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ABSTRACT

This thesis examines the planar dynamics of flexible

pipes conveying fluid. The nonlinear equations of motion are
derived for cantilevered pipes and for simply-supported pipes,
using Hamilton's principle and the force balance method. The

resulting equations are compared with previcus derivations.

The 1linearized system 1is first studied, to get the
critical parameters corresponding to the stability boundaries, i.e.
the 1local bifurcations. Then, the nonlinear equations are
investigated, both analytically and numerically. Centre manifold,
normal form and bifurcation theories are used to obtain complete
bifurcation sets which provide the qualitative dynamics of the
system. It is shown that chaotic motions may arise under
perturbation, or when the motions are constrained by motion-
limiting restraints, through calculations of the Lyapunov exponents
and the construction of phase portraits, bifurcation diagrams and
power spectra. This modeling is in close agreement with
experimental observations.
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SOMMAIRE

Cette these traite de la dynamique plane d'un tube
flexible parcouru par un fluide. Les equations non lineaires sont
dérivees dans le cas d'un tube encastre-libre ou fixe aux deux
extrémités, par 1le princire d'Hamilton et 1le principe de 1la
quantité de mouvement, puis comparees a des équations derivées
anterieurement. Le systeme lineaire est tout d'abord examine afin
de trouver les differents parametres critiques. Ensuite, les
équations non 1linéaires sont etudiees analytiquement et
numériquement. Les diverses theories wutilisees (varietes
centrales, formes normales et bifurcations) permettent d'obtenir la
dynamique complete du systeme.

On a pu démontrer l'existence d'oscillations chaotiques
pour le systeme perturbé ou soumis a des contraintes non lineaires
en calculant les exposants de Lyapunov et en construisant des
diagrammes de phase, de bifurcation et de puissance spectrale. La
modelisation utilisée donne de bons résultats par rapport aux
observations experimentales.
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CHAPTER I
INTRODUCTION

Over the last two decades, scientists and
mathematicians have developed new tools in the field of
dynamics, especially in the field of nonlinear dynamics. The
study of relatively simple nonlinear oscillators (such as
described by van der Pcl's equation or Duffing's equation) and
of simple sets of nnnlinear equations has demonstrated that
very complex, "rich" dynamical behaviour is possible
(Guckenheimer and Holmes 1983); for these simple equations at
least, the dynamics are now fairly well understood, and the
implications of the complex behaviour observed have been
elucidated. In the domain of fluid dynamics, nonlinearity is
commonplace, and in many cases essential in the proper
description of the phenomena involved; this domain, thus,
provides a wide spectrum of problems in which these new
dynamical tools can be applied.

Of particular interest, especially to engineers, is
the domain of fluid-structure interaction, in which system
behaviour is often complicated and difficult to understand
(Paidoussis 1987). The model of a tube conveying fluid has
become a paradigm in the study of fluid-structure interaction,
as most of the so-called fluidelastic instabilities can be
illustrated and studied both theoretically and experimentally
with this system. Divergence and flutter were the most common
types of instability in this physically simple system. However
with the new tools of the nonlinear dynamics and the
understanding of those simple oscillators, it is now possible
to gain a more profound understanding of complex phenomena.

In the past, most of the theoretical studies were
concerned with stability and were based on linearized
analytical models. Bourrieres (1939) was one of the first to
study the dynamics of flexible pipes conveying fluid. The
interest in vibration of pipelines served as the initial
inspiration to many subsequent studies, such as those by
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Housrer (1952), Niordson (1953) and Benjamin (1961).

The particularly interesting problem of the dynamics
of a cantilevered pipe conveying fluid was studied further by
Gregory and Paildoussis (1966) and Paidoussis (1970), in the
case of steady flow, and by Paidoussis and Issid (1974) for
flow with a pulsating component; these references are
representative of what has become an extensive body of
literature. Excellent reviews and bibliographical surveys can
be found in Paidoussis and Issid (1974) and Paidoussis (1987),
especially for the study of the linearized equations. All
these studies provided many results and explanations,
especially with regard to the mechanism of instability. It is
well known that the cantilevered pipe conveying fluid, a
nonconservative system, loses stability by flutter - single
degree of freedom flutter, known as a Hopf bifurcation.
Physically, this instability occurs when the energy extracted
by the pipe from the flow becomes more important than the
energy lost by the pipe through the Coriolis force (a pipe-
velocity-dependent force, effectively acting like damping).

For pipes fixed at both ends, the destabilizing
centrifuyal force, which acts as a compressive axial load, may
overcome the restoring flexural force for sufficiently large
flow velocity, and 1lead to divergence, another type of

instability (Housner 1952). Divergence is, of course, the
expected form of instability since the system, in this case,
is conservative. Paidoussis and Issid (1974) proved that

according to linear theory, coupled-mode flutter may follow
divergence, at a higher flow velocity. However, nonlinear
analyses by Holmes (1978) and Ch'ng (1978) showed that this
was not possible; in other words, steady-state oscillatory
motions are not possible.

Over the past 15 years, interest has grown in the
nonlinear dynamical aspects of the problem of a pipe conveying
fluid; this involves more interesting but also more complex
analysis and will be the main subject of this study. Firstly,
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a nonlinear analysis has the advantage of being able to
predict the behaviour of the system beyond the critical
values, while linear models predict exponential increase in
amplitude after bifurcation. Experimental evidence (Dodds and
Runyan 1965 and Paidoussis 1966) suggests that limit-cycle
motion or a stable buckled state arise, so that the inclusion
of nonlinear contributions is or particular interest, in order
to improve agreement between thecretical prediction and
experimental observation. Secondly, the nonlinear approach
enables classification in a parameter space of the different
possible types of qualitative behaviour of the system, by
generating so-called bifurcation diagrams in the new
terminology of dynamics. Finally, although Roussalet and
Herrmann's work (1977, 1981), as well as some experimental
work (Paidoussis, 1970), proved that the system was only
weakly nonlinear, in some cases very interesting features were
observed (Sethna and Shaw 1987, Bajaj 1987, Li and Paidoussis
1990).

For inextensible cantilevered pipes, a number of
papers presenting a nonlinear analysis are of particular
interest, anlil will be discussed briefly in what follows.

Bourrieres (1939), more than fifty years ago, was
the first to derive the nonlinear equations of the planar
motion. He considered the force balance method and wrote down
the full and exact nonlinear relationships, 1like the
exproassion of the curvature for example. "Unfortunately", he
then proceeded to simplify the system by linearization to
obtain analytically some very interesting results, without
undertaking any nonlinear analysis of the system. Although he
could not find the critical flow velocity, he explained many
characteristics of the systemn.

Subsequent research on the nonlinear dynamics of
this system has been conducted by Rousselet and Herrmann
(1977, 1981). They derived the equations in two different
ways, the force balance and the energy methods, in order to
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find a set of equations which could be considered exact.
Although it was not stated explicitly, it is important to note
the similarity of their equations with Bourrieres' work, in
the force balance method. It is only the unusual notation
(introduction of an angle 8) that makes their work appear very
different. Their derivation of Hamilton's principle for
system of changing mass, however, is original, as they use a
control volume approach in order to take into account the
kinetic energy of the moving fluid. Unfortunately, one little
mistake in the interconnection of certain terms led them to an
equation that was partially wrong, but their general equation
(before the interconnection) and the logic of their derivation
is irreproachable. Moreover, because they took into account
the friction force acting between the fluid and the deformed
pipe and the resultant nonlinear pressure loss, they derived
another equation for the fluid itself.

Another school, led essentially by Sethna, also
tried to derive the general nonlinear equations by following
a different approach. Lundgren, Sethna and Bajaj (1979)
derived a set of integrodifferential equations which appears
to be absolutely correct. No major approximation was made,
except the assumption of 2zero dgravity effects (which is
perfectly valid for horizontal pipes and motions in a
horizontal plane in any case), making the derivation complete.
They kept, like Bourrieres, the two equations in a general
form without interconnecting them. These equations were also
used by Bajaj et al. (1980), Edelstein et al. (1986) and by
Steindl and Troger (1988). Lundgren et al. (1979) studied a
pipe fitted with an inclined terminal nczzle, causing
sinusoidal static deformation of the tube obtained through the
nonlinear equations. Bajaj et al. (1980), like Rousselet and
Herrmann, considered a parameter related to the pressure loss
of the pipe. Using centre manifold theory and the method of
averaging, they studied the nonlinear dynamics of a
cantilevered pipe conveying fluid. After finding the critical
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flow velocity, which was not an easy task, their major
contribution was to reconstruct the periodic solution after
the bifurcation. This was done by following the fundamental
methods developed earlier by Chow and Mallet-Paret (1977) and
also by Joseph and Sattinger (1972). It was also found that
depending on the pressure loss in the pipe, either sub- or
super-critical bifurcations may occur. Steindl and Troger
(1988) extended their work by adding a rotationally symmetric
elastic support in order to get even more complicated
situations for loss of stability. Using centre manifold and
normal form theories, they completed the bifurcation diagrams.

Other researchers have also studied the case of a
pipe fixed at both ends. Thurman and Mote (1969) were mainly
concerried with the oscillations of bands of moving materials,
such as saw blades or conveyor belts, which are in the same
general dynamical family as pipes supported at both ends. The
centreline, in this case, is not considered inextensible
anymore, so that the essential nonlinearity is associated with
the axial tube elongation and the ext:nsion-induced tension in
the tube, both of which are dependent on lateral deformation.
All the other relationships (such as the moment/curvature for
example) were assumed to be linear. Their major results,
obtained by the Krylov-Bogoliubov method (Minorsky 1962) show
the effects of the nonlinear terms on the fundamental period
of oscillation.

Holmes (1977) was one of the first to use the tools
of modern nonlinear dynamics in the study of a pipe conveying
fluid with both ends supported. The only nonlinear term was
associated with the deflection-induced tension in the pipe
that he added to the linear equation derived by Paidoussis and
Issid (1974). This is explained by the fact that his work
took place at an early stage in the research of nonlinearities
for such system. After discretization of the equation, Holmes
was able to find many characteristics of the system, and he

discussed the existence of local, as well as global
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bifurcations. He also studied the panel flutter problen,
which is qualitatively similar to that of a cantilevered pipe
conveying fluid (loss of stability, via a Hepf bifurcation).
Finally, Holmes (1978) proved that sustained flutter motion is
impossible with the equations used for pipes with both ends
supported, by studying the local and global stability of the
equilibrium positions adopted after the first instability.

Namachchivaya and Tien (1989) are among the last to
deal with nnnlinear behaviour of supported pipes conveying
pulsatile fluid. Their equations suffer from certain
misunderstandings, especially of velocity-dependent terus.
In‘eed, their fluid velocity, their Hamilton's principle used
in its 1linear form and their definition of the axial
contraction are incompatible. Consequently, no nonlinear term
proportional to velocity is present. Moreover, some nonlinear
terms due to axial strain are missing. However, they found
some interesting bifurcations near the subharmonic and the
combination resonances, using a method of averaging.

The interconnections and relative interdependence of
all these studies is not so obvious, so that it is difficult
to reach a final statement in the equation of a pipe conveying
fluid. The method, the notation and the progress in each
derivation are, most of the time, completely different, even
though similarities between some papers can be found.
Furthermore, none of the "schools" compared their nonlinear
equations to those of others. Consequently, one of the first
tasks in this thesis will be to rederive the equations of
motion (Chapter II) and compare them with previous derivations
(Chapter III).

The study of chaos, usually associated with strong
nonlinearities, has become more and more popular in recent
dynamics research. This led Paidoussis and Moon (1988) and
Paidoussis et al. (1989, 1990) to introduce some
nonlinearities by motion-limiting constraints; similar
considerations led Tang and Dowell (1988) to use a pipe
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subjected to strong nonlinear forces due to two equi-spaced
permanent magnets on either side near the lower tip of the
pipe. In all those cases, experiments as well as theoretical
results indicate that there exist regions of chaos beyond the
Hopf bifurcation. Chaotic responses were found to occur after
the instability of the limit cycle followed by a cascade of
period-doubling bifurcations. This is one of the well-known
routes to chaos developed by Feigenbaum (1983), but not the
only one.

The perturbaticn of a homoclinic orbit leading to a
"horse-shoe" scenario can also be encountered. Fundamentally,
this has been explained by Smale (1963, 1967) and is treated
in detail in Guckenheimer and Holmes (1983) and in Devaney
(1987), and has been applied in our particular case by Li and
Paidoussis (1990). In the simplest case, i.e. a four
dimensional approximation, Li and Paidoussis found the
conditions (known as the Double Degeneracy Conditions (DDC))
for chaos to occur. Steindl and Troger (1988) also give an
example and some explanations about those conditions.
Physically, such conditions occur when two types of
instabilities arise simultaneously. This phenomenon was
observed by Sugiyama et al. (1985). They added a linear
spring at a point along the pipe and found multiple
characteristics of stability in the transitional region.
Indeed, during the transition between one instability and the
other, the system can, in some cases, become subject to
chaotic - or unpredictable - responses. Consequently,
particular attention will be paid to such cases.

This study aims to clarify all these precepts, which
will be summarized, discussed and used.

As the system is of an infinite number of degrees of
freedom, a crucial choice has to be made at the very beginning
of the study: to discretize the governing equations or not.
The "well-known" linear equation of motion of a cantilevered

pipe conveying fluid (Paidoussis and Issid 1974) is given by




8

(see Fig.1l.1] and also Chapter II for the significance of the
terms)

EIY//// + [MU?- ((M+m) g—MU) (L-x)] _V”

(1.1)
+2MUY + (M+m) gy’ + (M+m) VY - 0,

with ( )' being the derivative with respect to x , and ( )
being the derivative with respect to time t.

Although the equation of motion is a homogeneous
partial differential equation (PDE), it is still difficult to
solve for exact solutions since the coefficient term
explicilty depends on x. However, with a few assumptions
(steady flow, dU/dt = 0, and neglecting gravity terms), the
equation becomes much simpler:

EIy"" + MU?y” + 2MUy’ + (M+m)y = 0. (1.2)

By transforming this into an eigenvalue problem, the stability
conditions can be found quite easily. This has been done by
Gregory and Paidoussis (1966), and Rousselet and Herrmann
(1977), for instance. Holmes and Marsden have been the only
ones dealing with both a finite and an infinite dimensional
analysis (Holmes 1977; Holmes and Marsden 1978), and their
contribution is of major importance. For the panel flutter
problem in the infinite dimensional analysis, they showed how
a partial differential equation (PDE) could be recast as an
ordinary differential equation (ODE) on a suitable function
space, and introduced the centre manifold theory (Marsden and
McCracken 1976; Carr 1981) in order to study the dynamics on
a finite dimensional space without 1loss of qualitative
information. Holmes' finite dimensional analysis consists of
the Galerkin projection and a modal truncation, from which the
PDEs are recast into a set of ODEs (Holmes 1977). For the
panel flutter problem, a proof, demonstrating the fact that
the flow defined by the Galerkin's approximation converges to
the flow of the full nonlinear PDEs, is given. Unfortunately,
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such a proof does not provide an approximation of the error
when n is finite. This method is also used by Paidoussis
(1970) - see Paidoussis and co-workers (1974, 1990).

In Chapter IV, the linearized equations for the case
of a two-mode-model approximation are studied extensively.
The critical parameters corresponding to the stability
boundaries are found.

Depending on the eigenvalues of the linear matrix,
three different types of instability may occur: divergence,
flutter or concurrent divergence and flutter. In terms of
dynamics, those points correspond to a pitchfork bifurcation
(for systems with symmetry), a Hopf bifurcation and double
degeneracy conditions (Langford 1983). The boundary
conditions are investigated through Routh's criteria (Routh
1960), and the results found are checked through a direct
eigenvalue analysis for certain representative parameters.

In Chapter V, the nonlinear equations are
investigated both numerically and analytically. First, the
existence and the stability of the new equilibrium positions
are studied. Then, the qualitative dynamics of the system
near all the degenerate points are examined using the
bifurcation theory. For each degeneracy, the dimension of the
system is reduced with use of the centre manifold theory, and
the corresponding subsystem on the centre manifold is used to
obtain the qualitative dynamical features. In order to
simplify the equations on this subsystem, the normal form
theory and the method of averaging are introduced.

The normal forms enable the detection and a simple
explanation of complicated dynamics (such as the dynamics
involving global bifurcations) and, hence, represent a
powerful technique.

The existence of chaos near the doubly-degenerate
fixed points is investigated, by adding a small perturbation
on the flow velocity (pulsatile component) through the

calculation of the Lyapunov exponents and the construction of
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phase portraits, bifurcation diagrams and power spectra.

Finally, the dynamics of the cantilevered pipe
constrained by motion-limiting restraints are examined.
Chaotic regions are found to exist in the case of the
autonomous system (no pulsatile flow velocity), and the route
to chaos is shown to be via period-doubling bifurcations.
With the inclusion of the inherent nonlinearities of the pipe
in the equations of motion, the theoretical modeling gives
very good agreement, qualitatively and quantitatively, with
experimental observations.

This study aims to describe the fascinating
behaviour of the cantilevered pipe conveying fluid by
introducing and using all the new concepts of the nonlinear
dynamics developed in the last few years. It also aims to
discuss, clarify and prove the existence of complicated
motions, such as chaotic oscillations, in this rather simple
physical systenmn.
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CHAPTER IT
EQUATIONS OF MOTION OF A PIPE CONVEYING FLUID

In this chapter, the general equations of a pipe
conveying fluid and moving in a plane are derived. The
classical theory of elasticity treats problems in which
displacement and its derivatives are small. However, in the
case treated here, the pipe may undergo large displacements,
which will give rise to nonlinear terms. As was mentioned in
the Introduction, and as will be discussed in the next
chapter, a number of researchers have already tackled this
problem. Nevertheless, the notation and the method used, as
well as the extent to which the task was carried out, were
rarely the same. Thus, it was decided to rederive the
equations, in order to clarify some concepts and to obtain a
set of equations which could be considered as complete as
possible and error-free.

Before deriving the equations, some important
concepts will first be introduced. Then, the equations will
be derived using two different methods: the energy method,
based on Hamilton's principle, and the force-balance method,
generally considered to be simpler. Finally, the equation
found will be transformed into its "standard" form by a
perturbation method and into a set of ordinary differential
equations (ODEs) by means of Galerkin method. In the
derivation, the two cases, those of a cantilevered pipe and of

a pipe fixed at both ends, have been separated completely.

2.1 ASSUMPTIONS

Here are the basic assumptions made for the pipe and
the fluid.
- The fluid is incompressible.
- The velocity profile of the fluid is uniform
(plug-flow approximation for a turbulent-flow
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profile), but a small oscillatory component
may be superimposed on the mean flow.

- The diameter of the pipe is smell compared to
its length, so that the pipe behaves like a
Euler-Bernoulli beanmn.

- The motion is planar.

- The deflections of the pipe are large, but the
strains are small.

- Rotatory inertia and shear deformation are
neglected.

- In the case of a cantilevered pipe, the pipe

centreline is inextensible.
2.2 INTRODUCTION OF SOME BASIC CONCEPTS

2.2.1 Notation

In elasticity, and more generally in continuum
mechanics, in order to describe the position of material
pcints, one usually has the choice between two sets of
coordinate systems: one for the undeformed body and one for
the deformed body. The deformation of a point is described by
the relation of the coordinates of the same material point in
the undeformed and deformed states (Eringen 1967). In the
usual terminology, for a three-dimensional problem, X,
representing the position of a material point P 1in its
original state, stands for material or Lagrangian coordinates;
X, representing the position of the same material point P in
the deformed state, stands for the spatial or Eulerian
coordinates. The motion can, therefore, be described either
in terms of

Xk-Xk(Xl,XZ,X:” t) ’
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or in terms of

Xk-Xk (Xl, XZ, X3l t) ’

t being the time'.

The deformation gradients, deformation tensors,
strain tensors and displacement vectors can then be expressed
in either set of coordinates. In the infinitesimal
deformation theory, the distinction between the Lagrangian and
Eulerian strains disappears (Eringen 1967). However, the
distinction absolutely must be made when nonlinear
relationships are sought.

In elasticity, (x, y, 2) are usually used to
represent the location of a material point in an elastic
deformable body, and (u, v, w) correspond to the displacements
of the same material point. For a slender pipe with its
initially undeformed state along the x-axis, y 1is then
identical to the displacement v. The coordinate of a point
always refers to the undeformed body which is represented by
X. A point can also be represented by s, the curvilinear
coordinate along the pipe. A schematic diagram for the
physical system, as well as for the coordinates used, is given
in Fig.2.1%. The pipe is assumed to be initially lying along
the X-axis and oscillates in the (x,y) plane. Consequently,
the following relationships will hold

x=-X+Uu,
(2.1)

y=Y+v.

' It is noted that the same symbols in the equations appear in
italics, while in the text, they appear in Roman script.

2 The figures are numbered according to chapter; thus Fig.2.1
is the first figure associated with Chapter II. These are the main
figures, and they are found together after the text in this thesis.
Figures II(a),(b) etc. are small schematic figures inserted in the
text.
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v 2.2.2 Inextensibility condition
In the case of a clamped-free pipe, one may assume
the pipe to be inextensible. This condition of inextensi-

bility is very important and will thus be detailed here.
Y

Y
Ql
Z P}
P
X
X Figure II(a)
Let P and Q be two longitudinally-separated points
on the pipe, as shown in Figure II(a); they are defined in
the original (undeformed) coordinates (X, Y, 2). After

transformation to the deformed-state coordinates, P - P' and

Q - Q'. Let ds0 be the distance between P and Q, and ds the
distance between P'and Q'; thus,

P(X, Y, Z), O(x+dX, Y+dY, Z+dZ), dsi - dx* + dY? + dz?,

P(x, y, z), Q(x+dx, y+dy, z+dz), ds? = dx® + dy? + dz2.

(2.2)
For the sake of simplicity, for a two-dimensional problem
(2=0) , one obtains
ds? - ds? = dx? + dy? - dx® - av?.
If X is the long axis of symmetry of the pipe, then Y = 0
(slender rod), and one can write

ds?-ds,? = dx? + dy? - dx?

