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ABSTRACT

Sleep is a very important, though as yet poorly understood, aspect of human

physiology. In humans, sleep is subdivided into a number of physiologically

distinct sleep stages. The accurate determination and labelling of sleep stages

from EEG recordings is fundamental in sleep research and clinical practise. This

thesis proposes a new technique of using a convolutional neural architecture with

spectrograms of EEG data as input to perform sleep stage classi�cation. This

technique does not rely on expert features or informed preprocessing of EEG data.

This architecture is shown to deliver competitive results when trained on a data

set of 120 patients' overnight EEG recordings using strict cross-patient validation.

Additionally, the use of bagging is validated as a reliable measure of uncertainty

for the architecture's output.
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ABR�EG�E

Le sommeil est un aspect tr�es important, bien que encore peu compris, de la

physiologie humaine. Chez l'homme, le sommeil est subdivis�e en plusieurs stades

de sommeil physiologiquement distincts. La d�etermination et l'�etiquetage pr�ecis

des stades du sommeil �a partir des enregistrements d'EEG sont fondamentaux

dans la recherche et la pratique clinique du sommeil. Cette th�ese propose une nou-

velle architecture neurale profonde pour l'�etiquetage automatis�e des stades du som-

meil �a partir de l'EEG. L'architecture utilise une nouvelle technique, des r�eseaux

neuronaux convolutionnels avec des spectrogrammes de donn�ees EEG comme

entr�ee, qui ne d�epend pas de caract�eristiques d'experts ni de pr�etraitement inform�e

des donn�ees EEG. Ce mod�ele est d�emontr�e �a fournir des r�esultats comp�etitifs

quand entrain�e sur un ensemble de donn�ees d'enregistrements EEG de nuit

de 120 patients, en utilisant une validation rigoureuse des patients. En outre,

l'utilisation du \bagging" est valid�ee comme une mesure �able de l'incertitude

pour l'architecture.
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CHAPTER 1

Introduction

1.1 Sleep

Sleep is a very important, though as yet poorly understood, aspect of human

physiology. It is a strict necessity for every person, and insu�cient or disturbed

sleep can signi�cantly reduce quality of life and productivity [60, 64]. Human sleep

can be a�ected by a number of disorders like sleep apnea, insomnia, periodic limb

movement, and many others. These disorders impose a steep �nancial and human

cost on society [29]. For these reasons, the study of sleep is an important area of

research.

One facet of sleep science is the study and measurement of a patient's sleep

architecture. Sleep architecture collectively refers to the details of the duration

and succession of the sleep stages into which human sleep is divided. Sleep

stages are distinct, physiologically distinguishable states of sleep. As a person

sleeps, he or she transitions between di�erent sleep stages. Each sleep stage is

de�ned by a set of measurable physiological markers; over the course of sleep,

these stages generally follow a predictable pattern of transitions. However, the

order of transitions between these stages and the duration of each stage in a

particular patient is subject to individual variation, and is potentially a�ected by

the presence of sleep disorders.
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Many disorders and physiological processes are associated with a distinct stage

of sleep. An example of such a disorder is REM Sleep Behaviour Disorder (RBD),

which occurs during the REM (rapid eye movement) stage of sleep. RBD causes

su�erers to act out their dreams [11] verbally and physically, and is a common

cause of talking and moving about in one's sleep. Night terrors and sleepwalking

are two other disorders linked to a particular stage of sleep. Patients with night

terrors experience symptoms similar to those which might occur in a panic attack.

Despite apparent agitation and complex movements, someone experiencing

night terrors is unresponsive to external stimuli. Sleepwalking, also known as

somnambulism, involves individuals getting out of bed and possibly performing

complex behaviours while asleep. During this activity, they are unresponsive to

external stimuli, though their eyes may be open. Sleepwalkers have no recollection

of the event afterward [3]. Both night terrors and sleepwalking are believed to be

caused by sudden arousals from the slow-wave stages of sleep [13, 57]. Even in the

absence of disorders, a host of physiological mechanisms in sleeping individuals is

intimately linked with the stage of sleep they are experiencing. Patients' breathing

patterns [61] and muscle movements [32] depend on their current sleep stage. The

pruning of unnecessary neuronal connections has been found to occur speci�cally

during REM sleep [40]. The above examples are far from an exhaustive list. The

di�erent stages of sleep and the details of the sleep architecture are associated

with many more distinct neurobiological mechanisms and speci�c physiological

and health outcomes [50, 59, 6, 62, 54, 53, 51, 42, 48]. In order to gain insight into

the disorders and processes linked with distinct stages of sleep, and to investigate
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the fundamental nature of sleep itself, the identi�cation and measurement of a

patient's sleep stages is an important and frequently performed clinical procedure.

Having an accurate record of a patient's sleep stages over the course of the night

can also help medical professional reach or con�rm a diagnosis of a sleep disorder.

1.2 Sleep Staging

The act of creating a record of a patient's transitions between sleep stages

is called sleep staging (or sleep scoring), and a record of such stages - often

coreferenced with other physiological measurements - is called a hypnogram.

The exact classi�cation of sleep stages, and even their total number, has been

subject to scienti�c debate and revision. Currently, there exist two principal

medical standards which enumerate and de�ne the stages of sleep in terms of

de�nite physiological markers. The older of the two is referred to as the RK

(Rechtscha�en and Kales) standard [49], which de�nes six distinct stages of sleep:

wake, rem, s1, s2, s3 and s4, listed in rough order of how di�cult it is to

rouse a person in that stage. In the literature, stages s3 and s4 are frequently

treated as a single sws (slow-wave sleep) stage owing to their physiological

proximity [31]. The RK standard has been superseded by the more recent AASM

(American Academy of Sleep Medicine) standard [31], which de�nes only �ve

distinct stages, wake, rem, n1, n2, n3. The exact de�nitions of each stage in

terms of physiological markers is slightly altered from those of the RK standard,

meaning that results with respect to one set of rules are not compatible with those

based on the other. The method developed in this work classi�es sleep stages

according to the AASM standard.
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A common collection of measurements taken expressly for the purpose of

identifying a patient's stages of sleep over time is called a polysomnograph, or

PSG, which consists of a number of component signals. PSGs frequently include

[22], but are not limited to:

� an electromyogram (EMG), a recording of body movements

� an electrooculogram (EOG), a recording of eye movements

� an electrocardiogram (ECG), a recording of heart rate

� an electroencephalogram (EEG), a recording of brain activity

Not all of these recordings may be present in a PSG. The work presented in

this thesis focuses on learning sleep stages from EEG in isolation. The EEG is

present in almost all PSGs in the literature, so a method able to perform sleep

staging from EEG alone will have the widest applicability.

1.3 EEG

EEG is widely used in the investigation of brain activity. It is recorded via

electrodes places on the scalp, and is considered a non-invasive procedure. It is

relatively cheap to carry out, and can be done in an outpatient setting, where

patients are monitored by EEG equipment in their homes. Outpatient EEG is also

widely used in seizure detection, and is referred to as ambulatory EEG.

In part because EEG is so noninvasive, it is limited in the kinds of brain

activity it can measure. Only surface brain activity is captured, and it is captured

at a low spatial resolution. Nevertheless, sleep stages can be inferred from EEG

information alone [45]. As a rule, EEG recordings consist of multiple EEG

channels, each of which corresponds to a particular electrode location on the
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scalp. These electrodes are placed in standard positions, most commonly in

accordance with the \10-20" system [33]. The output of each EEG channel is a

time series sampled at a high frequency (256 Hz is common). For the purposes

of sleep staging, in standard clinical practice the EEG recording is divided into

non-overlapping 30-second segments, called pages. Each page contains all EEG

channels. Each page is then classi�ed independently into one of the �ve AASM

stages by visual evaluation of the EEG and auxiliary signals (if present) by a

trained technician. Where a page contains the markers of more than one sleep

stage, it is classi�ed according to which stage's markers cover most of the page

[31].

1.4 Problem Statement and Objectives

Normally, classi�cation of EEG into sleep stages requires a trained medical

practitioner, and is quite time consuming. The objective of this work is to devise a

fully automated machine learning technique for generating a hypnogram

from EEG, meeting a number of requirements crucial in clinical practise.

