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Abstract 

 

The primary goal of this thesis was to identify largescale generalities across species invasions. 

Arguably, due to the dominant role of humans, many of the drivers of invasive species 

establishment, spread, and associated damages should be common among species. However, 

whether generalized predictive models were possible or whether species must be modelled and 

fit separately to account for idiosyncrasies remained unanswered. In Chapter 1, I built a single, 

general model for the spread of all invasive forest pests in the United States that explained more 

than 75% of the variation in pest distributions. In Chapter 2, I contrasted this general model with 

more complex single-species models. I also generated semi-generalized models using the general 

model as a starting point and adding simple species-specific correction factors. I found that 

single-species models performed 17% better than the general model but underperformed 

compared to semi-generalized models that incorporated cross-species generalities. In Chapter 3, I 

tackled pest establishment and its relation to host diversity. Many current hypotheses (e.g., 

dilution and amplification effects) have been considered in isolation, have heterogeneous 

support, and can be strongly affected by a range of confounding factors. I developed a general 

model, which simultaneously integrated processes argued in the literature, to allow a more 

rigorous, systematic analysis of biodiversity effects on pest occurrence. I measured host diversity 

as phylogenetic dissimilarity from the focal host community of a particular pest, and modelled it 

simultaneously with pest spread patterns, host richness, and host density effects. I detected a 

nonlinear relationship, where positive density dependence emerged for closely related species 

(amplification), and negative density dependence (dilution) emerged for more distantly related 

species. In Chapter 4, I projected future damages to urban trees by synthesizing my pest invasion 
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forecasts with models of urban tree distributions and tree mortality. I projected future urban tree 

mortality of roughly 385M trees over 30 years (including 8% of all street trees). I provided 

updated estimates of the economic costs of this mortality, advancing the field by 1) leveraging 

newly created, more complete datasets, 2) providing increased spatiotemporal resolution, and 3) 

separating the costs across pest species causes, host tree genera, and urban tree categories: street, 

residential and community. Taken in sum, these models produce general predictions across 

invasion stages that can act as inputs to invasive species control programs, and I plan to use them 

in subsequent work to develop general heuristics for effective pest management. 
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Résumé 

L’objectif principal de cette thèse était d’identifier la présence de tendances générales à grande 

échelle parmi les invasions biologiques d’espèces de ravageurs forestiers exotiques envahissants. 

J’ai émis l’hypothèse que plusieurs mécanismes responsables du progrès des ravageurs exotiques 

envahissants — marqué par leur établissement, leur propagation et leurs dommages associés — 

sont communs entre différentes espèces en raison des actions humaines. Cependant, il demeurait 

incertain si de tels modèles généraux étaient possibles ou si les mécanismes idiosyncrasiques de 

différentes espèces nécessitaient d’être caractérisés et modélisés séparément. Dans mon premier 

chapitre, j’ai construit un modèle général qui simule la propagation de toutes les espèces de 

ravageurs forestiers exotiques envahissants aux États-Unis. Ce modèle explique plus de 75 % de 

la variation présente dans la répartition spatiale des espèces modélisées. Dans mon deuxième 

chapitre, j’ai mis le modèle général en contraste avec des modèles plus complexes basés sur des 

espèces uniques. De plus, j’ai produit des modèles semi-généraux en modifiant le modèle général 

avec des corrections simples pour la modélisation de chaque espèce. Tandis que les modèles à 

espèce unique tiennent compte de 17 % de variation spatiale additionnelle en comparaison à la 

performance du modèle général, les modèles semi-généraux offrent une performance supérieure 

aux deux modèles précédents. Dans mon troisième chapitre, je me suis concentrée sur la relation 

entre l’établissement des ravageurs envahissantes exotiques et la diversité des espèces d’arbres 

hôtes. Plusieurs des hypothèses actuelles qui abordent cette relation (p. ex., les effets de la 

dilution et de l’amplification d’arbres hôtes) ont seulement été considérées en isolation, reçoivent 

un appui hétérogène de la part des experts, et peuvent être particulièrement affectées par 

plusieurs variables confusionnelles. J’ai développé un modèle général qui intègre simultanément 

les processus hypothétiques pour effectuer avec rigueur une évaluation systématique des effets 
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de la biodiversité sur l’établissement des espèces envahissantes. J’ai quantifié la diversité des 

arbres hôtes en obtenant une mesure de dissemblance phylogénétique à la communauté d’hôtes 

focaux de chaque ravageur. En modélisant l’effet de celle-ci simultanément à la propagation 

prédite des ravageurs ainsi qu’à la richesse et la densité des espèces d’hôtes, j’ai détecté une 

relation non linéaire, où l’effet de la densité d’arbres hôtes est positif entre hôtes apparentés 

(amplification), mais négatif entre espèces faiblement apparentées. Dans mon quatrième 

chapitre, j’ai intégré mes modèles de propagation avec des modèles de distribution et de 

mortalité d’arbres hôtes pour établir des projections des dommages qui sont anticipés à impacter 

les arbres en milieu urbain. J’ai prédit un taux de mortalité d’arbres urbains de ~385 millions 

dans les 30 prochains ans, y compris 8 % de tous les arbres de rue. J’ai fourni de meilleures 

estimations des coûts totaux associés à cette mortalité, avançant le domaine en : 1) utilisant des 

ensembles de données plus complets et récents, 2) améliorant la résolution spatiotemporelle de 

telles prévisions, 3) offrant des estimations de coûts séparant les diverses espèces de ravageurs 

impliquées, les genres d’arbres hôtes affectés, et les types d’arbres urbains vulnérables (arbres de 

rue, résidentiels ou communautaires). En résumé, mes modèles ont fourni des prédictions 

générales pour plusieurs phases des invasions biologiques; ces prédictions pourront être 

employées par divers programmes de gestion et de contrôle d’espèces envahissantes, et je 

propose d’en faire usage dans ma recherche subséquente pour développer des règles 

approximatives robustes qui permettront d’optimiser l’application de la gestion de ravageurs 

forestiers envahissants exotiques de façon efficace.
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List of figures 

 

Figure 1.1 Conceptual framework for model building (main loop) and simulation procedure 

(expanded yellow box). The model is built by a forward selection procedure, where starting with 

the intercept-only constant dispersal model, all possible j single term additions are simulated and 

fit. The best term j* is chosen to be added to the model if it improves the MET score by at least 5 

km and the process is repeated, otherwise the model building procedure is halted and the current 

model is kept as the final model. 

Figure 1.2 Predicted versus observed species range sizes for the analogous regression model 

(top, R2
MSE = 0.2733 (R2

MSE = 0.2900 for a regression of pest radius instead of area), constant 

dispersal model (middle, R2
MSE = 0.6870) and full GDK model (bottom, R2

MSE = 0.7774). 

Figure 1.3  Distribution of MET scores across all species expected at random (left, mean = 

288.96 km), and modelled for the constant dispersal (centre, mean = 115.74 km), and GDK 

(right, mean = 47.45 km) models.  

Figure 1.4 A selection of model predictions for individual species (a. Coleophora laricella, b. 

Leucoma salicis, c. Nuculaspis tsugae), showing the true presence data (left column), constant 

dispersal model predictions (centre column) and GDK predictions (right column) as green areas. 

These distributions are only a small selection and do not show the full variation in model 

predictions across species, which are included in Fig. S1.1.7.  

Figure 1.5 True observations of pest richness (top panel), predicted pest richness for the constant 

dispersal (top left) and GDK (bottom left) models, and the Euclidean distance or number of 

mismatched pest presences in the constant dispersal (top right), and GDK (bottom right) models. 

For the true observations and predicted richness maps, deeper green indicates higher richness. 
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For the mismatch maps, deeper green indicates a higher degree of mismatch (false presences + 

false absences). 

Figure 2.1 Historical spread patterns of the three focal species: Gypsy moth (GM), hemlock 

woolly adelgid (HWA) and beech bark disease (BBD). Older invasions are shown in yellow 

while more contemporary invasions are shown in blue. Known host distribution is shown in 

beige. 

Figure 2.2  A comparison of the predictive ability of customized (top row), uncorrected GDK 

(GDK, middle row) and SDK models for gypsy moth (GM, left column), hemlock woolly 

adelgid (HWA, middle column) and beech bark disease (BBD, right column). Host presence is 

indicated in beige, predicted distributions after a forecast (5-year) are shown in red, and observed 

distributions are shown in blue. Areas of overlap between predicted and observed distributions 

produce a darker red color due to the overlap of the red and blue colors. 

Figure 2.3 Forecasted pest species richness from a. 2005 (fitting year of SDK) to b. 2030 

generated by extending simulated spread patterns for each species from the best fitting SDK 

parameters. 

Figure 2.4 Newly predicted local establishments (for existing United States invasive forest 

pests) between years 2005 and 2030, created by subtracting Fig. 2.3b from Fig. 2.3a. Areas of 

particular interest are labelled, and dominant mechanisms promoting new invasions are denoted 

with dashed vs. solid lines. A–Seattle, WA region B–Northern Idaho and Western Montana 

(includes Kootenai, Nez Perce-Clearwater, and Flathead National Forests), C–Northern 

Minnesota and Wisconsin (includes Kabetogama state forest), D–Chicago, IL region, E–

Northern New England (Maine, New Hampshire, Vermont and Massachusetts) where blue 

represents the Boston, MA region, F–Pennsylvania and New Jersey, G–Chesapeake, VA region, 
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H–Huntington, WV region, I–Saint Louis, MO region, J–Monroe, LA region (includes Upper 

Ouachita National Wildlife Refuge), K–Carson and Gila National Forests, NM. 

Figure 2.5  Projections of combined SDK uncertainty at 2030 (range of predicted pest richness 

at each site) arising from two climate change scenarios (rcp2.6 and rcp8.5 BIOCLIM scenarios), 

two alternative population growth scenarios (SSP3: “Regional Rivalry”, SSP: “Fossil-fueled 

Development), and from a sensitivity analysis of model parameters (see Appendix S2.6).  

Figure 3.1 Potential relationships between host tree relatedness (s) and the effect of host density 

on establishment probabilities (Vt,i exponent), where blue indicates dilution and yellow indicates 

amplification across all plots. Hypothesized mechanisms (Table 3.1a): a. linear amplification for 

closely related species and linear dilution for distantly related species (c2>0, c3=0) b. nonlinear 

amplification for closely related species and nonlinear dilution for distantly related species, 

(c2>0, c3>0) c. nonlinear amplification for closely related species peaking at some maximum 

relatedness (green), and nonlinear dilution for distantly related species (c2>0,c3<0) d. nonlinear 

dilution for distantly related species, with a minimum at some minimum functional relatedness 

(purple), and nonlinear amplification for closely related species (c2<0,c3>0). Alternative 

mechanisms to yield previously published results (Table 3.1b): e. Host species richness mediated 

amplification (a2>0) and dilution (a2<0) (no effect of volume or phylogeny), f. Total host volume 

mediated amplification (no effect of phylogeny), g. Focal host volume mediated amplification. 

Figure 3.2 Fitted relationship between the relatedness (s) of trees of a given species t to each 

pest i and the effect of increased density of tree species t at site j (Vt,i exponent) in the integrative 

establishment model. Tree volume contributes positively to establishment for closely related 

hosts (yellow), while it contributes negatively for distantly related hosts (blue), levelling-off and 
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even slightly increasing for very unrelated hosts (purple), consistent with phylogenetically-based 

dilution. 

Figure 3.3 Relationship between alternative model proxies (see Table 3.1b) and pest infestation 

levels, including: a. Pest species richness and total host species richness, b. Pest species richness 

and log(total host volume), c. Pest species richness and log(focal host volume), and d. Host 

species richness and log(focal host volume). 

Figure 3.4 Spatial pattern of model residuals, for the spread (a) and integrative establishment (b) 

models. Clear opposing patterns are present, indicating a likely benefit with their synthesis. The 

integrative joint model residuals are shown in (c), indicating some persistent spatial patterning, 

particularly in terms of East-West regionality. 

Figure 4.1 Schematic representation of the four subcomponent models we combined to produce 

refined damage estimates to street trees from invasive US forest pests. Methodology is 

represented within braces, where GAM= Generalized Additive Model, and BRT= Boosted 

Regression Tree. The spread model predictions correspond to SDK forecasts from Hudgins et al 

(2019). 

Figure 4.2 Fit of the genus-specific host tree models across all genera and size classes.  

Figure 4.3 Model outputs for the first three subcomponent models, including a. predicted street 

tree numbers, b. predicted new pest invasions, c.  predicted street tree exposure levels (number 

of focal host tree + pest species interactions) from 2020 to 2050, and finally d. Predicted total 

tree mortality from 2020 to 2050 in the best guess mortality debt scenario across space. Top ten 

most impacted cities are shown in terms of total tree mortality 2020 to 2050 (A =Minneapolis/St. 

Paul/Bloomington, MN; B=Milwaukee, WI; C=New York City, NY; D=Indianapolis, IN; 

E=Columbus, OH; F=Chicago/Aurora, IL; G=Seattle, WA).  
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Figure 4.4 Posterior distribution for the beta model of host mortality due to pests within each 

severity category. 95% Bayesian credible intervals are shown in grey, and the posterior median is 

shown in black. Coloured bins represent severity categories extended from Potter et al. (2019). 

Figure 4.5 Predicted annualized costs for the best guess mortality debt scenario, with 95% 

Bayesian credible intervals shown in yellow and the posterior mean shown in red (146M USD). 

Figure 4.6 Depiction of the influence of mortality debt on temporal cost patterns. Predicted costs 

2020 to 2050 for the 10 year (yellow), 50 year (teal), and 100 year (purple) mortality debt 

scenarios with a 10 year initial invasion lag. The best guess predictions are shown as a dashed 

red line. Costs are presented in 5-year increments in accordance with the timestep length within 

our spread model. 
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across impact types, where redder hues indicate greater uncertainty. Sources of uncertainty 
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Preface 

 

Thesis format and style 

 

This thesis is presented in a manuscript-based format, and consists of four papers. Each chapter 

focuses on developing general frameworks to forecast invasions, spanning from the 

establishment and spread phases of invasions in terms of ecological prediction, to frameworks 

that use ecological predictions to forecast ecological and economic impacts of invasions. The 

first chapter has been corrected since its original publication with a peer-reviewed corrigendum, 

which is included as an appendix. 

 

Chapter 1. Hudgins, E. J., Liebhold, A. M., & Leung, B. (2017). Predicting the spread of all 

invasive forest pests in the United States. Ecology letters, 20(4), 426-435. 

Chapter 2. Hudgins, E. J., Liebhold, A. M., & Leung, B. (2020). Comparing generalized and 

customized spread models for nonnative forest pests. Ecological Applications, 30(1), e01988. 

Chapter 3. Hudgins, E.J., Davies, T.J. & Leung, B. A unifying phylogenetic model of 

amplification and dilution effects of host biodiversity on pest establishment. in prep. 

Chapter 4. Hudgins, E. J., Koch, F. H., Ambrose, M. J., & Leung, B. Estimating damage to 

urban trees from invasive forest pests in the United States. in prep.
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editing from Brian Leung. Frank H. Koch provided urban tree and management expertise and 

edited the manuscript. Mark Ambrose provided access to the urban tree inventory, provided 

urban tree and management expertise,  and edited the manuscript.
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Original contributions to knowledge 

 
I have been examining generalities that emerge at large scales across species invasions from the 

ecological to the applied. These analyses have provided support for the theory that humans are 

allowing for invasive species distributions, and thus their associated damages, to become broadly 

predictable across contexts. It is of fundamental interest in ecology to determine whether general 

rules govern invasions sufficiently to make predictions across species using common models and 

frameworks. Such general rules also have considerable applied value in allowing potential new 

pest threats to be predicted and management to be planned before they have even established in a 

region. The frameworks produced throughout this thesis have immediate value to forest 

managers, as they can be used to motivate and direct the effective allocation of government 

funding for invasive species surveillance and management by delineating areas of high future 

risk and predict potential economic losses if preventative measures are not taken. 

In Chapter 1, I developed a general model for the spread of all invasive forest pests 

presently found in the United States. This fit of this model was extremely strong, and contained 

very few predictor variables, indicating consistency in the spread process of a diversity of pests 

at large scales. This has been published in Ecology Letters, which is one of the most visible and 

prestigious ecology journals. Previous spread models had been built idiosyncratically, and it was 

not clear a general model could be used effectively to forecast invasion patterns. However, it 

appears that due to anthropogenically-induced generalities across species, the general pattern of 

invasive spread is consistent across the entire forest pest community. Since publication, the paper 

has been cited 29 times. This model can be applied in predictive contexts to identify areas of 

high future invasion risk. This work formed the foundation of the remainder of my PhD research. 

In addition to my own extensions, I have shared code with several researchers. I have been 
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working with Prof. Matthew Helmus at Temple University on an extension to a new pest species 

(spotted lanternfly). Based on the results of the GDK, I first developed the idea of anthropogenic 

replacement, where natural ecological processes are essentially being overridden by 

anthropogenic ones, and predictable generalities that operate across entire suites of species arise 

as a consequence of this. 

In Chapter 2, I compared the model built in Chapter 1 with single-species models to 

determine how much predictive power differs between generalized and customized models. 

Further, I examined whether an intermediate model, combining a general model with species-

specific modifications, could yield predictive advantages. I fit models to three of the most 

damaging invasive forest pests (gypsy moth, beech bark disease, hemlock woolly adelgid). I 

found that using the GDK alone, I lost some power compared to customized approaches (57% 

vs. 74% variation explained). However, by using this generalized model as a backbone that could 

be modified with simple species-specific corrections (SDK), I attained a mean of 91% of the 

spatial variation explained. This is the first comparison of general and species-specific ecological 

spread models' predictive abilities. My results suggest that general models can be effectively 

synthesized with context-specific information to respond quickly to invasions. I used the models 

to create spread forecasts for all 63 United States pests in the dataset, which formed the basis of 

the pest impact models built in Chapter 4.  

The plant pathogen literature has promoted of the so-called buffering role of host 

biodiversity against pests in line with dilution, but support is mixed. For instance, there is a 

latitudinal biodiversity gradient in pest richness that peaks in the tropics in the same way host 

biodiversity does, suggesting amplification rather than dilution. The existing literature possesses 

three main limitations that I believed made previously demonstrated relationships between host 



 
 

 25 

biodiversity and pest establishment equivocal and their associated inferences suspect: A 

sampling effect for host presence, a host density effect, and spurious correlations with pest 

spread. In Chapter 3, I analyzed the processes involved in establishment simultaneously, 

explicitly considering their relations to one another in an overarching model. I detected a novel, 

nonlinear relationship between phylogenetic host dissimilarity and pest establishment, where 

density-dependent amplification occurs for closely-related pest species, density-dependent 

dilution occurs for more distantly related pest species, and very distantly related species have 

negligible effects. These patterns occur in part due to the greater ease of generalist pests to 

establish, but appear to also be driven by climatic or other factors.  

 In order to make the most effective pest management decisions, policymakers and 

managers require information on the most likely spatiotemporal pattern of future pest damages. 

In Chapter 4, I created a framework to estimate urban tree damages across all United States 

invasive forest pests in roughly 30,000 US communities. Previous analyses suggest that urban 

trees are likely to be the dominant component of damages due to forest insect pests (Aukema et 

al. 2011). Moreover, the importance of urban forestry is only expected to grow. This analysis 

provided the most comprehensive estimate of pest damages to date, which was previously 

impossible: damages were predicted at the city level for each urban tree genus across three tree 

types (street, residential, community). Moreover, impacts were separated by pest species cause, 

in part due to the high resolution spatiotemporal spread predictions from Chapter 2. I showed 

that these pests will likely kill 5-12% of all street trees from 2020 to 2050, and could have total 

damages on the order of tens of billions of dollars. While these are rough estimates subject to 

many sources of uncertainty, they illustrate the gravity of pest infestations in urban areas. The 

creation of finescale spatiotemporal cost estimates also allows for the prioritization of future 
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management efforts. This can allow for predictive impact modelling for future invaders, thereby 

allowing managers to be better prepared for future threats. 

Throughout this thesis, I have demonstrated support for my anthropogenic replacement 

hypothesis, where humans are making systems easier to predict at large scales, and have used 

this to my advantage to create higher resolution forecasts of future pest establishment, spread, 

and associated damage for forest pests. Across chapters, I have used general models that borrow 

power across contexts to help overcome limited data, whether this was with the GDK and SDK, 

the integrative joint spread-establishment model, or the urban tree and host mortality components 

of my economic analysis. Along the way, I have uncovered a more nuanced role of host 

biodiversity on forest pest infestation and improved on existing estimates of countrywide damage 

due to these species. These frameworks will subsequently inform my future postdoctoral 

research, where I intend to shift to a prescriptive focus, and determine optimal strategies for 

forest pest management.
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General Introduction 

 

0.1 Introduction 

 

The number of invasions by non-indigenous species is increasing worldwide due to growing 

trends in travel and trade (Drake & Lodge 2004). Species invasions consist of three stages: 

arrival at a site, establishment at that location, and subsequent spread (Elton 2000). The stages of 

species invasions, along with their associated impacts, can all be considered components of 

invasion risk (Leung et al. 2012), where the likelihood of each subsequent stage occurring 

depends on the probability of all previous stages occurring. Arguably, many of the drivers of 

these stages should be common among invading species. However, whether generalized 

predictive models are possible or whether species must be modelled and fit separately to account 

for idiosyncrasies remained unanswered (Leung et al. 2012). It is of fundamental interest in 

ecology to determine whether general rules govern invasions sufficiently to quantitatively make 

predictions across a suite of species using a common model. Invasions at a macroecological scale 

are particularly relevant, given that there are conflicting opinions as to whether generalities exist 

across invasions and there have been few largescale studies of potential generalities (Cadotte et 

al. 2006). Such general rules could also have considerable applied value, allowing invasions to 

be predicted a priori. Since each of the invasion stages is probabilistic, models of each stage and 

associated impacts can be combined into a risk assessment framework to predict expected risks 

and impacts. Current models are typically derived after a pest has already arrived and spread 

(e.g. Tisseuil et al. 2015; Walter et al. 2015), potentially lessening the efficacy of management, 
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for instance when implementing containment, rapid response and/or eradication efforts of novel 

species (Lovett et al. 2016).  

 

0.2 Invasions as a driver of global change 

 

Species invasions are a stressor characteristic of the current geologic period, known as the 

Anthropocene, which gets its name for the role of humans in fundamentally altering 

biogeochemical processes on Earth (Crutzen 2006). Invasive species are species transported 

outside of the areas in which they evolved, and make up one dimension of a complex 

acceleration of interacting ecosystem stressors within the Anthropocene known as the Great 

Acceleration (Steffen et al. 2015). Increased stress due to growing human populations, rising 

CO2 levels, more frequent major climatic events, and higher rates of species extinctions mirror 

the accelerating pattern of invasive species discovery within this era (Seebens et al. 2017). 

Since all of these anthropogenic stressors interact, we must try to consider them together when 

trying to forecast our future. While there are limits to the number of stressors that can feasibly be 

integrated, a key potential synergy exists between species invasions and patterns of current and 

future human population growth and movement, since humans are known to drive species 

invasions at large scales, and our population and its associated activities are growing rapidly 

(Seebens et al. 2013; Sardain et al. 2019). Notwithstanding potential future accelerations, 

invasive species are known to already cost hundreds of billions of dollars each year, with insects 

alone costing tens of billions annually (Bradshaw et al. 2016). This makes the need for effective 

policy to manage these species where they have invaded and limit future invasions dire.  
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0.3 Secondary Invasions 

 

The majority of the largescale invasion literature examines the primary invasion process, where 

species make first contact with an area beyond which they have involved. I have been studying 

the secondary invasion process of invasive species, after they have successfully established in an 

area outside of their native range. This secondary invasion process mirrors the primary invasion 

process at a smaller scale, and can be broken into the same three components: first, arrival at a 

new site due to unintentional or intentional introduction, second, establishment in that new 

location defined as having a reproducing population there, and third, subsequent spread to new 

sites. Invaded sites can experience ecological and economic impacts due to pests at any point 

after their arrival (Parker et al. 1999). Secondary invasion stages and associated impacts can be 

similarly modelled probabilistically in order to forecast risk and expected impacts across species, 

space and time (Leung et al. 2012). 

 

0.4 Secondary Spread 

 
The secondary spread process has been extensively modelled using population ecology models 

that employ general growth and dispersal equations (Shigesada et al. 1995; Neubert & Parker 

2004; Skarpaas & Shea 2007). Such models have been typically parameterized for individual 

species separately, and have not incorporated moderating variables for habitat invasibility, 

propagule pressure, and pest life history, which have been highlighted within the invasion 

biology literature (Leung et al. 2012). Incorporating these factors into a general model could 

uncover macroecological patterns in secondary spread that could allow it to be predicted a priori. 
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For instance, invasion biologists have theorized that certain habitat suitability characteristics may 

allow for greater pest incursion, or greater habitat invasibility (Simberloff 2009). Secondly, pest 

life history characteristics may be important in determining differential spread rates across 

species. In addition to these factors, proxies of propagule pressure, or the number of pest 

individuals introduced, have been associated with higher probabilities of invasion (Lockwood et 

al. 2005; Bradie et al. 2013). The first two factors are more biotic in their nature (e.g. pest body 

size, tree density), while propagule pressure proxies are more related to the degree of human 

activity (e.g. population density, road density). 

 

0.5 Secondary Establishment 

 

Invasive pest propagules may fail to establish, in spite of spreading successfully to new locations 

(Simberloff & Gibbons 2004). This is true both for the initial introduction through the primary 

invasion process, and for subsequent secondary spread to new sites within the invaded range. 

The factors that influence which invaders are among those most successful in this process, and 

which sites allow for successful expansion are thus important to understand. Rather than 

proceeding on a case-by-case-basis, the same arguments in support of uncovering generalities in 

spread equally apply to the secondary establishment phase. Namely, the production of a general 

establishment model allows for rapid response to both existing and novel invaders (Liebhold 

2012; Lovett et al. 2016). 

The factors governing pest establishment can be broadly grouped into pest traits, host 

traits, and site traits. After accounting for the spread process, which is predicted to be driven both 

by biotic factors and human activity, there may be additional pest biotic factors that improve 
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their success across any site or host relative to other species. Further, there may be site qualities 

beyond host presence that influence the success of many pest species, such as climatic suitability. 

However, perhaps the most important factor governing pest success is the presence of an 

adequate recipient host community at a given site.  

Host susceptibility has been shaped by evolutionary history, where evolutionarily naïve 

hosts are more susceptible than those with a history of co-evolution with a particular pest species 

(Desurmont et al. 2011). Evolutionarily naïve hosts most closely related to co-evolved hosts are 

likely those most susceptible, since these hosts are at the greatest risk of pathogen spillover 

(Gilbert & Webb 2007). Biodiversity, including the evolutionary diversity of host species, has 

been purported to be important in buffering against human and animal disease (Cardinale et al. 

2012; Hooper et al. 2012; Young et al. 2017). In terms of host biodiversity, correlational studies 

consistently show lower single-pest invasion success in mixed forests compared to monocultures 

of a preferred host (Jactel & Brockerhoff 2007; Haas et al. 2011). However, there has been 

literature support for the opposing positive correlation between host diversity and pathogen 

success. Along these lines, global parasite load follows the latitudinal biodiversity gradient, with 

a peak in the tropics (Hechinger & Lafferty 2005). 

 

0.6 Associated Impacts of Secondary Invasions 

 

Invasive species produce impacts on a variety of important ecosystem goods and services, from 

killing or outcompeting species in recipient communities, impeding industrial or agricultural 

activities, negatively impacting human health, to increasing spending on control and eradication 

(Bradshaw et al. 2016). Managers must balance the costs of control and eradication with the 
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damages avoided by taking action. Thus, the species, spatial, and temporal variability in invasive 

species impacts should be examined to prioritize future management (Essl et al. 2019). Invasive 

species secondary invasion impacts are determined both by secondary spread and establishment 

patterns, and their per-capita impacts on different ecosystem goods and services (Parker et al. 

1999). The expected secondary invasion impacts of a given species can be extracted from a 

synthesis of probabilistic models accounting for each of these factors (Lovett et al. 2016). This 

can lead to very different patterns than risk assessments conducted for a single invasion stage, 

since per-capita impact need not be correlated to establishment or spread risk (Ricciardi & Cohen 

2007).  

 

0.7 Specific versus general invasion models 

 

Identification of generalized models that explain and predict species distributions is of 

fundamental importance to ecologists, and there is a clear need for rapid responses to species 

invasions. However, to make effective decisions, we need an accurate picture of current and 

future invasions and associated damages. The challenge with making these predictions to new 

species or across entire invasion pathways is that within invasion ecology, the focus has been on 

species-specific models using context-specific information (e.g., Liebhold et al. 1992; Gilbert et 

al. 2004). Intuitively, models that are based on a particular invasive species’ local context should 

provide better predictions than general models, and should facilitate management. While 

customized models have undeniably been useful, there have been calls for pathway level 

analyses, which account for multiple invasive species simultaneously (Lodge et al. 2006; Bradie 

& Leung 2015). To tackle this, my thesis chapters build off of one another to create a suite of 
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generalized models of secondary invasions. Rather than producing forecasts for single case 

studies, the scaling up of individual species predictions using general models can produce whole-

community predictions. These can be for establishment, spread, or impacts, and potentially even 

for the best management strategies to limit these impacts. 

Although general invasion models are in the minority, the interest in multi-species 

predictions species invasions arises because of their potential advantages. In order to prepare for 

and limit invasive species impacts across space, which accrue immense costs (Vilà & Hulme 

2017), managers need to know where these species will invade next. Further, the sooner they can 

take action, the more effective their control measures will be (Lovett et al. 2016). The lower the 

data requirements of a given model, the sooner it can be implemented to inform management. As 

such, a highly general model could be rapidly applied to many species, potentially including 

species that have not yet completed the primary invasion process. 

 

0.8 Anthropogenic generalities  

 

This thesis aims to leverage the role of humans in dominating invaded ecosystems to help make 

better predictions. I predicted that human influence means that at broad scales, invasions behave 

in less traditionally ‘ecological’ ways. In other words, heavily human-altered ecosystems are 

governed more by patterns of human behaviour than ‘intrinsic’ ecological rules of community 

assembly such as species interactions. By focusing on anthropogenic processes, a model’s 

management utility can be balanced with a search for general macroecological rules, that is, 

largescale principles that govern ecosystems in this new era of human dominance (Brown 1999).  
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For invasive species, one phenomenon that supports such cross-species generality is the 

dominant role of humans in transporting species via mechanisms that are analogous across entire 

suites of species invading different spatial locations (e.g., through ballast water transport, 

Seebens et al. 2013; firewood transport, Haack et al. 2006). This anthropogenic dominance can 

thus provide general macroecological predictions for the spread of groups of invasive species 

within a particular transport pathway. In the case of secondary invasions, anthropogenic 

mechanisms such as transport through road networks may mean that conventional ecological 

processes governing dispersal, which are more idiosyncratic across species (wind direction, 

flight ability etc., Aylor 1990; Taylor et al. 2010), are less important for forecasting spread at 

large scales. Further, species traits relating to association with anthropogenic dispersal vectors 

may be most important in determining their spread rates.  

Pathway-level spread and establishment models facilitate the creation of pathway-level 

impact estimates. Since humans are known to transport individuals long distances within invaded 

ranges (Kelly et al. 2003; Haack et al. 2006), and human population density is predictive of 

invasive secondary spread patterns (Hudgins et al. 2017), humans are likely to be a major driver 

of future secondary invasion patterns across entire secondary invasion pathways, and therefore of 

future pathway-level impacts. These estimates demonstrate the severity of whole communities of 

invasive species, and therefore the extent to which it is important to limit future secondary 

invasions via these human transport pathways (e.g. through quarantines, highway checkpoints to 

limit firewood movement etc.). 

 
0.9 Study system: United States invasive forest pests  
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This thesis expands the field of invasion macroecology through the study of United States (US) 

invasive forest pests. An invasive pest is a non-native species that has the ability to spread and 

cause damage to both the environment and human interests (CBD 2006), and forest pests 

specifically harm forest products. Many of these species exist within the US, and can be grouped 

into four feeding guilds based on the method with which they predominantly damage their host 

trees (Aukema et al. 2010). Foliage feeders include insects that feed on leaf or needle tissue. Sap 

feeders include all species that consume sap, including scale insects and gall-forming species. 

Phloem- and wood-borers feed on phloem, cambium, or xylem. Pathogens include species of 

fungi (e.g., chestnut blight, Cryphonectria parasitica) and disease complexes (e.g., beech scale, 

Cryptococcus fagisuga, and beech bark disease, Neonectria faginata and N. ditissima). This set 

of species comprises multiple kingdoms and spans a large portion of the evolutionary tree. While 

many pest invasions have been documented within this system, detailed data of invasion patterns 

exist for only a small subset of the invasive pest community – thereby motivating the search for 

general models to extrapolate across species. 

US invasive forest pests have predominantly arrived via the live plant trade and untreated 

wood packaging materials (Lovett et al. 2016). Across the contiguous US, the load of pests is 

particularly high in the northeast and along the west coast, coinciding with areas of high human 

activity (Liebhold et al. 2013). While they have a range of natural dispersal mechanisms, uptake 

within the human transport network is possible for all of these species, indicating the potential 

for a single pathway-level model for invasion patterns via anthropogenically-induced 

generalities.  

While the precise temporal patterns of invasions within this system are largely unknown, 

the biotic components of the recipient community are well characterized. Thanks to the Federal 
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Inventory and Analysis program (FIA), US forest volume data has been collected at the tree 

species level across the country. As such, host biodiversity patterns can be linked to pest spread 

projections to better understand their role in secondary establishment. While urban forest data is 

much more scarce, recent advances in synthesizing municipal inventories (Koch et al. 2019) 

have meant that for the first time, the impact of pest invasion patterns on urban host trees can 

begin to be understood. 

In addition to its suitability as a system to model pathway-level secondary invasions, 

predicting impacts to US forests from invasive pests is fundamental to preventing the mortality 

and even extirpation of tree species and limiting associated ecological, economic, and ecosystem 

service impacts. United States forests deliver many fundamental ecosystem services to residents, 

including water and air purification, carbon sequestration, timber and fuel wood, wildlife habitat, 

and recreational space (Campbell & Brown 2012). While US forests are subject to many 

interacting stressors whose severity is accelerating, invasive forest pests are unique in the speed 

at which they have extirpated US tree species (Lovett et al. 2016).  

Previous analyses suggest that urban trees are likely to be the dominant component of 

damages due to forest insect pests (Aukema et al. 2011). Urban tree communities tend to include 

highly susceptible species like ash (Fraxinus spp.) that have been decimated in recent years by 

pests such as emerald ash borer (Agrilus planipennis, Kovacs et al. 2010), and dead and dying 

urban trees pose an immediate threat to resident safety, and thus require management. Moreover, 

the importance of urban forestry is only expected to grow. Across the world, more people are 

moving to cities, and while urbanization is already very high in the US (82% in 2018), it has not 

yet saturated (World Bank, http://data.worldbank.org, UN DESA, http://population.un.org). At 

the same time, there has been a push for urban ‘greening’ (i.e., increasing urban forest canopy), 
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both for environmental benefits, as well as to improve urban dwellers’ wellbeing. Estimates of 

forest pest damage have been important in providing support for cutting-edge phytosanitary 

measures for primary invasive pest establishment such as ISPM15 (IPPC 2002), a wood packing 

material treatment protocol whose adoption is growing across nations worldwide (Leung et al. 

2014). A similar protocol could be motivated by an analogous pathway-level damage estimate 

for secondary spread.  

 

0.10 Thesis outline 

 
The primary goal of this thesis was to identify largescale generalities across species invasions in 

this secondary invasion process, for use both in predicting the outcomes of the establishment and 

spread phases, as well as forecasting associated impacts. In Chapter 1, I built a single model for 

the spread of all invasive forest pests in the US. In Chapter 2, I contrasted this general model 

with more complex single-species models. Chapter 3, I built a general, integrative model for 

invasive forest pest establishment in order to examine its relationship with host biodiversity, and 

in Chapter 4, I created an updated estimate for the future impacts of invasive forest pests to urban 

forests. The more complex spread models from Chapter 2 were based on those from Chapter 1, 

and the spread models from Chapters 1 and 2 were used in the subsequent establishment and 

impact models to help fill in missing data and make higher resolution predictions. 

 



 
 

 38 

Chapter 1. 

Predicting the spread of all invasive forest pests in the United States 

Authors: Emma  J. Hudgins, Andrew M. Liehold, Brian Leung 

 

A version of this chapter has been published in the journal Ecology Letters,  08 February 2017, 

Volume 20, Issue 4, 426-435, with a corrigendum published later in that same year (DOI: 

10.1111/ele.12741, See Appendix S1). The two have been condensed into one cohesive thesis 

chapter with permission from John Wiley & Sons. 
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1.1 Abstract 

 

We tested whether a general spread model could capture macroecological patterns across all 

damaging invasive forest pests in the United States. We showed that a common constant 

dispersal kernel model, simulated from the discovery date, explained 67.94% of the variation in 

range size across all pests, and had 67.49% accuracy between predicted and observed locational 

distributions. Further, by making dispersal a function of forested land area, tree density, and 

human population density, variation explained increased to 77.74%, with 73.85% locational 

accuracy. These results indicated that a single general dispersal kernel (GDK) model was 

sufficient to predict the majority of variation in extent and locational distribution across pest 

species and that proxies of propagule pressure and habitat invasibility – well studied predictors 

of establishment – should also be applied to the dispersal stage. This model provides a key 

element to forecast novel invaders and to extend pathway-level risk analyses to include spread.  
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1.2 Introduction 

 
The number of invasions by non-indigenous forest pests is increasing worldwide due to growing 

travel and trade (Liebhold 2012). Pest invasions consist of three phases: arrival at a site, 

establishment at that location, and subsequent spread (Elton 2000). Predictive models of each 

process allow managers to take targeted actions, decreasing the number of pests completing each 

phase (Simberloff & Gibbons 2004). 

Arguably, many of the drivers of invasion stages should be common among invading 

species. However, whether a generalized predictive model is possible or whether species must be 

modelled and fit separately to account for idiosyncrasies remains unanswered (Leung et al. 

2012). To this effect, we focus on the third phase, and build a general predictive tool for invasive 

forest pest spread within the United States. This is of fundamental interest in ecology - to 

determine whether general rules govern dispersal sufficiently to quantitatively make predictions 

across a suite of species using a common model. Spread at a macroecological scale is particularly 

relevant, given that there are conflicting opinions as to whether generalities exist across 

invasions and there have been few largescale studies of potential generalities (Cadotte et al. 

