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Abstract

fn titis tltesis, a unified forniulation for the synthesis of cam mechanisms is presented,

wlticlt allows the design of spatial. spherical and planar mechanisms within il. single

tlteoretical framework. This formulation has led to the design of novel cam mecha·

nisms, as yet unknown.

Wc focus on mechanisms with three and four links containing one higher kinematic

pair. The theory is first developed with the study of three-link mechanisms that arc

composed of a frame, a cam and a follower. The unified formulation is given in the

dual space in which the three links are represented by three concentric unit dual

spheres. In this space, the three instantaneous screw axes of the mechanism arc

mapped into three dual points or po/cs. Two of these poles, those arising from the

frame·cam and frame-follower pairs, arc fixed and lie on the sphere representing the

frame, while the third pole, arising from the cam·follower pair, moves on the same

spherc. The type of kinematic coupling, i.e., revolute or prismatic, for the frame·cam

il.nd cam-follower pairs, is specified by the location of the fixed poles. The p%de,

which is the dual curve defined by the moving pole, is mapped into the Cartesian

space as the axode. The axode defines the contacting ruled surfaces of both cam and

follower. Two basic theorems arc stated as a result of this analysis.

The foregoing theory is then extended to the study of four·link cam mechanisms,

where an intermediate element, namely, a roller, is placed between the cam and the

follower. In general, the surface of the roller is shown to be a hyperboloid, which,

for the planar case, becomes a regular cylinder, and, for the spherical case, a regular
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cane. The 1.\1'0 theorems stated for thn'e-link l'all1 nll'l'hanislllS '\\"(' 1h,'n ,'xl"IIl!.'d

ta four-link rnechanisms. .\ gelwral forll1ulation is pl"Sl'n!,'d fol' 1hl' slud)' of !hl'

pressure angle in bath thrcc- and four-link calli lI1l'ch..nisll1s. \Vith Ihis forll1ulati'lIl,

the general expression for the pressure angle of sphericil\ 1I1'~l'hilnisll1s is d,'ri\,,'d as il

particular case of the general expression for spatial ,'all1 IUl'chilnisnIS. ~lol'l'o\'l'I" t.hl'

pressure-angle expression corresponding ta planaI' call1 Inel'hanisll1s is d,'ri"l'd ,IS "

part,icular case of spheric,,1 cam mechanisms,

The unified formulation is then applied ta the synthesis of plan"r C"1I1 lI1l'ch"nisllls

\'ia graphical methods, Bere, an innovative technique is intl'Oduccd, \l'hidl l'onsists

of finding contact points of the cam profile, in contrast ta traditional I-\r"phical tech­

niques that employ carn envelopes, and, hence, arc prone ta inaccul'ilcïes

Special attention is given ta the synthesis of indexing cam lI1ech"nisnls. In this

context, a theorem is established for the determination of one of th" dl'si.~n parall1­

eters that is used ta avoid undercutting on the cam profile. A novel desi!\n of "n

indexing cam mechanism, called PRICAM, in which pure rolling and positive 1I10tion

are achieved for planaI' and spherical mechanisms, is obtained using il coll1bination of

three- and four-link cam mechanisms.

The unified formulation is implemented in the software package lJSrCAMS, in

which, with visualization aids, the user can design cam mechanisms of t.he three types

and animate their motion, by providing the design parameters on-line. lJSYCAMS

allowed the design of two versions of PRICAM, one planaI' and one spherical, alld

produced a database describing the contact surfaces, which served as input ta t.he

CNC machine tool used ta cut actual prototypes of these mechanisrns .
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Résumé

L'objectif de la thèse est de présenter une formulation unifiée pOlIr la synthèse des

mécanismes à. cames qui permel la conception de mécanismes pour les cas spatial,

sphérique el planaire, dans un cadre théorique unifié. Celle formulation a ouvprt la

voie à la conception de nouveaux mécanismes à cames, inconnus jusqu'à maintenant.

Notre étude se concentre sur des mécanismes à trois et quatre maillons contenant

un couple cinématique supérieur. En premier lieu, la théorie est développée par l'étude

de mécanismes à trois maillons composés d'un bâti, d'une came et d'un récepteur de

came. La formulation unifiée est donnoie dans l'espace dual, dans lequel les trois

maillons sout représentés par trois sphères duales concentriques à rayon unitaire.

Dans cet espace, les trois axes de vissage instantané du mécanisme ont ieurs images

tracées en trois points duals ou pôles. Deux de ces pôles, ceux provenant des couples

formés par l'ensemble bâti-came et l'ensemble bâti-récepteur, sont fixes et reposent

sur la sphère représentant le bâti, tandis que le troisième pôle, provenant du couple

came-récepteur, se déplace sur la même sphère. Le type de couple cinématique,

c'est-à-dire rotoide ou prismatique, pour les couples bâti-came et came-récepteur, est

spécifié par la location des pôles fixes. Le p%ide, qui est la courbe duale définie par

le pôle mobile, est tracé dans l'espace cartésien comme l'axoiiie. L'axoide détermine

les surfaces réglées en contact de la came et de son récepteur. Comme résultat de

celte analyse, deux théorèmes de base sont tirés.

Cette théorie est alors appliquée à l'étude des mécanismes de came à quatre mail­

lons, alors qu'un élément intermédiaire, à savoir, un roulement, est placé entre la came
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ct le réccptel'r. En général. la surface du roulement. est. hYP,'rhniiqu,'. l'l' qni, dans It­

cas des mécanismes planaires, devient nn cylindre régulier, et, l'"ur l,'s nl<'canisn\l's

sphériques, un cône régulier. Les deux théorèmes énone,', pour les m,'""nism,'s de

came à trois maillons sont alors appliqués aux mécanisnll's i, quatre maillons, lin"

formulation générale est présentée pour l'étude de l'angle de pression des Im'canismes

de came à trois et quatre maillons. Avec cette formulation, l'expression g';Il<'mle de

l'angle de pression des mécanismes sphériques se conçoit comme un cas partÎl:uliel' de

l'expression générale pour les mécanismes de came spatiaux,

La formulation unifiée est en outre appliquée à la synthèse des nl<;canismes de

came planaires par le biais de méthodes graphiques. Ici, une technique innovatrice

est introduite, laquelle consiste à trouver les points de contact du profil de la came,

par opposition à des techniques graphiques plus traditionnelles qui emploient des

enveloppes de came, et, de ce fait, sont sujet à des inexactitudes.

Une attention spéciale est apportée à la synthèse des mécanismes piLS "piLS. Dans

ce contexte, on établi un théorème pour déterminer un des paramètres ut.ilisé pOUl'

éviter le sous-cavage sur le profil de la came. Une conception nouvelle d'un mécanisme

pas à pas appelé PRICAM, dans lequel des mouvements j)ositifs de roulement pur

sont obtenus pour les mécanismes planaires et sphériques, est réalisée en utilisant lIne

combinaison de mécanismes de came à trois et quatre maillons.

La formulation unifiée est réalisée dans le logiciel USYCAMS, dans lequel, avec un

support visuel, l'utilisilteur peut concevoir des mécanismes de came des trois t.ypes, et

animerleur mouvement en donnant au logicielles paramètres du mécanisme en ligne.

USYCAMS a permis la conception de deux versions de PRICAM, une planaire et

l'autre sphérique, et a produit une base de données décrivant les surfaces de contact

qui ont servi comme données d'entrée à la machine-outil à commande numérique

assistée par ordinateur utilisée pour produire le profil des prototypes actuels de ('(lM

mécanismes.
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Claim of Originality

The research work reported here is original, the main contributions being listed below:

(i) four basic theorems for three- and four-link cam mechanisms where either the

input or the output contains a prismatic pair;

(ii) a unified formulation for the definition of the pressure angle of thrce- and four­

link cam mechanisms;

(iii) the method of synthesis of three-link cam mechanisms with constant pressure

angle, better known as cam mechanisms with liat-face followers, including spher­

ical mechanisms, that is based on the unified method pertaining to four-link cam

mechanisms;

(iv) the definition of positive action depending on the value of the pressure angle;

(v) a novel design of planar and spherical indexing cam mechanisms with pure

rolling and positive motion, called PRICAM;

(vi) the software package USYCAMS, for the on-line design of spatial, spherical and

planar cam mechanisms;

(vii) the introduction of a novel semigraphical method for the synthesis of planar

cam mechanisms.

The material presented in this thesis has been partially reported in (Gonzâlez­

Palacios and Angeles, 1990; 1991; 1992a and 1992b).
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Chapter 1

Introduction

1.1 General Background and Motivation

A mechanism, according to IFToMM's Commission A for Standardization of Termi­

Ilology (1991), is a system of bodies designed ta convert motion of, and forces on,

one or scveral bodies into constrained motions of, and forces on, other bodies. The

way these bodies are connected is defined by their kinematic pairs. Basically, there

are two kinds of kinematic pairs, namely, higher and lower pairs. The former rerer

to the coupling of two bodies in point or line contact, while the latter refer to the

same in surface contact. Moreover, according to the type of degree of freedom, lower

kinematic pairs can be of six types, namely, revolute, prismatic, screw, cylindrical,

spherical and planar (Angeles, 1988).

A cam mechanism is defined as that in which the motion is transmitted by a

higher kinematic pair. The simplest cam mechanism is composed by three elements,

namely, frame, cam and follower. The cam is the driver, while the follower is the

driven element. Another type of cam mechanism contains a fourth clement, a roller,

which is usually connected to the follower by a revolute pair, the higher pair taking

place between cam and roller. The cciupling between frame and cam or between frame

and follower can be done by revolute, prismatic, cylinclric or screw pairs.
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(a) (b)

Figure 1.1 Industrial applications of cam mechanisms

Despite advances in robot technology whereby industrial manipulators may be

eifectively substituted for many mechanisms, cam mechanisms still find important

industrial applications, such as in the textile, food-processing and manufacturing in­

dustries. Moreover, many applications of cam mechanisms, specifically indexing cam
,

mechanisms, arise in conjunction with industrial robots. As shown in Fig. Ua, a

robot is used to install fixtures on an automobile door, while an indexing cam mech­

anism rotates the circular table intermittently, allowing the process to be automated.

In Fig. l.1b a piece is presented to a cluster of machining stations by means of a table

driven with an intermittent motion supplied by an indexing cam mechanism. Notice

that this permits various machining operations to take place simultaneously.

1.2 An Overview of Previous Work

This subsection is divided in two main parts. The first part presents an overview

of previous work on cam mechanisms, while the second deals with the mathematical
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(a) (b)

Figure 1.2 A pumping system

tools applied in this thesis.

1.2.1 Cam Mechanisms

3

•

The origin of cam mechanisms can be traced back to the Paleolithic age, as claimed

by Mûler and Mauerliberger (1988), who present an account of the evolution of cam

mechanisms, their applications and their contributors. Cam mechanisms seem to

have their origin in one of the simple mechanisms of the ancient times (Müler, 1987),

namely, the wedge. One of the most significant applications of cam mechanisms in the

first half of the second millennium is in pumping systems, as shawn in Fig. 1.2. The

rotary motion'of the crank is transmitted via friction wheels to the cam. The rotary

motion of the cam is then transmitted to the lateral motion of the follower, which

drives the piston. Mr:~~over, the motion of the piston in one direction pulls water

from the weil and fills the cylindrical deposit, while motion in the other direction

pushes water out. The modern design of cam mechanisms is considered to have been

pioneered by Leonardo da Vinci. Since lia Vinci's time and up to the XIX Century,
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Figure 1.3 Primitive construction of a cam profile

important contributors to the development of cam mechanisms can be cited, e.g., A.

Ramelli, L. Monge, J. Leupold, L. Bétancourt, Deparcieux, J. V. Poncelet, J. Borgnis,

R. Willis, F. Reuleaux, etc.

The design of cam mechanisms in the first half of the XX Century was based

on geometrical methods, while the cutting of the cam profile was donc manually, as

illustrated in Fig. 1.3. Below we present a survey of developments in the theory and

practice of cam mechanisms, starting from the second half of the XX Century. This

survey is divided in two main parts, namely, kinematics and dynamics.

Kinematics

In connection with kinematic synthesis, the method of finite differences was intro­

duced by Johnson (1955) for the design of planar cam mechanisms. Later, this method

was applied by the same author (Johnson, 1956c) to determine cain profiles with de­

sit'ed acceleration characteristics, while, with a different approach, Zigo (1967) derived

an algorithm for the same purpose. Furthermore, sorne methods for the synthesis of



the cam profile from prescribed jerk patterns \Vere proposed by Benedetto (1975),

while Fenton (1966b) proposed to avoid noise in cams witb a proper selection of cam·

follower offset for roller·follower radial cam mechanisms. A method of local analysis

of the motion of mechanisms connected by a higher kinematic pair is discussed by

Rosenberg and !\feu (1987), while the theory of conjugate surfaces is applied to the

synthesis of planar cam mechanisms by Zhong-Tang and Jing·Ping (1989).

The combination of linkages with cam mechanisms, in five·link mechanisms, was

introduced by Hain (1970), who also proposed the optimization of these mechanisms

(Hain, 1971). The same author later reportcd the optimization of a kinematic inver·

sion of a five·link mechanism with a fixed cam (I-Iain, 1978). Furthermore, Amarnath

and Gupta (1978) adopted the Hai 1's work to design cam.linkage mechanisms for

multiple·dwell generation, whereas Sadler and Yang (1990), using 'l. different ap'

proach, reported the optimal design of five·link cam mechanisms.

With the aim of improving the motion of cam mechanisms, the design of positive

motion with single·disk planar cams and oscillating follO\ver was presented by Jack·

owski and Dubil (1967) and Wunderlich (1971). Later, with a different approach but

the same concept, Hunt (1973) presented a study of profi!ed·follower mechanisms.

It is weil known that intermittent motion can be achieved with a kind of kinematic

•

•
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inversion of the slider·crank mechanism, i.e., the Geneva mechanism, which has been

studied in the past to sorne extent (Bickford, 1965, 1972; Fenton, 1965, 1975a, 1975b;

OleeJzki and Szydlowski, 1975; Shadek et al., 1990). Intermittent motion has been

produced with the aid of indexing cam mechanisms (Jacobs, 1949; Johnson, 1958;

Makino, 1979). Moreover, the design of five·link cam mechanisms with mu!tiple·dwell

capability was reported by Amarnath and Gupta (1975).

The optimization of cam mechanisms can be considered from different points of

view depending on the practical problem at hand. Thus, t,heminimization of the cam

size for planar cam mechanisms was reported by Fenton (1966a, 1975c) and Loeff and
/:'

Soni (1975). Moreover, the minimization of cam forces is reported by Jones (1978b),

l'
'./



while a comprehensive account on the optimization of planar cam nll'chanisms and

an introduction to the optimization of spatial cam mcchanisms is gi\'cn Ily Angel,·s
• Chapter 1. Introduction li
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•

and Lapez-Cajun (1991).

Experimental work to determine jump characteristics in planar call1·follo\\'Pr sys­

tems has been also reported (Rao and Raghavacharyulu. 19i5), \\'hile "l'perimcntal

results on the changes' of dynamic properties were presented by Bialko\\'icz et al.

(1979). The problem of cutting the cam profile was studied by .Jones (19i811); Nor·

ton et al. (1988) analyzed the elfect of manufacturing methods on Calll performance.

Furthermore, the error due to manufacturing and assembly \Vas stndied by Dhande

and Chakraborty (1975) l'rom a probabilistic viewpoint. as pertaining to sOllle planaI'

and spatial cam mechanisms.

A method for the formula-based design of three-dimensional cams \Va.' rcported Ily

Raven (1959). Later, a unified approach to the design of this type of mechanisms \Vas

presented by Dhande et al. (1975). Furthermore, Dittrich and Zakcl (1979) reported

a study of three-dimensional cam mechanisms based on the values of the pressnre

angle, while a study of spherical cam mechanisms \Vas discussed earlier Ily Dittrich

(1966). Recently, envelope theory, which had been limited to planar mechanisms, \Vas

applied to spatial cam surface geometry, as reported by Backhouse and .Joncs (1990).

Dynamics

In the case of cams rotating at high speed, impact loads become crucial in the design.

Thus, if force characteristics are considered in the synthesis of cam mechanisms, then

we are referring to dynamic synthesis. A coordination of the polynomial equations of

motion with the dynamic aspects of machine operation gives as a result the polydyne

cam design, which was discussed by Stoddart (I953a, 1953b). Another approach onto

dynamic synthesis was reported by Wiederrich and Roth (1975), \Vho applied finite

trigonometric series. Furthermore, a proceàure for the dynamic analysis of a cam
"

mechanism'with bearing clearances was reported by Osman ct al. (1987).

Il



1.2.2 Screw Theory

The oplimizalion of cam and follower properlies considering the dynamics of cam

lllechanisrns has becn rcported by Johnson (1956a, 1956b) and Berzak and Freuden­

stein (1979), while the clfects of cam profile error on the dynamic behaviour of follower

carn systems was discllssed by Orewal and Newcombe (1988).

[n the realm of indexing carn mechanisms, the residllal vibrations were studied by

Takano and Toyama (1979). Moreover, the optimal configuration of planar external

mechanisms of this kind is reported by Jones and 'l'sang (1987), and the optimal

design of external and internal indexing cam mechanisms is reported by Oouxun et

al. (1988).

Backlash, squeeze and impact of planar cam mechanisms are simulated in the

work reported by Koster (1975) and Kass and Chace (1975), while different methods

of cutting a plate cam are compared by Norton (1988) .

•
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The approach to the kinematic synthesis of cam mechanisms introduced here is based

on screw theory. While it is difficult to state the date of the origin of this theory, Bali

(1900) includes a list of contributors to this theory. We based our study reported

here on a number of references, namely, (Bali, 1875, 1900; Beggs, 1960; Veldkamp,

1967a, Roth, 1967; 1967b, 1976; Chen and Roth, 1969a; Waldron, 1972; Yang, 1974;

Pandrea and Voiculescu, 1975; Rooney, 1975b; Ohwovoriole and Roth, 1981; De Sa

and Roth, 1981a, 1981b; Hon-Cheung, 1987; McCarthy, 1987aj Agrawal, 1987j Kerr

and Sanger, 1989; Sticher, 1989; Gibson and Hunt, 1990a, 1990bj Parkin, 1990).