(2.3)
dx, , dy vz _ X2
( dX) + dX) 1 )

s
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For an inextensible pipe, ds? = dsﬁ by definition;
hence,

<—g’}—§)2 + (%)2 - 1. (2.4)

Also, in this case, dX is equivalent to ds, as they
both represent an infinitesimal distance in the undeformed

body. Hence,

dx = ds, (2.5)
and
ox , 2 oy 2 _
(3-5) + <T‘-)'s") 1. (2.6)

This relationship is illustrated in Figure II(b).

y (s+ds)
ds
x(s), y(s) X (s+ds)
Figure II(b)
If the element was extensible, then after

deformation, its deformed length would be longer or shorter
than its original length ds, i.e. (dx)? + (dy)? > or < (ds)?.
The equality is valid only for the inextensible case, as

ds® = (x(s+ds)-x(s))? + (y(s+ds)-y(s))?,
or

2 ( OX 2, dy 2
ds (asds) +(asds) .
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Introducing the displacements (u,v), as defined in (2.1), the
following two important relationships are obtained:

ox

(3

)2+< )-1, <1+g”)2+<g—v -1, (2.7)

2.2.3 Expression for curvature

An exact expression for the curvature k¥ is useful in
both the force balance and the energy method, and is thus
presented here. Depending on the choice of the coordinate
system, the expression for x varies.

Mathematically speaking, x is defined by

b= EL A,
ds?

-
where g is the normal unit vector and b the binormal; hence,

6x 62y)2_ (2.8)

ds?

as2

For more detail and more definitions, see Appendix 1. For a
pipe the centreline of which is considered inextensible, the
inextensibility condition leads to

o’y
2
PO - S (2.9)
_(9r,?
1 (6s)

Note that for a curve defined by y(x) rather than y(s)
(Eulerian description), one has the familiar expression of
curvature as follows

&y
ox? . (2.10)

K=

23
(1+(ax))
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care must be taken as which expression for x should be used,
depending on the coordinate system in which the system

dynamics is described.

2.3 EQUATIONS OF MOTION BASED ON THE ENERGY METHOD FOR A
CANTILEVERED PIPE

2.3.1 Hamilton's principle

The energy method is based on Hamilton's principle,
written usually as

ty

L
- 2.11
6‘[Ldt+.[6Wdt 0, ( )

where L is the Lagrangian of the system (L =T, + T, - V, - V,
T, and V, being the kinetic and potential energies associated
with the pipe, and T, and V, the corresponding quantities for
the enclosed fluid), and where 8W is the virtual work due to
forces not included in the Lagrangian.

However, this principle is only valid for closed
systems, such as systems of particles and rigid bodies where
there is no mass flux in or out of the system. Thus, an
extended form of Hamilton's principle had to be developed. In
the absence of dissipative forces (8W = 0), the statement of

the appropriate form of Hamilton's principle is

t2

t; -
oR
bch dt = ![MU(-EHE).GI?J dt, (2.12)

where ﬂ'and'?'represent the position vector and the tangential
unit vector at the free end of the pipe. This was done by
Benjamin (1961) in the case of an Euler-Bernoulli beam
conveying fluid. It was also rederived in a more general way
by MclIver (1973) who considered systems of changing mass.
The terms proportional to MU on the right-hand side
of (2.12) are related to the energy accumulated or rejected by
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the end of the tube. 1In other words, the right-hand side of
(2.12) can be viewed as the virtual momentum transport across
the open surface at the end of the pipe. As was elucidated by
Benjamin (1961), this term is also directly related to the
mechanism of instability; indeed, he proved that

tl
AW - - fMU<1éZ+u?.é)dc
0

represents the energy gained by the pipe. If the pipe is
fixed at both ends, then AW = 0 (the system is conservative),
but if one end is free to move, AW # 0, the system becomes
nonconservative (Paidoussis 1970). When U is small, it is
clear that AW < 0, which means that the system is stable
(effect of the Coriolis force). However, for positive and
sufficiently large U, AW might become pusitive, i.e. energy is
extracted from the flow, and the system becomes unstable.

2.3.2 Order of magnitude considerations
Though the deflection of the pipe can be considered

as large, an order of magnitude analysis may nevertheless be
usefully undertaken. y or Vv corresponds to the lateral
displacement which can still be expressed as "small" by
writing

y = 0(€). (2.14)
Looking for 1large deflection motions means that, in the
equation, terms of higher order than the linear ones have to
be kept. Consequently, and because of the symmetry of the
system itself, the nonlinear equations will necessarily be of
the third order, which means that terms of order O(e®) have to
be present in the equations. However, the variational
technique always requires one order higher than the one
sought, so that all the expressions under the integrand have
to be at least of the fourth order 0(e*)! Therefore, the
different expressions, V and T for example, have to be exact
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to O(e*) before any simplification can be undertaken. So,
this method is a little more complicated than the force
balance method, but it still remains powerful and will

therefore be used.

2.3.3 Strain enerqy
It is very important to define an exact form of the

strain energy in the case of large deflections, without
simplifying terms of order O(e‘). This problem was solved by
Stoker (1968), with only one major (but not drastic)
assumption: the strain is small even though the deflection
can be large. He proved that in this case, "the deformation
in the neighborhood of each point can be identified with a
deformation to which the 1linear theory 1is applicable,
providing a rational analytic basis for adopting Hooke's
stress-strain relations". His analysis finally led to

L
v - gf[Aehr(m)zKZ] dx, (2.15)
0

where X represents the Lagrangian coordinate, A the cross-
sectional area, I the moment of inertia and € the strain. 1In
the case of a cantilevered pipe, assumed inextensible, € = 0,
so that

L L
_ EIf 2 .o _ EI[ .
\4 -??o x¢ dx -zrl.x ds. (2.16)

The expression of the curvature itself has been given in
Section 2.2.

2.3.4 The gravitational energy
In general, the gravitational energy depends on the

distribution of mass (Fung 1969), and is written as
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G - f pd (x) dv,

where ¢ is the gravitational potential per unit mass. In the
important case of a uniform gravitational field, it becomes

G =~ f pgx dv,

where g is the gravitational acceleration and x is a distance
measured from a certain plane in a direction opposite to the
gravitational field.
Consequently, with the notation used in this thesis,
L
G = - (m+ M gfxds,- (2.17)
0
or with the (u, v) notation, the gravitational energy is
L
G - - (m+mgf (X+u) dx. (2.18)
0
2.3.5 Kinetic energy
The total kinetic energy of the system is the sum of

the kinetic energy of the pipe, Tp plus the kinetic energy of
the fluid, T,, defined by

L
- m 2 2.19
T, zl'Vb ds, ( )
and

L
T, - —lz‘-ff V2 ds. (2.20)
0
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As the position of the pipe is defined by

7= xi+y] or f = (X+u)i+vy,

by definition, the velocity of the pipe is
V, = —g—‘z - xi+yj or ui+vy. (2.21)
For a fluid element, the relative velocity with

respect to the pipe has to be taken into account, i.e.

7 being a unit vector, which may be expressed as
(L+u) I+v/T

x'Ivy'T
- X2V I or

/xl2+y/2 \/(1+U/)2+V/2

in which (and henceforth) primes denote derivatives with
respect to s. With the inextensibility condition, this
simplifies to
T = xivy!'T = (1+u’) T+v'7.
Consequently,
ﬁ;-(xflyj) + U (X'T+y'7)
(2.22)
- -a% U—aa—) (xI+y7),
or
= Dr
Ve = —,
F Dt

where D/Dt is the material derivative of the fluid element.
the accelerations of the pipe and of the fluid

By analogy,

respectively,

are,
Df (2.23)

" ezt T o




|

Hence,
L
T, = ’—Z"f (R2+y?) ds,
o]
and
L
T, - l;fuxwx/)%(ywy’)zl ds.
4]

One important remark is that no term in U° appears
in this expression after squaring the terms within it, as
W x'2 4+ 02 yr? = 2
because x'? + y'? = 1. This illustrates the importance of the
right-hand side of (2.12) which provides the 1linear and
nonlinear centrifugal force proportional to MuZ2.

Finally, the total kinetic enerqgy, T, may be written
as

L L
- m [ ] M [] / . / .
T —2[(x2+y2)ds+ —2[[(X+Ux)2+(y+Uy)2]ds. (2.24)

2.3.6 Derivation eof the equations of motion

The usual variational techniques are used to find
the different contributions in Hamilton's principle. Only the
main steps will be described here.

i) Relationship between 8x and 3y
By applying the variational operator & to the
inextensibility condition, one obtains

x'8x' + y'dy! = o0,
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/ /
dx! - XYY Ly —zl—y’z)by’ + 0(€®) ;

=

hence,
8
8x - —f [y'8y’ + —21—Y’36Y’] ds. (2.25)
0
After integrating (2.25) by parts, one obtains

8
ax——(y’+%y’3>ay+f (y”+%y’2y”>ay ds+0(e%).  (2.26)
Q

This relationship is very important in the derivation of the
equations of motion, since terms in 6x and 8y are present due
to the variational technique. Equation (2.26) proves that dx
and dy are also related through the inextensibility condition,

but under a different form.
One can also prove quite easily that (Appendix 2)

L

L g I
fg(s)( ff(s) 6Ydsts - f(fg(s) ds] £(s)8yds. (2.27)
0 0 8

0

Equation (2.27) is also important, since terms of that form
will arise from (2.26) in the process of relating &x to dy.

ii) Kinetic enerqy component

The variational operations on T leads to

L;
adet:- mff(:za;uyay) dsdt
=1
+ Mff [(X+Ux’) (8% + U 8x') + (2.28)

(y+Uy’") (8y + U 8y’)] dsdt.




<%=

24

However, x'dx' + y'Sdy' = 0; thus,

57 T dt = (m+M) ff(x 5% + y 8y) dsdt
ty

+Mff[Ux’6J~‘:+ Ux 8x’ +

Uy’ 8y + Uy 8y'] dsdt
(2.29)

(_ff[(m+l\{)}"{+ MUx! + 2MU)E/]5X dsdt

- -ff[(m+h037+ MUy’ + 2MUY]1 8y dsdt

-

\ +<MUf[xL6xL4-yL6y¢] dt
where x, = x(L), y, = y(L) in the last term which arises from
the operations of integrating by parts (Appendix 2). Also,
the integral limlits, although not explicitly written, are
understood to be from 0 to L for s, and from t, to t, for t.

iii) Potential enerqy component
In this case, two components have to be derived.
Considering bending first, one can write

bdet - —"‘;-1 ffa(xz) dsdt;

however, from (2.9),

so that .

2
adec- % ffa(y”’- (1 + y'2)) dsdt
&

- ET ff[(y//+ y//yl2)//__ (y//2y/)/] 5)’ dsdt (2.30)

- ET ff v+ ay'yy"s ya y"yi2) 8y dsdt
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Similarly, the gravity component yields (Appendix 2)

6TGdt- - (m+M) gff&xdsdt
&

2.31
- - (m+M) gff [—(y’+%y’3) dy ( )

+ (L-8) (y”+%y”y’2) 5yl dsdt.

iv) Right-hand side of Hamilton's principle
Applying the variational techniques to the right-

hand side of Hamilton's principle leads to

t;

rhs = MUf [(#, + Uxi) 8x, + (¥, + Uyp) 8yl dt
tl

- MUf (%,8x, + y,8y,) dt (2.32)

+ MU? f (xiﬁxL + y,{&yL) dt

t

- A+ B.

The first term, A, is the same as the one derived
from the kinetic energy (2.29) and thus it can be cancelled.
The second one, B, after use of the inextensibility condition
(2.7) and condition (2.26) is equal to

L
B - w0 [[ ly"+yPy"-y" [ (y'y") ds] 8y dsde (2.33)
g

(see Appendix 2, (A2.4) for demonstration). The term B
contributes to all the centrifugal force terms.

v) Final equation of motion of the pipe
After many tranformations and manipulations, the

general equation of motion is found to be
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(m+M) ¥ + 2MUY (1+y'%) + (m+M) gy’(1+%y’2)
+ y [ MU?(1+y’?) + (MU - (m+M)g) (L-s) (1+%Y’2)

+ EI[ y™ (1+y?) + 4 ylylyll « yi ]

s

L
" (m+M) (y2+y'y/) dsds +f (%—Uy’2+2MUy’y’+MU2y’y”) ds
S

-y

g Sy

[~}

+y! [ (med) (#2+3'9) ds - o,
0
(2.34)

This equation will be discussed in more detail in
Section 2.5, after the equation of motions has been derived by
the second method.

2.4 FORCE BALANCE METHOD IN VECTOR FORM FOR A CANTILEVERED
PIPE

This derivation is based on Lundgren's et al. work
(1979) which has been further derived into a single equation
which is more appealing. It consists of equating the forces
and moments acting on an element dX.

Consider an element of the pipe of 1length ds
(Fig.2.1(b)) located at 2. Let 3 and M represent the
resultant force and bending moment on the left cross section,
and 3 + d8 and ¥ + aM on the right cross section.

The force balance leads to

) 0*r D*f

a0 o
B tmr M gl mae: P M oo

, (2.35)
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and the moment balance to

BM

Y - . 2.36
as T xQ 0 ( )

As the effect of rotary motion is neglected, and due to the

Euler—-Bernoulli hypothesis, one simply has

¥ - ETtx 9 - Erixg. (2.37)

ds

Decomposing 3 along the axial direction ¥ and the normal
direction ® gives

o - (N—P)%‘+?x—g-1;—!, (2.38)

where (N-P) 1is the axial force due to tension and fluid
pressure. Combining (2.37) with (2.38) yields

0 -(N-P) ¥ + BT Tx-2 d (tx )

-(N-P)T + EI rx(tx g:;) (2.39)
o . T . OPT

=-(N-P ET . —_— - .

WoRIT + BT 503 - gt

After some further manipulations involving the
use of some properties of ? and its derivatives (given in
Appendix 1) and the projection along x and y, one obtains the
following equations (corresponding to equations (2.17) and
(2.18) in Lundgren's et al. paper):

o*x d e 2y x4, _ . Ox D¥x
(m+M) g - EIas + —a—s-[(N P - EIX?) as] m6t2 + Mth
- er%Y . 9 [(np- pr) ) - &y . Mgty (2.40)

dst Os ds ot?
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These two equations, of course, are coupled through
the curvature k, the axial fcrce (N-P) and the inextensibility

condition. The first equation is integrated from s to L,
divided by 9x/ds to yield (N-P-EIk°), and x is eliminated
through the inextensibility condition. After many

straightforward but tedious manipulations, one finally finds
the same equation as that obtained by the energy method, i.e.

(m+M) ¥ + 2MU (L+y'%) + (m+M) gy’(1+%y’2)
+ y/ { MU (1+y'?) + (MU - (m+M) g) (L-8) (1+%Y’2)
+ EI[ 3" (1+y2) + 4 y/y/ly" + 3 ]

- y//

L .
(medf) (Y2+y'y) dsds + [ <%—Uy’2+zMUy’;ﬂ+MUnyy") ds
g

g

sy [ (men) (97+y'Y) ds - 0.
o
(2.41)

Note that, in this derivation, the order needed was
only O(e’) and terms of order O(e*) could be neglected.

2.5 PHYSICAL DISCUSSION OF THE EQUATION OF MOTION -
NONDIMENSIONALIZED EQUATION

Before tackling the complete equation, its linear
version is already of some interest

EI y" + Muzy" + MU(L-x)y" + 2MUy/ (2.42)

-(m+ Mg(L-x)y" + (m+ Mgy’ + (m+ My - 0.




29

First of all, this is the same equation as the one
derived by Paidoussis and Issid (1974). One can find

- the inertia force = (m + M) J2%y/3t?,

- the Coriolis force = 2 MU 3%/9dxdt,

- the centrifugal force = MU? 3%y/dx?,

- forces due to gravity = - (m + M)g | (L - x) y']?',

- the flexural restoring force = EI 3d%y/dx*,

- forces due to unsteady flow « M du/dt.

Of course, dissipative terms have to be added to
complete the equations. This is done by assuming that the
internal dissipation of the pipe material is viscoelastic and
of the Kelvin-Voigt type (Snowdon 1968). Moreover, this
approximation is only applied on the linear restoring force,
providing an additional term in the equation

ﬁ 654),

where E' is the coefficient of viscosity, or the coefficient
of 1internal dissipation. Other than for reasons of
simplicity, and because, in any case, the Kelvin-Voigt
dissipation is only an approximation, there is no
justification for ignoring the effect of dissipation on the
nonlinear flexural terms (see Appendix 3); nevertheless, for
small dissipation, lumping all dissipative effects in a single
term is justifiable. The damping associated with frictional
forces due to surrounding air is neglected. Finally, a linear
spring is also added, as explained in the Introduction.
Acting only in the y-direction at a distance x,, the spring,
with a constant spring stiffness k, contributes to the
equation by the term

kyd(x-x,), (2.43)
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where 8§ is the Dirac delta function, and where it is noted
that k has units of force per unit length (note that 8 has a
unit of l/displacement).

Introducing next the same nondimensional quantities
as in the linear case,

B -—X -
§ L,ﬂ T T (m+M %

3
U= (-2 zUL, - m+ML3' - M ,K.._]_(L_
( ) v g. B m+M ET

(2.34) may be rewritten in dimensionless form as follows:
(2.45)

R

A + 9"+ + 20/F0 (140 + K 8(E-E,)

+

”[ U (10%) & (G/F-y) (1-€) (1+39%)

+
-
=

/(1+%ﬂ/2) + 02+ an'y'n + 3"

4 1 .
- Tl” f(.'-]/2+n/ﬁ/) dEdE + f( UIZE n/2+2Us/B'ﬂ’ﬁ’+U2ﬂ’ﬂ”) dE
14

0

m\. »

4
s [ (W) dEdE - o,
0

Also of particular interest is the appearance in
(2.45) of some nonlinear inertial terms that have to be
replaced, as explained in the next section.

Physically, U in (2.45) is the nondimensional fluid
velocity, y represents the measure of relative gravity forces
to the flexural one, P is the ratio of the fluid mass to the
total mass per unit length, K represents the relative strength
of the linear spring vis-a-vis the flexural restoring forces.
For positive y, the pipe is hanging, while for negative y, the
pipe is "standing" with the free end above the fixed one.
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Q‘ 2.6 TRANSFORMATION OF THE NONLINEAR INERTIAL TERMS

In dynamical theory, it is convenient to write the

equations into a standard, first-order form, namely
X =f(x,t), xeR?, teR, (2.46)

where f is a nonlinear function of x and t. Therefore, no
nonlinear inertial terms may be present. A perturbation
procedure is applied here, to replace the nonlinear inertial
terms in (2.45) with the first order terms.

As it was introduced in Section 2.3.2., € represents
a small parameter. Equation (2.38) can thus be written as

L(n) + [N(n) + N;(n)] = O(e*), (2.47)

in which L(n) represents the linear terms (order O(e)) and N,
the nonlinear terms (of order 0(e3));

L(n) = 4+ 20/P 0+ 0" [U2 + (G/B-y) (1L-E)]+ yn/+n',

N1 (n)_ 2U\/B_ﬂ/n,2+ n” [U2+% (U\/B.- Y) (1_5)}.‘]/2

3
+ + "0 + an'nn" 113
L+ "% + an’nn" + 9",

]}(ﬂ’2+ WH') dE dE
4

Q

£
N, (n) - 'ﬂ’f("llz + ') dE - n”
0

(2.48)
1,
+ f(_g%Enlz + 2U\/B—n/f]/ + Uz.rl/.rl//) dE
4
(for simplicity, « and K are not taken into account here). By

By properly rescaling the variable 1, equation (2.47) can also
be represented by

L{n) + €N (n) + N,(n)] = o, (2.49)

A
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where €' represents a small parameter.
The term of major interest is

1
M) - fn’ﬁ’ds;
0

it appears within the two integrals in N,(n). The idea is to
write an equivalent of that term to order €' as in a usual
perturbation technique. If the study were limited to first
order (in €') analysis, as all nonlinear terms are cubic, one
would have

N = MNg *+ O(el) ’
L[n()] - 0,

by collecting zero-order coefficients of €'. L being linear,
L(n,') is clearly defined, so that

13
[nd L) d& - o,
0

£
fn’L(n’) dt¢ - o(€). (2.50)
o]

Consequently, after the substitution of L(n) in (2.49) and
some rearrangements, one obtains the desired term

E 13
hﬁd - [2U Inll 4 i W(U2+(0 - )(1_5))
[nn £ { VEnR” + n/n VB -y 2.51)

+ ' (2y-U/B) + n/0/" ] dE + o(€) .

Integration of (2.51) from £ to 1 yields the other nonlinear
inertial term. Finally, after some long but straightforward
manipulations, one obtains

2.52
i +2 VB o/ +n” (U2+ (U/B -v) (1-E) ) +yn'+n""+€/N(n) =0, ( )
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where

N(n) = 20/F4m? + v/ [U"’ + %(U/B’--v) (1-8)| 0"

-+

_%_ (B/F-y) 0 + 3n/n/m” + /P

+

§
n' [ 2-20/Fn 07" [U2+ (/B -v) (1-8) 1 +0"n"} d§df
0

£
f {ﬂ’z-ZU\/B' 0y -n'n" [U2+ (OYP -v) (1-E) ] +nm""} dEdE

[o]

n/l

S —

0 [ {(B/PF-y)n? + 20/Bn'y + U?nn” + w/'m"} d&.

“\ b

(2.53)

2.7 CASE OF A PIPE FIXED AT BOTH ENDS

In this case, only the derivation by the energy
method will be presented. Moreover, in order to simplify the
derivation, the (u,v) notation will be used. As the
inextensibility condition cannot be applied anymore, two
equations will be derived, one in the x-direction and one in
the y-direction. dX and ds are not identically equal anymore,
but are still related through the condition

dx 1
=2 - =, 2.54
ds 1+€ ( )
2.7.1 Strain enercy

The strain energy will be used as defined 1in
Section 2.4.3,

[Ae? + I(1 + e)2? x2)dX. (2.55)

E
V- ——
2

O\b
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Let 6 be the angle between the position of the pipe and the X-
axis to simplify this expression. 8 is thus defined by

/

' \4
sin 6 T e

_ 1+ u (2.56)
cos O Tr e

1+€ = (1 +u)?+v?,

and the curvature k becomes
00
K = —. 2.57
35 ( )

Using the X-coordinate leads to

® ax _ 1 09

K 39X s 1+e¢ 0x'

which simplifies the expression (2.55) to

E
Vv - £
2

Ot v

[Ae? + I(%’}()Z] dx. (2.58)

00/0X is found exactly by differentiation of tan 0,

/

tan 0 = L4
1+ u
o/ . v+ u) - vl
cos? 0 (1 + u')2
9/ - _a_q _ V”(l + u/) - V/u//
ox (1 + u)2 + v?

