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There are wavelengths that people cannot see, there are sounds that people cannot

hear, and maybe computers have thoughts that people cannot think.

— Richard Hamming



ABSTRACT

Channel coding enables reliable communication over unreliable, noisy channels: by en-

coding messages with redundancy, it is possible to decode the messages in such a way that

errors introduced by the channel are corrected. Modern channel codes achieve very low

error rates at long block lengths, but long blocks are often not acceptable for low-latency

applications. While there exist short block codes with excellent error-correction perfor-

mance when decoded optimally, designing practical, low-complexity decoding algorithms

that can achieve close-to-optimal results for short codes is still an open problem. In this

thesis, we explore an approach to decoding short block codes in which the decoder is

recast as a machine learning algorithm. After providing the background concepts on error-

correcting codes and machine learning, we review the literature on learning algorithms for

error correction, with a special emphasis on the recently introduced “neural belief prop-

agation” algorithm. We then describe a set of modifications to neural belief propagation

which improve its performance and reduce its implementation complexity. We also pro-

pose a new syndrome-based output layer for neural error-correcting decoders which takes

the code structure into account during training to yield decoders with lower frame error

rate. Finally, we suggest some future work.
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ABRÉGÉ

Le codage de canal permet une communication fiable sur des canaux non fiables et bruyants.

En ajoutant de la redondance aux messages, il est possible de décoder les messages de telle

sorte que les erreurs introduites par le canal soient corrigées. Les codes de canal modernes

atteignent des taux d’erreur très faibles à des longueurs de blocs longues, mais les blocs

longs ne sont souvent pas acceptables pour les applications à faible latence. Bien qu’il

existe des codes en blocs courts avec d’excellentes performances de correction d’erreur

lorsqu’ils sont décodés de manière optimale, la conception d’algorithmes de décodage pra-

tiques et peu complexes qui peuvent obtenir des résultats proches de l’optimum pour les

codes courts reste un problème ouvert. Dans cette thèse, nous explorons une approche

de décodage de codes en blocs courts dans laquelle le décodeur est appréhendé comme

un algorithme d’apprentissage automatique. Après avoir fourni les concepts de base sur

les codes correcteurs d’erreurs et l’apprentissage automatique, nous passons en revue la

littérature sur les algorithmes d’apprentissage pour la correction d’erreurs, en mettant

l’accent sur l’algorithme “neural belief propagation” récemment introduit. Nous décrivons

ensuite un ensemble de modifications à cet algorithme qui améliorent ses performances

et réduisent sa complexité de mise en œuvre. Nous proposons également une nouvelle

couche de sortie à base de syndrome pour les décodeurs de correction d’erreur neuronaux

qui prend en compte la structure du code pendant l’apprentissage, ce qui permet de réduire

le taux d’erreur de trame. Enfin, nous suggérons de pistes de recherche future.
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Chapter 1

Introduction

Computers often need to communicate over noisy channels. For example, cell phones

communicate with base stations using radio waves, and a stray radio wave from another

source, such as the Sun, can combine with a cell phone transmission to distort the signal.

The problem with using a noisy channel for communicating binary data, as a cell phone

does, is that the noise can cause a 0 to look like a 1, or vice versa, thus introducing errors

into messages. Suppose that a transmitter sends the message 1 0 1 0 over a communication

channel. Due to noise in the channel, the receiver might “mishear” the message as 1 0 1 1.

Error-correcting codes, invented by Richard Hamming [5], make it possible to extract the

original signal from the noise, allowing reliable digital communication over unreliable

channels.

The basic idea behind error-correcting codes is to add redundancy to a message so

that the various messages a transmitter might send are easier to distinguish from each

other, thus reducing the probability of an error. To understand how redundancy helps the

receiver distinguish between messages, consider the length-3 repetition code, in which the

transmitter redundantly sends each bit of a message three times. To send the message

1 0 1 0, the transmitter first encodes the message into the sequence 111 000 111 000. If a

bit is flipped by noise, the receiver may observe a sequence such as 111 000 111 100, but

the receiver knows that the transmitter can’t have sent 100 because 100 does not consist

of the same bit repeated three times. In this case, the receiver should guess that the last

triple was 000 before one of the bits was flipped by noise, as 000 is closer to 100 than
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111. By making this correction, the receiver can infer that the original transmission was

111 000 111 000, and therefore the intended message was 1 0 1 0.

For any error-correcting code, the optimal method for recovering the original message,

called “maximum a posteriori decoding”, is to compute the probability that each bit was a 0

or a 1 and pick whichever hypothesis has the higher probability. Except for very short codes

(such as the length-3 repetition code) or codes with a special structure (such as codes with

cycle-free Tanner graphs) on well understood channels, it is usually not possible to perform

maximum a posteriori decoding; the computation may involve an intractable number of

terms, or the probability distribution of the channel noise may be unknown. In these

situations, communication system designers have typically resorted to using suboptimal

methods, some of which are based on manually designed heuristics. Such suboptimal

methods often perform much worse than maximum a posteriori decoding.

In this thesis, we explore an alternative approach, which is to use algorithms that

automatically learn from data, i.e. machine learning algorithms. Situations in which a

probability distribution is i) intractible to maximize and/or compute or ii) unknown are

good candidates for the application of machine learning. Additionally, the combination

of new learning algorithms with fast, parallel hardware and large amounts of training

data has enabled computer applications which were unthinkable only a few years ago,

such as realistically rendering a normal photograph as a painting in the style of a famous

artist (Fig. 1.1). We would like to know whether the same striking improvement in other

applications due to machine learning can be achieved in error correction.

The idea of improving communication systems using machine learning is not new. For

a long time, the digital communications research community has had a vague intuition

that, because machine learning and information theory solve similar problems using simi-

lar statistical methods, it ought to be possible to use learning algorithms in error correction

applications [6]. Wiberg et al., describing potential hardware implementations of iterative

decoding algorithms for codes on graphs, wrote: “Such implementations would look much

like ‘neural networks’; in fact, the prospect of such ‘neuromorphic’ decoders was an impor-

tant motivation for this work [ . . . ]” [7]. Similarly, MacKay wrote in “Information Theory,

Inference, and Learning Algorithms” [8]: “Why unify information theory and machine
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Figure 1.1: An appropriately constructed neural network (such as the one used in the

Prisma app [3]) can learn to render a photograph in an artistic style.
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learning? Because they are two sides of the same coin. [ . . . ] Brains are the ultimate com-

pression and communication systems. And the state-of-the-art algorithms for both data

compression and error-correcting codes use the same tools as machine learning.”

While many attempts to use machine learning for error correction have been made,

these attempts have mostly been thwarted by the “curse of dimensionality” for large input

spaces [9]: there are 2k possible codewords for a code which uses k bits per message, and

a näıvely configured learning algorithm must see noisy examples of all 2k codewords in

order to learn how to correct errors in them, rendering these methods impractical for all

but the shortest of message lengths. (When k = 256, 2k is on the order of the number

of atoms in the Universe; in comparison, the LDPC code used in 10 Gigabit Ethernet has

k = 1723.)

A breakthrough came in [10], in which Nachmani et al. showed that the belief propaga-

tion decoding algorithm can be equipped with learnable multiplicative weights and trained

as a neural network to achieve improved error correction performance. Since the perfor-

mance of belief propagation does not depend on the transmitted codeword, and Nachmani

et al.’s modification preserves this property, it suffices to train a neural belief propagation

decoder using only the all-zeros codeword, thus lifting the curse of dimensionality and

opening the way to applying machine learning to other problems in error correction and

digital communications. Our main contribution in this thesis is to make modifications to

Nachmani et al.’s approach that allow it to be implemented more efficiently, making it pos-

sible to use their idea in practical devices. We also describe a new gradient-based training

method in which decoding is explicitly treated as a structured prediction problem rather

than as a simple binary classification problem. We find that this method, which uses an

unsupervised syndrome-based loss function, yields soft decoders with better frame error

rates across all signal-to-noise ratios for a variety of codes.

The thesis is organized as follows. Chapter 2 covers the fundamental concepts in sta-

tistical inference and learning required for the rest of the thesis. Chapter 3 reviews the

literature on decoding algorithms that use machine learning, with an emphasis on neural

belief propagation. Chapter 4 presents our generalizations of and improvements to neural

belief propagation. Chapter 5 describes the syndrome-based loss function and training

4



method. Finally, Chapter 6 concludes with a summary of the thesis and some ideas for

future applications of machine learning to error correction.
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Chapter 2

Background

In this chapter, we provide the mathematical background for the thesis. Specifically, we

will discuss methods for statistical inference and machine learning.

2.1 Inference

Error correction is essentially an inference problem. By “inference”, we mean using prob-

abilistic models to draw conclusions about random events. Inference is an important in-

gredient in communication systems because these systems have random behaviour. For

example, in a speech recognition system, the objective might be to decide what words

were spoken in a recording. What makes this difficult is that no two recordings of the

same word sound exactly the same. We can infer what words were probably spoken using

a model of what different words sound like and what words are likely to follow each other.

Likewise, in a digital communication system, the receiver needs to decide what message

was sent, given a noisy signal. We can infer what the original message was using a model

of how transmitted signals are structured and how they are distorted by the communica-

tion channel. In this section, we discuss inference methods for communication systems

that use error-correcting codes.
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2.1.1 Error-correcting codes

We will first define some of the concepts mentioned in Chapter 1 more rigorously and in-

troduce notation which will be used throughout the thesis. Generally, we will use capital

letters to refer to matrices or random variables, lowercase letters to deterministic val-

ues or realizations of random variables, p(·) to denote a continuous probability density

function, and Pr(·) to denote the probability of a discrete event. We will consider commu-

nication systems which use binary linear block codes modulated using binary phase-shift

keying (BPSK) and sent over memoryless channels affected by additive white Gaussian

noise (AWGN).

