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Abstract: This paper presents a comparative study on the accuracy of three iron loss prediction models. 

The models are based on the decomposition of core or iron losses into the hysteresis and the eddy current 

loss components. The time domain extensions of two frequency domain models have been used to predict 

the iron losses due to a number of non-sinusoidal waveforms with and without the presence of minor loops. 

A third model, by Boglietti, that has been proposed recently to predict core losses for non-sinusoidal and 

Pulse Width Modulated (PWM) waveforms has also been studied. The unknown coefficients of each 

model have been determined by data fitting iron losses obtained from Epstein frame experiments for 

induction levels and fundamental frequencies up to 1.6 Tesla and 2 kHz, respectively. Core losses due to 

PWM waveforms have been measured at various fundamental and switching frequencies in unipolar and 

bipolar modes. The experimentally measured iron losses have been compared to those predicted using the 

three models and the accuracy and applicability of each model have been discussed. 

 

1. Introduction 

The accurate prediction of core losses in electromagnetic (EM) devices has been an area of active 

research for many decades. It is a crucial aspect of developing the next generation of highly efficient 

electromagnetic devices as well as for their optimization. Therefore, a great deal of research has been 

carried out to understand the iron loss phenomenon and develop loss prediction models to predict their 

values with increasing accuracy. The understanding of iron loss mechanisms and the accuracy of 

prediction models have improved over the years.  From Steinmetz’s original formula [1], much progress 

has been made on the development and application of empirical approaches for core loss predictions [2-4]. 

In addition to various empirical approaches, physics based phenomenological models such as the Jiles-

Atherton and the Preisach model have also been developed [5] to calculate iron losses. Although superior 

to empirical approaches from the perspective of accuracy, the phenomenological models are 

computationally expensive and numerically unstable for integration into commercial Finite Element 

Analysis (FEA) solvers [6-8] at this point. Therefore, the empirical approaches remain the method of 

choice for calculating iron losses in most commercial and research applications. In this approach, the core 

losses in electromagnetic (EM) devices are calculated as a post-processed step. The flux density 
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waveforms at each node of an FEA model is extracted (after quasi-static or transient solutions) and the 

losses are calculated by using the time domain versions of frequency domain empirical formulae [9]. 

Although these methods have been applied extensively to calculate losses in EM devices, to date, no direct 

comparison of their accuracy with experimental measurements for arbitrary, non-sinusoidal waveforms 

have been reported. This is quite remarkable given the ubiquity of their applications. In this research, the 

accuracy of a number of modern iron loss prediction formulae have been calculated for non-sinusoidal 

magnetizing waveforms and compared to experimental measurements.  

Empirical iron loss models contain unknown parameters that are generally determined by 

mathematically fitting loss data from industry standard apparatus such as the Epstein frame, the Single 

Sheet Tester, or Toroids. A summary of these loss measurement methods and a review of some modern 

loss prediction models can be found in [10-12]. At present, the Epstein frame tester is recognized as the 

industry standard instrument for measuring iron losses of magnetic materials [13, 14]. In a typical Epstein 

frame, lamination samples are subjected to sinusoidal magnetizing waveforms at various frequencies and 

induction levels and the resulting losses are measured. The measured data are fitted to so-called frequency 

domain models whose accuracies are measured on the basis of R
2
 values of the best fit models [3]. 

Although the standard practice is to apply sinusoidal waveforms to the Epstein frames, non-sinusoidal and 

PWM waveforms may also be applied if the hardware facilities allow for it. Empirical loss prediction 

models are generally expressed as a function of the magnetizing waveform frequency and the peak 

induction level under the assumption of sinusoidally varying waveforms. On the other hand, realistic 

waveforms in rotating electrical machines are typically: a) non-sinusoidal b) may contain minor loops due 

to PWM waveforms, and c) vectorial in nature. Characterization of the flux waveforms as a vector is 

posited on the basis that the tangential and radial flux components (or x and y components) are out of 

phase in the time domain and varies with position within a device. It is well established in literature that 

the vector fields produce rotational core losses which are fundamentally different from the well-known 

pulsating core losses [15, 16] studied here. Vectorial flux pattern may or may not be associated with minor 

loops, i.e. if one or both of the radial and tangential components have minor loops then the associated 

major hysteresis loop contain minor loops  [17]. 

