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Abstract

This thesis investigates the design of an autonomous navigation algorithm in GPS-denied
environments. The performance of the current navigation solutions is dictated by the change
in the operating environment. As a result, in the past two decades, various Simultaneous
Localization and Mapping (SLAM) formulations have been proposed to adapt various oper-
ating conditions and improve robustness. Multi-sensor fusion has been one of the solutions.
Every sensor has its own strengths and weaknesses to a given environment. By using multiple
sensors, the weaknesses of one sensor can be counterbalanced by strengths of others. To this
end, the proposed approach presents a novel tightly-coupled LIDAR-Inertial-Visual Odome-
try in a sliding window framework. Inertial measurement unit (IMU) provides high frequency
inertial measurements, LIDAR provides an accurate map of surrounding, and visual odom-
etry provides detailed information about the scene. Current state-of-the-art multi-sensor
fusion works around coupling various odometry solutions in a pose-graph formulation. Such
method is referred as loosely-coupled system where each sensor provides the robot pose esti-
mate with uncertainty. However, a tightly-coupled system where all the sensor measurements
are optimized in a factor-graph has been shown to achieve better accuracy and robustness
compared to a loosely-coupled framework. In particular, the vision community has seen
major improvements since adopting a tightly-coupled sensor fusion framework. This the-
sis investigates the performance of a tightly-coupled multi-sensor fusion in an optimization
level. Further, inspired by the recently developed invariant extended Kalman filter (IEKF),
the proposed odometry solution provides an accurate uncertainty estimate using matrix Lie
group theory. The pipeline is validated, tested, and compared to the state-of-the-art SLAM
algorithms.
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Résumé

Cette thèse étudie la conception d’un algorithme de navigation autonome dans des environ-
nements sans GPS. Les performances des solutions de navigation actuelles sont dictées par
l’évolution de l’environnement d’exploitation. En conséquence, au cours des deux dernières
décennies, diverses formulations de localisation et de cartographie simultanées (SLAM) ont
été proposées pour s’adapter à diverses conditions d’exploitation et améliorer la robustesse.
La fusion multicapteur est l’une de ces formulations. Chaque capteur a ses propres forces et
faiblesses dans un environnement donné. En utilisant plusieurs capteurs, les faiblesses d’un
capteur peuvent être contrebalancées par les forces des autres. À cette fin, l’approche propo-
sée présente une nouvelle odométrie LIDAR-inertielle-visuelle étroitement couplée dans un
cadre de fenêtre coulissante. L’unité de mesure inertielle (IMU) fournit des mesures inertielles
à haute fréquence, un LIDAR fournit une carte précise de l’environnement et l’odométrie
visuelle fournit des informations détaillées sur la scène. La fusion multicapteur à la pointe de
la technologie fonctionne en couplant diverses solutions d’odométrie dans une formulation
de graphe de pose. Ce type de système est dit lâchement couplé. Chaque capteur fournit une
estimation de la pose du robot avec une incertitude. Cependant, il a été démontré qu’un sys-
tème étroitement couplé où toutes les mesures des capteurs sont optimisées dans un graphe
factoriel permet d’obtenir une meilleure précision et robustesse par rapport à un cadre lâche-
ment couplé. En particulier, depuis l’adoption d’un cadre de fusion de capteurs étroitement
couplé, les algorithmes de vision ont bénéficié d’améliorations majeures. Cette thèse étudie
la performance d’une fusion multicapteur étroitement couplée à un niveau d’optimisation.
De plus, inspirée par le filtre de Kalman étendu invariant récemment développé (IEKF), la
solution d’odométrie proposée fournit une estimation précise de l’incertitude en utilisant la
théorie des groupes de Lie matricielle. Le tout est validé, testé et comparé aux algorithmes
SLAM de pointe.
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Preface

The contributions of this thesis that are original to the author’s knowledge are as follows.

• Chapter 4

– Tightly-coupling the LIDAR, IMU and monocular camera sensors on an optimiza-
tion level in a sliding window framework.

All text, plots, figures and results in this thesis are produced by Kyungmin Jung. The
monocular VIO formulation is based on the [1] where the depth features are optimized, and
the LIO derivation is based on [2] where the in-between LIDAR point correspondences are
optimized. Kyungmin Jung tightly-coupled two odometry solutions in the optimization level
leading to a novel tightly-coupled LIDAR-Inertial-Visual Odometry.
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Chapter 1

Introduction

Research on autonomous mobile robots such as unmanned aerial vehicles (UAV) and
autonomous underwater vehicles (AUV) has been on the rise due to their ability to perform
various tasks. One such task is the mapping of mining and construction sites with increased
safety and speed without explicit human control. The robot’s autonomy is achieved using
a guidance, navigation and control (GNC) system. The guidance system determines the
desired path to take from the robot’s current location. The navigation system solves for
the current state of the robot such as its location, velocity, heading, etc. Lastly, the control
system determines the required input to achieve the desired path. Each system is connected
in a closed-loop to achieve full autonomy of a robot; the output of one system affects the
others. Thus, these three systems are of equal importance and the quality of the solution to
each system affects the overall performance of a robot.

This thesis focuses on solving the navigation problem, namely the state estimation prob-
lem. State estimation refers to the process of estimating a robot’s state given noisy and
biased sensor measurements. Estimating the position and attitude of a mobile robot and
mapping the surrounding environment accurately are crucial to increase the robustness of
the robot’s autonomous ability. Doing so is referred to as simultaneous localization and
mapping (SLAM).

