

Anisotropic Mesh Adaptation for

Transient Problems and

Functional-Output Variables

Mostafa Najafiyazdi

Master of Engineering

Department of Mechanical Engineering

McGill University

Montreal, Quebec, Canada

Aug. 25, 2011

Copyright by Mostafa Najafiyazdi, 2011.

DEDICATION

I would like to dedicate this thesis to the two beautiful angles in my life who have

made my life heaven,

 My mother Shahrzad, who has always looked after me,

 And my wife Atefeh, whose love is a godly gift.

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Professor Wagdi G. Habashi, for his advices,

guidance and support all throughout my Master’s program. Studying and

researching under his supervision has been an honour for me.

I am grateful for the generous and continuous contribution of NSERC (Natural

Sciences and Engineering Research Council), Bombardier Aerospace (Foundation

J-.Armand Bombardier), Bell Helicopter Textron and CAE Inc., under whose

auspices this research is being carried out.

iv

TABLE OF CONTENTS

Chapter 1 Introduction ...1
1.1 Adaptor-solver coupling ..6

Chapter 2 Error Estimation and Anisotropic Mesh Adaptation7
2.1 Error Estimation ...7
2.2 A Posteriori Error Approximation ...9
2.3 Geometrical Representation of Riemannian Metrics11
2.4 Second Derivative (Hessian) Recovery ...13

Chapter 3 Unsteady Mesh Adaptation ...17
3.1 Alauzet et al. metric intersection method [4] ..21
3.2 Mckenzie et al.’s metric intersection scheme [39]22
3.3 Modified McKenzi’s intersection method [42] ...25
3.4 Unsteady Mesh Adaptation Benchmarks ...28

3.4.1 2D Blast Problem ..29
3.4.2 Mach 3 wind tunnel over 2D forward facing step [44]35
3.4.3 Two dimensional viscous flow over multi-element airfoil43

3.5 Conclusion ...51
3.6 Future Work ...51

Chapter 4 Functional-Output Mesh Adaptation ...53
4.1 Hermite-based mesh adaptation [62] ...54

4.1.1 Drawbacks of Hermite-based error indicator ..56
4.2 Surface functional-output mesh adaptation ...58

4.2.1 Metric Space ...58
4.2.2 Surface functional-output error indicator ..59

4.3 Numerical Results ..62
4.4 Conclusion ...67
4.5 Future Work ...67

LIST OF REFERENCES ...68

v

LIST OF TABLES

Table 1: Initial conditions for blast problem ... 29
Table 2: Mesh adaptation parameters ... 29
Table 3: Simulation conditions for the multi-element airfoil 43
Table 4: Parameters for RAE2822 transonic airfoil simulation for Euler flow 62

vi

LIST OF FIGURES

Figure 1: Anisotropic adapted mesh (top) and Mach contours (bottom) for an
Euler Mach 2 flow over NACA0012 airfoil ... 3
Figure 2: Mesh adaptation operations ... 5
Figure 3: Spring analogy ... 5
Figure 4: Schematic discrete solution on linear elements 10
Figure 6: Error ellipse (blue) in comparison to metric ellipse (black) 13
Figure 7: A sample chosen vector for one of elements around the node I 16
Figure 8: Schematic drawing of a support and its boundary 16
Figure 9: Metric intersection ... 22
Figure 10: McKenzie et al.’s metric intersection algorithm 24
Figure 11: McKenzie’s vs. Alauzet’s intersected metrics 27
Figure 12: Original grid and density contours of pressure for initial condition .. 30
Figure 13: Normalized error carpets for 50,1.0 10t     using modified

McKenzie’s (left) and Alauzet’s schemes (right) on the original mesh 32
Figure 14: Normalized error carpets for 50,1.0 10t     using modified

McKenzie’s (left) and Alauzet’s schemes (right) on the 1st adapted mesh 32
Figure 15: Mesh (top row), density contours (middle row) and density plots
(bottom row) for original mesh (left) and 1st adapted mesh (right) 33
Figure 16: Mesh (top row), density contours (middle row) and density plots
(bottom row) for 2nd adapted mesh ... 34
Figure 17: Geometry of Tunnel .. 36
Figure 18: Initial Delaunay mesh (zoom at the corner of step) 36
Figure 19: Solutions at 0.1,0.25,0.5,1.0t  over initial mesh. 37
Figure 20: Solutions at 2.0, 4.0t  over initial mesh. ... 38
Figure 21: Adapted meshes and solutions for Mach 3.0 flow over forward facing
step at 0.1,0.25t  .. 39
Figure 22: Adapted meshes and solutions for Mach 3.0 flow over forward facing
step at 0.5,1.0t  .. 40
Figure 23: Adapted meshes and solutions for Mach 3.0 flow over forward facing
step at 2.0, 4.0t  ... 41
Figure 24: Initial grid generated around a multi-element airfoil 44
Figure 25: Vorticity contours for multi-element airfoil at time instances of

6 6 6 61.0 10 ,2.0 10 ,4.0 10 ,8.0 10t         .. 45
Figure 26: Vorticity contours for multi-element airfoil at time instances of

6 5 51.6 10 ,3.2 10 ,5.0 10t       .. 46
Figure 27: Adapted meshes and solutions for multi-element airfoil at

6 61.0 10 ,2.0 10t     .. 48
Figure 28: Adapted meshes and solutions for multi-element airfoil at

6 64.0 10 ,8.0 10t     .. 49
Figure 29: Adapted meshes and solutions for multi-element airfoil at

6 51.6 10 ,3.2 10t     .. 50

vii

Figure 30: Adapted meshes and solutions for multi-element airfoil at
55.0 10t   .. 51

Figure 31: Schematic drawing of a Hermitian reconstructed profile along an edge
... 55
Figure 32: A 2D metric space example defined based on a 2D Euclidean space 58
Figure 33: Discretized metric space defined by a metric defined at nodes of a 2D
grid .. 59
Figure 34: Full-tetrahedron initial mesh around RAE2822 airfoil using Octree
method... 63
Figure 35: Mach contour levels around RAE2822 transonic airfoil 63
Figure 36: Mach contours on the airfoil surface for (a) initial mesh and after 4
cycles of (b) surface functional-output adapted mesh and (c) Hessian-based
adapted mesh ... 64
Figure 37: Mach contours levels after 4 cycles of (a) surface functional-output
adapted mesh and (b) Hessian-based adapted mesh .. 65
Figure 38: Pressure coefficient plot on the RAE2822 transonic airfoil 66

viii

ABSTRACT

Mesh adaptation is modification of an existing mesh as to accurately capture

physical phenomena without increasing computational cost excessively. Among

many challenges remained in this field, “unsteady mesh adaptation” and

“functional-output mesh adaptation” are the two topics addressed in this work.

 “Transient-Fixed-point” method is a new approach for unsteady mesh adaptation

as an implicit coupling between the mesh and the solution. What differentiates

transient-fixed-point from steady adaptation methods is the metric intersection

through time. In this work a new scheme for transient metric intersection is

proposed for orthogonal data preserving.

 Another challenge in mesh adaptation is to control mesh modifications

according to an integral function, known as functional-output, (e.g. lift, drag,

moments, etc.) rather than the directly computed variables (e.g. velocity, pressure,

Mach, etc.). Such control comes from a suitable edge-based error evaluation to be

defined according to the chosen functional. One such definition is proposed in this

work that drives surface mesh adaptation based on the chosen functional-output

function.

ix

RÉSUMÉ

L’adaptation de maillage est la modification d'un maillage existant afin de saisir

avec précision les phénomènes physiques sans augmentation excessive du coût de

calcul. Parmi les nombreux défis qui demeurent dans ce domaine, l’adaptation de

maillage de manière instable et l'adaptation de maillage selon un « functional-

output » sont les deux thèmes abordés dans ce travail.

La méthode « Transient-Fixed-point » est une nouvelle approche pour l'adaptation

de maillage de manière instable. Cette méthode consiste à formée un lien entre le

maillage et la solution. Ce qui différencie la méthode « Transient-Fixed-point » de

méthodes d'adaptation constante est l'intersection des métriques à travers le temps.

Dans cet ouvrage, un nouveau régime pour l'intersection de métriques transitoire

est proposé afin de préserver l’orthogonalité des données.

Un autre défi de l'adaptation de maillage est de contrôler les modifications

apporté à la maille selon une fonction intégrale, connu sous le nom de

« functional-output » (par exemple, la portance, la trainée, des moments, etc.)

plutôt que de calculées directement les variables (par exemple vitesse, pression,

Mach, etc.). Un tel contrôle provient d'une d'évaluation approprié de l’erreur des

lisières à être définies en fonction des choix de « functional ». Une telle définition

est proposée dans ce travail qui entraine l'adaptation de maillage de surface en

fonction du« functional-output » choisi.

1

Chapter 1 Introduction

In many numerical applications dealing with real-life problems, mesh adaptation

is recognized as a complementary tool to achieve higher accuracy and lower

overall computational time [1-5].

Mesh adaptation methods can be categorized from two different points of view: I)

Regeneration vs. Modification, and II) Isotropic vs. Anisotropic.

Mesh adaptation can be performed as regeneration of mesh based on an error

indicator computed on an original grid [6-14]. The error indicator is used to define

a kernel (e.g. Delaunay kernel), which transforms the Euclidean space to a

Riemannian space and performs the grid generation there. This transformation

works perfectly for meshes fully constructed of tetrahedrons in 3D or triangles in

2D. Such regeneration ensures that Delaunay criterion is satisfied in the

Riemannian space, which means that all edges or elements are almost equal in

size (length or volume). However, in the Euclidean space it will result in a grid of

non-uniform edges. Note that based on the definition of kernel (i.e. edge based or

element based) the grid could be either isotropic or anisotropic.

The other approach is mesh modification. In this approach the grid is locally

modified using four techniques: refinement, coarsening, edge swapping and node

movement [1-3,15,16]. Based on how these operations are controlled, the

adaptation could be isotropic or anisotropic. Habashi et al. believe that mesh

modification has a major advantage over regeneration [3]. Mesh regeneration is

costly with a constant overhead no matter how much the mesher-solver has

approached a converged solution. But, mesh modification is less expensive,

especially close to converged solution when there are only few modifications

done by adaptor.

Another aspect of mesh adaptation is whether it is isotropic or anisotropic.

