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ABSTRACT

Replacement of conventional gasoline passenger vehicles to more sustainable vehicle
technologies (such as hybrid- or full-electric vehicles) is one of the emission-reduction strategies
and the transition to electrification in the transportation sector in Canada. This research aims to
investigate the performance of passenger hybrid electric vehicles (HEVS) in real-world driving
conditions and in various road environments and temperature conditions. More specifically, this
research is two-fold: i) to investigate the performance of HEVs in terms of fuel consumption and
emissions with respect to conventional gasoline vehicles (non-HEVS) considering real-world
measurements and ii) to compare the fuel consumption and emission rates between conventional
HEVs and plug-in hybrid electric vehicles (PHEVS), including the impacts of ambient
temperature conditions. This research is based on data collected in the City of Montréal, Canada,
as a case study. The effects of different factors on the fuel consumption and emissions are
analyzed.

Among the main results of this study, it was found that the HEVs reduce fuel
consumption rate (FCR) by approximately 33.5% to 43.3% and carbon dioxide (CO2) emissions
rate by approximately 60.9% to 66.3%, from the statistical analysis of the experiments. After
controlling for other factors, the results from the regression models reveal that by driving a HEV,
FCR could decrease by approximately 25.5% and CO2 emission rate could decrease by
approximately by 55.7%, compared to conventional gasoline vehicles. This aligns with past
research on the fuel economy savings (when comparing conventional gasoline vehicles to HEVS)

between 20-45% and between a similar range for CO2 reduction between 20-40%.



Key factors that affect the fuel economy and emission rates of HEVs and non-HEVs are
vehicle speed, acceleration, slope, road type and ambient temperature. Of the factors, vehicle
speed has the biggest influence on vehicle performance (after vehicle type). For speed, the
marginal effects analysis revealed that for every unit increase in vehicle speed, the FCR
increases by 25.2% for HEVs and 50.9% for non-HEVs. For CO2 emission rate, it decreases by
5.2% for HEVs and increases by 51.3% for non-HEVs for every unit increase in speed.
Acceleration has a positive but small effect on the performance, where 1% increase in
acceleration increases FCR by around 0.2% and CO; around 0.3%. Slope also has a positive but
small effect on the performance. The effect of road type is mixed from the regression models.
But, from statistical analysis, it was revealed that FCR and emissions for non-HEVs are
consistently higher than HEVs across all different types of road class. For non-HEVs, the
emissions are higher in local streets than highways, whereas it is the opposite for HEVS.

Overall, the findings in this study provide some insights into the factors influencing the

fuel consumption and CO rates of HEVs and non-HEVs in real-world conditions.



RESUME

Le remplacement des vehicules de tourisme a essence conventionnels par des
technologies plus durables (telles que les véhicules hybrides ou entiérement électriques) est I'une
des stratégies de réduction des émissions et de transition vers I'électrification dans le secteur des
transports au Canada. Cette recherche a pour but d'étudier les performances des véhicules
électriques hybrides (HEV) dans des conditions de conduite réelles et dans divers
environnements routiers et conditions de température. Plus précisément, cette recherche
comporte deux volets : i) étudier les performances des HEV en termes de consommation de
carburant et d'émissions par rapport aux véhicules a essence conventionnels (hon- HEV) en
prenant des mesures en conditions réelles et ii) comparer les taux de consommation de carburant
et d'émissions entre les HEV conventionnels et les véhicules électriques hybrides rechargeables
(PHEV), y compris I'impact des conditions de température ambiante. Cette recherche est basée
sur des données collectées dans la ville de Montréal, au Canada, en tant qu'étude de cas. Les
effets de différents facteurs sur la consommation de carburant et les émissions sont analysés.

Parmi les principaux résultats de cette étude, I'analyse statistique des expériences a
montré que les véhicules électriques hybrides réduisent la consommation de carburant d'environ
33,5 % a 43,3 % et les émissions de dioxyde de carbone (CO.) d'environ 60,9 % a 66,3 %. Apres
prise en compte d'autres facteurs, les résultats des modeéles de régression révelent qu'en
conduisant un HEV, le FCR peut diminuer d'environ 25,5 % et le taux d'émission de CO>
d'environ 55,7 %, par rapport aux véhicules a essence conventionnels. Cela correspond aux
recherches antérieures sur les économies de carburant (en comparant les véhicules a essence
conventionnels aux véhicules électriques hybrides) entre 20 et 45 % et a une fourchette similaire

pour la réduction du CO- entre 20 et 40 %.



Les principaux facteurs qui influencent la consommation de carburant et les taux
d'émission des vehicules électriques hybrides et non hybrides sont la vitesse du véhicule,
I'accélération, la pente, le type de route et la température ambiante. Parmi ces facteurs, c'est la
vitesse du véhicule qui a la plus grande influence sur les performances du véhicule (aprés le type
de véhicule). Pour la vitesse, I'analyse des effets marginaux a révélé que pour chaque unité
d'augmentation de la vitesse du vehicule, le FCR augmente de 25,2 % pour les HEV et de 50,9 %
pour les non-HEV. Quant au taux d'émission de COy, il diminue de 5,2 % pour les véhicules
électriques hybrides et augmente de 51,3 % pour les véhicules électriques non hybrides pour
chaque unité d'augmentation de la vitesse. L'accélération a un effet positif, mais faible, sur les
performances : une augmentation de 1 % de l'accélération accroit le FCR d'environ 0,2 % et le
CO. d'environ 0,3 %. La pente a également un effet positif mais faible sur les performances.
L'effet du type de route est mitigé dans le modéle de régression. Mais l'analyse statistique a
révélé que le coefficient de réduction de la consommation et les émissions des véhicules autres
que les HEV sont systématiquement plus élevés que ceux des HEV, quel que soit le type de
route. Pour les véhicules autres que les VHE, les émissions sont plus élevées dans les rues
locales que sur les autoroutes, alors que c'est I'inverse pour les HEV.

Dans I'ensemble, les résultats de cette étude permettent de mieux comprendre les facteurs
qui influencent la consommation de carburant et les taux de CO des véhicules électriques

hybrides et des véhicules électriques non hybrides dans des conditions réelles.
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1. INTRODUCTION

1.1. Context

Transportation sector is one of the fourth largest contributors of greenhouse gas (GHG)
emissions in the world, accounting for 25% of worldwide GHGs (International Energy Agency,
2022). In Canada, the transport sector emitted 159.2 megatonnes of carbon dioxide equivalent
(CO2e) in 2020, accounting for approximately 23.7% of the total GHG emitted in the country,
making it the second largest emitter after the oil and gas sector where it emitted 178.8
megatonnes of CO2e (26.6% of the total GHG) (Environment and Climate Change Canada,
2022). The emissions in the transport sector come from the following categories: passenger (cars,
light trucks, motorcycles, bus, rail and aviation), freight (heavy duty trucks, rail, aviation and
marine) and other categories (recreational, commercial and residential use). Taking a closer look
at emissions from passenger cars, where this study is focused on, passenger cars emitted 26
megatonnes of CO.e in 2020 in Canada, accounting for 16.3% among the categories included in
the transport sector. Even though there was an approximately 22.6% reduction from passenger
cars during the COVID-19 pandemic, the levels of traffic and the emissions are back to the pre-
COVID years (Environment and Climate Change Canada, 2023b). The transport sector is
responsible for 28% of global energy consumption (IPCC, 2014), 40% of the transport energy is
used by urban transportation, including passenger cars. Quebec is one of the top three provinces
in Canada that emit the most GHG emissions (Environment and Climate Change Canada,
2023b). Of which, transportation sector is the biggest GHG emitter in the province, accounting
for 40% of overall emissions (Ministére de I’Environnement, 2023). This is a huge source of
GHG emissions. The transport sector is quite broad and there are many areas where emission

reduction efforts could be focused.



To combat climate change, many countries around the world have committed to reducing
GHG emissions in the Paris Agreement and to achieving net zero emissions through policies and
legislation, including the European Union and the Government of Canada where the Canadian
Net-Zero Emissions Accountability Act became law in June 2021 for achieving net-zero emission
by 2050 (Government of Canada, 2023). Of which, transportation electrification was one of the
strategies. Canada has committed to at least 20% of the new vehicles sold to be zero emissions
by 2026, 60% by 2030 and 100% by 2035, having hybrid vehicles as the transition (Environment
and Climate Change Canada, 2021).

The GHG emissions, specifically CO, emissions, from vehicles in the sector account for
a significant proportion of the total emissions (Seo et al., 2016). It is imperative to target the
transport sector for the reduction of CO emissions. In addition to CO, tailpipe emissions also
include other GHGs such as methane, nitrous oxides and hydrofluorocarbons. This study
assumes the other GHG emissions are negligible because past research have shown that CO>
emissions account for approximately 95-99% of the total tailpipe GHG emissions (U.S.
Environmental Protection Agency, 2023).

In literature, many studies have examined the impacts of HEVs, PHEVs and battery
electric vehicle technologies. In these studies, the general consensus is that reduction in GHG
emissions is achieved by employing these technologies. In general, HEVs or PHEVS can reduce
the energy consumption and emissions in the range of 20% to 40% approximately, depending on
the parameters of the study. More specifically, there are also studies that looked at the amount of
reduction from converting fossil-fuel powered vehicle fleets. One study showed that if 25% of
the vehicle fleet converts to HEVs, there could be a 10% decrease in GHG emissions (Chan et

al., 2013). HEVs can serve as transitional vehicles where they provide higher acceptability than



full electric vehicles, are perceived as more reliable and they are the more economical option

than conventional gasoline vehicles.

1.2. Limitations and Research Gaps

Because hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVS) are
still considered to be novel technologies that are still being improved, they are not as well-
studied (Sarlioglu et al., 2016). When manufacturers report the fuel economy or the estimated
GHG emissions, they are performed in laboratory setting or estimated (Suttakul et al., 2022).
This is a big limitation because vehicle performance is highly influenced by other factors such as
driving ranges, road geometry, road condition, ambient temperature, weather and driving
behaviour (Suttakul et al., 2022). Real-world driving tests can incorporate some of these possible
impacts. There is a lack of real-world driving data from HEVs and PHEVs which this research
fills by conducting data collection.

In addition, HEVs and PHEVs are considered to be the transitional vehicles between the
conventional gasoline vehicles (with internal combustion engine) and battery electric vehicles
(100% electrification). The general public is still slightly skeptical about its performance,
reliability and fuel savings claimed by manufactures. From the accessibility perspective, the
HEV market is geared towards households with higher income, post-secondary education and
those living in dense neighbourhoods with access to transit and services (Dimatulac & Maoh,
2017). For PHEVs specifically, where they have the option to fuel electricity directly from the
grid, the emission intensities for electricity production vary greatly from different geographic
locations. Across provinces and territories within Canada for example, the electricity carbon

intensities are 900, 40 and 1.7 grams of GHG/kWh in Alberta, Ontario and Quebec, respectively



(Canada Energy Regulator, 2018). There is currently a lack of electric modelling approaches that
are fully scalable to large transportation network applications or to consider the actual on-road

vehicle operating conditions (Xu et al., 2020).

1.3. Obijectives

The general objective of this thesis is to evaluate the performance of passenger (sedans,
hatchbacks and SUVSs) hybrid electric vehicles, with respect to fuel consumption and CO>
emissions, and the impacts of environment and road conditions on its performance.

The specific objectives are as follows:

1. To compare the fuel consumption rate and CO> emission rate between hybrid electric
vehicles and conventional gasoline vehicles based on real-world driving in Montreéal,
Canada. The impacts of various driving, environmental and road conditions are evaluated
against the fuel economy and emissions. The variables studied include vehicle class
(hatchback, sedan or SUV), vehicle speed, acceleration, engine speed, slope, road class
(local streets, collectors, main arterials, secondary arterials and motorways), speed limit,
number of lanes and annual average daily traffic.

2. To compare the fuel consumption rate and CO, emission rate between conventional
hybrid electric vehicles and plug-in hybrid electric vehicles. The impacts of ambient
temperature are evaluated against the performance of the different powertrain types of
vehicles (conventional gasoline vehicles, hybrid electric vehicles and plug-in hybrid

electric vehicles).



1.4. Contributions

Based on the gaps identified in the literature, the unique contributions of this work are as

follows:

To generate a dataset on vehicle performance and emissions from hybrid electric vehicles
using Portable Emissions Measurement System (PEMS) based on real-world driving
experiments, to add more data to the database. The data could be used for further
modelling, analysis and for helping with decision making with policy and guidelines
(such as carbon tax or incentives).

To evaluate the performance of hybrid electric vehicles (both conventional HEVs and
plug-in HEVS) in different urban road conditions using the City of Montréal in Canada as
a case study.

To better understand how hybrid electric vehicle characteristics, driving behaviour,
weather conditions, road and traffic conditions affect fuel consumption rate and

greenhouse gas emissions.

1.5. Organization

This research is organized in the following manner:

Chapter 2 is a review of the existing literature surrounding the topics of hybrid electric
vehicles, plug-in hybrid electric vehicles, its associated fuel consumption, efficiency, and
emissions. In addition, a general overview was conducted on the factors influencing the
performance of HEVs such as driving behaviour (i.e. vehicle speed and acceleration),
environmental conditions (i.e. ambient temperature) and road and traffic conditions (i.e.
road type and slope). Some literature review was done on vehicle specific power, which

IS an important outcome when evaluating and estimating a vehicle’s performance.



Previous studies on comparing real-world driving to laboratory testing was researched.
For data analysis purposes, previous modelling approaches used for similar research were
also studied.

Chapter 3 details the methodology and experimental design for the entire study. It covers
the on-road experiments including vehicle selection process, equipment selection and set-
up and the study area. In addition, it also covers the process for data preparation,
cleaning, processing and analysis.

Chapter 4 comprises the complete results and research findings from this study and has
two parts. Part 1 is results from Objective 1 and Part 2 is results from Objective 2.
Chapter 5 is the discussion where it focuses on the implications and interpretations of the
results, the overall limitations, uncertainties and assumptions. Further, it also discusses
the contributions and policy implications from this study.

Chapter 6 concludes this research by summarizing all the relevant findings, evaluating
the limitations, strengths and weaknesses of this research and suggesting the topics and

gaps for future studies.



2. LITERATURE REVIEW

2.1. Hybrid Electric Technologies

The hybrid electric vehicle (HEV) system works by combining a conventional internal
combustion engine and an electric motor, where the electric motor is engaged depending on the
vehicle speed and acceleration (Fontaras et al., 2008). With the addition of an electric motor, the
powertrain of a HEV distributes power to the engine and motor based on considerations such as
the driver’s request, engine status, battery status and vehicle driving information through the
hybrid control unit (Choi et al., 2021). There are generally two types of hybrid drivetrains:
parallel and series configurations.

Past studies have shown the environmental benefits of HEVs including reducing the
impacts of internal combustion engines on air pollution and greenhouse gas emissions (Li et al.,
2021). Not surprisingly, the purchase of HEVs are becoming more popular and affordable, being
projected to make up of 23% of global sales by 2025 (Robinson & Holmén, 2020).

The designs for the hybrid electric systems comprise of parallel and series hybrid
propulsion configurations, depending on the power flow from the sources of energy (fuel and
energy storage system to the transmission) (M. Sabri et al., 2016). In parallel hybrid propulsion,
both the electric motor and the internal combustion engine work together to power the vehicle,
where the electric motor recaptures energy during deceleration to provide power for the auxiliary
systems (Zhai et al., 2011). Whereas in the series hybrid propulsion, the electric motor is solely
responsible for powering the vehicle, converting mechanical output into electricity using a
generator (Zhai et al., 2011).

HEVs reduce pollution and energy consumption by combining at least one electric motor

with internal combustion engine to power the vehicle; regenerative braking is captured by the



system, using recuperated kinetic energy and stored as electric energy (Emadi et al., 2008)
(Alvarez & Weilenmann, 2012). Because of this, HEVs do not need external charging (Ahmad et
al., 2022). The hybrid system also turns off the engine when the vehicle stops and it allows the
internal combustion engine to operate at a more constant and efficient speed (Amjad et al.,
2010). Regenerative braking is crucial because it has the potential to have significant energy
recovery, especially in a downhill urban setting (Prati et al., 2021).

Plug-in hybrid electric vehicles (PHEVSs), similar to HEVs, have two engines, one
conventional internal combustion engine and one electric engine. HEVs can only be fueled by
gasoline directly, which then charges a battery then to be used to drive on electric drivetrain (in
addition to charging through regenerative braking). Unlike HEVs, in addition to fueling only
with gasoline, PHEVs can be connected and charged directly to the electricity grid and it can
also run solely on electric power. PHEV is an in-between vehicle between a conventional HEV
and full battery-electric vehicle. PHEV has an internal combustion engine and a larger and more
powerful battery pack than HEV where it can be recharged by connecting to the electric grid
directly (Boschert, 2006). PHEVs typically have greater margin of efficiency improvement than
HEVs (Martinez et al., 2017) and they have the benefits of operating for longer distances using
only electric power (Boschert, 2006). Once the electric power is depleted to a certain state of
charge, the vehicle would switch over to hybrid (Amjad et al., 2010).

In this study, for comparing between conventional gasoline vehicles and HEVS, the

PHEVs would be encompassed in the broader HEV group for comparisons.



2.2. Fuel Efficiency of HEVs

Many studies have shown that the fuel consumption and efficiency for hybrid electric
vehicles are lower by approximately 20% to 49% (depending on the study) in comparison to
their comparable conventional vehicles (with internal combustion engine) counterparts, with
certain nuances in all the studies that were conducted (Huang et al., 2019; Robinson & Holmén,
2020; Wang et al., 2022; Zahabi et al., 2014). The fuel consumption reduction range provided
here has a large variation. The low and high ends of the ranges were taken from different studies.
Each study may vary in terms of experimental designs, methodology, parameters and
assumptions, resulting in the large variation. In one of the studies reviewed, the average fuel
consumption rate for HEV is 9.18L/100km and for non-HEV is 16.85 L/100km, which is around
45.5% lower in HEV than non-HEV (Zahabi et al., 2014). For PHEVs more specifically,
depending on factors such as geographic location, usage and charging behaviour, the fuel
consumption rate is between 2.1 and 7.5 L/100km (Pl6tz et al., 2021).

The performance of HEVs have been under scrutiny under different circumstances as
many studies have been undertaken in order to understand HEVs better in different aspects with
respect to their performance and the potential variables that influence their performance. There
are many other factors that are found to be significant for fuel consumption such as eco-driving
training, city size, cold start and vehicle type (Zahabi et al., 2014). In order to quantify the fuel
economy savings from hybrids, tests have been conducted to compare performance HEVs and
different types of HEVs (i.e. HEV sedan, HEV hatchback or HEV SUV) to its comparable
gasoline vehicles under different conditions such as driving, environmental and road conditions.

Within all the different vehicle class in HEVs, the fuel efficiency differs. Fuel
consumption is the lowest in hatchbacks, followed by sedans, then SUVs. The fuel consumption

rates are approximately 40% and 35% lower for hatchbacks hybrids and sedans hybrids,



respectively, compared to SUV hybrids (Zahabi et al., 2014). Plug-in hybrids should
theoretically have a better fuel economy compared to conventional hybrids. However, the fuel
consumption for PHEV would depend on the distance driven between battery charge and how
frequent it is plugged in to charge and its fuel economy may be around the same as a similar

HEV (Prati et al., 2021).

