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the internal organization of a program cqq//graatly affect
the performance of virtual memory . systems. There exist many
algorithms that teorganfze programs to improve their paging
perfornance. rhié ihesié examnines several of these methods and
p:oﬁoses a. nev approach that has produced better experimental
results. As well, q brief exalingtion'is rade of the effect of

* restructuring on a program that executes on a system with

prepaging memory mapagenent.
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L'organisation’ ‘interne d'un  prograame peat - affecter

- y .
considérablement le fonctionnement des gsystémes de w&moire

e o A, m v mae

virtuelle. Il y a beaucoup dl'algorithmes gqui réorganisent des
‘prograames pour anmtliorer leur fonctionnement de pagination.

.C'et.t.e thdse examine plusieurs de ces méthodes et propose une

npuvellé approche gui a produit de bons résultats expétiientaux.
Il y a aussi une brdve discussion des effets de la rBorganisatiom
d'un programme gqui ex8@cute dans un systdse ol la gestion de

adnoire se fait avec pré&pagination. ,
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g Chapter 1 - Introduction . T

The influence of progras organization on the perfornqncé of
virtual mewmory a}sge-s\ls QOU vell knovn. Over the yeais.
numerous algorithas have been introduced with the: goal of
restructuring prograss so that they run more efficiently. These
algorithas usually consist of tvo phases. The first phase
determines the strength of interconnectivity between program
sections, vwhile the second phase uses this information to regroup
these sections. Although most algorithms focus on the treatment
of the’ first phase of processing, -the regrouping is of

considerable importance as well.

This thesis will examine progras restructuring as a whole °

vith particular attentiom being paid tp the regrouping or
clustering probleas. A new approach to this problea will be
ptese?ted along with experimental evidence of its performance.
Ag well, a brief examination of prépaging for restructured

prograas is made and experimental results discussed.
’ -

)

1.1 gmumm_gtm

Chapter 1 is an introduction to virtual meamory systems. A

few major coﬁcepts including -address translation, paging and
uelbry managenent are presented along with th necessary
terminology.

Chapter 2 provides an in—&epth analysis of progras
restructuring. ‘Important algorithms sich as thoée/ by Hatfield
an§ wG’erald, Perrari and Masuda are descii%ed. A general

-l-
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,efficieacy of restructured prograas.

I3

"discussion . of ‘clustering amd aegiéncing vteckn‘ignos is also

included.
Chapter 3 briefly discusses predictive memory lanage-envg/.'.

Major policies by Joseph, Baer and,\ Sager, Trivedi and Burris are

¢

exanined.

Chapter & presents a critical 'analysis of existing

restructuring algorithms and introduces a nev modified approach.

This approach is . outlined in defgil. Experimental results

invoiving simulations of Perrari's method compared to the npew

‘technigque are also p':esented.

. - , ]
Chapter 5 discusses the use of prepaging to enhance the
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- 1.2 Iptkoduction to Yirtual NemoLy ’ .

2

§

B

"On?, of the n&jor‘ trends in computers has been towards more

Sophisticated operating systedis. This sophistication lies not
|

‘only in the degree of multiprogramming or the rate of progras:

thtonghi)nt but in the ability to disassociate the pr;)graner £roa

the computer hardware. By ‘acting as a program—computer

3

interface, these operating systems have freed the programmer froa

many tedious tasks. An important ,advancement in this area was

~

the introduction of Virtual Memory (VM).

To properly discuss VM, it is necessary to distingniﬁ the

'

concepts of %address space® and "physical space". An address’

space is the set of iQentifiers that may be used by a program to
reference information, while a physical space consists of the set:.
‘of main lenory' locations in which program information may be
stored [ DBNN70]. Virtnal uellory is thus an addreds space vhose

size is independent of the physical space. To a programmer, VX

. can give the illusion that a memory space, much larger or smaller

than is physically present, exists. /s

In early computer systeas, the address space an& physical
space vere synonynous, that is, a omne-to-one mapping could be
made, Once VN Qas introduced the wmapping concept had to be
altered since the 'entire virtual address space ’could not always
be mapped into bhysical memory at one time. Another  factor fn
this mapping arikes vhen wmultiprogramming is prese'nt.’ In this
environment, there may exist,many programs, each nifh their own
virtual memory space, but only one set of physical nemory

locations. The operating systea sust not only wsap virtual

addresses into’ real addresses but in those instances vhere

S s e
.

: .
/ RN




3

progran cgde is not .;shax.:ed among difforent prograas, it aust

‘ ) maintain an isolation between ‘these real addresses.
The mapping of addresses is usually referred to as ;hdress

K trénslgtion and is comsonly pétforged byva uapping. table. A
’“lapping table can be implesented as a linear array tﬁat is

indexed by a wvirtual address and vhere each elénent is are

>

is

/ .
address. Theoretically, every single virtual address that

er

referenced could be mapped imto any physical location. In other
vords, the translated addresses do not need to be consecutive

!

real addresses. The difficulty ‘in this approach is that the
mapping table would have to be as large ag the physical/nen‘ory,.
one .method which circu'.vents'this pxoblem but still allows. . i
mapping flexibility is "pagin;;"'.
Paging is a memory management techniqﬁe in vhich the virtual
| RemOry . space is divided -into identical fixed~size sections
’(typiqally 256-2K words) called “péges" and the phyéical memory i
divided into n'atchling-s‘ized sect,ic_ms called “pag’e—lfranes."‘. | The . ;
‘translation process 1is thus reduced to a mapping of . pagés into 2

page-frames. This process is perforaed as follows. The virtual

‘address is divided into two sectio

number and the low-grder bits ehqte the/offset

indicatg a page
vithin the pag er is used to ihdex a pagé map
table which cont age-frame numbers. The appropriate
page—frame anumber is thep r:écpnbined with t;ze offset to gbtain
the real addrgss (Fig- 1). “ |

In a nult;ﬁrograiling gnvironaentt it isloften‘ desite:a‘bl'é to .
' protect against oane prograa invalidly accessing the memory space

' of another. This protection can easily be accomplished by adding

o P % “ . )\
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access contitol bits to the ‘page map table (or by having seperate

page map tables for the differemt prograas). Another important

benefit of paging arises when memory requests and releases occur

- assynchrounously. In the case of amultiprogramming systeas, for

example, programs continuously enter and leave the systeam, yet
the free memory space is alwvays in multiples of the page size.

The cost of this feature is that programs which are not exact

- multiples of the page size will vaste some memory on the last

page. ’rhis wastage { <1 page/progian). however, is less than
what cam occur to main mesory without some foram of phging.

To. further discuss paging, it is Dnecessary to introduce

certain conéepts and terminology. As previously mentioned, only

'

a fraction of Vi may be capable of being mapped into real memory.

Those pages that have been mapped are said to be "resident" and

"the group of resident pages is called the "resident set"”.

Inevitably, a resident page will attempt to reference an address
of a non-resident page that ig being held in secondaFy storage
(i.e. disk, drum, tape,,eté{f: A reference of thisshype is
called a "page fault" or "page exception®”, Before progtai
execution can be continued, the missing page must be locaged and
copied into a page-frame. This change to the page amap is
fefe:red to as "loading®™, "pulling" or "fetchingﬁ- If pages are
loaded whenever they are required then main memory would !ost
certainly be filled after a short period of time, thus it is
necessary to regularly remove certain pages agd return the-oto
secondary storage. This removal is called page "replacement®™,
#pushing® or " discarding®. ‘
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It is ihe c sponiihility of the operating systea to control
the love;entaof pages from secbndary:to primary neibry. Paging
decisions are based on préﬁeternined policies  where certain
parameters may be dynamically altered in an effori to "fine-tune"

the system perforaance. Some of the decisions that must be made

are: selecting which page(s) should be loaded, determining how

much main lelot]“shOQld be allocated to each program and choosing

.

which page(g} should be discarded. i

"

The loading of pages falls under one of two categories:

demand or non—dqnaqd paging. Demand paging systems, as the name
ilplies, load only the page that 1is requested. On the other
hand, non—demand paging systeas are usually predictive, in that

L

they attempt to load one or more; pages at the same time to try to

avoid future page faul ts. Predictive memory management
\ ,

technigues are diécussed in greater detail in chapter 3.

The discarding of, pages and thé allocation of main memory is
handled by.a page feplacenent policy. Po;icies that maintain a
fixed number of page—érales '%ot each prograa are called

"fixed-partition™ replacement policies, while those that perait

. the number of page-frames to vary throughout the lifetime of the

,/ - '
program are 'called %variable-partition" replacement policies.

9arigb1e-partition Folicies are used in‘ multiprograamed

environments vhere each program's allocation of page-frames may

" varye ullt any time, the system can increase or decrease the

aumber of page-frames allocated to an individual program. By
shiring the available page-frames among many programs and by
redistributing the memory allocations dynamically, an acceptable

system performance can be maintained.

-6~
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‘There exist numerous fixed—pgx&ition replacement policies.
L

One of the simplest and easiest to il'lelelent is called First-In

FPirst-Out (FIFO). When a page fault occurs and there are no free
page frames, the page that was loaded first, that is the oldest
resident page, is discarded and the space filled with the
requested page. FIFO can be nmodelled as a bounded-length gueune,

where new pages enter.at the tail and old pages are discarded

froa the héad. D

Another popular policy is called Least-Recently Used (LRD).
When a page fault occurs, the page that has been unreferenced for

the longest time is removed. Least-Frequently Used (LFU) is a

“policy that discards the page that: uas referenced the fevest

" number of times since the éxogram started- As both LBU and LFU

require some sort of hardware counter for each page-frame their
implementation can be costly coepared to other policies.
An inexpensive policy that requires only ome bit per page is

called Use-Bit. Whenever.. a page is referenced, its special bit

is set. At a fault, Use-Bit clears the bits that are set and

ﬂiscafds the first page encountered that has not been referenced
since the last fault (bit='0"). If all the pages have been
referenced then one is selected at randoa. A variation on the
Use-Bit method is called Second-Chance or Clock. 1In this method
a cyclic pointer is maintained vhen looking for a zero bit. ‘i%
each fault, the search is resumed from the position of the last
load.

A detailed analysis will reveal that certain policies are

better suited to certain program structures. Unfortdnatelx,

-7- .
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prograa flow is not always predictable and in many cases it will
change in. naturgggs the progra; executes. The selection of a
replacenment policy“thns depends upon the cost of isplementation
and its capability to handle a vide range of prograss ﬁi;h an

acceptable fault rate.