In a communication system, the transmitter wishes to send a message U ∈ {0, 1}k to the

receiver, where k is the message length. To protect the message from noise, the transmitter

encodes the message with some redundancy by multiplying U by a generator matrix G to

yield a codeword Z = UG, where Z ∈ {0, 1}n, G ∈ {0, 1}k×n, and n is the code length. The

matrix multiplication is over the field GF(2)— in other words, + maps to XOR, and · maps

to AND.

The set of all possible codewords formed by multiplying a message by G is called the

code C. Since the redundant encoding enables the receiver to locate and correct errors

in a received word, C is called an error-correcting code. A matrix H ∈ {0, 1}(n−k)×n is a

parity-check matrix for C if GHT = 0 and HZ = 0 (again, over GF(2)) for all codewords

Z ∈ C. The parity-check matrix is so named because each row represents a parity check, a

check of whether a certain subset of the codeword bits has even parity.

Before transmission, Z is mapped from the unipolar format {0, 1} to a bipolar format

X = 1− 2Z ∈ {−1,+1}n. (By abuse of notation, we will also call X a codeword and write

X ∈ C.) X is then modulated to yield an analog signal and sent through the commu-

nication channel. As the signal passes through the channel, it is affected by noise; thus,

the receiver’s demodulator outputs not X but Y = X +W , where W ∈ Rn is a vector of

Gaussian noise with mean 0 and variance σ2.

The receiver has a component called the decoder which takes as input Y and outputs

Û , the message it believes the transmitter sent. During the decoding process, the decoder
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may maintain a “hard decision” Ẑ ∈ {0, 1}n as the estimate of the transmitted codeword.

(Likewise, X̂ = 1 − 2Ẑ is the hard decision in the bipolar format.) The modulo-2 product

HẐ is called the syndrome. The presence of any 1s in the syndrome indicates that Ẑ is

not a codeword, and therefore one or more bits in Ẑ must be incorrectly estimated. A soft

decoder may also maintain a “soft decision” S ∈ Rn, a vector with entries related to the

probability of each codeword bit being a 0 or a 1.

2.1.2 Bitwise MAP decoding

Given a channel and a code, the designer of a communication system would ideally like to

find a decoding algorithm which allows for messages to be recovered with as few errors as

possible. One approach to this task is to look for a decoding algorithm which minimizes

the probability of a bit error, that is, the probability of outputting a 0 when a 1 was sent,

or vice versa.

The first decoder we will consider is the bitwise maximum a posteriori (MAP) decoder

(see e.g. [11]). The MAP decoder is derived from the principle of MAP estimation in

general inference problems, which dictates that one should guess that the event with the

maximum posterior probability is the event which truly occurred. Bitwise MAP decoding

applies the principle of MAP estimation to error correction by computing the posterior

probability of each codeword bit being a 0 or a 1 and choosing whichever hypothesis has

a higher probability. This decoder is optimal in the following sense:

Lemma 2.1.1. Let X̂i, MAP = argmax
xi={−1,+1}

Pr(Xi = xi|Y = y) for i ∈ {1, . . . , n}. A decoder

which outputs X̂i, MAP as the estimate for Xi has the minimum probability of making a bit

error among all possible decoders.

Proof. Note that Perr, MAP, the probability of the bitwise MAP decoder making a bit error,

is equal to 1 − Pr(Xi = X̂i, MAP|Y = y). Let X̂i, other be the bit chosen by any other decod-

ing method. Then Perr, other = 1 − Pr(Xi = X̂i, other|Y = y) is the probability of this other

decoding method making an error. Since by definition Pr(Xi = X̂i, MAP|Y = y) ≥ Pr(Xi =

X̂i, other|Y = y), we know that
(
1− Pr(Xi = X̂i, MAP|Y = y)

)
≤
(
1− Pr(Xi = X̂i, other|Y = y)

)
,

and therefore Perr, MAP ≤ Perr, other.

8



By an argument similar to the one given for the bitwise MAP decoder, the codeword

MAP decoder (that is, the decoder which chooses the codeword with the highest probabil-

ity) has the lowest frame error rate among all possible decoders. It is often assumed that

all codewords are equally likely, in which case choosing the codeword with the maximum

posterior probability is equivalent to choosing the codeword with the maximum likelihood

(ML). This decoder is referred to as the ML decoder. For now, we will consider only bitwise

MAP decoding.

To perform bitwise MAP decoding, the decoder must compute Pr(Xi = +1|Y = y) for

each i ∈ {1, . . . , n}. The probability that Xi = +1 can be expressed as the probability that

the transmitter sent one of the codewords in which the i’th bit is +1. Therefore:

Pr(Xi = +1|Y = y) =
∑
x′∈C

Pr(X = x′|Y = y)I(x′i = +1). (2.1)

where I(·) is the indicator function.

The probability that a particular codeword was sent can be computed using Bayes’ rule:

Pr(X = x′|Y = y) =
p(Y = y|X = x′)Pr(X = x′)

p(Y = y)
. (2.2)

We know that Pr(X = x′) = 1
|C| since all codewords are assumed to be equally likely,

and p(Y = y) does not depend on the transmitted codeword, so these terms can be lumped

into a single proportionality constant α:

Pr(X = x′|Y = y) = α · p(Y = y|X = x′), (2.3)

and therefore Pr(Xi = +1|Y = y) is proportional to the sum of the likelihoods of the

possible codewords:

Pr(Xi = +1|Y = y) = α ·
∑
x′∈C

p(Y = y|X = x′)I(x′i = +1). (2.4)

We have assumed that the channel is a memoryless AWGN channel, so the likelihood

of the received vector is equal to the product of the likelihoods of the received values:
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(a) A parity-check matrix.

(b) Corresponding Tanner graph.

Figure 2.1: Parity-check matrix and Tanner graph for the (7,4) Hamming code.

p(Y = y|X = x′) =
n∏
i=1

p(Yi = yi|Xi = x′i) =
n∏
i=1

1√
2πσ2

e
−(yi−x

′
i)

2

2σ2 . (2.5)

Then the probability that Xi = +1 is proportional to the sum of the products:

Pr(Xi = +1|Y = y) = α ·
∑
x′∈C

n∏
i=1

p(Yi = yi|Xi = x′i)I(x′i = +1) (2.6)

Similarly, the probability that Xi = −1 is proportional to the sum of the likelihoods

of the codewords for which the i’th bit is −1. The MAP bit estimate can be computed by

picking the bit with the higher probability.

2.1.3 Belief propagation decoding

It is generally not possible to compute Equation 2.6 directly because of the sum over all

possible codewords. However, for certain codes, the sum can be computed efficiently by

expressing the code in a graphical form and running the belief propagation (BP) algo-

rithm [12]. BP is a general algorithm for computing the probabilities of different events

described by a probabilistic graphical model. The graphical model used in BP decoding is

called a Tanner graph [13] (Fig. 2.1). A Tanner graph is a bipartite graph, isomorphic to

a parity-check matrix for a certain code, composed of two types of nodes: variable nodes,

which correspond to columns of the parity-check matrix, and check nodes, which corre-

spond to rows of the parity-check matrix. If the (c,v)-th element of the parity-check matrix

is a 1, then the c’th check node is connected to the v’th variable node by an edge in the

Tanner graph.
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BP decoding operates by passing probability messages along the edges of the Tan-

ner graph. To simplify the implementation, the computations are performed using log-

likelihood ratios (LLRs) rather than probabilities. Decoding begins by putting the noisy

received values in LLR format. The LLR of the v’th received value lv is computed using

lv = log

(
p(Yv = yv|Xv = +1)

p(Yv = yv|Xv = −1)

)
=

2yv
σ2

. (2.7)

Next, probability messages are exchanged between variable nodes and check nodes to

update the decoder’s soft output. At each iteration t, the decoder produces a soft decision

vector st that converges to the posterior LLRs over the iterations.

The message µtv→c from variable node v to check node c for iteration t is computed

using

µtv→c = lv +
∑

c′∈N (v)\c

µt−1c′→v, (2.8)

where N (v) is the set of CNs connected to VN v, and µ0
c→v = 0.

The message µtc→v from CN c to VN v for iteration t is computed using

µtc→v = 2tanh−1

 ∏
v′∈M(c)\v

tanh

(
µtv′→c
2

) , (2.9)

whereM(c) is the set of VNs connected to CN c.

Finally, the soft output for iteration t is computed using

stv = lv +
∑

c′∈N (v)

µtc′→v. (2.10)

The recovered binary word can be extracted from st using a hard decision:

ẑtv =

0, if stv > 0

1, otherwise.

It is possible that the Tanner graph for a given parity-check matrix contains cycles. A

cycle is a path through the graph that starts and ends at the same node (see Fig. 2.2).

If there are no cycles in the Tanner graph, then the values of the soft bit estimates st

converge to the MAP bit estimates, and therefore a hard decision on these estimates has

11



+ + +

= = = = = ==

Figure 2.2: A path traversing variable node 3, check node 2, variable node 4, and check

node 3 forms a cycle in a Tanner graph for the Hamming code.

the lowest possible probability of making a bit error. If there are cycles in the graph, BP is

not guaranteed to produce the MAP estimates, and the decoder is suboptimal as a result.