2006). Such general rules could also have considerable applied value, allowing spread to be 

predicted a priori. Current spread models are typically derived after a pest has already arrived 

and spread (e.g. Gilbert et al. 2004; Morin et al. 2009; Tisseuil et al. 2015, Walter et al. 2015), 

potentially lessening the efficacy of management, for instance when implementing containment, 

rapid response and/or eradication efforts of novel species (Lovett et al. 2016).  

The spread process has been extensively modelled using population ecology models that 

employ general growth and dispersal equations (Shigesada et al. 1995; Neubert & Parker 2004; 

Skarpaas & Shea 2007). Such models have been typically parameterized for individual species 
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separately, and do not incorporate moderating variables for habitat invasibility, propagule 

pressure, and pest life history, which have been highlighted within the invasion biology 

literature, would aid generalization (Leung et al. 2012), but have not been examined in an 

explicit spread model. For instance, invasion biologists have theorized that certain habitat 

suitability characteristics may allow for greater establishment success, or greater habitat 

invasibility (Simberloff 2009). Logically, habitat invasibility could be incorporated into a 

dispersal kernel model, where certain habitat characteristics accelerate dispersal into or out of 

cells. In addition to environmental factors, proxies of propagule pressure, or the number of pest 

individuals introduced, have been associated with higher probabilities of establishment 

(Lockwood et al. 2005; Bradie et al. 2013). Likewise, higher numbers of individuals dispersed 

should accelerate secondary spread. Variables such as human population density may moderate 

propagule pressure, as humans are often vectors for pest spread, especially over long distances 

(Haack et al. 2010). These factors could also be included in the dispersal kernel to repartition 

dispersal preferentially into or out of more frequently visited locations. Finally, life history 

characteristics may be important in determining differential spread rates across species. For 

instance, the body size of forest pests may be a predictor of their spread rates, as larger species 

may disperse farther. 

Thus, an ideal generalized model of spread would predict invasions across a suite of 

species using a single model. It would do so both in terms of the extent of invasion as well as the 

spatial locations of pest occurrences, and would integrate various factors influencing pest 

invasions. However, the extent to which such a general model is predictive, and which (if any) 

factors have common influence across an array of pest species remains an open question. 
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In this study, we developed a Generalized Dispersal Kernel model (GDK) and tested two 

hypotheses: First, we hypothesized that the spread of biological invaders proceeds following 

similar processes across species, and so we predicted that a single general model of pest spread 

can fit well for all forest pests in the United States. Secondly, we hypothesized that pest life 

history, propagule pressure, and habitat invasibility can be meaningfully integrated into a 

dispersal kernel, and lead to improved predictions in a general model.  

 

1.3 Material and Methods 

 

1.3.1 Description of data 

 

To build our model of pest spread, we used county-level species occurrence data, habitat 

suitability factors, and propagule pressure proxies from Liebhold et al. (2013), the Alien Forest 

Pest Explorer (Liebhold & Blackburn 2012, http://www.nrs.fs.fed.us/tools/afpe/maps), and 27 

sources for pest characteristics (Appendix S1.2). Year of each pest species’ first detection from 

Liebhold et al. (2013) was used as a proxy for year of establishment. Pest occurrence data 

consisted of 75 pest species distributions, comprising insects, mites and tree pathogens. For each 

species, we did not have time series data, and instead relied on a single snapshot of their 

distribution in 2008. We modelled each species as an independent unit and we did not consider 

interactions between species. We did consider additional predictors, consisting of propagule 

pressure proxies (human population density per decade (km-2), per capita income in 1999 (USD), 

road length (km)), habitat invasibility proxies (host species richness, tree density (m3km-2), 

forested land (km2), host tree density (m3km-2)), and pest life history traits (taxa: arthropods 
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versus tree pathogens, number of host species, Eurasian versus non-Eurasian native range, 

maximum body length (mm) (with a separate intercept fit for tree pathogens, as body length was 

not applicable)) (Table S1.2.1). All predictor variables included had a correlation r < 0.7 with 

other predictors (Appendix S1.4). Our discrete time dispersal model was fit in decadal 

increments to achieve computational feasibility and because our human population data were 

decadal (although we examined sensitivity by using 5-year increments, and found that model fit 

did not differ substantially, Appendix S1.5)  Each species’ time since detection was rounded 

down to the nearest decade, and so we limited our analysis to species that had been present in the 

United States for at least 10 years at the time of data collection (N = 64). Years of first detection 

spanned between 1790 and 1997 (1-21 time steps). None of the variables were fit separately to 

each species, in keeping with the desire for a single general model. 

To avoid issues with spread dynamics across unequal county sizes, we first converted 

county-level presence/absence data to a 50 x 50 km lattice using distances measured with the 

United States Equidistant Conic Projection calculated using ArcMap10.2 (ESRI 2011). 

Environmental variables within each grid cell were calculated using the area-weighted average of 

the U.S. counties it encompassed. Further, all explanatory variables were centered and scaled to 

have a mean of zero and variance of one to ease the interpretation of each variable’s contribution 

to dispersal.  

This dispersal model was originally fit to 64 pest species. In refitting the model as part of 

a corrigendum (Appendix S1.1), we found that Anoplophora glabripennis (Asian longhorned 

beetle, ALB) became a strong outlier (Figure S1.1.1), but that the model was able to fit the other 

63 species. We believe our model’s inability to predict the distribution of ALB is because it has 

not actually successfully invaded forested areas (it is still under eradication in N. America), 
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while its potential invasible range spans the entire US due to its breadth of suitable hosts. All 

detected ALB populations occur in rural or semi-rural areas, and most of them have already been 

successfully extirpated (Trotter & Hull-Sanders 2015).  

 

1.3.2 Generalized Dispersal Kernel model (GDK) 

 

Dispersal kernels estimate the probability of pest dispersal across space based on the distance 

between source and destination cells. In our model, we tested additional predictors of spread 

through modifying the dispersal parameter (discussed below). While we recognize that the 

predictors may influence processes other than dispersal, our focus was explicitly on the dispersal 

process in this study. We fit a negative exponential dispersal kernel model using discrete time 

simulations (Fig. 1.1), where at each (decadal) time step, pests dispersed to surrounding patches 

according to:  

"!,# =	
$!"#,%,&(()

∑ $!"#,%,&(()*
                           (1.1) 

%!,# = &((# − (!)& + (,# − ,!)&              (1.2) 

where "!,# is the proportion of pests dispersing from cell i to cell j, normalized such that 

proportions sum to one across all cells j for a particular species, di,j is distance, and -(Z) is a 

combination of species (ZS) and cell (dispersal into a cell = ZI, dispersal out of a cell = ZO) 

specific predictors and parameter values influencing the dispersal probabilities. As a special case, 

we tested a constant dispersal model, where -(.) was a constant (-(.) = /).	In our full 

generalized dispersal kernel model (GDK), -(.) was calculated using: 

-(.) = 2/ $(+,(-,(.
'($(+,(-,(.                 (1 3) 
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and the equation for ZS, ZI and ZO followed the general formulation: 

.) = ∑ 2*3*+
*,'                  (1. 4) 

where βp are parameters associated with variables X – either pest life history variables (S) or 

environmental variables at either destination cells (I) or source cells (O), thereby allowing these 

variables to influence dispersal both into and out of a cell.  

Additionally, species were only able to invade grid cells where their host species was 

known to be present, as this was the most comprehensive information available, and logically 

should be important for pest distributions. For each species, we initiated spread in the central 

grid cell within each pest’s known host distribution. This central point was chosen as a 

reasonable starting point, given 1) the uncertainty around the true origin for most pest species 

(Siegert et al. 2014), 2) where records of origin exist, they were sometimes found outside of the 

known host distribution (n = 21, possibly due to the presence of undocumented urban hosts), and 

hence there was no good way to incorporate these records, and 3) the lack of urban tree 

information within our host data. Thus, inferences from the model should be limited to spread 

throughout natural host distributions.  

Next, we assumed that dispersal would increase with time since establishment in each 

source cell i, because propagules should increase as populations grow, up to some maximum 

number of individuals. Because we built the model using presence/absence data, we only 

modelled “relative propagule pressure”. Specifically, the net influx of propagules and growth at 

each time step was formulated as an integrodifference equation (Kot et al. 1996), where the 

relative accumulation of propagules (PP) at cell i at timestep t+1 was equal to the relative 

propagule pressure at time t, minus emigration, plus immigration, multiplied by the growth rate 

d: 
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44!,-(' = (44!,- −∑ "!,#44!,-. + ∑ "+,!44+,-/ )5          (1. 5) 

Our inclusion of dispersal and growth within a single time step is atypical of integrodifference 

models, but was needed given that our time steps are decadal. 

Cells were considered “presences” capable of being a source of propagules above a 

threshold population size Φ, to prevent immediate dispersal across the entire landscape. Local 

extirpation was possible if sites dipped back below the threshold. Both 5 and Φ were fitted 

constants. However, the maximum propagule pressure in a cell was set to 1, because the 

maximum value was arbitrary and relative to the value of Φ (i.e., maximum 1 with threshold = Φ 

has identical dynamics as maximum 100 with threshold =100*Φ). These equations allowed us to 

capture some of the important temporal characteristics associated with population growth, but we 

do not interpret them as demographic rates, as only presence/absence data were available.  

 

1.3.3 Metrics of fit 

 

We used the Minimum Energy Test (MET) as our metric of model fit between predicted versus 

observed distributions (Aslan & Zech 2005, Appendix S1.6). MET accounts for distances 

between predicted and true presences, which constitutes a higher information content than exact 

matches of presence/absence (i.e., mismatch of 50 km is better than 1000 km). Lower MET 

scores represent models with better goodness-of-fit.  

We built our full dispersal model (GDK) using a forward selection procedure (Fig. 1.1). 

Starting from the intercept-only constant dispersal model, we determined the MET score for 

every possible two-term model built by adding the remaining 18 terms individually to the 

intercept-only model. The term producing the largest improvement was then added to the model, 
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and forward selection repeated with higher-term models, until further additions of terms did not 

improve the MET score by 5 km. 5 km was chosen as an arbitrary threshold to retain biological 

relevance. 

We report two metrics of model performance. First, we compared predicted and observed 

locational distributions, using MET. We also report locational accuracy, which is defined as the 

proportion of correctly assigned presences and absences across the number of possible presence 

sites. As a spatial null comparison model, we also used the observed number of infested cells, 

but simulated randomized occurrences within the host distribution for each species (random 

allocation model) and took the mean MET score of 1000 simulated pest distributions for each 

species. As our second metric, we compared predicted to observed range sizes, to evaluate the 

ability to predict the extent of invasions, using mean squared error, MSE, as a proportion of the 

variation in observed range sizes; R2
MSE	(discussed in Appendix S1.6). 

As a statistical comparison model for the extent of spread, we regressed the area occupied 

by all pests against the time since they were first discovered in the United States (Liebhold et al. 

2013). Though a regression of pest radius and time follows more logically from the invasion 

literature (Skellam 1951), we wanted to keep predictions comparable across models, and results 

were very similar between pest radius and pest area (within ~2% variation explained), and did 

not change our conclusions.  

 

1.4 Results 

 

We found that even our statistical comparison model – a simple regression model of pest range 

area as a function of time – had substantial predictive ability (R2
MSE = 0.2837), suggesting 
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promise for a common predictive model across pest species (Fig. 1.2). Next, we tested a simple 

dispersal kernel model with a constant dispersal parameter, without consideration of other 

predictive factors. We found that using a constant dispersal model improved the ability to predict 

pest range area by more than twofold compared to the simple regression model (R2
MSE

 = 0.6870). 

The constant dispersal model also performed well comparing the locational predictions against 

observed infestations (mean MET score = 115.74 km, corresponding to 67.49% locational 

accuracy) more than halving the MET score expected by chance (298.52 km for random 

allocation null model). These results suggest that 1) there is considerable similarity in dynamics 

among pest species, 2) using a process-based dispersal kernel model that accounted for host 

distribution yielded substantial benefits compared to a purely statistical approach. 

Next, we tested for common predictive factors, which could modify the dispersal 

parameter (GDK) (Table 1.1, Fig. 1.2). Our final model included the following 4 terms: Forested 

Land Area (increasing dispersal into sites), Tree Density (reducing dispersal out of sites), Human 

Population Density (both increasing dispersal into sites, and reducing dispersal out of sites,). The 

inclusion of these terms improved MET scores by 52.63 km (Fig. 1.3), and resulted in a model 

with 73.85% locational accuracy. Beyond these four, the addition of the other 15 parameters 

tested improved fit by less than 5 km in terms of MET (Table 1.1). Our model building results 

suggest that 1) there are general predictive factors of pest spread across species, which included 

both habitat invasibility variables (forested land, tree density) as well as proxies for propagule 

pressure (human population density), 2) the examined species traits other than host associations 

were not important for spread, and 3) relatively simple models explained more than 3/4 of the 

variation in extent of pest ranges, and roughly 3/4 of the geographical locations across pest 

species. 
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 When we analyzed individual species’ contributions to the aggregate MET scores, fewer 

species were predicted incorrectly by the GDK than the constant dispersal model (as shown by 

the reduced outliers, Fig. 1.3). These mismatches occurred for both predicted presences as well 

as absences (see Fig. 1.4 for examples of individual fit, Fig. 1.5 for aggregated predictions, and 

Appendix S1.7 for all individual species fits). We also found that MET was inversely related to 

the extent of spread (r = -0.3406, p = 0.0059).  

 

1.5 Discussion 

 

Currently, most predictions of invasive species spread use species-specific models (Muirhead et 

al. 2006; Carrasco et al. 2010, Gagnon et al. 2015). Here, we showed that a common dispersal 

kernel can capture much of the variation in pest extent across all known damaging forest pests in 

the United States. As such, it appears that generalities are possible. Further, our GDK model has 

ramifications for invasion biology as a predictive science, including forecasting the spread of 

new invaders, a demonstration of predictive improvements using semi-mechanistic models, and 

the incorporation of general predictors identified in the invasion literature (Leung et al. 2012). 

We discuss each in turn. 

 

1.5.1 Generalities in ecology 

 

Our results suggest that the rules governing the spread of pest species are sufficiently general to 

obtain strong quantitative macroecological predictions using a common model. As a line of 

future inquiry, a search for the underlying processes of these common spread patterns could yield 
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fundamental insights into biological invasions and spread ecology. Parallels to such analyses 

have occurred across other fields of ecology, where predictive relationships have been 

discovered that transcend idiosyncratic species relationships and are discernable at large scales, 

such as those within the maximum entropy theory of ecology (Frank 2009) and the metabolic 

theory of ecology (West & Brown 2004). These relationships form so-called ‘efficient’ theories 

(Marquet et al. 2014).  

It seems likely that over large scales, an efficient theory may exist for the dispersal of 

invasive species. The strong predictive power of the constant dispersal model was unexpected 

and interesting; it suggests that dispersal is largely occurring by one or more analogous spread 

mechanisms. We hypothesize that these analogous mechanisms are the various forms of human 

transport. It is well known that humans are important vectors of long-distance dispersal, but it 

appears that the various types of human transport (e.g., live plant trade, firewood movement) are 

occurring at roughly the same rate over large scales, allowing a constant dispersal parameter to 

capture the majority of variation in spread. In addition to this constant human transport, there 

also appears to be a small but important component of preferential pest dispersal to areas of high 

population density, given that our GDK model predicts discrete patches of spread surrounding 

metropolitan areas. 

Traditionally, dispersal has been conceptualized as the result of natural processes based 

on life history traits and habitat suitability as it relates to individual species’ constraints. 

However, if analogous transport mechanisms and preferential pest dispersal to metropolitan areas 

occur, then human agency may be overshadowing traditional ecological mechanisms, such as 

natural flight capacity (Taylor et al. 2010), wind-driven dispersal (Aylor 1990), and community 

assembly mechanisms (e.g. Belyea & Lancaster 1999). More formally, we hypothesize that 



 
 

 51 

“anthropogenic replacement” is occurring, wherein certain natural processes are essentially being 

overridden by anthropogenic ones, and that predictable generalities that operate across entire 

suites of species arise as a consequence of these processes’ broad effects. The lack of 

explanatory power of life history parameters and preferential dispersal into high human 

population density areas are arguably controversial findings, and further study is required to test 

the generality of such anthropogenic replacement. Additionally, we acknowledge that life history 

parameters are important for other stages of invasion (e.g., establishment, Forsyth et al. 2004; 

Bradie & Leung 2015), and could be important in different model formulations or components 

beyond dispersal distances. Nonetheless, these are important ideas, and replacement of natural 

processes may have ramifications beyond invasive species dispersal to other systems dominated 

by anthropogenic processes. 

 

1.5.2 Forecasting spread of novel invaders 

 

In concert with models that predict invader establishment in a country (e.g., Bradie & Leung 

2015), our complementary analysis suggests that entry locations and host distributions will 

provide good predictors of pest spread, given that the GDK model explained 77.78% variation in 

pest range and had 73.85% locational accuracy, and that life history traits did not explain 

substantial variation in spread. The GDK results also indicate that future invasions to the United 

States will be characterized by preferential dispersal into areas of high human population density. 

Such forecasts allow for the refinement of pathway level analyses of invasion risk to include a 

spread component (e.g., the solid wood packaging materials pathway and introduction of wood 

borers, Haack 2006; Leung et al. 2014). Pests that have not been studied extensively can be 
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included in these projections, given some knowledge of their host distributions, and information 

on establishment rates from the pathway in order to join this spread model to an establishment 

model (e.g., Aukema et al. 2010; Brockerhoff et al. 2014; Leung et al. 2014). 

 

1.5.3 The importance of semi-mechanistic models 

 

Several alternative models are available for predicting spread (Shigesada & Kawasaki 1997; 

Hastings et al. 2005), the simplest being a purely statistical approach, such as a general linear 

model of area as a function of time (Liebhold et al. 2013). We argue that the additional 

complexity of the semi-mechanistic dispersal kernel is well worth inclusion for making 

predictions. Comparing the simplest models in each, a constant dispersal kernel model 

essentially doubled the variation explained compared to a regression of pest area against time.  

Further, our semi-mechanistic approach can easily incorporate spatial predictors of 

spread in predictive contexts, while it is less clear how general linear models can utilize spatial 

variables for prediction. One problem is that incorporating additional spatial variables requires 

the calculation of a single spatial value per pest in fitting (e.g. average human density across pest 

distribution). In a predictive context, where future distributions are unknown, these spatial 

predictors change as a pest spreads, which in turn affects their rate of spread, making these 

models impractical for prediction. Additionally, while regression models can relate time since 

discovery to the size of pest ranges, they do not predict spatial locations in their 

parameterizations of spread, thereby providing less information content than the GDK. Since 

these models have lesser utility, we did not test additional predictors of pest spread beyond time 

within a regression context.  
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Additionally, semi-mechanistic models have the potential to better account for issues of 

spatial autocorrelation and non-stationarity by replicating a spatially-autocorrelated dispersal 

process and allowing for differential dispersal across different environments. Many statistical 

modelling approaches are unable to account for spatial autocorrelation and in particular, non-

stationarity, where the effect of spatial autocorrelation varies across space (Dormann et al. 2007). 

Failing to account for these phenomena when present can result in model misspecification and 

invalid inferences and subsequent predictions relating to spatial data (Miller 2012).  

 

1.5.4 General predictive factors 

 

Invader life history, habitat invasibility, and propagule pressure have been studied extensively in 

the invasion biology literature (Leung et al. 2012). We have shown here how these factors can be 

incorporated into an explicit dispersal model, and found that the predictors that were important 

and the magnitudes of effects were different than previous studies. In their review of the risk 

assessment literature, Leung et al. (2012) compiled over 200 models of the stages of species 

invasions used to predict risk. In contrast to our model, the majority of previously published 

models of the spatial distributions of invasive species have been largely formulated as models of 

pest establishment success (Inglis et al. 2006; Catford et al. 2011; Compton et al. 2012). Others 

have been formulated as gravity models (Gertzen et al. 2011; Potapov et al. 2011), while some 

studies have analyzed the total richness of pests across space (Stohlgren et al. 2006; Liebhold et 

al. 2013; Iannone et al. 2015). 

Although related, these various modelled processes and their patterns are subtly different. 

We modelled the factors that promote rapid spread of invasive species in general, rather than the 
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factors influencing the establishment success of individual pest species. Further, in contrast to 

models of pest presence or richness that attempt to determine differential establishment across 

space, our model allowed predictor variables to modify the probability of dispersal across space 

and time, thereby influencing the level of propagule pressure reaching each cell based on the 

level of propagule pressure at surrounding cells and the associated predictor variables.  

Given the difference in underlying phenomena modelled, it may not be surprising that the 

predictors and their magnitudes also differed between our study and previous results. We found 

that pest life history parameters were not important in our model, though previous models have 

found factors such as fruit size (Pyšek et al. 2009) and wind dispersal (Gassó et al. 2009) to be 

predictive of invasive plant distributions. It is unknown whether differences in our findings 

reflect differences in system (plant versus pest) or differences in invasion stage (establishment 

success versus spread). Regardless, our model’s lack of pest life history traits enforces the 

importance of spatial factors for spread in this system, although there may be other important life 

history factors that were not considered. 

Across previous studies of establishment, richness, and gravity models, propagule 

pressure metrics tended to have higher explanatory power than habitat invasibility metrics 

(Leung & Mandrak 2007; Catford et al. 2011), and these additional factors explained the 

majority of the variation in pest presences (Inglis et al. 2006; Compton et al. 2012). Conversely, 

we have found that a constant dispersal kernel model already explained the majority of the 

variation in pest spread (> 67%), and therefore that the unique explanatory power of habitat and 

propagule pressure was moderate (9.04% variation explained, 6.36% increase in locational 

accuracy), with habitat invasibility explaining more of the variation in pest spread than propagule 

pressure proxies. However, we suggest that our constant dispersal model is not independent of 
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habitat invasibility and propagule pressure processes, but actually incorporates the parts of these 

processes that are consistent across space and time. As such, the aspects of propagule pressure 

and habitat invasibility that have constant spatiotemporal influences on dispersal are contained 

within the intercept in our constant dispersal model. This spatiotemporal invariance may differ 

depending on the system (cf. Leung & Mandrak 2007; Gertzen et al. 2011; Compton et al. 2012 

which examined discrete lakes). Nonetheless, based on the variation explained by the constant 

dispersal kernel model, it appears as though the majority of their influence is constant across 

space and time, facilitating future predictions given an initial establishment.  

 

1.5.5 Caveats and future directions 

 

Scale-dependence occurs when a model’s driving factors vary with the grain (spatial and/or 

temporal) at which it is fit (Pauchard & Shea 2006; Fridley et al. 2007). Our results are at the 

country scale where, importantly, long-distance anthropogenic dispersal may dominate over 

natural pest dispersal, possibly explaining why life history traits were not predictive. Hence, 

while we were able to strongly predict spread across counties, and across the United States, 

predicting local spread within counties requires additional models, where life history traits could 

potentially dominate the dispersal signal.  

Scale-dependence can also occur when a model’s driving factors and fit vary with 

temporal roughness. The observed correlation between MET score and spread extent is 

potentially consistent with temporal scale-dependence, as shorter spread time would be more 

affected by discrete decadal time units. However, sensitivity analyses using 5-year units yielded 

virtually identical results (Appendix S1.5). As an alternative post-hoc explanation, MET was 
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significantly lower (better) for species with introduction locations inside known host range 

(t0.05(2),62 = 2.793, p = 0.0070), suggesting that our lack of urban tree data is instead responsible 

for outliers. 

The inability to predict pest presences outside of forested areas is a key shortcoming of 

our model. The positive influence of population density on pest spread further suggests that 

urban habitats have strong influences on pest dispersal. Clearly the collection of urban tree data 

at a large scale should be a priority. Additionally, our model structure assumed a single central 

introduction of each pest, though we know that several pests have had multiple independent 

introductions to the United States. Initiating spread from the host range centroid and limiting it to 

the natural host range likely worsens the estimation of early spread rates, as it adds a spatial 

mismatch in initial spread to the existing temporal mismatch from the date of establishment to 

that of first detection. Thus, the formulation of a detection model is an important future direction 

to understand this system more mechanistically and alleviate the latter source of mismatch. 

Regardless, the strong predictive power of the model indicates robustness to these details. 

We used a general negative exponential dispersal kernel in our model, though other 

dispersal models exist (e.g., “fat-tailed” dispersal kernels Shigesada et al. 1995; Kot et al. 1996). 

However, several factors suggest that our model is sufficient to describe this system, including 

its strong predictive ability. Additionally, the breadth of durations of invasion within our dataset 

(1790-1997) suggests that we are able to capture both recent and longer-term invasion patterns. 

Finally, moderation of the dispersal kernel parameter provides an alternative formulation of 

long-distance dispersal. For instance, the inclusion of population density in our full dispersal 

model allows for urban centers to attract pests from distant locations. This is arguably a more 

process-driven formulation of long-distance dispersal than using fixed, alternative shapes for 
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dispersal kernels, if we believe that humans are important vectors causing pest spread.  

Our model was based on current and historical conditions. However, climate change 

could alter environmental suitability due to its influence on host tree species and on local abiotic 

conditions (Hellmann et al. 2008). Climatic variables such as temperature were not 

parameterized in our model. However, the most important factor for pest persistence is arguably 

the presence of viable hosts. In some cases, pests are instead limited by temperature, (e.g., 

hemlock woolly adelgid (Adelges tsugae), which has reached its climatic limit, despite the 

presence of hosts to the north, Paradis et al. 2008), and these cases could contribute to the 

remaining error in the model. Additionally, climate change may influence human distributions, 

which, given their inclusion in our model, should also be forecasted. Finally, forest management 

could also alter the future distribution of tree species (e.g., which species are planted or cut), 

which will alter invasible host distributions. Likewise, land use change could alter forested land 

and urbanization patterns, both of which would affect pest spread. In sum, forecasting into the 

future will require additional considerations and submodels, although the GDK can play a key 

role.  

  

1.5.6 Conclusions 

 

We have found that a single spread model for all invasive United States forest pests is predictive 

of both the extent and locational accuracy of pest distributions. This model provides a key 

element to forecast pest spread, thereby facilitating rapid responses to new pests. On a more 

fundamental level, the predictability across pest species suggests generality, and advances the 

possibility of a unified macroecological theory for invasive species spread by suggesting that 
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common mechanisms underlie spread across species, beyond simple identification to the actual 

quantification of these mechanisms.  
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1.8 Figures and Tables 

 

1.8.1 Figures 

 
Figure 1.1 Conceptual framework for model building (main loop) and simulation procedure 
(expanded yellow box). The model is built by a forward selection procedure, where starting with 
the intercept-only constant dispersal model, all possible j single term additions are simulated and 
fit. The best term j* is chosen to be added to the model if it improves the MET score by at least 5 
km and the process is repeated, otherwise the model building procedure is halted and the current 
model is kept as the final model. 

 



 
 

 66 

Figure 1.2 Predicted versus observed species range sizes for the analogous regression model 
(top, R2

MSE = 0.2733 (R2
MSE = 0.2900 for a regression of pest radius instead of area), constant 

dispersal model (middle, R2
MSE = 0.6870) and full GDK model (bottom, R2

MSE = 0.7774). 
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Figure 1.3 Distribution of MET scores across all species expected at random (left, mean = 
288.96 km), and modelled for the constant dispersal (centre, mean = 115.74 km), and GDK 
(right, mean = 47.45 km) models.  
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Figure 1.4 A selection of model predictions for individual species (a. Coleophora laricella, b. 
Leucoma salicis, c. Nuculaspis tsugae), showing the true presence data (left column), constant 
dispersal model predictions (centre column) and GDK predictions (right column) as green areas. 
These distributions are only a small selection and do not show the full variation in model 
predictions across species, which are included in Appendix S1.7.  
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Figure 1.5 True observations of pest richness (top panel), predicted pest richness for the constant 
dispersal (top left) and GDK (bottom left) models, and the Euclidean distance or number of 
mismatched pest presences in the constant dispersal (top right), and GDK (bottom right) models. 
For the true observations and predicted richness maps, deeper green indicates higher richness. 
For the mismatch maps, deeper green indicates a higher degree of mismatch (false presences + 
false absences).  
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1.8.2 Tables 

 
Table 1.1 Results of stepwise regression for the dispersal kernel model fit to United States data 
using habitat invasibility (HI), propagule pressure (PP), and pest life history (LH) factors.  
 
 

Term Type Description Entry 
Order Estimate (bp) 

MET 
score 
(km) 

R2MSE 

D MET 
score 
(km)  

Intercept NA NA 1 1.4751 115.74 0.6870 NA 

Forested land 

(km2)* HI Sum of land area covered 
by forest  2 -0.5713 70.63 0.7411 -45.11 

Tree Density 
(m3km-2) † HI Total tree volume by grid 

cell 3 14.1310 60.37 0.8012 -10.26 

Human Population 

(km-2)* PP 
Current human 
population density at 
each time step 

4 -0.1660 52.88 0.7311 -7.49 

Human Population 
(km2)† PP 

Current human 
population density at 
each time step 

5 0.2391 47.45 0.7774 -5.43 

Forested land 
(km2)† HI Sum of land area covered 

by forest NA 0.0490 47.27 0.7784 -0.18 

Host Density 
(km3km-2)* HI 

Host tree volume for that 
particular pest per grid 
cell 

NA 0 47.45 0.7774 0 

Host Density 
(km3km-2)† HI 

Host tree volume for that 
particular pest per grid 
cell 

NA 0 47.45 0.7774 0 

Host Species 
Count* HI 

Number of tree species 
that are hosts of any pest 
present in grid cell 

NA 0 47.45 0.7774 0 

Host Species 
Count† HI 

Number of tree species 
that are hosts of any pest 
present in grid cell 

NA 0 47.54 0.7774 0 

Tree Density 
(m3km-2)* HI Total tree volume by grid 

cell NA 0 47.54 0.7774 0 

Body Size (mm) LH 
Pest body length 
(separate intercept fit for 
fungi) 

NA -0.1027;  
0.3078 46.36 0.7794 -1.18 

Continent of Origin LH Continent of native range NA 0.0018 47.45 0.7774 -0.09 

Feeding Guild LH Pathogens vs. 
Arthropods NA 0.0163 47.22 0.7774 -0.22 

Number of Hosts LH Number of host species 
possessed by pest NA -0.1105 46.44 0.7802 -1.01 

Income (USD)* PP Per capita income in 
1999 NA 0 47.45 0.7774 0 
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Income (USD)† PP Per capita income in 
1999 NA 0.0047 47.42 0.7768 -0.13 

Road Length (km)* PP Total length of all major 
roads in grid cell NA -0.0013 47.40 0.7778 -0.15 

Road Length (km)† PP 
Total length of all major 

roads in grid cell 
NA 0 47.54 0.7774 0 

* represents parameters influencing the probability of dispersal into a cell (ZI). 
† represents parameters influencing the probability of dispersal out of a cell (ZO).  
Negative estimates indicate positive influences on dispersal and vice versa. Since all variables were standardized, 
the relative influence of each fitted parameter on dispersal can be determined by its magnitude (magnitude of 
‘Estimate’ in the table). Conversely, the relative importance of each parameter on MET is determined by its entry 
order in our GDK (See Appendix S1.7). Our best model had δ = 1.3155 and Φ = 0.0001254 with a jackknifed MET 
score of 47.60 km per species and a jackknifed R2MSE of 0.7709. Terms with entry order “NA” did not meet our 
variable importance threshold for inclusion, and their associated data is for their proposed inclusion as a 6th term in 
our model. 
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Connecting Statement 

In my first chapter, I focused on the spread phase, and built a general model for how all 

economically damaging forest pests in the US spread, which we call the Generalized Dispersal 

Kernel (GDK). The GDK is highly predictive, without the need for any species-specific 

information, and predicts rapid spread influenced by human population. Based on these findings, 

I first developed the theory of anthropogenic replacement, where natural ecological processes are 

essentially being overridden by anthropogenic ones, and predictable generalities that operate 

across entire suites of species arise as a consequence of this. To demonstrate anthropogenic 

replacement more strongly, I then sought to determine how much predictive power is lost 

through the creation of a general model, compared to building customized models to individual 

focal species. This was the focus of Chapter 2, where I built customized spread models for three 

invasive forest pests based on their individual year-to-year detection records, and compared the 

predictive power of these models to the GDK. As an intermediate case, I created intermediate 

models that combined the GDK with simple species-specific corrections. These models 

leveraged the increased power from the GDK with the greater customizability of species-specific 

parameters, all the while not requiring time series for individual species.  

The more complex spread models from Chapter 2 are fit following the same spatially-

explicit simulation framework as those from Chapter 1. The spread model from Chapter 1 is used 

in the subsequent establishment model in Chapter 3 in order to separate the mechanisms for 

spread from those for establishment by controlling for spatial autocorrelation in establishment 

due to the spread process. Fitting an establishment model that controls for spread predictions 

allows for species, site, and tree-species specific rescaling of establishment probabilities that are 

previously modelled as being entirely driven due to propagule pressure in the spread model. As 
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an alternative form of rescaling, the Chapter 2 models fit a species-specific spread intercept that 

allows for accelerated or decelerated spread relative to the global GDK spread rate. These 

models go on to be used as the best estimate for future invasion patterns in economic damage 

models within Chapter 2, and allow the creation of higher resolution impact predictions across 

species, space and time. 
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Chapter 2. 

Comparing generalized and customized spread models for non-native forest pests 

Authors: Emma J. Hudgins, Andrew M. Liebhold, Brian Leung 

 

This manuscript was originally published in the journal Ecological Applications, 30 July 2019, 

Volume 30, Issue 1, e01988, reprinted with permission from John Wiley & Sons. 
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2.1 Abstract 

 

While generality is often desirable in ecology, customized models for individual species are 

thought to be more predictive by accounting for context-specificity. However, fully customized 

models require more information for focal species. We focus on pest spread, and ask: how much 

does predictive power differ between generalized and customized models? Further, we examine 

whether an intermediate “semi-generalized” model, combining elements of a general model with 

species-specific modifications, could yield predictive advantages. We compared predictive 

power of a generalized model applied to all forest pest species (the Generalized Dispersal Kernel 

or GDK) to customized spread models for three invasive forest pests (beech bark disease 

(Cryptococcus fagisuga), gypsy moth (Lymantria dispar), and hemlock woolly adelgid (Adelges 

tsugae)), for which time-series data exist. We generated Semi-generalized Dispersal Kernel 

models (SDK) through GDK correction factors based on additional species-specific information. 

We found that customized models were more predictive than the GDK by an average of 17% for 

the three species examined, although the GDK still had strong predictive ability (57% spatial 

variation explained). However, by combining the GDK with simple corrections into the SDK 

model, we attained a mean of 91% of the spatial variation explained, compared to 74% for the 

customized models. This is, to our knowledge, the first comparison of general and species-

specific ecological spread models’ predictive abilities. Our strong predictive results suggest that 

general models can be effectively synthesized with context-specific information for single 

species to respond quickly to invasions. We provided SDK forecasts to 2030 for all 63 United 

States pests in our dataset. 
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2.2 Introduction 

Identification of generalized models that explain and predict species distributions is of 

fundamental importance to ecologists. However, while general models “potentially inform about 

phenomena that exist in many systems…”, they “…may not necessarily make good predictions 

about any individual system” (Evans et al. 2013). This tension between generality and context-

specificity underlies much of ecology. 

The trade-off between generality and ecological prediction also exists within invasion 

biology, where the focus has been on species-specific models using context-specific information 

(e.g., Liebhold et al. 1992; Gilbert et al. 2004). For instance, the spread phase, a fundamental part 

of the invasion process, has typically relied on customized models, accounting for life history, 

ecological complexity and spatial factors such as dominant wind direction and habitat suitability 

(Koch & Smith 2008; Kovacs et al. 2011; Liebhold et al. 1992). Intuitively, models that are 

based on a particular invasive species’ local context should provide better predictions than 

general models, and should facilitate management. For instance, the gypsy moth Slow-the-

Spread (STS) project in the United States has reduced spread rates by >70%, since its inception 

in 2000, (Sharov et al. 2002; Grayson & Johnson 2018; see also Slow Ash Mortality (SLAM) 

program, McCullough & Mercader 2012).  

While customized models have undeniably been useful, there have been calls for pathway 

level analyses, which account for multiple invasive species simultaneously (Lodge et al. 2006; 

Bradie & Leung 2015). For invasive species, one phenomenon that supports such cross-species 

generality is the dominant role of humans in transporting species via mechanisms that are 

analogous across entire suites of species invading different spatial locations (e.g., through ballast 

water transport, Seebens et al. 2015; firewood transport, Haack et al. 2006). We hypothesized 
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that across invasions, unique natural dispersal processes are commonly overridden by 

anthropogenic ones, and that predictable generalities that operate across entire suites of species 

arise as a consequence of these processes’ broad effects (Hudgins et al. 2017). In the case of 

post-establishment spread, anthropogenic mechanisms such as transport through road networks 

may mean that conventional ecological processes governing dispersal, which are more 

idiosyncratic across species (wind direction, flight ability etc., Aylor 1990; Taylor et al. 2010), 

are less important for forecasting spread at large scales. Further, species traits relating to 

association with anthropogenic dispersal vectors may be most important in determining their 

spread rates. This anthropogenic dominance can thus provide us with general macroecological 

predictions for the spread of groups of invasive species within a particular transport network.  

Although general invasion models are in the minority, the interest in multi-species 

predictions for the spread of invasive species arises because of their potential advantages. In 

order to prepare for and limit invasive species impacts across space, which accrue immense costs 

(Vilà & Hulme 2017), managers need to know where these species will invade next. Further, the 

sooner they can take action, the more effective their control measures will be (Lovett et al. 

2016). The lower the data requirements of a given model, the sooner it can be implemented to 

inform management. As such, a highly general model could be rapidly applied to many species, 

potentially including species that have not yet established. Thus, in summary, there are potential 

benefits from using a general model and logical reasons to expect generality in the spread of 

invasive species. 