The method should be robust. It should be tolerant to data noise and

variation across patients, technicians, and recording equipment. The algorithm

should perform well on data sourced from di�erent technicians and from patients

with abnormal sleep patterns. Critically, the algorithm should work well on

data from new patients never seen in training. In service of this aim, the

sleep staging method should not rely on expert preprocessing or feature extraction,

and should be instead learned from human labels and raw EEG signal

only to the maximum extent possible. The method should allow retraining on
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new sources of data or patients with particular disorders without adjusting the

architecture and hyperparameters. Furthermore, the method should be able to

adapt in a way an algorithm with expert features might not. These concepts

are elaborated upon in later sections, with examples of expert features are given

in Chapter 3. Finally, acknowledging that in medical contexts it is especially

important for machine learning algorithms to provide a good estimate of their

con�dence in their outputs, the method should provide a reliable con�dence

estimate to its user. EEG pages with a low level of con�dence can be 
agged for

manual review by a technician, while high-con�dence pages can be accepted.

1.5 Contributions

The task of automatic sleep staging from EEG data has been tackled by many

other authors in the literature. A number of diverse machine learning methods

have been developed, which are described in detail in Chapter 3. However, none

of the methods surveyed simultaneously meet all of the objectives given in the

problem statement.

To that end, this thesis presents a deep learning architecture based on a novel

use of convolutional neural networks with EEG spectrogram data as input. The

key contribution is to treat the spectrograms as images, and to treat EEG

channels as image colour channels, thereby translating the sleep staging

problem into an image classi�cation problem. This use of the spectrogram as input

to a convolutional neural networks for sleep stage classi�cation is believed to be a

novelty of this work.
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The objective of the architecture is to automatically generate reliable hypno-

grams from EEG. The classi�er is a \black box" and requires no tuning or manual

preprocessing steps. Once trained, the classi�er can operate on variable-channel

EEG input of various frequencies. Internally, it �rst transforms the EEG into two

parallel spectrogram representations, one for the low-frequency components of

the signal, the other for the high-frequency components. These spectrograms are

passed through a convolutional neural network, whose outputs are then concate-

nated and passed through a fully connected neural network, which outputs its

prediction for the sleep stage of the EEG page being processed. This architecture

is experimentally validated on a dataset of 110 full-night recordings collected from

patients at Sunnybrook Hospital using cross-patient training and cross-validation.

Cross-patient validation permits the assessment of the algorithm's ability to gener-

alize. As with any deep architecture, the performance of the architecture presented

will degrade when given inputs from a di�erent source than the one which pro-

duced the data it was trained on. Examples of di�erent sources include EEG from

patients of a di�erent demographic or medical status than the training group, or

sourced with di�erent equipment or methodology. However, adaptation to new

data sources requires no retuning or readjustment beyond \black box" retraining

on data examples from the new source.

The objective of obtaining a con�dence estimate for the classi�er's output,

which is traditionally di�cult for neural architectures, is addressed by use of the

bagging ensemble technique. Under the bagging scheme, multiple classi�ers are

trained independently on subsets of the data. To predict the label of an unseen
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EEG page, these sub-classi�ers' output is added (they are said to vote), and

the label with the highest total probability is chosen. Bagging is commonly used

for improving the accuracy of a classi�er's predictions, which is a function it

also serves in the presented architecture. This thesis adapts bagging as tool for

estimating the classi�er's con�dence in its output. This con�dence estimate is,

as intuition might dictate, given by the agreement rate between the bagging sub-

classi�ers. This thesis rigorously quanti�es and validates the use of sub-classi�er

agreement as a reliable measure of uncertainty for the sleep staging architecture

presented.
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CHAPTER 2

Technical Background

The goal of this chapter is to describe the basics of neural networks, in

particular convolutional neural networks, and explain their properties which

are used in the architecture developed in this work. In addition, the concept

of a spectrogram, and frequency representation of a signal more broadly, is

introduced and motivated. Finally, the concept of bagging, an ensemble method

for constructing a classi�er from a collection of subclassi�ers, is discussed. Bagging

is used later in the work as both a measure of uncertainty and as a means to

improve classi�cation accuracy.

This chapter assumes a basic familiarity with the ideas of supervised learn-

ing. Concepts like training and validation sets, over�tting, regularization, and

hypothesis class should be familiar to the reader.

2.1 Neural Networks

This section presents a very basic introduction to neural networks, a machine

learning technique which has recently come into prominence. A more comprehen-

sive background with links to other statistical models can be found in [20], while

more comprehensive information on types of neural nets and their properties is

presented in [21].

While the term \neural network" encompasses a rich variety of architectures,

they tend to share the following broad similarities:
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� they can be used for both classi�cation and regression

� they have highly variable capacity

� they require a di�erentiable loss function

As a whole, neural networks de�ne a class of highly non-linear approximators

to arbitrary continuous functions over Rd, with d potentially very large. These

networks are employed to capture the inscrutable functional dependencies found

in situations where learning is done from very raw input. This is in contrast to

methods like linear regression, where a very stringent functional form is assumed

in advance. This malleability is achieved at comes at a cost of scrutability: the

parameters of a neural network correspond to coe�cients of either very raw input

values (such as the value of a particular pixel in an image), or to the coe�cients

of complex non-linear transformations of such raw input values. In either case, the

precise value of a subset of parameters is generally not very informative, and can

even vary substantially between networks trained on the same data, and which

approximate the same functions over the data distribution of interest.

This section gives an overview of the particular types of neural architectures

relevant to the sleep staging work done in this thesis.

2.1.1 Multilayer Perceptrons

The simplest kind of neural network is the multilayer perceptron [24], or

MLP for short. The MLP architecture takes x 2 Rm to a real-valued y 2 Rd.

A multilayer perceptron is a non-linear function parameterized by a sequence of

weight matrices Wl and bias vectors bl
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Wl 2M(zl�1; zl)

bl 2 R
zl

l 2 f1; : : : ; Lg

Where fzlg
L�1
1 are hyperparameters, z0 = m equals the dimensionality of x,

and zL is the dimensionality of y. A further set of hyperparameters is a collection

f�l : R
hl ! R

hlgL1 of activation functions, which must not be linear, except

possibly �L. Common activation functions include the sigmoid function or the

ReLU [21, 44], and the development of new activation functions is an active area of

research.

The hypothesis class of functions h : X ! Y comprising multi-layer

perceptrons with the given hyperparameters is then de�ned recursively as:

R
d = Y 3 ŷ := zL

for each l 2 f1; : : : ; Lg : zl := �l(Wlzl�1 + bl)

z0 := x 2 X = Rm

Put into words, the neural network takes the input vector and applies an

alternation of a�ne transformations (Wx+b) and nonlinearities �l. The nonlinear

nature of the activation functions is critical, since with linear activations the

whole network would be equivalent to a single a�ne transformation. The vector

of possible outputs at each stage l is called a layer, and stages 1 through L � 1

are called hidden layers, since their values are neither part of the input nor
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Figure 2{1: The structure of a toy MLP with two hidden layers and scalar output.
Here m = 3; L = 3; z1 = 2; z2 = 2; z3 = d = 1.

output, but internal to the network's mathematical operation. Layer L is called

the output layer and layer 0 is called the input layer.

Often, a neural net's structure is visualized as a graph like in Figure 2{1.

Such a graph depicts the structure of a neural network independently of the

particular values of inputs and outputs to it. The layers are visualized as a

collection of nodes, which correspond to the individual entires of the hidden

state vectors, abstracted from their numerical value on any particular input.

The parallels between the structural connectivity between nodes in layers and

the interconnections of neurons in the human brain inspired the term \neural

network" [24]. Continuing this parallel, the zl values for a given input are called

the network's activations or activation vectors.
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Despite a fairly straightforward mathematical de�nition, even with one hidden

layer (i.e. L = 2), MLPs can approximate any continuous function [30]. It can

also be shown that with increasing depth, or number of hidden layers, a neural

network can approximate exponentially more linear regions in the input function

than a neural network with a single layer. Deep learning refers to the study

and implementation of neural networks with a large number of hidden layers

(sometimes thousands [26]). These deep architectures have made advances in a

number of �elds in recent years. The architecture presented in this thesis is an

example of a deep architecture.

