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Abstract

We study holomorphic vector bundles over Riemann surfaces. After recalling the basic
concepts of the theory, we prove that every holomorphic vector bundle over a non-compact
Riemann surface is trivial using methods from functional analysis. We then turn over to
the case of a compact Riemann surface X, where we study an infinite-dimensional universal
space parametrizing the holomorphic vector bundles over X of the same rank and degree,
although with a lot of redundancies. Following the pioneering work of Atiyah and Bott, we
use ideas from Morse theory to exhibit a stratification of that space that eventually gives
us an inductive procedure to compute the equivariant cohomology of the minimal stratum,
which consists of the “semi-stable” holomorphic vector bundles.
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Abrégé

On étudie les fibrés vectoriels holomorphes sur des surfaces de Riemann. Après une révision
des concepts de base de la théorie, on prouve que tout fibré vectoriel holomorphe sur une
surface de Riemann non compacte est trivial à l’aide d’outils provenant de l’analyse fonc-
tionnelle. On se tourne ensuite vers le cas d’une surface de Riemann compacte X, où l’on
étudie un espace universel de dimension infinie paramétrisant les fibrés vectoriels holomor-
phes sur X de même rang et degré, quoiqu’avec beaucoup de redondance. Suivant les travaux
d’Atiyah et Bott, on s’inspire d’idées provenant de la théorie de Morse afin d’exhiber une
stratification de cet espace qui nous conduira finalement vers une méthode inductive pour
calculer la cohomologie équivariante de la strate minimale, celle-ci étant composée des fibrés
vectoriels holomorphes dits “semi-stables”.
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Chapter 1

Introduction

Holomorphic vector bundles have been around for a long time. They have been studied
with tools coming from many different disciplines, ranging from differential geometry to
algebraic geometry and not forgetting symplectic geometry. In this thesis, we undertake the
study of these objects in the simplest case where the base manifold is a Riemann surface.
When this Riemann surface is non-compact, there is not much to say: the non-compactness
gives enough space to allow the existence of global holomorphic sections, so much that the
holomorphic vector bundle has no choice but to be trivial. However, the story gets more
complicated when the Riemann surface is compact.

One of the reasons for the interest towards holomorphic vector bundles over compact Rie-
mann surfaces is that they are one of the first examples where the geometric invariant theory
of Mumford was successful, i.e. to find an appropriate subclass of these objects (the stables
ones) for which the classifying space is a nice geometric one. The first tool that was key to
the future developments of the theory was the Narasimhan–Seshadri criterion (cf. [8]), which
established a link between stable holomorphic (unitary) bundles and representations of a cen-
tral extension of the fundamental group of the Riemann surface. Donaldson then linked the
Narasimhan–Seshadri criterion to the existence of a connection whose curvature is subject
to specific restrictions. Atiyah and Bott, on their side, recast the study of such bundles (of
fixed rank and degree) into differential-geometric terms by considering an infinite-dimensional
universal space parametrizing these objects (although with a lot of redundancies) and ex-
hibiting a stratification of this space reminiscent to the ones encountered in Morse theory.
In fact, they found that the stratification behaved as if it was the Morse stratification of the
Yang–Mills functional, and their intuition was proven correct by Daskalopoulos in [2]. Using
this analogy, they were able to give an inductive procedure for computing the equivariant
cohomology of the minimal stratum, which consists of the semi-stable holomorphic vector
bundles. They were finally able to use this information to compute the ordinary cohomology
of the moduli space associated to the semi-stable holomorphic bundles in the cases where
the rank is either equal to 2 or coprime to the degree. These results were finally extended
to higher ranks by Zagier.
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The layout of this thesis is as follows. First, since holomorphic vector bundles are going to
be the main characters of the story, we collect various basic results concerning holomorphic
vector bundles in chapter 2. In chapter 3, we deal with the case of a non-compact Riemann
surface, where we show that the triviality of holomorphic vector bundles over them follows
from their particular topological and functional-analytic (cohomological) properties. Finally,
in chapter 4, we work out in more detail the case of a compact Riemann surface that was
highlighted above. Throughout the thesis, no originality is claimed, and due references are
given where appropriate.
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Chapter 2

Holomorphic Vector Bundles

Definition 2.1. Let E and X be two topological spaces together with a continuous surjection
p : E → X between them. The map p : E → X, or simply E, is said to be a complex vector
bundle of rank n if for every point x ∈ X:

i) the fiber Ex := p−1(x) has the structure of a complex vector space of dimension n;

ii) there exists a neighborhood U of x and a fiber-preserving homeomorphism h of EU :=
p−1(U) onto U × Cn such that the restriction h|Ex is a vector space isomorphism of
the fiber Ex onto {x} × Cn ∼= Cn. Recall that in this case, that h preserves the fibers
means that the diagram

EU U × Cn

U

hU

p prU

commutes, where prU is the canonical projection on U .

The map h : EU → U × Cn is called a local trivialization of E over U . If U = {Ui}i∈I is an
open cover of X and we have local trivializations hi : E|Ui

→ Ui × Cn for all i ∈ I, then the
family {hi}i∈I is called an atlas of E.

Definition 2.2. Let p : E → X be a complex vector bundle of rank n, where E and X are
complex manifolds. An atlas A = {hi : EUi

→ Ui × Cn} of E is said to be holomorphic if
the local trivializations hi are biholomorphic. Two atlases A = {hi : EUi

→ Ui ×Cn}i∈I and
A′ = {h′

j : EU ′
j
→ U ′

j × Cn}j∈J are said to be compatible if the maps

hi ◦ (h′
j)

−1 : (Ui ∩ U ′
j)× Cn → (Ui ∩ U ′

j)× Cn

are biholomorphic for all i ∈ I, j ∈ J .
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Notice that compatibility of atlases is an equivalence relation. Moreover, given two compat-
ible atlases A and A′, one is holomorphic if and only if the other is. Thus, either all the
atlases inside the same equivalence class are holomorphic or none of them are. This is the
motivation behind the following definition.

Definition 2.3. A holomorphic vector bundle is a complex vector bundle p : E → X, where
E and X are complex manifolds and p is holomorphic, together with an equivalence class of
holomorphic atlases.

In the future, when speaking of an atlas of a holomorphic vector bundle E, we will al-
ways assume that it belongs to the underlying equivalence class of holomorphic atlases. In
particular, it will always be holomorphic.

Theorem 2.4. Let E → X be a holomorphic vector bundle and let {hi : EUi
→ Ui ×Cn} be

an atlas of E. On the intersections Ui ∩ Uj, consider the maps

φij := hi ◦ h−1
j : (Ui ∩ Uj)× Cn → (Ui ∩ Uj)× Cn.

There exist holomorphic maps gij : Ui ∩ Uj → GL(n,C) (as usual, GL(n,C) is equipped
with the topology it inherits as a subspace of Cn2) such that φij(x,t) = (x, gij(x)t) for all
(x,t) ∈ (Ui ∩Uj)×Cn. Moreover, on triple intersections Ui ∩Uj ∩Uk, these maps satisfy the
cocycle condition gijgjk = gik.

Proof. Since hi and hj are fiber-preserving biholomorphisms, then so is φij. Moreover, the
restriction of φij to a fiber gives an isomorphism of vector spaces φij|{x}×Cn : Cn → Cn.
Thus, for x ∈ Ui ∩ Uj, the assignment gij(x) := φij|{x}×Cn defines an element of GL(n,C).
In other words, gij is defined exactly so that the equality φij(x,t) = (x, gij(x)t) holds for all
(x,t) ∈ (Ui ∩ Uj)× Cn. Considering gij as a function into Cn2 , it is holomorphic if and only
if the functions

gij,k : Ui ∩ Uj −→ Cn

x 7−→ gij(x)(ek)

are holomorphic for k = 1, . . . ,n. But the functions gij,k are holomorphic, each being the
composition of the holomorphic maps

Ui ∩ Uj × {ek}
φij−→ Ui ∩ Uj × Cn prCn−→ Cn,

where prCn denotes the projection onto Cn. Finally, the cocycle condition gijgjk = gik follows
from the corresponding relation for the maps φij.

Definition 2.5. Let E → X be a holomorphic vector bundle and {hi : EUi
→ Ui × Cn}

be an atlas of E. The maps gij constructed in the last theorem are called the transition
functions, and the family (gij) is called the cocycle associated to the atlas {hi}.
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Of course, there is a reason behind the use of the word “cocycle” for the family of transition
functions (gij). For an open set U of a complex manifold X, let GL(n,O(U)) denote the set
of n × n matrices with coefficients in O(U), the holomorphic functions on U . If V ⊂ U is
an open subset, we have a natural restriction map from GL(n,O(U)) to GL(n,O(V )) that
restricts each entry to the subset V . This data defines a sheaf, which we denote by GL(n,O).

Given the sheaf GL(n,O) and an atlas U = {Ui}i∈I of a complex manifold X, one can talk
of (Čech) cocycles with values in GL(n,O) with respect to U: these are merely elements of
the set Z1(U,GL(n,O)), which consists of families

(fij) ∈
∏

(i,j)∈I2
GL(n,O(Ui ∩ Uj))

satisfying the cocycle condition fik = fijfjk on triple intersections for all i,j,k ∈ I. As
Theorem 2.4 shows, to any holomorphic vector bundle E → X with atlas A we can associate
its cocycle of transition functions. Conversely, given a complex vector bundle of complex
manifolds E → X with an atlas A = {hi} such that the associated transition functions
gij are holomorphic, then the atlas A is holomorphic and E becomes a holomorphic vector
bundle. In fact, the proof of this last statement generalizes to a construction from which a
lot of examples of holomorphic vector bundles naturally arise.

Theorem 2.6. Let p : E → X be a surjective map between a set E and a complex manifold
X and let U = {zi : Ui → Cd} be an atlas of X. Suppose that each fiber Ex = p−1(x)
has the structure of a complex vector space of dimension n. Further suppose that there are
fiber-preserving maps

hi : EUi
=
∐

x∈Ui
Ex Ui × Cn

Ui

p prUi

that restricts to linear isomorphisms on fibers and whose family of associated transition
functions (gij) is a cocycle in Z1(U,GL(n,O)). Then p : E → X can be made into a
holomorphic vector bundle with atlas A = {hi}.

Proof. We begin by putting a topology on E. Over Ui, we can use the bijection hi to pull
back the topology on Ui × Cn: we define a subset V ⊂ EUi

to be open if and only if its
image hi(V ) is open in Ui × Cn. We declare a subset V ⊂ E to be open if and only if its
intersection with every EUi

is open. With this topology, the sets EUi
are open, the functions

hi are automatically homeomorphisms and the surjection p becomes continuous. This turns
E into a complex vector bundle of rank n.

The homeomorphisms hi together with the existing charts on X now induce a complex
structure on E. Indeed, {EUi

} is an open cover of E and we have complex charts

φi = (zi × id) ◦ hi : EUi
−→ Cd × Cn = Cd+n.
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The only thing we need to verify is that these charts are pairwise compatible. But since the
transition functions gij are assumed to be holomorphic, the map

φi ◦ φ−1
j = (zi × id) ◦ (hi ◦ h−1

j ) ◦ (z−1
j × id) : (x,t) 7−→

(
(zi ◦ z−1

j )(x),gij(x)t
)

also is. The space E is thus equipped with the structure of a complex manifold for which
the maps hi are biholomorphic and the projection p is holomorphic. In other words, E is a
holomorphic vector bundle over X and {hi} is a holomorphic atlas of E.

Remark 2.7. There is an alternative way to define holomorphic vector bundles, this time
in terms of transition functions instead of local trivializations. Namely, we could define
an atlas of a complex vector bundle E over a complex manifold X to be holomorphic if
the associated transition functions are holomorphic. Two holomorphic atlases would then
be declared compatible if their union is again holomorphic. Finally, we would define a
holomorphic vector bundle to be a complex vector bundle over a complex manifold together
with an equivalence class of holomorphic atlases. Theorem 2.6 shows how to reconcile this
definition with ours.

Example 2.8 (Holomorphic tangent bundle). The method highlighted in Theorem 2.6 is
typically used to show that the family of tangent spaces of a complex manifold X forms
a holomorphic vector bundle. Indeed, let E :=

∐
p∈X TpX be the disjoint union of all the

tangent spaces of X together with the natural projection p : E → X that maps a tangent
vector to its basepoint. If z : U → Cn is a complex chart on X, then for every point p ∈ U
there is a natural basis for TpX given by

∂z1|p :=
∂

∂z1

∣∣∣∣
p

, . . . , ∂zn|p :=
∂

∂zn

∣∣∣∣
p

.

Therefore, the map hp : TpX → Cn which sends a tangent vector to its coefficients with
respect to the basis {∂z1|p, . . . ,∂zn|p} is a linear isomorphism. Put together, the maps hp

give rise to a map hU : EU −→ U ×Cn. After doing so for every complex chart of an atlas of
X, the only thing left to verify is that the associated transition functions are holomorphic.
But if z : U → Cn and w : V → Cn are two charts in the atlas of X, then the associated
transition function is given by the Jacobian of the holomorphic function z◦w−1, whose entries
are all holomorphic. Therefore, we can apply Theorem 2.6 to turn E into a holomorphic
vector bundle over X.

Example 2.9. Similarly, one can apply Theorem 2.6 to show that the cotangent bundle of
a complex manifold, its kth exterior power or even its exterior algebra are all holomorphic
vector bundles.

Definition 2.10. Let p : E → X be a complex vector bundle and U ⊂ X be an open subset.
A section of E over U is a continuous function f : U → E such that p ◦ f = idU . If E → X
is a holomorphic vector bundle, we say that a section of E over U is holomorphic if it is
holomorphic as a map between complex manifolds.

Let E → X be a complex vector bundle of rank n, and let f be a section of E over U .
The condition p ◦ f = idU states that for all x ∈ U , f(x) lives in Ex, the fiber over x. If
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hi : EUi
→ Ui × Cn is a local trivialization, then over Ui ∩ U the section f can be seen as a

family of continuous functions fi : Ui ∩U → Cn in the following way: we simply define fi(x)
by the relation hi(f(x)) = (x,fi(x)). In this case, we call the function fi a representation of
f with respect to the local trivialization hi. It turns out that these representations are also
useful to describe holomorphic sections.