Furthermore, ruled-surface theory has been considered an important tool for the

study of screw theory. Along these lines, Yang et al. (1975) report applications of

screw theory to spatial mechanisms. Moreover, differential properties of ruled surfaces

in a form applicable to spatial kinematics are reported by McCarthy and Roth (1981),

while a study of ruled surfaces in dual space is given in Kase (1982a, 1982b). The
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geometry ofaxods is analyzed with the aid of rnled-surface theory Ily Dizioglu (l!IS!)).

and a new dual integral invariant for a gi"en closed rubl surface is iut.roduCl·d Ily

Gùrsoy (1990).

Contributions to the theory of mechanisms from t.he point. of \'iew of snew t.heol'Y

have been presented by dilferent authors (Phillips and IIunt l!)(j.!; Yang and Fl'euden­

stein, 1964; Hunt, 1967a, 1967b; Chen and Roth, 1969b; Kohli and Soni, IH7[); Itooney,

1975a; Vadasz and Soni, 1979; Sodh and Shoup, 1982; Sugirnot.o and Dull'y, 1982; Sun

and Waldron, 1982; Angeles, 1986a, 1986b; Xiao and Yang, 1989).

1.3 Scope of the Thesis

Cam mechanisms have been studied from different points of view, namely, kinelllatic

synthesis, dynamic synthesis, analysis, design, optimization and llIanuradlll'ing. This

thesis is oriented to the kinematic synthesis of cam mechanisms in a nnified fl'allle­

work. By this we mean that spatial, spherical and planaI' cam mechanisrns arc inte­

grated in the same formulation. Traditionally, the synthesis of the thret! types of cam

mechanisms has been approached using independent formulations. With a unified

formulation, not only the well-known types of cam mechanisms, but al50 novel cam

mechanisms can he synthesized, as shown in this thesis.

Moreover, since all the design parameters are considered in a unified framewol'k.

the optimization theory of cam mechanisms can he applied systernatically. i.e., the

criteria applied for the optimization of planaI' cam mechanisms, which can ile found

to sorne extent in the literature, can he complemented in order to provide general

criteria for the optimization of spherical and spatial cam mechanisms.

The ideal solution in the design of cam mechanisms is that in which the adual

output motion matches the prescrihed one. However, the adual output motion is

bound to he dilferent due to deviation of certain parameters from their nominal values,

such as manufacturing tolerances, clearances at the joints, misalignment errors, eLc.



With the use of a proper design and machining facilities, namely, a CAO/CAM

system, sorne of those errors can be minimized, but not totally eliminated. Therefore,

an analysis of the error is an important topic to be considered whenever industrial

production is required. Given that the stochastic analysis of errors in cams warrants

a research program of its own, we did not address this issue here. Although this

thesis does not discuss a stochastic error analysis, it is believed that the formulation

presented here provides the basic information needed for the development of such a

study, and is proposed as one of the items for future work.
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1.4 Thesis Organization

The unified synthesis of three-link mechanisms is presented in Chapter 2, where the

geomctry of contact surfaces and the pressure angle are discussed. Four types of three­

link cam mechanisms are described, which are classified according to their kinematic

pairs, namely, RHR, PHR, RHP and PPP. The first and last letters stand for the type

of pair of the input and output axes, respectively, while the middle letter, for the cam­

follower pair. Moreover, R, P and H represent respectively, revolute, prismatic and

higher pairs. The sliding velocity along the higher pair is minimized, and the con­

tacting surfaces are obtained from this condition. In Chapter 3, the same philosophy

as for Chapter 2 is applied for the unified synthesis of four-link cam mechanisms.

Now, the four types are defined as RHCR, RHCP, PHCR and PHCP. Similarly, the

first and last letters refer respectively, to the kinematic pair of the input and output

axes. The second letter refers to the cam-roller coupling, while the third letter, to

the roller-follower pair, where C stands for cylindric. A unified formulation for the

pressure angle is introduced here. The concept of cam mechanisms with constant

pressure angle and an auxiliary roller is applied to the synthesis of cam mechanisms

with flat-face followers. Here, four types are discussed namely, RHHR, RHHP, PHHR

and PHHP, where the symbol HH is explained in Section 3.4. In Chapter 4, the theory
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presented in Chapters :2 and 3 is applied specilically ta tlll' sYllth,'sis of illd,'xill)!; call\

mechanisms. The design of illdexing cam mechallisms with l'url' rollill)!; alld positive

motion is presented in Chapter 5. Chapter 6 concludcs with a !\"II"ral disclI"ioll 011

the achievements in this thesis and suggestion for further research \\"ork.

Five appendices are included for completeness: A general revie\\" of dllal IIl1l1\h"rs

and a theorem which is considered a contribution to the theory of dnal nllll\hers

are presented in Appendix A. In Appendix B, the Aronhold-I\ennedy 'l'hcol'em in

dual-number notation is recal1ed. A general description of ruled-sUl'face theory is

presented in Appendix C. A few displacement functions applied for t.he synthesis

of cam mechanisms are included in Appendix D. Final1y, graphical lI\ethods, Imsed

on the theory presented in Chapters 2 and 3, are discllsscd in Appendix E, where

the profile of the cam is obtained directly l'rom the contact points betwccn cam and

fol1ower
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Chapter 2

Kinematics of Three-Link

Mechanisms

• 2.1 Introduction

•

This chapter is confined to the study of cam mechanisms composed of three rigid

links, namely, the fixed frame, the driving element or cam and the driven element or

the follower. While the study is general, special attention is given to indexing cam

mechanisms (leM).

The synthesis of the profiles of both cam and follower as weil as the quality of the

transmission, quantified via pressure angle, are discussed in this chapter in a unified

fashion. The profiles are designed as ruled surfaces, and motion is transmitted along

a cornmon line, which gives rise to a higher kinematic pair. Two more kinematic pairs

arise, namely, the cam-frame and the follower-frame pairs, which belong to the class

of lower kinematic pairs, and can be of any of three types, namely, revolute, prismatic

or screw (Angeles, 1982). This generalization allows the analysis of those mechanisms

not only with rotating but also with translating followers, i.e., if the output motion

is attained via a prismatic pair.
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Recalling the thcorcm on thc existence of an instant scre\\' axis ([ S:\) p,·rt.ainin!\

to the relative motion of t\\'o rigid bodics (Angeles. 1982). t.hn'e [S:\s aris!' within

the kind of mechanisms undcr study. Morcover, the inpnt and ont.put. pail's arc

represented by thcir instant scrc\\' axcs 121 and 1:11 , \\'herc l, 2 and :1 stand flll' fmme,

cam and fol\ower, rcspedively. For a givcn input-output motion thcre is a unique pair

of cam and fol\ower surfaccs that producc thc givcn motion with a minimum sliding

on the higher pair. This solution is achievcd whcn thc contact lillc roincic1,'s \\'ith the

instant screw axis 13~' In sorne degeneratc cases the sUl'faces may collapsc into a line.

Other solutions can be obtaincd if the contact lillc and 132 arc Ilot coincident, but

parallel, e.g., in cam mechallisms with flat-face followcrs .

•
, ......

v;;8 132

""32 e2 ..................
.'

""2 y

•

Figure 2.1 Mapping from Euclideall to dual spacc.

In this thesis, planar, spherical and spatial cam mechanisms arc c1assificd accord­

il1g to the relative location of their 1SAs. Thus, the mechanism is planaI' if evcry / S A

is either parallel to one direction or perpendicular to il; the mechanism is sphcrical



if ail ISAs are concurrent; spatial. if none of the two foregoing conditions is met.

The contact line of the higher pair is an element of bath surfaces, and is derived

by application of the Aronhold-Kennedy Theorem, first proposed by Aronhold (1872)

and Kennedy (1886) independently for planar motion and later extended to the three

dimensional case by I3eggs (1959) and Phillips and IIunt (1964). The formulation is

based on a mapping of the motion onto the dual space, where the three bodies are

considered as dual unit spheres SI> S2 and S3 in relative motion, and the poles Pi; are

the images of the axes li; under the aforementioned mapping. Appendix B includes

an accollnt of dual-number algebra for completeness, as the said mapping is based on

this algebra.
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2.2 Surface Geometry

As mentioned in Section 2.1, the surfaces of the cam and the follower are generated by

the sweeping action of [32 onto each of the two bodies. The first part of this section is

devoted to the derivation of the parameters defining [32, the second to the definition

of the surfaces.

Let SI> S2 and S3 be the dual unit spheres representing, in the dual space, the

frame, cam and follower, respectively. We recall briefly here that dual quantities are

denoted \\Ti th a hat Cl and are composed of a primai part, usually a real scalar, vector

or tensor, and a dual part, correspondingly a real scalar, vector or tensor, preceded

by the dual unity f with the property f2 == O. The relative dual angular velocities of

the foregoing dual spheres are related as in eq.(B.5), i.e.,

In the above equation, the subscripts (ij) denote the dual angular velocity of the ith

dual sphere with respect to jth sphere, but, in order to simplify the nomenclature, ail

dual angular velocities with respect to l, i.e., the frame, will be indicated only with
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the label of the other sphere, eq.(B.5) thus taking on the fon1l

(2.1 )

Now, three coordinate frames are defined so that their .Y-axes are collinear amI

each of the Z-axes is oriented towards one of the poles. Thus, the poles arc lomlly

represented by the dual unit veclor

k = [0, D,If (2.2)

with zero dual part.

Furthermore, &1 is the dual angle from ê2 to êa, whereas Ô2 is the dual angle fl'Olll

ê2 to ê32 , both of which are defined as

The geometric representation of the foregoing mapping is shown in Fig. 2.1, where

Vii = viieij, while Vii and Wii are the components of wii,as dcfined in cq.(1l.6). 'L'lllls,

the unit dual vectors of the poles are given as

•

•

ê3 = Q(&t}k

ê32 = Q(Ô2 )k

ê2 = k

where Q is defined in eq.(A.lla).

Next, substituting the values of eqs.(2.4) into eq.(2.1), one obtains

W3 [-S:.&I] =W32 [-s~n.Ô2] +W2 [~]
cos al cos O2 1

Two dual equations are obtained from eq.(2.5), namely,

W32 sin Ô2= W3 sin &1

W32 cos Ô2=W3 cos &1 - W2

(2.:la)

(2.:Ib)

(2Aa)

(2Ah)

(2Ac)

(2..5)

(2'(ia)

(2.6b)



Thus, lhe pararnelers of the pole P.12 can be written iu terms of those of the l'oies

1\ and i~l' Consequently, W32 is obtained by the addition of the squared terms of

"'15.(2.6), while Ô2 is obtained upon di viding eq.(2.6a) hy eq.(2.6b), namcly,
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(2.7)

(2.8)

•

The discussion, as weil as other operations with dual numbers, is outlined ln

Appendix A.

Moreover, we are interested in calculating the numerical values of the real angular

vclocity and the real sliding velocity of the follower with respect to the cam, W32 and

V32, respectivcly. The former is the signed magnitude of the difference W3 - W2 while

lhe latter is the minimum magnitude of the diff'lrence VP3 - VP2, where VP3 is the

vclocity of a point of the follower and VP2 is the velocity of the same point of the

cam. Now, in order to obtain the real angular velocity W32 and the real sliding velocity

V32, one can expand eq.(2.7) considering eqs.(8.6 & 2.3) and the definitions given in

eqs.(A.l & A.I0), which readily lead to

•

W3V3 +W3w2al sin al - (W3V2 +W2V3) cos al +W2V2
V32 =

W32

A similar procedure is followed to obtain O2 and b2 from eq.(2.8), namely,

(2.9a)

(2.9b)

(2.10a)

(2.10b)



In general, eqs.(2.9 & 2.10) l'l'ovide all the necessary informal.illll III d"'ine 1""
illoreover, we daim that these are the general equations l'mal which lll\\' l'an d,'ri,'"

any type of the known cam mechanisms satisfying the condition of minimnm sliding

velocity at the contact line and new types depending of the combination used on

the input and output screw parameters, namely, w" v" W'h V", 01 and "1. lIowc\'t'r,

• Chapter 2. Kincmatics or Thrct.'-Link ~Icchanisms IIi

special treatment may be needed if both the input- and output-pairs are prismatic,

as diseussed in Subsection 2.2.4.

Now, if S2 rotates with respect to SI through the dual angle .J. = 4' + IZ'Io whm'e

bath 'I/J and Z2 are funetions of time, P32 will trace a curve on S, called the fla/ode,

whieh is given by the dual unit veetor S2(~) defined below:

(2.1 la)

•
where the dual rotation 5 is defined in eq.(A.l1c).

SimHarly, if S3 rotates with respect ta SI through the dual angle I.~ = ,p + tZ",

where bath </J and Z3 are functions of time !, P32 will trace another polode on Sa,

which is given by the dual unit vector S3(~), defined as

(2.11b)

Furthermore, the polodes defined by the dual unit vectors S2 and Sa arc the images

of the ruled surfaces 'R2 and 'R3 , the contact surfaces of cam and follower, respectively.

Now, upon expansion, eqs.(2.1I) take on the form

•

[

-S'I/J(!)S02] [b2S'I/J(!)C02 +Z2(!)C1P(t)S02]

S2(!) = -c'I/J(!)S02 - f b2c'I/J(!)C02 - Z2(!)SI{J(t)S02

C02 b2sOl

[

":'S</J(!)S{3] [dS</J(!)C{3 +Z3(!)C</J(!)S(i]

S3(!) = -c</J(!)s{3 - f dc</J(!)c{3 - Z3(!)S</J(!)s(i

c{3 ds{3

(2.) 2a)

(2.12b)



where d == b2 - al and (3 == O2 - al. Furthermore, s +- sin and c +- cos.

By means of eq.(A.8), the point coordinates of 'R2 and 'R3 can be rcadily obtained

from eqs.(2.12), namely,

• Chapll~r 2. Kinernatic5 of Threc-Link Mechanisms

[

b2C,p(t) - zAt)s,p(t)S02C02 ] [-51/;(t)S02]

r2(t,..\) = -b2s1/;(t) - Z2(t)C1/;(t)S02C02 +..\ -c,p(t)S02

-Z2(t)S202 C02

and

[

dcr/J(t) - Z3(t)Sq,(t)sf3cf3 ] [-Sr/J(t)Sf3]

r3(t,..\) = -dsr/J(t) - Z3(t)Cq,(t)sf3cf3 +..\ -cq,(t)sf3

-Z3(t)s2f3 cf3

li

(2.13a)

(2.13b)

•
2.2.1 Revolute-Higher-Revolute (RHR) Mechanisms

A cam mechanism with both input and output revolute pairs and with the contact

linc coinciding with 132, is called a revolute-higher-revolute (RHR) mechanism. !ts

input-output function can he expressed as

q, = r/J( t/J)

and, from the type of input and output pairs,

Next, from eq.(2.14), ~ can he expressed as

(2.14)

(2.15a)

(2.15h)

(2.15c)

•
Now, suhstituting the values of eqs.(2.15) into eqs.(2.9 & 2.10), the screw parameters

of 132 are readily derived, namely,

(2.16a)
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,p' sin al
!'3~ = ± (ltl.4.''!

C

. e/>/sinal
tan '. = ..,..,-'----=--.,.• ,p' cos al - 1

etP - ,p' cos ni
b2 = ., "1

C·

(:!.1tih)

(:!.llk)

(:!.IGd)

where

c = Je/>,2 - 2e/>' cos al + 1 CUi)

Furthermore, combining eqs.(2.16) with eqs.(2.13), the calll and fol1ower surfaces are

derived from

[

COS t/J ] [- sin t/J sin O2
]

r2(t/J,'\) = b2 -sint/J +,\ -cos,psin02

o cos O2

(2.18a)

(2.18h)
[

COS e/> ] [- sin e/>sin(02 - ad]
r3(e/>,'\)=(b2 -ad -sine/> +,\ -cos4Jsin(02-aiJ

o COS(02 - ad
in agreement with the results presented in (Gonzalcz·Palacios and Angeles, [!)90),

and

•
using a more specific approach.

Now we can draw the conclusions below:

i) The surfaces generated by ri correspond to any of the three classes of cam

mechanisms. Thus, the classification below is given in terms of the values of al

and Ctl:

- Planar: al :f 0, Ctl = O.

- Spherical: al = 0, Ctl :f O.

- Spatial: al :f 0, Ctl :f O.

•
ii) As expected, pure rol1ing is achieved in the first two ca.~es mentioned above,

which is apparent from eq.(2.16b), since V32 vanishes with the corresponding

values of al and Ctl'
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2.2.2 Revolute-Higher-Prismatic (RHP) Mechanisms

19

A calll lIlechanism wlth a revolute pair as input and a prismatic pair as output, with

line of contact /32, is called a revolute-bigber-prismatic (RHP) mechanism. i\loreover.

the outpnt motion can he expressed as a function of the input motion, namcly,

(2.19)

From the types of input and output pairs, one concludes that

•
Now, cOllsidering e'l.(2.19), V3 can be expressed as

dZ3 dZ3 dt/; 1

V3 == dt = dt/; dt = z3w2

Recalling eqs.(2.20), eqs.(2.9 & 2.10) take the form

tan O2 = 0

b ' •2 = -ZaSlnal

(2.20a)

(2.20b)

(2.20c)

(2.21a)

(2.21b)

(2.21c)

(2.21d)

Furthermore, substituting eqs.(2.21) into eqs.(2.13), the cam and follower surfaces

are readily derived in terms of the position vectors r2( t/;, À) and r3(z3, À), namely,

•
and

(2.22a)

(2.22b)
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Equations (2.22) rl'present a family of cam ml'ehanisnls. rharart,'rized hy sp,'dlil'

values of Q\. Decause the output is a prismatic pair, "1 ran he arbitrarily ddilu·,1

without changing the geometry of the follower surface. ln other wonls, "1 only ~i\'l'S

the position of the follower frame. Now, by looking at e'l.(2.21b), l'"" \',Ulishl's il'

Q\ = rr /2 or 3rr /2. Indeed, substitution of these values into e'ls.(2.22), kads to the

surfaces given below:

•

and

~('" '1 ~ ~ r~:'>i] LIm
the uppei7 sign t,aki~ ~ place when QI = rr /2 .

From these results wc can draw a few conclusions, namely,

i) The surfaces are cylindrical.

ii) The cam mechanism has a translating follower.

(2.2:1b)

•

iii) Secause QI # 0 and b2 # 0, the 1SAs are nop·parallel and non-int,ersecling.

Therefore, according to the given definition, these two mechanisms al'<' spatial

cams.