2.3. Emissions Reductions from HEVs

The emissions from vehicle tailpipes comprise of other GHG emissions, but CO»
emission accounts for 95-99% of the GHG emissions (Ou et al., 2010). Although this study
focuses only on COg, there have been past literature on other GHGs and air pollutants that are
worth noting for background information. There is a general consensus that HEVs can reduce
COg, carbon monoxide (CO) and nitrogen oxides (NOx) emissions in comparison to non-HEVS,
but it also depends on other factors such as the environment and the weather. In a real-world
driving test conducted in Toronto, it was found that the estimated emission reductions from
HEVSs, in comparison to non-HEVs, were 21.6%, 31.3% and 53.0% for CO2, CO and NOx,
respectively, whereas the emission reduction potentials were higher in Beijing for the same
vehicles (Wang et al., 2022). In this study, there is more aggressive driving in Toronto than in
Beijing. When there is more aggressive driving and higher power demand vehicle operations, the
benefits of HEV have been shown to be smaller. This shows the importance of testing in real-
world conditions where other factors are also considered in order to get more representative
values.

The average COz emission factor for a HEV in urban driving environment is 117.4 g/km,

whereas it is 150.9 g/km in highway driving (O'Driscoll et al., 2018). The emission factor from
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HEVs in highway driving is similar to the average for a conventional gasoline vehicle, implying
that there is not much fuel economy savings from HEV driving on highways (O'Driscoll et al.,
2018). The CO2 emission from HEVs is approximately 30-40% less than conventional gasoline
vehicles, as a range generally (Wang et al., 2022). In a study conducted in Macao, the average
CO. emission factor from HEV was reduced by 35% compared to conventional gasoline vehicle
(Wu et al., 2015). On the higher end, HEVs can reduce CO> by up to 60% compared to gasoline
vehicle, driving at an average speed of 15 km/hr (Wu et al., 2015).

Literature has shown that PHEVs has a high variability as it heavily depends on other
factors. From a study that analyzed real-world fuel consumption data of PHEVs, over 2000
PHEVs of five different models were tested, it showed a range of 29 g CO2 emissions /km to 106
g/km (Pl6tz et al., 2018). Of which, Toyota Prius was 95 (+/-17) g CO2 emissions per kilometer
(it is one of the vehicles that was tested in this study in Montréal). In comparison to conventional
gasoline vehicles, PHEVs could result in approximately 15 to 55% less CO2 emissions (Pl6tz et
al., 2020). And as expected, decreasing the power of combustion engine while increasing in
electric-range aids emission reduction.

To summarize, the emission reduction from HEV can have a range from 30% to 60%
from past research (Pl16tz et al., 2020; Wang et al., 2022; Wu et al., 2015). This may also be
unique to each city and different driving conditions.

The NOx emissions are expected to be lower in HEVs because the electric motor
produces less power output of the hybrid engine than a conventional vehicle so the in-cylinder
combustion temperature is reduced (Wang et al., 2020). The level of NOx emissions is in the
order of 0.6 g/km (Kousoulidou et al., 2013). In comparison to the gasoline vehicles, the HEVs
can reduce NOx emission by up to 90% (Wu et al., 2015). In the Macao case study, it was shown

that NOx emissions from HEVs decreased as the average speed became lower, which is an
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indication of environmental benefits and energy savings in congested driving conditions,
whereas COz is less sensitive to speed changes (Wu et al., 2015).
2.4. Factors Influencing the Performance of HEVs

There are many external factors that influence the performance of vehicles that include the
driving behaviour, environmental and road conditions. Driving behaviour or driving style is how
one operates the vehicle and has shown to be one of the important factors in influencing vehicle
performance (Alessandrini et al., 2012). Driving behaviour includes a combination of vehicle
speed and acceleration, where an example for eco-driving driving concept is adopting an
anticipatory driving style to avoid unnecessary acceleration and braking. Using the engine as
efficiently as possible is another example of eco-driving concept where the efficiency increases
with decreasing engine speed (Alessandrini et al., 2012).

Some examples of environmental conditions include ambient temperature, humidity,
pressure and precipitation. Seasonal changes have been one of the factors of interest when
evaluating the performance of HEVs and that these environmental factors influence the vehicle
performance (Ng et al., 2021).

The road conditions include factors such as slope, road class, speed limit, number of lanes
and average daily traffic which also influence the vehicle performance (Carrese et al., 2013;
Faria et al., 2019; Harantov4 et al., 2022; Panis et al., 2006; Zahabi et al., 2014).

From the literature review, there are more information and data on fuel consumption than
GHG emissions. There were analyses conducted to study the relationship between fuel
consumption and emission (Hien & Kor, 2022; Nguyen & Gonzalez, 2021). It was found that the
CO:z emitted is directly related to fuel consumption, with linear correlation (Mickinaitis et al.,

2007). Burning one litre of regular gasoline generates approximately 2.29 kg of CO; (Gao &
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Checkel, 2007). Therefore, where there is no information on emissions, it is assumed that the

general trend for emissions is similar (Hien & Kor, 2022).

2.4.1. Driving Behaviour

The relationship between fuel consumption and speed generally follows an U-shaped
curve where fuel consumption decreases slightly from Okm/hr to 60km/hr and gradually
increases from 60km/hr and above (Fontaras et al., 2008). Toyota Prius 11, a hybrid vehicle as an
example, is found to have a fuel economy of 38 g/km, 58 g/km and 82 g/km at average speeds of
17 km/hr, 60km/hr and 95km/hr, respectively (Fontaras et al., 2008). In comparison, a gasoline
Euro 3 vehicle (<1400 cm®) has a fuel economy of 83 g/km, 80 g/km and 82 g/km at the same
speeds. At a driving speed of 95km/hr, the fuel economy is the same for the hybrid and gasoline
vehicles. It has been shown in other studies that HEVs start to use the gasoline engine between
40 to 60 km/hr and that as the vehicle speed increases, the fuel economy saving becomes lower
compared to conventional gasoline vehicles (Zahabi et al., 2014). Hence, HEVs are more fuel
efficient at lower speeds, while they are not as efficient at higher speeds. This could have
implications on further promoting driving HEVs in local driving where lower speeds are
generally observed. This also ties in with the road type.

How acceleration impacts the fuel economy is connected with the vehicle speed.
Acceleration and speed together could also be a proxy for the drive cycle aggressiveness
(Alessandrini et al., 2012). In a study, vehicles were tested by scaling up and down the speed. It
was shown that scaling up the speed is linked with aggressive acceleration which increases
inertial force and that increases the fuel consumed (Sharer et al., 2007). The fuel consumption

can increase between 5% to 14% for aggressive driving (hard acceleration when there is an
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opportunity) for speed lower than 20km/hr and the increase can be between 11% to 21% for
speeds greater than 80km/hr (Thomas et al., 2017).

Engine speed is an internal engine variable that is readily available information in ECU
or through OBD-II logger. It measures the iterative combustion process in the engine. Generally,
the relationship between engine speed is linear with fuel consumption, given the same torque
requirement (Manzie et al., 2007). However, in another study, it was found that the relationship
between engine speed and fuel consumption follows a parabolic shape (Rakha et al., 2011). As
engine speed increases, the specific fuel consumption rate decreases to a minimum value ranging
between 2000 and 3500 RPM, then increases again for higher engine speed. Engines are

typically developed to have the highest efficiency between this range.

2.4.2. Environmental Conditions

The environmental conditions, particularly changes in ambient temperature (and seasonal
changes), affect the fuel consumption. In a study conducted by Lee et al., it illustrates the
theoretical relationship between temperature and energy consumption. The relationship follows a
V-shaped graph where the energy consumption decreases as temperature increases (where
heating demand is required), then it reaches the minimum at the base temperature (temperature
that does not require heating or cooling demand to maintain a comfortable condition), from there,
energy consumption increases as temperature increases (where cooling demand is required
(Figure 1) (Lee et al., 2014). It is further supported by another study where the U- or V-shaped
pattern is observed for multiple HEVs where both fuel consumption and emissions follow similar
curves and they are at the lowest around 5°C and much higher at lower temperature (Alvarez &

Weilenmann, 2012).

14



Base Temperature

Heating Demand Cooling Demand

Energy Consumption

Non-temperature Sensitive Energy

Temperature

Figure 1. Theoretical relationship between ambient temperature and energy consumption.

Note: The figure is extracted from a study done by Lee et al., 2014,

In the winter, the fuel efficiency of HEVs is about 20% lower compared to summer,
particularly at low speeds (Zahabi et al., 2014). When the ambient temperature is below 0°C, the
fuel consumption for HEV can even be 12% greater than a conventional gasoline vehicle (Zahabi
et al., 2014). The fuel consumption for HEVs is significantly impacted on colder days because
the battery capacity is reduced (Fontaras et al., 2017). This may have an implication on how
much fuel economy savings are actually benefited from HEVs in cities that experience cold
winters, such as Montréal.

In a study conducted in the far north regions in Russia by Shvetsov, there is more of an
extreme case of ambient temperature at -40°C, it was shown that the fuel consumption could be
increased by up to 73% comparing to operating in a more temperate or typical temperature at
20°C (Shvetsov, 2021). At this temperature, the electric engine for HEV is not turned on, hence

the fuel consumption is comparable to a conventional gasoline vehicle.
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2.4.3. Road and Traffic Conditions

The road conditions also affect the fuel consumption; some of the road factors include
slope, road type or class (local street or highway), speed limit, number of lanes and average daily
traffic (Carrese et al., 2013; Faria et al., 2019; Harantova et al., 2022; Panis et al., 2006; Zahabi
etal., 2014).

As slope increases, fuel consumption increases. One study has shown that when the slope
is 0.08, the fuel consumption increases by three times (16 litres/hr) compared to a flat road
(Zhang et al., 2020). And as expected, the fuel consumption decreases with decreasing slope.

Road characteristics affect the fuel efficiency. Fuel consumption for different vehicles is
also affected by driving in different road types or classes, such as in local streets (urban settings)
or on highways. The fuel consumption for HEVs is lower by approximately 35% in urban setting
(i.e. local roads) than rural setting (i.e. highways) compared to conventional vehicles (Wang et
al., 2020). On highways, the performance of HEVs are similar to the gasoline conventional
vehicles (Zahabi et al., 2014).

It has also been shown that HEVs can have significant fuel savings when the traffic
density is high (with high average daily traffic) (Zhang et al., 2020). However, in a free traffic
flow condition, the fuel saving is not significant as the engine is already working in the most

efficient area and the vehicles are running at its maximal velocity.

2.5. Vehicle Specific Power (VSP)
Vehicle specific power (VSP) represents the instantaneous vehicle engine power, it is

used as the basis for modelling emissions and is deemed a crucial factor when estimating the
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emission and energy consumption of vehicle operating condition that are dependent on speed,
roadway grade, acceleration and deceleration (Sullivan & Sentoff, 2020; Yao et al., 2013; Zhai et
al., 2011). The mathematical equation of VVSP was first developed by J.L Jiménez in 1999 that
describes VSP as power (kinetic and potential energies, rolling resistance, aerodynamic drag and
internal friction and acceleration), divided by the mass of the vehicle (Yao et al., 2013). This can
be simplified using coefficient values. For a typical light-duty vehicle, Equation ( 1) can be used

to calculate the VSP value (Duarte et al., 2014).

VSP=v X (a + 9.81 X grade + ¥) + ¢ x v3
(1)

Where v is the vehicle speed in m/s, a is the vehicle acceleration in m/s?, grade is the
vehicle vertical rise divided by the horizontal run, in percentage, v is the rolling resistance
coefficient in m/s/s and ¢ is the draft coefficient (reciprocal metres).

On-road vehicle measurements, using the Portable Emissions Measurement System,
implements the VSP approach to assess energy and environmental characterization of the
vehicles (Duarte et al., 2016). The average VSP during acceleration is around 8.9 kW/t and 3.4
kW/t during cruising mode (Tu et al., 2022). When VSP is greater than 13 kW/t, HEV
demonstrates benefits over the conventional gasoline vehicle, which is around 1.72 greater on
average (Robinson & Holmén, 2020). Higher VSP corresponds to higher emissions of CO2, CO
and NOx (Yao et al., 2013). At lower VSP ranges, HEV can be powered by the electric motor.
However, when the power demand is high, gasoline is consumed, leading to higher fuel
consumption and emissions (Tu et al., 2022).

The second-by-second V'SP is typically calculated based on the corresponding vehicle

operating parameters, as it is an outcome variable (Moradi, 2021). Using a combination of
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calculated VSPs and vehicle speed, another calculation process can often find the appropriate
operating modes from an operating mode bin table, as defined by the Motor Vehicle Emission
Simulator by the U.S. Environmental Protection Agency (United States Environmental
Protection Agency, 2005). VSP is a crucial concept, but because it is outside of the scope of this

study, it was not analyzed.

2.6. On-Road Measurements vs Laboratory Testing

In previous studies, it has been shown that there are discrepancies in fuel consumption
and emissions between on-road collected data and specifications provided by car manufacturers
(Emadi et al., 2008; Kousoulidou et al., 2013; Moradi, 2021; Zahabi et al., 2014). Tests that are
conducted in a lab setting usually overestimates the emission reduction potentials (Karabasoglu
& Michalek, 2013; Tansini et al., 2022). Even standards like WLTC (Worldwide Harmonized
Light Vehicles Test Cycles) do not align to local tests such as the one done in China in 2019:
China Light-Duty Vehicle Test Cycle (Wang et al., 2020). The methodology for real-world
driving experiments would follow similarly in the research done by Moradi (Moradi, 2021).

There are drastic variations in air pollutant emissions, some even show that HEV can
possibly generate more emissions under certain conditions (Emadi et al., 2008). Emissions such
as CO and CO; are strongly influenced by the road grade where the energy consumption is about
four times when going from a flat road to uphill (Prati et al., 2021). In a real driving emission test
comparing the emission reduction of HEV to conventional vehicle, CO emission is actually
higher by 13% and NOx emission is lower by 5% in HEV (Bagheri et al., 2021). Many factors
could affect the emissions from hybrids. In one of the studies, it was found that frequent re-start

time, warm-up time and high engine speed in hybrids increase lead to higher CO emission than
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conventional vehicles (Wang et al., 2020). PHEVs have shown to be more sensitive to many
other factors such as mileage, usage, electric-range, availability of charging stations and charging
behaviour (Pl6tz et al., 2020; P16tz et al., 2021). In a study related to PHEVs, it was found that
the gap between the real-world and official type-approved CO> emissions for PHEVS is
attributed to the share of electric driving: less frequent charging than anticipated, and also
driving at different ambient temperatures while using heating or air-conditioning (Dornoff,
2021). This highlights the importance of conducting real world driving tests, rather than just
laboratory tests. Furthermore, the measurements from vehicles could be specific to macro-level
conditions.
2.7. Modelling Approaches

Log-linear mixed effect technique has been used to establish the link between fuel
consumption and various factors (Zahabi et al., 2014). The random effect in that case study is
observation from the same driver as this is correlated. The equation for the model will be
outlined in the methodology section. This is not the only study that used the log-linear model for
analysis related to fuel consumption and emissions for vehicles. In another study that studied the
impact of climate change on passenger vehicle consumption, it also employed a simple log-linear
model (Jeon, 2019). The log-linear approach was also used in another analysis on fuel economy
and ambient temperature on hybrid vehicles (Henning et al., 2019). In addition to the log-linear
regression analysis, there are also other approaches and models that could be employed,
comparing to other similar studies. In a study to analyze the impacts of built environment on
vehicular distance travelled and their GHG emissions, a latent class regression modelling
framework is implemented (Zahabi et al., 2015). The dependent variable in the study, GHG

emission, has been taken by natural logarithm. Another example is a study using data from real-
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world driving to predict total and instantaneous fuel consumption (Capraz et al., 2016). The
study compares the outcomes from the following models and approaches: Support Vector
Machine, Artificial Neural Network and Multiple Linear Regression. The results shows that
Support Vector Machine performs the best, even though the outcomes vary depending on the
correlation between instantaneous and total fuel consumption.

For analysis on ambient temperature, some literature have suggested using piecewise
linear regression (Alvarez & Weilenmann, 2012; Henning et al., 2019) as the relationship
between energy consumption and ambient temperature usually follows an U- or V-shaped curve.
However, it has already been established that relationship between fuel economy or emissions to
other factors are typically non-linear and that a polynomial model will be used to assess ambient

temperature in this study (Saerens et al., 2013).

2.8. Research Gaps

Many studies on estimating the performance of HEVs do not take into consideration of
driving behaviours, weather, road characteristics and other external or environmental conditions
(Huang et al., 2019). Therefore, it is crucial to conduct data collection in real-world driving
conditions and environment, instead of conducting lab testing which is what most car
manufacturers do. Conducting real-world driving tests captures vehicle performance that is more
realistic and representative of the real-world conditions. Recommendations can be made based
on specific situations and could be location dependent.

Many past research mainly focused on just fuel economy or consumption, and not as
much on emissions. Although fuel consumption and emissions are related (combustion of fuel is

directly linked to the emissions produced at the tailpipe), it is beneficial to measure the tailpipe
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emissions in order to confirm this. In line with a lack of real-world driving tests, very few studies
that analyzed emissions took into considerations of the real-world conditions. Most emissions are
estimated based on models or measured in a laboratory setting. Real-world driving tests where
emissions are measured directly from vehicle tailpipes emerged more recently and commonly.
Even though the measurements across the studies differ slightly, the general consensus is
that HEVs still demonstrate to be the competitive technology to mitigate GHG emissions and to
reduce the fuel consumed. From literature review, it still appears that there is a lack of real-world
driving tests where external factors such as driving behaviour, environmental and road and traffic
conditions are considered. Therefore, conducting and collecting more real-world observations
from metropolitan cities (such as Montréal, especially in a city that experiences cold winters)
could fill in some of the gaps at the macroscopic level and provide some insights in the Canadian

context.
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3. METHODOLOGY

3.1. On-Road Experiment

On-road experiments from conventional gasoline vehicles were collected in July to
November 2019 and the data from HEV were collected from June to November, 2022 and March
2023 in Montréal, Quebec, Canada. The data from gasoline vehicles are needed in order to serve
as the baseline to compare with the HEV data. Data from the two HEV's were collected in March
to investigate the impacts of colder ambient temperature on the performance of HEVS, in
comparison to the warmer months.