Given that realistic flux density waveforms are non-sinusoidal, frequency domain empirical models 

have to be extended to the time domain for calculating the iron losses in real devices. The extension of 

frequency domain models to the time domain is non-trivial. A great deal of research has been carried out 

over the years on this subject and a number of methodologies have been proposed [3, 18]. Each of these 

methodologies include various underlying assumptions but in the limit of sinusoidal magnetizing 
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waveforms, the time domain models are required to reproduce the losses predicted by the frequency 

domain models. 

In this research, in order to assess the accuracy of some modern iron loss formulae, their time 

domain versions have been used to predict the iron losses for magnetizing waveforms generated using 

triangular, trapezoidal and square voltage waveforms. In addition, losses due to PWM waveforms have 

also been measured and predicted using these formulae. The results of these computations have allowed 

for direct comparisons to be made on the accuracy of various models as well as their range of applicability 

with respect to waveform frequencies and the induction levels. These results will help formulate the next 

generation of computationally efficient iron loss prediction models. 

The reminder of this paper is organized as follows. Section 2 presents the empirical frequency 

domain models that have been used in this study. The time domain extensions of the considered frequency 

domain models are discussed in section 3. A detailed description of the experimental approach and 

measurement results are presented in section 4. Finally, section 5 provides some final conclusions that 

assess the accuracy and the applicability of the models for various non-sinusoidal excitations.  

2. Frequency Domain Loss Prediction Models 

The classical Steinmetz equation [1] was the first iron loss formula proposed in 1894. Since then the 

equation has been modified and extended to include various loss components which reflect modern 

understanding of the physical mechanisms that leads to iron losses [2-4]. Many of the frequency domain 

models have also been extended to the time domain for predicting losses due to arbitrary flux density 

waveforms [19, 20]. Most modern effort towards extending frequency domain models into the time 

domain have been applied to loss separation models which divide the losses into two main components, 

the hysteresis loss, 𝑃ℎ, and the eddy current loss, 𝑃𝑒. In [21], Bertotti introduced a third loss component 

called the excess or anomalous loss that is a function of the material micro-structure, the conductivity, and 

the cross sectional area of the lamination. The three term Bertotti model has been studied extensively and 

it is one of the main iron loss prediction models that has been considered in engineering applications. 

However, in this work, the two term models will be studied for a number of reasons. First, most 

commercial FEM software packages apply various versions of the two term model only. In these models a 

global eddy current loss component is defined which combines the effects of the excess and the classical 

losses. This is a valid approach even though the excess loss of the Bertotti model and the classical eddy 

current losses have different frequency exponents. This is because the variation of the two term model 

parameters, 𝑘𝑒, 𝑘ℎ, 𝑘ℎ𝛼, and 𝛼 (defined below) with respect to the frequency and induction levels take into 

account the behavioral differences that arise from the different exponents [2, 21-23]. Second, the three 
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term model remains controversial in the iron loss research community with respect to its inclusion in iron 

loss models on the basis of physical principles. As it stands, it is attributed to losses that cannot be 

accounted for by the classical hysteresis and eddy current loss mechanisms. The validity of this approach 

is not universally accepted and this provides another reason for considering the two term models only. 

Third, a practical reason for studying the two term models is that most steel manufacturers usually provide 

loss data based on the two component assumption. A summary of the two term frequency domain models 

studied in this research have been given below.   