Theorem 2.11. Let E → X be a holomorphic vector bundle of rank n and {hi : EUi
→

Ui × Cn}i∈I be an atlas of E. A section f over an open set U is holomorphic if and only if
all its representations fi : Ui ∩ U → Cn are holomorphic.

Proof. ⇒) Suppose that the section f is holomorphic. Recall that the local trivializations
hi of a holomorphic vector bundle are holomorphic. Then, for any i ∈ I, the representation
fi is a composition of holomorphic functions

fi : Ui ∩ U
f−→ EUi∩U

hi−→ (Ui ∩ U)× Cn prCn−→ Cn,

hence it is holomorphic as well.

⇐) Suppose that the representations fi are all holomorphic. Without loss of generality, we
can assume that {zi : Ui ∩ U → Cd} is an atlas of U . Then the maps φi := (zi × id) ◦ hi

form an atlas of EU , so to show that f is holomorphic, we only need to show that φi ◦ f is.
Writing down φi ◦ f explicitly, we get

(φi ◦ f)(x) = (zi × id)(x,fi(x)) =
(
zi(x),fi(x)

)
,

which is seen to be holomorphic.

The space F (U) of holomorphic sections over U has the natural structure of a vector space.
Using the natural restriction maps, this gives a sheaf F of vector spaces over X, called the
sheaf of holomorphic sections of E. Elements in F (X) are often called global sections.

Suppose that (gij) ∈ Z1(U,GL(n,O)) is the cocycle of transition functions associated to the
atlas {hi : EUi

→ Ui ×Cn} of E. Looking at two representations fi,fj of a section f over an
open set U , we have that

(x,fi(x)) = hi(f(x)) = (hi ◦ h−1
j ◦ hj)(f(x)) = φij(x,fj(x)) =

(
x,gij(fj(x))

)
(2.12)

for all x ∈ Ui ∩ Uj ∩ U , which implies that fi and fj satisfy the relation fi = gijfj on
Ui ∩ Uj ∩ U . In particular, this implies that over a complex chart Ui, the space of sections
F (Ui) is isomorphic to O(Ui)

n.

A consequence of Theorem 2.11 is that we could have defined holomorphic sections strictly in
terms of their representations. This is the approach we take to define meromorphic sections,
which will come in handy in the next chapter.
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Definition 2.13. Let E be a holomorphic vector bundle of rank n over a Riemann surface X
and let h : EU → U×Cn be a local trivialization around a point p ∈ U . A holomorphic section
f ∈ F (U \ {p}) can be seen as n-tuple of holomorphic functions (f1, . . . ,fn) ∈ O(U \ {p})n.
The point p is called a pole of order m of f if

(i) all the functions fk have a pole of order ≤ m at p or a removable singularity at p;

(ii) at least one of the fk has a pole of order m at p.

A meromorphic section of E over an open set U is a holomorphic section f ∈ F (U \ A),
where A is a discrete subset of U and every point p ∈ A is a pole of f .

We conclude this chapter by giving equivalent conditions under which a holomorphic vector
bundle is trivial.

Theorem 2.14. Let E → X be a holomorphic vector bundle of rank n, {hi : EUi
→

Ui × Cn}i∈I an atlas of E and (gij) the associated cocycle of transition functions. The
following statements are equivalent:

(i) E is trivial, i.e. there exists a global trivialization E → X × Cn;

(ii) There exist n global holomorphic sections f1, . . . ,fn ∈ F (X) that are linearly indepen-
dent on each fiber, i.e. the vectors f1(x), . . . ,fn(x) ∈ Ex = Cn are linearly independent
for every point x ∈ X;

(iii) The cocycle of transition functions (gij) is a coboundary, i.e. there exists a family of
functions (gi) ∈

∏
i∈I GL(n,O(Ui)) such that gij = gig

−1
j on Ui ∩ Uj for all i,j ∈ I.

Proof. (i) ⇒ (ii): Let h : E → X × Cn be a global trivialization of E. On X × Cn, there
already exist n global holomorphic sections, namely the sections

ēk : X −→ X × Cn,

x 7−→ (x,ek)

where {e1, . . . ,en} denotes the canonical basis of Cn. Using the biholomorphism h : E → X×
Cn, we can pull back these sections to get global holomorphic sections fk := h−1◦ēk : X → E.
By construction, the sections f1, . . . ,fn are linearly independent on each fiber.

(ii) ⇒ (iii): Recall that every global holomorphic section fk can be represented by an n-tuple
of holomorphic funtions (f i

lk)1≤l≤n with respect to the local trivialization hi. We can combine
these representations into the matrix gi := (f i

lk)1≤l,k≤n, which really sits inside GL(n,O(Ui))
since the sections f1, . . . ,fn are assumed to be linearly independent on each fiber. It follows
from Equation (2.12) that

∀k, f i
k = gijf

j
k =⇒ gi = gijgj =⇒ gij = gig

−1
j on Ui ∩ Uj.

8



(iii) ⇒ (i): We use the cochain (gi) to build a global trivialization h : E → X × Cn from
the local trivializations hi. For v ∈ EUi

, define h(v) := (x,g−1
i t), where hi(v) = (x,t). This

assignment is well-defined because if v also lies in EUj
and hj(v) = (x,t′), then

t
(2.12)
= gijt

′ = gig
−1
j t′ =⇒ g−1

i t = g−1
j t′.

By construction, the map h is biholomorphic and is compatible with the local trivializations
hi, thus providing the holomorphic vector bundle E with a global trivialization.

9



Chapter 3

Non-Compact Riemann Surfaces

The goal of this chapter is to show that holomorphic vector bundles over non-compact
Riemann surfaces are always trivial. We will first exhibit some topological properties enjoyed
by non-compact Riemann surfaces, eventually leading to Runge’s approximation theorem.
We will then spend some time studying the functional analysis of such surfaces, culminating
with various theorems on the existence of some specific sections. Finally, we will be able to
prove the triviality of line bundles, and an induction on the rank of the bundle will extend
the result to general holomorphic vector bundles. All the results in this chapter are taken
from [4], although they have been reordered and edited in the hope of conveying even more
clarity.

3.1 Runge’s approximation theorem

One of the theorems that we will use time and again in this chapter is the Runge approxima-
tion theorem. Its classical version for the complex plane asserts that on a simply connected
domain Y ⊂ C, every holomorphic function on Y can be approximated uniformly on com-
pact sets by entire functions. Its statement for non-compact Riemann surfaces is almost
identical:

Theorem 3.1 (Runge’s approximation theorem, cf. [4, Theorem 25.5]). Let X be a non-
compact Riemann surface and Y ⊂ X be an open subset whose complement contains no
compact connected components. Then every holomorphic function on Y can be approximated
uniformly on compact subsets of Y by holomorphic functions on X.

In functional analysis, we often encounter the following strategy to construct global functions
with desired properties: starting with a sequence of functions (themselves having certain key
properties) defined on increasingly bigger domains, we modify them using approximation

10



theorems to get functions that are closer together (and that retain the key properties) and
then take the limit of these new functions. In order to use this kind of argument with
Runge’s approximation theorem, we need to know that non-compact Riemann surfaces X
can be exhausted by open subsets Y satisfying the hypothesis of Theorem 3.1. The remainder
of this section will be devoted to prove the existence of such an exhaustion. At this point,
it is convenient to introduce some terminology.

Definition 3.2. Let X be a Riemann surface. For any subset Y ⊂ X, let h(Y ) denote the
union of Y with all connected components of X \ Y that are relatively compact in X. An
open subset Y ⊂ X is called Runge if Y = h(Y ), i.e. X \ Y has no compact connected
components.

Remark 3.3. We can already see from the definition that the hull operator h satisfies the
two following properties:

(i) h(h(Y )) = Y for every subset Y ⊂ X;

(ii) Y1 ⊂ Y2 =⇒ h(Y1) ⊂ h(Y2) for every pair of subsets Y1, Y2 ⊂ X.

Before moving on to a closer study of h, we point out a fact that will be used without mention
in the subsequent theorems.

Lemma 3.4. Let Y be a relatively compact subset of a manifold X. Then there exists a
relatively compact open neighbourhood U of Y . Moreover, U can be taken to be connected.

Proof. By assumption, Y is compact. Since X is locally Euclidean, every point of Y has
a neighbourhood which is a relatively compact domain. By compactness, finitely many of
these relatively compact domains, say U1, . . . , Uk, cover Y . It follows that U := U1∪ · · · ∪Uk

is a relatively compact open neighbourhood of Y . Finally, we can further join the Uk with
paths to get a compact connected set K and then repeat the construction (with K instead
of Y ) to obtain a relatively compact open neighbourhood U ′ of Y that is connected.

Theorem 3.5. Let Y be a subset of a Riemann surface X. Then the following hold:

(i) If Y is closed, then h(Y ) is closed;

(ii) If Y is compact, then h(Y ) is compact.

Proof. (i) Let Ci, i ∈ I denote the connected components of X \ Y . Being a manifold,
X is locally connected. Since Y is closed, X \ Y is an open subset of X, so it inherits
the local connectedness of X. It follows that the connected components Ci are open. Let
I0 = {i ∈ I : Ci is relatively compact in X}. Then

X \ h(Y ) =
⋃

i∈I\I0

Ci

11



is also an open set, i.e. h(Y ) is closed.

(ii) Clearly, the result holds if Y = ∅. Assume from now on that Y is non-empty. Let Ci,
i ∈ I denote the connected components of X \ Y (recall from (i) that the Ci are open in
X) and let U be a relatively compact open neighbourhood of Y . We first claim that all the
connected components Ci meet U . Otherwise, there would be some component Ci such that
Ci ⊂ X \ U , hence we would have Ci ⊂ X \ U ⊂ X \ Y (here Ci denotes the closure of Ci

in X). But the maximality of Ci as a connected component of X \ Y implies that Ci = Ci

and therefore that Ci would be both open and closed in X, which is impossible since X is
connected.

Next, we claim that only finitely many of the components Ci meet ∂U . Indeed, since U is
relatively compact, then ∂U is compact. Since ∂U ⊂ X \ Y =

⋃
Ci, it follows that finitely

many of the Ci cover ∂U . The Ci being disjoint, the claim follows. Now, let I0 = {i ∈ I :
Ci is relatively compact in X}. Then

h(Y ) = Y ∪
⋃
i∈I0

Ci.

Let Ci1 , . . . ,Cik denote the relatively compact connected components who intersect ∂U . Since
all the other such components meet U but not ∂U , they must be contained in U . Therefore,
h(Y ) ⊂ U ∪ Ci1 ∪ · · · ∪ Cik is relatively compact. By (i), h(Y ) is closed, therefore it is
compact.

Theorem 3.6. Let X be a non-compact Riemann surface. Then there exists a sequence of
compact subsets Ki, i ∈ N with the following properties:

(i) Ki = h(Ki) for all i ∈ N;

(ii) Ki ⊂ K̊i+1 for all i ∈ N, where K̊i+1 denotes the interior of Ki+1;

(iii)
⋃∞

i=0Ki = X.

Proof. Since X is Hausdorff, locally compact and second countable, it admits a countable
basis of relatively compact sets, say {Ui}i∈N. Letting K ′

i =
⋃i

j=0 Uj, we get a sequence
of compact sets K ′

0 ⊂ K ′
1 ⊂ . . . that cover X. Let K0 = h(K ′

0). By Theorem 3.5, K0

is compact. Moreover, K0 satisfies property (i) since h(K0) = h(h(K ′
0)) = h(K ′

0) = K0.
We now construct the other compact sets Ki by induction. Suppose that we have already
constructed compact sets K0, . . . , Kn satisfying properties (i) and (ii) and such that K ′

i ⊂ Ki

for all i = 0, . . . ,n. Now, let M be a relatively compact open neighbourhood of the compact
set Kn ∪K ′

n+1 and define Kn+1 = h(M). By Theorem 3.5 and Remark 3.3, Kn+1 is compact
and h(Kn) = Kn. Moreover, we have Kn, K

′
n+1 ⊂ M ⊂ K̊n+1, which completes the inductive

step. Property (iii) now follows since K ′
i ⊂ Ki and the sets K ′

i already cover X.

Theorem 3.7. Let K1, K2 be compact subsets of a Riemann surface X such that K1 ⊂ K̊2

and h(K2) = K2. Then there exists an open subset Y of X that is Runge and satisfies
K1 ⊂ Y ⊂ K2.
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Proof. Since K1 ⊂ K̊2, every point x ∈ ∂K2 has a coordinate neighbourhood Ux not inter-
secting K1. For every point x ∈ ∂K2, we pick a compact disk Dx ⊂ Ux containing x in its
interior. By compactness, finitely many of these disks cover ∂K2, say D1, . . . ,Dk. Let

Y := K2 \ (D1 ∪ · · · ∪Dk) = K̊2 \ (D1 ∪ · · · ∪Dk),

which is open and satisfies K1 ⊂ Y ⊂ K2. Let Ci, i ∈ I, denote the connected components
of X \ K2. Since h(K2) = K2, none of the Ci is relatively compact. But the disks Dj are
connected and intersect some Ci, so every connected component of X \ Y contains at least
one of the Ci and hence cannot be relatively compact. In other words, Y is Runge.

Theorem 3.8. Let Y be a Runge open subset of a Riemann surface X. Then every connected
component of Y is Runge.

Proof. Let Yi, i ∈ I, denote the connected components of Y . Since Y is open and locally
connected, all the components Yi are open. Let A = X \ Y and let Ak, k ∈ K, be the
connected components of A. The open set Y being Runge, it follows that the components
Ak are closed (in X) but not compact. Fix a connected component Yℓ of Y and let C be a
connected component of X \ Yℓ. Suppose for a moment that C intersects some Ak. Since
C is maximal upon the connected subsets of X \ Yℓ, we must have Ak ⊂ C. But Ak is not
compact, so the same goes for C. Therefore, the only thing left to prove is that C ∩Ak ̸= ∅
for some k ∈ K.