In order to get an exact expression for the
potential, one has to find an exact expression of 8' up to
4th order without making any prior simplification. Thus,

recalling that u is of second order O(€?) and v of first
order O(e),
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/ i /"ol 112 /) 5
- - v'u’ - v'v'® - vu"” + O(e
0 v () (2.59)

02 - vz - ayyl _ ayllRyl2 - aylyily! 4 0(e5) .
Moreover, in the axial direction, an external tension might be
applied, leading to

L L
V = Eéf (.E-f.e)de-f ﬂf
2 A EA 2 A

2.7.2 Gravitational energy
The expression is the same as in Section 2.3.4.,

L
G - ~(m+ g (x+u dx. (2.61)
]

2.7.3 Right-hand side of Hamilton's principle

This is simply zero, since ® (vector position at the

end) does not vary in this case: b'f'L =0 .

2.7.4 Kinetic energy
As the right-hand side in the statement of

Hamilton's principle is equal to 0 for a pipe fixed at both
ends, it is clear that the ceoentribution of the fluid forces is
not the same as in the case of the cantilevered pipe. Hence,
the derivation of the kinetic energy is very important.
Although the inextensibility condition is not true anymore,
one basic assumption still holds, the incompressibility of the
fluid.

When a bar 1is loaded with tension, the axial
elongation is accompanied by a lateral contraction, i.e. the
width of the bar becomes smaller as its length increases.
Within the elastic range, the Poisson ratio v is constant
(Timoshenko and Gere 1961),




"
lateral strain
axlal strain

For a cube of length 1, after loading, one has

—
—

1 1 + ve

Figure II(c)

The change of volume is

AV = (1 +€) (1 -ve)2 -1
- €(1-2v) + O(e?).

But actually for rubber-like material, v = 0.5;

will be simplified by taking v = 0.5. Thus, AV =

36

1 - ve

here, this
0.

In the case of a beam, this conservation of volume

leads, for any initial volume of length dx, to

dx.S, - dx (1 +¢€) S,.

The rate of mass being constant, as p itself is constant, one

also obtains

¢ 9

(2.62)
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This shows that the velocity of the fluid with respect to the
pipe is not constant. Hence, the absolute velocity is

Ve = Vp+ UXT

/
y X 2d Yy
- }) ) + U (1 € 1 +
(X1°+ Y7 (1 +e) (l + € 1 +¢€

b

as by definition € = (x'? + y'?)* - 1. Consequently,

7, = (a_at + U—a%) 7. (2.63)

The relationship (2.22) derived in Section 2.3.5 is
still valid. The only difference is that the inextensibility
condition is not valid, so that U? terms in this case appear
from the kinetic energy and not from the right-hand siie of
(2.12). Hence,

L
T, - 2f () dx, (2.64a)
o}

L

T, - Asz @+ U@+ u)) (v ovi ] dX. (5 gap)

[+]

2.7.5 Derivation of the equation of motion
Variational techniques are applied again, with two

independant variants, du and 3v. After many integrations by
parts, one finally obtains

(m+ Md+ MU + 2MUY + MU?U" + MUY/

-ET (V" vy + (T,-EA) vV - EA u” (2.65a)

—(IH+M)9"0,
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(m + M)V + MUV + 2MUV + MU?V" - T,v/
+ EIV//// - E’I[3 u///V//+4u//V///
220! VI ey I 43 12 f 1 g iyl 1 o 113 (2.65b)

+ (T,-EA) (U//V/+U/V//+—%V/2V”) - 0,

where one now has two independent equations, instead of one.

2.8 ANALYSIS OF THE EQUATION -
TRANSFORMATION OF THE PDEs INTO A SET OF ODEs

2.8.1 Discussion

Once the equations of motion have been derived, the
next task is to choose a general approach to solve them.
There are actually two different philosophies of analysis for
doing so. The first one known as the Galerkin method consists
of discretizing the equations to obtain a set of ODEs. The
deflection of the pipe is expressed as the superposition of
the infinite set of normal modes of a cantilever beam. This
is admissible, as those functions satisfy the prerequisite
conditions:

- same boundary conditions;

- linear independence.

Moreover, as outlined by Bisplinghoff et al. (1957),
the system is very similar in its characteristics to a simple
cantilever beam, since the mode shapes do not depend on
physical properties, such as EI or p. Of course, this
approach is useful only if the motion of the tube can be
approximated adequately by a small number of these modes.

Gregory and Paidoussis (1966) proved that this was
the case for small values of p (f < 0.3), but that for higher
B, the third and higher cantilever modes begin to play an
important role. Sugiyama et al. (1985) noted that "an
increase of material damping suppresses the contribution of
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higher modes and hence allows the lower mode approximation".
In light of modern dynamics, this approach is valid, as the
main purpose is to find qualitatively the characteristics of
the system. This was Jjustified by many authors, such as
Paidoussis and Moon (1988) or Holmes (1977, 1978). According
to Holmes (1977), "the two mode approximation exhibits the
qualitative behaviour of 4, 6 or higher mode models, and of
the full infinite dimensional system". He showed that the
flows defined by the Galerkin approximation, in the panel
problem, converge to the flow of the full nonlinear partial
differential equation of the panel. The work done by
Paidoussis et al. (1990) highlighted however some quantitative
difference with the experiments. The main problem lies in the
difficulty of estimating the error due to truncation. Some
methods tend to improve the rate of convergence of the
conventional mode superposition method (Léger and Wilson
1988), but cannot be applied here, as this finite element
method is based on discretized equations.

The second method consists of keeping the original
equation and trying to solve it. This was done by Gregory and
Paidoussis (1966) with gravity neglected, but even in this
case, the conditions of stability were difficult to find. For
the nonlinear case, only Sethna's school (see Lundgren et al.
1979, Bajaj et al. 1980) and more recently Steindl and Troger
(1988) provide other methods.

In conclusion, the discretization procedure is
simpler in practice, but may introduce some quantitative
errors in the results. Nevertheless, it provides a powerful
qualitative tool, especially for small values of B, as in the

case considered here.

2.8.2 Discretization procedure
The infinite dimensional model is discretized by

Galerkin method, with the cantilever beam eigenfunctions $.(8)
being used as a suitable set of base functions and g.(t) being




40

the corresponding generalized coordinates; thus,

N, - Y @, (8) g (1). (2.66)

Substituting the above expression into (2.53), multiplying by
¢, (§) and integrating from 0 to 1 leads to

O =dy+ciydy+ kyq;
+ el + P : v g (2.67)
€ & ;5 9 d; ijkl LD * Y 1560 9599 1)

where cC.

]jl kijl a

ijr Pijr di50 5500 By @and v ;,, are coefficients
computed from the integrals of the eigenfunctions ¢ (),
analytically (Paidoussis and Issid 1974) or numerically
(Appendix 4).

Moreover, assuming that the fluid flow can have
small sinusoidal fluctuations,

U-U (1 + ev sin wt), (2.68)
certain terms should be added to (2.67), namely
+ € (2/f sinwt a;; ¢; + 20v sinwt b, g; + JPvw coswt d,, q,).

In order to use the available tools of dynamics
theory, the above second order equation is transformed into a
set of first order ordinary differential equations.
Introducing the generalized coordinates p; = éi, (2.67) may be
written in the matrix form

Q}' 0 I
- 2.69
{é [-K -c]u +e {flgp} +ev {glap t)}, )

y = [Al y+e f(y) +evgly, t), (2.70)
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where f is a 3rd order polynomial function (o(e?)) (cubic
nonlinear terms), g is a function of [a], [b] and [d], and [A]
is a 2N x 2N matrix, [A(U,G,B,K,§.)]. The computation of [A]
can be found in Appendix 5 for a two-mode approximation
(N = 2). Its remarkable simplicity should not go unnoticed.
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CHAPTER IIX
COMPARISON WITH PREVIOQUS DERIVATIONS

In this chapter, the nonlinear equations of motion
obtained by different authors are described and compared in
detail. Moreover, in order to get a more "comparable" set of
equations, a standardization of the notation is undertaken.

3.1 CASE OF A CANTILEVERED PIPE

3.1.1 Bourrieres' work

Bourrieres' work is very original, all the more so
since it was written in 1939. He studied the case of planar
motion of two strings, one of them moving with respect to the
other. The pipe and the fluid represented by the strings are
assumed to be inextensible, and the string representing the
fluid is supposed to be infinitely flexible. Using the force
balance method, Bourrieres obtained the equations relative to
the tube and the fluid. The relationship between the shearing
force Q and the bending moment M, and the condition of inex-
tensibility provides the nonlinear terms. A set of seven
equations with nine parameters is found, the phenomenon beina
dependent on two variables: the nonlinear coordinate s and the
time t. After some algebraic manipulations, Bourrieres eli-
minated the fluid friction force and found the following five
equations:

[ ((8+T) x') /- (Qy/Y/- (m+M) R-2MUX/ -MU?x" = 0,
((0+T)y') '+ (0x/) /- (m+M) y-2MUY -MU?y" - 0O,

1x%+y% - 1, (3.1)

M = ET (X/y// _ y/X//) - ﬂl
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where R is the radius of curvature, and 6 and T the tension in
the tube and in the fluid, respectively. The approach given
by Bourrieres was very original and would have led him
eventually to expressions similar to the ones derived in
Chapter II. Unfortunately, Bourrieres considered only the
linear <case for his study. Consequently, without
approximation, the only difference lies in the du/dt term,
which is not surprising, since Bourrieres had not taken into
account any effect of unsteadiness in the flow. The
expression for Q and M ic correct, as well as the expression
of the curvature. That makes Bourrieres' work irreproachable.
The next task is tc combine all the five equations (3.1) into
one equation, using all the relationships, and to compare this
last one with (2.41). This will not be repeated here since it
has already been done by Rousselet and Herrmann.

3.1.2 Rousselet and Herrmann's work

Rousselet and Herrmann (1977) derived the equations
of motion in two different ways: the force balance method and
the energy method. They obtained a final set of equations,
fairly close to the cne found in Chapter II, with some minor
differences.

Their first method follows the work done by
Bourrieres, and thus, it is not surprising to find equations
which are very similar to his. Two differences simply arise
from the following:

- the addition of gravity forces:

- the assumption that unsteady flow velocity

effects may be present.

The notation used by Rousselet and Herrmann is
completely different, as they wanted to study articulated
pipes. In that case, the introduction of 06, the angle of
inclination of the pipe in the (x, y) plane, was more
appropriate.
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- The application of Newton's law led them to

a - a 1 +
ﬁ( (N-P) cos®) 3 (0 8inB) + (m+M) g

- (m+M) 62X + MU cosO - MUzsinO - 2MU —d—asinﬁ,
R dt
i((N—P)sinB) + —a-(Q cos0) (3.2)
s os
Py do MU C son
= (m+M) 3¢ + ZMUFE cosf + R cos0 + MU sinf;

however, sin 0 and cos 8 are related to x and y by
. ay
e -
sin Bs

ox

cos 0 = 35

Using the inextensibility condition and the definition of the
curvature k, it is easy to prove that

lox _ &y
R 0s ds?’
(3.3)
1y | &x
R 0s ds?’
Rewriting again (3.2) and (3.3), one obtains
d _py OX, _ O oy
—a:g-((N P)—a—g) g(Q aS) + (m+M) g
_ 6 x 0%x 2 0°x . O
(m+m ZW?SW + MU asz + M[I?g'l
(3.4)
2 (w-p) ay>+ 20 %)
- (m+M) 625’ o2 o yr &Y,y Y

dsdt ds? ds '

&4
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In this form, the similarity with Bourrieres' equations is
self-evident. Note that x and the condition of inextensi-
bility have already been used implicitly. At this stage,
Rousselet and Herrmann have manipulated the whole set of
equations to arrive at a final one. This will be discussed
after the presentation of their energy method.

One should emphasize the originality of the
variational technique used by the authors. 1Indeed, they
derived a "Hamilton's principle in the case of a cantilevered
pipe conveying fluid", different from Benjamin's. They
started from d'Alembert's generalized principle applied to a
single particle, and then, introduced a control volume (an
infinitesimal volume) containing a certain number of
particles. The fluid particles were allowed to enter or leave
the control volume with a known motion (U in practice).
Substituting the resulting particle acceleration to the
governing equation of motion led them to another expression of
Hamilton's principle for systems of changing mass. The
description of the derivation can be found in Rousselet's
thesis (1975). Finally, a unique equation, identical to the
one obtained through the force balance method, was found.

With the different relationships defined in
Rousselet's thesis, it was possible to convert that equation
into standard notation. After some manipulations, the

nondimensional equation found is

A+ 20/F 0 (1+92) + o/ [U2(1+n’2>—y<1—s) (1+%n/2)+dﬂﬂ1~e>]

4
+ Yﬂ/(1+%ﬂ’2) + 0 (1402) + an'n'y” + 0P + 'l/f (A72+n'R/) dE
0
£
- n//

1
(W24 dEdE + [ (20vBn'n’+Un'n") dE
4

ﬂ\i—'

o]
(3.5)
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Thus, two differences can be pointed out in the
nonlinear terms of the unsteady velocity. These differences
come from an error in the following relationship used by
Rousselet and Herrmann,

/

L x L L
fF(x) [f(tane)’]bwdxdx - f(fF(x) dx](tanO)’bwdx. (3.6)
o] o} 0 x

This relationship is correct, but if F is of order 0, then
tanf must be taken to the third order, which was not done. As
explained in Section 2.3.2, this relationship (derived in
2.3.6) had to be rigorous up to order O(e“). Except for these
two differences (which might be negligible), (2.41) and 3.5)
given by Rousselet and Herrmann are the same. This gives
confidence in the correctness of the equation derived in this
thesis, since the derivations are based on two different
starting points and on two different methods.

Rousselet and Herman also considered the effects on
the fluid of the friction or of a pressure drop, and derived
a flow equation. The two partial differential equations are
coupled through the nonlinear terms.

3.1.3 Sethna's work

Iundgren, Sethna and Bajaj (1979) derived equations
of motion by the force balance method. The assumptions made
are the same as in the other work; but from a mathematical
point of view, they tried to be as rigorous as possible. The
force balance method in Section 2.4 follows the same
procedure, so that all their equations were checked very
carefully and appeared to be exact. They used:

- the condition of inextensibility;

- the exact expression for curvature.
All the nonlinearities are related to the (N-P-EIk?): x is
nonlinear, but also N-P (axial force and pressure drop)
through a nonlinear integral.
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They stopped their derivation at an early stage,
without taking advantage of the inextensibility condition. 1In
their subsequent paper (Bajaj et al. 1980), scme nonlinear
terms are apparently missing, especially nonlinear velocity-
dependent terms. Under the form of an integrodifferential set
of equations and neglecting, for the moment, the unsteady flow
velocity, one may read (Equation 5 in their paper)

9xy2, (92
(as) +(as) 1 (3.7)

EIy" + 2MUy' + MU2y” + (mM)y = NL,

where

L

NL -~ -%Era—i (y’(x”2+y”2))—(m+M)—a—a§ [y"[ (x/R+y'y) ds].
At first glance these equations seem wrong (as no nonlinear
velocity-dependent terms are present); however, they are
absolutely right. They have been obtained by the force
balance method in which the evaluation of the nonlinear terms
related to (N-P) has been carried out by projection onto the
?th and tth direction, and not the ?th and ?th direction
(Fig.2.1). The U and U? terms are actually hidden in the
nonlinear inertial term. Indeed, eliminating x through the
condition of inextensibility leads to

(m+M) y(1-y'2) + 2MUy’ + MU2y"

+ EI (y™ + 3y'yly" + % y3)

+ y/ f(m+m (y/2+y/}-;/) ds (3.8)
0

L
-y’ (m+M) (y?+y’'y') dsds - f (m+M) yy'ds| - 0.

h"\,h
O\Q
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In order to show that this equation can be brought to a
familiar form, one considers the linear equation and uses a
perturbation technique, as in Section 2.6.

From

(m+M) y + 2MUy’ + MURy" + ETy" - 0O,
one has, after multiplication by y' and integration from
s to L,
L

L L
[ (mer) yy'ds= - [ (2muy'y’ + MUPy"y') ds - EI [ y"y'ds
s g

8

L
- _f [2MUy'y! + MU?Y'y!] ds + EIy"y' - %EIy”z.
8

(3.9)

Multiplying (1+y'?) throughout (3.8), keeping cubic nonlinear
terms and replacing nonlinear inertial terms, leads after
ranipulations to

(m+M) ¥ + 2MUY! (1+y'?) + MUy (1+y'?)

+ ET(y™ (1+y) + 3y/ylyll 4 %y//a)

1

-y (m+M) (y"%+y'y') dsds

S b
O, tn

(3.10)

L
+f [2MUy! + MUYy ds - ETy"y! + —;—EIy”z
S

F-3
+y’f (m+M) (y2+y/y!) ds - 0.
0
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This equation is obviously identical to (2.41) after the
addition of the unsteady and gravitation terms.

In conclusion, their derivation is irreproachable.
No linear terms are missing, except the gravity terms that
have been neglected. However, the different steps from one
equation to another were not very clear; hence, verification
was not easy. They used some implicit relationships of the
curvature (given in Appendix 1) and a perturbation procedure
that was not explained either.

Finally, like Rousselet and Herrmann, they also
found an equation for the flow velocity, by considering a
force balance method on a fluid element,

L
Ma (UE-U?) - Mf (%x' + yy’)ds - MUL = 0 , (3.11)
0

where U, is the constant flow velocity when the tube is not in
motion, @ represents the resistance to the fluid motion
(proportional to a friction factor) and Man represents the
constant pressure force at the fixed end s = 0 of the tube.

3.2 CASE OF A PIPE FIXED AT BOTH ENDS

In this section, three papers are discussed, as they
are representative of all the derivations. Again, a
standardization of the notation is undertaken. Many
differences have been found, most of them due to the
assumptions made, but some of them also due to erroneous
derivation.

3.2.1 Thurman and Mote's work

As pointed out in the Introduction, Thurman and Mote
(1969) were mainly concerned with the oscillations of bands of
moving materials. They considered an axially-moving strip,
simply supported at its ends, and tried to show how the axial

Vg eeeedd
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motion could significantly reduce the applicability of the
linear analysis. The centreline being extensible,
nonlinearities are associated with the axial tube elongation
and the extension-induced tension in the tube. Therefore, the
strain and the tension have the general form

To

€ - .
EA

+ V(1+u’)2+v% -1,
(3.12)

T = T, + EA(Y(1+u/)23+v"-

Since they considered a linear moment curvature relationship
and a linear approximation for the velocities, the equations
of motion they obtained are

EI v —(T,-MU?) v+ 2MUV/+ (m+M)V - (EA-T,) (%v’zv”+u’v”+u”v’)

Mi - EAu’ - (EA - T, v'v/.
(3.13)

These are actually a simplified set of (2.65). The
differences come from the assumptions made:

- no gravity forces,

- steady flow velocity,

- linear moment-curvature relationship,

- simple approximation of the fluid velocity.

Consequently, on the basis of the assumptions made,
the equations derived are correct, which should be underlined
as they were derived more than twenty years ago!

3.2.2 Holmes' work

Holmes was one of the first to use the new tools of
modern dynamics, and thus, he was not concerned with the
derivation of the equations. He only considered the nonlinear
term associated with the deflection-induced tension in the
pipe. From the linear equations obtained by Paidoussis and
Issid (1974), he added the effect of the axial extension. To
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a first order approximation, he considered the axial force

induced by lateral motions equal to

H = 0A = (Ee + né) A,

with
1L
e 2[(y) ds,

and with the assumption of Kelvin-Voigt viscoelasticity.
Thus, the axial force H is added to the linear equation, where

L L
- -EA 2 - MA 15! 3.14
H 2L_[(y )ds = { (y'y') ds. ( )

The addition of this extra deflection-dependent
axial force leads to one equation with two cubic, nonlinear
terms. Consequently, the only essential nonlinearity is
related to the extensibility. This is explained by the fact
that his work took place at an early stage in the research in
th2 field of nonlinearities. As a mathematician, he was more
interested 1in studying an existing equation rather than
deriving it. Of particular interest is the manifestation of
nonlinear viscous damping. However, the assumption of Kelvin-
Voigt viscoelasticity for the pipe is already an
approximation (Snowdon 1968).

3.2.3 Namachchivaya and Tien's work
This study is one of the most recent ones and is

thus, of particular interest. The equation of motion is
derived from the energy principle, and the methodology follows
the one proposed by Paidoussis and Issid (1974), who were
looking for a linear equation.

A linear moment-curvature relationship is assumed,
and gravity is neglected.
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For the axial strain, first order nonlinearities are
considered, leading to

L
EA Ty 1, 1 2y
v - A2 ysty : 3.15
2{(& + SvP)? dx (3.15)

This is not justified, as explained in Section 2.3.2. Indeed,
to find 3rd order nonlinearities, the strain energy has to be
exact to the 4th order, which is not the case here. Moreover,
with the above definition and the application of the
variational techniques, expressions in the u and v directions
should appear (equation in &u and &v), which are missing.
Concerning the expression of the kinetic energy and

Hamilton's principle, the following comments may be outlined.

a) Hamilton's principle is used in its linear form

t; &
8 [Lde - [ [-MU? 8¢, + MUV, + UV )8v,] dE, (3.16)

£ £y

with the definition of the axial contraction

There is no justification for doing so in a nonlinear
analysis.

b) With the above definitions, C, *» O, so that the right-hand
side of (3.16) does not vanish, which is in contradiction with
the derivation made.

c) As in the potential energy case, the kinetic energy must
be exact to 4th order. Namachchivaya and Tien took the
following expression
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T, = %’ [(v+ Uv)2 + [U(1 - %v’z) - CJ%dx. (3.17)

© S, b

This hybrid expression is incorrect (the factor U is
missing in front of C)); even if correct, it would only be
valid for a linear analysis of the cantilevered pipe (Housner
1952, McIver 1973 and Section 2.7.4). Finally, the equation

obtained is

(m+M) V+2MUV'+ [MUZ—T0+MU'(L—x)]V”+EIV””—EA[(U’+-;—V’2) v/ = 0.