1.2.2 Reference Strings aad_Windous w
Before proceeding to variable-partition replaceanent
policies, it is necessary to introduce two concepts that are
extensively used. It is possible during the exécution of a
program to ;onitor Jthe‘references made to various pages. If
these references are accumulated then the activity of the program
" can be viewed as a sequence of page referemces. As a simplifying
assumption, it is often assumed that the time interval between
references is constant; thus the index of a reference in the
sequence can be used as a time Reasure.
Pok a program consisting of n pages, 1let r(t) denote the
page. referenced at time t, where 1<r(t)<Sn. Then the page

reference string, B, is defined by:

B=0C(1) C£{2) «ew E(K) wave

In certain instances it is desireable to examine only a

small section of the reference string. This can be accomplished

by using a "window". A vindow is an interval of time (or a fixed

nunber of references) over which observations can be made. That

is, for a window of size T, at time ¢t, the segment of the

v reference string that can be examined by looking backwards is:
" o L{t=T+1) r{t-T+2) ... £r(t-1) r(t)- '
3 i _a_ I
' - 5

[ L T T, B A R U, e e e v m s o

RNV W



.
v dn e s ma v e s e

b et e o own - -~ . P T Ty - re e o o
- ' v ' '

£

\

Windows that look forward are often ,fised in the analysis of

optimal strategies. ‘ ‘ s

1.2.3 Yariable-Pactition_Page Replacement Policies

One important characteristic of programs that is essential
iy' constructing good page replacement policies is "locality"
[ DENN70 ). Locality can be described as the phenon;non vhereby a
progras strongly favours a slowly changing subset of its pages
I(locality setf over an extended pericd of time. While this
subset changes, its size may also vary, indicating that the

mesory allocated to a program should fluctuate as well. This is

the principle "behind variahle-partition paging. With a:

variable-partition policy, pages are added to 6: removed from a
program's resident set, so that an acceptable page fault rate is
maintained. Fixed—-partition policies have, im general, a
disadvantage over -variable-partition policieé as their fixed
-;-ory allocations may restrict the nulber\of pages of a localit;

set that can be resident.

There are two well-known variable-partition replacement

policies: Working Set (WS) and Page Fault Prequency (PFF).- Both
policies employ a window.

The concept of a working set was defined by Deanimng in 1966
\[DBNHSB] as the set of pages uséd during the most recent interval
of time. This interval of time is defined by a moving vindo;

whose fixed size, T, deteramines both the size and contents of the

‘working set. At any given time, t, the working set, ¥, consists |

of those pages referenced in the interval [r (t-T¢1), r£(t) ]

. -9-
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’1.0; N(t,T) = [fse N § page 1 appears among t(t-rfl)...r(t)}

where T21 and ¥ is the set of pages allocated to the progras.

The Working Set policy is a memory management policy that
oﬁe:ateg according to the following rules. A program may run if
and only if its vorking set is in @main memory and a page may not
be removed if it Ais the member of a wvorking set of a running
préétal. In other words, a page fault can occur wgen a reference
to a page that ;s\not a member of the working set is made. The
missing page is loaded into memory and is added to the working
set. When a page is not referenced for a period of’tiae greater
zthanféhe window size,'it ceases to be a member of the working set
and can\be returned to secondary storage.

By leagthening T, the lifetime of pages in the vorking set
is increased as is the average working set siie- Smaller values
of T decrease the average working set size but at the expense of

a gneaté}\gplber of page faultg; Thus, fine~tunimng of the window
. , \\ \ N e ’

gize can result in an acceptable cosproaise bhetwéen the faudt
rate and the average memory allocation.

In 1972, Chu and Opderbeck [CHU72) introdﬁced aﬁ easily

implementable replacement policy called Page Fault Freguency. An

acceptable page fault interval, T, is selected as a target. At a
page fault, if the time interval since the last fault is lggs
than or equal to\r, the aissing page is loaded. Ié the inte:vai
is greater than T, all those pages not used since the last fauli
are discarded and the missing page retrieved. PFP cam Dbe
implemented with an interval timer and one use-bit per page. It

is easily incorporated into most existing computer systeas.

-10-
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Eipetilental evidence indicates that PPF and @S perfors equally
+ well, however, PFF is more sensitive to its control parameter and
o
can display fault rate anomalies for certain programs [GUPT78,
FRANTS). ) _
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‘Chapter 2 - Program Locality and Bestructuring

As previously discussed, the concept of progras locality is’

" the basis for the working set model. The locality exhibited by a

program at any given time can stes fron'aa concentrati&n of
instruction refefences'in a subroutine, data references in a
common storage block or from loops that cover a small set of
pages. The working set principle attempts to improve paging
performance by allowing groups of pages that constitute a
iocality set to reside to;ethe: in memory. The locality set of a
’ptog:an does not, however, have to imply groups.of pages but can
include ssaller units. If a program cam be viewed ;s a
collection of independent and relocatable blocks (modules) whose
sizes are much smaller than the page size, then the principle of
locality indicates’ that an ™intelligent”™ placement of these

\.

blocks onto pages shquld also improve paging perfognance. This
is the n;tiVAtion for program restructuriag.

In 1967, Comeau Iperforled an experiment to demonstrate the
effect that program ordering had on page faults [COME67]. He
coapared the page exceptions generated when blocks were ordered:

1) alphabetically,
2) randomly, ' e
| 3) using a knowledge of the block functions and page size,
4) using a knowledge of the blocks ;nd a record of paging
performances generated while tﬂe job was in execution.
The last reordering shoved a 21 isproveaent over the worst case
?!..h-pto¥elent\over the second-best

alphabetical ordering and a 2

intelligeat ordering.

»
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BcKellar ang Coffman, in a study of natrices.. shovwed that
’éonsiderable improvesents could. be achieved b} proper assignment
of matrix elements to pages and by better organizati&n of matrix
operations [ACKE69]. Tsau and Margolin performsed an analysis of
factors that affect pagfhg faults and showed that the ordering of
subroutines vas more sSignificant than tye replacement algorithm
used [TéAU72]. |

Although the benefits of good;progral structure are nov well
known, the methods to ?chieve this gdal remain diverse. The
obvious solution to the . program restructurcing problem is to
insist that programs be written with their dynamic bebavior as
local as poss;ble. Several papers have been writtem to this end

[ SCKE69, BEAW70], yet it is in gemeral difficult to keep track of

the dynamics of normal size prograas. In fact, the concept of

virtual memory provides little motivation for prograam locality.

The abundance of existing, poorly structured programs is another
consideration which must be faced. An altetn;te approach is to
make locality decisions at the rcoypiler 'and/or loader level.
This would imply that the transfer probabilities between
suhroutings or ptocédnibs be knoundfo the coapiler. 1In alnodular
programaing énvironment, nhgre independent co-pilation( of
foutines can occur, this intetgonnecgion information is ' not
necessarily available. |

The most widely accepted for-ax of prodtal testeadiuripg use
special "automatic®" algorithas that operate, on ‘the entiré
collection of blocks , and whose only purpose is to assign blocks

to pages. Programs can be modelled using a directed graph,

whereby " the nodes and pdges represent modules  and
‘ : Y

-10- |
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- intercomnections eSpectively. lssbéiited with each edge is a

numerical value denoting the strength of ioterconnection. The
'goal of program restructuring is to ‘'group nodes so’ that the
interconnection between diffe;ent groups is ainimized, provided

that the groups do not exceed the- page ‘size.

Formally, the resttuctuging process involves four distinct

_steps. The preliminary step is the division of the program into

blocks which are relocatable in virtual REROrY. Por

‘:estructnriﬁg to be gffective, the block sizes should be small,

tfpically one-tenth to-one-third the page size [HATF71). The

second step constructs the graph of . ihe/progran as previously
described. It 1is the assignment of weights to the draph edges

vhich d ifferentiates most testrubturing algorithms. The third

Step takes as iﬂpnt the program graph and using a clustering

algorithm,' forms clusters of blocks while trying to minimize
intercluster connections. The final step aséigns each cluster to
a page.in virtual memory. This last step assumes that clusters
fit exactly onto a page, otherwvise special consideé;gion must be

accorded to blocks that overlap page boundaries.

The second bhase of the restructdring process, is where the

~most attention bhas been paid. There are two classes of

algorithms which are used' to construct restructuring graphss

static and dynamic. Static algorithams. are performed using a

prograa's flow chart prior to execution and assigns weights

according to interblock connqggivity and cyclic chatactgtiqtics'

{BAER72, VERH71]). Dynamic apalysis is based on a block reference

string gemerated during the execution of a ‘program ~and weights

' B
are assigned accordi:/g‘h to rstatistics accumulated froa the .
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references [HATF71]. - ‘ o~
There are advantages and disadvantages to both stati& aqd
dynanic algoiitg;é.) The advantages of the'stgtic approach are
that no reference data is teguired and .that restructuring is
performed independenily of the data that the jprogram operates on.
The disadvantages to static algorithms are that they can be quite
conplex’ and experiléntally have shéun to produce only ninorl
improvements and even anomalous results ' [FERR74a ]. The
advantages of ghe dynamic approach are that no knouledgg of the
program structure is required, apart ffon the bloéks, and that
experimental results ‘have 'consistently shown. sigmificant
improvements [HATF71, P83R7ua, ACHATS8 ]. The disadvantages of
dynamic algorithms are that lgenétatiné a reasonable 1eugt£
reference string can be expensive and that the program must be
monitored while execu;idg "typical® input dataT The sensit?vitx
t°. igput data has been a major criticism agaimst dynaaic
restructuting, hovever, nnle%ous‘ experinentﬁ’[ﬂl!;?t, FERR7ﬁa,
ACHA78)] have indicated that nmany tyées of input invariaat

programs exist. In gJeneral, dynamic restracturing algorithas

' .have been shovn to be a more profi;abie area for research.

2.1 Dypamic Restructuring Algorithss.

There exists a pléghora of dyginic test;ucturing algorithas,
each gathering and imterpreting a‘progfal's reference gtring ir a
different manner. Every algorithm claims some isprovement over
the unrestructured program yet it is difficult to compare these

algorithms and arrive at a "best® one. The early algorithas that

£

b
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vere introduced used\silple and -reasy to inplenenf beuristics and
obtained relatively good results. Later algorithas, called

Strategy-oriented, attempted -to get greater iaprovements by

tailoring the restructuring to specific replacement policies

f .
PRI B I i e e e AR ToC R A

@

under which the restructured program 1sould be rum. Still others’

presented ®algorithms that provided good results, ‘ibdependent of

the future replacement policy. Since the various algorithis are

T,

designed to operate cn specifyic tyres cf programs under specific,

N p—

replacement polici es- and since the ppblished results are all
based on experiments using different test programs, it is
impossible to reach any global conclusions. fhe only cbservation
that® can be made is that the initial heuristics 'used imn a
restructzsing algorithm provides the greatest improvements while
any‘refiﬁgmenté require more and ‘more effort to obtain smaller

and smaller gains. It is up to the user to .decide hov much’he is

'
N

villihg to pay for the expected benefits.