On the other hand, t'J~ of eq.(2.21b) is a maximum if QI = 0 or rr, the contacling

surfaces being obtained by substituting either of the two values of QI into cqs.(2.2~),

namely,

(2.24a)

:.>
,~_.- :



• (;hapLcr 2. Kincmalics of Thrcc-Link Mcchanisms 21

and

(2.24b)

•

rrom which wc can draw a rew additional conclusions, namely,

i) The surfaces dcgcnerate into a common line, which is coincident with 132 •

ii) The solution is ideally a cylindrical cam mechanism. In order to have a feasible

mechanism, either the locus of the higher pair should be different from the locus

of 132 or an intermediate rigid body should be included, e.g., a roller.

iii) 132 is parallel to 12 and 13 , yielding a planar mechanism.

2.2.3 Prismatic-Higher-Revolute (PHR) Mechanisms

A prismatic-higher-revolute (PHR) mechanism is similar to an RHP mechanism, the

only difference being that now the input has a prismatic pair and the output a revolute

pair. The output motion is expressed as

•

Now, considering the input and output pairs, one obtains

Z3=V3=O

Furthermore, W3 is expressed as

dt/> dt/> dZ2 "
W3 == - = -- = 1/' V2dt dZ2 dt

(2.25)

(2.26a)

(2.26b)

(2.27)
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Substitution of cqs.(2.26) into cqs.(2.9 .1.: 2.\0). vil" ('ail relldily ,,"taill

tan O2 = tan 01

-'.1 •b _ '1' al + sm 01

2 - cP'

(2.28h)

(2.28c)

(2.28d)

Thus, the general surfaces for a PHR mechallism arc ohtaincd by subst.itntion of

eqs.(2.28) into eqs.(2.13), namc1y,

•
[

al +SinOt!cP']
r2(z2,..\) = -Z2sal cos 01

• 2
-Z2 sin QI

(2.2911)

(2.2!Jh)

•

Now, in order to have pure rolling, i.e., V32 = 0, QI must he tr/2 or 'Jtr/2. Sincc the

results are analogous to those of section 2.2.2, one obtains the same conclnsions given

there. According to the results presented in Sections 2.2.2 and 2.2.:1, t.he theorems

below are readily formulated:

Theorem 2.1: For RHP or PHR mechanisms, the contact /ine of minimum sliding

velocity is parallel ta the axis of the revolute pair.

Theorem 2.2: Pure rolling of RHP or PHR mechanisms is achieved if the axis of the

prismatic pair is perpendicular ta bath the contact /ine and the,2xis of the revalu te

pair.

2.2.4Prismatic-Prismatic-Prismatic (PPP) Mechanisms

Ir both the input and output pairs are prismatic in a cam mechallism, the third pair is

also prismatic and sa, the mechanism is termed prismatic·prismatic.prismatic (PPP).
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The input-output [unction can he expressed as

23

(2.30)

This type of mechanism is the exception to the general formulation given in

eqs.(2.!J & 2.10), where the screw parameters, except for W32, are lIndefined. Conse­

qllently, a particular derivation should be considered, i.e., instead of relative angular

velocities, relative translational velocities of the contact point will be analyzed. These

are related as

(BA)

which cali be rewritten as

(2.31 )

•
Comparing eq.(2.31) with eq.(2.1), one can apply a procedure similar ta the one

used ta derive eqs.(2.7 & 2.8) ta obtain

(2.32a)

and
• V3 sin â ltan O2 = _

V3COS al - V2

Separating eqs.(2.32) into primai and dual parts, one can readily obtain

and

O b (1 20 ) Va sin al [V5 - VaV2 cos al ]tan 2 + f 2 + tan 2 = + f al
Va cos al - V2 (Va cos al - V2)2

The dual part of the left-hand side of eq.(2.33a) is zero, and hence,

(2.32b)

(2.33a)

(2.33b)

•
ln general, Vi # 0, for i = 2, 3, and sin al # O. Thus, for the above equatioll ta hold,

al must vanish. Consequently, from the dual part of eq.(2.33b), b2 = O.



In sorne cam mechanisms, as we will see in Chapter 5, the cam may play tcrnporarily

the raie of the driven element; correspondingly, the follower may play temporarily thc

role of the driving clement. For this reason, we distinguish here hctwecn direct and

inverse operation of the mechanism. The direct operation is defined as that in which

the cam is the driving element, the inverse operation being that in which the Calll is

the driven element.

Henceforth we assume that the cam and follower are bounded by the ruletl surfaces

n2 and n3 , respectively. The pressure angle poô is then defined as that sllhtended

between the direction of the unit normal to nô and the direction of the vc10city of

the contact point as pertaining to the driven element, which is bOllnded by ni, for

i =2, 3. Since contact takes place along a line, poi is derived as a fllnction of À, which

is a parameter defined along that line.

Let rô(t/J, A) be the position vector of a point of the mled surface nô, dcfined as

•

•

•
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Moreover, from eq.(2.30), one can define the relationship

d::3 cl::3 d::2 1

1'3 == dt = d::
2
& = :::< 1'2

Thus, with the aid of eq.(2.3·1), 1'32 and O2 can be writt"n as

from which we can draw the conclusions below:

i) The coupling between cam and follower is a prislllatic pair.

ii) Since al = b2 = 0, the three [SAs are concurrent.

2.3 Pressure Angle

rô(t/J, A) = Pô(t/J) +Aeô(t/J)

'2·1

(:!.:I·I)

(') '1"' )_.\ lhl

(2.:15b)

(2.36)
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The normal v"ctor IIi of ni is determined as in eq.(C.3), namely,

25

Ui
lli(1/>, ,\) = W;

ln terms of eq. (2.36), ni(1/>, ,\) becomes

iJri iJri
Ui = iJ1/> x iJ>'

mi = (p: +>'ei) x ei
mi

IIi = Il mi IIi
the prime denoting differentiation with respect to 1/>.

(2.37)

Moreover, the unit vector Wi, paral1el to the fol1ower velocity at the contact point,

is obtained as
Çi

Wi=m; Çi = Wi x ri (2.38)

•
Once IIi and Wi are known, the pressure angle is derived from the relation

(2.39)

The value of P.i for the spatial mechanism changes at every point of the contact

line. ln order to derive a significant value of P.i for this case, we define it along the

striction curve (DoCarmo 1976), which is the curve of the central points of ni, at

which >. attains the value >'s given below:

and hence, IIi is defined as

1 1\ Pi . ei
"s = ---1 1ei . ei

(2.40)

(2.41)

•

The striction curve can be interpreted as fol1ows: Given a ruled surface n, con­

sider two infinitesimal1y separated generators e and e' = e + de and their common

perpendicular Ppl, as shown in Fig. 2.2. Then, point P is the central point of the

generator e and the locus of the central points define the striction curve.

Thus, the central circle of an axially-symmetric hyperboloid 1t is the striction

curve of 1t, whereas the striction curve is undetermined in cylindrical surfaces and

reduces to a point in conical surfaces.



•

•

Chaptcr 2. Kincmatics of Thrcc-Link Mcchanisms

Figure 2.2 Graphical interpretation of the st.riction curve

2.3.1 Pressure Angle of RHR Mechanisms

General expressions of the pressure angle for both direct and inverse operations are

derived using RHR cam mechanisms. The pressure angle for otller t.ypes can be

obtained following the same procedure presented here.

Direct Operation

The pressure angle is obtained in this case for i = 3. Following t.he procedure men­

tioned above, the unit normal is written as

•

where the prime denotes diiferentiation with respect to .,p.

From eq. (2.18b), we obtain

[

-drjJ' sin rjJ +b; cos rjJ]

p; = -drjJ' cos: - b; sin rjJ

(2,42)

(2,43)
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[

-1'/ cos qJsin P- O~ sin <pcos 13]
e; = 1>' sin ,p sin t3 - 0; cos ,p cos {j

-0; sin 13

0; and b; being derived from eqs.(2.16c & 2.16d), namely,

and

b
' _ 2,p' - (,p,2 + 1) cos al -1./1
2- 2 'l'al

c

27

(2.44)

(2.45a)

(2.45b)

where c is defined as in eq. (2.17). Combining eqs. (2.42-2.44), we obtain the desired

expression for n3, i.e.,

•

•

[

-(d,p' c,p + b;s,p )c{3 +)..( tjJ'stjJs{3 c{3 - 0; ctjJ)]

n3 = (dt/J's,p - b;ct/J)c{3 + )..(tjJ'ctjJs{3c{3 +O;stjJ) \1 ~3\1
-b;s{3 +M/s2{3

Now, W3 can be written as

[

dSin t/J +).. cos tjJsin {3]

W3 = dcos tjJ - ~sin ,p sin (3 \1 L\1

the cross product of the right-hand side of eq. (2.39) being computed as

[

db;ct/Js{3 + )..s2{3(b;stjJ + tjJ'dctjJ) - )..2tjJ'StjJS3{3 ]

n3 x W3 = -db2stjJs{3 - )..s2f3(b2ctjJ - tjJ'dstjJ) + )..2t/J'ctjJs3f3 \1 e3\1 ~I m311

-tf2tjJ'cf3 - )"(dO; - b;sf3c(3) - )..2tjJ's2{3cf3 .

whose magnitude is given by

with the definitions shawn below:

(2.46)

(2.47)

(2.48)

(2.49)

(2.50a)
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C (1 '" 'l'ld'') "a (0'" .1., ... "û '1.J) l" ) II')' > >= '2" + $" " 5", + 2" + '1' ·s·!JC·,b ," -:., '2(2 s,'''',I'

D = FtP

E = d2(b;2 5 2B +d2eP'2c2j3)

F = 2eP'(dO;cj3 - b;s(3)

(2.[,Uh)

(2.5lk)

(2.50(1)

(2.5lk)

(2.5Of)

Furthermore, the dot product of the right-hand side of cq. (2.:H)) is l'cadily ob­

tained as

(2.51)

•
Finally, combining eqs. (2.39, 2AS & 2.51), the tangent of thc prcssmc anglc lakcs

on the form

(2.52)

For the planar case, al = 0, and hence, O2 = (3 = 0; = 0, il = IJ = C =

D = 0, and E = d4q/2. Substitut;ng ail these values into eq. (2.52), tnnlta rcduces

to

For the spherical case, the pressure angle is obtained by taking the limit of tanlLa

as À tends to infinity (DoCarmo, 1976) in eq. (2..52), narnely,

tan 113 = Hm
~-oo

<//sin fi
0; (2.51)

Manipulating the expression for sin (3, eq. (2.54) can be readily rewriLtcll as

q/
tan 113 = ,pliVé (2..'i.5 )

•
with c defined as in eq. (2.17).

If c is evaluated for al = 0, ,fi = ,p' - 1. Therefore, eq. (2..53) is a particular case

of eq. (2.55).
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(2.56)

For the spatial case, eq. (2.52) is evaluated at the striction point, i.e.. at '\5 as

givell hy eq. (2AO), which, in terms of eqs. (2A3 & 2A4), becomcs

\ __ .,O;dcos {3 - b; sin (3
• 5 - <P 0;2 + </.>'2 sin2 j3

But,

.. sin 0,)

SIll (3 == Slll(O2 - Qd = .jë

,p' - cos 0,)

cos{3 == COS(02 - Qd = .jë

,p' cos QI - 1
d == b2 - a) = al

c

(2.5ïa)

(2.5ïb)

(2.5ïc)

(2.58)

•

and now, substituting eqs.(2A5 and 2.5ï) into eq.(2.56), one obtains,

,p,2,p" sin QI.jë
>'5 - al- (,p'2e+ ,p"2)e

which is the expression determining the point at which the pressure angle is evaluated.

Inverse operation

(2.59)tan /l2 =

Here, the cam is eonsidered as the driven element; therefore, we derive the expression

for the pressure angle using i = 2. Following the same steps as those for the direct

operation, one can readily obtain the expression for the pressure angle as

JÀ>.4 + ÈJ>.3 +ë>'2 +b>. +Ë
b2b2cos 0 +>,2(12 sin 0

where

•

À = S·02

ÈJ =FS202

ë = (b;2 + b~)S202 + (0;2 + S202C202)b~ - 2b2b;0;802e02

b = Fb~

Ë = b~(b;28202+ b~ cos2 O2)

F= 2(b20; cos O2 - b; sin (12)

(2.60a)

(2.60b)

(2.60c)

(2.60d)

(2.60e)

(2.60f)



For the planar case, QI = 0, and hence, 02 = ()~ = o...i = il = (' = i) = Il

and È = b~.

Substituting a11 these values into eq. (2.59), tanlt2 rl'duces to

For the spherical case, the pressure angle is obtained hy t"king the lilllit of tan 1'2

as >. tends to infinity in eq. (2.59), namely,

1
. /À>.4 +8>,3 +è,\2 + b>. + È sinO <p' r.

tanp.2= lm- V =---=-vc (2.62)
.\-00 b2b~ cos 0 + >,20~ sin 0 0; - 1>"

where c is defined as in eq.(2.1 i)

For the spatial case, eq. (2.52) is evaluated at the ·;,tlue of ,\ given hy eq. (2.'10),

namely, at

•

•
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b2 q/(q\' - 1)
tan 1'2 = - -b' =., <p"

>'5 = _ b20~ cos O2 - b~ sin O2
0~2 +sin2O2

But

.1.' •. 0 '1' Slll Ctl
Slll 2 = -lé

O
,p' cos Ctl - 1

cos 2 = Jë

Now, substituting eqs.(2.16d, 2,45 and 2.64) into eq.(2.63), one obtains,

. ,p'2,p" sin Ct-lé
>'5 = (,p'2c + ,p"2)c al

:;0

(2.61)

(2.(i:l)

(2.64a)

(2.6'lb)

(2.65)

Note that the results outlined above are apparent for spur, bevel and hypoid

gears as weil, in which the pressure angle on the pitch surfaces is 90·, and hence, no

motion transmission is possible with the pitch surfaces. The tooth geometry makes

this transmission possible at a constant pressure angle (Dudley, 1962). This result is

easily obtained from either eq. (2.52) or eq. (2.59). In fact, for a11 these cases, eq. (2.14)

takes on the form

• ,p = k.,p, k = constant (2.66)



where k is the tmllsmission ratio. From eq. (2.66), <p' = k and ri," = O. Substitution of

these two values into eqs. (2.45a & 2.45b) leads to b; = a and 0; = O. Consequently,

the denorninator of the right-hand side of either eq. (2.52) or eq. (2.5!J) vanishes, as

cxpected.
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(2.67a)

2.3.2 Pressure Angle of RHP Mechanisms

The pressure angle of RHP mechanisms is also derived with the procedure presented

in Section 2.3.1. Thus, frorn eqs.(2.22), the pressure angle for both direct and inverse

operations can be readily obtained as,

J(,,~solcod2 + "a2s201(c201 +sod2

tan 1'-3 = Il
-"3 S01

•
J(,,~solco.d2 + "a2s201(c20t + 1)

tan /12 = Il
-Z3 SQl

Notice that, for 01 = ±'Ir/2,

,,'tan 1'-3 = tan 1'-2 = _3_
-z~

2.3.3 Pressure Angle of PHR Mechanisms

(2.6ib)

(2.68)

The pressure angle for PHR mechanisms for direct and inverse operations is obtained

frorn eqs.(2.29), namely,

(2.69)

•

2.3.4 Pressure Angle of PPP Mechanisms

From the results presented in Section 2.2.4, one can obtain the expressions for the

contact surfaces of ppp mer.hanisms, and then, the pressure angle can be computed.

Following this procedure, the pressure angle is found to be 'Ir/2 and no transmission

is possible with this type of mechanisms. Nevertheless, with the introduction of a

fourth body, i.e., a roller, a feasible mechanism is possible, as discussed in Chapter 3.
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Chapter 3

Kinematics of Four-Link

Mechanisms

• 3.1 Introduction

•

This chapter is devoted to the study of cam mechanisms \Vith four links. This stuoy

includes three-link mechanisms \Vith a liat-face follower because these are synthesizeo

with the ai:! of an auxiliary roller.

One fourth dual sphere 54, which represents the roller, is added 1.0 the three

already considered in Chapter 2. Thus, a total of six 1S As arise uow a/lo, accord­

ing to the Aronhold-Kennedy Theorem, there arc four great circles havi/lg three

poles each, namely, Cm: {l"2b P32' Pad, C234 :{Î'a2' P42 , P'13}, C341 : {I\", Î~II' Î'4d

and C412:{P4b Ê'42' Ê'2d. The polodes generated by Ê'43 and P.12 over 52 arc the

dual curves of the pitch and contact surfaces of the cam. The former is applieo 1.0

derive the pressure angle.

Now, a great circle on a unit dual sphere can be defined with at IClL,t I.wo points.

Thus, C123 and C34b shown in Fig. 3.1a, are defined by the given poles Î'21, i~1I and 1'4:1.

Moreover, Pa2 is computed according to the results obtained in Chapter 2. Oneu



Figure 3.1 l\Iapping of the geometry of four-link cam mechanisms,
onto the dual sphere.

•

•
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y
(a)

y
(b)

•

?12 is obtained, both ?13 and P32 define C234 , as shown in Fig. 3.1h. Finally, P 42 is

located by the given dual radius of the roller, represented by Q4. The given parameters

as weil as the unknown variables for the synthesis of four-link cam mechanisms are

shown in Table 3.1.

The components of the unit dual vector ê in the frame Fi are represented by [ê li.
In order to simplify notation, the symbol [ ·Ii will be omitted for those vectors given

in the frame fixed to S2.

3.2 Roller-Followers

It was mentioned above that the dual curve generated by the motion of P43 on S2

represents the pitch surface of the cam, which is given by

(3.1)
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Table 3.1 Notation used for the synthesis of four-lillk l'am 1Ill'l'hallisms

Gi'lcn paramctcrs:
QI = 01 + fal ! Dual angle betwccn input and ontput aXes
Q3 = 03 + fa3 Dual angle bctweell output and roller axes
Q4 = 04 + fa'l Dual angle of the roller

,p = 1/.>+ fZ1 Dual angle of rotation of the cam

~ = lb + fZ3 Dual angle of rotation of the follower
Unknown variables:

01 =01 + fb1 Dual arc P1 P31
Ô3 =03+ fb3 Dual arc P31 P43

6= 0 + fZ31 Dual angle between arc 1\1/\ and arc I\J\.
ÎI = . T €':.13 Dual angle between arc Î'aÎ':I.\ and arc I\~1\1

:\.\

•
where Q, Sand k are defined, respectively, in eqs.(A.lla, A.llc .'::. 2.2).