In [24], Jordan introduced the first two term core loss model in which both the hysteresis and the 

eddy current loss components depend on the squared peak flux density. Jordan’s core loss formula is given 

by, 

        𝑃𝑐 = 𝑘ℎ𝐵2𝑓 + 𝑘𝑒𝐵2𝑓2      (1) 

Where B is the peak flux density of a sinusoidal waveform, f is the frequency, 𝑘ℎ and 𝑘𝑒 are the hysteresis 

and eddy currents coefficients, respectively. Eq. (1) represents the simplest form of modern frequency 

domain formulae for iron losses. To better reflect the non-linear behavior of the hysteresis loss component, 

an improved formulation was proposed by [25] in which the hysteresis component has been modified to be, 

 

                              𝑃𝑐 = 𝑘ℎ𝛼𝐵𝛼𝑓 +  𝑘𝑒𝐵2𝑓2      (2) 

In this formulation the exponent α is considered to be a polynomial function of the peak flux density at 

each frequency. Also, 𝑘ℎ(Eq. (1)) and 𝑘𝑒 are functions of flux density B of a polynomial of order 3, while 

𝑘ℎ𝛼(Eq. (2)) is considered to vary with frequency only. Eqns. (1) and (2) are designated as Model A and 

Model B, respectively. The aforementioned coefficients have been discussed in [25] and can be expressed 

as,  

                                               𝑘𝑒 = 𝑘𝑒0 + 𝑘𝑒1𝐵 + 𝑘𝑒2𝐵2 + 𝑘𝑒3𝐵3    (3) 

                𝑘ℎ = 𝑘ℎ0 + 𝑘ℎ1𝐵 + 𝑘ℎ2𝐵2 + 𝑘ℎ3𝐵3    (4) 

               𝛼(𝐵) = 𝛼0 + 𝛼1𝐵 + 𝛼2𝐵2 + 𝛼3𝐵3     (5) 

𝛼 is calculated at each frequency, while 𝑘ℎ𝛼 can be extracted by considering the logarithmic operator as, 

                                              log
𝑃ℎ

𝑓
= log 𝑘ℎ𝛼 + (𝛼0 + 𝛼1𝐵 + 𝛼2𝐵2 + 𝛼3𝐵3) log 𝐵            (6) 

Detailed algorithms for the model parameter identification have been discussed in [25].  

3. Time Domain Extension Models 

As mentioned above the frequency domain models of core losses presented in section 2 are valid for 

sinusoidal excitations only. Therefore, it is necessary to extend the frequency domain models to the time 

domain. The main idea behind this extension is to introduce an equivalent formula as a function of the rate 
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of change of the flux density, dB/dt. Using this approach the eddy current loss component in the time 

domain can be written as [2], 

                                                  𝑃𝑒 =  
1

2𝑇𝜋2 ∫ 𝑘𝑒(𝑓1, 𝐵) [
𝑑𝐵(𝑡)

𝑑𝑡
]

2

 𝑑𝑡
𝑇

0
             (7) 

 

The hysteresis component for Model A is given by, 

                                                𝑃ℎ =  
1

2𝑇
∫ 𝑘ℎ(𝑓1, 𝐵) |𝐵(𝑡) [

𝑑𝐵(𝑡)

𝑑𝑡
]|   𝑑𝑡

𝑇

0
     (8) 

The hysteresis component for Model B is given by, 

                                             𝑃ℎ𝛼 =  
𝛼 𝑘ℎ𝛼(𝑓1)

4
∫ |𝐵(𝑡)𝛼 (𝐵,𝑓)−1 [

𝑑𝐵(𝑡)

𝑑𝑡
]|  𝑑𝑡

𝑇

0
            (9) 

The accuracy of the models shown in Eqns. (7)-(9) have been studied in this research by using them 

to predict iron loss due to generalized waveforms. A third model considered in this study was developed 

by Boglietti et. al. and presented in [21] (henceforth referred to as the Boglietti model). This approach is 

also based on the two term iron loss decomposition. The unique aspect of the Boglietti model is that it was 

developed to predict losses due to PWM waveforms. Another difference between the Boglietti and the 

aforementioned models (Models A and B) is that the unknown parameters of the Boglietti model requires 

knowledge of the supply voltage waveforms whereas this is not the case for Models A and B.  The 