Summer months are considered to be from June to August; fall months are from
September to November; winter months are from December to February; and spring months are
from March to May, with slight variations depending on the temperature. The mean temperature
for the experiments conducted during the summer months was 21°C for both gasoline vehicles
and HEVs. The mean temperatures for experiments conducted during the fall months were 7°C
and 10°C for the gasoline vehicles and HEVSs, respectively. The mean temperature for
experiments conducted during the spring months was -0.7°C for HEVs (collected in March
2023). These mean temperatures were taken from the daily reports based in the weather station at
Montréal Pierre Elliott Trudeau International Airport from Meteorological Services of Canada
(Environment and Climate Change Canada, 2023a). The methodology for equipment set-up and
protocols are detailed in Section 3.1.2 to ensure consistency and quality on equipment
performance and data collected. This includes ensuring the sensor for measuring the emissions
sensors was warmed to the same internal temperature (between 32°C to 38°C) before starting the

experiments.
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In order to investigate the performance of individual vehicle, the ideal set-up is to keep
all variables constant (i.e. same driver hence same driving behaviours, routes and weather
condition in each season) with each unique vehicle. However, this is not always realistic or
feasible. This study involved two drivers, assuming similar driving behaviours, driving in an
urban setting in Montréal. There were no cold-starts in any experiment and the weather
conditions were similar in each season.

One of the logistical constraints for on-road experiments is that testing cannot be
conducted during heavy rainfall or snowfall events and that the exhaust pipes cannot come into
contact with water. Therefore, during winter where there is snow on the road that could splash
into the exhaust pipes, results could be affected and become unreliable. Potential solutions will
need to be discovered for real-world driving testing in the winter in the future to overcome the

challenges.

3.1.1. Vehicle Selection

A total of eleven unique vehicles were selected in this study: four hybrid electric vehicles
(two conventional HEVs and two PHEVSs) and seven conventional gasoline vehicles. A total of
thirteen trips were included as one of the same HEV (Toyota Prius C) and PHEV (Ford C-Max
Energi) had two trips each in total (one trip during the warmer months and one during the colder
months). The vehicles were selected based on some of the popular vehicles of choice in Quebec
and in Canada in general. It was also based on availabilities of the vehicles at time of rental and
rental sites. Because the HEVs were rented during high season in the summer through early fall,
the selection was slightly limited. The conventional gasoline vehicles were selected to match as

closely as possible to the HEVs based on vehicle class and specifications, in order to have a fair
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comparison. Due to time constraints and vehicle availabilities, the exact equivalent gasoline
vehicles were not available to match the HEVs selected. The specifications of the selected

vehicles are summarized in Table 1.

Table 1. Vehicle characteristics and manufacturer specifications for all the selected vehicles for this study.

Powertrain Manufacturer Model Manufacture Vehicle Class Engine Size  Curb Weight
Type Year (L) (kg)
Plug-in C-Max Compact
hybrid Ford Energi 2016 Hatchback 2 1750
Plug-in Prius Compact
hybrid Toyota Prime 2020 Sedan 18 1288
. . Subcompact
Hybrid Toyota Prius C 2019 Hatchback 15 1148
RAV4 Compact
Hybrid Toyota Hybrid 2021 P 2.5 1703
SUvV
XSE
Gasoline Honda Civic 2014 Compact 1.8 1230
Sedan
. . . Midsize
Gasoline Kia Optima 2012 Sedan 24 1461
Gasoline Kia Rio 2013 Subcompact 16 1126
Hatchback '
Gasoline Mazda 6 2009 Midsize 25 1500
Sedan
Gasoline Mazda 3 2016 Compact 2 1329
Sedan
Gasoline Toyota RAV4 2016 Compact 25 1619
SUV
Gasoline Toyota Yaris 2015 Subcompact 15 1059
Hatchback '

3.1.2. Equipment Selection and Set-Up
3.1.2.1. On-Board Diagnostics Loggers

The On-Board Diagnostics loggers (OBD-I1) (Figure 2), were installed on all the vehicles
to collect engine-state parameters. The measurements from engine control unit were captured in
real-time wirelessly to the “OBD Fusion” application on the tablet. The OBD-I1 logger, along

with the OBD Fusion application on the tablet, can log a wide range of vehicle and engine
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variables (from accelerometer, gyroscope, magnetometer), but not all vehicles report the full
range of variables. The OBD Fusion application also performs some calculations and generates
some new variables based on OBD readings. OBD-II loggers were set to log variables at 1Hz
frequency (one measurement per second). Some of the parameters include vehicle speed reported
by Engine Control Unit (km/hr), acceleration (m/s?), engine speed (revolutions per minute), GPS
latitude and longitude, altitude (m), intake manifold absolute pressure (kPa), intake air
temperature (°C), mass air flow rate (g/s), absolute throttle position (%), barometric pressure
(kPa) and fuel-air equivalence ratio. Most variables can be used directly, whereas some variables
are used for calculations of fuel rate (mass air flow rate and fuel-air commanded equivalence

ratio) and emissions (barometric pressure and intake air temperature).

VEEPEN}

Figure 2. OBD-II logger.
Note: (a) OBD-II port under the steering wheel; (b) OBD-II port under the steering wheel with the OBD-11 logger
plugged in and . (c) Wireless OBD-I11 logger/ scanner

3.1.2.2. Portable Emissions Measurement System

Portable Emissions Measurement System (PEMS) was used for on-road vehicle
monitoring to measure second-by-second characterization of the trip while the vehicle was
operating. PEMS is a recent state-of-the-art technology that measures emissions and the sensor is

light-weight, small-size and portable. This equipment has been used in previous studies on
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collecting emissions data and has been becoming more popular in emission measurement (Emadi
et al., 2008).

PEMS monitors the instantaneous CO», CO, NO, NO> and particulate matter (PM)
concentrations. COz is measured by using non-dispersive infra-red (NDIR) absorption
technology with a measurement range of 0-20% and an accuracy of +/- 70ppm. NOx is measured
by using 3-electrode electrochemical sensors with a measurement up to 500ppm for NO and
300pm for NO2. The measurement resolution is 1-5ppm and 0.1ppm for NO and NO3,
respectively. PM is measured by undiluted emissions through the response of three dissimilar
particulate sensors. Since only the CO2 emissions are of interest in this study, the other emissions
were not used but saved for other future studies. GoPro Hero10 Camera was used to capture
video data in order to analyze road characteristics and environmental conditions in other future
studies.

Figure 3 shows the PEMS set-up for the data collection. The tailpipe probe (6) is inserted
and clamped in the tailpipe to collect the exhaust gas samples at a 2.5 litres/minute rate. There is
no dilution and therefore extrapolating sensor values to full concentration is not needed. The
probe is first connected with the intake hose (5) to transport it to the Condensate Unit for Batch
Emissions (CUBE) or the chiller (2) which condenses and removes the water vapour present in
the exhaust. The water trap (3) further collects condensation that forms within the tailpipe
sample line before it sends the gas sample to the sensor module (1). The sensor module is the
main measurement unit for reading the sample. After passing through all the sensors, the exhaust
sample gasses continue to flow out to a particulate filter, flow pump and an exhaust outlet (4).

The sensor is wirelessly connected to a 3DATX computer and it run on the parSYNC software.
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Figure 3. The PEMS set-up.
Note: The Portable Emissions Measurement System (PEMS) set-up on a test vehicle with the following parts: 1.
Sensor Module 2. Chiller 3. Water Trap 4. Exhaust Outlet 5. Intake Hose 6. Tailpipe probe 7. Laptop

On test day, the temperature setting on PEMS is set to 38°C to allow it to pre-condition
for at least one hour where the chiller is set to 5°C. The target internal sensor temperature is
typically between 32°C to 38°C, depending on the ambient temperature. The parSYNC software
is then connected with the devices. The zeroing procedure is conducted first to calibrate with a

true zero air cylinder, sampling with clean ambient air. The measurement of the ambient
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conditions is completed in 60 seconds, this is also to ensure internal temperature is stable and
operating between the 32°C to 38°C range. Once this step is done and the system has been setup,
the data collection can begin. At the end of the test cycle, the engine is turned off and data
collection is stopped. The zeroing procedure is conducted at the end of the cycle again to
measure the ambient conditions. The internal temperature of the PEMS unit could change
drastically in the middle of the experiment and measurements of emissions concentrations would
be affected. The measurements from the zeroing procedures at the start and end of experiments
can help adjust the data should this happen. After data logging is stopped, the sample lines are
disconnected, water traps are drained, both the PEMS unit and chiller are turned off and the

output files are saved and exported for processing.

3.1.3. Study Area and Route Selection

Figure 4 shows the aggregated views of GPS trajectory for all of the vehicle experiments
for HEVs and conventional gasoline vehicles conducted in Montréal, Quebec, Canada,
respectively, in 2022 and 2019. The colours indicate the frequency each link is travelled. Every
GPS data point is linked to an unique link ID which has link characteristics information such as
road class, speed limit, annual average daily traffic and number of lanes, sourced from the
GeoBase database.

The objectives of this study are to evaluate how the fuel economy or fuel consumption
and GHG emissions are impacted by different conditions. One of these conditions is the road
conditions. The routes selected included a diversity of different road conditions. A mix of slopes
was considered including uphill and downhill, dedicating approximately 10% of the trip for
going uphill. Different road types or classes were tested, with a mix of urban driving and

highway driving. The predetermined percentage of driving on highway was set to approximately
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10% of the trip, where permissible. Some trips may have less highway driving than others. With
every road link that was covered, it also has a variety of speed limits, number of lanes and
average daily traffic which may be correlated with the road class.

The following corridors in Montréal were pre-selected and driven by most tests in order
to obtain data for the same road sections using different vehicles: Parc Avenue, Sherbrooke

Street, Chemin de la Cote de Neiges, Chemin de la Cote-Sainte-Catherine and sections of

Highway 40. These corridors were chosen as they are major streets in the city and of interest.

Figure 4. Study Area.
Note: GPS trajectory for all HEVs and conventional vehicles experiments conducted in Montréal, Quebec, Canada,
based on the frequency of routes taken, with a zoom-in of the downtown Montréal area on the right.

3.1.3.1. Road Geometry Variables

The following road geometry or characteristics were chosen for analysis as they are
common traits to characterize a segment of the road. The source of the GeoBase data (including
road geometry data) was provided by the City of Montréal. The GeoBase database (Ville de
Montréal, 2023) is presented as a filamentary network of straight line segments with which the
digitization is generally done in the centre of the street. Each road segment has an unique ID,

containing location information such as GPS and altitude, as well as all the road characteristics

29



listed below that were included in this study. Each unique ID represents a portion of the road

with homogeneous characteristics described mainly by the following attributes: an official and

current toponym, address ranges and a reference to administrative boundaries (i.e. boroughs,

municipal boundaries, neighbourhoods).

From the real-world driving experiments, GPS data were collected, which were used to

link with the unique ID in the GeoBase database. The driving tests measured the second-by-

second data (1 Hz) on fuel consumption and emissions.

Slope: Slope is presented as a numeric value. It is calculated from LiDAR elevation data
in the digitized direction. This information may not always be accurate. As a result, for
this study, slope is calculated separately in R using the Haversine distance of two
geospatial points in the Geosphere package. It uses information on longitude, latitude and
altitude to calculate slope.

Road type or class: The classes included are local streets, collectors, secondary arterials,
main arterials and motorways. The classes are listed in order of the road hierarchy
according to their functions and capacities, with local streets having the highest access to
property but lowest speed limits and capacities to motorways having the lowest access to
property but highest speed limits and capacities. This indicator gives a general idea of the
potential of vehicle type, average speed and traffic volume.

Speed limit: The speed limit in the segment of the road. It further reinforces the type of
the road. It ranges from 30 km/hr to 50 km/hr within the city and municipal streets, up to
maximum of 70 km/hr on gravel roads and up to maximum of 100 km/hr on highway.
Number of lanes: Number of the lanes per direction was obtained from the macroscopic

model of the City of Montréal (built in the Aimsun software).
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e Average daily traffic (ADT): This indicator is a count of number of vehicles that pass

through the link. The traffic volume was chosen as proxy for traffic conditions.

3.2. Data Preparation, Cleaning and Processing

Both the OBD-II logger and PEMS measure the second-by-second data at the micro-scale

level, the output raw files were both in the comma-separated values (CSV) format. Both sensors

log a wide range of variables but only a number of them were used for this study. The

description of the variables that are included are listed in Table 2.

Table 2. Variables from OBD-II logger and PEMS

Variable Description Unit  Source
Time Date and time of when the data points are logged App
Latitude GPS latitude deg GPS
Longitude GPS longitude deg GPS
Altitude GPS altitude (alternatively, elevations from GIS or GoogleMaps m GPS
API could be used)

GPS Speed Vehicle speed based on distance calculated using GPS coordinates  km/h GPS
Wheel speed Vehicle speed reported by ECU km/h OBD
Acceleration Calculated acceleration based on speed m/s2 App
Trip Distance Distance traveled since the start of the trip km App
Trip Duration Duration of trip since the start min App

Intake manifold Pressure of intake air which is used by MAP sensor to define proper
absolute pressure : fuel - < red for ianition in cvli kPa OBD
(MAP) air and fuel quantities required for ignition in cylinders
Engine speed Rate of engine revolutions in unit of time RPM OBD
Intake air Temperature of the air entering cylinders through the intake
; °C OBD
temperature manifold

Mass ?I\';;\IE;N rate Mass rate of air entering cylinders through the intake manifold gfs OBD
Barometric pressure Ambient air pressure kPa OBD
Fuel/Air commanded  This is equal to current fuel-to-air mixture ratio over stoichiometric i OBD

equivalence ratio fuel-to-air mixture ratio

Ambient air Temperature of the air entering the cylinders °C OBD
temperature

Aiir-to-fuel mixture ratio commanded by ECU to injection system
(retrieved from the hardcoded calibration parameters based on i
AF Commanded readings from MAF, MAP, and throttle, Crank, and Cam position OBD
Sensors)
Air-to-fuel mixture ratio that actually occurs
* -
AJF Actual (could be different from the commanded value) OBD
. . Vv
Carbon dioxide (GHG) concentration measurement '
CO: (V is the analog electrical measurement of NDIR CO2 sensor) \;)r;r\: PEMS
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After filtering for the variables desired for the study, a new file was generated and used
for continuity check algorithmically using the timestamp column to ensure there were no
interruptions during the logging process and there is data for every second. The data from both
equipment units were then combined using the unique time stamp.

For cleaning the data, every column in all the files was checked for missing values or
outliers. If there were missing value, the data was augmented using the neighbour values and
controlling for the technically accepted ranges. If there were outliers, the values were adjusted
based on basic visualization and descriptive statistics. In addition, a number of new variables
were generated based on the OBD Fusion and PEMS output files, most notably, the fuel
consumption rate (FCR) in grams per second and all the emissions data to grams per second
(taking into account of the internal PEMS temperature, barometric pressure and mass air flow
rate).

For fuel consumption rate in Equation ( 2 ) the air-to-fuel mixture ratio at the
stoichiometric level used was 14.7 grams, which means that for every 1 gram of fuel, 14.7 grams
of air are required (Al-Arkawazi, 2019). The equation also takes into account of the volume
correction factors to 15°C for use with all grades of gasoline and gasoline ethanol blends (15%

maximum ethanol) (Measurement Canada, 2018):

MAF;

FCRy = ——
t A X AFRstoich

(2)

Where FCR is the fuel consumption rate at time t in g/s, MAFt is the mass air flow rate
at time tin g/s, A is the ratio of the actual air-to-fuel ratio (AFR), AFRstwich IS the stoichiometric

air-to-fuel mixture ratio which is 14.7g.
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From the PEMS unit, particulate matter is reported in pg/m3, NO2 and NO are reported in
parts per million and CO> concentration is reported in percentage. For this study, the main
emission focus is on CO2 and the calculation is shown in Equation ( 3 ) converting CO: in

percentage to grams per second (3DATX Corporation, 2022):

Moy 273 MAF,
€02, = CO2¢ x ~222 x Pt T

— x 1072
Vin T; Po Pm

(3)

Where COz is the concentration of CO- at time t in g/s, CO2y is the concentration of CO-
at time t, measured by the PEMS unit in percentage, Mcoz is the molar mass of CO2 which is
44.01 g/mol, Vn is the molar volume of ideal gas at standard temperature and pressure which is
22.4 L/mol, Ty is the internal temperature of the PEMS unit at time t in Kelvin, pt is the
barometric pressure at time t, measured by the PEMS unit in kPa, po is the standard atmospheric
pressure which is 101.3 kPa, MAF; is the mass air flow rate at time t in g/s and pm iS the density
of gas mixture which is approximately 1.2929 kg/m?®,

The final component of the input data is road segment data and its characteristics from
the GeoBase database. Each road segment has an unique link identification number, GPS
coordinate points, along with the road geometry variables listed in Section 3.1.3.1. A map
matching process is conducted using this input layer of GeoBase information and the collected
vehicle data. This process is conducted using QGIS to join the two input files together based on
geographic locations. The processing tool called “Join Attributes by Nearest” is used, specifying
a maximum distance of 10m, so only features that are closer than this distance would be
matched. “Join Attributes by Nearest” is an algorithm that uses Cartesian calculations for

distance (QGIS Documentation, 2023). The tool takes an input vector layer (vehicle data) and
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creates a new vector layer that is an extended version of the input one, with additional attributes
in its attribute table. The additional attributes and their values are taken from the second layer
(the GeoBase layer). The features are joined by finding the closest features from each layer.
Once joined, the output layer would contain vehicle data that is linked with all the road geometry
variables including road class, number of lanes and so on.

For each trip per vehicle, there is an output CSV file that contains all the joined
information (collected from the experiment on vehicle data and on link information) for every

second. All the output files from all vehicles are then combined into one output file for analysis.

3.3. Data Analysis
3.3.1. Time-Based and Distance-Based Rates

The collected vehicle data are recorded for every one second. Hence, the fuel
consumption rate and CO emission rate are in grams per second, the time-based units. This
captures the instantaneous readings on all the variables. Because there could be some noise in the
sensor when recording the second-by-second data, those outliers have been removed before
proceeding with statistical analysis. These outliers are eliminated by first calculating the factor of
emission divided by fuel, since emission and fuel are correlated. The interquartile range for the
factor is then computed. Those values that fall below the 25% quartile with the interquartile
range were considered to be outliers and removed (no more than 10% of the total combined
data). This would be the main dataset that is used for analysis.

Another potential aggregation of data is by distance travelled in order to get the distance-
based rates for fuel consumption rate and CO, emissions rate, in L/100km and g/km,

respectively. These units are more commonly used in industry standards, hence easier for direct
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comparisons. They are also computed and used as a reference and comparison to using the time-
based dataset. These rates are calculated in two-folds.

First, the rates for every trip (by each vehicle) are calculated by summing the total fuel
consumed (in grams) and total CO> emitted (in grams) for the entire duration of the trip. Then,
the fuel economy and emission rates were calculated by dividing the total fuel consumed or
emissions by the total distance travelled. Information on a trip level is aggregated to obtain a
general sense of each vehicle’s performance.

Second, the data were aggregated to calculate the distance-based fuel consumption and
emission rates. This was done by summing the fuel consumed and emissions for every 50 meters
travelled for each trip from the instantaneous readings. Then, the total fuel consumed and CO>
emitted are summed, then divided by 50 meters, for each trip. Therefore, each observation
represents an average rate for distance travelled. The distance of 50 meters was selected as this
covers around half a block in an urban setting. This distance is likely to still have the same road
class and to cover from one stop to the next to get a representative picture of vehicle
performance.