Applied ecological models can be viewed along a continuum from specific to general. At 

the specific end of the spectrum, structure, predictors and parameters may all be fit to each 

separate species (i.e., customized models). At the most general end, a model may be applied to 
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many species, using the same model structure, predictive factors, and parameters. In the middle 

of the spectrum, parameters can be added or rescaled to different values within a generalized 

model “backbone” in order to incorporate additional layers of customization (we term these 

“semi-generalized models”), without the collection of as much species-specific data (e.g., time-

series for each species). These intermediate models can be worthwhile to consider, if the 

reduction in generality is offset by a large gain in predictive ability. Additionally, semi-

generalized models that do not rely only on single-species data could conceivably make better 

predictions relative to customized models, if there are strong commonalities in the spread process 

across species (e.g., human-mediated vectors), since they are able to “borrow” information from 

a broad pool of species.  

In this paper, we compare a suite of models with varying levels of generality in terms of 

their ability to predict the spread of invasive forest pests. For context specificity, we designed 

customized single-species models for three pest species for which time-series data exist (beech 

bark disease (Cryptococcus fagisuga), gypsy moth (Lymantria dispar), and hemlock woolly 

adelgid (Adelges tsugae), using species-specific predictors and functional forms (Liebhold et al. 

1992; Morin et al. 2007; 2009). These were compared against a general model fit across all forest 

pest species currently known in the United States, using a previously published “Generalized 

Dispersal Kernel” (GDK) (Hudgins et al. 2017). At the intermediate level, we examined whether 

we could use GDK as a starting point, and incorporate species-specific knowledge (semi-

generalized models, SDK), and whether doing so improved predictions compared to GDK and 

customized models. 
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2.3 Materials and Methods 

 

2.3.1 Dispersal kernel formulation 

 

Dispersal kernels estimate the probability of pest dispersal across space based on the distance, d, 

between source and destination locations (Kot et al. 1996). In the GDK, we moderated dispersal 

though spatial predictors affecting the dispersal kernel. We fit our model using discrete time 

simulations, where at each time step, pests dispersed to surrounding patches according to: 

"!,# =
$!"#,%,&(()

∑ $!"#,%,&(()%
      (2.1) 

-(.) = 2/ $(+,(-,(.
'($(+,(-,(.                         (2.2) 

Where Ti,j is the proportion of pests dispersing from cell i to cell j, normalized such that the value 

of the dispersal kernel across all locations j sums to 1 (denominator of eqn. 2.1), di,j is the 

distance between sites i and j, and f(Z) is a combination of all fitted species (ZS) and cell 

(dispersal into a cell = ZI, dispersal out of a cell = ZO) specific predictors influencing the 

dispersal probabilities (described below), scaled to have a mean value of	/ (i.e. dispersal occurs 

at rate	/ for sites with predictor variables at their mean levels). For the GDK, our distributional 

data were limited to each species’ final distribution at the end of the fitting period, plus data on 

their reported first year of establishment in the United States.  

The GDK is made up of both a dispersal and a growth component, where the relative 

propagule pressure (PP) in cell i at timestep t+1 is equal to the relative propagule pressure at time 

t, minus emigration to all cells j, plus immigration from all cells k, multiplied by the growth rate 

d: 
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44!,-(' = (44!,- −∑ "!,#44!,- + ∑ "+,!44+,-+ )# 5     (2.3) 

Cells are considered ‘presences’ capable of being a source of propagules when they are above a 

threshold population size f with a maximum relative propagule pressure in a cell of 1. We 

assumed that cells which were invaded, remained invaded (extirpation was not possible). Both 

growth and dispersal were deterministic. 

For the GDK, we considered predictors, including propagule pressure proxies, habitat 

invasibility proxies and pest life history traits (sources fully described in Hudgins et al. 2017). 

The best-fitting model retained three predictor variables (four terms), wherein sites with greater 

forested land area and human population density are attractors to invasive pests, and sites with 

greater tree density and human population density are sinks from which pests do not disperse as 

much, relative to sites with lower values of these predictors. We modeled 5-year time steps, to 

achieve finer-scale forecasting (the original model used 10-year steps, but was shown to be 

robust, Hudgins et al. 2017). Within the GDK, we did not use time series, and fit the same terms 

to all species. 

 

2.3.2 Allowing context specificity 

 

We designed customized dispersal models for each of three highly damaging invasive forest 

pests: beech bark disease (BBD), gypsy moth (GM), and hemlock woolly adelgid (HWA) (Fig. 

2.1). These were the only species where such a model was possible, because we required detailed 

time series of detections to fit custimized models. BBD is a disease complex made up of the 

introduced beech scale insect C. fagisuga and (most likely native) fungi (one of two species of 

Neonectria) first detected in Halifax, Nova Scotia in 1890, with potential additional introductions 
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around Boston and New York City (Houston 1994). GM is a highly polyphagous (i.e. having 

many host tree species) defoliator introduced from France to Medford, MA around 1869 

(Liebhold et al. 1989). HWA is a sap-feeding insect that was first detected in 1951 in Richmond, 

VA (Ward et al. 2004). These species span three of the four feeding guilds of the broader set of 

63 species used to fit the GDK (Appendix S2.1, included: pathogens, foliage feeders, sap 

feeders, missing: borers, Hudgins et al. 2017). While time-series data exist for emerald ash borer 

(Agrilus planipennis), its detection records begin in 2002, which was after our fitting year 

(2000). 

Across the customized models, we tested the inclusion of four additional levels of 

complexity compared to the GDK: testing additional dispersal kernel shapes, pest entry points, 

additional species-specific predictor variables, and time-series of pest spread. 

Firstly, in addition to the negative exponential dispersal kernel employed in the GDK, a 

leptokurtic kernel was explored: 

"!,# =
$
!/"#,%&(()

∑ $
!/"#,%&(()

%

 (sensu Kot et al. 1996).          (2.4) 

Leptokurtic dispersal kernels allow for nonlinear spread rates and increased dispersal to distant 

locations (Shigesada et al. 1995; Kot et al. 1996). Spatial predictor variables were analogously 

incorporated via eqn. 2.2, but the leptokurtic kernel has more density in its tails and therefore 

leads to a higher chance of long-distance dispersal. The dispersal kernel that resulted in the best 

model fit was selected for each species separately. 

Secondly, we simulated the best-known starting location of each pest species (Ward et al. 

unpubl. manuscript) and the host centroid as a starting point for each pest’s dispersal. While the 

use of best-known starting points did not improve the overall fit of the GDK (Hudgins et al. 
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2017), given that these three species are some of the most well-studied, these starting points are 

likely more reliable than for other pests. If a starting location was not within our known host 

range for a given pest (e.g., first detection in an urban area), we chose the closest grid cell in the 

host range. As with the dispersal kernel, the starting point that resulted in the best model fit was 

chosen for each species. 

Thirdly, we tested additional predictors mined from the literature in our forward selection 

models. We tested firewood and campground-related variables, which were frequently included 

in spread models of gypsy moth (Bigsby et al. 2011). We sourced these predictors from the US 

Census’ American Housing Survey (homes fueled by wood, campground density, seasonal 

homes), and tested for all three pests. Additionally, HWA is known to be highly climatically-

limited, with high mortality when exposed to low winter temperatures (Morin et al. 2009; Paradis 

et al. 2008). We modeled climatic limitation for HWA using minimum temperature of the coldest 

month (bio6) from WorldClim (Fick & Hijmans 2017; www.worldclim.org) (Appendix S2), and 

setting the pest density to zero for any patch below a fitted threshold. Any predictor that 

substantially improved fit was included in the final customized model for a given species. 

Finally, the customized models were each fit to time-series of species dispersal patterns, 

using historical discovery records by county available for the above three species, while the 

GDK was constructed using only the final distributions (but many more species).  

 

2.3.3 Semi-generalized models (SDK) 

 

For the SDK, we tested the inclusion of three additional layers of species-specific information 

that went beyond the original GDK, but did not use time series information (in contrast to the 
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customized models), as these data are relatively rare. Firstly, we utilized an “intercept 

correction” to offset each single-species spread trajectory such that it minimized fitted GDK 

residuals. Secondly, we tested whether incorporating information on the best-known initial 

invasion location improved predictive ability for each pest. Thirdly, we tested whether 

incorporating information on a species’ known niche limitations could improve our forecasts. 

 

2.3.4 GDK intercept-correction 

 

The earliest invasive spread model is Skellam’s seminal work on reaction-diffusion (RD, 1951). 

RD uses the physics of diffusion to predict radial spread emanating from a single source, where 

the size of the invaded range expands uniformly over time (Shigesada et al. 1995), and is a core 

model in theoretical ecology (Morin et al. 2007; 2009; Skuhravá et al. 2007).  

Theoretically, we recognized that the GDK spread intercept (a) is related to the RD 

diffusion coefficient (D), as it similarly acts to scale the relationship between dispersal distance 

and probability (Appendix S2.3), and hypothesized that – holding all spatial predictors constant, 

this intercept could be rescaled to adjust species spread, thereby improving forecasts. Using only 

the fitted values of the GDK to forecast spread neglects additional information contained in the 

mismatch between these fitted values and the observed distribution in the fitting year. If GDK 

residuals reflect constant, unmeasured species-specific factors (such as probability of uptake by 

humans, fertility rates, etc. that are difficult to obtain for an entire community of species), 

accounting for these deviations in spread trajectories could improve predictions. We thus refit the 

spread intercept for each species, but otherwise maintained the proportional relationship with 

other spatial predictors, and general structure of the GDK previously fit (i.e., eqns. 2.1, 2.2; with 
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dispersal based on forested land area, human population, and tree density as in Hudgins et al. 

2017). The data requirements for this adjustment are simply the locations at one time-point in a 

species’ distribution – something that is presently available for all known damaging invasive 

pests. 

 

2.3.5 GDK starting-point correction 

 

Secondly, as one of the simplest correction factors, we tested whether adding information on our 

best estimate of a pest’s initial invasion site within the United States improved the predictions of 

our general model, when there is reasonable confidence in those estimates. We note that such 

estimates may not improve the predictions of all species if the starting point is not well-known, 

but as we mention above, all three of these species are well-studied. For this correction, we 

updated our GDK simulation to begin spread from these sites rather than the host range centroid. 

 

2.3.6 Niche limitation correction 

 

Thirdly, we tested the inclusion of species’ niche constraints. While the first two correction 

factors require very little context-specific information, which is likely to be known for any future 

invader– niche limitations are more idiosyncratic species information. For one of our studied 

species, HWA, it is clear that climatic limitation plays a strong role in limiting its northward 

dispersal (see above). Just like in the customized models, we tested the addition of a minimum 

temperature threshold for HWA persistence (Appendix S2.2).  
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We chose the SDK corrections for each species that maximized fit. Importantly, all three 

customizations were added to the basic structure of the GDK, holding all other fitted parameter 

values constant for all predictor variables in the published model. 

 

2.3.7 Data preparation 

 

For the customized models, historical county-level spread records were assembled for GM, 

HWA, and BBD. Records of historical GM spread were obtained from the United States Code of 

Regulations (Title 7, Chapter III, Section 301.45) which annually designates quarantined 

counties that are part of the “generally infested area”. Federal quarantines do not exist in the US 

for BBD and HWA, however similar county-level records were obtained from other sources 

(Morin et al. 2007; 2009). County records were overlaid on a 50x50 km grid in order to control 

for county size, where a detection anywhere in a grid cell was considered a valid presence. Five-

year timesteps within historical spread datasets with less than two new detections were not 

considered in our spread models, because there are inherent delays between the detection of pests 

in surveys and the incorporation of that information into range databases. These years likely 

correspond to times where monitoring was not adequately performed (resulting in minimal 

apparent spread even if new invasions were occurring), and are not a good indicator of the spread 

trajectory. Once these low-detection years were removed, the number of independent fitting 

years for each species was 15 for GM, 6 for BBD and 5 for HWA. All three historical spread 

datasets included data beginning only at the first date of multi-county range for each pest, but 

dates of initial discovery/introduction are known for each pest, so simulated spread was adjusted 

to include the period between initial discovery/introduction to the first record of multi-county 



 
 

 86 

spread. HWA was adjusted from 1971-2005 to 1950-2005, GM was adjusted from 1902-2005 to 

1865-2005, and BBD was adjusted from 1935-2005 to 1890-2005. 

 

2.3.8 Customized model fitting 

 

To maintain consistency with the GDK, a forward selection procedure based on the same metric 

(MET, Aslan & Zech 2005) and using the same threshold for parameter inclusion (5 km) as in 

Hudgins et al. (2017) was employed to build the customized models. MET accounts not only for 

exact spatial matches of predicted and observed presences (similar to measures such as 

accuracy), but also apportions better scores to ‘close’ matches than presences predicted very far 

away from the observed presences (for a further discussion of MET, see Hudgins et al. 2017). 

Rather than taking the average across 63 species, in the customized models, this 5 km MET 

threshold was applied on average across all fitting years for a single species. We chose the best 

single-species forward selection model among the two dispersal kernel shapes and two possible 

starting locations for each pest species. In the case of HWA, the temperature threshold was 

applied to all four possible customized models, to remain consistent with the literature on niche 

limitation and to ensure the methodology was comparable to the fitting of the SDK. 

 

2.3.9 Predictive validation metric 

 

To explore predictive ability with greater ease of interpretation, we derived a novel, simple 

pseudo R-squared value, based on optmatch, an algorithm originally used to match treatment to 

control subjects in clinical trials (R package optmatch, Hansen 2007). The optmatch tool uses a 
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global optimization approach to match two sets of points, minimizing the total multivariate 

distance between the sets. We wished to have a metric that takes its maximum value when two 

distributions have the same number of points, with the points in the correct spatial locations.  

We first used optmatch to perform a one to one match between our predicted and 

observed presence points for a given pest. Next, the leftover points caused by differences in 

predicted and observed range size were then used to penalize the distance score. To do this, we 

assigned these leftover points the mean distance between that point and all other points in the 

opposing distribution. We used the mean of this entire vector of distances (optimal matching 

mean squared error - omMSE) and converted it to a Pseudo R2 (R2
om) by comparing the observed 

omMSE value to a spatial null expectation, using 10,000 random points from the host distribution 

(Appendix S2.4).  

 

2.3.10 Community Forecast 

 

We used the best-fitting SDK to forecast the distribution of all 63 pest species from 2005 to 

2030. We used the fitted MET score applied to each individual species’ snapshot of dispersal in 

2005 in order to determine the SDK layers to include for each species (intercept, starting point, 

and niche limitation corrections where there was evidence from the literature that they were 

necessary, see Appendix S2.5). We reset pest distributions to known distributions at 2005 

(setting false absences to f, false presences to 0, and maintaining the simulated propagule 

pressure of true presence sites) before simulating spread using each species’ SDK parameters to 

2030. We included projected human population estimates from ProximityOne 
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(www.proximityone.com) as an updated human population predictor in the GDK-based models, 

which all included this term. 

 To model uncertainty, we considered future climate and human population size 

projections, and uncertainty in fitted model parameters (see Appendix S2.6 for full details). In 

brief, for climate change, we used rcp2.6 and rcp8.5 climate scenarios from BIOCLIM, and for 

population size, we used two scenarios based on the Shared Socioeconomic Pathways: SSP3 or 

“Regional Rivalry”, and SSP5 or “Fossil-Fueled Development” (Hauer 2019), representing the 

extremes for both climate and population size, respectively. We note that there was only 

evidence of climate limitations for two species, but we nonetheless considered climate scenarios 

for completeness (Appendix S2.5). For the parameter uncertainty in the SDK model, we 

conducted sensitivity analysis, randomly perturbing model parameters, and using the threshold 

for parameter inclusion in our model fitting process as our criterion to retain parameter sets (i.e., 

MET within 5 km of the best-fitting model). We examined the combined effect of uncertainty on 

the range of predicted future pest richness. 

 

2.4 Results 

 

2.4.1 Customized model selection and predictive validation 

 

Customized models were highly predictive on average (R2
om = 0.74), though predictions were 

weakest for HWA (R2
om = 0.45). The best-fitting customized model had a very simple functional 

form for each of the three species (Table 2.1), with fewer predictors than the GDK. For GM, 

only per capita income was important, showing a negative effect on spread into sites. For BBD, 
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the best model included only an intercept term. In the HWA model, which contained the 

minimum temperature threshold, human population density displayed the same relationship as it 

did in the GDK, increasing spread into sites. In all cases, using the hypothesized initial 

introduction location (“best guess” in Table 2.2) as a starting point led to better fits than using 

the centroid of the host range. For BBD, the leptokurtic dispersal kernel fit better than the 

negative exponential kernel, while the negative exponential outperformed the leptokurtic model 

for HWA and GM.  

 

2.4.2 GDK predictive validation 

 

The strength of the uncorrected model’s predictions varied across the three species, from being 

extremely predictive for GM (R2
om = 0.87), to highly predictive for BBD (R2

om = 0.55), to more 

moderately predictive for HWA (R2
om = 0.30). The uncorrected GDK overestimated spread for 

these three species, but predictions were still substantially better than random expectations from 

our null model, and mean spatial variation explained was R2
om = 0.57.  

 

2.4.3 SDK model selection and predictive validation 

 

The R2
om improvement ranged from 0.11 - 0.55 between the uncorrected GDK and the best SDK, 

and from 0.03-0.40 between the customized model and the best SDK for the validation year 

(mean SDK R2
om = 0.91). The best SDK for BBD and GM included the intercept and starting 

point corrections, and had R2
om= 0.89 and R2

om = 0.98, respectively (Table 2.1). HWA required a 

third level of complexity, where the model with the starting point, intercept and niche limitation 
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corrections resulted in the best fit and had R2
om = 0.85. For GM and BBD, corrected intercepts 

were larger in magnitude than the uncorrected GDK intercept, consistent with a reduction in 

spread extent. Conversely, for HWA, SDK had a smaller intercept, indicating a higher spread 

rate. However, this spread rate was offset by pest mortality upon dispersal into the northernmost 

parts of its range, thereby leading to a lower extent of spread overall. 

 

2.4.4 Model comparison: spatial details 

 

Although the GDK retained moderate to high predictive power, and performed similarly to the 

customized model for GM, it was weaker than the customized models for BBD and HWA. For 

GM, both the customized model and the SDK explained over 92% of spatial variation in pest 

distributions. However, while the customized model performed well in terms of the R2
om, based 

on visual inspection, it produced spatial patterning incongruent with the true pest distribution, 

likely due to its fitted relationship with income (Fig. 2.2, top left panel). The model’s leptokurtic 

kernel and negative relationship with income produce a discrete patch of invaded sites around 

South Dakota and Nebraska. GM’s extensive host range could allow incongruent distributions to 

have high R2
om if predicted distributions are of approximately the correct range size and close 

geographically to observed distributions. In contrast, SDK predicted a distribution that 

overlapped with the observed distribution nearly entirely. Both the SDK and the customized 

models performed well for BBD, leading to a tight spatial match between its predicted and 

observed distribution. The HWA customized model explained the lowest amount of spatial 

variation of the three species (R2
om=0.45), likely due to the increased complexity of this species’ 

spread mechanisms (i.e. climatic limitation), leading to an inability to capture the southernmost 
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part of the range without overpredicting to the north. The customized model’s fitted temperature 

threshold was quite low (~2°C lower than in the SDK), resulting in only a small effect on 

restricting pest distributions. The GM uncorrected GDK overpredicted spread, producing a 

distribution that included much of its invaded range, but lacking climatic limitation in northern 

areas. In contrast, the SDK no longer overpredicted spread in the north, and also did not predict 

disjointed jumps outside the observed distribution that the customized model predicted (R2
om = 

85%), but still did not capture the southernmost distribution.  

 

2.4.5 Forecasts 

 

Using the optimal set of SDK layers for each of the 63 species (see Appendix S3.5 for details of 

SDK corrections), our simulations project the distribution of pests at 2030 to remain highly 

aggregated in the northeastern United States, as it was in 2005, but pest species richness to 

increase (Fig. 2.3a-b). Northern Minnesota and Wisconsin, western Montana and northern Idaho, 

parts of New Mexico, and northern New England are predicted to have the largest increase in 

local establishments by 2030 (Fig. 2.4, regions B, C, E, F, K). Some smaller, more concentrated 

areas of increase are also predicted (Fig. 2.4, regions A, D, G-J). We predict very few new local 

establishments in the middle of the country. The areas at high risk correspond to high forested 

land and increasing human population densities. New local establishments are especially high in 

urban centers close to regions of high forested land area (Fig. 2.4, dashed lines). However, some 

less populated areas also see large increases in local establishments due to their high amount of 

forested land (Fig. 2.4, solid lines).  
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 The combination of uncertainties in climate change, future population growth, and model 

parameters led to strong regional variability across future pest richness predictions (Fig. 2.5). 

However, the northeastern US typically had the greatest number of relative establishments, 

indicating a consistent pattern of future spatial risk despite uncertainty. The simulations that 

produced the fewest novel local establishments were those from the high human population 

growth scenario, given decreased dispersal out of high population density sites. Scenarios with 

the highest future spread had increased pest growth rates and less preferential dispersal into high 

population areas, leading to more even dispersal patterns across space (see Appendix S2.6 for 

further discussion). The median range of predicted pest load was 5 species, but distinct regional 

differences were observed. The central portion of the United States had the lowest uncertainty 

(range of <5 pests), but was consistently predicted to have low numbers of future local 

establishments. The western US had more moderate levels (~5-10 pests), while the eastern US 

had the highest levels (~10-20 pests). Some future hotspots were particularly variable (Regions 

C, D, H in Fig. 2.4). Additionally, many of the high uncertainty patches, which are particularly 

dense across the eastern US, had not been identified as hotspots (Fig. 2.4), indicating some 

potential for additional regions of high future pest load that warrant managerial surveillance.  

 

2.5 Discussion 

 

2.5.1 The performance of general versus single-species models 

 

The customized models performed 17% better than the GDK, averaged across our three case 

studies, with 74% spatial variation explained. While customization showed a marked benefit, 
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notably, the GDK was still able to capture a respectable 57% of spatial variation in spread, for 

these three species. Moreover, GDK’s predictive ability may be substantially higher for most 

other species: We note that HWA and BBD were much more poorly fit by the uncorrected GDK 

than the majority of species, while GM was fit better than average, and that the magnitude of 

over or underprediction in the uncorrected GDK appears to predict forecasting ability (Appendix 

S2.7). Thus, we expect the GDK’s average predictive ability to be between BBD (55%) and GM 

(87%). While researchers have reasonably focused on customized single-species models for 

prediction (e.g., Koch & Smith 2008; Kovacs et al. 2011; Liebhold et al. 1992), the GDK yielded 

useful predictions even without any modification, and will be useful in situations where 

customized models cannot be built, e.g., in the case of novel invaders. 

 

2.5.2 Comparing predictors in GDK versus customized models 

 

We found different suites of predictors to be important for single-species spread, and that fewer 

predictors were important compared to the general predictors for all species in the GDK.   

The differences in predictors between the GDK and customized models could have arisen 

due to two processes: 1) species specificity in spread mechanisms, or 2) differences in power 

across models to detect predictors of spread. While there is likely some species-specificity in the 

predictors of spread, we also believe that these differences reflect noisiness of single-species data 

(i.e., power to detect predictors of spread), given that the SDK was more predictive than 

customized models, and used the same predictors as the GDK. Arguably, the general model 

could “borrow” power from numerous species, where spread processes are partially consistent 

across species. The incorporation of multispecies’ information has also allowed for recent 
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advances in analogous fields, such as species distribution modeling, improving spatial 

predictions of individual species occurrences (Fithian et al. 2015; Leung et al. 2019).  

 

2.5.3 Semi-generalized Dispersal Kernel approach 

 

We explored the value of using the GDK as a basic structure upon which to build models, adding 

context-specific information where it was known. This yielded a 17% average improvement 

compared to the fully customized model (and 34% improvement compared to GDK). Both GM 

and BBD customized models were already highly predictive, and SDK yielded modest 

improvements (3% and 6%, respectively). However, for HWA, by including the three additional 

corrections to the GDK, SDK yielded a 40% increase in spatial variation explained (from 45% in 

the customized model to 85% in the SDK). Well-documented biases exist in HWA’s spread 

pattern to support the incorporation of niche limitations (Morin et al. 2009; Paradis et al. 2008). 

Thus, we recommend integrating such context-specific information into an SDK, following 

fitting protocols described in this manuscript.    

Given that spread models have previously been parameterized using these same time-

series data, it was reasonable to expect that customized models would be highly predictive across 

species. However, the customized model for HWA was only moderately predictive, providing a 

cautionary tale that even models using the best available data may not produce highly predictive 

forecasts. It may be that the quality of data is too poor to build single species models, in some 

cases. On the other hand, it appears that a snapshot of a species distribution, a known initial 

invasion location, and when necessary, a known niche limitation, synthesized with a semi-

generalized model (SDK), can outperform the best-fitting customized model.  
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2.5.4 Forecasts of future invasion risk 

 

Our simulations suggest future invasions to be even more aggregated in space. Urban centers, 

areas of high forest cover and tree density appear to be largescale attractors of invasive 

propagules from all sources (sensu Colunga-Garcia et al. 2010; Gaertner et al. 2017). 

Surprisingly, in the GDK, these attractors do not send out as many propagules as other sites, 

leading to fewer surrounding invasions than if they were also major sources of propagule 

pressure. Instead, invaders arrive at these sites (sometimes up to 15-20 new pests in the next 25 

years in areas like Chicago, IL and Boston, MA), and remain there, perhaps due to a lack of 

favorable conditions elsewhere.  

While new establishments driven by population density such as Boston, MA and 

Chicago, IL are relatively unsurprising “hotspots” of future pest load, those driven by forested 

land, such as Chesapeake, VA, western Montana and northern Idaho, and the national forests of 

New Mexico, are less obvious. Many of these regions coincide with National and State Forests 

and National Wildlife Refuges, highlighting the role of forested land in the dispersal model. 

Moreover, areas such as Northern Minnesota and Wisconsin are projected to be the largest 

‘hotspot’, possibly reflecting historically low numbers of establishments and hence a lack of 

saturation in comparison to the northeastern United States or the Midwest. These results indicate 

a high risk of spread into Canada in the Great Lakes region, and may support a management 

regime that prioritizes limiting propagule entry to these hubs, though an explicit analysis of the 

consequences of this prioritization requires further study.  
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We note that while the intercept and niche corrections can only be employed once a 

species begins spreading and has a substantial enough distribution for these limitations to be fit, 

the starting-point corrected GDK can be used as a first pass to predict invasion risk of new 

invaders from likely points of entry, as the only information it requires is an estimated initial 

introduction location. If the pest does successfully establish, an SDK combining additional 

corrections based on model fit can more closely hone in on its future trajectory. For species with 

well-known niche limitations such as HWA, niche limitations can be similarly incorporated by 

maximizing SDK fit to the observed distribution, once distributional information is available, as 

we have done here. 

 

2.5.5 Caveats and limitations 

 

As detailed above, even with our best current models, there is substantial uncertainty in future 

pest distributions, given available data. Intuitively, such uncertainty will commonly occur, and 

we argue that invasive species models should be validated using temporal data withheld from 

fitting, where possible.  

Our model was based on current and historical conditions. However, climate change 

could alter environmental suitability either due to its direct influence on the invading species or 

indirectly via effects on hosts and other species (Hellmann et al. 2008, see Appendix S3.5 for 

additional species with climatic limitations). However, we note that much of the Northeast, 

Midwest, and central US is predicted to have colder minimum winter temperatures with climate 

change, even if mean temperatures are predicted to increase (Appendix S3.3), which will lead to 

more complex future spread dynamics for temperature-limited species. According to the SDK, 
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HWA will be even more constrained with climate change (Appendix S3.3). Spread could also be 

affected by conditions becoming hotter or more humid with climate change, potentially affecting 

GM (Tobin et al. 2014, though these limitations might improve GM forecasts by only 2% based 

on our analyses). Fortunately, the SDK can easily parameterize any type of spatial limitation for 

any pest (though these can only be validated using time-series information), and can thus 

incorporate future knowledge of pest distributional thresholds. 

The validation set used in this analysis was not a random selection of species. Instead, it 

included the three species with time-series data, for which comparative analyses of general 

versus customized models could be conducted. It was notably useful from an applied 

perspective, as they represent some of the most damaging invasive forest pests (Aukema et al. 

2011). Emerald ash borer has caused more damage than these species, but was not included in 

this analysis due to its short invasion history. Further, while fine-scale spatiotemporal GM data 

are available from pheromone trapping, we applied the GDK to new detections at the 50 x 50 km 

grid scale in 5-year timesteps, which represent a much coarser spatiotemporal dispersal pattern. 

To account for the finer-resolution dispersal, a second sub-model could be developed for small-

scale dispersal and integrated into country-scale model (although such data do not presently exist 

for species other than GM).  

 

2.5.6 Conclusion 

 

While customizing models for each species based on their ecological context yielded 17% higher 

predictive power compared to the fully generalized GDK, combining both into the SDK yielded 

the most powerful approach, outperforming the customized model by an additional 17% of 
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spatial variation explained. These results show that the spread process has a substantial 

component that is generalizable, and that this generality can be effectively synthesized with 

context-specific information. The SDK is a strong predictive tool to examine the future 

distributions of these pests, which we predict are becoming increasingly aggregated at urban 

centers and are beginning to invade less populated areas with high numbers of trees. These 

forecasts can aid in estimating future damages due to invasive forest pests, and will be helpful in 

optimizing future management by highlighting areas of high future pest risk. 
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2.9.1 Figures 
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Figure 2.1 Historical spread patterns of the three focal species: Gypsy moth (GM), hemlock 
woolly adelgid (HWA) and beech bark disease (BBD). Older invasions are shown in yellow 
while more contemporary invasions are shown in blue. Known host distribution is shown in 
beige. 
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Figure 2.2  A comparison of the predictive ability of customized (top row), uncorrected GDK 
(GDK, middle row) and SDK models for Gypsy moth (GM, left column), hemlock woolly 
adelgid (HWA, middle column) and beech bark disease (BBD, right column). Host presence is 
indicated in beige, predicted distributions after a forecast (5-year) are shown in red, and observed 
distributions are shown in blue. Areas of overlap between predicted and observed distributions 
produce a darker red color due to the overlap of the red and blue colors. 
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Figure 2.3 Forecasted pest species richness from a. 2005 (fitting year of SDK) to b. 2030 
generated by extending simulated spread patterns for each species from the best fitting SDK 
parameters. 
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Figure 2.4 Newly predicted local establishments (for existing United States invasive forest 
pests) between years 2005 and 2030, created by subtracting Fig. 2.3b from Fig. 2.3a. Areas of 
particular interest are labelled, and dominant mechanisms promoting new invasions are denoted 
with dashed vs. solid lines. A–Seattle, WA region B–Northern Idaho and Western Montana 
(includes Kootenai, Nez Perce-Clearwater, and Flathead National Forests), C–Northern 
Minnesota and Wisconsin (includes Kabetogama state forest), D–Chicago, IL region, E–
Northern New England (Maine, New Hampshire, Vermont and Massachusetts) where blue 
represents the Boston, MA region, F–Pennsylvania and New Jersey, G–Chesapeake, VA region, 
H–Huntington, WV region, I–Saint Louis, MO region, J–Monroe, LA region (includes Upper 
Ouachita National Wildlife Refuge), K–Carson and Gila National Forests, NM 
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Figure 2.5 Projections of combined SDK uncertainty at 2030 (range of predicted pest richness at 
each site) arising from two climate change scenarios (rcp2.6 and rcp8.5 BIOCLIM scenarios), 
two alternative population growth scenarios (SSP3: “Regional Rivalry”, SSP: “Fossil-fueled 
Development), and from a sensitivity analysis of model parameters (see Appendix S2.6). 

 
 

2.9.2 Tables 

 
Table 2.1 The best fitting single-species models for hemlock woolly adelgid (HWA), gypsy 
moth (GM) and beech bark disease (BBD). Predictor variables labelled “in” represent predictors 
of dispersal into sites. In all cases, the best model simulated spread initiating at the most likely 
initial invasion of the pest rather than the centroid of the host range. Bio6 represents a fitted 
minimum temperature threshold for HWA mortality.  
 

 Kernel f d a Predictor(s) MET (km) R2
om 

HWA negative 
exponential 0.0020 2.48 2.93 

human population 
(+ in) = 0.19; bio6 = 
-9.33°C 

11.10 
 
0.45 
 

GM leptokurtic 0.0046 4.60 5.14 income (- in)= 1.19 9.82 0.92 

BBD negative 
exponential 0.0008 1.27 1.37 NA 11.37 0.86 
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Table 2.2 The results of the GDK validation for both uncorrected and intercept-corrected 
models. All GDK models have parameter values of forested land area (+ in) = 0. 53, tree density 
(- out) = 15.61, human population density (+ in) = 0.16, human population density (- out) = 0.32, 
f = 0.00054, d = 1.30.  
 

 a MET (km) R2
om 

uncorrected 
HWA 1.74 33.22 0.30 
GM 1.74 41.26 0.87 

BBD 1.74 110.01 0.55 
    
intercept-corrected   
HWA 1.65 31.17 0.20  
GM 2.25 8.94 0.98 

BBD 3.95 10.13 0.87 
 
 
starting point-corrected 
HWA 1.74 32.14 0.73 
GM 1.74 18.16 0.92 

BBD 1.74 1.70 0.89 

    
starting point, intercept-corrected   
HWA 1.48 24.84 0.35 

GM 1.61 2.55 0.98 

BBD 1.78 1.35 0.89 
 
 
starting point, intercept, climate-corrected 
   

HWA  
1.47; bio6 
= -7.64°C 1.75 0.85 
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Connecting statement 

In Chapter 2, I built customized spread models for three invasive forest pests based on their 

individual year-to-year detection records, compared the predictive power of these models to the 

GDK, and created intermediate models that combined the GDK with simple species-specific 

corrections. Using the same procedure as the GDK, I built dispersal models of each of these 

species separately, which we call customized models. I fit these models on single-species 

timeseries. I also tested additional dispersal kernel shapes, initial invasion locations, and 

additional species-specific predictor variables. As an intermediate model type, I created semi-

generalized dispersal kernel models, or SDKs. For the SDKs, I tested the inclusion of three 

additional layers of species-specific information that went beyond the original GDK. These did 

not use time series information, so they could be applied to all pest species. I found that the SDK 

outperformed the other two model types, and thus I was able to create robust predictions of 

spread for the entire pest community. 

Within the SDK, I utilized a species-specific intercept. Species vary in how well the 

GDK predicts their spread, where some spread faster or slower. If these deviations were 

consistent, we could use them predictively to scale overall spread rates based on unknown 

factors. My strong predictive results suggested that general models, such as the Chapter 1 GDK 

model, could be effectively synthesized with context-specific information for single species to 

respond quickly to invasions. The SDK dispersal forecasts were used as inputs to Chapters 4, 

while Chapter 3 disentangled the factors that cause pest species to differ that result in the SDK 

having a species-specific intercept. 
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Chapter 3. 

A unifying phylogenetic model of amplification and dilution effects of host biodiversity on pest 

establishment 

Authors:  Emma J. Hudgins, T. Jonathan Davies, Brian Leung
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3.1 Abstract 

 
Invasive pest species cost trillions of dollars globally, and invasion rates are only increasing. Pest 

managers must work to decrease the number of pests successfully establishing in order to limit 

the associated ecological and economic effects of these species. A key factor influencing pest 

secondary establishment is the species composition of the recipient host community, where 

recipient community diversity may have the potential to buffer against successful invasion (what 

is known as the dilution effect). However, there has been literature support for an opposing 

positive (amplification) effect of host biodiversity on pest establishment. The dilution and 

amplification effects have had mixed support for plant pathogens, potentially due to the 

conflation of the role of host diversity with sampling processes, density-dependent effects, and 

correlated spatial patterns of propagule pressure. We modelled whole-community United States 

forest pest establishment, while controlling for spatially-autocorrelated pest dispersal patterns, to 

examine phylogenetic factors that may predispose certain areas of the United States to higher 

probabilities of pest establishment. We demonstrated that when host phylogenetic diversity is 

measured as dissimilarity from the focal host community, and is modelled synergistically with 

propagule pressure, richness, and density effects, we could detect a nonlinear relationship 

between phylogenetic host dissimilarity and pest establishment. When hosts are closely related to 

focal hosts, the greater their density, the more likely a pest is to establish (amplification), and 

when hosts are less related to the focal host up a maximum dissimilarity, the greater their 

density, the less likely a pest is to establish (dilution). Beyond a threshold of relatedness, highly 

unrelated hosts have negligible impacts on establishment. This nonlinear relationship has not 

previously been demonstrated, and occurs alongside separable positive species presence effects 

and spatially autocorrelated pest spread. Further, these patterns are generalizable across the entire 
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pest community of 72 species ranging from insects to fungi. We show that this result cannot be 

solely attributed to the higher establishment of phylogenetic generalist pests, or general climatic 

factors. These results provide a more nuanced picture of the relationship between diversity and 

infestation, and allow us to predict sites at high risk of future pest secondary establishment. 

These risk predictions can be used in conjunction with secondary spread forecasts to coordinate 

management that can buffer against future tree mortality and economic losses.
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3.2 Introduction 

 
The number of invasions by non-indigenous forest pests is increasing worldwide due to growing 

travel and trade (Liebhold 2012), with an average of 2.5 previously unrecognized species 

establishing in the U.S. annually (Aukema et al. 2010). The cost of these invasions is borne 

primarily by local governments and residential property owners (Aukema et al. 2011). We have 

estimated that 8% of all street trees will die from 2020 to 2050 due to currently-established 

invasive forest pests (~5 million trees), along with 318 million community trees and 59 million 

residential trees, and estimate costs of 146M USD annually just in terms of tree removal and 

replacement costs of dead street trees (Hudgins et al., Ch.4). After the successful invasion of a 

new area by an invasive species, secondary invasions consist of three phases: the arrival of 

individuals to a new location within the invaded range, their establishment at that location, and 

their spread to subsequent areas (Elton 2000). While arrival is critical, species may not establish 

even if they succeed in reaching an area (Simberloff & Gibbons 2004). Modelling this process 

touches upon many fundamental ecological questions, such as the role of evolutionary history, 

habitat suitability, and competition in structuring communities, and the ecological consequences 

of preserving biodiversity.  

In a previously published model based on the same data (Hudgins et al. 2019), we 

discovered that pest species had consistent deviations in their spread rates from general 

expectations. Previously, we used these deviations predictively to scale pest species-specific 

spread rates based on unknown factors (SDK, Hudgins et al. 2019). However, these pest-specific 

deviations could very well have been due to differences in secondary establishment success, 

which operates as a filter on invasive propagule success after secondary spread (Simberloff & 

Gibbons 2004). Beyond pest traits that cause overall higher or lower rates of secondary 
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establishment, there are likely general spatial factors that impact pest establishment at a given 

site. Differential pest propagule pressure and preferred habitats across pest species mean that 

these spatial differences could cause pest-level differences in establishment, and thus different 

spread rates when spread and establishment are examined jointly. In this paper, we build a joint 

secondary spread and establishment model to explore general, site-level factors that lead to pest-

level differences in secondary establishment. 