From eq. (A.8), the point coordinates of the pitch mled surface 'R,. ;l1'C delined as

(:1.2)

where P43 = e43 x fi43.

Thus, e43, fi43 and P43 can be readily computed as

•

[

-kISl/Jt:.1 - h3a3 '- h1z1 + k.SS03Z3 ]

fi43 = -k1c,pal- h4a3 + h 1z1 - k6SCt3Z3

-k3al - k4a3 + k7za

(:I.:la)

(a.:!b)
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(h 2k] +krctjI)al + (h 2k" + h.1kda]

-k1h l z2 +(klkaso3 - k7 h2 )z]

:15

P'I] =
-(h,k3+krstjI)al - (htk' l + h]kda3

-k,h2 z2 + (klksso] + k7 hdz3
(3.3c)

(hlctjI - h2stjI)klal + (hlh" - h2h3)a3

-(hi + h~)Z2 + (h2ks + h l kG)S03Z3

where

k, = COI C03 - SOI S03Crj> (3.4a)

k2 = cal co]cq, - SOI sa] (3.4b)

k] = SOI CO] + COI sa] cq, (3.4c)

• k" = sa]cal + CO]SOI cq, (3.4d)

ks = ctjlcq, + StjlSq,COI (3.4e)

kG = stjlcq, - CtjlSq,COI (3.4f)

k7 = SOI so]sq, (3.4g)

hl = k]stjI - so]sq,ctjI (3.4h)

h2 = k]cl/J + so]sq,sl/J (3.4i)

h] =k2sl/J - co]sq,cl/J (3.4j)

h" = k2cl/J + co]sq,sl/J (3.4k)

Now, the dual curve representing the surface of the cam is defined by the trajectory

that Î'.12 traces on 52, namely,

•
(3.5)

Furthermore, in order to completely define 50, Ô2 i5 computed from eqs. (2.10) .

The derivation to obtain the dual angles ~ and 62 is presented below. The former is
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defined as

(:\.G)

êq representing the dual radius of the l'olier.

Morcover, Ô3 is obtained from the relation

(:1. ï)

where the vectors appearing in the right-hand side can be expresscd in any l'rallie, as

long as all are in the same frame, for the cross and dot products are frallle invariant.

If thesc vectors arc exprcssed in frame FI> fixcd to SI> then,

•
[ê32h = Q(Ô2)k

[êdl = Q(âdS(~)Q«(b)k

and [ê234h is defincd as

[" 1 - [ê32h X [êdl
e234 1 - Il [ê32h x [ê43h Il

On the other hand, the dual angle 8, shown in Figure 3.1, is obtaincd as

where

" T[e123h = [1, 0, 01

(:l.81L)

(:I.Sb)

(:Ul)

(3.10)

(:l.ll)

From eqs. (A.8 & 3.5), the point coordinates of thc ruled surfacc of t.he cam arc

given as

re(t, >') = pdt) + >.edt) (3.12)

•
wherc P42(t) = e42 x m42.

The transformation dual matriccs in cq.(3.5) are thc same a.~ thosc in cq.(3.\),

but with diffcrent arguments; thcrefore, thc rcsults givcn for e'12, m42 and P42 are
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illlalol;olls to thosc of c'ls.(:J.:J), narncly,

[

-kIS,pb2 - iI3(b:J - (14) - il2Z2+ kSST/Z32]

m.,~ = -kt c,pb2•- h4(~3 - (14) + illZ~ - k6s7/Z32

-k3b2 - k4(b3 - a4) + k7Z3~

(il~k3 +k;ct/J)b2+ (h~k4 + il.,ktl(b3 - a4)

-klillZ~ +(k, k6sT/ - k7il~)Z3~

:li

(3.l3a)

(3.l3b)

•
whcrc

P·I~ =
-(it ,k3+k;st/J)b2- (il 1k4+ il3ktl(b3 - a·1l

-k,h~z~ + (k1kssT/ + k7iltlZ3~

(ÏIIC,p - h~st/J)k,b~ + (h1h4 - il~i(3)(b3 - a.,)

-(h~ + h~)z~ + (h2ks + il,k6)sT/z3~

(3.l3c)

kt = cO~cT/ - s(}~sT/c5 (3.l4a)

k~ = c()~ CT/ c5 - s(}~ST/ (3.l4b)

k3 = s(}~CT/ + c(}~sT/c5 (3.14c)

k4= sl/c(}~ + cT/s(}~c5 (3.14d)

ks = ct/Jc5 + st/Js5c(}~ (3.14c)

k6 = st/Jc5 - ct/Js5 c(}~ (3.l4f)

k7 = s(}~sT/s5 (3.14g)

il l = k3st/J - sT/s5ct/J (3.14h)

k~ = k3ct/J + sT/s5st/J (3.14i)., k3 = k2st/J - CT/soct/J (3.l4j)
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Figure 3.2 [SAs of an RHCR cam mechanism

(3.I~k)

In order to avoid undercutting, the dual angle &., must he constrained hy

(:3.15)

where Pmin is the minimum value of the dual radius of curvature of the dual pitch

curve of the cam, and is evaluated according to eq.(C.l5).

Now, the dual angle ii = 11 + fZ43 can be computed as

(3.16)

where

(3.11)

•
The axial motion of the roller with respect to the follower is dcfincd hy Zola. ln

general, Z43 = Z43(t), the roller-follower pair being cylindricalj howevcr, a rcvolutc

pair is present when Z43 is constant.



Now, in arder ta derive the expressions for W.,2 and W"3' the Aronhold-Kennedy

Theorem, as defined in eq.(13.5), is applied ta the pales of the great circ1eCn ." namely,

• ChapLcr :J. Kincrnalics 'If Four·Link Mcchanisms

with

[ê32h = Q(Ô2)k

[ê42h = Q(ôdS(~)Q(êb)S(ii)Q(ô,,)k

[ê.,3h = Q(ô\)S(~)Q(ô3)k

39

(3.18)

(3.19a)

(3.19b)

(3.19c)

•

Substituting eqs.(3.19) into eq.(3.18) and multiplying bath sides by QT(Ô2 ), one

obtains

Notice that QT(Ô2)Q(ôd = Q(l3) and /J = ÔI - Ô2.

From the eq.(3.20), one can readily obtain the relations below:

Moreover, the dual angle ii can be computed fol1owing two approaches, one is based

on eq.(3.16), the other consisting of forming the ratio of eq.(3.21a) with respect to

eq.(3.21b), namely,

•

W42 sin Ô4 sin ii = -W32 sin /J sin ~

W42 sin Ô4 cos ii = -W32(cos /J sin &3 +cos Ô3 cos ~ sin /J)

W42 cos &4 = W43 - W32(cos /J cos &3 - sin /J sin Ô3 cos ~)

Thus, from eqs.(3.21a & 3.21c),

sin /J sin ~ •
W42 = .. . .W32

sm Cle4 sm v

W43 = W42 cosô.\ +W32(COS/J cos &3 - sin/Jsin&3 cos~)

• - sin /J sin ~ .
tan v = . • •

cos {:J sin &3 +cos Ô3 cos tP sin {:J

(3.21a)

(3.21b)

(3.21c)

(3.22a)

(3.22b)

(3.23)



It can thus be proven that both eq.(3.16) and cq.(3.23) !ead la the same rcsull.

However, for planar mechanisms eq.(3.23) is undetermincd. Ncvcrlhclcss, ir l'ianar

mechanisms are considered as particular cases of spherical mcchanisms. 1''1.(:1.2:1) l'an

be applied as weil, as shown in Subsubscctioa 3.2.1.
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3.2.1 Revolute-Higher-Cylindric-Revolute (RHCR) Mech-

anisms

For the type of revolute-higher-cylindric-revolute (RHCR) mcchanisms, the cam and

rollower are coupled to the frame via rcvolute pairs; thcreforc, ::2 = :::\ = O. Morcovcl',

</J = </J('I/J), and eq.(3.2) can be written as

• with

[

-hl]
e43 = -h2

kl

[

(h2k3 + k~ct/J)al + (h2k4 +h.1k l )aa ]

and P43 = -(hl k3+ k~slp)al - (hlk'i +h3kalaa

(hlct/J - h2st/J)kl ll l + (hlh'l - h2ha)(L:\

(3.24)

(3.25)

Similarly, eq.(3.12) is expressed as

with

(:1.26)

- - -2 - - --

[

(h2k3 +kl ct/J)b2+ (h2k4 +h4 kal(b3 - a,d ]

and P42 = ~(hlk3 ~ k~s~)b2 - (i~I~4 +1:1~1 )(b3 - (L,d
(hlct/J - h2s'I/J)kl b2 + (h l h4 - h2ha)(b3 - a·d

(:J.27)

•
where Ô2 , ~ and 8are evaluated with the aid of eqs.(2.16c, 2.16d, 3.6 & :J.LO).

A geometric representation of the pales of Fig. 3.1 is shawn in Fig. 3.2, whcre

Aj ..... Iij and Cjjk ..... I:. jjk • Since 141 and 1:.412 are not needed for lhis derivation,

they do not appear in Fig. 3.2. Moreover, if â 4 is a constant, lhe surface of the raller
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Figure 3.3 Ruled surfaces of the cam (ne) and roller (nR)
of an RHeR cam mechanism

41

•

nR, will be in general a hyperboloid. Under the assumption that -'\0 :5 ,\ :5 '\0 in

eq.(3.26), where '\0 is a design parameter, one obtains the surfaces shown in Fig. 3.3.

On the other hand, if we bound ,\ as: 0.7'\0 :5 ,\ :5 '\0, one can obtain the cam

mechanism shown in Fig. 3.4 in various views.

For the cases when ail axes are parallel or intersecting, Z.13 is always zero, and

hence, the follower-roller pair becomes a revolute. These two cases are called RHRR

mechanisms. The resulting surface geometry for RHRR mechanisms is rather simple

and can be readily derived from the general formulation given above. However, a

special treatment to compute dual cross products is needed for planar RHRR mecha­

nisms, as discussed in Appendix A for the analysis pertaining to parallel dual vectors.

(~
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•

)
-@

Figure 3.4 Three views of the RHCR cam mechanism obtained
from the surfaces of Fig. 3.3

Spherical RHRR Mechanisrns

For spherical RHRR mechanisms, the dual terms of the dual angles shown in Table 3.1

are ail zero and, from eqs.(3.24 & 3.26), one can sec that the pitch and contact surfaces

of the cam reduce to conical surfaces, namely,

where e43 and e12 are defined in eqs.(3.25 & 3.27), respectively.

Now, O2 is computed from eq.(2.16c) and, from eqs.(3.7, 3.10 & 3.16), one can

re~dily obtain

•
~,~:_-:

/:-
1,

11

"

rp(,p, À) = Àe13

rc(,p, À) =Àe12

(3.28)

(3.29)

(3.30)
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,
\

\,
\,
\

Figure 3.5 Spherical RHRR cam mechanism

43

(3.31 )

(3.32)

•

A typical design of a spherical RHRR cam mechanism is shawn in Fig. 3.5.

Planar RHRR Mechanisms

The [SAs of planar RHRR mechanisms are all parallel, as shawn in Fig. 3.6; con­

sequently, the primal terms of &; and Ôj shawn in Table 3.1 are all zero and the
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Figure 3.6 Planar RHRR cam mcchanism

parameters ki and hi of eqs.(3.4) take on the values

ks = ho! = cos(1j; -,p)

k6 = h3 =sin(1j; -,p)

Similarly, parameters ki and hi of eqs.(3.14), take on the values

kl = 1, k2 = cos 6

k3 = ko! = kT = hl = h2 = 0

ks = ho! = cos(1j; - 6)

k6 = il3= sin( Ij; - 6)

Now, the pitch and contact surfaces are defined as
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(3.34 )

with

and

l'
e'13 = e'12 = [0, 0, 1] (3.35)

(3.36)

(3.3i)

•
Berc, the special theory for parallel dual vectors introduced in Appendix A is

applicd to derive b3 and 6. From eqs.(3.8),

(3.3811.)

(3.38b)

Thus, the unit dual vector ê234 is defined by me11.ns of eq.(A.22), n11.mely,

(3.39)

where

•

(3.4011.)

(3.40b)
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and

·\li

(:1..11 )

•

Comhining eqs.(3.39-3..l1) and suhstituting the dual Wl't.UI'S P:l~ illHI è~:I" iut."

eq.(3.1O), one l'an readily obtain

A similar procedure l'an he followed to derive the unit dual \,.,Ct.OI· [è:\oIlh jUld

evaluate v from eq.(3.16) as

Furthermore, b2 is ohtained from eq.(2.16d), namcly,

if/
b2 = --al

ifl - 1

It is apparent that eqs.(3A2, 3.43 & 3,44) l'an be derived direct.ly fl'olll cqs.(:Ul,

3.32 & 2.16c), respectively, under the assumption that, for small arcs on the unit

sphere, sin Qi -> ai; cos Qi -> 1; sin Oi -> bi and cos Oi -> l, thereby conclnding that

planaI' mechanisms l'an he regarded as a special case of spherical mechanisms.

3.2.2 Revolute-Higher-Cylindric-Prismatic (RHCP) Mech-

anisms

Revolute-higher-cylindric-prismatic (RHCP) mechanisms have revolllte and prisnlalic

pairs as input and output, respectively, and an intermediate cylindrical pair, as shown

in Fig. 3.7. Thus, Z2 = <P =O. The input-output function is given in cq.(2.19), as

•
(2.I!J)
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Figure 3.7 RHCP cam mechanism

·li

Morcovcr, cxpanding cq.(3.21a) and knowing from eq.(2.21c) lhal O2 = 0, one

oblains

(3,45a)

(3,45b)

Now, considering that W.12 # a and sin v # 0, from eq.(3,45a), one concluLes that

a., musl be zero, and from eq.(3,45b), one obtains

(3,46)

•
Fllrlhermore, expanding eq.(3.21b) with Q4 = 0, one obtains from ils primal part the

relationship

(3,47)

Moreover, from eq.(2.21a), W32 # 0, and hence, Q3 = -Q\.
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Now, substituting the corresponding values uf 0" and Ô iull) ,'qs.(:I.·' J. \>lll' llhlaius

1.5 = h., = cos t/J

\Vith these values, the vectors of eqs.(3.3a & 3.3c) Lake on the form

•
In order to derive the surface of the cam, dual vectors [ê321t and [ê.d 1 arc computed

from eqs,(3.S), namely,

(:lA9a)

It is clear that [ê321t and [ê.131t are parallel, and hence, the theory of parallel dual

vectors introduced in Appendix A is applied to obtain the expressions below:

•

ô3 ;: 03 + fb3 = 0 + fv(a3 + al + z~sinad2 + z~sin2 al

• -Z3sin alo;: 0 + fZ32 = arctan l' + fO
al +a3 +Z3 sm al

• Z3 sin al
v;: V+fZ'13 = arctan ( 1') + f(-Z:ICOSO'I)

- al + CL3 + z3smal

Now, substituting O2 = 0 and TI ;: 03 - a~ = 0 into eqs.(3.14), one ohtains

(3.50a)

(:l.50h)

(:l.50c)
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k" = k.1= k7 = il l = Ï!2 = 0

ks = it4 ,= cos(ljJ - 0)

kt; = i,,, = sint ljJ - 0)

Thus, vcctors e'12 and P.12 of cqs.(3.13b & 3.13c) take on the form

49

and P.12 = (3.51 )

•

RHRP Mechanisms

It was mentioned beforc that the condition of having a revolute pair between follower

and roller is that Z.13 =O. M"rcover, from eq.(3.50c),

Therefore, RI-IRP mechanisms can be obtained if al = ±7l" /2.

Additionally, expanding and separating the primai and dual parts of eq.(3.21c),

one obtains

(3.52a)

(3.52b)

--
i,'

Now, with al = ±7l"/2, V43 == dZ43 /dt = 0 and, from eq.(2.21b), V32 = O. Sub­

stitution of these two values into eq.(3.52b) reveals that V"2 is zero and pure rolling

between cam and roller is achieved.

3.2.3 Prismatic-Higher-Cylindric-Revolute (PHCR) Mech-

Shown in Fig. 3.8 is a prismatic-higher-cylindric:revolute (PHCR) mechanism, with

prismatic and revolute pairs providing its input and output motions, respectively, and•
anisms /:'
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Figure 3.8 PUeR cam mcchanism

an intermediate cylindrical pair. Thus, tf; = 0, =3 = 0, ;.nd thc input·output. fundion

is given as in eq.(2.25), namely,

(2.25)

Furthermore, it is known from eq.(2.28c) that O2 = 010 and substitut.ing this valuc

into eq.(3.21a), one can readily obtain the primai and dnal parts of t.he expression

thus resulting, namely,

(:1..5:1b)

In general, W42 f. 0 and v f. 0, and hence, from cq.(3.53a), sin 0,1 mllst bc ~cro.

Moreovér, \Vith sin 04 = 0 thc primal part of cq.(3.21 b) takc5 on thc form

•
o= -W32 sin 03

Thus, from eq.(2.28a), W32 = ±rP'V2, and onc concludcs that sin 03 = o.

(:I.5~ )
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Now, with lp = sin O:! = 0, cqs.(3.4) rcduce to

k2 = h'l = cos O! cos t/>

k'l = sin Q. cos t/>

k" = cos t/J

h3= - sin tP

and vcctors e'13 and P'13 are obtained from eqs.(3.3a & 3.3c), namely,

[

0 ] [al + a3 cos t/> ]
e'13 = - sin 01 and P43 = c~s QI (a3 s~n ~ - Z2 s:n Q.)

cos 01 sm QI(a3sm <p - Z2 sm Q!)

Next, the dual vectors [ê32h and [ê43h are computed from eqs.(3.8) as

51

(3.55)

(3.56a)

(3.57a)

(3.57c)

(3.57b)

•

[ê43h = [-S: Q!] + f [-(al +:::~s:) c~s Q'] (3.56b)

COS QI -(al +a3 cos tP) sm Q!