Training Neural Networks

Neural networks are trained with backpropagation [27]. In backpropagation,

the gradient of the loss with respect to each of the network's parameters is

computed. In modern implementations, this is done with automatic di�erentiation

software. Subsequently, a gradient descent algorithm is used to minimize

the training loss. For the large data sets needed to train neural networks, it's

not practical to calculate the gradient of the total loss on the training set, so

stochastic gradient descent methods are used instead. For stochastic gradient

descent, at each iteration the gradient is taken with respect to a subset of the

training data. These subsets are usually sampled randomly at each iteration, or

cycle through the entire training set in a random order. In its most basic form,

at each time step, gradient descent updates the parameters of the network by a

small step in the direction opposite of the gradient of the loss function with respect
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thereto:

�t+1 = �t � �r�L(x; �)

In practise, algorithms more sophisticated than the simple rule above have

been developed [35, 58] for training neural networks. These algorithms, however,

still fundamentally rely on the availability of the gradient. It is for this reason the

loss and activation functions in the de�nition are required to be almost-everywhere

di�erentiable. Designers of more advanced neural architectures strive to preserve

this di�erentiability, which allows very sophisticated predictors to be trained using

a shared numerical machinery of automatic di�erentiation and advanced gradient

descent algorithms.

2.1.2 Convolutional Neural Networks

A common variant of the fully connected neural network is the convolutional

neural network (CNN). These networks were pioneered for use in image processing

[38, 39]. They are designed to exploit input with spacial locality and possess a

degree of translation invariance. These are precisely the properties of natural

images, where an object can appear at many places in an image, and pixels

corresponding to a �xed object are adjacent to one another.

The CNN is distinguished from an MLP by the connectivity structure of

its layers. Layers where each node of a layer is connected through the weight

matrix W to every node in the next layer, as in the MLP, are referred to as

fully connected layers. In a CNN, however, the lower fully connected layers

are replaced with convolutional layers. In a convolutional layer, instead of an
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activation vector zl, the output at layer l, Zl, is a tensor of fl multidimensional

feature maps:

Zl;j = [zl;1; : : : ; zl;fl ]

zl;j 2 R
nl;1 � � � � � Rnl;k

(nl;1; : : : ; nl;k) is a hyperparameter called the shape of the feature maps. For CNN,

k is usually constant for all layers, while nl;k varies with l. In image processing

applications, the shape is (nl;1; nl;2), corresponding to the x and y dimensions of

the image. That means the input and output tensors of the convolutional network

will have rank two, with each axis corresponding to a dimension of the image. This

is also the shape used in the sleep staging architecture developed in this thesis,

presented in Chapter 4.

Each feature map can be thought of as a separate hidden state for the given

layer, and carries some distinct aspect of information observed therein. For the

method introduced, the number of input feature maps, f0, is the number of EEG

channels. Hidden layers generally have many more feature maps than the input.

Instead of a weight matrix W, each non-input layer in a CNN is associ-

ated with fl distinct kernels, which are k + 1-dimensional tensors Kl;j of size

(ul;1; ul;2; : : : ; ul;k; ufl�1). The values u are referred to as the receptive �eld size

of the kernel, and represent the support of the convolution operation with the

kernel. The activation of feature map j in layer l is generated by \sliding" Kl;j

across each feature map of the layer's input and convolving the corresponding slice

of the kernel with the input values in each region of that feature map. This can be
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expressed formally by the cumbersome expression below:

zl;j;i1;:::;ik = �l

 
bl +

fl�1X
a=1

Kl;j;a � zl�1;a;[sli1�zl;1;sl;1i1];:::;[slik�zl;k;sl;kik]

!

where Kl;j;a is the k-dimensional slice of Kl;j with the feature map index equal to

a, and where the bracketed subscript notation q:::;[a;b];::: denotes a sub-array of the

given quantity from index a to index b along the given dimension. An additional

complication, the stride sl 2 N
+ appears in the above equation. If the stride

is greater than zero, the kernel \skips" sl;j positions in the input feature maps

between successive points in the output map. Layer l layer then has
Q

j sl;j times

fewer nodes than layer l � 1. To downsample further, CNNs often incorporate

pooling layers, whose action is to sub-sample certain indices of their input,

outputting a a single representative value of th3 input values in their receptive

�eld. The most common form of pooling is d-max pooling where the output

is the maximum value of all of the inputs in the receptive �eld. For example,

when working with rank 2 image data, each point in the output feature map

of a max pooling layer is the maximum value of a d � d patch of the input. In

this case, output feature maps contain d2 times fewer points. Downsampling is

important, since the top few layers of a complete CNN architecture are usually

fully connected, rather than convolutional. As will be seen below, fully connected

layers need inputs of reasonably low dimension to have a manageable number of

parameters.

The operation of a convolutional net can be made clearer with a diagram,

seen in Figure 2{2. An important thing to note is the locality of information

16




ow. Because the kernel was bounded in each dimension by a (usually small) size

u, locations in the input layer which are distant from a particular node do not

contribute to it. This is in contrast with an MLP, where each node of the input

has a potentially non-zero weight connecting it to each node in the layer above.

This endows convolutional networks with two important properties di�erent

from those of an MLP. First, the number of parameters does not by necessity

scale with the size of the input. Second, the number of parameters for a given size

input can be made much smaller than for an MLP. Consider an input image of

50 � 50 = 2500 pixels. With a hidden layer of size 100, an MLP with just a single

layer would need 2500 � 100 = 2; 500; 000 parameters, a very large number. In

contrast, a convolutional neural net with 5 layers, receptive �elds of 5 � 5, and 32

feature maps per layer has 5� 5� 5� 32 = 4000 parameters. Furthermore, because

the same kernel is applied at at every location in the input, the convolutional

architecture learns translation-invariant structure.

The reduction in the number of parameters is not free, however: it imposes a

strong assumption on the types of input distributions the convolutional hypothesis

class will learn to represent well. Where data is not dominated by spatially local

relations, the spatially local kernel will not have access to useful information,

and learning will fail. For this reason, a CNN would perform much worse at

learning to recognize faces if, for example, each image's pixels were �rst scrambled

by a random permutation chosen in advance. On the other hand, an MLP's

performance would not change. However, translation invariance and the ability to

handle very high dimensional input with local structure do make the convolutional
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Figure 2{2: The structure of a CNN with 1-dimensional input (k = 1). The colours represent
feature maps in the �rst hidden layer, of which there are three. The input x is one-dimensional
with one feature map. Each triplet of red arrows represents the same set of weights, convolved
with three input nodes at a time to produce the value of the corresponding red hidden node. The
weights are free to di�er between colours.

architecture very well adapted to the task of learning from natural images, which

are representations of the spatially local and translation-invariant objects found

in our world [36]. However, images should not be seen as the only use case for

convolutional nets: any data distribution possessing locality and translation

invariance is a candidate for convolutional learning, and as I argue later, EEG

recordings in spectrogram form are a good example of such data.

Figure 2{3 shows what the structure of a slightly more realistic, albeit still

very small, complete CNN might look like. In the literature, a variety of very large

convolutional neural networks with thousands of layers have been experimented

with.
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Figure 2{3: Schematic of a convolutional neural network, including subsampling layers. Note
that at the uppermost layers the feature maps are laid out in one dimension and connected to a
fully connected network. Taken with permission from deeplearning.net

2.2 Bagging

When trained on some �nite training set T = f(x;y)igi, most algorithms

are likely to converge on a suboptimal hypothesis, owing to either lack of training

data or local minima in the training algorithm. However, this can be remedied by

training a number of partially independent classi�ers. These are then combined

into an ensemble classi�er by aggregating their predictions [20]. Aggregate

classi�ers produced in this way improve on the performance of their constituents if

two conditions are satis�ed [18]:

� each classi�er in the ensemble performs better than random chance, and

� classi�ers in the ensemble make at least partially independent errors.

The above conditions are quite generous. Consequently, there exist many

methods by which such ensembles may actually be constructed. One of the most

basic and widely used such methods, and the one used in the work presented in

this thesis, is bagging.

Under the bagging scheme, multiple instances of the training set of the same

size as the original are created by sampling the training set with replacement [12].
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These samples are called bootstrap samples. A new classi�er is then trained

from scratch on each of the bootstrap samples. The prediction of this aggregate

classi�er is de�ned as a combination of the outputs of each of the individual clas-

si�ers, usually obtained either by voting (for discrete labels) or by averaging (for

regression-like outputs). In the language of bias-variance trade-o�, the bagged clas-

si�er has lower variance while leaving bias unchanged [8, 20]. Therefore, bagging

is a universally useful tool wherever the cost of retraining the classi�er multiple

times is not too steep. Another useful property of bagging which can be shown

mathematically is that from a Bayesian perspective, training a classi�er over

multiple bootstrap samples in approximately equivalent to sampling from the pos-

terior distribution over classi�ers on the training set [20]. In particular, this is the

case if one assumes a Dirichlet prior over the class distribution, which is a quite

natural assumption. From this, it follows that the degree of agreement among the

constituent classi�ers on any label can be interpreted as a measure of uncertainty

in the prediction, even when the component classi�ers are deterministic.