A key spatial factor influencing pest secondary establishment is the species composition 

of the recipient host community at a given site. Biodiversity putatively governs a wide range of 

ecosystem functions and services (Cardinale et al. 2012; Hooper et al. 2012), including the 

ability to potentially buffer against human and animal disease (Young et al. 2017). The opposing 

dilution and amplification effects of host diversity have been studied extensively within the 

epidemiological, animal, and plant disease literature (Ostfeld & Keesing 2012). Dilution occurs 

when increased host diversity decreases the relative frequency of preferred hosts and 

subsequently reduces pathogen success (Gilbert et al. 2016). This can happen even when 

multiple host species are suitable for pathogen persistence, if pest reproductive success 

(transmission) varies across suitable hosts, since the less favourable hosts divert pest propagules 

to hosts with lower transmission success (Ostfeld & Keesing 2012). Amplification occurs when 

increased host diversity promotes pathogen success, for instance in pest species where 

suboptimal host species can act as transient habitats for pests, thereby extending their persistence 

in a region until they can disperse to a suitable host for reproduction (Randolph & Dobson 2012).  

The effect of host biodiversity on infestation is known to have been shaped by 

evolutionarily processes across host phylogenetic trees. More specifically, due to the linkage 

between phylogeny and functional similarity, the probability of plant species being invasible by 
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the same pest declines with evolutionary distance between them (Gilbert & Webb 2007). Rather 

than coevolution with a particular pest within a native range, broader elements of functional 

similarity appear to also govern invasibility, because this pattern has emerged for hosts not found 

in pest species native ranges (Parker et al. 2015).  Dilution and amplification effects were 

originally conceptualized as impacting pathogen abundance within the epidemiological literature 

(Ostfeld & Keesing 2012). However, host diversity – including phylogenetic diversity –  should 

also moderate the presence/absence of pest species and resulting pest species richness via 

analogous processes. Parker et al. (2015) found that sites featuring phylogenetically rare host 

species were less susceptible to invasion by an array of plant pest species (dilution). Conversely, 

Liebhold et al. (2013) recently examined the factors that predispose certain counties in the 

United States (US) to higher pest loads, and found that in addition to propagule pressure proxies 

such as human population density and the length of roads in a county, metrics such as host tree 

density and host species richness were positively related to pest load (amplification).  

The current means of assessing the existence of dilution and amplification effects has 

produced inconsistent results. This may be because the ways in which diversity is measured can 

obscure its role in infestation. The primary sources of conflation are due to correlations between 

focal host presence and total host species richness, between focal host density and total host 

species richness of phylogenetic diversity, and between spatially-autocorrelated spread patterns 

and predictors of establishment. 

Firstly, total host species richness may be correlated with probability of susceptible host 

presence, and susceptible host presence may be the key factor driving establishment rather than a 

direct effect of total diversity (i.e. a sampling effect). This pattern need not reflect of some direct 
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ecological effect of high diversity on establishment. Along these lines, parasite load follows the 

latitudinal biodiversity gradient globally (Hechinger & Lafferty 2005). 

A second, contrasting relationship may exist between high total host phylogenetic 

diversity or host species richness and reduced density of susceptible host species. This could 

produce a negative correlation between local diversity and establishment (a dilution effect) for 

pests with density-dependent infestation patterns (likely the majority of invasive plant pest 

species, Tobin et al. 2011). Again, this process is not governed by a direct link between 

biodiversity and infestation (i.e., if a diverse patch instead possessed only two species, but the 

same density of susceptible hosts, it would have the same probability of infestation), and is 

instead governed between the simpler link between host density and pest establishment. 

Conversely, a high density of non-susceptible hosts could interfere with infestation through the 

more classical dilution mechanism. Thus, not all tree density is equal, and models should ideally 

distinguish between susceptible and non-susceptible host densities (ideally on a continuum), and 

the effects that each may have. 

When diversity is instead assessed as dissimilarity of a recipient community from a 

preferred or focal host, dilution effects have been observed. Correlational studies consistently 

show lower single-pest invasion success in mixed forests compared to monocultures of a 

preferred host (Jactel & Brockerhoff 2007; Haas et al. 2011). However, we note that these 

studies are also subject to a confounding focal host density correlation. Experiments have 

confirmed that for many plant pathogens, higher host phylogenetic dissimilarity (measured as 

greater phylogenetic distance from a species’ preferred host) is associated with lower invasibility 

(Gilbert & Webb 2007; Parker et al. 2015). Support for the dilution effect in the plant pathogen 

literature has led to the promotion of the so-called buffering role of host biodiversity against 
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pests (Cardinale et al. 2012; Young et al. 2017), with proposed mechanisms of greater dispersal 

interference, disruptions of host chemical signals, and the presence of more natural enemies 

(Cappucino et al. 1998; Jactel et al. 2001; Quayle et al. 2003).  

Thirdly, the potential for pest establishment depends critically on the propagule pressure 

reaching a site. Existing models for the diversity-establishment relationship have failed to control 

for the spatial signal of pest dispersal (Parker et al. 2015; Guo et al. 2019), and hence may 

simply be correlated with pest entry sites or sites of high human traffic. The incorporation of an 

establishment model within a species-specific, spatial spread model could thus further help 

elucidate the true mechanisms underlying pest establishment. 

The parameterization of a semi-mechanistic model of pest infestation that contains 

separate parameters for tree species richness, each tree species’ volume, and each tree species’ 

phylogenetic divergence from a pest’s focal host community, that together interact to determine 

pest establishment after controlling for spread patterns, would allow us to disentangle the major 

mechanisms governing the secondary establishment of all invasive forest pests across the US. 

We hypothesized that when host phylogenetic diversity is modelled in concert with propagule 

pressure, host richness, and host density effects, we would be able to detect a separable 

phylogenetic host relatedness effect on pest establishment. We predicted that we would observe 

an amplification effect (higher probabilities of pest establishment) due to greater densities of 

closely-related host species, and a dilution effect (lower probabilities of pest establishment) due 

to greater densities of distantly-related host species. 

 

3.3 Methods 
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3.3.1 Data sources 

 

Data were obtained for all economically damaging invasive forest pests in the US, which consist 

of 72 economically damaging insect and fungal pathogen species and 294 of their host tree 

species (Aukema et al. 2010; Liebhold et al. 2013; Table S3.1.1). Spread model parameters were 

obtained from an existing spatial model of whole-community US pest spread, the GDK (Hudgins 

et al. 2017). Host tree distributional information came from the Forest Inventory and Analysis 

Program (FIA, Miles et al. 2001), which accounts only for tree species in forested areas. We 

standardized county-level pest and host tree data to a 50x50km grid to coincide with the scale of 

the spread model. A pest was considered successfully established within a cell if it was found in 

any county that made up the grid cell, and total host volume (m3 of tree biomass) within a county 

was assigned proportionally to the area a county occupied within each grid cell, therefore 

assuming an even distribution of trees within each county. 

 

3.3.2 Phylogenetic analyses 

 

The host phylogenetic tree was created by inputting the host species list into Nix 

(http://phylodiversity.net/nix/), which creates plant taxonomies by querying the ITIS taxonomic 

database (Bigsby et al. 2006). The Nix output was then entered into Phylomatic v3 (http://www. 

phylodiversity.net/phylomatic/, Webb & Donaghue 2007) to create a phylogenetic tree in 

Newick format based on the taxonomy using the Zanne et al. (2014) molecular phylogeny for 

seed plants. Phylogenetic information was found for all 294 host tree species (Appendix S3.2).  
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3.3.3 Establishment model 

 

We wished to create a single model for the establishment of invasive species that brought 

together previously studied mechanisms. We began by deriving an integrative model that 

simultaneously included the three major factors highlighted in the existing literature (host species 

richness, density, and phylogenetic divergence), which could result in relations between host 

diversity and pest establishment. We tested this model against simplified special cases and 

competing structures in order to determine our best hypothesis for the mechanisms driving pest 

establishment. Later, output of this establishment-only model was inputted into a previously 

published pest spread model (the General Dispersal Kernel or GDK model, Hudgins et al. 2017; 

2019) as an offset to predicted propagule pressure at each timestep to create the best integrative 

joint model for secondary establishment and spread. 

 In formulating our integrative establishment model, we wished to recapture the most 

likely mechanisms for both amplification and dilution emerging from the synthesis of the 

previous literature. That is, an amplification effect of closely related species, and a dilution effect 

of distantly related species, as a function of their density. This could be captured through a term 

that allowed additional trees of closely related species to increase establishment probabilities, 

while additional trees of unrelated species decreased establishment probabilities. Standard GLM 

formulations of site-level suitability would have conflated all host density, or would have 

required a binary choice between hosts and non-hosts. In contrast, a more process-based 

formulation could help to distinguish hosts that would amplify establishment with their density, 

from those that would dilute establishment, along a continuum. The formulation of amplification 
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and dilution as a smooth continuum was critical for our integrative framework, as it allowed us 

to understand the split within the literature as being due to a focus on either end of this spectrum. 

We predicted that increased suitable host density would have a positive effect that increased with 

proximity to focal host species, potentially levelling off for species with many highly susceptible 

hosts. In contrast, increased unsuitable host density was predicted to have a negative effect that 

increased with dissimilarity from focal hosts, potentially becoming negligible beyond some level 

of dissimilarity for entirely non-susceptible hosts (Figure 3.1a-d, Table 3.1a). Beyond these 

mechanisms, alternative findings in the literature, which we believed were merely correlates of 

this mechanism, could emerge as special cases, such as the sufficiency of focal host presence 

(Parker et al. 2015), density (Guo et al. 2019) or species richness (Liebhold et al. 2013) to 

explain pest infestation patterns (Figure 3.1e-g; Table 3.1b). 

 

3.3.4 Mathematical formulation 

 

While simpler generalized linear models linking diversity and establishment are possible, we 

chose a more process-based formulation for our model that operated at the tree species level at 

each site. We believe this choice helps us better elucidate the true process of establishment, since 

it operates at the level of host trees. We modelled pest establishment based on principles of mass 

action that underly foundational epidemiology (Wilson & Worcester 1945). According to mass 

action, infestation increases with contact rates between hosts and pests as a function of their 

population sizes (proxied by host tree volume and expected pest propagule pressure, 

respectively), and is a random process. This formulation implies independence across pest 

species. This was a fairly reasonable assumption, as there are a very large number of trees at 
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each invaded site, and the few pest species that share focal hosts only rarely overlap in their 

distributions across space and time (Aukema et al. 2010; 2011). The resulting probability of pest 

establishment from this integrative model was then combined with spread predictions within the 

GDK architecture. Our integrative joint model predicted spread and establishment 

simultaneously by fitting a rescaling factor for the GDK-predicted relative propagule pressure of 

each pest at each site based on fitted establishment model output. We used only relative 

propagule pressure in this analysis and estimates of tree volume. As such, while the integrative 

joint model is proportionally reflective of the process occurring at the individual propagule level, 

parameters should not be interpreted as those relating to individual pests and trees.  

 We related the probability of a site being invasible to the volume of trees of each species 

and the phylogenetic dissimilarity of each host tree species to a particular pest’s focal host 

community. For each pest (i) and host (t) species combination, we determined the minimum 

pairwise phylogenetic distance between each US tree species and the entirety of a given pest 

species’ known community of US focal hosts (minpdi,t, Aukema et al. 2010). This amounted to 

taking the minimum of all possible pairwise combinations of a particular pest’s focal hosts and a 

given tree species. In the case of focal host presence, this distance was zero. To control for the 

positive relationship between the number of focal host species of a particular pest and the portion 

of the phylogenetic tree spanned (Tucker et al. 2017), we transformed these minimum pairwise 

distances into z scores via a null model (minpdz,i,t). In this null model, we produced 10,000 

random focal host assemblages of the same size (number of host species) from the set of host 

tree species that had at least one occurrence within each pest species’ known host range based on 

FIA. We then calculated the minimum pairwise distance of these random draws to that pest’s 

focal host community. We took the mean and standard deviation of the 10,000 random draws 
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and used these to standardize our observed pairwise distance estimates (minpdzi,t=(minpdobs,i,t-

mean(minpdnull,i,t))/s(minpdnull,i,t)). Species whose hosts are less phylogenetically clustered 

(phylogenetic generalists) possess a lower mean and maximum minpd than specialists, and 

therefore have lower-magnitude minpdz values (i.e., focal hosts of generalists and specialists 

both have raw minpd values of zero, but these are rescaled to more negative minpdz,i,j values for 

specialists than generalists). This behaviour is consistent with our expectation that the dilution 

and amplification effects will be the strongest for specialist species (Gilbert et al. 2016; Guo et 

al. 2019).  

The species-specific probability of a single pest propagule of species i establishing at a 

given site j was modelled as: 

 6$0-12#,% = 1 − 8'934#,%     (3.1) 

Where a1 is an intercept term corresponding to the mean probability of non-establishment across 

all sites, and zi,j is the relative probability of establishment of site j for pest species i based on the 

recipient host community, calculated based on the contribution of all host species to 

establishment: 

:!,# = ∑ :-#,%-       (3.2) 

  

:-#,% = ;8& + <=-,#
(60(610#,2(630#,21)> , =-,# > 0

0, =-,# = 0
    (3.3) 

Where Vt,j is the tree volume of a particular host tree species t at site j, and si,t is a minpdz,i,t term 

for a given host/pest-species combination, calculated as:  

B!,- =
'

'($!4#56"7	      (3.4)  
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This logit scaling allowed susceptibility to have an influence ranging between 0 and 1, and 

improved identifiability and fit of our model relative to other formulations. Since our grid size is 

constant, volume and density are proportionally equivalent in these models. The constant 8& is 

added based on presence of each given tree species at a site. When 8&<0, negative density 

dependence can cause tree species presence to have a more negative impact on pest 

establishment than tree species absence (:-#,% < 0) for some maximum volume 

=-,#(60(610#,2(630#,2
1) < −8&, though we note that a positive effect of species presence (:-#,%>0) is 

possible for any species with a volume that satisfies =-,#(60(610#,2(630#,2
1) > −8&. 

 The c terms acted as shape parameters to allow for nonlinear relationships with tree 

density (c1) and phylogenetic relatedness (c2, c3) (Fig. 3.1). In this equation, the term	:-#,% 	can be 

conceptualized as an ‘effective volume’ of host trees for a given pest. We predicted that closely 

related tree species would exhibit positive density dependence (high effective tree volume), 

while distantly related species would exhibit negative density dependence (low effective tree 

volume). In the case of  c2 > 0, c3 ³0 , higher tree volume and higher susceptibility values 

increase the effective tree volume, while volume of lower-susceptibility trees is converted to 

lower or even negative effective tree volume (Fig 3.1a-b).  

Since phylogeny is a proxy for functional similarity, there may be limits to the impact a 

host species has on invasibility if it is highly dissimilar to the focal host community. 

Alternatively, generalist pests may tolerate all hosts above some minimum relatedness.  These 

effects can be captured in the second-order term (c3), which allows for density dependence to 

have differential strength for closely-related hosts compared to distantly related hosts (Fig 3.1b-

d). In addition to an accelerating positive density dependence as relatedness increases (Fig 3.1b), 

positive density dependence may level off at some maximum relatedness beyond which all hosts 
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are similarly susceptible (Fig 3.1c), or highly unrelated species may contribute negligibly to 

invasibility compared to less distantly-related hosts that may divert more propagules from focal 

hosts (Fig 3.1d). The evidence of  non-linearity was tested empirically when analyzing the 

importance of model terms (see below). We bounded this equation between 0 and 1 by forcing 

pestab values above and below this range to 0.0001 and 0.9999 respectively, to ensure the outcome 

could be represented as a probability. 

The overall likelihood across all pest species and sites was: 

D(E|,) ∝ 6(,|E) ∝ ∏ ∏ 6$0-12#,8##∈+ ∏ (1 − 6$0-12#,8#)#∈9!     (3.5) 

Where E are the model parameters, and y are binomial distributional data of all pests i, including 

presence sites ki and absence sites li. The calculation of a single likelihood meant that pests with 

greater host ranges contributed more strongly (which was reasonable, because we had more 

distributional information through which we could assess establishment patterns for these 

species), and the use of species-independent parameters constrained all relationships to be 

equivalent across species. 

The integrative establishment model was fit via maximum likelihood through R’s optim 

function (R Core Team 2020). Vt,j was converted to 10000m-3 units to aid comparison of relative 

parameter influence. The significance of model terms was analyzed by comparing simplified 

models in order to examine the importance of density, richness, propagule pressure, and 

phylogenetic diversity via Likelihood Ratio Tests (Table 3.2). Models were also compared in 

terms of their percent difference in deviance explained in comparison to an intercept-only model 

(null deviance), and the relative importance of terms was examined in a Type III test (Zar 1999).  

 We fit the integrative establishment model parameters separately from the spread model, 

assessed their ability to capture pest distributional patterns without controlling for spread, and 
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then incorporated the establishment model predictions into the spread model containing its 

previously fitted parameters (Hudgins et al. 2017; 2019) through an offset term to determine the 

explanatory power of the integrative joint model. 

The spread model originally formulated relative propagule pressure dynamics at each 5-

year timestep as:  

44!,#,6(' = (44!,#,6 −∑ "!,#,:44!,#,6 +∑ "!,+44!,+,6+ ): 5    (3.6) 

The relative propagule pressure (PP) of pest i in cell j at timestep c+1 was equal to the relative 

propagule pressure at time c, minus dispersal (T) to all cells m, plus dispersal from all cells k, 

multiplied by the growth rate (d =1.30). Cells were considered ‘presences’ capable of being a 

source of propagules when they were above a threshold population size (f = 0.00054) with a 

maximum relative propagule pressure in a cell of 1.  

The original spread model was fit by restricting potential spread to the focal host range of 

each pest species. However, we removed this restriction, because the goal of the current analysis 

was to explicitly model the role of host diversity, richness, and density in impacting the 

establishment process. We assumed that our previously-fitted model parameters were reflective 

of the general mechanism of spread. Establishment thus acted as a second filter on pest presence, 

determining reproductive success following propagule arrival. In our integrative joint model, we 

rescaled the relative propagule pressure (PP) of each pest species i at site j by the establishment 

probability at that site at each time step: 

44!,#,6(' = (44!,#,6 −∑ "!,#,:3!,#,6 + ∑ "!,+3!,+,6+ ): 5 ∗ (J; + J' ∗ 6$0-12#,%)  (3.7) 

B0 was an intercept term to offset over/underprediction in pestab when applied outside of the focal 

host range, and B1 was a slope term for the impact of the integrative establishment model. We 

used the GDK’s fitting metric, MET (Aslan & Zech 2005, Hudgins et al. 2017) to fit B0 and B1, 
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and evaluate the improvement of incorporating the integrative establishment model into the 

integrative joint model. We optimized based on MET rather than a likelihood due to the binary 

nature of the output of the GDK, which is not amenable to classical likelihood approaches. We 

also present our previously-published pseudo-R2 metric, as a more intuitive descriptive measure 

of spatial variation explained (R2om, Hudgins et al. 2019). None of the standard optimization 

schemes can guarantee global optimality for this type of multimodal problem over a reasonable 

time window, and many stochastic approaches can be very computationally intensive, but steps 

can be taken to avoid local minima (Xiang et al. 2013). To verify we achieved model 

convergence, we repeated our optimization with our updated parameter set until the outputted 

MET score was constant across iterations. 

 

3.3.5 Special case models 

 

As noted above, the establishment model structure has a series of nested special case models 

(Table 3.1b). The simplest of these is a null model where trees have no impact, 6$0-12#,% = 1 −

8'. If only richness impacted establishment, an intercept would suffice, such that :-%=8&. 

Another simple case is one where all trees are equivalent in their impact on establishment, such 

that the effective trees term for each tree species is :-%=8& + =-,#
60. In contrast, if only host trees 

impacted establishment (no dilution), we would see a steep negative linear impact of minpdz, and 

no impact of tree presence (a2 , c1=0). In addition to these special cases, the examination of 

additional factors requires only the addition of a similarly formulated term to those included in 

the model. Any additional tree species-specific factor can be added to the :-% 	component, any 

site-specific factor can be added to zj outside the species-specific summation, and any pest 
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species-specific factor can be added to the intercept 8'.To ensure our model’s parameters could 

be reliably identified, we performed theoretic simulations where we assessed identifiability by 

fitting our model to simulated data and comparing predicted and simulated (true) parameter 

values (Appendix S3.3). 

 

3.4 Results 

 
 
3.4.1 Integrative establishment model 

 
The impact of phylogenetic diversity within the integrative establishment model was as expected 

from first principles: The functional form was a parabola similar to Fig. 3.1d, where more related 

species had positive density-dependent effects on the number of effective trees, while more 

unrelated species had negative density-dependent effects (Table 3.2, Fig. 3.2). The non-linear 

relatedness term contributed substantially to model fit based on Type III tests (Table 3.2), 

indicating phylogeny had a saturating impact on dilution below a threshold of relatedness. 

Interestingly, species presence had a baseline positive effect across all species (:-#,% 	> 0 even as 

=-,# → 0 ), indicating that sites with higher species richness have greater establishment than less 

diverse sites when closely-related host volume is high and unrelated host volume is low. In this 

model, tree species presence has a more negative effect on pest presence than tree species 

absence (:-#,%< 0) for tree volumes above (−8&)
( 0
90,91:#,2,93:#,21

)
(blue and purple regions, Fig. 3.2). 

At the parabola’s vertex (susceptibility ~0.1625), this maximum effective volume is 6 423 

m3/km2. As susceptibility approaches 0, this value is 20 649 m3/km2, and all tree volume begins 

to have a positive density-dependent effect at a susceptibility of 0.42 (yellow region, Fig. 3.2). 
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This model explained 6.21% of the deviance in pest distributions across all species compared to 

an intercept-only model before being incorporated into the integrative joint model (Table 3.2). 

Based on theoretic analyses, we have confidence in our derived ‘maximum effective trees’ 

values, the overall signs of effects, and the shape of fitted relationships such as Fig. 3.2 

(Appendix S3.3). 

 

3.4.2 Special case models 

 
In addition to the intercept-only null model, we assessed the fit of some additional nested null 

model structures (Table 3.1b). A model where only richness impacted establishment (zi,j = 8&) 

had 2.34% deviance explained. This model had a very slight positive effect of species richness 

(a2 = 0.0051). A model where all tree volume contributed equally to establishment (:-#,%  = 8& +

=-,#60) had 2.41% deviance. In this model, tree presence had a near-zero positive effect (:-#,% 	> 0 

even as =-,# → 0) and density dependence was overall slightly positive (c1 = 0.00058). The 

deviance explained by this model implies that phylogeny is responsible for the majority of 

predictive power of the integrative establishment model (61% of the overall 6.23% deviance 

explained). These models had findings consistent with previous analyses of the same dataset 

(Liebhold et al. 2013, Guo et al. 2019, Fig. 3.3). 

 

3.4.3 Spread model synthesis 

 
Examination of the spatial residuals of the integrative establishment and spread-only models 

showed clear opposing spatial structure (Fig. 3.4a-b), indicating that a synthesis of the two 

models could result in improvements in fit. We found that integrative establishment model 
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inclusion within the spread model (the integrative joint model) improved the fitting metric (MET 

score) by 14.9%, and improved the % spatial variation explained (R2om) by 7.5%. The fitted 

intercept shifted spread-only model predictions downward to account for overall overprediction 

when not restricting to focal host ranges (B0=0.93), and the integrative establishment model 

probability had a positive effect (B1=3.08). The residuals of the integrative joint model showed 

decreases in the northeast and interior US, but continued to demonstrate spatial patterning with a 

clear East-West regionality (Fig. 3.4c). 

 

3.5 Discussion   

 
3.5.1 Integrative establishment model 

 

We have shown how dilution and amplification effects can be unified in a single model by 

weighting host density by phylogenetic dissimilarity. Our results suggest that, rather than 

community structure being governed primarily by dilution or amplification, both dilution and 

amplification occur at differing degrees of host relatedness. This general, nonlinear relationship 

between phylogenetic dissimilarity and establishment substantially improved pest distributional 

predictions beyond a spread-only model (improvement in R2om of the integrative joint model vs. 

spread model alone =7.5%). After controlling for spread patterns, pest establishment is highest in 

areas with a high number and high volume of tree species that are highly related to a pest’s focal 

host community (s~1). Pest establishment is lowest at sites with high volumes of unrelated hosts 

(0<s<0.42, purple and blue regions, Fig. 3.2), with a peak negative impact at s=0.1625 (vertex of 

Fig. 3.2). At the same time, species presence always has a positive effect for any tree species as 
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its volume tends to zero, indicating that up to some threshold volume, the presence of any 

additional tree species at a site is beneficial.  

Higher species richness could be indicative of the presence of diverse microclimates for a 

large number of species of all kinds (the “diversity begets diversity” hypothesis, Fridley et al. 

2007; Hechinger & Lafferty 2005), or that habitats are not specialized enough to support natural 

enemies of pest species compared to sites with only focal hosts. These beneficial effects could be 

overtaken by negative density dependence in cases of higher tree volume of less-related species 

due to conventional dilution mechanisms sensu Gilbert & Parker (2016). Other mechanisms for 

negative density dependence include higher-level trophic effects, such as a greater diversity of 

food sources for natural enemies of pests. In contrast, sites with a low richness and a low volume 

of highly related hosts may indicate a strong impact of biotic filtering at a given site, which may 

coincide with a harsher climate for pest establishment (Kraft & Ackerly 2014).  

 

3.5.2 Comparison with previous work 

 

In a recent paper using the same dataset, Guo et al. (2019) found that pest richness was highest in 

regions with moderate levels of host diversity, with an underlying positive correlation between 

pest richness and focal host richness, compared to a triangular negative relationship between pest 

diversity and non-focal host tree diversity. All pests and hosts were examined together, so it was 

difficult to distinguish whether these patterns are emergent properties at the level of pest 

richness, or whether they operated on a single-pest level. Additionally, this type of analysis does 

not allow for the separation of the impact of host density from the role of phylogenetic diversity 

in pest establishment, nor does it account for spatial autocorrelation due to pest dispersal.  
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On the surface, our findings appear to conflict with the Guo et al. model of pest species richness 

(2019). However, we would have found the same patterns with richness in our analysis had we 

not examined density concurrently, since intermediate richness sites contain the highest focal 

host volumes, which coincide with the greatest pest species richness (Fig. 3.3). In contrast, we 

found that there was a potential for the presence of any additional tree species to have a positive 

effect on establishment up to some maximum volume. Within our integrative framework, we can 

attribute the nonlinearity previously deemed to be due to host species richness to 

phylogenetically-mediated density dependence.  

We demonstrated a nonlinear impact of relatedness on establishment, where maximum 

dilution occurs at a nonzero level of relatedness (s=0.1625), beyond which dilution becomes less 

extreme (purple region, Fig. 3.2). Analogous nonlinearities have been uncovered in several 

related systems. These include a hump-shaped relationship between host-specific disease 

mortality and divergence times from focal hosts (Farrell et al. 2019), and a hump-shaped 

relationship between the probability of high economic pest impacts and divergence times 

between native range hosts and invasive range hosts (Mech et al. 2020). In our case, we 

hypothesize that dilution is most important when there is some functional similarity between host 

species, and that entirely unrelated hosts may be less likely to divert propagules.  

 

3.5.3 Alternative mechanisms 

 

As we mentioned in the introduction, our model can easily be extended with additional pest, 

host, or site-specific parameters. We formulated several model extensions to explore competing 

hypotheses for the results obtained, including phylogenetic generalism, hotspots of climatic 
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suitability, and regional differences based on forest type (Appendix S3.4). We found some 

support for higher establishment rates for generalist pests, and some evidence of differences in 

invasibility between angiosperms and gymnosperms. We note that none of these additional 

mechanisms could account for the observed nonlinear impact of phylogenetic dissimilarity.  

 

3.5.4 Limitations and future directions 

 

We acknowledge that there are other possible functional forms for the establishment process, but 

we chose this particular structure to ensure that our models were nested, i.e. that when 

parameters were insignificant, the model structure reduced to a simplified form of the overall 

model (for instance, when establishment is driven entirely by richness, c1,c2,c3,=0). We also 

argue that our formulation of the density term is much more process-based than a traditional 

density dependence term, which treats all tree species equally. Our use of minpd assumes that all 

identified focal host species are equally capable of supporting the pest species. However, 

substantial uncertainty exists regarding host quality within this dataset. We tested an alternative 

metric, mean pairwise distance (mpdz, Tucker et al. 2017), and found that the mpd model was 

less predictive (deviance explained = 3.41%). 

 Our analysis is at the 50x50km scale, while previous work has spanned forest plot to 

country scales (Gilbert & Webb 2007, Guo et al. 2019). This scale allowed us to model 

establishment at the same scale as our spread model. However, we acknowledge that different 

relationships to host relatedness and density may exist at smaller spatial scales. 

We did not fit the spread and establishment model parameters simultaneously, and 

instead relied on a fitted spread and integrative establishment model parameters as input into the 



 
 

 134 

integrative joint model, and fit only an offset. This meant that some factors important for 

establishment could have been misattributed within the spread model (e.g. the MET score/ R2om 

of the spread model could be in part due to collinear factors linked to establishment such as host 

volume or phylogenetic dissimilarity), and vice versa. This misattribution should have limited 

the impact of the integrative establishment model’s inclusion within the integrative joint model, 

and therefore should have decreased our power. We showed that incorporating the integrative 

establishment model within the GDK architecture substantially improved pest distributional 

predictions beyond a spread-only model (improvement in MET and R2om of the integrative joint 

model vs. spread model alone =14.9%; 7.5%). We attempted to perform simultaneous fitting of 

both processes, but the resulting model was highly computationally intensive, and suffered from 

severe lack of identifiability of predictors of spread versus establishment. 

 This analysis was conducted on the known set of US (invasive range) focal hosts of these 

pest species. However, the process of spillover is typically modelled in relation to host 

communities within the native range (where the pest evolved). We know of only a few 

gymnosperm pest species where this set of species has been characterized (Mech et al. 2020), but 

believe that testing whether distance from this community produces a better-fitting model is an 

important extension of the present work. 

 

3.5.5 Conclusion 

 
To limit the grave consequences of invasive pest species, we must understand the factors that 

increase their establishment success in new environments. While recipient community diversity 

has been studied extensively as one of these factors, previous work has been unable to 

distinguish the multiple mechanisms that combine to link host prevalence and relatedness to pest 
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establishment. These include host species richness, density dependence, the link between 

evolutionary relatedness and establishment success, and the confounding spatially-autocorrelated 

patterns of propagule pressure. In this analysis of whole-community US forest pest 

establishment, we separated these four processes and detected a novel, nonlinear relationship 

between phylogenetic host dissimilarity and pest establishment. We found that density-

dependent amplification occurs when hosts are phylogenetically closely related, and density-

dependent dilution occurs when hosts are phylogenetically distant. This result cannot be 

explained solely by a greater ease of generalist pests to establish, but appears to be driven by 

climatic or other host biotic factors beyond the scope of this analysis. This general pattern 

emerged across all 72 invasive forest pests in the US, thereby highlighting the importance of 

considering evolutionary history when attempting to understand the occurrence of invasive 

species, and providing a more nuanced, macroecological picture of the role host diversity plays 

on pest infestation.  
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3.7 Figures and Tables 

 
3.7.1 Figures 

 
Figure 3.1 Potential relationships between host tree relatedness (s) and the effect of host density 
on establishment probabilities (Vt,i exponent), where blue indicates dilution and yellow indicates 
amplification across all plots. Hypothesized mechanisms (Table 3.1a): a. linear amplification for 
closely related species and linear dilution for distantly related species (c2>0, c3=0) b. nonlinear 
amplification for closely related species and nonlinear dilution for distantly related species, 
(c2>0, c3>0) c. nonlinear amplification for closely related species peaking at some maximum 
relatedness (green), and nonlinear dilution for distantly related species (c2>0,c3<0) d. nonlinear 
dilution for distantly related species, with a minimum at some minimum functional relatedness 
(purple), and nonlinear amplification for closely related species (c2<0,c3>0). Alternative 
mechanisms to yield previously published results (Table 3.1b): e. Host species richness mediated 
amplification (a2>0) and dilution (a2<0) (no effect of volume or phylogeny), f. Total host volume 
mediated amplification (no effect of phylogeny), g. Focal host volume mediated amplification. 
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Figure 3.2 Fitted relationship between the relatedness (s) of trees of a given species t to each 
pest i and the effect of increased density of tree species t at site j (Vt,i exponent) in the integrative 
establishment model. Tree volume contributes positively to establishment for closely related 
hosts (yellow), while it contributes negatively for distantly related hosts (blue), levelling-off and 
even slightly increasing for very unrelated hosts (purple), consistent with phylogenetically-based 
dilution. 

   
 
  
Figure 3.3 Relationship between alternative model proxies (see Table 3.1b) and pest infestation 
levels, including: a. Pest species richness and total host species richness, b. Pest species richness 
and log(total host volume), c. Pest species richness and log(focal host volume), and d. Host 
species richness and log(focal host volume). 
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Figure 3.4 Spatial pattern of model residuals, for the spread (a) and establishment (b) models. 
Clear opposing patterns are present, indicating a likely benefit with their synthesis. The 
integrative joint model residuals are shown in (c), indicating some persistent spatial patterning, 
particularly in terms of East-West regionality. 
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3.7.2 Tables 

 
Table 3.1 Hypothesized relationships between predictor variables and probability of 
establishment when modelled simultaneously (a), and alternative model comparisons (b). 
 

a. Integrative 
model 

Term in model Predicted sign Predicted 
relationship with 
(s) 

Focal host density zt,i,j when s»1 + (amplification) 

Fig 3.1a-d 
 

Susceptible host 
density 

zt,i,j as sà1 + (amplification) 

Non-Susceptible 
host density 

zt,I,j as sà0 - (dilution) 

b. Alternative 
models 

   

Total host species 
richness only 

zt,i,j = a2 

(c1,c2,c3=0) 
+ (Liebhold et 
al. 2013; Guo et 
al. 2019), or – 
(Jactel & 
Brockerhoff 
2007; Haas et al. 
2011) 

Fig. 3.1e 

Total host volume 
only 

zt,i,j = a2+Vt,i,j 

(c2,c3=0) 
+ (Liebhold et 
al. 2013) 

Fig 3.1f 

Focal host volume 
only 

zt,i,j » 0 when s<1 
(c2>>0; 
c3>>0) 

+ (Liebhold et 
al. 2013) 

Fig 3.1g 
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Table 3.2. Establishment model results. Significance is examined via Type III Likelihood Ratio 
Tests (comparing the full model to a reduced model without a given parameter). The overall 
model log-likelihood was 123809.60, while the null (a1 only) model likelihood was 132000.23, 
and overall deviance explained was 6.21%. The last column presents the proportional change in  
deviance explained for the reduced model.  
 
Parameter Coefficient D LL  c2 p-value D Deviance 

c1 -0.00083 -137.90 275.80 <2e-16 0.10% 

c2 -0.0065 -450.90 901.80 <2e-16 0.34% 

c3 0.020 -1534.70 3069.40 <2e-16 1.16% 

a1 0.89 -4297.78 8595.56 <2e-16 3.26% 

a2 -0.997 -3518.50 7037.00 <2e-16 2.67% 
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Connecting statement 

From the comparison of general and semi-generalized spread models from Chapters 1 and 2, we 

know that pest species have different spread rates. Rather than summarizing this in an intercept 

term as in the SDK of Chapter 2, I wanted to tease apart the mechanisms allowing some pests to 

have greater secondary establishment success than others. Biologists can spend years producing 

a precise model for the establishment of one species using their idiosyncratic characteristics, but 

again, more general models allow for early detection and rapid management responses. I focused 

on the quality of the host range of each species, in terms of the amount and types of hosts 

present, and asked whether there are general spatial predictors of forest pest secondary 

establishment.  

  This general, integrative establishment model was similar in structure to the GDK of 

Chapter 1 and the urban the tree distributional models of Chapter 4, in that it grouped the general 

factors responsible for secondary establishment into broad categories: pest traits, host traits, and 

site traits. These broad groupings are analogous to the pest traits, habitat traits, and propagule 

pressure proxy variable groupings used to fit the GDK, and the municipal, climatic, and total tree 

variable groupings used in the Chapter 4 urban tree distributional models. 
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Chapter 4. 

Estimating damage to urban trees from invasive forest pests in the United States  

Authors: Emma J. Hudgins, Frank H. Koch, Mark J. Ambrose, Brian Leung 
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4.1 Abstract 

Economic assessments of the impacts of non-native species inform and incentivize cost-effective 

spending, and should be based on the best available data and most rigorous analysis possible. 

Urban trees have been identified as the main target of economic damages due to invasive forest 

pests in the United States, but analyses have been limited due to a paucity of urban tree data and 

lack of spread and mortality estimates for most forest pest species. We combined new estimates 

of the tree population in roughly 30,000 US communities, estimates of future tree exposure by 

incorporating recent species-specific spread predictions for 57 pest species, estimates of host tree 

death due to pest exposure, and a simple model of management behaviours to produce a 

spatiotemporally resolved estimate of future damages. We estimate that 8% of all street trees will 

die from 2020 to 2050 due to invasive forest pests (~5 million trees), along with 318 million 

community trees and 59 million residential trees. “Mortality hotspot cities” facing the greatest 

tree mortality are predominantly in the Midwest and include Minneapolis-St. Paul, MN and 

Milwaukee, WI, though other major cities such as New York City, NY and Seattle, WA will also 

see major mortality. These patterns are driven by ash (Fraxinus spp.) mortality caused by 

emerald ash borer (Agrilus planipennis). We predict that future annualized management costs 

will range between $84M and $225M USD for street trees alone within our most likely mortality 

model. Street trees account for only 6.8% of all urban trees, and thus the total urban tree costs 

could be an order of magnitude larger (~$1.6B annually). We identify two key sources of 

uncertainty, which greatly affect cost estimates: the magnitude of “mortality debt”, which is the 

temporal lag between when a pest initially infests a community and when it reaches its 

asymptotic mortality level there; and pest management practices beyond street tree removal and 

replacement. Fortunately, the former is well characterized for the dominant source of damages 
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(emerald ash borer), but the latter must be better understood in order to fully understand future 

costs to US municipalities.
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4.2 Introduction 

Previous analyses suggest that urban trees are likely to be the dominant component of damages 

due to forest insect pests (Aukema et al. 2011). Urban trees tend to include highly susceptible 

species like ash (Fraxinus spp.) that have been decimated in recent years by pests such as 

emerald ash borer (EAB, Agrilus planipennis, Kovacs et al. 2010), and dead and dying urban 

trees pose an immediate threat to resident safety, and thus require management (Klein et al. 