Isotropic adaptations are based on error indicators defined on elements that do not

contain any directional data. However, isotropic mesh adaptation can only be

optimal with almost equal gradients in all spatial directions (e.g. diffusion

2

problems) [17-19]. In their results directional flow features such as shocks,

boundary layers, wakes, slip lines and vortices will not be efficiently adapted and

the number of elements required grows very rapidly by refinement.

The alternative approach is anisotropic adaptation allowing directional stretched

and oriented elements [1-3,6,8,9,11,14,15,20-23]. In anisotropic mesh adaptations

operations are performed on directional error indicators usually computed over

edges of the mesh (ref. section 2.6). As the result, at areas of high curvature in the

solution elements will be highly stretched so that a lot of flat elements lie side by

side (Figure 1).

Therefore, the goal is to achieve a grid with equi-distribution of error estimation

which is defined by Habashi et al. [3] as:

“The error estimate has been equi-distributed when the

error estimate is the same for all edges of a mesh.”

Following operations are used to optimize a mesh with all edges having

approximately the same error (Figure 2):

1. Edge refinement (h-refinement): When the Riemannian length (error

estimate) of an edge is larger than a defined maximum threshold the edge

is cut in half and new elements are created.

2. Edge or node coarsening: When the Riemannian length of an edge is

smaller than minimum threshold or the Euclidian length is smaller than a

user-defined minimum value, the edge is removed and elements are

collapsed.

3. Edge swapping: An edge is swapped if there’s an improvement in the

Riemannian length of the edge (i.e. gets smaller).

4. Node movement (r-method): Node movement is the only smoothing

operation during mesh adaptation. There are various global as well as local

techniques for doing so. Global methods are based on solving a partial

differential equation (e.g. Laplace) over the entire grid. However, since in

this context the error computation as well as all other operations is

performed locally, a local scheme is adopted for node movement.

3

Figure 1: Anisotropic adapted mesh (top) and Mach contours (bottom) for an

Euler Mach 2 flow over NACA0012 airfoil

4

In this work, spring analogy (Figure 3) method is used for its simplicity in

implementation and no computational cost. In spring analogy, nodes are moved

one at a time. To move each node, all its surrounding nodes are fixed and edges

are considered to be springs under pre-tension or pre-compression.

The stiffness coefficient for each edge is defined as:

   I J
I J

IJ

e x x
K x

L


 (1.1)

where  I Je x x is the error associated to that edge and IJL is its Euclidian

length.

Putting the Euclidian length in denominator makes small edges stiffer in order to

prevent the node to cross the boundaries of its surrounding elements and causing a

degenerate element.

The ideal position of the node is where the energy of this spring system is

minimized, i.e.:

      2

1

min min
n n

J J

n

J I J I J
x x I

E x x x K x
  

 
 

 (1.2)

(a) Refinement

(b) Coarsening

(c) Swapping

5

(d) Node movement

Figure 2: Mesh adaptation operations

This minimization problem is equivalent to having zero net fore exerted on the

node:

     
1 1

0
n n

I J I J I J
I I

F x x x K x
 

    (1.3)

Equation (1.3) can be easily solved by an iterative fixed point method [3]:

   

 
1

1

n
old old

I J I J
new old I
J J n

old
I J

I

x x K x
x x

K x
 




 




 (1.4)

in which  is a relaxation factor between zero and one.

Figure 3: Spring analogy

6

1.1 Adaptor-solver coupling

The goal of mesh adaptation is to obtain improved meshes so that the coupled

solver-adaptor converges to an optimal solution. The coupling is in the following

way:

Consider a pair of mesh and a solution on this mesh  ,n nH S . The mesh is

adapted based on error approximation of solution over this mesh and a new mesh

1nH  is created. The solution nS is interpolated over this mesh and numerical

computation is restarted over the new mesh from the interpolated solution. This

iteration is continued until the solution is converged to a desirable level and does

not change with mesh anymore.

In mesh adaptation, the choice of scalar to control the mesh plays a significant

role in adaptation performance. For example, local Mach number is a very good

choice for capturing shock waves and boundary layers, but not good enough to

capture vortices in wakes or separation zones (as will be show in Chapter 3). An

alternative choice could be scaled sum of all the variables [17,24] or the

intersection of metrics associated with all or some of flow variables [12]. In this

work, our focus is not on the choice of scalar or how multiple scalars are

combined to a single one. The methods presented here are general and applicable

to any choice of controlling scalar.

7

Chapter 2 Error Estimation and Anisotropic Mesh Adaptation

This chapter focuses on error estimation techniques, as the heart of adaptive

computational methods used in the context of mesh adaptation. The difference

between a priori and a posteriori error approximations is briefly discussed and

mathematical modeling details are explained for case of a posteriori error

estimation. Moreover, error estimation application is discussed in mesh adaptation

where the concept of anisotropy is introduced.

2.1 Error Estimation

All numerical computations are based on mathematical models, i.e. a system of

governing equations (algebraic, ordinary or partial differential, integral, integro-

differential), inequalities, boundaries and initial conditions, data (set of

parameters, domain geometry). Such mathematical models might not be able to

fully describe the actual characteristics of a physical phenomenon, which

consequently introduce an error in the simulations. Another source of error is

solving the mathematical models numerically which is caused by discretization of

“continuous” equations and/or boundary as well as initial conditions, or because

of round off errors arising from machine precision.

In this work, the term “error” is used for the second category (i.e. numerical

deficit with respect to a given mathematical model) and the validity of governing

equations and/or boundary conditions is excluded.

In any numerical computation, the error in solution is a function of the

independent variables of the problem. For example for an unsteady CFD 1

simulation the independent variables are spatial coordinates (e.g. x and y, or r and

θ in 2D2 flows) and time t.

The error for a numerical simulation is simply defined as:

 ae u u  (2.1)

1 Computational Fluid Dynamics
2 2-dimensional

8

8

where u is the exact solution of the governing mathematical model and au is the

numerical approximation obtained by for example finite differences, finite volume

or finite element methods. Surely, for models consisting of system of equations

the error can be defined for any dependent variables for which the model is solved

or for any other quantity based on obtained solution.

The magnitude of spatial approximation error and its bounds are measured by

norms and semi-norms defined on the computational domain. Ciarlet [10] has

proved that the approximation error is always bounded by the interpolation error

of the discretized space:

 a Iu u C u u   (2.2)

where  is an PL norm and Iu is the interpolate of solution u in the finite

element space and C is just a positive constant. Therefore, the approximation

error is bounded by the interpolation error. Determining suitable bounds for

interpolation error provides a bound on the actual error.

Defining bounds for interpolation error has been a topic of research for many

years during which two different paths have been used: a priori and a posteriori

estimates.

A priori estimates are based on mathematical theories that do not require

information from the actual finite element solution and can be computed prior to

the determination of the solution [10, 24, 25]. The advantage of these methods is

that an approximation of error and its dependency on the domain discretization is

at hand, even before the numerical computation is performed. But they are limited

in their application as they highly depend on the discretization of the governing

equations and the computational domain. Moreover, they usually are computed

globally and provide an upper bound of interpolation error throughout the domain

and ensure a certain level of convergence. Although suitable for determining

convergence rate of a numerical scheme, it has little use for mesh adaptation in

which error must be approximated locally at every point inside the computational

domain.

9

9

A posteriori error estimates derive information from the finite element solution

itself in order to approximate the interpolation error. Their only disadvantage rises

from their need of computing the solution on a given discretized space. But, their

strength is in providing point-wise information about the interpolation error,

which is the key point for mesh adaptation. Therefore, in this thesis a posteriori

estimates will be used.

2.2 A Posteriori Error Approximation

Precise estimates of error are usually difficult and/or very expensive to evaluate

for highly complex problems. Moreover, since the error estimate is only an

indication of relative error in the context of mesh adaptation, it is more suitable to

use less precise and less expensive methods for error estimation. A simple but

very efficient error estimator was introduced by Habashi et al. [3], which is

described in details. This error estimator is based on finite element interpolation

theory and Lagrange error bound. For linear elements the error term is

proportional to the second derivative of a chosen scalar. Here, the derivation for a

one-dimensional problem is illustrated.

Consider a continuous field  u x is approximated by a piecewise linear

distribution  hu x as shown in Figure 4. At every point in element E the error is

defined as:

     h
E Ee x u x u x  (2.3)

where the approximate solution  h
Eu x can be expressed in terms of nodal values

of the element E. Moreover, the solution value at point 1I  (1Iu ) can be

expanded as a Taylor series about node I :

  11h I I
E h

x x
u x u u

l l 

 
   
 

 (2.4)

2 2

1 22
I E I

I I E

du l d u
u u l

dx dx     (2.5)

Substituting equation (2.4) into equation (2.5) gives:

 
2

22
I E E

h I

du xl d u
u x u x

dx dx
    (2.6)

10

10

Expansion of the exact solution  u x about the point I gives:

 
22

22
I E

I

du d ux
u x u x

dx dx
    (2.7)

Figure 4: Schematic discrete solution on linear elements

By replacing equations (2.6) and (2.7) into equation (2.3) and neglecting higher

order terms  3O x one can see that:

 
22

22 2
E E

E

xl d ux
e x

dx

 
 

 
 (2.8)

So, the interpolation error for a one-dimensional element is proportional to the

product of second derivative of the solution and the square of element length.

For 2D and 3D cases, the second derivative of solution is the Hessian matrix:

 

2 2 2

2

2 2 2

2

2 2 2

2

h h h

h h h
h

h h h

u u u

x x y x z

u u u
x

y x y y z

u u u

z x z y z

   
      
   

  
     

          

H (2.9)

The second derivative of the solution in the direction of a given unit vector e


 is

defined as:

 
2

2
Th

h

u
x





e H e

e

 
 (2.10)

Therefore, the error corresponding to an edge can be defined as follows:

11

11

   
1

0

T

edge I J I Je x x x x ds   M
   

 (2.11)

where]x


 and Jx


 are the position vectors of the two end points of the edge and M

is a positive definite matrix obtained from H . Note that for the definition in

equation (2.11) the metric M must be positive definite.

Various definitions for metric M are proposed [3,4,10,12,26]. The fundamental

definition of M is the same in all these. The Hessian matrix H can be

decomposed into eigenvectors and eigenvalues matrices:

TH R ΛR (2.12)

where R is the matrix of eigenvectors and Λ is the diagonal eigenvalue matrix.

By taking the absolute value of eigenvalues, one can ensure that the resulting

matrix is positive definite. Moreover, since the Hessian matrix is symmetric, then

the metric defined in equation (2.13) can be used to define a Riemannian space.

