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Abstract

fn this thesis, a unified formulation for the synthesis of cam mechanisms is presented,
which allows the design of spatial. spherical and planar mechanisms within a single
theoretical framework. This formulation has led to the design of novel cam mecha-
nisms, as yet unknown.

We focus on mechanisms with three and four links containing one higher kinematic
pair. The theory is first developed with the study of three-link mechanisms that are
composed of a frame, a cam and a follower. The unified formulation is given in the
dual space in which the three links are represented by three concentric unit dual
spheres. In this space, the three instantaneous screw axes of the mechanism are
mapped into three dual points or poles. Two of these poles, those arising {from the
frame-cam and frame-follower pairs, are fixed and lie on the sphere representing the
frame, while the third pole, arising from the cam-follower pair, moves on the same
sphere. The type of kinematic coupling, i.e., revolute or prismatic, for the frame-cam
and cam-follower pairs, is specified by the location of the fixed poles. The polode,
which is the dual curve defined by the moving pole, is mapped into the Cartesian
space as the axode. The axode defines the contacting ruled surfaces of both cam and
follower. Two basic theorems are stated as a result of this analysis.

The foregoing theory is then extended to the study of four-link cam mechanisms,
where an intermediate element, namely, a roller, is placed between the cam and the
follower. In general, the surface of the roller is shown to be a hyperboloid, which,

for the planar case, becomes a regular cylinder, and, for the spherical case, a regular
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cone. The two theorems stated for three-link cam mechanisms are then extended
to four-link mechanisms. A general formulation is presented for the study of the
pressure angle in both three- and four-link cam mechanisms. With this formutation,
the general expression for the pressure angle of spherical mechanisis is devived as a
particular case of the general expression for spatial cam mechanisins, Moreover, the
pressure-angle expression corresponding to planar cam mechanisms is derived as a
particular case of spherical cam mechanisms.

The unified formulation is then applied to the syntliesis of planar cam mechanisms
via graphical methods. Here, an innovative technique is introduced, which consists
of finding contact points of the cam profile, in coutrast to traditional graphical tech-
niques that employ cam envelopes, and, hence, are prone to inaccuracies

Special attention is given Lo the synthesis of indexing cam mechanisms. In this
context, a theorem is established for the determination ol one of the design param-
eters that is used to avoid undercutting on the cam profile. A novel design of an
indexing cam mechanism, called PRICAM, in which pure rolling and positive motion
are achieved for planar and spherical mechanisms, is obtained using a combination ol
three- and four-link cam mechanisms.

The unified formulation is implemented in the software package USYCAMS, in
which, with visualization aids, the user can design cam mechanisms of the three types
and animate their motion, by providing the design parameters on-line. USYCAMS
allowed the design of two versions of PRICAM, one planar and one spherical, and
produced a database describing the contact surfaces, which served as input to the

CNC machine tool used to cut actual prototypes of these mechanisrns.



Résumé

L'objectif de la these est de présenter une formulation unifiée ponr la synthese des
mécanismes & cames qui permet la conception de mécanismes pour les cas spatial,
sphérique et planaire, dans un cadre théorique unifié. Cette formulation a cuvert la
voic & la conception de nouvcaux mécanismes a cames, inconnus jusqu'a maintenant.

Notre ¢étude se concentre sur des mécanismes z trois et quatre maillons contenant
un couple cinématiquesupérieur. En premier lieu, la théorie est développée par ’étude
de mécanismes a trois maillons composés d’un bati, d'une came et d’un récepteur de
came. La formulation unifiée est donnée dans I’espace dual, dans lequel les trois
maillons sont représentés par trois sphéres duales concentriques & rayon unitaire.
Dans cet espace, les trois axes de vissage instantané du mécanisme ont leurs images
traccées en trois points duals ou poles. Deux de ces péies, ceux provenant des couples
formés par I'ensemble biti-came et 'ensemble bati-récepteur, sont fixes et reposent
sur la sphere représentant le bati, tandis que le troisiéme péle, provenant du couple
came-récepteur, se déplace sur la méme sphere. Le type de couple cinématique,
c'est-a-dire rotoide ou prismatique, pour les couples bati-came et came-récepteur, est
spécific par la location des poles fixes. Le poloide, qui est la courbe duale définie par
le pole mobile, est tracé dans 'espace cartésien comme |'azoide. L’azoide détermine
les surfaces réglées en contact de la came et de son récepteur. Comme résultat de
cette analyse, deux théorémes de base sont tirés.

Cette théorie est alors appliquée a I'étude des mécanismes de came & quatre mail-

lons, alors qu’un élément intermédiaire, 4 savoir, un roulement, est placé entre la came



et le récepteur. En général, la surface du roulement est hyperbolique, co gni, dans le
cas des mécanismas planaires, devient un cylindre régulier, ct, pour les mdécanismes
sphériques, un cone régulier. Les deux théorémes ¢noneds pour les mdécanismes de
came & trois maillons sont alors appliqués aux mécanismes i quatre maillons. Une
formulation générale est présentée pour 'étude de I'angle de pression des mécanismes
de came & trois et quatre maillons. Avec cetie formulation, l'expression générale de
I'angle de pression des mécanismes sphériques se congoit comme un cas particulier de
I'expression générale pour les mécanismes de came spatiaux.

La formulation unifiée est en outre appliquée & la synthese des mécanismes de
came planaires par le biais de méthodes graphiques. Ici, une technique innovatrice
est introduite, laquelle consiste & trouver les points de contact du profil de {a came,
par opposition & des techniques graphiques plus traditionnelles qui emploient des
enveloppes de came, et, de ce fait, sont sujet & des inexactitudes.

Une attention spéciale est apportée a la synthese des mécanismes pas i pas. Dans
ce contexte, on établi un théoréme pour déterminer un des parametres ulilisé pour
éviter le sous-cavage sur le profil de la came. Une conception nouvelle d’un mécanisme
pas a pas appelé PRICAM, dans lequel des mouvements nositifs de roulement pur
sont obtenus pour les mécanismes planaires et sphériques, est réalisée en utilisant une
combinaison de mécanismes de came a trois et qualre maillons.

La formulation unifiée est réalisée dans le logiciel USYCAMS, dans lequel, avec un
support visuel, l'utilisateur peut concevoir des mécanismes de came des Lrois Lypes, ot
animer leur mouvement en donnant au logiciel les parametres du mécanisme en ligne.
USYCAMS a permis la conception de deux versions de PRICAM, une planaire ct
['autre sphérique, et a produit une base de données décrivant les surfaces de contact
qui ont servi comme données d’entrée & la machine-outil & commande numérique
assistée par ordinateur utilisée pour produire le profil des prototypes actucls de ces

mécanismes.
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Claim of Originality

"T'he research work reported here is original, the main contributions being listed below:

(1) four basic theorems for three- and four-link cam mechanisms where cither the

input or the output contains a prismatic pair;

(12) a unificd formulation for the definition of the pressure angle of three- and four-

link cam mechanisms;

(222) the method of synthesis of three-link cam mechanisms with constant pressure
angle, better known as cam mechanisms with flat-face followers, including spher-
ical mechanisms, that is based on the unified method pertaining to four-link cam

mechanisms;
(iv) the definition of positive action depending on the value of the pressure angle;

(v) a novel design of planar and spherical indexing cam mechanisms with pure

rolling and positive motion, called PRICAM;

(vi) the software package USYCAMS, for the on-line design of spatial, spherical and

planar cam mechanisms;

{vit) the introduction of a novel semigraphical method for the synthesis of planar'

cam mechanisms.

The material presented in this thesis has been partially reported in (Gonzalez-

Palacios and Angeles, 1990; 1991; 1992a and 1992b).
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Chapter 1

Introduction

1.1 General Background and Motivation

A mechanism, according to [FToMM’s Commission A for Standardization of Termi-
nology (1991), is a system of bodies designed lo convert molion of, and forces on,
one or several bodies into constrained molions of, and forces on, other bodies. The
way these bodies are connected is defined by their kinematic pairs. Basically, there
are two kinds of kinematic pairs, namely, higher and lower pairs. The former refer
to the coupling of two bodies in point or line contact, while the latter refer to the
same in surface contact. Moreover, according to the type of degree of freedom, lower
kinematic pairs can be of six types, namely, revolute, prismatic, screw, cylindrical,
spherical and planar (Angeles, 1988).

A cam mechanism is defined as that in which the moation is transmitted by a
higher kinematic pair. The simplest cam mechanism is composed by three elements,
namely, frame, cam and follower. The cam is the driver, while the follower is the
driven element. Another type of cam mechanism contains a fourth element, a roller,
 which is usually connected to the follower by a revolute pair, the higher pair taking
place between cam and roller. The coupling between frame and cam or between frame

and follower can be done by revolute, prismatic, cylindric or screw pairs.
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e

(a) (b)

Figure 1.1 Industrial applications of cam mechanisms

Despite advances in robot technology whereby industrial manipulators may be
effectively substituted for many mechanisms, cam mechanisms still find important
industrial applications, such as in the textile, food-processing and manufacturing in-
dustries. Moreover, many applications of cam mechanisms, specifically indexing cam
mechanisms, arise in conjunction with industrial robots. As shown in Fig. 1.1a, a
robot is used to install fixtures on an automobile door, while an indexing cam mech-
anism rotates the circular table intermittently, allowing the process to be automated.
In Fig. 1.1b a piece is presented to a cluster of machining stations by means of a table
driven with an intermittent motion supplied by an indexing cam mechanism. Notice

that this permits various machining operations to take place simultaneously.

1.2 An Overview of Previous Work

This subsection is divided in two main parts. The first part presents an overview

of previous work on cam mechanisms, while the second deals with the mathematical
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Friction _wheels

Crank
Cylindrical deposit

(a) (b)

Figure 1.2 A pumping system

tools applied in this thesis.

1.2.1 Cam Mechanisms

The origin of cam mechanisms can be traced back to the Paleolithic age, as claimed
by Miler and Mauersberger (1988), who present an account of the evolution of cam
mechanisms, their applications and their contributors. Cam mechanisms seem to
have their origin in one of the simple mechanisms of the ancient times (Miler, 1987),
namely, the wedge. One of the most significant applications of cam mechanisms in the
first half of the second millennium is in pumping systems, as shown in Fig. 1.2. The
rotary motion of the crank is transmitted via friction wheels to the cam. The rotary
motion of the cam is then transmitted to the lateral motion of the follower, which
drives the piston. Mer:icover, the motion of the piston in one direction pulls water
from the well and fills the cylindrical deposit, while motion in the other direction
pushes water out. The modern design of cam mechanisms is considered to have been

pioneered by Leonardo da Vinci. Since da Vinci’s time and up to the XIX Century,
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Figure 1.3 Primitive construction of a cam profile

important contributors to the development of cam mechanisms can be cited, e.g., A.
Ramelli, L. Monge, J. Leupold, L. Bétancourt, Deparcieux, J. V. Poncclet, J. Borgnis,
R. Willis, F. Reuleaux, etc.

The design of cam mechanisms in the first half of the XX Century was based
on geometrical methods, while the cutting of the cam profile was done manually, as
illustrated in Fig. 1.3. Below we present a survey of developments in the theory and
practice of cam mechanisms, starting from the second half of the XX Century. This

survey is divided in two main parts, namely, kinematics and dynamics.

Kinematics

In connection with kinematic synthesis, the method of finite differences was intro-
duced by Johnson (1955) for the design of planar cam mechanisms. Later, this method
was applied by the same author (Johnson, 1956¢) to determine cam profiles with de-
sired acceleration characteristics, while, with a different approach, Zigo (1967) derived

an algorithm for the same purpose. Furthermore, some methods for the synthesis of
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the cam profile from prescribed jerk patterns were proposed by Benedetto (1975),
while Fenton (19666) proposed to avoid noise in cams with a proper selection of cam-
lollower offset for roller-follower radial cam mechanisms. A method of local analysis
of the motion of mechanisms connected by a higher kinematic pair is discussed by
Rosenberg and Kfen (1987), while the theory of conjugate surfaces is applied to the
synthesis of planar cam mechanisms by Zhong-Tang and Jing-Ping (1989).

The combination of linkages with cam mechanisms, in five-link mechanisms, was
introduced by Hain (1970), who also proposed the optimization of these mechanisms
(Hain, 1971). The same author later reported the optimization of a kinematic inver-
sion of a five-link mechanism with a fixed cam (Hain, 1978). Furthermore, Amarnath
and Gupta (1978) adopted the Haix's work to design cam-linkage mechanisms for
multiple-dwell generation, whereas Sadler and Yang (1990), using a different ap-
proach, reported the optimal design of five-link cam mechanisms.

With the aim of improving the motion of cam mechanisms, the design of positive
motion with single-disk planar cams and oscillating follower was presented by Jack-
owski and Dubil (1967) and Wunderlich (1971). Later, with a different approach but
the same concept, Hunt (1973) presented a study of profiled-follower mechanisms.

[t is well known that intermittent motion can be achieved with a kind of kinematic
inversion of the slider-crank mechanism, i.e., the Geneva mechanism, which has been
studied in the past to some extent (Bickford, 1965, 1972; Fenton, 1965, 1975a, 1975b;
Oledzki and Szydlowski, 1975; Shadek et al., 1990). Intermittent motion has been
produced with the aid of indexing cam mechanisms (Jacobs, 1949; Johnson, 1958;
Makino, 1979). Moreover, the design of five-link cam mechanisms with muitiple-dwell
capability was reported by Amarnath and Gupta (1975).

The optimization of cam mechanisms can be considered from different points of
view depending on the pract.lcal problem at hand. Thus,. fhe minimization of the cam
size for planar cam mechanisms was reported by Fenton (1966a, 1975¢) and Loeff and

Soni (1975). Moreover, the minimization of cam forces is reported by Jones (1978b),
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while a comprehensive account on the optimization of planar cam mechanisms and
an introduction to the optimization of spatial cam mechanisms is given by Aungeles
and Lopez-Cajin (1991).

Experimental work to determine jump characteristics in planar cam-follower sys-
tems has been also reported (Rao and Raghavacharyulu, 1975), while experimental
results on the changes' of dynamic properties were presented by Bialkowicz et al.
(1979). The problem of cutting the cam profile was studied by Jones {1978a); Nor-
ton et al. (1988) analyzed the effect of manufacturing methods on cam performance.
Furthermore, the error due to manufacturing and assembly was studied by Dhande
and Chakraborty (1975) from a probabilistic viewpoint, as pertaining to some planar
and spatial cam mechanisms.

A method for the formula-based design of three-dimensional cams was reported by
Raven (1959). Later, a unified approach to the design of Lthis type of mechanisms was
presented by Dhande et al. (1975). Furthermore, Dittrich and Zakel (1979) reported
a study of three-dimensional cam mechanisms based on the values of the pressure
angle, while a study of spherical cam mechanisms was discussed carlier by Dittrich
(1966). Recently, envelope theory, which had been limited to planar mechanisms, was

applied to spatial cam surface geometry, as reported by Backhouse and Jones (1990).

Dynamics

In the case of cams rotating at high speed, impact loads become crucial in the design.
Thus, if force characteristics are considered in the synthesis of cam mechanisms, then
we are referring to dynamic synthesis. A coordination of the polynomial equations of
motion with the dynamic aspects of machine operation gives as a result the polydyne
cam design, which was discussed by Stoddart (1953a, 19534). Another approach onto
dynamic synthesis was reported by Wiederrich and Roth (1975), who applied finite
trigonomet;ic series. Furthermore, a procedure for the dynamic analysis of & cam

mechanism with bearing clearances was reported by Osman et al. (1987).



Chapter 1. Introduction 7

The optimization of cam and [ollower propertics considering the dynamics of cam
mechanisms has been reported by Johnson (1956a, 1956b) and Berzak and Freuden-
stein (1979), while the effects of cam profile error on the dynamic behaviour of follower
cam systems was discussed by Grewal and Newcombe (1988).

In the rcalm of indexing cam mechanisms, the residual vibrations were studied by
Takano and Toyama (1979). Moreover, the optimal configuration of planar external
mechanisms of this kind is reported by Jones and Tsang (1987), and the optimal
design of external and internal indexing cam mechanisms is reported by Gouxun et
al. (1988).

Backlash, squeeze and impact of planar cam mechanisms are simulated in the
work reported by Koster (1975) and Kass and Chace (1973), while different methods

of cutting a plate cam are compared by Norton (1988).

1.2.2 Screw Theory

The approach to the kinematic synthesis of cam mechanisms introduced here is based
| on screw theory. While it is difficult to state the date of the origin of this theory, Ball
(1900) includes a list of contributors to this theory. We based our study reported
here on a number of references, namely, (Ball, 1875, 1900; Beggs, 1960; Veldkamp,
1967a, Roth, 1967; 19676, 1976; Chen and Roth, 1969a; Waldron, 1972; Yang, 1974;
Pandrea and Voiculescu, 1975; Rooney, 19756; Ohwovoriole and Roth, 1981; De Sa
and Roth, 1981a, 1981b; Hon-Cheung, 1987; McCarthy, 1987a; Agrawal, 1987; Kerr
and Sanger, 1989; Sticher, 1989; Gibson and Hunt, 1990a, 19905; Parkin, 1990).

Furthermore, ruled-surface theory has been considered an important tool for the
study of screw theory. Along these lines, Yang et al. (1975) report applications of
screw theory to spatial mechanisms. Moreover, differential properties of ruled surfaces
in a form applicable to spatial kinematics are reported by McCarthy and Roth (1981),

while a study of ruled surfaces in dual space is given in Kose (1982a, 19826). The
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geometry of axods is analyzed with the aid of ruled-surface theory by Diziogiu (1989),
and a new dual integral invariant for a given closed ruled surface is introduced by
Giirsoy (1990).