Dynamic restructuring algorithas . base ~ decisiaoas on

\ i3
"conparative intercounection strengths between blocks-.. Therefore, -

a data structure is necessary to maintain this infcrmation as the
reference string is processed.- The nmost common data structure
used is an )nxn interconpection matrix,  where é is the numbér/of
blocks. According to the heuristics of the restructuring
algorithme, elements in the array corresponding to block transfers
are incremented. Since references within a block are of little
restructuring intereét, the diagonal Gf the matrix is nornallf
Zero. In algorithms luh;;h require symmetric matrices it is

mecessary to store only the upger or ioger.triangula: matrixe

§oL
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2.2 gimple Algorithms
Some very simple restructuring algorithas nere'int:oduced'by

Achard et al. [ACHA78] which sake use of‘ two fundamental

concepts. The first nethod is based on the assnlpiion that a

v

ong:ﬁl favors a main nucleus of blocks. This  Nucleus

Constructiag Algorithm’ (NCA) places blocks im virtual nmemory in

decreasing order of their dénsities,'Dik

Di = (B(S)/Si)=Wi,

. where E(S) is the mean size of all blocks, Si the size of block i

and Wi the weight of block i. The weight. Wi is the number of

times block i was involved in a page fault by referencing an’

;

absent page or being referenced in an absent page. The first few
pages of an NCA reconstructed prograa contains the nlcleus.

A' second algorithm attempts to reduce page faults by
eﬁsuring that blocks do not overlap page boun@aries- The
difficulty with this approacg is that unused 'Sections of memory

are left at the bottom of some pages, spreading the program over

a greater expanse of virtual meaory. An optimal® placement of

¢
\

blocks, so that there is a minimum of wasted spaces, would
require the nirealistie chore of enumerating all possible block
arrangements. The Greatest Section Algorithm {§SA) is a
sub-optimal algorithe which fills a page with tﬁe g;ggtest size
block (modulo one page) which cam be fit in the remaining spaée.
Thu%£ once the blocks are sorted in decreasing order of size,

repetitive scanning of the list is all that is necegsary.

° A third algorithm vas introduced as a compromise between the

NCA and GSA methods. The Pirst Section Algoritham (FSA) lists the

blocks in idecrgasing order 'of, density, then it fills the pages

\ ' -18~
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with blocks in the same order except those where an overlap would

-oécur. until the -page is filled or the list is couplete\].y

- examined. The érocess is repeated for all pages uatil the list

is exhausted. ,
'Bxpeti-eitaliy, the FSA shoved the greatest ilprovelents u
page fault reduction compared to the NCA and GSA, but at the cost

of increased virtual program space. The FSA’ px:oduced block—page

- aappmgs 'ith an avex:age 2.8% wvastage compared nj.th 0.3! for the

GSA.- Ihe HCA provided better results thas the GSA indxcating the

iiportance of the nucleus concept. e

. .
o ~ N ' . 0

2.3 The Nearpess Hethod

Historically one of the first algorithls ‘for anté’ﬁtic

progras qres‘tructuring was presented by Hatfield an Géra].d”,

'[Burh]- Their Nearness Nethod (M) focusses upon the nearmess

matrix, C. This matrix is generated by increlenting' the element
c(i,]j) each t:.-e control is transferred .from block i to block j.
Once t‘he nearness matrix has been rconstructed., the blocks Qf the
program are clustereod using an “evall;ator”.

A reasonable evaluator, if all blocks are the same fraction
ofv a page size, nmight be

)
Z c{i,jlp .9,
i"j=1 ' o

vhere m is the number of biocks, and p(i,j) is the probability

that blocks i and j are both in physical memory wvhenever either i

or j is in physical memory. If blocks i and j are placed 'on the

same page then p (i, ) =:'l, so that for each page a,

-19- o
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Z c{i, i) is a term in the evaluator-
i,jea \

'Simil. arly, if block i is on page a and block j on page b
then, ‘

Z 'c(i,j)p(a‘.b) is a teras ia the evaluator,.
iea je€eb .

vhere p(a,b) is the probability that pages a and b are both in
Physical meRory vhenever either is in physical MEeRory.

Unfortunately, as Hatfield and Gerald state, the values fo\F

‘p(a,b) are "computationally exorbitant™ to estimate anmnd as a

.In S1 the patterns are spread ‘out while 1im S2 they are

result the simpler,

RN | Y. c(i,3) is used as a practical evaluator.
i,je a

'In \-fact; this evaluvator minimizes page faults for a nelbry size
of ane page. ‘

Althfugr the NN gives good restructuring results, the narrow
vindow (adjacent block refereaces) used can ‘give poor ordering
information. ' For exaample [FERR7Ha], consider tso reference

strings S1 and S2 containing K occurremces of the pattern 'ij'.

) consecﬁtive. The value of c({i,j) in the pearness matrix will be

K £for both 51 and s2 but c(j,i) 1is zero for St and K-1 for s2.
Thus, the probability of clustering blocks i and j together is
greater for SZ. Houever, the probability of a fault, if blocks i
and j are not clustered together, is greater for S1 (k faults in
‘the worst case) than for S2 {at asost one fault with/ any
reagonahle replacement algoritha). |

In general, the nearness nethod’improves-paging performance

in terns of a reduction in page faults and necessary memory

§ et -20-
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allopcation. The concept of the ' nearnmess matrix provided a solid

‘as.well.

blocks referenced within a windowv of size t.
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base from which others have introduced moxe sophisticated .

restructuring algorithss.
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ﬁggﬁgga'g Method

A restructuring algoritha was introduced by Masuda, et al.

using an extension of the nearness sethod, with the goél of

reducing the average working set size [MASU74]- ‘Tl/xis stralegy’
.dependent algoritha extends the NM by consitiering Wnearness" to

be not only the previous block reference but "recent™ references

The approach used is basically a miniature working set where
an element r{i,j) of the syametric wvorking set closeness nat'rix.

B, 175 incremented each time blocks i and j are both resident in

.this- working set. The set @menbership is deterained from the

|
t
'

i.e. BE= (r(i,])) for i#j i,j = 1,2,.e-,.n

{a = number' of blocks).

Then £(i,j) is defined as follows:

r(i,}) ). Dijk | , :
k . .

"

where Dijk = 1 if i,j are referenced in the interval [k-t,k]
0 othervisea .

\

It should be noted that in the special case vwhere t=1, lthg.

hd il
b A s o Srented 3
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. ' .closemess matrix R is identical to Hatfield and Gerald's nearness °

matrix C. . The selection of a value for t is detersined from the

\',"l‘na'in memory size, the deyree of multiprogramming, the page

réplacénent algoritha amnd Ithe program refereance patterns. A
reasonable value of .t would be in the order of the average,
ipterval between page faults.

. gnce B has been_const':ruct\,ed, Blocks are clustered using the

‘ follbning strength of connection evaluator;

. .
A 4

o BEg = (1/(SE + Sg)) ). Y rii,g)
;e > i€f j€g '

- where Sf and 8Sg are the sizes of cluster £ and ‘g 1:e.-'ape¢:t:inrely,~
that is, / )

st =' Y .s(i), Sg. = ) s{j) and s(i) = size of block i.-

ief ., je€.g T o _

’
‘

i

Y

'

The clustering process s'eléct's' the aost stroagly connected
pair of gflusters (uhefe a cluster cons@sts of one or more blogks)
one aftex.j another, 1ip a hieraichical manner, as long as thé
‘cluster size does not exceed the page size.

Masuda's method precduces a significant reduction in the
vorking set size (35-40%) and in general produces letter results

than the npearness nmethod due to its broader,  field of

ob serva tion.

~ e '

- . ’

2.5 ARBRE Mgorithas ' c '

A modified version of Masuda's algorithm was preseated by

- Achard et al. under the mame ARBRE [ ACHA78 ]. The evaluator in

1

.Masuda's method was of the form:
-22-
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. Bfg = Z: Yy r(i,j) for clusters £ and g.
ief jeg ’ ‘

S L

., 'The ABRBBE algorithm uses the Jaccard index,

B'fg = Rfg /(Ufg + Vfg) vhere

* \ng = Z: 2:. r{i,j) (intercdonnection between cluster
' < ief &g f and all clusters other than g)
o ' éndefq = Z: Z: r(i,j) (interconnection between cluster
Co - C i f jeg ‘ g and all clusters other than f).

I . ‘ -
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Achard claiss an ilprovenent over Masuda's algorithm of up

-

to 15% and bases this on the relatlve 1nportance of 11nks betueen\

hlocks rather than the\absolute 1nportance.

2.6 Q;L&LC&L A;ggr;th;

One ¢f the nost 1lpo:tant ‘concepts in. strategf-orienfedf

o

- K . prograa restrucgufing is that of *"critical algorithms". This
",class of algorithms was introduced by Ferrari [FERR74b, 76] as a
unifora method for tramslating a bloék\‘reference striné into
relevant locality infqrnation. Regardless of the page
replacement policy being used, there exist§ at any yiven time, a
group of residemnt blocks. If the next reference in the blogk
reference string is to one of the resident blocks then that
freference will not cause a page fault. If, hovever, the next

reference 'is a "critical reference", that 1is, a reference to a

> non-resident block, then clustering this block uith\the resident
@ ones will prevent . a fault from occurriang. A simple critical

- reétructuring algoritha 'will incréuent'(by one) the weights of

( P ' each édge‘conFBcting the cr;tical reference to all of the blocké

.- a4 o i oo g | arn o
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that are resident according. to the paging policy.
" In restructuring algorithas, a great deal of priocessing time
is spent interpreting the block reference string amd incrementing
matrix elements. By using a critical algorithm, only critical
references cause Ratrix updates, oftea resulting in faster
proﬁessﬁng- Another significant feature is that critical
algorithms can be applied to fixed and variable partition
replacenment policies as long as the portion of a program resident

in-main memory at any instant can be derived or estimated from

the behavior of the program amd the index to ke pinimized is the

- page fault rate [FERR76].

Por the nmost part, Ferrari has concentrated his study of
program restructuring on the working set envirooment [ FERR73,

74a, 75). The Critical Working Set (CHS) alyorithm 'is Jesigned

’ to be tuned to the working set page replacesent pclicy and in

particular to the window size T beiny used. The CWS algorithm

defines a block working set, Wb{t,T), at time t, as those blocks
which are referenced by the block reference string
S=r(1);r(2),..- in 'the interval ({t-T,T]. A block working set

Wb (t,T) is said to be critical if r{t+1) is not in Wb(t,T). In

1
-

this <case, r{t+1) is called a critical reference. The CHWHS
algoriths increments all the weights of the eddes connecting a
critically referenced Lklock to all the nmembers of ‘Hb when a
critical reference occurs. Practically, the edge weights are
represented by the CiHS matrix C wvhere c({i,j) corresgonds to the
edge connecting blocg i‘to block j. If block i 1s a critical
reference and block j is a nmember of Wb them c{i,j) 1is

incremented. If blocks i and J were grouped together on the sanme

-24 -
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:pqge, t hen c(i,j)oc(j,i)ﬁcr{tical references vould disappear.-. By T

definition, the diagonal elements of C are all zero.

Once the CWS matrix is conpleted, a clustering algérithn is
applied to determiane the block-to-page mappings. If‘ each page
co;tains no more than two blocks then the CWS method is‘opti;al.

The [proof- of optimality comes from noting thai for any .
clustering, the sum of intércluste: connections is egyual yto the y ; ,
numaber ¢f references that are critical in the block refereance

string and non—critical"in the page referencefst£inge Thus,
maximizing the intercluster connections is eguivalent to
minimizing the number of page faults. If there are more than two ’

<

blocks per page, then this argument is no longer valid since the

critical references which became noan-critical due to clustering.