All the dependent and independent variables that are being considered for analysis are
listed in Table 3. The categorical independent variables that were included in the study were
converted to “dummy variables” when using R to analyze the data. All the data analysis is
conducted using RStudio (Version 2023.03.0+386). In the subsequent analysis, not all of the
independent variables would be kept as correlation would be checked first to see if any of the

independent variables are correlated with one another.
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Table 3. All the variables considered in the data analysis.

Dependent Variables

Unit Description
afs The fuel consumption rate in grams per second.
FCR The fuel consumption rate in litres for every
L/100km 100km, averaged by every 50m of the trip.
ols The CO; emission rate in grams per second.
CO2 The CO; or greenhouse gas emission rate in
g/km grams for every kilometer, ayeraged by every
50m of the trip
Independent Variables
Unit Description
For the general analysis and comparison
Vehicle Type betwet_en gasoline vehicles and hybrids,
conventional HEVs and PHEVs have been
lumped together under HEVS.
Vehicle class
Hatchback The vehicle class fqr the vehicle of the
experiment
Sedan
SUVs
Speed km/hr
Acceleration m/s?
Engine speed Revolutions per minute
Slope
Average daily traffic Average of the count of _the number of vehicles
per link
Road Type
Local street The road type of the link in Montréal. Highway
Collector is the reference in all of the models.
Secondary arterial
Main arterial This can also be divided into local/urban setting
Highway (combining local street, collector, secondary and
Speed Limit main arterials into Zr;fticnaé.egory) and highway
30 km/hr
40 km/hr The posted speed limit of the link in Montréal.
50 km/hr Speed limit of 70km/hr is the reference in all of
60 km/hr the models.
70 km/hr
Number of lanes
1
g The number of lanes of the link in Montréal.
4 Five lanes is the reference in all of the models.
5
Ambient temperature Degrees Celsius The ambient temperature recorded for the day of

the experiment

Note: For the distance-based dataset, if the independent variables are continuous, then an average value is taken for
every 50 meters travelled.
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3.3.2. Exploratory Data Analysis

The dependent variables for this research are fuel consumption rate and CO2 emission
rate. The relationships between FCR and CO> and different factors (from Table 3) were explored.

In addition to the variables from Table 3, other combined factors or factors split into
different categories were explored. For example, combining speed and acceleration can create a
factor called the driving state or operation. The driving operations are segmented into four states
(idling, cruising, acceleration and deceleration) and they are defined as follows (Tu et al., 2022):

e Idling: When speed v < 1.6 km/hr and absolute value of acceleration |a| < 0.14 m/s?
e Cruising: When v > 1.6 km/hr and |a| < 0.14 m/s?

e Acceleration: When a > 0.14 m/s?

e Deceleration: When a < -0.14 m/s?

The speed of 1.6 km/hr threshold is based on the definition of idling in the emission
model in Motor Vehicles Emissions Simulator (United States Environmental Protection Agency,
2020) and the acceleration and deceleration threshold of 0.14 m/s? is based a study on local
driving cycle comparisons (Yang et al., 2020).

Another factor that has been categorized is ambient temperature. The threshold for when
ambient temperature is considered to be “warm” is 7°C or higher, otherwise, the temperature is
considered to be “cold”. This definition is from Natural Resources Canada (Natural Resources
Canada, 2018).

The exploratory data analysis was conducted using R, generating the following:
correlation matrix, descriptive statistics and a variety of graphs such as box plots, bar graphs of
mean FCR and CO; for each vehicle included in this study, FCR-speed curves and CO»-speed

curves.
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3.3.3. Regression Analysis

In order to examine and investigate the relationships between factors of interest listed in
Table 3 with fuel consumption and CO>, a couple of regression analysis and models were
considered and explored, based on past studies and research (Zahabi et al., 2014). The following
models were explored: multiple linear regression, polynomial regression, mixed-effect regression
modelling and random-effect log-linear regression.

Linear regression is chosen as it is one of the base ones to start and explore. A simple
linear regression model provides an initial overview of the potential relationships between the
independent variables with the dependent variables (FCR or CO>). This is indicated by the
coefficients, whether it is positively or negatively associated with the dependent variables. The
p-values for the coefficients indicate whether theses relationships are statistically significant (if
p-value is less than 0.05).

Polynomial regression is chosen because of polynomial terms of speed, potential
relationships with vehicle specific power which has speed to the power of three and interaction
terms between speed with acceleration and speed with slope.

Because the dataset includes multiple effects with engine parameters, environmental
conditions and random effects such as the different vehicles that were tested, mixed-effect
regression seems appropriate.

Random-effect log-linear regression model is a type of generalized linear mixed model
that allows for random variation in the intercepts of slopes of the model, with the random
variation being the unigue vehicle selection. This linear mixed-effect model fits the data by using
maximum likelihood. The approach of random-effect log-linear regression was used in previous

research (Henning et al., 2019; Zahabi et al., 2014).
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Similar to rationales for using mixed-effect modelling, relationships with response
variables (FCR and emission rates) and different factors are explored along with a random effect
component within. The random effect log-linear regression is selected as the modelling method
for this research because it has one of the better model performances and is also used and
referenced in past research. The model evaluation is discussed in the next section.

The log-linear model allows for fixed effect (such as speed, acceleration, slope, road type
and ambient temperature), and random effect, which is applied on the unique vehicle on the
response variables of fuel consumption and CO2 emission. Mathematically, the random-effect
log-linear model follows Equation ( 4 ).

In(Yye) = XieB + (u; + vyt )

(4)

Where In(Yi) is the natural logarithm of fuel consumption or CO2 emission by vehicle i
in segment t, B is the vector of model parameters (S,, ... Bx), Xit is the vector of factors
associated with FCR or CO2 (such as speed, acceleration, road type), ui is the normally
distributed random effect for each vehicle i and vit is the random independent error term,

normally distributed for vehicle i and segment t.

The log-linear approach was used for both Objective 1 and 2. However, for Objective 2,
to evaluate the impacts of ambient temperature on the different powertrain types of vehicles, a
log-linear model with ambient temperature as a quadratic term was also tested.
In addition to testing the different model approaches, other sensitivity analyses were also
conducted. FCR and COz emissions are not normally distributed and has many zero values,

hence a natural logarithm is applied to it. Because there are many zeros, a constant value needs
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to be added to the natural logarithm. The constant, c, tested in In(y+c), include the values of 0.01,
0.1, 0.5 and 1. And the variable y being the dependent variable, either FCR or COx.

The results from both the time-based and distance-based rates were tested and compared
as well.

3.3.4. Model Performance Evaluation

Many log-linear models were explored and tested in order to determine which
combinations of the predictors had the best model performance. The performances of the models
were evaluated based on several metrics such log-likelihood, Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) and coefficient of determination (R-squared). Each
model was built for fuel consumption and CO2 emissions separately.

The approach was to first incorporate all the viable potential predictors into all of the
models. Then, by using k-fold cross-validation method, where the number of folds (k) is 5.
Cross-validation is used to assess the models’ ability to generalize to new data by splitting the
data into training and testing sets and evaluating on the testing set. The dataset is split into 80%
training dataset and 20% testing dataset. The performance models were then evaluated based on
the performance metrics.

The models that were tested had a combination of reduced set of predictors. The
important variables identified using statistical analysis were used as reference. The model
performances were evaluated for all the tested models by using the same approach of k-fold
validation with the same training and testing data and performance metrics on test data.

The marginal effects analysis for each model was also evaluated. In addition, elasticities
were estimated for the models in order to see how sensitive the dependent variable is to changes

in each independent variable. In a log-linear model, the elasticities also provide an indication of
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the percent change in the dependent variables for the one independent variable, while keeping
other variables constant. The calculations for elasticities are as follows (which differ if the
variable is continuous or if it is categorical).

When X is a continuous independent variable, the elasticity of dependent variable Y with
respect to Xk in a log-linear model is 5, X X, where B, measures the relative change in Y due
to the change in Xk by one unit and X, is the mean of X;, (Holmes et al., 2022; Schmidheiny,
2022).

When X is a categorical independent variable, the elasticity of dependent variable Y with

respect to Xk in a log-linear model is exp (B8x) — 1 (Holmes et al., 2022; Schmidheiny, 2022).
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4. RESULTS

4.1. Comparative Analysis: Gasoline Vehicles vs Hybrid Electric Vehicles

This section presents the results from comparing the vehicle performance, namely fuel
consumption rates (FCR) and CO2 emission rates, of hybrid electric vehicles (including plug-in
electric vehicles) (HEVs) with conventional gasoline vehicles (non-HEVS) under real-world
driving conditions in Montreal, Canada. The section includes plots and graphs to compare two
vehicle types under different conditions such as driving speed, driving state (acceleration or
deceleration) and driving condition (local roads versus motorways or highways) based on the

observed data.

4.1.1. Summary of Individual Trips

From the experiments, data were collected from a total of thirteen trips and from eleven
unique vehicles (seven gasoline vehicles, two hybrid electric vehicles and two plug-in hybrid
electric vehicles). Each trip is summarized to calculate the average fuel consumption rate (L/100
km) and average emissions (CO3) rate (g/km) (Figure 5) to gain a general understanding of the
characteristics of each individual vehicle. The gasoline vehicles have both higher FCR and CO>
emissions than HEVs and PHEVs, as expected. However, PHEVs do not necessarily have lower

FCR or CO3 rate.
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Vehicle Name

Mean FCR (L/100km) by Vehicle

Toyota Prius Prime 2020 -
Toyota Rav4 Hybrid Xse 2021 -
Ford C MaxEnergi 2016 (warm)-
Ford C MaxEnergi 2016 (cold)
Toyota PriusC 2019 (warm)-
Toyota PriusC 2019 (cold)
Toyota Yaris 20151

Kia Rio 20131

Mazda 3 2016 1

Kia Optima 20124
Mazda 6 2009+
Honda Civic 2014 -

Toyota Rav4 2016 -

Toyota PriusC 2019 (warm)-
Toyota PriusC 2019 (cold)
Toyota Prius Prime 2020 -
Toyota Rav4 Hybrid Xse 2021 -
Ford C MaxEnergi 2016 (warm) -
Ford C MaxEnergi 2016 (cold)
Kia Rio 20131

Toyota Yaris 20151

Mazda 3 2016

Kia Optima 2012

Toyota Rav4 2016 1

Mazda 6 2009 4

Honda Civic 2014 -

1
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Figure 5. Average fuel consumption rate and CO; emission rate by vehicle.

Types

. Gasoline
B ey
[ Prev

Types

. Gasoline
B ev
. PHEV

Note: If the same vehicle has taken more than one trip, both are shown, indicated by the parenthesis: (warm) and
(cold). For example, one trip is during warmer condition (warm) and the other is during colder condition (cold).

Table 4 shows the complete result of the number of observations, total fuel consumed,

total CO2 emitted, total distance travelled, average CO- in grams per second and grams per

kilometer, FCR in grams per second and liter per kilometer and percent of driving on the

highway for each vehicle included in the study. Two Welch two-sample t-tests were conducted.

One was to compare the fuel consumption between gasoline vehicles and HEVs. The other one

was to compare the CO. emissions between gasoline vehicles and HEVs. The analysis revealed
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that there were significant differences in means between the two vehicle groups (t = 60.826, df =

13414, p-value < 2.2e-16 for FCR; t = 106.93, df = 11049, p-value < 2.2e-16 for CO>).

Table 4. Summary of all the vehicles included in the experiments.

Mean
Mean Time Distance % FCR SD Mean sD
Vehicle Type Season Temp Travelled Travelled Highway (W) FCR CO:2 (o/ co
(°C) (hr) (km) Driving 100 km) 2
km)
Toyggalga"“ Gas  Summer 2338 24 4212 1165 1194 028 26444 085
HO“;&E""C Gas Fall 2.2 117 17.47 0 1141 026 27884 093
Mazda 6 2009  Gas Fall 3.6 131 2457 0.11 1047 034 27223 121
K'azooi’;'ma Gas Fall 127 2.53 55.28 2.09 904 031 24436 1.03
Mazda32016  Gas  Summer  20.1 3.36 60.67 1.64 898 030 21061 0.5
KiaRio 2013  Gas Fall 126 1.83 4777 3.39 737 026 16179 081
Toyc;t(.)al;(arls Gas Fall 154 1.96 38.35 1.42 726 029 17434 095
Toyota PriusC
2019 HEV  Spring  -1.9 4.08 77.34 10.47 598 048 5675 0.8
(Trip 2)
Toyota PriusC
2019 HEV ~ Summer  19.2 4.44 77.35 13.18 557 034 4579  0.63
(Trip 1)
Ford C
Mo PHEV  sping 05 4.44 90.04 1088 527 048 7299 101
(Trip 2)
Ford C
Ma’z‘g{‘grg' PHEV  Fall 10 4.64 85.28 1171 508 046 7256 0.7
(Trip 1)
Toyota Rav4
Hybrid Xse ~ HEV Fall 8.2 3.59 69.72 8.42 415 041 7159  1.03
2021
ToyotaPrius o ey ummer 182 2.04 59.75 13.01 401 043 6825 115
Prime 2020

Note: The trip summary includes the season the trip was taken, mean temperature, total time travelled, total distance
travelled, percentage the trip was driven on highway, mean fuel consumption rate and mean CO2 emission rate and
their standard deviations.

The fuel consumption and CO, emission rates collected from the experiments in this
study are also compared with other sources and the values provided by the car manufacturers
(Table 5). It is revealed that real-world driving data from this study are not all higher than those
reported from the other sources.

The information extracted from Canada Energy Regulator is specific for Quebec in terms

of the GHG intensity. It is revealed that estimates from CER are consistently lower for both fuel
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economy and GHG emissions compared to the manufacturers’ estimates. This could potentially

be due to the specific conditions tested under the Canadian context and because the electricity

consumption carbon intensity in Quebec is lower (for vehicles like PHEVs that could be charged

directly to the electricity grid). The estimates obtained from this study vary between being higher

or lower compared to the other sources. The experiments conducted for this study potentially

have more noise and variations. It could also be due to the nature of data collection or noise from

the equipment. The equipment performance could be affected by lower ambient temperatures,

presence of water or snow on the road surface and condensation build-up in the sensors.

Table 5. The fuel consumption rate and CO; emission rate of vehicles from this study.

FCR (L/100km) CO2 (g/km)
. . us CER- Car Emi ) Car Emi
Vehicle Study DOE** QC***  Siterrer Study USDoE CER-QC Site
Honda Civic 2014 11.41 6.12 6.53 55 278.84 1715 149.6 1329
Kia Optima 2012 9.94 8.7 5.4 244.36 204.4 140.9
Kia Rio 2013 7.37 7.53 47 161.79 180.8 1145
Mazda 3 2016 8.98 7.06 48 210.61 165.3 116.6
Mazda 6 2009 10.47 9.88 6.4 272.23 229.9 158.1
Toyota Rav4 2016 11.94 9.41 55 264.44 216.9 1315
Toyota Yaris 2015 7.26 7.29 44 174.34 1727 102.6
Toyota (F; g'l‘és) € 2019 5.98 5.17 47 56.75 119.9 100
Toyota Prius C 2019 5.57 5.17 47 45.79 119.9 100
(warm)
Toyota Rav4 Hybrid
oo 2001 4.15 5.88 5.7 71.59 1386 1296
Ford C MaxEnergi
2016 (cold) 5.27 6.12 6.05 48 72.99 80.2 0.4 118
Ford C MaxEnergi 5.08 6.12 6.05 48 72.56 80.2 0.4 118
2016 (warm)
Toyota Prius Prime 4.01 4.47 4.32 3.2 68.25 485 03 216

2020

**US DoE = United States Department of Energy (Holmes et al., 2022; U.S. Department of Energy, 2023b),

*Study = Collected from the real-world driving experiments

***CER-QC = Canadian Energy Regulator, for Quebec specifically, where there is information applicable (Canada Energy
Regulator, 2018)
****Car Emi Site = Values obtained from the Car Emissions Website (Car Emissions, 2023).
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4.1.2. Overall Comparisons

To gain general insights on how the different vehicle drivetrains perform, the vehicles
were first aggregated based on the following three groups: gasoline vehicles, HEVs or PHEVS.
Then, for subsequent analysis, PHEVs are aggregated with HEVs under the HEVs group to see
how the combined fleets perform in comparison to the conventional gasoline vehicles.

The average fuel consumption rates and average emissions rate for each vehicle type are
illustrated using boxplots (Figure 6). The distance-based dataset is used where data is aggregated
by every 50 meters, in order for easier comparisons with industry numbers.

Fuel consumption rates for gasoline vehicles, HEVs and PHEVs are 7.1 L/100km, 4.7
L/100km and 4.3 L/100km, respectively. The percent reductions using the time-based dataset
were also calculated to get a range. FCR is reduced by approximately 33.5% to 38.6% in HEVs
and 38.7% to 43.3% in PHEVs from gasoline vehicles, where the higher reduction potentials are
from the time-based dataset.

The carbon dioxide emission rate for gasoline vehicles, HEVs and PHEVs are 167.1
g/km, 59.9 g/km and 65.4 g/km, respectively. CO> rate is reduced by approximately 64.2% to
66.3% in HEVs and 60.9% to 64.2% in PHEVs from gasoline vehicles.

The expected reduction range for FCR and emission should be similar. In this study, there
are some differences between the reduction range. In real-world driving tests, FCR and emission
are measured through two different devices. The PEMS, sensor for emissions, can have quite a
bit of noise and it is sensitive to any presence of water or condensation, which can affect the
readings.

As expected, FCR and CO; are both the highest in gasoline vehicles. The expectation was
that the next highest would be HEVs then PHEVs which was true for FCR. However, for CO2

emission rate, PHEVs are actually around 6.2% to 9.3% higher than HEVs. It also shows that the
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distribution for emission is skewed as the mean is higher than the medians for HEV and PHEV.
It could potentially be due to underestimation and measurement from the sensors. There are also

many values that are zeros.

Gasoline vs HEV vs PHEV: Fuel Consumption Rate (L/100km) Gasoline vs HEV vs PHEV: CO2 (g/km)
400
20
300
g5 -
~
= £
= 2
= 200
7 10 S Mean: 167.14
O © o
'8 Mean: 7.08
¢
5 Mean: 4.71 Mean: 4.34 100
* . Mean: 59.85 Mean: 65.4
* *
0 0
Gasoline HEV PHEV Gasoline HEV PHEV
Vehicle Type Vehicle Type

Figure 6. Boxplots of the means of FCR and CO..
Note: Fuel consumption rate (L/100km) (left) and CO2 emission rate (g/km) (right) by vehicle type (with a further
breakdown of gasoline vehicles, HEVs and PHEVSs) based on trip data for every 50m for each individual vehicle.

In addition to the boxplots, summary statistics are also presented to show the standard
deviation, variance, median, minimum, maximum and the spread of the mean values for FCR
and CO». PHEVs and HEVs have been aggregated together in the summary statistics. The
histograms are also displayed to show the distribution. Both the summary statistics and

distribution histograms serve as complementary to the boxplots (Table 6 and Table 7).

47



Table 6. Descriptive statistics of FCR for HEV and non-HEV.