Contributions to the theory of mechanisms from the point of view of screw theory
have been presented by different authors (Phillips and Hunt 1964; Yang and Freuden-
stein, 1964; Hunt, 1967a, 1967b; Chen and Roth, 1969b; Kohli and Soni, 1975; Rooncy,
1975a; Vadasz and Soni, 1979; Sodh and Shoup, 1982; Sugimoto and Duily, 1982: Sun
and Waldron, 1982; Angeles, 19864, 1986b6; Xiao and Yang, 1989).

1.3 Scope of the Thesis

Cam mechanisms have been studied from different points of view, namely, kinemalic
synthesis, dynamic synthesis, analysis, design, optimization and manufacturing. This
thesis is oriented to the kinematic synthesis of cam mechanisms in a unified frame-
work. By this we mean that spatial, spherical and planar cam mechanisms are inte-
grated in the same formulation. Traditionally, the synthesis of the three types of can
mechanisms has been approached using independent formulations. With a unified
formulation, not only the well-known types of cam mechanisms, but also novel cam
mechanisms can be synthesized, as shown in this thesis.

Moreover, since all the design parameters are considered in a unified framework,
the optimization theory of cam mechanisms can be applied systematically, i.c., the
criteria applied for the optimization of planar cam mechanisms, which can be found
to some extent in the literature, can be complemented in order Lo provide general
criteria for the optimization of spherical and spatial cam mechanisms.

The ideal solution in the design of cam mechanisms is that in which the actual
output motion matches the prescribed one. However, the actual outpul motion is
bound to be different due to deviation of certain parameters from their nominal values,

such as manufacturing tolerances, clearances at the joints, misalignment crrors, ctc.
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With the use of a proper design and machining facilities, namely, a CAD/CAM
system, some of those errors can be minimized, but not totally eliminated. Therefore,
an analysis of the crror is an important topic to be considered whenever industrial
production is required. Given that the stochastic analysis of errors in cams warrants
a research program of its own, we did not address this issue here. Although this
thesis does not discuss a stochastic error analysis, it is believed that the formulqtion
presented here provides the basic information needed for the development of such a

study, and is proposed as one of the items for future work.

1.4 Thesis Organization

'The unified synthesis of three-link mechanisms is presented in Chapter 2, where the
geometry of contact surfaces and the pressure angle are discussed. Four types of three-
link cam mechanisms are described, which are classified according to their kinematic
pairs, namely, RHR, PHR, RHP and PPP. The first and last letters stand for the type
of pair of the input and output axes, respectively, while the middle letter, for the cam-
follower pair. Moreover, R, P and H represent respectively, revolute, prismatic and
higher pairs. The sliding velocity along the higher pair is minimized, and the con-
tacting surfaces are obtained from this condition. In Chapter 3, ihe same philosophy
as for Chapter 2 is applied for the unified synthesis of four-link cam mechanisms.
Now, the four types are defined as RHCR, RHCP, PHCR and PHCP. Similarly, the
first and last letters refer respectively, to the kinematic pair of the input and output
axes. The second letter refers to the cam-roller coupling, while the third letter, to
the roller-follower pair, where C stands for cylindric. A unified formulation for the
pressure angle is introduced here. The concept of cam mechanisms with constant
pressure angle and an auxiliary roller is applied to the synthesis of cam mechanisms
with flat-face followers. Here, four types are discussed namely, RHHR, RHHP, PHHR
and PHHP, where the symbol HH is explained in Section 3.4. In Chapter 4, the theory
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presented in Chapters 2 and 3 is applied specifically to the syvuthesis of indexing cam
mechanisms. The design of indexing cam mechanisms with pure rolling and positive
motion is presented in Chapter 5. Chapter 6 concludes with a general discussion on
the achievements in this thesis and suggestion for further research work.

Five appendices are included for completeness: A general review of dual numbers
and a theorem which is considered a contribution to the theory of dual numbers
are presented in Appendix A. In Appendix B, the Aronhold-Kennedy Theorem in
dual-number notation is recalled. A general description of ruled-surface theory is
presented in Appendix C. A few displacement functions applied for the synthesis
of cam mechanisms are included in Appendix D. Finally, graphical methods, based
on the theory presented in Chapters 2 and 3, are discussed in Appendix 13, where

the profile of the cam is obtained directly from the contact points between cam and

follower



Chapter 2

Kinematics of Three-Link

Mechanisms

2.1 Introduction

This chapter is confined to the study of cam mechanisms composed of three rigid
links, namely, the fixed frame, the driving element or cam and the driven element or
the follower. While the study is general, special attention is given to indexing cam
mechanisms (ICM).

The synthesis of the profiles of both cam and follower as well as the quality of the
transmission, quantified via pressure angle, are discussed in this chapter in a unified
fashion. The profiles are designed as ruled surfaces, and motion is transmitted along
a common line, which gives rise to a higher kinematic pair. Two more kinematic pairs
arise, namely, the cam-frame and the follower-frame pairs, which belong to the class
of lower kinematic pairs, and can be of any of three types, namely, revolute, prismatic
or screw (Angeles, 1982). This generalization allows the analysis of those mechanisms
not only with rotating but also with translating followers, i.e., if the output motion

is attained via a prismatic pair.
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Recalling the theorem on the existence of an instant screw axis (1.5:4) pertaining
to the relative motion of two rigid bodies (Angeles, 1982), three 18 4s arise within
the kind of mechanisms under study. Morcover, the input and output pairs are
represented by their instant screw axes [y and Iy, where 1, 2 and 3 stand lor frame,
cam and follower, respectively. For a given input-output motion there is a unique pair
of cam and follower surfaces that produce the given motion with a mintmmum sliding
on the higher pair. This solution is achieved when the contact line coincides with the
instant screw axis I3;. In some degenerate cases the surfaces may collapse into a line.
Other solutions can be obtained il the contact line and Iy are not cotncident, but

parallel, e.g., in cam mechanisms with flat-{face {ollowers.

Figure 2.1 Mapping from Euclidean to dual space.

In this thesis, planar, spherical and spatial cam mechanisms are classified accord-
ing to the relative location of their /S As. Thus, the mechanism is planar if every /54

is either parallel to one direction or perpendicular to it; the mechanism is spherical
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if all 1S As are concurrent; spatial, if none of the two foregoing conditions is met.
"The contact line of the higher pair is an element of both surfaces, and is derived
hy application of the Aronhold-Kennedy Theorem, first proposed by Aronhold (1872)
and Kennedy (1886) independently for planar motion and later extended to the three
dimensional case by Beggs (1959) and Phillips and Hunt (1964). The {formulation is
based on a mapping of the motion onto the dual space, where the three bodies are
considered as dual unit spheres Sy, Sy and 83 in relative motion, and the poles f’,-,- are
the images of the axes [;; under the aforementioned mapping. Appendix B includes
an account of dual-number algebra for completeness, as the said mapping is based on

this algebra.

2.2 Surface Geometry

As mentioned in Section 2.1, the surfaces of the cam and the {ollower are generated by
the sweeping action of I3, onto each of the two bodies. The first part of this section is
devoted to the derivation o‘f the parameters defining /35, the second to the definition
of the surfaces.

Let Sy, &2 and &3 be the dual unit spheres representing, in the dual space, the
[rame, cam and follower, respectively. We recall briefly here that dual quantities are
denoted with a hat (") and are composed of a primal part, usually a real scalar, vector
or tensor, and a dual part, correspondingly a real scalar, vector or tensor, preceded
by the dual unity ¢ with the property €2 = 0. The relative dual angular velocities of

the foregoing dual spheres are related as in eq.(B.5), i.e.,
W31 €31 = Waglsy + War @y

In the above equation, the subscripts (i) denote the dual angular velocity of the ith
dual sphere with respect to jth sphere, but, in order to simplify the nomenclature, all

dual angular velocities with respect to 1, i.e., the frame, will be indicated only with
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the label of the other sphere, eq.(B.5) thus taking on the form
(83 = Wyglay + Wné, (2.1)

Now, three coordinate frames are defined so that their .X-axes are collinear and
each of the Z-axes is oriented towards one of the poles. Thus, the poles are locally

represented by the dual unit vector

"

k=fo, 0, 1)7 (2.2)

with zero dual part.

Furthermore, &, is the dual angle from &, to &,, whereas 0, is the dual angle from

€, to €39, both of which are defined as
a; = a, + cay (2.3a)
f; = 0 + eby (2.3)
The geometric representation of the [oregoing mapping is shown in Fig. 2.1, where

Vij = vi;€i;, while v;; and w;; are the components of &;;, as defined in eq.(B3.6). Thus,

the unit dual vectors of the poles are given as

& = Q(é)k (2.4a)
832 = Q(02)k (2.4D)
g, =k (2.4c)

where Q is defined in eq.(A.11a).
Next, substituting the values of eqs.(2.4) into eq.(2.1), one obtains

0 0 0
Gy | —sindy | = s | —sindy |+ |0 (2.5)
cos &; cosﬁg 1

Two dual equations are obtained [rom eq.(2.5), namely,
W sinﬁg = (g 8in & (2.6a)

Wap cosfy = g cos ) — &, (2.6h)
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"Thus, the parameters of the pole Py can be written in terms of those of the poles
£ and Py, Consequently, wap is obtained by the addition of the squared terms of

¢qs.(2.6), while 0, is obtained upon dividing eq.(2.6a) by eq.(2.6b), namely,

(.:Jgg = Ag - 2&:-‘36)2 cos &1 + tbg (27)
- L:);) sin dl
tanf, = - (2.8)

@3 COS @y — Wy

The discussion, as well as other operations with dual numbers, is outlined in
Appendix A.

Moreover, we are interested in calculating the numerical values of the real angular
velocity and the real sliding velocity of the follower with respect to the cam, w32 and
vsa, respectively. The former is the signed magnitude of the difference w3 — w, while
the latter is the minimum magnitude of the diffrrence vpy — vpa, where vps is the
velocity of a point of the follower and vp, is the velocity of the same point of the
cam. Now, in order to obtain the real angular velocity wa; and the real sliding velocity
vUsa, one can expand eq.(2.7) considering eqs.(B.6 & 2.3) and the definitions given in

eqgs.(A.1 & A.10), which readily lead to

Wiy = :l:\/(.:.)32 —- 2w3w2 Cos + w22 (293.)

Wals + Wik dy sin oy — (uJ'a‘Ug + UJz‘Da) COs a1 + wWavz b
Uge = (2-9 )
Wsa

A similar procedure is followed to obtain 8; and b, from eq.(2.8), namely,

wasino
tanfy = ——otn Ot (2.102)
Wy COS &Yy — Wy

by = (wa?® — wawy cos ay)ay ;I- {wsvy — wavs)sin ey (2.10b)

w3z
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In general, eqs.(2.9 & 2.10) provide all the necessary information to deline Ly,
Moreover, we claim that these are the general equations {rom which one can derive
any type of the known cam mechanisms satisfying the condition of minimum sliding
velocity at the contact line and new types depending ol the combination used on
the input and output screw parameters, namely, wy, va, wa, vy, oy and a;. However,
special treatment may be needed if both the input- and output-pairs are prismatic,
as discussed in Subsection 2.2.4.

Now, if S; rotates with respect to S through the dual angle = th + ez, where
both % and z; are functions of time, Pap will trace a curve on S, called the polode,

which is given by the dual unit vector 52(¥) defined below:
5,(¥) = ST(H)Q(d,)k (2.11a)

where the dual rotation S is defined in eq.(A.1lc).
Similarly, if Sy rotates with respect to S, through the dual angle b = ¢+ 3,
where both ¢ and z3 are functions of time ¢, Ps; will trace another polode on Sy,

which is given by the dual unit vector 53(#), defined as
$a(¢) = ST(4)Q(0, — a1k (2.11h)

Furthermore, the polodes defined by the dual unit vectors §; and 83 are the images
of the ruled surfaces R, and Ra, the contact surfaces of cam and follower, respectively.

Now, upon expansion, egs.(2.11) take on the form

—s1(t)sh; bash(t)cly + 22(8)erp (1) 50,
S2(t) = | —cp(t)slz | — € | bacip(t)cly — za(t)s1b(t)s0, (2.12a)
cl, bys0,

—s¢(t)sp ds¢(t)ef + za(t)ed(t)sf
53(t) = | —cd(t)sP | — €| deg(t)ef — z3(L)sp(L)sf (2.12b)
cf dsfi
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where d = b; — «; and § = 0, — . Furthermore, s «— sin and ¢ « cos.
By means of eq.{A.8), the point coordinates of R, and Ry can be readily obtained

from eqs.(2.12), namely,

baep(t) — 22(8)s9p(t)s02¢0, —stp(t)s0q
ra(t, A) = | =bpsv(t) — z2(t)ep(t)sbachs | + A | —ctp(t)sO (2.13a)
—2z4(t)5%0, ety
e ded(t) — =a(t)sd()sBeB | [—=so()sh
ra(t, A) = | —dse(t) — za(t)ed(t)sBeB | + A | —cd(t)sp (2.13b)
—z3(t)s*8 cB

2.2.1 Revolute-Higher-Revolute (RHR) Mechanisms

A cam mechanism with both input and output revolute pairs and with the contact
line coinciding with Isz, is called a revolute-higher-revolute (RHR) mechanism. Its

input-output function can be expressed as
¢ = ¢(¥) (2.14)
and, from the type of input and output pairs,

n=vp=0 (2.15a)
zm=v3=0 (2.15b)

Next, from eq.(2.14), ¢ can be expressed as
b= — = —— = g, (2.15¢)

Now, substituting the values of eqs.(2.15) into eqs.(2.9 & 2.10), the screw parameters

of I3z are readily derived, namely,

Wiz = iwgc (2.16&)



Chapter 2. Kinematics of Three-Link Mechanisms 18

%' sin o
' = ﬂ:i—'(':_l'(llw'_l ('..‘“H)‘
! sin o
tan ‘= _gsimar (2.16¢)

deosay — |
#"* — ¢' cos oy

by = —— 28, (2.16d)
=
where
e= /¢~ 2 cos + | (2.17)

Furthermore, combining eqs.(2.16) with eqs.{2.13), the cam and [ollower surfaces are

derived from

cos vy —siny sin f
r2(,A) =by [ —sinY | + X | —cosysinl (2.18a)
0 cos
and
cos ¢ — sin ¢sin(0; — o)
r3(d,A)=(hr—ay) | —sing | + A | —cosgsin{d; — ay) (2.18h)
0 cos(fy — )

in agreement with the results presented in (Gonzilez-Palacios and Angeles, 1990),
using a more specific approach.

Now we can draw the conclusions below:

i) The surfaces generated by r; correspond to any of the three classes of cam
mechanisms. Thus, the classification below is given in terms of the values of q
and oy

— Planar: a; #0, o) = 0.
— Spherical: a; =0, aq # 0.
— Spatial: a; #0, oy £ 0.
ii) As expected, pure rolling is achieved in the first two cases mentioned above,

which is apparent from eq.(2.16b), since vy; vanishes with the corresponding

values of a; and aj.
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2.2.2 Revolute-Higher-Prismatic (RHP) Mechanisms

A cam mechanism with a revolute pair as input and a prismatic pair as output, with
line of contact [5g, is called a revolute-higher-prismatic (RIP) mechanism. Moreover,

the output motion can be expressed as a function of the input motion, namely,

25 = =) (2.19)

From the types of input and output pairs, one concludes that

= vp = (2.20a)
p=wy3=0 (2.20b)
Now, considering eq.(2.19), v can be expressed as
d.'.’.'a d.':a dtb '

S = — = W 2.2

WET T wp (220c)
Recalling eqs.(2.20), eqs.(2.9 & 2.10) take the form

Wan = —Wy : (2.21&)
Vg = —zqwy COS @ (2.21b)
tanf, =0 (2.21c}
by = —z}siney (2.21d)

Furthermore, substituting eqs.(2.21) into eqs.(2.13), the cam and follower surfaces

are readily derived in terms of the position vectors ra(%, A) and ra(zs, A), namely,

—cos 0
r2(1,A) = z3singy | singg | +A |0 (2.22a)
0 1
and —(z4siney + ay) 0
ra(za,A) = | zsinejcosoy | + A | sine (2.22b)
—235in oy COS iy
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Equations (2.22) represent a family of cam mechanisis, characterized by specilic
values of aq. Because the output is a prismatic pair, a, can be arbitrarily delined
without changing the geometry of the follower surface. In other words, ¢y only gives
the position of the follower frame. Now, by looking at eq.(2.21b), vy vanishes if
ap = w2 or 37/2. Indeed, substitution of these values into eqs.(2.22), leads to the

surfaces given below:

—cos ] 0]
ra(,A) = Ez3 | singg |+ A [0 (2.23a)
0 ] L1
and
(25 + @) 107
ra(z3, A) = F 0 +Ai1 (2.23h)
<3 _ L0 ]

the upper sign taki: | place when oy = /2.

From these results we can draw a few conclusiuns, namely,

i) The surfaces are cylindrical.
ii) The cam mechanism has a translating follower.

iii) Because a; # 0 and b, # 0, the 15As are nop-parallel and non-intersecting,.
Therefore, according to the given definition, Lhese two mechanisms are spatial

cams.

On the other hand, v3; of eq.(2.21b) is a maximum if &; = 0 or 7, the contacting
surfaces being obtained by substituting either of the two values of ay into eqs.(2.22),

namely,
0

r(A)=+A|0] - (2.24a)
1
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and
— 0
f(A )= 0 [£A]] (2.24b)
0 0

from which we can draw a {ew additional conclusions, namely,
i) The surfaces degenerate into a common line, which is coincident with Is,.

ii) The solution is ideally a cylindrical cam mechanism. In order to have a feasible
mechanism, either the locus of the higher pair should be different [rom the locus

of I3; or an intermediate rigid body should be included, e.g., a roller.

iii) Ip is parallel to [, and /4, yielding a planar mechanism.

