinson-Bloch conjecture in Corollary 4.9.4.

5.2 Future directions

In the context of elliptic curves, if we omit the Heegner hypothesis, then the modular

parametrisation fails to produce a non-trivial Heegner system [17, chapter 4]. Instead, one

uses Shimura curve parametrisations [24]. In this setting, there are results of Zhang [55]

and Disegni [19] computing heights of Heegner points on Shimura curves.

In the context of modular forms, Brooks [10] adapts results of Bertolini, Darmon

and Prasanna [5] to the situation where the Heegner hypothesis is dropped. It would

be interesting to have parallel results to Chapter 4 in this situation. More precisely, one

could adapt the construction of generalized Heegner cycles to modular forms over Shimura

curves in order to construct an appropriate Euler system and apply Kolyvagin’s machinery

to bound the size of the Selmer group, (see [22] for developments in this direction).

Bertolini, Darmon and Prasanna describe the relation between Abel-Jacobi images of

generalized Heegner cycles and special values of certain p-adic L-function attached to the

modular form [5]. Castella extends their results to a setting allowing arbitrary ramification

at p [13]. An interesting future direction would be to examine the connection between

the adapted generalized Heegner cycles (to the context of modular forms over Shimura

curves) and special values of the p-adic L-function attached to f .

One could also consider Hida theoretic or Iwasawa theoretic settings such as in [21],

[29] and [30].
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Birkhäuser Boston, Boston, MA, 1990.

[35] Serge Lang. Fundamentals of Diophantine Geometry. Springer, 1983.

[36] Barry Mazur. Eigenvalues of Frobenius. In Algebraic Geometry, Arcata 1974, Proc.
Sympos. Pure Math., pages 231–262. American Mathematical Society, 1975.

[37] James S. Milne. Arithmetic Duality Theorems. Perspectives in mathematics. Aca-
demic Press, 1986.

[38] M. Ram Murty and V. Kumar Murty. Mean values of derivatives of modular L-series.
Ann. of Math. (2), 133(3):447–475, 1991.



103
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