First, we claim that Yi intersects A for every i ∈ I (here Yi denotes the closure of Yi in X).
Otherwise we would have the inclusion Yi ⊂ Y . But then by the maximality of Yi we would
have that Yi = Yi and hence that X is disconnected (unless Yi = X, but that case is trivially
true), a contradiction. Now, suppose that C ∩ A = ∅. Then C ⊂ Y and hence C intersects
Yi for some i ̸= ℓ. Thus Yi ⊂ C since Yi is connected and C is closed. But Yi intersects A,
and therefore so does C.

Theorem 3.9. Let X be a non-compact Riemann surface. Then there exists a nested se-
quence of relatively compact Runge domains Y0 ⋐ Y1 ⋐ Y2 ⋐ . . . such that

⋃∞
i=0 Yi = X.

Proof. We claim that the result follows if we can prove that for every compact set K ⊂ X,
there exists a Runge domain Y such that K ⊂ Y ⋐ X. Indeed, consider an exhaustion of
X by compact subsets K0 ⊂ K1 ⊂ . . . given by Theorem 3.6. We construct the sequence
Y0 ⋐ Y1 ⋐ . . . by induction. Start with a Runge domain Y0 such that K0 ⊂ Y0 ⋐ X. Now,
suppose that relatively compact Runge domains Y0, . . . ,Yn have been constructed so that
Y0 ⋐ Y1 ⋐ · · · ⋐ Yn and Ki ⊂ Yi for all i = 1, . . . ,n. Since Kn+1 ∪ Yn is relatively compact,
there exists a relatively compact open neighbourhood Yn+1 of Kn+1∪Yn. Clearly, Yn ⋐ Yn+1

and Kn+1 ⊂ Yn+1. This completes the induction. To show that the domains Yi cover X,
it suffices to notice that the compact sets Ki themselves cover X and that Ki ⊂ Yi for all
i ∈ N.

Therefore, the only thing left to show is that every compact set K is contained in a relatively
compact Runge domain Y . Let K be a compact set, and take a compact connected set K1
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that contains K. Now let K2 be a compact set such that K1 ⊂ K̊2. Then h(K2) is compact
by Theorem 3.5. By Theorem 3.7, there exists a Runge open Y ′ such that K1 ⊂ Y ′ ⊂ h(K2).
We finally let Y be the connected component of Y ′ that contains K1. By Theorem 3.8, Y is
still Runge, and it is obviously relatively compact.

3.2 Two vanishing theorems

It is a well-known fact that the cohomology group H1(X,O) of a compact Riemann surface
X is finite-dimensional. As done in [4], the machinery (of functional analysis) used to prove
this result can be adapted to say something about relatively compact open subsets of general
Riemann surfaces.

Theorem 3.10 (cf. [4, Theorem 14.9]). Let X be a Riemann surface and let Y be a relatively
compact open subset of X. Then the natural restriction homomorphism

H1(X,O) → H1(Y,O)

has finite-dimensional image.

There is also a quite similar theorem for the sheaf F of holomorphic sections of a holomorphic
vector bundle:

Theorem 3.11 (cf. [4, Theorem 29.13]). Let X be a Riemann surface, Y be a relatively
compact open subset of X and E be a holomorphic vector bundle over X. Then H1(Y,F ) is
finite-dimensional.

But as far as Theorem 3.10 is concerned, this is not the end of the story for non-compact
Riemann surfaces. In fact, this section is devoted to prove a much stronger statement,
namely that the cohomology group H1(X,O) vanishes when X is a non-compact Riemann
surface.

The first step towards proving this result is to reduce the problem to one of functional
analysis. To do this, first recall that if we have an exact sequence of sheaves

0 −→ K
α−→ G

β−→ H −→ 0,

where H1(X,G ) = 0, then the long exact sequence in cohomology shows that

H1(X,K ) = H (X)/βG (X).

The sheaves on X that will be of importance for us are the following:

(1) the sheaf O of holomorphic functions;
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(2) the sheaf E of real-differentiable functions;

(3) the sheaf E 0,1 of differentiable forms locally of the form ∂
∂z̄
dz̄;

(4) the sheaf M of meromorphic functions;

(5) the sheaf F of holomorphic sections of a holomorphic vector bundle.

In our case, we have the exact sequence of sheaves

0 −→ O −→ E
∂̄−→ E 0,1 −→ 0,

where ∂̄ is the usual Cauchy-Riemann operator. Moreover, a classical computation in Čech
cohomology yields H1(X,E ) = 0 (cf. [4, Theorem 12.6]). Therefore,

H1(X,O) = E 0,1(X)/ ∂̄ E (X),

so now the problem of showing that H1(X,O) = 0 is reduced to the problem of showing that
E 0,1(X) = ∂̄ E (X). In other words, we want to show that for every (0,1)-form ω ∈ E 0,1(X),
there exists a smooth function f ∈ E (X) such that ∂̄ f = ω. Note that this problem always
has a solution locally: this is the celebrated Dolbeault lemma.

Lemma 3.12 (Dolbeault’s lemma, cf. [4, Theorem 13.2]). Let U = {z ∈ C : |z| < R},
0 < R ≤ ∞ be an open disk in the complex plane and let g ∈ E (U). Then there exists a
function f ∈ E (U) such that

∂f

∂z̄
= g.

We now spend some time to show that the problem has a solution on relatively compact
open sets, provided that we restrict ourselves to a suitable subset of (0,1)-forms (see the
statement of Theorem 3.17 for details).

Theorem 3.13. Let X be a Riemann surface and Y be a relatively compact open set of X.
Then, for all a ∈ Y , there exists a meromorphic function f ∈ M (Y ) that has a pole at a
and is holomorphic on Y \ {a}.

Proof. By Theorem 3.10, we know that

k = dim Im(H1(X,O) → H1(Y,O)) < ∞.

Let a ∈ Y and consider a coordinate neighbourhood (U,z) centered at a. Let V = X \
{a}, so that we have an open covering U = {U,V } of X. On the intersection U ∩ V ,
the functions z−i are holomorphic for all i ≥ 1, hence they define cocycles ζi ∈ Z1(U ,O).
Since dim Im(H1(U ,O) → H1(U ∩ Y,O)) < k + 1, it follows that the restricted cocycles
ζ1, . . . ,ζk+1 ∈ Z1(U ∩ Y,O) are linearly dependent modulo coboundaries, i.e. there exist
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constants ci ∈ C not all zero and a cochain η = (f,g) ∈ C0(U∩Y,O) such that
∑k+1

i=1 ciζi = δη,
which implies that

k+1∑
i=1

ciz
−i = g − f on U ∩ V ∩ Y.

Therefore, the holomorphic functions f+
∑k+1

i=1 ciz
−i, defined on (U ∩Y )\{a}, and g, defined

on V ∩ Y = Y \ {a}, glue together to give a meromorphic function h over Y that has a pole
at a and is holomorphic everywhere else.

Theorem 3.14. Let X be a non-compact Riemann surface and Y be a relatively compact
open set of X. Then there exists a holomorphic function f ∈ O(Y ) that is not constant on
any connected component of Y .

Proof. Let Y ′ be a relatively compact domain that contains Y . Since X is non-compact
and connected, there exists a point a ∈ Y ′ \ Y . Applying Theorem 3.13 to Y ′, we get a
meromorphic function f ∈ M (Y ′) with a single pole at a. Since a /∈ Y , the function f
restricts to a holomorphic function on Y . Finally, it cannot be constant on a connected
component of Y , or otherwise it would be constant on all of Y ′ by the identity theorem.

Theorem 3.15. Let X be a non-compact Riemann surface and Y be a relatively compact
open subset of X. Then Im(H1(X,O) → H1(Y,O)) = 0.

Proof. Let Y ′ be a relatively compact open neighbourhood of Y . Applying Theorem 3.10 to
Y and Y ′, we get that

dim Im(H1(Y ′,O) → H1(Y,O)) < ∞.

Choose cohomology classes ξ1, . . . ,ξn ∈ H1(Y ′,O) whose restriction to Y span the vector
space Im(H1(Y ′,O) → H1(Y,O)). By Theorem 3.14, there exists a holomorphic function
f ∈ H1(Y ′,O) that is not constant on any connected component of Y ′. Since H1(Y ′,O) is an
O(Y ′)-module, it follows from the choice of the classes ξ1, . . . ,ξn that there exist constants
cij ∈ C such that

fξi =
n∑

j=1

cijξj on Y. (3.16)

Consider the function F = det(fI −C), where I denotes the identity matrix and C = (cij).
Apart from being holomorphic, F is also non-zero on any connected component of Y ′. Indeed,
if F were identically zero on some connected component of Y ′, then f , being a root of the
characteristic polynomial of C, would be locally constant, hence constant on said connected
component. Moreover, Equation (3.16) can be rewritten as (fI−C)ξ|Y = 0, where ξ denotes
the column vector (ξ1, . . . ,ξn)T . Multiplying by the adjugate matrix of fI−C on both sides,
it follows that Fξi|Y = 0 for all i = 1, . . . ,n.

Now, let ζ ∈ H1(Y ′,O) be an arbitrary cohomology class. Then ζ is represented by some
cocycle (fij) ∈ Z1(U ,O). Since F is not identically zero, we can further assume (possibly
after passing to a refinement of U) that each zero of F is contained in at most one member

16



of the open covering U = (Ui). It follows that F |Ui∩Uj
∈ O∗(Ui ∩ Uj). Thus there exists a

cocycle (gij) ∈ Z1(U ,O) such that (fij) = F (gij). Letting η denote the cohomology class of
(gij), we get ζ = Fη, which further implies that ζ|Y = Fη|Y = 0. The result now follows
since the morphism H1(X,O) → H1(Y,O) is the composition of the two morphisms

H1(X,O) → H1(Y ′,O) → H1(Y,O).

Theorem 3.17. Let X be a non-compact Riemann surface and Y be a relatively compact
open subset of X. Then for every differential form ω ∈ E 0,1(X), there exists a smooth
function f ∈ E (Y ) such that ∂̄ f = ω|Y .

Proof. Let ω be a (0,1)-form on X. Recall from the Dolbeault lemma (Lemma 3.12) that the
problem has a solution locally. Therefore, there exists an open covering U = (Ui) of X and
functions fi ∈ E (Ui) such that ∂̄ fi = ω|Ui

. The functions fj − fi are holomorphic because
∂̄(fj − fi) = ω|Ui

− ω|Ui
= 0, thus they define a cocycle (fj − fi) ∈ Z1(U ,O). By Theorem

3.15, the restriction of that cocycle to Y is zero, i.e. there exists a cochain (gi) ∈ C0(U ,O)
such that fj − fi = gj − gi on Ui ∩ Uj ∩ Y . But since E is a sheaf, there exists a function
f ∈ E (Y ) such that f |Ui∩Y = fi− gi. This smooth function f is the desired solution because
on Ui ∩ Y , we have

∂̄ f = ∂̄(fi − gi) = ∂̄ fi = ω|Y .

We are finally ready to attack the global problem.

Theorem 3.18. Let X be a non-compact Riemann surface. Then E 0,1(X) = ∂̄ E (X), i.e.
for every differential form ω ∈ E 0,1(X), there exists a smooth function f ∈ E (X) such that
∂̄ f = ω.

Proof. Let ω ∈ E 0,1(X) be a global differential (0,1)-form. We know from Theorem 3.17 that
for every relatively compact open subset Y of X, there exists a smooth function g ∈ E (Y )
such that ∂̄ g = ω|Y . We now use an exhaustion process to build a global solution to
the equation ∂̄ f = ω. Let Y0 ⋐ Y1 ⋐ Y2 ⋐ . . . be an exhaustion of X by relatively
compact Runge domains. We know that for every n ∈ N, there exists a smooth function
gn ∈ E (Yn) such that ∂̄ gn = ω|Yn . Using Runge’s approximation theorem, we modify the
smooth functions gn to get a sequence of smooth functions fn such that

(i) ∂̄ fn = ω|Yn ;

(ii) ∥fn+1 − fn∥Yn−1 ≤ 2−n.
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We proceed by induction. First, let f0 := g0. Suppose now that the functions f0, . . . ,fn have
been constructed. Since fk and gk+1 are both solutions to ∂̄ f = ω on Yk, it follows that
∂̄(fn−gn+1) = 0 on Yn, i.e. fn−gn+1 is holomorphic on Yn. Thus by Runge’s approximation
theorem, there exists a holomorphic function h ∈ O(X) such that ∥(fn − gn+1)− h∥ ≤ 2−n

on the compact subset Y n−1. Letting fn+1 := gn+1 + h, we see that ∂̄ fn+1 = ∂̄ gn+1 = ω|Yn+1

and ∥fn+1 − fn∥Yn−1 ≤ 2−n, which completes the induction.

Since the Runge domains Yn exhaust X, every point x ∈ X is contained in almost all Yn, so
it makes sense to define f(x) := limn→∞ fn(x). On Yn, we can write

f = fn+1 +
∞∑

k=n+1

(fk+1 − fk).

The functions fk+1 − fk are holomorphic on Yn for all k ≥ n + 1 and the series S =∑∞
k=n+1(fk+1 − fk) converges uniformly on Yn, hence the series S is holomorphic on Yn.

Therefore, f = fn+1 + S is a smooth function on Yn and

∂̄ f = ∂̄(fn+1 + S) = ∂̄ fn+1 = ω on Yn.

But this is true for all n ∈ N, so it follows that f is a smooth function on all of X and
∂̄ f = ω on X as well.

Corollary 3.19. Let X be a non-compact Riemann surface. Then

H1(X,O) = 0.

3.3 Triviality of holomorphic vector bundles

With the results of the last sections in hand, we are now ready to tackle holomorphic vector
bundles over non-compact Riemann surfaces. The first item on our agenda is to general-
ize Theorem 3.13 to this setting, namely to show that holomorphic vector bundles (over
non-compact Riemann surfaces) admit non-vanishing meromorphic sections over relatively
compact open subsets.

