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New Findings
� What is the topic of this review?

This review summarizes the beneficial actions of oestrogen on the vasculature, highlighting
both molecular mechanisms and functional outcomes.

� What advances does it highlight?
The net effect of oestrogen on the vascular health of women continues to be debated. Recent
advances have provided strong evidence for the role of membrane-bound oestrogen receptors
in the maintenance of normal endothelial function. On a broader scale, functional outcomes
of oestrogen actions on the vasculature may mediate the reduced risk of cardiovascular disease
in premenopausal women.

The conflicting implications of the large-scale clinical menopausal hormone therapy trials in
humans versus the findings of studies on experimental animals underscore the limitations within
our understanding of the molecular actions of oestrogen. However, recent research has provided
improved insight into the actions of oestrogen on the endothelium and vascular smooth muscle.
This review outlines the actions of oestrogen as it contributes to vascular structure, function
and health.
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Introduction

Premenopausal women benefit from a reduced incidence
of cardiovascular disease relative to men of a similar age
(Tunstall-Pedoe et al. 1994; Rosenthal & Oparil, 2000).
A primary role for oestrogen in this ‘cardioprotection’
and a role in prevention of cardiovascular disease
when supplemented following menopause had long been
assumed, but large-scale clinical trials demonstrated that
an increased understanding of the actions of oestrogen
is required. For instance, both the Women’s Health
Initiative study and the Heart and Estrogen-Progestin
Replacement Study indicated that the postmenopausal

use of menopausal hormone therapy is associated with
an increase in adverse cardiovascular events (Hulley et al.
1998; Grady et al. 2002; Rossouw et al. 2002; Anderson
et al. 2004). The Kronos Early Estrogen Prevention
Study, which examined postmenopausal women without
cardiovascular risk factors, demonstrated no significant
effect of hormone therapy on the progression of
atherosclerosis (Harman et al. 2014; Kling et al.
2015), whereas the Early versus Late Intervention Trial
with Estradiol showed beneficial effects of menopausal
hormone therapy, but only in women with elevated lipids
who were not taking statins (Karim et al. 2005). Taken
together, the data suggest that the effects of hormone
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therapy are dependent on the timing of the initiation, dose
and formulation of the treatment relative to menopause
and the number or degree of pre-existing risk factors.
An underlying implication of these data is that the
cardiovascular actions of oestrogen are complex and
incompletely understood.

Oestrogen receptors

The most well-established oestrogen receptors (ERs) are
ERα and ERβ. The presence of both receptor subtypes
has been documented in endothelial and vascular smooth
muscle cells (Mendelsohn & Karas, 1999). While the
distinct roles of each subtype continue to be elucidated,
both ERα and ERβ have been shown to contribute to
vascular function (Miller & Duckles, 2008). Receptor
expression is modulated by circulating oestrogen levels
(Ihionkhan et al. 2002), although ERα and ERβ appear
to be regulated in a different manner by oestrogen
concentrations (Okano et al. 2006; Miller & Duckles,
2008), and the effect of oestrogen on receptor densities
is likely to be dependent on the tissue type (Haas et al.
2007; Miller & Duckles, 2008).

The classical view of ERα and ERβ is as ligand-activated
transcription factors that reside in the cytosol. Within
this context, they elicit genomic effects that require
hours to days to become manifest. However, evidence has
accumulated over the past 30 years to indicate that ERs and
the signalling cascades initiated by ERs are more complex
than previously appreciated. For example, cytosolic
receptors can also mediate non-genomic responses;
ER-mediated responses to oestrogen have been observed in
the presence of transcriptional inhibitors (Caulin-Glaser
et al. 1997). One of the most well-established vascular
effects of oestrogen, the production of NO, appears to
occur by both genomic and non-genomic mechanisms.
On the one hand, long-term in vitro administration of
oestrogen elicits increases in expression of the endothelial
NO synthase (eNOS) mRNA and protein expression
(Hishikawa et al. 1995; MacRitchie et al. 1997). On the
other hand, activation of eNOS occurs rapidly, implicating
non-genomic mechanisms as well (Caulin-Glaser et al.
1997; Haynes et al. 2000).