There is no way of computing this difference from the CHS matrix

[FEBRR74a ). For example, consider three blocks A, B and C where C ’

+

is referenced only once. If C is referenced when A and B are

i

resident blocks then two elements of the CWS matrix are

incremented, <CWS{C,A) and CWS(C,B). If C was then clustered

'aloﬁg with blocks 2 and B, one page fault would be eliminated

even t hough the iotercluster connections increased by two
(CHS(C,A) + CRs(C,B)). Thus, there is no discernible correlation

between the CWS matrix values and the reduction ia page faults

The CWS method can treat data and instructions independently
50 that they can be restructured into separatS\pages. This
breaks the restructuring into two more manageable probleus. The

CiS method gives good experinentai results . and  shows aa

| [
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isprovement of 12-35% over the mearness method.

2.7 pounded Locality Interval Bethods

The majority of program restructuring algorithas use sonme
fora of the working set concept to isolate piogras localities.
An extensive study by Madison and Ba'tsun of prograa lnocality.
resulnted‘ in a nmodel of prograr behavior that suggests an

alternate rethod to determine localities [ MADIT76 ].

The locality model is based on am LRU stack where a block's -

pofition in the stack is determined from its most recent use,

ihatvis, the most recently referenced biock is at depth 1, the

ﬁsecqnd most recently referenced block is at depth 2, etc.. For
_any position i in the stack the topmost i’ blocks are the i most
recently rdferenced blocks. Hadison 6K and Batson define an
extended LRU stack which maintains not only order of most recent
use but the time at which the block at depth i was last

referenced, Si, and the time at which a reference / vas last made

t0o a position greater than i, Ti (Eig- 2b) . An "activity set",

Ai, at time t, can then be -defined as the set of blocks at depth

i in the LRU hierarchy in vhich every set mesber has been

o

- rereferenced since the set wuas foi:ned, or equivalently, Ai(t) is
the topmost i blocks for which Si(t) > Ti(t)- In Fig- 2a the

activity sets at t=30 are {p}, ({€,D}, and {A,B,C,D}. tWhen a

‘reference is made to a position below a particular activity set

. then it is terminated. The lifetine of the activity set, Li, is
thus the interval of time betueen set formation (Ti) and

termipation. A “Bounded Locality Interval” is defined as the

. =26~ .
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z-tup:le cons;lstingn of an activity set membership, Ai, and its
lifetine, Li. ° ) |

If at time t, two activity sets, Ri(t) and Aj(t) exist where
i <'j,/then b} definition Ai(t) is a subset of Aj({t) ‘and Li < Lij.
This property means that BLIs at a particular tise Jdeteraine a
hierarchy in terms of both set membership and lifetime. The
®level” of a BLI is its distance down in the hier;rchy, such that
a BLI at 1level 1 contains the largest activity, set. The higher:
the level of a BLI,'. the smaller its act’ivity set and the shorter
its lifetime (Fig. 2). The three main features of BLIsS can be

summarized as follows:

a) they correspoud to most intuitive notions of vhat

!

constitutes a "lo cality"

b) the defimition is independent of parameters such as

windows

- "¢) the hierarchic;ﬂ nature of localities is ilplelentgd

o, in the defimition.

v . Since BLIs are determined independent of parameters i:: is
well suited as a basis for strategy—independent restructur‘ing
tedhniqqes. Q'Kc;bayashi has proposed a set of x:éstx:ncturing
algorithms vhich atteampt, to decreasé the resident set size of a
program by grouping together blocks of high level activity sets
[KOBA77 ). The Activity Se,t Algoritha—=1 (AS1) increments the edge

- weights between blocks i and j by the value of the level of the

ns.aliest activity set (highest level) to which they both belong..

This is accomplished by incrementing the weights by one each time
the pair of blocks become members of a-new activity set. Due to

-27-
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the hierarchical property of BLIs, the blocks that are activity

set members at level 3, for example, are also aeabers at levels 2

- and 1, hence, increamenting one at a time is equivalent to setting

i
the weight equal to three.

If the number of BLI levels or the average size of lével 1
activity sets is small, then a simpler algoriths can be used.

The Activity Set Algorithm-2 (Asgf focusses on level 1 activity

sets only and increments by one the edge weights betweea blocks

’

vhich belong to an activity set of level 1.

One factor inherent in both AS1 and AS2 arises from the fact
/

that no time parameter is used in the establishment of activity.

sets. This deficiency can, result 1in wunrefereanced menbers

remaining in the activity set. A metbod suggested by Kobayashi

for removing inactive npembers is to introduce a parameter A

similiar to the working set window. This allows the definition

of the strict activity set at time t as an activity set, all the\

blocks of which have been referenced after the time t-A. Strict
activity sets do not alter the hierarchical structure of BLIs.
If strict activity sets are used in [fplace or regular activity

sets in the AS1! apd AS2 algorithms, then anélagous Strict

Activity - Set Algorithm-1 (SAS1) and Strict Activity Set

Algorithm—2 (SAS2) can be considered. X '
Kobayashi compared the four BLI-based algorithms to strategy

dependent algorithms inm both a working set and LRU environment.

The results showed that although algor%fhns Ast and‘ AS2 did not

reduce page faults to the same degree as the strategy dependent

"algorithas, their performance was "satisfactorily closem. The

surprising aspect of the experiment was that the SAS1 and SASZ”"wﬁ?ﬁ‘j

_28_.
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algorithas wvere not as effective as the AS1 and \15'2 algori thas.

rht’pe/tfprlince was attributed to the relatively long average

o .

lifetise of BLIs. . , ,

&y

2.8 Elﬂﬁiﬁﬂins_llgﬂli&hlﬁ ' : .
In almost all of the restructuring algorith-s gresented, the

eaphasis has been on determining the stremgth of interconnections

betveen program blocks. Once the interdependence of these blocks

has been established, the problea of grouping or clustering these

blocks is faced. The reason most restructuring papers sl;i- over

Lth‘e clustering aspect is not because it'is of minor iaportance,

but rather that the 'subject is wéll knoun and exhaustively

‘documented.

f

[ BARR79 ): ‘ ‘ : ,

Let V(Xi,Xj) defnotis\the;[interconnection between clusters-Xi

‘and Xj, then’ —> 2 \

V(Xi,Xxqj) = ). Y . skl
k€xi 1€ xj

where Skl is the interconnection between blocks k and ' l. For a.

A

' 'particular page mapping of ¢ clusters, the total interconnection ’

betveen pages is givea by,

) C = C‘x',leoyaxc) ‘\ Z AV(Xi'x:“
151<ch

Thus, C is a neasnre of the page fault rate for a pnrticular
mapping. For a memory size of ol_:e page, C uould be in fact the

actual page fault rate.

Forsally, the clustering problem can be stated as fol.].ousin

Y

[
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Tbé ideal goal of the clustering procedure is to ainimize:

( : : 1) ‘the nuaber of fpages required and 2) the intercomnection
| between pages. , \

\1 i If one considers the intercomnection of blocké \in terms of

~ the restructuring graph the clustering problem is a subset of the

well Kknown "graph partitioning prob lentt [KERN6'9]- As well,

glusterihg is an extension of the "bin packing problem®™ [JOHNT4]

\a‘(i) € (0,1)] i=1,2,~e<,n find the assignment of segnments to bins

‘.\that mininizes the number of bins used provided the sum of the
o ' lengths of—segments in each bin is at amost one. -

\ éegarcjless of what pame is used to c,lescribe the distrihut:ion
of piogram code, the problem is NP-conplete, that 1is, a}ll known
-, ‘I algorithms may require the enumeration of all possible nmappings
- , — in the worst case. To appreciate the magnitude ©of this problen

.- consider a proyram of n pages, b blocks and assume b/an blocks per
page. The number of unigue partitions is:-

Y : " P=b! / {(n! ((b/n)!l)**n) {PART79].

| HIf, for example, a 10 page program consists of 40 blocks
‘\uhich are distributed as 4 blocks/page, there are 3.5 x 1027

"/distinct partitions. It 1is clearly futile to enumerate all the
,pattitions and the fprobability of bhitting upoa an optima,l
\solution at random is e‘ixceedinglf small, even if hundre‘ds qéxist.
In most cases, programs that warrant restructuring are
significaatly larger thanithe example given, which indicates the
need for sub-optimal heuristicsa.

(= 7 . A unifying feature of sdost heuristics for progtran

i ' restructuring _is that of hierarchical clusterifg. Consider a

v

=30~ .
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seguen?:e of partitions which group n objects imto csm clusters.

"The initial partition contains 1n clusters of one object each.

The“second pattitionﬂ contains n~1 clusters, the third n-2, and so
on until the n-th partition in vhich all the objects form one
cluster. A positien in the sequencé is denoted by 'a/ level
number, uhere level k occurs when c=n=-k+l. The level 1
éogrespond to c=n and level n to c=1. If the sequence has the

&
property that whenever two objects are grouped together at level

k they remain together at higher levels them the sequence is .
" . ‘called a hierarchical clustering [DUDA73].

Hierarchical clusterings cam be graphically displayed using .

a tree called a "dendrograaw" ("arborescence® [ACHA78])- Pig. 3
illustrates a dendrogram for a clustering of six objects.

Variations of the dendrogran are often used vhere the vertical

"axis denotes the strength of connection betweem clusters as"

opposed to the level [NASU74, AéHA78].
Most restructuring aigorithls [{FEBRR73, HlSU-‘IH, ACHA78] use
constrained stepuise optimal clustering. _Bar:ese -and Shapiro

[ BARR79 ) describe this procedure as follovs:

step 1: Set c=n and Xi={block i} , i=1,2,.ee,D- o

Step 2: Pind a pair of clusters Xi and Xj that reduce the

‘ cost function (page imterconnections) as much ill\s
possi‘ble subject to the coanstraint that: ‘

s(k) s PS  i.e. the page size is not
k € (Xi U Xj)

exceeded ( s(k)=size of block k, PS=page size ).

If no such pair exists, then halt.

-3l
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. Step 3: Replaée Xi by {xi U Xj) where i<j, deleote" Xj and
set c=c—-1. T
Step 4: U;date block intercoanections [Sij). -

9

step 5: Go to Step 2.