Vehicle Number of Standard . .
Type Observations Mean Deviation Median  Min Max Q1 Q3 IQR Cl
Gasoline 5368 7.08 3.55 6.60 0.12 1832 431 9.52 521 0.09
HEV 8111 451 5.10 2.65 0.00 2322 0.00 7.91 7.91 0.11
Distribution of FCR in HEVs and Gasoline Vehicles
HEV Gasoline
°T I T T T 1 °T I T T 1
0 5 10 15 20 0 5 10 15
FCR (L/100km) FCR (L/100km)
Note: Fuel consumption rate is in L/100km for HEV (left) and non-HEV (right).
Table 7. Descriptive statistics of CO, for HEV and non-HEV.
Vehicle Number of Standard . .
Type Observations Mean Deviation Median  Min Max Q1 Q3 IQR cl
Gasoline 5368 167.14 87.78 15382 2.75 424775 98.24 22536 127.12 2.35
HEV 8111 62.87 86.73 11.44 0.00 42250 0.00 107.75 107.75 1.89

Distribution of CO, Emission Rate in HEVs and Gasoline Vehicles

HEV Gasoline
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Note: CO; emission rate is in g/km for HEV (left) and non-HEV (right).
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4.1.3. Comparisons Based on Speed, Road Types and Driving States

Table 8 presents the summary statistics table for gasoline vehicles and HEVs with all the
tested variables (including average speed, acceleration, engine speed, proportion of highway
driving, proportion of summer driving and average ambient temperature). This was from the
vehicle data during the experiments, then using the distance-based dataset that is aggregated by

every 50 meters.

Table 8. Summary statistics of FCR and CO, for gasoline vehicles and HEVs and their tested variables.

Description Unit Mean SD
Gasoline HEV Gasoline HEV
Number of observations 5368 8111 - -
Fuel consumption rate L/100km 7.08 451 3.55 5.1
CO: emission rate g/km 167.14 62.87 87.78 86.73
Average speed for every 50m travelled km/hr 32.66 42.87 13.9 22.11
Average acceleration for every 50 m travelled m/s? 0.1 0.08 0.45 0.38
Average engine speed for every 50m travelled I?)i\r/?#;f; 5 1329.92 701.93 270.36 756.15
Proportion of Highway Driving 0.08 0.26 0.28 0.44
Proportion of Summer Driving 0.37 0.25 0.48 0.43
Average ambient temperature °C 14.01 7.74 8.17 1.7

Speed was identified as one of the factors in determining FCR and COy in past research.
Figure 7 shows the FCR and CO2 with their corresponding speed profiles for gasoline vehicles
and HEVs. The patterns of the curve for FCR and CO> exhibit similar patterns for each type of
vehicle and both are non-linear. For HEVS, the rates start out lower at lower speed, then there is
a slight increase to around 35km/hr, stabilizes and increases slightly at higher speed. For gasoline

vehicles, the rates start out higher at lower speed and gradually decreases with increase in speed.
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FCR vs Speed for HEV FCR vs Speed for Gasoline Vehicles
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Figure 7. Average speed profiles with their corresponding FCR and CO; for gasoline vehicles and HEVS.
Note: Plots also show the distribution of the variables at different speeds. The red dots are the mean values at each
speed.

Engine speed (revolutions per minute) is speculated to be correlated with FCR and COo,
they are plotted to illustrate the changes in the response variables at different engine speed. In
Figure 8, it is seen that for HEVS, it is a steady, relatively linear increase in CO2 and FCR (until
higher engine speed when it drops a bit) as engine speed increases. In non-HEVSs, the FCR and
CO2 both have higher fluctuations.

Both the speed and engine speed are expected to have a U-shaped curve in relation to

FCR and COa.
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FCR vs Engine Speed for HEV FCR vs Engine Speed for Gasoline Vehicles
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Figure 8. Average engine speed (RPM) profiles with their corresponding FCR and CO- for gasoline vehicles and
HEVs.

Note: Plots also show the distribution of the variables at different engine speeds. The red dots are the mean values at
each engine speed.

From the boxplots of driving state (acceleration, cruising or deceleration) (Figure 9),
gasoline vehicles are seen to have higher average FCR and CO; than the HEVs in all driving
states. There seems to be a huge difference in the deceleration phase, especially. It is also noticed

that there is a higher variability in HEV measurements, especially for CO2> measurements.
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Gasaline vs HEV: Gasoline vs HEV:

Fuel Consumption Rate in Each Driving State CO2 Rate in in Each Driving State
acceleration cruising deceleration acceleration ~ cruisii ng deceleration
25 : . "
i 400 3 ¢ :
x i X :
; = :
- 2
H . » ' . :
20 : ; H s P :
: . : b :
H [ : * 2
! 300 :
y ! 3
H . :
E 15 = ¥
i3 £ 3
=3 5
(=} B P 5 :
e > ZU: 6 :
3 & 200 :
14 :
O 10 O 160.5 :
e 8.7 151.8 5
* ¢
L3 78 :
71 &
v :
S: . * . .
& 3 91.7 g
: : 100 A :
5 4 : g
* 533 | :
* v c
245 5
& .
® 2
0 0 (N
A A A A A A
0\\0@ & o\\o?’ & 0\\<\° @ o\\& & 0\@"‘ & o\‘& &
& %’ & 2 % 2’
& S S & & S
Vehicle Type Vehicle Type

Figure 9. Boxplots of FCR and CO; in different driving states for gasoline vehicles and HEVs.
Note: Fuel consumption rate is in L/100km (left) and CO, emission rate in g/km. The different driving states are:
acceleration, cruising and deceleration.

In terms of road conditions, both the slope and different road types are of interest. As
slope increases, FCR and CO; both increases, as expected. However, for gasoline vehicles, the
mean consumption at the steepest road segments actually dips a little, but has a higher

variability.
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FCR vs Slope for HEV FCR vs Slope for Gasoline Vehicles
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Figure 10. Slope profiles with their corresponding FCR and CO; for gasoline vehicles and HEVSs.
Note: The plots also show the distribution of the variables at different slopes. The red dots are the mean values at
each slope.

One part of the research question is to investigate the FCR and CO2 emissions across the
various different road types. In the boxplots with a breakdown of the different road classes (in
increasing traffic volume order from left to right- from local street on the left to motorway on the
right) (Figure 11), the FCR and CO- emissions are consistently lower in HEVs than gasoline
vehicles in all road types. It is also interesting to note that within HEVS, the emission is the
highest in highway, which aligns with what literature showed. And for conventional gasoline

vehicles, the emission is the highest in local streets.
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HEV vs CV: Fuel Consumption Rate in Different Road Types Gasoline Cars vs HEV: CO2 Rate in Different Road Types

1. Local Street 2. Collector 3. Secondary arterial 4. Main Arterial 5. Motorway 1. Local Street 2. Collector 3. Secondary arterial 4. Main Arterial 5. Motorway

N
@

il 400

N
S

CO2 (g/km)

FCR (L/100km)
=

: e

2]

o

N
gy
> o2

Vehicle Type Vehicle Type

Figure 11. Boxplots of FCR and CO; in different road types for gasoline vehicles and HEVs.
Note: Fuel consumption rate is in L/100km (left) and CO, emission rate in g/km. The different road types are: local
street, collector, secondary arterial, main arterial and motorway/highway.
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4.1.4. Correlation Analysis

Before conducting statistical analyses, all the continuous independent variables were
examined to determine if they are correlated with the dependent (or response) variables of
interest (fuel consumption and CO>). With all variables, some variables such as ambient
temperature is shown to have a weak correlation with the dependent variables, whereas some are
shown to high a strong correlation.

During data collection, two vehicle speeds were recorded- one speed was derived from
the GPS data and the other speed was wheel speed reported by the engine control unit from the
OBD-11 logger. A comparison of the two speeds (GPS speed and wheel speed) indicated that
both units provide similar speed estimates, as shown in Figure 12. Therefore, only speed from

GPS is kept as a variable for the analysis, as this was also done in a previous research.
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Pearson Correlation Coefficient: 0.967
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Figure 12. Comparison between GPS and OBD speed data.
Note: The solid line is the reference line where y=x.

The correlation matrix, shown in Figure 13, was used to see if any of the continuous
independent variables were correlated with one another and to examine if any of the independent
variables were correlated (with coefficients higher than 0.4) with the dependent variables of fuel
consumption and CO». The Pearson correlation coefficients between engine speed in revolutions
per minute and GPS speed is 0.46 which is considered to be high, therefore, one of it should be
removed from analysis. The independent variables that have correlation matrix greater than 0.4
would be considered to be removed. The variable that are being kept in the subsequent analysis
and models would be the ones that have higher correlation with the dependent variables of

interest (FCR and COy).
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Figure 13. Correlation matrix.
Note: This includes all the independent variables and dependent variables (FCR and CO2).

From the correlation matrix, the following independent variables are kept: vehicle type
(whether it is conventional gasoline vehicle or HEV), GPS vehicle speed, acceleration, slope,
road class or road type (whether it is local driving or highway driving) and the ambient
temperature. Even though some of the selected variables (such as slope and ambient temperature)
have relatively lower correlation coefficients against the dependent variables, they are included
in analysis as they have shown to be significant variables in past literature. In addition, from a
simple linear regression, these variables are significant, even though the coefficients are

relatively small.
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4.1.5. Linear Regression Analysis

The results from linear regression analysis were analyzed first and presented in this
section. The result outputs include the estimated coefficient, standard error, t-value and p-value.
The estimated coefficient is the average increase or decrease in the dependent variable with
every one unit increase in the independent variable, assuming all other independent variables are
held constant. The standard error of the coefficient measures the uncertainty in the estimate. The
t-value or t-statistic is the coefficient divided by the standard error. The p-value, which
corresponds to the t-value, indicates significance. If the p-value is less than 0.05, the independent
variable is statistically significant.

Two linear regression analyses were done, one for response variable as fuel consumption
rate, the other as emissions rate. Both of the response variables are in original units, not in the
logarithmic function. The dataset used was the time-based data for every one second. The
following output tables for FCR (Table 9Error! Reference source not found.) and CO>
emission (Table 10) as response variables are presented as examples to show the coefficient
estimate and significance for each predictor.

In the FCR output, it suggests that all of the included variables are statistically significant
in determining FCR, as all of the p-values are less than 0.05. From the coefficients of the
predictor variables, the FCR is less when the vehicle type is a HEV and the ambient temperature

is negatively associated with FCR. Other variables are all positively associated with FCR.
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Table 9. Linear regression analysis for fuel consumption rate.

FCR
Predictor Coef. Std. err t-value p-value

Vehicle Type HEV -0.177 0.002 -85.411 0
Hg:/ Base

Speed 0.009 0.00005 160.781 0

Acceleration 0.215 0.002 118.736 0

Slope 0.921 0.021 43.822 0
Road Type Urban 0.00817 0.004 2.166 0.03
Highway Base

Ambient Temperature -0.0006 0.0001 -5.213 0

R?=0.356

Degrees of freedom: 122862

Residual standard error: 0.326

F-statistic: 1.131e+04
p-value: < 2.2e-16

Note: The variables vehicle type and road type are considered to be dummy variables. In vehicle type, 1 is for HEV

and 0 is for non-HEV. In road type, 1 is for urban road and 0 is for highway.

In the CO2 emission output, it suggests that all of the included variables play important

roles in determining the emissions, except for the road type. The signs of the coefficients

(positive or negative) align with the FCR output for vehicle type and ambient temperature.

Table 10. Linear regression analysis for CO, emission rate.

CO2 Emission Rate

Predictor Coef. Std. err t-value p-value

Vehicle Type HEV -0.832 0.005 -155.737 0
Hg\]/ Base
Speed 0.020 0.0001 148.003 0
Acceleration 0.475 0.005 101.750 0
Slope 2.204 0.054 40.745 0

Road Type Urban 0.002 0.009 0.232 0.816
Highway Base

Ambient Temperature -0.0007 0.0003 -2.318 0.021

R?=0.382

Degrees of freedom: 122862
Residual standard error: 0.84
F-statistic: 1.267e+04
p-value: < 2.2e-16
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From the linear regression results, in general, increasing in speed, acceleration and slope
would result in an increase in FCR and emissions. From driving a HEV and on a warmer day,
this would result in a decrease in FCR and emissions. However, this alone may not provide the
complexity of the relationships among the variable and further regression analysis would be

conducted.

4.1.6. Regression Analysis

This section evaluates the effects of the potential predictors (independent variables) on
fuel consumption rate and CO> emission rate using log-linear mixed-effect model.

The random effect in these models is the unique vehicle. The main dataset used in the
regression model is the time-based data for every one second.

The models were fitted by using the combined data (with all vehicle data) and two
separate subsets of vehicle type or vehicle technology where the combined data was partitioned
into: hybrid electric vehicle (HEV) or non-HEV (conventional gasoline vehicles) datasets. The
response variables (FCR and CO.) have been normalized for this type of regression by taking a
natural logarithm. Because there are many zeros in FCR and CO., a constant is added to the
variables before taking a natural logarithm. The different constants, ranging from 0.01 to 1, were
tested for sensitivity. The constant 0.5 was selected because the constant should ideally be less
than 1 and the estimated fuel and emission reduction using 0.5 resemble the reductions from the
collected data.

Different model settings were explored and tested with a combination of different
predictors implemented, along with the two response variables separately and using two different

datasets. The primary dataset used where results from regression analysis would present is the
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time-based dataset for every 1 second. The second dataset used (for exploring and testing) is the
distance-based dataset for every 50 meters travelled.

There are a total of six different models as outcomes to showcase how the two response
variables (FCR and CO.) behave in the combined dataset (with all vehicle data), in the HEV
group and in the non-HEV group. The different models tested included a combination of the
predictors identified as significant from the correlation matrix analysis and statistical analysis.
The following are the fixed effects in the models in this section: vehicle type (HEV or non-HEV,
for the combined dataset), speed, acceleration, slope and road type. Ambient temperature is
evaluated in Section 4.2. The random effect is the individual unique vehicle.

The performances of the models are evaluated using 5-fold cross validation technique to
assess the model’s predictive accuracy on testing data. The performance metrics used to compare
the models are log-likelihood, R?, Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) (AIC and BIC are not shown). The metrics were used to evaluate the goodness-
of-fit of the models and were used to select the model and their predictors that performed the
best. The correlations between variables were verified to avoid collinearity and multicollinearity

issues. The assumptions of the modelling technique were also checked.

4.1.6.1. Fuel Consumption and CO2 Models for All Vehicles

Using the combined data (with all vehicle data from both HEVs and non-HEVSs), the log-
linear model output is shown in Table 11. All of the variables included in the model are
statistically significant except for road type for the emission model. However, the models
perform the best in comparison to the other tested models with the listed variables included. The

signs (positive or negative) on the coefficients or the average marginal effects reveal the general
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trend of relationship between the variable with the dependent variables, fuel consumption rate

(FCR) and or CO2 emission rate.

Table 11. Log-linear models outcomes of fuel consumption rate and CO, emission rate (combined data).

FCR CO2
Predictor Coef. Setr?' vaF;IJe Elii(S(;l)()Zl'[y Coef.  Std. err v;[Je Ela(so%:lty
Vehicle Type HEV -0.294  0.029 0 -25.455 | -0.815 0.053 0 -55.725
SEQ/ Base
Speed 0.009 0 0 16.986 0.013 0 0 24.137
Acceleration 0.209  0.002 0 0.22 0.253 0.003 0 0.267
Slope 0.891 0.02 0 0.036 1.325 0.031 0 0.054
Road Types Urban 0.025  0.004 0 2.566 -0.001 0.006  0.906 -0.066
Highway Base
R?=0.42 R?=0.54
Log-likelihood= 27945.79 Log-likelihood= 19937.61

Note: Elasticities are calculated at the mean values for continuous variables.

By driving a HEV, the fuel consumption rate could be reduced by 25.5% and emission
rate reduced by 55.7%, in the base case, according these specific log-linear models, which is
what the elasticities reveal. The elasticity is the highest for vehicle type in both models,
indicating that whether the vehicle is a HEV or non-HEV has the strongest influence on FCR and
emissions.

For speed, the marginal effects analysis revealed that for every unit increase in vehicle
speed, holding other variables constant, the FCR increases by 25.2% for HEVs and 50.9% for
non-HEVSs. For CO2 emission rate, it decreases by 5.2% for HEVs and increases by 51.3% for
non-HEVs for every unit increase in speed. The elasticities for speed are the highest after the
vehicle type, implying that speed is an important factor that influences FCR and emissions. With
1% increase in speed, the FCR increases by approximately 17% and CO emission increases by

approximately 24.1%, at the mean of vehicle speed (19.2 km/hr), holding everything constant, in
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the base scenario. The fuel consumption is slightly more sensitive to changes in speed with
elasticity of 24.1% whereas the elasticity for CO: rate is 17.0%.

From literature, speed is associated with FCR and emission non-linearly. In addition to
log-linear model, different combinations of polynomial models with respect to speed were also
tested (combination of speed, speed? and speed®), though not shown here. Some of the
preliminary sensitivity analysis results show that with every 1% increase at the average vehicle
speed, FCR increases around 16.9% and 17.3% and CO> emission rate increases around 23.3%
and 23.5% (from tested models with different combinations of polynomial speed terms). The
elasticities are similar to the log-linear models presented here.

Acceleration has relatively small elasticities in comparison, implying that the influence of
acceleration on FCR and emission is small, but it is a statistically significant variable and is
correlated positively with the dependent variables. At the mean of acceleration (average
acceleration of -0.011 m/s?) in the base scenario, FCR increases by 0.22% and emission
increases by 0.27% for every 1% increase in acceleration. The elasticities for acceleration are
extremely small because the elasticities are computed at the mean and acceleration has a small
absolute mean value.

Slope, similar to acceleration, also has relatively small elasticities in comparison. It is a
statistically significant variable and correlated positively with the dependent variables. At the
mean of slope (average road grade or slope of 0.04%) in the base scenario, FCR increases by
0.036% and emission increases by 0.054% for every 1% increase in acceleration. The elasticities
for slope are extremely small for the same reason as acceleration.

By driving in an urban setting or in local streets, the FCR is increased by approximately
2.6% and emission is decreased by approximately 0.07%, in the base scenario, for non-HEVs.

For HEVs driving in an urban setting, holding other variables constant, FCR and emission are
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reduced by 23.5% and 55.8%, respectively (in comparison to highways with reductions of 25.5%
in FCR and 55.7% in emissions). The effect of road class is small. The response variables, FCR
and emission, are not sensitive to changes to the different road types.

The road class, according to past literature, should have reduced FCR and emission in an
urban setting (local streets), more so for HEVs. The CO, model aligns with theory where by
driving in an urban setting, the emission is slightly further reduced for HEVs. However, for fuel
consumption, it revealed a positive correlation with driving in urban setting. Even though FCR
and emission should be correlated, the real-world driving experiments do not always align with
this, especially for HEVs.

In addition, when driving in a metropolitan city such as Montréal, the highways can
sometimes get congested. Therefore, a data point could be labeled as a highway but behaves like
a local street. This could also be due to modelling parameters. The small elasticities provide an
indication that road class is not an extremely important variable in these specific models. The p-
value for road class in the CO2 model is greater than 0.05, indicating insignificance, even though

the model performance overall is better with this variable.