Another advance in oestrogen signalling has been the
discovery of plasma membrane-bound ERs (Moriarty
et al. 2006), the existence of which was debated for
decades largely because of the lack of consensus regarding
the molecular structure of the receptor (Hisamoto &
Bender, 2005). This issue is made more complex by the
presence of the various splice isoforms of the ERα, which
are expressed in conditions of oestrogen deprivation (Li
et al. 2003) and preserve oestrogen-mediated vascular
responses. In exon 2-targeted female ERα knockout
animals, the oestrogen-mediated protection from vascular
injury is preserved (Iafrati et al. 1997; Karas et al. 1999;

Pare et al. 2002) because of the retention of splice isoforms
of ERα.

In humans, membrane-bound receptors appear to be
important for the regulation of vascular function, because
they have been identified on endothelial cells where the
application of membrane-impermeant oestrogens results
in the activation of eNOS within minutes (Russell et al.
2000). Importantly, cross-talk exists between oestrogen-
mediated rapid signalling pathways and genomic pathways
(Moriarty et al. 2006). Therefore, the vascular actions
of oestrogen are likely to be mediated by a complex
combination of membrane-associated and cytosolic ERs,
as well as ER splice isoforms.

Endothelial effects of oestrogen

The endothelial layer is an important site of regulation
of vascular function and plays a critical role in the
determination of vascular health. Endothelial function is
associated with oestrogen receptor levels such that male ER
knockout mice are associated with reduced basal release
of nitric oxide by the endothelium (Rubanyi et al. 1997).
The endothelial effects of oestrogen are among the most
well described and have been the topic of several reviews
(Miller & Mulvagh, 2007; Kim & Bender, 2009; Arnal et al.
2010).

Oestrogen may affect endothelial function by
increasing sensitivity to vasodilatory factors, such as
acetylcholine, reducing the concentrations required to
evoke similar vasodilatory responses to those observed
in oestrogen-deprived animals (Gisclard et al. 1988;
Miller & Mulvagh, 2007). Data from ovariectomized
animals indicate that chronic oestrogen supplementation
results in an upregulation of eNOS expression, and
thereby, an increase in circulating NO (McNeill et al.
1999; Stirone et al. 2003; Okano et al. 2006). While
this upregulation of eNOS is known to occur through
genomic mechanisms (McNeill et al. 1999; Stirone
et al. 2003), rapid, non-genomic pathways that lead
to increases in eNOS function are activated upon
oestrogen binding at membrane-associated ERs (Russell
et al. 2000). The molecular pathways involved in
oestrogen-mediated increases in endothelial NO include
the rapid, oestrogen-induced activation of the tyrosine
kinase c-Src, followed by sequential activation of
phosphatidylinositol-3 kinase, Akt and eNOS (Haynes
et al. 2000, 2003; Hisamoto et al. 2001). In some cellular
preparations, the heterotrimeric G proteins Gαi and Gβγ

are involved in membrane-initiated responses (Wyckoff
et al. 2001). Plasma membrane ERs can be localized
to caveolae, which are specialized lipid rafts abundant
in endothelial cells (Chambliss et al. 2000; Li et al.
2003). In addition, ER46 can conform to a type I
integral transmembrane protein with a ligand-binding
ectodomain (Kim et al. 2011). The definition of these
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various microdomains and components of ER-mediated
signalling pathways that result in endothelial NO
production provides a variety of therapeutic targets for
promotion of vascular homeostasis and health.

The case study of a 31-year old man lacking ERα (Smith
et al. 1994) has demonstrated that ERα plays a critical
role in the maintenance of endothelial health. Alongside
problems such as decreased bone mineral density and
incomplete epiphyseal closure, the man had early-onset
coronary atherosclerosis (Sudhir et al. 1997a) and lacked
the flow-mediated vasodilatation (FMD) response (Sudhir
et al. 1997b). Although these data also indicate that
oestrogen is an important moderator of endothelial
function in both men and women, sex differences in
endothelial function have been observed. Whole-body
production of nitric oxide, assessed over a 36 h period,
is greater in women in the late follicular phase of the
menstrual cycle relative to men (Forte et al. 1998).
Additionally, when assessed in either the late follicular
or the mid-luteal phase of the menstrual cycle, responses
to FMD are potentiated in women relative to men
(Hashimoto et al. 1995), pointing to an oestrogen-based
increase in endothelial function in premenopausal women
relative to men.