TM R Λ R (2.13)

For a symmetric positive definite metric  xM


 the arc length of a curve  in the

Riemannian space associated to it is given by:

          
1

0
for 0,1

T

Md t t t dt t    s M s s
  

 (2.14)

where  ts


 is the parametric representation of the curve  .

Comparing equations (2.11) and (2.14) shows that the definition of error for an

edge is actually its Riemannian length corresponding to the metric M defined in

equation (2.13).

2.3 Geometrical Representation of Riemannian Metrics

Riemannian metrics (i.e. positive-definite symmetric matrices) have geometrical

representatives in form of (hyper) ellipsoids. It means that in 2D a metric can be

shown by an ellipse and in 3D by an ellipsoid centered at the origin. Here, for

simplicity derivation is shown for a 2D case which is easily extendable for higher

dimensions as well. Consider a 2 2 metric:

 2

a b

b c

 
  
 

M (2.15)

12

12

The ellipse corresponding to this metric can be defined as:

    2, , 1
x

f x y x y
y

 
  

 
M (2.16)

2 22 1ax bxy cy   (2.17)

By rewriting equation (2.17) in canonical form, one can show that the ellipse

defined by this equation is an ellipse with major and minor axes parallel to

eigenvectors, and with diagonals equal to the inverse of the square root of

eigenvalues of the metric. Figure 5 shows a schematic drawing of such an ellipse.

Geometrical representation of the metric shows the principal directions and

magnitudes of error based on definition in equation (2.11). Note that higher values

of error along an edge correspond to larger eigenvalues and smaller diagonals for

the ellipse. So, a similar ellipse known as “error ellipse” can be defined whose

axes are perpendicular to that of the metric ellipse. The length of diagonals of the

error ellipse is equal to inverse of diagonals of the metric ellipse (Figure 6).

Figure 5: Schematic drawing of an ellipse corresponding to a metric

13

13

Figure 6: Error ellipse (blue) in comparison to metric ellipse (black)

2.4 Second Derivative (Hessian) Recovery

The first step in evaluating the error over each edge using equation (2.11) is to

compute the Hessian matrix at every node. Usually solutions do not have second

derivatives for the dependent variables. In order to have continuous second

derivatives accurately a numerical scheme must be at least 4th order in space

which rarely is the case. Therefore, one needs to approximate the Hessian matrix

using derivative recovery methods. In this chapter we show a few derivative

recovery schemes that can be used for solutions over linear-element grids.

Derivative recovery methods (most of which are focused on recovery of first and

second derivatives) are more or less classified in terms of global and local

methods. Global methods require solving a linear system of equations on the

whole computational domain while local methods define the problem locally and

usually depend only on a few cells around a node. Global methods are seldom

used in practice as they are believed to be computationally expensive.

Hessian recovery techniques are fairly new with main application in anisotropic

mesh adaptation that needs directional error indicators. Most Hessian recovery

methods are either applying gradient recovery twice or by extending them [24].

Recovery techniques have been mainly developed since the late 1990’s.

Zienkiewicz and Zhu [25] proposed smoothing the gradient using a local discrete

least-squares fitting operator. This technique for error indicators shows super

14

14

convergent asymptotic exactness on structured grids, but not for unstructured

grids [27, 28].

Another family of recovery techniques is based on the 2L -projection on a set of

functions. These schemes are developed both globally [14, 29] and locally using

the Clément interpolation operator [21, 30].

Few works are published on comparison of Hessian recovery methods. Buscaglia

et al. [29] compared only their improved version of another technique [3,12].

Almeida et al. [21] compare four gradient recovery techniques by plotting some

convergence graphs of gradients and Hessian errors. Vallet et al. [31] propose a

methodology to compare recovery techniques for second-order derivatives from a

piecewise linear approximation and compare four different methods, DLF3, SLF4,

QF5 and DL2P6. They believe that gradient extensions (DLF and QF) should be

more accurate than the use of a gradient twice.

In this work, for Hessian recovery first the gradient vector is recovered at each

node. A least-square fitting with a constant function at element centers (as

sampling point) is used for recovering gradient. In this technique, nodal values are

computed on a patch IT associated with a node I . This patch is considered to be

the support of that node, i.e. the union of elements around it. This technique is

actually the first step in DLF scheme (called Local Polynomial Expansion in

[21]). Starting from:

I

u u u
du dx dy

x y z

  
  
  

 (2.18)

one can rewrite it approximately for every cell as:

j j j j
I II

u u u
u x y z

x y z

                      
 (2.19)

where  , ,j j jx y z   is the vector from the node to the center of j th element in

the support (Figure 7).

3 Double Linear Fitting
4 Simple Linear Fitting
5 Quadratic Fitting
6 Double 2L -projection

15

15

To solve for  /
I

u x  ,  /
I

u y  , and  /
I

u z  , a least-square problem can be

formed:

2

2

I I I I

I I I I

I I

j j j j j j j
j T j T j T j TI II

j j j j j j j
j T j T j T j TI II

j j j j
j T j T I

u u u
u x x y x z x

x y z

u u u
u y x y y z y

x y z

u u
u z x z

x y

   

   

 

                         

                         

              

   

   

  2

I I

j j j
j T j T II

u
y z z

z 

       
 

 (2.20)

Equation (2.20) can be written in matrix form:

2

2

2

j jj j j j j

j j j j j j j

j j j j j j j

u xu xx x y x z

x y y y z u y u y

z x x y z u z u z

                                               

  
   
   

 (2.21)

Solving this system of equations gives a least-square approximation of gradient at

every point.

If the same procedure is used for computing the second derivatives, the method is

the DLF. However, DLF performs poorly when high gradients exist in the

solution (e.g. shock waves or boundary layers) and results in highly oscillating

values for the Hessian matrix.

In order to avoid such non-physical oscillations, a weak Galerkin weighted

average technique can be used [15]. Second derivatives at a point can be defined

in a weak Galerkin sense as:

2

22

2
I

I

k
k

k iT

i I
k

kT

u
N d

xu

x
N d













 (2.22)

where k loops over all nodes of surrounding elements and kN are shape functions

at those nodes. Equation (2.22) can be integrated by parts:

2

22

2
I I

I I

k k k k
k k

k ki i i iT T

i I
k k

k kT T

u N u u
N d d N d

x x x xu

x
N d N d



   
    

   
 


 

   

  


 (2.23)

16

16

In this equation  is the interior of the support and  represents its boundary

(Figure 8).

Equation (2.23) can be broken in terms of summation of integrals over elements:

2

22
11

2

1

II

I

ndperlndperl
k k kk

k mk
M T km T k i i iM mil

ndperl
i I

k
Tl T k l

N u uu
d N dN d

x x xxu

x
N d

V

  

 

              




    

  


 (2.24)

where M , M and TV respectively represent elements, boundaries of elements

(i.e. faces for a 3D element and edges for a 2D element), and total volume of the

support. Note that during integration the boundary integral over internal facets of

two adjacent elements will cancel each other out. This means that the boundary

integral is only needed for boundary facets (if there are any).

Figure 7: A sample chosen vector for one of elements around the node I

Figure 8: Schematic drawing of a support and its boundary

17

Chapter 3 Unsteady Mesh Adaptation

The classical mesh adaptation algorithms for steady state problems are known to

be inadequate for unsteady simulations [4,32]. First of all, in steady-state

algorithms the mesh is always “lagging” with respect to the solution. A proposed

remedy is to adapt the mesh so frequently that the evolving solution through a

time step is contained in the suitably refined regions of the mesh [8,33,34] or to

add a safety area around critical regions to be adapted similarly [17,35,36].

Secondly, frequent mesh adaptations might compensate for the problem to some

extent, but will introduce a source of error due to interpolation of the solution

from one mesh to another (unless adaptation is only based on refinement and/or

coarsening or pure node movement using ALE methods). Interpolation errors

prevent the simulation from being time-accurate, especially when they stack up

during a large number of adaptations. Although a mesh adaptation with only

refinement and/or coarsening would be free from this flaw, it cannot provide

anisotropy, a powerful and important feature in mesh optimization for reducing

computational costs while increasing accuracy [1,2,37].

Recently, a new scheme was proposed by Alauzet et al [4] which combines the

classical mesh adaptation with a “Transient-Fixed-Point” scheme [32]. In this

method for a chosen time interval one iterates between flow solver and mesh

adaptation to obtain a converged mesh-solution couple, which means the variation

of solution over two consecutively adapted meshes is smaller than a user-defined

threshold. Therefore, the mesh is adapted to be suitable for the time interval

containing several time steps of the numerical simulation by intersecting metrics

computed from each (or some) of solutions stored at every (or some) time-steps.

This proposed method seems to be promising because it eliminates the need for

adapting frequently while minimizing the number of solution interpolations.

Choosing a suitable adaptation interval is case dependant and not trivial. Alauzet

recommends an interval in which 10 to 25 solution time steps have been saved (as

a rule of thumb) [4,32]. If the interval is too large the effect of many physical

phenomena will be combined which would result into either a very large mesh

18

18

due to many refinements or an isotropically adapted mesh (e.g. uniform

adaptation in the wake of a vortex-shedding cylinder). On the other hand, if the

interval is too small, many adaptations are needed which means expensive

computational costs. A suitable interval can be chosen by investigating the rate of

evolution of physical phenomena on the computational domain such as shedding

vortices, shock wave reflections, boundary movement or deformation, and etc.

For an unsteady solution the solution at last time step of an adaptation interval

must be used as a restart solution for the next period by interpolating it on the meh

of next interval. Since this solution is common between both adaptation periods,

meshes of both periods are already adapted for it. In other words, both meshes are

good enough to ensure a minimum accuracy for interpolation in elements.

Therefore, one can conclude that interpolating from one mesh onto the other will

not cause interpolation errors larger than the target error for mesh adaptation. It

means that the simulation will remain time-accurate with interpolation errors less

than the threshold chosen for the adaptation at all computational nodes.

This new technique has been tested for a few 2D as well as 3D test cases [4] to

show that such metric intersection provides a suitable mesh for the specified time

period if a sufficient number of iterations is carried out between solver and mesh

adaptor.

This work looks further into metric intersection schemes, particularly a modified

version of the metric intersection scheme by McKenzie et al. [4]. The proposed

method is based on intersecting metrics by using the ellipse representation of

positive definite tensors and will ensure the exact intersection of any two ellipses

(as the geometrical representation of metric tensors). The present work introduces

a suitable transformation for error matrices to another geometrical space, where

one of the error matrices becomes indifferent to direction and therefore the

intersection preserves orthogonality of eigenvectors at all steps of the procedure.