2.3 Spectrograms

The �nal major technical concept used in this thesis comes not from the

domain of machine learning, but rather from signal processing. Signal processing

deals with time series, or time-ordered sequences of real numbers corresponding

to some possibly noisy measurement. EEG is a prime example of a time series.

Often, the structure of a time series is better revealed in the frequency domain.

The frequency domain is a representation of a time series where the independent

axis is not time, but frequency. The value of the frequency representation at each
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frequency ! is the phase and amplitude of the component corresponding to that

frequency in the original signal. In the context of signal processing, the original

time series is referred to as being in the time domain. Mathematically, the

time and frequency domains are related by the Fourier transform. The Fourier

transform has a large number of variants, depending on whether the input signal is

square-integrable, periodic, discretized, or continuous, and furthermore depending

on the dimensionality of the signal. Below is the basic mathematical form for

continuous signals of �nite energy in one dimension,

F(f)(!) =

Z
1

�1

f(x)e�i!xdx

F�1(g)(x) =
1

2�

Z
1

�1

g(!)ei!xd!

where the second line gives the inverse of the transform. Several other conventions

exist where the factor of 2� is on the forward transform, or where the trans-

formed variable is frequency � rather than angular frequency ! = 2��, in which

case the factor of 2� moves from being a coe�cient to being in the exponent.

These conventions are equivalent up to rescaling, and are usually a numerical

implementation detail.

It should be noted that the Fourier transform outputs complex values, and

is de�ned both for positive and negative frequencies. For real input signals, the

value of the transform at each negative frequency �! is the complex conjugate

of the transform at !, which allows a more compact representation in some

implementations. The Fourier transform is an invertible transformation, but its

output, being complex and de�ned on negative frequencies, is often not the most
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Figure 2{4: Some timeseries signals (top plots) and their corresponding power spectra (be-
low).

intuitive way to interpret the frequency composition of a signal. For this reason,

a derived quantity, the power spectrum or energy spectrum, depending on

whether the signal is stationary or square integrable respectively, is often used

instead. The one-sided power spectrum is real valued and is de�ned over the

positive reals. As the power spectrum discards phase information, is no longer

invertible. It represents the power (or energy for square integrable signals), carried

by the signal at a particular frequency. The power spectrum for a �nite energy real

signal is given as P (f)(! � 0) = 2jF(f)(!)j2 and is illustrated in Figure 2{4 for

various signal types. The factor of two comes from the fact that the Fourier values

at negative frequencies, whose square modulus at �!, for real signals, equal to

that at !, is included in the value of P (f)(!).
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Some more mathematical complications arise where a signal is sampled at dis-

crete points in time, which is the case for digital signal. It has to be assumed that

the maximum frequency for which the frequency representation is non-zero is less

than half the sampling frequency. Otherwise, the sampled signal will be aliased.

Aliasing is a process whereby high frequency components become indistinguishable

from lower-frequency ones and are added together in the resultant transform. As

an example, consider sampling a sine wave with a frequency of 1 Hz with samples

one second apart: the samples will fall on zeroes of the sine-wave, and the sampled

signal will be indistinguishable from a zero signal. For this reason, signals are

bandpass �ltered before being digitized. Bandpass �ltering is a process that

attenuates high frequencies, so that they will not alias to lower frequencies when

sampled. When applied to discrete and �nite time series, the Fourier transform

is known as the discrete Fourier transform (DFT), often referred to as the

FFT, which stands for Fast Fourier Transform, and is the name of a particular

DFT algorithm. The discrete Fourier transform acts on vectors of real numbers

representing the signal at discrete points in time, and produces a vector of equal

length giving the signal's frequency representation at a set of discrete frequencies.

The DFT can be represented by a unitary matrix multiplication.

Often, it is interesting to see how the frequency composition of a signal

evolves over time. This is not possible with a regular Fourier transform, since

all time information is integrated out to leave a pure frequency representation.

Instead, a spectrogram is used. A spectrogram is a mixed time-frequency

representation of the signal's power spectrum. It is calculated by performing a
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discrete Fourier transform on (possibly overlapping) subsegments of the time

signal. The spectrogram's time axis contains a sequence of time bins, and its

second axis is frequency. At each (bin, frequency) pair, the spectrogram gives the

spectral power of the signal at that frequency for that bin. The spectrogram is

usually plotted as a colormap, where each point's colour intensity corresponds to

the spectral power at that point. It's this colour map representation that inspired

this work's use of spectrograms as image inputs to a CNN.

To generate a spectrogram, the time series segment in each bin is usually �rst

multiplied by a windowing function, which is a function that tapers o� to zero

on either side of the trace segment. This is done to suppress artifacts. To recover

the information lost by the windowing, there is usually some overlap between

successive time bins. One of the most common spectrogram techniques is the

Welch method [63], which uses 50% overlapping time bins and the Hann window

function [10]. A modi�cation of this approach using the same Hann window but

with an overlap of 75% is used in the EEG classi�cation method. Figure 2{5

provides a basic illustration of a spectrogram.

The more time points of the original signal each time bin includes (i.e.

decreasing the time resolution), the �ner the frequency resolution becomes. Con-

versely, the �ner the time resolution, the fewer the points in each bin, which means

frequency information becomes less de�ned. In general, the product of the time

and frequency resolutions of the Fourier transform is bounded below according to

the uncertainty principle [28]. In the discretized case, this can be intuited in terms

of linear algebra. Since DFT is an invertible linear transformation, the number
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Figure 2{5: A signal of linearly increasing frequency (a linear chirp). The power spectrum
does not reveal the time-varying structure, which is made clear in the spectrogram.

of independent frequency components that can be distinguished is equal to its

rank, which is in turn equal to the dimension of the input space. In the case of the

spectrogram, the dimension of the input space is just the number of time points in

each bin, since the DFT acts on each time bin separately.
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CHAPTER 3

Review of Literature on Sleep Staging and Deep Methods for EEG

The automated generation of hypnograms is a task well studied in the

literature, and a diverse variety of architectures has been developed for this

purpose. It is also the case that deep convolutional architectures have been used

to learn from EEG data for tasks other than sleep staging. This chapter discusses

the method presented in this thesis in the context of the existing literature. The

application of a deep convolutional architecture to the task of sleep staging from

EEG is believed to be a novelty of the work in this thesis.

3.1 Convolutional Architectures for EEG in the Literature

The use of convolution for EEG is not a novelty of this work. One-dimensional

convolutions have been used on EEG data for the purposes of signal classi�cation

recognition of rhythm stimuli [56], EEG pattern detection for brain-computer

interfaces [14], seizure detection [43], and more. The use of Fourier transforms

together with convolution is also known in the literature. Indeed both [56] and [14]

use a Fourier transformation layer within the neural architecture. However, the

convolutional network trained over this data was still one-dimensional.

Convolutional architectures which work explicitly with two-dimensional time-

frequency representation of sleep data are also known. Bashivan et al. [7] use a

two-dimensional convolutional architecture to learn from EEG features. In fact,

the window size and layer structure of the architecture presented in this work
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was inspired directly by [7]. However, the input data in [7] is not in the form of

a spectrogram: the frequency components are the channels of the input, while

the x; y coordinates are mapped to physical locations on the brain. This is in

contrast to the spectrogram as used in this work, where electrode locations are

the channels. The use of a spectrogram representation in that form as input to a

two-dimensional convolution is believed to be novel.

3.2 Automated Sleep Staging Methods in the Literature

At a high level, automated sleep staging methods can be grouped into two

types: methods using expert features, and methods, like the architecture in this

thesis, that use raw data as input. In this context, expert features are considered

a collection of a �xed number of hand-engineered markers that are not learned

from data, and which are extracted from the data in advance of any machine

learning method being applied. Another way machine learning methods can

be grouped is by what input data they take. Many methods in the literature

use polysomnograms containing signals other than the EEG. Finally, sleep

staging methods can be classi�ed based on whether they use deep learning or

not. Methods not using deep learning are referred to in this chapter as classical

methods. Below is a survey of some modern methods in the literature. It is not

exhaustive, but is representative of the current performance of automated methods

various types of models and training methodologies. Owing to their preponderance

in the literature, methods training on hypnograms generated according to the older

RK standard are included.
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A large variety of classical models and algorithms have been used to attack

the sleep classi�cation problem. Luo and Min [41] use a conditional random �eld

model explicitly designed for training on the patient on which the prediction is

to be carried out, thereby adapting to the patient's idiosyncrasies. They use four

patients in their experiments, which is a somewhat limited experimental scope.