2019). On the other hand, within the United States (US), non-harvested forested areas have 

minimal pest management, apart from coordinated spray programs for particularly damaging 

species such as European gypsy moth (Lymantria dispar). Further, areas marked for timber 

harvest can reduce economic damages due to pest infestation through substitution and salvage 

logging (Holmes et al. 2009).  

Moreover, the importance of urban forests is only expected to grow. Across the world, 

more people are moving to cities, and while urbanization is already very high in the US (82% in 

2018), it has not yet saturated (World Bank, http://data.worldbank.org, UN DESA, 

http://population.un.org). At the same time, there has been a push for urban ‘greening’ (i.e., 

increasing urban forest canopy), both for environmental benefits, as well as to improve urban 

dwellers’ wellbeing. Urban trees perform many important ecosystem services, including 

reducing the heat island effect of cities and lowering cooling costs (Norton et al. 2015), buffering 

against flooding, increasing air quality, carbon sequestration, improving citizens’ mental and 

physical health outcomes, and creating important habitat for other urban species and species 

using cities as movement corridors (van den Berg et al. 2010; Roy et al. 2012). It is thus critical 

to understand how pests may affect urban trees. 
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Many factors influence how damaging a given invasive pest species will be. Pest traits such 

as the dominant method by which they attack their host (known as their feeding guild) can be 

important determinants of the extent of their damage (Aukema et al. 2010). However, while the 

life histories of these species can differ, they are known to be transported at large scales by 

humans (Hulme et al. 2009), potentially in analogous patterns across entire pathways (Hudgins et 

al. 2017), and it is their combined, cumulative impacts that we wish to capture. In addition to life 

history differences, pests vary in terms of their host range size, how far they have already spread 

and will spread into the future, and in terms of how deadly they are for their host species. Forest 

pest management must balance the costs of managing these pests with the likely benefit to 

investing in the management of each, and thus the variability in their impacts should be 

examined to prioritize future management. Further, under the hypothesis of analogous pathway-

level anthropogenic dispersal, the creation of a pathway-level damage estimate is a 

demonstration of the severity of the pest community associated with anthropogenic secondary 

spread as a whole, and therefore the extent to which it is important to limit future spread via 

these pathways (e.g. through quarantines, highway checkpoints to limit firewood movement). 

Moreover, since many of these pests enter the US through analogous mechanisms, this estimate 

can motivate policies to limit entry risk (Leung et al. 2014). Past estimates of forest pest damage 

have been important in providing support for phytosanitary measures such as ISPM15 (IPPC 

2002), a wood packing material treatment protocol, whose adoption is growing worldwide 

(Leung et al. 2014). 

The previous pathway-level estimate for the cumulative cost of all US forest pests was 

performed a decade ago, and had substantial data limitations (Aukema et al. 2011). This was the 

best analysis possible given the data available at the time. However, it was limited to dispersal 
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estimations for three highly damaging invaders, and cost estimates for two host tree genera from 

a handful of communities. Since then, contemporary advances in characterizing pest-induced 

mortality, host prevalence, and pest spread have occurred. It is feasible and timely to revisit 

forest insect pests’ effects on urban trees.  

Recent generalized dispersal models (Hudgins et al. 2017; Hudgins et al. 2019) can be 

employed to project pest spread across the United States over the next 30 years for all invasive 

forest pest species known to cause non-negligible economic impacts (which we define as the pest 

community associated with anthropogenic secondary spread). However, the impact of pest 

spread into different areas is unequal, and depends on the types of urban trees encountered. Koch 

et al. (2018) have created an extensive database of urban trees across the US from the 

amalgamation of hundreds of community inventories. This will allow pest spread to be matched 

to their urban host distributions. Additionally, mortality estimates can now be derived from 

Potter et al. (2019), who created a database of the top five threatening pests to each host tree 

species in the United States and quantified these threats on a Likert scale. Combined, these new 

data sources and models allow the best current estimate of the extent and locations of damage 

due to forest pest invasions. 

In this paper, we synthesized four subcomponent models of forest pest invasions: 1) a 

model of whole community pest spread, 2) a model for the distribution of all urban street tree 

host genera across all US communities, 3) a model of host mortality in response to pest-specific 

infestation for all urban host tree species, and 4) a simple model of the human management 

response to dead host trees. Through their synthesis, we provide the best current estimate of the 

damage to street trees, including explicit estimates for all known invasive forest pests across all 

major insect guilds. Given the continued migration of people to urban centers, and the growing 
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importance of urban trees, this analysis provides a tool to understand the potential for losses of 

urban trees due to forest insect pests and to motivate policy to limit these losses.  

 

4.3 Methods 

 

We have provided a conceptual diagram of our methodology in Figure 4.1 in order to clarify how 

our four subcomponent models connect to produce damage estimates. We recommend readers 

refer to it throughout this section. 

 

4.3.1 Pest dispersal forecasts 

 

We modelled spread using the Semi-Generalized Dispersal Kernel (SDK, Hudgins et al 2019). 

This is a spatially explicit, negative exponential dispersal kernel model that can account for 

additional spatial predictors in source and recipient sites. The SDK builds from the Generalized 

Dispersal Kernel (GDK, Hudgins et al. 2017) as a starting point, using human population 

density, forested land area and tree density in source and destination sites as moderators of 

spread. The SDK combines up to three species-specific corrections for each species to maximize 

predictive ability: 1) a species-specific intercept term, 2) information on a pest’s likely initial 

invasion location, and 3) niche-related limitations when evidenced in the literature (Hudgins et 

al. 2019). The SDK was applied to all 72 pests believed to cause some damage from Aukema et 

al. (2011). 

We synthesized SDK (Hudgins et al. 2019) projections from 2020 through 2050 with 

models predicting urban host genus distributions (see below). We note that the SDK model was 
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fit to natural forests rather than urban trees. However, given the strong predictive ability of the 

published dispersal model without urban host information (Hudgins et al. 2019), we assumed 

that spread was driven by the invasion of forested areas, while damages were driven by spillover 

into urban areas.  

 

4.3.2 Street tree models 

 

Our fitting set consisted of 653 street tree databases for US communities where street tree 

inventory data had been collected and were available for use in this type of analysis (Fig. S4.1.1, 

Koch et al. 2018). These authors used the inventory data to model basal area (BA) of three of the 

most common urban tree genera (Fraxinus, Acer, and Quercus). We extended this and estimated 

the number of trees of all genera (not just the top three), and also modelled diameter at breast 

height (DBH) for trees within each genus, as treatment costs are dependent on number and 

diameter of trees (Aukema et al. 2011). We split trees into three diameter classes (small = 0-

30cm, medium = 31-60cm, large >60cm). We first fit models for the total tree abundance of all 

species by diameter class, and then used these total tree models to predict genus-specific tree 

abundance within each diameter class. Street tree inventory data are not always reliably reported 

to the species level across municipalities, and some species are so rare in street tree inventories 

that it would have been very difficult to develop robust species-level models, so we limited our 

examination to the genus level. Since some pests cannot invade all host trees in a genus, we had 

to estimate the fraction of invasible tree species within each host genus for each pest-host 

combination. We did so by estimating the species-level breakdown of each genus based on their 
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average relative proportions across our 653 inventoried communities, and assuming this 

distribution was representative across the US.  

 We modelled the total abundance of street trees in a community using boosted regression 

trees (gbm.step within R package dismo, Hijmans et al. 2017) relating the total tree abundance 

within a DBH size class to community-specific predictors, employing environmental variables 

from WORLDCLIM (Fick & Hijmans 2017) and community characteristics used in Koch et al. 

(2018), and sourced largely from the National Land Cover Database (NLCD, Homer et al. 2015) 

and the US Census and the American Community Survey (US Census Bureau 2015) (Table 

S4.1.1). We hypothesized that the age and wealth of a community would influence the types and 

sizes of trees planted there. In our model, median home value and mean year of construction (at 

the block-group level) as well as median household income (at the county level) were used as 

proxies of the age of the urban tree community and the community budget for street trees. We 

also tested the use of Poisson GAM models, but high levels of concurvity (the GAM equivalent 

of multicollinearity, Amodio et al. 2014) amongst predictors and lower predictive performance 

indicated Poisson GAMs were an inferior modelling structure for estimating total abundance. 

Next, we estimated the abundance of street trees within each genus, using the same 

climatic and demographic factors as the total tree abundance model as well as the total tree 

abundance model output as predictors (Fig. 4.1). We compared two methods and chose the best 

one for each genus based on R2: 1) Zero-inflated Poisson GAMs, or 2) Boosted Regression Trees 

(BRT, gbm.step within the dismo package, Hijmans et al. 2017). For BRT, we modeled tree 

presence/absence, followed by tree abundance given presence (using logarithmically-scaled tree 

abundance and back-transforming when predicting), and then combining the two models. The 

number of trees of genus i in size class j at a particular site k was: 
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!"##$!,#,$ = &!,#,$ ∗ ("#)%&!'(,!,#,$ ∗ ("#))*+,%-,!,#,$             (4.1) 

&!,#,$ = .
∑ (1-%2!"#$%,#,',(∗1-%2)*+,!-,#,',()/∑ 6,')*+,!-,#,',(((

          (4.2) 

This process is similar to that underlying the zero-inflated Poisson (ziP) model (Lambert 1992), 

but its functional form is less constrained, in that it is unnecessary to link the parameters of the 

binary and continuous components of the model. A standard ziP model always produces output 

that sums to the observed counts (Lambert 1992), but because the regression tree model is built 

in two independent parts that need not combine to sum to observations, we added a rescaling step 

(eqn 4.2). We removed all highly correlated variables (r > 0.8) prior to fitting, and refit GAMs 

until maximum estimated worst-case concurvity was below 0.8 (concurvity function within 

mgcv, Wood (2012)). 

We compared BRT and GAM models that were fit to all genera simultaneously (general 

BRT/GAM models using genus-specific intercept terms) with models that were fit to each genus 

separately (customized BRT/GAM models) (Fig. 4.1). Predictive power could be higher when 

modelling all genera together if the genera respond similarly to predictors. Conversely, power 

could be higher for individually fitted genera where environmental and community characteristic 

relationships are idiosyncratic and where the sample size is sufficient. We chose the model that 

produced the strongest relationship for each genus (again via R2). We used these models to 

predict urban tree distributions throughout the contiguous US. Alaska and Hawaii were removed 

to match the spatial extent of pest spread predictions, and because urban trees are likely quite 

different in these areas compared to the contiguous US. 

To assess fit, we calculated R2 values that were relative to the 1:1 line (i.e, a normalized 

mean squared error, R2
MSE), which more correctly measures deviations between observations (y) 

and predictions (*+).   
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-789: = 1 − ∑(;<;=).

∑(;<;>).
      (4.3) 

We removed New York City from the fitting set as it was likely to be a high leverage 

observation and could have significantly changed the resulting models due to it possessing a 

markedly different street tree genus composition. Both the GAM and BRT models were fitted 

using their built-in cross-validation algorithms for parameter estimation, and can therefore 

tolerate occasional outliers with minimal effect on their parameter estimates (though we have 

less evidence that other outliers would have changed model parameters for cities other than New 

York City). Given the higher data requirements of GAMs, they were not considered in cases of 

limited single-genus data (i.e., when only a few cities contained that genus).  

 

4.3.3 Host mortality model 

 

We ranked the severity of a given pest infestation on a particular host using a scale based on 

observed long-term percent mortality (defined in Potter et al. 2019). We assumed that this 

database reflected pest-induced mortality over and above natural tree mortality. We added two 

additional categories to this scale to represent pest species missing from their database that were 

still considered pests on a particular host within the Aukema et al. (2011) dataset. The lowest-

impact pest-host combinations were those featuring pests reported as ‘low impact’ in Aukema et 

al. (2011). These accounted for most known combinations. The second lowest category featured 

‘intermediate impact’ pest species from Aukema et al. (2011) that did not appear as threats to a 

given known host in the Potter et al. (2019) database. We assumed that, were these species 

quantified by Potter et al. (2019), their associated severities would be lower than the lowest 

category within the authors’ ranking scheme. All other pest-host combinations were assigned to 
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the same categories as in Potter et al. (2019). Pest frequency within severity categories was 

normalized across the sum of their known hosts so that each pest had equal impact on the 

frequency distribution (i.e., frequency summed to 1 for each pest). For instance, if a pest had 3 

hosts, and had severities of 3, 5, and 9 on each host, we would give them a frequency of 1/3 

under each bin. We fit a beta distribution to the frequency distribution of pests in each of these 

categories using Stan (Carpenter et al.  2017), a program and language for efficient Bayesian 

estimation. We chose to fit a beta distribution because proportional mortality ranged between 0 

and 1. Additionally, we fit the upper limit of the two lowest mortality categories and the lower 

limit of the highest category. We did this because these categories did not have quantified 

bounds, but could be ranked relative to others. We used the posterior mean as the expected 

mortality for a pest in each severity category, rather than the simple midpoint of the range of 

each category.  

Forest pests were grouped into four feeding guilds based on the predominant mode in 

which they damage their host trees (Aukema et al. 2010). Foliage feeders included insects that 

feed on leaf or needle tissue. Sap feeders included all species that consume sap, including scale 

insects and gall-forming species. Borers included species that feed on phloem, cambium, or 

xylem. Pathogens included species of fungi (e.g. chestnut blight, Cryphonectria parasitica) and 

disease complexes (e.g. beech scale, Cryptococcus fagisuga, and beech bark disease, Neonectria 

faginata and N. ditissima). Upon examination of the severity category distribution within each 

guild, we found that for 3 of the 4 feeding guilds, the logic from Aukema et al. (2011) appeared 

to hold: most species were innocuous but a small number caused high mortality (Appendix S4). 

In contrast, while several invasive pathogens were mentioned in Potter et al. (2019), pathogens 

are only reliably reported when they produce noticeable (i.e. intermediate) impacts (Aukema et 
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al. 2011). Further, while many of the pathogens listed in Potter et al. (2019) have already killed 

the majority of their hosts (e.g., chestnut blight fungus, Cryphonectria parasitica), some 

pathogens, such as laurel wilt disease (Raffaelea lauricola), are presently killing a large number 

of trees in forested areas (Fei et al. 2019). To avoid mischaracterizing their impacts, we removed 

pathogens from the remainder of our analysis. 

Samples were taken from the posterior beta distribution of expected mortality within each 

pest severity category and assigned to the corresponding pest/host combinations in order to 

determine the long-range (asymptotic) tree mortality for each host tree species due to invasion by 

each pest species. 

 

4.3.4 Mortality debt 

 

We define the term ‘mortality debt’ as the time period between a pest initiating damage within a 

community and reaching its estimated asymptotic host mortality within that community. While 

we had estimates of the asymptotic proportional mortality of host trees (Potter et al. 2019), we 

had no information on the rate by which trees reach this plateau. Previous estimates have ranged 

from 5 to 100 years (Aukema et al. 2011; Pugh 2010), so we analyzed three scenarios within this 

range (10, 50, 100 years). To account for what is currently known about the mortality dynamics 

of pests within each of the feeding guilds, we also examined scenarios based on our best guess of 

the duration of mortality debt across pest feeding guilds. EAB is estimated to kill the majority of 

its susceptible hosts in the first decade following infestation (Knight et al. 2013), while 

maximum mortality is estimated to take closer to 100 years for hemlock woolly adelgid (Aukema 

et al. 2011), so we used the 10 and 100-year scenarios for borers and sap-feeders, respectively. A 
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recent publication examining mortality rates in forested areas suggested that European gypsy 

moth has a mortality rate intermediate between borers and sap-feeders, so we set defoliators at 

50-years (Fei et al. 2019). For simplicity, we assumed mortality increased by a constant fraction 

over time until reaching its maximum and levelling off. For example, in the 50 year mortality 

debt scenario, if a pest’s maximum host mortality was defined as 90%, mortality would increase 

by 9% at each 5-year timestep for 10 timesteps until 90% mortality had been reached. 

 

4.3.5 Species-specific cost estimates 

 

As a final layer that allowed us to move from mortality estimates to cost estimates, we made 

several assumptions about the management response to street tree mortality. Because 

preventative behaviour is much harder to estimate, we estimated what we believe is the minimal 

management response required: only dead trees are managed, and they are managed by removal 

and replacement. This does not account for additional preventative cutting or any non-cutting 

management such as spraying or soil drenching with pesticides. We assumed that cutting was a 

one-time 100% effective treatment against pests. In other words, newly planted trees were 

assumed to be of different species and thus not susceptible to the same pest species that killed the 

previous trees. We assumed a 2% discount rate for future damages (Aukema et al. 2011), and 

also assumed that infestations were independent. In other words, invasion by one pest was 

assumed to not interfere with invasion by another. This is likely a fair assumption, as there is 

minimal host sharing across pest species, and pest species each infest only a small proportion of 

hosts at a given time interval, so there is minimal potential for species interactions (Aukema et 

al. 2010). We assumed the same per-tree cost estimates for cutting and replacing dead trees as in 



 
 

 161 

Aukema et al. (2011), where the cost of cutting increases nonlinearly with size class. If we 

assume that street trees are always under the jurisdiction of local governments, the cost of 

removal and replacement of each tree is US$450 for small trees, US$600 for medium trees, and 

US$1200 for large trees (these costs jump to an estimated US$600, US$800, and US$1500 for 

homeowners). We reported all costs incurred from 2020 to 2050 in 2019 US dollars based on a 

2% discount rate relative to these baseline costs. Since these baseline per-tree management costs 

came from a 2011 publication, we converted them to 2019 USD via the consumer price index, 

which amounted to an inflation of 13.65% (World Bank, https://data.worldbank.org), though we 

note that the present-day costs of per-tree removal may have declined with advances in 

technology. Once all subcomponent models had been parameterized, we synthesized the urban 

tree estimates, pest spread estimates, host mortality estimates, and management responses to 

produce cost estimates (Fig. 4.1). 

 

4.3.6 Whole-community costs 

 

We summed the damages from 2020 to 2050 to obtain a total discounted cost for this 30-year 

window. We then obtained annualized costs by calculating an annuity over the 30-year time 

horizon using the following equation:   

01123456#)	)3839# = : ∑ ?6'('%#+!+/"
%#+!0+#)
(.<(.@A)+/"1+#))

    (4.4) 

Where D is the discount rate (2%). Using these forecasts, we extended the concept of cost-curves 

from Aukema et al. (2011), which were based on frequencies of occurrences of low and 

intermediate damaging pests, and explicit economic estimates of three poster pests. To 

parameterize the cost-curves in this manuscript, rather than just 3 poster pests, we estimated 
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street tree costs for all 60 intermediate-impact pest species across the 3 major insect feeding 

guilds, in addition to frequencies of low-impact species. The summed area under each guild-

specific curve can be interpreted as the estimate of the total annualized cost of all invasive forest 

pests in the US to street trees. Since our curves were missing only low-impact species, the total 

cost estimated with these approaches is not appreciably different from a simple sum of the costs 

of the non-missing (57 intermediate) species reported in text, but we included these analyses to 

allow for the prediction of the costs of novel invaders from each guild (Appendix S4.4).  

 

4.3.7 Uncertainty and sensitivity 

 

Once a pest was predicted to infest an area, we imposed a 10-year initial lag phase between pest 

arrival at a site and the initial onset of damage (Hochberg and Weis 2001; Liebhold and Tobin 

2008), and then began increasing the host mortality following our mortality debt scenario to the 

asymptotic level (defined by the host mortality model). We assessed uncertainty in the cost curve 

functional form using Bayesian model averaging (Wintle et al. 2003) and in pest-specific host 

mortality rates by sampling from the outputted posterior beta distribution for the asymptotic 

mortality of each host species due to each pest species. We also used sensitivity analysis to 

explore the effect of different mortality debt scenarios, including 1) our best guess scenario, 2) 

setting all guilds to 10, 50, or 100-year debts, and 3) varying each guild separately while holding 

the other two guilds at their best guess scenario.  

 

4.3.8 Theoretical validation 
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While our host distribution models were based on standard modelling approaches (e.g. GAM), 

we wished to test the theoretical validity of the non-standard, Bayesian components of our 

framework (mortality estimates and cost curves). See Appendix S4.4 for details of our theoretic 

analyses.  

 

4.3.9 Mortality and potential costs to non-street trees 

 

We built a model for whole-community trees from the dataset of 56 communities where genus-

level estimates were reported, subtracted predicted street trees from this whole community 

estimate, and apportioned the remaining trees into residential and non-residential (community) 

trees based on their average fractions across all sites where land type breakdowns were provided 

(32 municipalities). Given the roughness of these predictions, we caution against 

overinterpretation of these results, particularly once translated into costs. 

 

4.4 Results 

 

4.4.1 Street tree models 

 

Total tree abundance models were moderately predictive with some outliers (Fig. S4.2.1, fitted 

R2 for small trees = 0.78, medium trees = 0.58 large trees= 0.42). Removing the outliers changed 

the fitted R2 to 0.76 for small trees, 0.76 for medium trees, and 0.58 for large trees. Both 

demographic and environmental predictors were important in predicting total trees, with human 

population size, ecological province, and community area emerging as top predictors across size 
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classes, mean year of home construction emerging as predictive for medium and large trees and 

community canopy cover for large trees (Table S4.2.1).  

The total tree abundance models were used as inputs to the genus-level models, which 

were then used to predict abundances for each host tree genus. Our genus-level model fits were 

strong, but became slightly weaker for rare genus and size class combinations (Fig. 4.2, overall 

R2
 for all genera of small trees = 0.93, medium trees = 0.93, large trees = 0.92). Within each 

genus, the best combined model fits were generally strong (Table S4.2.5, mean R2=0.76, s=0.16 

for small trees, mean R2=0.78, s=0.14 for medium trees, mean R2=0.78, s=0.17 for large trees). 

While relationships were variable across genera, the genera that were fit most poorly did not 

make up a large proportion of predicted trees, and none were below R2 = 0.25  (Fig. S4.2.2). 

Some genera were very rare within our inventoried communities at a given size class, and 

therefore had insufficient data to fit their genus-specific models. In these cases, R2 is reported as 

NA in Table S4.2.6.   

The optimal genus-level method (global BRT, global GAM, customized BRT, or 

customized GAM, Fig. 4.1) differed across genera depending on diameter class, prevalence of 

genera, and whether presence/absence or tree abundance was the response variable (Tables 

S4.2.2-4). Across diameter classes, a general GAM for presence was most frequently selected 

when the number of predicted trees and the number of sites with trees present for that genus were 

high, indicating that the presence of common genera is driven by the same environmental and 

social variables. When predicting tree abundance, given presence, more common genera tended 

to be fit better by customized BRT or GAM models, indicating more idiosyncratic relationships 

to predictor variables at the level of tree quantity for ubiquitous genera. Where the number of 

total predicted trees and sites was not as high, small and medium size classes tended to be 
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predicted best by a global BRT for both tree presence and abundance, while large trees tended to 

be fit best by a customized GAM for presence, followed by a global BRT for tree abundance. It 

appears that even in cases of data scarcity, genus-specific predictors of presence/absence can be 

detected for some rare genera. However, for tree abundance, rarer genera are better fit by general 

models, potentially due to their increased statistical power (Fig. S4.2.3). 

According to our models, across the US, the population of small street trees is mostly 

made up of Acer and Quercus, with substantial Fraxinus (Fig. S4.2.4). Medium trees are again 

mostly Acer, but with a large number of Eucalyptus and Fraxinus. The largest street trees are the 

most evenly split across genera, but dominated by Acer and Quercus. When we compared our 

fitting set (653 communities) to our extrapolations of tree distributions across all communities in 

the US (~30 000 communities), small tree predictions remained relatively close to the 

inventoried distribution. Conversely, medium trees were predicted to have a much higher 

proportion of Eucalyptus than in the fitting set (we note these were predicted almost entirely in 

California). Similarly, we predicted a much smaller proportion of medium-sized Quercus than in 

the fitting set, and a much smaller proportion of large-sized Ulmus. These discrepancies are 

likely due to tree community differences in the southern US, where we had very few tree 

inventories, compared to the northern communities that comprised the majority of our data. 

 

4.4.2 Host tree exposure 

 

We synthesized the previous two modelling steps (Fig. 4.3a-b), intersecting pest spread forecasts 

with predicted tree distributions, to create forecasts of tree exposure. We define exposure as the 

sum of predicted pest density of each pest species, multiplied by their predicted host tree 
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abundance in each community. Predicted street tree exposure across all tree types from 2020 to 

2050 is generally high in the eastern US, and only sporadically high across the western US (Fig. 

4.3c). Predicted street tree exposure is highest among Acer (12.0M), Quercus (4.1M), and Pinus 

spp. (2.0M), and the greatest number of trees are predicted to become exposed to Japanese beetle 

(Popillia japonica, 9.9M), gypsy moth (5.2M), and Asiatic oak weevil (Cyrtepistomus castaneus, 

4.7M). Among residential and community trees, exposure is greatest among Acer, Quercus and 

Prunus spp. (1.2B, 985M, 668M, respectively), and most frequently predicted pest encounters 

are with Japanese beetle, gypsy moth and winter moth (Operophtera brumata) (1.8B, 1.1B, 

447M).  

 

4.4.3 Host mortality model 

 

The best-fitting mortality model had the majority of its posterior probability density in the very 

low bins, and the majority of the posterior density at the low end of severity within each bin (Fig. 

4.4, full results in Appendix S4.4). Thus, mortality risk was predicted to be much lower than if 

the midpoint of each bin had been taken as the expected risk. 

 

4.4.4 Street tree mortality 

 

In our best-guess scenario (i.e., 10-year scenario for borers, 50-year scenario for defoliators, 100-

year scenario for sap feeders), we estimated a loss of 5-12% of street trees by 2050, but the most 

extreme scenarios led to projected losses upwards of 67% (Table 4.1). Over time, predicted street 

tree death varied by an order of magnitude based on the mortality debt scenario, with shorter 
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debts leading to lower total mortality between now and 2050 (Table 4.1). This sensitivity was 

driven largely by the borer guild, as demonstrated by the sensitivity of mortality estimates to 

their mortality debt scenarios (“Vary Borers” row, Table 4.1). Spatially, future damages will be 

primarily borne in the Northeast and Midwest, driven by EAB spread (Fig. 4.3d). The top ten 

“mortality hotspot cities”, where projected mortality is in the range of 20-100,000 street trees, 

include Minneapolis/St. Paul/Bloomington, MN; Milwaukee, WI; Indianapolis, IN; 

Chicago/Aurora, IL; and Columbus, OH. These cities have large amounts of Fraxinus predicted 

to have been in the path of recent EAB spread, leading to high mortality. Cities predicted to have 

high mortality outside of the Midwest include New York City, NY and Seattle, WA. These are 

cities with high numbers of street trees and high human populations, which attract EAB 

propagules within our spread model. The states most impacted by street tree mortality match 

these patterns, where the highest mortality is in Minnesota, Ohio, and Illinois.  

 

4.4.5 Costs 

 

We estimated annualized street tree costs across all guilds to be between $84-225M USD per 

year in our best guess scenario (mean = $146M, Fig. 4.5). The total cost associated with street 

tree mortality in hotspot cities was estimated at $170M from 2020 to 2050, with $48M in 

Minneapolis alone. Over time, street tree damages varied by an order of magnitude based on 

mortality debt scenario, because of the mortality patterns described in the preceding section (Fig. 

4.6). Given the dominance of borers in total costs, our best guess indicates that the impact of 

mortality debt will more closely match the 10-year scenario (red line, Fig. 4.6). We also see that 

longer mortality debt leads to a smoother cost curve, or costs that do not vary much due to 
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temporal variability in pest spread. In particular, the SDK predicts that EAB will spread to 

regions with lower urban ash from 2020 to 2025. Communities in these regions will not 

experience the same magnitude of street tree mortality as communities invaded previously by 

EAB. These spread patterns explain the cost fluctuations in the shortest mortality debt scenario 

in Fig. 4.6. 

The ranking of feeding guild severity was relatively robust across mortality debt 

scenarios, in spite of the potential for differences due to the interaction of pest-specific spread 

and mortality debt dynamics. Borers were predicted to be the most damaging feeding guild 

($80M-$846M mean annualized street tree damages across scenarios), and EAB was consistently 

the top threat. Predicted costs were lowest in our 10-year mortality debt scenario. Defoliators 

were predicted to be the second most damaging guild in short (10-year) and mid-range (50-year) 

scenarios (means = $11M and $5M), but had lower damages than defoliators in long-range (100-

year) scenarios (mean = $5M). Defoliators had a 1-2 order of magnitude lower cost than wood-

boring species, but again showed consistency in top threats within the guild, with Japanese beetle 

and European gypsy moth topping the list. The sap-feeding group had the second highest costs in 

the long scenario (mean = $12M USD), but lower relative costs to defoliators in the shorter 

scenarios (means= $3M). Unsurprisingly, hemlock woolly adelgid (Cryptococcus fagisuga) was 

the top sap feeder threat, and estimated damages from calico scale (Eulecanium cerasorum) were 

also notable. Total costs were only notably sensitive to borer mortality debt scenario 

misspecification (Table 4.1), which is promising, given our certainty of the shorter scenario for 

EAB. 
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4.4.6 Predicted mortality and potential costs to non-street trees 

 

Mean mortality for community trees in the best guess scenario was 4.6% (318M trees), and mean 

mortality for residential trees was 4.2% (59M trees) (Table S4.5.1). If we assume that non-street 

trees will be managed in the same way as street trees (i.e., removal and replacement), this 

mortality would incur an estimated annualized cost of $1.2B for community trees and $290M for 

residential trees.  

 

4.5 Discussion 

 

Urban trees represent the most substantial sector of economic damages for forest pests (Aukema 

et al. 2011), yet until recently, data did not exist on the urban distribution of host trees (Koch et 

al. 2019), the spread of pest species (Hudgins et al. 2019), nor the mortality risk for hosts due to 

different pests (Potter et al. 2019). Furthermore, previous impact estimates did not break down 

these impacts into predicted mortality by tree genus and land type (residential, community, 

street), but we showed that projected tree deaths are incredibly striking. Our analyses show that, 

based on the best available information, pests could kill 5-12% of all street trees, 59M residential 

trees, and 318M community trees by 2050, owing in large part to Fraxinus mortality due to 

EAB. Borers are projected to be by far the most damaging feeding guild, followed by defoliators 

and sap feeders. For street trees, we estimate that management of dead trees will cost between 

74-198M USD annually. Given previous assumptions about treatment from Aukema et al., the 

management costs of non-street trees are potentially twice as high as previous estimates (but see 
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Limitations). Our integrative analysis provides the best estimate of future spatio-temporal 

mortality for trees in all land types, both asymptotically and for the period of 2020 to 2050, as 

well as robust spatiotemporal cost projections for street trees, and highlights the information 

needed to better characterize the latter across land types. 

 

4.5.1 Comparison to previous work 

 

We found that both demographic and environmental predictors were important in determining 

street tree distributions, including human population size, ecological province, community area, 

mean year of home construction and community canopy. In comparison, Koch et al. (2018) also 

found canopy cover and area to be highly predictive of total community basal area in their 

models. However, these authors did not find housing or human population variables to be 

predictive, but instead found latitude and longitude to be predictive. Given that their analysis was 

restricted to three genera in the eastern and central US, it may have been easier to capture larger 

climatic patterns in the distribution of these trees in these areas, and latitude and longitude act 

might have served as surrogates for other factors in their restricted area of analysis. 

Our projected urban tree costs have greater resolution compared to Aukema et al. (2011), 

and thus provide the best current estimate of urban costs. The previous cost estimate was for all 

urban trees, including street and non-street trees. This analysis separated trees into residential 

and non-residential types (grouping street trees in the latter). Cost differences compared to this 

analysis can be explained largely by saturating spread patterns across pest species, and greater 

resolution in Fraxinus spp. distributions. We estimate annualized costs for non-residential trees 

to be slightly below the Aukema et al. (2011) estimate ($1.2B versus $2.0B). Our estimate of 
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residential tree costs is less than one third of the Aukema estimate ($290M vs. $1.1B). Both of 

these estimates are lower because of a decreased predicted impact of defoliators and sap feeders 

relative to borers, and due to lower rates of Fraxinus exposure to EAB, particularly in residential 

areas. While this previous analysis was limited to cost estimates, our approach also allows the 

spatiotemporal examination of tree exposure and tree mortality at the level of individual tree 

genera and causal pest species. 

 

4.5.2 Spatial Considerations 

 

Spatially, total damages will occur mostly in the Northeast and Midwest, and while these are 

areas with both high host diversity (Liebhold et al. 2013) and high current and future pest load 

(Hudgins et al. 2019), the pattern of damage is distinct from either of these. Our predictions span 

less of New England than pest load predictions, and span less far south than regions of high host 

diversity. Damages cannot be predicted simply by examining either host or pest distributional 

forecasts because they depend instead on the intersection of these two elements and subsequent 

mortality dynamics. We predict the greatest tree exposure in the eastern US, which translates to 

the highest risk close to the leading edge of present-day EAB distributions when synthesized 

with mortality estimates, particularly in areas predicted to have high Fraxinus densities. At the 

level of individual cities, many of the highest-risk communities are highly populated and along 

the EAB leading edge (e.g., Minneapolis-St. Paul, MN), but we see high risk in major urban 

centers with large urban tree communities containing Fraxinus even outside of this region (e.g., 

Seattle, WA).  
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4.5.3 Temporal Considerations 

 

These cost and mortality estimates vary substantially based on dynamics of host mortality 

following initial pest invasion, in particular due to the duration and functional form of mortality 

debt. Thankfully, the guild (borers) and species (EAB) whose impact on total community costs is 

most sensitive to correct specification of the mortality debt dynamics is the one for whom we are 

most confident. Several publications have demonstrated near-complete decimation of ash stands 

in the decade following EAB infestation (Kovacs et al. 2010; Knight et al. 2013; Fei et al. 2019). 

Furthermore, since total tree mortality is asymptotically equivalent across all mortality debt 

regimes, if other feeding guilds possessed 10-year mortality debt regimes, we should have been 

able to detect a rapid die-off of their hosts as they spread, similarly to what we found for EAB 

(albeit scaled by their maximum mortality rates). This was not the case.  

Our temporal results show an analogous effect to other ‘debt’ dynamics in ecology, 

where communities pay the price in the present for impacts that began in the past as a result of 

time lags. One such example is extinction debt, where fragmentation’s effects on biodiversity 

occur with a time lag (Vellend et al. 2006). More closely related to mortality debt is invasion 

debt, where the long-term ecological consequences of invasive species are only realized after a 

lag due to introduction, establishment, spread, and/or impact dynamics (Bennett et al. 2013; 

Rouget et al. 2016), where it can be understood as one mechanism behind a time lag in long-term 

impact.  

Based both on economic processes of temporal discounting, and the slowing of the spread 

of existing invaders as they saturate their communities, we see a decreasing trend in the 
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economic impacts of these invaders over the next 30 years. This implies that the window of 

opportunity for preventing damages due to these pests is closing, and rapid responses to 

immediate threats to municipalities are needed to avoid the worst anticipated future damages. It 

is, however, important to keep in mind that this analysis does not account for the costs of novel 

invaders that may begin to cause impacts within this time window. Since our estimate is limited 

by our knowledge of the invasion dynamics and impacts of pests that have already completed 

primary establishment, forecasting subsequent primary establishment and resulting secondary 

impacts of novel invaders is a key complementary analysis. 

 

4.5.4 Limitations 

 

The aim of this paper was to provide the best estimate of expected future damages (over a 30-

year time horizon) due to each invasive forest pest across 30,000 US communities at the level of 

their individual host tree genera. We chose to explore several aspects of uncertainty in this 

analysis, but did not exhaustively examine potential sources of variation in the damage 

projections, including 1) future climatic variability, 2) spread model uncertainty, 3) host 

distributional model uncertainty, 4) variability in management behaviour, 5) asymptotic 

mortality misestimation, and 6) mortality debt model misspecification. In Table 4.2, we have 

categorized the relative level of uncertainty across land types associated with the different impact 

metrics reported in this paper. The table includes all of the elements from the above list 

impacting each of these categories. All impact metrics are sensitive to climatic variability, as 

well as a correctly-specified pest spread and tree distributional models. While the pest spread 

model accounts for climate change as it is predicted to impact invasive pest spread through 
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forests, we acknowledge that climate change could alter urban pest and host distributions, as well 

as host susceptibility and mortality risk following pest invasion in ways we cannot capture within 

this framework. In the current climate our pest spread model is demonstrably predictive and 

consistent across land types, but we are more confident in our urban tree models for street trees 

than residential and community trees, as we were able to draw on a much larger fitting dataset 

for these, so all impact metrics have greater uncertainty for residential and community trees. Our 

most robust impact metric is predicted focal host exposure to each pest, since it is only sensitive 

to pest spread and urban tree distributional models. Asymptotic mortality refers to the maximum 

mortality predicted from our mortality model that can be attributed to forecasted pest spread 

from 2020 to 2050. This mortality would be reached eventually in any mortality debt scenario, 

and relies on accurate mortality estimates from our Bayesian approach. Specifying a time-

window of 2020 to 2050 for impacts make the final two metrics (mortality and cost 2020 to 

2050) more sensitive to the correct mortality debt model, but we know that the more uncertain 

pest species in terms of mortality debt scenario contribute less substantially to cost estimates. As 

such, we are relatively confident in all mortality estimates reported for 2020 to 2050 across all 

three land types. In addition to these sources of uncertainty, management responses cause 

additional uncertainty when translating from mortality within a given time range and cost within 

that range. These behaviours are most certain for street tree management, moderately uncertain 

for residential tree management, and most uncertain for community tree management (Table 4.2, 

see below). 