In other words, in this Riemannian transformed domain, eigenvalues of a matrix

are identical, i.e. its ellipse representation will be a unit circle. This method of

metric intersection ensures that one will achieve the exact intersection of as many

19

19

number of the matrices as desired in contrast to the technique proposed in [4],

which does not guarantee this criterion.

A suitable metric intersection means a more accurate error approximation for

unsteady problems, resulting in faster convergence towards the fixed-point of

mesh-solution couple. In the following sections, the proposed approach is

presented and discussed in details. We will first recall the classical mesh

adaptation algorithm and review the transient-fixed-point scheme for unsteady

problems.

In order to predict the temporal evolution of physical phenomena, transient-fixed

point mesh adaptation combines the classical and fixed-point coupling schemes

[32]. This iterative algorithm is a dual-loop procedure, where at each step of its

outer loop an adaptation time interval  , adt t t  is chosen. From the solution at

time t , numerical computations are done to reach adt t  in a number of

simulation time steps sN with time steps of s adt t   . Using the solutions of

these time steps, the mesh is adapted and the same time-interval simulation is

performed. This internal loop is repeated until a convergence on the solution is

achieved, i.e. until an PL norm of the variations of the solution at the final

simulation step.

,
1

sN

ad s i
i

t t t t t


      (3.1)

is lower than a specified threshold. Alauzet [4] suggests using the
1L norm for

computing the variations:

 

 

1

1

1

1

i i L

inner
i L

S S

S


 

 


 (3.2)

where  represents the computational domain, iS and 1iS  are the solutions from

two consecutively adapted meshes and inner is the threshold defined for the inner

loop.

When the inner loop has converged, the algorithm goes to the next adaptation

time interval  , 2
ad ad

t t t t    and the computations restarted from the interpolated

solution at adt t  onto the current mesh.

20

20

The key element in transient-fixed-point mesh adaptation is to combine the errors

of all or some of solutions in a given adaptation interval for mesh optimization in

order to get a mesh good enough for all simulation time steps of this particular

time span. In other words, using intersection metrics for approximating the error

ensures that for all the solutions of the adaptation period the interpolation error at

all edges remains bounded by a user-defined target error (constrained by

maximum and minimum Euclidean edge lengths). Therefore, although the

adapted mesh is not “optimized” for every given step, it is, as Alauzet et al. [4]

puts it, “pseudo-optimized” for the computation along this time lapse.

21

21

3.1 Alauzet et al. metric intersection method [4]

In order to compute the intersection of two positive-definite matrices 1M and

2M , a basis  ie


is defined such that these two matrices are congruent to diagonal

matrices in it. This basis is assumed to be the set of normalized eigenvectors of

the diagonizable matrix 1
1 2
N M M . Eigenvalues of 1M and 2M associated with

this basis can be computed using the Rayleigh formula:

1 2

T T
i i i ii ie e e e  
   

M M (3.3)

By assuming
 ieP =


 as the matrix whose columns are these eigenvectors (i.e.

eigenvector matrix of N), the intersected metric is defined to be:

 1 1
1 2 1 2

T 
   M M M P DP (3.4)

where D is the diagonal matrix:

  
1..

max ,i i i n
diag  


D (3.5)

and n specifies the dimension of the matrix.

22

22

3.2 McKenzie et al.’s metric intersection scheme [38]

McKenzie et al. studied the representation of metric tensors, their intersection and

union in quadratic form of tensors. The quadratic form of a metric tensor is an

ellipsoid, i.e. the locus of points equidistant from the origin in computed based on

that metric [12, 26, 39, 40]. Consider an n n symmetric positive definite matrix

M (called metric tensor). The metric’s geometric representation can be defined

by expressing it as a quadratic form:

  1
T

f x x x 
  

M (3.6)

Equation (3.6) is the locus of points at a distance of one from the origin in the

space defined by the metric M . These points form an ellipse for a 2 2 and an

ellipsoid for a 3 3 metric.

Figure 9: Metric intersection

Let 1M and 2M be two metric tensors (schematically drawn for a 2D example in

Figure 9) whose ellipse representations are called 1E and 2E .

First, these two ellipses are transformed by a function T so that ellipse 1E

becomes a unit circle. McKenzie et al. define the transformation matrix as:

1 1
1 1
 T Λ P (3.7)

where 1Λ is the diagonal matrix of eigenvalues of metric 1M and 1P is the

eigenvectors matrix. T transforms 1M into a unit circle of 1E and 2E into

another ellipse  2E . In order to find the metric form of the ellipse  2E a linear

23

23

system of equations should be solved. For simplicity, assume  2M is a 2 2 metric.

By choosing three points from the ellipse  2E we can write a linear system of

three equations in terms of unknown arguments of  2M by substituting their

coordinates in equation (3.6). The metric form of the unit ball is just the identity

matrix. In this space, 1E is indifferent to directions since any two orthogonal

directions can be chosen as its eigenvectors. Therefore, we can choose the

eigenvectors of  2M as our basis in order to define the intersection matrix as:

       1 1

1 2 1 2 2 22,
1..

min 1,
T

i
i n


 




     M M M P P (3.8)

where  2P is the eigenvector and  2,i are eigenvalues of  2M . After computing the

intersection metric 1 2M the inverse transformation 1 T = T is applied on the

ellipse form of this matrix and again a linear system of equations is solved to find

the metric 1 2M in the original space.

This procedure is schematically shown in Figure 10 for a pair of 2D metric

tensors. Since the intersection is found in a space where one of ellipses is actually

a circle, projecting and truncating eigenvalues of the other metric makes sense. In

other words, when one of the ellipses is a circle, the intersection is nothing but the

biggest ellipse that is constrained to the circle and the ellipse. Since for the circle

there’s no directional preference, choosing the eigenvectors of  2M as the

principal axes of the intersection is the perfect choice. Moreover, the intersected

ellipse can only have eigenvalues between 1.0 and those of  2M . The choice of

principal axes for projecting the two metrics and truncating eigenvalues is the

important difference between this method and that of Alauzet. We will show later

that Alauzet’s method does not guarantee the orthogonality of chosen basis and

therefore the corresponding eigenvalues computed for 1M and 2M cannot be

directly compared for computing the intersection. Examples will be presented to

illustrate this draw-back.

24

24

Figure 10: McKenzie et al.’s metric intersection algorithm

25

25

3.3 Modified McKenzie’s intersection method [41]

McKenzie’s proposed method shows promising characteristics and ensures

orthogonality of directions along which the eigenvalues are truncated. However,

the definition of the transformation for transforming the two ellipses 1E and 2E is

not consistent with the definition of error metric tensors. We will look at this issue

in two dimensions for simplicity, but a very similar mathematical procedure can

be used for higher dimensions. Let 1M and 2M be two 2 2 metric tensors

(symmetric positive definite) and assume that our purpose is to find a suitable

transformation under which the ellipse 1E becomes a unit circle. The symbolic

quadratic form of 1E can be written as:

      2 2
1, 2 1

x a b x
f x y x y x y ax bxy cy

y b c y

     
          

     
M (3.9)

In order to show the relation between geometrical characteristics of ellipse 1E and

eigenvalues and eigenvectors of 1M , consider the special case of 1E being a

horizontal ellipse, i.e. having its major axis in the x-direction and minor axis in

the y-direction. This is equivalent to having 0b  in 1M . Therefore, the quadratic

form is simplified as:

  2 2, 1f x y ax cy   (3.10)

From equation (3.10), we can see that major and minor diagonals of the ellipse 1E

are equal to 1 1d a and 1 1d c . Moreover, eigenvalues of this special matrix

are none other than a and c . It implies that eigenvectors and inverse of square

root of eigenvalues of the metric 1M define respectively the directions and size of

major and minor diagonals of its ellipse representation. Now let’s go back to the

general form of 1M in equation (3.9) and assume that its eigenvalues are  1 2, 

and its normalized eigenvectors are  1 2,e e
 

. It can easily be deduced that the

coordinate of points on the major and minor diagonals of the ellipse are:

1 21 21 21 1p e p e  
   

 (3.11)

26

26

So a suitable transformation should transform these two points to  1 1,0q 


 and

 2 0,1q 


. We can write:

1 21 21 21 1p e p e  
   

T T T T (3.12)

Equation (3.12) can be rewritten in a single matrix form:

   1
1 21 2

2

1 0 1 0
, ,

0 10 1
p p e e





   
       

T T =
   

 (3.13)

ΛT P = I (3.14)

where 1Λ Λ and Λ is the diagonal matrix of eigenvalues. So we can see that

the correct definition of transformation matrix is:

1 1 T Λ P (3.15)

The difference between Eq. (3.5) and the original transformation (Eq. (3.7)) is in

the definition of Λ which is the inverse of square root of what is used in the

original definition.

Moreover, since the geometrical diagonals are inversely proportional to the

eigenvalues, and larger eigenvalues mean larger errors, the suitable form of

truncation defined in equation (3.8)(mentioned in [38] that it might differ for error

tensors from density tensors) is:

     1 1

1 2 2 22,
1..

max 1,
T

i
i n


 




   M P P (3.16)

where  2P is the eigenvector matrix of  2M (the metric of transformed ellipse  2E

and  2,i are eigenvalues of this metric. With these suitable definitions the

modified McKenzie’s scheme can be compared to Alauzet’s method to study the

effect of orthogonality-preserving in the former. Consider the following example

for matrices that are defined to be symmetric and positive definite:

1 2

1 0.5 3 0

0.5 2 0 0.5

   
    
   

M M (3.17)

Figure 11 shows the ellipse representation of these two metrics and the

intersections computed using Alauzet’s and the modified McKenzie’s schemes. It

can be clearly seen that Alauzet’s method is not finding the perfect intersection.

27

27

Even analytically, there is no guarantee that the multiplication of two symmetric

matrices results in a symmetric matrix.

For 2D it can be easily derived analytically:

a b d e ad be ae bf

b c e f bd ce be cf

     
          

N (3.18)

Equation (3.18) shows that the product of two symmetric matrices is not

necessarily symmetric unless    b f d e c a   . It implies that such a scheme

does not result in the true intersection of two matrices. In terms of error

approximation it means that the computed values for errors along edges of the

mesh are not accurate. We will show in following sections that its consequence is

under-prediction of the error carpet in the computational domain.

However, the modified McKenzie’s method proposed in this work transforms the

two metrics so that one of them becomes indifferent to direction (Figure 10).