The performance they obtain is reported only as aggregated accuracy across all

sleep stages, and is 0.83. A di�erent model using support vector machines is

presented by Gudmundsson et al. [23]. They classify into four sleep stages, and

their best set of features, based on Hjorth complexity parameters, attains an

average accuracy of 0.81. Pan et al. [46] use a Hidden Markov Model, and use

EMG and EOG as input signals in addition to simple EEG. Thirteen spectral

features were selected from among these three signals. The feature vector of

each 30 second epoch was taken to be the average of spectral features of each

two-second segment in that epoch.

An interesting set of expert features is used by Acharya et al. [2], who use

a Gaussian mixture model as the classi�er. The features they use are higher-

order spectrum features, which are nonlinear functions of the Fourier transform

evaluated at pairs of frequency points. They try various combinations of these

features, and validate their method by 10-fold cross validation on a data set of

approximately 40 patients' overnight EEG recordings. Their results stand out

in achieving an excellent performance on n1. However, their n1 stage does not

appear to be at all underrepresented like it is in other works, suggesting a possible
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nonstandard nature of the recordings on hand which enables this high level of

performance.

In addition to the classical models described above, several deep models

are also known in the literature. A neural network architecture for hypnogram

generation was created by Ebrahimi et al. [19]. Their work uses a set of 12 expert

features extracted from the data derived from wavelet transform coe�cients. The

rem and n1 stages were merged into one in their experiments. Their work did

not appear to use cross-patient validation, and certain steps of their experimental

methodology remain unclear. A similar work, also using an MLP on top of expert

features derived from wavelet coe�cients, is presented by Sinha [52]. A limitation

of this work, which achieves high accuracy, is that he classi�es only between three

sleep categories: wake, rem and ss, the latter being the aggregate of all other

stages. It is also interesting to note that the model considers 2-second pages, and

appears to classify at this granularity.

A deep model that uses no expert features is presented by L�angkvist et al.

[37]. This architecture uses a Deep Belief Network (DBN) to automatically learn

features from sleep data. Their most successful architecture uses an HMM over

the features learned by the DBN to make the �nal sleep stage prediction, creating

a combination of deep learning for feature extraction and classical learning for

prediction.

In addition to the purely academic approaches described above, several

proprietary commercial sleep stage classi�cation packages exist. The most well

known is probably Somnolyzer. The software's web page claims to have \scores
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work standard signals used notes validation metric wake rem s1/n1 s2/n2 n3/sws

this thesis AASM EEG - cross-patient F1 0.84 0.87 0.45 0.86 0.90
L�angkvist et al. [37] RK EEG transitional pages removed cross-patient F1 0.78 0.78 0.37 0.76 0.84
Ebrahimi et al. [19] RK EEG bad pages removed mixed-patient Acc. 0.99 0.92 0.89 0.95

Pan et al. [46] RK EEG,EMG,EOG - cross-patient Acc. 0.89 0.90 0.34 0.82 0.95
Acharya et al. [2] RK EEG - mixed-patient F1 0.88 0.94 0.89 0.75 0.96
Anderer et al. [5] AASM EEG,EMG,EOG - - Acc. 0.87 0.92 0.60 0.82 0.82

Table 3{1: Summary of performance metrics across select literature surveyed.

are indistinguishable from those of a human scorer" [1]. This system was devel-

oped by Anderer et al. [4] to classify according to the RK standard and uses a

number of expert features and the EOG, EEG and EMG channels to perform

the classi�cation. That work reports an overall agreement with human raters of

79%. The software was later updated to classify according to the AASM standard,

and Anderer et al. [5] found an agreement with human experts equal 82% for the

AASM version. These numbers are the same as the human interrater agreement

rate, suggesting the limitation in evaluating is performance is the accuracy of the

human labels. One of the advantages of this software is that it explicitly identi�es

many of the physiological features such as sleep spindles or K complexes in the

signals.

3.3 Summary of Literature Performance

The best performance for the most relevant methods discussed above is

presented in Table 3{1, alongside the median cross-validation result obtained by

the multi-page bagged architecture presented in this thesis. This table attempts

to bring the performance of various methods into as comparable a form as possible.

However, the di�erent training and validation methodologies make it di�cult to

make a �nal judgment. Ebrahimi et al. [19] and Sinha [52] do not appear to use

cross-patient validation and use a restricted number of sleep stages, while some
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methods, like [41], are explicitly designed for training on the same patient as for

prediction. I believe the method presented in this thesis is a strong competitor

given its lack of need for expert features and explicit cross-patient validation. Its

performance on n2 is particularly strong.

With that said, the thorough evaluations by [4] and [5] suggest that the

fundamental limitation in evaluating a model's accuracy beyond 80% or so is the

inconsistency of human labelers. Therefore, caution should be taken when looking

at results of accuracy of 90% or more.
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CHAPTER 4

Experimental Methodology

This chapter presents the experimental methodology and details of the archi-

tecture used for the work in this thesis. First, a brief high-level overview of the

architecture is presented, with the aim of motivating the particular architectural

choices used in the work. Then, a description of the dataset used is presented.

Subsequently, the speci�cs of the convolutional neural architecture used to imple-

ment the classi�er are given. Finally, the speci�cs of the training procedure are

explained.

The architecture described below and all of the experiments were implemented

in the Python programming language, using the SciPy numerical libraries for

core functionality [34]. The neural architecture was implemented using the Keras

toolkit, using the Theano backend for GPU acceleration [15, 9]. The cross-

validation routines were implemented using Scikit Learn [47].

4.1 Architecture Description

The fundamental innovation in the architecture used is the conversion

of a time series into a two-dimensional image representation using

a spectrogram transformation. As described in the technical background

section, the spectrogram takes a Fourier transform of subsegments of the signal.

On transforming the spectrogram into an image, each new pixel along the vertical

extent of the output image is made to correspond to the spectral frequency
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divisions of the spectrogram. Thus the height of the output image in pixels is

equal to the number of frequencies in the spectrogram representation. Each new

pixel along the horizontal extent corresponds to the spectrogram's time bins, which

makes the width of the image in pixels equal to the number of time bins in the

spectrogram. This value is proportional to the length of the signal, and is inversely

proportional to the height. The numerical \brightness" value of each pixel of this

two dimensional image is then equal to the output value of the spectrogram at the

particular time and frequency corresponding to that pixel.

The second fundamental innovation insight is that EEG channels can be

treated like the colour channels of an image. The time series for each EEG

channel is transformed independently into a monochromatic image through the

spectrogram method described above. These monochromatic images are combined

into a multi-channel image by stacking them in the same way as the individual

colour channels (i.e. red, blue) are stacked to create a composite colour image.

The great utility of this technique is that a multi-channel EEG signal can then be

processed by a standard image oriented CNN pipeline. These pipelines have been

studied and optimized extensively in the machine learning literature. This work

does not propose innovations to these CNN methods.

The spectrogram transformation described above is not only computationally

useful, but �nds justi�cation as a form of low level feature extraction as follows.

First, the features of a given sleep stage can occur at any point in the page

without altering that page's classi�cation. Therefore a model which is invariant

in time is desirable. Second, the de�ning features of each sleep stage correspond
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to time-localized patterns with a particular spectral pro�le, and should be readily

distinguishable on a spectrogram with su�cient resolution. Finally, many of these

patterns are de�ned by a spectral shape more than a particular frequency, and can

actually occur at di�erent frequencies across di�erent patients. In a spectrogram,

such a di�erence in base frequency is captured as a translation of the pattern along

the frequency axis. Therefore, some measure of frequency invariance in the model

is also desirable.

Putting the above together, it was conjectured that the mature and powerful

techniques behind CNNs could be used on spectrograms directly for this classi�-

cation task. The idea of treating spectrograms like images, and thus treating the

problem as an image classi�cation problem, motivates almost all of the architec-

tural decisions below. From the image processing perspective, the architecture is

very standard, and unless speci�c explanation is given, architectural decisions can

be considered as being in line with standard literature on image processing.