Flow-mediated dilatation presents a non-invasive
means of assessing endothelial function. Flow-mediated
dilatation responses have been shown to be predictive
of adverse cardiovascular events (Inaba et al. 2010), and
FMD is considered to be a valid clinical test of endothelial
function (Thijssen et al. 2011). In support of a direct and
functional effect of oestrogen on the endothelium, FMD
responses are attenuated in the phase of the menstrual
cycle when oestrogen levels are low (Hashimoto et al. 1995;
Williams et al. 2001). Increases in FMD responses when
oestrogen concentrations are elevated (Hashimoto et al.
1995) suggest that this effect is oestrogen dependent and
not dependent on progesterone concentrations. The lack
of an FMD response in the man lacking ERα likewise
supports a strong role for oestrogen in the generation of
the FMD response (Sudhir et al. 1997b).

Endothelial function declines markedly at menopause
(Celermajer et al. 1994), and oestrogen administration
in recently postmenopausal women has been shown to
increase FMD responses (Lieberman et al. 1994). Likewise,
postmenopausal women with vascular dysfunction
experience an increase in acetylcholine-induced
vasodilatation following an acute infusion of oestrogen
(Gilligan et al. 1994). Improvements in endothelial
responsiveness that occur with oestrogen administration
in postmenopausal women are reduced with increasing
age after menopause (Sherwood et al. 2007; Vitale et al.
2008), indicating that the prolonged absence of oestrogen
elicits deleterious changes within the endothelium that
cannot be restored by oestrogen treatment (Miller &
Duckles, 2008).

Effects of oestrogen on vascular smooth muscle cells

Primary evidence for the effects of oestrogen on vascular
smooth muscle cells has been derived from the study of
endothelium-denuded arteries. In such in vitro prepa-
rations, oestrogen has been shown to inhibit vascular
smooth muscle cell contraction, which may occur
through the inhibition of calcium ion entry into the
cell (Crews & Khalil, 1999a,b) and/or through the
opening of potassium channels and subsequent cellular
hyperpolarization (White et al. 1995; Wellman et al.
1996). In line with these findings, aortic vasoconstriction
in response to phenylephrine infusions is reduced in
female rats relative to male rats (Stallone et al. 1991;
Kanashiro & Khalil, 2001). Likewise, in healthy young
humans, the administration of noradrenaline elicits a
greater vasoconstriction in men relative to women (Kneale
et al. 2000).

Effects of oestrogen on atherosclerotic factors

One of the most important roles of oestrogen in the
maintenance of vascular health may be its antiatherogenic
properties (Rossouw, 1996). Oestrogen has been shown
to affect each component of the atherosclerotic cascade
(Hisamoto & Bender, 2005), including an effect on
circulating lipids (Anon., 1995; Muesing et al. 1996)
and the resultant inflammatory responses to the injury
triggered by lipids and subsequent matrix deposition and
intimal expansion (Beldekas et al. 1981). Oestrogen has
also been shown to elicit a positive effect on endothelial cell
growth (Krasinski et al. 1997), while exerting an inhibitory
effect over the growth and proliferation of vascular smooth
muscle cells (Kolodgie et al. 1996; Bhalla et al. 1997), both
of which contribute to the antiatherosclerotic effects of
oestrogen (Mendelsohn, 2000). Many of these effects may
be NO mediated.

Conclusions and implications

The protective actions of oestrogen on the vasculature
are multifaceted and profound. It is likely that the
direct effects of oestrogen on the endothelium and
vascular smooth muscle, through both rapid signalling
pathways and genomic mechanisms, underlie much of
the cardioprotection afforded to premenopausal women.
Improved understanding of the molecular actions of
oestrogen is required to optimize the development
of hormonal treatments for postmenopausal women.
One implication of such advances has been the
development of selective ER modulators (SERMs),
which have tissue-specific effects, functioning as ER
agonists in some tissues and ER antagonists in others.
With greater understanding of the molecular pathways
affected by ER activation, a variety of SERMs are
currently being engineered with the goal of maximizing
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cardiovascular and other benefits (e.g. bone, vaginal)
without adversely affecting breast or endometrial tissues
(Khalil, 2013). Although the clinical benefits of current
SERMs, primarily raloxifene, appear to be limited
(Barrett-Connor et al. 2002, 2006), the development of
novel SERMs remains a promising area of study for the
preservation of cardiovascular health in postmenopausal
women (Khalil, 2013) and underlines the importance of
furthering our understanding of the molecular actions of
oestrogen.
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