Theorem 3.20. Let Y ⋐ X be a relatively compact open subset of a non-compact Riemann
surface X and E → X be a holomorphic vector bundle. Then, for any a ∈ Y , there exists a
meromorphic section of E over Y which has a pole at a and is holomorphic on Y \ {a}.

Proof. Denote by n the rank of E and by k the dimension of H1(Y,F ) (which is finite
from Theorem 3.11). Let a ∈ Y and h : EU1 → U1 × Cn be a local trivialization over a
chart U1 ⊂ Y centered at a. Let U2 := Y \ {a}. Then U = (U1,U2) is an open cover of
Y . Recall that a holomorphic section s over U1 \ {a} can be represented by an n-tuple of
holomorphic functions (s1, . . . ,sn) ∈ O(U1 \ {a})n. Using this representation, we can now
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repeat the argument of Theorem 3.13 (with the cocycles ζi = (z−i, . . . ,z−i) ∈ Z1(U,F )) to
get a meromorphic section f over Y that has a pole at a and is holomorphic everywhere
else.

Before moving on to the next theorem, we first recall two classical theorems on the complex
plane.

Theorem 3.21 (Weierstrass’ factorization theorem). Let A ⊂ C be a closed discrete subset.
Then there exists an entire function with zeros of chosen multiplicity at every point of A,
and only there.

Theorem 3.22 (Mittag-Leffler’s theorem). Let A ⊂ C be a closed discrete subset. For every
point a ∈ A, let pa(z) be a polynomial in 1

z−a
. Then there exists a meromorphic function

f ∈ M (C) such that for every a ∈ A, the function f(z) − pa(z) has only a removable
singularity at a. In particular, the principal part of f at a is exactly pa(z).

Simply put, these two theorems respectively assert the existence of a function with prescribed
zeros (of prescribed multiplicities) or with prescribed poles (of prescribed order). As it turns
out, there is a common generalization of both these theorems to the setting of non-compact
Riemann surfaces. To state it in a natural way, we recall the notion of a divisor on a Riemann
surface.

Definition 3.23. Let X be a Riemann surface. A divisor D on X is a function D : X → Z
such that for every compact subset K ⊂ X, the set {x ∈ K : D(x) ̸= 0} is finite.

To any nonzero meromorphic function f ∈ M ∗(X) we can associate the divisor (f) which
sends a point x ∈ X to the order of f at x. Divisors arising this way are called principal
divisors. In this language, Weierstrass’ theorem and Mittag-Leffler’s theorem asserts that on
the complex plane, certain divisors are in fact principal divisors. This is no coincidence: as
it turns out, every divisor on a non-compact Riemann is principal.

Theorem 3.24 (cf. [4, Theorem 26.5]). Let D be a divisor on a non-compact Riemann
surface X. Then there exists a meromorphic function f ∈ M ∗(X) such that D = (f).

Given a meromorphic section on a holomorphic vector bundle, Theorem 3.24 enables us to
construct a holomorphic section out of it.

Theorem 3.25. Let E → X be a holomorphic vector bundle of rank n over a non-compact
Riemann surface X. If E has a non-trivial global meromorphic section, then it also has a
global holomorphic section with no zeros.

Proof. Let f be a non-zero global meromorphic section of E and let A be the closed discrete
set on which f has poles. Consider a point a ∈ A. Let ha : EU → U × Cn be a local
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trivialization of E over a and let (f1, . . . ,fn) ∈ M (U)n be the representation of f with
respect to ha. Define D(a) to be the minimum of the order of the functions fk at a. Doing
this for every a ∈ A, we get a divisor D on X. By Theorem 3.24, there exists a meromorphic
function φ ∈ M ∗(X) such that (φ) = −D. It follows that φf is a global holomorphic section
of E that has no zeros.

Remark 3.26. In particular, Theorem 3.25 can be used to construct a nowhere vanishing
holomorphic section from a non-trivial holomorphic section of E over X.

We are finally ready to prove that holomorphic vector bundles over non-compact Riemann
surfaces are trivial. We begin with line bundles. We give two proofs: one based on Runge’s
approximation theorem (cf. [4, Theorem 30.3]) and a more succint one based on sheaf coho-
mology.

Theorem 3.27. Every holomorphic line bundle E over a non-compact Riemann surface X
is trivial.

First proof. Recall from Theorem 2.14 that E → X is trivial if and only if we can find a
global holomorphic section over X that doesn’t vanish anywhere. We will thus put all our
efforts towards constructing such a section. By Theorem 3.9, let ∅ ≠ Y0 ⋐ Y1 ⋐ Y2 ⋐ . . . be
an exhaustion of X by relatively compact Runge domains. Over any of the Runge domains Yk

there exists a (non-trivial) meromorphic section by Theorem 3.20 and thus a non-vanishing
holomorphic section by Theorem 3.25. It follows from Theorem 2.14 that E is trivial over
each Yk. In particular, our discussion on sections and their representations implies that
F (Yk) ∼= O(Yk), i.e. there is a one-to-one correspondence between holomorphic sections of
E over Yk and their representations, which are holomorphic functions on Yk in this case.

Using this identification, Runge’s approximation theorem (Theorem 3.1) tells us that every
holomorphic section of E over Yk can be approximated uniformly by a holomorphic section
over Yk+1. Let f0 ∈ F (Y0) be a holomorphic section with no zeros and fix a point a ∈ Y0. Let
0 < ε < |f0(a)|

2
and let K ⊂ Y0 be a compact set containing a. Using induction and Runge’s

approximation theorem, we can construct a sequence of holomorphic sections (fk)k≥1, where
fk ∈ F (Yk), such that ∥f1 − f0∥K < ε

2
and ∥fk − fk−1∥Y k−2

< ε
2k

for all k ≥ 2. Since the
sequences (fl|Yk

)l>k converge uniformly in F (Yk) for every k and the Runge domains Yk

exhaust X, the limit of the sequence (fk) gives a global holomorphic section f ∈ F (X).
Moreover, this section does not vanish identically because

|f0(a)| ≤ |f1(a)− f0(a)|+ · · ·+ |fk(a)− fk−1(a)|+ |fk(a)|
≤ ∥f1 − f0∥K + · · ·+ ∥fk − fk−1∥Y k−2

+ |fk(a)|

<
ε

2
+ · · ·+ ε

2k
+ |fk(a)|

< ε+ |fk(a)|

which implies that

|f(a)| = lim
k→∞

≥ |f0(a)| − ε >
|f0(a)|

2
> 0.
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Therefore, one last application of Theorem 3.25 gives the existence of a global holomorphic
section that doesn’t vanish anywhere.

Second proof. Let Z denote the constant sheaf on X associated to Z and let O∗ denote the
sheaf of non-vanishing holomorphic functions on X. These two are related to the sheaf O
through the exponential sequence

0 −→ Z α−→ O
β−→ O∗ −→ 0,

where α is the inclusion map of Z into O and β is given by exp(2πif). The long exact
sequence in cohomology gives the exact sequence

H1(X,O) −→ H1(X,O∗) −→ H2(X,Z).

Since H1(X,O) = 0 (cf. Corollary 3.19) and H2(X,Z) = 0 (because X is non-compact), it
follows that H1(X,O∗) = 0. But this cohomology group is exactly the Picard group of X.
The result follows.

We can finally extend Theorem 3.27 to holomorphic vector bundles of higher rank.

Theorem 3.28. Every holomorphic vector bundle E over a non-compact Riemann surface
X is trivial.

Proof. The theorem will be proved using induction on the rank n of the holomorphic vector
bundle E. The case n = 1 is exactly Theorem 3.27. Let’s now assume that every holomorphic
vector bundle of rank n− 1 is trivial, and let E be a holomorphic vector bundle of rank n.
The proof essentially goes in two steps.

Step 1: Suppose for a moment that there exists a nowhere vanishing global holomor-
phic section fn ∈ F (X). Since E is locally trivial, then by Theorem 2.14 there is an
open cover U = (Ui)i∈I of X and holomorphic sections f i

1, . . . ,f
i
n−1 ∈ F (Ui) such that

f i
1(x), . . . ,f

i
n−1(x),fn(x) are linearly independent at every point x ∈ Ui. For every i ∈ I, let

f i denote the column vector with entries f i
1, . . . ,f

i
n−1. The goal now is to modify the local

"frames" of n− 1 sections f i so that they agree on the intersections Ui ∩Uj. The first thing
to observe is that on Ui ∩ Uj, the local frames f i and f j are related by(

f i

fn

)
=

(
gij aij

0 1

)(
f j

fn

)
, (3.29)

where gij ∈ GL(n − 1,O(Ui ∩ Uj)) and aij is a column vector whose entries are elements of
O(Ui ∩ Uj). Since Equation (3.29) also holds on triple intersections Ui ∩ Uj ∩ Uk, a direct
calculation shows that gik = gijgjk and aik = gijajk + aij. Let F be the subbundle of E
locally spanned by the local frames f i. Then F is a holomorphic vector bundle of rank n− 1
and (gij) is its associated cocycle of transition functions. By our induction hypothesis, F is
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trivial. It follows from Theorem 2.14 that (gij) is a coboundary, i.e. there exists a family of
matrices (gi) ∈

∏
i∈I GL(n− 1,O(Ui)) such that gij = gi(gj)−1 on Ui ∩ Uj.

We are now ready for our first modification of the local frames f i. Let f̃ i := (gi)−1f i. Then
it follows from Equation (3.29) that(

f̃ i

fn

)
=

(
I bij

0 1

)(
f̃ j

fn

)
, (3.30)

where bij is the column vector (gi)−1aij ∈ O(Ui∩Uj)
n−1. On triple intersections Ui∩Uj∩Uk,

another calculation shows that bik = bij + bjk. In other words, each entry of bij is a cocycle
in Z1(U,O). But H1(X,O) = 0 by Corollary 3.19. Thus we can find holomorphic column
vectors bi ∈ O(Ui)

n−1 such that bij = bi− bj on Ui∩Uj. We now apply a second modification
to the local frames f i: let f̂ i := f̃ i − bifn. Equation (3.30) now implies that(

f̂ i

fn

)
=

(
f̂ j

fn

)
on Ui ∩ Uj.

Therefore, the modified local frames f̂ i glue together to give an (n− 1)-tuple (f1, . . . ,fn−1)
of global holomorphic sections. By construction, the sections f1, . . . ,fn−1,fn are linearly
independent on each fiber. The holomorphic vector bundle E is thus trivial.

Step 2: It only remains to prove the existence of a nowhere vanishing global holomorphic
section of E. By Theorem 3.20 and Theorem 3.25 there always exists such a section over a
relatively compact open set Y ⋐ X. Appealing to the argument of Step 1, we conclude that
E is trivial over Y . We can then use an exhaustion of X by Runge domains combined with
Runge’s approximation theorem to construct a non-trivial holomorphic section of E over X,
just as we did in the proof of Theorem 3.27. An application of Theorem 3.25 finally yields
the desired section.

Remark 3.31. The induction step of Theorem 3.28 can be synthesized using the language
of extensions. Once we know that E has a nowhere vanishing global holomorphic section,
we deduce that it has the form of an extension

0 −→ O −→ E −→ E ′ −→ 0,

where E ′ is some holomorphic bundle of rank k − 1. By induction, E ′ is trivial and the
extension becomes

0 −→ O −→ E −→ O⊕(k−1) −→ 0. (3.32)

But the space of extensions of E ′ is classified by Ext1(E ′,O), and the latter is isomorphic to

Ext1(E ′,O) ≃ H1(X,Hom(E ′,O)) ≃ H1(X,O⊕(k−1)) = 0.

In other words, the extension (3.32) splits and E ≃ O⊕k is trivial.
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Chapter 4

Compact Riemann Surfaces

Looking back at the previous chapter, we notice that most of the tools used relied in some way
or the other on the non-compactness of the Riemann surface. This tells us that completely
different ideas are going to be needed for the compact case. Roughly speaking, we will
study a universal space of holomorphic vector bundles over a fixed compact Riemann surface
X, i.e. the space parametrizing the holomorphic vector bundles over X. Constantly using
inspiration from Morse theory, we will then exhibit a stratification on this space and see that
it closely resembles the ones usually encountered in Morse theory. In the end, this will enable
us to get some results concerning the equivariant cohomology of the minimal stratum. All
the results here are taken from [1], and the reader wishing to know more is kindly invited to
read the article for a deeper dive in the subject.

4.1 Review of Morse theory

Since a lot of our intuition will rely on ideas from Morse theory, we devote this section to
skim through the basics of the theory. More details can be found in [1, §1].

4.1.1 Elementary Morse theory

Let M be a compact differentiable manifold and let f : M → R be a smooth function. A
critical point of f is a point at which df vanishes and a critical value of f is a value of f whose
preimage contains a critical point. At a critical point p, the Hessian Hpf is a well-defined
quadratic form on TpM . If we have local coordinates xi centered at p, then the matrix of
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the quadratic form Hpf is given by

Hpf =

(
∂2f

∂xi∂xj

)
.

A critical point p is called non-degenerate if detHpf ̸= 0. The smooth function f is called
a Morse function if all its critical points are non-degenerate. At a non-degenerate critical
point p, the number of negative eigenvalues in a diagonalization of Hpf is called the index
of p and is denoted by λp(f). The Morse lemma asserts that for a non-degenerate critical
point p of index λp, there exists local coordinates x1, . . . ,xn centered at p such that

f = f(p)− (x1)2 − · · · − (xλp)2 + (xλp+1)2 + · · ·+ (xn)2.

A Morse function f can be used to understand the topology of the underlying manifold M
via the fundamental structural theorem of non-degenerate Morse theory. Letting Ma (a ∈ R)
denote the set of points {m ∈ M : f(m) ≤ a}, this theorem essentially says that Ma ∼ Mb if
there are no critical values between a and b, while Mb ∼ Ma ∪ eλ if there is a single critical
point of index λ in Mb \Ma. Here, the relation ∼ is that of homeomorphism and Ma ∪ eλ is
the manifold obtained from Ma by attaching a cell eλ of dimension λ to it.