The "constraint®™ of the algoritha is the page size limit amd
the "stepuis'e optimality® results from the £fact that for each
iteration the best clustering is made- Though the clustering

heuristics described are sub-optimal, the results.of Ferrari amd

- others indicate that their performance is acceptablea

3

?

b

The major constraint in prograa restructuring is the page

I ¢
,size limit imposed on the clusters. A reason for this coastraint

.

is to achieve an independence between pages-. If blocks do not
overlap page boundaries then there is no implied contimiity
between consecutive pages in virtual amemory.. This is ‘an

important point if the restructured program is to be run under

various page replaceue'nt policies or under an LBRU policy with }.

varying memory allocation. As far as wvorking set policies are

concerned, Masuda [MASU74] suggests that alloving clusters to

\n
cover several pages without comsideration of page size might bhe a

5' LY
3
Y

v

better approach-
\ If one ‘maintains the page size 1limit on clusters, as most
do, then another problea arises. Since the blocks of programs

vary greatly in size it is inevitable  that ‘gaps of holes will

jccnr vhen clusters are mapped “onto pages. is Hatfield and

t
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Gerald [ HATF71] state, the presence of holes spreads the clusters
over a Jreater virtual space. This reguires, on the average,
more pages to be in physical nmemory for the same nuaber " of

instructions executed without a page fault. Clearly this is

' detrimental to the' goal of restructuring. ‘AS an glternatiEe

approach, clusters can be packed together across page boundaries

leaving no holes. Hatfield and ' Gerald indicate the relative

success of this approach from their experience." Ferrari [PBRBiB]

packs his clusters as well, but permits their sizes to be

#slightly larger® than the page size in the hope of balancing

things out.

1f the blocks are allowed to cross the page bo&ndaries then

it 1is important to segquence the clusters intellipently since a

block'that crosses a boundary will probably require that both
pages be in physical pmemory within a short period of time.
Hatfiel@aand Gerald\define’the sequencing problem as follows.

1 If the strength of intercon;ection betveen two clusters X
and Y can be considered as the sua of inéérconnections c(i,j) of
blocks from one cluster to blocks in another,

i.e. ) Y cli,i) = a@,Y)
iex jex o °

then an optimal sequencing can be found by solving the maximal
tour ]travelling’ salesman) problem on the matrix A={a}. nThtg
means fjinding a circuit of clusters that maximizes the sun’qf the
transition values a(i,Y) between adjacent clusters. Since the
travelling salesman problem is a well known HP-complete problenm

[GARE79 ], Hatfield and Gerald suggest a simple heuristic approéch

which they claim gives good results. The "nearest city" or

% ~33-
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®greedy™ algorithm begins by selecting am arbitrary cluster, X,

- e e e e donte i i) o

[

R

and placimg after it the ciluster,

wa(l.!). The process is repeated for each additiomal cluster, at

each step selecting

the two clusters with the greatest transition value in A.

the best candidate.

‘ suggeést that the sequencing can be imitially biased by selepcting

Nr

with the largest value of

Hatfield and Gerald

o
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In demand paging sSystems, only the pagé'causing a fault is

fetched. Intuitively it would seem reasonable to load not only

" the missing page but also those pages that will be required in

the near future. The ability to determine the future dccessing
of pages is normally a difficult task. However, progranm
resttucthring provides page interconnectivity information.

Utilizing this information to predictively reduce page faults

td

‘appears to be an area worth examining.

Unlike standard memory management techniques that are based
on causes/effect actions, predictive memory management uses past
experience to predict future program behavior. Predictive

eleaents can be found in even classical demand pagiang policies

such ' as FIFO, LRBU and WS. These policies base resident set

membership on the prediction that the members are ‘likely to be

referenced in the near future. ?redictive strategies can also be

‘found at the CPU level in instruction 'look-aside buffers and

cache memories. Both common devices provide excellent results

\siqce the locality principle predicts a slow change in the active

section of a program at the microscopic level.

' The interest in ﬁredictive Remory policies aﬁd in‘'particular
predictive fetching (prefetching, prepaging), stems froa
observa tions of program locality charaqteristiesl Prograas can
be modelled as a sequence of stable, relatively long-lived phases
during which a small subset of pages are referenced [MADI76'])
These subsets change membership slowly duping a phase so that

demand paging technigues are sufficient. During trapsitions from

-37- 2 P
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one phase to another, however, the contents of the resident set

can\bé raaically alteked, In fact, the majority of page faults

occur during phase transitions. The ability to change resident
set wmembership rapidly and correctly by using prepaging

algorithms is therefore potentially of value.

¥hen a page fault occurs, prepaging policies atteapt to load

not only the demanded page, but any other pages that might be

fl

referenced soon after. By prefetching a page that is referenced

~1n the pear future, a fault is eliminated. If a bad prefetch is .

made, the cost to the system is that a good page may have been
discarded (LRU) or the memory size is increased by one page for

the duration of the window (WS). One important assumption used

"in justifying prepaging is that there is no significant cost

' N
- Mt B e e a2 B A B e ol

. ditferemtial between locading cne page or several [ages. Since

the access times for existing external memory devicgs “are much
longer than the transfer times, this assumption appears to be
approximately valid.

uany‘predictive management strategies have been proposed in
the past but none have proved to Lke practical for isplementation
on a large scale. Althopgh the imgroveneutg made by predictive
algorithas are legitimate, it is important ta comsider them in
the proper context. 1In most éases, the gains made by étédictive
algorithms are at the expensé of increased page traffic (fetches
and replacements). Even though a program is not being executed

while vaiting for a page trénSfe:, it is resident and tying up

real resources. The increased page traffic has a direct Learing

on the throughput of a computer szztel and is a major objection
to many predictive albotithls. Despite all these factors, the
o ]

7

N - \3

S e i i NI ke W O AL 2ot et et g S 7t g e et
- f B

DA 57 e St e et W



»o-

!

gains that can be made by .prefetching algorithms are still
significant. Hence, predictive memory nanagesment technignes are

of interest in those cases wvhere the benefits outweigh the costs.

3.1 One-Block Lookshead Method

One-Block Lookahead (0BL) is thé glassical prepéging
algorithm introduced by Joseph [JOSE70]. The strategy atienpts
to load thé demanded page into main nmemory, along with the
follouidq page, if that neighhoriis ngt already resident. OBL,
being/ a fixeé—partition algorithme, rprovides a special buffer
page—frame into which prefetched pages are loaded. If this page
}s referenced before the next fault then it is retained in

memory, othervise it is overwritten with the next prefetch.

* Thus, the space cost of OBL is one extra page.

Under certain conditioms such as matrix manipulations, data
references in a program vhich alternate between one groub( of
pages {(Matrix A) and)anotheri(uatrix B) may cause the bBL buffer
to be cbntinuously reuritten, destroying useful prefetches. This

def iciency is corrected in another algorithm suggested by Joseph.

lsilple Prediction (SP) operates the same as OBL except that no

special buffer is used. Unlike OBL, a bad prefetch in SP will
remain resident until tbhe stanéard replacement policy discards
it. This last factor explains the increase in memory reguired
for SP applicatiéns, )

In simulations pgrtorléd by Joseph [JOSE70], the fault rate
vas found to decrease by 25-35% for OBL and 50-75% for SP. The

space~tinme product, however, increased by a factor of 1-15% for

3G
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0BL and 20-30% for SP. Another side-effect of predictive

algorithms is"the increase in page discards due to failed

prefetches. For OBL, this increase was about 50X while SP showed

a 20% rise. s

~

3.2 spétial and Temporal Locality Methods

In 1976, Baer and: Sagér introduced a bair'of prepaging:

algorithas [ BAER76 . Their ‘intention vas to improve paging

performance by dymnanmically alteringzthe page predictions during
program executione. The rationale'ﬁehind this approach is that
sequential prefetches (0OBL) are not always beneficial and fo;
these cases it 1is desirable to change predictions for futu:e
faults. -Hopefnlly, as pr&gra; execution progresses, the
prepaging policy will correct poor ;refetches by replacing them
vith "better" ones.

The Spatial Locality (SL) algorithm keeps track of which

pagé to prefetch by using a predecessor fuaction, PRED. Given a

© fault to page I, PBRED(I) will indicate which page should be

prefetched. A variable LAST ié also used to record the last page

‘ghat faulted. Imitially, PRBQ(I)=I*1 for all pages I and LAST is

set to some null vglue; The starting predictions are seguential
as in OBL. Consider during program execution, a reference to
page q which causés a fault. If preloading did aot occur on thé
previous fault or if tBe preloaded page was ot refe;enced fbad

prefetch) then update PRED(LAST)=q. If PRED(g) is not reéident,

" then preload it into the position of lowest priority according to

the replacement policy. Finally, set LAST=q.

-40~

NS




The Temporal Locality (TL) method operateé the same as SL
éxcept that LAST records the page referenced immediately prior to
the fault-causing page. ’ ’

Simulation —results [BABR76]  indicate the relative
superiority of both \SL and TL over OBl. The major disadvantage
to these algorith;s is the ovethead required to perfoil dynanmic
changes and the costvof fast' register storage to implement the

PRED table. . " .

¢

3.3 Preeing_Demand Prepaging_Algorithes |

A class of algorithms was presented by Trivedi [ TRIV74, 76,
77] with the objective of using predictive paging techniques to
supplement rather than replace existing demand paging algorithas.
The key to Freeing neldnd'Péging Algorithas (FDPAs) is that
unlike sequential prefetchiﬁg schemes, the isolatioP and removal
of the old locality set is of equal, i: not more importance than
the loading of ;he nev locality set. FDPAs require the existance
of two special primitives that "suggest™ paging actions to‘the
operating system. These primitives are inserted into a program
either by the bxogranner or the compiler, in an atteapt to
indicate the program's macro-behavior. The primitive ?RBE(X) is
used when page X will not be used in the "near®™ future, while
PRE (X) is inserted when it is desirable to prefetch page IX.

The operating system treats the above primitives as advice
rather than coamands. ~ The primitives may be executed
immediately, deferred or even ignored. The systea will not allow

prefetches to occur at the eipense' of useful pages already

-4 1-

/




R e e B N ha ]

B F T L T e e S v e omn om B I T

resident. - The available space that arises when requests are made.

to free pages is used for prefetching purposes. It is assumed
that prefetéh requests are usually valid, so pfefetqhed pages ‘are

not replaced unless they are referenced at least once. Thesé

reguirements are.implemented to prevent the aisuse of nmemory

space by naive users.

Finulations using an Pngl in an LBU enviromment were
performed omn array aanipulatiéhs with good results —LT#IV?G].
Fault rates lower than LRU were attainea at large allocatigns of

3

memory for all matrix operations while page fetch traffic for omne

\

simulation approached that of LRU.

SN ) - Lo .o

3.4 The Dyoamic Hatcix Hodel D
Studies by Burris 'and Pooch bave resulted "in numerous page

clustering algorithms vhich are used to predict a program‘'s

locality based wupon ' dynaamic behavior [PO0C76$; ‘76b]. One

algorithm in particular, the Dynanmic ugtrix Model (DMM), builds

\'dynalic clusters of  pages during program execution according to

*time and reference" relations [ BURR77 J. These clusters are then
used to minimize future page faults and ovérall ReROry space.
Every page{has associated with it, a cluster éf, pages.
‘whenever a page faults, all the members of its cluster are loaded
into memory if they are not glready resident. As well, those
resident pages that are not in the current cluster are removed.
The physical memory required by a program is thus dﬁpendent upon

the size of the cluster associated with the aost recently

‘referenced page. When control is transferred fros one resident

-

'
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page to anothér, pages not in the cluster of the nevly referenced

\

Burris goes into great detail about how the clusters are

deternined. Basically, the algoritha involves

updating of a bimary matrix where the matrix elements correspond

to page intetreferences. Whenever page i faults, the non-zero

elelents in row i of the wmatrix indicate cluster members.