Over the past two decades, numerous solutions to the SLAM problem have been presented
using different sensor suites for different purposes. Every sensor has its own strengths and
weaknesses. For example, a camera is suitable for its cost effectiveness, ubiquity, and its abil-
ity to operate in GPS denied environments. However, the major disadvantage of vision-based
SLAM is tracking failure due to low illumination, texture-less areas, insufficient scene overlap
between frames or motion blur [1]. Light detection and ranging (LIDAR) is insensitive to
illumination change and optical texture in the scene, and is well known for its robustness.
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However, LIDAR-based solutions fail in environments with repeating structure such as a long
tunnel, hallway or large open field. Fusing multiple sensors has been proposed as a method if
mitigating these deficiencies, leading to an improved navigation solution. Camera and IMU,
sonar and vision, camera and LIDAR, and LIDAR and IMU set-ups have been considered.
First attempts at fusing sensor was done in a loosely-coupled manner. In a loosely coupled
system, each sensor is used to obtain a probabilistic state estimate which is combined during
an optimization step to yield the final state estimate. More recently, fusing sensor data in
a tightly-coupled way was shown to achieve better accuracy and robustness when compared
to the loosely-coupled framework. A tightly-coupled system is one in which the output of
each sensor is fused together during the optimization step to yield a single state estimate. In
particular, the vision community has seen major performance improvements since adopting
a tightly-coupled sensor fusion framework. In this thesis, tightly-coupled multi-sensor fusion
is considered for UAVs operating in GPS-denied environments. This is done to leverage the
advantages of all three sensors, namely, the accuracy of LIDAR, high frequency of IMU, and
visual information using a monocular camera.

1.1 Thesis Objective

The primary objective of this thesis is to develop a SLAM solution to be used in un-
known, GPS denied, enviroment. Tightly-coupled LIDAR-Inertial-Visual Odometry and
Mapping (LIVOM) in a sliding window framework is proposed to be incorporated in the
SLAM pipeline. The combination of LIDAR, camera and IMU can leverage their strengths
in their degenerate cases. Based on these objectives, the SLAM problem is split into two
goals. Front-end data association consists of building constraints between robot states using
the sensor measurements. Back-end optimization is the factor-graph optimized using linear
solvers.

Another contribution of this thesis is the derivation of the factors using matrix Lie group
theory. The robot states tend to have the matrix Lie group nature that upon linearization,
Jacobian matrices may depend less, or not at all, on the state estimate which leads to
improved convergence and consistency properties. Lastly, this thesis provides a novel method
of tightly coupling the aforementioned sensors at an optimization level using a sliding window
filter (SWF). In order to verify and demonstrate the capabilities of the proposed algorithms,
the solution is tested in experimental settings.
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1.2 Thesis Overview

This thesis is structured as follows. Chapter 2 covers the summary of mathematical con-
cepts and notations used throughout this thesis. In Chapter 3, data preprocessing techniques
and constructing the constraints in the factor graph are discussed. In Chapter 4, the novel
LIVOM scheme is derived including the odometry system initialization, tightly-coupled opti-
mization and factor marginalization. Results comparing the proposed odometry solution and
state-of-the-art solutions such as Lidar-Inertial Odometry (LIO) and Visual-Inertial Odom-
etry (VIO) are provided. Tests are conducted on real data. Lastly, Chapter 5 concludes the
thesis along with recommendations for future work.
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Chapter 2

Preliminaries

2.1 State Estimation

State estimation refers to the process of estimating a robot’s state from noisy sensor
measurements. The estimated states are commonly used in the guidance and control systems
to compute an efficient path planning and the necessary control inputs to complete its task.
Therefore, state estimation is a critical foundation for a closed-loop system of a robot as
the accuracy of the estimate dictates the performance of a robot’s ability in accomplishing
tasks. In a typical localization problem, information about a robot’s surroundings is given
to a robot, and the only states to be estimated are the robot’s navigation states, namely,
position, attitude and velocity. However, in a more realistic scenario, the surrounding is
perceived by noisy onboard sensors such as a camera, RADAR, LIDAR, etc. The perceived
surrounding is often referred to as a map which ranges from sparse landmarks to dense point
clouds. Since the map is perceived relative to the robot’s state, and the robot’s navigation
states are estimated using the perceived surrounding, the navigation community has been
interested in solving the simultaneous localization and mapping (SLAM) problem. The
SLAM problem consists of estimating the robot navigation states and the map in a single
optimization problem. In this section, based on [3], two broad categories of estimation,
filtering and smoothing, are discussed.

2.1.1 Extended Kalman Filter

The Kalman filter (KF) is one of the most widely used state estimation algorithms for its
simplicity and robustness. The filter is based on a Markov process as shown in Figure 2.1
which states that the state to be estimated only depends on the previous state, and not
any other states in the past. Though the Kalman filter is an optimal solution only for a
linear system with Gaussian noise assumption, most mobile robots have nonlinear system

4
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Figure 2.1: Graphical representation of the Markov process [3].

dynamics. The extended Kalman filter (EKF) is the nonlinear variant suitable for more
practical purposes [3, Ch. 4.2]. Filtering consists of two steps: prediction and correction.
During the prediction step, the robot state and its covariance are propagated forward in time
using the process model. Subsequently, the predicted state and its covariance are corrected
using an exteroceptive measurement model. Let x ∈ Rn be the state, u ∈ Rm be the
interoceptive measurement or the system input, and ηu ∈ Rm be the noise associated with
u. Then, the continuous-time nonlinear process model is

ẋ (t) = f (x (t) ,u (t) ,ηu (t)) . (2.1)

The input noise is assumed to be additive white Gaussian noise, ηu ∼ N (0,Qδ (t− τ)),
where Q is the noise power spectral density (PSD). And the discrete-time exteroceptive
measurement model at time tk is given by

yk = gk (xk,ηek) , (2.2)

where ηek ∼ N (0,Rk). For brevity, (t) will be omitted unless required for clarity throughout
this thesis.