2.2.3 Prismatic-Higher-Revolute (PHR) Mechanisms

A prismatic-higher-revolute (PHR) mechanism is similar to an RHP mechanism, the
only difference being that now the input has a prismatic pair and the output a revolute

pair. The output motion is expressed as

@ = ¢(z2) (2.25)

Now, considering the input and output pairs, one obtains

P=wr=10 (2.26a)
3= U3 = 0 (2.26b)

Furthermore, w3 is expressed as
wy = dé _dédz ¢ (2.27)
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L
==

Substitution of eqs.(2.26) into eqs.(2.9 & 2.10), une can readily obtain

wir = £é'vg (2.28a)
Uy = FugCos (2.28h)
tan ; = tan oy (2.28¢)
by = -‘b_'f‘—“:-bf—i‘.‘ﬂ (2.284)

Thus, the general surfaces for a PHR mechanism are obtained by substitution of

eqs.(2.28) into eqs.(2.13), namely,

a; +siney /@' 0
ra(z9,A) = | —zpsajcosay | + A | —siney (2.29a)
—zsin® oy cos ¢y
. cos @ 0
Fa(d, A) = S“;f"" —sing|+r]0 (2.20b)
0 1

Now, in order to have pure rolling, i.e., vag = 0, a; must be /2 or 37 /2. Since the
results are analogous to those of section 2.2.2, one obtains the same conclusions given
there. According to the results presented in Sections 2.2.2 and 2.2.3, the theorems
below are readily formulated:

Theorem 2.1: For RHP or PHR mechanisms, the contact line of minimum sliding
velocity is parallel to the axis of the revolute pair.

Theorem 2.2: Pure rolling of RHP or PHR mechanisms is achieved if the axis of the
prismatic pair is perpendicular to both the contact line and the axis of the revolute

pair.

2.2.4 Prismatic-Prismatic-Prismatic (PPP) Mechanisms

If both the input and output pairs are prismatic in a cam mechanism, the third pair is

also prismatic and so, the mechanism is termed prismatic-prismatic-prismatic (PPP).
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The input-output {unction can be expressed as
23 = 23(2) (2.30)

This type of mechanism is the exception to the general formulation given in
¢qs.(2.9 & 2.10), where the screw parameters, except for wsy, are undefined. Conse-
quently, a particular derivation should be considered, i.e., instead of relative angular
velocities, relative translational velocities of the contact point will be analyzed. These
are related as

Va1 = Va2 + Vo (B.4)
which can be rewritten as

v3éy = vaglap + V28 (2.31)

Comparing eq.(2.31) with eq.(2.1), one can apply a procedure similar to the one

used to derive eqs.(2.7 & 2.8) to obtain

vi, = v2 — 3wy cos &y + v2 (2.32a)
and
N v3siné
tanf, = —'—3—_—1 (232b)
vaosay — Uy
Separating eqs.(2.32) into primal and dual parts, one can readily obtain
Vg = :}:\/vg — Quavy cOs @ + V3 + €v3uaa; sin oy (2.332)
and
vasina 2 - o
tan 8; + eby(1 + tan? f;) = ——— " [”3 T e (233b)
V3 COS @] — V2 (vacos @y — va}

The dual part of the left-hand side of eq.(2.33a} is zero, and hence,
Valaady sin o = 0

[n general, v; # 0, for i = 2, 3, and sine # 0. Thus, for the above equation to hold,

ay must vanish. Consequently, from the dual part of eq.(2.33b), b, = 0.
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Moreover, from eq.(2.30), one can define the relatiouship

dzs dzadz , 2 41)

ME —— = 5——— = I,
dt  dzg dt +

Thus, with the aid of eq.(2.34), va2 and #; can be written as

Vgp = :t\/::g" — 2z cosay + Ly (2.35a)

zisin

tan 0 = (2.35b)

shcosay — 1

from which we can draw the conclusions below:
i) The coupling between cam and follower is a prismatic pair.

ii) Since a; = by = 0, the three /S As are concurrent.

2.3 Pressure Angle

In some cam mechanisms, as we will see in Chapter 5, the cam may play temporarily
the role of the driven element; correspondingly, the follower may play temporarily the
role of the driving element. For this reason, we distinguish here between direct and
inverse operation-of the mechanism. The direct operalion is defined as that in which
the cam is the driving element, the inverse operation being that in which the cam is
the driven element.

Henceforth we assume that the cam and follower are bounded by the ruled surfaces
Rz and Rj, respectively. The pressure angle y; is then defined as that subtended
between the direction of the unit normal to R; and the direction of the velocity of
the contact point as pertaining to the driven element, which is bounded by R;, for
i = 2, 3. Since contact takes place along a line, g; is derived as a function of A, which
is a parameter defined along that line.

Let r;(1¥, A) be the position vector of a point of the ruled surface R;, defined as

ri(1, A) = pi(h) + Aei() (2.36)
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The normal vector n; of R; is determined as in eq.(C.3), namely,
u; dry g

) Uy = X o

I} s | dy  dA

In terms of eq. (2.36), n;(1), \) becomes

l‘l"(lf),,\] =

n.-—. mt‘ .
VT mg |

the prime denoting differentiation with respect to 1.

m; = (p} + el) x (2.37)

Morcover, the unit vector w;, parallel to the follower velocity at the contact point,

is obtained as

&;

W = —— £, =w; xr; (2.38)
I &l '
Once n; and w; are known, the pressure angle is derived from the relation
| i x wy |l
i § = ———— 2.39
an p; y— (2.39)

The value of y; for the spatial mechanism changes at every point of the contact
line. In order to derive a significant value of y; for this case, we define it along the
striction curve (DoCarmo 1976}, which is the curve of the central points of R, at

which A attains the value As given below:

P: - €
and hence, g; is defined as
fi = pi(As) (2.41)

The striction curve can be interpreted as follows: Given a ruled surface R, con-
sider two infinitesimally separated generators e and e = e + de and their common
perpendicular PP’, as shown in Fig. 2.2, Then, point P is the central point of the
generator e and the locus of the central points define the striction curve.

Thus, the central circle of an axially-symmetric hyperboloid H is the striction
curve of H, whereas the striction curve is undetermined in cylindrical surfaces. and

reduces to a point in conical surfaces.
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Figure 2.2 Graphical interpretation of the striction curve

2.3.1 Pressure Angle of RHR Mechanisms

General expressions of the pressure angle for both direct and inverse operations are
derived using RHR cam mechanisms. The pressure angle for other types can be

obtained following the same procedure presented here.

Direct Operation

The pressure angle is obtained in this case for ¢ = 3. Following the procedure men-

tioned above, the unit normal is written as

_ (p3tXe3) xeg

n3 = o | (2.42)
where the prime denotes differentiation with respect to 1.
From eq. (2.18b), we obtain
—d¢'sind + b, cos ¢
p; = | —d¢'cos ¢ — by sing (2.43)

@ | 0
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and , . ;. ,
—¢'cos gsin g — 0, sin g cos 3

ey =| ¢'singsin@ — 0} cos ¢ cos 3 (2.44)
~04sin g
¢, and b}, being derived from egs. (2.16¢ & 2.16d), namely,
o
g = Esina (2.452)
c
and
I — (A2
p= 20 =87+ Doosan (2.45b)

e
where ¢ is defined as in eq. (2.17). Combiring eqgs. (2.42-2.44), we obtain the desired
expression for ng, i.e.,
—(dd'cod + bhsd)eB + A(d'spsBcB — U5¢cd)
ny= | (d¢'sp — bycd)cf + M'cdsfef + 04s59)
—bysB + A¢'s?8

1
| ma |

(2.46)

Now, w3 can be written as
dsin ¢ + Acos ¢sin 8
w3 = | dcos ¢ — Asin ¢dsin 8

0

1
Il &l

the cross product of the right-hand side of eq. (2.39) being computed as
dbycpsh + As2B(bys0 + ¢'ded) — Ndlsds3p

n3 X wa = | —dblsésf — As2B(bhed — d'dsd) + A cpsB
—d* ¢ cf — \dO, — bysPef) — N2 ¢'s*Bef -

whose magnitude is given by

1

— (2,
&y &%)

VAL BB+ CN¥+ DI+ E
Il & 1] ma

| ns x ws ||=
with the definitions shown below:

A= ¢?s'8 (2.50a)
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B= Fs'3 (2.50D)
C = (b + o d*)s* 3 + (057 + ¢"*s* B B)d* — 2db0s s 2.50¢)
D=Fd (2.504)
E = d*(bys*3 + 49" c*3) (2.50¢)
F =2¢'(d0,cp — bys3) (2.500)

Furthermore, the dot product of the right-hand side of eq. (2.39) is readily ob-

tained as
db), cos 8 4+ A%, sin 3
& Il mall

Finally, combining eqs. (2.39, 2.48 & 2.51), the tangent of the pressure angle takes

Nz Wy = - (2.51)

on the form

VAM+BX+CX+ DA+ E

t =
anfa b cos B + Nelhsin B

(2.52)

For the planar case, a; = 0, and hence, 0 = f =0 =0, A = 03 = C =
D = 0, and E = d*¢'2. Substituting all these values into eq.(2.52), tan py reduces
to

d ! (6’(‘?5' — 1)

tanpy = ——¢ = ——— (2.53)

AT

For the spherical case, the pressure angle is obtained by taking the limit of tan jiy

as A tends to infinity (DoCarmo, 1976) in eq.(2.52), namely,

VAMEBR +CM+ DA+ E _ ¢'sinf

t = lim — 2.54
s =% db, cos B+ ANl sin B 0, (2:54)
Manipulating the expression for sin f, eq. (2.54) can be readily rewritien as
¢f
tan p3 = —+/c (2.55)

¢H
with ¢ defined as in eq. (2.17).

If ¢ is evaluated for o = 0, /e = ¢' — 1. Therefore, eq. (2.53) is a particular case

of eq.(2.55).
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For the spatial case, eq.(2.52) is evaluated at the striction point, i.e.. at As as

given hy eq.(2.40}, which, in terms of eqs. (2.43 & 2.44), becones
,0hdcos B — b,sin B

= 5 2,
As 042 + ¢/ sin* B (2:56)
But,
. . sin o _
sinf =sin(l — o) = \/E! (2.5Ta)
¢' — cos oy
= 0 — ) = ———— 2.57b
cos 3 = cos(02 — o) 7 (2.57b)
t
-1
d=by—a = %a. (2.57c)
and now, substituting eqs.(2.45 and 2.57) into eq.(2.56), one obtains,
200
r = 2o¢ sinanye (2.58)

which is the expression determining the point at which the pressure angle is evaluated.

Inverse operation

Here, the cam is considered as the driven element; therefore, we derive the expression
for the pressure angle using 7 = 2. Following the same steps as those for the direct

operation, one can readily obtain the expression for the pressure angle as

o i = VAM + B 4+ C)2 +.D,\ + £ (2.50)
bob, cos 8 + A%05sin @
where

A = 5%, (2.60a)
B = Fs*, (2.60b)
C = (b2 4 62)s20, + (052 + 520,c20,)b2 — 2b,b,0", 50,0, (2.60¢c)
D = Fe? (2.60d)
E = b3(b,25*0, + B? cos® 0,) (2.60e)
F = 2(by0} cos 0, — b, sin ;) (2.60f)
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For the planar case, ¢y = 0, and hence, §; = 8, = 0, A=0=0C=D=1
and £ = b,
Substituting all these values into eq. (2.59), tan uy reduces to
by (' —1
tan g = —— = ——(2—-————) (2.61)

b, érr

For the spherical case, the pressure angle is obtained by taking the Limit of tan

as A tends to infinity in eq. (2.59), namely,

e VAM+ BN+ CNR DA+ E _ sind _ ¢ - 2.62)
He = bty cos0 + A204sind 0% ¢V e

where c is defined as in eq.(2.17

)
For the spatial case, eq. (2.52) is evaluated at the value of A given by cq. (2.10),

namely, at
520'2 [o{0}] 02 _ b; sin 02 9
As =~ ane, (2.63)
But
X !sin o .
sinf, = ¢ 7 ! (2.64a)
d'cosa; — 1 .
= 2,641
cos &, 7 (2.64b)
Now, substituting eqs.(2.16d, 2.45 and 2.64) into ¢q.(2.63), onc obtains,
. ¢’2¢”sin a\/& ‘
=— 2.6!
AS (¢l2c + ¢uz)c“' ( 5)

Note that the results outlined above are apparent for spur, bevel and hypoid
gears as well, in which the pressure angle on the pitch surfaces is 90°, and hence, no
motion transmission is possible with the pitch surfaces. The tooth gecometry makes
this transmission possible at a constant pressure angle (Dudley, 1962). This resuli is
easily obtained from either eq. (2.52) or eq. (2.59). In fact, for all these cases, eq. (2.14)

takes on the form

¢ = ki, k = constant (2.66)



Chapter 2. Kinematics of Three-Link Mechanisms 31
where & is the transmission ratio. From eq. (2.66), ¢’ = &k and ¢"” = 0. Substitution of
these two values into eqs. (2.45a & 2.45b} leads to &, = 0 and 0, = 0. Consequently,
the denominator of the right-hand side of either eq. (2.52) or eq. (2.59) vanishes, as

expected,

2.3.2 Pressure Angle of RHP Mechanisms

‘The pressure angle of RHP mechanisms is also derived with the procedure presented
in Section 2.3.1. Thus, from egs.(2.22), the pressure angle [or both direct and inverse
operations can be readily obtained as,

\/(zgsa;cal)z + 232820 (e + s )?

t = 2.67
an s —zisay (2.672)
(zsoycoy)? + 24252y (2 + 1)
tan jiz = (s cen) -~ e (2.67b)
—2Z3sm
Notice that, for a) = +7/2,
23
tan M3 = tan H2 = _—zg (2.68)

2.3.3 Pressure Angle of PHR Mechanisms

The pressure angle for PHR mechanisms for direct and inverse operations is obtained

from eqs.(2.29), namely,

VTG T 2.59)

tan pz = tan ya =
8

2.3.4 Pressure Angle of PPP Mechanisms

From the results presented in Section 2.2.4, one can obtain the expressions for the
contact surfaces of PPP mechanisms, and then, the pressure angle éan be computed.
Following this procedure, the pressure angle is found to be #/2 and no transmission
is possible with this type of mechanisms. Nevertheless, with the introduction of a

fourth body, i.e., a roller, a feasible mechanism is possible, as discussed in Chapter 3.



Chapter 3

Kinematics of Four-Link

Mechanisms

3.1 Introduction

This chapter is devoted to the study of cam mechanisms with four {inks. ‘This study
includes three-link mechanisms with a flat-face follower because these are synthesized
with the aid of an auxiliary roller.

One fourth dual sphere S;, which represents the roller, is added to the three
already considered in Chapter 2. Thus, a total of six [/SAs arise now and, accord-
ing to the Aronhold-Kennedy Theorem, there are four great circles having three
poles each, namely, C)2a: {f’gl, P, 153;}, Caas: {f’;,-;, P, f).q:;}, Can: {f’.m, P, ]34.}
and Cy12: {f’.u, Py, le}. The polodes generated by P13 and Py, over S; are the
dual curves of the pitch and contact surfaces of the cam. The former is applied to
derive the pressure angle.

Now, a great circle on a unit dual sphere can be defined with at least iwo points.
Thus, C123 and C34;, shown in Fig. 3.1e, are defined by the given poles f’gl, Py and P

Moreover, 1332 is computed according to the results obtained in Chapter 2. Once
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Figure 3.1 Mapping of the geometry of four-link cam mechanisms,
onto the dual sphere.

Pyy is obtained, both Py; and Py, define Caa, as shown in Fig. 3.16. Finally, Py, is
located by the given dual radius of the roller, represented by &4. The given parameters
as well as the unknown variables for the synthesis of four-link cam mechanisms are
shown in Table 3.1.

The components of the unit dual vector é in the frame F; are represented by [&é];.
In order Lo simplify notation, the symbol {-]; will be omitted for those vectors given

in the frame fixed to Ss.

3.2 Roller-Followers

It was mentioned above that the dual curve generated by the motion of an on &

represents the pitch surface of the cam, which is given by

(1) = ews + emu = ST(H)QUMS(HQa) (3.1)
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Table 3.1 Notation used for the synthesis of four-link cam mechanisms

(iven parameters:
& = oy + €a; | Dual angle between input and output axes
Gy = a3 + €a3 | Dual angle between output and roller axes
&4 = g + €ay | Dual angle of the roller

Y =1+ € Dual angle of rotation of the cam

b =06+ ez Dual angle of rotation of the follower
Unknown variables:

0-2 = 03 + €by | Dual arc P, Py,

03 = 03 + Ebg Dual arc 1332 f).|3

§=6 + €z32 Dual angle between arc f’;m f’g and arc I";;-; !".m
=. + €z43 | Dual angle between arc PPy and arc l.’;;-_' 1—’4;;

s 3

where Q, S and k are defined, respectively, in eqs.(A.11a, A.llc & 2.2).

From eq. (A.8), the point coordinates of the pitch ruled surface R, are defined as

£o(t,A) = Paat) + Aeaalt) (3.2)

where p4s = e43 X mya.

Thus, e43, my3 and py3 can be readily computed as

€43 = {"—hl, —hg, 1\‘.‘1 lT (3.3&.)