 We caution against grouping all non-residential trees together when calculating costs as 

in the analysis of Aukema et al. (2011), because management behaviour likely differs 

substantially between highly valuable street trees and other trees (e.g., trees in parks, wooded 
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areas, and commercial developments). These trees are likely at a lower priority for removal, and 

even within these other uses, management may differ. For example, dead trees may be left 

standing in wooded areas, but that is less likely in heavily used public parks where such trees 

would be hazardous to park users. Though we report rough cost estimates for the cases where 

these other trees are managed analogously to street trees (all dead trees are removed, taking into 

account that homeowners must pay more for tree treatment compared to municipalities who can 

benefit from economies of scale, Aukema et al. 2011), we believe this is likely an overestimate, 

because responsibility and behaviour is likely far more variable. Indeed, this may be a 

particularly severe overestimate for non-residential community trees, as management 

jurisdictions may be ambiguous for these trees, and many may not put people at risk (e.g., trees 

deep in wooded areas of parks or in industrial areas). While homeowners are likely to respond 

more frequently to dead trees, residential management is likely still to be more variable than 

street tree management. For instance, residential trees will likely be cut and replaced if the risk of 

them falling on a home is very high, but could be ignored otherwise. This decision is likely to 

vary with things like lot size and household income. Nonetheless, the sheer number of projected 

deaths of non-street trees likely means they will contribute substantially to future costs. On 

average across communities where land type data are reported (Koch et al. 2018, n=61), street 

trees make up 6.8% of urban trees (though we note that this is likely an underestimate for cities 

in areas that are naturally grasslands or deserts), so the total cost of forest pests depends a great 

deal on how these other land types are treated. Based on our estimates, we note that non-street 

trees have the potential to lead to damages two orders of magnitude higher than those of street 

trees. 
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We note that all known host genera for invasive forest pests were present in at least one 

community within our fitting set (Aukema et al. 2010). However, there are clear spatial biases in 

our records (Fig. S4.1.1). The majority of the communities in our fitting set are in the northern 

US and California. Our data spanned 32 states, but include relatively few communities in the 

southern US. It is possible that the regions we were missing have different relationships with the 

modelled predictor variables, but we were limited to the data available. Nonetheless, our data 

spanned a variety of climates (plant hardiness zones 3-11, Daly et al. 2012) and our communities 

ranged widely in population size (70 people – 8.6M people), which likely indicates a variety of 

potential tree assemblages. 

We note that the database upon which we built our mortality models (Potter et al. 2019) 

is based partly on expert elicitation. It is therefore subject both to a high degree of imprecision 

and a potential bias toward overestimation of pest risk from forestry experts who have witnessed 

low-probability events (Skjong & Wentworth 2001). Fei et al. (2019) recently published 

empirical mortality rates for a subset of these pest species based on forested area data (Forest 

Inventory and Analysis program, (FIA), Miles et al. 2001), which were reported relative to 

background forested host mortality, and included estimates for some pathogens. Had we included 

pathogens in our analysis, we could have underestimated the mortality rate for deadly pathogens 

such as laurel wilt disease compared to these authors (Fei et al. 2019). However, mortality rates 

in forested stands may not align well with urban host mortality risk for these pest species. 

Nonetheless, the characterization of future pathogen-induced urban tree impacts is an important 

area of complementary analysis given the potential for high mortality rates. Background tree 

mortality was also not accounted for in our models, which may have killed some exposed hosts 

before the pests could cause impacts. This is especially true in the longer time-horizon mortality 
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debt models, since natural mortality probabilities are likely high on the scale of 100 years. Since 

the majority of projected damage is due to shorter-term dynamics, background mortality should 

offset only a small fraction of future pest-induced tree mortality in the next 30 years. 

For street trees, this cost estimate is arguably a lower bound, since it only examines the 

cutting of dead trees. In cities such as Chicago (https://www.chicago.gov/city/en/depts/ 

streets.html), trees are being preventatively treated for EAB, and similar schemes exist in many 

US cities. As such, preventative behaviour is a key additional cost that is worth exploring in 

subsequent expansions of this framework. Additionally, there was a time lag between tree 

inventory data collection and this tree mortality analysis for many cities, particularly in the 

Midwest (Koch et al. 2018). While this lag is useful for not obscuring potential contemporary 

tree mortality, many of the cities where we predicted high losses from EAB might already have 

felt some of these losses and/or have started proactively removing ash by the time of this 

publication. Another missing cost is the cost of novel invaders that will enter the US between 

2020 and 2050. While we show the dominance of borers within currently-established forest 

pests, future damages may shift to other feeding guilds, for instance with the anticipated arrival 

of the Asian gypsy moth (Lymantria dispar var. asiatica) (Hajek & Tobin 2009).  

 

4.5.5 Conclusion 

 

In order to make the most effective pest management decisions, policymakers and managers 

require information on the most likely spatiotemporal pattern of future pest damages. Further, in 

the absence of cost information, the degree of devastation caused by invasive species can easily 

be brushed aside. We have created a framework to estimate urban tree damages across all US 
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invasive forest pests in roughly 30 000 US communities. We have shown that these pests have 

the potential to kill a substantial fraction of street trees and hundreds of millions of urban trees in 

the next 30 years, and that these deaths could correspond to total damages on the order of tens of 

billions of dollars, where the majority will be paid by urban centers in the Midwest due to EAB-

induced ash mortality. While these are rough estimates subject to varying levels of uncertainty, 

they illustrate the gravity of pest infestations in urban areas, particularly in terms of street tree 

mortality and management costs. The creation of fine scale spatiotemporal cost estimates also 

allows for the prioritization of future management efforts, for instance in identifying tree 

mortality hotspots. This approach can allow for predictive impact modelling for future invaders, 

thereby allowing managers to be better prepared for future threats. 
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4.7 Figures and Tables 

 

4.7.1 Figures 

 
Figure 4.1 Schematic representation of the four subcomponent models we combined to produce 
refined damage estimates to street trees from invasive US forest pests. Methodology is 
represented within braces, where GAM= Generalized Additive Model, and BRT= Boosted 
Regression Tree. The spread model predictions correspond to SDK forecasts from Hudgins et al 
(2019). 
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Figure 4.2 Fit of the genus-specific host tree models across all genera and size classes.  

 

 
 
Figure 4.3 Model outputs for the first three subcomponent models, including a. predicted street 
tree abundance, b. predicted new pest invasions, c. predicted street tree exposure levels (number 
of focal host tree + pest species interactions) from 2020 to 2050, and finally d. Predicted total 
tree mortality from 2020 to 2050 in the best guess mortality debt scenario across space. Top ten 
most impacted cities are shown in terms of total tree mortality 2020 to 2050 (A =Minneapolis/St. 
Paul/Bloomington; MN, B=Milwaukee, WI; C=New York City, NY; D=Indianapolis, IN; 
E=Columbus, OH; F=Chicago/Aurora, IL; G=Seattle, WA).  
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Figure 4.4 Posterior distribution for the beta model of host mortality due to pests within each 
severity category. 95% Bayesian credible intervals are shown in grey, and the posterior median is 
shown in black. Coloured bins represent severity categories extended from Potter et al. (2019). 

 

Figure 4.5 Predicted annualized costs for the best guess mortality debt scenario, with 95% 
Bayesian credible intervals shown in yellow and the posterior mean shown in red (146M USD). 
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Figure 4.6 Depiction of the influence of mortality debt on temporal cost patterns. Predicted costs 
2020 to 2050 for the 10 year (yellow), 50 year (teal), and 100 year (purple) mortality debt 
scenarios with a 10 year initial invasion lag. The best guess predictions are shown as a dashed 
red line. Costs are presented in 5-year increments in accordance with the timestep length within 
our spread model. 

 

 

4.7.2 Tables 

 
Table 4.1 Predicted annualized cost (in 2019 USD) and tree mortality across invasion scenarios 
from 2020 to 2050 across all 57 species. “Best Guess” indicates the scenario with expert-elicited 
mortality debt durations by guild, “Vary” scenarios hold all guilds but the focal guild constant at 
their best guess scenario, and “All” fix all three guilds at a given mortality debt duration. Mean 
mortality for best guess = 7.8%, 59M trees, 146M USD annualized (3.3B over the next 30 years). 
 
 

Mortality Debt 
Scenario 

Annualized Cost 
(millions 2019 USD) 

Tree Mortality 
(millions) 

Percent Mortality 

lower 
95% CI 

upper 
95% CI 

lower 
95% CI 

upper 
95% CI 

lower 
95% CI  

upper 
95% CI  

Best Guess 84.1 225 2.72 7.26 4.5% 12.0% 
       
Vary Borers 84.4 846 2.62 38.8 4.4% 64.3% 
Vary Defoliators 80.4 218 2.49 6.96 4.1% 11.5% 
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Vary Sap-Feeders 80.5 212 2.50 6.70 4.1% 11.1% 
       
All 10 82.7 218 2.51 6.69 4.1% 11.1% 
All 50 16.2 446 7.47 20.6 12.4% 34.0% 
All 100 32.4 897 14.8 41.1 24.42% 67.82% 

 
Table 4.2 Visual representation of the sources of uncertainty and their relative quantification 
across impact types, where redder hues indicate greater uncertainty. Sources of uncertainty 
include 1) future climatic variability, 2) spread model uncertainty, 3) host distributional model 
uncertainty, 4) asymptotic mortality misestimation, 5) mortality debt model misspecification, 6) 
variability in management behaviour. 
 
 

Tree Type 

Dimension of Impact 

Exposure1,2,3 Mortality 
(Asymptotic)1,2,3,4 

 

Mortality 
(2020-
2050)1,2,3,4,5 

Cost (2020-
2050)1,2,3,4,5,6 

Residential     

Community     
Street     
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Connecting statement  

In Chapter 4, I moved from a more purely ecological focus to an impact focus, and created 

estimates of damages to urban trees due to the three major US insect forest pest feeding guilds. 

In spite of the applied focus, these projections remained heavily informed by ecological models, 

including projections of pest distributions from the SDK, and newly-developed models of host 

tree distributions and host tree mortality due to each pest species.  

In this chapter, I combined 4 subcomponent models to produce cost estimates: first, a 

model for urban trees, second, the SDK predictions from Chapter 2, third, a model of host death 

given pest exposure, and finally, some simple assumptions about the human response to tree 

infestation. The first three model components were major advances compared to the previous 

work. I moved from assuming all cities had the same tree distribution, to spatial resolution at the 

city level for urban trees, and from 3 point estimates for pest spread and host mortality due to 

each pest, to different estimates for each pest. This improvement was possible due to high 

resolution spatiotemporal spread predictions from Chapter 2. 

This framework demonstrated how general models that leverage the increased 

predictability of invasions at a macroecological scale due to anthropogenic replacement can be 

used to create higher resolution predictions of managerial interest. I was able to use these general 

models to move from rough estimates of damage with no spatiotemporal resolution, to species, 

host tree, city, and time-specific predictions of pest damage for each pest species. 
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General Discussion 

 

5.1 Introduction 

 

The primary goal of this thesis was to identify largescale generalities across species invasions in 

the secondary invasion process, in order to uncover new macroecological rules governing 

invasive community ecology, as well as to advance predictive pest management. In Chapter 1, I 

built a general spread model for US invasive forest pests. In Chapter 2, I contrasted this general 

model with more complex single-species models, and derived an intermediate-complexity model 

that leveraged the benefits of both customization and anthropogenically-induced generalities. 

Chapter 3, I moved from spread to the establishment phase within secondary invasions, and built 

a general, integrative establishment model to uncover the nuanced relationship between host 

biodiversity and secondary invasion success. Finally, in Chapter 4, I built an impact framework 

from a suite of predictive ecological and economic models in order to determine the extent of 

future damage to urban trees from invasive forest pests.  

 

5.2 Main findings 

 

Currently, most predictions of species invasions use species-specific models (Muirhead et al. 

2006; Carrasco et al. 2010, Gagnon et al. 2015). In Chapter 1, I showed that a common dispersal 

kernel can capture much of the variation in pest extent across all known damaging forest pests in 

the US, thereby showing support for novel macroecological rules governing pest invasions. 
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Further, my GDK model advances predictive invasion biology through its ability to forecast the 

spread of new invaders using only a point of likely introduction and knowledge of their host 

species. I hypothesized that the generalities uncovered were due to anthropogenic replacement, 

where humans transport species analogously across the entire community of forest pest species. 

Within Chapter 2, I explored the value of using the GDK as a basic structure upon which 

to build models, adding context-specific information where it was known within the SDK. Given 

that spread models have previously been parameterized using the same time-series data as the 

customized models, and that these were found to be weaker than the SDK, I demonstrated that 

even models using the best available data may not produce highly predictive forecasts. On the 

other hand, it appears that a model employing snapshots of whole-community pest distributions, 

a species’ known initial invasion location, and when necessary, its known niche limitations, can 

outperform the best-fitting customized model. My Chapter 2 forecasts suggested future invasions 

will be even more aggregated in space, and that urban centers and areas of high forest cover and 

high tree density appear to be general attractors for all pests. 

In Chapter 3, I performed an analysis of whole-community US forest pest secondary 

establishment, where I was able to separate the role of host density, species richness, and the 

spatially-autocorrelated spread process from the role of host evolutionary history. Within this 

framework, I was able to detect a novel, nonlinear relationship between phylogenetic host 

dissimilarity and pest establishment, where density-dependent amplification occurs for closely 

related hosts, density-dependent dilution occurs for more distantly related hosts, and very 

distantly related hosts have negligible effects. These patterns occur in part due to the greater ease 

of generalist pests to establish, but appear to also be driven by climatic or other biotic factors 

beyond host community composition. This general pattern emerged across all 72 invasive forest 
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pests in the US. This finding highlighted the importance of considering evolutionary history 

when attempting to understand the occurrence of invasive species, and provided a more nuanced, 

macroecological picture of the role host diversity plays on pest infestation.  

Within Chapter 4, I demonstrated that various sources of partial information, including 

pest distributional predictions from Chapter 2, can be synthesized in order to produce finer scale 

spatiotemporal predictions of future pest impacts. This estimate was a major increase in accuracy 

compared to the previous analysis, which relied on 3 single-species estimates and the assumption 

that host trees are distributed uniformly across the US based on estimates from a handful of cities 

(Aukema et al. 2011). My analyses show that US invasive forest pests will likely kill hundreds of 

millions of urban trees in the next 30 years, and that managing dead street trees alone will cost 

$146M USD annually. The cities facing the greatest tree mortality are predominantly in the 

Midwest, and mortality patterns are driven by emerald ash borer induced ash mortality. Street 

trees account for only 6.8% of all urban trees, meaning the total urban tree costs could be an 

order of magnitude larger (~$1.6B annually). Therefore, management behaviour for non-street 

trees must be better understood in order to fully understand future costs to US municipalities.  

 

5.3 Implications 

 

5.3.1 Ecological implications 

 

This thesis has examined generalities that emerge at large scales across species invasions from 

the ecological to the applied. These analyses have provided support for the theory that humans 

are allowing for invasive species distributions, and thus their associated damages, to become 
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broadly predictable across contexts. A fundamental aspect of ecology, and for any branch of 

scientific theory, is a search for general theories that can be applied broadly without many case-

specific modifications. The fit of the GDK in Chapter 1 was extremely strong, in spite of having 

very few predictor variables, indicating consistency in the spread process of a diversity of pests 

at large scales. In Chapter 2, I performed the first known comparison of general and species-

specific ecological spread models' predictive abilities. My results suggested that general models 

can be effectively synthesized with context-specific information to respond quickly to invasions. 

In Chapter 3, I simultaneously modelled the many processes involved in pest establishment and 

detected a novel, nonlinear relationship between phylogenetic host dissimilarity and pest 

establishment, which was generalizable across all species in the pest community, analogous to 

the generalizability of the spread process. This thesis has thus provided support for general rules 

governing invasive pest spread and establishment by being able to make predictions across 

species, time and space using common models and frameworks.  

 This work advances the literature on invasive spread models by providing a more 

process-based framework to understand long-distance dispersal that still builds from its 

foundations in reaction-diffusion (Skellam et al. 1951). The original population ecology models 

for invasive spread predict isotropic spread (Shigesada et al. 1995; Neubert & Parker 2004; 

Skarpaas & Shea 2007). These models are not spatially-explicit, and do not allow for the 

flexibility of including additional spatial predictors of dispersal. More contemporary models 

have allowed for the incorporation of spatial factors, but are quite distinct from travelling wave 

formulations of invasive spread (e.g. gravity models, Gertzen et al. 2011; Potapov et al. 2011). 

Given the more continuous nature of forests, the parameterization of a smoother dispersal kernel 

is likely more appropriate than a gravity model formulation. However, the use of the basic 
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structure of the dispersal kernel formulation, augmented by the inclusion of spatial predictors, 

allows us to balance the benefits of continuous spread without relying on the assumption that it is 

isotropic. 

Throughout this thesis, I have demonstrated support for my anthropogenic replacement 

hypothesis, where humans are making systems easier to predict at large scales, and have used 

this to my advantage to create higher resolution forecasts of future pest establishment, spread, 

and associated damage for forest pests. While the Chapter 3 integrative establishment model 

parameters are not explicitly linked with human influence, the majority of variation in pest 

establishment patterns could have been explained by anthropogenically mediated pest spread as 

captured through the GDK alone. Thus, I showed that this signal must be accounted for when 

assessing the role of additional predictors of establishment. Across chapters, I have used general 

models that borrow power across contexts to help overcome limited data, whether this was with 

the GDK and SDK, the general establishment model, or the urban tree and host mortality 

components of my economic analysis. Along the way, I have uncovered a more nuanced role of 

host biodiversity on forest pest infestation. 

 

5.3.2 Management implications 

 

The general macroecological rules uncovered with the GDK, SDK and establishment models 

also have considerable applied value in allowing potential new pest threats to be predicted and 

management to be planned before they have even established in a region. The frameworks 

produced throughout this thesis have immediate value to forest managers. They can be used to 

motivate and direct the effective allocation of government funding for invasive species 
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surveillance and management by delineating areas of high future risk and associated potential 

economic losses if preventative measures are not taken.  

In order to make the most effective pest management decisions, policymakers and 

managers require information on the most likely spatiotemporal pattern of future pest damages. 

Further, in the absence of cost information, the degree of devastation caused by invasive species 

can easily be brushed aside. Based on recent advances and my own previous work, I was able 

create a more accurate, better resolved picture of future spatiotemporal damages across the entire 

insect pest community. I have shown that these pests will likely kill ~8% of existing street trees 

by 2050, and could have total damages on the order of tens of billions of dollars. While these are 

rough estimates subject to many sources of uncertainty, they illustrate the gravity of pest 

infestations in urban areas. The creation of finescale spatiotemporal cost estimates also allows 

for the prioritization of future management efforts, for instance through the delineation of so-

called “mortality hotspot cities”, and can allow for predictive impact modelling for future 

invaders, thereby allowing managers to be better prepared for future threats.  

The cost curves I was able to produce as a result of the Chapter 4 framework can be 

synthesized with pathway level risk analyses for future pest entry in order to forecast future 

pathway level risk for entire suites of pest species. Further, for invaders known to be on the 

horizon such as the Asian gypsy moth (Lymantria dispar var. asiatica, Gray 2017), the 

submodels can be used to predict future spread and subsequent impact trajectories given different 

initial introduction sites. The integration of this framework within a spatial prioritization tool (i.e. 

allowing future damage trajectories to vary with the imposition of policies such as quarantines) 

would also allow policymakers to determine key sites for limiting future damages due to the 

entire pest community. 
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5.4 Limitations 

 

As I showed in Chapter 2 , there is substantial uncertainty in future pest distributions and 

damages even with our best current models, given available data. Intuitively, such uncertainty 

will commonly occur, and I argue that invasive species models should be validated using 

temporal data withheld from fitting, where possible. I chose to explore several additional aspects 

of uncertainty in this thesis, including variability across climate and population growth scenarios, 

uncertainty in true host mortality rates, and across mortality debt scenarios, but have not been 

exhaustive. As I showed in Table 4.2, one of the most challenging sources of data scarcity is a 

lack of understanding of the human response to pest infestation. I am fairly confident in my 

mortality and cost estimate methodology for US urban trees given the scenario that only dead 

trees are managed. However, a large amount of uncertainty exists surrounding how non-street 

trees will be managed, particularly for community trees, and surrounding the extent of 

preventative management behaviour across all land types.  

My models employed only two of the many alternative climate and population growth 

scenarios. Further, my models were based on current and historical conditions. Climate change 

could alter environmental suitability either due to its direct influence on the invading species or 

indirectly via effects on hosts and other species (Hellmann et al. 2008, Appendix S2.3). 

Fortunately, the SDK and urban tree distributional frameworks can easily parameterize any type 

of spatial limitation for any pest species or host genus, and can thus incorporate future 

knowledge of pest distributional thresholds. 

I was also necessarily limited in the model structures examined for these four thesis 

chapters. I believe that I have made the best choices for the underlying mechanisms being 
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studied, and have chosen structures that are modular and thus can easily incorporate additional 

components. One less positive aspect of modularity is the non-independence between the spread 

and establishment models of Chapters 1 and 3. I relied on a fitted establishment model as input 

into the spread model, and did not refit spread model parameters beyond a scaling factor when 

creating the Chapter 3 integrative joint model. This means that some factors important for spread 

could have been misattributed to the establishment model, and vice versa. This would have 

limited their detectability in the integrative joint model, and therefore diminish their predicted 

importance. As such, the 14.9% improvement to the spread model through the incorporation of 

the integrative establishment model is likely an underestimate of its importance. 

Another limitation that made relationships difficult to detect is an overall paucity of data 

across the models within this thesis. The opportunistic nature of data collection can also lead to 

biases in the types of data examined. In Chapter 2, I fit customized models to only three species, 

because these were the only species with available time series, which happened to be some of the 

most damaging pest species in the overall dataset. In Chapter 4, the subset of inventoried host 

communities was also a biased set of US urban areas. It is possible that the missing regions and 

species have different relationships with the modelled predictor variables. This could have 

produced models with higher or lower predictive performance, but I was limited to the data 

available. On the other hand, I have used the inherent data scarcity to my advantage by 

showcasing the ability to augment predictive ability with general models via the SDK, general 

urban tree distributional models, and the general establishment model.  

 
5.5 Future directions 
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My existing models are fit to all economically-damaging United States invasive forest pests, but 

a logical next step would be to extend these models into Canada with the aid of Canadian 

government researchers. Natural Resources Canada’s Canadian Forest Service possesses 

Canadian tree inventory data, and the Canadian Food Inspection Agency houses a database of 

nationwide pest surveillance efforts, both of which would be highly useful in this extension. Key 

challenges to producing a Canadian analog to this framework will be the predominantly East-

West traffic patterns of human dispersal within Canada, and a lower resolution of forest 

inventory data relative to the US. 

Over the course of my PhD, I focused on descriptive models of invasions across species 

at large scales, including models of establishment and dispersal, as well as descriptive analyses 

of future pest damages. I did not explore the role of alternative management scenarios. I intend to 

move from a descriptive to a prescriptive perspective in future work, and use model projections 

of pest distributions according to future treatment and quarantine scenarios to determine optimal 

management strategies. My existing models of pest distributions, host tree distributions, and 

subsequent host tree mortality could be used directly as inputs to the optimization schemes 

created (Chadès et al. 2017). The economic analyses from Chapter 4 could then be updated 

according to different future management scenarios to determine how quarantines and treatment 

regimens would impact future pest dispersal and subsequent tree mortality and economic loss.  

Additionally, value of information analyses could incorporate the uncertainties uncovered in the 

pest distributional models from Chapter 2 in order to determine the relative benefit of increasing 

surveillance to more accurately delineate pest distributions, versus allocating budgets toward 

active quarantine and treatment (Bennett et al. 2018). These analyses will help determine 

whether humans are not only allowing for invasion risk to become more predictable, but also 
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creating situations where the optimal treatment, quarantine and/or surveillance actions are also 

consistent across forest pest species, space, and time. Conventional approaches to optimize 

management utilize simplified invasion models that cannot capture hubs of human transport such 

as cities, and therefore may misestimate the effects of management (Sharov et al. 2002). Further, 

imperfect monitoring means that true pest distributions are uncertain. While increased 

surveillance reduces uncertainty, the benefit of correctly delineating distributions must be 

weighed against the cost of waiting for better information.  

In the future, I plan to create a mathematical framework for the optimal control of forest 

pest invasions that balances the roles of surveillance and management. I hypothesize that there 

are generalities in the best management strategies, and in the budgetary balance between 

management and surveillance across species. Further, I hypothesize that accounting for spatial 

spread alters optimal strategies compared to conventional approaches. To explore these 

hypotheses, I will overlay a decision theoretical model that assesses the effects of potential 

management decisions on sub-models of pest dispersal, host tree distributions, and host mortality 

to determine the set of management actions that minimizes economic losses. I will also conduct a 

value of information analysis to determine the ideal balance between taking action and reducing 

uncertainty through increased surveillance. To explore the existence of largescale generalities, 

optimizations will be examined for common spatiotemporal patterning, and the objective 

function will be calculated based on heuristics derived from these common patterns to determine 

a suite of nearly optimal responses. These rules of thumb will be summarized in an online tool 

where managers can provide information on their pests and regions of interest as well as their 

management options and budgets to receive control recommendations.  
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5.6 Conclusion 

 

This thesis has achieved its goal of uncovering largescale generalities across species invasions. 

These generalities can be explained by anthropogenic replacement, where the dominant role of 

humans means that many of the drivers of invasive species establishment, spread, and associated 

damages are common among species. Generalized predictive models, especially when 

augmented with simple context-specific information, can actually outperform models containing 

idiosyncratic data fit separately, due to increases in predictive power from anthropogenic 

generalities. These generalities extend from the secondary spread to the secondary establishment 

process, and can be used to uncover broad relationships between host biodiversity and pest 

success, where host density, relatedness, and species richness all combine to determine the 

likelihood of pest establishment. The generalities uncovered in the factors governing present and 

future pest distributions can also be used to create high-resolution forecasts of future 

spatiotemporal damages of the entire pest community to urban trees. I project future mortality of 

urban trees on the order of hundreds of millions in the next 30 years, and annualized damages of 

$146M USD for the management of dead street trees alone. Moving from a descriptive to a 

prescriptive lens, predictions from these models can act as inputs to invasive species control 

programs, and I plan to use them in subsequent work to develop general heuristics for effective 

pest management. 
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Appendices 

 

Appendix S1. Appendices for Chapter 1 

 

Appendix S1.1 Corrigendum for Chapter 1  

 

Corrigendum for Hudgins et al. (2017) DOI: 10.1111/ele.12741 

Authors: Emma J. Hudgins, Andrew M. Liebhold, and Brian Leung 

First published 08 February 2017 

Predicting the spread of all invasive forest pests in the United States 

Volume 20 Issue 4, 426-435, Article first published online: 08 February 2017 

Corrigendum 
 

This dispersal model was originally fit to 64 pest species, where we limited each pest’s dispersal 

to areas within their known host range by matching a list of host information for each pest to tree 

attributes within each grid cell.  

We have discovered an error in the processing of our input data for the host trees of three 

forest pests: Anoplophora glabripennis, Cronartium ribicola, and Ophiostoma novo-ulmi. Some 

possible hosts of these pests were not considered in our analysis as published due to a string-

parsing error in data pre-processing, affecting both the possible invasible counties, as well as the 

host range centroid from which spread originated in our analyses for these three species. The list 
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of host species included in our original Dryad publication remains accurate, but the data’s host 

density tab is now inaccurate (though calculable from the other data present).  

Further, we discovered that the Forest Service data on pest presence recorded one 

erroneous presence of gypsy moth in Floyd Co., Virginia. The species was only recorded in this 

county in 2012, so it should have been listed as absent in our analyses. This affected one cell of 

our Dryad grid (ID 4627 in dryad_griddata should show 0 for GM_pres).  

We apologize for these two errors, and have refit the model with these two updates. In 

refitting the model, we found that Anoplophora glabripennis (Asian longhorned beetle, ALB) 

became a strong outlier (Figure S1.1.1), but that the model was able to fit the other 63 species.  

We believe our model’s inability to predict the distribution of ALB is because it has not 

actually successfully invaded forested areas (it is still under eradication in N. America), while its 

potential invasible range spans the entire US due to its breadth of suitable hosts. All detected 

ALB populations occur in rural or semi-rural areas, and most of them have already been 

successfully extirpated (Trotter & Hull-Sanders 2015). The erroneous restriction of this species’ 

host range in the previous version of our model masked the mismatch between its very small 

observed distribution and immense potential distribution.  

While we were not able to fit ALB, removal of this data point retained (and marginally 

improved) the good fits previously found for the remaining 63 species. Accuracy changed from 

68.00% to 67.49% and R2
MSE changed from 67.94% to 68.70% in the constant model, indicating 

that dispersal is still fairly consistent across locations and species. Our final model includes the 

same explanatory variables as before with the same signs (updated Table 1.1). However, once 

the confounding effect of the outlier ALB was removed, two additional terms exceeded our 

threshold of improved fit and were added to the GDK, such that our final model included the 
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following 4 terms: Forested Land Area (increasing dispersal into sites, old), Tree Density 

(reducing dispersal out of sites, new), Human Population Density (2 terms: increasing dispersal 

into sites, old, and reducing dispersal out of sites, new).  

While these 2 additional factors will be of interest for prediction, the other main 

conclusions of the manuscript remain similar: 1) invasive pest dispersal is influenced by the 

extent of forested habitat and the presence of humans, but still contains no pest life history trait 

variables, and 2) our updated general model remains highly predictive, with roughly equivalent 

accuracy (73.85% vs. 73.91%), and a 3.03% improvement in R2
MSE (0.7774 vs. 0.7471). 

However, the new GDK parameters result in a 21.14% improvement in MET for these 63 species 

(47.45 km vs. 60.17 km per species), indicating substantially better spatial concordance between 

predicted and observed distributions. 

Researchers intending to make use of the Dryad data should note these changes. The 

updated data and scripts are available at: github.com/emmajhudgins/Hudgins-et-al.-2017--ELE--

corrigendum. As Figures 1.2, 1.3, 1.4, S1.1.6 and have also changed, we include the updated 

versions here (see Chapter 1 main text).  

 

Figure S1.1.1 Distribution of MET scores for the published parameter set applied to the updated 
data (black), and the optimal parameter set applied to the updated data (green) when 
Anoplophora glabripennis (Asian longhorned beetle, ALB) is included in fitting (circled). The 
old parameters lead to low MET scores for all species but ALB, and the new parameter set acts 
to reduce this species’ MET score, though it still remains much higher than all other species.  
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Appendix S1.2 Pest body size data 

Table S1.2.1 Pest body size data (maximum adult length in milimetres) and associated sources 
(applicable only for non-pathogens). 
 

Latin Name Common 
Name 

Pathogen 
(yes=1/no
=0) 

Maximum 
adult length 
(mm) 

Source 

Acantholyda 
erythrocephala 

Pine False 
Webworm 0 12.7 

D. Allen 1998. Pine False Webworm - 
potential threat to NY's white pine. NY 
Forest Owner.  
Http://www.dec.state.ny.us/website/dlf/privl
and/linkspag.html 

Adelges abietis Eastern Spruce 
Gall Adelgid 0 3 

Canadian Journal of Arthropod 
Identification: Common nursery & 
landscape pests of Ontario 
http://dkbdigitaldesigns.com/clm/species/ad
elges_abietis 

Adelges piceae Balsam Woolly 
Adelgid 0 1.2 http://www.cabi.org/isc/datasheet/3268 

Adelges tsugae Hemlock 
Woolly Adelgid 0 0.74 http://www.cabi.org/isc/datasheet/3270 

Agrilus 
planipennis 

Emerald Ash 
Borer 0 14 

http://www.agr.gc.ca/eng/science-and-
innovation/agricultural-
practices/agroforestry/diseases-and-
pests/emerald-ash-
borer/?id=1367251084402 

Anarsia 
lineatella 

Peach Twig 
Borer 0 12.7 

D. Alston. 2007. Peach Twig Borer (Anarsia 
lineatella). Utah Pests Fact Sheet. Utah State 
University Extension and Utah Plant Pest 
Diagnostic Laboratory. ENT-36-07. 
Http://www.utah pests.usu.edu 

Anoplophora 
glabripennis 

Asian 
Longhorned 
Beetle 

0 35 

http://www.agr.gc.ca/eng/science-and-
innovation/agricultural-
practices/agroforestry/diseases-and-
pests/asian-long-horned-
beetle/?id=1366991673596 

Aonidiella 
aurantii 

California Red 
Scale 0 2 http://www.cabi.org/isc/datasheet/5849 

Asterolecanium 
variolosum 

Golden Oak 
Scale 0 2.286 

T.J. Swiecki and E.A. Bernhardt. 2006. A 
field guide to insects and diseases of 
California oaks. USDA FS. Pacific 
Southwest Research Station General 
Technical Report, PSW-GTR-197. 

Callidellum 
rufipenne 

Japanese Cedar 
Longhorn 
Beetle 

0 13 http://www.cabi.org/isc/datasheet/10631 
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Carulaspis 
juniperi Juniper Scale 0 1.524 

G.A. Hoover. 2002.Entomological Notes: 
Juniper Scale. College of Agriculture 
Sciences, Cooperative Extension, 
Department of Entomology, Penn State. 
http://ento.psu.edu/extension/factsheets/pdf/j
uniperscale.pdf 

Ceratocystis 
fagacearum Oak Wilt 1 NA NA 

Coleophora 
laricella 

Larch 
Casebearer 0 6 

http://www.agr.gc.ca/eng/science-and-
innovation/agricultural-
practices/agroforestry/diseases-and-
pests/larch-casebearer/?id=1367260079294 

Contarinia baeri European Pine 
Needle Midge 0 1.7 http://www.cfs.nrcan.gc.ca/pubwarehouse/p

dfs/29720.pdf 
Cronartium 
ribicola 

White Pine 
Blister Rust 1 NA NA 

Cryphonectria 
parasitica Chestnut Blight 1 NA NA 

Cryptoccocus 
fagisuga Lind. Beech Scale 0 1 http://www.cabi.org/isc/datasheet/15802 

Cryptodiaporthe 
populea 

Cryptodiaporth
e Canker 1 NA NA 

Cryptorhynchus 
lapathi 

Poplar and 
Willow Borer 0 10 

http://www.agr.gc.ca/eng/science-and-
innovation/agricultural-
practices/agroforestry/diseases-and-
pests/poplar-and-willow-
borer/?id=1367421771921 

Cyrtepistomus 
castaneus 

Asiatic Oak 
Weevil 0 5.2 

Bright, D.E. & Bouchard, P., Insects and 
Arachnids of Canada Series, Part 25. 
Coleoptera, Curculionidae, Entiminae. NRC 
Research Press, Ottawa, Ontario, Canada, 
2008. 

Diaspidiotus 
perniciosus San Jose Scale 0 2.2 http://www.cabi.org/isc/datasheet/46224 

Diprion similis Introduced Pine 
Sawfly 0 10 http://www.cabi.org/isc/datasheet/19195 

Discula 
destructiva 

Dogwood 
Anthracnose 1 NA NA 

Elatobium 
abietinum 

Green Spruce 
Aphid 0 1.8 http://www.cabi.org/isc/datasheet/30897 

Epinotia nanana 
European 
Spruce 
Needleminer 

0 11.176 
Craighead, Frank Cooper, ed. Insect 
enemies of eastern forests. No. 657. US 
Department of Agriculture, 1950. 

Eulecanium 
cerasorum Calico Scale 0 7.874 

J.F. Stimmel. 1986. Calico scale, 
Eulecanium cerasorum (Cockerell) 
Homoptera: Coccidae. Regularory 
Horticulture 12(2):13-14. Entomology 
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Circular No. 105, PA Dept. of Agriculture, 
Bureau of Plant Industry. 

Euproctis 
chrysorrhoea Browntail Moth 0 12.5 

Length calculated from image of museum 
specimen with scale bar, property of 
Museum of Toulouse:  
https://en.wikipedia.org/wiki/Brown-
tail#/media/File:Euproctis_chrysorrhoea_M
HNT.CUT.2012.0.356._Les_Mathes_Male.j
pg 

Fenusa pusilla Birch 
Leafminer 0 3.048 http://ento.psu.edu/extension/factsheets/pdf/

birchLeafminer.pdf 

Fenusa ulmi Elm Leafminer 0 4.064 
Alford, David V. Pests of Ornamental Trees, 
Shrubs and Flowers: A Colour Handbook. 
CRC Press, 2012. 

Fiorinia externa Elongate 
Hemlock Scale 0 1.016 

Kosztarab, Michael. Scale insects of 
northeastern North America: identification, 
biology, and distribution. Virginia Museum 
of Natural History, 1996. 

Glycaspis 
brimblecombei 

Redgum Lerp 
Psyllid 0 6.35 

Halbert SE, 2001. Pest Alert: Red gum lerp 
psyllid, 
http://www.doacs.state.fl.us/pi/enpp/ento/gl
ycaspis.html. 

Gremmeniella 
abietina 

Scleroderris 
Canker 1 NA NA 

Homadaula 
anisocentra 

Mimosa 
Webworm 0 17.018 

Clarke, John Frederick Gates. A New Pest 
of Albizza in the District of Columbia 
(Lepidoptera: Glyphipterygidae). US 
Government Printing Office, 1943. 

Hylastes opacus European Bark 
Beetle 0 3.048 http://www.invasive.org/browse/detail.cfm?i

mgnum=5324031 
Lachnellula 
willkommii 

European Larch 
Canker 1 NA NA 

Lepidosaphes 
ulmi 

Oystershell 
Scale 0 2.54 http://ento.psu.edu/extension/factsheets/oyst

ershell-scale 

Leucoma salicis Satin Moth 0 38.1 http://www.maine.gov/dacf/mfs/forest_healt
h/insects/satin_moth.htm 

Lymantria 
dispar Gypsy Moth 0 35 

http://www.cabi.org/isc/datasheet/31807 ; 
http://animaldiversity.org/accounts/Lymantr
ia_dispar/ 

Matsucoccus 
matsumurae Red Pine Scale 0 4.7625 http://www.fs.usda.gov/Internet/FSE_DOC

UMENTS/fsbdev2_043074.pdf 
Melampsora 
larici-populina 

Eurasian Poplar 
Leaf Rust 1 NA NA 

Neodiprion 
sertifer 

European Pine 
Sawfly 0 8.89 

Hamilton, Clyde C. "The Pine sawfly 
Neodiprion sertifer Geoff. and its control 
with concentrated lead arsenate sprays." 
Journal of Economic Entomology 36 
(1943): 236-40. 
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Nuculaspis 
tsugae 

Circular 
Hemlock Scale 0 2 http://www.na.fs.fed.us/spfo/pubs/pest_al/eh

scale/ehscale.htm 

Operophtera 
brumata Winter Moth 0 29.972 

Ferguson, D. C. "Pests not known to occur 
in the United States or of limited 
distribution. Winter moth Operophtera 
brumata (L.) Lepidoptera: Geometridae." 
Cooperative Plant Pest Report 3.48/52 
(1978): 687-694. 