Boglietti model is given by, 

                                                   𝑃𝒄 =  𝜂𝛼𝑃ℎ,𝑠𝑖𝑛 +  𝜒2𝑃𝑒,𝑠𝑖𝑛            (10) 

 

where,  𝜂 =
𝑉𝑎𝑣

𝑉𝑎𝑣,𝑓𝑢𝑛𝑑
 ,  𝜒 =  

𝑉𝑟𝑚𝑠

𝑉𝑟𝑚𝑠,𝑓𝑢𝑛𝑑
,  𝑉𝑎𝑣  and 𝑉𝑟𝑚𝑠  are the rectified average and the root mean square 

voltages, respectively, of the PWM generated waveform that the EM device is subjected to. The subscript 

fund is related to the fundamental waveform that may be extracted using a Fourier series decomposition of 

a general waveform. The coefficient 𝛼 has been defined in (5). 

4. Experimental Measurements and Results 

Experiments were carried out on non-oriented electrical steel samples of grade 35WW300 using a 

100 turn Epstein frame from Brokhaus Measurements and its MPG 200 system [26]. The Epstein frame 

can generate a flux density between 0.001 T to 2.0 T depending on the quality of the electrical steel being 

tested. The maximum sample mass is 1 kg. The MPG 200 system can take measurements at frequencies 

ranging from 3 Hz to 20 kHz. The power supply can apply maximum current of 40 A, and 100 V to the 

primary windings. The material being tested, the 35WW300, is a commercial grade material that is by 

weight, 3.1% Silicon (Si) and 0.65% Aluminum (Al). The non-oriented designation refers to uniformly 

distributed magnetic domains with no preferred magnetization direction [27]. It is commonly used to 
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fabricate cores of rotating electrical machines. The samples used in this study are rectangular with 

dimensions of 300 mm × 30 mm × 0.35 mm. 

The Epstein frame tests using the 35WW300 samples were carried out under three magnetizing 

conditions. First, under sinusoidal excitations to identify the frequency domain models parameters. Second, 

for non-sinusoidal waveforms that do not have minor loops, and third, for PWM waveforms with different 

fundamental and switching frequencies. The results of these measurements are presented and discussed in 

the following subsections. 

4.1 Sinusoidal Measurements 

The samples were tested under sinusoidal excitations for a range of frequencies from 50 Hz to 2 kHz, 

and for flux density levels from 0.1 T up to 1.6 T. The Brockhaus MPG 200 system is equipped with a 

digital control system that preserves the form factor of the induced secondary voltage to be below  

1.111±1% error level which meets the recommended IEC international standard [28]. The losses ([W/kg]) 

were measured as a function of flux density at each frequency. The coefficients of the frequency domain 

models (Models A and B) were found by data fitting the Epstein frame loss results from sinusoidal 

waveforms to Eqns. (1) and (2). The fitting process involves separation of loses into hysteresis and eddy 

current components. The loss separation has been accomplished based on the extrapolation method of [29]. 

The polynomial coefficients of 𝑘𝑒, 𝑘ℎ, 𝑘ℎ𝛼, and 𝛼 with respect to the flux density at various frequency 

levels were obtained using Eqns. (3) to (6). Some of these results have been shown in Fig. 1.  

The results show that 𝑘𝑒 is of the order of 10−5 (Fig. 1(a)) which is smaller than those of 𝑘ℎ(Fig. 1(b)) and 

𝑘ℎ𝛼  (Fig. 1(d)). The trends and orders of these results matches those of similar calculations reported 

previously in [3] and [25]. The variations of 𝛼 with respect to the frequency and induction levels (Fig. 1(c)) 

take into account the influence of the skin effect.   