With application of the theory of parallel dual vectors of Appendix A, one can

obtain, from eqs.(3.7, 3.10 & 3.16), the expressions below:

. J(a3tP' cos tP - sin QI)2 + (a3tP' sin t/J)2
03 == 03 + fb3 = 0 + f tP'

• a3tP' sin tP
é == é + f.. '~32 =arctan .1.' .1. • . + fO, . a30r cos or - sm QI
• sin QI sin tP
/1 =/1 + fZ'13 = arctan .1." .1. + fOa3'1' +sm QI cos '1'
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According ta eq.(3.5ïb), =.J = 0, which means that the followl'r·rnllcr pair is a

revalute; therefore, a PHCR mechanism is, in fact, a l'II RR Illechanislll.

In arder ta find expressions for e.'2 and P.'2, vaincs of O'l = (\ 1 and Il == Il,, - (\.1 == II

are substituted into eqs.(3.14) ta obtain

kl = cos 01

k2== il., = cos 01 cos li

kJ = h2 = sin 01

k. = sin 01 cos li

ks = cos li

kG = - sin li cos 01

k7 = h, = 0

hJ = - sin li

Thus, substituting these values into eqs.(3.13b & 3.13c),

[

0 ] [al+Sinot!r//+(ba-a.ilCOSli]

e42 = -sino, and P42 = [(bJ - a.,)s:nli - =2s~notlc~sol

cos 01 [( bJ - a.il sm li - =2 sm ad sin 01

Further analysis of eq.(3.21c) leads ta the relations

(:l.58)

(:I.59a)

(3.591,)

•

Now, from eq.(2.28b) VJ2 = ±V2COSQIl and hence, pure rolling between cam and

raller is achieved if QI =±1r/2.

According ta the results pertaining ta RBCP and PHRR rnechanisrns, sirnilar

theorems ta those for RHP and PHR mechanisms can be stated, narncly:

Theorem 3.1: AlI ISAs of RIlCP and PHRR mechanisms, C:XCUfJt for the OIlC a.~so·

ciated with the prismatic pair, are paralIe1.

\.~



Theorem 3.2: l'ure rolling between cam and roller on RUGI' and rURR mechanisms

is "chieved if the "xis of the prismatic pair is perpendicu/ar to "Il other 1SAs.
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3.2.4 Prismatic-Higher-Cylindric-Prismatic (PHCP) Mech-

anisms

II. prismatic-higher-cylindric-prismatic (PRCP) mechanism is defined with prismatic

pairs in both input and output motions, and an intermediate cylindrical pair. Thus,

if) = 0 and q, is constant, and the input-output function is given as in eq.(2.30),

namely,

- - -(- )..3 - "'3 .... 2 (2.30)

•
Furthermore, it is known from Subsubsection 2.2.4 that al = b2 = O. Substituting

this value into eq.(3.21a), one can readily obtain the prim"l and dual parts of this

cquation as

(3.60a)

(3.60b)

ln gcneral, W42 -# 0 and v -# 0; therefore, from eq.(3.60a), sin a., must be zero.

Moreover, with sin 0,1 = 0, the primai and dual parts of eq.(3.21c) take on the

form

(3.61a)

(3.61b)

•

The desirable PliCP mechanism is one with pure rolling between cam and roller.

Thus, V'12 must be zero, and from eq.(3.61b), V43 is given as

(3.62)

Pitch and contact surfaces are derived with application of eqs.(3.3 & 3.13).
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Figure 3.9 PHRP cam mech.,nism

PHRP mechanisms

The cylindrical pair becomes a revolute pair if Vol3 vanishes. Thus, from eq.(:J.62), the

coefficient of Va2 must be zero, i.e.,

c(3CCia - s(3saac</J = 0

Since (3 is a variable and aa and </J are constants, the only solution of eq.(:J.G:l) is

that in which each term vanishes independently, i.e., aa = ±71" /2 and r/J = ±71" /2.

Now, with t/J =0, aa =71"/2 and </J =71"/2, eqs.(3.4) reduce to

kl = ka = h2 =ha =0

k2 = -k7 =ho! =-sinal

k" = -ka = cos al
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aud vectors e." aud p.", are obtaincd from cqs.(3.3a .1.: :J.:lc), namcly,

55

(3.64 )

Morcovcr, thc dual vcctors [ê32h and [ê43h are computcd from cqs.(3.S), namely,

NOIV, from eqs.(:l.ï, 3.10 & 3.16), one can readily obtain the expressions below:

• ô3 ;: 03 + fb3 == 7r/2 + f[a3cos(al - O2 ) - z3sin(al - O2 )]

8;: 0 + fZ32 = 7r/2 + f[a3sin(al - O2 ) +Z3cos(al - O2 )]

• -sin(al-02)
v ;: v + fZ43 = arctall ( 0) + fO

cos 1..:1 - 2

Morcover, combining eqs.(2.35b & 3.66c),

sin al
tan v = ....,...,----=­

Z3 - cos al

(3.65a)

(3.65b)

(3.66a)

(3.66b)

(3.66c)

(3.66d)

•

In order to find expressions for e42 and P42, values 02 = 7r/2, TJ ;: 03 - a4 = 7r/2

and t) = 0 are substituted into eqs.(3.14) to obtain

kl = k3 = k2 = k3 = 0

k2 = -k1 = k4 = - sin02

k4 = -ka = cos O2 cos 0

Thus, substituting these values into eqs.(3.13b & 3.13c), one obtains
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[

l'

'" = :J ..d

• o

Figure 3.10 Graphical representation of the pressure angle

3.3 Pressure Angle

The pressure angle is defined as that comprised between the direclion o[ the unit

normal to the pitch surface 1?p and the direction of the vclocity of the followcr at the

contact point. Thus, the unit normal defined in eq. (C..S) is wrillen 1L~

On the other hand, the unit vector w parallel to the follower vclocity at points on•
(:J.68)
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/'''J is obtained as

57

(3.69)

where w is the angular vc10city of the follower.

Thus, the pressure angle is derived as

Il n xw Il
tan Il = "'---""n·w

A graphical representation of this definition is shown in Figure 3.10.

3.3.1 Pressure Angle of RHCR Mechanisms

(3.70)

•

The unit normal of RHCR mechanisms is computed from application of eq.(C.5),

with the aid of eq.(3,24). Thus, the three components of u of eq.(3.68) in frame:Ft,

are glven as

+sin a] (4)' +cos a3hS)]

113 = sin.p(al sina3 - a3sinalhs) + '\(1 - klhs -.p' cosatl

and

•

Furthermore, from eq.(3.69), w can be written as

[

-a3 sin .p +,\ sin 013 cos .p ]

w = Il ~ Il a3 cos al cos.p +,\ sin 013cos al sin cP

a3 sin al cos.p +,\ sin al sin .p sin 013

Moreover, the cross product of eq. (3.70) is computed as

,\2d +..\f + g
nxw= lIçlllluli

(3.71a)

(3.71b)

(3.72)

(3.73)
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where the components of vectors d. f and g. in frame FI. arc ~i\'l'n b"low:

91 = -ala3 cos 01 cos q, sin 03 sin q,

•
Then, Il n x w Il can be written as

where

B = 2(d l / 1 +dd2 +d3 /J)

C = N +122 + /3
2 +2(d191 +d292 +d:19:J)

D = 2(1191 +1292 +!J93)

E 222= 91 +92 +93

(:1. ï5)

(:3.76)

Furthermore, the denominator of the right.hand side of the cq. (:3.70) can be writ·

ten as

•
where

F = sin 01 sin 03 sin .p

(:J.77)
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'l'hus, the general expression for the pressure angle is given by

v;U" + 8),3 +0),2 + D,\ + E
tanJl = F),2 +G)' + Il

Spherical Cam Mechanisms

59

(3.78)

(3.79)

The pressure angle for spherical cams is derived from eq. (3.73) by taking the limit of

tan Jl as ), --; 00 (Gonzalez-Palacios and Angeles, 1991), i.e.,

'l'hus, from eqs. (3.74, 3.76 & 3.78), one can readily obtain the desired general

•

. VA)," + 8),3 +0),2 + D)' +E vA
tanJl=}:'~ F),2+G),+H =7

expression for spherical cam mechanisms, name1y,

(if,' - cos QI) sin Q3 - sin QI cos Q3 cos if,
tanJl = .. .J.

sm QI sm '1'

(3.80)

(3.81)

Comparing eq.(3.81) with eq.(3.32) one can find a similituae. In fact, one can

e1iminate O2 from eq.(3.32) wit!: the aid of eq.(2.16c). Thus, upon reduction, eq.(3.32)

takes on the form

which, with the aid of eq.(2.16c), becomes

•

tan IJ = (.J. )" .J.
'1" - 1 Slll Q3 - sm QI cos Q3 cos '1'

Consequently, it is clear that
1

tanp =-­
tan IJ

(3.83)

(3.84)
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Planar Cam Mechanisms

till

•

The pressure angle for planaI' cam mcchanisms is oblained frolll "'1' (:l..!)) as indiealed

below. Since alllhe [SAs arc parallcl, al = a3 = O. ~lllr"O\·t'r. \'ariah1<os klo ~':.. II,.

and hG, appearing in eqs. (3..1a), (3..1c), (3.71a) and (3.'\b), rcs\wclÎ\·,'ly, Lake on lhe

values

hs = 1 - 9'

hG =0

Moreover, ail components appcaring in eq. (3.74) bccomezcro, cxcepl for !I:to which

l'l'duces to

(:1.85)

Consequently,

A=B=C=D=O

E = a32[a3( if>' - 1) - al l'OS ,W
F=G=O

and the expression for the pressure angle takes on the fonn

(:1.86)

•
in agreement with results availablc in the Iiterature (Ilothbarl, EJ.56; 'l'csar, 1976;

Angeles and Lôpez-Cajun, 1991).

Here, it l'an also be proven that tan,. = I/tan v if cq.(:I,44) is subslilulcd iulo

eq.(3.43) .
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Spatial Cam Mechanisms

\Ve have shawn that e'l' (:l.79) represents the pressure angle for ail planar, spherical

ilnd spatial cam mechanisms. In fact, planar and spherical cam mechanisms arc

particlliar cases in which the expressions for the pr('ssure angle arc independent of A.

Ilere wc present two more cases as examples of sp,üial cam mechanisms in arder ta

show the influencc of A, namely, cylindricai and globoidal cam mechanisms.

The pressure angle of cylindrical cam mechanisms is derived taking into account

Lhat QI = 'Ir /2 and Q3 = O. Conseqllently, the expression for the pressure angle can

he readily obtained from eq. (3.79) as

(3.88)

(3.87)
Asin q, +a3q,'

tanJL= \ '
" cos li>

On the other haJl(1, QI = Q3 = 'Ir /2 and a3 = 0 for globoidal cam mechanisms,

tan JL = \ . .L
al + "sm '1'

and eq. (3.79) reduces ta

•
3.3.2 Pressure Angle of RHCP Mechanisms

The unit normal of the cam surface of RRC? mechanisms is computed from appli­

cation of eq.(C.5) and with the aid of eqs.(3.48). Thus, e~3 = 0 and P~3 is expressed

[

-(al +a3) sin,p - Z3 Sill QI cos,p - z~ sin QI cos lj;]
P~13 = -(al +a3)cos,p +Z3SinOQIsin,p - z~sinQI cos,p

where the prime denotes diiferentiation with respect ta ,p.

Now, n is given as in eq.(3.68) \Vith u defined as

(3.89)

(3.90)

•
Moreover, the unit vector in the direction of, the velocity of the follower on [.13 is

glven as

W=[O, 1, OlT
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From eq.(3.ïO), one can readily obtain

3.3.3 Pressure Angle of PHRR Mechanisms

t··,'-

The unit normal of the contact surface of PHRR lIlc~hanislllsis comp"t"d from appli·

cation of eq.(C.5) and with the aid of eqs.(3.55). Thns, e~"1 = 0 and p~", is "xpresscd

as

•

r
-if/aa sin </> ]

P~la = . ~o" .aa</>' cos ci> - sin cq)

~ sin QI (ua</>' cos ,p - sin QI)

where the prime denotes differentiation with respect to :2.

eq.(3.68) with u defined as

[

Ua</>' ~o~,p - sin QI]

u == aa</> sm,p cos QI

aa<l/ sin </> sin QI

Now. n is givcn nS in

Moreover, the unit vector in the direction of the vclocity of t.he fol\owel' on 1,,,1 is

given as

From eq.(3.70), one obtains

w=
[

-sin </> ]

c~s Qt cos </>

sm QI cos ,p

aa,p' - sin QI cos ,p
tan Il = '.J. •

sm '1' sm QI

3.3.4 Pressure Angle of PHRP Mechanisms

(3.94 )

•
The unit normal of the cam surface of PHRP mechanisms is computed from appli·

cation of e'l.(C.5) and with the aid of eqs.(3.64). Thus, e~13 =0 and P~", is cxprcsscd

,.
"
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p~,,= [::f,:inQI ]

:3 COS QI - 1

where the prime denotcs dilfercntiation with respect to Z2.

Now, Il is given, again, as in eq.(3.68), with u defincd as

(:1.95)

(3.96)

Furthermore, the unit vector in the direction of the velodty of the follower on 1,13 is

given as

w = [0, - sin QI, cos QI (

•
From cg. (a. 70), one obtains

z~ - cos Q}
tan f-l = -"------'­

sin QI
(3.97)

•

3.4 Applications to Three-Link Mechanisms with

Constant Pressure Angle

Cam mechanisms with a constant pressure angle are attractive because they involve

rather simple follower shapes. Planar cam mechanisms with a nat-face follower are

good examples of this kind, their fol1owers containing planar surfaces at the cam­

follower interface. IIere wc study the synthesis of these mechanisms and their spherical

countcrparts. IIowever, when dealing with the latter, one cannot speak in general of

flat-face but rather of conical-face fol1owers, as wc will show presently.

The approach presented here for the synthesis of the mechanisms under study

.is based on the introduction of an auxiliary roller in contact with the cam and the

fol1ower, which gives rise to a four-link mechanism, although the mechanism under



study is, in faet of the thrœ-link type. The lines of contact of t 1", l'lllkr \\'il h tilt' can'

and the follower arc, respecti\'ely, the 1SAs l'I~ and 1.1:1, and hl'nl'l'. 111'0 hi!-\llt'r l'airs

arise at the cam·follower interface. :\ nomenclature is ;uloptl'd hl'r" t,l distin!-\nish

the aforementioned four·link Illechanisms from the thn'l'·link IlIl'chanisllls analyz"d

in Chapter 2, namely, the two higher pairs of the l'olier arc indicat"d as TITI in 01'.1,,1'

to emphasize that these two higher pairs replace a single one. The synth"'is of C:tlll

mechanisms with a constant prèssure angle is thus rendered silllilar to th" synthesis

of cam mechanisms with roller-follower3, the dilTerence here being that t.h" dnal angle

&3 is unknown. On the other hand, it w:u; proven in Seetion :1.:1 t.h •.t. t.an /1 = 1/ t.an",

i.e., v = r. /2 - Il. Thus. the dual curve of the Calll is given as

•

•

Chapter 3. Kin· maties of Four-Link ~Ieehanisms

• T •• '" • •
Sc == e"2 + fm ..2 = S (,p)Q(&tlS(q,)Q(ô'I)S(li)Q(ô.olk

and the surf..ce of the cam is expressed as

tH

(:Ul8)

(:I.!J!l)

•

This approach is applied to those cases in which pure rolling bctween t.he calll ane!

the l'olier is achieved, and hence, conical and cylindrical surfaces are considered. The

envelopes of the l'olier on the follower give risc to a regular cone for spherical lUI Hlt

mechanisms and a plane for planaI' RHHR, RHHP, pHHR and pTITIp llIechanisllls.

The latter are the well-known planaI' P.lechanisms with a lIat·face follower. The

input-output functions arc the same as for the related RHR, BHp, pHR and ppp

mechanisms discussed in Chapter 2.

3.4.1 RHHR Mechanisms

Figures 3.11 and 3.12 show the two cases of RHHR mechanisms with Il = O. For

the spherical RHHR, the dual terms of the angles of the eq.(3.!J8) arc zero, while, fo,'

planaI' RHHR, the primal terms of the angles &j and the dual terms of the angles 1~,

~ and ÎI are zero.



Figure 3,11 Spherical RHHR cam mechanism
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•
With application of eq,(3,!JS), the sudace of the cam is given via vector r e defined as

[

ks sin a4 - hl cosa'i ]

re == '\e.12 = ,\ -k6 sin a4 - h2 cos a4

sin al sin 4> sin a4 + kt cos 04

(3.100)

where k; and h; are defined in eqs,(3.4) and, from eq,(3,SO), it is clear that jJ. = 0 if

a3 takes the value
sin al cos 4>

tan a3 = 7.""---'---'­
4>' - cos al

(3,101)

Note that spherical mechanisms with a constant pressure angle and zero offset,

i,e" with a4 = 0, give rise to a flat-face follower,

•



•
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Figure 3.12 Planar RHHR cam mcchanism

Planar RHHR mechanisms

titi

Vectors e'12 and P42 for planar RHHR mcchanisms are rcadily obtaillcd from cqs.(:1.98

& 3.99) as

(:l.l 02)

Now, from eq.(3.86) one obtains the value of Ua in which IL = 0, Ilamcly,

(:l.10:l)
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..- ........_......-
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Figure 3.13 RHHP cam mechanism

3.4.2 RÏllÏP Mechanisms

Gi

Considering that, from eq.(3.91), a3 = -al - Z~SinQh vectors eol2 and P"2 of the

surface of the cam are given as

[

0] [-z~sinQI cos.,p + (a" - Z3sin Qd Sin.,p]

e'12 = ~ and PoI2 = =~ sin QI sin .,p + (a; - =3 sin QI) cos.,p (3.104)

•

Figure :3.13 shows a general case of an RHHP mechanism.

Comparing the size of a cam obtainlld with QI oF 11"/2 with that of the cam ob­

tailled with QI = 11"/2, for the same displacement program, the former is of smaller

size, henceforth, the angle QI should be considered as design parameter in optimiza­

tion procedures which objective is minimize the cam size. However, as the angle QI

decreases, the sliding between cam and followcr increases. For the same displacement

program, the size of the cam with QI = 11"/2.
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~
....;' )
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Figure 3.14 PHHR cam mechanislll

3.4.3 PH'HR Mechanisms

Figure 3.14 shows a PHHR mechanism. Yectors e'12 and P.I', for the cam of this

mechanism, are obtained from eqs.(3.98 & 3.99), namely,

[

0 ] [ al +a3 cos <f, - Cl'I sin r/J ]

e42 = - sin Qt and P4.2 = a3 cos ~I sin: + a4 cos QI co~ r/J - =2 cos ~~sin "1

cos QI a3 sm QI sm q, + a4 cos rP sm a, - =, SIII a,
(:J.105)

with a3 obtained from eq.(3.94) as

•

sin QI cos q,
a3 = ,p'

(:J.lOG)
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•
Figure 3.15 PHHP cam mechanism

3.4.4 PHHP Mechanisms

For the case of the PHHP mechanism, /l is independp.nt of a:,. Moreover, one can

consider a given value of Il, namely, /l = /la, and hence, from eq.(3.97) one obtains

1
_Z3"----:-_C_O_S_Cl..:.1tan /la =

sin CIl
(3.107)

Therefore, z~ must be constant and, consequently, both surfaces will have fiat faces,

which thus gives rise to wedge cam mechanisms.