\

actual process is somewhat more complex and incluées a method for

"limiting the size of a cluster.

\ The s;mulatlon results of Burris [BURR??] indicate . an

ilprove-ent :h both fault rate -.and memory size over standard

hovever, no 'mention is nmade of the type of

érogtans being‘simulateﬁ and the reference strings used are quite

this and

short (5000 to 9060 references). A wmajor drawback to

is the tremendous overhead

'system to maintaim cluster iaformation -’ for

v

- ’ [

operatiné every

resident program.
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In c&apter 2 a number of program restructuring algorithms

were presented. For the most part, these algorithas -emphasized

- the accunu}atibn of interconneqtivity information as -opposed to

the clustering of blocks. 'Alihough the greétest perfonnénce
iaprovements can be attributed to the isolation\ of localities,
fﬁrthe; re@nction; can still- be made by a more intelligent
clustering.

By‘far the least well-defined aspects of clusteiing concern

" cluster size and ‘the mapping of clusters onto pages. Theoretical

‘anaiysis _usually assumes the ' unrealistic case of equal-sized

blacks that are a small fraction.bf the page size. This type of

analysis might permit a better understanding of the algoritham but

it provides no indication of how the algoritha should be applied

to Yreal" programs. Most restructuring algorithms specify a

. maximum cluster size of one page. 1If these clusters are mapped

directly onto pages, there are no blocks split over page
boundaries. This aesirah;e featnre bas the unfortunate side

effect of wasting space at ihe ends of most pages. Obviously the

restructured progras muast then be stretched over a greater number .

of pages and will often require a greater ave:&ge Renory size.

Hatfield and Gerald's experience. has indicated the unsuitability

* of. this approach [HATF71].

One method that could be attempted to minimize the unused
memory on pages would be to fill this space with blocks that did
not get clustered. Although there are almost always many of

these blacks léfi over, their number is depeadent upon the length

.
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of the reference string nsed/for' restructuring and\the data used
by the program. It is not realistic to assume that -there are
alvays enough free’blocké to reduce the vasted space to a
negligible amount.

If this approach is abandoned then clusters must be packed
one after another onto pages. The sequencing of clasters then
becomes important since blocks will _ -be split over _Ppage
boundaries, fregquently requiring two consecutive pages to be
resident within a short period of tiFe. The greedy algoriths
outlined by Hatfield and Gerald [HATF71] is a reasonable method

for sequencing and has provided ade&uate results to date. There

., are, howvever, certail inadequacies in how this gemneral algoritha

s A T SR o DT el

pertains to a specific problen.

The greedy algorithm, as described in chapter 2, iaplies a
unidirectional seguenciay of clusters. In other words, clusters
are added to the sequence at one end only and there exists oaly
one sequence at a time. In the case of clustering,ublocks could
be added to either end of a cluster and many clusters exist at

one time. Clearly the clustering algorithm provides much greater

.£lexibility than the, greedy segquencing aethod. It would

thereforevseen logical to group together clusters in a method
akin to the clustering of blocks. ' The difference between the two
probleas is that im sequencing there is no page size comstraint.
As vell, the addition of a cluster to a sequence should be
dependent upon the ¥nearest® clusters and not those clusters at

the opposite end of the sequence.
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) (Algoritpl SEQ) =

e can therefore propose the following ségquencing algoritha

L)

Step. 1: Cconsider évery cipster of blocks as a ‘sequence.
‘Step 2: Evaluate the interconnection weights for all pairs
of sequences. k
\ Step 3:  select the largest veight from Step 2 and coabine
the corresponding two seénenées.
Stép 4z Repe?t Steps 2 and 3 while Step 2 returns non-zero

wveights. .

Obviously the key to algorithm SEQ is Step 2. By placing
appropriate constraints on Step 2 the algorithm can be reduced to
the greedy method. A reasonable evaluation would be to consider
only the end clusters in a sequence. For exaaple, consider two
seguencés S1 and S2 each counsisting of many "page™-size" clusters.
If S2 vere to be placed after S1 in memory, the block that would
g#erlap the page boundary would almost certainlf occur in the
last cluster in S1 or the first cluster in S2. Therefore, it

¢

seems sufficient to evaluate the interconnection strengths

between the terminal clusters of sequencesa This analysis is-

valid a;su;ing“ the clusters are all ' approximately omne page in
size. Unfortumately this assdlption is not always correct.

When dealing with real prograas, thé sizes of blocks do vary
greatly. If clusters are liaited in size to exactly omne page,

they will probably end up ”being significantly smaller tyan a

Page. . Ferrari suggests that clusters be alldwed to grow slightly

larger than the page size in an effort to balamce out this

>
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diffetence [FERR73]. éince thé key to ciuster sequéncing is in
the accurate prediction of page boundaries, a small variance in
/the cluster sizes can accumulate aad cause considerable
lisaiiign-en,t with respect to page boundar;‘ies. i‘ith'ﬂthe greedy
algor'ith,,n. one end of the segquence )is fixed so that the page

boundaries are alvays known during the sequencing process. If an

algoritha such as SEQ is used, hovever, the boundaries are not

known until the final iteration. The cost c;f greater flexibility
in sequencing is the loss of page boundary information. '
Another important aspect ofi block sizes that is glossed over
in most algorithas 'is the frequent occurrence of large blocks
{i.e. larger tham ‘a page size). It is not uncoazon to have

certain blocks, such as initialization or I/0 routines, that are

' many times the average block size. There are essentially two

standard ways of handling these blocks. They can be manually
split into smaller blocks or they can each be treated as a single

cluster [FERR74a]. The former approach reguires a knowledge of

- the source or object code for the block; however, logical

boundaries iay not always be evident. The problea with the
latter method is that these <clusters can have an.y size,
destroying the careful alignment of‘ page boundaries. If lax:g;
hl:)cks are poorly sequenced and frequently executed, the page
faults resulting froa references vithin a block can overshadow
the gains made through restructuring the ssall blocks. The
effect§ ;)f these blocks om the restructuring process are not

vell-known ahd no algorithm to date has realistically atteapted

to accommodate thes.
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' ‘441 J _Combjned glnsge;;‘nggéeguggging Algoriths

. It is clear that exist:ing‘restructuring aigorithls contain
‘inberént ueaknesses and lisitations. Tc correct  these
deficiencies, an alterxlxate approach must be taken to perform the
clustering and sequemncing of blocks. ;t has Dheen shown, that a
flexitle seguenéing method results in a loss of page boundary
information. If page boundaries cannot be accurately predicted
then at}\e use of page—size clusters becqnes guestionable. It is

therefore proposed that a probabilistic technique be employed

', vhich takes into acccunt the page boumdaries -at the clustering

level. Such a technigue should rermit clusters of any page size

but should weight the in(j.etconnectivity contributions .between

¢

_blocks according ° to the probability of the blocks being on the

same page. '/

Co;lsider, for éxalple, the in\tercohhectivity» between two
cluéters A and B coﬁtainit;g blocks i and j respectively. While
most - sequencing algorithas would include the interiéfereﬂce
‘contribution of i and j with asn egu;'al seighting compared to other
blocks in the clusters, i£ is proposed that a vweighting be used
(t‘ha{: takes into accoumt the distance between blocks. The farther
apart tub blocks 1lie, the greater the probability of a page
boundary separating then. Thus, if i and j are farxr apart, they
should contribute less to the total interconnectivity of A and B
than blockJs that are close together.

Clustering algorithes noxfnally require an interconnection
matrix as a basis fcr conne;:tivity.' The following discussion

assumes the existance of Ferrari's CWS matrix {the CHNS method has

consistently provided g¢ood restructuring results) although any

e
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siailar type of matrix can be substituted. The standard

sequencing approach uses a formula of the form: . L

Pl

) Y cus{i,j) * C¥S(j,i) -
iear je€EB. .

Shat is proposed is a weighted version of the above foraula:

) ) W{i,J)*CWS (i,j) * W(j,i) *CuS (§,i) -
iea j€ B . ' ‘

A suitable weighting function W can be obtained from the

following observations. Data references can normally be iganored

since most programming lanquages maintain separai:e data areas.
For thosg languages that maintain 1local data {e.g= FOR'TRAN),'
passed variables nmust .be fron i'ecently executed blocks and

therefore should not result in - critical data reter_énces.

Critical instruction references from block i tc block j can arise

frow two sources. Either block i is calling tklock j or block i

is retuf':ning from a call wmade by block j. Unfortunately, the CHS
iatr;x does not provide this inforpation. We ¥ill, however, make
the assuaption that critical references are exc‘iusively calls as
opposeh to returns. _ This assumpiicn is @pecessary for the
derivations that follow. It can be justified if the CHNs window
is relatively large coapared to the average blcck size. In other
words, if a critical call occurs! and thé window size 1s large,
the probability of the «routine geturning within the Hin'dou'is
high. This inp'lies that the vas£ pa jority of critical references
should be calls.

FPigure 4a illustrates critical references from block j to
block i for a possible ordering of clusters, namely, cluster B
follc;uing cluster A. The nuaber of times that block j ués

resident vhen a non-resident block i was referemced is given by

a
*
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CHS({i,j).  As we have no 1nforlat10n concerning the structure of

hlock Je ve cah only assule that aay lnstructlon in j could haVe

'feférqnced block i. He denote the location of _this arbitrary

instruction by X. On the other side, we nmay got‘knov to which

instruction in block'i control was transferred. We can denote

the location of this isstruction in block'i by E. 1f, during the
1 .

execution of ' the program, a reference is made froa X to E and

IE-X| is greater than the page size then we are guaranteed that a

T page bonndary separates the two menory locations. For this

condition, the CHS {i,]) contrlbutlon should be excluded, that is,

\

a zero weighting shculd be apﬁlied. If JE~X| is less than the

page size, the probability that a page boundary dces not occur

— betveen i and j can be used as an appropriate weight. Formally,

,Prob {E and X are not separated by a page boundary}
= | {BPS - JE-X|)/PFS5" ifllB-Xl £ PS
0 7 ' gteerwise

where PS is the page size. ] 7

'In the , following experiments, cdntrol transfers are always

made to the beginning of blocks. In other words, E was aluays at

the beginning of a block. The‘derivaticns that follow also use

- %
this constraint. For those cases where this condition does not

\

| apply, a modification to the integral forpulae would be reqaired.
¥e cahnot predici which inmstruction im block j will reference

block i. In the absence of any information, the forazunla for

W(i,j) must be an integral over all the locations in j. Let Dij
represent the distanbe (dué to intarveqing blocks) Letween the

end of block i gnd the beginning\og block j and let Si and Sj
=7

'denote the size of block i and j respectively. The formulae for
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W(i,j) are thus: )
L if Sitpij 2 Ps, | o "
_ Wi,y =0 | ' , o
If.Si*Dij < BS s Si*Dij+sj, |
PS S -
‘Wi, g) = J[ __ (es-x)/(PS*sj) dx
‘ ' 5i+Dij )
= (ps—si—nij)?/(zps%Sj)
If Si+pij+sj < Es,

Si*Dij+si ' R
Jf j (PS-x)/ (PS*59) dx

«
<

(i,
(.3) SitDij

A t

(2PS~2Si-2Dij-57j) /2PS

The derivation of W(i,j) which weights the interreferemce

contributicn fros block i to block j (Figure 4b) produces similar

w

- v

foraulae:

 , I.if pij 2 ps,

‘ W(j,i) =0

‘If Dij < PS < Dij*si, o S )

. \
' ~
e s o b et gt i e

W(j,i) = (Es-Dij)z/ps * \
~ i ' . '? - -~ * N
. If Dij+si < Ps, « . L |
= '(2PS—Si-2Dij)/2BS o

7 . ‘ W{j.i)
o The difference between the forsulae fm.i Wi, ) and/ﬁ(j‘,i).
:atiSes fxom the aséunption that ccentrol t,lransfers enter at thé
\peginn/ing of a block. o " -
B Using thé the weighting formulae, a combined
clustering/sequencing algorithms is presented (Algor’ithll CS):‘I
. Step 1: It;itially/ consider every block. as a cluster.