Therefore the directionality of the intersected metric will come from the principle

axes of the second transformed metric. Note that since the transformation and its

inverse are nonlinear it does not mean that by transforming the metrics back the

eigenvectors of intersected metric will be similar to that of the second metric.

Figure 11 is a simple numerical example of this behaviour.

Figure 11: McKenzie’s vs. Alauzet’s intersected metrics

28

28

3.4 Unsteady Mesh Adaptation Benchmarks

A 2D mesh adaptation code (DADMOM7) is developed and foregoing methods

are implemented in it to study their performance. For this purpose the first test

case is a 2D blast problem in which simultaneous propagation of shock, contact

discontinuity and expansion fan is expected. The second case is the classical

problem of a 2D Mach 3 wind tunnel with a forward facing step [42, 43]. The last

benchmark is a 0.3 Mach flow at 5000 Reynolds number passing over a four

element airfoil taken from Omar et al. [44], whose leading edge slat is at 45 , the

first trailing flap at 25 and the second flap at 51.2 with vortex shedding from

leading edge slat and trailing edge flaps. In all these cases, the improved transient-

fixed-point adaptation is used to study the impact of unsteady mesh adaptation on

the solution. Moreover, carpets of approximated error using modified McKenzie’s

and Alauzet’s schemes are computed at different iteration loops of mesh

adaptation and presented side-by-side for comparison.

7 Dynamic Anisotropic Data and Mesh Optimization Methods

29

29

3.4.1 2D Blast Problem

The first test case is the 2D blast problem. Computation domain is initialized with

a uniform temperature and zero velocity distributions everywhere with high

pressure and density jump in a small circular area at the center of computational

domain with low values everywhere else. This test case is a simple extension of

shock tube problem to two dimensions. This initial condition causes a shock wave

and contact discontinuity propagates outwards while an expansion fan moves

inwards. Figure 12 shows the initial condition over the originally created mesh.

The flow solver FENSAP[45] is used for performing numerical simulations and is

coupled with a 2D mesh adaptation code for coupling of solution and mesh. Table

1 shows the initial conditions for the problem. Computations are done for Euler

equations under ideal gas assumption for the fluid. Mesh Adaptation parameters

are listed in Table 2.

The total simulation time is 525.0 10 s and is cut into five identical time periods

of 55.0 10 s . This is the length of time step used for mesh adaptation, while the

flow solver time step is chosen to be 61.0 10 s . This time step ensures that the

CFL number in the smallest elements (for original and adapted meshes) is equal

to or smaller than 0.8 to ensure numerical stability of the solver.

Therefore, for each adaptation time period 11 solutions saved at each time step of

the simulation are combined.

Table 1: Initial conditions for blast problem

High Pressure (highP) 100 Pak High Density (high) 31.22 /kg m

Low pressure (lowP) 10 Pak Low Density (high) 30.122 /kg m

Radial position of initial
pressure jump (jumpr) 0.1 Temperature (T) 288K

Table 2: Mesh adaptation parameters

Target interpolation error 0.015 Maximum number of
elements

50,000

Maximum Euclidean length 0.5 Maximum number of
nodes

50,000

Minimum Euclidean length 81.0 10 No. solutions combined 10

30

30

Figure 12: Original grid and density contours of

pressure for initial condition

Then the mesh is adapted for the first time interval (i.e. 50,1.0 10t    ) and the

error computed using the intersected metrics over time for Mach number

(adaptation variable) using the modified McKenzie’s as well as Alauzet’s

schemes over this initial mesh (Figure 13). It can be seen that Alauzet’s error

carpet is slightly lower than McKenzie’s. It gets even worse when the second loop

of computations and mesh adaptation is performed (Figure 14).

Because of well-posed behaviour of the problem (i.e. propagation of shock and

expansion waves, and contact discontinuity) one could only compare the solutions

at the last time step. Moreover, one would like to see the if intermediate

interpolations from one mesh into another one would stack up to any significant

value. Therefore, for this test case we have chosen to compare the solutions in the

last time step (i.e. 55.0 10 s). Figure 15 and Figure 16 show the mesh, density

contours and density plots for this insstant computed on the original, 1st and 2nd

adapted meshes using the new transient-fixed-point method.

31

31

??? shows the summary of number of nodes and elements in the three meshes

used. Note that in mesh adaptation it is not easy to maintain the exact same

degrees of freedom in the domain. However, adaptation constraints (minimum

edge size, maximum number of nodes & elements) are chosen to keep the size of

the grids almost constant. Number of nodes and elements reported in ??? for

adapted meshes are average values of meshes of the five adaptation intervals with

negligible differences (i.e. maximum difference of 50 nodes and 120 elements).

After the 2nd mesh adaptation and 3rd flow solution the maximum change in

solution on the modified McKenzie’s adapted meshes is about 1.5% in

comparison to a value of 14% for meshes adapted with Alauzet’s scheme.

Table 3: Sizes of three meshes used for numerical simulations

 Original Mesh 1st adapted mesh 2nd adapted mesh

Numer of nodes 42,000 50,000 50,000

Number of elements 128,000 176,531 176,060

32

32

Figure 13: Normalized error carpets for 50,1.0 10t     using modified

McKenzie’s (left) and Alauzet’s schemes (right) on the original mesh

Figure 14: Normalized error carpets for 50,1.0 10t     using modified

McKenzie’s (left) and Alauzet’s schemes (right) on the 1st adapted mesh

33

33

Figure 15: Mesh (top row), density contours (middle row) and density plots

(bottom row) for original mesh (left) and 1st adapted mesh (right) in the last time

step of simulation

34

34

Figure 16: Mesh (top row), density contours (middle row) and density plots

(bottom row) for 2nd adapted mesh in the last time step of simulation

35

35

3.4.2 Mach 3 wind tunnel over 2D forward facing step [43]

This test case was introduced by Emery [46] and accepted as a benchmark for

unsteady flow simulations after a paper by Woodward and Colella [43]. The

geometry of the tunnel, which is filled with an inviscid gas, is shown in Figure 17.

The gas initially has a density 1.4 , pressure 1.0 and Mach number 3.0

everywhere. The inlet boundary condition is exactly the same as the initial

condition. The initial triangular mesh is generated with maximum and minimum

edge sizes of 0.05 and 0.01 respectively, resulting in 19556 elements and 1001

nodes (Figure 18).

The flow reaches its steady state at around 12t  . However, similar to the

original work [43] the flow is studied only until 4t  . Figure 19 and Figure 20

demonstrate Mach contours at different time instances over the initial mesh. A

shock wave grows in front of the step and first reflects from top and then from

bottom walls. Moreover, an expansion fan starts from the step corner towards

downstream hitting shock reflections.

It can be seen from these solutions, especially from the last one that the relative

large size of elements has the following negative effects:

1- Smearing shocks (i.e. a thickening discontinuity)

2- Very weak expansion fan (almost not visible)

3- Corrugated shocks (due to lack of nodes)

Solutions for this simulation were stored at time intervals of 0.05t  : 81 solutions

in total, including the initial solution.

36

36

Figure 17: Geometry of Tunnel

Figure 18: Initial Delaunay mesh (zoom at the corner of step)

37

37

Figure 19: Solutions at 0.1,0.25,0.5,1.0t  over initial mesh.

38

38

Figure 20: Solutions at 2.0, 4.0t  over initial mesh.

For unsteady mesh adaptation, the simulation time is broken into 10 intervals.

Each interval contains 9 solutions, with starting and end solutions shared with

adjacent time intervals. Mach number is chosen as the scalar for error estimation

and mesh adaptation. Each interval results in one adapted mesh. For the second

cycle of flow simulation, the computations starts from time zero on the adapted

mesh for the first interval up to 0.4t  . Then, the solution at that time is

interpolated onto the mesh for the second interval on which the flow computation

is continued. This procedure is repeated all through the 2nd simulation cycle

(Figure 21-23).

39

39

Figure 21: Adapted meshes and solutions for Mach 3.0 flow over

forward facing step at 0.1,0.25t 

40

40

Figure 22: Adapted meshes and solutions for Mach 3.0 flow over

forward facing step at 0.5,1.0t 

41

41

Figure 23: Adapted meshes and solutions for Mach 3.0 flow over

forward facing step at 2.0, 4.0t 

The first thing to notice is that the mesh is fixed for one time interval (Figure

21Figure 23) and the evolution of grid from one time interval to another one.

Each mesh is adapted to be suitable enough for all time steps of simulation for its

42

42

corresponding interval. The effect of mesh adaptation is very clear. Shocks have

become very sharp and thin, the expansion fan is clearly visible and even the slip

line which originates from the triple point of three shocks at the top is captured as

well. This slip line e is created due to Kelvin-Helmholtz instability at the

intersection of the main strong shock and upper Mach disk.

43

43

3.4.3 Two-dimensional viscous flow over multi-element airfoil

The last test case is viscous flow over a four-element airfoil [44], with leading

edge slat at 45 , first trailing edge flap at 25 and the second one at 51.2 . Table

4 shows all parameters set for flow simulation. The computational domain is 15

times the characteristic length (0.4L m) in every direction. Initially, the flow is

set to be uniform everywhere. It is as if the airfoil is suddenly placed inside the

airflow with the abovementioned conditions. An unsteady simulation shows a

vortex shed from the slat’s leading edge and that it is washed downstream.

Moreover, behaving as a bluff body for the incoming flow, the flaps initiate

vortex sheddings as well. Therefore, one can expect that the flow remains

unsteady with (semi-) periodic vortex shedding from the trailing edge.

Table 4: Simulation conditions for the multi-element airfoil

Mach 0.33 P 101.325 Pak

Re 5000 T 200 K

 AoA
 0 L 0.4 m

simulationt
55.0 10 s t

71.0 10 s

This simulation is initially performed on an initial mesh with not many nodes in

the wake (Figure 24). Figures 25 and 26 are snapshots of vorticity contours at

different time instances. Due to low mesh density in the wake, the wake is not

captured and after a while the flow seems to become steady with no vortex

shedding. Vorticity magnitude is chosen as the scalar for error estimation and

mesh adaptation for capturing boundary layer and vortices in the wake. One might

try Mach number or velocity magnitudes, which are good choices for boundary

layer, but the variations in these two variables are not strong enough in the wake

to result in error estimates comparable to the boundary layer.