We can explain through an analogy why “loopy BP” (BP applied to a Tanner graph with

cycles) results in a suboptimal decoder. Suppose that you hear a rumor from person A,

and then you tell the rumor to person B. If later you hear the same rumor from person C,

your belief in the rumor may be made more confident, since you have heard the rumor

not only from person A but also from person C. If person A’s information and person C’s

information are independent, then it makes sense to become more confident in your belief

in the rumor. However, if person C heard the rumor from person B (who originally heard it

from you), or if person C heard the rumor from person A, it doesn’t make sense to become

more confident about the rumor. In the same way, a cycle in the Tanner graph causes

nodes to incorrectly update their own beliefs based on beliefs that they themselves have

propagated.

While loopy BP is not guaranteed to produce the MAP bit estimates, for certain codes

(turbo codes and LDPC codes) the algorithm achieves nearly optimal performance [14].

For these codes, the Tanner graph is very large and sparse, and any cycles through this

graph become effectively “infinitely long”. (In terms of the rumor analogy, it takes a very

long time for your own rumor to make it back to you, so most of the time, you are spread-

ing mostly new information and aggregating information correctly.) For short codes and

codes with dense parity-check matrices, on the other hand, loopy BP does not work well.

We are concerned in this thesis with finding good decoding methods for this latter case.
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Specifically, we will show that machine learning can be used to design improved decoders

for these short high-density codes. The next section gives a little more background on

machine learning and why it may be useful here.

2.2 Learning

Machine learning can be thought of as the automatic construction of functions from data,

effectively allowing computers to learn from the data without being directly programmed

by a human. In contrast to traditional algorithms, which simply evaluate a fixed function

f , learning algorithms operate in two modes: a learning or training mode, in which the

algorithm constructs f using training data, and an inference mode, in which the algorithm

evaluates f for some input. In “offline” learning, the algorithm operates in the learning

mode only once, and the model is fixed and used for all subsequent inference. In “online”

learning, the learning mode is used to improve the model even as the algorithm makes

predictions about incoming data.

2.2.1 Gradient-based learning algorithms

A common approach to machine learning is to assume that the optimal inference function

f has a certain form, with unknown parameters, and choose the parameters so that the

function performs as well as possible for its task. As an example of this approach, suppose

that we would like to make an accurate detector for a signal used in an “on-off keying”

system— that is, a communication system in which the presence of a certain signal indi-

cates a 1 and the absence of that signal indicates a 0— and further suppose that we do not

know the exact form of the signal. We may have a database of noisy received vectors as

training examples to use when designing the detector in which the training examples are

simply labeled as having the signal present or not present. In this case, we could assume

that the signals were sent through an AWGN channel and use the following model:

p(Y = y| signal ) = 1

(2πσ2)
n
2

e
−(y−s)T (y−s)

2σ2 , (2.11)
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p(Y = y| no signal ) =
1

(2πσ2)
n
2

e
−yT y
2σ2 , (2.12)

where s is the vector corresponding to the waveform of the noise-free signal. We can

use MAP estimation to guess whether the signal is present or not by computing the poste-

rior probability:

Pr( signal |Y = y) =
p(Y = y| signal )Pr( signal )

p(Y = y)

=
p(Y = y| signal )Pr( signal )

p(Y = y| signal )Pr( signal ) + p(Y = y| no signal )Pr( no signal )

=
1

1 + p(Y=y| no signal )Pr( no signal )
p(Y=y| signal )Pr( signal )

=
1

1 + Pr( no signal ) e
−yT y
2σ2

Pr( signal ) e
−(y−s)T (y−s)

2σ2

=
1

1 + elog
Pr( no signal )

Pr( signal )
+−2sT y+sT s

2σ2

(2.13)

To simplify the form of the model, let w = s
σ2 and b = − sT s

2σ2 − log Pr( no signal )
Pr( signal )

. The

entries of w are called “weights”, and b is called the “bias.” Using this reformulation, we

can rewrite Equation 2.13 as

f(y) = Pr( signal |Y = y) =
1

1 + e−(wT y+b)
. (2.14)

This is known as a logistic regression model. The function σ(a) = 1
1+e−a

used by the

model is the logistic sigmoid function (often referred to as the “sigmoid” function, although

really any “S”-shaped function is a sigmoid function). The model is also known as an

artificial neuron because of its resemblance to a biological neuron (cf. Fig. 2.3 and Fig.

2.4).

It is necessary to estimate w and b before the neuron can actually be used. We will

choose values for the model parameters which make the model match the distribution

of the data. To do this, we need a metric for how well a model probability distribution
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Figure 2.3: Artificial neuron.

Figure 2.4: Biological neuron.

15



matches a true probability distribution. The Kullback-Leibler (KL) divergence, also known

as information gain or relative entropy, is one such metric [15]. The KL divergence be-

tween a distribution p and another distribution q is defined as

DKL(p||q) = Ep
[
log

p(x)

q(x)

]
. (2.15)

The KL divergence is always greater than or equal to 0; when it equals 0, the two

distributions are identical. Therefore, we should minimize the KL divergence to cause

the model distribution to match up with the true distribution. The algorithm we will use

to minimize the KL divergence is called stochastic gradient descent (SGD) [16]. SGD is

a simple iterative optimization algorithm which consists of repeating the following two

steps:

1. Compute ∇J(w) for a random minibatch of training examples

2. Set w equal to w − η∇J(w)

where J is the loss function to be minimized (in this case, the KL divergence), w is the

parameter vector, and η is a small step size or “learning rate”. The updates continue until

the value of J is satisfactorily low. An illustration of gradient descent is given in Figure

2.5.

Gradient descent is not always the best optimizer for learning: whereas gradient-based

methods use only the first derivatives of the loss function, second-order methods, such

as Newton’s method, also take the second derivatives (and hence the curvature of the loss

function) into account, resulting in faster convergence. However, gradient-based optimiza-

tion is an excellent general-purpose tool, and sometimes works in scenarios where more

sophisticated methods do not, such as when the Hessian of the loss function is dense and

unstructured or the loss function is non-convex.

A challenging issue in gradient-based optimization is the avoidance of local minima,

i.e. values of the loss function which are locally good but globally poor. Gradient descent

can avoid getting stuck in a local minimum using “momentum” in the update rule: rather

than using the raw gradient, the moving average of the gradients is computed and used
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Figure 2.5: Illustration of gradient descent.

to update the parameters. Like a ball rolling down a hill, building up momentum and not

settling in small dips in the hill, a parameter vector updated using momentum can avoid

local minima in the loss function if sufficiently large gradients have been seen in the recent

past. Some update rules, such as Adam [17], also track the variance of the gradients over

time.

Note that

argmin
q

DKL(p||q) = argmin
q

Ep
[
log

p(x)

q(x)

]
= argmin

q
−Ep [log q(x)] + Ep [log p(x)]

= argmin
q
−Ep [log q(x)] ,

(2.16)

where the last expression is known as the cross-entropy. Since minimizing the cross-

entropy is equivalent to minimizing the KL divergence, and the form of the loss function is

slightly simpler, usually the cross-entropy is considered instead of the KL divergence.

A problem arises when attempting to compute the cross-entropy: the expectation is

taken with respect to the target distribution p, but this distribution is unknown— after all,

if p were known, there would be no need for learning. Therefore, an approximation to the
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cross-entropy is computed using the labels of the training data instead of the true posterior

probability. For a training example marked “signal”, the true probability is replaced with

1, and for a training example marked “no signal”, the true probability is replaced with 0.

This is known as the principle of empirical risk minimization.

When empirical risk minimization is used, the loss function to be minimized is:

J(w) = − 1

M

∑
i

zilogf(yi) + (1− zi)log(1− f(yi)), (2.17)

where i indexes over the training examples in a minibatch of size M , and zi is the

label for training example i (0 if “no signal”, 1 if “signal”). Fig. 2.6 shows the weights

of a sigmoid neuron learning to distinguish “signal” from ”no signal” using only the noisy

training examples and SGD with empirical risk minimization. As the MAP weights are

equal to s
σ2 , not surprisingly, the weights take on the shape of the noise-free signal.

The sigmoid neuron is considered a linear model because it uses an affine transform

(wTy + b) to compute a “score” for the input. While linear models can solve many prob-

lems, they are limited in the sense that they can only learn to distinguish patterns which

are linearly separable, i.e., capable of being separated by a hyperplane. In this example,

the training examples in which a signal was present were data points clustered around

a certain center point in a high-dimensional space (the noise-free signal vector), and the

examples with no signal were clustered around another point (the zero vector); it is easy

to separate points from these two clusters by drawing a hyperplane between them. If the

signal could take on different frequencies or phase shifts, it would be much more difficult

to classify using a linear model. It would be nice if such a dataset could be made linearly

separable somehow.

Luckily, even if a training set is not linearly separable, it is generally possible to make it

linearly separable by applying some high-dimensional nonlinear transformation. Precisely

which nonlinear transformation should be used, however, is unknown and depends on

the dataset. Some learning algorithms, such as kernel methods, require the designer to

choose a nonlinear transformation, which may require some manual tuning. It is also

possible to learn the transformation automatically using a feedforward neural network. In

a feedforward neural network, rather than using a single neuron, a collection of neurons
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Figure 2.6: Noisy training examples (left) and the pattern learned by the neuron converg-

ing to the true underlying signal (right).
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process the input, and their outputs, taken together, form the input vector to another

neuron or set of neurons. Each set of neurons is called a “hidden layer”, and the output

of a neuron is called an “activation”. The hidden layers warp the distribution of the input

in such a way that the output of the final hidden layer is more suitable for use in a linear

model. Neural networks are differentiable models, and hence can be trained using gradient

descent. The gradient of the loss function with respect to a neural network’s parameters

can be computed efficiently using the “backpropagation” algorithm. Partial derivatives

flow backward through the network during backpropagation in a manner similar to the

way activations flow forward during inference, and are referred to as “gradients”.