By defining an average axial strain

1

/2
v'“dx,
2L

O'\h

L
- 1 e Ly -
€,(t) L{(u+zv)dx

this equation, in the end, is the same as the one derived by
Holmes (1977). Consequently, some terms involving EA are
missing, as well as nonlinear terms associated with the fluid
velocity. Many mistakes were found in the derivation itself.
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CHAPTER IV
LINEAR ANALYSTS

Systems of physical interest have parameters which
appear in the defining system of equations; for example, in
the present study, such parameters are the flow velocity U,
the mass ratio P and the spring stiffness K. In dynamics,
this is described by the following equation

X = £,(X); x € Rn7, p € Rk, (4.1)

where p represents a k-dimensional parameter (Iooss and Joseph

1981). Bifurcations are said to occur when the system

exhibits more than one, and usually qualitatively different,
states as the system parameter p goes through a critical
value. A bifurcation set consists of the loci in p-space
which correspond to systems for which structural stability

breaks down in specific ways. Bifurcation diagrams are the

loci in the (x,p) product space of parts of the invariant set
of (4.1). Local bifurcations occur when some eigenvalue of
the linearized system at a fixed point crosses the imaginary
axis. It is therefore interesting to study the behaviour of
the linearized system as a function of the system parameters.
Consequently, the matrix [A] found in Chapter II (equation
2.70) is studied in great detail. Of course, when only two
modes are considered, [A] is a 4 X 4 matrix.

Some classical bifurcations are sought by analyzing
the eigenvalues of the matrix [A]:

- the Hopf bifurcation: [A] has a pair of
purely imaginary
eigenvalues;

- the Saddle-Node bifurcation: [A] has a zero

eigenvalue;

- a Doubly-Degenerate bifurcation: [A] has both of
themn.
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For a low dimensional problem, two different methods may be
applied: Routh's criteria and a direct eigenvalue analysis.

4.1 ROUTH'S CRITERIA

4,1.1 Presentation of the method
Routh (1960) proved that if the characteristic

equation can be written as
4.2
a,A?+a,, A"+ ... +a, ~ 0, (4-2)

then, a necessary and sufficient condition for stability is
that, provided a_ A is positive, all the test determinants T, to
T, should be positive, where

I, = | any|

T - an-l an
2 Ap.s app
4., 4a, O (4.3)
T3 = @n.3 dpy 4pa .
Qs dp,y 4dp.;

If (4.2) is a quartic, these conditions become:
- static stability boundary: A =0
i.e.: a, < 0 3 statically unstable
a, > 0 » statically stable;
- dynamic stability boundary: Ty = 0
and a,/a; > 0 where
T; = a, a, a; - a; a2 - a, a,%;
- double degeneracy condition: a; = 0
and T; = 0 which leads to
a, =0 and a, = a, ay,
since a, can be taken equal to 1.
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All the coefficients a;, to a, were computed
analytically as functions of the main parameters U, y, B, K
and §_, using MACSYMA (Rand 1984) and are presented in
Appendix 5.

4.1.2 Results'
All the conditions a; = 0, T; = 0 and a, = a, a, are
computed, solved numerically and then plotted in the parameter

space.

i) Case without a spring
The boundary conditions are represented in the

(B,U) space and in the (y, U) space, with y and B as control
parameters, respectively.

For static instability (curve a;, = 0 in Fig.4.1(a)

independent of P), the correspondence with previous results is
excellent (Fig.4.1(b) taken from Paidoussis (1970)), since the
instability always occurs in the same mode and the influence
of higher modes is not very important.

For dynamic instability (Figs.4.1-4.2(a,b), the
correspondence is good, quantitatively and qualitatively, only
when B is small (fp < 0.2). For larger values of f, the

influence of higher modes is considerable, which explains the

differences found. Notice also the qualitative difference for
very small values of . Paidoussis in 1969, wrote "for still
lower values of y (y < =-55.9), both the first and second mode
frequencies, for U = 0, lie on the imaginary axis. With
increasing flow, the system does not regain stability." This
is not what was found with Routh's criteria, which shows the
existence of a minimum value of U_ . . not equal to zero.

In fact, the results presented in Fig.4.1(a) and

Fig.4.2{a) are incomplete, since only the condition T; = 0 was

' It should be mentioned here that all the parameters are

varied, except the damping coefficient a = 0.005.
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taken into account. Since a; is always positive (Appendix 5),
the investigation of the coefficient a, (Fig.4.3) leads to the
conclusion that Routh's criteria provide results only on the

right side of the curve a, = 0. This demonstrates the
limitations of the method: coupled-mode flutter cannot be
predicted by Routh's criteria. Therefore, information

concerning the dynamics may sometimes be lost.

Fig.4.4 (a) shows that double degeneracy conditions
are possible, since the two curves, a; = 0 and a, = a, a; Cross
for some (B, y) pair. These conditions are discussed in

detail in the next section.

ii) cCase with a spring

This case is general as it does include the previous
when K = 0. It should be mentioned that the location of the
spring is kept constant here, § = 0.8, for clarity. When
this value was modified, only a qualitative change in the
figures was observed.

Again, divergence is represented by the curve
a, = 0. This condition is a second order equation in y (for
fixed U), leading consequently to either zero, one or two
value(s) of y a as solution (Appendix 5). The shapes of the
solution curves can be divided into two classes, represented
by the case K = 0 and the case K = 100 (Fig.4.5). For low
values of K, divergence occurs only for negative y, while it
becomes possible for positive ones for large values of K.
Hence, for a constant positive y (hanging pipe), buckling
occurs only if the stiffness is greater than a critical value
K
the location of the spring: the bigger &, the smaller K .

For flutter, Fig.4.6(a,b,c) illustrates the

.r+ However, this critical value can be modified by changing

influence of the different parameters. The projection of the
condition T, = O in various planes illuminates the influence
of the parameters on the dynamic stability boundaries. For
example, for a constant ¥y, the critical flow velocity
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increases with B. One should note the qualitative similarity
in each figure when a control parameter is changed. Again,
only small values of f (f < 0.3) have been considered to
satisfy the condition of the two-mode-model assumption. It
should also be emphasized that the results agree very well
with those given by Sugiyama et al. (1985), for the same
number of degrees of freedom. Moreover, this two-mode
approximation has an error of 1% for divergence and 10% for
flutter, at f = 0.25, 1in comparison with an infinite
dimensional model (Sugiyama et al. 1985). Thus, in an
investigation of the qualitative behaviour of the pipe, this
linear analysis is sufficient to provide a complete set of
parameters (U, y, B, K) to study all types of bifurcation.
Indeed, this thesis 1is more concerned with the post-
bifurcation behaviour than with the actual critical parameters
where instability occurs, as will be seen in Chapter V.

The double degeneracy ccnditions were also studied
extensively (Fig.4.7). As explained previously, these
conditions are met when a; = 0 and a, = a, a,, written as

fl(UIYIpIK) -0,
{fz(U:Y'D:K) = 0.

From a numerical point of view, three of the four parameters
are kept constant, and the fourth one is varied until the two
conditions are satisfied. Of course, the two conditions are
not always satisfied. Again, two different types of solution
are found.

When K < 40, U, = £ (y, B) is a "closed loop", i.e.
a curve which retraces its path (no hysteresis). Fig.4.7(a)
represent a projection of those closed loops in the (y, U)
plane, for different values of K, when f 1is varied as a
control parameter (0 < f < 0.3). These closed 1loops are
explained by the fact that the curve a, = 0 is independent of

p while the curve a, = a, a; is not univalent (or one-to-one)
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as a function of B, in the (B, U) or (B, ¥) plane (see
Fig.4.4(b)). For small values of K, the range for y to
achieve a double degeneracy condition is rather small.
Moreover, y 1is negative 1in this range. This 1is not
surprising, since the static instability is only due to the
effect of gravity, when the stiffness of the spring is small.

When K > 40, all the curves have the same qualita-
tive shape. Thus, only the results for K = 100 are presented.
The range for y is much larger, and the relevant fact is that
double degeneracy can occur for positive values of ¥
(achievable more easily experimentally). Fig.4.7(c,d,e)
represents different projections in the parameter space of
the same conditions. They are, however, useful as they

complete one another.

4.1.3 Corniclusion

An extensive study of the linear equations was
undertaken, bringing out the influence of each parameter on
the critical conditions. It is important to mention that all
the degeneracy conditions may be satisfied with various sets
of parameters, which is remarkable. Hence, it will be easy to
adjust the theoretical values to some experimental ones to get
all the possible instabilities. Therefore, in the theoretical
study, only a few sets of parameters are considered, without
loss of generality, since only quantitative differences may be

observed, if these parameters are modified.

4.2 DIRECT EIGENVALUE ANALYSIS

Since the analysis of Routh's criteria can only
provide the boundaries of the instabilities, and in order to
check the results previously obtained, a direct eigenvalue
analysis was undertaken. Indeed, from Figs.4.1 - 4.6, it is
difficult to tell what kind of instability occurs.
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Two specific examples from the previous results were
chosen; a complete study of the influence of all parameters
would not yield a better insight into the problem, since most
cases are qualitatively equivalent. Hence, the following
cases were chosen:

- a case without a spring: K

0 and p = 0.001;

100 at & = 0.8
and P = 0.18.

The "poverty" of the results obtained by Routh's

criteria for these two cases is shown in Fig.4.8(a,b). Only

- a case with a spring: K

the boundaries can be represented, and it is not obvious how
the system behaves within or outside them.

In the four-dimensional space (q,, 4, é,, éz), as
well as in the infinite one, the origin {0} is always a fixed
(or equilibrium) point. To investigate its stability, the
linearized form of the equation is solved for its eigenvalues
Ay, i=1, ..., 4.

For a particular system, the four eigenvalues are
plotted in the form of an Argand diagram (the imaginary part
of the eigenvalue versus the real part), with the
dimensionless flow velocity U as a parameter.

4.2.1 Case without a spring

All the results are summarized in Fig.4.9, for
different values of y. Each value of y has been chosen to
represent a different qualitative phenomenon.

i) ¥y > -8 (y = 0 in Fig.4.9(a))
For low dimensionless flow velocity U, the four
eigenvalues are in two complex conjugate pairs, A, = Aﬂ and

A", = Ay with negative real parts?; the origin is stable’.

2 The """ denotes the complex conjugate of the eigenvalue.

3 The negative real part at U = 0 comes from the effect of the

viscoelastic dissipation. It may be recalled that a = 0.005.
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For U = 4.42, the real part of the first pair, Re (2.1’2),
becomes zero, while Im (Ahz) * 0. This situation corresponds
to the well-known Hopf bifurcation, U = U,, represented
physically by flutter-type, or in the nonlinear domain by
limit-cycle motions.

The real parts of the other two eigenvalues Ai;, A,
remain negative with increasing U, and, hence, play no role in
the stability of the systemn. This case corresponds
qualitatively to system parameters used previously by
Paidoussis et al. (1989) and confirms their results.

ii) ~-31.4 <y < -8 (y = =20 1in Fig.4.9(b))

For zero nondimensional flow velocity, the situation
is completely different from that in Fig.4.2(a). The first
"pair" (4,, A,) is wholly real with A, positive, while the
other pair still remains a complex conjugate with negative

real parts. Thus, the origin is statically unstable at U = 0,
since no oscillatory component 1is associated with an
eigenvalue with positive real part (Im (4,) = 0 and Re
(A,) > 0). Physically, this corresponds to a case of
divergence: the pipe is buckled under its own weight, and
buckling occurs in the first mode.

When U is increased, the system regains stability
(A, = 0 at U = 2.9). As will be proved later (Chapter V),
this corresponds to a subcritical pitchfork bifurcation.

Finally, at U = 3.55, the same case as in i) is
encountered: the origin becomes unstable again (but
dynamically, not statically) through a Hopf bifurcation. Note
that the other two eigenvalues still play no role in
determining stability (negative real part) ; both
instabilities occur in the first mode.

iii) 48.43 < y < =31.4 (y = -40 in Fig.4.9(c))
Again, at =zero flow velocity, the origin is

unstable; but this time, the system does not regain stability.
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At U = 2.65, the second real eigenvalue Az also becomes
positive. Physically, no change can be observed, since no
oscillatory component 1is involved yet. However, for a
slightly higher flow velocity, U = 2.68, i, and A4, coalesce to
become eventually complex conjugate again, but with positive
real parts. At this point flutter-type motion may arise*

iv) -31.4 <y < -57.5 (y = =55 in Fig.4.9(d))
From a physical point of view, this corresponds to
the same case as iii). However, flutter-type motions now

arise due to the coupling between the first and the second
mode, at U = 1.8.

Notice that the mode coalescence at U = 1.67 is not
physically significant, since the eigenvalues have negative
real parts.

V) ¥ < -57.5 (y = -60 1in Fig.4.9(e))

At zero flow velocity, two eigenvalues are positive;
while the other two are negative. The instability is static;
since all four eigenvalues are real, the system is buckled
either in the first or the second mode. Coupled-mode flutter
arises at U = 1.5, as in the previous case.

4.2.2 Case with a spring
The procedure followed is the same as 1in the

previous section, U and y being the parameters varied.

i) ¥y > 80 (y = 100 in Fig.4.10(a))
This corresponds again to the "traditional" Hopf
bifurcation, since the system loses stability because a pair

of complex conjugate eigenvalues crosses the imaginary axis

4 This flutter is also called coupled-mode flutter, even

though it comes from the coalescence of two associated eigenvalues.
A distinction should, however, be made.
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with a non-zero frequency, at U = 13. For high values of vy,
the spring only adds some stiffness to the pipe but is unable
to cause any static instability.

ii) 4.96 < ¥y < 71.94 (y = 60 in Fig.4.10(b))
It is important to note that different types of

instability may occur. For low dimensionless flow velocity U,
the origin is obviously stable. For higher flow velocities,
one conjugate pair of eigenvalues becomes wholly real
(U
(U = 11.47). This point corresponds to the static instability

8.55) until one of them eventually becomes positive

or divergence. For still higher U (U = 12.48), the system
loses stability through a Hopf bifurcation, as the other pair
crosses the imaginary axis. Finally, at U = 15.07, the first
eigenvalue crosses the imaginary axis again, but from the
right to the left, meaning that the system again regains
"static" stability. This value, in practice, has noc real
physical meaning, since the system has lost dynamic
instability prior to this. However, the boundaries found from
the previous analysis (Routh's criteria} are now clearly

explained.

The two extreme cases, ¥y = 4.96 and ¥y = 71.94 are
qualitatively different: in the first case, a double zero
eigenvalue occurs (Fig.4.10(c)):; in the second, double

degeneracy conditions (one zero eigenvalue plus one pair of
complex conjugate eigenvalues with zero real part) occur
(Fig.4.10(c,d)).

iii) 71.94 <y <80 (y = 75 in Fig.4.10(e))
This case corresponds to a hybrid form of a) and b):

a Hopf bifurcation occurs first (U = 12.63); followed by
static instability (U = 12.96), and by a restabilization at
U= 14.69. Again, from a physical point of view, only the
flutter-type motions can be observed.
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iv) ¥y < 4.96 ( y = =40 in Fig.4.10(f))

From Fig.4.10(f), it is obvious that no dynamic
instability occurs. The sys*em loses stability through a
pitchfork bifurcation at U = 3.439, and, with increasing flow
velocity, a second static instability occurs. No
restabilization is found; from a physical point of view, two
different static equilibria may be observed. Consequently,
for y < 4.96, the top curve a; = 0 in Fig.4.8(b) no longer
represents a restabilization, but rather a second static
instability.

v) Remarks

With this direct eigenvalue analysis, it is now
possible to distinguish more precisely the different regions
of stability. Indeed, for the a; curves, static
restabilization or instability in the second mode may occur,
depending on the value of y; it is important to note that
Routh's criteria are unable to distinguish between these two
physically distinct phenomena. Hence, the complete stability
map obtained from the linearized equations can be drawn
(Fig.4.11(a,b)).

Finally, it should be recalled that the study of the
linearized system near the origin has 1limitations.
Theoretically, it is not possible to study the behaviour of
the system after bifurcation. Thus, the study of the
linearized system is only valid for the first instability.
Concerning the restabilization (and other bifurcations), this
also strictly applies to systems that are linearly nn<table at
U =0, as U is increased. When static instabilicy occurs, a
new analysis can be undertaken near the new fixed point which
behaves, from a topological point of view, like the origin.
This will be done in the next chapter, since the inclusion of
the nonlinear terms is necessary to find the position of the
new "origin."
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CHAPTER V
NONLINEAR ANALYSIS

Whereas the linear approximation of the system can
only predict the instabilities of the origin, the nonlinear
analysis may provide a deeper and more interesting insight
into the problem.

One usually starts the study of a nonlinear system
dx/dt = f(x) by finding the zeros of f, i.e.

f(x) = 0. (5.1)

These zeros, X, are referred to as fixed points, equilibria
or stationary solutions. Linearization at these points can
characterize the behaviour of solutions near x,. This is done
by studying the linear system

.git - Df(x,)E, E € R7, (5.2)
where Df = [aﬁ/axﬂ is the Jacobian matrix of the first par-
tial derivatives of the function f at the fixed point x,, and
£ = x-%;, [&] << 1.

Actually, the study of the linearized system defined
by (5.2) can only provide qualitative responses of the
nonlinear system in some cases, namely when Df (x;) has no zero
or no purely imaginary eigenvalues (Hartman-Grobman theorem).
When Df(x,) has no eigenvalues with a zero real part, X, is
called a hyperbolic or nondegenerate fixed point. Hence, from
a practical point of view, the interesting problem is to find
the degenerate fixed points. This was done partially in
Chapter IV, since the origin 0 is a "natural" fixed point;
the stability of the origin was investigated through the
eigenvalues of the linearized matrix [A].

Consequently, the next task is to find the other
zeros of the nonlinear system and to investigate their
stability.
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However, nonlinear systems possess limit-sets other
than fixed points which are the simplest type of limit-sets.
For planar flows, for example, all possible "non-wandering
sets" fall into three classes:

- fixed points;

- closed orbits:;

- the union of fixed points and the trajectories

connecting them.

The third class will be discussed in detail in Section 5.3.
The second one, the closed or periodic orbits, appears very
frequently, especially after a Hopf bifurcation. However, as
Holmes (1977) underlined, this is not the only way; the Hopf
bifurcation only describes the behaviour near the origin 0,
the newly unstable fixed point. In a general nonlinear case,
where globally-attracting nonlinear terms exist (as in the
present study), other attracting limit-sets may exist. By
definition, "flutter exists when the state of the system falls
into the basin of attraction of a 1limit cycle or of a
recurrent motion. As t - «, the state tends to [either] one
of periodic, almost periodic, or "strange" non-periodic
oscillations of limited amplitude" (Holmes 1977). The present
study will prove that flutter with the above definition exists
in the system, and will explain why, numerically and
analytically.

Then, a deep analysis of the system near some
bifurcation points, with the new tools of nonlinear dynamics,
will allow a more precise clarification of these points. The
use of the centre manifold and normal form theories gives
complete bifurcation sets in the (y, U) plane. The
investigation of doubly-degenerate fixed points is of
particular interest, and leads to the notion of chaos which
occurs only in some very particular cases.

In the last section, in order to increase the
possibilities for chaos to occur, other nonlinearities are
introduced into the system; specifically, the effects of
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motion-limit constraints, modelled by a cubic spring, are

studied, and a comparison with previous studies is undertaken.
5.1 STABILITY OF THE FIXED POINTS

In this section, efforts to find all the fixed
points of (2.70) and investigate their stability will be
undertaken. The approach is similar to that used in Chapter
IV, but the fixed points other than 0 have to be determined

first.

5.1.1 Methodology
Recalling that the equations of motion are

d; = Pji.
By = - kij;q; - ¢y - €450
= Buik1%,qP1 — Y15x195PkP1

the fixed points are given by
q._i -0,
p_i - 0,

Kij@y + 0350030491 = 0. (5.3)

that is to say

For a two-mode model, i = 2, two nonlinear equations
with two unknowns q, and g, are solved. Since the coefficients

o are computed numerically, it 1is impossible to find

13kl
analytic solutions to the problem. Once (q%, q%) are found,
the stability of that new fixed point is investigated through

a perturbation

0
q; = qi + uy,

p.l - Vll
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which leads, to a first order approximation, to

;.

u; = vy,
‘ v = = kyuy - cvy - a0 (usaRal ¢ @iual + gsagu))
- pljqugqgvl
{ -0,
i.e.
u; = v;,
‘}i = _kiJuJ - CyyVvy - (aljkl * Wik * allkj) qlgqgu:] (5.4a)
- Bijqujqqlgvl'

The system (5.4) can be transformed into a matrix form

u; u; .
{Vl} - [A9] {Vl}' (5.4b)

[A°] being a function of Kije Cijr

dimension of 4 for a 2-mode model.

c ®;; and Buu' and ha.ing a

Depending on the parameters, different qualitative
and quantitative behaviours may be found. As in the linear
analysis near the origin, K, &, and P are kept constant,
K =100, &, = 0.8 and p = 0.13. Depending on the values of ¥
and U, none, two or four fixed points may exist in addition to
the zero fixed point (see Section 4.2.2 and Fig.4.11(b)).
Hence, an Argand diagram for the new fixed points is not
relevant, and another notation (Holmes 1977) 1is used tc
present the results found. The fixed point 0 corresponds to
the pipe lying along the x-axis (initial position) and is
represented by {0)}. Due to the symmetry of the problem, the
first new pair of fixec points can be represented by {(+1}), and
the second pair by {#2}. The stability of each point depends
on the four eigenvalues of the matrix [A’] defined by (5.4).
The four eigenvalues are represented by a quartet

A= (£,%,%,%), where "+" stands for an eigenvalue with a
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positive real part, and "-" for an eigenvalue with a negative

real part. For example, a stable fixed point is represented

by A = (-,-,-,~), and if it undergoces a Hopf bifurcation, it
becomes A = (+,+,-,-). Similarly, a saddle-node bifurcation
is characterized by A = (0,%,%*,¥) and a doubly-degenerate

fixed point by A = (0,0,0,%).