44

44

Figure 24: Initial grid generated around a multi-element airfoil

45

45

Figure 25: Vorticity contours for multi-element airfoil at time instances of

6 6 6 61.0 10 ,2.0 10 ,4.0 10 ,8.0 10t        

46

46

Figure 26: Vorticity contours for multi-element airfoil at time instances of

 6 5 51.6 10 ,3.2 10 ,5.0 10t      

47

47

As the result, the mesh will be mostly adapted in the boundary layer and not the

wake. A better choice is the magnitude of vorticity, which is well preserved in the

wake for a long distance after the airfoil. Therefore, the vortices will be tracked

and captured by error estimation and eventually mesh adaptation.

Moreover, the total simulation time is split into 25 intervals with 21 solutions for

each interval. Note that the first and last solutions of each interval are,

respectively shared with previous and next time intervals.

Figures 27-30 are the set of numerical results obtained over the adapted meshes

after 2 cycles of mesh adaptation and flow simulation (in addition to the initial

results obtained).

The first thing to notice is that unsteady mesh adaptation has helped the solver to

simulate the true unsteady vortex shedding in the wake. Secondly, the mesh

changes from one time interval to another one while staying fixed during any

interval.

48

48

Figure 27: Adapted meshes and solutions for

multi-element airfoil at 6 61.0 10 ,2.0 10t    

49

49

Figure 28: Adapted meshes and solutions for

multi-element airfoil at 6 64.0 10 ,8.0 10t    

50

50

Figure 29: Adapted meshes and solutions for

multi-element airfoil at 6 51.6 10 ,3.2 10t    

51

51

Figure 30: Adapted meshes and solutions for

multi-element airfoil at 55.0 10t  

3.5 Conclusion

In this chapter a new metric intersection method for unsteady mesh adaptation

was proposed and implemented in the transient-fixed-point algorithm introduced

by Alauzet et al. [32, 47]. In this new method, metric intersection is performed

using the ellipsoidal representation of metrics by first transforming them into a

space in which one of the metrics becomes indifferent to any direction (i.e.

transforming its ellipse into a circle). The intersection is computed as the largest

ellipse that can be fit inside the intersection zone. In this approach the intersection

is performed to keep orthogonality of principal directions.

Using the proposed methods three 2D cases were simulated (blast wave problem,

Mach 3.0 flow over forward facing step, and viscous flow over a four-element

airfoil) using unsteady mesh adaptation. For the blast problem the error carpet

was plotted for this method and compared to the Alauzet et al.’s [32] showing that

the former computes error carpets more sharply. We believe that it is because our

intersection method preserves the directionality of solution by computing the best

principle directions for intersection metric.

3.6 Future Work

For unsteady mesh adaptation, one of the future works can be testing 3D unsteady

benchmarks. Such benchmarks can be used to study the effect of unsteady mesh

adaptation for predicting time-dependent flow characteristics, for example

frequency of vortex shedding, moving position of separation point and amplitude

of fluctuating lift and drag forces over surfaces with vortex shedding in their

wake. One of such examples is the unsteady simulation of wing-tip vortex

shedding, its effect on lift and drag and the vortex interaction with the tail.

Another topic as a future work for unsteady mesh adaptation is to use it as a tool

for practical mesh independence study for transient flow problems. The goal is to

reduce computational costs of intermediate cycles of adaptation-solver couple in

52

52

unsteady mesh adaptation. This topic is an ongoing project in CFD Lab at McGill

University in which a Reduced Order Modeling (ROM) technique is coupled with

unsteady simulation for enriching transient solutions used for unsteady mesh

adaptation [48]. In this approach, for intermediate cycles higher time steps can be

used for flow simulation with solutions at time steps that were skipped

approximated via ROM.

53

Chapter 4 Functional-Output Mesh Adaptation

Recently, a new approach for error estimation is studied that is more relevant for

engineering applications and in which error made in prediction of integral

quantities representing an engineering output is assessed. Examples of such

engineering outputs include lift and drag forces, total heat flux, acoustics noise

level, or total rate of ice formation on an aircraft wing during adverse atmospheric

conditions. These integral outputs are known in the error estimation literature as

functional-outputs. There have been significant volumes of research into a

posteriori error estimation within the context of finite element methods for fluid

dynamics using adjoint solutions. Becker, Rannacher and collaborators have

developed an optimal control approach for output-based isotropic grid adaptation

within a Galerkin finite element framework [49-51]. Other works by Patera,

Peraire and their collaborators [52, 53], Suli and his colleagues [54, 55], Larson

and Barth [56], Formaggia et al. [57] worked on implicit a posteriori error

approximations for finite element methods. Most recent works which utilize

adjoint solutions for functional-output adaptation belong to Venditti, Fidkowski

and Darmofal [23, 58-60], Loseille, Dervieux and Alauzet [5], and Park and

Carlson [61]. In these methods, the error indicator is related to the local residual

error of the primary solution. The local residual error is computed using the

linear-adjoint solution along with the primary solution. Therefore, these methods

are computationally expensive. Moreover, the discretized adjoint equations are

dependent on the numerical scheme implemented in the flow solver, and the

technology is therefore not portable between codes.

An alternative approach is proposed by Remaki and Habashi [62] as Hermite-

based mesh adaptation. They believe that in anisotropic adapted meshes highly

stretched and large elements connected to smaller ones lead to loss of accuracy

for functional outputs. Therefore, they propose an error indicator based on

Hermitian interpolation used to control the elements size by computing integrals

in a smoothly varying way from regions of high curvature to regions with low

curvature. This indicator is applicable to any kind of error formulated by a metric.

54

The present work is a continuation of Remaki and Habashi’s work in which

several improvements are proposed. At first, a review is presented on the

Hermite-based mesh adaptation. It is followed by a qualitative analysis of the

method to identify points that can be improved. A new error indicator is defined,

based on surface integrals of classical Hessian-based error, which is used for

element size control the same way as is done in Hermite-based adaptation.

4.1 Hermite-based mesh adaptation [62]

Functional-output mesh adaptation aims at adapting the grid locallu so as to

minimize the integral error of a given quantity (I u dA


 ). In a Hermite-based

approach, the edge-based form of this integral is used I u ds


  . Let

, ,e h e e hE I I  be the edge-based functional error. This value can be

approximated by reconstructing a Hermitian profile along each edge and using it

instead of the unknown exact solution:

, , , ,e H e H e h e e hE I I I I    (4.1)

In equation (4.1), subscript HI is the integral of a Hermitian profile reconstructed

along an edge using solution nodal values (Iu and Ju) and the recovered first

derivatives of solution at these points. Figure 31 shows a 1-dimensional example

of a Hermitian profile reconstructed using the nodal solution and derivative

values. The derivatives can be computed using any gradient recovery technique

[13, 21, 63, 64].

In classical Hessian-based methods, the metric M computed at very

computational node could be represented by its ellipsoidal form as:

     , , , , , ,
T

f x y z x y z x y z M (4.2)

55

Figure 31: Schematic drawing of a Hermitian reconstructed

profile along an edge

Equation (4.2) is an ellipse centered at origin which in a rotated frame of

reference with axes aligned along the eigenvectors of metric M , the ellipsoid

equation becomes:

     
2 2 2

2 2 2

1 2 3

1
1 1 1

x y z

  
   (4.3)

where  , ,x y z are the transformed coordinates    , , , ,Tx y z x y z R by the

transverse matrix of eigenvalues R of metric M .

The volume of this ellipsoid is computed based on the equatorial radii as:

1 2 3

4 1 1 1

3
V 

  
   (4.4)

For an ellipsoid two characteristic lengths known as stretching coefficients (or

factors) may be defined:

32
1 2

1 2

S S


 
  (4.5)

according to which the eigenvalues can be re-expressed:

2/3 2/3 2/32
1 1 2

1 2 32
1 2 2

5 55
, ,

4 4 4

R R R

R R V R V V

   
     

       
    

 (4.6)

56

Now, the Hermitian-based functional error ,e HE defined in equation (4.1) is used

to rescale the ellipsoid by redefining the volume of ellipse as:

,

3/2

,

4 1

3e HE
e H

V
E


 
  
 

 (4.7)

This new definition of volume is used to recompute eigenvalues by equation (4.6)

and the metric TM R ΛR (Λ is the diagonal matrix of new eigenvalues).

4.1.1 Drawbacks of Hermite-based error indicator

The beauty of Hermite reconstructed profile is in controlling the local values of

error to ensure a smooth varying element size during mesh adaptation. However,

it has its own drawbacks which are mentioned in this section.

The Hermite-based method is based on the edge-based definition of a functional,

similar to how Hessian-based error estimation is defined. Let’s look at the

Hermite-based error for one edge. Let’s rewrite equation (4.1) in terms of the

solution scalar u :

 , , ,e H e H e h H hE I I u u ds    (4.8)

Both linear hu and Hermitian Hu profiles can be re-written using Taylor series

expansion about one of nodes of the edge, let’s say node I :

 h I
I

u
u x u s

s

     
 (4.9)

 
2 2 3 3

2 32 6H I
I I I

u s u x u
u s u s

s s s

                    
 (4.10)

By substituting them into equation (4.8):

 
2 2 3 3

2 32 6H h

I I

s u s u
u u ds ds

s s

     
            

  (4.11)

where s is the local coordinate system along the edge. If equation (4.11) is split

into two terms, the first term is related to Hessian-based error computed for the

edge:

57

     
2 3 3

2 3

1

2 6
T

H h J I J I

I I

u s u
u u ds x x x x ds ds

s s

    
           

  
   

 (4.12)

Therefore, the Hermite-based error indicator is re-scaling eigenvalues according

to the Hessian-based error plus 3rd order term. So, one could argue that:

1- How come the normalized metric ellipse is re-scaled via a non-normalized

value computed directly from the scalar?

2- What additional information does this method add to the Hessian-based

error indicator?

Using the non-normalized scalar values is inconsistent with how metric was

computed by normalizing the eigenvalues. Moreover, it is not proper to use the

integral of the scalar to change the value of its second derivative.

In addition, the contribution of Hermitian-profile in enriching the information is

adding an approximation of the 3rd order terms, but in the original work by Peraire

[65] for 1-dimensional cases the contribution of 3rd order and above terms are

neglected in comparison to the 2nd order term. Besides, the 3rd order term comes

from a reconstructed Hermitian profile which itself was obtained using recovered

gradients. The hierarchical levels of approximation are too many to believe that

the 3rd term values are reliable.

Another point of debate is using an edge-based definition of the functional. For

2D cases the functional variables are actually curve integrals. But it means that

the Hessian-based error indicator is already defined to compute the error for

functionals, as it is an integration over the length of edges. So, for 2D problems

the Hessian-based error indicator is actually the functional-output error.