Considering that v = ft /2 - /la, one can readily obtain the vectors below:

(3.108)e41 = [~] and P42 = [ a.3cosCll - a4Sin(~1 - /la) - Z3SinCl] ]

o a3 sm CIl + a4 COS(ClI - /la) + Z3 cos CI] - Z2

Figure 3.15 illustrates a PHHp mechanism. Notice that the contact between cam

and follower is a surface, giving as result a ppp mechanism.•
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Chapter 4

Realization of Indexing Motion

with Higher Pairs

• 4.1 Introduction

•

lndexing mechanisms for motion and force transmission betwccn pamllcl axcs, snch as

the Geneva mechanism and external and internai parallel indexing carn lTlechanislTls,

have been studied in the past (Guoxun, Zhengyang and Huimin 1988), 1L~ weil 1L~

indexing mcchanisms for skew axes, such as the Ferguson indexing cam mcchanislll.

Indexing cam mechanisms (ICM) have been used extensively, but thc optimization

ùf the cam contour for minimum friction losses, under various fllnctionality conui­

tions, has not been given uue attention. Although the kinematics of spatial cams

has been studied in the past (Jensen 1965; Chakrabort.y and Dhande 1977; Koloc

and Vaclavik 1988), to our knowledge no work has be('~, reporteu in connection with

the minimization of power losses in the synthesis of spatial ICivi, Here we propose a

unified approach 1.0 the synthesis of cam and follower profiles, when motion is trans­

mitted either through direct contact (RHR mechanisms) or Lhrollgh an inLerrneuiaLe

roller (RHCR mechanisms), while power losses due to sliding are minimizcu.
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•

These surfacp.s are generated with the application of the theory presented in Chap­

lers 2 and 3, since lhis approach salisfies the condilion lhat lhe relative l'elocity al

the contact points is of minimum magnitude.

The method presented herc can be applied to the synthesis of the contact surfaces

of both the cam and the follower for a prescribed indexing output m0tion of the latter

when the input cam rotates at a constant speed, assuming that the position of the

axes of bo~h the cam and the follower is given.

4.2 Input-Output Funetion oflndexing Cam Mech­

anisms (ICM)

As shown in Fig. 4.1, a full rotation of the cam is divided into two intp.rvals, of lengths

tlt/J and 271" - tlt/J. When the cam rotates in the second interval, cl> is a constant, N

being the number of indexing steps for one full rotation of the follower. Moreover,

<p( t/J) is defined in the first interval as

where T(X) is a normalized function, namely,

T = T(X), 0:::; T :::; 1, 0:::; x :::; 1

(4.1)

(4.2)

•

The function T(X) as discussed in Appendix D. Cycloidal motion is applied here for

concreteness, but the ensuing analysis is Ilot limited to this type of motion.

4.3 ICM of RHR Type

lt was shown in Chapter 2 that, with the application of eqs. (2.16 & 2.18), it is possible

to generate the shapes of two rigid bodies in contact, when transmitting a motion



•

•

Chapter 4. Realization of Indexing Motion \Vith Iligher l'ni"

6~ 2TI~~:-\..----'-----+--------,
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Figure 4.1 Motion function t/J = t/J(I/))

.)

.~ TI

N

-.,1 _

given by the functionai relation t/J = t/J(t/J). Now, with t/J(t/J) dcfined ,l., in 0'1'('1.1), one

can readily obtain the surfaces of an reM of the type RHR rnechanislll (\lIIR-leM)

by prescribing the values: N; tlt/J; al; and QI'

Thus, ,p and its first and second derivatives with respect lo ',/) arc rcadily dcfined

\Vith the values of N and tlt/J, narne!y,

(Ub)

(Uc)

•
Equations (4.3) are valid in the range 0 ::; If; ::; tlt/!. For tll/, < If; ~ 21r, II> = 21r/N

and ,p' = ,pli =O.

The cam and follower surfaces are now defined, as in eqs.(2.18), by the vcclors r2
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and r", rcspectively, aS indicaled bclow:

r2 = {,2 [~:~r~w] + À [= :~:: ::: ::]
o cos O2

r3 = (b2-ad [~:~niflifl] +À [=:~:::::~:: =::~]
o COS(02-OrI)

where ,\ defines the thickness of the surfaces, while tan O2 and b2 arc computed as in

eqs.(2.16c & 2.16d), namcly,

ifl' sin Orl
Lan O2 = -1.' 1

'1" cos Orl -

ifl,2 - ifl' cos Or 1
b2 = a,ifl,2 - 2ifl' cos Orr + 1

A solid mode! of the surfaces defilled above was implemented on a Silicon Graphies

Power Series Workstation (fR1S 4D/420VGX). Moreover, the motion is simulated for

any value of the four parameters defining the RHR-ICM. Thus, fixing three of them,

the changes of the profile can be appreciated according ta the variation of the fourth

parameter.

In order ta give a better idea oi the soitware implemented for the above-mentioned

purpose, we present four figures with six still frames each, so that the changes can be

appreciateci. Thus, in Fig. 4.2 six RHR-ICM are shown with different values of N,

while in Fig 4.3, 6..,p changes. Furthermore, the transition from spatial to spherical

RI-IR-ICM, when a, varies from 1 to 0, is shown in FigAA. Moreover, with Orl = 0 in

Fig. 4.5, the cam and the follower have parallel axes and rotate in the same direction.

In this configuration, the mechanism is an internai RHR-ICM. As QI increases, the

input and OlltP,ut axes are sk?w until they become parallel again with Orl = 'Ir. At

this value, the cam and the follower rotate in opposite directions, thus giving rise to

an external RI-IR-ICM. The transition from internai ta externai RHR-ICM is shown

wi' h four intermediate configurations.
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•

N=l

N=2

N=3

•
Figure 4.2 Spatial RHR-ICM wit.h Ô1P = 120c;ul = 1,0'1 = ()O.

and 0.2.5 ::; ,\ ::; 0.85 for six dirrcrcnt valuc5 of N
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•

ùlJ1 = rt/2

,..

ÙIJ1 = 3rt/4 ùlJ1 = 3rt/2

ÙIJ1 = 7rt/4

•
Figure 4.3 Spatial RI'IR-IeM \Vith N =.j, al =0.8, 0'1 =15·

and DA ::; ,\ ::; 1.0 for six diffcrcnt valucs of ~'P



•

a, = 0.4

7G

•
a, = 0.2

a,= 0.0

•
Figure 4.4 Transition from spatial to spherical RHR-ICM

\Vith N =6, t1t/J = 120·, 01 =70· and 0.3 ~ À ~ 0.95



• "

•
a ,= 36

a ,=72

a ,= 144

a ,= 180

•
Figure 4.5 Transition from interna! ta externa! RlIR-ICM

\Vith N =8, .6.l/J =220·, (lI = ! and 0.4 :::; À :::; 1.0
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4.4 lCM of RHCR Type

i8

The theory for the synthesis of lUICIl mechanisms was alreacly introclucecl in Sec­

tiou :1.2.1. Thus, what tlelines an ICM is the input-output function, which is given

2;r (tj»
<P= <P +-T -

m N t::..tj>
(4.4)

where <Pm is the value of <P upon engagement of the raller with the cam as illustratecl

in Fig. 4.6. For the applications presentecl in Chapter 5, <Pm is clelinecl as

(4.5)

•

•

ln Fig. 4.6a <Pm is shawn for an internai ICM, whereas in Fig. 4.6b <Pm is shawn for

an external ICM .

~ --1fI ,
1

........ , --q;

(b)

Figure 4.6 Definition of <Pm for RHCR-ICM: a) interna!; b) externai
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There are t\Vo approaches ta ,ktermine the !\eollle( ry oi an Ill!CH-1C~ 1. The li rsl

one consists of the application of cqs.(3.27), and the St'(,OIllI. or the applicat.ion of

cqs.(3.98 & 3.99). The latter \Vas fonnd more relia)le rrolll the (,llInpnt.at.ionai point.

of view; it \Vas thercfore, applicd in USYCAMS l, t.he soft.ware wrilten fOl' t.he nllilbl

synthesis of RHCR-ICM.

Equation (3.98) is rcwrittcn here for '1uick rcfcrcnce, name\y,

where ÎJ defined in e'1.(3.23) as

, 0 -sinJsill~
tanv == tanv+ fzdl + t.an·v) = . . .

cos {3 sin â" + cos â" cos q, si n {3

•
which can be readily expanded in its primal and dual part.s, name\y,

- sin {3 sin 4>
tan v = .

cos {3 sin 03 + cos 03 sm {3 cos 4>
a3 sin {3(cos {3 cos 03 - sin 03 sin (3 cos 4» - dsill 0" .

%43 = ( {3' . {3 )2 .., (3 . 2< 5111 ri>cos sm 03 + C03 03 sm cos 4> + S1l\' 5111 lp

(<\.Ga)

(4 .6\')

•

where (3 = 01 - O2 and d = al - b2•

Thus, given N, 6.t/J, 4>(t/J) and the dual angles &10 &3 and &.10 which arc dcscribcd

in Table 3.1, the cam profile of an RHCR-ICM can be ohtained with the aid of

USYCAMS. However, the dual angle &3 cannat he chosen arbitrarily as discussed in

Chapter 5, where we show how ta specify it. A solid model or this type or ICM was

implemented using USYCAMS. The transition from internai ta cxt.crnal [UICR-ICM

is shawn in Fig. 4.7 with N = 8 and 6.t/J = 240·, while, in Fig. 4.8, the transition

from spatial to spherical RHCR-ICM is shawn .

1Pronounced you see cams, for Unified Synthesis of Carn Mcchanisrns
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•

III = a

Il, = 20 III = 140

•
Figure 4.7 Transition from internal to externai RHCR-lCM

\Vith N = 8, b,1/J = 240·



• ~l

•

•
Figure 4.8 Transition from spatial ta spherical IlIIeR-ICM

with N =8, tlt/J =2400
, al = 1350 and 0.3 ~ >. ~ 0.95
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•

Pure-Rolling Motion with ICM

5.1 Introduction

lndcxing cam mcchanisms ICM with hclical springs to maintain contact havc bccn

dcsigncd in thc past (Johnson, 1958). However, the use of springs in cam mecha­

nisms lcads to dynamic problcms of vibration. Conscquently, the design of planar

cam mcchanisms with positive motion, i.e., without springs, has be,;n proposed as an

alternative (Jackowski and Dubil, 1967; Wunderlich, 1971; Hunt, 1973). This concept

has been applied to the design of planar rCM (Makino, 1979; Jones and Tsang, 1987;

Gouxun, Zhengyang and Huimin, 1988). In the latter reference, pure-rolling motion

has been achieved. However, the mechanisms thus designed have the disadvantage

that the pressure angle is large, especially at and near the dwell positions. Indexing

mcchanisms such as the Geneva mechanism have been studied, e.g., (Fenton, 1965,

1975a, 1975b; Oledzki and Szydlowski, 1975), but these mechanisms have jerk discon­

tinuitics and wear problems. The elimination of jerk discontinuities in this context

was reported by Sadek, Lloyd, and Smith (1990).

ICM with direct contact for spatial, spherical and planar motions were introduced
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in Gonzalez·Palacios and Angeles (1990). A lInifipd appmach of 1C~1 \\'ith mll"r

followers is presented in (Gonzalez.Palacios and Angeb. 1!J!)~). Boll\ appmaches

being discussed in Chapter 4. These formulations arc combined iil this Chapter t,)

obtain a new type of mechanism that is termed here PRlCo\M (l'ure Holling Ind"xing

Cam l1,lechanism) with positive motion, pure rolling and improved pr('ssul'(~angle

distribution. The pressure angle vanishes at the beginning and al the middle of lhe

rise, which makes PRICAM a unique design. The condilion applied ou the design of

PRICAM being the elimination of wear, and henec, t\\'o versions arc proposed here.

namely, planaI' and spherical mechanisms.

5.2 Primaryand Secondary Mechanisms

Here we distinguish two mechanisms, namely, the prim<1fY lTIeciJ;lllislTI (l'M), which

is an RHR rCM, and the secondary mechanism (SM), which is constilllled by au

RHRR rCM.

The generation of the higher-pair contact surface of both PM and SM is b,\"~ed

on the minimization of the magnitude of the relative velocity al the conlact poinls,

namely, cam-follower pair for the PM and cam-l'olier pair for lhe SM. lt was

discussed in Section 2.2.1 that, for planaI' and spherical RHR IlIechanisms, lhe relative

velocity V32 is zero. Similarly, for planaI' and spherical RHRR IlIechanisrns, it wa.~

shown in Section 3.2.1 that the velocity V42 between cam and l'olier is zero a.~ weil.

Thus, as discussed in Chapters 2 and 3, thos~ surface" are generated as l'uled surfaces

and represented in the parametric form

r(,p, À) =p(,p) +Àe(,p) (.5.1 )

•
where r(,p, À) is the position vector of a point of the surface, lp is lhe angle of rolation

of the cam, À is a real number, p is the position vector of the directrix, and e is a

unit vector parallel to the generatrix.
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5.2.1 Primary Mechanism

8·1

Wc r"gard hcre, as in Chapter :J, planar mechanisms as special cases of spherical

lTlechanisms. Accordingly, we study the latter first, then the former.

Spherical PM

(5.4)

(5.3)

(5.2a)

(5.2b)

From the definition of the geometry of spherical RHR mechanisms with al = 0, the

geometry of the spherical PM is given as,

r2 =.\ [=:~:::::::]
cos O2

[

-sin cPsin(O2 - od]
r3 =.\ - cos cPsin(02 - od

COS(02 - 0d
with O2 defined as in eq(2.16c), i.e.,

O
cP' sin 01

tan 2 = -,.,.'----'--0­
cP' cos 01 - 1

Moreover, the pressure angle can be computed from eq.(2.55) as,

cP'J cP,2 - 2cP' cos 01 + 1
tan IL = cP"

•
Planar PM

The geometry of the planar PM is defined by the geometry of planar RHR mecha­

nisms with 01 = O,"Ir. Thus, the position vectors of both cam and follower are derived

from eqs.(2.18a & 2.l8b), namely,

•

(5.5a)

(5.5b)
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The pressure angle is as defined in e'1.I).GI J. nan",\y.

d(d±IJ
tan Il = --'---..,--'

<>"
(:'>.li)

the plus and minus signs corresponding ta e>:ternai and inl.<'l'IIa\ l'~l. 1"·'I"·d.iV<'iy.

5.2.2 Secondary Mechanism

Spherical SM

The pitch and the cam surfaces for the spherical mcchanislll are ddincd aS inl·'15.(:\.28

.1.; 3.29), namcly,

•
[

SQ3S,pCt/> - (SQI CCX3 + CCXISQ3C,p)St/> ]

rp == >'ep = >. -SQ3S,pSt/> - (SQICQ3 + CQISQ3C,p)Ct/!

l'QI CQ3 - SQI SQ3C,p

[

S(03 - Q..)soct/> - [S02C(03 - n..) + C02S(03 - n..}coJsl/' ]

rc == >'ec = ,\ -s(1J3 - (4)SOSt/> - [S02C(03 - Q •.) + C02S(O;, - n ..}c<ljc'lj'

C02C(03 - Q •.) - S02S(03 - <>.,)co

where O2 , 1J3 and 0, are given as,

O
,p'sinQ\

tan 2 = """":'----=--.,.
,p' cos QI - 1

J[C(QI - 02)CcPSQ3 + CQ3S(QI - O2)]2 +S2Q~S2,p
tan 03 = -'-'--'-----.,-----,,....,....---,----.,--'---:,....,....-­

CQ3C(QI - O2 ) - ccPSQ~S(QI - O2 )

< SQ3 S ,p
tan u = --,...--....,....,...-"-"--...,-------::....,.

SQ3C(QI - 02)CcP +CQ3S(QI - O2)

Furthermore, the pressure angle is as defined in eq.(3.81), i.r!.,

(cP' - cos QI) sin Q3 - sin QI cos Q3 cos ri>
tanJl = .,

sm QI sm cP

(5.7)

(5.8)

(5.!Ja)

(5.9b)

(5.!Jc)

(.5.10)

•
In the design of spherical RHRR ICM, N, 6.1/J and QI arc given as design spec­

ifications. However, Q3 cannat be assigned arbitrarily for, beyond a certain bound,

undercutting will occur. The maximum allowable value of Q3, defined ;~~ U3' l'an be

derived by analyzing the spherical radius of curvature of the pitch curve r.
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p(,p, n'l, nI> N, b..ljJ). Thus, in terms of ep, defined in eq.(5.7), and its first and

",cond dcrivatives with respect to ljJ, p is expressed as (Guggenheimer. 19ïï)

(
(e' . e' )3/2 )

P = arc tan p /
ep x ep ' e"p

(5.11 )

Now, we are interested on those points of r where cusps occur, i.e., where p = O.

First wc search for the values 'Po where p attains a minimum value, i.e., wc make

dp/dljJ = 0, which readily leads to

J(1/-'o, 03, Oh N, b..ljJ) == ep x e~' [3(e~. e"p)e"p - (e~. e~)ellll = 0 (5.12)

The analysis of the motion covers one indexing step and hence, it starts at

q,( -b..ljJ /2) = -'Ir / N and finishes at q,(b..,p /2) = 'Ir / N. For a cycloidal motion, q,

•
and q,' are readily derived, namely,

q, = b..q,(x +i-- sin 27rX),
_'Ir

,b..q,( )q, = b..1/J 1+ cos 2'1rx ,

1/J 2'1r
X == b..1/J' b..q, == N

1 1-- < x <-
2 - - 2

(5.13)

(5.14)

With the aid of symbolic algebra, we found that ,po =0 always satisfies eq.(5.12),

i.e., J(O, a3, ah N, b..1/J) == O. Moreover, wc found graphically that J can have one

or three roots; however, the minimum absolute value of p is found at 1/Jo = O.