The equations (2.1) and (2.2) are linearized about an operating point using a first-order

5



Taylor-series expansion

δẋ = Fδx + Lδηu, (2.3)

δyk = Gkδxk + Mkδη
e
k, (2.4)

where

F =
∂f (x,u,ηu)

∂x

∣∣∣∣
x̄,u,0

, (2.5)

L =
∂f (x,u,ηu)

∂ηu

∣∣∣∣
x̄,u,0

, (2.6)

Gk =
∂yk (xk,ηek)

∂x

∣∣∣∣
x̄k,0

, (2.7)

Mk =
∂yk (xk,ηek)

∂ηek

∣∣∣∣
x̄k,0

, (2.8)

are the process and measurement-model Jacobian matrices around the operating point.

The robot state is predicted by integrating the process model

x̌k = x̄k−1 +

∫ k

k−1

f (x̄,u, 0) dt, (2.9)

where (̌·) represents the predicted state. The state covariance matrix Pk is propagated
forward in time using the Riccati equation

˙̌P = FP̄ + P̄FT + LQLT. (2.10)

The discrete-time Riccati equation is written as

P̌k = Fk−1P̄k−1FT
k−1 + Lk−1Qk−1LT

k−1. (2.11)

When an exteroceptive measurement is received, the predicted state is corrected using

x̄k = x̌k + Kk (yk − g (x̌k, 0)) , (2.12)

where yk − g (x̌k, 0) is the innovation term and the Kalman gain Kk is given by

Sk = GkP̌kGT
k + MkRkMT

k , (2.13)

Kk = P̌kGT
kS−1

k . (2.14)
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The state covariance matrix is corrected via

P̄k = (1−KkGk) P̌k (1−KkGk)
T + KkMkRkMT

kKT
k . (2.15)

2.1.2 Factor-Graph-based Smoothing

Unlike solving for a single state at a time like in the filtering method, the smoothing
method estimates a set of states in a single optimization problem given past measurements [3,
Ch. 4.3]. A factor graph is a bipartite graph that represents the factorization of a function
of several variables. Usually, the functions used in factorization are the functions of robot
states. A graph-based method generally has nodes that represent robot states and the map,
and the measurements that connect between the nodes as constraints. The goal of graph-
based methods is to jointly optimize the poses of the nodes so as to minimize the error
introduced by these constraints [5]. Let x be a set of robot states

x =


xk

xk+1

...
xk+n

 , (2.16)

where k is an arbitrary point in time and n is the size of a window to be optimized. The
smoothing method uses a maximum a posteriori (MAP) apporach, which maximizes the
posterior probability of the states given a set of measurements. The MAP approach solves
the optimization problem

x = arg min
x

J(x), (2.17)

where J (x) is the objective function. The objective function comprises of the residuals as a
function of the robot state in the factor graph. In this section, the factor graph is presented
with the two functions, the process model (2.1) and the exteroceptive measurement model
(2.2). The residuals associated with them are

ep (x) = xk − x̄k, (2.18)

eu,t (x) = xt − ft−1 (xt−1,ut−1, 0) , (2.19)

ey,t (x) = yt − gt (xt, 0) , (2.20)

7



where t = k + 1, . . . k + n. ep (x) is the residual associated with the prior factor. A prior
factor constrains the current state estimate with the prior. Notice how the process model
in the residual is in discrete time. This is due to the nature of the problem where a few
instances of a trajectory are being optimized. After linearization about an operating point,
x̄, using a first order Taylor-series expansion, the residuals have the form

eu,t (x) = eu,t (x̄) +
∂eu,t (x)

∂x

∣∣∣∣
x̄t
δx (2.21)

= x̄t − ft−1 (x̄t−1,ut−1, 0)︸ ︷︷ ︸
eu,t(x̄)

+δxt − Ft−1δxt−1, (2.22)

ey,t (x) = ey,t (x̄) +
∂ey,t (x)

∂x

∣∣∣∣
x̄t
δx (2.23)

= ȳt − gt (x̄t, 0)︸ ︷︷ ︸
ey,t(x̄)

+Gtδxt. (2.24)

The objective function is rewritten in a quadratic form as

J (x) = 1
2
‖ep (x)‖2

P0
+ 1

2

∑
t∈[k+1,n]

‖eu,t (x)‖2
Q + 1

2

∑
t∈[k+1,n]

‖ey,t (x)‖2
R , (2.25)

where P0 is the prior covariance associated with the initial state at time t = k, and ‖e‖2
Σ ,

eTΣ−1e is defined as the Mahalanobis distance squared. The nonlinear weighted least-squares
optimization problem can be solved using various methods such as gradient descent, Gauss-
Newton, Levenberg-Marquardt, etc.

2.2 Matrix Lie Groups

In mathematics, Lie groups are smooth differentiable manifolds. A manifold is a space
that locally resembles Euclidean space. Matrix Lie groups are Lie groups composed of n×n
matrices that are closed under matrix multiplication. In this section, matrix Lie groups
theory is discussed based on [3, 6, 7].