While individual neurons can be interpreted as feature detectors, as in the example

above, many practioners of neural networks forgo the probabilistic interpretation and the

notion of a “neuron” entirely and instead think of the layers of the network as perform-

ing linear and nonlinear parts of a nested function approximation. Since any continuous

function can be represented using a weighted sum of sigmoidal functions, a feedforward

network with a single, sufficiently large hidden layer is a universal function approximator,

and can theoretically be made to learn any function [18]. (Because all that is necessary

to achieve this property is a nonlinear activation function, usually a simpler activation

function is used, most often the rectified linear unit function ReLU(a) = max(0, a).) How-

ever, there is a growing body of theoretical and empirical evidence that deep learning

architectures (neural networks with many layers) are capable of learning and representing

functions more efficiently than shallow architectures [19]. The state-of-the-art results in

perceptual tasks, such as computer vision, have been achieved using very deep networks.

Recurrent neural networks, in which the output is fed back into the network, are, in a

sense, infinitely deep, and are in fact Turing-complete [20]. This makes them very strong

candidates for use in challenging inference tasks, such as error correction.

2.2.2 Learning non-differentiable functions

Suppose that the function to be learned (and, by extension, the loss function) is not dif-

ferentiable with respect to its parameters at some point(s). In that case, we cannot use

20



a gradient-based method in the learning mode. While it is possible to optimize a non-

differentiable function using random search or heuristics such as genetic algorithms, it

would be preferable to use gradient-based methods, which scale well with the size of the

optimization problem.

By making a small modification to the gradient descent algorithm, it is possible to

learn a certain class of non-differentiable functions. The modification applies to functions

with “kinks.” Kinks are points at which the function is continuous but the derivative does

not exist. When the function to be minimized has an input at which there is a kink, a

subgradient can be used in place of the gradient during gradient descent. A subgradient

for f at x0 is any vector g such that f(x) − f(x0) ≥ gT (x − x0), for all x. Informally,

a subgradient is the slope of a hyperplane which fits below the function. (Similarly, a

supergradient is the slope of a hyperplane which fits above the function. For simplicity,

we will refer in this thesis to both subgradients and supergradients as “subgradients”.) By

using subgradients, activation functions with kinks (such as ReLU) can be used in neural

networks and still allow gradient-based training, as in [21].
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Chapter 3

A Survey of Neural Decoding Algorithms

An error-correcting decoder applies a certain function to a received signal in an attempt

to recover the original message. How well the decoder performs depends on the function

used. The optimal function in terms of bit error rate is argmax
xi={−1,+1}

Pr(Xi = xi|Y = y), but as

we have seen, this function is generally too computationally complex to implement exactly

in practical devices. Designing practical decoders with close to optimal performance is a

challenging task because it is unknown what functions can approximate the bitwise MAP

decoder.

As we saw in Chapter 2, machine learning can be thought of as constructing a function

from data. In the light of recent machine learning successes in tasks for which constructing

a function by hand is difficult (such as speech and image processing), one might ask: is

it possible to construct a good error-correcting decoder from data? In other words, is

it possible to “learn to decode”? Here, we review several existing “neural” (learning)

decoding algorithms and describe their advantages and disadvantages.

3.1 Learning to decode from scratch

We first consider approaches which use “off-the-shelf”, general-purpose learning algo-

rithms to implement decoding.

In a general survey of applications for neural networks [22], Lippmann showed that

a simple neural network (“Hamming net”) can be configured to output which pattern
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in a set of binary patterns has the minimum Hamming distance to a given input. The

network is a linear model with one output unit corresponding to each possible pattern. The

network is not trained; rather, the weights are simply computed directly from the patterns

to be recognized. Zeng et al. recognized in [23] that this configuration could be used to

decode both linear and nonlinear error-correcting codes. Such an approach is necessarily

impractical for large value of k, as 2k output units are required. This is not surprising, since

this decoding method is equivalent to simple minimum distance ML decoding. At around

the same time, Bruck and Blaum explored the connections between neural networks and

error-correcting codes in [24], and showed that ML decoding of error-correcting codes

is equivalent to maximizing the energy of a certain type of neural network (a Hopfield

network), but do not explore efficient neural network decoder architectures.

The first work to propose training a fully-connected feedforward neural network using

backpropagation and gradient descent to decode was [25]. In this work, Caid and Means

describe a network with n inputs, a single hidden layer, and k outputs, directly predicting

the transmitted message from the received word. This is a significant improvement over

the previous approaches, which require 2k outputs. The authors of [25] show that their

approach is effective for the (7,4) Hamming code and a small convolutional code. (There

have been many such neural decoders for convolutional codes, especially turbo codes: cf.

[26], [27], and [28]). However, they do not attempt to decode larger codes or note how

well the decoder generalizes to codewords not seen during training. Such an analysis

is provided in [29], in which Stefano et al. find that a neural network for decoding the

Hamming code could not successfully decode received words corresponding to codewords

never shown during training.

The failure of the network in [29] to generalize to new codewords highlights the cru-

cial difficulty of using learning algorithms mentioned in Chapter 1: unless an algorithm

can learn decoding concepts which apply to all codewords and not just to particular code-

words, it may need to see examples of noisy received vectors corresponding to all possible

codewords, which is impractical for any reasonably sized code. Esposito et al. showed in

[30] that for some codes, the structure of the code allows for |C|
2

codewords to be used in

training, rather than |C| codewords. This is not much of a reduction, but it is an impor-
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tant recognition that incorporating knowledge of the code into the learning algorithm can

reduce the amount of training data required.

Another feedforward network with a single hidden layer trained to decode the Ham-

ming code is described in [31]. Unlike the previous decoders, this work shows that neural

networks can learn to decode in the presence of non-white Gaussian noise, that is, noise

which is correlated between samples. Their network does not require any special modifi-

cation to handle the correlated noise; they simply used conventional gradient descent, and

the network learned to compensate for the correlations. This work shows that learning

algorithms may be useful for channels with unusual noise distributions, which may not be

easily accommodated in traditional decoding algorithms.

The conventional feedforward network is not the only neural network architecture

which has been used; in [32], El-Khamy et al. use a time-delay neural network, which takes

as input a window of received values and outputs an estimate, while shifting the window

over the length of the block. Likewise, Hämäläinen and Henriksson used a recurrent neural

network [33], and in [34], Abdelbaki et al. use a recurrent “random neural network” which

operates using spikes of unit amplitude. In [35], Wu et al. use a combination of high-order

polynomials and genetic algorithms to decode. All of these approaches are limited to very

short codes.

In [36], Tallini and Cull trained a feedforward network with two hidden layers to take

as input a syndrome and produce as output an error pattern, which is combined with the

received word to correct errors. Using the syndrome as input changes the rank of the

input from k to n − k, which for codes with rate greater than 1
2

is a reduction. For codes

with reasonably large values for n− k, this method can still require an impractically large

number of training codewords. During training, they use the sigmoid activation function

for all neurons; during decoding, they replace the sigmoid with a hard threshold, which

allows the network to be implemented more efficiently. Another interesting aspect of their

neural decoder is that it is able to correct 26% of error patterns of weight 4 for a (32, 16,

8) Reed-Muller code, even though it was only trained using codewords with error patterns

of up to weight 3.

An unconventional use for neural networks in decoders was demonstrated in [37].
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In this work, Buckley and Wicker propose using a neural network in a turbo decoder to

monitor the decoding process and predict whether there are errors in the soft output. Their

method forgoes the use of a CRC code (the conventional method for error detection in such

decoders), allowing higher transmission rates.

In [9], Gruber et al. present an in-depth study of deep feedforward networks trained to

decode linear codes with n = 16 and k = 8. They compare the performance of a network

trained to decode structured codes (specifically, polar codes) and a network trained to

decode random codes. They show that, when a portion of the code is withheld during

training, the random code decoder completely fails when presented with codewords not

used in training. In contrast, the polar code decoder can, to a certain extent, successfully

decode new codewords. This suggests that the polar code decoder is making use of the

code structure rather than simply memorizing the codewords, which suggests that such

an approach might be used for decoding practical polar codes. Unfortunately, even for

structured codes their neural decoder does not scale to moderate block lengths— a large

portion of the code must be seen for the network to be able to generalize.

O’Shea et al. in [38] have gone beyond simply applying learning to the decoder and

have recast the complete communication system as a “channel autoencoder”, in which the

transmitter and receiver jointly learn to communicate reliably for a given channel without

the aid of a human-designed code. They perform an experiment which shows that it is

possible to use a feedforward networks to implement the transmitter and receiver, which

jointly learn a soft coding scheme. The idea of an end-to-end learning communication sys-

tem is intriguing, but for this thesis, we restrict ourselves to considering the common case

when the code and modulation scheme are already decided upon, and focus on improving

the performance of the decoder.

All of the approaches described above are essentially limited by the “curse of dimen-

sionality” of needing to learn all possible codewords as described in [9]. Even if the off-

the-shelf neural network approaches manage to avoid this curse of dimensionality, there

are two reasons to believe that an off-the-shelf architecture is not the right choice for the

problem of error correction.