Now, 03 is obtained as a solution of plO, 03, oI, N, b..,p) = O. In view of eq.(5.11),

p is zero if

•

, , 0ep' ep =

Furthermore, from eq.(5.7), ep at ,p = 0 is readily obtained as

where q,~ = 4'1r/ N b..1/J is computed from eq.(5.14) at ,p = O.

(5.15)

(5.16)
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Figure 5.1 The pitch curve and thc corrcsponding plots of

p and p' for thrce values of a3'

Substituting eq.(5.16) into eq.(5.15), the limiting value of a:! is readily derived,

namely,

•

sinal
tan 03 = (ii.17)

41f/ NC:.t/J - cos al

Figure 5.1 illustrates the pitch curve for thrce differcnt values of a:!, with t.he

corresponding plots of p and p'. Notice that, for a3 < 03, (l' has t.hrce root.s but. (1

attains its minimum at t/J = O.

These results are now summarized below:

Theorem 5.1: Given a], N, C:.t/J and the input-output fllnction dcfincd ilS in c'l.(4.1 J,
the pUch curve of a spherical RHRR lCM rcachcs a CIlSp ilt If; = 0 if a3 = 1Ï2 - al, 1Ï2

being the value or O2 al. t/J = o.



Wc provc this thcorcm showing that O2 - 01 == O:\, with 03 dcfincd abovc as thc

maximum valuc attaincd by 03. First. wc cxpand tan(O, - od, namcly,
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(0- ) ._t_a_n_0.:.2_-"...t_a_n_o...:l:..
tan 2 - 0') =:-

1 + tan O2 tan 01

Now, substituting cq.(5.9a) into c'l.(5.18), we obtain

- sin QI
tan(02 - od = 1 == tan &3

4>0 - cos QI

thcrcby proving thc thcorcm.

Plnnnr SM

88

(5.18)

(5.19)

•
The gcometry of planar SM is defined by the geometry of planar RHRR mechanisms

with QI = ". for extcrnal and QI = 0 for internaI SM. Thus, the pitch and the cam

surfaces are defined according ta eqs.(3.35-3.37) as

(5.20)

(5.21 )

with

(5.22a)

(5.22b)

(5.22c)

(5.22d)

•
The pressure angle is defined as in eq.(3.86), namely,

a3(tP' ± 1) ± al cos tP
tan fl = . .1.

al sm '1'
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The plus sign of the double signcd !erms, rcfer lo ,'xlt'rna! ." ;\1. ",hert'as the minus.

to intcrnû.! SM.

As a counterpart of the spherical SM, the pitch l'un'e of pl;l.lHU '"M l'an hl'

analyzed to determine the allowable value of a3. defined as il", sa that un<!,'rcut.ting

can b:l avoided. Thus, the following theorem is establishe<!:

Theorem 5.2: Given al> N, L:!,t/; and t!Je input-output. function ddined il" iu e,/,(./. JJ,

the pitch curve of a planar RHRR ICI'.'l reac!Jes a cusp ilt 1/, = 0 if "3 = b2 - "1> Îl'l

being the value of b2 at t/; = O.

5.3 Positive Action and Positive Motion

In the design of cam mechanisms we distinguish two kinds of actuating forces at the

contact between the cam and the follower, namely, the force that transmits the motion

ta the follower, and the force that tries ta stop the motion of the followel'. The action

of each of these forces is termed here positive action (P A) and negative action (N A),

respectively. Moreover, we call positive motion that in which bath PA .~nd NA arc

present in the transmission, and hence, there are at least two contact points or lines in

a cam follower-system of this ty;>e, i.e., two or more cams attached ta the input shaft

interacting with two or more followers attached to the output shaft. Notic~ that cases

like constant-breadth cam mechanisms use the same cam and follower interacting in

two different points.

In arder ta identify the type of action that takes place on the followcr, wc rcsort

to the value of the pressure angle. We assume in the pressure-angle analysis that

friction forces are negligible, and hence, the direction of the contact force is parallel

to the cornmon normal. Furthermore, fi varies from O· ta 180· and PA and NA arise

according ta the rule given below:

If 0·:5 fi < 90·, then PA

If 90· < fi :5 180·, then NA
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• Figure 5.2 Pressure angle distribution of PRICAM

•

In Fig. 5.2 we present the distribution of the pressure angle of both mechanisms for

N =4, 6.ljJ =120· and QI =90·, for an input-output function of the cycloidal type.

Similar curves arise for other input-output functions. It is clear that the combination

of the two mechanisms satisfy the condition of positive motion. On the first half of

the rise, the primary mechanism is under PA and starts with a zero pressure angle,

while the secondary mechanism is under NA. In the second half, PAis present in

the secondary mechanism, starting with a zero pressure angle. Shown in Fig. 5.3, is

the pressure-angle distribution for three rotations of the cam. The encircled numbers

indicate which roller is interacting with the cam. During the dwell phase, two rollers

interact with the cam and lock the shaft of the follower.

Two prototypes, one planar and one spherical, were designed with the following

characteristics:
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Figure 5.3 Three cycles of the cam motion

\lI

•

•

Four indexing steps, i.e., for a full rotation of the cam, thc follower rotates ~JO°

from one dwell to another.

The dwell from one index to another is 2/3 of the rotation of the cam.

A set of CAO drawings for both planaI' and spherical indexing cam IIlcchanisms

is presented in Figs. 5.4-5.7, with dimensions in mm.

Prior to the manufacturing of the prototypes, solid modcls of both designs wcrc

created on a Silicon Graphies Power Series Workstation (IRIS ,JD/420VGX) to an­

imate the motion of PRICAM in its two versions. Three dimensional rendcrings of

these designs are shown in Figs. 5.8 and 5.9, while photoiraphs of the prototypcs arc

sh?wn in Figs. 5.10-5.13.
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Figure 5.8 Solid model of a planar PRICAM.

ga
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Figure 5.9 Solid model fo a spherica! PRJCAM.
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Figure 5.10 Front view of the planar PRIGAM prototype
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Figure 5.11 Top view of the planar PRICAM prototype
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Figure 5.12 Front view of the spherical PRICAM prototype
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Figure 5.13 Lateral view of the spherical PRlGAM prototype
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Chapter 6

Concluding Remarks

6.1 Conclusions

The classificalion of cam mechanisms according to the rdative I.woul of lheir kine­

matie pairs was used to simplify the unified synthesis of this type of mechanisms.

For each of lhe lwo kinds of mechanisms treated here, namely, three- and four-link

mechanisms, when either the input or the output pairs are of the prismatic lype, two

basic theûrems were staled.

With the criterion of minimum sliding velocity in the higher pair of a cam mech­

anism, an imporlant result for four-link mechanisms was derived: In general, the

roller-follower coupling is a cylindrical kinematic pair and the shape of the roller is a

hyperboloid of revolution.

Novel cam mechanisms were found within the unified framework proposed here.

Moreover, it is believed that the mathematical tool of dual numbers is applied to the

lheory of cam mechanisms for the first time, which has proven to ease the synthesis

in this context.

Although lhe. mechanisms discussed in Chapters 2 and 3 have only prismatic or

revolute pairs at their input and output axes, the formulation presented is more

general, i.e., it allows for screw pairs as weil.
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The concept of minimum slidiug bet\l'een cam-follo\l'cr or c,""·mlll'r \l'aS applil'd

to the synthesis of imkxing cam mechanisms (IC"!). lull'n'sting n'sults \l'l'n' obtailll'd

\l'hen three- and four-link leM \l'cre combined iu plauar aud sphl'rica1 layouts, tbat.

lead t.o pure rolling, positive motion and zero pressure iUlgl<' at t.he l'nds alld at. t.he

midpoint. of the follo\l'er st.roke. A novc\mechanism, calb! l'II/CAM, \l'as designed

with these features in the two aforementioned versions, planaI' and spherical.
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Figure 6.1 Maximum pressure angle between planar l'IUCAIH
and mirror-image conjugate cam mechanisms

•

The preliminary design of PRICAM was based on a three-link cam rnechl1nisrn

which, nevertheless, was found to entail sorne disadvantages. In fad, the mechanism

had to be spring-loaded at aIl times in order to main tain the contact hetween carn

and folIower, which introduces dynamic problems, namely, undcsirably low nalural

frequencies. Another disadvantage was that, during the dwel1 phd..~e, the oulput shafl

was not locked. These problems were solved in the final design of PJUCAM with
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•

•

the introduction of an additiona! four-link cam mechanism. Thus, with this com­

biual.ion of tlnee- and four-link mechanisms, called primary and sccondary systems,

respectivciy, positive motion was achieved without springs and positive action was

defined based on the value of the pressure angle. II'!oreover, the PRICAM prototype

is self-Iocking during the dwell phase.

One of the parameters to measure the quality of the transmission of a cam mech­

anism is the pressure angle. Optimum transmission is reached when this angle is zero

and no transmission is possible when this angle is 90·. In this context, the planal'

flR/CAM was compared with an existing indexing cam mechanism, called the mirror­

image conjugate cam mechanism. The overall maximum pressure angle of the formel'

was found to be 35% smaller than the maximum pressure angle of the latter. The

plots of the pressure angle of the two mechanisms are shown in Fig. 6.1.

Bounds on the angle between the output axis and the axis of the roller in the

seconclary system of the spherical PRICAM were established in order to avoid un­

clercutting, the maximum value depending on the design parameters. This result was

stated in Theorem 5.1. Similarly, Theorem 5.2 was stated for the secondary system

of the planar PRICAM.

The software package USYCAMS, an invaluable tool in this research, implements

the synthesis methodology reported here on a Silicon Graphies IRIS 4D/420VGX

workstation.

All the cam profiles shown in the figures of Chapter 3 were generated with the

application of the results presented in Chapters 2 and 3.

6.2 Considerations for Future Work

A few items that we recommend for future research are listed below:

• The stochastic analysis of the elfect of overall error on the output motion of

a cam mechanism, clue to manufacturing and assembly errors, as well as to
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intentional clearances in the joints, warrants r('sl'arch on ils OWIL

• With advanccd CAO systems it is possible to comput" t.he inert.ia pl'Op,'rt.il's of

solid shapes. However, cams are generated as ruled surfaœs, and h,'nc.', show

sorne special features that could be exploited to develop suitahle alp;orit.hms t.o

determine the inertia properties of cams more accurately than wit.h commercial

software;

• Dynamic unbalance is an ullavoidable problem when spatial cam mechanisms

are used, mostly due to the unusual shapes illvolved. The dyuamÎc halancin)!;

of cams calls for further researchi

• The requirements of a certain application can he satisfied hy dilrerent types of

cam mechanisms. To find the optimum type from the point of vicw o[ efficiency

and minimum cost is a challenging problem to be considered ,,-, il continuation

of this research work.
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Appendix A

Dual Numbers

A brief account of dual numbcrs is prcsented hcrc as a '1niek rcferencc [or t.he reader.

Those readers unfarr.ili:if with t' 's tool arc rc[errcd t.o (1r'ang, l!)(i:l, 1!)i4; Yang and

Freudenstein, 1964; Veldkamp, 1976; 80ttcma and Roth, Wi!J) [or a comprehe;nsive

account of this topic.

A dual scalar, vector or matrix quantity is rcprcscnted as t.he cillll o[ a /1I'ù'lIIll'"l'1

and a dual part, the latter beginning with the dual uni/,y (, which has t.he propcrt.y

that f2 =O.

Let â = a +fa' and b= b+fb' he two du..l scalars, with <1, ÎJ, Il' and It bcing ail

real numbers. Equality, addition, multiplication and division arc defincd, l'especlively,

as

â 0.= b~ a = b, a' = b'

â+b = (a+b) +((a' +b')

âb = ab + c(ab' +a'b)

X=~_c(ab';a'b), (b;60)

Furthermore, a Hne [. can be dcfined via the dual vector

ê = e+ cm

(A.Ja)

(A. lb)

(A. le)

(A. Id)

(A.2)



where e7'e = 1 and eTm = O. !Iere, e defines the direction of l, l'hile m the moment

of.c with respect to a sclf-understood point 0, namely,
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m=p X e
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(A.3)

p being the vector directed from 0 to an arbitrary point P of l. Moreover, e and

marc called the primaI and dual parts of ê, respectively. Thus, t.he components of

ê arc defined as the line coordina!es of l (Yang et a!., 1975). Furthermore, the six

components of the two vedors e and m in eq. (A.2) constitute the Plücker coordina!es

of C. An alternative representation of l is given as

r = p + Ae (A.'!)

•
where A is a real number. The components of rare defined as the point coordina!es

of C. The transformation relation between line coordinates and point coordinates is

derived from eq. (A.3), upon cross-multiplying its two sides by vector e , namely,

ex m = ex (p x e)

Expanding the right-hand side of eq.(A.5), one obtains

ex m = p - eTpe

(A.5)

(A.6)

If P is chosen as that [ying closest to the origin, henceforth denoted by Po, of

position vector Po, then, from eq.(A.6),

Now, let II and l2 be, in general, two skew Hnes. Their dual angle is defined as

•

po=exm

and vedor r of eq.(A.4) is given by

r = e x m+ Ae

ÎJ = /1 +Eh

(A.7)

(A.8)

(A.9)
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where V is the angle betwc"n el and e2 and h is the distann' l'''t\l'''l'n Cl and (,. 'l'Ill'

trigonometric functions of v l'an he expresscd ilS (Yang, 1!}7·!; V,·ldbmp. 1!}7li)

sinv = sin II + ,heosll

cos V = l'OS V - ,hsinv

tan v= tan v +fh(! + t.an' Il)

cotv = cotv - f~, (sin v'" 0)
sin'"' II

( :\.I11a)

(A. Illb)

(A. Ille)

(A.llld)

Furthermore, tet :FI and :F2 be two initially coincident coordinat" frames. Assume

that :F2 is rotated through an angle v about its X·axis and translatcd a dist.ance h

along the same axis. Thus, the transformation from :F,- to :FI-coordinates is givcn

by the dual screw matrix shown below:

•
(A.\la)

In other words, Q(v) represents a dual rotation through IÎ abolit the X-axis. Similarly,

the dual rotations through v about the y. and Z·axes arc given by

o
R(v) =

[

COS V

- s~n v 0

(A.llb)

and

['00'
- sin v

:]S(v) = si~ v cos v (A.Ile)

0

respectively.

Dual veetor operations, like multiplication by a (dual) scalar, inner producl, l'ross­

product, etc., have the same rules as those for operations of l'cal vel'tors. 1I0wcvcr,

the norm of a dual vel'tor x=x +EX', al'cording to Veldkamp (1976), is defined as

• (X '" 0) (A.12)



wherc Il . Il denotes Euclidean norm of its vector argument. MoreO\'er, x is called a

unit dual vcclor if Il X 11= 1. Any dual vector can he expresscd as

• Appendix A. Dual Nurnbcrs

X =11 X Il ê
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(A.13)

wherc ê is a unit dual vcetor, and is computed as

. x (x x x") x x
e = ïGIï +f Il x 11 3

(A.14)

Moreover, let il and li he two unit dual vectors, and il he the unit dual vector

with the same direction as the resultant dual vector of the cross product â x li. Thus,

the dual angle hetween â and li is defined as

We present helow a complement to the cross produet of two unit dual vectors for

the particular case when they represent two parallel lines. It is helieved that this

analysis is not given in the literature.

Let the point coordinates of two parallellines he defined as

•
sin ÎJ = il x li . il

cosÎJ=â·1i

(A.15)

(A.16)

li: ri = qi +Ae, i = 1,2 (A.17)

Now, their line-coordinate representations are given as

êi =e+ fmi (A.18)

•

with mi = qi X e. We now have

.Theorem A.l: Let two lines II and l2 passing through points QI and Q2, be

parallel to the unit vector e. Moreover, Jet PI and P2 be the points of li and l2

closest to the origin. Then, the line passing through PI and P2 is perpendicuJar to e,

and hence, to li and l2 .
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b

e
po

e
L...~ __ ~_- -po

o

•
Figure A.l The cemmon perpendicular lo lwo pamllcl lines

Proof: Let Pi be the position vector of Pi. Then, from eq.( A. 7),

Pi = e X mi

Hence

which is obviously perpendicular to c and the theorem follows.

Now, considering Theorem A.l, the line L3 perpendicular to bolh CI and C'l

passing through points PI and P2 of LI and L2' respeclively, as shown in Fig. A.I, is

defined by its vector of point coordinates as

•
where

and

P2 - PI
C3 =

b

Pi = e X mi

(A.I!))

(A.20a)

(A.20b)
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and b =11 P2 - PI II·
Now, the line coordinatcs of 1:.3 are given as

122

(A.21)

Substituting eq.(A.20a) into eq.(A.21), one can readily obtain the dual representation

of 1:.3 as

(A.22)

•

•

Notice that this result cannot be obtained directly from the cross product ê1 x ê2 •
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Appendix B

The Aronhold-Kennedy Theorem

For quick reference, we include here the discussion of the Aronhold-Kcnne<ly Theorcm

in three dimensions, first stated by Beggs (1959), as proposed by Vcldkalllp (1!l76).

The relative screw motion of two rigid bodies becomes rclati vc spherical motion

in dual space. Thus, one can imagine these bodies in dual space as two conccntric

dual unit spheres SI and S2. Dnder the assumption that S2 moves with respcct to

S\, the duai angular velocity is given as

(13.1)

where ê21 is a unit dual vector defining point ?21> and the two cornponents of the

dual scalar W21, W21 and V21> represent, in real space, the signed magnitudes of the

angular velocity and the velocity of the points lying on the screw axis. The velocity

of any point Pof S2 defined by the unit dual vector p is given by

(13.2)

•
It is clear that V21 = 0 if P coincides with ?21' which is known as the pole of the

motion.

Now, the three dual angular velocities of the unit dual spheres SI> S2 and S3 in

relative motion are related as
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cj21

Figure B.l The Aronhold-Kennedy Theorcm

Similarly, the dual velocities of a point are expressed as

Equation (B.3) can also he expressed in the form

12·1

(B.3)

(BA)

(B.5)

where ê;j indicates the three poles ?;j, and W;j are the signed norms of the dual

vectors w;j, defined as

(B.6)

•

As a result of eq.(B.5), the Aronhold-Kennedy Theorem is expressed as (Veldcamp,

1976)

Theorem B.l (Aronhold-Kennedy) The poles Ê'21. Pal and Pa2 of three unit dual

spheres in relative motion lie on the same great circle.