2.2.1 Lie Algebra

Let G be a matrix Lie group composed of invertible n × n matrices that is closed under
matrix multiplication. The associated Lie algebra, denoted as g, is defined as the tangent
space at the identity element of the group, g , T1G. The tangent space of G at any X ∈ G
is denoted as TXG. The matrix Lie algebra is a vector space closed under the operation of
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ξ

ξ∧

A
∨

A

1

0

Lie Algebra g ≡ T1G ⊂ R
n×n

Lie Group G ⊂ R
n×n

exp (A)

log (X)X

Xν∧
∈ TXG

Euclidean Space R
d

Figure 2.2: Relation between matrix Lie group, matrix Lie algebra, and Rd [4].

the matrix Lie bracket defined as [A,B] = AB − BA,∀A,B ∈ g. The elements of the Lie
algebra can be mapped back and forth between g and Rn using the operators

(·)∧ : Rn → g, (2.26)

(·)∨ : g→ Rn. (2.27)

2.2.2 Exponential and Logarithm

The exponential map of a Lie group maps an element of a Lie algebra to a corresponding
point in the Lie group. For matrix Lie groups, the exponential map is simply the matrix
exponential,

X = exp (ξ∧) . (2.28)

One useful property of the exponential map is

X exp (ξ∧) XT = exp
(
Xξ∧XT

)
= exp (Xξ∧) , (2.29)

exp (ξ∧) X = X exp
(
XTξ∧

)
. (2.30)
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The inverse of the exponential map is the logarithmic map of the Lie group. It takes an
element of a Lie group and maps it to a corresponding point in the Lie algebra

ξ∧ = log (X) . (2.31)

For brevity of notation, the exponential map is denoted as exp (ξ∧) = Exp (ξ), and the
logarithmic map is denoted as log (ξ)∨ = Log (ξ).

2.2.3 Adjoint Representation

The adjoint representation of a Lie group is a way of representing linear transformations of
the group’s Lie algebra. For any X ∈ G, the adjoint representation is denoted as AdX : g→ g.
The representation is not unique as it depends on the parametrization. However, a linear
map is defined as AdX (ξ∧) = Xξ∧X−1. The adjoint map transforms vectors from the tangent
space about one matrix Lie group element to a different tangent space about another matrix
Lie group. Shifting an element of the group across the exponential map is done by using

XExp (ξ) = Exp (AdXξ) X. (2.32)

Given ξ∧, ζ∧ ∈ g, the adjoint representation of an element of the matrix Lie algebra, denoted
as adξ, is defined as

ξ∧ζ∧ − ζ∧ξ∧ = (−adζξ)∧ . (2.33)

2.2.4 Uncertainty Representation

Uncertainty representation in the Euclidean vector space is additive

x = x̄ + δx, (2.34)

where x, x̄ ∈ Rn, and δx ∼ N (0,Σ). Matrix Lie groups resemble Euclidean space, and yet
the addition and subtraction in Euclidean space are described by matrix multiplication [8].
Multiplicative uncertainties are

X = X̄Exp (δξ) , X = Exp (δξ) X̄, (2.35)

where they are referred to as the left-invariant error and the right-invariant error respec-
tively. When using the left-invariant error definition, the right Jacobian relates additive
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perturbation in the tangent space with multiplication

Exp (φ+ δφ) ≈ Exp (φ)Exp (Jr (φ) δφ) . (2.36)

Further, the inverse right Jacobian is used in the first-order approximation of the logarithmic
map

Log (Exp (φ)Exp (δφ)) ≈ φ+ J−1
r (φ) δφ. (2.37)

On the other hand, when using the right-invariant error definition, the right Jacobian in
(2.36) and (2.37) is replaced by the left Jacobian

Exp (φ+ δφ) ≈ Exp (Jl (φ) δφ)Exp (φ) , (2.38)

Log (Exp (φ)Exp (δφ)) ≈ φ+ J−1
l (φ) δφ. (2.39)

Definition 2.2.1 (Baker-Campbell-Hausdorff (BCH) formula). Let x and y be two vectors
in Rn. Multiplication of the two corresponding matrix Lie group elements can be computed
as an infinite sum of the corresponding elements of the Lie algebra,

z = Log (Exp (x)Exp (y)) (2.40)

=

(
x∧ + y∧ + 1

2
[x∧, y∧] +

1

12
([x∧, [x∧, y∧]] + [y∧, [y∧, x∧]])− 1

24
[y∧, [x∧, [x∧, y∧]]] + . . .

)∨
(2.41)

where the first-order approximation of the BCH formula is

Log (Exp (x)Exp (y)) ≈ x + y. (2.42)

The detailed derivation is shown in [3, Ch. 7.1.5].

2.2.5 The Special Orthogonal Group SO(3)

The special orthogonal group represents the three dimensional rotations and it is defined
as

SO (3) =
{

C ∈ R3×3 | CTC = 1, det C = 1
}
. (2.43)
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The associated Lie algebra is defined as

so (3) =
{
φ× ∈ R3×3 | φ ∈ R3

}
, (2.44)

where φ× is the skew-symmetric matrix representation of φ,

φ× =

φ1

φ2

φ3


×

=

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (2.45)

The adjoint representations of SO (3) and so (3) are simply the elements themselves

AdC = C, adφ = φ×. (2.46)

The closed-form expression for the exponential map of SO (3) is given by Rodrigue’s formula,

Exp (φ) = 1 +

(
sin ‖φ‖
‖φ‖

φ×
)

+

(
1− cos ‖φ‖
‖φ‖2 φ×

2

)
. (2.47)

The closed-form expression of the logarithmic map is given as

Log (C) =
θ

2 sin θ

(
C− CT

)∨
, (2.48)

where

θ = cos−1

(
tr (C)− 1

2

)
. (2.49)

The closed-form expression of the left and right Jacobians of SO (3) are given as

Jr (φ) = 1−
(

1− cos ‖φ‖
‖φ‖2

)
φ× +

(
‖φ‖ − sin ‖φ‖
‖φ‖3

)
φ×

3
, (2.50)

Jl (φ) = 1 +

(
1− cos ‖φ‖
‖φ‖2

)
φ× +

(
‖φ‖ − sin ‖φ‖
‖φ‖3

)
φ×

3
, (2.51)

and their inverses as

J−1
r (φ) = 1 + 1

2
φ× +

(
1

‖φ‖2 −
1 + cos ‖φ‖

2 ‖φ‖ sin ‖φ‖

)
φ×

2
, (2.52)