Using these results in Fig. 1(a-d), the measured core losses under sinusoidal excitations have been 

compared to those predicted by the time domain loss prediction Models A and B (Eqns. (7)-(9)). Figs. 2(a) 

and 3(b) show the errors between the measured and the predicted losses. The results show that Model A 

predicts the losses accurately at high frequencies (> 500 Hz) with errors between∓5%, while the error 

increases to almost −20% at 100 Hz and low flux density levels. On the other hand, Model B predicts the 

losses fairly accurately (typically within∓2%) for the entire range of flux density and supply frequencies. 

These results are similar to those reported previously [3]. An important conclusion of these results is that 

the time domain extended version of Eqns. (1) and (2) reproduce the expected levels of accuracy when 

applied to sinusoidal waveforms. 
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  (a) 

 

 
         (b) 

 

 

(c) 

 

 
      (d) 

Fig. 1: The unknown parameters of models A and B are calculated using the measurement results. (a) 𝑘𝑒 is the eddy current 

loss coefficient for both A and B models. (b) 𝑘ℎ is the hysteresis loss coefficient of Model A. (c) 𝛼 is the exponent coefficient of 

flux density in Model B. (d) 𝑘ℎ𝛼 is the hysteresis loss coefficient of Model B. 

 

 
    (a) 

 
    (b) 

 

Fig. 2: The percentage of relative errors between the measured and the calculated core losses under sinusoidal excitations at 

different frequencies and peak flux densities. Losses were calculated using (a) Model A (b) Model B. 
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4.2 Non-Sinusoidal Measurements 

Some non-sinusoidal voltage waveforms and the resulting losses are considered in this section. The 

waveforms and results presented below are for those that do not contain minor loops. Waveforms containg 

minor loops will be considered in the next subsection. The non-sinusoidal waveforms chosen for study are 

triangular, trapezoidal, and square shaped voltages including dead times. The Epstein frame was supplied 

with voltage signals corresponding to these shapes and the resulting flux density and core losses were 

measured. Loss measurements were taken at a number of frequencies and maximum induction levels. All 

three models discussed in section 3 were used to calculate the expected core losses and the relative errors 

between the measured and the time domain models were calculated using, 

 

    𝐸𝑟𝑟𝑜𝑟 [%] =
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 × 100 %           (11) 

 

Fig. 3 shows the results of losses due to the triangular-wave voltage excitations. Fig. 3 (a) shows an 

example triangular waveform at 50 Hz and the associated induced flux density waveform. In Fig. 3 (b), the 

relative errors between the measured and the predicted losses have been shown for the 50 Hz waveform as 

a function of peak flux density level for all three loss models. It is observed that Model B and the Boglietti 

model are in a good agreement with the experimental measurements with a relatively low percentage of 

error of less than 10%, while Model A errors range between -15 to -35 %. When the excitation frequency 

was increased to 300 Hz and 1500 Hz, as shown in Fig. 3 (c) and Fig. 3 (d), respectively, all three models 

predict the losses moderately accurately (between -5% to ~15%) with increasing frequency. This may be 

explained by considering the eddy current loss component, which increases as a power of two with 

frequency and that makes it dominant over the hysteresis loss component as frequency increases. Since the 

same time domain expression (Eqn. (7)) for eddy current loss component (which is known to be exact) is 

used in the three models, high accuracy levels are expected for all three models. Similar results have also 

been found for the trapezoidal and the square voltage waveforms as shown in Fig. 4 and Fig. 5, 

respectively. These results show that both the Boglietti Model and Model B give acceptable results for all 

ranges of frequencies while Model A is not reliable for low frequencies such as 50 Hz as the errors may be 

in excess of 30 %. 
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(a) 

 
    (b) 

 
   (c) 

 
    (d) 

 

Fig. 3: (a) The triangular-wave excitation voltage and its corresponding flux density waveform. (b) The relative error between 

predicted and measured losses as a function of flux density. Losses are predicted using time domain Model A, Model B, and 

Boglietti model with a triangular waveform at 50 Hz. (c) At 300 Hz. (d) At 1500 Hz. 