Ophiostoma 
novo-ulmi 

Dutch Elm 
Disease 1 NA NA 

Otiorhynchus 
sulcatus 

Black Vine 
Weevil 0 11 http://www.cabi.org/isc/datasheet/38071 

Phoracantha 
recurva 

Eucalyptus 
Longhorned 
Beetle 

0 29.2 http://www.cabi.org/isc/datasheet/40371 

Phytophthora 
cinnamomi 

Phytophthora 
Root Rot 1 NA NA 

Phytophthora 
lateralis 

Port-Orford-
Cedar Root 
Disease 

1 NA NA 

Phytophthora 
ramorum 

Sudden Oak 
Death 1 NA NA 

Plagiodera 
versicolora 

Imported 
Willow Leaf 
Beetle 

0 5 
http://idl.entomology.cornell.edu/files/2013/
11/Imported-Willow-Leaf-Beetle-
2328m44.pdf 

Popillia 
japonica Japanese Beetle 0 11 http://www.cabi.org/isc/datasheet/43599 

Pristiphora 
erichsonii Larch Sawfly 0 8 

http://www.agr.gc.ca/eng/science-and-
innovation/agricultural-
practices/agroforestry/diseases-and-
pests/larch-sawfly/?id=1367419008793 

Pristiphora 
geniculata 

Mountain Ash 
Sawfly 0 7.5 

Forbes, R. S., & Daviault, L. "The biology 
of the mountain-ash sawfly, Pristiphora 
geniculata (Htg.)(Hymenoptera: 
Tenthredinidae), in eastern Canada." The 
Canadian Entomologist 96(1964): 1117-
1133. 

Profenusa 
thomsoni 

Ambermarked 
Birch 
Leafminer 

0 4.064 
http://www.entomology.ualberta.ca/searchin
g_species_details.php?c=8&rnd=01092600
&s=5778 

Rhyacionia 
buoliana 

European Pine 
Shoot Moth 0 10 http://www.cabi.org/isc/datasheet/23641 

Scolytus 
multistriatus 

Smaller 
European Elm 
Bark Beetle 

0 3.8 http://www.fs.usda.gov/Internet/FSE_DOC
UMENTS/stelprdb5347208.pdf 

Sirex noctilio Sirex Wood 
Wasp 0 34 http://www.cabi.org/isc/datasheet/50192 
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Sirococcus 
clavigignenti-
juglandace 

Butternut 
Canker 1 NA NA 

Taeniothrips 
inchesconseque
ns 

Pear Thrips 0 1.778 http://ento.psu.edu/extension/factsheets/pear
-thrips-pa 

Thrips 
calcaratus 

Introduced 
Basswood 
Thrips 

0 5 http://www.na.fs.fed.us/SPFO/pubs/howtos/
ht_bassthrips/ht_bassthrips.htm 

Tomicus 
piniperda 

Pine Shoot 
Beetle 0 4.8 http://www.cabi.org/isc/datasheet/54154 

Trichiocampus 
viminalis Poplar sawfly 0 8.89 

de Tillesse, Veronique, et al. "Damaging 
poplar Insects-Internationally important 
species." (2015). 

Venturia 
saliciperda Willow Scab 1 NA NA 

Xanthogaleruca 
luteola Elm Leafbeetle 0 6 http://www.cabi.org/isc/datasheet/44619 
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Appendix S1.3 Full description of data sources used to fit the GDK model  

 

Term Type Description Source Citation 

 
Intercept 

 
NA 

 
NA 

 
NA 

 
NA 

Forested 
land (km2) HI 

Sum of land 
area covered 
by forest  

FIA 

Miles, P.D., Brand, G.J., Alerich, C.L., 
Bednar, L.R.,Woudenberg, S.W., Glover, 
J.F. et al. 2001. The forest inventory and 
analysis database: database description and 
users manual version 1.0. General Technical 
Report NC-218, North Central Research 
Station, USDA Forest Service, St. Paul, 
MN. 

Human 
Population 

(km-2) 
PP 

Current human 
population 
density at each 
time step 

US 
Census http://www.census.gov/popest 

Host 
Density 
(km3km-2) 

HI 

Host tree 
volume for 
that particular 
pest per grid 
cell 

FIA Miles et al. (2001) 

Host 
Species 
Count 

HI 

Number of 
tree species 
that are hosts 
of any pest 
present in grid 
cell 

FIA Miles et al. (2001) 

Tree 
Density 
(m3km-2) 

HI 
Total tree 
volume by 
grid cell 

FIA Miles et al. (2001) 

Body Size 
(mm) LH 

Maximum pest 
body length in 
mm (separate 
intercept fit for 
pathogens) 

Suppl. 
Mat. S3 NA 

Continent 
of Origin 

LH 
Continent of 
native range 

AFPE http://www.nrs.fs.fed.us/tools/afpe/maps 

Feeding 
Guild LH 

Fungi vs. 
Insects (binary 
variable) 

Aukema 
et al. 
2011 

Aukema, J. E., Leung, B., Kovacs, K., 
Chivers, C., Britton, K. O., Englin, et al. 
(2011). Economic impacts of non-native 
forest insects in the continental United 
States. PLoS One 6:e24587. 

Number of 
Hosts LH 

Number of 
host species 
possessed by 
pest 

AFPE http://www.nrs.fs.fed.us/tools/afpe/maps 
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Income 
(USD) PP 

Per capita 
income in 
1999 

US 
Census 

http://quickfacts.census.gov/qfd/meta/long_
INC910199.htm 

Road 
Length 
(km) 

PP 
Total length of 
all major roads 
in grid cell 

ArcGIS  
http://www.esri.com/data/data-maps/data-
and-maps-server 
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Appendix S1.4 Correlations among predictor variables examined in the model 

 
Table S1.4.1 Correlations among predictor variables examined in the model, divided into 
predictors applied across species (a.) and across space (b.). Spatial predictors that were applied 
differently across time or species (human population density and host density, respectively) are 
presented as averages. 
 
Pest Life History Predictors 
 

 Guild Continent Number of Hosts Body Size 

Guild 1 -0.1440 -0.1314 -0.5461 

Continent -0.1440 1 0.01742 -0.1160 

Number of 
Hosts -0.1314 0.01742 1 0.4598 

Body Size -0.5461 -0.1160 0.4598 1 

 
Spatial Predictors 
 

 
Average 

Population 
Density 

Average 
Host 

Density 
Income Road 

Length 
Forested 

Land 

Host 
Species 
Count 

Tree 
Density 

Average 
Population 

Density 
1.00 0.03 0.45 0.65 -0.09 0.19 0.01 

Average Host 
Density 0.03 1.00 0.08 0.07 0.26 0.05 0.54 

Income 0.45 0.08 1.00 0.42 0.02 0.09 0.11 

Road Length 0.65 0.07 0.42 1.00 0.02 0.27 0.03 

Forested Land -0.09 0.26 0.02 0.02 1.00 0.25 0.21 
Host Species 

Count 0.19 0.05 0.09 0.27 0.25 1.00 0.01 

Tree Density 0.01 0.54 0.11 0.03 0.21 0.01 1.00 
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Appendix S1.5 Results of fitting the GDK in 5-year increments 

 
We used 10-year increments to fit the GDK both for computational feasibility, and because our 

human population data from the US Census are in decadal increments. In our original GDK, the 

MET score of each species was inversely related to the extent of spread (r = -0.3406, p = 

0.0059). This relationship is consistent with choosing a time step width that is too wide, causing 

species who have spread over a smaller extent to be more negatively impacted by the binning 

process. However, this relationship could be caused by several other factors. 

In order to determine whether this relationship was caused by time step width, we have 

rerun our model-building procedure the using 5-year increments linearly interpolating the census 

data. If our MET outliers were due to binning, we would expect the effect of extent on MET to 

decrease at smaller bin sizes. This model included the same first three variables as our 10-year 

model and did not fit substantially better (∆ % overlap (5-year - 10-year model) = -1.12%, 

0.82%, 0.62%, 0.75% for the first four models of increasing complexity), and had a nearly 

identical relationship between MET and distance of spread (r = -0.3360, p = 0.0066 for the best 

3-term model). Additionally, the pattern of outliers (defined as median+1.5*interquartile range) 

was not substantially different, with 8/10 outliers remaining, despite the finer temporal 

resolution, providing strong evidence that the relationship was not due to binning.  

We offer an alternative explanation. As species spread farther, they saturate their host 

ranges, leading to fewer possible errors in predicted presences. In contrast, smaller extents are 

more reflective of stochasticity and starting conditions, and our need to initiate spread at host 

centroids (due to absent urban tree data) could affect species with smaller extents more severely. 

To determine whether urban tree data could be the culprit, we examined the MET scores of 

species whose source locations were inside known host range versus outside, and found a 
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significantly poorer fit for those species with source locations outside of the host range (t0.05(2),62 = 

2.793, p = 0.006988, see Fig. 1 below). 

 
Figure S1.5.1 MET scores in kilometers for species whose estimated first establishment 
occurred inside the natural host range (left) versus outside the natural host range (right). 
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Appendix S1.6 Expanded description of metrics of fit 

 

We used the Minimum Energy Test (MET) as our metric of model fit between predicted versus 

true distributions. MET compares the locational distributions of predicted versus true pest 

presences, and accounts for distances between predicted and true presences, which constitutes a 

higher information content than exact matches of presence/absence (i.e., mismatch of 50 km is 

better than a mismatch of 1000 km). MET was originally developed for applications in physics 

(Aslan & Zech 2005, Delaney et al. 2012). MET can be understood as a comparison of the 

average distance between data points within a distribution (either predicted or observed 

distributions) to the average distance between data points across the two distributions: 

! = !
"!""

∑ ∑ $(&!,$ , &%,&) −""
&'!

"!
$'!

!
%"!"

∑ ∑ $(&!,$ , &!,&) −"!
&'!

"!
$'!

!
%"""

∑ ∑ $(&%,$ , &%,&)""
&'!

""
$'! 								    (Eqn. 1) 

where n1 and n2 are the number of occurrences observed (1) and predicted (2), respectively, d is 

the Euclidian distance between the locations L of occurrences. The MET score is obtained by 

first calculating the average distance between all occurrences from predicted versus observed 

distributions minus the average distance between occurrences within each distribution. If the 

predicted and observed distributions are identical, these quantities will be equal. As the 

distributions become less similar, the average distance between distributions becomes greater 

than within distributions. Lower MET scores represent models with better goodness-of-fit.  

MET scores were minimized across species using numerical optimization (optim) in R (R 

Core Team 2015). We built our full dispersal model (GDK) using a forward selection procedure 

based on MET scores. Starting from the intercept-only constant dispersal model, we determined 

the MET score for every possible two-term model built by adding the remaining 18 terms 

individually to the intercept-only model. The MET score improvement between the intercept-
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only and each two-term model was calculated.  The term producing the largest improvement was 

then added to the model, and forward selection repeated with higher term models, until further 

additions of terms did not improve the model’s MET score by 5km. 5km was chosen as an 

arbitrary threshold to retain biological relevance. 

We report two metrics of model performance. First, we compared predicted and observed 

locational distributions, using MET. We also report locational accuracy, which is defined as the 

proportion of correctly assigned presences and absences across the number of possible presence 

sites. As a spatial null comparison model, we also used the observed number of infested cells, 

but simulated randomized occurrences within the host distribution for each species (random 

allocation model) and took the mean MET score of 1000 simulated pest distributions for each 

species. As our second metric, we compared predicted (y+) to observed (y) range sizes, to 

evaluate the ability to predict the extent of invasions. We used squared deviations from the 1:1 

line of (y+) vs. (y) as our metric of fit (i.e. mean squared error, MSE, as a proportion of the 

variation in observed range sizes; R2
MSE): 

-789: = 1 − ∑(;<;=).

∑(;<;>).
      Eqn. (2) 

This is a more conservative metric than the conventional R2, which generates residuals from the 

best fitting regression line, as R2
MSE forces the relationship between predicted and observed 

values through the 1:1 line, meaning that R2
MSE will always be less than or equal to R2. As the 

“null” comparison model for the extent of spread, we regressed the area occupied by all pests 

against the time since they were first discovered in the United States (Liebhold et al. 2013). 

Though a regression of pest radius and time follows more logically from the invasion literature 

(Skellam 1951), we wanted to keep our predictions comparable across models, and results were 

very similar between pest radius and pest area (within ~2% variation explained), and did not 
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change the conclusions of this study.  
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Appendix S1.7  Model predictions across species 

 

Observed distributions (left column) and predicted presences for constant dispersal (centre 

column) and GDK models (right column) for each pest species. Presences are shown in green. 

 
Real Data            Constant          GDK 
  

Wood-boring Pests 
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Appendix S1.8 Sensitivity analysis   

 
Figure S1.8.1 The results of a sensitivity analysis of the two additional predictor variables kept 
in the GDK, including tree density (top row), fit at b1 = -0.8438, and human population density 
(bottom row), fit at b2 = -0.1378, with fitted values shown by red vertical lines. The sensitivity 
analysis was performed by holding the other GDK model parameters constant and varying b1 
and b2 separately by ±1 times their fitted values to examine the resulting MET score (left 
column) and R2

MSE values (right column). Both parameters have a fairly smooth optimization 
surface, as indicated by the unimodal relationship between MET and the value of the parameter 
evaluated. The fitted values minimize MET, indicating successful optimization, and also nearly 
maximize R2

MSE in a smooth, unimodal way, even though it was not the metric used to fit the 
model. As expected, values of each parameter smaller in magnitude (closer to zero) have smaller 
effects on both metrics. Changes in b1 have a much larger effect on both metrics of fit than 
changes in b2, which follows from it entering the forward selection model first. 
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Appendix S2. Appendices for Chapter 2 

Appendix S2.1 Pest list 

Table S2.1.1 List of the 63 economically damaging United States invasive forest pests analyzed 

in this manuscript. 

Common Name Guild Latin Name 

Ambermarked Birch Leafminer Defoliators Profenusa thomsoni 

Asiatic Oak Weevil Defoliators Cyrtepistomus castaneus 

Balsam Woolly Adelgid Suckers Adelges piceae 

Beech Scale Suckers Cryptoccocus fagisuga Lind. 

Birch Leafminer Defoliators Fenusa pusilla 

Black Vine Weevil Defoliators Otiorhynchus sulcatus 

Browntail Moth Defoliators Euproctis chrysorrhoea 

Butternut Canker Pathogens Sirococcus clavigignenti-

juglandacearum 

Calico Scale Suckers Eulecanium cerasorum 

California Red Scale Suckers Aonidiella aurantii 

Chestnut Blight Pathogens Cryphonectria parasitica 

Circular Hemlock Scale Suckers Nuculaspis tsugae 

Cryptodiaporthe Canker Pathogens Cryptodiaporthe populea 

Dogwood Anthracnose Pathogens Discula destructiva 

Dutch Elm Disease Pathogens Ophiostoma novo-ulmi 

Eastern Spruce Gall Adelgid Suckers Adelges abietis 

Elm Leafbeetle Defoliators Xanthogaleruca luteola 

Elm Leafminer Defoliators Fenusa ulmi 

Elongate Hemlock Scale Suckers Fiorinia externa 

Emerald Ash Borer Borers Agrilus planipennis 

Eucalyptus Longhorned Beetle Borers Phoracantha recurva 

Eurasian Poplar Leaf Rust Pathogens Melampsora larici-populina 

European Bark Beetle Borers Hylastes opacus 

European Larch Canker Pathogens Lachnellula willkommii 

European Pine Needle Midge Defoliators Contarinia baeri 

European Pine Sawfly Defoliators Neodiprion sertifer 

European Pine Shoot Moth Defoliators Rhyacionia buoliana 

European Spruce Needleminer Defoliators Epinotia nanana 
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Golden Oak Scale Suckers Asterolecanium variolosum 

Green Spruce Aphid Suckers Elatobium abietinum 

Gypsy Moth Defoliators Lymantria dispar 

Hemlock Woolly Adelgid Suckers Adelges tsugae 

Imported Willow Leaf Beetle Defoliators Plagiodera versicolora 

Introduced Basswood Thrips Suckers Thrips calcaratus 

Introduced Pine Sawfly Defoliators Diprion similis 

Japanese Beetle Defoliators Popillia japonica 

Japanese Cedar Longhorn Beetle Borers Callidellum rufipenne 

Juniper Scale Suckers Carulaspis juniperi 

Larch Casebearer Defoliators Coleophora laricella 

Larch Sawfly Defoliators Pristiphora erichsonii 

Mimosa Webworm Defoliators Homadaula anisocentra 

Mountain Ash Sawfly Defoliators Pristiphora geniculata 

Oak Wilt Pathogens Ceratocystis fagacearum 

Oystershell Scale Suckers Lepidosaphes ulmi 

Peach Twig Borer Borers Anarsia lineatella 

Pear Thrips Suckers Taeniothrips inconsequens 

Phytophthora Root Rot Pathogens Phytophthora cinnamomi 

Pine False Webworm Defoliators Acantholyda erythrocephala 

Pine Shoot Beetle Borers Tomicus piniperda 

Poplar and Willow Borer Borers Cryptorhynchus lapathi 

Poplar sawfly Defoliators Trichiocampus viminalis 

Port-Orford-Cedar Root Disease Pathogens Phytophthora lateralis 

Red Pine Scale Suckers Matsucoccus matsumurae 

Redgum Lerp Psyllid Suckers Glycaspis brimblecombei 

San Jose Scale Suckers Diaspidiotus perniciosus 

Satin Moth Defoliators Leucoma salicis 

Scleroderris Canker Pathogens Gremmeniella abietina 

Sirex Wood Wasp Borers Sirex noctilio 

Smaller European Elm Bark Beetle Borers Scolytus multistriatus 

Sudden Oak Death Pathogens Phytophthora ramorum 

White Pine Blister Rust Pathogens Cronartium ribicola 

Willow Scab Pathogens Venturia saliciperda 

Winter Moth Defoliators Operophtera brumata 
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Appendix S2.2 Parameterization of a temperature threshold for HWA spread and forecasts of 

temperature-limited dispersal to 2030 

 
We explored the incorporation of an additional layer of customization into both our customized 

models and SDK for HWA related to well-known niche limitations. This species’ spread is 

known to be climatically limited in the northern end of its range (Evans & Gregoire 2007; 

Fitzpatrick et al. 2012; Parker et al. 1998, 1999; Trotter & Shields 2009). As such, we used the 

bioclimatic variable “minimum temperature of the coldest month” (bio6) from BIOCLIM 

(www.worldclim.org) to fit the optimal temperature for HWA mortality based on MET for both 

the customized and GDK model for HWA. So-called ‘current’ WorldClim values represent 

temperatures from 1960-1990, so we transformed them to 2005 through interpolation, assuming 

they represented 1975, with the WorldClim 1.4 2050 temperature projections for NASA’s GISS-

ER-2 rcp2.6 and rcp8.5 scenarios sampled at 2.5 arc-minutes (taking the midpoint of the best and 

worst-case climate change warming scenarios). Since WorldClim does not provide estimates for 

older contemporary climates, we used the ‘current’ conditions from the beginning of pest spread 

until 1975.   

HWA was a more complex case for SDK fitting, as all three of our additional layers of 

complexity (starting point, intercept and niche corrections) were needed in order to maximize 

predictive ability (Table 2). The intercept-corrected GDK did not produce predictive results for 

HWA (R2
om  = 0.20 vs R2

om = 0.30 for the uncorrected model). Further, while the starting-point 

correction improved forecasts, it did not substantially improve fit until the intercept correction 

was also added, and this model produced a weaker forecast (53% of spatial variation explained). 

The model incorporating both the intercept and starting point correction and the lower 

temperature threshold had a fitting MET of 1.75 km (vs. 33.22 km for the uncorrected GDK). 
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The intercept of this model was a=1.47 and the temperature threshold was -7.64°C, and it 

resulted in an R2
om = 0.85. This indicates that the best fitting model has faster spread (smaller 

intercept) which is offset by pest mortality in the north end of the range. 

To explore the implications of this climatic limitation with future climate change, our 

forecasts of HWA spread used in the community forecast come from the model that includes the 

temperature threshold. We show the HWA-only results in Fig S1. While the inclusion of a 

temperature threshold restricts future HWA spread compared to the model without the threshold, 

the species continues to spread eastward and westward, and surprisingly, jump dispersal events 

are predicted near Detroit and Cleveland (Fig. S2.2.1b.). If we maintain the entire US at its 2005 

values for minimum winter temperature, the species actually spreads farther than if we account 

for climate change (Fig. S2.2.1c). This is counterintuitive, as climate change is typically 

associated with winter warming, which would increase HWA establishment, but minimum 

winter temperatures are actually projected to decline in parts of the northern United States (Fig. 

S2.2.2), so accounting for climate change makes the threshold more restrictive over time. These 

results support the notion that climate change will influence future HWA distributions, though 

not in a necessarily expected direction (Parker et al. 1999).  
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Figure S2.2.1 Forecasts for HWA spread a. without and b. with a fitted temperature threshold 

for pest establishment, and c. forecasts with a fitted temperature threshold where minimum 

winter temperatures are held constant at 2005 levels. Panels span from 2005-2030.  
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Figure S2.2.2  Projected change in minimum January temperatures (BIOCLIM variable bio6) 

across the United States from 2005 to 2030. 
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Appendix S2.3 Derivation of relationship between alpha and diffusion constant 

 
From Skellam et al. (1951), if one imagines a single source of propagules invading the center of 

some radial coordinate space, a reaction-diffusion (Gaussian) dispersal kernel can be modelled as 

such: 

=()) = 	 .
BCA

#<
2.
34                                                         (S1) 

Where the kernel density k is a function of the distance d from the source, and D is the diffusion 

coefficient. Since its original application in ecology, reaction-diffusion has been extended as a 

particular case of an integrodifference model – a more flexible modelling framework that has 

been applied extensively to invasive species dispersal (Mollison 1977; Andow et al. 1990; 

Neubert & Parker 2004). This Gaussian kernel is part of a family of kernels explored in Clark et 

al. (1998; 1999) that take the form: 

=()) = 	 .
D
#<E

2
5F
6

																																																																	(S2) 

Where N is a normalization constant such that all proportional densities dispersing from a given 

source sum to 1,  q is a dispersion parameter that has units of distance, and c is a dimensionless 

shape parameter controlling kurtosis. Importantly, q can be thought of as the root mean squared 

displacement of propagules from the source, which is related to the diffusion coefficient (? =

2√:), and can be estimated empirically through mark-recapture experiments (Andow et al. 

1990). In the Gaussian case originally examined, c = 2 

We chose the negative exponential kernel for the GDK, as it frequently outperforms the 

Gaussian case and is commonly used in invasion biology (Nathan et al. 2012). In the negative 

exponential case of eqn. S2, c = 1 (Clark et al. 1999).  

In the GDK, at the same first timestep, we have  
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=GAH()) = %127(9)

∑ %127(9)'
                                                         (S3) 

Since we also implement normalization as a means of redistributing propagules proportionally, 

can rewrite our equation as: 

=GAH()) = .
D
#<2I(J)                                                        (S4) 

Where f(z) incorporates our predictor variables and is centered on our intercept, a, such that 

when all their predictors are at their mean values, the equation is as follows: 

=GAH()) = .
D
#<2a																																																																							(S5) 

If we set, q=1/a,  the equation matches eqn. S2 for the negative exponential case (c = 1): 

=GAH()) = .
D
#<E

2
5F                                                       (S6) 

Thus, a is analogous to 1/q, and is thus mathematically related to the diffusion constant D from 

Skellam et al. (1951).  
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Appendix S2.4 Theoretical behaviour of R2om. 

We wished to create a metric that takes its maximum value when two distributions have the same 

number of points, with the proportions of the points in the correct spatial locations. If the points 

are proportionally arranged in space correctly, but the number of predicted points is lower or 

higher than the observed number, there is some penalty, and if the number of points is correct, 

but the spatial proportions are incorrect, there is also some penalty. Further, this penalty should 

be applied symmetrically, such that over- and underpredicting had the same additive distance-

related penalty. 

To calculate omMSE, we first used optmatch (Hansen, 2007), to perform a one to one 

match between our predicted and observed presence points for a given pest. Next, the leftover 

points caused by differences in predicted and observed range size were then used to penalize the 

distance score. To do this, we assigned these leftover points the mean distance between that point 

and all other points in the opposing distribution. This value is higher than the nearest neighbor 

distance for that point, so it penalizes the score. In each random draw from the host distribution, 

we chose a number of points with the true observed pest range size and calculated the associated 

omMSE. This null model thus creates an additional penalty for predicting the wrong range size 

for a given pest. We took the mean of this entire vector of distances to obtain omMSE. 

For ease of interpretation, we converted omMSE to a Pseudo R2 (R2
om) by comparing the 

observed omMSE value to a spatial null expectation, using 10,000 random draws of spatial points 

from the host distribution. In each random draw from the host distribution, we chose a number of 

points with the true observed pest range size and calculated the associated omMSE. This null 

model thus creates an additional penalty for predicting the wrong range size for a given pest. 
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  We tested the behavior of R2
om as over- or under-estimation of presences changed. 

Specifically, we chose the HWA distribution at 2005, which has 94 presences, and varied the 

predicted number of presences from 1 (underestimation) to 400 (overestimation) (Fig. S2.4.1). 

We also considered different patterns of overlap with the true distribution, including 100% 

predicted presences sampled from “true” presence locations (black points), 50% from true and 

50% from random locations (blue points), and 100% from random locations (red points). As 

expected, the perfectly matching value has a R2
om score of 100%. Mismatched numbers of 

presences have an additive effect on omMSE, and reduce it to below-zero values at the extreme. 

There appears to be a roughly equivalent penalty on omMSE for getting the wrong range size 

whether or not predicted presences match observed presences (as indicated by roughly equivalent 

slopes). Also as expected, where predicted presences do not overlap true presences, R2
om also 

decreases (compare black versus blue and red lines), approaching zero, even when total number 

of presences matched, where predicted presences are generated randomly (red line).  

Note that at non-extreme levels of mismatch, there is a symmetrical additive effect of 

over- and under- prediction. When predicted distributions are empty or entirely saturate the host 

range, omMSE scores are roughly equivalent. However, overprediction results in an asymptotic 

relationship with the maximum omMSE, while underprediction is more linear. This is in part 

because with overprediction, one eventually selects the entire observed range, even when 

selecting random points, whereas with underprediction, randomly selected points are more likely 

to all fall outside of the observed distribution. Our fitted relationships do not possess such 

extreme levels of mismatch (e.g., they all display positive omMSE), so we argue that this lack of 

symmetry is less relevant for our purposes.   
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Figure S2.4.1 Theoretical behavior of omMSE. We show R2
om for different simulated 

distributions in comparison to the observed HWA distribution (94 true presences), varying the 

predicted number of presences from 1 (underestimation) to 400 (overestimation) in each case (x-

axis). We considered 3 different patterns of overlap with the true distribution 1) including 100% 

predicted presences sampled from “true” presence locations (black points), 50% from true and 

50% from random locations (blue points), and 100% from random locations (red points). The 

points represent the mean of 100 Monte Carlo simulations in each case.

Predicted number of presences 
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Appendix S2.5 SDK methodology applied to all 63 species, including further niche corrections 

for two species. 

We used the fitted MET score applied to each individual species’ snapshot of dispersal in 2005 

in order to determine the SDK layers to include for each species (intercept, starting point, and 

niche limitation corrections where there was evidence from the literature that they were 

necessary. We applied the intercept correction to all species, since it was bound to lead to at least 

an equivalent MET score. The starting point correction is not equally reliable across species, but 

assessment of SDK fit can allow us to determine whether potential starting points constitute 

reliable data. The starting point correction improved MET scores for 21 species including GM, 

BBD and HWA, and was thus included in the SDK for these species. For HWA, we forecasted 

based on the intercept, starting point, and niche-corrected model (based on the results 

summarized in Table 2.2 and Appendix S2.2).  

 To extend our SDK methodology to all species in our dataset, we wished to correct the 

fits for other species known to show niche limitations: sudden oak death disease (SOD, 

Phythophthora ramorum) and balsam woolly adelgid (BWA, Adelges piceae). While GM is also 

thought to be temperature-limited, we could already explain 98% of the spatial variation in its 

future spread without any further corrections, so we did not assess the effect of additional 

parameters. Since BWA is known to be limited by cold winter temperatures in a similar fashion 

to HWA (Hrinkevich et al. 2016), we used the same minimum temperature of the coldest month 

variable to limit its spread using a minimum threshold for pest survival. For SOD, where low 

humidity is limiting (Meentemeyer et al. 2004), we obtained average daily relative humidity data 

in 2010 from the R package GSODR (Sparks et al. 2017), which utilizes data from the Global 
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Surface Summary of the Day (GSOD, https://data.noaa.gov/dataset/dataset/global-surface-

summary-of-the-day-gsod/) provided by the US National Centers for Environmental Information 

(NCEI). Relative humidity data was collected for all weather stations within the US, and was 

subsequently interpolated to our 50 x 50 km grid cell centroids via inverse distance weighting (R 

package gstat, power = 2, Pebesma 2004). We modelled the effect of mean relative humidity as a 

minimum threshold for pest survival.  

The best model for SOD that included this threshold initiated spread from our best guess of 

the initial invasion location in the United States, while best model for BWA initiated spread from 

the centroid of the host range (Table S2.5.1). Both of these updated models were used as the 

SDK in forecasts of whole-community dispersal. 
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Table S2.5.1 Fits of further-corrected GDK models for sudden oak death disease (SOD, 

Phythophthora ramorum) and balsam woolly adelgid (BWA, Adelges piceae). The variable bio6 

represents a threshold for pest survival based on the minimum temperature of the coldest month, 

while hum represents a minimum survival threshold based on average relative humidity. 

 
 a  MET (km) 

uncorrected   
SOD 1.74 53.70 
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BWA 1.74 67.98 
 
intercept-corrected   
SOD 1.65 36.60 
BWA 1.77 67.73 
 
starting-point corrected   
SOD 1.74 19.36 
BWA 1.74 1273.36 
 
starting point and intercept-corrected   
SOD 2.31 12.33 

BWA 0.07 75.46 
 
intercept, temperature-corrected 
 

BWA 
1.77; bio6=   
-13.99°C 67.56 

 
starting point, intercept, humidity-corrected 
   
SOD  2.39; hum= 64.33% 6.25 
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Appendix S2.6. Uncertainty calculations 

We performed two different examinations of model uncertainty: 

1) We simulated future dispersal across different future climate and human population 

density projections (Fig. S2.5.1). The fitted model used the midpoint between rcp2.6 and 

rcp8.5 scenarios for future minimum January temperature, which represent less extreme 

and more extreme scenarios of future climate change, respectively. In addition to this 

midpoint, we also examined using either of these scenarios to illustrate the range of 

possible climate change scenarios (though changes to January temperature only influence 

two species: HWA and BWA, see Appendix S2.5). Similarly, in addition to the 

population growth scenario presented within the manuscript, we also tested the most 

extreme scenarios of population growth projected from the Shared Socioeconomic 

Pathways (O’Neill et al. 2017), where the slowest growth represented the “Regional 

Rivalry” scenario and the fastest growth was with the “Fossil-fueled Development” 

scenario (Hauer 2019). The upper and lower bounds of these forecasts to 2030 are shown 

in comparison with the middle-of-the-road projection included in the main text in Fig. 3b. 

Interestingly, reduced population growth need not lead to reduced spread, since it has 

both a positive influence on dispersal into sites but also a negative influence on dispersal 

out of sites. Similarly, a less extreme climate change scenario may not necessarily mean 

less favorable conditions for HWA spread north with bio6, if it means that temperature 

variability is also lower (see Appendix S2.2). The minimum change scenario matches 

very closely with the published results, except for slightly patchier high richness areas in 

places like Montana, Idaho and New Mexico (regions B, K in Fig. 2.4), as well as 

richness patterns extending slightly further south within the northeastern United States. 
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The maximum change scenario leads to far higher future pest risk compared to the other 

scenarios, and a much greater number of distinct patches of future pest establishment. 

The central United States – which had very few high-richness patches, now possesses a 

few hotspots. Interestingly, spread is more variable within previously more continuous 

patches of high future richness such as northern New England, Northern Minnesota and 

Wisconsin (regions C, E in Fig. 2.4), leading to greater richness predicted in some parts 

of these regions and lower richness predicted in other parts. 

2) We examined the influence of parameter uncertainty on forecasted pest richness via 

sensitivity analysis. We did this by randomly perturbing all fitted parameters 

independently by small amounts that were sufficiently extreme to result in poor fits in 

many cases, and selecting parameter sets within an average MET score of 5 km from the 

fitted values (our threshold for parameter inclusion in our model fitting process). We 

generated 1000 perturbed model parameter sets, of which 345 were within this threshold. 

The need to discard ~2/3 of the perturbed parameter sets indicates that our level of 

perturbation was severe enough that a range of alternative parameter values was 

explored, but not so severe that it did not also produce a variety of cases that fit similarly 

to the optimum. Each of the 345 remaining perturbed parameter sets was then used to 

forecast pest richness to 2030. We show the variability in these forecasts across time as 

ranges of predicted pest richness (maximum-minimum) in Fig S2.2. It is worth noting 

that uncertainty need not only increase into the future, since as sites saturate with the total 

number of pests that can establish, spread patterns necessarily become more 

deterministic. Variation increases steadily from 2010-2030, and identified ‘hotspot’ 

regions B, H, and K from Fig 2.4. show particularly high uncertainty in future richness 
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(likely due to variation in the importance of forests), as well as parts of Florida and the 

area around Atlanta, GA (likely due to variation in the importance of population). While 

uncertainty increases across large parts of the Western and Eastern United States, the 

central United States is consistently predicted to have little growth in pest richness, so 

variation remains low.  

We then merged all sources of uncertainty to produce a combined map of variation in future pest 

richness at 2030 (Fig 2.5). In spite of high variability, even in the case of minimum future pest 

spread, the northeastern US had the greatest number of relative establishments, indicating a 

consistent pattern of future spatial risk in spite of uncertainty (Fig. S2.6.3). The 10 scenarios that 

led to the lowest future spread all came from the maximum population growth scenario and 

included population density terms that had been perturbed to decrease dispersal into and out of 

high population density sites, thereby causing pests to remain at urban centers once arriving 

there. The 10 scenarios that led to the highest future spread were predominantly from the middle-

of-the-road scenario with overall greater pest growth rates and less preferential dispersal into 

high population areas, leading to more even dispersal patterns across space and higher spread 

velocity due to pest population growth. It thus appears that a key factors influencing the extent of 

future dispersal are the pattern of future human population growth and the extent to which 

human population will act as an attractive force keeping pests in cities.  

 

 



 
 

 261 

 

Figure S2.6.1 Projections of SDK using a. the ‘middle-of the road’ scenario used in text from 

ProximityOne b. A minimum change future scenario (using rcp2.6 as the climate change 

scenario for bio6 and SSP3 ‘Regional Rivalry’ for county-level population growth), and c. A 
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maximum change future scenario (using rcp8.5 as the climate change scenario for bio6 and using 

SSP5 ‘Fossil-Fueled Development’ for county-level-population growth. 
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Figure S2.6.2 Projections of SDK uncertainty (range of predicted pest richness at each site) due 

to parameter uncertainty at a. 2010, b. 2020, and c. 2030.   

  

Figure S2.6.3 Extreme cases of future pest local establishment across uncertainty simulations, 

including the a. minimum spread and b. maximum spread scenario.  
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Appendix S2.7 Distance-based residual examination as a predictor for forecasting ability 

 

We tested whether the three species examined in this analysis were representative of the 

goodness-of-fit of our GDK by comparing the residuals of their spread range size (number of 

invaded cells) to the average misestimation across species in the uncorrected GDK. Our metric 

of misestimation is the log ratio of predicted and observed invaded cells, which is symmetric 

around 0 in the case of perfect range size predicted. We found that two out of three of these 

species were substantially overpredicted by the model (Table S1), with log ratios higher than the 

mean (49/63 species are fit better than HWA, and 44/63 species are fit better than BBD). 

Meanwhile, GM is fit slightly better than the average species (though worse than the median fit, 

as 37/63 species had fits better than GM). The ranking of these three species in terms of these 

residuals matches their ranking in terms of R2
om for the GDK in our validation set. As such, we 

argue that the forecasting ability of a species can be roughly estimated by its distance-based 

residuals in the fitted GDK. 

 

Table S2.7.1 GDK distance residuals for the 3 species examined compared to the average value 

for all fitted species. The absolute value of the log-ratio of predicted to observed invaded cells is 

taken so that under and overprediction have comparable effects.  

 

 Predicted cells 
invaded (npred) 

Observed cells 
invaded (nobs) 

Abs(log(npred/nobs)) 

Mean (uncorrected GDK) 0.66 

HWA 200 70 1.05 

GM 692 403 0.54 

BBD 433 182 0.87 
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Appendix S3. Appendices for Chapter 3 

 
Appendix S3.1 Additional pests modelled in Chapters 3 and 4 (n=9) 

 

Table S3.1.1 Names of pests added to the Chapter 3 and 4 datasets. This pest list was combined 

with the list in Table S2.1.1 and consists of pests who were first detected after 1999 (and thus 

that could not be fit in the original GDK). 

 

Latin Name Common Name 
Agrilus prionurus Soapberry Borer 
Hylurgus ligniperda Red-haired Pine Bark Beetle 
Orthotomicus erosus Mediterranean Pine Engraver Beetle 
Scolytus schevyrewi Banded Elm Bark Beetle 
Enarmonia formosana Cherry Bark Tortrix 
Orchestes alni Elm Flea Weevil 
Raffaelea lauricola Laurel Wilt Disease 
Blastopsylla occidentalis Eucalyptus Psyllid 
Maconellicoccus hirsutus Pink Hibiscus Mealybug 
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Appendix S3.2 Invasive range host phylogeny for United States invasive forest pests (n=294) 

Figure S3.2.1 Phylogeny adapted from Zanne et al. (2014) seed plant phylogeny. All major 
nodes listed, branch lengths scaled to molecular branch lengths via Phylomatic v3.  
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Appendix S3.3 Theoretic analyses for the integrative establishment model 

 
To ensure our model’s parameters could be reliably identified, we performed theoretic 

simulations where we generated random relationships between diversity, richness and 

establishment using a variety of parameter values (Table S3.3.1). We assessed identifiability by 

fitting our model to these simulated data and comparing predicted and simulated (true) parameter 

values. We performed Latin Hypercube simulations to generate random parameter sets within a 

bounded range (Table S3.3.1), which we used in binomial simulation model for pest 

establishment that mirrored our fitting model (where resulting pest distributions were subject to 

stochasticity across binomial trials). We ensured that the parameter sets produced simulated data 

with enough variability to fit relationships by excluding theoretic results where establishment 

occurred in <10% or >90% of all pest-site combinations, where at least half of site-level 

establishment probabilities were at a bound (0.0001 or 0.9999), or where the standard deviation 

of probabilities of establishment was <5%. We assumed that any parameter set used to generate 

these results would not be identifiable due to the low variability in outcomes.  