J−1
l (φ) = 1− 1

2
φ× +

(
1

‖φ‖2 −
1 + cos ‖φ‖

2 ‖φ‖ sin ‖φ‖

)
φ×

2
. (2.53)
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2.2.6 The Special Euclidean Group SE(3)

The special Euclidean group represents the three dimensional rigid body transformation
also known as a pose [3, Ch. 7], and it is defined as

SE (3) =

{
T =

[
C r
0 1

]
∈ R4×4|C ∈ SO (3) , r ∈ R3

}
. (2.54)

The associated Lie algebra is defined as

se (3) =
{
Ξ = ξ∧ ∈ R4×4|ξ ∈ R6

}
, (2.55)

where

ξ∧ =

[
ξφ

ξr

]∧
=

[
ξφ
×
ξr

0 0

]
∈ R4×4, ξφ, ξr ∈ R3. (2.56)

The adjoint representation of elements of SE (3) and se (3) are

AdT =

[
C 0

r×C C

]
∈ R6×6, adξ =

[
ξφ
× 0

ξr× ξφ
×

]
, (2.57)

repsectively. The exponential map of SE (3) is

Exp (ξ) =

[
Exp

(
ξφ
)

Jl
(
ξφ
)
ξr

0 1

]
, (2.58)

where Exp
(
ξφ
)
and Jl

(
ξφ
)
are the exponential map and the left Jacobian of SO (3). The

expression of the logarithmic map is given as

Log (T) =

[
Log (C)

J−1
l Log (C) r

]
, (2.59)

where Log (C) is the logarithmic map of SO (3).

2.2.7 Group of K Direct Isometries SEK(3)

The properties of the group of K direct isometries are from [9, Ch. 3.4]. Various robot
states including the 3D rotation can be represented using the special orthogonal group of K
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direct isometries, and it is defined as

SEk (3) =


X =



C p1 p2 . . . pk
0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1


∈ R(k+3)×(k+3)|C ∈ SO (3) ,pi ∈ R3


. (2.60)

The associated Lie algebra is defined as

sek (3) =
{
Ξ = ξ∧ ∈ R(k+3)×(k+3)|ξ ∈ R3×(k+1)

}
, (2.61)

where

ξ∧ =



ξφ
×
ξp1 ξp2 . . . ξpK

0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0


∈ R(k+3)×(k+3). (2.62)

The adjoint representation of elements of SEk (3), and sek (3) are

AdX =



C 0 0 . . . 0
p1
×C C 0 . . . 0

p2
×C 0 C . . . 0
...

...
... . . . ...

pk×C 0 0 . . . C


, adξ =



ξφ
× 0 0 . . . 0

ξp1× ξφ
× 0 . . . 0

ξp2× 0 ξφ
×

. . . 0
...

...
... . . . ...

ξpk× 0 0 . . . ξφ
×


, (2.63)

respectively. The exponential map of SEk (3) is

Exp (ξ) =



Exp
(
ξφ
)

Jl (φ) ξp1 Jl (φ) ξp2 . . . Jl (φ) ξpk

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1


, (2.64)
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where Exp
(
ξφ
)
and Jl

(
ξφ
)
are the exponential map and the left Jacobian of SO (3). The

expression of the logarithmic map is given as

Log (X) =



Log (C)

J−1
l Log (C) p1

J−1
l Log (C) p2

...
J−1
l Log (C) pk


, (2.65)

where Log (C) is the logarithmic map of SO (3).

2.3 State Estimation on Matrix Lie Groups

The robot navigation state, which was initially expressed in the linear vector space x ∈ Rn,
is now expressed as an element of a matrix Lie group X ∈ SEk (3). The continuous-time
nonlinear process model from (2.1) can be rewritten as

Ẋ = F (X,Ξ,ηu) . (2.66)

The matrix Lie group states must be updated using a matrix multiplication instead of addi-
tion or subtraction. The input noise is assumed to be a zero-mean Gaussian with a covariance
of Qu, ηu ∼ N (0,Qu). Equation (2.66) represents the most general case as the input noise
is embedded in the nonlinear process model. However, this general case complicates deriva-
tions. Thus, a more simplified uncertainty representation is used throughout

Ẋ = F (X,Ξ)Exp (ηu) . (2.67)

Furthermore, a measurement model is rewritten using matrix Lie groups

yk = gk (Xk,η
e
k) . (2.68)

The innovation term is explicitly defined with respect to the error definition used. In this
section, only the left-invariant error definition is considered. Thus, the innovation term using
the left-invariant error definition is

zk = X̌−1
k

(
yk − gk

(
X̌k, 0

))
. (2.69)
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In this section, the invariant extended Kalman filter (IEKF), a matrix Lie group variant of
the extended Kalman filter (EKF), and smoothing using matrix Lie groups are discussed.

2.3.1 Invariant Extended Kalman Filter

The invariant extended Kalman Filter (IEKF) is a matrix Lie group variant of EKF. [10]
states that for a specific class of systems, known as group-affine systems, with an invariant
error definition, the error dynamics become state independent. Let X ∈ G be the state with
its associated Lie algebra denoted as ξ|wedge ∈ g. Given the interoceptive measurement in
a matrix Lie group Ξ ∈ G and the associated Gaussian noise ηu ∈ Rn, the robot process
model (2.1) can be rewritten in a matrix form as

Ẋ = F
(
X̄,Ξ

)
Exp (ηu) . (2.70)

Using the left-invariant error definition, the process model is linearized about an operating
point [11, Ch. 3.2] as

δξ̇ = Aδξ + Lδηu, (2.71)

where

A =
∂F (X,Ξ)

∂X

∣∣∣∣
X̄,Ξ
, (2.72)

L =
∂F (X,Ξ)

∂η

∣∣∣∣
X̄,Ξ
. (2.73)

The state covariance matrix P is propagated forward in time using the continuous-time
Riccati equation