5.1.2 Results : some cases are discussed separately.
i) ¥y = 76 (Fig.5.1(a))

The origin {0) = (-,-,~-,-) is stable for small flow
velocities. It undergoes a Hopf bifurcation (+,+,-,-) at

U = 12.65 and a pitchfork bifurcation at U = 13.10, where
(1) = {+,+,-,-), an unstable fixed point, appears (see also
Section 5.2). {0} and (*1l) coalesce at U = 14.72, the
velocity at which a saddle-node bifurcation occurs, (0} =
{*1} = (+,+,0,-). Physically, this means that there exists
one unstable static equilibrium position in the velocity range
12.65 < U < 13.1, and three wunstable static eiquilibria
positions when 13.1 < U <14.72; flutter type motion is
predominant for U >12.65.

ii) y = 60 (Fig.5.1(b))

The stable origin (0) becomes unstable through a
pitchfork bifurcation (+,-,=-,-) at U = 11.47. Two stable
static equilibria appear, {(*1} = (-,-,-,-), until U = 12.43
where subcritical Hopf bifurcations occur (+,+,-,-). Again,
limit-cycle motion may be present, since no stable equilibrium
exists. At U = 12.48, it is the origin {0} that undergoes a

Hopf bifurcation. The three fixed points ({0} and ({+1)
coalesce at U = 15.07 (A = (+,+,0,-)). A numerical
investigation confirms the results found: 1limit-cycle

oscillations were found before the first Hopf bifurcation at
U = 12.43, due to the subcritical bifurcation of {*1}. The
orbit is attracted either by one of the stable fixed points or
by the attracting periodic limit-set.
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iii) ¥y = 20 (Fig.5.1(c))
Again, the origin {0) is stable for small flow

velocities, and undergoes a pitchfork bifurcation (+,-,-,-) at
U = 8.45. The wunstable origin {0} undergoes another
bifurcation at U = 13.23, a Hopf bifurcation. Thus, it
becomes unstable from a dynamic point of view (A = (+,+,+,-)).

At U = 13.81, the two static equilibria also become unstable
through a subcritical Hopf bifurcation (+,+,-,-). For still
higher flow velocities (U = 14.85), a static bifurcation
occurs at the origin (0} which restabilizes in one mode
(+,+,-,-) (but {0} is still unstable); a second unstable pair
of equilibria {(t2) exists, (+,+,+,-) which is also unstable.
Hence, five unstable fixed points coexist in the systen.
Finally, the two pairs (%1} and (*2) coalesce at U = 15.4
through a saddle-node bifurcation (+,+,0,-), and disappear for
higher flow velocities.

From a physical point of view, one may observe
limit-cycle motions for U > 13.81, and both static equilibrium
and limit-cycle oscillations in the velocity range
13.23 < U < 13.81. Qualitatively, this was also found by
Holmes (1977) in the panel flutter problem.

iv) ¥ = -60 (Fig.5.1(d))
This case corresponds to a "standing" pipe, and the

origin {0} is a saddle for small velocity (+,-,-,-), and two
stable equilibria (*1}) = (-,-,-,=-) exist. At U = 12.71, the
origin undergoes another static bifurcation (+,+,-,-), and the
second pair (*2} of equilibria appears (+,-,-,-), until U = 16

where the two pairs coalesce. Physically, one should only see
one equilibrium. Some flutter-type motions have, however,
been observed numerically (see next section).

5.1.3 Physical implications

The results found in the previous section are very
interesting. For certain flow velocity, different steady-
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states may exist in the system: stable equilibria, unstable
equilibria and periodic limit-sets coexist. To Dbetter
understand the previous bifurcation diagrams, it is helpful to
examine the phase flow portraits for some special parameters
(see Appendix 10 for construction).

For y = =60 and U = 7.5, {0} is a saddle-point and
two stable equilibria exist. Fig.5.1(e) illustrates the
stable and unstable manifolds of the origin {0); all solutions
tend to one of the stable equilibria. The pipe is unstable
from a static point of view, i.e. it is buckled.

For y = =60 and U = 13.1 the dynamics are more
complicated: five equilibria exist (Fig.5.1(f)). The origin
{0) is a saddle, as well as the second pair {(*2)} (not all the
stable and unstable manifolds have been computed for clarity).
The first pair {*1) is "weakly" attracting. Flows with
initial conditions close to the equilibrium are attracted by
one of the fixed point {(*1}. However, other attracting sets
also exist: one may observe either oscillations around one of
the equilibria or global oscillations around the five
equilibria. Those oscillations do not come from local
bifurcations; as in the case of the pendulum, they represent
an energy state for which the oscillations do not die out.
For Duffing's equation for example, solutions lie on level
curves of the Hamiltonian energy H of the system. These
solutions are closed orbits representing a global stability
state (Guckenheimer and Holmes 1983).

The case y = -80 and U = 8.76 in Fig.5.1(g) depicts
the boundary between two states: for U < 8.76, no closed orbit
can be found, even with very large initial conditions. The
limit-set tracks flows with big initial conditions, but it is
not "suficiently attracting”. The flow is finally attracted
by one of the stable equilibria. Numerically, this process of
finding the critical velocity U can be repeated for different
values of y. The stability map of Fig.4.11(b) can be then
completed (Fig.5.1(h)).
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5.2 STANDARD FORMS, CENTRE MANIFOLD, NORMAL FORMS

The main purpose of this section is to describe
gqualitatively the dynamics of the system. The idea is to
reduce the dimension of the sysitem at the degenerate fixed
points, so as to be able to study it in a clearer, simpler
way.

The asymptotic behaviour of the solution near a
hyperbolic or nondegenerate fixed point is determined by
linearization. Hence, in this case, there exist local stable

and unstable manifolds WS W' ,.r of the same dimensions n,

loc’
n, as those of the eigenspaces E°, E' of the linearized systen,
and tangent to E®, EY at the fixed point (Guckenheimer and
Holmes 1983). The behaviour of the system on those stable or
unstable manifolds is completely defined.

In the case of a degenerate fixed point (i.e. with
at least one eigenvalue with =zero real part), a third
component, tae centre manifold W ., tangent to the centre
eigenspace E°, has to be taken into account. The stability
properties of the dynamical system along the stable and
unstable manifolds are known, so that one can restrict the
study of the dynamics near the degenerate point to the study
of the flow on the centre manifold. This is the main idea of
centre manifold theory (Carr 1981). For example, if the fixed
point contains a single zero eigenvalue, the dimension of the
centre space is one, and if the degenerate fixed point has a
pair of purely imaginary eigenvalues, the dimension of the
centre space becomes two.

The centre manifold theory is important, especially
in the case of high or infinite dimensional problems, since
one thereby extracts an essential model on a low dimensional
space that captures the 1local (bifurcational) behaviour.
Consequently, after putting the system in its standard form,
one determines the centre manifold and the subsystem on this

manifold. Combined with bifurcation theory, i.e. when the
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system has variable parameters, the method is particularly
powerful. Indeed, for low-dimensional problems, a complete
classification of most of the "famous" bifurcations was
undertaken twenty years ago (Takens 1973, 1974) and can be
applied directly in this thesis. The resulting "simplified"

subsystems are called normal forms.

5.2.1 Standard forms

In this section, the standard forms are formulated.
Depending on the degree of degeneracy of the fixed point,
different situations may arise.

Recalling first (4.1),

x=f,(x), xeR", p eR¥ (5.5)

one wants to find a value y, for which the flow of (5.5) is
not structurally stable, and draw the qualitative aspects of
the flow for small changes of p. The classification of the
bifurcations mentioned in the previous section is based on the

theory of transversality in differential topology.

Many possibilities can be listed, depending on the

Jacobian derivatives [&fu evaluated at the bifurcation point

(X9, Mg) - Thus, for a simple zero eigenvalue,
0 O
D f,] = ; (5.6)
(Dyt,] [o[M]]

for a simple pure imaginary pair,

0 -
] 0. (5.7)

0 [M]

[D,£,]
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for a double zero, nondiagonalizable,

01
D, =||oo] ° | (5.8)
0 (M

and for a simple 7ero plus a pure imaginary pair,

-

(5.9)

O £ o
o o o
]

0
[D,£,] = .
0 [M]
In each case [M] 1is a matrix of appropriate
dimension, with all nonzero real-part eigenvalues.

Consequently, starting from the original equation

y = [Aly + ef(y) + ev[B(t)]y, (5.10)

evaluated at the critical values, the system may be brought
into one of the standard forms cited ahove. Before giving
this standard form for the three different (degenerate)
situations, let us recall some properties of matrices.

If [A] is a real 4 x 4 matrix (the case of an N x N
matrix is identical), it can be put either into a diagonal
form or inteo its Jordan form,

[A] ~ [A] = [A,], (5.11)
or
A, 1 00
/ 0 A 1 0 (5.12)
(A0 =16 0 a, 1] '
0 0 0 A,
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If the four eigenvalues are real, the transformed
matrix is still real, which is the most simple case. However,
assuming that the eigenvalues of [A] are (in general) complex |

conjugates

A.k-(lk*' iwk,
none of the above forms ((5.11]) and (5.12)) is satisfactory
since the transformed matrix [A'] becomes complex. In this

latter case, let V, be the eigenvectors associated with the

eigenvalues A,. By definition,
[A1 {V,} = A, {V,} = (o,+ iw,){V]. (5.13)
These eigenvectors can also be written generally as
Ve = V& + 1V (5.14)

with Vﬁ standing for the real part of {V,) and Vﬁ for the
imaginary part. Hence, from (5.13),

[AL{VE + 1V = (o, + 10 (V& + iV},

(Al (V&) = 0, (VY - 0, Vv (5. 15)

[A] (V) = @ IV &} + o {V{}.

Constructing the modal matrix [P] consisting of the real (VJ)
and imaginary (Vﬁ) parts of the eigenvectors, the transformed
matrix [A'] becomes

(5.16)

0 0 w, o,
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The matrix [A'] in this new basis is real again,
which is desired. Letting o, = 0, for example, leads
immediately to the form (5.7).

In the case of a zero eigenvalue, by taking the
modal matrix ([P] = [V,,V,,Re(V;),Im(Vy)], the matrix [A']

becomes
00 0 O
. 0o, 0 O
L&'l - 0 0 o0, -0,/
0 0 w, o,
(o, < 0). The other cases can be constructed similarly,

except for the double zero eigenvalue when one has to find the
Jordan form (Appendix 6).

Finally, after constructing the modal matrix [P] and
letting y = [P]x, the system can be brought into the standard

form,
X = [Alx + e[P ) F([PIx) + ev[P'] [B] [P] x, (5.17)

with [A'] taking one of the forms (5.6)-(5.9), depending on
the degeneracy of the fixed point.

5.2.2 Centre manifold

Starting from the standard form (5.17), the centre
manifold can be computed. In general, this can be a
complicated task. However, it is easier to be found with an
order analysis. This was suggested by Sethna and Shaw (1987}
and proved by Li and Paidoussis (1990). Consequently, only a
brief outline following Li and Paidoussis' work is given here.
Equation (5.17) can be rewritten as

Xx = [Alx + € f(x,y) + € (B,x + B,y), x€R”
(5.18)

y = [Bly + € glx,y) + €v(B,;x + B,,y), x€R",
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where [A] contains either zero or purely imaginary
eigenvalues, [B] contains eigenvalues with non-zero real
parts, the B being time-dependent functions and both f and
g being homogeneous cubic nonlinear polynomials.

Considering € as a variable (with de/dt = 0), the

centre manifold can be written as

y = h(x,¢€), (5.19)

with the boundary conditions

an

h(o,0) =0, 22,0 =0,
o€

0,0) = 0. 5.20
% (0,0) ( )

After various differentiations, substitutions and an order

analysis, the flow on the centre manifold is found to be
X = [Alx + € £(x,0) + evB;;x + O(€?). (5.21)

It is noted that equation (5.21) can be obtained by
neglecting the stable (or unstable) component in (5.18).
Practically, those operations are straightforward.

Consequently, the analysis is now restricted to the
centre manifold, which is of dimension 1, 2 or 3 depending on
the eigenvalues of the fixed point.

5.2.3 Normal forms

After using centre manifold theory, which enables
the reduction of the dimension of the problem to its minimum
value, the subsystem defined on the centre manifold itself can
still be very complicated. The idea of normal form theory is
to reduce, to the simplest form, the vector field f“(x) which
defines the flow on the centre manifold,

%= £,(%); (5.22)
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Note that (5.22) is similar to (5.5), but does not represent
the same problem, the flow here being restricted to the centre
manifold. In the vocabulary of dynamics, "as simple as
possible" means in some sense "irreducible" (Guckenheimer and
Holmes 1983). The idea of normal forms begins with finding a
near-identity coordinate transformation P

X =y + Ply), (5.23)
where P is a polynomial. Therefore, (5.22) becomes
y = (I +DP(y)) £,(y+ P(y)). (5.24)

In terms of power series, one tries to find a sequence of
coordinate transformations P, which removes terms of
increasing degree from the Taylor series of (5.24) at the
fixed point 0. Hence, all inessential terms are removed up to
some degree from the Taylor series (Guckenheimer and Holmes
1983). For the simplest cases, a general normal form has
already been derived.

Here, as many methods as possible are used in the

different examples, that is to say:

- the standard normal form in the case of one
zero eigenvalue;

- the method of averaging yielding the normal
form in the case of a pair of purely imaginary
eigenvalues;

- the computation (in detail) of the normal form
in the case of a double zero eigenvaluse,;

- the use of available normal forms in the
doubly-degenerate case.

i) Zerxro eigenvalue bifurcation

As proved in the linear analysis, zero eigenvalue
occurs for a standirg pipe (represented by negative gravity
¥y < 0). For y = -25 for example, the critical flow velocity
for a simple zero eigenvalue is 3.05.
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Processing the centre manifold theory allows the

reduction of the dimension of the full system, in the

neighbourhood of U, = 3.05, to a one-dimensional subsystem.

The calculations are performed using the computer algebra

system MACSYMA, accomplishing the following steps:

computation of the linear matrix [A], as a
function of the control parameter y = U - U ;
calculation of the eigenvalues of [A] at the
critical velocity:

construction of the modal matrix [P),
evaluated at the critical parameters (see
Appendix 7 for proof);

computation of the nonlinear terms;
computation of the standard form;

evaluation of the flow on the centre manifold
through (5.21).

For the system parameters considered (U = 3.05,

4

y = =25, f = 0.2, K = 0), the procedure yields

X e (-4.44p - 10.85x2) x. (5.25)

From (5.25), it is clear that the bifurcation occuring at the

critical parameter is a subcritical pitchfork bifurcation.

Voo

1\

Figure V(a)

When p < 0 (U < U), the origin is unstable, and
solutions diverge (depending on the initial conditions) to one

of the stable equilibria.
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When p > 0 (U > U,), the origin becomes stable, and
the two symmetric equilibrium positions disappear; the system
regains stability. This was also found through the numerical
integration of the equations (Fig.5.2(a,b)).

These results of course are familiar, since the
system (and the equations) has some symmetry properties (the
differential equation (5.5) is symmetric or equivariant with
respect to the transformation x - -x (fu (-x) = —fu (x))); in
this case, some transversality conditions cannot be satisfied,
and hence, neither saddle-node nor transcraitical bifurcations
can occur; in terms of normal forms, the bifurcations are

represented by

dx/dt = p - x° (saddle-node),
dx/dt = px - x° (transcritical),
dx/dt = px - x° (pitchfork).

(See Guckenheimer and Holmes 1983, pp. 145-150 for more
details.)

Moreover, the equilibrium positions can be evaluated
very easily from (5.25). Letting dx/dt = 0 yields

-4.44 (5.26)
x. =14 2220 _ 064/ T,
eq 10.85  ° W

Using the modal matrix [P], one can reconstruct the stationary
solution

{qleq T Fea! (5.27)

Qreq = ~0.192X,,,

and through the Galerkin transformation, obtain the deflection
of any point on the beam.

The results found (Fig.5.2(c)) are in qualitative
and quantitative agreement for small values of p (-.1 < p < 0)
for the set of parameters chosen. Moreover, the parabolic
shape is obtained. Note that, in the numerical integration of
the equations, the system regains stability at velocity U,
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larger than the one predicted by the 1linear theory. of
course, this prediction is not possible with the centre
manifold theory. Finally, it should be recalled that many
(simpler) methods can be used to find static solutions.

ii) The Hopf bifurcation
The Hopf bifurcation may be the most important

bifurcation from an engineer's point of view, since it
corresponds to dynamic instability causing flutter-type
motions. Therefore, it has been studied extensively,
physically and mathematically, by many authors (Marsden and
McCracken 1976). In this case, qultakes the form (5.7), and
the normal form is given by

r - (dp + ar?)r,

(5.28)
¢ - (w, + cu + br?),

in which p is directly related to the change of the parameters
(the flow velocity in this case), and a, b, ¢ and 4 are
coefficients to be computed from normal form theory. For
example, if the flow on the centre manifold is defined by

X, = ~wX, + €f, (x,,X%,),
(5.29)
xz = mOXI + €f2 (XIIXZ) ’
a is simply obtained by
a - -é- (£i,103 + 3£, 40 + 3F5.03 + £5.21) (5.30)

where (Li and Paidoussis 1990)

_ 3 2 2 a
£, = £y 3080 + Ly 01%°%, + £ 1,3,%° + £, 03%,°,
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or

fl = fl,jk leXZkl = 1,2, _7 + k=3,

In the case of an autonomous system, the normal form
and the averaging method yield the same results. The second
one is used here.

Starting from (5.22), one seeks solutions of the
form

x, = rcos{w,t +¢) - 1C,
{ (5.31)

x, = r sin{w t + ¢) - r5,
where C stands for cos(e,t + ¢) and S for sin(e,t + ¢). Hence,
from the left-hand side of (5.22),
X, = IC - r(mor4-$)s,
X, = IS + r{wyt + <i>)C',
and from the right-hand side
X = -rw,s + € £,(rC, r8),
X, = rw,C + € £,(rC, rS).
Equating the two sets of expressions leads to
{rc - S - € £, (rC, r8),

IS + 1$dC = € £,(zC, S),

which can be simplified into

f =-€ (f1C+ fzs)l
{ (5.32)

rp - € (£,C - £,5) .
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The problem is now in standard form and meets the
assumptions of the theorems for averaging (Sanders and
Verhulst 1985). Hence,

2r

w
(z) av ™ Y !; (flC + fzs) dt,
) (5.33)

(rd) ,, - (£,C - £,5) dr,

w0
2n

O%elg’

L

in which integrals r and & are assumed to be constant. The
advantage of the averaging method is that it is based on
several basic comparison theorems which compare solutions of
(5.22) and the averaged equations (5.33) (Chow and Mallet-
Paret 1977). For solutions valid for time of o(e'), any
solutions of (5.33) can be shown to be close to those of
(5.22) for sufficiently small €.

The algebra involved in carrying out these
calculations can become tediocus; however, it is easily handled
on a computer with a symbolic manipulation program, such as
MACSYMA. This was done with the same parameter values as
those used by Li and Paidoussis (1990) for comparison with the
normal form theory and their calculations of unfolding
parameters. With y = 25, B = 0.2 and a critical flow velocity
U, = 7.093, one obtains

. (5.34)

r=2.77pr - 89.663r3,
¢ - 16.16 - 0,903 + 106.529r2,

The nonlinear coefficient a equals =-89.663 < 0.
This shows that the corresponding Hopf bifurcation is
supercritical.
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e
A )

Figure V(b)

Moreover, under this normal form, the radius of the limit
cycle (in the new coordinates !) can be obtained, by letting

dr/dt = 0, or

From a physical point of view, for p < 0 (U < U)),
the origin is stable (no limit cycle), and it becomes unstable
for p > 0. These results are familiar (Fig.5.3(a,b)). Of
more interest is the use of these results in the original

coordinates. Letting

r=r,=0.176 yu,

. e (5.36)
¢ - ¢, - 16.16 + 1.802y,

one can easily reconstruct the original equation on the centre
manifold: from (y) = [P] (x), and by approximating (x) as

[ ;. cos (¢, 1))
r,. sin(¢,.v)

{X} - 4 0 &)

0
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one obtains
yl‘ ' ;. cos(¢,.t)
)’ -0.3421r,. sin(¢,.t)
vt ={ "t - N

13’3 W -16.16 ;. sin(¢,.1)

| Y { -5.53 r;. cos(¢,.t)
As expected, y; = dy,/dt and vy, = dy,/dt. The

displacements and velocities at the end of the pipe are
computed through the Galerkin approximation

x(1,t) = y, (1) (1) + y,(7) (1),
{ ‘e & Y2 ¢ (1 (5.37)

X'(l,T) - Y3(t) ¢1(l> + Y4(T) ¢2(1) .

The results are compared with those obtained by
numerical integration (Fig.5.3(c,d)). The phase plot gives
very good results for g = 0.3, as well as the time trace (not
shown). Considering the fact that p is "not very small" (as
required in the theory), the approximations of the flow on the
centre manifold are excellent. The bifurcation diagram in
Fig.5.3( ) also confirms all these results. Again, the
bifurcation type is clearly defined, and agreement for a large
range of p is obtained.