 

 

 
                             (a) 

 
     (b) 
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(c) 

 
   (d) 

 

Fig. 4: (a) The trapezoidal-wave excitation voltage and its corresponding flux density waveform. (b) The relative error between 

predicted and measured losses as a function of flux density. Losses are predicted using time domain Model A, Model B, and 

Boglietti model with a trapezoidal waveform at 50 Hz. (c) At 300 Hz. (d) At 1500 Hz. 

 

 

 
                             (a) 

 
                               (b) 

 
    (c) 

 
     (d) 

 

Fig. 5: (a) The square waveform with dead time as an excitation voltage and its corresponding flux density waveform. (b) The 

relative error between predicted and measured losses as a function of flux density. Losses are predicted using time domain 

Model A, Model B, and Boglietti model with a square waveform at 50 Hz. (c) At 300 Hz. (d) At 1500 Hz. 
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4.3 PWM Measurements 

Pulse width modulation inverters are commonly used to control AC motors. Buck-boost, boost and 

buck converters and inverters are used to control the phase voltages by changing the voltage magnitude, 

the phase and the frequency. The use of PWM techniques offer several advantages such as controlling the 

harmonic content of phase currents and voltages that may be used to minimize the torque ripple and other 

parasitic effects in electric machines. A consequence of using PWM generated waveforms is that the 

machine cores are subjected to rapidly fluctuating magnetic fields (as opposed to an ideal sinusoidal or 

non-sinusoidal waveform) which may or may not contain minor loops. In this section, the accuracy of the 

loss models presented above is evaluated for PWM generated waveforms. PWM signals are usually 

generated in unipolar and bipolar modes. In the unipolar mode, the instantaneous value of the voltage 

pulse has the same sign as its fundamental harmonic. In the bipolar mode, the positive and the negative 

periods of the fundamental harmonic are generated using a combination of positive and negative pulses. 

Fig. 6 illustrates an example of bipolar and unipolar PWM waveforms.  

Experimental tests using the Epstein frame were performed in unipolar and bipolar modes in this 

research. Loss measurements were taken at two fundamental frequencies (ffun), 50 Hz and 400 Hz, that 

were generated using low and high switching frequencies (fs), as shown in Table 1. For the 50 Hz 

fundamental, the low and high switching frequencies were 500 Hz and 3 kHz, respectively. For the 400 Hz 

fundamental, the low and the high switching frequencies were 4 kHz and 20 kHz, respectively. Before 

presenting and discussing the loss comparison results an important point has to be made regarding the core 

loss measurements at low induction levels (< ~0.1 T). Core losses are directly proportional to the peak flux 

density levels (Eqns. (1) and (2)). Therefore, at very low flux density levels, depending on the systematic 

error of the equipment the measured iron loss may well be of the order of the systematic error. In such 

cases, the errors between predicted and measured values may be unrealistically high and would not 

necessarily reflect the accuracy of the models being investigated. Because of  this the relative errors at low 

flux density levels are excluded from the following analysis, as has been done previously in [23], where 

the relative errors between measured and predicted values have been presented between 0.4 T to 1.6 T. 

The measured losses have been compared to those predicted by Models A, B and the Boglietti model 

and the relative errors have been computed. Fig. 7(a) shows the relative errors as a function of flux density 

in the unipolar mode for ffun =50 Hz and switching frequency, fs=500 Hz. The results show that Model B is 

fairly accurate with error levels ranging from ~2%-11%. Model A errors may be as high as ~25% 

compared to the measured losses. The relative errors for the Boglietti model ranges from ~20%- 50%. For 

the same fundamental and switching frequencies (ffun =50 Hz and fs=500 Hz) with the bipolar PWM 
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scheme, Model B has the lowest error among the three models with a maximum error ~25%, as shown in 