1
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‘Step 2: Evaluate the intercommection stremgths between {
\ \ ™ N .

!

every pair of clusters im both orders.

Step j: . Select the largest value from Step 2 and combine -

7

the two clusters to form a new large cluster.
Step 4: Repeat Steps 2 and 3 until only one large cluster

remains..

The \prbcessing\ required by this ‘algorithm is not as

!

I
|
. j}<
, |
!
]
|

expensiéé as it nmight appear. For each iteration only those

pairs involving the new cluster need to be computed. As well,

~

computation of the weighting formulae 'requires oanly a scan
through the blocks of a cluster until the page size is exceeded. ' .

., To summarize this new restructuring approach:

1) It appears that the method can be applied to any type
of intercoqnectiou matrix (not only the C¥S matrix).

2) Separate clustering and sequencing algorithas have been

RS

replaced by one\process-‘

3) The veighting of interreferences is intuitively correct

in that the farther apart two blocks 1lie, the less

likely they are té be on the same page and the iess

they coatribute t& interconnectivity.

) L;tge‘bloqks cogtribute less to interconnectiyity than
small blocks as the probébiliﬁy of a page boundary \

' occurring within these blocks’ is significant.

\
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4.2 Amalisis Criteria

To be able to judge the performance of different al‘qot\ithl\s‘ —
in a vworking set environment, it is essential ‘to ‘esltabl/islh
certain criteria. 'Jthe tyvo no_sty il‘)port_:ant statistics are the page
fault rate and the average ‘uorking“ set s;ize.. The page fault rate_
is simply the number of féults d;.vided by the reference string

ey '

leagth. The  average working set size is the iategral of the

. resideant size over the time the program is running (also referred

to as the Space-Time Product) divided by the reference string
length. There are many variations of these measures, but, these
two are usually considered to be sufficient.

Both statistics can be derived from one pass through a

program's reference étring [DERNT2 )~

{1,2,-«-n} he a set of n pages of a ptogt'an.‘

Let N

it

"Let R r(‘l)r(Z)...r(k) denote a finite sequence of k pagé
| references 'vhere r(t) € N, 150’:$k.

If, for a page reference r{t) at time t, the;e exists a
previous reference r(z) where: | ' | / \ ’

r{z) = r (k) for z < t
and F(n) ¢ rt) forz < m< t

then the interreference interval x(t) = t-z, Iotl;ervise X(t)y=ec0
Let C{x) be an array definmed over the ;ndices‘ 1€x<k and x=¢c0

and initialized to zero. If for every reference in the seguenc;a
H, the correspouding‘ C(x(t)) is incremented by one, then C u‘ill

maintain a set of interreference distance couhters. The data in

C is accunulated independently of a window size but is sufficient

7
‘to generate working set statistics' for any vindow size.

The number of page faults with a window of size T is, - -
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. N Y ,
F(1) = L C{t)r* C(o0) .
t=T*1 . .

The first term is the number of interreference distances

N

vwhich were greater than the window, while the second term is the
. 7

number of initial loads.

The Space—-Time Product with a vimndow of size T is,

‘ k T
ST(T) = Y c(t)st+ Y c(t)st + ) min(1,B(p))
t=T+1 =1 ] )

vhere p is the set of referenced pages and B(p) is the distance

. between kt*i and the last reference to page p. The first tera

accounts for all pages that were resident for T time units and

'then - discarded. The second tera adds those pages that ‘%ere

rereferenced within the window and thus, had an- extended life.

The third term is the' end correction ' factor foi: finite length

'

\ strings. 7This term picks up the pages that 'uere discarded froﬁu’

the vorking set and never referenced again, as well as adt_liné in

'

the final working set. .

\

Slutz anpd Traiger [SLOT74) have shbuﬁ, that the end

correction factor can be ignored im certain casSes since the.

error, E, involved is 0<E<nt/k. If the reference string lemgth

is J.ax:ge' compared to the nuaber of pages and the vindoy size,
then this error becomes negligible.

One disturbing aspect in the’area of program restructauring

is the 1lack of uniforﬁty vhen comparing different algorithms.

Many people, including Ferrari and Masuda, have graphed their’

results in teras of faults vs. window size. This type of

analysis can be lislead’i.ng.J ds the goal of pPrograa restructuring

‘is to reduce both the number of faults and the mean memory size,

\
- Ty
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~all c'olp‘arisoixs in this thesis will be based on both criteria.

4.3 Description of Sjisulation Programs ,

Simulations of various réstructuri\ng algorithns vere
performed on two programs. The\ firstA "prog‘tal is a Pa‘scalil
conpiler written  in Pascal and the second is a PFORT Verifier
written in FORTRAN. The prograss were selected based on theix.j
éize, number of blocks and the difference in their structures.
‘i‘he blocks of the programs were deteranined . directly from the
- CSECT map generated by a linkage editor. The' CSECTs or Control
Sections are graups of relocat;ahlé object «code which have a
unigue ent.rj point at one end.: \ |

The Pascal program is the first pass of a compiler and is
responsible for the generation of P—code which is used by the
" second pass. \ Pigure 5 px:c;vides the salient characteristics of
the program as far as restructuring is concerned. A page size of
2048 pytes ua\s selected due to its .reasclmable bLock/page ratio.

The PP(;BT Verifier is a program that examines a FORTRAN
program for adherence Ito PFORT, a portable subset of ANSI FORTRAN
[BRYDE73]. The Verifer takes as ix)lput, a PFORT program and
provides . various diagnostics such 'a\s‘ éynbol tabl es,
cross-references and error aessageS. The VYerifier is .itself
written ian éFORT. The progras . charactéristi‘cs are outlined in
— \Prignx:'e 5. A page size of 4096 by’tesf was selected.

Bi:cluding\ the soiurce languages of the progr&ls, the major
difference hetween the two, ‘struc‘tnrally, is in the‘handling of

1

data areas. Pascal creates data storgge dynamically ({(i.e. at
-55-
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execution time) B0 the CSECT blécks comtain imstruction
information and constants: only. FORTRAN, on the other hand,
creates data storage at compile tiame So that the CSECT blocks may
Also contain data iaformation. This explains the l&rge size of
the FORTBAN blocks compared to the Pascal blocks. This'also has
an effect on the efficiency of resttuctﬁring based on instruction
references. |

A trace program which interpréts object code was used to
monitor and ré¢ord the execution of the test frograms. Although
hotﬁ instruction and data referénces can lbe used in the
restructuring process (i.e. in the generation of the
inierconnection matrix), cost consideratioas peraitted oaly the'
instruction feferences to be nmonitored. A string of
approximately 475,000 references was generated fof each program.
'This corresponded to 21,151 nou-repetitive pascal  block
references and 14,357 non—repetitivey?ORTﬁau block references.

.To generate the CHS matrices for the pfogra-s, a\vindoi size
of 3000 references was selected. , fhig appeared to be a
réasonable value considering the reference string length and it
providéd a sufficient qulber of critical references to perform’
the restructuringe. There were Ij23 'critiéal references iﬁ,the
Pascal reference string and 1016 céi;ical references in the PPORT
‘reference str@ng. When perforaing Ferrari's clustering,
‘algoritha, a margin of overflow luaé pe:litted when creating
c}u;ters; . This largin vas determined from . the page size and the
block §iies. A margin of 128 Sytes vas allowed for in the Pascal
prograns hsing a 2K éage size. The la:gii vas incfgqsed» to’Z§6

. bytes for the PORTRAN program using a 4K page size.
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4.4 Egperimental Observatioms .

& e wd et et -

.

Throughout this Chapter an assumption was made that, the
seguencing of clusters wvas an iontegral part of restructuring. An

. 4 .
initial sinmulation rumn vwas @nmade to examine this assumption.

Figure 6 contains three curves: the nén-restru;tured Pascal
program, the restructured Pascal prograr using Fe_rtari's clusters
but a randonl—seguence cf the clugte‘rs and the restructured Pascal
program using Ferrari®s clusters and th¢‘e greedy segdencin%
aigbtithn- This w’gtaph clearly illustrates  the tremendous
importance that intelligent sequencing has. The graph indicates
that intelligent seguencing’ can account for at least 50% of the
improvesents. \ . .

Many different seguencing algorithms were attempted during

this research in an effcrt to improve upon the greedy heuristic.

Although several of these algorithms produced favorable results

! P N ‘i
on certain sisulation runs, they did not - provide consistent

’
1

isprovements. Their failure can be attributed, in part, to the

varying cluster sizes and thus the varyinag location of page

.boundaries. Another experiment took the greedy seguencing and

biased the page mapping by ‘one-half [age, that is, instead of
placin§ the first block at location 0 of page 1, the block vas
shifted down. This slight bias causedl a fault increase of up to
35%. Clearly the location of a pagéhoun’dary, even 'within the
samne block, can affe’ct él‘ze results. Another [rokblea in the

seqnencing\ algorithas -attempted, was the bhaamdling of large

blocks. In those cases where the res‘t:uct.m:j.ng reduced interpage\

faults to a winimal level, faults due to intzrablock references

distorted the overall statistics. Poor alignmept of large blocks —

v
1
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often resulted in more page boundaries withim the blocks than
appeared acceptable. '

The inconsistency of nodified seguencing alqorithas and the
sensiuvity of the rest:nctntlng to certaj.n parameters required a
radical change in the clustering amd seg_uehcux(- Algorithm CS
along with the probabilistic weighting function was proposed and
comnpared against the‘tuo test programs. The blqck/page ratio of
the sisulation programs are comsparable to those of Ferrari's
[\Fxﬁa‘lua). If there are more blocks per page, the perforsance of

Ferrari's method isproves, as the cluster sizes become : more

uniform. However, the programs used here .are presumably typical

and their results should ne judged accordingly.