For 3D problems, the functionals are surface integrals. Therefore, it would be

more appropriate to use the surface integral definition for the error. In the next

section, a new definition for functional-output error is proposed and the way it is

used for controlling metric ellipsoid sizes (and consequently edge sizes) is

improved.

58

4.2 Surface functional-output mesh adaptation

An alternative way to Hermite-based method is to compute a weighted average of

surface integrals of classical Hessian-based error and translate it into a nodal

value. To do so, an introduction to metric spaces is needed.

4.2.1 Metric Space

A metric space is a space with a defined distance (called metric) notion, for

example Euclidean spaces. In Euclidean space, distance is the length of the

straight-line segment connecting two points. A non-Euclidean space can be seen

as a transformation of Euclidean space using a transformation metric. Figure 32

shows an example of such transformation for a 2D Euclidean space to a

continuous metric space. Therefore, the distance in such metric space is the length

of the projected curve to be traveled from one point to another one (the projection

of the line segment between these two points in Euclidean space into the metric

space).

Figure 32: A 2D metric space example defined based

on a 2D Euclidean space

Mathematically, a metric space is defined as an ordered pair  ,S d where S is a

non-empty set and d is a function on S with following four properties:

1-  , 0d x y 

2-  , 0d x y x y  

59

3-    , ,d x y d y x

4-      , , ,d x z d x y d y x 

In a discretized Euclidean space (a grid), the metric space defined by any metric

defined at nodes will transform it into a discretized metric space (Figure 33).

Figure 33: Discretized metric space defined by a metric

defined at nodes of a 2D grid

So, any straight line in Euclidean space is mapped into another straight line in

metric space. Therefore, one can deduce that the surface integral of interpolation

error over any element in Euclidean space (grid) is equivalent to the area of the

mapped element in the metric space. Defining a surface integral of interpolation

error is not as easy as what was done for edges in the form of equation (2.11)

[65]. But, computing the area of mapped element in the metric space using the

edge lengths in that space is trivial. For a triangular element in metric space the

area can be computed as:

   M a b cA s s e s e s e    (4.13)

where  0.5 a b cs e e e   and , ,a b ce e e are respectively the lengths of each of the

triangle’s sides in the metric space. We recall from (2.11) that they are the

Hessian-based errors associated with the corresponding edges of the grid in the

Euclidean space.

 4.2.2 Surface functional-output error indicator

60

Adopting the smoothing procedure from Hermite-based method, we will redefine

the error indicator based on a varying the size of metric ellipsoids at each point. In

order to have smoothly changing sizes for metric ellipsoids we will use the

surface integral of Hessian-based error. Consider a node of the grid I ; a

magnifying operator is defined as:

 
,

max
M I

I

M

A
f

A
 (4.14)

where MA is the normalized total area of elements around that node in the metric

space, i.e.:

, ,
1

, 2

NbSurElem

M I k
k

M I
I

A
A

e



 (4.15)

Ie is the average length of edges in metric space that are connected to node I .

, ,M I kA is the area of kth element in around the node I in the metric space and

 max MA is the maximum of normalized areas for all nodes of a specific

surface. The magnifying factor defined in equation (4.14) is used to scale the

volume of metric ellipsoid of each surface node as (Ref. to equations (4.4) and

(4.6)):

I I IV f V


 (4.16)

This magnified volume is substituted in the definition of eigenvalues in equation

(4.6):

2/3 2/3 2/32
1 1 2

1 2 32
1 2 2

5 55
, ,

ˆ ˆ ˆ4 4 4

R R R

R R V R V V

   
     

       
     (4.17)

 resulting in higher error values on surface nodes with high curvature in the

solution and smoothing the variation of error near these nodes.

The surface functional-output error is defined based on the modified metric:

1

2

3

ˆ 0 0

ˆ ˆ0 0

ˆ0 0







 
 

  
  
 

Λ (4.18)

61

ˆˆ TM R ΛR (4.19)

   ˆˆ T

J I J Ie x x x x dx   M
   

 (4.20)

Note that equation (4.19) is only defined for surface nodes.

62

4.3 Numerical Results

The test case chosen to study the effect of magnifying factor defined in equation

(4.14) for surface nodes is an RAE2822 high-lift airfoil in transonic regime (Table

5). The airflow is simulated using Euler equations. As mentioned in previous

chapter, surface functional-output error indicator is meaningful for full 3D cases.

Therefore, a 2D-extruded geometry of RAE2822 airfoil is created and a full-

tetrahedron mesh is generated over it using Octree method (Figure 34).

The Mach contours of solution computed over the initial mesh are presented in

Figure 35. The shock on the upper surface of the airfoil is not well captured and

very thick. So, mesh adaptation is needed to improve the quality of the solution

especially at the shock.

In order to compare surface functional-output mesh adaptation with Hessian-

based mesh adaptation, pressure coefficient is selected as the adaptation scalar

and 4 cycles of mesh adaptation/flow simulation is performed for each of

Hessian-based and functional-output adaptations.

Table 5: Parameters for RAE2822 transonic airfoil simulation for Euler flow

Mach Number Chord length Pressure Temperature

0.73Ma  0.3809cL m 101.325 PaP k  288T K 

63

Figure 34: Full-tetrahedron initial mesh around

RAE2822 airfoil using Octree method

Figure 35: Mach contour levels around RAE2822 transonic airfoil

64

(a)

(b)

(c)

Figure 36: Mach contours on the airfoil surface for (a) initial mesh and after 4

cycles of (b) surface functional-output adapted mesh and

(c) Hessian-based adapted mesh

65

(a)

(b)

Figure 37: Mach contours levels after 4 cycles of

(a) surface functional-output adapted mesh and

(b) Hessian-based adapted mesh

The initial solution and mesh, 4th functional-output (FO) adapted mesh and 4th

Hessian-based adapted meshes and solutions over them are compared in Figure

36. It can be seen that the FO adaptation has resulted in a denser mesh and more

smoothness in element size near shock position compared to Hessian-based

adaptation. Figure 38 shows pressure contour plots obtained from solutions shown

in Figure 36.

66

It can be seen that FO adaptation has resulted in a better shock quality (less over

and under shoots). Moreover, FO adaptation has helped the solver to converge

faster for capturing the position of the shock.

Figure 38: Pressure coefficient plot on the RAE2822 transonic airfoil

67

4.4 Conclusion

In this chapter a new definition for functional-output error indicator was

presented. Based on surface integrals of Hessian-based error in the discretized

metric space, a magnifying factor was defined to re-scale the volume of metric

ellipsoid for each surface node. Numerical results for RAE2822 transonic airfoil

show that this new definition can be promising for obtaining a mesh with

smoother variation in element size near regions of high curvature in the solution.

Moreover, with this error indicator a converged mesh-solution couple can be

obtained faster.

4.5 Future Work

For functional-output mesh adaptation, the following future steps are suggested:

1- The effect of functional-output adaptation must be studied for full Navier-

Stokes flows and the goal must be set to predict lift and drag coefficients

more accurately.

2- The drag force is a bigger problem in comparison to the lift for separated

flows due to difficulty in predicting the separation point. Functional-

output adaptation based on a suitably chosen scalar can be a very useful

tool to capture the separation point more accurately.

3- The test case presented in this work was a 2D-extruded geometry.

Studying the efficiency of functional-output adaptation on full 3D

geometries, e.g. 3D wings, full airplane, etc., is a further step in this field.

68

LIST OF REFERENCES

[1]. Ait-Ali-Yahia, D., et al., Anisotropic mesh adaptation: towards user-independent,

mesh-independent and solver-independent CFD. Part II. Structured grids.

International Journal for Numerical Methods in Fluids, 2002. 39(8): p. 657-673.

[2]. Dompierre, J., et al., Anisotropic mesh adaptation: towards user-independent,

mesh-independent and solver-independent CFD. Part III. Unstructured meshes.

International Journal for Numerical Methods in Fluids, 2002. 39(8): p. 675-702.

[3]. Habashi, W.G., et al., Anisotropic mesh adaptation: towards user-independent,

mesh-independent and solver-independent CFD. Part I: general principles.

International Journal for Numerical Methods in Fluids, 2000. 32(6): p. 725-744.

[4]. Alauzet, F., P.J. Frey, and P.-L.G.B. Mohammadi, 3D transient fixed point mesh

adaptation for time-dependent problems: Application to CFD simulations. Journal

Computational Physics, 2007. 222: p. 592-623.

[5]. Loseille, A., A. Dervieux, and F. Alauzet, Fully anisotropic goal-oriented mesh

adaptation for 3D steadty Euler equations. Journal of Computational Physics,

2010. 229: p. 2866-2897.

[6]. Frey, P.J. and F. Alauzet, Anisotropic mesh adaptation for CFD computations.

Computer Methods in Applied Mechanics and Engineering, 2005. 194(48-49): p.

5068-5082.

[7]. Frey, P.J. and P.-L. George, Mesh Generation: Application to Finite Elements. 2nd

edition ed2010: Wiley-ISTE.

[8]. Remacle, J.-F., et al., Anisotropic adaptive simulation of transient flows using

discontineous Galerkin methods. Int. Jr. Num. Meth. Fluids, 2005. 62: p. 899-923.

[9]. Borouchaki, H., et al., Delaunay mesh generation governed by metric

specifications. Part I. Algorithms. Finite Elements in Analysis and Design, 1997.

25(1-2): p. 61-83.

[10]. Borouchaki, H., et al., Delaunay Mesh Generation Goverend by Metric

Specifications Part I: Algorithms. Finite Elements in Analysis and Design, 1997.

25: p. 61-83.

69

[11]. Castro-Díaz, M.J., et al., Anisotropic unstructured mesh adaption for flow

simulations. International Journal for Numerical Methods in Fluids, 1997. 25(4): p.

475-491.

[12]. Castro-Díaz, M.J., et al., Anisotropic unstructured mesh adaptation for flow

simulation. Int. J. Numer. Meth. Fluids, 1997. 25: p. 475-491.

[13]. Hecht, F., Métriques et indicateur d'erreur, in Mesh Course2003, Ècole CEA-EDF-

INRIA, INRA: Rocquencourt, France.

[14]. Vallet, M.-G., F. Hecht, and B. Mantel. Anisotropic control of mesh generation

based upon a Voroni type method. in Third International Conference on Numerical

Grid Generation in Computational Fluid Dynamics and Related Fields. 1991.

Barcelona, Spain.