4.1.6.2. HEVs vs non-HEVs: FCR Model

This subsection discusses the model outputs for FCR for HEV and gasoline vehicles
(non-HEVs) (Table 12), separately, in order to observe if there are any differences from the
overall models (from Section 4.1.6.1, using the dataset with all types of vehicles) and further
investigate the differences between HEV and non-HEV more specifically. All the predictor
variables in the model are statistically significant (p-value < 0.05). All of the predictors are

positively correlated with FCR, meaning increasing in the variables would increase the FCR.
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Table 12. FCR log-linear models outcomes for HEV and non-HEV.

FCR HEV Non-HEV
Predictor Coef.  Std. err vaF;IJe Elii(S(;l)()Zl'[y Coef.  Std. err v;[Je Ela(so%:lty

Speed 0.009 0 0 18.558 | 0.007 0 0 13.337
Acceleration 0.294 0.003 0 0.224 0.152 0.002 0 0.220
Slope 1.806 0.035 0 0.119 0.191 0.02 0 0.001
Road Types Urban  0.016 0.005 0.001 1.639 0.087  0.006 0 9.100

Highway  Base

R2=0.38 R?=0.38
Log-likelihood= 14246.82 Log-likelihood= 12840.85

Note: Elasticities are at the mean values for continuous variables.

The elasticities for speed are 18.6% and 13.3% for HEVs and non-HEVs, respectively,
which is around the same range as the combined models. In other words, for every 1% increase
in vehicle speed, at the mean (19.9 km/hr for the HEV model and 18.2 km/hr for the non-HEV
model) in the base case, the FCR increases by around 18.6% for HEVs and 13.3% for non-
HEVs. It also implies that HEVs are more sensitive to changes due to speed than non-HEVs.
Similar note to the previous section where speed has a non-linear relationship with FCR, though
the elasticities are quite similar to the log-linear models.

Acceleration has a small positive effect on FCR and it is not as sensitive to change due to
changes in acceleration with the small elasticities. For every 1% increase in acceleration, at the
mean (-0.0076 m/s? for HEVs and -0.014 m/s? for non-HEVs) in the base case, the FCR
increases by around 0.22% for both types of vehicles. The elasticities are small for acceleration
for similar reasons that elasticities are calculated at the mean and the mean of acceleration is
small.

Slope has a small positive effect on FCR. The elasticities are higher in HEVs than non-
HEVs, implying that HEVs are more sensitive to changes in slope. And that increasing in slope
could increase FCR more in HEVs. More specifically, for every 1% increase in slope, FCR

increases by around 0.12% and 0.001% for HEVs and non-HEVSs, respectively, at the mean of
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slope (0.066% for HEVs and 0.0066% for non-HEVS) in the base case. Once again, the
elasticities are extremely small because of the small mean of slope values. The observations were
mainly from flat roads.

In theory, driving in non-highway roads lowers the FCR, meaning the fuel economy is
usually higher on highways than in city driving for HEVs. In these models, it is revealed that
FCR increases by approximately 1.6% for HEVs and 9.1% for non-HEVs by driving in an urban
setting. This implies that FCR for non-HEVs are more sensitive to change based on the road
type. For conventional gasoline vehicles, the fuel economy is generally better in highway than

city driving.

4.1.6.3. HEVs vs non-HEVs: CO2 model

This subsection discusses the model outputs for CO. emission rate for HEV and gasoline
vehicles (non-HEVs) in Table 13. All the predictor variables in the model are statistically
significant (p-value < 0.05). All of the predictors are positively correlated with CO,, meaning

increasing in the variables would increase the CO, with the exception of road type for HEV.

Table 13. CO; log-linear models outcomes for HEV and non-HEV.

CO: HEV Non-HEV
. Std. P- Elasticity P- Elasticity
Predictor Coef. orr value (%) Coef. Std. err value (%)
Speed 0.013 0 0 26.0 0.011 0 0 20.688
Acceleration 0.267 0.005 0 0.204 0.251 0.003 0 0.361
Slope 2.55 0.052 0 0.168 0.367 0.032 0 0.002

Road Types Urban -0.023 0.007 0.001 -2.284 0.134 0.01 0 14.376

Highway Base
R?=0.31 R?=0.38
Log-likelihood= 11830.90 Log-likelihood= 7747.23
Note: Elasticities are at the mean values for continuous variables.

For speed, the elasticities are higher for both types of vehicles in comparison to the FCR

models. It once again implies that HEV's are more sensitive to changes due to speed than non-
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HEVs (26% and 20.7% for HEV and non-HEV, respectively). The elasticities also indicate the
change in emission based on changes from speed. In other words, CO2 emission rate increases by
26% and 20.7% for HEVs and non-HEVs, respectively, for every 1% increase in speed, at the
mean speed in base scenario. From both the FCR and CO, models, they imply that vehicle
performance is sensitive to change due to change in speed and it is also more sensitive for HEVs.

Acceleration has a positive but small effect on CO». From the sensitivity analysis, it was
revealed that emission rate increases by 0.20% and 0.36% for HEVs and non-HEVs,
respectively, for every 1% increase in acceleration, at the mean acceleration in base scenario.
Emission is not as sensitive to change due to changes in acceleration. The acceleration factor in
this model for the types of vehicles do not show much difference.

Slope, like acceleration, also has a positive but small effect on CO>. Results from slope is
consistent with that of the FCR model where HEVs are more sensitive to changes in slope than
non-HEVs (0.17% versus 0.002% of elasticity). In other words, emission rate increases by 0.17%
and 0.002% for HEVs and non-HEVs, respectively, for every 1% increase in slope, at the mean
slope in base scenario. And that increasing in slope could increase CO2 more in HEVS.

Road type (driving in either urban setting or highway) is a statistically significant
variable for both types of vehicles. However, it has opposite effects on the types of vehicles.
Driving in urban setting decreases CO2 emission rate by average of 2.3% for HEVs, while it
increases the rate by 14.4 % for non-HEVs. From the sensitivity analysis, it is also shown that

emission from conventional gasoline vehicles is sensitive to different road types.
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4.2. Effect of Ambient Temperature on Performance of Hybrids

This section first evaluates the impacts of ambient temperature using a quadratic function
for all types of the vehicles first (HEVs versus non-HEVS), presenting statistical analysis and
regression analysis.

The models used in the previous section (Section 4.1) was Equation (4). As explained in
the methodology and previous literature, a quadratic term would be added to the log-linear
models in attempt to develop models to estimate for vehicle performance based on the ambient
temperature. All the variables used in the previous section would be kept in these models.

Then, using data from only HEVs and PHEVs, the remainder of the section investigates
specifically on only HEVs and PHEVs where it goes into a deeper dive of comparisons between
the vehicles with different potential factors. Two sets of statistical and regression analyses would
be conducted for HEVs and PHEVs only. The first set is similar to the previous section where
log-linear model would be used and not including ambient temperature as a factor. The second
set, using the quadratic function for modelling where ambient temperature is considered, would

be conducted. The data for this part is a subset of data from only HEVs and PHEVs.

4.2.1. Effect of Ambient Temperature on All Vehicles

This section evaluates the effects of ambient temperature on temperature on fuel
consumption rate and CO- for all vehicles first to get a general overview, before focusing in on
just the hybrids.

From the analysis of variance, it has been shown that all of the variables are significant,

including the vehicle type, speed, acceleration, slope, road class (only significant for the FCR
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model), ambient temperature and quadratic term of ambient temperature (raised to the power of
two).

Using the log-linear model in the previous section, ambient temperature was shown to be
not statistically significant. For analyzing the effects of ambient temperature, quadratic function
is utilized in this section, keeping the same variables from previous sections.

Table 14 shows the model results for fuel consumption rate and emission rate for all
vehicle types. The road class has been removed in these models as it is not statistically
significant in this model. Both ambient temperature and ambient temperature to the power of two
(quadratic term) are shown to be statistically significant.

Table 14. Log-linear model outcomes with quadratic term for FCR and CO, emission rate.

FCR COz
Predictor Coef.  Std.err vz:;Je Ela(s(;(l)():lty Coef.  Std.err vaF;;Je E|a(SO;I)§:Ity
(Intercept) -0.3382 0 0 0.1633 0 0
Vehicle Type HEV  -0.2812 0 0 -24.509 | -0.8031 0 0 -55.206
HEQ/ Base Base
Speed 0.0087 0 16.774 0.0127 0 24.443
Acceleration 0.2083 0 0.219 0.2495 0 0.263
Slope 0.8929 0.02 0 0.0362 1.3263 0.03 0 0.0538
Ambient Temperature  -0.0061 0 1.000 -0.0028 0 1.564
(Ambient 4.00E- 0 0 2.00E- 0 0
Temperature)? 04 04
R2=0.42 R?=0.52
Log-likelihood= -33690.83 Log-likelihood= -85161.99

Note: Elasticities are calculated at the mean values for continuous variables.

As expected, the coefficients for HEV are both negative, indicating a reduction in
response variables by driving a HEV. In these models, including the quadratic term of ambient
temperature, the FCR could be reduced by approximately 28.7% by driving a HEV and CO:

emission rate could be reduced by approximately 55.2% by driving a HEV.
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The ambient temperature, in first degree, has negative coefficient and ambient
temperature raised to the power two is positive for both models. This implies that the general
shape of the estimated curves would be U-shaped.

From the marginal effects analysis, it is revealed that the FCR could increase by 25.1%
and 49.4% for HEVs and non-HEVs, respectively, for every unit increase in ambient
temperature. The CO, emission rate could decrease by 5.3% for HEVs and increase by 49.7% for
non-HEVs, for every unit increase in temperature. These differences are generated mostly from
the vehicle type and not as much from the ambient temperature variable. As seen further from
the sensitivity analysis, with every 1% increase in ambient temperature, both the FCR and CO>
emission increase by approximately 1.0%, at the mean of ambient temperature (10°C), holding
everything constant, in the base scenario. This also implies that even though ambient temperature
has an overall average positive effect on the response variables, the effect is small and the
response variables are not sensitive to changes to ambient temperature from these models.

The relationship between FCR and CO, emission rate with ambient temperature from
these specific models are illustrated in Figure 14 and Figure 15, respectively. Both exhibit the U-

shaped curves, though the temperature effects are quite small.
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Figure 14. Effect of ambient temperature on FCR.
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Figure 15. Effect of ambient temperature on CO; emission rate.
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4.2.2. Comparisons Between HEVs and PHEVs

This section presents comparisons of fuel consumption rate and CO emission rate
between HEVs and PHEVs based on speed profiles, different road types and driving states.

Based on data from experiments, fuel consumption rate is approximately 7.8% lower in
plug-in HEVs compared to conventional HEVs, with the mean FCR being 4.7 L/100km and 4.3
L/100km for HEV and PHEV, respectively.

However, the emissions rate is actually higher in PHEV than conventional HEV by
approximately 9.26%. The mean CO> based on collected data from experiments is approximately
59.9 g/km and 65.4 g/km for HEV and PHEYV, respectively. Table 15 and Table 16 detail
summary statistic of FCR and COg, respectively, on HEV and PHEV, along with the histograms
to show their data distribution. The data distribution for HEVs and PHEVs have very similar
pattern, with similar standard deviation, maximum and ranges. The observations are quite
skewed as there are many zero values in the observations, which is expected given the data

points could be on electric engine mode for the hybrids.

Table 15. Descriptive statistics of FCR in L/100km for HEVs and PHEVSs.
Vehicle  Number of Standard

Type  Observations Deviation Median  Min Max Q1 Q3 IQR cl
HEV 3691 471 5.05 3.20 0 23.09  0.02 8.06 8.04 0.16
PHEV 4420 4.34 5.14 2.10 0 2322  0.00 7.76 7.76 0.15

Distribution Fuel Consumption Rate in HEVs and PHEVs
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Table 16. Descriptive statistics of CO, emissions rate in g/km for HEVs and PHEVs.

Vehicle  Number of Standard . .
Type  Observations €N peviation Median ~ Min Max Q1 Q3 IQR Cl
HEV 3691 59.85 84.62 11.26 0 42250 0.13 96.55 96.42 2.73
PHEV 4420 65.40 88.38 11.87 0 406.08 0.00 11791 11791 261

Distribution of CO, Emission Rate in HEVs and PHEVs
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Table 17 is another summary statistics table to summarize HEV and PHEV with other

tested variables (including average speed, acceleration, engine speed, proportion of highway

driving, proportion of summer driving and average ambient temperature).

Table 17. Summary statistics of FCR and CO, emission rate (g/km) for HEVs and PHEVs and their tested variables.

Description Unit Mean SD
HEV PHEV HEV PHEV
Number of observations 3691 4420 - -
Fuel consumption rate L/100km 4,71 4.34 5.05 5.14
CO2 emission rate g/km 59.85 65.4 84.62 88.38
Average speed for every 50m travelled km/hr 37.39 47.44 18.43 23.83
Average acceleration for every 50 m m/s2 0.08 0.08 0.39 0.37
travelled
Averageengine speed forevery SOm - RevOUlOS 67403 72508 67800 81502
Proportion of Highway Driving 0.18 0.34 0.39 0.47
Proportion of Summer Driving 0.26 0.24 0.44 0.43
Average ambient temperature °C 7.09 8.28 8.44 6.98

Figure 16 shows the FCR and CO> with their corresponding speed profiles for HEVs and

PHEVs. The patterns of the curve for FCR and CO: exhibit similar patterns for both types of

72



vehicles and both are non-linear. For both HEVs and PHEVs, the rates start out lower at lower
speed, then there is a gradual increase from low speed to around 35 km/hr to 60 km/hr, stabilizes

and increases slightly at higher speeds.
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Figure 16. Average speed profiles with their corresponding FCR and CO, for HEVs and PHEVs.
Note: The plots also show the distribution of the variables at different speeds. The red dots are the mean values at
each speed.

The boxplots of fuel consumption rate (Figure 17) and CO emissions (Figure 18) show
that the averages do not fluctuate much among the different road types. The spread of the data
also seem quite consistent for both conventional HEV and PHEV. However, there seem to be

long tails on the boxplots. The variabiltiy in HEV and PHEVS, as seen in previouss sections as
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well, are larger than regular gasoline vehicles. It is also observed that PHEVs actually have

higher average emissions in certain road types (such as local roads) compared to conventional

HEVs. Range of emissions from PHEVs are quite consistent across different road types whereas

the emissions from highway are the highest on average for HEVs.
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Figure 17. Boxplots of FCR for HEVs (left) and PHEVs (right), grouped by the different types of roads.
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Figure 18. Boxplots of CO, for HEVs (left) and PHEVS (right), grouped by the different types of roads.
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In the boxplots comparing the driving states (acceleration, cruising or deceleration), it is

revealed that there is more fuel consumed during acceleration, following by cruising, then

deceleration, with PHEV’s FCR being less (Figure 19). FCR is only lower in the acceleration

and deceleration phases, by 4.2% and 22.2%, respectively, for PHEVs than HEVs.

Fuel Consumption Rate in Each Driving State:
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Figure 19. Boxplots of FCR for HEVs (left) and PHEVSs (right), grouped by driving states.
Note: The driving states include: acceleration, cruising or deceleration.

In CO, emissions rate, it is as expected and following very similar trend to FCR where

acceleration is the highest and deceleration is the lowest. However, for COo, it is revealed that

the mean emissions for PHEVs are actually higher than HEVs during acceleration and

acceleration phases. The COz rate is only lower in the deceleration phase in PHEV by

approximately 14.8% than HEVs.
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Figure 20. Boxplots of CO emissions for HEVs (left) and PHEVs (right), grouped by driving states.
Note: The driving states include: acceleration, cruising or deceleration
4.2.3. Colder vs Warmer Ambient Temperature: Between Same Vehicles
There were two trips that were conducted in the colder month using the same two

vehicles that were tested during the warmer months. The two vehicles are Ford C-Max Energi

and Toyota Prius C. The fuel consumption rate and CO. emission rate are compared between the

same vehicle for one trip conducted in warmer temperature and the other in colder temperature.

The experiments conducted in the colder month had the intention to only change the

environmental condition (i.e. warmer versus colder ambient temperature) while keeping all other

variables constant or as similar as possible: same vehicle, same driver, similar driving routes,

conditions, etc.

Figure 21 shows the boxplots of FCR and CO- for each trip when ambient temperature is

colder versus when it was warmer.
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Colder vs Warmer Temperature: Fuel Consumption Rate

Colder vs Warmer Temperature: CO2 Rate (g/km)
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Figure 21. Boxplots of FCR in L/100km (left) and CO, in g/km (right) for Ford C-Max Energi (PHEV) and Toyota
Prius C (conventional HEV) when ambient temperature was colder and when it was warmer.

The average ambient temperature for the colder months is -0.7 °C and the average

ambient temperature for the warmer months is 14.6 °C for these tested vehicles. The hypothesis

is that the fuel economy would be less efficient when ambient temperature is lower compared to

higher temperature. However, there does not seem to be a huge difference based on the boxplots.

One potential reason is that the ambient temperature difference is not huge enough to generate

differences in vehicle performance. The summary statistics for the four trips is summarized in

Table 18.

Table 18. Summary statistics of all four trips made by Ford C-Max Energi (PHEV) and Toyota Prius C (HEV)
during a warmer ambient temperature versus colder.

Ford C-Max Energi 2016 (PHEV)

Toyota Prius C 2019 (HEV)

Warmer Colder Warmer Colder
n 1564 1702 1465 1464

Mean SD Mean SD Mean SD Mean SD

FCR (L/100km) 5.04 5.99 4.75 5.82 5.66 4.97 5.77 6.13
CO2(g/km) 71.47 96.18 63.1 91.93 40.84 70.23 51.24 82.32
Speed (km/hr) 43.51 2331 46.2 23.39 31.59 16.73 35.84 18.44

Acceleration (m/s?) 0.07 0.38 0.08 0.36 0.11 0.37 0.11 0.4
Engine Speed (RPM) 703.15 826.8 729.7 833.84 80491  736.28  640.79  704.63
Proportion of Highway Driving 0.32 0.47 0.33 0.47 0.14 0.35 0.14 0.34

Ambient Temp (C) 10 --- 0.5 --- 19.2 --- -1.9
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Assessing the boxplots of FCR and CO- rate based on each driving state (acceleration,
cruising and deceleration) (Figure 22), there are no noticeable huge differences between the
ambient temperature variation. But, the pattern of fuel consumption and CO> emissions were as

expected, where acceleration is the highest, following by cruising, then deceleration.

Colder vs Warmer Ambient Temperature for HEVs: Colder vs Warmer Ambient Temperature for HEVs:
Fuel Consumption Rate in Each Driving State CO2 Rate in in Each Driving State
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Figure 22. Boxplots of FCR (left) and CO; (right) for different ambient temperature variation under different driving

states.
Note: FCR in L/100km (left) and CO2 in g/km (right) for different ambient temperature variations (colder versus
warmer temperature) for the four trips (HEVs and PHEVS) in different driving states: acceleration, cruising or
deceleration.