Consequently, not only the qualitative aspect of the
bifurcation has been found, but also the quantitative
behaviour after the bifurcation. This is very interesting:
the type of bifurcation has been clarified, the post-
bifurcation behaviour has. been predicted, and complicated

equations have been transformed into a much simpler system.

iii) Double zero eigenvalue problem

From the linear analysis, it was found that in the
case of the elastically-supported pipe (by the linear spring),
a double zero eigenvalue can occur. The strategy used in this
section follows the one described in the case of the zero
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eigenvalue, but presents some practical differences. Indeed,
the transformation into a standard form is not so easy in this
case, since a double zero eigenvalue occurs with only one
independent eigenvector (for computation of the Jordan form,
see Appendix 6). After evaluating the flow on the centre
manifold and neglecting the other components, the subsysten

obtained is

0 o1
X—[Ol}x+e[ lx+ef(x). (5.38)
00 By Ky

In dynamics vocabulary, B, and |}, are called
unfolding parameters, and represent the deviation of the real
parameters from their critical value. These parameters are
necessary to capture all the possible behavioural
characteristics of the system. In the case of a double zero
eigenvalue, two parameters are necessary to unfold the
dynamics of the problem (codimension two bifurcation).

One follows the strategy of normal forms, in which
all the non-essential nonlinear terms of f are eliminated
("non-essential" meaning that they do not affect the
qualitative dynamics). This was discussed in the previous
section and developed by Li aad Paidoussis (1990). First, one
introduces the coordinate transformation,

X =y + €eP(y).
Differentiating with respect to time vields

X=y [T +eDP(y)],

where DP is the Jacobian matrix of [P]. After substituting
into {5.22) and simplifying, one obtains

Y =L(y) + €e(DL.Po(y) - DP.L(y) + £(y)) + O(€?)
- L(y) + eg(y),

(5.39)
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with

01]
DL = ,
[0 0

and

g(y) = DL.P(y) - DP.L(y) + £(y). (5.40)

In the case of the double zero eigenvalues with
certain symmetry proparties, the normal form is shown to be

0
gly) - (5.41)
{‘335’3 + b3Y12Y2

(Takens 1974; Guckenheimer and Holmes 1983). The problem now
becomes the following: knowing L(y), f(y) and g(y), what is
the polynomial P which satisfies (5.40)? Recalling that f, g
and P are "third" order polynomials, they can be written as

f_-,_(_V) - fi,k,S—k Y]].( yg-k:

gj(_V) “ 9.k 13-k _Vlk _V23-k:

pi(}’) = Pj,k,3-k Y1k YzB-k,

with i = 1,2 and k = 0 to 3.
Equating the different coefficients leads to the
eight equations given in Appendix 8. Finally, one obtains

{aa = L, 5 (5.42)
by = £, 5 * 3L, 34

For the parameters f§ = 0.18, K = 100 and £ = 0.8
chosen in the linear analysis (see Fig.4.10(c}), the critical
values for U and y are

U, = 14.61,
Yor = 4.96,
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which corresponds to a hanging pipe.
After computation of the normal forms, one finds

a, = 20023 > 0
by, = 4213.6 > 0

Substituting in (5.41) and rescaling y, and y, by yp/(bﬁ% and
yé/(bﬂ% respectively, the folluwing equatioms are obtained:

{yl IRk (5.43)

5}2 = By, Ry, + 4.752 .V:i5 + .VIZYZ"

The two unfolding parameters are related to the
deviations of U and y, p and dy respectively, through
B, = 74.70p - 1.444dy,

(5.44)
B, = 5.134.

Of importance are the respective signs «f a; and b;.
This situation has been studied in detail in Guckenheimer and
Holmes (1983, pp.337-376), and the corresponding bifurcation
set, with associated phase portraits, is shown in Fig.5.4(a).
The analysis of the normal form (5.43), hence, brings out the
emergence of global bifurcations involving the coalescence of
closed orbits, as well as saddle connections. For dy = 0 and
p > 0, one obtains y, > 0, 4, > 0 which corresponds to limit-
cycle motion. For p < 0, the solutions converge to one fixed
point. In this case again, an essential two-dimensional model
has been used to describe the behaviour:of the system around
the critical point, illuminating the onset of flutter and
divergence, as well as the interaction between them.
Numerical integration of the equations in the neighbourhood of
{0} (U = 14.61, ¥y = 4.96), has indeed demonstrated the
appearance of limit-cycle motion (Fig.5.4(b,c)), which gives
some confidence in the normal form found. However, in the
special case studied, it should be recalled that among the
four eigenvalues, one of them is strictly positive, making the
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fixed point {0) unstable (existence of an unstable manifold).

Finally, it should be mentioned that, in the case of
the panel flutter problem, Holmes and Marsden (1978) argue
that forced oscillations could become chaotic. This will be
discussed in Section 5.3.

iv) Doubly-degenerate case

The case of a doubly~degenerate situation was
investigated recently by Li and Paidoussis (1990), and a
complete bifurcation analysis near the doubly-degenerate fixed
point was undertaken by Sethna and Shaw (1987). Hence, not
all the details are presented here. After proceeding as in

i), the autonomous system is brought to the form

x*=L(x) +€ f(x), x¢€R?, (5.45)
where
€K, -(w, + €4;) 0]
DI = | Wy, + €EQR, €l, 0 |, (5.46)
0 0 €W,

and where £ is a third order polynomial in x. Using normal
form theory (and following the strategy described in iii) and
in Li and Paidoussis), and transforming the result into polar
coordinates leads to the subsystem

2 =€e(p, r - (a,r*+ a;;z%))r + O(e)
2 =€(P,z + (@,,r?+ a,z?) )z + 0(€?) (5.47)

»

¢ - w, + 0(e),
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where a,,, a,,, a,, a,, are given by

r

a1 = (£5 510 * 3f5 630 * 3£1,300 + f1,120)/8

a,, = (f + £ 2
* 12 (£3,012 L1m)/ (5.48)

8y, = (£5,201 * £3,021) /2

a;; = fa,ooa'

\

In physical terms, r represents the amplitude of
oscillatory motions of the pipe, z represents the buckled
positions of the pipe and d¢/dt the frequency of oscillations.
It is interesting to note that the first two equations of
(5.47) and the third one are decoupled, providing immediately

¢ - w,t + 6, + O(e)

A rescaling procedure can transform the first two equations in
their usual form (Guckenheimer and Holmes (1983), pp. 396-
411),

£ =-r(p, + r* + bz?),

(5.49)
2= 2z(p, + cr? + dz?), d=- 1.

This system has been studied by Takens (1974) who
found nine topologically-distinct equivalent classes. Results
obtained from three different sets of parameters are presented
now for comparison; the case studied by Li and Paidoussis
(1990) (Case 1) has also been considered (note, however, that
the notation is not the same):

Case 1: U = 2,245 Yy = =46.001 g =0.2 K=o0,
Case 2: U = 12.598 y = 71.941 B =0.18 K = 100,
Case 3: U = 15.111 Y = 46.88 B = 0.25 K = 100.

The location of the linear spring is constant, { = 0.8. 1In
all three cases, d - bc » 0. Two tables are presented below,
showing the coefficients found and the corresponding equiva-
lent class defined in Guckenheimer and Holmes (1983), p. 399).
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d c b
Case 1 -1 -1.518 3.954
Case 2 -1 -0.070 ~-24.31
Case 3 -1 =-3.390 1.656
Table 5.2 Respective signs and equivalent class
d c b d-bc Class
Case 1 -1 - + + VIa
Case 2 -1 - - - VITI
Case 3 -1 - + + VIa
Starting from (5.49), the classification of the

different unfoldings can be undertaken.

For example, one can

easily show that pitchfork bifurcations occur from 0 on the

lines p, =

0 and p, =

Chy,

and from
dp,/b (See Appendix 9).

bifurcations do not occur from the newly fixed point.

the case

when

d - bc < 0.

Hence,

in case 2,

0, and also that pitchfork bifurcations
occur from ((-p,)'2, 0) on the line p, =
(0, (-p,/d)"? on the line y, =
behaviour of the system remains simple,

The

as 1long as Hopf

This is

no Hopf

bifurcation can occur, while it is possible in cases 1 and 3.

The bifurcation sets,

and the associated phase

portraits can be constructed for the different unfoldings; it
is evident that in case 2 (Fig.5.5(a)), no global bifurcations

are involved, while in the other two cases,

loop (or saddle loop) emerges (Fig.5.5(b)).

a heteroclinic
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5.3 1IN SEARCH OF CHAOS

In the previous section, the use of the modern tools
of nonlinear dynamics has shown how complicated equations can
be recast into simple ones, and how these simple equations
can, in turn, generate very interesting bifurcation sets. Of
course, by studying lower dimensional subsystems, the
discussion of all the possible motions may not be complete.
However, the comparison of the equations on the subsystem with
those of some well-known oscillators (such as the oscillator
described by Duffing's equation) may provide guidance as to
where chaotic motions may exist. For the moment, for a
dynamical system like the cantilevered pipe conveying fluig,
only a few different "routes to chaos" have been recorded and
have been studied extensively in the last decade.

One of them 1is associated with the class of
dynamical systems which possess homoclinic or heteroclinic
orbits when unperturbed. In two-dimensional systems, this
idea was developed by Melnikov (1963) and other researchers
through Silnikov's example in three-dimensional space (Wiggins
1988) .

Heteroclinic orbits are defined as trajectories
connecting distinct non-hyperbolic fixed points; homoclinic
orbits as trajectories connecting a saddle point to itself.
They are not indicative of any complicated motions in
themselves, rather of a boundary (or separatrix) between two
qualitatively~-distinct motions. In continuum mechanics, they
often arise as structures separating two distinct phases of
continua. More specifically, they may arise in the phase
space of the Euler-Lagrange equations associated with
minimizing some type of erergy function of a system (Wiggins
1988) . Practically speaking, when perturbed, these homoclinic
or heteroclinic orbits are, however, often associated with
chaotic motions. Indeed, the intersection of manifolds usual-

ly causes an infinite number of intersections among the stable
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and unstable manifolds, yielding either homoclinic or hetero-
clinic intersections. These lead to the welli-known tangles
that can be described by Smale's horseshoes (Smale 1963,1967).

Another route to chaos, developed by Feigenbaum
(1983), 1is associated with period-doubling. It is usually
illustrated by the one-dimensional map

Fy(x) = px (1 - x), (5.50)

where p is a parameter to be varied. This map is called the
quadratic, or logistic map. For some value of p (p > 4), the
behaviour of Ff on a restrained interval is very similar to
that of F, on its original domain [0, 1]. A new fixed point
is expected in this interval; it becomes a period-two point
for F,. Eventually, this "fixed point" will itself period-
double, just as the first fixed point did for F, producing
period-four points. Continuing this procedure, one expects to
see F, undergo a series of period-doublings, as p increases.
Mathematically, one can define a renormalization operator.
This renormalization method, in fact, describes a universal
behaviour which represents this famous route to chaos.
Another frequently occuring route to chaos is called
intermittency. This concept has been developed by Pomeau and
Manneville (1980) and is discussed in detail in Berge et al.
(1984) . Suppose that the dynamical variables are observed as
functions of time. Intermittency occurs as follows. For a
certain control-parameter value, the observed variables
undergo periodic oscillations that are regular and stable. If
that control parameter is slightly modified, these regular
periodic oscillations are interrupted by '"bursts". Further
modification will cause more frequent bursts, and the duration
of the regular oscillations decreases. Hence, intervals of
regular behaviour, present for varying periods of time, are
separated by chaotic portions. Again, the logistic map can be
used to illustrate transitions to chaos by intermittency.

A further route to chaos, exhibiting universal
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behaviour, may also be obtained through quasiperiodicity and
mode-locking. These topics, discussed by Jensen et al. (1984)
and Bak (1986), are illustrated by circle maps of the form

8,.,- £(8) -8,+Q +g(0,), (5.51)

where
g®,) -g(®,,,).

A "winding number" characterizes the behaviour of
(5.51) under iteration. It is defined by

W= lim (£7°(8)-8)/n.
n - o

It represents the average increase in the angle 6 per
iteration. For a mode-locked state, W is a rational number;
for quasiperiodic states, it becomes irrational, and for
chaotic state, the winding number is not defined. For more
details, see Jensen et al. (1984).

Finally, it may be important to mention that chaos
is always associated with strange attractors, i.e. attracting
sets with a fractal dimension (Mandelbrot 1983; Grassberger
and Procaccia 1983; Moon 1987). There aie no methods to
provide necessary and sufficient conditions for a strange
attractor to exist. Hence, many researchers, beginning to
study nonlinear systems, overlook some crucial points, such as
those outlined in the previous section. The presence of
horseshoes, for example, highlights the possibility of chaos,
i.e. it yields existence conditions but not the attractivity
of the strange attractor.

Moreover, the existence of a strange attractor, or
of any other stable steady state, in fact, does not preclude
the existence of other steady states. This will be

illustrated through various examples in this section.
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5.3.1 Numerical investigations near the degenerate points

The study of the normal forms for different sets of
parameters has allowed the classification of degenerate fixed
points through very rich bifurcation sets. It has proved that
under certain conditions, homoclinic and hetercclinic bifur-
cations may occur, also demonstrating that global bifurcations
can be detected by means of local analysis.

Li and Paidoussis (1990) found regions for chaos to
exist, in the vicinity of the doubly-degenerate point, by
perturbing these heteroclinic orbits. The perturbations were
associated with the variation of the flow velocity assumec to
be equal to

U= U, + ev sinwt,

However, double degeneracy was only possible for
negative y, which corresponds physically to a standing pipe.
In order to achieve this double degeneracy for positive y, a
linear spring was added here. Although doubly-degenerate
fixed points exist for sufficiently large stiffness K, the
normal forms found have proved that heteroclinic bifurcations
did not always exist.

Hence here, case 3, U = 15.1, y = 43.8, K = 100,
£, = 0.8 and B = 0.25 is considered. All the conditions to
get chaotic motions are satisfied, and chaotic motions are
found to exist. This is illustrated by a bifurcation diagranm,
the corresponding phase portraits, some theoretical FFT power
spectra and the calculation of the Lyapunov exponents. For
more details on the construction of the actual figures, see
Appendix 10.

Through the variation of the perturbation v,
different characteristics of the system may be ohserved:

- oscillations around one of the fixed points

(v = 0.5, Fig.5.6(a)):

- quasiperiodic oscillations around the whole

system, since the attracting limit cycles of
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the two fixed points are involved (v = 2,
Fig.5.6(b));

- periodic oscillations around the two fixed
points (notice that the origin is still
unstable) (v =5, Fig.5.7(c)):

- periodic oscillations involving period~-
doubling (observed in both the phase portrait
and the power spectrum) (v = 8, Fig.5.6(d)):

- chaotic oscillations (v = 11, Fig.5.6(e)).

All results are summarized in two bifurcation
diagrams. Fig.5.6(fl) represents the maximum displacement of
the tip (free end) as a function of the perturbation v.
Periodic regions are clearly defined. However, in order to
distinquish between quasiperiodic and chaotic oscillations,
the calculation of the Lyapunov exponents 1is necessary
(Fig.5.6(£2)).

The sign of the Lyapunov exponent provides the
qualitative dynamics of the system: ¢ > 0 for chaotic motions,
o0 = 0 for periodic motions, and o < 0 for a stable fixed
point. However, for periodically-forced dynamical systenms,
the n-dimensional ordinary differential equation (ODE),

X=f(x,t), x€R?,

can always be recast in an (n + 1)-dimensional ODE,

X- f(xle)l
®-1; (x,0 €R”xR.

The exponent corresponding to the time variable is
always zero. Hence, since this zero exponent is always
missing in the computation, for the non-autonomous system, the
case o < 0 also corresponds to periodic motions (oscillating
at the externally-applied frequency). When o = 0, both the
forcing frequency and the system response frequency are
present.
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Qualitatively, the results obtained agree very well
with the ones given by Li and Paidoussis (1990).

Finally, it should be mentioned that the forcing
frequency is very important. It was chosen close to the
natural frequency of the system (¢, = 12.79) to "achieve"
resonance. For lower values of w, only periodic oscillations
are observed (Fig.5.6(g)). Hence, further studies should also
investigate the effect of the forcing frequency as done in
previous analysis (Tousi and Bajaj 1985, Bajaj 1987, Tang and
Dowell 1988, Namachchivaya and Tien 1989). From a
quantitative point of view, the value of the perturbation v
can no longer be considered as small, which was one of the
assumptions made. One justification is that the study of the
normal form (5.47) only provides guidance as to where chaos
may exist; it is usually difficult to prove that the strange
attractor will indeed be the attracting set.

Moreover, it 1is still wunclear how the saddle
connections behave in high-dimensional spaces. The study of
this problem is beyond the scope of the present thesis and is
left to future investigation. Perhaps other "universal"
characteristics of strange attractors and chaotic oscillations
will appear in this rather simple case of a pipe conveying
fluid!

5.3.2 Investigation of the constrained cantilevered pipe
Nonlinear vibrations of a constrained pipe conveying
fluid have been studied extensively over the past few years.
Paidoussis and Moon (1988) and Paidoussis et al. (1989, 1990)
have demonstrated that chaotic oscillations exist, both
theoretically and experimentally. They proved that beyond the
Hopf bifurcation, regions of period-doubling occur and lead to
chaos. The first theoretical studies were based on the
simplest analytical model (two-degrees-of-freedom or four-
dimensional model) in which the only nonlinear effects are due
to the motion-limiting constraints. 1In a refined model (N = 4
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or 5), Paidoussis et al. (1990) compared gqualitative and
quantitative results with experimental ones. Again, they
showed that beyond the Hopf bifurcation, as the flow velocity
is increased, a pitchfork bifurcation is followed by a cascade
of period-doubling bifurcations leading to chaos.

Here, the "simplest" model is used (i.e. N = 2), but
the nonlinearities of the pipe are taken into account.

Fig. (5.7) represents schematically the experimental
system and a corresponding idealization of the motion
constraints by a cubic spring. In Fig.5.7(b,c), the force-
displacement curves cf the real (experimental) constraints and
of the idealized (cubic spring) ones are shown. Hence, to
approximate accurately the real constraints, high values of K
(nondimensional spring stiffness) are necessary. Paidoussis
et al. (1989) took a value of K = 100 to overcome some
numerical problems (with higher values, the numerical scheme
was diverging), and obtained sometimes unrealistic
quantitative results, especially for the displacement of the
pipe which was found, in some cases, to be greater than the
length of the pipe itself! Their conclusion was that the two-
degrees-of-freedom model was insufficient to physically
represent the real systen. In comparison with the
experimental characteristics, the nondimensional stiffness
chosen here is K = 10°, and the two-degrees-of-freedom
approximation is considered. Hence, the nondimensional forces
due to impact are

F-K8(E -E,)2=-10°8(E - £,)3,

where & represents the Dirac delta function and §, the
location of the impact. Note that a change of the stiffness
K (K = 10° or K = 10°) only modifies the gap between the pipe
and the constraints.

In order to compare all the theoratical results with
the experimental ones, some parameter values were taken from
Paldoussis and Moon (1988), y = 26.75, f = 0.213 (see Fig.6 of
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that paper). For a sufficiently high value of §, ({, = 0.75),
a pitchfork bifurcation, followed by a series of period-
doubling bifurcations, arises, leading to chaotic motions.
The variable parameter chosen is the dimensionless flow
velocity U. At U = 7.35, a Hopf bifurcation occurs, leading
to periodic oscillations (Fig.5.8(a)). A new periodic orbit
is created through a pitchfork bifurcation at U = 9,22. This
last bifurcation breaks the "symmetry" of the system, as shown
in Fig.5.8(b). Mathematically, this comes from the crossing
of a Floguet multiplier associated with the periodic
trajectory, with the unit circle at +1 (Tousi and Bajaj 1985,
Paidoussis et al. 1989). Physically, the system oscillates
around a newly generated steady-state. Finally, the period-
doubling bifurcation is clearly visible at U = 10.2
(Fig.5.8(c)) and at U = 10.295 (Fig.~.8(d)). At U > 10.35,
the motion becomes narrow-band chao'.ijc, and wide—-band chaotic
at U > 10.38 (Fig.5.8(g,h)). From a physical point of view,
the mechanism leading to chaos is related to the interaction
of limit-cycle motion and potential wells associated with
divergence of the pipe at the constraints.

All these characteristics can be observed either in
the phase-plane portraits or in the corresponding power
spectra (chaotic oscillations being associated with a wide
frequency band). Notice however that the main frequency is
still present at U = 10.4.

Again, all the results are summarized in two
bifurcation diagrams where the maximum tip displacerent and
the Lyapunov exponents are plotted as functions of the flow
velocity U (Fig.9(a,b)). For the autonomous system, o < 0
represents stable equilibria, o = 0 corresponds to periodic
oscillations and ¢ > 0 proves the existence of chaotic
motions.

It is observed that, after the region of chaos, the
system "regains stability," which corresponds exactly to
experimental investigations: for higher flow velocities,
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beyond the chaotic regions, the system becomes unstable by
divergence. This clearly appears in the bifurcation diagrams
as well as in Fig.5.10. The oscillations are periodic for
U = 10.82 and are damped for even higher flow velocities. An
investigation of the existence of fixed points (similarly to
Section 5.1) indicates that a subcritical saddle-node
bifurcation occurs at U = 9.85; two fixed points exist beyond
that wvalue of U: one of them stable, and the other one
unstable (Iooss and Joseph 1981). The computation of their
respective eigenvalues leads to the conclusion that the stable
fixed point becomes "more and more" stable when U increases,
until finally it becomes the strongest limit set in the
system. By setting initial conditions close to the stable
equilibrium, the detecticn of the fixed points is possible,
even in chaotic regions (Fig.5.10(c)). Hence, different
attractors coexist. This illustrates the last remark of the
introduction of the section.

All the previous results prove that "the simplest"”
analytical model (N = 2) can be used to study the autonomous
"infinite" dimensional model with good accuracy, when the
nenlinearities of the pipe are taken into account. Of course,
the thresholds of the Hopf and period-doubling bifurcations
are lower than in reality, since they essentially depend on
linear analysis. However, not only were the qualitative
features found numericaliy, but also very good agreement with
experimental observations can be achieved with the nonlinear
model. Numerically, using the norlinear model, the
qualitative features of a constrained cantilevered pipe
conveying fluid were in close agreement with the experimental
observations.
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CHAPTER VI
CONCLUSION

6.1 RECAPITULATION OF THE FUNDAMENTAL WORK UNDERTAKEN

In this thesis, the nonlinear dynamics of a tube
conveying fluid have been examined theoretically by means of
a two-degree-of-freedom (four-dimensional) analytical model.