4.2 Architecture Details

With the general motivation of the previous section in mind, this section gives

the speci�cs of the spectrogram parameters and neural connectivity used to obtain

the �nal results in this work.

4.2.1 Spectrogram Parameters

In line with the idea of treating a spectrogram like an image, parameters

for the spectrogram were chosen with a few criteria in mind. One, the height in

pixels height and width of the dominant spectral patterns should be about equal,

so that interesting detail is not compressed along either axis. Two, there should
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spectrogram downsample factor window overlap time bins freq. bins

high frequency 1 128 96 57 65

low frequency 15 24 18 13 18
Table 4{1: Spectrogram parameters used. Window size and overlap given in number of sam-
ples.

be overlap between successive time bins, so that spectral features are smooth and

detailed in pixel space. I found it was not possible to achieve the above criteria

with a single spectrogram. For this reason, the signal was split into high and low

frequency components, and two separate spectrogram inputs were used. This split

signi�cantly improved performance in preliminary testing.

Speci�cally, each 30 second page of the normalized EEG traces sampled at

64 Hz (thus capturing signals up to a frequency of 32 Hz) was transformed into

two spectrogram representations: one for higher frequencies (1 Hz to 32 Hz) and

the other for lower frequencies (0.36 Hz to 4 Hz), according to the parameters in

Table 4{1. Because a neural network expects normalized input, the logarithm of

the raw spectrogram values was taken.

A Hann windowing function was used for both types of spectrogram, and the

type of spectrogram was for spectral density rather than total energy, as imple-

mented in SciPy's scipy.signal.spectrogram function. The log spectrogram was

then used as input to the CNN in the manner of an image. Each EEG channel's

spectrogram was treated as a colour channel.The order of EEG channels was

arbitrarily chosen, but was kept constant throughout.This allowed the network the

possibility of di�erentiating between di�erent areas of the brain (which correspond

to particular channels according to the 10-20 system).
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4.2.2 Neural Architecture

The architecture below largely follows established practises for a simple image

classi�cation CNN, sized appropriately for the given input. One notable di�erence

is that the number of feature maps in the convolutional layers and the number of

nodes in the fully connected layers are smaller than one would �nd in an image

classi�cation stack. This is because the number of distinct spectral features in

EEG is much smaller (i.e. spectrograms are all much more alike and homogeneous)

than in a natural image. Therefore, the model complexity must be correspondingly

lower to prevent over�tting.

The basic convolutional architecture used for the single-page predictor

is summarized in Table 4{2. The high and low frequency spectrograms were

passed through separate convolutional layer stacks which were joined with a

sequence of fully connected layers, topped with a �ve-node softmax activation

(softmax(x)i :=
exiP
j e

xj ) predicting the stage of sleep for the page.

The use of a small convolutional kernel dimension was inspired by the work

by Bashivan et al. [7]. Exponential Linear Unit activations, as introduced by Clev-

ert et al. [16], were used as fully connected layer activations. The convolutional

activations were ReLUs [44].

4.3 Description of the Dataset

The training data used in the �nal results consists of raw EEG recordings

which were obtained at the clinical neurophysiology laboratory at Sunnybrook

Health Sciences Centre, Toronto, Canada according to American Academy of Sleep

Medicine (AASM) guidelines [31] using a Grael HD PSG ampli�er (Compumedics,
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inputs

low freq. high freq.

conv (3� 3)

conv (3� 3)

max pool (2� 2)

conv (3� 3) conv (3� 3)

conv (3� 3) conv (3� 3)

max pool (2� 2) max pool (2� 2)

fc (24)

fc (24)

fc (6: softmax)

output
Table 4{2: Main neural architecture used. Fully connected layers denoted by \fc". Parenthe-
sized numbers are kernel dimension for convolutional layers, downsample factor for pool layers
and number of hidden nodes for fully connected layers.

Victoria, Australia). These recordings were manually scored according to AASM

guidelines by registered polysomnography technologists to produce the training

hypnograms.

To generate a dataset of largely normal recordings containing adequate

amounts of all sleep stages, 116 consecutive recordings were selected among

those obtained between 2009 and 2015 meeting the following criteria: total sleep

time more than 240 minutes, sleep e�ciency more than 80%, apnea-hypopnea

index (AHI) less than 5, periodic limb movement index less than 5, respiratory

disturbance index (RDI) less than 5, oxygen nadir over 90%, %n3 sleep over 15%,

%n1 sleep < 10%, and %REM sleep > 15%. The median age of the participants

was 29, with interquartile range [23-35]. There were 23 male and 93 female

participants. All electrodes were referenced to the FPZ electrode of the 10-20

system.
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Figure 4{1: Distribution of sleep stage labels among training patients. The precise proportion
by total number of given stage in the training set is: Wake=12.4%, REM=19.0%, n1=5.5%,
n2=42.5%, n3 = 20.5%

Since the stated aim of the algorithm is to be able to handle data with

minimal preprocessing, the EEG recording dataset was not �ltered according

to any measure of recording quality, with the exception of eliminating 8 traces

(excluded from the count of 116 given above) in which the signal was totally

corrupted and did not correspond to valid EEG activity. With the exception of the

above omission, no artifact detection or removal was performed on the remaining

traces. The sleep stage breakdown of the training patients is shown in. Figure 4{1.

4.4 Data Preprocessing

Seven EEG channels, the same across all recordings, were used from each

EEG trace. These channels were A1, A3, C3, C4, F3, F4, O1, in that order.
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The original recordings were sampled at 256 Hz, but the records had been low-pass

�ltered at the source to include only frequencies below 30 Hz. For this reason, the

recordings were downsampled to 64 Hz before use in order to save computational

cost.

Each trace was, as a whole, numerically normalized to zero mean and unity

standard deviation in the time domain, in accordance with standard practise of

training neural models. The sleep stage labels were 1-hot encoded. That is,

each sleep stage, in addition to the \unknown" sleep stage, was associated with a

unique index from 0 to 5. Then the label of each page was represented as a length

6 vector of all zeroes except for a 1 at the index corresponding to the page's sleep

stage. The \unknown" entries were all given a weight of zero during training, and

were thus used as a numerical convenience rather than learnable output.

4.5 Training Methodology

One of the fundamental objectives of this work is to train a classi�er that

work well on unseen patients. For this reason, the training and validation sets were

strictly separated at the patient level at all times. No patient's data was ever

used in both the training and the validation sets. 3-fold cross-validation was used

for training. There was no set-aside training set, and the �nal results reported in

the following chapter are the aggregate results on the validation folds.

To generate each data sample during training, the following procedure was

used. First, a patient was samples uniformly at random from the set of training

patients for the fold. Subsequently, an EEG page was sampled from this patient

uniformly at random. As a form of regularization, noise equivalent to adding
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N (0; 0:22) in time domain was added to training samples sample. This noise was

resampled independently for each sample For further regularization, and following

standard practise in the literature, 0.5 dropout [55] was added under every fully

connected layer except the output layer during training.

The speci�cs of the training follow the standard practise in the literature.

The entire system was trained end to end using the Adam optimizer [35] under

the categorical cross-entropy loss L(ŷ; y) =
P

i yi log ŷi. The learning rate was

scheduled to decrease every time training failed to make progress in decreasing

validation loss for a number of consecutive epochs, this number exponentially

dependent on the number of times learning rate had already been reduced to that

point. Training proceeded through 3 such learning rate reductions. To address

class balance, the loss for each training page was weighted inversely proportionally

to the probability of its label being chosen according to the sampling scheme

described above. Finally, in order to recover the sleep label from the output

softmax vector, the argmax was taken, returning the index with the largest entry

as the prediction.

4.5.1 Bagging

To create a bagged ensemble of classi�ers, the training procedure was repeated

on subsets of the training data resampled with replacement. For the purposes of

cross validation, the cross-validation splits were carried out before the resampling

for bagging, and the entire validation split was used to evaluate the bagging

ensemble's performance. Within each cross-validation fold, 10 classi�ers were

trained within each bag. It should be noted that training on some bootstrap
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samples failed. That is, the training loss never moved below the performance of

random guessing. These failed iterations were excluded from the bag and were not

retrained. Therefore, some bags contained fewer than 10 subclassi�ers.