4.2.4. Regression Analysis: HEV vs PHEV

The predictor variables or the factors remain the same: vehicle type, speed, acceleration,
slope and road type. Regression analysis was conducted where all of the potential predictors
(without ambient temperature) were evaluated using the log-linear model. Then, ambient
temperature is added to the analysis with the other predictors. The analysis is done using

quadratic function.
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4.2.4.1. Models Without Temperature

In evaluating to see how much reduction potentials PHEVs have, the analysis can provide
insights into whether all hybrids are made equally and how well PHEVs perform in comparison
to conventional HEVs. The log-linear models were once again conducted here for both fuel
consumption rate and CO. emission rate with the predictors (without temperature) on HEVs and
PHEVs, summarized in Table 19.

For the FCR model, the goodness of fit, R?, is 0.31 in the FCR model and 0.37 in the CO
model. The relationships between each predictor with the dependent variables all follow similar
trends to the previous section. The F-statistic of 8441 with a very small p-value (< 2.2e-16)
indicates that the overall model is highly significant, suggesting that at least one of the

independent variables has a significant relationship with the dependent variable.

Table 19. Log-linear models outcomes of fuel consumption rate and CO; emission rate for PHEVs and HEVSs.

FCR CO2
Predictor Coef.  Std. err VZ;IJE Elal(soz():lty Coef.  Std.err vaF;;Je EIa(s(;);ﬂy

Vehicle Type PHEV -0.04 0.003 0 -3.943 -0.016 0.004 0 -1.569

HEV Base
Speed 0.009 0 0 18.409 0.013 0 0 26.156
Acceleration 0.292 0.003 0 0.223 0.264 0.005 0 0.201
Slope 1.81 0.035 0 0.119 2.567 0.052 0 0.169
Road Types Urban 0.012 0.005 0.013 1.167 -0.027 0.007 0 -2.709

Highway Base

R?=0.31 R?=0.37
Log-likelihood= -56372.53 Log-likelihood= -27883.48

Note: Elasticities are at the mean values for continuous variables.

From this model, it revealed that by driving a PHEV, the FCR reduction could be 3.9%
and emission reduction could be 1.6%, in comparison to a conventional HEV. In the collected
data, PHEVs had higher emissions. However, in the models, after accounting for other factors,

PHEVs, in fact, do show emission reductions.
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From the marginal effects analysis, it is revealed that the fuel consumption increases by
46.9% for PHEVs and 50.9% for HEVs for every unit increase in vehicle speed, holding other
variables constant. For CO2 emission rate, it increases by 49.7% for PHEVs and increases by
51.3% for HEVs for every unit increase in speed. The elasticities for speed are the highest after
the vehicle type, implying that speed is an important factor that influences FCR and emissions.
With every 1% increase in speed, the FCR increases by approximately 18.4% and CO2 emission
increases by approximately 26.2%, at the mean of vehicle speed (19.9 km/hr), holding
everything constant, in the base scenario. From the elasticities, the dependent variables in these
models show that they are sensitive to changes in speed. The CO, emission rate is more sensitive
to changes in speed than FCR.

At the mean of acceleration (average acceleration of -0.0076 m/s?) in the base scenario,
FCR increases by 0.22% and emission increases by 0.20% for every 1% increase in acceleration.
Acceleration has relatively small elasticities in comparison, implying that the influence of
acceleration on FCR and emission is small, but is correlated positively with the dependent
variables. The elasticities for acceleration are extremely small because the elasticities are
computed at the mean and acceleration has a small absolute mean value, consistent with all the
other models.

For slope, FCR increases by 0.12% and emission increases by 0.17% for every 1%
increase in acceleration, at the mean of slope in the base scenario (average road grade or slope of
0.066%). Slope also has relatively small elasticities in comparison but correlated positively with
the dependent variables. The elasticities for acceleration are extremely small for the same reason
as acceleration.

Similar to previous models, the effect of road type is opposite in the FCR model than the

emission model. By driving in an urban setting or in local streets, the FCR is increased by
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approximately 1.2% and emission is reduced by approximately 2.7%, in the base scenario, for
conventional HEV. For PHEVs driving in an urban setting, holding other variables constant,
FCR and emission are reduced by 2.8% and 4.2%, respectively (in comparison to highways with
reductions of 3.9% in FCR and 1.6% in emissions). The relatively small elasticities indicate that
road class is not an extremely important variable in these specific models and that the dependent
variables are not sensitive to changes in road class in these models.

The general trend with increasing speed is increase in FCR and emission. As mentioned
previously, the relationship between speed and the dependent variables is non-linear. These
models with polynomial terms were tested, but require further investigation. These models do
not capture the nuances of when the gasoline engine starts to work in hybrid vehicles. Other
models could be further explored to find an even better fit. Even though driving in an urban
setting increases the FCR slightly, it is not a huge difference. And even in the emission model,

the reduction in driving in an urban setting is not significant.

4.2.4.2. Models With Temperature

Then, models were generated with the same predictors, this time including the ambient
temperature as one of the variables. These log-linear models include a quadratic term for ambient
temperature (raising to the power of two), in addition to just ambient temperature.

The overall goodness of fit for the FCR model including ambient temperature and
ambient temperature to the power of two has R? of 0.38, F-statistic of 6053 and a p-value of <
2.2e-16 which shows an overall good fit of the model. All of the variables are statistically
significant with p-values of less than 0.05. Table 20 summarizes the model outcomes

incorporating a quadratic function of ambient temperature.
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Table 20. Log-linear model outcomes with quadratic term for FCR and CO; emission rate.

FCR CO:
. P- Elasticity P- Elasticity
Predictor Coef. Std. err value (%) Coef. Std. err value (%)
(Intercept) 06334 001 0 -0.6435  0.01 0
Vehicle PHEV  -0.0303 0 0 2982 | -0.0296 0 0 -2.912
Type
HEV Base Base
Speed 0.0092 0 0 18.368 | 0.0131 0 0 26.042
Acce'r‘fra“o 0.2935 0 0 0224 | 0.2659 0 0 0.203
Slope 1.8057  0.03 0 0118 | 25603  0.05 0 0.169
Road Class  Urban  0.0131 0 0.01 1322 | -0.0232 001 0 -2.295
Highway  Base Base
Ambient Temperature  -0.0034 0 0 0.264 0.009 0 0 3.86
(Ambient 3.00E- 0 0 -3.00E- 0 0
Temperature)? 04 04
R?= 0.38 R?=0.31

Log-likelihood= -27831.91

Log-likelihood= -56194.64

Note: Elasticities are calculated at the mean values for continuous variables.

In these models, by driving a PHEV, it could reduce both the FCR and CO2 emission rate

by around 2.9%, in comparison to driving a HEV, controlling all other factors. From the

sensitivity analysis, the vehicle type (whether the vehicle is PHEV and HEV) is not the variable

that influences the dependent variables the most, unlike the models comparing HEV to non-

HEV.

For speed, the marginal effects analysis revealed that for every unit increase in vehicle

speed, holding other variables constant, the FCR increases by 47.9% for PHEVs and 50.9% for

HEVs. For CO2 emission rate, it increases by 48.4% for PHEVs and 51.3% for HEVs for every

unit increase in speed. Speed has the highest elasticities in both models, implying that FCR and

emission are the most sensitive to changes in speed, with elasticities of 18.4% and 26.0%,

respectively. Speed is an important variable in determining the response variables in the HEVs

ad PHEVs.
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Acceleration and slope both exhibit similar results to all the other models. The dependent
variables positively correlate with these two variables, but the effects are small. Further, the
dependent variables are not very sensitive to changes due to changes in acceleration and slope.

Driving in an urban setting or local streets is expected to have higher reductions. This is
the case for the CO2 emission model, but not for the FCR model.

For ambient temperature, the marginal effects analysis revealed that for every one unit
increase in ambient temperature, holding other variables constant, the FCR increases by 46.7%
for PHEVs and 49.7% for HEVs. For CO2 emission rate, it increases by 47.9% for PHEVs and
50.9% for HEVs for every unit increase in temperature. With every 1% increase in ambient
temperature, the FCR increases by approximately 0.3 % and CO, emission increases by
approximately 3.9%, at the mean (7.1 °C), holding everything constant, in the base scenario.
From the elasticities, the CO, emission rate is more sensitive to changes in temperature than
FCR.

The ambient temperature in the FCR model seems to follow the U-shaped curve, whereas
the emission model seems to have it the other way around in these models.

For FCR, the general trend with increasing temperature is a U-shaped curve. In this
emission model, CO is observed to be the opposite than FCR. Other models could be further
explored to find an even better fit, or incorporating additional variables to improve performance.
Even though driving in an urban setting increases the FCR slightly, it is not a huge difference.

And even in the emission model, the reduction in driving in an urban setting is not significant.
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5. DISCUSSION

5.1. Fuel Economy and GHG Emission for Vehicles from Different Sources

The vehicle performance for this study was evaluated based on the tested vehicles’ fuel
consumption rates or fuel economy and CO> emission rates. These are common metrics when
comparing across different vehicle technologies.

The fuel economy and emissions information from the manufacturers or from the
government where they have compiled these sources (Canada Energy Regulator, 2018; U.S.
Department of Energy, 2023a) were also compared with the values obtained from this study. It
was found that the fuel consumption rate and emission rate for conventional gasoline vehicles in
this study are consistently higher than what the manufacturers reported. In other words, these
conventional gasoline vehicles are less efficient than what the manufacturers claim. This aligns
with one of key outcomes from past research where manufacturers often underestimate the FCR
and emission rate (Bagheri et al., 2021; Wang et al., 2022). This also emphasizes the importance
of collecting data from local real-world driving conditions as car manufacturers often
overestimate the vehicle performance. However, for some HEVs and PHEVs, the FCR and
emission rate are lower in this study than those reported by car manufacturers.

The experiments conducted in this study, especially for HEVs and PHEVSs, have shown
to have more noise and variations than conventional gasoline vehicles. There are several factors
that influence the FCR and emission including driving behaviour and the local driving
conditions. The tests were only conducted in Montréal; therefore, it is more specific to local
conditions. It could also be due to the nature of data collection or noise from the equipment. The

equipment performance could be affected by lower ambient temperatures, presence of water or
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snow on the road surface and condensation build-up in the sensors. This should be further

investigated by checking the equipment used and by collecting more data.

5.2. Comparisons Between HEVs and Non-HEVs

From all of the statistical and regression analysis, the findings emphasize on the
importance of controlling for factors influencing FCR and emissions outcomes such as vehicle
characteristics (vehicle type), driving behaviour (vehicle speed and acceleration), road and
environmental conditions (slope, road type and ambient temperature) when analyzing fuel
consumption rate and CO; emissions. All the log-linear regression models provide valuable
information on the effects of the factors mentioned above (whether it positively or negatively
impacts the response variables based on the coefficients) and the magnitude of changes in
response variables based on changes in the factors.

From the basic statistical analysis from the experiments, HEVs (including PHEVS)

reduce FCR by approximately 33.5% to 43.3% and CO2 emissions rate by approximately 60.9%

to 66.3%. After controlling for other factors, the results from the regression models reveal that by

driving a hybrid electric vehicle, FCR could decrease by approximately 25.5% and CO>
emissions could decrease by approximately by 55.7%, compared to conventional gasoline
vehicles. This aligns with past research on the fuel economy savings (when comparing
conventional gasoline vehicles to HEVS) between 20-45% (Huang et al., 2019; Robinson &
Holmén, 2020; Wang et al., 2022). For CO. reduction, past research has shown a reduction
between 20-40% (Wang et al., 2022; Wu et al., 2015). The reduction ranges were taken from

various studies. From this study, the reductions are slightly higher. This could potentially be
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attributed to the noise from the equipment and modelling approaches, which should be further

investigated in future studies.

5.2.1. Vehicle Speed

Vehicle speed is one of the main predictors that have been studied quite extensively in the
past. From this study, the model results showed that speed is positively associated with both the
FCR and CO2 emissions.

Vehicle speed has the highest elasticities after the vehicle type variable (HEV vs non-
HEV). This implies that vehicle speed is one of the most important variables in the models in
determining the outcomes of FCR and CO emissions.

From the sensitivity analysis, (at the mean of vehicle speed, holding everything else
constant), one percent increase in speed results in an increase of approximately 17.0% in FCR in
the model with both HEV and non-HEVs. A one percent increase in speed would increase FCR
by around 18.6% and 13.3% in the model with only HEV observations and only non-HEV
observations, respectively. The emissions have slightly higher elasticities from the effect of
speed. One percent increase in speed would increase CO, emission rate by 24.1%, 26.0% and
20.7% for the model with all vehicles, model with only HEV observations and model with only
non-HEV observations. This also implies that performance of HEVs is more sensitive to changes
in vehicle speed, given the higher elasticities.

From literature, the expected relationship between the response variables and vehicle
speed is non-linear and should follow a U-shaped curve. The FCR or emission rate slowly
decreases as the speed increases to a certain point, then the rates gradually increase as the speed

continues to increase. For HEVs more specifically, the rates should peak somewhere in the 40
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km/hr to 60 km/hr range where the electric motor stops and switches to the usage of normal
gasoline engine and causes an increase in CO> (Fontaras et al., 2017; Zahabi et al., 2014).

When looking at the experimental data, the fuel consumption did have a slight peak
around 30-45km/hr which aligns with the concept that HEVs start using their gasoline engine at
speeds around the 40-60 km/hr range which results in more fuel consumption (Fontaras et al.,
2008; Zahabi et al., 2014).

The regression models presented in this study did not show the polynomial relationship
between speed and the response variables. In the vehicle specific power concept, speed is
considered in association with acceleration, with slope and also raised to the power three. These
models were also attempted, although not shown. When incorporating the polynomial terms,
variable such as the road type becomes statistically insignificant (p-value of more than 0.05).
And similar trend was observed of increasing speed increases the response variables. In the
attempted model where the terms of speed to the power of two and speed to the power three were
both included in addition to just speed, the coefficient for speed was positive, speed to the power
of two was negative and speed to the power three was positive. This suggests a curve shape
where the response variable increases first, then decreases to a certain point, then increases
again. However, the coefficients are too small to observe a clear trend. The preliminary result
from these polynomial models showed that the elasticities of speed are similar to the log-linear
models presented in the results. Further modelling approaches and more advanced methodology
could be explored in future studies.

Observing the relationships between the response variables (FCR and CO) and average
vehicle speed in HEVs and non-HEVs from the collected data, the patterns are similar to what
past literature remarked (see Figure 7 in Section 4). In HEVs, the FCR and emissions start out

low at low speed, then as speed increases to around 35 km/hr to 60 km/hr, the rates peak, then
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they decrease back down, then increases again after 80 km/hr. In non-HEVs, the FCR and
emissions start out high at low speed as the inertia initially powers the vehicle, then the rates
gradually decrease. The tests did not have any observations of speeds greater than 87 km/hr for

non-HEVSs, otherwise, it is expected to see the rates rise back up at higher speeds.

5.2.2. Vehicle Acceleration

The magnitude of effect of acceleration differs depending on the model. However, across
all the models, with increase in acceleration, both the fuel consumption rate and the CO>
emission rate increase for all types of vehicles.

From the sensitivity analysis, (at the mean of acceleration, holding everything else
constant), one percent increase in acceleration results in an increase of approximately 0.22% in
FCR and around 0.20% to 0.36% in emission. The elasticities are relatively small for
acceleration because the average acceleration is -0.011 m/s? for all the trips combined (-0.0076
m/s? for HEV-only trips and -0.014 m/s? for non-HEV-only trips). This implies that there is
barely any acceleration on average during any trip. Though statistically significant, the effect of
acceleration is small and the response variables (FCR and CO, emission rate) are not as sensitive
to changes in acceleration.

It is intuitive that when there is acceleration, especially sudden acceleration, which is a
proxy for aggressive driving, that would generate more consumption or emissions. This was also
seen in a case study comparing driving behaviour in Toronto versus Beijing (Wang et al., 2022).
More specifically, at lower speed, with higher acceleration (i.e. more aggressive driving), the
FCR can increase between 5% to 14% and between 11% to 21% at higher speeds (Thomas et al.,

2017). It is also assumed that the COz increase would be approximately the same. In this study,
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the increase in FCR and emission are a lot smaller in comparison to past studies. This also may
not be a fair comparison as there was not as much data on higher acceleration or aggressive
driving.

5.2.3. Slope

Slope exhibited as a statistically significant variable (p-value of less than 0.05) in all of
the models. From the coefficients in the model, the effect of slope is consistent that with increase
in slope, both the FCR and emissions increase.

The sensitivity analysis for slope revealed that fuel economy and emissions from HEVs
are more sensitive to changes in slope. From the sensitivity analysis, for every 1% increase in
slope at the mean, FCR increases by approximately 0.036%, in the base case (non-HEV in
highway). In the model with only HEV data, the FCR increases by around 0.12% for every 1%
increase in slope and 0.001% in the model with only non-HEV observations. The elasticities for
slope are extremely small across all models, indicating that response variables are not sensitive
to changes in slope.

While the elasticities of slope for the CO2 model are 0.054%, 0.17% and 0.002% for
models with both HEV and non-HEV observations, model with only HEVs and model with only
non-HEV observations, respectively. In comparing the sensitivities of the slope variable among
the models, HEVs are more sensitive to changes in slope than non-HEVs, but the effects are still
very small.

The average road grade or slope is 0.041% for all the trips combined (0.066% for HEV-
only trips and 0.0066% for non-HEV-only trips). In the experimental design, the aim was
dedicating around 10% of the trip driving uphill. Even then, on average, the routes taken in this

study were mostly on flat ground. The diversity of observations with steeper slopes are lacking.
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Because the elasticities are considered at the mean of the variable, they are extremely small for
slope. Even though slope is a significant variable, the magnitude of effect is very small. This
implies that slope may not be an important variable in determining the FCR and emissions in
these models specifically.

In one of the previous studies, it was revealed that in a steep road (slope of 8%), the fuel
consumption could increase by up to three times in comparison to a flat road (Zhang et al.,
2020). And as expected, the fuel consumption decreases with decreasing slope. In this study,

because there were not many data points on steep roads, this trend was not observed.

5.2.4. Road Type

Road type or the link type is another predictor that has appeared in past research for
studying the potential impacts on the response variables.

In past research, it was shown that HEVs are approximately 35% lower in FCR than
conventional in urban setting or driving in local roads. Whereas in rural areas or on highways,
the HEVs actually have a higher FCR because of heavier vehicle mass (Wang et al., 2020).
HEVs from another study even showed upwards of 40-60% reduction in fuel economy by
driving in urban condition (Fontaras et al., 2008). This was one of supporting argument for
encouraging more HEV driving in metropolitan cities such as Montréal.

From the statistical analysis of this study, the general trend aligns with literature where
the emission for HEV is lower in local streets than on highways. For non-HEVSs, the opposite is
true where emission is higher in local streets than on highways. This supports the argument
where HEVs may benefit more in an urban setting (i.e. shorter trips) than on highway setting

(Zahabi et al., 2014).
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However, from the regression models in this study, after controlling for other factors,
driving in an urban setting showed mixed results. From the sensitivity analysis, the elasticities
also vary quite a bit among the models. Generally, the elasticities for road class are relatively
small, implying that road class does not have a huge influence on determining both FCR and
COzemissions, The CO2 model aligns with theory where by driving in an urban setting, the
emission could be reduced by 0.07% for non-HEVs and 55.8% for HEV's where the effect is
mostly from the vehicle type. In the model with only HEV data, the emission could also be
reduced by around 2.3%. However, for fuel consumption, it revealed a positive correlation with
driving in urban setting, where FCR could actually be increased by 2.6% (model with both types
of vehicles), 1.6% for HEVs and 9.1% for non-HEVS.