˙̌P = AP̄ + P̄AT + LQLT. (2.74)

The correction step is performed when an exteroceptive measurement is available. Unlike
the usual EKF, the linearization is performed on the innovation instead of the measurement
model. The state update is done using

X̄k = X̌kExp (−Kkzk) . (2.75)
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The Kalman gain at time tk, Kk, is computed using

Sk = HkP̌kHT
k + MkRkMT

k , (2.76)

Kk = P̌kHT
kS−1

k , (2.77)

where

Hk =
∂zk (Xk,η

e
k)

∂X

∣∣∣∣
X̄k,0

, (2.78)

Mk =
∂zk (Xk,η

e
k)

∂ηek

∣∣∣∣
X̄k,0

. (2.79)

The covariance update is

P̄k = (1−KkHk) P̌k (1−KkHk)
T + KkMkRkMT

kKT
k . (2.80)

Defining the residual definition in a matrix Lie group results in a more accurate covariance
estimate, and results in a state independent input Jacobian, A when the process model is
group affine. The detailed derivation of the error dynamics using both left and right-invariant
Jacobians are in [11, Ch. 3].

2.3.2 Smoothing in a Matrix Lie Group Framework

Matrix Lie group theory can be incorporated to smoothing algorithm [12]. Let the state
ξ be a set of robot states

ξ =


ξk

ξk+1

...
ξk+n

 , (2.81)

where k is an arbitrary point in time and n is the size of a window to be optimized. Each
state ξt ∈ Rn can be mapped onto the matrix Lie algebra

ξ∧t ∈ g. (2.82)

Now, the MAP approach solves the following optimization problem

ξ = arg min
ξ

J(ξ). (2.83)
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The residuals used in the cost function are

ep (ξ) = Log
(
X̄−1
k X

)
, (2.84)

eu,t (ξ) = Log
(
Ft−1 (Xt−1,Ξt−1, 0)−1 Xt

)
, (2.85)

ey,t (ξ) = X−1
t (yt − gt (Xt, 0)) , t = k + 1, . . . , k + n. (2.86)

After linearization about an operating point, ξ̄, using a Taylor-series expansion, the residuals
have the form

eu,t (ξ) = eu,t
(
ξ̄
)

+
∂eu,t (ξ)

∂ξ

∣∣∣∣
ξ̄t

δξ (2.87)

= Ft−1

(
X̄t−1,Ξt−1, 0

)−1 X̄t︸ ︷︷ ︸
eu,t(ξ̄)

+Atδξt + At−1δξt−1, (2.88)

ey,t (ξ) = ey,t
(
ξ̄
)

+
∂ey,t (ξ)

∂ξ

∣∣∣∣
ξ̄t

δξ (2.89)

= X−1
t

(
ȳt − gt

(
X̄t, 0

))︸ ︷︷ ︸
ey,t(ξ̄)

+Htδξt. (2.90)

The objective function J is rewritten in a quadratic form as

J (ξ) = 1
2
‖ep (ξ)‖2

P0
+ 1

2

∑
t∈[k+1,n]

‖eu,t (ξ)‖2
Q + 1

2

∑
t∈[k+1,n]

‖ey,t (ξ)‖2
R . (2.91)
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Chapter 3

LIVOM - Data Processing

The front-end of local SLAM is mainly responsible for acquiring data from sensors and
constructing a graph of measurement constraints. For example, stereo monocular, or RGB-
D cameras can be used to extract features such as SIFT, SURF, or ORB from image data
and track them in the subsequent frames. Matching features can then be used to compute
pose-to-pose constraints. LIDAR-based systems can also be used to form these constraints
by performing point cloud alignment and scan matching between successive scans. In this
chapter, the process of data association is discussed for a monocular camera, LIDAR, and
inertial measurement unit. Each sensor measurement is processed to form a constraint used
in a factor graph which will be further investigated in Chapter 4.

3.1 Preintegrated IMU on Manifold

An inertial measurement unit (IMU) sensor usually includes a three-axis accelerometer
and a three-axis rate gyroscope, and measures the acceleration and the angular velocity of
the sensor with respect to the sensor frame. IMU measurements are acquired at a high
frequency compared to other exteroceptive sensors such as a camera and a LIDAR which
leads to fast growth of the number of variables used in the estimation. As a result, the use
of preintegrated IMU measurements was first introduced by [13]. It consists of combining
many inertial measurements between two subsequent exteroceptive measurements into a
single relative motion constraint. The preintegration theory on-manifold, proposed by [14],
reduces the computation power required significantly. Hence, it enables the application of
incremental-smoothing in real-time SLAM to achieve higher accuracy and lower drift in
longer trajectories. This section shows the derivation of the in-between preintegrated IMU
factor.
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3.1.1 Notation

The robot body’s reference point is denoted as a point b. This point can be chosen
arbitrarily, but it is usually chosen by the location of an IMU. The position of the robot’s
body relative to an arbitrary point in space, w, is described by the physical vector r−→

bw. The
rate of change of the position, namely the velocity, of a robot b relative to w, with respect
to some inertial frame FW is denoted as r−→

bw ·W = v−→
bw/W . A physical vector r−→

bw resolved
in FW is denoted as rbwW . Poisson’s equation is

ĊWB = CWBω
BW
B

×
, (3.1)

where ωBWB is the angular velocity of FB relative to FW resolved in FB.