Fig. 7(b). As the switching frequency is increased to 3 kHz, the accuracy of Model B decreases to errors of 

~20 % (first three points are excluded). The accuracy of Model A decreases significantly with a maximum 

error of ~60%, while the Boglietti model’s accuracy improves to ~15%- 22%, as shown in Fig. 7(c). For 

bipolar PWM at high switching frequency, 3kHz, all three models show high percentage of errors, higher 

than ~60%, as shown in Fig. 7(d). In summary, for PWM generated waveform at 50 Hz, Model B 

performs well for switching frequency fs=500 Hz in unipolar mode. In addition, Model B is moderately 

accurate (see APPENDIX for definition of various accuracy designations) for fs =500 Hz in bipolar mode 

and fs =3 kHz, in unipolar mode. Model A is only moderately accurate at low switching frequency, fs =500 

Hz with unipolar PWM. The Boglietti model performs well at high switching frequency, fs =3 kHz in 

unipolar mode. 

Some of these results would be significantly affected by the presence of high order harmonics, which 

are more pronounced in bipolar modes. Consider Fig. 8, which shows the major dynamic hysteresis loops 

due to a PWM waveform using the unipolar and the bipolar modes. It clearly shows the influence of the 

harmonics in bipolar mode due to the presence of minor loops. In general, the presence of minor loops 

deteriorate the accuracy of all three core loss models, and this decrease in accuracy is most significant for 

the Boglietti model. Consider now the accuracy of the models for the case of 400 Hz fundamental 

frequency. The results have been presented in Fig. 9. In Figs. 9(a) and 9(b), the model errors have been 

shown for unipolar and bipolar modes, respectively, at switching frequency fs=4 kHz. Both models A and 

B show similar error levels ranging from ~5%-20%. The Boglietti model performs better under the 

unipolar scheme. In Figs. 9(c) and 9(d), similar results have been presented at fs =20 kHz.  At this 

frequency in bipolar mode, both models’ errors exceed 20%. The Boglietti model predicts losses 

accurately for the unipolar scheme at both fs =4 kHz and 20 kHz, while, in bipolar mode, the errors surpass 

25% at fs = 4 kHz and is between 30% to 50% at fs =20 kHz. Besides these results, another observation is 

that the predicted losses using the Boglietti model generally underestimates the core loss in unipolar 

modes and overestimates it in bipolar modes.  It is also important to point out that the Boglietti model 

assumes the absence of minor loops, which is reflected by its poor performance for bipolar schemes. In 

general, the two methods of switching, bipolar and unipolar, generate vastly different harmonic spectra. 

This causes the precisions of models A, B and the Boglietti model to vary significantly. Table 2 in the 

APPENDIX summarizes the accuracies of all presented models at various frequencies and PWM excitation 

schemes. 
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Table 1 The Properties of PWM Waveforms 

ffun[Hz] fs[Hz] Scheme 

50 

500 
UNI 

BI 

3 k 
UNI 

BI 

400 

4 k 
UNI 

BI 

20 k 
UNI 

BI 

 
 

 
(a) 

 
                                    (b) 

 

Fig. 6: Measured PWM waveform at ffun=400 Hz with the corresponding fundamental harmonic for (a) Unipolar mode  

(b) Bipolar mode 

 

 
   (a) 

 
       (b) 
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  (c) 

 
      (d) 

 

Fig. 7: The relative error between predicted and measured losses as a function of flux density. Losses are predicted using time 

domain Model A, Model B, and Boglietti model with PWM waveform at ffun=50 Hz and (a) Unipolar mode fs=500 Hz (b) 

Bipolar mode fs=500 Hz (c) Unipolar mode fs=3k Hz (d) Bipolar mode fs=3k Hz 

 

 

   (a) 
 

  (b) 

 

Fig. 8: The dynamic hysteresis loops associated to the PWM supply at ffun =50Hz and fs=500 Hz for (a) Unipolar mode  