To any Morse function f we associate its Morse polynomial

Mt(f) :=
∑
p

tλp(f),

where the sum runs over the necessarily finite number of critical points p of f . There are
topological bounds for Mt(f). Indeed, if we let

Pt(M ;K) =
∑

ti dimH i(M ;K)

be the Poincaré polynomial of M relative to a coefficient field K, then a Morse function f
always satisfies

Mt(f)− Pt(M ;K) = (1 + t)R(t), (4.1)

where R(t) is a polynomial with non-negative coefficients. In particular, the coefficients
of Mt(f) dominate those of Pt(M), hence the name Morse inequalities for Equation (4.1).
The function f is called a K-perfect Morse functions if the Morse inequalities are in fact
equalities, i.e. Mt(f) = Pt(M ;K), and is called perfect if the latter equality holds for all
fields K.

There are criteria for establishing perfection. First, there is the lacunary principle: if {λp(f)}
contains no consecutive integers, then f is perfect. There is also the completion principle: if
all the critical points of f are completable, then f is perfect. Let’s describe what we mean
for a critical point p to be completable. Near p, f is of the form

f = f(p)− (x1)2 − · · · − (xk)2 + (xk+1)2 + · · ·+ (xn)2,

where k is the index of p. The set

v−p = {x : (x1)2 + · · ·+ (xk)2 ≤ ε, xk+1 = · · · = xn = 0}
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is a disc near p whose boundary ∂v−p is a (k − 1)-sphere in the space Mc−ε = {m ∈ M :
f(m) ≤ c− ε}. The point p is called completable if the sphere ∂v−p bounds a singular chain
in Mc−ε.

The Morse inequalities as well as the completion principle are both consequences of the
fundamental structural theorem (more precisely the exact sequences relating the cohomology
of Mb and Ma), while the lacunary principle is a consequence of the completion principle.

4.1.2 Extension of Morse theory

We now move on beyond the realm of elementary Morse theory and adapt our definitions so
that they become better suited for more general purposes.

Let N ⊂ M be a (regular) submanifold. Equip the tangent bundle of M with a Riemannian
metric. This allows to speak of the normal bundle v(N) of N (where v stands for vertical).
Then N is said to be a non-degenerate critical manifold for f if

df ≡ 0 along N and
HNf is non-degenerate on the normal bunde v(N) of N.

Here again the fact that df ≡ 0 along N ensures that the Hessian of f is well-defined on
v(N). In this extended context, a function f on X is said to be a Morse function if its critical
set is a union of non-degenerate critical manifolds.

Since critical sets may now contain submanifolds of different dimensions, we need to adapt
our way of counting these critical submanifolds in order to form the Morse polynomial. To
do so, begin by equipping M with a Riemannian metric, so that v(N) also inherits such a
metric. Then the Hessian HNf defines a canonical self-adjoint endomorphism

AN : v(N) → v(N) via the formula (ANx,y) = HNf(x,y).

Since HNf is non-degenerate, the eigenvalues of AN are all non-zero and hence decomposes
v(N) into an orthogonal direct sum v(N) = v+(N) ⊕ v−(N) spanned by the positive and
negative eigenvalues of AN respectively. The index λN of N is then simply the fibre dimension
of v−(N). Choosing a coefficient field K, we count a non-degenrate critical manifold N of
f with the polynomial Mt(f,N) =

∑
ti dimH i

c(v
−(N)), where H i

c denotes the compactly
supported cohomology. We can now define the Morse polynomial of a Morse function f by
the natural formula

Mt(f) =
∑
N

Mt(f,N).

A convincing reason to adopt this way of counting critical manifolds is that the Morse
inequalities persist, enabling us to talk about K-perfect Morse functions in this extended
sense as well. Another nice property is the functorial nature of this approach under pullbacks.
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More precisely, if E → M is a smooth fibration, then f is non-degenerate on M iff π∗f is
non-degenerate on E, and in that case the index of N equals the index of π−1(N).

The last thing to cover is the completion principle. The picture used earlier naturally gen-
eralizes to our actual setting. Put into the form of a diagram, we have

H∗(v
−
ε (N)) H̃∗(v

−
ε (N),∂v−ε (N)) H̃(∂v−ε (N))

H∗−λN
(N) H̃(Mf(c)−ε)

∂

π−1

where v−ε (N) denotes the set in the exponential image of v−(N) for f ≥ c − ε. The latter
is a λN -disk-bundle over N if ε > 0 is small enough, so that π−1 is the so-called Thom
isomorphism. We then say that N is K-completable if the dashed arrow in the diagram is
zero. This definition reduces to the previous one for a non-degenerate critical point and we
still have the completion principle.

Theorem 4.2. If all the critical manifolds of f are K-completable then f is a K-perfect
Morse function on M .

Now, the interesting fact is that in this setting, a critical manifold can be self-completing.
Indeed, since the top row in the diagram is exact, a class α ∈ H∗−λN

(N) will certainly go
to zero under the dashed arrow if π−1(α) is in the image of H∗(v

−
ε (N)). This phenomenon

can only occur if the bundle v−(N) is non-trivial over N . Later, we will work in an infinite-
dimensional setting, and we will be so lucky that all critical manifolds will be self-completing,
a feature that is impossible to realize in compact finite-dimensional settings.

4.1.3 Equivariant cohomology

When a space X is acted on by a Lie Group G, we would like to compute the cohomology
of X/G, but that space often lacks nice topological properties as soon as the action is not
free. A remedy to that problem is to replace X by a larger but homotopy equivalent space
on which the action will be free. One way to proceed is to consider the universal bundle
EG → BG for G. Since EG admits a free G-action, we can equip the space EG×X with the
diagonal action (e,x) ·g = (e ·g,g−1 ·x), which is also free. The product space EG×X is then
homotopy equivalent to X since EG is contractible, and its orbit space XG := (EG×X)/G
under the free G-action is then a nice topological space, called the homotopy quotient of
X. This construction allows us to define to the equivariant cohomology HG(X) of X as the
cohomology of its homotopy quotient H(XG).
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4.1.4 Stratifications

For now we focussed on the homological aspects of Morse theory, but these actually come
from a more detailed picture offered by the Morse function. Consider the vector field grad f
which is dual to the differential df . The gradient flow of f is given by the paths of steepest
descent, that is the trajectories of − grad f . In the classical theory, if every critical point is
non-degenerate, then every trajectory converges to some critical point. Taking all trajectories
converging to a given critical point p, we get a cell M+(p) of M called the stable manifold
of p. There is also the analogous unstable manifold M−(p) obtained using −f instead of f .
It is now clear (or at least plausible) from the Morse Lemma that the dimension of M−(p)
(which is the codimension of M+(p)) is equal to the Morse index of p. Thus, f gives a cell
decomposition M =

⋃
pM

+(p) and the Morse inequalities follow at once using these cells to
compute the homology of M .

More generally, in our extended Morse theory, given a non-degenerate critical manifold N
we have a stable manifold M+(N) that is a cell-bundle over N , and if all critical manifolds
are non-degenerate we get a corresponding stratification M =

⋃
N M+(N), called the Morse

stratification. For the equivariant case, given a G-invariant f , we can always pick a G-
invariant metric and the gradient flow is then G-invariant so that the Morse stratification is
also G-invariant.

There is a natural preorder ≺ on the critical manifolds N of a Morse function f given by
N1 ≺ N2 if the boundary of M+(N1) intersects M+(N2). In particular, if N1 ≺ N2, then
f(N1) < f(N2). Taking the transitive relation < associated to ≺, we get a partial order with
the property that

M+(N) ⊂
⋃

N ′⪰N

M+(N ′) ⊂
⋃

N ′≥N

M+(N ′).

Using the Morse stratification, we can get valuable information about the homology of M .
The way we will proceed actually doesn’t care that the stratification comes from a Morse
function, only that it satisfies the above property along with some other minor restrictions.

Start with an explicit finite stratification of M

M =
⋃
λ

Mλ,

where each Mλ is a locally closed submanifold of M and the index set of λ is partially ordered
so that

Mλ ⊂
⋃
µ≥λ

Mµ (4.3)

holds for all λ. To compute the homology of M we can start with the open strata (given by
minimal λ) and add inductively the other strata using the exact cohomology sequence for a
pair (U,U \ V ) where V is a closed submanifold of U . Here are the details. We say that a
subset I of indices is open if λ ∈ I and µ ≤ λ implies that µ ∈ I and closed if λ ∈ I and
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µ ≥ λ implies that µ ∈ I. Of course, the choice of words open and closed is no coincidence:
I is closed iff its complement Ic is open. Moreover, the subspace MI =

⋃
λ∈I is open (resp.

closed) if I is open (resp. closed): this is a consequence of the stratification property. If I
is open and λ ∈ Ic is minimal, then J = I ∪ λ is open and the inductive step goes from MI

to MJ . Again from (4.3) we have that Mλ = MJ \MI is a closed submanifold of MJ along
with the corresponding exact sequence

· · · → Hq−k(Mλ) → Hq(MJ) → Hq(MI) → . . .

where we have used the Thom isomorphism Hq−k ∼= Hq(MJ ,MI) with k = kλ = codimMλ.
Given a field K of coefficients, we say that the stratification is perfect over K if Pt(M) =∑

tkλPt(Mλ), which happens if the long exact sequence above breaks up into short exact
sequences for all q and all λ. As for G-invariant stratifications, we simply say that it is
equivariantly perfect (or G-perfect) if the corresponding equivariant cohomology sequences
break up.

However, we will be interested in applying this argument to infinite-dimensional spaces,
although the strata will still have finite codimension. In that context, the indexing set will
be countably infinite, so to ensure that our inductive process still apply we will require
the following finiteness property (called condition A): for every finite subset I there are a
finite number of minimal elements of the complement Ic. Although the induction will never
end, only finitely many steps will be needed to compute Hq(M) if we require the additional
condition (called condition B): for each integer q there are only finitely many indices λ ∈ I
for which codimMλ < q.

4.2 Defining the stratification

4.2.1 The space of holomorphic structures

Our goal is the following: to classify the holomorphic vector bundles over X. More precisely,
we would like to construct a space parametrizing all such bundles (up to isomorphism),
the so-called moduli space, and then describe its geometric properties. We first reduce the
problem to the one of classifying the holomorphic vector bundles of the same topological
type, i.e. of the same rank and degree (first Chern class). To do this, it is enough to
study the space C of holomorphic structures on a fixed smooth complex vector bundle E
over X of rank n and degree k. Indeed, smooth complex vector bundles over surfaces are
determined (up to isomorphism) by their rank and their degree. Therefore, once we fix
the smooth complex vector bundle E, all holomorphic vector bundles of rank n and degree
k are smoothly isomorphic to E and their holomorphic structure can be transported to a
holomorphic structure on E.

The next step is to identify holomorphic structures on E with Dolbeault operators on E. In
the following, let ∂̄ denote the usual Dolbeault operator on X.
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Definition 4.4. A Dolbeault operator on a smooth complex vector bundle E → X is a
C-linear operator ∂̄E : Γ(E) → Ω0,1(X,E) satisfying the Leibniz condition

∂̄E(fs) = ∂̄(f)⊗ s+ f ∂̄E(s)

for every section s ∈ Γ(E) and every smooth function f ∈ E (X).

Remark 4.5. In general, for smooth complex vector bundles over complex manifolds of
higher dimension, a Dolbeault operator is an operator ∂̄E : Ωp,q(X,E) → Ωp,q+1(X,E) as
above that is also required to satisfy ∂̄

2
E = 0. In our case, that condition is already satisfied

since X has complex dimension 1.

Given a holomorphic vector bundle E → X, there is a natural Dolbeault operator ∂̄E

associated to it, which is defined as follows. For a local holomorphic frame e1, . . . ,en of E
over U , we have

∂̄E

(∑
i

siei

)
:=
∑
i

∂̄(si)⊗ ei.

That ∂̄E is well-defined is a consequence of the transition functions being holomorphic.
Indeed, if f1, . . . ,fn is another local holomorphic frame of E over U , then fi =

∑n
j=1 gijej,

where g ∈ GLn(O(U)), hence

∂̄E

(
n∑

i=1

tifi

)
= ∂̄E

(
n∑

i=1

ti

(
n∑

j=1

gijej

))
= ∂̄E

(
n∑

j=1

(
n∑

i=1

tigij

)
ej

)

=
n∑

j=1

n∑
i=1

∂̄(ti)gij ⊗ ej +
n∑

j=1

n∑
i=1

ti ∂̄(gij)⊗ ej

=
n∑

i=1

(
∂̄(ti)⊗

n∑
j=1

gijej

)
=

n∑
i=1

∂̄(ti)⊗ fi

Conversely, the Koszul–Malgrange theorem asserts that given a Dolbeault operator ∂̄E on a
smooth complex vector bundle E → X, there exists a unique holomorphic structure on E
such that its associated Dolbeault operator is ∂̄E. More precisely, one can show that given a
Dolbeault operator ∂̄E, there exist local frames of “holomorphic” sections everywhere. Here,
a section s is said to be holomorphic if ∂̄E(s) = 0 (note that ∂̄E can be restricted to any
open subset U ⊂ X since it is a local operator). This implies the existence of a smooth
trivialization {ϕi : π

−1(Ui) → Ui × Cn}, where ϕ−1
i (−,ek) is a holomorphic section for all

i ∈ I and k = 1, . . . ,n. But this trivialization is in fact holomorphic since given the local
holomorphic frames sk = ϕ−1

i (−,ek) and tk = ϕ−1
j (−,ek) (k = 1, . . . ,n) over Ui and Uj

respectively, the transition function gij : Ui ∩ Uj → GLn(C) satisfies

tℓ =
n∑

k=1

(gij)kℓsk ∀ℓ = 1, . . . ,n
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and applying ∂̄E to both sides yield

0 = ∂̄E(tℓ) =
n∑

ℓ=1

∂̄((gij)kℓ)⊗ sk +
n∑

ℓ=1

(gij)kℓ ∂̄E(sk) =
n∑

ℓ=1

∂̄((gij)kℓ)⊗ sk ∀ℓ = 1, . . . ,n

=⇒ ∂̄((gij)kℓ) = 0 ∀k,ℓ = 1, . . . ,n.