3.1.2 IMU Model and Robot Kinematics

Consider a noisy and biased rate-gyro measurement model of the form

ω̃BWB (t) = ωBWB (t) + βgB (t) + ηgB (t) , (3.2)

where ηgB (t) ∼ N (0,Qgδ (t− τ)). The noise power spectral density (PSD) is denoted Qg

and βgB (t) is the rate gyro bias modelled as a random walk process,

β̇gB (t) = ηbgB (t) , (3.3)

where ηbgB (t) ∼ N
(
0,Qbgδ (t− τ)

)
. Additionally, consider a noisy and biased accelerometer

measurement model of the form

ãB (t) = CT
WB (t)

(
awb/W/WW (t)− gW

)
+ βaB (t) + ηaB (t) , (3.4)

where ηaB (t) ∼ N (0,Qaδ (t− τ)). The accelerometer bias, βaB (t), is modelled as a random
walk process,

β̇aB (t) = ηbaB (t) , (3.5)

where ηbaB (t) ∼ N
(
0,Qbaδ (t− τ)

)
.
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The rigid-body kinematics equations in continuous time are

ĊWB (t) = CWB (t)Exp
(
ωBWB (t)

)
, (3.6)

v̇bw/WW (t) = abw/W/WW (t) , (3.7)

ṙbwW (t) = vbw/WW (t) . (3.8)

Here, for the purpose of readability, (t) is omitted unless for clarity is required. Subscripts
to the point b or frame B specify a state at time t = ti (i.e., CWBi = CWB (ti) and rbiwW =

rbwW (ti)). Using (3.2) and (3.4), abw/W/WW and ωBWB can be written as a function of the IMU
measurement model. Thus (3.6), (3.7), and (3.8) become

ĊWB = CWBExp
(
ω̃BWB − βgB − η

g
B

)
, (3.9)

v̇bw/WW = CWB (ãB − βaB − ηaB) + gW , (3.10)

ṙbwW = vbw/WW . (3.11)

The state at time t = tj is obtained by integrating (3.9), (3.10), and (3.11)

CWBj = CWBiExp

(∫
τ∈[ti,tj ]

ω̃BWB − βgB − η
g
Bdτ

)
, (3.12)

vbjw/WW = vbiw/WW +

∫
τ∈[ti,tj ]

(CWB (ãB − βaB − ηaB) + gW ) dτ, (3.13)

rbjwW = rbiwW +

∫∫
τ∈[ti,tj ]

(CWB (ãB − βaB − ηaB) + gW ) dτ 2. (3.14)

Note that any integration method can be used. For example, assuming the zero-order hold
assumption on the measurements and applying Euler integration yields

CWBj = CWBiExp

(
j−1∑
k=i

ω̃BWBk − β
g
Bk
− ηgBk∆t

)
, (3.15)

vbjw/WW = vbiw/WW + g∆tij +

j−1∑
k=i

CWBk

(
ãBk − βaBk − η

a
Bk

)
∆t, (3.16)

rbjwW = rbiwW +

j−1∑
k=i

(
vbkw/WW ∆t− 1

2
g∆t2 + 1

2
CWBk

(
ãBk − βaBk − η

a
Bk

)
∆t2
)
, (3.17)

where ∆tij =
∑j−1

k=i ∆t. To prevent any loss of generality, (3.9), (3.10), and (3.11) will be
used in the following sections.
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3.1.3 Relative Motion Increments

Although (3.9), (3.10), and (3.11) provide an estimate of the relative motion between two
instances, the integration has to be repeated whenever there is a change in the rotation CWB.
This makes it necessary to re-evaluate the integration at every incoming IMU measurement.
To avoid this procedure, a relative motion increment (RMI) that is independent of the robot
state is introduced

∆Cij , CT
WBi

CWBj (3.18)

= Exp

(∫
τ∈[ti,tj ]

ω̃BWB − βgBi − η
g
Bdτ

)
, (3.19)

∆vij , CT
WBi

(
vbjw/WW − vbiw/WW − gW∆tij

)
(3.20)

=

∫
τ∈[ti,tj ]

∆Ciτ

(
ãB − βaBi − η

a
B

)
dτ, (3.21)

∆rij , CT
WBi

(
rbjwW − rbiwW − vbiw/WW ∆tij − 1

2
gW∆t2ij

)
(3.22)

=

∫∫
τ∈[ti,tj ]

∆Ciτ

(
ãB − βaBi − η

a
B

)
dτ 2. (3.23)

Biases are assumed constant during the integration. Thus, (β)i represents the constant bias
at t = ti. Substituting the RMI back into (3.9), (3.10), and (3.11) results in

CWBj = CWBi∆Cij, (3.24)

vbjw/WW = vbiw/WW + ∆tijgW + CWBi∆vij, (3.25)

rbjwW = rbiwW + ∆tijv
biw/W
W + 1

2
∆t2ijgW + CWBi∆rij. (3.26)

Notice how the RMI is independent from the robot’s state at time ti, as well as from gravity,
and it can be obtained solely by integrating the measurements.

The preintegration theory focuses on the analysis of the RMI. The equation (3.19), (3.21),
and (3.23) enable integration of the measurements without prior state information, and
(3.24), (3.25), and (3.26) relate the integrated measurements to the states using the robot’s
kinematics model. Thus, the RMI can be considered as a new input to the process model.
Recall that an IMU measurement is considered as a random variable with a nominal measure-
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ment and some noise associated with it. Integrating the random variable requires integrating
the additive Gaussian noise. This can be done by propagating the covariance associated with
the RMI forward in time. The error propagation of the RMI is studied in the following sec-
tion with two different error definitions MEKF -based, and IEKF -based. Both methods of
derivation rely on matrix Lie group theory, where the former uses SO (3) to describe the
rotation, and the latter uses SE2 (3) to describe the pose and the velocity of the robot. The
latter results less measurement-dependent Jacobian than the former.

The RMI equations (3.19), (3.21), and (3.23) can be rewritten in a differential form as

∆̇Cik = ∆Cik

(
ω̃BWB − βgBi − η

g
B

)×
, (3.27)

∆̇vik = ∆Cik

(
ãB − βaBi − η

a
B

)
, (3.28)

∆̇rik = ∆vik, (3.29)

where k can be any time instance. This differential form is useful for deriving error propa-
gation.