(a) Bipolar mode 
 

 
    (a) 

 
      (b) 
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      (c) 

 
    (d) 

 
Fig. 9: The relative error between predicted and measured losses as a function of flux density. Losses are predicted using time 

domain Model A, Model B, and Boglietti model with PWM waveform at ffun=400 Hz and (a) Unipolar mode fs=4k Hz  

(b) Bipolar mode fs=4k Hz (c) Unipolar mode fs=20k Hz (d) Bipolar mode fs=20k Hz 

 

5. Summary and Conclusion 

Three iron loss models have been used to predict the core losses in electrical steel laminations. The 

models, designated as Model A, Model B and the Boglietti Model are important due to their ubiquity and 

utility for predicting core losses in electromagnetic devices. The three models require parameter 

identification on the basis of sinusoidal loss measurements from Epstein frame experiments. Loss 

measurements were carried out for different magnetizing waveforms at various frequencies and induction 

levels. The accuracy and the applicability of the models were verified by comparing the measured losses to 

the computed values of losses. For non-sinusoidal waveforms that do not have minor loops, Model B and 

the Boglietti model predict losses with good accuracy at low, medium and high frequencies such as 50 Hz, 

400 Hz and 1500 Hz, while Model A gives errors up to ~30% at low frequency.  

Results for the PWM generated waveforms at fundamental frequency of 50 Hz show that Model B is 

accurate at low switching frequency (fs of 500 Hz) with unipolar PWM. It is also reasonably accurate at 

low switching frequency with bipolar PWM, and for high switching frequency of 3 kHz with unipolar 

PWM. Model A is accurate at low fundamental (ffun= 50 Hz) and low switching frequencies (fs= 50 Hz and 

500 Hz) in unipolar mode. Boglietti model is accurate at high switching frequency (fs= 3 kHz) with 

unipolar PWM. In general, minor loops cause a deterioration in all three core loss model’s accuracy, and 

this deterioration is most significant for the Boglietti model.  

At a higher fundamental frequency of 400 Hz the following conclusions can be drawn. Model A and 

Model B predict losses at almost the same accuracy, under unipolar schemes for both low and high 

switching frequencies (fs = 4 kHz and 20 kHz). In addition, Model A and Model B give accurate results for 
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bipolar schemes at low switching frequency (fs =4 kHz). With bipolar modes at high switching frequency 

(fs =20 kHz), the relative errors of Model A and Model B exceed 20 %. The Boglietti model can predict 

losses accurately for unipolar modes at both 4 kHz and 20 kHz switching frequencies, while for bipolar 

mode the errors are above 25% at fs =4 kHz, and are higher between 30% to 50% at 20 kHz.  

Another observation is that the predicted losses using the Boglietti model are underestimated for 

unipolar schemes and overestimated for bipolar schemes.  
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8. Appendix  

Table 2 provides a summary of the accuracy of Model A, Model B, and Boglietti model with 

reference to the measured loss value for different waveforms and different frequencies. The following 

terms are used to evaluate the model’s accuracy which are associated with a range of errors between 

measured and predicted loss value: 

High (accuracy):  Errors ≤ ± 10% 

Moderate (accuracy):  ± 10%< Errors ≤ ± 20% 

Low (accuracy): ± 20%<Errors ≤ ± 45% 

Poor (accuracy):  ± 45%<Errors 

 

Table 2: Evaluation of Core Loss models’ accuracy 
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50 low high high 

300 high high high 

1500 high high high 

Trapezoidal 

50 low high high 

300 high high high 

1500 high high high 

Square 

50 low high high 

300 high high high 

1500 high high high 
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50 

500 
UNI moderate high low 

BI low moderate low 

3 k 
UNI low moderate moderate 

BI poor low low 

400 

4 k 
UNI moderate moderate moderate 

BI high high low 

20 k 
UNI moderate moderate high 

BI low low poor 