This establishes the one-to-one correspondence between holomorphic structures on E and
Dolbeault operators on E. Now, consider two Dolbeault operators ∂̄E and ∂̄

′
E on E. It

follows from the Leibniz condition that ∂̄E − ∂̄
′
E is C∞(X)-linear:

(∂̄E − ∂̄
′
E)(fs) = ∂̄(f)⊗ s+ f ∂̄E(s)−

(
∂̄(f)⊗ s+ f ∂̄

′
E(s)

)
= f(∂̄E − ∂̄

′
E)(s).

Therefore, ∂̄E − ∂̄
′
E correspond to a bundle map E →

∧0,1 T ∗X ⊗ E and can be seen as a
(0,1)-form on X with values in the bundle E∗⊗E = End(E) of smooth endomorphisms of E.
In particular, this implies that C is a complex affine space whose vector space of translations
is Ω0,1(X,End(E)).

Now, the automorphism group Aut(E) of E acts on C (E) and the orbits are by definition
isomorphism classes of holomorphic vector bundles of fixed rank and degree. We now want to
describe the orbit structure of that action. In order to get a good moduli space (e.g. to avoid
non-Hausdorff phenomena), we will need to consider (semi-)stable holomorphic structures.

Definition 4.6. Let E → X be a holomorphic vector bundle. The first Chern class of E
is the 2-form i

2π
trace(F ) on X, where F is the curvature of any connection on E. The

degree of E, denoted by deg(E), is defined to be the integral of its first Chern class on the
fundamental cycle of X.

Definition 4.7. The slope of a (non-zero) holomorphic vector bundle E is the ratio

µ(E) =
deg(E)

rk(E)
,

where rk(E) denotes the rank of E. Moreover, E is said to be (semi-)stable if for any

(non-zero) proper holomorphic subbundle F of E, we have µ(F )
(≤)
< µ(E).

4.2.2 The Harder-Narasimhan filtration

Following the paper of Harder–Narasimhan (cf. [6]), we exhibit a very useful canonical fil-
tration of holomorphic vector bundles.

Lemma 4.8. If 0 → E ′ → E → E ′′ → 0 is a short exact sequence of holomorphic vector
bundles and E is semi-stable, then

µ(E ′) ≤ µ(E) ≤ µ(E ′′).
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Proof. The inequality µ(E ′) ≤ µ(E) follows readily from the semi-stability of E. Next, we
know that the degree and the rank of these bundles satisfy

deg(E) = deg(E ′) + deg(E ′′), rk(E) = rk(E ′) + rk(E ′′).

Keeping in mind the first inequality, it follows that

µ(E) =
deg(E ′) + deg(E ′′)

rk(E ′) + rk(E ′′)
=⇒ rk(E ′) + rk(E ′′)

rk(E ′)
µ(E) = µ(E ′) +

deg(E ′′)

rk(E ′)

=⇒ rk(E ′′)

rk(E ′)
µ(E) ≤ deg(E ′′)

rk(E ′)

=⇒ µ(E) ≤ µ(E ′′).

Definition 4.9. A proper subbundle F of a holomorphic vector bundle E is said to be
maximal if for every subbundle F ′ of E strictly containing F , we have µ(F ) > µ(F ′).

Lemma 4.10. If 0 → F → F ′ → Q → 0 is an exact sequence of holomorphic vector bundles
and F is maximal, then

µ(F ) > µ(F ′) > µ(Q).

In particular, if F is a maximal subbundle of a holomorphic bundle E, then for every proper
subbundle Q of E/F , we have µ(F ) > µ(Q).

Proof. The first inequality readily follows from the maximality of F , while the second can
be proved as follows:

µ(F ′) =
deg(F ) + deg(Q)

rk(F ) + rk(Q)
=⇒ rk(F ) + rk(Q)

rk(F )
µ(F ′) = µ(F ) +

deg(Q)

rk(F )

=⇒ rk(Q)

rk(F )
µ(F ′) >

deg(Q)

rk(F )

=⇒ µ(F ′) > µ(Q).

Lemma 4.11. Let F1 and F2 be a semi-stable and a maximal subbundle of E, respectively.
If F1 is not contained in F2, then µ(F2) > µ(F1).

Proof. By assumption, the canonical map p : F1 → E/F2 is non-zero. Moreover, it factorizes
through an exact diagram

F1 F ′
1 0

E/F2 F ′′
1 0

p f

where f is of maximal rank (cf. [8, §4]). In particular, µ(F ′′
1 ) ≥ µ(F ′

1). It follows from
Lemma 4.8 and Lemma 4.10 that µ(F1) ≤ µ(F ′

1) and µ(F2) > µ(F ′′
1 ). Combining the three

inequalities yields the desired result.
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Lemma 4.12. Let F1, F2 be maximal semi-stable subbundles of a holomorphic vector bundle
E. Then F1 = F2.

Proof. Suppose that F1 is not contained in F2. Lemma 4.11 implies that µ(F2) > µ(F1).
Appealing to Lemma 4.11 again, this time with the roles of F1 and F2 reversed, we must
have F2 ⊊ F1. But the semi-stability of F1 forces µ(F2) ≤ µ(F1), a contradiction. Thus,
F1 ⊂ F2. The other inclusion is proved similarly.

Lemma 4.13. Let E be a holomorphic vector bundle. Then the values of µ(F ), where F is
a subbundle of E, are bounded from above.

Proof. We prove the result by induction on the rank of E. For the case of line bundles, there
is nothing to prove. Now, fix a subbundle F of E. Then for any other subbundle F ′ we have
that the bundles obtained from F ′ ∩ F and F ′/(F ∩ F ′) ⊂ E/F both have bounded slope,
and therefore so does F .

Theorem 4.14. If E is a holomorphic vector bundle that is not semi-stable, then there exists
a unique maximal semi-stable subbundle F of E.

Proof. The uniqueness of F is exactly the content of Lemma 4.12. For the existence, consider
m := supµ(F ), where the supremum is taken over all the subbundles F of E. Since the values
of µ(F ) are discrete and bounded from above (Theorem 4.13), the supremum is attained.

Among those subbundles with µ(F ) = m, choose one, say F0, that is of maximal rank.
Note that F0 must be a proper subbundle of E, because otherwise E would be semi-stable.
Moreover, F0 is semi-stable by definition since for every proper subbundle F ′ ⊂ F we have
µ(F ′) ≤ m = µ(F0). Now, if F ′ is a subbundle of E that strictly contains F , then rk(F ) <
rk(F ′). Of course, µ(F ′) ≤ m, but in fact µ(F ′) < m because otherwise this would contradict
the maximality of the rank of F0. Therefore, F0 is maximal as well.

Theorem 4.15 (Harder–Narasimhan filtration). Let E be a holomorphic vector bundle.
There exists a unique filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E

such that each quotient Di := Fi/Fi−1 is semi-stable and maximal in E/Fi−1. In particular,

µ(D1) > µ(D2) > · · · > µ(Dr).

Proof. We simply apply Theorem 4.14 repeatedly. If E is semi-stable, then we are done. If
not, then we can find a maximal semi-stable subbundle F1 of E. If E/F1 is semi-stable, then
we are done. If not, then we can find a maximal semi-stable subbundle F ′

2 of E/F1. The
preimage F2 of F ′

2 under the projection E → E/F1 is again semi-stable, and the maximality
of F1 implies that µ(F1) > µ(F2) > µ(F2/F1). Repeating this process yields the desired
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filtration. Finally, the uniqueness can be proved inductively on the rank of E. Indeed, F1 is
unique from Theorem 4.14 while the quotients Fi/F1, i ≥ 2, form a filtration of E/F1 and
are therefore also uniquely determined by induction.

Definition 4.16. Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = E be the Harder-Narasimhan filtration of a
holomorphic vector bundle E of rank n. If we let ki and ni denote respectively the degree and
the rank of the quotients Di = Fi/Fi−1, then the type of E is the vector µ = (µ1, . . . ,µn),
where the first n1 entries are equal to µ(D1) = k1/n1, the next n2 entries are equal to
µ(D2) = k2/n2, and so on until the last nr entries which are equal to µ(Dr) = kr/nr.

Note that the sequence of pairs (ni,ki), i = 1, . . . ,r can be read from the type µ of E by
taking the ith different value appearing in µ and multiplying it by the number of times it
appears inside µ.

Definition 4.17. Let Cµ denote the subspace of all holomorphic vector bundles of type µ.
In particular, if µ = (k/n, . . . ,k/n), then Cµ is the space C ss of semi-stable holomorphic
bundles of degree k and rank n.

By uniqueness, two isomorphic complex structures on E must lead to the same Harder–
Narasimhan filtration on E. In other words, the subspace Cµ is preserved by the action of
Aut(E) and is consequently a union of orbits.

4.2.3 The emergence of the stratification

Recall that the infinitesimal variations of a holomorphic vector bundle are classified by
H1(M,End(E)). In our context, this gets interpreted as follows: the orbit in C corresponding
to a given holomorphic bundle E is locally a submanifold of finite codimension and its normal
can be identified with H1(X,End(E)). This is because an infinitesimal gauge transformation
(i.e. a global endomorphism ϕ of E) alters ∂̄E by the addition of ∂̄E ϕ and the cokernel of

Ω0(End(E))
∂̄E−→ Ω0,1(End(E)) is just H1(X,End(E)).

Similarly, we can identify the normal to Cµ, which should be a quotient of H1(X,End(E))
since Cµ is a union of orbits. If we let End′(E) denote the bundle of holomorphic endomor-
phisms of E that preserve its canonical filtration, then we get an exact sequence of vector
bundles

0 → End′(E) → End(E) → End′′(E) → 0.

But from the long exact sequence in cohomology we see that H1(X,End′′(E)) is indeed
a quotient of H1(X,End(E)) and the fact that H1(X,End′(E)) describes variation inside
Cµ should convince us that H1(X,End′′(E)) is the right candidate for the normal to Cµ.
Moreover, dimH1(X,End′′(E)) depends only on µ (and not on the holomorphic structure).
This follows at once from Riemann-Roch

dimH0(X,E )− dimH1(X,E ) = deg(E ) + (g − 1) rk(E )
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together with the fact that H0(X,End′′(E)) = 0, the latter following from: if E,D are both
semi-stable and µ(E) > µ(D), then every homomorphism E → D is zero.

All of this sketching was to shed light on the Morse theory lurking in the background. Indeed,
the emerging picture is that of a stratification of the space C by the local submanifolds Cµ,
which are all of finite codimension, giving some sort of cell-structure attached on C ss. The
striking feature of that stratification is upon looking at the relative positions of the different
pieces Cµ. Indeed, we will see that it is possible to order the types µ such that

Cµ ⊂
⋃
λ≥µ

Cλ, (4.18)

just as we have for Morse stratifications.

The first thing we need in order to get a Morse-like stratification is to order our indexing set,
the possible types λ of E. This ordering has a particularly nice geometric flavour. Recall
that from a type λ we can read the rank and the degree (ni,ki) of the quotients Di appearing
in a corresponding Harder–Narasimhan filtration of E. Using this sequence of pairs, we can
form the polygon Pλ with vertices (0,0), (n1,k1), (n1 + n2,k1 + k2), . . . , (n,k), which will sit
in the first quadrant of the plane. Note that the polygon Pλ is convex since the quotients
ki/ni appearing in λ are arranged in decreasing order.

Definition 4.19. We say that λ ≥ µ if the polygon Pλ is above the polygon Pµ.

We can also describe the partial order ≥ on types in purely numerical terms. Indeed, notice
that the polygon Pλ is the graph of the function whose value at an integer i is

∑
j≤i µj and

that interpolates linearly between integers. Therefore, λ ≥ µ if and only if
∑

j≤i λj ≥
∑

j≤i µj

for all j = 1, . . . ,n.

We now spend some time to show that our stratification satisifies (4.18). To do this, we will
identify the space C of holomorphic structures on E with the space A of unitary connections
on E, which will allow to transport the stratification of C to a stratification of A . We will
then define a functional on A , the so-called Yang–Mills functional, and slowly come to the
conclusion that the stratification on A behaves in every aspect as the Morse stratification
of this functional, should it exist.

4.2.4 Notions of convexity

While the definition of the partial order on types is still fresh in our memory, we make a
quick detour to expand on the convexity ideas it leads to. Pretty much all the material
covered here can be found in [7] and is summarized in [1, §12]. The partial order on types
actually comes from a partial order defined on all n-tuples (µ1, . . . ,µn) of real numbers: we
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define µ ≤ λ if, after rearranging the entries in decreasing order, we have∑
j≤i

µj ≤
∑
j≤i

λj for i = 1, . . . ,n− 1,

n∑
j=1

µj =
n∑

j=1

λj.

It is shown in [7] that µ ≤ λ is equivalent to µ = Pλ, where P is a doubly stochastic matrix.
But it is a theorem of Birkhoff that the doubly stochastic matrices are the convex hull of the
permutation matrices. Thus µ ≤ λ becomes equivalent to Ŝnµ ⊂ Ŝnλ, where Snµ denotes
the orbit of µ ∈ Rn under the symmetric group on n elements Sn and ·̂ denotes the convex
hull operator.

Geometric notions of convexity can be transformed into statements about convex functions
using the following duality: x ∈ Ĉ if and only if ϕ(x) ≤ supC ϕ for every convex function
ϕ : Rn → R. Thus taking ϕ to be a convex symmetric function (i.e. invariant under Sn), we
have

ϕ(µ) ≤ ϕ(λ) for all convex symmetric functions on Rn,

which is in fact also equivalent to µ ≤ λ.