4.5.2 Looking at Multiple Pages

When predicting the stages of sleep, a human technician might look at the

pages that precede and follow the page to be classi�ed to make a more informed

decision. For this reason, the architecture was also trained using the concatenation

of the previous, current and next pages' spectrograms as input. The architecture

for this multi-page training was the same as for the single page case other than

the addition of an additional fully connected layer before the output. This multi-

window architecture is depicted in Table 4{3. Importantly, neural weights were

shared between the convolutional stacks operating on each of the pages. Therefore,

the number of parameters was not signi�cantly larger than in the single page

case. It is important to note that This architecture was trained from random

initialization, and weights from single-page training were not transferred.
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previous page page to predict next page
low freq. high freq. low freq. high freq. low freq. high freq.

conv (3� 3) conv (3� 3) conv (3� 3)
conv (3� 3) conv (3� 3) conv (3� 3)

max pool (2� 2) max pool (2� 2) max pool (2� 2)
conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3)
conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3) conv (3� 3)
mp (3� 3) mp (3� 3) mp (3� 3) mp (3� 3) mp (3� 3) mp (3� 3)

fc (24) fc (24) fc (24)
fc (24) fc (24) fc (24)

fc (24)
fc (6: softmax)

output
Table 4{3: Multi-page neural architecture. Equivalent to three copies of the single page archi-
tecture with an additional fully connected layer on top. Each of these copies takes as input the
preceding, current, and following page, where the current page is the one to be classi�ed. Weights
between convolutional stacks are shared.
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CHAPTER 5

Results

This chapter presents the performance of the architecture developed in the

previous section. Various use cases are considered, from full automation to partial

automation based on the predictor's own con�dence in its predictions. The degree

to which the architecture's prediction of its uncertainty, based on bagging, can be

trusted is also validated.

5.1 Set of Classi�ers Considered

The performance of the architecture is considered in terms of four principal

classi�cation modes based around from the architecture de�ned in and trained

according to the protocol in the previous chapter. These classi�ers are named:

unbagged, bagged, unanimous, and oracle. These classi�ers are de�ned as

follows:

� unbagged is the classi�er obtained by training a single instantiation of

the neural achitecture de�ned in the previous section according to the training

protocol given in the previous section.

� bagged is the classi�er obtained by applying ensemble procedure described

in section 4.5.1. The output of bagged is the majority prediction, which is

de�ned mathematically as

argmax
i

 X
i

yi

!
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where yi is the softmax output of classi�er i, where i ranges over the indices of the

classi�ers in the bag.

� unanimous uses the same ensemble as the bagging classi�er, but its output

is only valid when all the sub-classi�ers are in individual agreement, i.e.:

unanimous(x) =

8><
>:

ŷ if all sub-classi�ers output ŷ

unde�ned otherwise

Thus results for this classi�er omit any pages for which sub-classi�ers disagree.

We also de�ne a variant of this classi�er, unanimous-k, where the prediction is

de�ned wherever all but k classi�ers in the bag agree. This is well de�ned and

unique as long as k is less than half of the number of classi�ers in the bag.

� oracle is de�ned as the classi�er obtained when the pages unanimous is

unde�ned on are given to an oracle and labelled perfectly. This is analogous to the

algorithm asking a human expert for a label.

These four classi�ers are considered for both the single-page and multi-page

variants of the neural architecture, as de�ned in the previous chapter.

5.2 Basic Performance

This section quanti�es the performance of the four classi�cation modes.

The measure of performance used is the F1 score, which is a metric suitable for

unbalanced data sets, as it takes into account both the precision and the recall of a

classi�er. The F1 score is de�ned mathematically, for each output label, as

F1 := 2
precision + recall

precision � recall
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For a given output label, precision is the ratio of the number of true positive

predictions to the total number of predictions of that label. Meanwhile, recall

is the ratio of the number of true positive predictions to the number of positive

instances in the sample.

The performance of the unbagged and bagged classi�ers can be seen in in

�gure Figure 5{1. Each boxplot corresponds to the distribution of cross-validated

F1 scores across all of the patients in the training set. The blue line of the boxplot

corresponds to the median. The performance of the best variants can be seen to

have median F1 scores of over 0.8 for the Wake and REM stages, and of over 0.9

for the N3 stage. N2 performance is more modest, at just under 0.8, while N1

performance is the poorest, at just under 0.5 F1 score, with a fairly wide spread.

N1 is traditionally the most di�cult stage to classify, as will be seen in the next

chapter, where these results are compared with what is found in the literature.

It is apparent that unbagged single-page performance leaves a lot to be

desired, and that the multi-page classi�er performs much better than the single-

page variant. This is particularly true of the performance on N1. N1 is the most

underrepresented sleep stage, which is often indicative of di�culty of classi�cation.

Furthermore, N1 is a transitional stage between Wake and N2, and is de�ned in

terms of markers of those stages in the AASM standard [31]. For that reason,

it stands to reason that having access to neighbouring pages would lead to an

improvement in predictive performance on N1. It should be noted that the F1

scores in Figure 5{1 are not weighted in the same way the respective stages were

during training. If one applies such a weighting to the calculation of the F1 score,
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Figure 5{1: The performance of the unbagged and bagged classi�ers for single-page and
multi-page classi�cation.

N1 performance goes up to around 0.7 at the expense of the other stages, owing

to the fact that N1 recall is much better than its precision. This suggests that the

relative importance of stages as encoded by the training weights carries over to the

predictor's behaviour, which is in general a desirable property.

Bagging also leads to signi�cant improvements in the single-page classi�er, but

its e�ect is much less pronounced in the multi-page case, and in fact can be seen

to drag down the performance of the poorly-performing outliers. This suggests two

things. First, because bagging is a variance reduction technique, errors ampli�ed

by its are likely from consistent bias in the predictors. Therefore, it is likely the

patients whose performance decreases with bagging contain sleep stage markers

from a markedly di�erent distribution than the rest of the patients. Second,

because bagging leads to such modest gains in the multi-page case, the multi-page
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Figure 5{2: The performance of the unanimous and oracle classi�ers. The horizontal lines
represent, for that patient and for that stage, the ratio of the number of times that stage was
predicted unanimously to the number of times that stage was predicted by the bagged classi�er,
and should be interpreted as �lling in between 0 on the left and 1 on the right.

architecture's hypothesis class provides an intrinsically good, low-variance �t to the

data distribution at hand. Considering that the performance of the architecture is

quite strong, suggesting a low bias, the architecture can be judged as a good choice

for the sleep stage prediction task with spectrogram inputs.

5.3 The unanimous and oracle Classi�ers

Given the signi�cant performance gain obtained by using the multi-page

classi�er, the unanimous and oracle classi�ers will be considered only for

the multi-page case. In Figure 5{2 we can see the performance of the these

two classi�ers. The left-hand plot shows the same F1 scatter as in Figure 5{1,

but only considering the pages for which the sub-classi�ers were in unanimous

agreement. The horizontal lines indicate the proportion of pages for the given
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patient and the given sleep stage for which the sub-classi�ers were in unanimous

agreement and hence unanimous was de�ned, as a proportion of the number

of times that stage was predicted by bagged. We can see that performance

increases across the board, even for N1, and that for the most well-predicted

stages, such as N2 and N3, the degree of unanimity appears to positively correlate

with predictive accuracy. This positive correlation is an indicator that agreement

between classi�ers in the bag does give a measure of model uncertainty. The wide

spread on the N1 is consistent with the stage having a lower precision, where

ambiguous non-N1 cases are likely to be classi�ed as N1.

The right-hand column of Figure 5{2 shows the approximate F1 scores of

the hypothetical oracle classi�er. The shown �gures are given according to the

following formula:

F1o = F1u(proportion unanimous) + (1� proportion unanimous)

where F1o is the approximate F1 score of the oracle classi�er and F1u is the F1

score of the unanimous classi�er. It can be seen that median performance inches

up only slightly toward 1 when compared to unanimous for all stages except N1

owing to the already strong performance of unanimous on those stages. However,

the spread for all the stages decreases signi�cantly. This suggests that unanimous

is able to discern patients on which it would perform poorly and refers them to the

oracle consistently. This is also the case for N1, though for that stage unanimous

refers almost all cases to the oracle. Given that N1 is the least prevalent stage (as

shown in Fig 4{1), this may be feasible to handle in the clinical work
ow. It is

48



interesting to note that when the classi�er is trained without sample weighting to

correct for the underrepresentation of the N1 stage, the correlation between the

degree of unanimity and oracle performance for N1 becomes strongly negative.