Thus, the Aronhold-Kennedy Theorem defined in the dual space involves pure

rotations, pure translations and general screw motions. Theorem B.l is illustrated in

Fig. B.l.
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Ruled-Surface Geometry

A surface n generated by the motion of a line C, defined as in e'l.(A.'I), Îs called "

ruled surface,! being its generatrix (Struik, 1961). Thns, the position vedo!" of n is

given by

• r(t/J,'\) = p(t/J) + '\e(t/J) (C.l )

where t/J and ,\ are the parameters of n. The curve defined by the points p(,I}) is

called the direetrix of n, and the vectors e(t/J) with origin at the ccntre of " unit

sphere describe the spherical indicatrix of !. Moreover, if p(,p) is a constant, n is il

cone, whereas n is a cylinder if e is a constant.

The striction curve, as discussed in Section 2.3, is given by the position vedor

•

e' . p'
g(t/J) = p - -e

. e' . e'

the prime denoting di!ferentiation with respect to 'p.

Now, the unit normal of n can be derived from eq. (G.!) as

where

125

(C.2)

(C.:!)

(CA)
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ln terrns of cq. (C.I), n(1/J, ,\) bccomcs

(p' + Ae') xe
n = Il u Il

126

(C.5)

At every point of the striction curvc, a trihedron of the unit vectors a, e and e is

dclined and called the Ilatural trihedron. Moreover, a and e, called asymptotic normal

and central normal vectors, respectively, can be expressed in terms of e as (McCarthy

1987b)

-e' x e
a = lim n(,p, A) = Il Il

.\--00 e
e'

e=R

Moreover, the geodesie Frenet equations of the {a, c, e} triad are given by

(C.6)

(C.7)

de/ds = e (C.S)

• de/ds = ,a- e (C.g)

da/ds = -,e (C.IO)

where s represents the arc length of the spherieai indieatrix of e, while, is the geodesic

curvature. The latter is expressed in terms of e and its derivatives with respect to ,p

as

•

exe/·e",=
The positional variation of the trihedron delined by a, c and e is given by

dg/ds = da + Fe

where
p/·exe'

d = Il e' Il'
and

p/·e 1 d(p/.e)
F == rn -rndt Il e' Il'

(C.ll)

(C.12)

(C.13)

(C.14)



Now, the dual spherical radius of curvature of R, 1; = 1'+"'. i~ p;i\,(,11 by (~kCarthy,• Appendix C. Ruled·Surface Gcometry \ ')-.1

1987b)

•

•

where

and the definitions below:

. I/i<
tan p = -:--/.

"'1 "

i< = " + t(J'; - ".1)

-r="'I+t(r-"'I.:.\

,,=JI+"'I~

K="'IF+L.l

"

(C.Ili)

(C.17)

(C.18)

(C.19)
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Appendix D

Displacement Program Functions

The functions describing the rise or return in the displacement program of the syn­

t.hesis of cam mechanisms have been studied extensively in the literature (Rothbart,

1956; Jensen, 1965; 'l'esar and Matthew, 1976; Chen, 1982; Angeles and Lépez-Cajun,

1991). Because of the scope of this thesis, only sorne of the functions of those types

having the property of zero velocity and acceleration at the ends of the rise (or return)

phase are presented here. Moreover, these functions are defined as

T = T(X), o:5 T :5 l, 0:5 x :5 1 (0.1)

D.I Generalized Input-Output Function

•

In the theory presented in Chapters 2 and 3, the dimensions and symbols of the

variables of the input-output functions change according to the type of kinematic

pair of the mechanism to be considered. 'l'wo kinds of pairs have been considered

either for the input or the output motions, namely, revolute or prismatic. A total of

four combinations is achieved, namely, R-R, R-P, P-R and P-P, and are applicable ta

both three- and four-link cam mechanisms. However, ail of them can be regarded as
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"r----------~...,-:=----,

//
/

T 0,' - •••••••••••••••••__ •••••••••••. - ••••••••.••• --- .

••, "

•

Figure 0.1 Normalizcd input-output fuuelioll

Table 0.1 Generalized Input-Output Fuuctioll

Type <p= h= .1: == )"=

R-R 0(1/» ~<P ljJf ~1/> dx/d~} = l/à~}

R-P =3( 1/> ) ~=3 1/>/~1/.' dx/dt/} = l/àl/..
P-R <p( =2) ~<P ='d~=2 clx/cI=2 = 1/~=2
p.p =3(=2) ~=3 =2/~=2 dx/d=2 = 1/ ~=2

one generalized input-output function, namely,

<p(x) = hT(x) (D.211.)

h being the rise of the follower and T the normalized funelion iL' dcfillcd in C'l.( D.l)

and shown in Fig. 0.1. Definitions of <p, h, and x for c11.ch of the fOllr types of the

mechanisms mentioned above are shown in Table D.1. The derival.Ïves of <p(x) MC

taken with respect to 1/> or =2, depending on the type of the input lll(}tion. Thlls, the

chain rule is applied to cp to obtain its first and second derivativcs with respect to the

input variable, and denoted cp' and cp", thereby obtaining

•

, "dTcp = IX-
dx

" 1 12 d2Tcp = IX -
dx2

where x' is defined as in the Table 0.1

(D.211)

(D.2c)



Aprll:ndix D. Di:iplact'IfI(!lIl Pro,t{raru functions• D.2 Cycloidal Funetion

The cycloidal function satisfies the condition of zeru velocity and zero acccleration at

t.he ends. This function and its first and second derivatives are defined hdow:

D.3

1 . )
T = X - -sm:"iiX

2ir
dT
-1 = (1 - cos :ln) 0 ~ x :s: 1
IX

P1 T .)_'.)-12 = ... 1. SU1 ... iTX
IX

Polynomial Functions

(D.3a)

(D.3b)

(D.3c)

•
Ir the rise is represented by a polynomial, then its coefficients are determined from the

conditions to be satisfied. The methodology to determine the polynomial coefficients

can be found in (Dudley, 1948; Angeles and Lapez-Cajun, 1991). Sorne of the solutions

are presented below:

D.3.1 3-4-5 Polynomial

(DAa)

(DAb)

(DAc)

•

D.3.2 4-5-6-7 Polynomial

T = 35x" - 84xs +70xG
- 20x7

dT
dx = 140x3

- 420x4 +420xs - 140xG

,pT
- = 420x2

- 1680x3+ 2100x" - 840xs
dx 2

(D.5a)

(D.5b)

(D.5c)
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1:11

In order to improve the performance of the 1>a.,ic l'un'('S as ddiu('d a1>O\'('. d"si!\II"l's

have tried combinations of them. The aim has heclI 1.0 pl'odu('(' a f,)I\O\\'('" motioll

with bounded jerk. One of these combinations is thc cal\('d t.h" ll'ilfl{'zoid rlllll'tioll,

which is a combinaLion of cubic ,Uld parabolic curves. This t~ï)(" rmm th" poillt. of

vieil' of the maximum value of d~T/dx~, is slight.ly 1>ct.Lel' t.hall the l'ycloidal l'II1'W

('::nen, 1982). From the same point of vieil', an evell bett.er rllndioll \l'as pl'Oposed,

the modified trapezoidal fu..ction (Neklutin, 1959), which replaces t.he cllbic (,1I1'I'''S

by cycloidal cu l'l'es. Thb fundion is presented below, a det.ailed dCl'il'at.ioll or t.his

curve being round in (Tesar and Matthew, 19ï6; Chen, IB8:!).

•
0.4.1 Modified Trapc,oidal Acceleration

T = 0.09724612(4x - ~ sin 411'x)
11'

dT
dx = 0.3889845( 1 - cos 41l'X)

~T
dx2 = 4.888124 sin 411'x

T = 2.444406184x2
- 0.222U3097x +0.00723407

~: = 4.888124x - 0.22203097

~T
dx2 = 4.888124

1
O<x<­

- 8

1 :\
-<x<­
8 - 8

(D.Ga)

(D.lih)

(IHi<:)

(D.Gd)

(fHe)

(D.Gr)

•

T = 1.6110154x - 0.0309544sÏl1(41l'X - 11') - 0.:1055077

b :\ l
dx = 1.6110154 - 0.3889845cos(41l'X -11') 8' ::;:r. < 2

(!3T .
d~2 = 4.888124sin(41l'X ~'11')

( [Hg)

(D.Gh)

( IHi)
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r = I.G! 101!i·lx + 0.0:J009544sin(41l'X - 270) - 0.:1055077 (D.6j)
tir 1 5
-1 = 1.611015-l +0.3889845cos(41l'X - 270) - < x < - (D.6k)
(X :2 - 8

d'r
-1

2
= -·1.88812·lsin(41l'X - 270) (D.61)

IX

r =4.G660!J17x - 2,44406184x2
- 1.2292648

tir
-1 = 4.6660917 - U88124x
cx

CflT
-12 = -4.8li8124
cx

5 7
-<x<­8 - 8

(D.6m)

(D.6n)

(D.60)

•

•

T = 0.611015<1 +0.3889845x +0.03095Hsin(47l'X - :3;r)
h 7
dx = 0.3889845[1 +cos(471'x - 311')] S:s x :s 1

tl2 T
dx2 = -4.888124sin(47l'X - 370)

(D.6p)

(D.6q)

(D.6r)
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Appendix E

CAD-Based Methods. Planar

Applications

• E.l Introduction

•

Graphical methods for the synthesis of cam mechanisms conld he considered ohsolet.e

with present-day computer technology. However, the ever increasing availahiliLy of

CAD systems makes graphical methods of cam synthesis worLh revisit.ing, if in light

of current technology.

In this chapter we revisit graphical methods of cam synL1wsis and propose a

novel CAD-based method. In the realm of traditional graphical rnet.hods (Roth­

bart, 1956; Jensen, 1965; Chen 1982) th(' cam profile is obtained as Lhe Langent cnrve

to a sequence of placements of the geometric entity-circle, line or arhitrary cnrve­

representing the follower. Hence, the accuracy of tI,e profile thus oht.aincd is totally

dependent upon draftsman's skill. In the realm of CAD systems, the skill-dependence

feature is eliminated, but then a problem remains, namely, th'.l digital approximation

of the tangent curve, that is numerically cumbersome. This prohlcm WiL~ overcomc in

the early days of CAD/CAM technology with the introduct:ion of eflvc:lopes (SLrnik,

133



• Appendix E. CAI)·Uased Mclhods. PIanar Applications
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•

•

Figure E.l RHRR mechanism layout

1961; Wilson, Sadlcr and Michels, 1983; Backhouse and .Jones, 1990) that yield the

cam profile coordinatcs directly and hence, eliminates the inaccuracies of tangent­

curve tracing. While the cnvelope method is very reliable and has found cxtensive

acccptance, il is still essentially a numerical method that does not exploit the inter­

active capabilities of CAO systems. This state of affairs prompted us 1.0 propose an

innovation in the rendering of the profile. This innovation consists of finding the con­

tact points between cam and follower, in a totally graphical and interactive fashion

that exploits features available in commercial CAO systems.

The theory presented in Chapters 2 and 3 is the basis of the method presented

hcre. The profile of a threc-link mcchanism is uscd as a rcfcrence for the construction

of a four-link mechanism; in other words, RHR and RHP mechanisms are the two

.' basic groups of the four types of mechanisms discussed here. These four types pertain

to two familics, name1y, the {RHRR, RHHR} family based on RHR mechanisms and

the {RHRP, RIHIP} f:..mily based on RHP mechanisms. Although not presentcd here,

the synthesis of those groups pertaining 1.0 PHR and ppp mechanisms can follow the
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same lIlethodology. \\le assume henceforth that all ~1'OIlH"tri(" l'arallH"tl'rs of th,' (";1\1\

have been either prescribed by au t'xperit'nced cam dt'si~lll'r or dl·tl·l"lllilll'dusiu~ ail

optimization procedure, as described in detai\ in (:\ U~dl'S aud L,il','z·('ajlÎu, 1!Hll \,

Moreover, all procedures discussed hdow can b" rt'adily automatl'd \l'ith th,' ait!

of a CAD system. We have implemented them in AutoC.\ \)TM.

E.2 RHRR Mechanisms

•

An illustration of the cam mechanism presented in this sl'ction is showll in Fig. :1.(;.

The parameters given to start the design with arc shawn in Fi~. E.la, \l'hl'rl' ", is thl'

distance between the centres of the fixed revo\utes, "" the distance bt'tWI'I'n the fixed

and moving revolute centres of the follower, "" the radius of tht' roll"r. '."u the ang\t'

of the follower corresponding to the lowest position of the follower and Du/! is the rise

of the follower .

Once the parameters mentioned above arc fixed, the method st.arts by rotating

the segment AB through an angle !/Jo + è>.!/Ji2 so that the segment CD is l'Malld to

t.he ordinate axis of the displacement coordinate frame, as shown in Fig. l~.l b. Thus,

the displacement program is based on the length of segment CD, uamdy, the chard

of the arc with radius a3 subtending angle DBe. Then, as the follower rotates, the

projections of the successive positions of centre of the l'olier Ollto segmellt C J) arc

represented by h, i.e.,

(E.! )

•

where hg is the length of the aforementioned chord, to be determined eithcr gmphieally

or numel'Îcally, and is evaluated as

(E.2)

while T is the normalized function defined as in eg.(D.I) .
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1
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Figure E.2 Difference between tP9 and tP,
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•
It is pointed out that, with the application of eq.(E.2), the actual angle of dis­

placement of the follower, </>" and the angle of displacement obtained graphically </>9'

are identical only at the ends of the follower motion and at the middle point of this

motion. In any other position there is a dilference, which, when normalized with

respect to C::..</>, is denoted by ç, and measures the relative error involved, i.e.,

•

Moreover,

</>, = C::..</>T

C::..</> . -1 h
rf>9 = - - sm -

2 a3

where il, as shown in Fig. E.2, is given as

Now, combining eqs.(E.2, EA & E.S) with eq.(E.3), the latter readily leads to

Ç(T) = ~ - T __1_ sin- I [(1- ?T)sin C::..</>]
2 M ~ 2

(E.3)

(EAa)

(EAb)

(E.S)

(E.B)
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Figure E.3 Plot of ç",.x vs. Li'"

•
The maximum value of ç, for a given value of Li"', can be cOlllpllted its ÇM =Ç(TM),

where TM is obtained from the equation dç/dT = O. For exalllple, for a cycloidal

input-output motion, TM is given as

1 l
TM = -±--

2 2!1,p (E.7)

•

Thus, with !1,p = 30· for example, ÇM = 0.00221. Moreover, a plot of ÇM vs. Li4'

is shown in Fig. E.3. The magnitude of ÇM is apparently negligible for the purposes of

this chapter, and hence, eq.(E.2) can be considered as an acceptable approximation.

Now, the coordinate axes b2 and 1/J are located u:; shown in Fig. B.I h, where (,2

is defined in Chapter 3 as the distance from the axis of rotation of (he cam to the

contact Hne between cam and follower of the RnR cam mechanism, and is recalled

below for quick reference:
,p'

b2 = --al (:1.44)
,p' - l

Next, the cam is considered fixed and the frame of the mechanism is rotated in the

opposite direction of the assumeed rotation of the cam. Thus, for 'P = 'P", the points

corresponding to h and b2 are projectedonto the arc A and the tille C, respectivcly,
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as shown in Fig. EA. Then, the location of C' and E for t/J5 arc rcadily obtained,

where C' and E are points of 1.13 and 132 , respectively.

Further, we determine F, the contact between cam and roller, iL~ the intersection

of the drcle with centre C' and radius a4 with segment EC', as indicated in Fig. EA.

This procedure is repeated for each value '/li, where i = 0, l, ... , n, and '1 is the

number of subdivisions of the full rotation of the cam. The profile thns resnlling is

the locus of point F, as shawn in Fig. E.5.

E.3 RHHR Mechanisms

•

The typ(' of mechanism presented here is shawn in Fig. 3.12. As stated in Chapte~ a,
the synthesis of RHHR mechanisms is similar ta the synthesis of RI-! RH. rnechanisms,

with only two important difFerences: a) the distance a3 is variable and b) the pressure

angle is identically zero, i.e., segment EC, is always perpendicular to segment ne,

as shawn in Fig. E.6a.
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Figure E.7 Contact point for 1/J = 1/J. of the RHHR mechanism

The reference value of a3 is a30 == al cos rPo, and is obtained as shown in Fig. E.6a.

Thus, hg is computcd as

(E.8)

Shown in Fig. E.7 is the procedure to find the cam-follower contact point for

1/J = 1/J., wherc a3 is variable. The profile thus resulting is designed with zero offset,

Le., with a'l = 0, as shown in Fig. E.8.

If a'i l' 0, the profile is determined from that obtained with zero offset and auxil­

iary circles of radius a4 as discussed in Section 3.4.1. The intersection of these circles

with the dashed lines gives the points of the desired profile, as shown in Fig. E.9.
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E.4 RHRP Mechanisms

The mechanisms to be discussed in this section, with al = -'lr/2, is shown in Fig. 3.7,

the given parameters being shown in Fig. E.lO. The ordinates of the two coordinate

frames are parallel to the direction of motion of the follower. Moreover, according to

p.q.(2.21d), b2 = z~.

Once the plots of Z3 and z~ are obtained either graphically or numerically, their

ordinates are projected onto line r., as shown in Fig. E.n for the value of tP = tP5'

The i-points from Z3 are rotated through the angle tPi, while the i-points from z~, are

rotated through the angle tPi +'Ir/2. Rence, the pitch curve of the RHRP mechanism

and the cam profile of the RRP mechanism, respectively, are readily obtained.

The points of the cam profile are determined as the intersections of the circles of

radius a~ with segment EG', the profile thus obtained being shown in Fig. E.12.
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E.5 RHHP Mechanisms

The procedure to plot the cam profile points for the RHP mechanism is the same as

that iollowed in Section EA, the cam points of the RHHP mechanism being obtained

likewise. The only difference here is that a3 = 0 for t/1 = 0, as shown in Fig. E.13,

and, as discussed in Chapter 3, a3 changes so that the pressure angle is zero; in other

words, segment EF is always perpendicular to the face of the follower, il:; shown in

Fig. E.1<1 for t/1 = t/15' The profile obtained is shown in Fig. E.15.
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