Now, Schur showed that if µj, j = 1, . . . ,n are the diagonal elements of a hermitian matrix
whose eigenvalues are λj, then µ ≤ λ. Horn proved the converse, so that µ ≤ λ is equivalent
to the λj being eigenvalues of a hermitian matrix with diagonal elements µj. This is further
equivalent to Ĉ(µ) ⊂ Ĉ(λ) where C(λ) denotes the conjugacy class of hermitian matrices
with eigenvalues λj. This last fact implies that Ψ(B) ≤ Ψ(A) for all convex invariant Ψ on
the space of Hermitian matrices, and is in fact equivalent to it.

These results are in no way special to U(n). In general, for G a compact Lie group, the role
of the hermitian matrices is now played by the Lie algebra g of G, the diagonal matrices are
replaced by the Lie algebra t of a maximal torus T , Sn becomes the Weyl group of G and
we say that y ≤ x if x− y lies in the dual cone C∗ of a fixed positive Weyl chamber C. The
result takes the following form:

Theorem 4.20. The following conditions for x,y ∈ t are equivalent:

i) y ≤ x

ii) Ŵy ⊂ Ŵx

iii) ϕ(y) ≤ ϕ(x) for all W -invariant convex functions ϕ on t

iv) Ĝy ⊂ Ĝx

v) Ψ(y) ≤ Ψ(x) for all G-invariant convex functions Ψ on g
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In particular, we list two applications of convexity for later use. First, in Theorem 4.23 we
will need the inequality

ϕ

(
A B
C D

)
≥ ϕ

(
α 0
0 δ

)
for every convex invariant function ϕ on u(n), where

(
A B
C D

)
is skew-hermitian and α, δ

are the diagonal components of A,D. This follows from the Schur-Horn theorem since the
second matrix is in the convex hull of the Sn-orbit of the diagonal part of the first matrix.

We will also need to know that ϕ(y) = ϕ(x) for all convex invariant function ϕ if and only
if y = x. This statement follows from Theorem 4.20 since Ŵy = Ŵx implies that extreme
points of these polyhedra must coincide, so Wx and Wy intersect and in fact coincide as
well.

4.3 The Yang-Mills functional

We first recall some general definitions and elementary results concerning smooth vector
bundles. In this section, F will denote the space C∞(X) of smooth functions on X. For E
a smooth vector bundle over X, a connection A on E is a map

∇ : X(M)× Γ(E) → Γ(E)

(X,s) 7→ ∇Xs

such that ∇Xs is F -linear in X, R-linear in s and satisfies the Leibniz rule

∇X(fs) = (Xf)s+ f∇Xs ∀f ∈ F .

Since F -linear maps α : Γ(E) → Γ(F ) correspond bundle maps φ : E → F , we can also see
a connection as an operator dA : Ω0(X,E) → Ω1(X,E), where Ωk(X,E) denotes the space of
E-valued k-forms on X, satisfying the Leibniz rule

dA(fs) = (df)s+ fdAs.

Let e1, . . . ,en be a frame for E over an open set U . Since any section s ∈ Γ(U,E) is a linear
combination s =

∑
ajej, the section dAs can be computed from dAei by linearity and the

Leibniz rule. As a section of E over U , dAei is a linear combination of the sections e1, . . . ,en
with coefficients ωij ∈ Ω1(U):

dAei =
∑
j

ωijej.

The matrix of 1-forms ω = [ωij] is called the connection matrix of the connection dA relative
to the frame e1, . . . ,en on U .
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Now, let E be a smooth complex vector bundle over X, which we equip with a fixed Hermitian
metric. A connection A on E is said to be unitary if it is compatible with the Hermitian
metric, i.e.

d(s1,s2) = (dAs1,s2) + (s1,dAs2)

Therefore, with respect to a unitary frame over an open subset U , we see that the connection
matrix of dA is skew-hermitian, so we can see it as a 1-form on U with values in the vector
space g := u(n).

The group of unitary automorphisms of E acts on the space of connections via

(u · dA)s = udA(u
−1s) = uu−1dAs+ u(du−1)s

= dAs+ u(−u−1(du)u−1)s = dAs− (du)u−1s

where we extended the operator d to matrices. Moreover, if dA is a unitary connection, then
dA + η, where η ∈ Ω1(X,g), is also a unitary connection, where η acts on Ω0(X,E) simply
by contraction.

The curvature F (A) of a connection A is the operator dA ◦ dA : Ω0(X,E) → Ω2(X,E), where
we have naturally extended dA to α ∈ Ωk(X), β ∈ Ωℓ(X) using the Leibniz rule

dA(α ∧ β) = (dAα) ∧ β + (−1)kα ∧ (dAβ).

A simple calculation shows that F (A) is linear over smooth functions:

dA(dA(fs)) = dA(fdAs+ df · s) = df · dAs+ fdAdAs+ ddf · s+ (−1)df · dAs = fdAdAs.

The curvature can thus be seen as a 2-form on X with values in the bundle gE of skew-
adjoint endomorphisms or, equivalently, as a g-valued 2-form on E (note that requiring dA
to be unitary implies that F (A) is g-valued instead of merely End(E)-valued). Finally, the
curvature transforms as a tensor under unitary automorphisms, i.e.

F (u · A) = uF (A)u−1.

Let Ωk(X,g) denote the space of k-forms on X with values in the vector space g. Given a
bilinear map µ : g× g → g, we can use the usual exterior multiplication to extend this to a
pairing µ : Ωk(X,g)⊗ Ωℓ(X,g) → Ωk+ℓ(X,g) defined by

µ(α,β)p(u1, . . . ,uk+ℓ) =
∑

σ∈Sk+ℓ

(sgnσ)µ(αp(uσ(1), . . . ,uσ(k)), βp(uσ(k+1), . . . ,uσ(k+ℓ))).

Equivalently, if α and β are given by
∑

αiAi and
∑

βjAj, where {A1, . . . ,An} is a set of
vectors in g, then

µ(α,β) =
∑
i,j

(αi ∧ βj)µ(Ai,Aj).

Recall that on g = u(n), we have the bracket operation [X,Y ] = XY − Y X and the inner
product ⟨X,Y ⟩ = trace(Y ∗X) which is invariant under conjugation, the adjoint action of
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G = U(n) on its Lie algebra g. Both of these operations are bilinear on g and hence extend
to products on Ω∗(X,g). The invariance of ⟨· ,·⟩ means that on g we have ⟨[x,y],z⟩ = ⟨x,[y,z]⟩,
and this property extends to Ωk(X,g) as well.

Suppose now that a fixed Riemannian metric and a fixed orientation are chosen on X. We
then have the corresponding Hodge star operator ∗ : Ωk(X) → Ω2−k(X) characterized by

η ∧ ∗η = ⟨η,η⟩X vol(X),

where ⟨· ,·⟩X denotes the Riemannian structure on Ωk(X) and vol(X) is the unique form of
length 1 in the orientation of X. We then extend ∗ linearly to Ωk(X,g), giving that space a
natural inner product:

(η,ζ) =

∫
X

η ∧ ∗ζ.

The L2-norm of a form η ∈ Ωk(X,g) is then given by ∥η∥2 = (η,η). This allows to finally
define the Yang-Mills functional as L(A) = ∥F (A)∥2, the L2-norm of the curvature. Another
way to interpret the Yang-Mills functional is to see that

L(A) =

∫
X

ϕ(∗F (A)),

where ϕ(X) = trace(X∗X) is the sum of the square of the eigenvalues. But L is not the only
functional of this form: taking ϕ to be any smooth function on the Lie algebra g of G that
is invariant under the adjoint action (i.e. conjugation) and convex yields a functional

Φ(A) =

∫
X

ϕ(∗F (A)).

4.4 Completion of the Morse picture

This is where the bond with Morse theory becomes much stronger. We begin by showing that
the Yang–Mills functional has a critical point structure that coincides with a lot of other
similar functionals. Once this is done, we prove that our stratification satisfies Equation
(4.3), as if it was the Morse stratification associated to the Yang–Mills functional. But
nowadays this is no surprise: Daskalopoulos showed in [2] that this is really the case. Details
for the material of this section are contained in [1, §8].

Let A be the space of unitary connections on our fixed Hermitian vector bundle E. A
unitary connection A defines a holomorphic structure by taking the (0,1)-component d′′A of
the covariant derivative dA. We get a map A → C , which is an affine linear isomorphism
since there always exists a unique connection compatible with a given Hermitian and a given
Dolbeault operator. A priori A and thus A → C depends on the metric, but ultimately it
doesn’t change anything since two metrics differ from a complex gauge transformation (i.e.
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an element of Aut(E)). Note that Aut(E) may be viewed as the complexification of the
group of unitary gauge transformations G of E.

We now make a brief digression to quickly explain the link between critical connections of
the Yang-Mills functional and unitary representations. It will be seen below that critical
connections are solutions to the Yang-Mills equation dA ∗ F (A) = 0. Of course, flat con-
nections will always be critical connections, and in fact correspond to the absolute-minimal
of the Yang-Mills functional. Now for our fixed Riemann surface X, flat vector bundles
E over X correspond to representations of π1(X,x0) into GL(n,C). Indeed, if E is a vec-
tor bundle with a flat connection dA, then there is a natural surjective homomorphism
π1(X) → Hol(∇)/Hol0(∇) sending the homotopy class [γ] to the coset Pγ · Hol0(∇), where
Holx0(∇) = {Pγ ∈ GL(Ex0)|γ is a loop based at x0} is the holonomy group of ∇ based at x0

and Hol0(∇) is the subgroup coming from contractible loops γ, which is in fact a surjective
homomorphism onto GL(n,C) since the flatness of the connection implies that Hol0(∇) = 0.
In other words, the parallel displacement along a curve γ starting at x0 depends only the
homotopy class of γ. Conversely, given a representation ρ : π1(X,x0) → GL(n,C), we can
construct a flat vector bundle E by setting E = X̃ ×ρ Cn, where X̃ is the universal covering
of X and X̃ ×ρ Cn denotes the quotient of X̃ × Cn by the action of π given by

γ : (x,v) ∈ X̃ × Cn 7→ (γ(x),ρ(γ)v) ∈ X̃ × Cn.

Furthermore, restricting ourselves to flat unitary connections simply means that we substi-
tute GL(n,C) for G = U(n) in the above discussion.

Going one step further, we can describe non-zero solutions of the Yang–Mills equation by
using a suitable central extension ΓR of π1(X), although we won’t dive into the details here.
The interested reader may consult [1, §6] for completeness. The important thing to know
is that given a unitary representation ρ : ΓR → G, we get an induced unitary connection
Aρ that also satisfies the Yang–Mills equations, and this mapping induces a correspondence
between conjugacy classes of unitary central representations ρ of ΓR and equivalence classes
of Yang–Mills connections.

Let N ⊂ A be the set of connections giving the minimum for the Yangs-Mills functional,
which as we just said are G -equivalent to those given by representations ρ : ΓR → U(n) with
ρ(R) central. We let Ns ⊂ N be those given by irreducible representations. The reason
for this choice of notation is given by the Narasimhan–Seshadri criterion for stable bundles:
a holomorphic vector bundle of rank n is stable if and only if it arises from an irreducible
representation ρ : ΓR → U(n). Moreover, isomorphic bundles correspond to equivalent
representations. Going back to our stratifications, this criterion translates as: Ns ⊂ Cs and
the induced map

Ns/G ∼= Cs/G
c

is a homeomorphism. This statement is also equivalent to the following: an indecomposable
holomorphic bundle E over X is stable if and only if there is a unitary connection on E
having constant central curvature ∗F = −2πiµ(E), and such a connection is unique up to
isomorphism. The latter was proved by Donaldson in [3].
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Since direct sums of stable bundles with same slope are semi-stable we have N ⊂ C ss. Now
transport the stratification on C to get stratification on A by strata Aµ. Let Nµ denote the
Yang-Mills connections whose curvature is of type µ. Since such connections are direct sums
of connections of the form Ns for smaller ranks, it follows that Nµ ⊂ Aµ. Our Morse picture
on A is about to get clearer: the Nµ are the critical submanifolds whose stable manifold
should be Aµ. But before convincing ourselves of this, we show that this critical picture
holds for a much larger class of functionals than Yang-Mills (maybe here one avenue would
be to explain the picture for Yang-Mills and then carry on with all the others functionals).

We now begin our study of the Morse theory of the functionals Φ. Since A is an affine space,
we will study the behavior of of our functionals along lines At = A+ tη, where η ∈ Ω1(M,g).
One important formula for the curvature is the following:

F (A+ η) = (dA + η)(dA + η) = dAdA + dAη + η ∧ η = dAdA + dAη +
1

2
[η,η].

Applying this to At, we get

F (At) = F (A) + tdAη +
1

2
t2[η,η],

and hence for the Yang-Mills functional L we have

L(At) = ∥Ft∥2 = ∥F∥2 + 2t(dAη,F ) + t2(∥dAη∥2 + (F,[η,η])) + higher terms, (4.21)

where we used the notation F = F (A) and Ft = F (At) to make the calculations less cluttered
(and similarly for Φ). At an extremal connection, this yields

dA ∗ F = 0.

Indeed, if A is critical and we denote by d∗A the adjoint of dA with respect to our norm on
Ω∗(X,g), then 0 = (dAη,F ) = (η,d∗AF ) for all η, hence we must have d∗AF = 0. But the
adjoint of dA is given by − ∗ dA∗, so the result follows.

The calculation of the variations of Φ is only slightly more complicated. Taking again a line
of connections At = A+ tη, we get

Φt =

∫
X

ϕ(∗F + t ∗ dAη +
1

2
t2 ∗ [η,η])

=

∫
X

ϕ(∗F ) + t⟨ϕ′(∗F ), ∗dAη⟩ mod t2

= Φ(A) + t

∫
X

⟨ϕ′(∗F ), ∗dAη⟩ mod t2.

where ϕ′ : g → g is the derivative of ϕ in the sense that ϕ(X + tY ) = ϕ(X) + t⟨ϕ′(X),Y ⟩
mod t2. Rewriting the coefficient of t as

(ϕ′(∗F ), ∗ dAη) = (ϕ′(∗F ),− d∗A ∗ η) = (−dAϕ
′(∗F ), ∗ η) = (− ∗ dAϕ′(∗F ),η),
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we see that by definition, the gradient of Φ at A (with respect to our metric) is given by
gradΦ = − ∗ dAϕ′(∗F ). Moreover, writing

ϕ(gXg−1 + tY ) = ϕ(g(X + tg−1Y g)g−1) = ϕ(X + tg−1Y g)

and expanding the first and the last term with respect to t, we see that ϕ′ is an equivariant
map. This further implies that dAϕ′(s) = ϕ′′(s)◦dAs, so together with the formula for gradΦ
this enables us to conclude that if a connection A is critical for L, then it is critical for Φ,
and the converse holds provided ϕ′′ is invertible (which occurs when ϕ is strictly convex for
example).