—kl 3‘!/).'.3.1 - hgaa - figzg + k580323
maz = | —kjcha; — hqas + hizg — kgsagzs (3.3h)

—kaal — kqaz + krz3
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[ (haky + kic)ay + (hoky + haky)ag ]
—kyhyzp + (kikgsag — kzha)z;

-"(hlk;; -+ k'f'sw)a; - (h;k.| -+ hgkl )0.3
Paa = (3.3c)
—'k]thg + (k] kssaa + k?}zl)za

(h]C‘l/J - th‘(,(J)k;G.] + (hlhq — l’lzha)aa
| —(h] + h3)22 + (haks + hikg)saszs |

where
ki = cajcan — sasaacd (3.4a)
ky = cajcazcd — saysag (3.4b)
ka = soncas + caysaaced (3.4c)
. ki = saacay + cazsaicod (3.4d)
ks = etped + sppsoeco (3.4e)
ke = scd — cspeo (3.4f)
kr = saysazs¢ (3.4g)
hy = kastp — sazsgerd (3.4h)
hy = kseyp + sazsosy (3.4i)
hz = kpsyp — cazspeyp (3.4j)
hy = kpetp + caasgsiyp (3.4k)

Now, the dual curve representing the surface of the cam is defined by the trajectory

that Py, traces on Sy, namely,
Sc(t) = ex + emyr = §T($)Q(6,)8(5)Q(A)k (3.5)

Furthermore, in order to completely define s¢, 0 is computed from egs. (2.10).

. The derivation to obtain the dual angles 7 and by is presented below. The former is
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defined as

n=n+elby—ay) = (53 — iy (3.6)
&4 representing the dual radius of the roller.

Morecover, (53 is obtained from the relation

A 832 X €43 €934
tan 03 =

(3.7)

€32 €43
where the vectors appearing in the right-hand side can be expressed in any {rame, as
long as all are in the same frame, for the cross and dol products are frame invariant.

[f these vectors are expressed in frame 7|, fixed to Sy, then,
8321 = Q(f2)k (3.8a)
[eash = Q(61)S(4)Q(da)k (3.8b)

and [8,34]1 is defined as
[é:n]l X [é-tS]l

(ol = || [€32]: X [€43]1 || (3.9)
On the other hand, the dual angle 5, shown in Figure 3.1, is obtained as
tané = [éns]-l a [ézaf]l [y (3.10)
[€123]1 - (234}
where
[é12sh = {1, 0, 0] (3.11)

From egs. (A.8 & 3.5), the point coordinates of the ruled surface of the cam are

given as
re(t, A) = paa(t) + Aeqa(t) (3.12)

where p42(t) = eqz x my,.
The transformation dual matrices in eq.(3.5) are the same as those in eq.(3.1),

but with different arguments; therefore, the resulis given for ey, myz and pqq are

P
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analogous to those of eqs.(3.3), namely,

e42 = [ —hy, —hzg ky

My =

P42 =

where

]T

~kys9pby = ha(by — aq) — hozo + kssnzas
—I?l C'l‘[)bg -_— !.I..g(bg - (14) + il]Z'z - I.'ﬁS?]Zgg
—kaby — Ka(by — aq) + krza

[ (;&21:‘3 + i‘?c!b)bz + (’.121'4 + il-iiv'l)(ba —ay) ]

—K?lill.?:g + (KTII?QST] —_ ;\;771.2)332

-(fnf;;, + i»‘f'SllJ)bz - (iltzhs + !-131:1)(53 - a4)
—It‘lilzzz + (f»‘liv‘ssﬂ + ’:‘7’11)332

(hyc — hosth)kyby + (Ryha — Rohs)(bs — aa)
—(71? + il%)zz + (ilgks -+ f&;ﬁ‘s)snz:;g

K:l = clyen — shasncd
i.'g = ¢lycncd — slysy
ks = sbycn + chysncé
ky = snedy + enslycd
ks = ceb + sipsbety
ks = speb — cpsbiet,
fy = sl;snsd |

hy = kysyp — snsbep
hy = kscyp + snsbsip
ha = kpsp — cpsbey

a7

(3.13a)

(3.13b)

(3.13¢)

3.14a)

——

3.14b)

—

3.14c¢

—

3.14d

f—'-.

3.14e

—— e

3.14f
(3.14g
(3.14h
(3.14i

R e e S e .

(3.14j
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Figure 3.2 [SAs of an RHCR cam mechanism

ha = kocp + ensdsp (3.14k)
In order to avoid undercutting, the dual angle &, must be constrained by

where pmin is the minimum value of the dual radius of curvalure of the dual pitch
curve of the cam, and is evaluated according to eq.(C.15).

Now, the dual angle & = v + €z43 can be computed as

€341 X €934+ €42

tan b = — - (3.16)
€341 * €234
where
. €3 X &
oy = —— (3.17)
sin a3

The axial motion of the roller with respect to the follower is defined by zp3. In
general, 23 = z3(t), the roller-follower pair being cylindrical; however, a revolute

pair is present when z43 is constant.
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Now, in order to derive the expressions for wy, and was, the Aronhold-Kennedy

Theorem, as defined in eq.(B.5), is applied to the poles of the great circle Caaq, namely,

Waa[@az)1 = Waz[€42)y + wal€ualy (3.18)
with
[é3]) = Q(éa)k (3.19a)
[8aals = Q(81)5()Q42)5(2)Q(&u)k (3.19b)
[eas]: = Q(&n)5(8)Q(és)k (3.19¢)

Substituting eqgs.(3.19) into eq.(3.18) and multiplying both sides by Q7(0,), one

oblains
dazk = G2 Q(B)S(4)Q(63)S(5) QG )k + 243Q(B)S(8)Qldn)k (3.20)

Notice that QT(6;)Q(&,) = Q(8) and 8 = &; — b,.

From the eq.(3.20), one can readily obtain the relations below:

W42 SiN Q4 SIN U = —wsy Sin ﬁsin 43 (3.21a)
(42 SIn G €OS U = —W3p(cos ﬁsin & + cos & cos dsin B) (3.21b)
42 €08 &y = (g3 — Waz{cos B cos &3 — sin Bsin & cos @) (3.21c)

Thus, from egs.(3.21a & 3.21c¢),

. sin B sin ¢ .

Wy = —#waz (3.22a)
sin dq sin &

Wy = Wyp €08 &y + Waz(cos B cos &3 — sin ﬁ sin &a cos q;) (8.22b)

Moreover, the dual angle # can be computed following two approaches, one is based
on eq.(3.16), the other consisting of forming the ratio of eq.(3.21a) with respect to
eq.(3.21b), namely,

—sin fsin ¢
tan i = — P fld)’ — (3.23)
cos fsin &g + cos & cos ¢ sin 3

L
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It can thus be proven that both eq.(3.16) and ¢q.(3.23) lead to the same result.
However, for planar mechanisms eq.(3.23) is undetermined. Nevertheless, il planar
mechanisms are considered as particular cases of spherical mechanisms, ¢q.(3.23) can

be applied as well, as shown in Subsubsection 3.2.1.

3.2.1 Revolute-Higher-Cylindric-Revolute (RHCR) Mech-
anisms
For the type of revolute-higher-cylindric-revolute (RHCR) mechanisms, the cam and

follower are coupled to the frame via revolute pairs; therefore, 2, = =3 = 0. Morcover,

¢ = ¢(), and eq.{3.2) can be written as

rp(1, A) = paa(®) + Aeas(¥) (3.24)
with
—hy (haks + KZc)ay + (heky + haky)ay
€43 = —hg and P43z = —(hlks + klzstb)al -_— (hlkq + hgkl )(I;} (3.25)
k1 . (th!/) - thTp)klﬂl + (hlh.| - hgha)ftg

Similarly, eq.(3.12) is expressed as

re(¥, A) = paz(¥) + deq () (3.26)
with
-k (hoks + kc)be + (hoks + haky)(bs — i)
e = | —ha| and pu=| —(hiks + E2s9)by — (haka + Do) (b — a) | (3.27)
iél (71101# - ;1231/))70152 + (ii.liq - ;lgilg)(bg — ﬂ-.;)

where s, 7 and & are evaluated with the aid of eqs.(2.16c, 2.16d, 3.6 & 3.10).
A geometric representation of the poles of Fig. 3.1 is shown in Fig. 3.2, wherc
f’.-_; ~ Iij and Cijx — L. Since Ijy and Lg;2 are not needed for this derivation,

they do not appear in Fig. 3.2. Moreover, if &, is a constant, the surface of the roller
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Figure 3.3 Ruled surfaces of the cam (R¢) and roller (Rp)
. of an RHCR cam mechanism
Rpg, will be in general a hyperboloid. Under the assumption that —Ag < A < Ag in
eq.(3.26), where Aq is a design parameter, one obtains the surfaces shown in Fig. 3.3.
On the other hand, if we bound X as: 0.7h €< A £ Ap, oOne czin obtain the cam
mechanism shown in Fig. 3.4 in various views.

For the cases when all axes are parallel or intersecting, z4 is always zero, and
hence, the follower-roller pair becomes a revolute. These two cases are called RHRR
mechanisms. The resulting surface geometry for RHRR mechanisms is rather simple
and can be readily derived from the general formulation given above. However, a
special treatment to compute dual cross products is needed for planar RHRR mecha-

nisms, as discussed in Appendix A for the analysis pertaining to parallel dual vectors.

e
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Figure 3.4 Three views of the RHCR cam mechanism obtained
from the surfaces of Fig. 3.3

Spherical RHRR Mechanisins

For spherical RHRR mechanisms, the dual terms of the dual angles shown in Table 3.1
are all zero and, from eqs.(3.24 & 3.26), one can see that the pitch and contact surfaces

of the cam reduce to conical surfaces, namely,
rp{1,A) = de (3.28)
re(1,A) = Aeq (3.29)
where e43 and ey, are defined in eqs.(3.25 & 3.27), respectively.

Now, 8, is computed from eq.(2.16c) and, from egs.(3.7, 3.10 & 3.16), one can

readily obtain

\/[c(ax —02)esag + cazs(oq — 02))* + staqs?e
tanfs =

3.30
cazc(ey — 02) — chsazs(a; — 0,) ( )
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Figure 3.5 Spherical RHRR cam mechanism

_ sqasg
tané = sagc(ay — 02)cd + cags{ay — 0) (3:31)
tan v = —s(on = ba)s¢ (3.32)

c(ay — 0;)sas + cazeds(ey — 0,)
A typical design of a spherical RHRR cam mechanism is shown in Fig. 3.5.
Planar RHRR Mechanisms

The ISAs of planar RHRR mechanisms are all parallel, as shown in Fig. 3.6; con-

sequently, the primal terms of &; and 5,- shown in Table 3.1 are all zero and the
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Figure 3.6 Planar RHRR cam mechanism

parameters k; and k; of egs.(3.4) take on the values
ky=1, ks =cos¢
ks=ki=kr=h=hy=0
ks = hy = cos(ip — @)
kg = ha = sin(y — ¢)

Similarly, parameters k; and k; of eqgs.(3.14), take on the values

Now, the pitch and contact surfaces are defined as

. rp(1h,A) = Pas + Aeqs (3.33)
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re(¥,A) = paz + Aesz (3.34)
with
€y =84 = [0, 0, 1]T (3.35)
and
[ cay + c{yp — d)as
P = | —sva, — s(¥ — ¢)as (3.36)
0
[ by + e{tp — 8)(b3 — a4) .
Paz = | —stby — s(3 — 6)(ba — a4) (3.37)
L 0

Here, the special theory for parallel dual vectors introduced in Appendix A is

applied to derive b3 and 6. From eqs.(3.8),

01 [0 _

[éaz]) = [eazh + elmag]y = [0 | + ¢ | —bo (3.38a)
[ 1] L 0
[0 [ a3sg

(43l = [eqa)s + €[muafy = | 0| + €| —azed - a4 (3.38b)
[ 1] 0

Thus, the unit dual vector &34 is defined by means of eq.(A.22), namely,

[paz)i — [Pa2)s + €[p32]1 X [pash

[E234)s = ™ b, (3.39)
where
b,
[Paz): = [ea2]s x [mag)y = | 0 (3.40a)
| 0
[azco + a,
[Pas)s = [eqs)s % [mya)s = | azcd (3.40b)
0
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and

by =|| [paay — [Paz) I|= \/(ﬂacé +ay = b gt (d.41)

Combining eqs.(3.39-3.41) and substituting the dual vectors pgy and @y into

¢q.(3.10), one can readily obtain

tané = (3.42)

A similar procedure can be followed to derive the unit dual vector [eyy], and

evaluate v from eq.(3.16) as

_ —lai=b)s¢ _—
Y Yy (4.13)
Furthermore, b, is obtained from eq.(2.16d}, namely,
!
by = W"i a (3.44)

It is apparent that egs.(3.42, 3.43 & 3.44) can be derived directly from cqs.(3.31,
3.32 & 2.16¢), respectively, under the assumption that, for small arcs on the unit
sphere, sina; — a;; cosey — 1 sinf; — b; and cos&; — 1, thereby concluding that

planar mechanisms can be regarded as a special case of spherical mechanisms,

3.2.2 Revolute-Higher-Cylindric-Prismatic (RHCP) Mech-

anisms

Revolute-higher-cylindric-prismatic (RHCP) mechanisms have revolute and prismiatic
pairs as input and output, respectively, and an intermediate cylindrical pair, as shown

in Fig. 3.7. Thus, 2z = ¢ = 0. The input-output function is given in ¢q.(2.19}, as

z3 = z3(p) (2.19)
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Figure 3.7 RHCP cam mechanism

Morcover, expanding eq.(3.21a) and knowing from eq.(2.21c) that 0, = 0, one

obtains

wysaysy =0 (3.45a)

Wya(2435Q4CV + a4C04SY) + V42545V = —wi3p23sP (3.45b}

Now, considering that wys # 0 and sinv # 0, from eq.(3.45a), vne conclules that

a, must be zero, and from eq.(3.45b), one obtains

z3sin o

Wi =~

. Whan (3.46)
a;smy .

Furthermore, expanding eq.(3.21b) with a4 = 0, one obtains from its primal part the

relationship

0 = ws,sin{az + 1) (3.47)

Moreover, from eq.(2.21a), w3, # 0, and hence, a3 = —a;.

Ly "
A% . . VR,
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Now, substituting the corresponding values ui az and ¢ inte eqs.(3.1), one obtains

kg = hy = sin

With these values, the vectors of egs.(3.3a & 3.3¢) take on the form

0 (ay + a3) cosh — zysin oy sinh
e3=|0], Paa = | —(a1 + as) siny — zysinay cos {3.48)
1 0

In order to derive the surface of the cam, dual vectors [€39]; and [&43]; are computed

from eqs.(3.8), namely,

0] [ 0

[Bai = {0 | +el|—ba (3.49a)
[ 1 . 0
07 [ —235in o

[eh = |0 +e| —a; -3 (3.19b)
L1] L 0

It is clear that [32]; and [€43); are parallel, and hence, the theory of parallel dual

vectors introduced in Appendix A is applied to obtain the expressions helow:

s =0, +eby=0+ e\/(a3 +ay + zisin)? + 23 sin oy (3.50a)
b=46 + €237 = arctan = sm’al. + ¢l (3.50h)
ay + a3 -+ z35in oy
23 Sin oy

U = v+ €243 = arctan + ¢(—zycosa) {3.50c)

~(ay + a3 + z3sinay)

Now, substituting #; = 0 and 5 = 03 — a4 = 0 into eqgs.(3.14), one obtains

By=1, ky =cosé
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,-L‘;;=K‘4=IC7=}.J.|=?12=0
ks = hq = cos(t — §)
kg = hy = sin(y — &)

Thus, vectors eqz and pya of eqs.(3.13b & 3.13¢) take on the form

0 bs cos ¥ + (by — aq) cos{é — 1)
eip=[0]| and pa2= | —basine + (b3 — a4)sin(é — ¥) (3.51)
1 0

RHRP Mechanisms

[t was mentioned before that the condition of having a revolute pair between follower

and roller is that z43 = 0. Moreover, from eq.{3.50c),
243 = —23C0S @)

Thercfore, RHRP mechanisms can be obtained if oy = &7 /2.
Additionally, expanding and separating the primal and dual parts of eq.(3.21c),

one obtains
Wiz = Wea — War (3.52a)
V42 = V43 — V32 (3.52b)
Now, with ay = £7/2, vy3 = dzgs/dt = 0 and, from eq.(2.21b), vz = 0. Sub-

stitution of these two values into eq.(3.52b) reveals that vy is zero and pure rolling

between cam and roller is achieved.

3.2.3 Prismatic-Higher-Cylindric-Revolute (PHCR) Mech-

anisms f
“Shown in Fig. 3.8 is a prisfnatic-higher-cylindric-’revolute (PHCR) mechanism, with

prismatic and revolute pairs providing its input and output motions, respectively, and
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V///é/,g////‘,_////’//%/-f/fi’i/f?ﬂ/ém
W2\
‘fW/{/-\(’?W/" 7

VA

Figure 3.8 PHCR cam mechanism

an intermediate cylindrical pair. Thus, ¢ = 0, z3 = 0, and the input-outpnt function
is given as in eq.(2.25), namely,

¢ = ¢(z2) (2.25)

Furthermore, it is known from eq.(2.28c) that &, = «, and substituting this value
into eq.(3.21a), one can readily obtain the primal and dual parts of the expression

thus resulting, namely,

wyasoqsy = 0 (3.53a)

w42(243SQ4CU + msucad) + Vga50450 = —w;n(al - hz).ﬁ‘(f) (';53[))

In general, wy2 # 0 and » # 0, and hence, from eq.(3.532), sin a; must be zero,

Moreover, with sin a4 = 0 the primal part of eq.(3.21b) takes on the form
0 = —wqysinas (3.54)

Thus, from eq.(2.28a), w3, = £¢'v2, and one concludes that sin a3 = 0.
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Now, with 1 = sinoy = 0, eqs.(3.4) reduce to

k) = cosaq
ky = hy = cosay cos ¢
k:; = hg = sin at

k4 = sino) cos ¢

ks = cos ¢

ks = —sindcos o,
kr=h; =0

ha =.—sin¢

and vectors eq3 and pys are obtained from eqs.(3.3a & 3.3c), namely,

0 a; +aszcoso
es3 = | —sinay | and py3 = | cos ai(azsind — z;sin ) (3.95)
cos oy sin o (agsin ¢ — z3sinay )

Next, the dual vectors [é32): and [&4aly are computed from eqs.(3.8) as

0 0
[€32]; = | —sinay | +€ba | —cosem (3.56a)
| cosap | sin a;
0 az sin ¢
[643)i = | —sina; | + ¢ | —(a; + azcos ¢) cos ey (3.56b)
| cosay | —(a, + azcos ¢)sin a;

With application of the theory of parallel dual vectors of Appendix A, one can
obtain, from eqs.(3.7, 3.10 & 3.16), the expressions below:

\/(aggb’ cos ¢ — sin ay ) + (aad’ sin ¢)?