Conventional gasoline vehicles appear to result in higher FCR and emission in driving in
local streets than HEVs. This could imply that non-HEVs perform better on highways than local
streets. The effect of road class, overall, is still relatively small.

This is an unexpected result as the effect of road class is not consistent across all
regression models. It could be due to similar reasons as speed where other predictors in the
model may have influenced the output. In addition, there could be road segments that are
characterized or labeled as highway but due to congestion, the road type becomes more like a
local street. Another attempt could be to use a different modelling approach or to use a different
aggregation method for the dataset used (i.e. aggregated by every 50 meters travelled).

5.2.5. Vehicle Class

Vehicle class was not included as one of the variables as it showed a strong correlation

with other independent variables. However, it is an important factor to consider when selecting

the vehicles to be included in studies as such.
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One of the aims as part of the experimental design was to include a variety of vehicle
fleets, including vehicles with different classes (a mix of hatchbacks, sedans, and SUVs).
However, ideally, the number of different vehicles included in the study should be higher. The
results may be slightly biased as there is only one hybrid SUV and one gasoline SUV included in
the study, which may not be as representative of the vehicle class as a whole.

However, this factor is also important to note and consider as vehicle class is a predictor
that encompass the main vehicle characteristics. It determines the vehicle mass and capacity that
would affect the vehicle performance. Not surprisingly, in one of the studies, it was shown that
hatchbacks and sedans have a significantly lower fuel consumption rate compared to SUV hybrid
vehicles by 40% and 35%, respectively (Zahabi et al., 2014). It is expected as hatchbacks and
sedans are typically lighter in weight, more compact and smaller than SUVs. As for differences
with plug-in HEVs, the fuel consumption is more dependent on the distance driven and battery
charging frequency, but the fuel economy would be around the same to a HEV similar in size
(Prati et al., 2021). It is assumed that the emissions would follow similar trends to that of the fuel
consumption.

5.2.6. Other Effects

There are some factors that were not included as one of the variables in the analysis, but
still important to note their potential effects on the dependent variables.

Engine speed is considered to be an important engine parameter. For this study, engine
speed was removed as one of the factors as it has high correlation with speed. The range of
engine speed for HEV is between 0 and 3,160 revolutions per minute (RPM). For non-HEVS, the
range is between 628 to 2444 RPM. Average daily traffic is a driving environment parameter.

The variable is an estimate. Therefore, it may not be an extremely accurate representation of
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traffic volume or potential proxy for level of congestion. Average daily traffic was not included
in the analysis as it has high correlation with several other factors.

Vehicle specific power is another important concept that should be further explored as a
response variable. VVSP is a variable that represents the instantaneous vehicle engine power to
show the impact of vehicle operating conditions on fuel consumption and emissions (Yao et al.,
2013). Past research has shown the importance of considering VSP in estimating both fuel
consumption and emissions (Yao et al., 2013; Zhai et al., 2011). There was not sufficient and
complete data to compute VVSP for this study. However, the components in the VSP were
analyzed in this study: speed, slope and acceleration, in addition to the concept of VSP (i.e.

polynomial terms).

5.3. Comparisons Between HEVs and PHEVs

This study also had some analysis more focused in on just the conventional HEVs and
PHEVSs. As these types of vehicles become more common and widely acceptable, it would be
interesting to determine if all hybrid vehicles are made equally and what variables are important
in determining the fuel economy and emissions and if they have the same effect.

As expected, PHEVs do perform better in terms of fuel consumption rate and CO>
emission rate, according to the log-linear models, without taking into account of the ambient
temperature. However, it is also known that the performance of hybrids, especially PHEVS,
highly depend on other factors such as mileage, usage, electric-range, availability of charging
stations and charging behaviour (PI6tz et al., 2020; P16tz et al., 2021).

In this study, by driving a PHEV, the fuel consumption could be reduced by 3.9% and

emission could be reduced by 1.6%, after controlling for the other factors. Speed remains one of
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the important factors that influence the outcomes of FCR and emissions. There could be
additional emission reduction by driving a PHEV in an urban setting. Similar to the other
models, the other factors, acceleration and slope, have relatively small effects on determining the
FCR and emission rate.

5.4. Effects of Ambient Temperature on Non-HEVs, HEVs and PHEVs

Ambient temperature has been shown in past research to be an important factor in
estimating fuel consumption and emissions. In theory, as temperature increases, energy
consumption decreases due to heating demand until the base temperature (where the energy
consumption is at a minimum), then energy consumption increases as temperature continues to
increase due to cooling demand, illustrated in a study by Henning et al. (Henning et al., 2019).

And in other studies, the curve resembles an exponential decay curve where the CO>
emissions and FCR gradually decrease as temperature increases (Andrews et al., 2004;
Chainikov et al., 2016).

In this study, ambient temperature was evaluated in quadratic models for comparing
across different types of vehicles (HEVs with non-HEVs and HEVs with PHEVS). Some of the
key findings are as follows:

e The range of ambient temperature when the vehicles were tested ranged between

-3.6°C and 23.8°C.

e From the first part of analysis, log-linear models are used to compare conventional
gasoline vehicles with HEVs, it is found that ambient temperature was statistically
insignificant in those models.

e In another approach, quadratic formula is used to raise ambient temperature to the

power of two.
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Ambient temperature becomes a significant variable in all the models with the
quadratic function.

The curves estimated from the models do resemble and align with literature where it
is a slight U-shaped curve.

The relationship shows that the response variables (FCR and emissions) are slightly
higher when the ambient temperature is on the lower end and on the higher end,
where it may require heating and cooling demands, respectively. Both demands
would result in increase in rates.

Comparing between conventional HEVs and PHEVs, the FCR model follows the
expected patter of a U-shaped curve.

According to the average marginal effects, FCR and CO- are both reduced by
approximately 3% by driving a PHEV compared to driving a conventional HEV, with
every unit increase in ambient temperature.

However, another consideration and limitation for this study is that the coldest
ambient temperature was only -3.6°C. No data were collected in the actual winter in
Montréal and the lowest ambient temperature in this study is not representative of a

cold winter driving condition.

5.5. Overall Limitations, Uncertainties and Assumptions

Even though experiments through real-world driving have its benefits of accounting for

external factors such as different driving behaviour, environmental conditions and road

conditions, it also has many challenges. The equipment and the sensors for collecting data are

susceptible of noise or human errors that were not accounted for, resulting in variations and

potentially slight inaccuracies in measurements. The PEMS unit, in particular, appeared to have
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some sensitivities during data collection, as it was measured on 1Hz. There could potentially be
slight lag at times and huge jumps in fluctuations.

The methodology could also be improved to potentially yield better results. The number
of unique vehicles that were included in this study was only eleven due to time constraints and
vehicle availability. More vehicles should be tested and included in similar studies in the future.
In this study, the gasoline vehicles were tested under a different time period than the HEVS. In
order to have a more comparable analysis between HEVs and gasoline vehicles, the method of
convoy-style driving should be employed (Huang et al., 2019). Convoy mode would require two
separate PEMS unit installed on two vehicles (HEV and its conventional gasoline counterpart)
that would be driving simultaneously side-by-side. Under this methodology, multiple
uncontrollable effects could be eliminated for performance comparisons for real-world driving
tests. The effects include vehicle configurations, driving behaviour, road condition (level of
congestion) and driving environment (ambient temperature, humidity, pressure). The routes
taken can be exactly the same for the convoy vehicles. Even if this cannot be achieved, route
planning should be planned out in detail instead of just planning for approximate proportions to
be spent in each road type. Driving in other cities with more diverse road conditions should also
be considered and explored. In this real-world driving study, there was a lack of diversity and
variation on the acceleration and deceleration modes and terrain (the city is mostly flat). In
addition, the highways can become congested at times. Therefore, a road segment could be
labeled as a highway, yet it behaves like a local street with slow speed and congestion.

For data analysis, there are several ways to process and aggregate the data. The main
approach chosen for this study was using second-by-second and also tested using dataset that
aggregates data for every 50 meters travelled. However, other aggregation methods could be

explored. In addition, other more modelling approaches or more advanced machine learning
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could be explored and determine if the results perform better. Because having an accurate
prediction model was not part of objectives of this study, other more advanced modelling and
machine learning models were not considered.

Another limitation is access to the vehicle fleet. In this study, vehicles were rented from
car sharing platforms, which means it is challenging to obtain the exact same vehicle if
experiments need to be repeated on the same one.

Future considerations in the study could include the state of the vehicle such as state of
charge, age, mileage and how they have been maintained. This could potentially have an impact
on the vehicle performance if these factors differ even though it is exactly the same make and
model of the vehicle.

Cold-start was not considered in this study to keep it consistent as the method that was
followed for the gasoline vehicles that were collected in the past. However, many past research
have shown that cold-start is an important variable in determining the response variables
(Alvarez & Weilenmann, 2012; Zahabi et al., 2014).

In order to gain an even better insight on the effect of ambient temperature on GHG
emissions and fuel consumption in cities with extreme cold winters like Montréal and many
other Canadian cities, real-world driving experiments should be conducted in actual winter time
when the ambient temperature is below -15°C, for example. There are practical challenges
associated with this because if the snow on the ground gets into the tailpipe, the PEMS
measurements would not be accurate at all. However, if this barrier could be mitigated and

overcame, experiments should be conducted.
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5.6. Contributions and Policy Implications

Real-world driving experiments have been shown to have a better representation of the
true vehicle performance, especially for macro-mobility, city-specific planning as it takes into
account of the driving conditions. This study collected real-world driving data in a metropolitan
city in Montréal. This helps build a catalogue of vehicle data on both vehicle information, engine
parameters and emissions. The data could be used for further modelling, simulations and for
informing decision making and helping with policy and guideline developments at both the
micro and macro levels.

With models like the ones developed in this study, as also seen from past research before,
can be transferred and applied into micro- or macroscopic models such as urban planning and
planning for intelligent transportation systems (Ahn et al., 2002).

Another potential application could be to inform on carbon tax or any future guidelines
on incentives and rebates when it comes to the purchase of HEVs or PHEVs. From the results, it
is observed that there are reductions by using HEVs and PHEVs. On the provincial or city level,
the usage of HEVs and PHEVs can be encouraged, after other modes of transportation have been
considered (such as public transportation or active mobility like walking and biking). It could
also benefit programs to encourage or incentivize the purchase or use of HEVs or PHEVs such as
car sharing or ride sharing platforms, food deliveries, last-mile deliveries or taxi services.
Especially for existing car sharing platforms, converting current conventional gasoline fleets to

HEVs and PHEVs could result in reductions and savings.
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6. FINAL CONCLUSION AND SUMMARY

This research introduced a methodology to evaluate the performance of hybrid electric
vehicles with respect to conventional gasoline vehicles using real-world driving measurements. It
also contributed by generating a real-world driving dataset which can also be used for further
investigations.
6.1. Main Results and Final Remarks

From the real-world driving experiments conducted in Montréal on gasoline vehicles,
hybrid electric vehicles and plug-in hybrid electric vehicles, HEVs have better performance than
non-HEVs. The fleets included in the study encompass different vehicle class: sedans,
hatchbacks and SUVs. From the basic statistical analysis from the experiments, HEVs reduce
FCR by approximately 33.5% to 43.3% and CO; emissions rate by approximately 60.9% to
66.3%. After controlling for other factors, the results from the models reveal that by driving a
hybrid electric vehicle, FCR could decrease by approximately 25.5% and CO2 emissions could
decrease by approximately by 55.7%, compared to conventional gasoline vehicles. Moreover, the
variables that resulted statistically significant (associated to FCR and emissions) in the regression
analysis are the vehicle type (whether it is HEV or non-HEV), speed, acceleration, slope, road
type (whether it is urban driving or highway driving) and ambient temperature, from the
variables that were attainable and feasible in this study. From the sensitivity analysis, it was
revealed that speed is one of the most important factors in influencing FCR and emissions (after
vehicle type).

In a second analysis to compare conventional HEVs and PHEVS, it was found that

PHEVs can reduce FCR by approximately 7.5% and 7.8%, in comparison to conventional HEVS,
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using the statistical analysis from the experiments. For CO2 emissions using the statistical
analysis, PHEVs are higher by approximately 6.2% and 9.2%.

Using the log-linear regression models, after controlling for other factors, it was found
that FCR decreases by approximately 3.9 % and CO> emission rate decreases by approximately
by 1.6 % from driving a PHEV compared with a conventional HEV. These differences are
relatively small between HEVs and PHEVS, though the factor of vehicle type is statistically
significant in the model with p-value of less than 0.05.

The effect of ambient temperature also plays a role in determining the fuel consumption
and GHG emissions, even though the models in this study do not show a large effect. By
including ambient temperature in the model, having a quadratic effect on temperature, the
reduction from driving a HEV comparing to a non-HEV is approximately 24.5% for FCR and
55.2% for emissions. The reduction from driving a HEV depends on the specific value of
temperature and the coefficients for temperature and temperature raised to the power of two.

For every unit increase in ambient temperature, FCR could increase by 25.1% and 49.4%
for HEVs and non-HEVs, respectively. And the CO2 emission rate could decrease by 5.3% for
HEVs and increase by 49.7% for non-HEVs. Comparing PHEVs with HEVs, FCR and emission
rate are both reduced by approximately 3% in the models that consider ambient temperature as a
quadratic term, in the base scenario. The effect of temperature is small, according to the models,
for all vehicles, as seen from the relatively small coefficients for temperature (in the range of 102
to 10%).

Overall, these findings provide valuable insights into the factors influencing CO>
emissions and FCR in HEVs and non-HEVs. The key factors include speed, acceleration, slope,
road type and ambient temperature. As expected, this research found that there is a significant

reduction of FCR and emissions in HEVs compared to conventional gasoline vehicles for all
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vehicle class (sedans, hatchbacks and SUVs). However, a huge variability is observed among the
HEVs and PHEVs, especially for emissions. The benefits of HEV technologies are affected by
different factors such as road class, slopes and ambient temperature. The results emphasized the
importance of considering vehicle characteristics, driving behavior, environmental conditions,
ambient temperature, and their interactions when analyzing vehicle performance.

These findings provide insights as to how the HEVs and PHEVs perform in comparison
to conventional gasoline vehicles. These data from the real-world driving tests could be further
investigated. Then, it could further be used to inform decision making and develop strategies and
plans related to greenhouse gas emission reductions and transitioning to electrification of the
transport sector. Some of the results from this study and future studies building on this and other
existing ones could help with policy and guideline developments, ranging from urban planning,
conversion of fleets to vehicle incentives and rebates and carbon tax. Overall, the results provide
valuable insights for policymakers and stakeholders in developing strategies to mitigate the

environmental impacts of vehicles and promote sustainable transportation practices.

6.2. Future Studies

As addressed previously, the methodology for real-world driving could be improved.
There were several challenges and limitations encountered during the data collection process.
The sensors used posed some uncertainty as to its accuracy in its readings and the potential errors
obtained during the experiments.

One of the improvements could start from experimental designs. Some examples include
to systematically select the testing routes, obtain a variety of drivers and vehicles and conduct a
convoy-style (driving both a HEV and non-HEYV side by side at the same time). The convoy style
methodology was unfortunately not feasible during this study. There are several other factors that
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could be considered in order to see how significant they are in determining vehicles’
performance. Some of these include state of charge (or initial state of charge) of the hybrids,
cold-starts and state of vehicles (age and mileage of the vehicles could be proxies for their
conditions). In addition, more data should be collected in different seasons, especially on
extreme cold days. Another unresolved challenge for this research is the inability to collect data
when there is heavy precipitation, especially when there is snow on the ground. It would be more
representative to collect data in winter where the temperature is consistently below -10°C to
-15°C.

Another area of improvement is to continue to validate the measurements to identify the
huge variations in data, especially the observations from HEVs. This could be done by
determining a proper data aggregation method (by time or distance) and also the use of more
advanced analytical modelling, techniques or machine learning for measuring performance,

instead of just regression models.
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APPENDIX
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Figure 23. Sample raw data from OBD-II logger.
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Figure 24. Sample raw data from PEMS.
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Figure 25. Sample combined data (OBD and PEMS).
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The regression model results shown in Section 4 use the second-by-second data. Many

different combinations of models were tested. Of which, the same log-linear mixed effect models

were conducted for FCR and CO», using the dataset that aggregates by every 50 meters of data.

The results are shown in Table 21, along with the performance metrics results summary in Table

22.

Table 21. Log-linear models outcomes of fuel consumption rate and CO, emission rate for all vehicle types.

FCR

CO2

Predictor

Coef

Std. err

value

Elasticity

(%)

Coef.

Std. err

value

Elasticity
(%)

Vehicle
Type

HEV

-1.048

0.087

0

-64.922

-2.895

0.179

0

-94.469

Non-
HEV

Base

Base

Speed

0.003

0.001

0.019

0.001

74.017

Acceleration

0.97

0.02

1.319

0.037

0

11.611

Slope

0.100

0.279

18.542

0.512

0

0.125

Road Types

Urban

-0.121

0.029

-0.09

0.053

0.09

-8.612

Highway

Base

R?=0.37
Log-likelihood= -882.12

R2=0.45
Log-likelihood=-2371.39

Note: Elasticities are at the mean values for continuous variables.
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Table 22. Performance metrics for the models.

R? Log-likelihood
FCR Model: Every 1 Second Dataset 0.42 27945.79
FCR Model: Every 50 Meter Dataset 0.37 -882.12
CO2 Model: Every 1 Second Dataset 0.54 19937.61
CO2 Model: Every 50 Meter Dataset 0.45 -2371.39

Note: The models here are all log-linear mixed effect models.

In addition, from the collected data, it was observed that vehicle speed exhibits in a

quadratic manner. Therefore, quadratic functions of speed are also tested (where speed and

speed? are both included in the log-linear models for estimating FCR and CO2 emission). The

model results are presented in Table 23.

Table 23. Quadratic function of speed in log-linear models for FCR and CO2.

FCR CO2
. Std. P- Elasticity P- Elasticity
Predictor Coef. err value (%) Coef. Std. err value (%)
Vehicle Type -0.292 0.019 0 -25.348 -0.818 0.054 0 -55.846
Base
1.19¢
Speed 9.42e-3 ") 0 17.299 0.012 1.79e-4 0 23.539
Speed? -1.05e-5 195 € 0 2.02e-5  2.98e-6 0
Acceleration 0.207 0.002 0 -0.218 0.256 0.003 0 -0.269
Slope 0.891 0.020 0 0.0362 1.326 0.031 0 0.0538
Road Types 0.016 0.004 0 1.628 0.017 0.006 0 1.704
Base
R2=0.42 R?=0.53

Log-likelihood= 27973.22

Log-likelihood= 20195.17

Note: Elasticities are calculated at the mean values for continuous variables.
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