We now turn our attention towards the Morse indices of our functionals, starting with L.
From Equation (4.21), we get that the quadratic form Q(η,η) associated to the Hessian of L
at a critical connection A is given by

Q(η,η) = ∥dAη∥2 + (F,[η,η]).

But ∥dAη∥2 = (d∗AdAη,η) and

(F,[η,η]) =

∫
X

[η,η] ∧ ∗F =

∫
X

η ∧ [η, ∗ F ] = (−1)m+1

∫
X

η ∧ ∗ ∗−1 [∗F,η],

so once one uses the formula for ∗−1, the quadratic form reduces to

Q(η,η) = (d∗AdAη + ∗[∗F,η],η).

Denote by LA = d∗AdA + ∗[∗F, ] the operator appearing in the Hessian of L. The space of
solutions LAη = 0 for η ∈ Ω1(X,g) describe the tangent space to the space of solutions of L.
Notice that L (as well as the functional Φ) is gauge-invariant because of the invariance of ϕ
under the adjoint action:

Φ(u · A) =
∫
X

ϕ(∗F (u · A)) =
∫
X

ϕ(u(∗F (A))u−1) = Φ(A).

Consequently, a better measure of the tangent space to the space of solutions would be the
quotient of the solutions of LAη = 0 by the directions along the orbits of the action of G ,
which is precisely the image of Ω0(X,g) in Ω1(X,g) under dA. Thus the corrected tangent
space NA to the space of solutions JA fits in the exact sequence

Ω0(X,g)
dA−→ JA −→ NA −→ 0.

We call NA the null space of QA and its dimension is the nullity of A. We now show that this
nullity is always finite. With the norm on Ω1(X,g), the orthocomplement of the image of dA
is exactly the kernel of d∗A. Therefore, NA is the space of solutions η ∈ Ω1(X,g) satisfying
LAη = 0 and d∗Aη = 0 or, equivalently, d∗AdA + dAd

∗
A + ∗[∗F, ] = 0 and d∗A = 0. Here we see

the Laplacian ∆A of dA appearing, which is an elliptic operator. The operator on the left
is thus elliptic, so its solutions are finite-dimensional, and as a byproduct the same goes for

41



the nullity. This argument also extends to the Morse index of A, which is the dimension
of a maximal subspace in the kernel of d∗A on which the form Q̂(η) = (∆Aη + ∗[∗F,η],η) is
negative definite. Here the ellipticity of ∆A+ ∗[∗F, ] guarantees that its spectrum is discrete
and bounded below so that there are only finitely many negative eigenvalues, showing that
H has finite Morse index. All in all, we conclude that the index and the nullity of a critical
connection A are both finite and equal to the index and nullity of the quadratic form

Q̂(η) = (∆Aη + F̂ η,η), F̂ = ∗[∗F, ],

on the kernel of d∗A in Ω1(M,g).

The story for the Hessian of Φ is very similar. Indeed, computations show that the Hessian
correspond to the self-adjoint differential operator

Q = ϕ′′(∗F (A))d∗AdA + lower order.

Since Φ is gauge invariant, we can restrict (just as we did for L) to the subclass of 1-
forms η ∈ Ω1(X,g) for which d∗Aη = 0. Doing so, we can replace d∗AdA with the Laplacian
∆A = d∗AdA + dAd

∗
A, so that Q becomes a second-order elliptic differential operator. The

strong convexity of ϕ ensures that the leading-order terms are positive definite, which is
then again enough to make the spectrum discrete and bounded below so that there are only
finitely many negative eigenvalues. Therefore, we have shown that HΦ also has finite index.

The formula for gradΦ and gradL together with the strong convexity of ϕ ensures that

(gradΦ, gradL) ≥ 0 (4.22)

with equality if and only if A is critical. Thus we see that Φ is strictly decreasing along the
paths of steepest descent for L. In a finite-dimensional setting this would already imply that
the Morse indices of L and Φ coincide, but in our situation we need to make a little adjust-
ment. We go back to Equation (4.22) and expand the inequality at a critical connection,
discarding the higher-order terms along the way, to get

(HΦη,HLη) ≥ 0

with inequality if and only if η is in the null-space of HL (which coincides with that of HΦ).
After restricting η to the negative space V of HL, the last inequality is reduced to a finite-
dimensional one, which implies that HΦ is negative definite on V . Thus the Morse index of
Φ is at least equal to that of L. Upon reversing the roles of L and Φ in the last argument,
we obtain that the Morse indices of Φ and L coincide.

Now that we know that the critical point structure is common to every one of our functionals,
our goal shifts to showing that all these functionals lead to the same Morse strata, and that
these strata correspond with the Cµ defined earlier. The reason why we might expect such
a goal to be attainable is as follows. One can show that gradΦ is tangent to the G c-orbits,
and hence that it preserves the Cµ. Since each Aµ contains a unique component Nµ of the
critical set of Φ, we are lead to believe that Aµ could be the stable manifold associated to
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Nµ. Of course, a necessary condition for this to hold is that the functionals Φ reach their
minimum only on Nµ. Now, for any A ∈ Nµ the conjugacy class of ∗F is constant and
represented by the skew-hermitian diagonal matrix Λµ with entries −2πiµj. It follows that
Φ(A) takes the constant value ϕ(Λµ), which we simply denote by ϕ(µ).

Theorem 4.23. For every A ∈ Aµ and every convex invariant function ϕ on g, we have
Φ(A) ≥ ϕ(µ).

Proof. We will assume for simplicity that the Harder–Narasimhan filtration only has two
steps. The proof for the general case only involves more serious bookkeeping.

Suppose that the type µ is of the form

µ1 = µ2 = · · · = µr > µr+1 = · · · = µn.

We write µ1 = µ1 = k1/m1 and µ2 = µn = k2/m2 for convenience. This means that for the
holomorphic structure defined by A ∈ Aµ we have an exact sequence of vector bundles

0 → D1 → E → D2 → 0,

where Dj has rank mj and degree kj. The curvature F of A can be written in the form

F =

(
F1 − η ∧ η∗ dη

−dη∗ F2 − η∗ ∧ η

)
,

where Fj is the curvature of the unitary connection of Dj, η ∈ Ω0,1(M,Hom(D2,D1)), η∗ is
its transposed conjugate and dη is the covariant differential (cf. [5, §5]). Now, let fj, αj be
scalar mj ×mj matrices such that

trace(fj) = trace(∗Fj),

trace(α1) = trace(∗(η ∧ η∗)) = − trace(∗(η∗ ∧ η)) = − trace(α2)

Since ϕ is a convex invariant function, recall from the section on convexity that it satisfies

ϕ(∗F (A)) ≥ ϕ

(
f1 − α1 0

0 f2 − α2

)
.

The convexity of ϕ together with the fact that M has normalized volume implies that

Φ(A) =

∫
X

ϕ(∗F (A)) ≥ ϕ

∫
X

(
f1 − α1 0

0 f2 − α2

)
.

Since the degree kj of Dj is given by

kj =
i

2π

∫
X

trace(fj),
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and fj is a scalar matrix, it follows that
∫
X
fj is a scalar matrix whose diagonal entries are

−2πikj/mj = −2πiµj. Also, since η ∈ Ω0,1, it follows that −i trace(α1) is non-negative so
that ∫

X

α1 = 2πia1,

where a1 is a non-negative scalar m1 ×m1 matrix. Then∫
X

α2 = 2πia2,

where a2 is the non-positive scalar m2×m2 matrix such that trace(a2) = − trace(a1). Hence
we have ∫

X

(
f1 − α1 0

0 f2 − α2

)
= −2πi[µ+ a],

where [·] denotes the diagonal matrix whose diagonal components are the vector’s entries.
Thus, we obtain

Φ(A) ≥ ϕ(µ+ a).

But since a1 ≥ 0, a2 ≤ 0 and trace(a1) = − trace(a2), it follows that µ+ a ≥ µ with respect
to the partial order on types. Convexity of ϕ finally yields

Φ(A) ≥ ϕ(µ+ a) ≥ ϕ(µ).

We now know that Φ(A) ≥ ϕ(µ) for any convex invariant function ϕ on g and connection
A ∈ Aµ. We seek to strenghten this result. Given a holomorphic vector bundle E over X
and one of the functionals Φ, we define

Φ(E) = inf
A

Φ(A),

where A runs over all unitary connections on E. Combining the Narasimhan–Seshadri cri-
terion with Theorem 4.23, we obtain that Φ(E) = ϕ(µ) for stable bundles E.

This can now be extended to all bundles using the maximal nature of the canonical filtration,
i.e. that the quotients Dj are semi-stable. First, arguments from [9] shows that any semi-
stable bundle has a filtration with stable quotients all of which have the same slope. This
together with Theorem 4.23 and the result for stable bundles yield the equality Φ(E) = ϕ(µ)
for semi-stable bundles as well.

Now one can show that for E with filtration of arbitrary length with quotients Dj, we have
Φ(E) ≤ Φ(

⊕
Dj). For simplicity, we give the proof in the case where the filtration of E

only has two steps. Consider the holomorphic exact sequence

0 → D1 → E → D2 → 0.
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The metric on E gives rise to a connection whose curvature is

F (A) =

(
F1 − η ∧ η∗ dη

−dη∗ F2 − η∗ ∧ η

)
,

where the element η defines a cohomology class in H1(M,Hom(D2,D1)) which classifies
the extension. We then replace η by tη, which changes the extension class but not the
isomorphism class of E. Letting t → 0 we finally get that Φ(E) ≤ Φ(D1 ⊕ D2). A final
application of Theorem 4.23 to the filtration of E yields the equality for general E.

Thus we have proven:

Theorem 4.24. For any convex invariant ϕ we have Φ(E) = ϕ(µ), where

Φ(E) = inf
A

∫
M

ϕ(∗F (A))

and A runs over all unitary connections of E.

Recall from the section on convexity that if ϕ(µ) = ϕ(ν) for all convex invariant ϕ, then we
must have µ = ν. This together with Theorem 4.24 gives another characterization of the
type: E is of type µ iff Φ(E) = ϕ(µ) for all convex invariant ϕ. Finally, it follows that if Cλ

is in the closure of Cµ, we must have Φ(Cµ) ≤ Φ(Cλ), which implies that ϕ(µ) ≤ ϕ(λ) and
hence that µ ≤ λ, as desired.

4.5 Equivariant cohomology of C ss

Going back to our stratification on C , we see that Condition A (cf. §4.1.4) is satisfied. One
way to see it is that if we are given a finite set of types I, then we can always create a
big convex polygon P strictly encompassing all the convex polygons associated to I. Then
the minimal elements of Ic are all contained inside P , which contains only finitely many
convex polygons inside of it. Condition B is more involved, so let’s settle for a sketch of
the equivariant cohomology of C . The reader interested in the technical details is invited to
consult [1, §7,13]. First, we can show that the stratification of C is equivariantly perfect, so
the exact sequence of equivariant cohomology coming from the stratification breaks up and
the equivariant Poincaré series of C is given by

Pt(C ) =
∑
µ

t2dµPt(Cµ), (4.25)

where dµ =
∑

µi>µj
(µi−µj+g−1) is the complex codimension of Cµ. While trying to compute

the equivariant cohomology of a stratum Cµ, we encounter the following phenomenon. If we
choose a smooth unitary decomposition of E as D1⊕· · ·⊕Dr, where Di has rank ni and degree
di, and we let C (ni,di) and G (ni,di) denote respectively the space of holomorphic structures
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on Di and the group of unitary automorphisms of Di, then we find that the equivariant
cohomology of Cµ is isomorphic to the tensor product of the equivariant cohomology of the
semi-stable strata for the quotients Di:

H∗
G (Cµ,Q) ∼=

⊗
1≤i≤r

H∗
G (n1,di)

(C (ni,di)
ss,Q). (4.26)

Therefore, combining (4.25) and (4.26), we obtain the formula

P G
t (C ) =

∑
µ

t2dµ
∏

1≤i≤r

P
G (ni,di)
t (C (ni,di)

ss).

Since C is an infinite-dimensional affine space it is contractible so that its homotopy quotient
is simply BG . Therefore, we obtain an inductive formula

P G
t (C

ss) = Pt(BG )−
∑
µ̸=µ0

t2dµ
∏

1≤i≤r

P
G (ni,di)
t (C (ni,di)

ss)

for the equivariant Betti numbers of C ss. In particular, Atiyah and Bott spelled out the
details of that procedure in the case where the rank n = 2 and the degree k = 1. Here, the
inductive formula becomes

P G
t (C

s) +
∞∑
r=0

t2(2r+g)P G
t (Cr) = Pt(BG ), (4.27)

where Cr is the stratum corresponding to unstable bundles of type (r + 1, − r). For the
stable bundles, they find that

P G
t (C

s) =
Pt(N(2,1))

1− t2
=

(1 + t)2gPt(N0(2,1))

1− t2
,

where N(2,1) denotes the moduli space of stable bundles with rank 2 and degree 1 and
N0(2,1) denotes the moduli space for the same bundles but with fixed determinant. For Cr,
they show that

P G
t (Cr) =

(
(1 + t)2g

1− t2

)2

,

while for the whole space C we have

Pt(BG ) =
((1 + t)(1 + t3))2g

(1− t2)2(1− t4)
.

We finally substitute these into (4.27) and sum the geometric series to get the formula

Pt(N0(2,1)) =
(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4)
.
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