03=0s+cbs=0+¢ 7 (3.57a)
. ' a3¢'sin ¢
= e = 57b
b=6+ €2 rarcta.n P ——— +¢0 | (3.57b)
U= v+ €243 = arctan sin a sin ¢ 4+ €0 (3.57¢)

az¢’' + sin o) cos ¢
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According to eq.(3.57b), z43 = 0, which means that the follower-roller pair is a
revolute; therefore, a PHCR mechanism is, in fact, a PHIRR mechanism.
In order to find cxpressions for eq and pyz, valuesof 0 = o, and gy = 0y —ay = 0

are substituted into eqs.(3.14) to obtain

-

ky = cos

02 = hy = cosay cosd

ks = cosé

ks = —sin & cos a
‘.'7 = fl[ =10

ilg = —sin6

Thus, substituting these values into eqs.(3.13b & 3.13c),

0 a) +sina;/¢"+(b;, —(l,l)COb'(S
e2= | —sina; | and pg2 = |[(b3— a4)siné — zysina;]cos ey (3.53)
€OS oy [(by - a4)sin & — zysin e ]sin e

Further analysis of eq.(3.21c¢) leads to the relations

Wy = Wy3 — Wio (-359:1)

Uiz = Va2 {3.59b)

Now, from eq.(2.28b) v32 = s cosa,, and hence, pure rolling between cam and
roller is achieved if &y = £7 /2.

According to the results pertaining to RHCP and PHRR mechanisms, similar
theorems to those for RHP and PHR mechanisms can be stated, namely:

Theorem 3.1: All ISAs of RHCP and PHRR mechanisms, except for Lthe one asso-

ciated with the prismatic pair, are parallel.
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Theorem 3.2: Pure rolling between cam and roller on RHCP and PHRR mechanisms

is achieved if ihe axis of the prismatic pair is perpendicular to all other 15 As.

3.2.4 Prismatic-Higher-Cylindric-Prismatic (PHCP) Mech-
anisms

A prismatic-higher-cylindric-prismatic (PHCP) mechanism is defined with prismatic

pairs in both input and output motions, and an intermediate cylindrical pair. Thus,

p = 0 and ¢ is constant, and the input-output [unction is given as in eq.(2.30),

namely,

-3 = 33(22) (230)

Furthermore, it is known from Subsubsection 2.2.4 that a; = b, = 0. Substituting
this value into eq.(3.21a), one can readily obtain the primal and dual parts of this

equation as

wyzsaysy =0 (3.60a)

waz(zaasaqcr + aqsveay) + viosa4sy = —vsesfsd (3.60b)

In general, wyp # 0 and v # 0; therefore, from eq.(3.60a), sin @; must be zero.
Moreover, with siney = 0, the primal and dual parts of eq.(3.21c) take on the

form

Wy = Wys (361&)

Va2 = w43 — vaz2(cfeas — sfsascd) (3.61b)

The desirable PHCP mechanism is one with pure rolling between cam and roller.

Thus, v42 must be zero, and from eq.(3.61b), v43 is given as
v43 = vax(cBeas — sfsazcd) (3.62)

Pitch and contact surfaces are derived with application of eqgs.(3.3 & 3.13).
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23
1)

xy ’

Figure 3.9 PHRP cam mechanism

PHRP mechanisms

The cylindrical pair becomes a revolute pair if v43 vanishes. Thus, rom ¢q.(3.62), the

coefficient of v32 must be zero, i.e.,
cfecay — sfsaacd =0 (3.61)

Since 8 is a variable and a3 and ¢ are constants, the only solution of ¢q.(3.63) is
that in which each term vanishes independently, i.c., ay = £7/2 and ¢ = £7/2.

Now, with ¥ =0, a3 = 7/2 and ¢ = 7/2, eqs.(3.4) reduce to
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and vectors eqy and pyy are obtained from egs.(3.3a & 3.3c), namely,
1'| |' 0
e3=1{0 | and Pua = i3 COS @) — 23sinay (3.64)
0‘ Lgsina|+zacosa,—:2

Moreover, the dual vectors [32]; and [&43]; are computed from egs.(3.8), namely,

0
[€a2)t = | —sindy | + €0 (3.65a)
| cosl,
1 0
[é43)) = | 0] + €| z3cosa; + agsin al} (3.65b)
[ 0 z35in ay — az cos o

Now, {rom eqs.(3.7, 3.10 & 3.16), one can readily obtain the expressions below:

05 = 03 + ebs = 7/2 + €|aa cos(oy — O2) = z3sin(ay — 62)] (3.66a)
§=6+ ez = /2 + e[agsin(ay — 02) + 23 cos(aq — 03)] (3.66b)
U = v+ ezyy = arctan —sinfon — 02) + €0 (3.66¢)

cos(tey — 02)
Moreover, combining eqs.(2.35b & 3.66¢),

tany = ——l__ (3.66d)
z5 —cos

In order to find expressions for ey and py2, values é; = 7/2, 3 =03 — oy = 7 /2

and b = 0 are substituted into eqs.(3.14) to obtain

k1=i?3=itg=f13=0
I:2=—I}7=ft4=—sin02

ky = —ks = cos Oxcosé

Thus, substituting these values into eqs.(3.13b & 3.13c), one obtains
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17 0
ep=[0| and pgp = (by — a4)cos t)y — zqasinty {3.67)
0 (by — ay)sinby + zppcosldy — 29

Figure 3.10 Graphical representation of the pressure angle

3.3 Pressure Angle

The pressure angle is defined as that comprised between the direction of the unit
normal to the pitch surface R, and the direction of the velocity of the follower at the
contact point. Thus, the unit normal defined in eq. (C.5) is written as

M = O
Twl” "7 2% " 9

n = (3.68)

On the other hand, the unit vector w parallel to the lollower velocity at points on



w
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L4y 1s obtained as

w

=W§W E=wxr, (3.69)

where w is the angular velocity of the follower.
Thus, the pressure angle is derived as

Inxwl

— (3.70)

tan g =

A graphical representation of this definition is shown in Figure 3.10.

3.3.1 Pressure Angle of RHCR Mechanisms

The unit normal of RHCR mechanisms is computed from application of eq.(C.5),
with the aid of eq.(3.24). Thus, the three components of u ot eq.(3.68) in frame F,,

are given as
uy = a ky — az cos phg — Asin aasin dhs
Uy = —a3cos & sin ¢hs + A[cos o cos ¢sin azhs
+sin a;(¢’ + cos aghs))

uz = sin ¢(a; sin ag — azsinehs) + M1 — kyhs — ¢’ cos ap)
and

hs = k] - (,ﬁ' COs Q3 (3713.)

he = kq — ¢ sin a3 (3.71b)

Furthermore, from eq.(3.69), w can be written as

—a3sin ¢ + Asin oz cos ¢
1

I

W= a3 cos o) cos ¢ + Asinagcosa; sind (3.72)
a3 Sin o cos @ + Asin a; sin ¢sin a3
Moreover, the cross product of eq. (3.70) is computed as

_Ad+XM+g

e FITEY (3.13)

L
s
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where the components of vectors d. f and g, in frame JF, are given below:

« 9 . 4
dy = —sin° aa sin ¢hg
fi = —sinas(a, cos ay sin agsin® ¢ + a; cos dhg)
g1 = —a1a3 COS () COS PSinazsin @

dy = sin aa[sin oy sin ashs + cos (cos o sinazhg + sin® a )

fo = sin ¢[a; cos o) sin azks — asz(l — ¢’ cos a; — cos @) cos ayhis))
g2 = aa[—a (sin @3 — cos d cos arhz) + aasin oy hs)

ds = sin aa(sin aa(cos @ sin oy b — cos qhis) — cos ay cos dsin o |
f3 = —sin¢[a) cos ) sin azky — az(@ sin oy + sin ay cos ayhs)]

g3 = azcos a;(—ay cos ¢k — azhs)

Then, || n x w || can be written as

VANY BN +CNX+ DI+ E
Inxw =
TElul

where

A=d? +d)? + di?

B=2d [y +dafa + dsfs)

C =%+ 2+ & + 2digr + dagz + dagn)
D =2(figr + f292 + faga)

E=g+g"+g

(3.74)

(3.76)

Furthermore, the denominator of the right-hand side of the eq. (3.70) can be writ-

ten as
_ PN+ GA+ H
&N ull

where

F =sina;sinassiné

(3.77)
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G = a;sin ay(sin o sin ag — oS a; COS a3 cos @) + a3 cos &sin ay (3.78)

H = ayazcos ) cosaysin @

‘Thus, the general expression for the pressure angle is given by

VAV 4+ BN +CA 4+ DA+ E
FN+GA+H

tan p = (3.79)

Spherical Cam Mechanisms

The pressure angle for spherical cams is derived from eq. (3.73) by taking the limit of

tan z as A — oo (Gonzdlez-Palacios and Angeles, 1991), i.e.,

. VAME BB LCINLDA+E VA
tanpg = lim =
A—co FX+GA+H F

(3.80)

Thus, from egs. (3.74, 3.76 & 3.78), one can readily obtain the desired general

expression for spherical cam mechanisms, namely,

(¢' — cos o) sin az — sin ey cos a3 cos ¢

tan g = " .
sin o sin ¢

(3.81)

Comparing ¢q.(3.81) with eq.(3.32) one can find a similituae. In fact, one can
eliminate 0, from eq.(3.32) with the aid of eq.(2.16¢). Thus, upon reduction, eq.(3.32)

takes on the form

—(sinay — cos oy tan 6;) sin ¢

tany = .
(cos @) — sin e tan p) sin a3 + (sin @ ~ cos @ tan ¢;) cos az cos ¢ (3.82)
which, with the aid of eq.(2.16¢), becomes
sinay sin ¢
t = '
my (¢’ — 1) sin a3 — sin @y cos aa cos @ (3.83)
Consequently, it is clear that
tanp = (3.84)

tan v
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Planar Cam Mechanisms

The pressure angle for planar cam mechanisims is obtained from eq. (3.79) as indicated
below. Since all the /S As are parallel, a; = a3z = 0. Morcover, variables &y, &, hs
and hg, appearing in eqs. (3.4a), (3.4¢), (3.71a) and (3.71b), respectively, Lake on the

values

=1
ks =0
hs=1-¢
he =0

Moreover, all components appearing in eq. (3.74) become zero, except for gy, which

reduces to

g3 = asfay(¢' — 1) — aj cos ¢ (3.85)

Consequently,

A=B=C=D=0
E = a3*[as(¢' — 1) — a, cos ¢)*
F=G=0

H = ayaasin¢

and the expression for the pressure angle takes on the form

a3(¢' — 1) —ai cos ¢ o o
snd (3.86)

tanp =

in agreement with results available in the literature (Rothbart, 1956; Tesar, 1976;
Angeles and Lépez-Cajin, 1991).
Here, it can also be proven that tan g = 1/tan v if eq.(3.44) is substituted into

eq.(3.43).



Chapter 3. Kinematics of Four-Link Mechanisms 61

Spatial Cam Mechanisms

We have shown that eq. (3.79) represents the pressure angle for zll planar, spherical
and spatial cam mechanisms. In fact, planar and spherical cam mechanisms arc
particular cases in which the expressions for the pressure angle are independent of A.
Here we present two more cases as examples of spatial cam mechanisms in order to
show the influence of A, namely, cylindrical and globoidal cam mechanisms.

The pressure angle of cylindrical cam mechanisms is derived taking into account
that a; = 7/2 and a3 = 0. Consequently, the expression for the pressure angle can
be readily obtained from eq. (3.79) as

Asin d’ + aaé"

Ncon (3.87)

tan y =

On the other hand. oy, = a3 = /2 and a3 = 0 {or globoidal cam mechanisms,

and eq. (3.79) reduces to
A

a; + Asin ¢ (3.88)

tanpg =

3.3.2 Pressure Angle of RHCP Mechanisms

The unit normal of the cam surface of RHCP mechanisms is computed from appli-

cation of eq.(C.5) and with the aid of eqs.(3.48). Thus, e{; = 0 and p}; is expressed

as
—{ay + a3) sinyy — zzsiti o) cosyp — z4sina) Cos P
Pis = | —(ar + a3z) cos ¥ + z3sin @ siny — z}sin a; cos ¢ (3.89)
0

where the prime denotes differentiation with respect to .
Now, n is given as in ¢q.(3.68) with u defined as
u=[—(a +as) — z4sine@, =zysiney, 07 (3.90)
Morcover, the unit vector in the direction of the velocity of the follower on I3 is

given as

w=[0, 1, O]T



Chapter 3. Kinematics of Four-Link Mechanisms 62

From eq.(3.70), one can readily obtain

—{ay + ay + =)
380

tan g =

(3.91)

3.3.3 Pressure Angle of PHRR Mechanisms

The unit normal of the contact surface of PHRR mechanisms is computed from appli-

cation of eq.(C.5) and with the aid of eqs.(3.55). Thus, ¢}, = 0 and p/, is expressed

—d'agsin ¢
Piz = | fos - .a3@’ cos & — siney) {(3.92)
i_sin o{az¢' cos ¢ —sine )
where the prime denotes differentiation with respect to . Now. n is given as in

eq.(3.68) with u defined as

a3’ cos ¢ — sin o
u=| asd'singdcosm (3.99)
azd’ sin ¢sin o,
Moreover, the unit vector in the direction of the velocity of the follower on [y is

given as
— 5in ¢

W= | cosay cos¢
sin o cos ¢
From eq.(3.70}), one obtains

ax¢’ —sino;cosg
sin ¢sin o,

tan pu = (3.94)

3.3.4 Pressure Angle of PHRP Mechanisms

The unit normal of the cam surface of PHRP mechanisms is computed from appli-

cation of eq.(C.5) and with the aid of eqs.(3.64). Thus, e}, = 0 and pj; is expressed
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s

0
Py = | —zisine (3.95)
zpcosap — |
where the prime denotes differentiation with respect to zs.
Now, n is given, again, as in eq.(3.68), with u defined as
0
u=|zjcosog — 1 (3.96)
’ zysinoy
Furthermore, the unit vector in the direction of the velocity of the follower on f43 is
given as

w=[0, —sine;, cosq ]T
From cq.(:3.70), one ohtains

=zl —cosa
z 1
tanp = 2———

(3.97)

sin o

3.4 Applications to Three-Link Mechanisms with
Constant Pressure Angle

Cam mechanisms with a constant pressure angle are attractive because they involve
rather simple [ollower shapes. Planar cam mechanisms with a flat-face follower are
good examples of this kind, their followers containing planar surfaces at the cam-
follower interface. Here we study the synthesis of these mechanisms and their spherical
counterparts. [However, when dealing with the latter, one cannot speak in general of
(lat-face but rather of conical-face followers, as we‘will show presently.

The approach presented here for the synthesis of the mechanisms under study

- _is based on the introduction.of an auxiliary roller in contact with the cam and the

{ollower, which gives rise to a four-link mechanism, although the mechanism under
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study is, in fact of the three-link type. The lines of contact of the roller with the cam
and the follower are, respectively, the IS4s Ly and Ly, and henee, two higher pairs
arise at the cam-follower interface. A nomenclature is adopted here to distinguish
the aforementioned four-link mechanisms from the three-link mechanisms analyzed
in Chapter 2, namely, the two higher pairs of the roller are indicated as 1T in order
to emphasize that these two higher pairs replace a single one. 'The syuthesis of cam
mechanisms with a constant pressure angle is thus rendered similar to the synthesis
of cam mechanisms with roller-followers, the difference here being that the dual angle
&y is unknown. On the other hand, it was proven in Section 3.3 that tany = [/ lan g,

i.e., v = 7f2 — p. Thus, the dual curve of the cam is given as
s: = ex + emiz = 8T(D)Q()S(4)Q(43)5(7)Q(éu )k (3.98)
and the surfice of the cam is expressed as
re = egp X Myz+ A€z = Paz + Aenn (3.99)

This approach is applied to those cases in which pure rolling between the cam and
the roller is achieved, and hence, conical and cylindrical surfaces are considered. The
envelopes of the roller on the follower give ri-se to a regular cone for spherical RHHR
mechanisms and a plane for planar RHHR, RITHP, PHIHR and PTTHP mechanisms,
The latter are the well-known planar mechanisms with a fat-face follower. The
input-output functions are the same as for the related RHR, RIP, PHR and PPP

mechanisms discussed in Chapter 2.