Two distinct methods, one based on Hamilton's
principle and the other on the Newtonian approach, were used
to derive the equations of motion. Hamilton's principle was
used in its general form, applied to the tube fluid systemn,
which is an "open" system since fluid is flowing in and out of
it. In Hamilton's principle (associated to an energy or a
variational principle), terms of up to fourth order had to be
considered in order to find an exact third order nonlinear
differential equation. Therefore, particular attention was
paid to the formulation of the kinetic and potential energies.
At that order of magnitude, many concepts had to be justified
and clarified: the set of coordinates to be used (the stress
tensors and displacement vectors do not have the same
expressions in the Euler and Lagrange coordinates), the
inextensibility condition for the cantilevered pipe and its
implications, an exact expression of the potential energy and
the fluid velocity, and so on. Hence, all the energy terms
used in Hamilton's principle had to be derived very carefully.
In the case of the pipe fixed at both ends, some
"controversial" concepts were also clarified.

For the Newtonian approach, a force balance method
in vector form was considered. The inextensibility condition
and the expression of the curvature (and some of its
characteristics) were used, but terms of fourth order O(e“)
could be neglected.
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It was found that the two methods yielded identical
results. The energy method was more tedious than the force
balance method, mostly because of the aforementioned fourth
order terms that had to be retained in the equations.
However, the derivation of the equations of motion of a system
with two different methods has its usefulness, from both
scientific and utilitarian points of view, since it gives
confidence in the results obtained.

The final equations were discussed from a physical
point of view, put in a standard form (using an approximate
method to transform the nonlinear inertial terms), and
discretized with the Galerkin method. Expressing the
deflection of the pipe as the superposition of the normal
modes of a cantilever beam, the partial differential equations
were recast into a set of ordinary differential equations.
The nonlinear coefficients defined from integrals of the
eigenfunctions of the beam and their derivatives were computed
numerically.

Then, the nonlinear equations of motion obtained by
different authors were described, discussed and compared. For
this purpose, some careful derivations were necessary to get
a comparable set of equations. For the cantilevered pipe, the
equations were divided into three classes. Appearing under a
different format, it was proved that those three sets of
equations were (almost) identical. For the pipe fixed at both
ends, however, none of the nonlinear equations derived
previouslywere found to be complete and exact. Some
approximate equations were nevertheless found by different
authors.

The linear system was then studied in order to find
the critical parameters corresponding to the following
stability boundaries: divergence, flutter and concurrent
divergence and flutter. Two different methods were applied:
Routh's criteria, and a direct eigenvalue analysis. Hence,
not only were the stability boundaries found, but also the
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types of instability within those boundaries were identified.

The instabilities were studied further using the
nonlinear equations. Both the existence and stability of all
the fixed points were investigated by computing the
eigenvalues, and the results obtained verified by numerically
integrating the <governing equations. Some physical
consequences were discussed.

Using the centre manifold theory, the numker of
dimensions of the system at the degenerate fixed point was
reduced, to obtain a simplified subsystem. In the case of a
zero eigenvalue, a pitchfork bifurcation (divergence), was
found to occur. Using the method of averaging, supercritical
Hopf bifurcations were obtained, and the approximation of the
simplified subsystem on the centre manifold was compared with
the actual flow computed numerically. Very good agreement was
found between themn.

Near some fixed points of higher degeneracy
(codimension-two bifurcation), the qualitative dynamics were
also examined. Using normal form theory, the behaviour of the
system in the neighbourhood of those highly degenerate fixed
points was described clearly, and its evolution while varying
the parameters was discussed in detail.

This 1local bifurcation analysis revealed the
existence of homoclinic and heteroclinic orbits. The non-
autonomous system was studied near the doubly-~-degenerate
point. Depending on the perturbation of the flow velocity,
periodic, quasi-periodic and chaotic oscillations were proved
to exist. This was confirmed by constructing time-trace
plots, phase portraits, bifurcation diagrams and power
spectra, and by calculating the corresponding Lyapunov
exponents.

Finally, the case of a cantilevered pipe,
constrained by motion-limiting restraints, was investigated.
The analytical model of the impact forces is close to the

experimental one, but the pipe itself was still approximated




104

by a two-degree-of-freedom model. With increasing flow
velocity, beyond the Hopf bifurcation, regions of chaotic
oscillations were found.

As in previous studies, the mechanism leading to
chaos was to be related to the interaction of 1limit-cycle
motion and potential wells associated with divergence of the
pipe at the constraints, and the route chaos was via period-
doubling bifurcations. Again, phase orbits, bifurcation
diagrams, power spectra were constructed, and Lyapunov
exponents calculated. With this "refined" model, the
theoretical displacements of the pipe were very close to
experimental observation. In particular, as the flow velocity
was increased, the chaotic oscillations disappeared and the

system finally became only statically unstable.
6.2 SUGGESTIONS FOR FURTHER INVESTIGATION

There are many possible directions in which the work
presented in this thesis could be extended.

The order of discretization of the equation and the
approximation of this infinite dimensional system could be
reviewed. The study could start from the partial differential
equations, say by using the Lyapunov-Schmidt approach, or the
number of degrees of freedom of the discretized system could
be increased. In both cases, qualitative and quantitative
comparisons with the model developed here might be
interesting.

Refinements could also be made %o the modeling of
the fluida. Thus, the fluid forces could be formulated by
means of ideal flow theory, rather than by considering the
fluid as an infinitely flexible rod (plug flow). Moreover,
even in the case of the plug flow theory, nonlinearities of
the flow components could be considered.

A complete and detailed experimental study, in
parallel with the *heory developed in this thesis may be of
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great interest.

Concerning bifurcation theory, the use of some new
software like the AUTO packages (Doedel 1986) would allow
systematic construction of the bifurcation diagrams, and the
verification of the results found here.

In terms of nonlinear dynamics, it is still unclear
what the implications of saddle-node connections within high
dimensional spaces are. A deeper investigation in that
direction would perhaps be useful to explain the onset of
chaos near the doubly-decenerate fixed points.

Finally, in the case of the non-autonomous systen,
attention should be paid to the influence of the forcing
frequency. Chaotic oscillations associated with quasi-
periodicity and mode-locking might be present in the system.
The study of the parametric and combination resonances from a

nonlinear point of view might lead to the uncovering of even
richer dynamics.




106

REFERENCES

Bajaj, A.K., Sethna, P.R., and Lundgren, T.S., 1980, "Hopf
bifurcation phenomena in tubes carrying a fluid", SIAM Journal

of Applied Mathematics, Vol. 39, pp. 213-230.

Bajaj, A.K., 1987, "Nonlinear dynamics of tubes carrying a

pulsatile flow", Dynamics and Stability of Systems, Vol. 2,
No. i, pp. 19-41.

Bak, P., 1986, "The Devil's staircase", Physics Today,

Vol. 39, December, pp. 38-45.

Benjamin, T.B., 1961, "Dynamics of a system of articulated
pipes conveying fluid. I. Theory; II. Experiments",
Proceedings of the Royal Society (London), Series A, Vol. 261,
pp. 457-486 and 487-499.

Berge, P., Pomeau, Y., and Vidal, C., 1984, Order within
Chaos. New York: John Wiley.

Bisplinghoff, R.L., Ashley, H. and Halfman, R.L., 1957,
Aeroelasticity. Reading: Addison-Wesley.

Bourrieres, F.-J., 1939, "Sur un phénomene d'oscillation auto-
entretenue en mecanique des fluides reels", Publications

Scientifiques et Techniques du Ministere de 1'Air, Numéro 147.

Carr, J., 1981, Applications of Center Manifold Theory.

New York: Springer.

Ch'ng, E., 1977, A Theoretical Analysis of Nonlinear Effects
on the Flutter and Divergence of a Tube Conveying Fluid. AMS
Report No. 1343, Department of Aerospace and Mechanical
Sciences. Princeton, New Jersey: Princeton University.




(> 2

107

Chow, S.N., and Mallet-Paret, J., 1977, "Integral averaging
and bifurcation", Journal of Differential Equations, Vol. 26,
pp. 112-159.

Devaney, R.L., 1986, An Introduction to Chaotic Dynamical
Systems. Menlo Park, California: Benjamin/Cummings.

Doedel, E., 1986, AUTO: Software for Continuation and
Bifurcation Problems in Ordinary Differential Egquations,
Preprint.

Dodds, H.L.Jr., and Runyan, H.L., 1965, "Effect of high
velocity fluid flow on the bending vibrations and static

divergence of a simply supported plate", NASA Technical Note
D-2870.

Edelstein, W.S., Chen, S.S. and Jendrzejczyk, J.A., 1986, "A
finite element computation of the flow-induced oscillations in
a cantilevered tube", Journal of Sound and Vibration,
Vol. 107(1), pp. 121-129.

Eringen, A.C., 1967, Mechanics of Continua. New York: Wiley.

Feigenbaum, M.J., 1983, "Universal behaviour in nonlinear
systems", pp.101-138, in Nonlinear Dynamics and Turbulence, G.
Barenblatt, G. Iooss, and D.D. Joseph (eds.). Boston: Pitman.

Fung, Y.C., 1969, A first course in continuum mechanics.
Englewood Cliffs, New Jersey: Prentice-Hall.

Grassberger, P. and Procaccia, I., 1983, “Characterization of
strange attractors", Physical Review Letters, Vol. 50,
pPp. 189-208.




108

Gregory, R.W., and Paidoussis, M.P., 1966, "Unstable
oscillation of tubular <cantilevers conveying fluid.

I. Theory: II. Experiments", Proceedings of the Royal
Society (London), Series A, Vo0l.293, pp. 512-527 and 528-542.

Guckenheimer, J., and Holmes, P.J., 1983, Nonlinear
Oscillations, Dynamical Systems and Bifurcations of Vector

Fields. New York: Springer.

Holmes, P.J., 1977, "Bifurcations to divergence and flutter in
flow~-induced oscillations: a finite-dimensional analysis",
Journal of Sound and Vibration, Vol. 53, pp. 471-503.

Holmes, P.J., 1978, "Pipes supported at both ends cannot
flutter", Journal of Applied Mechanics, Vol. 45, pp. 669-622.

Holmes, P.J., and Marsden, J.E., 1978, "Bifurcations to diver-
gence and flutter in flow-induced oscillations: an infinite-
dimensional analysis", Automatica, Vol. 14(4), pp. 367-384.

Housner, G.W., 1952, "Bending vibrations of a pipe 1line
containing flowing fluid", Journal of Applied Mechanics,
Vol. 19, pp. 205-208.

Iooss, G., and Joseph, D.D., 1981, Elementary Stability and
Bifurcation Theory. New York: Springer.

Jensen, M. H., Bak, P., and Bohr, T., 1984, "Transition to
chaos by interaction of resonances in dissipative systems. I.
Circle maps". Physical Review, Vol. 30 A, pp. 1960-1969.

Joseph, D.D., and Sattinger, D.H., 1972, "Bifurcating time
periodic solutions and their stability", Archive for Rational
Mechanics and Analysis, Vol. 45, pp. 79-109.




109

Langford, W.F., 1983, "A review of interactions of Hopf and
steady~state bifurcations", pp.215-237 in Nonlinear dynamics

and Turbulence, G. Barenblatt, G. Iooss, and D.D. Joseph
(eds.). Boston: Pitman.

Léger, P., and Wilson, E.L., 1988, "Modal summation methods
for structural dynamics computations", Earthquake Engineering
and Structural Dynamics, Vol. 16, pp. 23-27.

Li, G.X., and Paidoussis, M.P., 1990, "Stability, double
degeneracy and chaos in cantilevered pipes conveying fluid".
Submitted to Physica D.

Lundgren, T.S., Sethna, P.R., and Bajaj, A.K., 1979,
"Stability boundaries for flow-induced motions of tubes with
an inclined terminal nozzle", Journal of Sound and Vibration,
Vol. 64, pp.553-571.

Mandelbrot, B., 1983, The Fractal Geometry of Nature. San
Francisco: W.H. Freeman.

Marsden, J.E., and McCracken, M., 1976, The Hopf Bifurcation
and Tts Applications. New York: Springer.

McIver, D.B., 1973, "Hamilton's principle for systems of
changing mass", Journal of Engineering Mathematics, Vol. 7,
Pp. 249-261.

Melnikov, V.K., 1963, "On the stability of the centre for time
periodic perturbations", Transactions of the _ Moscow
Mathematical Society, Vol. 12, pp. 1-57.

Minorsky, N., 1962, Nonlinear Oscillations. New York: Van
Nostrand.




110

Moon, F.C., 1987, Chaotic Vibrations: An Introduction for

Applied Scientists and Engineers. New York: John Wiley.

Namachchivaya, N.S., and Tien, W.M., 1989, "Bifurcation
behavior of nonlinear pipes conveying pulsating flow", Journal
of Fluids and Structures, Vol. 3, pp. 609-629.

Niordson, F.I., 1953, "Vibrations of a cylindrical tube
containing flowing f£fluid", Kungliga Tekniska Hogskolans
Handlingar, No. 73.

Paidoussis, M.P., 1966, "Dynamics of flexible slender
cylinders in axial flow - I. Theory", Journal of Fluid

Mechanics, Vol. 26, pp. 717-736.

Paidoussis, M.P., 1970, "Dynamics of tubular cantilevers

conveying fluid", Journal of Mechanical Engineering Science,
Vol. 12, pp. 85-103.

Paildoussis, M.P., 1987, "Flow-induced instabilities of

cylindrical structures", Applied Mechanics Reviews, Vol. 40,
pp. 163-175.

Paidoussis M.P., Cusumano, J.P., and Copeland, G.S., 1988,
"Low-dimensional chaos in a flexible tube conveying fluid",
(submitted for publication to Journal of Applied Mechanigcs in
July 1989).

Paidoussis, M.P., and Issid, N.T., 1974, "Dynamic stability of
pipes conveying fluid", Journal of Sound and Vibration,
Vol. 33, pp. 267-294.

Paidoussis, M.P.; Li, G.X., and Moon, F.C., 1989, "Chaotic
oscillations of the autonomous system of a constrained pipe

conveying fluid", Journal of Sound and Vibration, Vol. 135,




e

111

pp. 1-19.

Paidoussis, M.P., Li, G.X., and Rand, R.H., 1989, "Chaotic
motions of a constrained pipe conveying fluid: comparison
between simulation, analysis and experiment", accepted for
publication in Journal of Applied Mechanics in November 1990.

Paidoussis, M.P., and Moon, F.C., 1988, "Nonlinear and
chaotic fluidelastic vibrations of a flexible pipe conveying
fluid", Journal of Fluids and Structures, Vol. 2, pp. 567-591.

Pomeau, Y., and Manneville, P., 1980, "Intermittent Transition
to Turbulence in Dissipative Dynamical Systems",
Communications in Mathematical Physics, Vol. 74,

pp. 189-197.

Rand, R.H., 1984, Computer Algebra in Applied Mathematics: An
Introduction to MACSYMA. Boston: Pitman.

Rousselet, J., 1975, Dynamic behavior of pipes conveying fluid
near critical velocities. (Ph.D. Dissertation, Stanford
University.)

Rousselet, J., and Herrmann, G., 1977, "Flutter of articulated

pipes at finite amplitude", Journal of Applied Mechanics, Vol.
44, pp. 154-158.

Rousselet, J., and Herrmann, G., 1981, "Dynamic behavior of
continuous cantilevered pipes conveying fluid near critical

velocities", Journal of Applied Mechanics, Vol. 48, pp.945-
947.

Routh, E.J., 1960, Dynamics of System of Rigid Bodies.
Part II. Articles, pp. 290-301. New York: Dover.




oy

112

sanders, J.A., and Verhulst, F., 1985, Averaqging Methods in
Nonlinear Dvnamical Systems. New York: Springer.

Sethna, P.R., and Shaw, S.W., 1987, "On codimension-three
bifurcations in the motion of articulated tubes conveying a
fluid", Physica D, Vol. 24, pp. 305-327.

Smale, S., 1963, "Diffeomorphisms with many periodic points".

In Differential and Combinatorial Topology, S.S. Cairns (ed.),
pp. 63-80. Princeton: Princeton University Press.

Smale, S., 1967, "Differentiable dynamical systems", Bulletin
of the American Mathematical Society, Vol. 73, pp. 747-817.

Snowdon, J.C., 19€8, Vibration and Shock in Damped Mechanical
Systems. New York: John Wiley.

Steindl, A., and Troger, H., 1988, "Flow induced bifurcations
to 3-dimensional motion of tubes with elastic support",
pp. 128-138 in Trends in Applications of Mathematics to
Mechanics, J.F. Besserling and W. Eckhaus (eds.).
Berlin: Springer.

Stoker, J.J., 1968, Nonlinear elasticity. New York: Gordon
and Breach.

Sugiyama, Y. Tanaka, Y., Kishi, T., and Kawagoe, H., 1985,
"Effect of a spring support on the stability of pipes
conveying fluid", Journal of Sound and Vibration, Vol. 100,
pp. 257-270.

Takens, F., 1974, "Singularities of Vector Fields",
Publications Mathématiques (Institut des Hautes Etudes
Scientifiques), vol. 43, pp. 47-100.



113

Tang, D.M., and Dowell, E.H., 1988, "Chaotic oscillations of
a cantileverd pipe conveying fluid", Journal of Fluids and
Structures, Vol. 2, pp. 263-283.

Thompson, J.M.T., and Stewart, H.B., 1986, Nonlinear Dynamics
and Chaos. Chichester: John Wiley.

Thurman, A.L., and Mote, ¢.D. Jr., 1969, "Non-linear
oscillation of a cylinder containing flowing fluid", Journal
of Engineering for Industry, Transactions of the American
Society of Mechanical Engineers, Vol. 91, pp. 1147-1155.

Timoshenko, S.P., and Gere, J.M., 1961, Theory of Elastic
Stability. New York: McGraw-Hill.

Tousi, S., and Bajaj, A.K., 1985, “"Period-doubling
bifurcations and modulated motions in forced mechanical
systems", Journal of Applied Mechanics, Vol.57, pp.446-452.

Wiggins, S., 1988, Global Bifurcations and Chaos: Analytical
Methods. New York: Springer.




Al
APPENDIX 1

Interesting properties of the curvature x
and the unit vector =<

Let the location of a material point be given by
F=xI+yJj+ zk, (Al1.1)

e SN
where i, j, k are fixed corthogonal unit vectors.
As it was proved for an inextensible pipe, the arc
length s can be used as the material variable. Hence,

of _ dx yr, 5, 8z ¢
+ g+ 30 Kk, (Al.2)

—

"7 %8s T 3s T s

and the normal and the binormal vectors, B) and 1-3), are given by
(Al.3)

where ¥ is the curvature of the centreline.
By definition, one has

= a? =
t- -_—- O, -b - 0 . A1-4
3= T ( )
T being a unit vector, for a two-dimensional problem,
(A1.5)

1o (BXy2, ()2 .
|| (as) +(as) 1,

ﬁ, —13) representing orthogonal vectors.
(Al1.3) through (Al.5)

-

(T,
and Frenet-Serret

Using

formulas yields
(Al1.6)

% & _ 05 _ 1 3 .
9s " 9g2 b'as 2 GS(K)'
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(A1.7)

(A1.8)
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APPENDIX 2

Derivation of the equations of motion by the energy
method: additional proofs

Equation 2.27

t, L

o« - !{g(s) (0 f(s) &y ds]dsdt:.

Integrating by parts leads to

[f g(s) ds]( f(s) oy ds]
[+ [+]

t, L

- f

2

dt -

0

L L

fff(s) by[ g(s) ds] dsdt
£ 0 0

t (L L
"f(f g(s) dsJ[ £(s) oy ds] dt -
0

t, \o

t, &
f}[f g(s) ds] £(s) by dsdt
t, o \o
t2 L (L
-ff[f g(s)ds] f(s) 8y dsdt -
t, 0

0

ta s
fj[f g(s) ds] f(s) 8y dsdt
t; o \o

ty 8
- fj'[j g(s) ds -fg(s) ds] f(s) 8y dsdt,
ty 0 \O 0

A3



)

a - ff(jg(s)ds) f(s) 8y dsdt.

Equation 2.29
From (2.28), one obtains

&

3 tf Tdt-mff<xax+yay) dsdt
1

+Mff[<x+ ux’'y 8% + (y + uy) &y
+ XU dx' + yU 8y'] dsdt

- - ff[(m+M);? + MUx' + MUX'] 8x dsdt

- ff[(m+M)37 + MUy’ + MUY] 8y dsdt

L

+Mf[ux 3x 1L —f (UX 8x) ds]dt
o}

L
+Mf[Uy6y|0’* —f (Uy 8y) ds]dt
Q

- ‘ff[(m“M)* + MUX' + 2MUX’] 8x dsdt
- ff[(m+M)}7 + MUy’ + 2MUy’] by dsdt

+ MU [[%, 8%, + y, 8y,] dt.

Equation 2.31

bdet- (m+M)gff6xdsdt:.

(A2.1)

(A2.2)
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From (2.25) one obtains

bdet- (m+M)gff [-(y’+—%y’3) by

S8
+ fyll(l + —%—y’z) 8y ds] dsdt.
(]

Using the relationship (2.27) yields

bfc;dt:- (m+M)gff [- (¥ + —;—y”) 8y

L
+(fds]y” (1 + %y’z) 8y ds] dsdt
s

(a2.3)
- (m+mg [[ - v+ 257

+ (L-38) y" (1 + %y’z)] 3y dsdt.

Equation 2.33
From (2.7) and (2.26), one has

-vl ~Y£,2!

dx, = - (yL + —-yL) 3y, + f (y" + 3y/2y”) 8y ds.
8x, being exact to fourth order o(e’),
xp8x, = (1 - —y %) 8x, + O(e5) .