First, the XOR function, which is an essential ingredient in binary linear codes, is dif-
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ficult for neural networks to learn. Computing the XOR of several inputs using a shallow

feedforward network is difficult because the XOR function requires many logic gates to be

implemented in a circuit of short depth [39]— indeed, this fact was presented as one of the

original theoretical arguments for using deep learning architectures rather than shallow

ones [40]. Therefore, a significant amount of a neural network decoder’s computational

resources may be dedicated to simply computing XOR.

Second, the problem domain of channel decoding is fairly different from the problem

domains where conventional deep networks have been found to work well, namely, pro-

cessing “natural” signals (images, sounds, language, etc.). Natural signals typically have

a complex, multifaceted surface structure, but the underlying structure of these signals

is often actually very low-dimensional. (For example, speech is produced through move-

ment of the tongue and the vocal cords, which can be described using a small number of

parameters [41].) Coded messages, on the other hand, are known to have dimension k,

where k
n

is typically a reasonably large fraction such as 1
4
, 1

2
, or 3

4
, and all 2k possibilities

are assumed to be equally likely.

On the other hand, there are reasons to believe that learning to decode from scratch

may eventually outperform traditional decoding algorithms. Neural networks are (within

a single layer) very parallelizable— for codes with highly sequential decoding algorithms

(such as polar codes), a neural network could theoretically enable lower latency decoding.

Also, because the function learned by a fully-connected neural network is not “biased” by

the designer towards existing decoders, it is possible that by not relying on our assump-

tions, a neural network could learn a high-performance decoding function too complicated

for a human to invent.

3.2 Augmenting existing decoders with learning

An alternative method for learning to decode is to augment an existing suboptimal error

correction algorithm with learning capability in the hope that it will learn to perform more

like an optimal algorithm. In this section, we focus on two such methods: neural BP and

neural mRRD.
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3.2.1 Neural belief propagation decoding

The decoder described in this section was developed as an attempt to solve the problem

of soft decoding of codes with short block lengths. For certain applications, short blocks

are desirable (for instance, in communication systems where very low latency is required).

Modern codes, such as turbo codes, LDPC codes, and polar codes, typically only attain

good performance at relatively long block lengths. At short to moderate block lengths,

high-density parity-check (HDPC) codes such as BCH codes and Reed-Solomon codes may

be a better choice due to their high minimum distance property [42]. While there exist

low-complexity hard decision algorithms for such codes, these algorithms do not achieve

the full error-correction power that short HDPC codes have when decoded optimally. There

have been several soft decoding algorithms for HDPC codes with high performance (such

as adaptive BP [43]), but these algorithms have correspondingly high complexity. Simple

conventional BP can be used for HDPC codes, but it yields very poor results.

Nachmani et al. suggest a modification to BP which significantly improves its perfor-

mance for HDPC codes. In their approach, which we refer to as “neural belief propagation”

or “neural BP”, the messages are computed in the same manner as in traditional LLR-based

BP and subsequently multiplied by a set of weights. Thus, to compute messages and out-

puts, the BP update equations (see Chapter 2) (2.8), (2.9), and (2.10) are replaced with

(3.1), (3.2), and (3.3), respectively:

µtv→c = tanh

1

2

wtv,inlv + ∑
c′∈N (v)\c

wtc′→v,cµ
t−1
c′→v

 (3.1)

µtc→v = 2tanh−1

 ∏
v′∈M(c)\v

µtv′→c

 (3.2)

stv = wv,outlv +
∑

c′∈N (v)

wc′→v,c,outµ
t
c′→v, (3.3)

where wtv,in, wc′→v,c, wv,out, and wc′→v,c,out are the aforementioned multiplicative weights.

The weights are unique for each iteration; hence, as a composition of affine transforma-

tions and nonlinearities, the neural BP decoder can be considered a kind of non-fully-
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connected feedforward neural network, as shown in Fig. 3.1. Each layer of the network is

composed of a learnable message passing operation.

As pointed out by [44], neural BP is an instance of “deep unfolding” [45], a method-

ology in which an iterative algorithm (which may or may not be a learning algorithm) is

unfolded and learnable parameters are assigned to each iteration to yield a deep architec-

ture. Deep unfolding was previously applied to BP in works including [45], [46], [47],

and [48] for problems outside of error correction.

A key property of the neural BP decoder is that, because the network connectivity is

based on the Tanner graph, the learning algorithm does not need to learn the structure

of the code, and it suffices to train the decoder using noisy versions of a single codeword,

such as the all-zeros codeword. This makes it possible to train a decoder for codes with

reasonably large values for k, which is not possible for the other neural decoders described

above.

Figure 3.1: A four iteration neural BP decoder. (Figure adapted from [4].)

Fig. 3.2 shows the improvement in BER for a BCH (63,36) code unrolled to 5 iterations

when decoded using neural BP. (The standard BP decoder could only attain the same
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Figure 3.2: BER for BCH (63,36) code.

performance after 50 iterations.) Similar improvements were obtained for the (15,11),

(63,45), (127,106), (127,64), (127,99) BCH codes. The parity-check matrices used for

these codes were their high-density cyclic versions (found online at [49]). Nachmani et al.

later showed in [4] that neural BP still significantly outperformed normal BP even when

an improved, sparsified version of these matrices was used with short cycles removed.

To train the neural BP decoders, Nachmani et al. used SGD to minimize the average

cross-entropy between each decoder soft output (passed through the sigmoid function to

yield values in the range [0, 1]) and each corresponding bit of the transmitted codeword:

`cross-entropy(z, s) = −
1

n

N∑
v=1

zv log σ(−sTv ) + (1− zv) log (1− σ(−sTv )), (3.4)

where T is the index of the final decoding iteration. (Note that we multiply the soft

output by−1 so that σ(·) maps large positive numbers to 0 and large negative numbers to 1,

to be consistent with the bipolar encoding described in Chapter 2.) Each training step used

a minibatch of size 120, 80, or 40, and used the RMSProp update rule [50] with learning

rates of 0.001, 0.0003, and 0.003 to compute parameter updates, for the codes with n=63

or (n, k)=(127,106), (n, k) = (127,99), and (n, k) = (127,64), respectively. They found
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that using a “multiloss” approach, in which the cross-entropy loss is computed for the

soft output of each iteration rather than the last iteration alone, improved results. This

improvement may be due to the gradients encountering fewer intervening multiplications

along the path between the loss function and the parameters.

3.2.2 Neural mRRD decoding

While the neural BP decoder improves greatly upon the simple BP decoder for HDPC codes,

at a small cost in arithmetic complexity, there is still a gap between its performance and the

performance of the optimal decoder. One decoder which does achieve close to optimal per-

formance is the improved random redundant decoding (mRRD) algorithm [51]. In mRRD

decoding, a set of parallel BP decoders with random permutations attempt to decode a

received word in parallel, stopping when their soft output results in a valid codeword (Fig.

3.3). Of the parallel decoders’ outputs, the codeword with the maximum likelihood with

respect to the received word is selected. Running multiple BP decoders in parallel nat-

urally results in an increase in complexity, but the mRRD decoder achieves close to ML

performance as a result of the modification.

Nachmani et al. suggested modifying mRRD to yield “neural mRRD” in [4]. Neural

mRRD improves upon mRRD by replacing the BP blocks with neural BP blocks. Fig. 3.4

shows the improvement in BER due to this modification when 1, 3, and 5 parallel BP or

neural BP decoders are used in mRRD. It can been seen that the performance is improved

for each case, and indeed the neural decoder with 5 parallel BP blocks achieves close to

ML performance for this code. It is also possible to trade performance for complexity

by running the neural mRRD for a smaller number of maximum iterations, thus yielding

the same results as normal mRRD but using fewer BP iterations. As many other HDPC

decoders also use BP as a building block ([43], [52], [53], [54]), it is very likely that

neural BP would also improve their performance, although this has not yet been explored.
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Figure 3.3: The mRRD decoder. (Figure taken from [4]).
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Figure 3.4: Neural mRRD BER results for BCH(63,36) code. (Figure adapted from [4].)
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Chapter 4

Neural Min-Sum Decoding

The neural BP algorithm, combined with mRRD decoding, can achieve close to optimal

performance for short HDPC codes, at low computational complexity. However, there are

obstacles to using neural BP in practice: the algorithm requires numerous real-valued

multiplications and storage for parameters. In this chapter, we suggest some modifications

inspired by min-sum decoding algorithms which reduce the implementation complexity of

both learning and inference for neural BP and analyze the performance and behaviour of

these modifications.

4.1 Modifications to neural BP

4.1.1 Min-sum check nodes

The first modification is for the check nodes to use the so-called “min-sum” approximation

[55]. In min-sum decoding, Equations 2.8 and 2.10 are used as before, and Equation 2.9

is replaced with

µtc→v = min
v′∈M(c)\v

(|µtv′→c|)
∏

v′∈M(c)\v

sign(µtv′→c). (4.1)

This approximation significantly simplifies the hardware required for the check node

computation because it does not require any real-valued multiplications or hyperbolic func-

tions. However, the min-sum approximation can, for certain codes, cause a large degra-
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dation in bit error rate. This is in part because the approximation “overshoots” the values

which the BP decoder would have computed. Since the message magnitudes can be inter-

preted as reliabilities or “confidence” metrics, messages with overly large magnitudes may

seem to be more reliable than they actually are, causing the decoder to make mistakes

when updating its beliefs.