Figure 7 illlustrates the restruc;:uring results of the Pascal
program. Both x:estx:nctnred\ vgrsioné produce a trenendnns
decrease in faults cnnpared to the unrestructured ptogran-\ To
the left of the knee, the iaproved netnod is definitely superior
to the standard approach.' In fact, ‘the difference widens as tlhe

average working set size decreases or, equivalently, as the

working set window approachs the CNS window. To the right of the

. knee, a slight anomaly takes place. Although this difference

nignt appear as a significant petcentnge,' if the imnitial load
faults were discounted, the actual rav number of additional page
fa‘hts would be quite small. ' |

Figure 8 illustrates the results of »tebt:ncturing the PFOART
program. The overall chntacterisltics of th’ese\ curves are guite
different froa thosn of Figure 7. This Il‘ig:ht be due to nhe‘
different fnnction of the prograna, an inherent feature of FORTRAN

code and/or the presence of many distinct localities. Once
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again, the improved method provides the best results, especially

for ssaller memory sizes. There is also a smsall anomaly for a

/

mean vorking set size of approxisately 22 pages. This differendce,

is negligible for the same reason as for Figure 7.
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\
L \
Prograu Size (bytes) . 89,136
Nusber of Blocks or CSBCts 115
Block Size (hytes) . -
minimum L . 72
average . . 775
median ' - 416
maxisum : 9656
Average MNumber of Blocks per Page
2048 bytes/page : : 2.6
4096 bytes/page . . -
Nuaber of blocks > 2048 bytes ) n
° Bumber of blocks > 4096 bytes -
Pigure 5 ~ Characteristics of Prograas
1 ’ ’ . ’-\‘\ f"
! \ S I
: / ‘ / '
& \ .
a } " =~
) —61-

S SRRy S

234,312

132

]

3

1775,

1032

26008

' 23

- g . s e
0

o

vy




"

yis

Ty

- . .
v ° \ ° {
> 4  (FS) , (RS)  (U5) . Pascal Compiler; page size 2K
400 ! ’. \ US: Unrestructured program
| 1 ,
* ‘, FS: Restructured program,
| | R v _using original Ferreri method
g ‘| .. \ RS: Restructured prograsm, random
® o . sequencing of Ferrari clusters
1 \ bt \ ) el
N 1 .a \ . * !
L . ‘
L] L
4 * \ N
3en . e %
. FEE T . ‘, . r .
]
3 L ‘ . ,“ . 4
3 e
3 . * .
"y N \ . \ ,
G \o L.
(o] j ‘ - \ , "
[ 5] [l
g \ Ld ‘e & i
E 900 - o . \ o o,
2 200 , \ . i Q\
. \ . : -
- v . \ , .
A . e
r \ L4 \
» AN \
. . i
“1 \\ .c \.
N
d \ % * .
' ‘\\ro '
\ -\ B
100 - -\
\ .\
< ) \ .‘.‘\f.
N o N
AN See
- N - \‘-s§.-_ \.:.‘.:'.'.‘
i TR S T
i ]5 8 j L / L4 ‘ v sz 1 2 1] ‘B ,I\ . 12'5 1 A ]
) Average Working Set Size /(in pages) ;e
¢ Figure 6 - Random Cluster Sequencing of Pascal Progi-;a‘l‘n

4 . w ~

-62-

-
S




400 -

200 -

Number of Faults

100 A

4

Pascall Compiler; pege size 2K

;(FS)
\ .o U_§: Un;estructured program
(IS)H : ‘FS: Restructured program,
) \ o :(US) using origiqal Fer;ari method
\ R 15: Restructured program,
\ improved sequencing method
) ; \ W,

! ’

L4 b L2 T ¥ v Mg r 3 v

20 25
Average Working Set Size (in pages)
Figure 7 - Improved Restructuring of, Pascal Program

-63-
L,

s




Number of Faults

200

100

. o PFORT Verifier; page size 4K
\ \ " US: Unrestructured progrem o
, : ’ FS: Restructured program,
using original Ferrari method
co o IS:: Restructured program,
< ‘ improved sequencing ‘method

25 ¢ T

Average Working Set Size (in pages)

] ¥ 20 ¥ ',, I\

. Figure 8 - Improved Restructuring of PFORT Program

-64~

Y

3 ' .

e o

' ‘.
'
=
N e et e = e




P
'

e g s 1

]

&

5P \algoiithn vas used. - At a fanlg, the page innedi&tely

—
‘

: - .
As discussed in Chapter '3, the main issue in prepaging is

determining which pages are most likely to be used in the near

future. A wmethod such as Joseph's OBL, prefetches pages

sequentially based on the assumption that a block\of cédd\on one
éage say oyétlap onto the following page. It would be des;rahle,
if the fbllowing bage is p;efetched,  that not only the
overlapping code be executed; but the‘rest of‘the page as well.
This would inély ,soné\sort of segquential flow from block to
b;ock. Since ;ost progréns do not follog a stiictn sequence of
rontines, ve can modify this characteristic. For any block, the

following block should be the one most llkely ‘to be executed

‘)

"next. If this condition vere found in a ‘program, then a

pﬁepaging policy that ﬁetchgs pages sequentially should increase

. . . ,
- e i n e e e e e s i e e ma ek weh vt i s i 0 N e e Sain 5 e

the system performance. Unfortunately, ' this type of program

characteristic does mot natutaily appear.

Ihe qoal of prograa restructurxng 15 to/‘group together, on
one ‘page, progran hlocks that are nost 11kely to be executed
within ; short period of tinme. As well, if blocks overlap pages,
aISeqnencing is'psed that selects . the next page based on the

likelihood that blocks on that page, v111 be  executed next..

. c1eatly. the restructnrxng process .creates block sequenCLng that

is iore desirable for a prepaging environment than,

non—restxuctuted ptOgIRISL o

To test ;hzs hypothesis, a working set version of Joseph's ,

%plloiing'the requested page is addédfgp the working set if it is
-65-
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not\already a -é-hér. Si-ulations using this‘p:epaging _strategy,

unlike the standatd uorking set policy, regu;res one pass through

the reference strlng for each and every window size desired.

‘

When dealing with a half—lillion‘refereﬁces the cost can becoae

‘"quite prohibitive. As a result, only a few data points were

accumulated for each simulation run. ' T

Prepaging fault rate statistics vere gathered for .the

-

non—resttuctured Pascal prograu and ‘the’ restructured Pascal
Gptogran using the standard Pertarx clusterlng and \seguenc;ng.
¥hat is of interest is the decrease in faults for the
restructured program as coampared tb/the non-restructured progras.
In oiher vords, we should expect that the benefits oefained by
prefetchieg the restructured program should be greater than those
fotrthe nog«festfuctured pfog;an- | ' \ .
Figure 9 illnstfatés the perceat improvesent in page‘fanits
by using prepaging instead of the normal working set poliey for a
range of mean memory sizes. The festrnctured program clearly

provides the greatest inprovenents. Over the range shown, the

restructured program is 4% better. This inprovement is not as

. large as might have been eipected. A possible reason might be

the relatively shoft reference string length compared tg the

window size (a slightly larger window éize is pecessary to ensure

that the prefetcﬂed*pages do not get discarded prematurely). The

benefits of efficient prepaging are more significant’ over a

longer period of time when the initial load faults are no longer‘

a factor. Unfortpnately, it was not possible to attempt longer

v

reﬁerence strings due to the cosgs involved. Begardless of the

magnitude of the improvement, the experiment does indicate that,

-66=
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Vaiipus major restructuring algorithmss _were presented along

vwith an analysis of inherent deficiencies. Particular attention

vas paid to the problem of clustering brogr@n'blocks and té the

'

sequencing of these clusters. An analysis revealed that a

-flexible seguencing ‘[rocess results inm a lcss of page boundary

information. It was also shoun that the aligament of page

‘boundaries is an integral part of restructuring.

=

As a result, a new approach to the clustering/sequencing .

érohlem was introduced. This sethod begins by considering each .

individual block as a cluster. Clusters are then iteratively
grouped according to the greatest interconnectipn strengths. The
interconnectivity is determined by weighting the interblock

contributions according to the probability of a page boundary

\

woécnrring between the blocks. - In other Qords, the farther apart

. two blacks lie, the . less they contribute tg the overall

-

\

C3qnectivity of two ' clusters. This nmethod was tested, - using

'

Ferrari's CWS aatrix as a 'basis for interbonnectiyity, and

conpared against the standard Ferrari technigue- Slnulatlons

—ns1ng two test prograls shoved that the . news method produced

sxgnlficantly bettet results.
A brief 'exanindtion Iof prepaging was made and a few
vell-Xkncwn sirategies were described.. The charécteriétics of

restructured programs suggest that a seguential prepaging policy,

such as O0BL, should enhance the paging perforaance.. A siaple

experiment was performed comparing a non-restructured progranm to

a restructured version in a prepaged vorking set enviroament.
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The resuits indicated that the begeiifa of pfoéaging are greater
for restruactured prograns‘than for'non-tbstrnctured, '
Mthough the goal of _this research was to i-pro;g ‘the
laéhods’for progranm testrucinring.‘the nev method ptésante& gs by
" no seans perfect. ' There are 'still cé:@ain areas where
improvesents ‘can be made. j Oae ‘anea in particular is the
ttea:ient of ;iAtge blocks. ' The Cis’ appro;ch_$reats blocks as
single enlifie§ §q~tha£’thp matrix entries provide no 'information
as  to vhich section of the block was most active in
dinterrefereancing. " If blocks‘are small compared to the page size,
this lack of iaforhation provides;nd h&hdicap_ .ﬁsing the new
method on large blocks, however, this information ioﬁld be
uségul. What ig suggested’ is th;t large blopks be sélig into

" small Blockg for the generation of the CiS matrix. The first

\ step in the cluétering\process would then be to recombine these

small blocks back into large ones. .The di@ferenég"nou. is that

‘¥e can groﬁp\ these litgé Slocks using a weighting of the
.suh-blgcks.\ This‘lqdiflcatiqn might prove benef;cial.‘ |
\Another area wvorth ‘examidhing is' that of_ the ueiéhtihé
function Lfor i;ietigfeténceé. The novelty of thé algoritha
presented is the use of a weighting to reflégg the probébility of

a page boundary bcdutr;ng 'between blocks. The fumction  used,

ovever, ry sisple limear vweighting. The use of a more
sophisticated yeightiné\could produce better iesnlts,

The e;periiental}tesults presented on prepaging';prpvided

.only a hint of what ‘berfOtlaico\-géinQ can be expected. ‘The

prepaging strategy that wvas salectgd«las simsple to simulate and

reguiréd no ﬁnwieldy tabies.h There are still ways to ilptoie
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restructuring is  used.
preéeﬁing page instead of or as vwell as the follonin§ page since

’

iiptercopnqctivity‘can\ be bi-directional. Resbitch i£to ~¥ more

efficient prepaging policy would also be Cvaipthe ;n' teras of
‘sinulaticm qosté. . Such a'iolicj would\pernié loagér tefetenéé
\ strings’éo be ﬁaed therehj producing more aécurate tosulés. r
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;hié strategy so that more of the lnforlatlpn_ p:dtided'tl;oqgh/

This , could involve prefetching the .
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