[15]. Tam, A., An Anisotropic Adaptive Method for Solution of 3D Inviscid and Viscous

Compressible Flows, in Department of Mechanical Engineering1998, Concordia

University: Montreal.

[16]. Tam, A., et al., Anisotropic mesh adaptation for 3D flows on structured and

unstructured grids. Comput. Methods in Applied Mechechanical Engineering,

2000. 189: p. 1205-1230.

[17]. Löhner, R. and J. Baum, Adaptive h-refinement on 3D unstructured grids for

transient problems. International Journal of Numerical Methods in Fluids, 1992.

14: p. 1407-1419.

[18]. Habashi, W.G., et al., Certifiable Computational Fluid Dynamics Through Mesh

Optimization. AIAA Journal, 1998. 36(5): p. 703-711.

[19]. Oden, J., T. Strouboulis, and P. Devloo, Adaptive finite element methods for high-

speed compressible flows. Int. J. Numer. Meth. Fluids, 1987. 7: p. 1211-1228.

[20]. Borouchaki, H., P.L. George, and B. Mohammadi, Delaunay mesh generation

governed by metric specifications Part II. Applications. Finite Elements in Analysis

and Design, 1997. 25(1-2): p. 85-109.

[21]. Almeida, R., et al., Adaptive finite element computational fluid dynamics using an

anisotropic error estimator. Computer Methods in Applied Mechanics and

Engineering, 2000. 182: p. 379-400.

70

[22]. Aubé, M.S., et al., On the impact of anisotropic mesh adaptation on computational

wind engineering. International Journal for Numerical Methods in Fluids, 2009.

[23]. Venditti, D.A. and D.L. Darmofal, Anisotropic grid adaptation for functional

outputs: application to two-dimensional viscous flows. Journal Computational

Physics, 2003. 187: p. 22-46.

[24]. Löhner, R., Applied CFD Techniques: An Introduction Based on Finite Element

Methods2001, Chichester, U.K.: Wiley.

[25]. Zienkiewicz, O.C. and J. Zhu, A simple error estimator and adaptive procedure for

practical engineering analysis. International Journal for Numerical Methods in

Engineering, 1987. 24: p. 337-357.

[26]. Alauzet, F., Adaptation de millage anisotrope en trois dimensions. Application aux

simulations instationnaires en Mécanique des Fluids, 2003, Université des

Sciences et Techniques, France: Languedoc.

[27]. Bank, R. and J. Xu, Asymptotically exact a posteriori error estimator, Part I: Grids

with superconvergence. SIAM Journal on Numerical Analysis, 2003. 41: p. 2294-

2312.

[28]. Bank, R. and J. Xu, Asymptotically exact a posteriori error estimator, Part II:

General unstructured grids. SIAM Journal on Numerical Analysis, 2003. 41: p.

2313-2332.

[29]. Buscaglia, G., et al., On Hessian Recovery and anisotropic adaptivity, in 4th

ECCOMAS Computational Fluid Dynamics Conference1998: Athenes, Greece. p.

403-407.

[30]. Alauzet, F. and P. Frey, Estimateur d'erreur géométrique et métrique anistropes

pour l'adaptation de maillage, Parie I: Aspects théoriques, in Technical Report

47592003, Institut National de Recherche en Informatique et en Atomatique:

France.

[31]. Vallet, M.-G., et al., Numerical comparison of some Hessian Recovery techniques.

International Journal for Numerical Methods in Engineering, 2007. 72: p. 987-

1007.

[32]. Alauzet, F., et al., Transient fixed point based unstructured mesh adaptation.

International Journal for Numerical Methods in Fluids, 2003. 43: p. 729-745.

71

[33]. Rausch, R., J. Batina, and H. Yang, Spatial adaptation procedures on tetrahedral

meshes for unsteady aerodynamic flow calculations. AIAA Journal, 1992. 30: p.

1243-1251.

[34]. Pain, C., et al., Tetrahedral mesh optimisation and adaptivity for steay-state and

transient finite element calculations. Comput. Methods Appl. Mech. Eng., 2001.

190: p. 3771-3796.

[35]. Löhner, R., Three-dimensional fluid-structure interaction using a finite element

solver and adaptive remeshing. Computing Systems in Engineering, 1990. 1(2-4):

p. 257-272.

[36]. Speares, W. and M. Berzins, A 3D unstructured mesh adaptation algorithm for

time-dependent shock dominated problems. Int. Jr. Num. Meth. Fluids, 1997. 25: p.

81-104.

[37]. Habashi, W.G., et al., Anisotropic mesh adaptation: towards user-independent,

mesh-independent, and solver-independent CFD. Part I: General Principles. Int.

Jr. Num. Meth. Fluids, 2000. 32: p. 725-744.

[38]. McKenzie, S., et al., On metric tensor representation, intersection, and union, in

11th ISGG Conference on Numerical Grid Generation2009: Montreal, QC,

Canada.

[39]. Lee, C.K., Automatic adaptive mesh generation using metric advancing front

approach. Eng. Computations, 1999. 16(2): p. 230-263.

[40]. Xia, G., D. Li, and C.L. Merkle, Anisotropic grid adaptation on unstructured

meshes, in 39th Aerospace Sciences Meeting and Exhibiti2001, AIAA: Reno, NV.

[41]. Najafiyazdi, M. and W.G. Habashi. Improved Transient-Fixed-Point Mesh

Adaptation Using Orthogonality-Preserving Metric Intersection. in 20th AIAA

Computational Fluid Dynamics Conference. 2011. Honolulu, Hawaii, US.

[42]. Ermy, A.E., An evaluation of several differencing methods for inviscid fluid flow

problems. Journal of Computational Physics, 1968. 2: p. 306-331.

[43]. Woodward, P. and P. Colella, The numerical simulation of two-dimensional fluid

flow with strong shocks. Journal of Computational Physics, 1984. 54: p. 115-173.

[44]. Omar, E., et al., Two dimensional wind tunnel test of a NASA supercritical airfoil

with various high lift systems, 1973, NASA.

72

[45]. Habashi, W.G., et al., FENSAP-ICE: A FULL-3D IN-FLIGHT ICING

SIMULATION SYSTEM FOR AIRCRAFT, ROTORCRAFT AND UAVS, in 24th

Congress of International Council of the Aeronautical Sciences2004: Yokohama,

Japan

[46]. Emery, A., An evaluation of several differencing methods for inviscid fluid flow

problems. Journal of Computational Physics, 1968. 2: p. 306-311.

[47]. Alauzet, F., et al., 3D transient fixed point mesh adaptation for time-dependent

problems: Application to CFD simulations. Journal Computational Physics, 2007.

222: p. 592-623.

[48]. Fossati, M. and M. Najafiyazdi, Unsteady mesh adaptation via Reduced Order

Modeling, in 20th AIAA Computational Fluid Dynamics Conference2011:

Honolulu, Hawaii, US.

[49]. Bank, R. and R. Rannacher, An optimal control approach to a posteropri error

estimation in finite element methods, in Acta Numerica 2001, A. Iserles, Editor

2001, Cambridge University Press: Cambrige.

[50]. Becker, R. and R. Rannacher. Weighted a postereiori error control in finite element

methods. in ENUMATH-97. 1998. Heidelbereg, World Scientific, Singapore.

[51]. Braack, M. and R. Rannacher, Adaptive finite element methods for low-Mach-

number flows with chemical reactions, 1999, von Larman Institute for Fluid

Dynamics: VKI Lecture series.

[52]. Peraire, J. and A.T. Patera, Bounds for linear-functional outputs of coercive partial

ifferential equations: Local indicators and adadptive refinement, in Advances in

Adaptive Computational Methodsd in Mechanics, P. Ladevèz and J. Oden, Editors.

1998, Elsvier: Amsterdam.

[53]. Machiels, L., J. Peraire, and A.T. Patera, A posteriori finite element output bounds

for the incompressible Navire-Stokes euquations: application to a natural

convection problem. Journal of Computational Physics, 2001. 172: p. 401-425.

[54]. Giles, M.B., et al., Adaptive error control for finite element approximations of the

elift and rag in a viscous flow, 1997, Oxford Computing Laboratory: Oxford.

73

[55]. Houston, P. and E. Süli, hp-adaptive discontinuous Galerkin finite element methos

for first-order hyperbolic problems. SIAM Journal of Scientific Computing, 2001.

23(4): p. 1226-1252.

[56]. Larson, M.G. and T.J. Barth, A posteriori error estimation for iscontinuous

Galerekin approximations of hyberbolic systems, 1999, NASA.

[57]. Formaggia, L., S. Micheletti, and S. Perotto. Anisotropic mesh adaptation with

application to CFD problems. in Figth World Congress on Computationa

Mechanics. 2002. Vienna: Austria.

[58]. Venditti, D.A. and D.L. Darmofal, Adjoint Error Estimation and Grid Adaptation

for Functional Outputs: Application to Quasi-One-Dimensional Flow. Journal

Computational Physics, 2000. 164: p. 204-227.

[59]. Venditti, D.A. and D.L. Darmofal, Grid Adaptation for Functional

Outputs:Application to Two-Dimensional Inviscid Flows. Journal Computational

Physics, 2002. 176: p. 40-69.

[60]. Fidkowski, K.J. and D.L. Darmofal. Output-Based Error Estimation and Mesh

Adaptation in Computational Fluid Dynamics: Overview and Recent Results. in

AIAA Aerospace Sciences Meeting and Exhibit. 2009. Orlando, Florida.

[61]. Park, M.A. and J.-R. Carlson, Turbulent Output-Based Anisotopic Adaptation, in

48th AIAA Aerospace sciences Meeting Including the New Horizons Forum and

Aerospace Exposition2009: Orlando, Florida, USA.

[62]. Remaki, L. and W.G. Habashi, A Hermite-Based Mesh Adaptation for Functional

Outputs Improvement in Fluid Flow Simulation AIAA Journal, 2009. 47(8): p.

1965-1976.

[63]. Zienkiewicz, O.C. and J. Zhu, The superconvergent patch recovery and a

posteeriori error estimatees. Part I: The recovery technique. International Journal

for Numerical Methods in Engineering, 1992. 33: p. 1331-1364.

[64]. Labbé, P. and A. Garon, A robust implemntation of Zienkiewicz and Zhu's local

patch recovery meethod. Communications in Numerical Methods in Engineering,

1995. 11: p. 427-434.

[65]. Peraire, J., et al., Adaptive remeshing for compressible flows. Journal

Computational Physics, 1987. 72(449-466).