A simple way to correct for the min-sum approximation is to shrink the magnitude of a

check-to-variable message before sending it. This is implemented in normalized min-sum

(NMS) decoding by multiplying the message by a small weight w ∈ [0, 1] [56]. In NMS

decoding, the check-to-variable message is thus computed using

µtc→v = w

 min
v′∈M(c)\v

(|µtv′→c|)
∏

v′∈M(c)\v

sign(µtv′→c)

 . (4.2)

In the spirit of neural BP and other “deep unfolding” algorithms, we proposed in [2]

to generalize the NMS decoder by assigning a learnable weight to each edge for each

iteration, rather than using a single global value for w. We call this approach neural

normalized min-sum (NNMS) decoding. In NNMS decoding, the check node computation

becomes:

µtc→v = wtc→v

 min
v′∈M(c)\v

(|µtv′→c|)
∏

v′∈M(c)\v

sign(µtv′→c)

 , (4.3)

where wtc→v is the learnable weight for the message from check node c to variable node

v during iteration t.

Due to the presence of the kinked min and abs functions, the function computed by

a check node implementing Equation 4.3 is not differentiable with respect to the input

messages at certain points (note the kinks in Fig. 4.1), which impedes the use of gradient

descent. As discussed in Section 2.2.2, it is possible to work around this issue by using

subgradients during backpropagation. While min and abs have subgradients defined ev-

erywhere, the sign function does not; the derivative of sign(x) is undefined at x = 0, and

is equal to 0 everywhere else. Our approach has been to treat sign as though its derivative

were simply equal to 0 everywhere, including at x = 0, thus routing the gradient entirely

through min and abs. We have not encountered any difficulties by treating sign in this
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(a) BP check node. (b) Min-sum check node.

Figure 4.1: Plots of the output of a degree-3 check node.

way. With these modifications, the NNMS decoder can be trained using gradient-based

optimization.

NNMS requires many fewer multiplications than neural BP due to the min-sum check

nodes. NNMS also uses many fewer weights than the original version of neural BP pre-

sented in [10], but we have found that constraining neural BP to using the same number of

parameters as NNMS does not significantly impact its performance, so this is not an essen-

tial difference. Another nice property of NNMS is that, like NMS, the algorithm does not

suffer when the channel noise variance is is estimated imperfectly, since the computation

is scale-invariant. By scale-invariant, we mean the following: Let a be a positive scalar, x

be a vector in Rn, and fNNMS be the function computed by an NNMS decoder (that is, the

soft output of the T ’th iteration). Then fNNMS(ax) = afNNMS(x). Therefore, if the received

values are scaled by a 6= 2
σ2 (such as a = 1), the soft output of the NNMS decoder will

simply be a scaled version of what the soft output would have been if the inputs had been

properly scaled by 2
σ2 , and the hard decision will produce the same bit estimates. This is

not true of the neural BP decoder. Finally, an NNMS decoder may be easier to optimize

than a neural BP decoder because, as a piecewise linear function, it is “almost linear”,

and linear functions are easy to optimize (a hypothesis used to justify the success of ReLU

neural networks [57]).
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4.1.2 Additive correction

NNMS is more hardware-friendly than neural BP but still requires multiplications. It would

be preferable not to use any multiplications at all in the decoder. Practical NMS decoders

often constrain the value of w to a power of two so that the multiplication can be im-

plemented using a simple shift operation. However, better performance can be achieved

using weights which are not powers of two. Another corrected min-sum algorithm which

avoids the use of multiplications yet allows fine control over the possible parameter values

is the offset min-sum (OMS) algorithm [58]. In OMS, the check-to-variable message is

computed using:

µtc→v = max

(
min

v′∈M(c)\v
(|µtv′→c|)− β, 0

) ∏
v′∈M(c)\v

sign(µtv′→c), (4.4)

where β is an offset that reduces the message magnitude. The inclusion of max(. . . , 0)

in the message computation prevents the offset subtraction from flipping the sign of the

outgoing message, in the case when the minimum input message magnitude is very small.

In [1], we proposed generalizing OMS decoding to yield neural offset min-sum (NOMS)

decoding. Like the other neural decoders described above, NOMS assigns a separate,

learnable parameter to each edge of the graph, except the parameters are additive offsets

rather than multiplicative weights. In NOMS, the check-to-variable message is computed

using:

µtc→v = max

(
min

v′∈M(c)\v
(|µtv′→c|)− βtc→v, 0

) ∏
v′∈M(c)\v

sign(µtv′→c), (4.5)

where βtc→v is the learnable offset for the message from check node c to variable node

v during iteration t.

Unlike NNMS and neural BP, NOMS requires no multiplications whatsoever during

inference. The only overhead compared to OMS is additional read-only memory for pa-

rameter storage and indexing logic to look up the parameter used to compute a given

message.
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4.1.3 Weight sharing

A shortcoming of the neural decoding algorithms presented above is that they are feedfor-

ward networks and require a separate set of parameters for each iteration. As the number

of iterations and edges increases, so does the amount of storage required for parameters,

which reduces implementation efficiency. In [1], we suggested that the number of pa-

rameters could be reduced by constraining multiple edges to using the same parameter, a

technique known as “weight sharing” in the deep learning literature. (We also noted that,

in the extreme case when all edges are constrained to using the same parameter, NOMS

reverts to OMS and NNMS reverts to NMS, thus yielding a new method for optimizing the

parameters for those algorithms, as well as algorithms which use a separate parameter

value for each iteration, as suggested in [58]). Weight sharing was later implemented by

Nachmani et al. in [4], who showed that the same set of edge weights could be used for

each iteration. This constraint effectively transforms the decoder into a kind of recurrent

neural network (RNN), as shown in Fig. 4.2, and greatly reduces the number of parameters

required.

4.1.4 Relaxation

Successive relaxation (or simply “relaxation”) is another technique commonly used for im-

proving the performance of iterative algorithms. The application of relaxation to belief

propagation was first proposed in [59] by Murphy et al., who refer to it as “momentum”.

Murphy et al. showed that relaxation can improve inference in certain loopy probabilis-

tic graphical models, but they did not apply the technique to decoding. Hemati et al.

showed in [60] that relaxation may arise naturally in analog decoders, in which the par-

asitic capacitances and resistances of the decoder circuit have a low-pass filter effect on

the messages, and that relaxation improves the performance of both analog and digital

decoders for LDPC codes.

In a relaxed system, the update µt in iteration t is a combination of the update µt−1 in

the previous iteration and some other vector νt, that is:
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Figure 4.2: Four iterations of a decoder with weight sharing. (Figure adapted from [4].)

µt = γµt−1 + (1− γ)νt, (4.6)

where γ is the relaxation factor. When relaxation is applied to iterative decoding, νt is

simply the message which would have been computed by a non-relaxed decoder, and µt is

the relaxed message.

Analyzing the behavior of relaxed decoders is difficult because the edges of the Tanner

graph have memory in such decoders. While there has been work in modeling relaxed de-

coders analytically [61], other researchers ([60], [62]) have chosen the relaxation factor

using simple trial-and-error or by choosing a value which is a power of two. We proposed

instead in [2] to allow the decoder to learn the relaxation factor using gradient descent, in

conjunction with any other learnable decoder parameters. (It is also possible to use a sepa-

rate learnable relaxation parameter for each edge of the Tanner graph, but we have found

that this does not yield any improvement over using a single parameter.) The advantage

of this approach, as we will show, is that a good value for γ can be computed much more
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Figure 4.3: Two iterations of a relaxed decoder.

efficiently than using trial-and-error, even when only a single relaxation factor is used.

Fig. 4.3 shows one possible version of a relaxed decoder, in which the variable-to-

check messages are relaxed. In this figure, + indicates elementwise addition, × indicates

elementwise multiplication, and γ = g(γ′), where γ′ is the unconstrained relaxation pa-

rameter(s) in the range (−∞,+∞), and g is the sigmoid function. The sigmoid function

differentiably squashes γ′ into the range (0,1), where γ = 0 corresponds to a non-relaxed

decoder, and γ → 1 corresponds to a completely relaxed decoder. (During inference, γ can

be precomputed, so that g(γ′) need not be computed redundantly.)
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4.1.5 Alternative loss functions

An aspect of training which may be improved is the loss function itself. The cross-entropy

loss is the correct loss to use, in the sense that truly minimizing it would make the decoder

equivalent to the optimal bitwise MAP decoder. However, there is no guarantee that the

decoder has the capability to learn weights which minimize the cross-entropy loss.

Additionally, the cross-entropy loss is not hardware-friendly. Consider the v’th entry of

the gradient of the cross-entropy with respect to the decoder’s soft output:

∂

∂sv
`cross-entropy(z, s) =

∂

∂sv

(
− 1

n

n∑
v′=1

zv′ log σ(−sTv′) + (1− zv′) log (1− σ(−sTv′))

)
=

1

n

(
zv − σ(−sTv )

)
.

(4.7)

Computing the final expression in 4.7 requires computing σ(·), which is slow and ex-

pensive. It may be sensible to consider using a different classification loss, such as the

hinge loss. The hinge loss is defined as:

`hinge(x, s) =
1

n

n∑
v=1

max(0, 1− xvsTv ), (4.8)

where the 1 represents a safety margin that ensures that outputs are “far” from being

incorrect. The (sub)gradient of the hinge loss is

∂

∂sv
`hinge(x, s) = −

1

n
I(1 > xvs

T
v ) · xv. (4.9)

This gradient is slightly easier to compute than that of the cross-entropy loss, since it

does not require a sigmoid. The difference is not crucial for GPU-based training, but one

could imagine a training setup using specialized hardware— such as a decoder that learns

online— in which the hinge loss would be a better choice.

4.2 Experimental results

We now provide several experimental results to validate the techniques proposed above.
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We trained several neural decoders for two BCH codes and compared their perfor-

mance to the non-neural BP and min-sum decoders. We used the Adam optimizer [17]

with multiloss and a learning rate of 0.1 for the NOMS decoders and 0.01 for the NNMS

decoders, and reused the training hyperparameters for the neural BP decoders described

in the previous chapter. The parity-check matrices for these codes were taken from [49].