3.4.1 RHHR Mechanisms

Figures 3.11 and 3.12 show the two cases of RHHR mechanisms with g = 0. For
the spherical RHHR, the dual terms of the angles of the eq.(3.98) are zero, while, for-
planar RHHR, the primal terms of the angles &; and the dual terms of the angles P,

¢ and ¥ are zero.
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Figure 3.11 Spherical RHRR cam mechanism

Spherical RHHR mechanisms

With application of eq.(3.98), the susface of the cam is given via vector r. defined as

ks sin ey — hy cos ay
r. = lepp = A —kgsinagy — hycosay (3.100)
sin ag sin ¢sin a4 + k; cos ay
where &; and k; are defined in eqs.(3.4) and, from eq.(3.80), it is clear that g = 0 if
arg takes the value
sin oy cos ¢

t = —_— (3.
an a; & — cos on 13.101)

Note that spherical mechanisms with a constant pressure angle and zero offset,

i.¢., with ey = 0, give rise to a flat-face follower.
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Figure 3.12 Planar RHHR cam mechanisin

Planar RHHR mechanisms

Vectors e,z and paz for planar RHHR mechanisms are readily obtained from eqs.(3.98
& 3.99) as

0 ay cos iy + azcos{ip — @) + aysin(yh — o)
e = |0| and p4p = | —a;siny — azsin(yp — ¢) + a4 cos(yp — ¢) (3.102)
1 0

Now, from eq.(3.86) one obtains the value of a3 in which z = 0, nainecly,

21 ¢cos ¢
az — ¢I_1

(3.103)
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Figure 3.13 RHHP cam mechanism

3.4.2 RHHP Mechanisms

Considering that, from eq.(3.91), a3 = —a; — 2z§sina;, vectors ey, and py; of the

surface of the cam are given as

0 —zisiney cos + {aq — z3sinay ) siny
e2= 0| and psyp=| zisinasiny + (a; — z3sina;) cos ¥ (3.104)
1 0

Figure 3.13 shows a general case of an RHHP mechanism.

Comparing the size of a cam obtained with a; # 7/2 with that of the cam ob-
tained with ey = #/2, for the same displacement program, the former is of smaller
size, henceforth, the angle a; should be considered as design parameter in optimiza-
tion procedures which objective is minimize the cam size. However, as the angle a;
decreases, the sliding between cam and follower increases. For the same displacement

program, the size of the cam with o = 7 /2,
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Figure 3.14 PHHR cam mechanism

3.4.3 PHHR Mechanisms

Figure 3.14 shows a PHHR mechanism. Vectors e, and pyy, for the cam of this

mechanism, are obtained from eqs.(3.98 & 3.99), namely,

0 ay 4+ a3 cos ¢ — aq5in @
e =1 —sine; | and p42 = | azcose;sing + a4cos a cosd — 2 co8 vy sin @y
cos oy | as sin ay sin¢+a4 cos dsin qy — z95in® oy
(3.105)
with a3 obtained from eq.(3.94) as
_ sinajcosg (3.106)

aday = ¢I
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Figure 8.15 PHHP cam mechanism

3.4.4 PHHP Mechanisms

For the case of the PHHP mechanism, y is independent of a;. Moreover, one can

consider a given value of j, namely, 4 = po, 2and hence, from eq.(3.97) one obtains

24y — Cos

tan gy = (3.107)

sin aq
Therefore, z§ must be constant and, consequently, both surfaces will have flat faces,
which thus gives rise to wedge cam mechanisms.
Considering that ¥ = 7/2 — g, one can readily obtain the vectors below:
1 , 0

ey = and pg = azcosa; — aqsin(a; — go) — zasiney (3.108)

0
0 azsin oy + aqcos(a; — po) + 23cos a5 — 29
Figure 3.15 illustrates a PT‘I___HP mechanism. Notice that the contact between cam

and follower is a surface, giving as result a PPP mechanism.



Chapter 4

Realization of Indexing Motion

with Higher Pairs

4.1 Introduction

Indexing mechanisms for motion and force transmission between parallel axes, such as
the Geneva mechanism and external and internal parallel indexing cam mechanisms,
have been studied in the past (Guoxun, Zhengyang and Huimin 1988), as well as
indexing mechanisms for skew axes, such as the Ferguson indexing cam mechanism.

Indexing cam mechanisms (ICM) have been used extensively, but the optimization

"of the cam contour for minimum friction losses, under various functionalily condi-
tions, has not been given due attention. Although the kinematics of spatial cams
has been studied in the past (Jensen 1965; Chakraborty and Dhande 1977; Koloc
and Viclavik 1988), to our knowledge no work has besi: reported in connection with
the minimization of power losses in the synthesis of spatial [CM. Here we propose a
unified approach to the synthesis of cam and follower profiles, when motlion is trans-
mitted either through direct contact (RHR mechanisms) or through an intermediate

roller (RHCR. mechanisms), while power losses due to sliding are minimized.
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'These surfaces are generated with the application of the theory presented in Chap-
ters 2 and 3, since this approach satisfies the condition that the relative velocity at

the contact points is of minimum magnitude.

The method presented here can be applied to the synthesis of the contact surfaces
of both the cam and the follower for a prescribed indexing output motion of the latter
when the input cam rotates at a constant speed, assuming that the position of the

axcs of both the cam and the [ollower is given.

4.2 Input-Output Function of Indexing Cam Mech-
anisms (ICM)

As shown in Fig. 4.1, a full rotation of the cam is divided into two intervals, of lengths
Az and 27 — Ay, When the cam rotates in the second interval, ¢ is a constant, N
being the number of indexing steps for one full rotation of the follower. Moreover,

(1) is defined in the first interval as
oy 2% (¥
where 7(z) is a normalized function, namely,
r=7(z), 0£7<], 0<Le<l (4.2)

The function 7(z) as discussed in Appendix D. Cycloidal motion is applied here for

concreteness, but the ensuing analysis is not limited to this type of motion.

4.3 ICM of RHR Type

[t was shown in Chapter 2 that, with the application of egs. (2.16 & 2.18), it is possible

to generate the shapes of two rigid bodies in contact, when transmitting a motion
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-1
12

AY 21 Ay

2T

N

v

Figure 4.1 Motion function ¢ = ¢(v)

given by the functional relation ¢ = ¢(1p). Now, with ¢() defined as in eq.(4.1), one
can readily obtain the surfaces of an ICM of the type RHR mechanism (RIIR-ICM)
by prescribing the values: N; A; ay; and ;.

Thus, ¢ and its first and second derivatives with respect to 1 are readily defined

with the values of N and A, namely,

_ 2 Y 1 . 2n )
(b = 'N (K’d—) - '2—7‘. gIn H) (4-}51.)
. 27 _ 2w )
¢ = NAv (l cos -—-—A¢) (4.3D)
w_ Am® 2w "
@' = Nam sin AV (4.9¢)

Equations (4.3) are valid in the range 0 < 3 < Ay, For Ay < < 27, ¢ = 27/N
and ¢' = ¢" = 0.

The cam and follower surfaces are now defined, as in egs.(2.18), by the vectors rp
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and ry, respectively, as indicated below:
cos —sinysinfq

rp=b | —sint| +A|—-cossind,

0 cos &4
cos ¢ —singsin{f; — a)
ra={by—ay) | —sing |+ A | —cosésin(th — o)
0 cos(fa — o)

where A defines the thickness of the surfaces, while tan @, and by are computed as in

eqs.(2.16¢ & 2.16d), namely,

tan g, = 2 SinC
cCos o, —
2 - I
; " — ¢! cos oy
2 =

$7 — 2 cosoq + 1
A solid model of the surfaces defined above was implemented on a Silicon Graphics
. Power Series Workstation (IRIS 4D/420VGX). Moreover, the motion is simulated for
any value of the four parameters defining the RHR-ICM. Thus, fixing three of them,
the changes of the profile cé.n be appreciated according to the variation of the fourth
parameter.
In order to give a better idea of the software implemented for the above-mentioned
purpose, we present four figures with six still frames each, so that the changes can be
appreciated. Thus, in Fig. 4.2 six RHR-ICM are shown with different values of N,
while in Fig 4.3, AvY changes. Furthermore, the transition from spatial to spherical
RHR-ICM, when a, varies from 1 to 0, is shown in Fig.4.4. Moreover, with ¢; =0 in
Fig. 4.5, the cam and the follower have parallel axes and rotate in the same direction.
In this configuration, the mechanism is an internal RHR-ICM. As o increases, the
input and ontput axes are skew until they become parallel again with o) = 7. At
this value, the cam and the follower rotate in opposite directions, thus giving rise to
an external RHR-ICM. The transition from internal to external RHR-ICM is shown o

. with four intermediate configurations.
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Figure 4.2 Spatial RHR-ICM with Ay = l.20°;"!'a1 =1, a = 60°
and 0.25 € XA £ 0.8 for six different values of N



. Chapter - Realization of Indexing Motion with Higher Pairs T

Ay =1 Ay =Tn/4

Figure 4.3 Spatial RHR-ICM with N =3, ¢; = 0.8, oy = 45°
and 0.4 < A < 1.0 for six different values of A
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Figure 4.4 Transition from spatial to spherical RHR-ICM
with ¥V =6, A =120°, a; = 70° and 0.3 < A £0.95
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o,=36 o,= 144

0,=T72 o= 180

Figure 4.5 Transition from internal to external RIR-ICM
with V=8, Ay =220°, ¢, =1 and 04 <A1 < 1.0
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4.4 ICM of RHCR Type

The theory for the synthesis of RHCR mechanisms was already introduced in Sec-
tion 3.2.1. Thus, what defines an ICM is the input-output function, which is given
as
2r 1)
- LA 4
o=bn+ 2 (L) (1.4)
where ¢,, is the value of ¢ upon cngagement of the roller with the cam as illustrated

in Fig. 4.6. For the applications presented in Chapter 5, ¢, is defined as

sm=r(1-%) (4.5)

In Fig. 4.6a ¢, is shown for an internal ICM, whereas in Fig. 4.65 ¢,, is shown for

an external ICM.

(6)

Figure 4.6 Definition of ¢, for RHCR-ICM: a) internal; b) external
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There are two approaches to determine the geometry of an RHCOR-TCM. The tirst
one consists of the application of eqs.(3.27), and the second, of the application of
eqs.(3.98 & 3.99). The latter was found more reliable from the computational point
of view; it was thereiore, applied in USYCAMS !, the software written for the unified
synthesis of RHCR-ICM.

Equation (3.98) is rewritten here for quick reference, namely,

se = ez + emaz = ST($)Q(&1)8(8)Q(6)5(7) Q)
where ¥ defined in eq.(3.23) as

—singdsin g

tan ¥ = tanv + ezg3(l + tan® v) = — - —
cos 3 sin &y + €os Cry COS dsin g

which can be readily expanded in its primal and dual parts, namely,
—sin Asin ¢
cos #sinaz + cosag sin fcos ¢

Lo sin f(cos B cos a3 — sin g sin B cos ¢) — dsin ay
43 (cos Bsin ay + cos azsin B cos ¢)? + sin® Fsin® ¢

tany =

(1.6a)

sin ¢ (4.6D)

where f# = a; — 0y and d = a; — b,.

Thus, given N, Ay, ¢(¥) and the dual angles &, &y and &, which are described
in Table 3.1, the cam profile of an RHCR-ICM can be obtained with the aid of
USYCAMS. However, the dual angle &; cannot be chosen arbitrarily as discussed in
Chapter 5, where we show how to specify it. A solid model of this type of ICM was
implemented using USYCAMS. The transition from internal Lo external RIICR-ICM
is shown in Fig, 4.7 with N = 8 and Ay = 240°, while, in Fig. 4.8, the transition
from spatial to spherical RHCR-ICM is shown.

!Pronounced you see cams, for Unified Synthesis of Cam Mechanisms



Chapter 4. Ruealization of Indexing Mozion with Higher Pairs

(ll=0 (11=110

oy = 140

(11=70 al=180

Figure 4.7 Transition from internal to external RHCR-ICM
with NV = §, Ap = 240°
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a, = 0.0

Figure 4.8 Transition [rom spatial Lo spherical RIICR-ICM
with N =8, Ay = 240°, oy = 135° and 0.3 £ A £0.95

s



Chapter 5

Pure-Rolling Motion with ICM

5.1 Introduction

Indexing cam mechanisms ICM with helical springs to maintain contact have been
designed in the past (Johnson, 1958). However, the use of springs in cam mecha-
nisms leads to dynamic problems of vibration. Consequently, the design of planar
cam mechanisms with positive motion, i.e., without springs, has been proposed as an
alternative (Jackowski and Dubil, 1967; Wunderlich, 1971; Hunt, 1973). This concept
has been applied to the design of planar ICM (Makino, 1979; Jones and Tsang, 1987;
Gouxun, Zhengyang and Huimin, 1988). In the latter reference, pure-rolling motion
has been achieved. However, the mechanisms thus designed have the disadvantage
that the pressure angle is large, especially at and near the dwell positions. Indexing
mechanisms such as the Geneva mechanism have been studied, e.g., (Fenton, 1965,
1975a, 1975b; Oledzki and =‘Szydlowski, 1975), but these mechanisms have jerk discon-
tinuities and wear problen;s. The elimination of jerk discontinuities in this context
was reported by Sadek, Lloyd, and Smith (1990).

[CM with direct contact for spatial, spherical and planar motions were introduced
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in Gonzalez-Palacios and Angeles (1990). A unified approach of 1CM with roller

{ollowers is presented in (Gonzdlez-Palacios and Angeles, 1992). Both approaches
being discussed in Chapter 4. These formulations are combined in this Chapter to
obtain a new type of mechanism that is termed here PRICAM (Pure Rolling Indexing
Cam Mechanism) with positive motion, pure rolling and improved pressure-angle
distribution. The pressure angle vanishes at the beginning and at the middle of the
rise, which makes PRICAM a unique design. The condition applied on the design ol
PRICAM being the elimination of wear, and hence, two versions are proposed here,

namely, planar and spherical mechanisms.

5.2 Primary and Secondary Mechanisms

Here we distinguish two mechanisms, namely, the primary inechanism (M), which
is an RHR ICM, and the secondary mechanism (SM), which is constituled by an
RHRR ICM.

The generation of the higher-pair contact surface of both PM and SM is based
on the minimization of the magnitude of the relative velocity at the contact points,
namely, cam-follower pair for the PM and cam-roller pair for the SM. It was
discussed in Section 2.2.1 that, for planar and spherical RHR mechanisims, the relative
velocity vss is zero. Similarly, for planar and spherical RHRR mechanisms, it was
shown in Section 3.2.1 that the velocity v42 between cam and roller is zero as well.
Thus, as discussed in Chapters 2 and 3, those surface. are generated as ruled surfaces

and represented in the parametric form

r(y,A) = p(¥) + de(¥) (5.1)

where r(1, A) is the position vector of a point of the surface, 9 is the angle of rotation
of the cam, ) is a real number, p is the position vector of the directrix, and e is a

unit vector parallel to the generatrix.
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5.2.1 Primary Mechanism

We regard here, as in Chapter 3, planar mechanisms as special cases of spherical

mechanisms. Accordingly, we study the latter first, then the former.

Spherical PM

From the definition of the geometry of spherical RHR mechanisms with a; = 0, the

geomelry of the spherical PM is given as,

[ —sinsinfs
r;= A | —cos¥sinf, (5.2a)
. costh
[ — sin ¢sin(d2 — o)
r3= A | —cos¢sin(fy — ) - (5.2b)
cos(fy — ay)
with 0, defined as in eq(2.16¢), i.e.,
‘s
tan 6, = Térfo:_lanl%:_l (5.3)
Moreover, the pressure angle can be computed from eq.(2.55) as,
lan g = V"% —2¢'cosay + 1 (5.4)

¢H
Planar PM

The geometry of the planar PM is defined by the geometry of planar RHR mecha-
nisms with a; = 0, 7. Thus, the position vectors of both cam and follower are derived

from eqs.(2.18a & 2.18b), namely,

[ cosyp 1 [0
¢'a, .
ry = o —siny |+ X0 (5.5a)
o ] L1
[ cos¢ [0
a .
rg = FE1 —sing |+ A [0 (5.5b)
L 0 1]
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The pressure angle is as defined in eq.i2.61), namely,

oo £ 1
tan i = ——-(—-(5—,;———) (H.6)

the plus and minus signs corresponding to externai and internal PM, respectively.

5.2.2 Secondary Mechanism

Spherical SM

The pitch and the cam surfaces for the spherical mechanism are delined as in eqs.(3.28
£ 3.29), namely,
[ sazsocy — (saycag + caysazcd)sy

rp = Aep = A | —saasdsy) — (sarcaz + caysazedleyp {

oy |
-]
—

i oy CQy — S0 SQ3Cd
[ s{03 — aq)sbeyp — [sO2¢(03 — y) + clz8(0s — avg)ed]sip

rc = Aeg = A | —s(03 — aq)s8s% — [sy¢(03 — aq) + clas(05 — oq)edfedp [ (5.8)
chre(fy — ay) — s0,5(03 — evy)eé

where 02, 03 and 6, are given as,

¢'sinaq
= Bl N 9.9:
tan @, pYpvv— (5.9a)
\/[C(O!; - 02)c¢>sa3 + CG3S(C¥| - 02)]2 <+ .‘320’35.‘!4)
tanf; = (5.9b)
cazc(ay — 802) — copsays{a; — 02)
Sz Se
tanéd = 9.49¢
an S&gC(Cq - 02)C¢> + CQ;S(QI - 02) ( )
Furthermore, the pressure angle is as defined in eq.(3.81), i.c.,

tan = (¢' — cos @y ) sin ag — sin a; cos ag cos ¢ (5.10)

sin oy sin ¢

In the design of spherical RHRR ICM, N, Ay and «, are given as design spec-
ifications. However, a3 cannot be assigned arbitrarily for, heyond a certain bound,
undercutting will occur, The maximum allowable value of ay, defined as ay, can be

derived by analyzing the spherical radius of curvature of the pitch curve I".
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In order to gencralize the solution, we write the radius of curvature as p =
plap, e, o, N, Avp). Thus, in terms of ep, defined in ¢q.(5.7), and its first and
second derivatives with respect to 3, p is expressed as (Guggenheimer, 1977)

(e - €p)? )

or X o op (5.11)

p = arctan (

Now, we are interested on those points of I' where cusps occur, i.e., where p = 0.
First we search for the values g where p attains a minimum value, i.e., we make

dp/dp = 0, which readily leads to
S, ag, oy, N, Ap) = ep x ep - [3(ep - e"p)e’p — (ep - ep)e™] =0 (5.12)

The analysis of the motion covers one indexing step and hence, it starts at
#{—APf2) = —~n/N and finishes at ¢(Ap/2) = =/N. TFor a cycloidal motion, ¢

and ¢' are readily derived, namely,

= A L 2 =Y A _ 2 5.13
¢ = ¢(z+§sm rz), :r=A—¢, ¢=F (5.13)
. Ad 1 1
¢ _A—w(l-i-cos??ra:), 5 _<_:1:52 (5.14)

With the aid of symbolic algebra, we found that 1 = 0 always satisfies eq.(5.12),
i.e., f(0, ag, ay, N, Ap) = 0. Moreover, we found graphically that f can have one
or three roots; however, the minimum absolute value of p is found at 1y = 0.