We generated 1000 random parameter sets through Latin Hypercube simulations, and 

retained 920 parameter sets that satisfied our variability conditions. Visual analyses of predicted 

vs. simulated (true) parameter sets indicated our fitting procedure had limited precision in 

determining exact parameter estimates (Fig. S3.31a-e, but that this misspecification had little 

impact on important derived model components, such as zt,i,j, effective tree volume (Vt,i,j 

exponent), or pestab (Fig. S3.3.1f). Parameter estimates generally followed the 1:1 line, but it 

appears that many roughly equivalent parameter sets can produce the derived model components 

of interest (we note that centering and scaling the minpdz term to correct for collinearity did not 

change these theoretical results appreciably, so we left it unscaled). Since the derived model 
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components themselves were reliable, we have confidence in our derived ‘maximum effective 

trees’ values, the overall signs of effects, and the shape of fitted relationships such as Fig. 3.1. 

 
Table S3.3.1 Latin Hypercube parameter sampling bounds. All parameters were sampled 
independently on a uniform distribution 1000 times. 920 parameter sets producing sufficient 
variability were retained to assess identifiability, uncertainty and bias. 
 
Parameter Minimum Maximum 
a1 0.1 0.9 
a2 -1 -0.75 
c1 -0.5 0.5 
c2 -0.5 0.5 
c3 -0.25 0.25 

 

Figure S3.3.1 Theoretic simulation results for the establishment model in terms of its ability to 
recapture model parameters (a-e), and derived model components (f), as measured by the R2 
between predicted and observed model components, where a value of 1 would indicate perfect 
identifiability. Vt,i,j exponent mean=0.97, s=0.074; zt,i,j mean=0.98, s=0.072; pestab mean=0.98, 
s=0.019) 
 

   

a. b. 
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c. d. 

e. 

f. 
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Appendix S3.4 Additional mechanisms driving establishment 

 

As we mentioned in the introduction, our model can easily be extended with additional pest, 

host, or site-specific parameters. We formulated several model extensions to explore competing 

hypotheses for the results obtained, including phylogenetic generalism, hotspots of climatic 

suitability, and regional differences based on forest type. 

Firstly, our results could have been driven by a pest phylogenetic generalism effect, since 

generalist pest species have larger potential ranges (Fig. S3.4.1) and may have higher 

establishment rates overall. This may have upweighted high richness sites, since they are more 

likely to contain focal hosts of phylogenetic generalists. To test this, we fit an additional term 

(B2) in our model that offset the mean probability of non-establishment (3.) for each pest species 

i by their host breadth (root mean pairwise phylogenetic distance, Letten & Cornwell (2015))), 

3′.,! = 3. + D:E8()!. This term had the correct sign (B2 = -0.0033 ) in that species with greater 

host breadth had higher establishment overall (or lower probabilities of non-establishment). This 

term modestly improved fit (deviance explained = 6.74%), but the positive richness effect and 

phylogenetically-mediated density dependence effects remained (a2=-0.997,c1=-0.00079, c2=-

0.0040,  c3=0.015), indicating that an overall effect of phylogenetic generalism could not account 

for the observed patterns. 

We lean toward the ‘diversity begets diversity’ hypothesis (Fridley et al. 2007) to explain 

the persistent relative benefit of richness. Most pest species are present in the Northeastern 

United States, which is also an area of high tree species richness (Liebhold et al. 2013), and may 

be a hotspot for both pest and tree species in terms of environmental suitability. This might 

indicate a lack of biotic filtering of any species at these sites. In contrast, the presence of only 
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focal hosts at a site could indicate that this site possesses some sort of idiosyncratic quality 

(climatic or otherwise) that prevents many species of all kinds from surviving (Kraft & Ackerly 

2014). 

To examine the existence of suitability hotspots, we tested whether an additional climatic 

suitability metric could explain the model residuals by fitting a term for the extent of ‘climatic 

anomaly’ at each site. We used Euclidean distance from the mean climatic conditions measured 

across all bioclimatic variables across any host range within the United States (Fick & Hijmans 

2017) as a measure of climatic anomaly. We found negligible evidence for a beneficial effect of 

‘moderate’ environmental conditions, captured by a negative effect of increased Euclidean 

distance from mean climate (D % deviance <0.01%). Without rigorous understanding of pest 

environmental tolerances, this is a much more difficult mechanism to demonstrate, as specific 

environmental variables are likely to be important for each pest. We thus leave it as an area of 

future exploration for subsequent work. 

The remaining spatial structure of integrative joint model residuals (Fig. 3.4c) indicates 

that the model lacked some additional spatially-structured factor that could dampen 

overprediction of establishment predominantly within the southeastern and midwestern United 

States. Since these patterns roughly followed differences in forest types, we tested the inclusion 

of an offset in the effective tree volume exponent for differences in gymnosperm and angiosperm 

host suitability. This term led to lower establishment on gymnosperm hosts and slightly 

improved establishment model fit (deviance explained = 6.23%), indicating regional differences 

in invasibility by forest type may be part of the remaining spatial signal. 
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Figure S3.4.1 Pest species phylogenetic generalism (mean pairwise distance across focal hosts) 
compared to the number of grid cells their focal host range spans (r = 0.64, p<0.0001). Generalist 
species have a greater area of potential establishment.  
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Appendix S4. Appendices for Chapter 4 

Appendix S4.1 Data sources for host tree models 

Table S4.1.1 List of predictors used in total tree and genus-specific tree models 
 

Predictor Unit Description Reference 
Population 

 
2010 Census 
population 

US Census Bureau 
http://www.census.gov/popest 

Ecological 
Province 

 Subregions using 
criteria defined in the 
National Hierarchical 
Framework of 
Ecological Units  

Cleland et al. 2007 

Median 
number of 
freeze free 
days 

 Median number of 
days between last 
spring and first 
autumn temperature 
≤0 °C 

PRISM Climate Group, Oregon State 
University 

Total road 
length 

Log 
(km) 

Total length of roads 
in community 

US Geological Survey, Fort Collins 
Science Center; Koch et al. (2018) 

Total road 
density 

Log 
(km-1) 

Length of road per 
square km of 
community area 

US Geological Survey, Fort Collins 
Science Center; Koch et al. (2018) 

Mean moisture 
index 

 Balance between 
precipitation and 
potential 
evapotranspiration; 
scaled between -1 
and 1 

Willmott and Feddema (1992), 
PRISM Climate Group, Oregon State 
University, Koch et al. 2018 

Mean 
precipitation 

mm Mean annual 
measured 
precipitation 

Willmott and Feddema (1992), 
PRISM Climate Group, Oregon State 
University, Koch et al. 2018, 

Elevation metres Elevation above sea 
level 

US Geological Survey National 
Elevation Dataset 

Area hectares Community size American Community Survey 
https://www.census.gov/programs-
surveys/acs 

Income USD Median household 
income in 1999 
(County level) 

US Census Bureau 
http://quickfacts.census.gov/ 
qfd/meta/long_INC910199.htm 

Mean Year of 
Home 
Construction 

Year Average age a home 
was built based on 
surveys from 2015 

American Community Survey 
https://www.census.gov/programs-
surveys/acs 
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(block-group level) 
Median Value 
of Home 

USD  Median value of a 
home in the 
community in 2015 
(block-group level) 

American Community Survey 
https://www.census.gov/programs-
surveys/acs 

bio2 °C *10 Mean Diurnal Range 
(Mean of monthly 
(max temp - min 
temp)) 

WORLDCLIM (Fick & Hijmans 
2017) 

bio8 °C *10 Mean Temperature of 
Wettest Quarter 

WORLDCLIM (Fick & Hijmans 
2017) 

bio10 °C *10 Mean Temperature of 
Warmest Quarter 

WORLDCLIM (Fick & Hijmans 
2017) 

bio11 °C *10 Mean Temperature of 
Coldest Quarter 

WORLDCLIM (Fick & Hijmans 
2017) 

bio13 mm Precipitation of 
Wettest Month 

WORLDCLIM  (Fick & Hijmans 
2017) 

bio15 mm-2 Precipitation 
Seasonality 
(Coefficient of 
Variation) 

WORLDCLIM  (Fick & Hijmans 
2017) 

Distance to 
coast 

metres  Calculated in ArcGIS with US 
Equidistant Conic Projection 

Tree canopy 
cover 

% Fraction of 
community area 
covered by trees 

National Land Cover Database 
(2011); Homer et al. (2015) 

Latitude metres 
 

Calculated in ArcGIS with US 
Equidistant Conic Projection 

Longitude metres 
 

Calculated in ArcGIS with US 
Equidistant Conic Projection 

 

Figure S4.1.1 Map of the 653 inventoried street tree communities across the United States 
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Appendix S4.2 Host distribution model: detailed results 

 
Total tree abundance models 
 
Figure S4.2.1 Fits of the total tree abundance models to small, medium, and large trees across all 
653 communities 
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Table S4.2.1 Results of total tree abundance models (a. small, b. medium, c. large). Models were 
fit via boosted regression trees, so relationships with predictors are not strictly positive or 
negative, but the overall shape of the relationship is summarized in the ‘general sign’ column. 
 
a. Small trees 

Predictor Relative 
Influence 

General 
Sign 

Population 55 + 
Area  4.5 + 
Ecological province 10.9 NA 
bio10 2.8 - 
Mean home value 2.7 + 
Income  2.2 + 
Mean year of home 
construction 

1.5 - 

Mean precipitation 1.2 + 
Road density 1.2 - 
Others <1 

 

 
b. Medium Trees 

Predictor Relative 
Influence 

General 
Sign 

Population 58.6 + 
Ecological province 13.5 NA 
Area  6.3 + 
Mean year of home construction 5.8 - 
bio10  2.0 hump-shaped 
Income     1.8 + 
Road length 1.6 - 
Mean number of freeze free days 1.4 + 
Road density 1.3 - 
bio11            1.2 - 
Mean home value 1.2 + 
Others <1 

 

 
c. Large trees 
 

Predictor Relative 
Influence General sign 

Population 43 + 
Mean year of home construction 13.8 - 
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Ecological province 13 NA 
Area  6.6 + 
Tree canopy cover  6.5 + 
Mean number of freeze free days 3.8 + 
bio11       3.4 + 
Road length 1.2 - 
Mean precipitation 1.1 hump-shaped 
Income  1 + 
Others <1 

 

 
 
Genus-specific models 
 
Figure S4.2.2 Inverse relationship between the rarity of a genus (defined as the predicted total 
number of trees of a particular size class) and the fit of the best single-genus model. 
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Table S4.2.2 Model selection results for small tree genus-specific models: a. overall 
combinations and b. individual models for presence and number of trees. “SEP” as a prefix 
indicates a separate model fit to a given genus, whereas no prefix indicates a global model fit to 
all genera. 
 
a. 
Model types Frequency Proportion 
BRT/BRT 15 0.31 
GAM/GAM 0 0 
SEPBRT/SEPBRT 1 0.02 
SEPGAM/SEPGAM 0 0 
GAM/BRT 1 0.02 
GAM/SEPGAM 0 0 
GAM/SEPBRT 1 0.02 
BRT/GAM 0 0 
BRT/SEPGAM 12 0.25 
BRT/SEPBRT 2 0.04 
SEPGAM/GAM 0 0 
SEPGAM/BRT 3 0.06 
SEPGAM/SEPBRT 0 0 
SEPBRT/GAM 0 0 
SEPBRT/BRT 10 0.21 
SEPBRT/SEPGAM 3 0.06 

 
b. 
Model 
type 

Tree 
presence 
model 
count 

Tree 
presence 
model 
proportion 

Tree 
abundance 
model 
count 

Tree 
abundance 
model 
proportion 

BRT 29 0.60 29 0.60 
GAM 2 0.04 0 0 
SEPBRT 14 0.29 4 0.08 
SEPGAM 3 0.06 15 0.31 

 
Table S4.2.3 Model selection results for medium tree genus-specific models: a. overall 
combinations and b. individual models for presence and number of trees. “SEP” as a prefix 
indicates a separate model fit to a given genus, whereas no prefix indicates a global model fit to 
all genera. 
 
a. 
Model types Frequency Proportion 
BRT/BRT 10 0.21 
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GAM/GAM 0 0 
SEPBRT/SEPBRT 0 0 
SEPGAM/SEPGAM 4 0.08 
GAM/BRT 1 0.02 
GAM/SEPGAM 2 0.04 
GAM/SEPBRT 0 0 
BRT/GAM 0 0 
BRT/SEPGAM 11 0.23 
BRT/SEPBRT 1 0.02 
SEPGAM/GAM 0 0 
SEPGAM/BRT 3 0.06 
SEPGAM/SEPBRT 0 0 
SEPBRT/GAM 0 0 
SEPBRT/BRT 15 0.31 
SEPBRT/SEPGAM 1 0.02 

 
b. 
Model 
type 

Tree 
presence 
model 
count 

Tree 
presence 
model 
proportion 

Tree 
abundance 
model 
count 

Tree 
abundance 
model 
proportion 

BRT 22 0.46 29 0.60 
GAM 3 0.06 0 0 
SEPBRT 16 0.33 1 0.02 
SEPGAM 7 0.15 18 0.38 

 
 
Table S4.2.4 Model selection results for large tree genus-specific models: a. overall 
combinations and b. individual models for presence and number of trees. “SEP” as a prefix 
indicates a separate model fit to a given genus, whereas no prefix indicates a global model fit to 
all genera. 
 
a. 
Model types Frequency Proportion 
BRT/BRT 3 0.0625 
GAM/GAM 0 0 
SEPBRT/SEPBRT 3 0.0625 
SEPGAM/SEPGAM 5 0.10416667 
GAM/BRT 3 0.0625 
GAM/SEPGAM 0 0 
GAM/SEPBRT 0 0 
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BRT/GAM 0 0 
BRT/SEPGAM 2 0.04166667 
BRT/SEPBRT 2 0.04166667 
SEPGAM/GAM 1 0.02083333 
SEPGAM/BRT 13 0.27083333 
SEPGAM/SEPBRT 2 0.04166667 
SEPBRT/GAM 0 0 
SEPBRT/BRT 14 0.29166667 
SEPBRT/SEPGAM 0 0 

 
b. 
Model 
type 

Tree 
presence 
model 
count 

Tree 
presence 
model 
proportion 

Tree 
abundance 
model 
count 

Tree 
abundance 
model 
proportion 

BRT 7 0.15 33 0.69 
GAM 3 0.06 1 0.02 
SEPBRT 17 0.35 7 0.15 
SEPGAM 21 0.44 7 0.15 

 
 
Figure S4.2.3 Relationship between genus rarity (in terms of the number of sites where present 
and the predicted proportion of total trees) and the single-genus model selected across size 
classes. For small tree presence/absence, more GAMs and SEPGAMs are selected with more 
sites, while more GAMs are selected with more predicted trees. For small tree number, more 
SEPGAMs are selected with more sites, while more SEPBRTs are selected with more predicted 
trees. For medium tree presence/absence, fewer SEPBRTs are selected with fewer sites, while 
more BRTs and GAMs are selected with more predicted trees. For medium tree number, more 
SEPGAMs are selected for more sites, while more SEPBRTs are selected for more predicted 
trees. For large tree presence/absence, fewer GAMs are selected for fewer sites. For large tree 
number, more SEPBRTs are selected with more sites, and more SEPGAMs are selected with 
more predicted trees. 
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Figure S4.2.4 Breakdown of both fitted (a-c) and extrapolated (d-f) small, medium and large 
tree abundance from the genus-specific models 
a. 

 
b.             c. 

 
 
d. 
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e.              f. 
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Table S4.2.5 Strength of predictive ability across all single-genus tree models, with the selected best-fitting tree presence/absence and 
tree number model components shown for each (SEP indicates a model fit with genus-specific terms). 

Genus R2 

(small) 
Presence 
model (small) 

Abundance 
model 
(small) 

R2 
(medium) 

Presence 
model 
(medium) 

Abundance 
model 
(medium) 

R2 
(large) 

Abundance 
model 
(large) 

Abundance 
model 
(large) 

Abies 0.70 BRT BRT 0.78 SEPBRT BRT 0.68 SEPGAM BRT 
Acacia 0.37 BRT BRT 0.78 BRT BRT 0.94 SEPGAM BRT 
Acer 0.76 BRT BRT 0.81 SEPBRT SEPGAM 0.71 SEPGAM BRT 
Aesculus 0.74 BRT BRT 0.82 BRT SEPGAM 0.98 BRT BRT 
Amelanchier 0.87 BRT BRT 0.31 SEPBRT BRT 0.29 SEPBRT BRT 
Arbutus 0.85 BRT BRT 0.81 SEPBRT BRT 0.999 SEPGAM BRT 
Betula 0.86 SEPGAM SEPGAM 0.86 BRT SEPGAM 0.90 BRT SEPGAM 
Castanea 0.77 BRT BRT 0.75 BRT BRT 0.97 SEPGAM BRT 
Chamaecyparis 0.77 BRT BRT 0.98 SEPBRT BRT 0.90 SEPBRT BRT 
Cinnamomum 0.83 BRT BRT 0.75 SEPBRT BRT 0.87 GAM BRT 
Citrus 0.88 BRT BRT 0.59 SEPBRT BRT 0.94 SEPGAM BRT 
Cornus 0.81 BRT BRT 0.99 BRT BRT 0.48 SEPBRT BRT 
Cotinus 0.71 SEPGAM SEPGAM 0.57 BRT BRT 0.999 SEPGAM SEPGAM 
Crataegus 0.83 BRT BRT 0.92 GAM BRT 0.91 SEPBRT BRT 
Cupressus 0.75 BRT BRT 0.69 BRT BRT 0.79 SEPBRT BRT 
Elaeagnus 0.78 BRT BRT 0.96 BRT SEPGAM 0.77 SEPGAM BRT 
Eucalyptus 0.64 BRT BRT 0.85 BRT SEPGAM 0.70 GAM BRT 
Fagus 0.78 BRT BRT 0.65 BRT SEPGAM 0.74 SEPBRT BRT 
Ficus 0.97 BRT BRT 0.78 SEPGAM BRT 0.88 BRT BRT 
Fraxinus 0.79 SEPBRT SEPBRT 0.82 BRT SEPGAM 0.78 SEPBRT SEPBRT 
Gleditsia 0.83 SEPBRT SEPBRT 0.86 BRT SEPGAM 0.83 SEPBRT SEPBRT 
Ilex 0.81 BRT BRT 0.55 BRT BRT 0.52 SEPBRT BRT 
Juglans 0.44 SEPGAM SEPGAM 0.91 SEPBRT BRT 0.80 SEPGAM SEPGAM 
Juniperus 0.85 SEPGAM SEPGAM 0.83 GAM SEPGAM 0.92 SEPGAM SEPGAM 
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Larix 0.74 BRT BRT 0.64 SEPBRT BRT 0.67 SEPBRT BRT 
Liquidambar 0.89 SEPGAM SEPGAM 0.74 BRT SEPGAM 0.68 BRT SEPGAM 
Liriodendron 0.51 SEPBRT SEPBRT 0.65 BRT BRT 0.70 SEPBRT SEPBRT 
Maclura 0.47 BRT BRT 0.72 SEPBRT BRT 0.79 SEPGAM BRT 
Magnolia 0.86 SEPGAM SEPGAM 0.88 BRT SEPBRT 0.93 SEPGAM SEPGAM 
Malus 0.87 BRT BRT 0.80 SEPGAM SEPGAM 0.84 BRT BRT 
Morus 0.69 BRT BRT 0.75 BRT SEPGAM 0.76 SEPGAM BRT 
Ostrya 0.42 BRT BRT 0.64 SEPBRT BRT 0.33 BRT BRT 
Persea 0.93 BRT BRT 0.81 SEPBRT BRT 0.74 SEPGAM BRT 
Picea 0.98 BRT BRT 0.92 SEPGAM SEPGAM 0.86 SEPGAM BRT 
Pinus 0.62 SEPBRT SEPBRT 0.87 GAM SEPGAM 0.66 BRT SEPBRT 
Platanus 0.71 SEPBRT SEPBRT 0.88 BRT SEPGAM 0.64 BRT SEPBRT 
Populus 0.36 BRT BRT 0.80 SEPGAM SEPGAM 0.95 SEPBRT BRT 
Prunus 0.74 SEPGAM SEPGAM 0.97 BRT BRT 0.98 SEPGAM SEPGAM 
Pseudotsuga 0.97 BRT BRT 0.89 SEPBRT BRT 0.95 SEPGAM BRT 
Quercus 0.78 SEPGAM SEPGAM 0.73 SEPBRT BRT 0.81 SEPGAM SEPGAM 
Salix 0.94 BRT BRT 0.81 BRT BRT 0.69 SEPBRT BRT 
Sapindus 0.94 SEPGAM SEPGAM 0.999 SEPGAM BRT 0.94 SEPGAM SEPGAM 
Sassafras 0.56 BRT BRT 0.58 SEPBRT BRT 0.66 SEPGAM BRT 
Sorbus 0.75 BRT BRT 0.93 SEPBRT BRT 0.86 BRT BRT 
Taxus 0.89 BRT BRT 0.66 BRT BRT 0.33 SEPGAM BRT 
Tilia 0.98 SEPBRT SEPBRT 0.69 BRT SEPGAM 0.78 BRT SEPBRT 
Tsuga 0.78 BRT BRT 0.75 SEPGAM BRT 0.6 SEPGAM BRT 
Ulmus 0.60 SEPBRT SEPBRT 0.84 SEPGAM SEPGAM 0.79 SEPBRT SEPBRT 

Table S4.2.6 The strength of model fit across all 16 possible model combinations for each host tree genus. “SEP” as a prefix indicates 
a separate model fit to a given genus, whereas the lack of such a prefix indicates a global model fit to all genera. Some genera were 
very rare within our inventoried communities at a given size class, and therefore their genus-specific models did not have sufficient 
data to be fit. R2 is reported as NA in these cases.  
https://www.dropbox.com/s/c1048q8imtweaik/tableS2.4.6.xlsx?dl=0 (hosted online because table is very large)
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Appendix S4.3 Pest spread forecasts 2020-2050 

Figure S4.3.1 Predicted pest richness in the mid-range climate scenario from 2020 to 2050, with 
newly occurring local establishments plotted in the last panel. 
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Appendix S4.4 Summary of Bayesian theoretic analyses 

To ensure our resulting mortality and cost curves were identifiable and had unbiased parameters, 

we tested their ability to fit to simulated mortality and cost data using theoretical simulations. In 

our theoretic analyses, we tested a series of parameter values for five curve families (the beta 

family for the mortality curves and gamma, lognormal, Weibull, and Pareto families for the cost 

curves), and chose the least biased priors for each distribution from these. Across all Bayesian 

models, we used 4 Stan chains with 10000 burn-in iterations and 10000 sampling iterations. Bias 

and identifiability were examined through theoretic simulations using P-P plots (Leung & Steele 

2013). We tested whether the chains achieved high coverage of the posterior distribution by 

checking effective sample size (Neff, where an Neff of 10% of the iterations suggests unbiased 

sampling) and tested for chain convergence with the Gelman-Rubin diagnostic (Rhat), using a 

threshold of 1.1, via the R package shinystan (Gabry et al. 2019). 

A note on prior choices 

We tested uniform, Jeffreys, reference, and other simple prior formulations (e.g. inverse prior) 

and chose the least biased priors for each distribution from these. The Jeffreys prior is defined as: 

!(#) = &'()(*(#)), where I(#) is the Fisher information matrix. Jeffreys (1961) developed the 

prior as a parameterization-invariant alternative to the uniform prior. The reference prior 

(Bernardo 1979) can produce similar properties and sometimes has better behaviour. However, 

some of these formulations are very difficult to compute, and so simpler formulations such as the 

inverse were substituted when theoretic analyses showed they behaved well. 

Mortality model 

We fit a beta distribution to our host severity frequency distribution. The beta distribution is 

described by two free parameters, a and b: 
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+,-+-,).-/01	3-,)01.)4	~	6()0(0, 8) 

We chose priors for a and b based on theoretical simulations, where we drew 1000 random a and 

b parameters via Latin hypercube sampling (Table S4.4.1) and subsequently sampled from each 

of these beta distributions to produce 100 severity estimates to use as data to fit our Bayesian 

models. To assess bias, we examined the resulting P-P plots for each model (Leung & Steele 

2013). P-P plots allow for the checking of bias and uncertainty in the posterior distribution by 

plotting the percentiles of the posterior distribution under which the true parameters lie. The 

percentiles should follow the 1:1 line in a purely unbiased model. Deviations from the line can 

indicate over- or underestimation, as well as over- or under-prediction of uncertainty. We found 

that the best-behaved P-P plots corresponded to a prior of !
√#$ for the model (Yang & Berger, 

unpubl. manuscript), though they still resulted in slight overestimation (Fig. S4.4.1).  

We performed posterior checks on our fitted Stan model through shinystan (Gabry 2015 

to determine whether a tractable model could be estimated using uncertain, sequential bounds 

and no point mortality estimates. Our fitted model generated no warnings for the standard 

posterior checks (i.e., effective sample size Neff, Gelman-Rubin diagnostic Rhat).  

Mortality model results 

The host mortality distribution groups pest-host combinations into a series of sequential bins 

based on severity (Fig. 4.4, Potter et al. 2019). The two lowest bins have uncertain upper bounds, 

and the highest bin has an uncertain lower bound. Our model thus included the relative 

frequencies of species within each bin as data, and we fit parameters for the beta distribution 

shape and scale, as well as for the bounds of the two lowest bins and the highest bin. We 

assumed that the mortality categories did not overlap and that mortality increased in severity, 

such that these bins could be assigned sequentially. The likelihood was the sum of the integrals 
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under the associated probability density functions for different beta parameter sets and threshold 

values, making the log likelihood: 
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Where the letters A-H correspond to the binned severity categories listed in Fig. S4.4.2 and i is 

the proportional mortality. The posterior can then calculated via:  

+(0, 8|4) ∝ +(0, 8)+(4|0, 8)
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Table S4.4.1 Latin hypercube sampling parameters. 1000 samples were taken for each parameter 
over a uniform distribution. 
 
parameter minimum maximum 
beta a 0.00001 1.00001 
beta b 0.01 2.01 
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Table S4.4.2 Posterior distributions of the parameters of the beta distribution (a and b), the three 
fitted thresholds for severity categories (AT, BT, GT), and of the proportional mortality within 
each severity category (A-H). 
  

Posterior 
mean 

Posterior 
median 

Lower 
95% 
Bayesian 
CI 

Upper 
95% 
Bayesian 
CI 

a 0.013 0.0127 0.00833 0.0191 
b 0.988 0.938 0.474 1.793 
AT 0.0000211 0.00000795 1.16E-07 0.000125 
BT 0.00427 0.00424 0.00161 0.00719 
GT 0.969 0.967 0.952 0.9922 
A 6.28E-06 4.36E-10 5.80E-33 7.32E-05 
B 0.000267 0.000228 5.25E-05 0.000684 
C 0.00327 0.00239 0.000389 0.00929 
D 0.0403 0.0331 0.0107 0.0943 
E 0.164 0.159 0.0245 0.103 
F 0.555 0.527 0.26 0.93 
G 0.964 0.963 0.951 0.983 
H 0.99 0.991 0.972 0.9998 

 
 
Figure S4.4.1 PP-plots for the Latin hypercube sampling of our beta distribution model. Both 
parameters are slightly overestimated by the model, as evidenced by the positive deviation from 
the 1:1 line. 
 

 
 
Figure S4.4.2 Posterior distributions for the proportional mortality of pests in each severity 
category A=<<0.01, B = <0.01, C= 1-10%, D= 10-25%, E=25-95%, F=95-99%, G=99->99%, 
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H= >99%-100%. These were sampled from to produce projections of host mortality due to each 
pest species across mortality debt and invasion lag scenarios.  
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Cost curves 

We tested four curve families in this analysis: 

Gamma: 

?-I)~B0330(Iℎ0+(, IK01() 

Weibull: 

?-I)~L(.8M11(Iℎ0+(, IK01()	

Lognormal: 

?-I)~9-;N-,301(O, P) 

Pareto: 

?-I)~Q0,()-(42)3, R) 

Each curve family fits two free parameters, which we call shape and scale above, but are 

alternatively called μ and σ in the lognormal model, ymin and α in the Pareto model.  

We tested whether binned information could be combined with point estimates (as in the 

case of our point cost data combined with a bin of low impact invaders). In each of the 1000 

Latin hypercube iterations, we took 100 samples from a gamma, Weibull, Pareto, and lognormal 

distribution with a range of values of these free parameters (Table S4.4.3). We kept the full cost 
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information for half of these datapoints at random. We used the lowest and highest of these 

datapoints as the lowest and highest thresholds of cost in the model, and used the 80th and 95th 

percentile of the maximum observed cost to group the other datapoints. We then assigned the 

remaining species to low-, medium-, and high-cost bins based on where they fell relative to these 

thresholds. This is an even lower level of information than what we used in the cost curves fitted 

to the observed data (we have point estimates for all species apart from those below the lowest 

cost estimate), so we argue it is an even stronger demonstration of our approach. The likelihood 

of the model then became the sum of the likelihoods of the point cost estimates, plus the integrals 

under the various bins of the curve multiplied by the relative frequency of cost points under these 

curves for the species with only binned information, making our general log likelihood across the 

4 curve families: 

99 =Slog	(+(4	|Iℎ0+(, IK01())

4
+ 9%&&(1-;< +

5(

)*6(
(.	|Iℎ0+(, IK01())

+ T%&&(1-;< +
7(

8*5(
(U	|Iℎ0+(, IK01()) + C%&&(1-;< +

99(

:*7(
(V	|Iℎ0+(, IK01()) 

Where y are the point cost estimates and Lspp, Mspp and Hspp are the number of species in the low, 

medium, and high impact categories where we lacked point cost data. 

We used the inverse prior for the scale and the uniform prior for the shape parameter in 

all models, though it is only the true Jeffreys prior for the lognormal and Pareto models. The 

Jeffreys and reference priors for the gamma and Weibull distirbutions are highly complex, and 

did not appear to lead to improvements over using the inverse prior, so we chose the latter in 

these cases, though the results are slightly biased to overestimation (Fig. S4.4.3). The overall 

posterior is thus: 
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We found fairly good detectability of the appropriate curve family and of parameter estimates 

even in this data-poor situation (Fig. S4.4.3). Pareto distributions were the easiest to distinguish, 

and both Pareto and lognormal families produced unbiased parameter estimates based on P-P 

plots (Fig. S4.4.3, Table S4.4.3). Gamma distributions were the most difficult to distinguish, and 

parameters were slightly biased toward overestimation. Weibull shape parameters were also 

slightly overestimated. Weibull and gamma families were frequently confused with one another. 

While these results indicate that sole reliance on a single curve may lead to misestimation of 

mortality, this is partly assuaged by model averaging across the curve families. 

 Further, through shinystan, we found that all of our fitted models passed the 

recommended posterior checks. 

Table S4.4.3 Latin hypercube protocol for cost curves. 1000 parameter sets were sampled from a 
uniform distribution in each case. 
 
Parameter Minimum Maximum 
gamma shape 1 11 
gamma scale 0.001 1.001 
weibull shape 0.5 5.5 
weibull scale 0.1 5.1 
log-normal mu 0.01 5.01 
log-normal 
sigma 

0.1 1.0001 
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pareto shape 0.1 1.1 
pareto scale 1 11 

 
Table S4.4.4 Theoretic simulation results for the proportion of simulations where the correct 
curve family (the simulated curve family from which the data were generated) had the strongest 
support (assessed via maximum likelihood). 
  

Predicted distribution 
  

True Distribution Gamma Weibull Log-Normal Pareto 
Gamma 0.494 0.252 0.253 0 
Weibull 0.212 0.763 0.025 0 
Log-Normal 0.077 0.071 0.851 0.001 
Pareto 0 0 0 1 

 
Figure S4.4.3 P-P plots for the four cost curve families. A 1:1 relationship indicates unbiased 
posterior distributions, while a positive deviation from the line indicates parameter 
overestimation. 
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Cost curve extrapolation 

While these curves have negligible impacts on the total current cost of each feeding guild, they 

can be used predictively to forecast the risk of any new pest. For example, the probability of 

there being a new invader as bad as the worst pest in each guild can be calculated as the area 

under the cost curve more extreme than the most damaging pest (Table S4.4.5). In order to fit 

cost curves, we removed any pests whose damages were predicted to be 0 in the given cost 

scenario, as this would lead to intractable Stan models. This resulted in the removal of one 

species from the borer guild (Peach Twig Borer; Anarsia lineatella), and one from the defoliator 

guild (Mimosa Webworm; Homadaula anisocentra). Probabilities of new high impact invaders 

are fairly low for all guilds, with sap feeders showing a slight increased risk relative to borers 

and defoliators (1.2% vs. 0.3% and 0.5%, respectively). The posterior distributions for all guilds 
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in terms of the probability of a new high impact pest all appear very similar (Table S4.4.5), 

though the most likely curve family is variable across guilds. The Weibull family is the best fit 

for wood borers, while the gamma family is best for sap feeders and defoliators. Borers show 

some support for the Pareto model, sap feeders show some support for Weibull, and Defoliators 

show almost no support for other curve families. Pareto has some support for borers, while 

lognormal has the least support across guilds. 

Since Weibull and gamma families were difficult to correctly identify, we tested the 

sensitivity of p(new) to model misspecification by assigning all of the model weight attributed to 

these two families to either one or the other (Table S4.4.6). We found that this misspecification 

had little impact on borer risk, but led to order of magnitude risk decreases for sap feeders and 

increases for defoliators, though we note that in the latter case, >99.9% of the support was in 

favour of the gamma model. 

 

Table S4.4.5 Posterior probabilities of new high impact invaders (p(new)) and the relative 
support (model weight) for each of the cost curve families across the three feeding guilds. 

 
Guild Mean 

p(new) 
Lower 
95% CI 
p(new) 

Upper 
95% CI 
p(new) 

Gamma 
weight 

Weibull 
weight 

Lognormal 
weight 

Pareto 
weight 

Borers 0.0028 0.00040 0.0087 0.003 0.27 0.44 0.28 
Sap 
Feeders 

0.012 0.00096 0.054 0.80 0.19 <0.0001 0.01 

Defoliators 0.0049 0.000079 0.023 0.999 <0.001 <0.0001 <0.0001 
 
 
Table S4.4.6 Sensitivity of posterior probabilities of new high impact invaders (p(new)) to 
Gamma/Weibull misspecification. 
 

Guild Mean 
p(new) 
Gamma 

Lower 95% 
CI p(new) 
Gamma 

Upper 
95% CI 
p(new) 
Gamma 

Mean 
p(new) 
Weibull 

Lower 
95% CI 
p(new) 
Weibull 

Upper 95% CI 
p(new) 
Weibull 

Borers 0.0045 0.00050 0.018 0.0024 0.00030 0.018 
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Sap Feeders 0.0033 0.000055 0.017 0.013 0.000044 0.065 
Defoliators 0.0049 0.000074 0.023 0.028 0.00032 0.094 

 
 
Figure S4.4.4 Posterior distributions of cost curves fit to the three feeding guilds, as well as 
posterior probabilities of a new high-impact pest (i.e., as damaging as the most damaging pest 
already present) within each guild:  a-b. wood borers, c-d. sap feeders, e-f. defoliators. 
 

 

 

 
 

a. b. 

c. d. 

e. 
f. 
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Appendix S4.5 Predicted tree mortality and associated costs across invasion lag and mortality 

debt scenarios for street, residential, and non-street community trees 

Table S4.5.1 Predicted tree mortality and annualized costs across land types and scenarios. 
These costs are only for tree removal and replacement for dead trees, and do not consider non-
treatment costs such as property value losses as examined in Aukema et al. (2011) or any 
ecosystem services losses. Community trees are defined as all urban trees apart from street trees 
(e.g. parks, industrial areas etc.), while residential trees are the responsibility of homeowners and 
are on their properties. Mean mortality for community trees in the best guess scenario was 4.6% 
(318M trees), with an estimated annualized management cost of 1.16B USD (26B from 2020 to 
2050), and mean mortality for residential trees was 4.2% (59M trees), corresponding to an 
annualized estimated management cost of 290M USD (6.5B from 2020 to 2050). 
 

 

Land Type 
 Annualized Cost 

(millions 2019 USD) 
Tree Mortality 
(millions) Total tree 

abundance 

Percent mortality  

Mortality Debt lower 
95% CI 

upper 
95% CI 

lower 
95% CI 

upper 
95% CI 

upper 
95% CI 

lower 
95% CI 

Community         

 Best Guess 608 2130 165 510 7000 2.4% 7.3% 
         
 All 10 208 866 156 452 7000 2.2% 6.5% 
 All 50 1300 3790 73.6 219 7000 1.1% 3.1% 
 All 100 1260 3880 833 2610 7000 11.9% 37.3% 
         
 Vary Borers 263 36200 87.2 2400 7000 1.3% 34.2% 
 Vary Defoliators 236 1810 145 497 7000 2.1% 7.1% 
 Vary Sap-Feeders 2310 1210 139 424 7000 2.0% 6.1% 
         
         
Residential Best Guess 151 535 30.7 95.3 1400 2.2% 6.8% 
         
 All 10 50.8 216 28.9 84.2 1400 2.1% 6.0% 
 All 50 317 927 13.6 40.8 1400 1.0% 2.9% 
 All 100 3050 9460 154 484 1400 11.0% 34.7% 
         
 Vary Borers 64.4 8820 16.2 445 1400 1.2% 31.8% 
 Vary Defoliators 57.8 454 26.9 92.9 1400 1.9% 6.6% 
 Vary Sap-Feeders 56.6 300 25.7 78.7 1400 1.8% 5.6% 