Fig. 4.4 and Fig. 4.5 show the performance of the various decoders for the BCH (63,36)

code and BCH (63,45) code, respectively. Three main conclusions may be drawn from

these plots.

1. The min-sum approximation, while degraded compared to BP without additional cor-

rection, has little impact on the performance of the neural decoders– in other words,

the neural BP decoder and NNMS decoders have roughly equivalent performance.

2. Weight sharing slightly degrades decoder performance.

3. Additive offsets, while yielding performance improvements on the order of 1 dB com-

pared to the non-neural decoder, are not quite as effective in improving performance

as multiplicative weights.

We also demonstrate the scale-invariance of NNMS mentioned above. We trained an

NNMS decoder and a neural BP decoder, and at test time fed the raw received values into

the decoders, rather than scaling them by 2
σ2 . Fig. 4.6 shows the resulting performance

gap between the decoders. The performance of neural BP is sharply degraded, whereas

NNMS is unaffected.

To measure the performance of relaxed decoders, we trained a relaxed decoder with a

single relaxation factor and no additional learnable parameters, a constrained version of

that decoder, and a relaxed NOMS decoder for the BCH (63,45) code. Fig. 4.7 shows that

these decoders achieve excellent performance, on par with the other decoders described

here. In fact, the relaxed NOMS decoder achieves the best performance among all the

decoders for this code, showing that relaxation can be effectively combined with other

trainable decoder building blocks.

Fig. 4.8 shows the evolution of the value of the relaxation factor γ as training proceeds.

The value of γ converges to around 0.863. Note, however, that 0.863 is close to 0.875— if
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Figure 4.4: Performance comparison of BP and min-sum decoders for BCH (63,36) code.
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Figure 4.5: Performance comparison of BP and min-sum decoders for BCH (63,45) code.
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Figure 4.6: Performance comparison of neural BP and NNMS decoders for BCH (63,45)

code when inputs are not properly scaled to LLR format.
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Figure 4.7: Performance of a min-sum decoder (i.e., γ = 0), a relaxed min-sum decoder

which has learned γ = 0.863, a relaxed min-sum decoder which is constrained to using

γ = 0.875, and a relaxed NOMS decoder for the BCH (63,45) code.

we the learned value of γ is replaced with 0.875, the relaxation equation can be rewritten

as follows:

µt = µt−1 + 0.125(νt − µt−1), (4.10)

which can be implemented very efficiently in hardware, since 0.125 is a power of two.

As Fig. 4.7 shows, constraining the learned relaxation factor in this case causes a nearly

imperceptible increase in BER.

The trajectory of γ reveals another useful property of gradient-based decoder learn-

ing. The relaxation factor attains its final value after approximately 400 minibatches have

been processed in training. In a non-optimized implementation of backpropagation (if

the algorithm does not take advantage of sparsity, as we will describe later), the number

of operations used during backpropagation is approximately the same as the number of

operations used during the forward pass. Thus, processing a received vector in training

is roughly equivalent to decoding two received vectors, in terms of the number of oper-

ations required. Hence, processing 400 minibatches is roughly equivalent to simulating
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Figure 4.8: Evolution of γ as training proceeds.

400 × 120 × 2 = 96,000 frames. In contrast, in one simulation, running the decoder until

100 frame errors had occurred at an SNR of 8 dB required processing 1,064,040 frames. In

order to test more values for γ to choose a good value in the trial-and-error approach, even

more frames would need to be processed. For this reason, it would seem that gradient-

based learning is a more efficient way to optimize a decoder, even when the number of

parameters is small.

Finally, we compared the performance of decoders trained using the cross-entropy loss

with those trained using the hinge loss. Fig. 4.9 shows the performance comparison for

a recurrent NNMS decoder for the BCH (63,45) code. The performance is virtually the

same; the hinge loss could, therefore, potentially be used to speed up training without

affecting the quality of results.
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4.2.1 Does learning help for other codes?

The results presented above are only for short, high-density codes. The reader may won-

der whether learnable parameters can further improve the performance of decoders for

codes for which iterative decoding already performs well, such as long, well-designed

LDPC codes and turbo codes. We have also run an experiment with a (200,100) LDPC

code, and found that learning does improve performance slightly (see Fig. 5.4 in Chap-

ter 5). Unfortunately, we were unable to run simulations for longer codes; constructing

the computational graph for these decoders in our rather inefficient simulation framework

used too much memory, even on a server with 48 GB of RAM. At the end of this chapter,

we discuss some optimizations that could be applied to our simulation framework to allow

it to handle larger codes.
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Figure 4.10: Offset histogram for BCH (63,45) decoder after 3,000 minibatches.

4.3 Discussion

4.3.1 Analyzing the learned behaviour

The complex, nonlinear nature of neural networks makes them difficult to analyze, which

can be frustrating to those who would like to understand how exactly deep networks

are able to generalize so well to new unseen test data. In lieu of theoretical results, it

is sometimes possible to visualize what a network has learned, as in [63] or the signal

detector example given in Chapter 2. While we do not yet have a precise understanding

for where the improvement in neural decoders comes from, visualizing the parameter

distribution may provide a clue [1].

Fig. 4.10 shows the offset distribution in a feedforward NOMS decoder for the BCH (63,

45) code after 3,000 minibatches have been processed during training. For each iteration,

the offsets have a bimodal distribution: one mode centered at a lower value, consistent

with the values typically chosen for β in the OMS literature, and a second, much higher
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mode. It may be that the offsets clustered around the lower mode serve mostly to correct

for the min-sum approximation, and the offsets clustered around the higher mode serve

more to reduce the effect of cycles. A high value for an offset means that a larger message

is required to activate the output of a NOMS check node, so perhaps the higher-valued

offsets serve to zero out unhelpful messages. More work is required to understand the

operation of neural decoders.

4.3.2 Backpropagation and sparsity of gradients

It is often helpful when designing a new deep learning architecture to represent the be-

haviour of activations and gradients graphically, as in [64]. Here, we present a graphical

analysis of the behaviour of neural min-sum decoders during backpropagation and reveal

some interesting properties.

Fig. 4.11 shows a three-input variable node. From the multivariable chain rule, we

know that gradients sum at a node, and therefore the gradient with respect to one of the

input messages is equal to the sum of the gradients of the output messages. Thus, the

variable node operation during the backward pass of training is identical to the variable

node operation during the forward pass, except that the inputs and outputs are gradients

with respect to the messages rather than the messages themselves.

Examples of decoder “synapses” (sites where a parameter interacts with a message) are

shown in Fig. 4.12. The gradients in the case of non-shared parameters are straightfor-

ward. If a synapse parameter is shared (e.g. between two iterations), each instance of the

parameter can be considered a separate “dummy” parameter, and the gradients of these

dummy parameters are summed to yield the actual gradient for the parameter, a procedure

known as “backpropagation through time” [65] (another application of the multivariable

chain rule).

Whereas the marginalization in a non-neural decoder “unthinkingly” adds up the mes-

sages to compute the soft output, the NNMS decoder learns to weight the incoming mes-

sages before adding them up. Since the sigmoid function is used during training with

the cross-entropy loss, this “smart” marginalization can be interpreted as the action of a
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Figure 4.11: Activations and gradients for a three-input variable node.

Figure 4.12: Activations and gradients for multiplicative and additive synapses.
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Figure 4.13: Sigmoid neuron in a variable node.

sigmoid neuron, in which the bias input is the received value, lv (Fig. 4.13).

Fig. 4.14 shows the behaviour of a three-input check node. Notice that many of the

forward propagating signals do not have a corresponding backward propagating signal.

There are two reasons for this. First, as we have been treating the derivative of sign as equal

to 0 everywhere, the paths from sign to the output can be pruned from the backpropagation

computation. Second, note that the derivative of the min function is:

∂

∂xi
min
j
xj =

1, if xi = minj xj

0, otherwise.

In other words, for the input which was the minimum, the derivative is equal to 1, and for

every other input, the derivative is equal to 0. Due to the presence of the min function, all

but two of the inputs (the first minimum and the second minimum) will have a gradient

equal to 0 for a given received vector. For parity-check matrices such as the one used for

the BCH (63,45) code, which has 24 inputs for each check node, the gradients will be

quite sparse as a result. It may be possible to train neural min-sum decoders using fewer

arithmetic operations and less memory by taking advantage of the sparsity in the gradients,

simply by keeping track of the first minima and second minima during the forward pass,

and setting the gradient equal to zero for every other input to the check node.
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Figure 4.14: Activations and (non-zero) gradients for a three-input min-sum check node

after pruning. Note that there are very few non-zero gradients.
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Chapter 5

Learning from the Syndrome

All of the approaches described thus far have a common flaw: they operate by applying a

loss function, such as the cross-entropy loss or hinge loss, to each of the neural network

outputs separately to minimize the distance between the neural network’s predictions and

the actual transmitted codewords. Implicitly, this treats the network as though it were solv-

ing a set of unrelated binary classification problems (classifying each bit of the received

word as a 0 or a 1), when in fact the task of the network is to predict a single structured ob-

ject (a codeword) with certain known constraints (the parity). In this chapter, we propose

to instead train the decoder using structured output learning, in which the outputs are pe-

nalized not only for their distance to the transmitted codeword but also for having invalid

structure, measured using a loss function based on the syndrome. We show that using this

loss function yields decoders with lower frame error rate than when the classification loss

is used.