Now, &j is obtained as a solution of p(0, &3, o, N, Ay) = 0. In view of eq.(5.11),.
p is zero if

ep-ep =10 (5.15)
Furthermore, from eq.(5.7), e at 1) = 0 is readily obtained as
ep(0) = [ - sin oy cos @ + (¢h — cosay)sinas, 0, 0] (5.16)

where ¢, = 47 /NAvy is computed from eq.(5.14) at 3 = 0.
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oy < Ay = vy

L) +
fe Voo
] 1 1 1
A5 TP S S
1 1 1 ]

=ay/2 ay/2

0
P

Figure 5.1 The pitch curve and the corresponding plots of
p and p’ for three values of as.

Substituting eq.(5.16) into eq.(5.15), the limiting value of «y is readily derived,

namely, '
sin o
dr [NA — cos ay

Figure 5.1 illustrates the pitch curve for three different values of a3, with the

tan s = (5.17)

corresponding plots of p and p’. Notice that, for @y < &;, p' has three roots hut p
attains its minimum at ¢ = 0.

These results are now summarized below:
Theorem 5.1: Given ay, N, Ay and the input-output function defined as in eq.(4.1),
the pitch curve of a spherical RHRR ICM reachesacuspat p =0 if oy = 0y —ay, 0,
being the value of 0; at ¢ = 0.
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We prove this theorem showing that 0y — ay = &g, with @, defined above as the

maximum value attained by aj3. First, we expand tan(0; — o), namely,

tan 02 —tanm

| #: 0_ - = = -.IS
an(0z — ) 1 + tan d, tan o, (5.18)
Now, substituting eq.(5.9a) into ¢q.(5.18), we obtain
~ sin o _ -
t.a.n(02 — O.'l) = m = tan &, (5.19)

thereby proving the theorem.

Planar SM

The geometry of planar SM is defined by the geometry of planar RHRR mechanisms
with &y = 7 for external and a; = 0 {or internal SM. Thus, the pitch and the cam

surfaces are defined according to eqs.(3.35-3.37}) as

[ cpay + c(ip £ ¢)ag [0
rp=|—sypar—s(pEdlas| + A |0 (5.20)
L 0 [ 1
[ cipby + (v — 6)(b3 — ay) ] 0
rc=|—stby~s(p—6)(ba—ay)| +A |0 (5.21)
L 0 l 1
with
by = ?é:l’:_lal (5.22a)
by = \/(ascq') + ay ~ b)? + az?s2¢ (5.22b)
tand = agcétfisz — (5.22¢)
(5.22d)

The pressure angle is defined as in eq.(3.86), namely,

az(¢' £ 1)t aycos¢
a;sin¢

tanu =
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The plus sign of the double signed terms, refer to external S M, whereas the minus,
to internal M.

As a counterpart of the spherical SAM, the pitch curve of planar Sl can be
analyzed to determine the allowable value of az, defined as ay, so that undercutting
can bz avoided. Thus, the following theorem is established:

Theorem 5.2: Given ay, N, Ay and the input-output function defined as in eq.(4.1),
the pitch curve of a planar RHRR ICM reaches a cusp at ¢ = 0 il a3 = by — ay, ba
being the value of b at ¥ = 0.

5.3 Positive Action and Positive Motion

In the design of cam mechanisms we distinguish two kinds of actuating lorces at the
contact between the cam and the follower, namely, the force that transmits the motion
to the follower, and the force that tries to stop the motion of the {ollower. The action
of each of these forces is termed here positive action (P A) and negative action (N A),
respectively. Moreover, we call positive motion that in which both PA and NA arc
present in the transmission, and hence, there are at least two contact points or lines in
a cam follower-system of this tyye, i.e., two or more cams attached to the input shaft
interacting with two or more followers attached to the output shaft. Notice that cases
like constant-breadth cam mechanisms use the same cam and follower interacting in
two different points.

In order to identify the type of action that takes place on the follower, we resort
to the value of the pressure angle. We assume in the pressurc-angle analysis thal
friction forces are negligible, and hence, the direction of the contact force is parallel
to the common normal. Furthermore, p varies from 0° to 180° and PA and N A arise

according to the rule given below:

If 0° <pu<90° then PA
If 90° < p < 180° then NA
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Figure 5.2 Pressure angle distribution of PRICAM

In Fig. 5.2 we present the distribution of the pressure angle of both mechanisms for
N =4, Ay =120° and a; = 90°, for an input-output function of the cycloidal type.
Similar curves arise for other input-output functions. It is clear that the combination
of the two mechanisms satisfy the condition of positive motion. On the first half of
the rise, the primary mechanism is under PA and starts with a zero pressure angle,
while the secondary mechanism is under NA. In the second half, PA is present in
the secondary mechanism, starting with a zero pressure angle. Shown in Fig. 5.3, is
the pressure-angle distribution for three rotations of the cam. The encircled numbers
indicate which roller is interacting with the cam. During the dwell phase, two rollers
interact with the cam and lock the shaft of the follower.

Two prototypes, one planar and one spherical, were designed with the following

. characteristics:
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Figure 5.3 Three cycles of the cam motion

- Four indexing steps, i.e., for a [ull rotation of the cam, the follower rotates 40°

from one dwell to another.
- The dwell from one index to another is 2/3 of the rotation of the cam.

. A set of CAD drawings for both planar and spherical indexing cam mechanisms
is presented in Figs. 5.4-5.7, with dimensions in mm.

Prior to the manufacturing of the prototypes, solid models of both designs were
created on a Silicon Graphics Power Series Workstation (IRIS 4D/420VGX) \o an-
imate the motion of PRICAM in its two versions. Three dimensional renderings of
these designs are shown in Figs. 5.8 and 5.9, while photographs of the protolypes are
shown in Figs. 5.10-5.13.
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Figure 5.10 Front view of the planar PRICAM prototype
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Figure 5.11 Top view of the planar PRICAM prototype
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Figure 5.12 Front view of the spherical PRICAM prototype
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Figure 5.13 Lateral view of the spherical PRICAM prototype



Chapter 6

Concluding Remarks

6.1 Conclusions

The classification of cam mechanisms according to the relative layoul of their kine-
matic pairs was used to simplify the unified synthesis of this type of mechanisms.
For cach of the two kinds of mechanisms treated here, namely, three- and four-link
mechanisms, when either the input or the output pairs are of the prismatic type, two
basic thecrems were stated.

With the criterion of minimum sliding velocity in the higher pair of a cam mech-
anism, an important result for four-link mechanisms was derived: In general, the
roller-follower coupling is a eylindrical kinematic pair and the shape of the roller is a
hyperboloid of revolution.

Novel cam mechanisms were found within the unified framework proposed here.
Morecover, it is believed that the mathematical tool of dual numbers is applied to the
theory of cam mechanisms for the first time, which has proven to ease the synthesis
in this context. :

Although the mechanisms discussed in Chapters 2 and 3 have only prismatic or
revolute pairs at their input and output axes, the formulation presented is more

general, i.e., it allows for screw pairs as well.
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The concept of minimum sliding between cam-follower or cam-voller was applied
to the synthesis of indexing cam mechanisms (ICM). [nteresting results were obtained
when three- and four-link 1CM were combined in planar and spherical layvouts, that
lead to pure rolling, positive motion and zero pressure angle at the ends and at the
midpoint of the follower stroke. A novel mechanism, called PRICAM, was designed

with these features in the two aforementioned versions, planar and spherical.
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Figure 6.1 Maximum pressure angle between planar PRICAM
and mirror-image conjugate cam mechanisms

The preliminary design of PRICAM was based on a three-link cam mechanism
which, nevertheless, was found to entail some disadvantages. In fact, the mechanism
had to be spring-loaded at all times in order to maintain the contact between cam
and follower, which introduces dynamic problems, namely, undesirably low natural
frequencies. Another disadvantage was that, during the dwell phase, the output shaft

was not locked. These problems were solved in the final design of PRICAM with
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the introduction of an additional four-link cam mechanism. Thus, with this com-
bination of three- and four-link mechanisms, called primary and sccondary systems,
respectively, positive motion was achieved without springs and positive action was
defined based on the value of the pressure angle. Morcover, the PRICAM prototype
is self-locking during the dwell phase.

One of Lthe parameters to measure the quality of the transmission of a cam mech-
anism is the pressure angle. Optimum transmission is reached when this angle is zero
and no transmission is possible when this angle is 90°. In this context, the planar
PRICAM was compared with an existing indexing cam mechanism, called the mirror-
image conjugate cam mechanism. The overall maximum pressure angle of the former
was found to be 35% smaller than the maximum pressure angle of the latter. The
plots of the pressure angle of the two mechanisms are shown in Fig, 6.1.

Bounds on the angle between the cutput axis and the axis of the roller in the
secondary system of the spherical PRICAM were established in order to avoid un-
dercutting, the maximum value depending on the design parameters. This result was
stated in Theorem 5.1. Similarly, Theorem 5.2 was stated for the secondary system
of the planar PRICAM.

The software package USYCAMS, an invaluable tool in this research, implements
the synthesis methodology reported here on a Silicon Graphics IRIS 4D/420VGX
workstation.

All the cam profiles shown in the figures of Chapter 3 were generated with the

application of the results presented in Chapters 2 and 3.

6.2 Considerations for Future Work

A few items that we recommend for future research are listed below:

o The stochastic analysis of the effect of overall error on the output motion of

a cam mechanism, due to manufacturing and assembly errors, as well as to
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intentional clearances in the joints, warrants research on its own.

o With advanced CAD systems it is possible to compute the inertia properties ol
solid shapes. However, cams are generated as ruled surfaces, and hence, show
some special features that could be exploited to develop suitable algorithins to
determine the inertia properties of cams more accurately than with commercial

software;

o Dynamic unbalance is an unavoidable problem when spatial cam mechanising

are used, mostly due to the unusual shapes involved. The dyuamic balancing

of cams calls for further research;

¢ The requirements of a certain application can be salisficd by diflerent types of
cam mechanisms. To find the optimum type [rom the point of view of efficiency

and minimum cost is a challenging problem to be considered as a continuation

. of this research work.
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Appendix A

Dual Numbers

A brief account of dual numbers is presented here as a quick reference lor the reader.
Those readers unfamiliar with t” s tool are referred to (Yang, 1963, 1974; Yang and
Freudenstein, 1964; Veldkamp, 1976; Bottema and Roth, 1979) for a comprehensive
account of this topic.

A dual scalar, vector or matrix quantity is represented as the wam of a primal part
and a dual part, the latter beginning with the dual unily ¢, which has the propertly
that €2 = 0.

Let & = a + ea” and b = b+ €b* be two duil scalars, with «, b, «* and b being all

real nambers. Equality, addition, multiplication and division are defined, respectively,

as
a=bosa=b a =b (A.la)
a+b=(a+b)+ela +b) (A.1h)
ib = ab+ e(ab” + a’b) | (A.lc)
¢ a ab* — a*b :
Z‘E_e('__fﬂ ) (b#0) (A.1d)

Furthermore, a line £ can be defined via the dual vector.

é=e+em (A.2)
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where e¥e = | and e’m = 0. Ilere, e defines the direction of £, while m the moment

of £ with respect to a self-understood point O, namely,
m=pxe (A.3)

p being the vector directed from O to an arbitrary point P of L. Moreover, e and
m are called the primal and dual parts of €, respectively. Thus, the components of
& are defined as the line coordinates of £ (Yang et al., 1975). [Furthermore, the six
components of the two vectors e and m in eq. (A.2) constitute the Phicker coordinates

of £. An alternative representation of £ is given as
r=p+ e (A.4)

where A is a real number. The components of r are defined as the point coordinales
of £. The transformation relation between line coordinates and point coordinates is

derived from eq. (A.3), upon cross-multiplying its two sides by vector e , namely,
exm=ex(pxe) (A.5)
[Expanding the right-hand side of eq.(A.5), one obtains
exms=p—e’pe (A.6)

If P is chosen as that lying closest to the origin, henceforth denoted by Po, of

position vector po, then, from eq.(A.6),
po=exm (A.7)
and vector r of eq.(A.4) is given by
r=exm-+Ae (A.8)
Now, let £, and L, be, in general, two skew lines. Their dual angle is defined as

P=uv+ch - (A.Q)
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where v is the angle between e, and e; and & is the distance between £ and Ca. The

trigonometric functions of # can be expressed as (Yang, 1974 Veldkamp, 1976)

siny = siny + chcosv (A 1Ua)
cos ¥ = cos v — ehsinv {A.10DL)
tan 7 = tan v + (1 + tan® ) (A.100)
cotd = coty — e—— ”‘(sin v #0) (A0d)

Furthermore, let 7| and J; be two initially coincident coordinate frames, Assume
that F7 is rotated through an angle v about its X-axis and translated a distance b
along the same axis. Thus, the transformation from JFo- Lo Fi-coordinates is given
by the dual screw matriz shown below:

1 0 0
Q(#)=|0 cosi —sind (A.11a)
0 sind cosv
In other words, Q() represents a dual rotation through i about the X -axis. Similarly,
the dual rotations through & about the Y- and Z-axes are given by
cosy O sinw
R»)=}| 0 1 0 (A.11h)

—sing 0 cosv

and X .
cosy —sine 0
§(b) = |sind cosi 0 (A.llc)
0 0 1
respectively.

Dual vector operations, like multiplication by a (dual) scalar, inner product, cross-
product, etc., have the same rules as those for operations of real vectors. lowever,

the norm of a dual vector X = x + ex", according to Veldkamp (1976), is defined as

XX

X||=|l x || +¢ ,
Il x4

(x # 0) (A.12)
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where || . || denotes Euclidean norm of its vector argument. Morcover, X is called a
unit dual vector if )| X [|= 1. Any dual vector can be expressed as
x=ljx|e (A.13)

where @ is a unit dual vector, and is computed as

X +E(xxx‘)xx
[l x| Il x [

e=

(A.14)

Moreover, let & and b be two unit dual vectors, and 1 be the unit dual vector
with the same direction as the resultant dual vector of the cross product a x b. Thus,

the dual angle between a and b is defined as

sind=axb-i (A.15)

-

a-b (A.16)

o
I

cos

We present below a complement to the cross product of two unit dual vectors for
the particular case when they represent two parallel lines. It is believed that this
analysis is not given in the literature.

Let the point coordinates of two parallel lines be defined as
L;: ri=qi+ e, i=1,2 (A.17)
Now, their line-coordinate representations are given as
é; =e+emy (A.18)

with m; = q; x e. We now have

Theorem A.1: Let two lines £, and L, passing through points @, and @, be
parallel to the unit vector e. Moreover, let Py and P, be the points of £y and L,
closest to the origin. Then, the line passing through P, and P, is perpendicular to e,

and hence, to £, and L,.
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Figure A.1 The ccmmon perpendicular to two parallel lines

Proof: Let p; be the position vector of P.. Then, from eq.(A.7),
pi=exm;

Hence
P2 — P1 = e X (m; —m,)
which is obviously perpendicular to e and the theorem follows.
Now, considering Theorem A.l, the line £3 perpendicular to hoth £, and £,
passing through points P, and P, of £, and L,, respectively, as shown in Fig. A1, is

defined by its vector of point coordinates as
rs = p1 + ey | (A.19)

where

€3 = P2 P ;; Bl {A.20a)
and

pi=exm (A.?Ub)
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and b=l p2 — p1 |.

Now, the line coordinates of £; are given as
éy=e3+¢ep; X ey (A.21)

Substituting eq.(A.20a) into eq.(A.21), one can readily obtain the dual representation
0[ £3 as
- X
8y = P2 - P1 +EP| . P2 (A.22)

Notice that this result cannot be obtained directly from the cross product &, x &,.




Ay

Appendix B

The Aronhold-Kennedy Theorem

For quick reference, we include here the discussion of the Aronhold-Keunedy Theorem
in three dimensions, first stated by Beggs (1959), as proposed by Veldkamp (1976).
The relative screw motion of two rigid bodies becomes relative spherical motion
in dual space. Thus, one can imagine these bodies in dual space as two concentric
dual unit spheres S; and S;. Under the assumption that 8§ moves with respect to

81, the duat angular velocity is given as
Wy = W€y = (war + vy )en (B.1)

where &;; 1s a unit dual vector defining point Py, and the two components of the
dual scalar @wsy, wey and vq, represent, in real space, the signed magnitudes of the
angular velocity and the velocity of the points lying on the screw axis. The velocity

of any point P of S, defined by the unit dual vector p is given by
Va1 =Wz X P (B.2)

It is clear that V¢ = 0 if P coincides with f’g;, which is known as the pole of the
motion.
Now, the three dual angular velocities of the unit dual spheres &y, &2 and S3 in

relative motion are related as

123
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Figure B.1 The Aronhold-Kennedy Theorem

W3 = waz + Wy (B.3)

Similarly, the dual velocities of a point are expressed as
Va1 = Va2 + Va1 (B.4)
Equation (B.3) can also be expressed in the form
w3131 = W3a€32 + Wy €y (B.5)

where &; indicates the three poles P;;, and &y; are the signed norms of the dual
vectors w;;, defined as
Wi = wij + €vij (B.6)

As a result of eq.(B.5), the Aronhold-Kennedy Theorem is expressed as (Veldcamp,
1976)
Theorem B.1 (Aronhold-Kennedy) The poles Py, Py and Pso of three unit dual
spheres in relative motion lie on the same great circle.