This means the classi�er's unanimous predictions of N1 are low quality.

5.4 Bagging as a Measure of Uncertainty

To further validate the use of the degree of unanimity among the sub-

classi�ers of bagged as a measure of classi�er certainty, one can look at the

performance of bagged vs. the number of sub-classi�ers in agreement with the

aggregate vote. This result can be seen in Figure 5{3. The top plot shows the

accuracy, broken down by sleep stage, of the output of bagged vs. the number

of constituent sub-classi�ers that agreed with the output of bagged. We can

see a clear linear relationship upwards for all stages from the point at which 3 of

six classi�ers agree. This strongly indicates that the agreement among the sub-

classi�ers is representative of the certainty bagged has in its result. The bottom

graph shows the number of times a particular number of sub-classi�ers agreed

with the majority, segregated by sleep stage and aggregated across the validation

patients. It is interesting to note that N1's performance as a function of agreement

is similar to that of the other stages. Instead, the way in which it stands out is

that classi�ers in the bag vote for N1 unanimously much more rarely than they do

for other stages.

It is natural to consider the above result in the context of the oracle-

k classi�er. In particular, we can choose a minimum number of classi�ers in

agreement with the �nal vote as a cuto� for accepting the classi�er's result, and
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Figure 5{3: The top of these two plots shows the proportion of bagged predictions that were
correct vs. the number of individual classi�ers which agreed with that prediction, segregated
by sleep stage. The bottom plot shows the total number of instances for each combination of
number of classi�ers in agreement and sleep stage.

refer the data to a human otherwise. In this situation, we're interested in the

accuracy we obstain vs. the amount of e�ort a human has to perform. This is

illustrated in Figure 5{4. The accuracy is taken as the independent variable, and

the proportion of labels done by the human oracle is the response variable, with

results broken down by sleep stage. Each marker on the curve corresponds to

a di�erent agreement cuto� k required to accept the classi�er's result. We can

see that for most stages, the accuracy increases with k more rapidly than the

proportion of labels done by the oracle. In fact, for all stages but N1, we can

attain 0.95 accuracy.

An important caveat in interpeting the results above is that the accuracy

values obtained by the classi�er are higher than the interrater agreement rate.
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Figure 5{4: For the oracle-k classi�er, the accuracy attained, by stage, vs. the proportion of
labels done by the oracle. The top right is oracle only labelling at perfect accuracy. The leftmost
point is the performance of bagged. Each point in the middle corresponds to a value of k, i.e. a
cuto� of at most k classi�ers in the bag disagreeing with the �nal vote.

With the exception of N1, we see we can get most of the way toward oracle

performance with only a fraction of the labels done by the oracle, consistent with

the observation that the highest performing stages also had the highest degree of

unanimity.
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CHAPTER 6

Discussion and Conclusion

6.1 Summary of Contributions

This thesis presented a deep learning approach to automated sleep staging

using convolutional neural networks over spectrograms created from multi-channel

EEG recordings. The CNN architecture was trained and validated on a dataset

of around 120 patients' EEG recordings collected in a hospital setting. It proved

capable of attaining competitive performance without the use of hand-crafted

features. It is believed this is a novel approach for sleep staging, and an argument

has been presented for its strengths relative to other approaches found in the

literature.

Furthermore, it was shown that the use of bagging, in addition to improving

the accuracy of the method, could be used as a reliable gauge of its con�dence in

its predictions. Thus it is a suitable candidate for clinical usage where a human

technician labels only those EEG pages. It further explored and validated the use

of a bagged ensemble classi�er to not only reduce the variability in its predictions,

but to quantify its degree of con�dence of the predicted label.

6.2 Observations on Classi�er Performance

On the whole, the performance of the architecture developed in this work

is good enough that its re�nement and application in the �eld are plausible

goals. However, a number of de�ciencies should be remedied before its use can be

52



seriously considered. It is evident that the predictor still struggles with n1 classi-

�cation. It is conjectured that n1's de�nition in terms of wake characteristics on

a patient-to-patient basis, as well as its substantial underrepresentation, are expla-

nations for the poor performance. On the other hand, when using bagged, REM,

n2 and n3, and wake are classi�ed with very high accuracy, further approaching

unity under the unanimous or oracle paradigms.

6.3 Inter-rater Agreement

An important caveat must be taken into account when interpreting numer-

ically the classi�er's performance. The dataset used in this paper contains only

a single set of sleep stage labels per �le, the vast majority of which come from

a single technician. A study by Danker-hopfe et al. [17] found that under the

2007 AASM standard, inter-rater agreement for a cohort of 72 majority healthy

patients stood at 0.82 (Cohen's kappa of 0.76). That study found that, perhaps

unsurprisingly, it was the n1 stage that had the lowest inter-rater agreement

(Cohen's � = 0:46). This results suggests that the classi�er's performance is at its

useful limit, even for the n1 stage, when training on labels generated by a single

technician. This is a limiting factor in accurately assessing the performance of the

architecture described in this thesis. While the classi�er's ability to reproduce a

single rater's results is a good benchmark for the its suitability for the task and

ability to learn a good data representation, to achieve truly reliable and potentially

superhuman classi�cation, data scored by two or more raters will be necessary in

training.
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6.4 Future Directions

The architecture presented in this thesis can be seen as a proof of concept for

the proposed, novel method of treating spectrograms likes images. I showed that

applying standard CNN based image processing techniques to spectrograms for the

purpose of sleep stage classi�cation is a viable technique. However, a lot of work

must be done before this method can be used in practise.

6.4.1 Architectural Changes

Most importantly, the method must be expanded to accommodate non-

EEG recordings where available. Indeed, one of the strengths of deep methods

is the ability to integrate information from di�erent sources in what amounts

to being a single, complex nonlinear transformation. Thus the incorporation of

other commonly found signals, such as EMG, EKG or other time-series readouts

should be straightforward. For many lower-frequency such signals, the use of the

convolution would likely be neither necessary nor useful.

It is important to note that the classi�er's performance should degrade

gracefully in the absence of any of the signals presented above to be maximally

useful. In general, for clinical practise, it is ideal that a packaged piece of software

incorporating a trained version of the architecture should be transferable between

di�erent sites and di�erent data collection methodologies and available signals. It

should not need much, or any training to be able to make predictions. This would

put it on the same footing as current commercial solutions. At the same time,

by virtue of the fact that a deep learning architecture is used, if training data is
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available at a new site, the ability to �ne tune the weights post installation is a

signi�cant advantage.

Even considering EEG in isolation, training with something like \EEG

channel dropout", where a subset of EEG channels is used in each sample, should

make the model more capable of handling the varying collections of EEG channels

available at each clinical deployment site. More fundamentally, the input to the

neural stack should be restructured so that location of EEG electrodes is re
ected

in its structure. Currently, EEG channels are ordered as layers arbitrarily, which

actually complicates training with respect to extra or missing EEG channels.

Perhaps instead of using a one-dimensional \stack" of EEG channels analogous to

colour channels, a two-dimensional grid corresponding to positions on the scalp can

be used. In this case the input would be a four-dimensional tensor, which while

more complex should still be within the scope of standard deep learning tools.

Finally, a straightforward architectural improvement would be to use a

recurrent neural structure on top of the convolutional and fully connected layers.

I conjecture this can replace the multi-window technique and be both faster

and more accurate, by keeping a much longer context around each page to be

predicted.

Methodological Improvements

No matter how good the architecture is, it will not be used in practise if

clinicians lack the con�dence in its results. The bagging con�dence method was

developed for this reason. In order for the architecture to be truly viable, the

architecture must be trained on a larger collection of patients from di�erent
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hospitals, whose measurements were taken by di�erent technicians with di�erent

tools. Only when the performance of the program on a totally new set of data is

quanti�ed will it be reasonable to have con�dence that it can function as a drop-in

tool.

With regard to the inter-rater agreement problem, by combining the labels

of multiple experts, the accuracy and the con�dence model can be re�ned sig-

ni�cantly, and truly superhuman performance can in principle be attained, as it

has been in image classi�cation [25]. In order to achieve this, a training set with

multiple independent labels per page is desirable. Such a data set would need to

be created for the sole purpose of training the architecture, and would represent a

signi�cant investment, given the high cost of human labelling of sleep pages.

I believe that such an investment, however, is manifestly justi�ed. This is

because I believe that a variant of the architecture presented in this work, if

developed with care, will ultimately be able to surpass human performance with

con�dence.
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