5.1 Error correction as structured prediction

A structured prediction problem is a problem in which several items must be predicted, and

there are some known constraints on the relationship between the items. For instance,

in part-of-speech tagging, the predictor must guess a part-of-speech (e.g., noun, verb,

adjective) for each word in a sentence, and we know that language has certain constraints

(e.g., in English, an adjective typically does not come after a noun). Error correction
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is another perfect example of a structured prediction problem: given a noisy signal, the

decoder must guess a value for each codeword bit, and the guesses must satisfy the parity

checks.

“Structured output learning” refers to machine learning techniques that take the known

structure into account while training a predictor, thus improving the final accuracy or

speeding up the learning process. One approach to structured output learning is to use a

differentiable loss function that encodes “how violated” the known constraints are and to

incorporate this loss function into gradient-based learning.

5.2 The syndrome loss

Since error correction is a structured prediction problem, we would like to formulate a

structured loss function for soft decoders. We will base this loss function on the syndrome,

since the syndrome is a measure of whether code constraints are violated.

As described in Chapter 2, the syndrome is defined as Hz, but we can define it in a

slightly different way that may be more illuminating for the current discussion. For a soft

estimate s of the codeword, the c’th entry of the syndrome can be defined as

synd(s)c =
∏

v′∈M(c)

sign(sv′), (5.1)

whereM(c) is the set of codeword bits which belong to parity-check c. If one or more

entries of synd(s) are equal to −1, then the hard decision is not a codeword. Thus, the

training objective should be to minimize the average number of negative entries in the

syndrome that the decoder causes.

Unfortunately, the raw syndrome is not well suited to be used in a loss function for

gradient-based learning, since the derivative of sign(·) is 0 almost everywhere. Therefore,

we introduce an alternative form of the syndrome. Let softsynd(s) be the “soft syndrome”,

the c’th entry of which is computed using

softsynd(s)c = min
v′∈M(c)

(|sv′ |)
∏

v′∈M(c)

sign(sv′). (5.2)
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Note that the c’th entry of the soft syndrome is simply the min-sum check node compu-

tation applied to all bit estimates belonging to the c’th parity check, rather than a subset of

those messages. Additionally, the soft syndrome has a nontrivial subgradient. The deriva-

tive of the c’th entry of the soft syndrome with respect to the v’th soft bit estimate is:

∂

∂sv
softsynd(s)c =

∂

∂sv

 min
v′∈M(c)

(|sv′ |)
∏

v′∈M(c)

sign(sv′)


=

∂

∂sv

(
min

v′∈M(c)
(|sv′ |)

) ∏
v′∈M(c)

sign(sv′)

+ min
v′∈M(c)

(|sv′ |)
∂

∂sv

 ∏
v′∈M(c)

sign(sv′)


=

∂

∂sv

(
min

v′∈M(c)
(|sv′ |)

) ∏
v′∈M(c)

sign(sv′) + 0

= I(|sv| = min
v′∈M(c)

(|sv′ |) ∧ v ∈M(c)) · ∂
∂sv

(|sv|) ·
∏

v′∈M(c)

sign(sv′)

= I(|sv| = min
v′∈M(c)

(|sv′ |) ∧ v ∈M(c)) · sign(sv) ·
∏

v′∈M(c)

sign(sv′)

= I(|sv| = min
v′∈M(c)

(|sv′ |) ∧ v ∈M(c))
∏

v′∈M(c)\v

sign(sv′).

(5.3)

In words, the derivative is equal to the product of the signs of the other bit estimates

if sv has the minimum magnitude and bit v is involved in parity check c, and 0 otherwise.

This is similar to the hinge loss in that the derivative is always one of {−1, 0,+1}.

The soft syndrome behaves similarly to the conventional hard syndrome, but has real-

valued entries. For example, suppose that a transmitter in a communication system using

the (7,4) Hamming code (see Fig. 2.1) sends the all-zeros codeword,

x = {+1,+1,+1,+1,+1,+1,+1}, (5.4)

and the receiver observes the sequence

y = {+1.67,+1.42, -0.03,+1.03,+0.88,+1.98,+0.44}, (5.5)

which has one error. Whereas the hard syndrome for the received vector evaluates to

synd(y) = {+1, -1, -1}, (5.6)
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the soft syndrome evaluates to

softsynd(y) = {+0.88, -0.03, -0.03}. (5.7)

We can construct a loss function based on the soft syndrome by penalizing all the entries

that are negative (or non-negative but of smaller magnitude than a safety margin of 1) as

follows:

`syndrome(s) =
1

n− k

n−k∑
c=1

max (1− softsynd(s)c, 0) . (5.8)

We propose to use the syndrome loss as part of a loss function in gradient-based learn-

ing. The complete loss function is a convex combination of the usual “binary classification”

loss and the syndrome loss, and it can be written as:

`(z, s) = λ · `cross-entropy(z, s) + (1− λ) · `syndrome(s), (5.9)

where λ ∈ [0, 1] controls the relative importance of the two terms.

5.3 Experimental results

We trained FNNMS decoders for a variety of codes with and without the syndrome loss.

For each experiment, we used 10,000 minibatches with λ = 0.5, using the same settings

as were used for the experiments in the previous chapter. Better results could probably

be obtained by tuning the hyperparameters; however, we want to show here that even

without careful tuning, the syndrome loss leads to improvement.

Figures 5.1, 5.2, 5.3, and 5.4 compare the FER of the decoders for a (16,8) LDPC code,

a (63,45) BCH code, a (128, 64) polar code, and a (200, 100) LDPC code, respectively.

Across all SNRs, for all codes, the FER of the decoders trained with the syndrome loss is

lower than that of the decoders trained without it.
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Figure 5.1: Comparison of FER for decoders for the (16,8) LDPC code trained with differ-

ent values of λ.
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Figure 5.2: Comparison of FER for decoders for the BCH (63,45) code trained with differ-

ent values of λ.
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Figure 5.3: Comparison of FER for decoders for the (128,64) polar code trained with

different values of λ.

5.4 Discussion

5.4.1 Related work

The syndrome loss is similar in spirit to the generalized syndrome weight in [66]. In

this work, the authors used the generalized syndrome weight in a gradient descent-based

decoding algorithm. This generalized syndrome weight was also used in [43] and [51]. In

a similar vein, [67] and [68] approached the problem of blind detection and identification

of LDPC codes using “syndrome LLRs” for each candidate code. However, none of these

works considered using a soft syndrome to optimize the parameters of a decoder.
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Figure 5.4: Comparison of FER for decoders for the (200,100) LDPC code trained with

different values of λ.
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5.4.2 Impact on BER and FER

Unlike the impact on FER, the impact of the syndrome loss on BER is inconsistent. At some

SNRs BER improves, and at others it becomes worse. The difference is only very slight.

We hypothesize that the inconsistency occurs because the syndrome loss is a good proxy

for FER but not necessarily for BER. The syndrome loss teaches the decoder to prefer to

output a valid codeword, but in attempting to do so it may incorrectly estimate some bits.

5.4.3 Unsupervised learning

The syndrome loss is unsupervised in the sense that it does not depend on the transmitted

codeword. To the best of our knowledge, ours is the first use of unsupervised learning to

improve error-correcting decoders.

Is it possible to train a decoder in a fully unsupervised fashion (i.e., λ = 0)? It is,

but with a caveat: the weights must be constrained to being non-negative. Otherwise,

the decoder can “overfit” to the syndrome loss by finding a configuration of positive and

negative weights which, when multiplied with the input, successfully pass the parity checks

(in which case FER = 1 across all SNRs). It is simple to constrain the weights to being

positive in our setup by passing them through the “softplus” nonlinearity (w′ = log(1+ew)),

just as we passed the relaxation parameters through the sigmoid function to constrain them

to the range [0, 1]. The non-negativity constraint is not such an unreasonable constraint:

we have found that the NNMS decoder weights always eventually end up positive when

training with λ > 0, anyways. When we constrain the weights to be positive and set λ = 0,

the resulting FER is similar to when λ = 0.5.

Although the capability to do unsupervised learning is theoretically interesting, the

reader may wonder whether this capability is at all useful for the decoder, since it is pos-

sible to train the decoder offline using unlimited amounts of labelled training data. We

believe that the unsupervised learning capability could potentially be used in an online

learning setting in which the channel noise is non-Gaussian and the transmitted code-

words are unknown. However, more work needs to be done to see if this actually works.
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Chapter 6

Conclusion and Future Work

In this thesis, we reviewed— and improved upon— the state-of-the-art learning algorithms

for error correction. We briefly conclude with some ideas that we did not fully explore

during this research, which may be reasonable starting points for others interested in this

topic.

There are different schedules for message passing in iterative decoding. In this thesis,

we have considered only the flooding schedule, in which every variable node and check

node sends a message during every iteration. It would be interesting to apply the learning

techniques described here to other message passing schedules, such as the row-layered

schedule. Indeed, it may even be possible to design better schedules using machine learn-

ing.

We also conjecture that learning can be used to improve the performance of LDPC de-

coders in the error-floor region. However, both the training of neural decoders for larger

codes and Monte Carlo simulation in the high SNR region are computationally intensive.

Implementing inference and learning more efficiently (perhaps using the sparsified train-

ing method described at the end of Chapter 4) is necessary before neural decoders for

these scenarios will be possible.

Finally, we believe that neural decoding algorithms are well-suited for channels which

are difficult to model analytically, such as optical communication channels. Currently,

high-complexity digital signal processing algorithms are used in receivers for these chan-

nels [69]; learning algorithms may offer a lower complexity alternative.
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