Thus

L L
x, 8%, = = yp by, + [ (v SyPy!) 8y ds - Zyi* [ v by ds,
s] 0

#ey



¢ A

AG

and
B-[[ 1"+ -:ziy’zy”) 8y - 2yi* y" 8y dsdt .
By integrating by parts, it is easily proved that
L
yi - y" +f (y'y") ds.
8
Therefore

L
B - ff [y"(1 + y”?) - " f y'y" ds] 8y dsdt. (A2.4)
8
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APPENDIX 3
Internal dissipation

The potential energy defined by (2.15) has been
derived by Stoker (1968) by assuming an usual Hooke's stress
strain relation

o = Fe, (A3.1)

The assumption of a Kelvin-Voigt viscoelastic stress-strain

relationship yields

- + E* A3.2
o = Ee (Bt) ( )
where E' is the coefficient of internal dissipation.
Following Stoker's approach (1968) and with (A3.2), the
element of strain energy becomes

av = -E?b e? dxdz + E; ( )dxdz (A3.3)
With the condition of inextensibility (e = 0), the strain
enerqgy becomes
hL
ff (xz) 2 dxdz + ff —aa—t (xz) dxdz
Zho -h0 (A3.4)
L L
- EL [ 2 x K gx
2 .[" dax + { at

with 2h being the thickness of the pive, and with the usual
definition of the moment of inertial I.
Thus,




B TN

p%N

L
ET 2 E*T O
v - EL [ 2ax+ 2
2-[ 2 at

O Sy 1

1 .0
5 (x?) dx

(A3.5)

L
ET E*IT 0 2
(5 + 5= 3p) [ ax.

Consequently, in (2.30) derivatives with respect to time
should be taken into account.

?

¢
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APPENDIX 4

Linear and nonlinear coefficients of (2.58), analytical and

numerical investigations

The following <constants are needed in the
coefficients of equation (2.58).

1 1 1
ay-[o.45 0 by-[o85d, d,-[ed5a -8 &,
(¢} 0 0

Cij - aA‘146_ij + ZJB-U aij’ kij - A'.i4 bij + U2 bij + Y (alj - dij) ’

aijkl - U2 aijkl + Y bijk.l + cijkl’ Bijkl - ZU\/B— dijkl’ (A4-1)

1 1 1 1 £
Vi = [ 6.4 { [ &'y } & - [ &4 { [ [ ¥ dec } o,
0 0 0 £ o

where ¢;' and ¢,'' denote the first and second derivatives with
respect to §, respectively, A; are the beam eigenvalues, and

6” is the Kronecker delta f nction. The other 4th order
tensors are defined as follows

1 1 £
Qi1 ™ f ¢i¢'§¢'k¢’1dé - f ¢1¢Ij {f ¢/’ dE }dﬁ
0 0 0

[

1 & £ 3
+ [6.4] { [ [ &'wiae e }de -/ ¢i¢’§{ [ i } dE,
£ o 0 0

[~}
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1 1
bijia = —g‘ f P01 (1 - &) K - % f b 500 ot

1 §
+f¢i¢’j{f W7 - 8) dE}dE

[o]

1

- f¢i¢’9{}?¢’ ¢ (1 - &) df de} dE
[

[}
1 1
+ f b .0 {j.¢;¢ﬁ dE} dg,
0 ¢
Cisia = 3 f ¢ 504077 dE + f & 00", e
1 1 £
- [ 6.4 { [ [ & e ds} dt
o] E 0
1 H 1
+ [ 6.8 { [ ¥ da} dE - f ¢ 4 { [ ¢t d&}
Q Q €
1 1 £
dizg = f ¢1¢/j¢/ /) dE - f ¢1¢/j{ f ¢ ¢’ dﬁ} dg
[ 0 0

1k 1 1
+] ¢i¢’§{ [ [ o ae dE} dt - | ¢i¢’9{ [ & df;} d .
o £ o 0 3

All the second order coefficients a;;, etc., can be integrated
analytically (Paidoussis and Issid 1974), but the fourth order
ones, ;. etc., have to be computed numerically.

Numerical
results, for N = 2, are given below.




ijkl
1111
1112
1121
1122
1211
1212
1221
1222
2111
2112
2121
2122
2211
2212
2221
2222

ijk1
1111
1112
1121
1122
1211
1212
1221
1222
2111
2112
2121
2122
2211
2212
2221
2222

Qi jkt
19.04300
75.16431
5.159856
550.0317
-76.2256
10.58940
130.0725
~-365.766
-6.221161
85.266840
10.589240
-377.9241
28.328190
40.006210
52.167130
3566.6040

dijkl

5.4004670
8.7476610
=37.88905
46.627310
-2.579286
-1.395648
28.626770
-42.84314
-2.579337
-1.395711
28.626890
—42.84148
28.70733

47.09172

-200.643

262.7219

bijkl
-15.47582
-66.13101

-6.87628E-001

-391.3416
29.970540
=7.747796
=19.9508
189.0040
4.7676860
-13.06411
~-25.27128
185.38710
-45.49551
~-291.7209
53.324680
-2243.0460

Yijkt
4.5967860
-3.595960
-3.595960
25.174220
-3.59596%
6.1173500
6.1173500
-22.19125
-3.595973
6.1173620
6.1173620
-22.19130
25.174110
-22.19126
-22.19126
144.72510

Cijkt
-16.38627
1273.4900
312.24010
-12049.75
-57.86457
-957.4738
223.60980
8597.1480
-57.86487
-1396.075
662.21970
8597.0570
-138.4738
6096.2080
598.09860
-56848.40

All
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APPENDIX 5

Algebraic computation of the matrix [A]
and of the Routh's criteria

This is an output file generated by MACSYMA. The
matrix [A] and the coefficients of the characteristic
polynomial are computed as a function of U, y, B and K. The
viscous damping « and the location of the spring §{  are kept
constant. The number of mode is equal to 2.

RATPRINT : FALSES
FLOAT2BF: TRUES
NMODE : 2§

/* ALFA IS THE DAMPING COEFFICIENT */
/%* XS IS THE POSITION OF THE LINEAR SPRING */

ALFA : 0.005$%
XS: 0.8$%

/* EIGENVALUES */

LAM([1]:1.875104$%
LAM[2]:4.694091$

/* CALCUL PHI(I) */
/* Je ke ok Kk dkk Kk dk kkkkk */

FOR I:1 THRU NMODE DO(
SIG[I]:(SINH(LAM[I])-SIN(LAM[I]))/(COSH(LAM[I])+COS(LAM[I])),
W : LAM[I]*XB,

PHI[I] : COSH(W)-COS(W)-SIG[I]*(SINH(W)-SIN(W)))S$




Al3

{- /* CALCUL Cij, Bij, Eij */
/* dkdekdkhkdkhkhdhhkdkkkkkkdkik */

FOR I:1 THRU NMODE DO ( FOR J:1 THRU NMODE DO(

IF I=J THEN (
BB[I,J] : 2.0,
CC[I,J] : LAM[I]*SIG[I]*(2.0-LAM[I]*SIG[I]),
EE[(I,J] : 2.0-0.5%CC[I,J] )

ELSE (
TAU : (LAM[I]/LAM[J])*%2,
UN : (=1)**(I+J),
BB[I,J] : 4.0/ (TAU+UN),
CC[I,J] : 4.0%(LAM[J]*SIG[J]-LAM[I]*SIG[I])/(UN-TAU),
EE[I,J] : (4.0%(LAM[J]*SIG[J]-LAM[I]*SIG[I]+2.0) *UN-
2.0%(1.0+TAU**2) *BB[I,J])/(1.0-TAU**2)-CC[I,J])))$

/* KRONECKER'S SYMBOL */

FOR I:1 THRU NMODE DO ( FOR J:1 THRU NMODE DO (
IF I=J THEN (DELTA[I,J]:1.)
ELSE (DELTA[I,J]:0.)))$

/* COMPUTATION OF A, */
Jh hkhkkkkhhhkkhkkkhhk K/

/* STIFFNESS MATRIX = KK and DAMPING MATRIX = DA */

FOR I:1 THRU NMODE DO ( FOR J:1 THRU NMODE DO{
KK[I,J]:=-(U**2*CC[I,J]+GAM*EE[I,J]+LAM[I]**4*DELTA[I,J]+
K*PHI[I]*PHI[J]),
DA[I,J]:-(2.*U*SQRT(BETA)*BB[I,J]+ALFA*LAM[I]**4*DELTA[I,J])
))$

o



A

Al4
A31 : KK[1,1]$
A32 : KK[1,2]$
A33 : DA[1,1]$%
A34 : DA[1,2]$
A4l : KK[2,1]%
A42 : KK[2,2]$
A43 : DA[2,1]$
A44 : DA[2,2)$

/* DEFINITION OF THE MATRIX A */

A : MATRIX([0,0,1,0],[0,0,0,1],
[A31,A32,A33,A34], [A41,A42,A43,R44]) ;

( 0 ]
[ ]
[ 0 ]
[ ]
Col 1 = [ 2 ]
{ - 0.85824 U =~ 2.10527 K - 1.57088 GAM -~ 12.362136 ]
[ ]
[ 2 ]
[ -~ 1.87385 U + 0.20322 K + 0.42232 GAM ]
0
0
Col 2 =

11.74323 U + 0.20322 K 4 0.42232 GAM

2
13.29427 U - 0.01962 K - 8.64714 GAM - 485.51831

L e S e TR s DR s R e TR o Y e T o T o )

]
]
]
]
2 ]
]
]
]
]




~

Col 3 =
- 4.0 SQRT(BETA) U - 0.06181

Lo B cumn N o U suun BERNN s BENNN san BN s |

- 1.51892 SQRT(BETA) U

[

[

[
Col 4 = |

[ 9.51892 SQRT(BETA) U

[

{

- 4.0 SQRT(BETA) U - 2.42759

/* COMPUTE CHARACTERISTIC POLYNOMIAL OF [A] */
J* hkkkkkkkdkkhkhkkhkhkhhhkdkhhhhhkhrhkrhkhhhhhkhhr %/

P : DETERMINANT (A-L*IDENT(4))$
P : EXPAND(P)$

—_ d e el e e e

]
]
]
]
]
]
]

Al5

/* Thhhkkkhkhhhhkhhkhkhhdhhhkhdhhkhhhhkhkhhhhhhkhhhhkhkhkhkkkhkhhhhkkhk */

/* RESULTS */

/* %o e Je e K ok e e do do de de kK ok de e e ke de g de g de de ok e ek ke ek Je e ode K Kk de ke e de de ke de Ko e ke ke ke kK ke ok Kk */

(C25) A0 : COEFF(P,L,0);

/* Rhdkkhkhkkdhhhhhhhhhhkkkhkhhkhhhkkkhhhhhkhhkhhkhhhhhkhhdkdkdkhkkkk */

4 2

2

2

10.59538 U - 29.9768 KU - 17.63035 GAM U + 252.34479 U

2

-~ 1.49012E-8 K + 18.06371 GAM K + 1022.3887 K + 13.4052 GAM

+ 869.58862 GAM + 6002.15039

2
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/* KEKRERREEREERERAEEEARERAAEALAAAAEAARRARARALRRAARRAEARRARARRARRRAAR R R AR */

(C26) Al : COEFF(P,L,1);

/* khkkhkhkdhkhkhkkhkhkhkhkhkhkhkdkdhkhkkhkkhkhhhhkhkhkhkhkhkhkhkhkkkhkhkhkkhkkhkkhkhkkkdkkhk */
3 2

- 14.0700 SQRT(BETA) U + 1.26172 U + 6.87377 SQRT(BETA) K U

+ 37.4935 SQRT(BETA) GAM U + 1991.522 SQRT(BETA) U + 5.1119 K

+ 4.34794 GAM + 60.02148

/* khkkhkkkhkhhkkhkdhkkhkhhkkhhkhkhkhkkhkhkhkhkhkhkhkhkhkkkhkdkhkhkhkkdhkkhkhkkhkkhkkhkkkk */

(C27) A2 : COEFF(P,L,2):

/* kkhkhhkhhkhhkhkhkhkhkhkhkhkkkhkhkhkkhkhkhkhkhkkhkhkkkdhhkdkhkhhkkkkkhhhkhkhkkkkikikd */
2 2

(D27) 30.45851 BETA U =~ 12.43603 U + 9.95761 SQRT(BETA) U

+ 2.12488 K + 10.21801 GAM + 498.01064

/* Akhkkhkkhkhkkhkkhkhkhkhkkhkhkkhkkhkhkhkhkhhkhkkkhhkhkhkhkhkhkkkkkkhkkhkhdkkhikkhkkhkk */
(C28) A3 : COEFF(P,L,3);
/* Kk k kK kkkkkkkdkkkkdkkkkkdkkddkkkkkkkkkdkkkkkikkdkdkkkkkikikkkkk */

(D28) 8.0 SQRT(BETA) U + 2.4894
/* kkdkk kdk kR kg ik kkdkdk gk kdkk kg ddkkkkkkkdkkkkkddkkkkkkkkkkdkkkkkk
* /
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APPENDIX 6
Jordan form in the cas~ of a double zero eigenvalue

In the case of a double zero eigenvalue, the linear
part has to be put into the standard form

(pf] - [g 36] 0 (A6.1)
0 (M]

In the case of a 2 x 2 matrix, taking the
eigenvector as one of the vectors forming the new base leads
automatically to the suggested form. 1In the case of a 4 x 4
matrix, however, this is not true anymore. Assuming for
example that the eigenvalues i; and A, of [M] are real (and not
equal to zero), the modal matrix is taken equal to

- a - —
] - || V2| Bl V5] | Ve (A6.2)

where \7’1 is the eigenvector associated with the =zero
-
eigenvalue, and V; and V,. are the eigenvectors associated with

A, and A, respectively. The quartet («, B, vy, §) are the four
unknowns of the problem. Since

[P]1-t. [A].[P] = [Df],
one obtains

[(Al.[P} - [P].[Df] = 0. (A6.3)

(for the case chosen, [M] is diagonal). Substituting [A], [P]
and [Df] in the above equations yields the four unknowns «, B,
y and § and the corresponding modal matrix [P].
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Appendix 7
Computation of the modal matrix at the critical parameters

Considering p as a small parameter, it is not
necessary to compute a modal matrix different from the or:
obtained at the critical parameter: here one assumes that all
the parameters are fixed except the flow velocity U, and that

the matrix [A], at the critical velocity U contains a pair

cr’
of purely imaginary eigenvalues. Hence the corresponding
eigenvectors ;{: and fz are complex conjugate. In (5.2.1),

proof was given that if U = U and

[Pl ., - [Re (X, ), Im (X, )],

then

(P 5.[4.[P] , -

cr
1A 0

IfU =U, + ep and [P] = [Re(X,), Im(X,)], then

€p, - (0 + epy)
[P]7* [A(en)] [P] = '
(0 + en,) €p,

where epj, and €p, are small parameters function of ep (in
dynamics, they are called "unfolding" parameters).

To order €, [P] can be taken equal to
[Pl - [P]_, +e [P].
Starting from the original equation, at g4 » O,

®=[Alx + f(x), (A7.1)
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and transforming the system with the modal matrix [P] yields

. €y, -(w +ep,)
y -

-1
© + ep, ep, )Y+ (P17 £([Ply) .

Using now (A7.1) and keeping approximation of order e leads to

( ep; - (w+ep,)

-1 2 A7.2
W+ER, €p, ) y + [P, £([P,)y) +O(€?) , ( )

Hence the modal matrix can still be computed at the critical
parameters.
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Appendix 8
Normal form in the case of a double zero eigenvalue

In the case of a double zero eigenvalue, the
standard form corresponds to the Jordan form. Hence, the
linear operator is equal to

L_(o 1), (A8.1)
00

The nonlinear function f has the form

£(y) = £; (kay Vi ¥3 5, 1i=-1,2, k=0,3, (A8.2)

and the transformation polynomial h can be defined by
- “yik, oi- - (A8.3)
h(y) B (k30 Y1 Y2 o 1 1,2, k-0,3.

The computation of g(y) = L. h(y) - Dh. L(y) + f(y), with
the use of (A8.1) to (A8.3), yields the following eight
equations

hy,05 = By,15 * £1,05 = 91,030
By 15 - 28 5 + £y, 15 = G1,120
By 5 - 3By 50 + £1,51 ~ 91,214
hy 50 + £1,30 = 91,30
(A8.4)
=By 1, % £3,05 = 92,03¢
—2h, 5 + L5102 = 92,120

=38, 30 * L5,21 = 92,219

£,30 = 92,30"
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The normal form g usually used (Guckenheimer and Holmes 1983,

p.371) is

1,03 = 91,12 = 91,21 = 91,30 = 0,
92,03 ™ 92,12 = 0,
92,21 = bss

92,30 = ;-

Equating the two sets of equations yields

a, = £, 30s
by = £, 5, + 3£ 3.

(A8.5)

(A8.6)
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Appendix 9
Construction of the unfolding for the case VIII

The subsystem may be written as

r=z(p, + r?2 + bz?),

(A9.1)
2=2z(p, + cr? + dz?), d=-1, a=d-bc<oO.
i) Determination of the fixed points
rlp, + r2 + bz?] =0,
(A9.2)
z[p, + cr? - z?] - 0.

The origin (r, 2) = (0, 0) is always an equilibrium
point. Depending on p, and u,, three other equilibria may
exist

(r,z) - (01‘/‘12)' H, >0,
(r,z) = (/-p,,0), p, <O,
[ A9.3
(rz)-\jb"z*““l\JCl*l‘Pz ( )
’ a [ 4 a ’
b -
P-2+l11, CH1 = K2 o 4.
o o

ii) Stability analysis

The characteristics of the flow are determined by
the eigenvalues of the matrix [A] of the linearized system at
the equilibrium points denoted by (r,, 2,). [A] can be
determined from the original subsystem (A9.1),

B, + 3r% + bz? 2brz
[a] - : (AS.4)
2crz M, + cr? - 3z2
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Hence, for (0, 0),

0
a1 =" 7, (A9.5)
0 M,
a pitchfork bifurcation occurs if p, = 0 or u, = 0.
For (0, Vi,), B, > 0,
[a] = By v b, O ) (R9.6)
0 -2K,

a new pitchfork bifurcation occurs if u, + p, = 0.
For (v-p,, 0), B, < O

- 0
[a] - ( 20"1 ) (A9.7)
Ba—CHy

another pitchfork bifurcation occurs if p, - cp, = O.

In the three cases, the stability of all the fixed
points is determined very easily.

Finally, for the last fixed point (with « < 0),

M _?aﬁ‘/(b“2+u1) (Cl"'l""z)

[a] - ¢ (A8.8)

2, - 2c¢
2E /TBu, ;) (i, ;) LR

Since a < 0, no bifurcation can occur for this fixed point.
Hence, without loss of information, one can set p, = 0, and
the eigenvalues of [A] can be found. It appears that one
eigenvalue is always positive and the other one negative, the
fixed point is a saddle; the complete bifurcation set can be

drawn easily (Figure 5.5(a)).
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APPENDIX 10

Computation of phase portraits, bifurcation diagrams and
Lyapunov exponents

In all the computations, a fourth-order Runge-Kutta
scheme has been used. Starting from (2.70), a four-
dimensional vector space, the generalized coordinates (dy, 9y
é,, éz), are computed numerically. In all cases, the
nondimensional time step used is At = 0.005. Then, using the
cantilever beam eigenfunctions ¢. ({), the displacements and
velocities of the extremity of the pipe can be obtained,

n(llt) = ¢1(1) Q1(t) + ¢2(1) Qz(f):
ﬂ(llt) = d)l(l) Q3(T) + d)z(l) CL;(T) .

Hence, the time trace is just a representation of the tip
displacement as a function of time t. The phase portrait
represents the velocity function of the displacement of the
end.

To construct bifurcation diagram, the maximum
displacement of the end of the pipe is represented as a
function of the parameter varying (U or v in practice). The
transient terms are first discarded (20 time units). Then the
displacement of the pipe is recorded each time the sign of the
velocity changes.

To construct the power spectra, an existing
subroutine within the generic plotting package Genplot is
used. The FFT transform is implemented only for even powers
of 2 number of points (8, 16, 32, 64...). The Y variable is
first set to the absolute value of the complex transform,
normalized by the square root of the number of data points,
then transformed into a dB scale. The X variable represents
the nondimensional frequency. In all the calculations, the
number of points used is 4096.
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Concerning the calculation of the [Lyapunov
exponents, some additional explanation may be useful. A
complete discussion can be found in Guckenheimer and Holmes
(1983) for mathematical defin.tions, and in Moon (1987) for
practical calculations.

Consider the system

y=£f(y), (A10.1)

with a solution ¢ (r) corresponding to a set of initial
conditions ¢ (7)) = ¢,. To determine if this solution is
stable or not, one considers another solution ¢, (1)
corresponding to different initial conditions. Then, it is
possible to define the variational vector function
u(r) = ¢,(r) - ¢(r), such that |u| << 1. Hence, the
differential equation for u may easily be obtained,

u = DE($) u, (A10.2)

where Df(¢) is the Jacobian matrix function for the vector
field f(y) along the trajectory ¢(t). If ¢, (t) approaches
¢(t), then u(r) will tend to zero while if it diverges away
from it, then u(tr) will tend to grow. This is expressed by

| u(e) | ~ e’ (A10.3)

Of course, this exponential behaviour is only valid on a small
time interval. Hence, in the computations, the vector
function u(r) is renormalized. The so-called Lyapunov
exponents are defined by

o= B Lin(u(n I/luo D, (A10.4)
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and two trajectories may be considered to converge or diverge
exponentially on the average. In an n-dimensional space,
there exist n Lyapunov exponents, the largest dominating the
dynamics of the systen. Hence, the solution u(r) will
converge to the direction of most rapid growth, which is
associated with the largest exponent.

To calculate this largest Lyapunov exponent, the
fourth order system is replaced by an eighth order system.
The first four equations compute a given trajectory ¢(t) and
the last four compute the variational vector function u(r)
defined by (A10.2) along the trajectory ¢(t). A fourth order
Runge-Kutta scheme 1is used again. In the calculation
presented, the time step At = 0.005. Calculations were
carried out with 100 nondimensional time units, beyond the
first 20 to discard the transcient terms, and the renor-
malization was carried out every 0.1 time units (= 20 x At).
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Schematic of the system.
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Fig.2.1 (a) Schematic of the system and notation, (b) free-
body diagram of an element.
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