Thus, the Aronhold-Kennedy Theorem defined in the dual space involves pure

rotations, pure translations and general screw motions. Theorem B.1 is illustrated in

Fig. B.1.



Appendix C

Ruled-Surface Geometry

A surface R generated by the motion of a line £, defined as in eq.{A.4), is called a
ruled surface, £ being its generatrix (Struik, 1961). Thus, the position vector of R is
given by

r(¥,A) = p(¥) + re(¥) (C.1)

where ¥ and A are the parameters of R. The curve defined by the points p(#) is
called the directrix of R, and the vectors e() with origin at the centre of a unit
sphere describe the spherical indicatrix of £. Moreover, if p(#) is a constant, R is a
cone, whereas R is a cylinder if e is a constant.
The striction curve, as discussed in Section 2.3, is given by the position vector
’oot

g¥) =p-—oe (C.2)

el

the prime denoting differentiation with respect to 1.

Now, the unit normal of R can be derived from eq.(C.1) as

A) C.3
n(z, ” o] (C.3)
where
dr Or .

125
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In terms of eq. (C.1), n(x, A) becomes

_ (Pt Ae)xe .
Y (€3)

At every point of the striction curve, a trihedron of the unit vectors a, c and e is
defined and called the natural trihedron. Moreover, a and c, called asymplotic normal
and central normal vectors, respectively, can be expressed in terms of e as (McCarthy

1987b)

. —e'xe
a= lim n(,}) = el (C.6)
ef
= C.7
“=Tel (€1

Moreover, the geodesic Frenet equations of the {a, ¢, e} triad are given by

defds=c (C.8)
defds =va—e (C.9)
da/ds = —vc (C.10)

where s represents the arc length of the spherical indicatrix of e, while ¥ is the geodesic

curvature. The latter is expressed in terms of e and its derivatives with respect to ¥

as
exe . e
V=== (C.11)
i eI
The positional variation of the trihedron defined by a, ¢ and e is given by
dg/ds = Aa+ e (C.12)
where
p'-rexeé
A=s——— C.13
Kk (©13)
and

. p’. e _ 1 _Ei” pf.e
r= Fel e ldt (" & ||=) (C.14)
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Now, the dual spherical radius of curvature of R, p = p+er, is given by (McCarthy,

19876)

. Uk
tanp = —— .15
P=37% (C.15)
where
k=r+e(K - nrd) (C.16)
Y=v+e(l =4 (C.17)

and the definitions below:

k=1 + 42 (C.18)

(C.19)




Appendix D

Displacement Program Functions

The functions describing the rise or return in the displacement program of the syn-
thesis of cam mechanisms have been studied extensively in the literature (Rothbart,
1956; Jensen, 1965; Tesar and Matthew, 1976; Chen, 1982; Angeles and Lépez-Cajiin,
1991). Because of the scope of this thesis, only some of the {unctions of those types
having the property of zero velocity and acceleration at the ends of the rise (or return)

phase are presented here. Moreover, these functions are defined as

T = 71(z), 0<7<1, 0<Lz<l1 (D.1)

D.1 Generalized Input-Output Function

In the theory presented in Chapters 2 and 3, the dimensions and symbols of the
variables of the input-output functions change according to the type of kinematic
pair of the mechanism to be considered. Two kinds of pairs have been considered
either for the input or the output motions, namely, revolute or prismatic. A total of
four combinations is achieved, namely, R-R, R-P, P-R and P-P, and are applicable to

both three- and four-link cam mechanisms. However, all of them can be regarded as

128
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19

4 0 g
2

Figure D.1 Normalized input-output lunction

Table D.1 Generalized Input-Output Function

124

Type = h= T= =
R-R o(y) AY:) DAY da fdp =
R-P 23(9) Azg /AY defdip =
P-R &(z2) A¢ 29/ A=y drfdzy =
P-P z3(22) Az 22/ Az dzfdzy =

one generalized input-output {function, namely,

o(z) = hr(z)

(D.2a)

h being the rise of the follower and 7 the normalized function as defined in ¢q.(D.1)

and shown in Fig. D.1. Definitions of ¢, &, and z for cach of the four types of the

mechanisms mentioned above are shown in Table DD.1. The derivatives ol p{x) are

taken with respect to ¥ or z;, depending on the type of the input motion. Thus, the

chain rule is applied to ¢ to obtain its first and second derivatives with respect to the

input variable, and denoted ¢’ and ", thereby ohtaining

d
o = h:z:'d—:
d*r
— 112
lP” = ]in E

where 2’ is defined as in the Table D.1

(D.2h)

(D.2¢)
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D.2 Cycloidal Function

The cycloidal function satisfies the condition of zeru velocity and zero acceleration at

the ends. This function and its first and second derivatives are defined below:

rT=1— .)Lsin‘.!r:r (D.3a)
1
%:(1-«)3% ) 0Lz<1 (D.3b)
2
-:?;; = 2xsin 27z (D.3c)

D.3 Polynomiai Functions

If the rise is represented by a polynomial, then its coeflicients are determined from the
condilions to be satisfied. The methodology to determine the polynomial coeflicients
can be lound in (Dudley, 1948; Angeles and Lopez-Cajiin, 1991). Some of the solutions

are presented below:

D.3.1 3-4-5 Polynomial

7 = 10z° — 15" + 62° (D.4a)
dr = 30z? — 60z° + 302! 0<z<1 (D.4b)
dz

% = 60z — 18022 + 12023 (D.4c)

D.3.2 4-5-6-7 Polynomial

T = 35z — 84z° 4 70z% — 2027 (D.52)
!
% = 140z® — 420z" + 420z° — 140z° 0<z<l (D.5b)
d*r 2 3. 4 5
T3 = 4202" — 16802° + 2100z" ~ 840z (D.5c)
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D.4

Combined Functions

B!

In order to improve the performance of the basic curves as delined above, designers

have tried combinations of them. The aim has been to produce a follower motion

with bounded jerk. One of these combinations is the called the trapezoid lunction,

which is a combination of cubic and parabolic curves. This type. from the point of

view of the maximum value of d*r/dz?, is slightly better than the eyeloidal curve

((‘

Jnen, 1982). From the same point of view, an even better function was proposed,

the modified trapezoidal fu..ction (Neklutin, 1959), which rveplaces the cubic curves

by cycloidal curves. This function is presented below. a detailed dervivation of this

curve being found in (Tesar and Matthew, 1976; Chen, 1982).

D.4.1

Modified Trapc=oidal Acceleration

1
r = 0.09724612(4z ~ —sindra)

% = 0.3889845(1 — cos 4nz) 0z« é-
%z_—z = 4.888124sin dxz

7 = 2.444406184z% — 0.22203097z + 0.00723407

j—; = 4.888124z — 0.22203007 - ;1;- <z< é
% = 4.888124

7 = 1.6110154z — 0.030954d sia(drz — 1) — 0.3055077
' 3 !
dr = 1.6110154 — 0.3889845 cos(47z — 7) g <z< 2

—— = 4.888124 sin(47z —'7)

(13.6a)
(D.6h)

(D.6c)

(1).6d)
(D.6¢)

(1D.61)

(D.6g)
(1D.6h)

(1D.6i)
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dr
dr
dir
dz?

dr
dz
d*r
dz?

dr

dr

d*r

= 16110154z + 0.03009544 sin{drz — 27) — 0.3055077 (D.6)
! 5
L = 16110154 + 0.3889845 cos(dnz — 27) s<z< ;’ (D.6k)
= —1.888124sin{dmrz — 2x) (D.61)
= 4.6660917z — 2.44406184z* — 1.2292648 (D.6m)
= 4.6660917 — 4.888124z % << é (D.6n)
= —1.558124 (D.6o)
= 0.6110154 + 0.3889845z + 0.0309544 sin(4rz — 37) (D.6p)
= 0.3889845[1 + cos(drz — 3x)] -;- <z<1 (D.6q)
= —4.888124sin(4rz — 37) (D.6r)

dz?



Appendix E

CAD-Based Methods. Planar
Applicatiorns

E.1 Introduction

Graphical methods for the synthesis of cam mechanisms could be considered obsolete
with present-day computer technology. However, the ever increasing availability of
CAD systems makes graphical methods of cam synthesis worth revisiting, il in lght
of current technology.

In this chapter we revisit graphical methods of cam synthesis and propose a
novel CAD-based method. In the realm of traditional graphical methods (Roth-
bart, 1956; Jensen, 1965; Chen 1982) the cam profile is obtained as the tangent curve
to a sequence of placements of the geometric entity—circle, line or arbitrary curve—
representing the follower. Hence, the accuracy of the profile thus obtained is totally
dependent upon draftsman’s skill. In the realm of CAD systems, the skill-dependence
feature is eliminated, but then a problem remains, namely, the digital approximation
of the tangent curve, that is numerically cumbersome. This problem was overcome in

the early days of CAD/CAM technology with the introduction of envelopes (Struik,

133
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Figure E.1 RHRR mechanism layout

1961; Wilson, Sadler and Michels, 1983; Backhouse and Jones, 1990) that yield the
cam profile coordinates directly and hence, eliminates the inaccuracies of tangent-
curve tracing. While the envelope method is very reliable and has found extensive
acceplance, it is still essentially a numerical method that does not exploit the inter-
active capabilities of CAD systems. This state of affairs prompted us to propose an
innovation in the rendering of the profile. This innovation consists of finding the con-
tact points between cam and follower, in a totally graphical and interactive fashion
that exploits features available in commercial CAD systems.

The theory presented in Chapters 2 and 3 is the basis of the method presented
here. The profile of a three-link mechanism is used as a reference for the construction

of a four-link mechanism; in other words, RHR and RHP mechanisms are the two-

_ basic groups of the four types of mechanisms discussed here. These four types pertain

to two families, namely, the {RHRR, RHHR} family based on RHR mechanisms and
the {RHRP, RHHP} f=mily based on RHP mechanisms. Although not presented here,

the synthesis of those groups pertaining to PHR and PPP mechanisms can follow the



Appendix E. CAD-Based Methods. Planar Applications 135

same methodology. We assume henceforth that all geometrie parameters of the cam

have been either prescribed by an experienced cam designer or determined using an

optimization procedure, as described in detail in (Angeles and Lopez-Cajin, 1991),
Morcover, all procedures discussed below can be readily automated with the aid

of a CAD system. We have implemented them in AutoCADTM,

E.2 RHRR Mechanisms

An illustration of the cam mechanism presented in this section is shown in Fig, 3.6.
The parameters given to start the design with are shown in Fig. I 1a, where ay s the
distance between the centres of the fixed revolutes, a; the distance between the fixed
and moving revolute centres of the follower, a4 the radius of the roller, ¢y the angle
of the follower corresponding to the lowest position of the follower and Ad is Lthe rise
of the follower.

Once the parameters mentioned above are fixed, the method starts by rotaling
the segment AB through an angle ¢g + A¢/2 so that the segment CD is parallel to
the ordinate axis of the displacement coordinate frame, as shown in Fig. I.1b. Thus,
the displacement program is based on the length of segment C' 1), namely, the chord
of the arc with radius a; subtending angle DBC. Then, as the follower rotates, the
projections of the successive positions of centre of the roller onto segment C'D are
represented by &, i.e.,

h=h,r (I.1)

where h, is the length of the aforementioned chord, to be determined either graphically

or numerically, and is evaluated as
hy = 2a3sin - (1.2)

while 7 is the normalized function defined as in eq.(D.1).
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Figure E.2 Difference between ¢, and ¢,

It is pointed out that, with the application of eq.(E.2), the actual angle of dis-
placement of the follower, ¢,, and the angle of displacement obtained graphically ¢,,
are identical only at the ends of the follower motion and at the middle point of this
motion. In any other position there is a difference, which, when normalized with

respect to A¢, is denoted by &, and measures the relative error involved, i.e.,

_ 953 - ‘f’r n
Moreover,
ér = AgT (E.4a)
_Dd ik .
by = 5~ sin ” (E.4b)
where %, as shown in Fig. E.2, is given as
i = agsin % ~ by (E.5)
Now, combining eqs.(E.2, E.4 & E.5) with eq.(E.3), the latter readily leads to
1 | Y :
&(r) = 3= T- Y sin [(1 — 27)sin -2—] (E.8)
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Figure E.3 Plot of &4z vs. A¢
The maximum value of €, for a given value of A¢, can be computed as £y = £(7a1),

where 7as is obtained from the equation dé/dr = 0. For example, lor a cycloidal

input-output motion, Ty is given as

L1 [ arg .
™M=3 * 2A¢\ sin* 42 ~ (E1)

Thus, with A¢ = 30° for example, {ar = 0.00221. Moreover, a plol of 4 vs. Ad
is shown in Fig. E.3. The magnitude of éas is apparently negligible for the purposes of
this chapter, and hence, eq.(E.2) can be considered as an acceptable approximation.

Now, the coordinate axes b; and 1 are located w3 shown in Fig. E.1h, where b;
is defined in Chapter 3 as the distance from the axis of rotation of the cam to the
contact line between cam and follower of the RHR cam mechanism, and is recalled

below for quick reference:
¢I
¢ —1

Next, the cam is considered fixed and the frame of the mechanism is rotated in the

b2 = /33 (3.44)

opposite direction of Lthe assumeed rotation of the cam. Thus, for 1 = 1y, the points

corresponding to k and b, are projected onito the arc A and the line £, respectively,



. Appendix E. CAD-Based Methods. Planar Applications 138

..... it h\\
/] N
\ D12 3453 3] 1% o]

|
|
T
s]
|
~
/1

0
-/,——- ) = — — \
- .
4/ \| wle \;
e o ~ 4 N
/ I T A
i —" X
'/ /-/ 0123458 10 18 20

b
E O Y G D" 4R \
[ TN ST RS ! <
|\ I\ .““‘ . ;::";;‘ \ }4 /
\ AT /
\‘ L AR f ;\ N i ']
VOO NSO ]
\‘ /‘ ) \ \\ ‘ ‘/
\‘ ’ 1% s
\ ; 7
~.  / - 7
~. /7 T e
13@ ..... —

Figure E.5 Cam profile of the RHRR mechanism
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(a) (h)

Figure E.6 RHHR mechanism layout,

as shown in Fig. E.4. Then, the location of C’ and E for 5 arc readily obtained,
where C' and E are points of I3 and I3, respectively.

Further, we determine F, the contact between cam and roller, as the intersection
of the circle with centre C’ and radius a, with segment EC’, as indicated in Fig. [5.4.
This procedure is repeated for each value #;, where { = 0, 1, ---, n, and n is the
number of subdivisions of the full rotation of the cam. The profile thus resulling is

the locus of point £, as shown in Fig. L.5.

E.3 RHHR Mechanisms

The type of mechanism presented here is shown in Fig. 3.12. As stated in Chapter 3,
the synthesis of RHHR mechanisms is similar to the synthesis of RHRR mechanisms,
with only two important differences: a) the distance a3 is variable and b) the pressure
angle is identically zero, i.e., segment EC, is always perpendicular to segment BC,

as shown in Fig. E.6a.
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Figure E.7 Contact point for ¥ = 15 of the RHHR mechanism

. The reference value of as is @30 = ay cos ¢, and is obtained as shown in Fig. E.Ga.
Thus, %, is computed as
AV
h, = 2a3gsin - (E.8)

Shown in Fig. E.7 is the procedure to find the cam-follower contact point for
¥ = s, where aj is variable. The profile thus resulting is designed with zero offset,
i.e., with a4 = 0, as shown in Fig. E.8.

If a4 # 0, the profile is determined from that obtained with zero offset and auxil-
lary circles of radius a4 as discussed in Section 3.4.1. The intersection of these circles

with the dashed lines gives the points of the desired profile, as shown in Fig. E.9.
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Figure E.9 Cam profile of the RHHR mechanism with a, # 0
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Figure E.10 RHRP mechanism layout

E.4 RHRP Mechanisms

The mechanisms to be discussed in this section, with a; = —7 /2, is shown in Fig. 3.7,
the given parameters being shown in Fig. E.10. The ordinates of the two coordinate
frames are parallel to the direction of motion of the follower. Moreover, according to
cq.(2.21d), b, = z3.

Once the plots of z3 and 2} are obtained either graphically or numerically, their
ordinates are projected onto line £, as shown in Fig. E.11 for the value of ¥ = .
The i-points from z3 are rotated through the angle 1;, while the i-points from zj, are
rotated through the angle 1; + 7 /2. Hence, the pitch curve of the RHRP mechanism
and the cam profile of the RHP mechanism, respectively, are readily obtained.

The points of the cam profile are determined as the intersections of the circles of

radius aq with segment EC’, the profile thus obtained being shown in Fig. E.12.
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¥s

Figure E.12 Cam profile of the RHRP mechanism
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Figure E.13 RHIP mechanism layout

E.5 RHHP Mechanisms

The procedure to pldt the cam profile points for the RHP mechanism is the same as
that followed in Section E.4, the cam points of the RHHP mechanism being obtained
likewise. The only difference here is that a3 = 0 for ¥ = 0, as shown in Fig. E.13,
and, as discussed in Chapter 3, as changes so that the pressure angle is zero; in other
words, segment EF is always perpendicular to the face of the follower, as shown in

Fig. E.14 for ¥ = 5. The profile obtained is shown in Fig. E.15.
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N/

Figure E.14 Contact point for ¥ = 5 of the RITHP mechanism
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. Figure E.15 Cam profile of the RHFP mechanism