3.1.3.1 Linearization - MEKF-based Approach

Multiplicative-EKF (MEKF) is one of many EKF variants that uses traditional way of
defining the state errors [15, Ch. 11.5]. Consider the nominal RMI ∆̄Cik, ∆̄vik, and ∆̄rik,
then the MEKF -based errors are defined as

δ∆Cik = ∆̄CT
ik∆Cik, (3.30)

δ∆vik = ∆vik − ∆̄vik, (3.31)

δ∆rik = ∆rik − ∆̄rik. (3.32)

The error propagation is computed by the time-derivative of the error definitions that leads
to equations of the form

δ∆̇Cik = ˙̄∆CT
ik∆Cik + ∆̄CT

ik∆̇Cik (3.33)

= −
(
ω̃BWB − β̄gBi

)×
∆̄CT

ik∆Cik + ∆̄CT
ik∆Cik

(
ω̃BWB − βgBi − η

g
B

)× (3.34)

= −
(
ω̃BWB − β̄gBi

)×
δ∆Cik + δ∆Cik

(
ω̃BWB − βgBi − η

g
B

)×
, (3.35)
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δ∆̇vik = ∆̇vik − ˙̄∆vik (3.36)

= ∆Cik

(
ãB − βaBi − η

a
B

)
− ∆̄Cik

(
ãB − β̄aBi

)
(3.37)

= ∆̄Cikδ∆Cik

(
ãB − βaBi − η

a
B

)
− ∆̄Cik

(
ãB − β̄aBi

)
, (3.38)

δ∆̇rik = ∆̇rik − ˙̄∆rik (3.39)

= ∆vik − ∆̄vik (3.40)

= δ∆vik. (3.41)

To linearize (3.35) and (3.38), let δ∆Cik ≈ 1 + δ∆φ×ik, η
g
B ≈ δηgB, and η

a
B ≈ δηaB. Neglecting

the second order terms, (3.35) and (3.38) are then approximated as

δ∆̇φ×ik = −
(
ω̃BWB − β̄gBi

)× (1 + δ∆φ×ik
)

+
(
1 + δ∆φ×ik

) (
ω̃BWB − β̄gBi − δβ

g
Bi
− δηgB

)×
(3.42)

= −
(
ω̃BWB − β̄gBi

)×
δ∆φ×ik + δ∆φ×ik

(
ω̃BWB − β̄gBi

)× − δβgBi× − δηgB× (3.43)

=

(
−ad(

ω̃BWB −β̄gBi
)δ∆φik

)×
− δβgBi

× − δηgB
×, (3.44)

δ∆̇φik = −ad(
ω̃BWB −β̄gBi

)δ∆φik − δβgBi − δηgB, (3.45)

δ∆̇vik = ∆̄Cik

(
1 + δ∆φ×ik

) (
ãB − β̄aBi − δβ

a
Bi
− δηaB

)
− ∆̄Cik

(
ãB − β̄aBi

)
(3.46)

= ∆̄Cikδ∆φ
×
ik

(
ãB − β̄aBi

)
− ∆̄Cikδβ

a
Bi
− ∆̄Cikδη

a
B (3.47)

= −∆̄Cik

(
ãB − β̄aBi

)×
δ∆φik − ∆̄Cikδβ

a
Bi
− ∆̄Cikδη

a
B. (3.48)

Similarly, the bias error propagation is linearized by computing the time-derivative of the
bias error

δβuB = βuB − β̄uB, (3.49)

δβ̇uB = β̇uB − ˙̄βuB = ηbuB , (3.50)

where u can be either g for a rate gyroscope, and a for an accelerometer. Combining the
linearized error dynamics (3.35), (3.38), (3.41), and (3.50) yields

∆̇ξik = Fik∆ξik + Likη, (3.51)
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where

∆ξik =
[
δ∆φT

ik δ∆vT
ik δ∆rTik δβaik

T δβgik
T
]T
, (3.52)

η =
[
δηaB

T δηgB
T δηbaB

T
δηbgB

T
]T
, (3.53)

and

Fik =



−ad(
ω̃BWB −β̄gBi

) −1

−∆̄Cik

(
ãB − β̄aBi

)× −∆̄Cik

1


, Lik =


1

−∆Cik

1
1

 . (3.54)

Notice Fik and Lik depend on preintegrated measurements, ∆̄Cik. Integrated measurements
accumulate the noise associated with each measurement which may result in inaccurate
Jacobian matrices.

3.1.3.2 Linearization - IEKF-based Approach

Linearization on the RMI in a matrix Lie group framework is first proposed by [16]. The
RMI are concatenated to form an element of SEK (3). The robot pose and velocity are cast
to form a group

∆Tik =

∆Cik ∆vik ∆rik
1

1

 , (3.55)

and the sensor biases are cast to form another group

BB =

1 βaBi βgBi
1

1

 . (3.56)

According to [17], the two groups can be cast into a single matrix Lie group

∆Xik =

[
∆Tik

BB

]
. (3.57)
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There are two ways of defining errors: by left multiplication δ∆XL
ik = ∆̄X−1

ik ∆X, and by
right multiplication δ∆XR

ik = ∆Xik∆̄X−1
ik , namely LIEKF and RIEKF respectively. Only

the error defined by the left multiplication is analyzed in this section. The LIEKF -based
errors are

δ∆XL
ik = ∆̄X−1

ik ∆Xik =

[
∆̄T−1

ik

B̄−1
B

][
∆Tik

BB

]
=

[
δ∆Tik

δBB

]
, (3.58)

where

δ∆TL
ik = ∆̄T−1

ik ∆Tik (3.59)

=

∆̄CT
ik −∆CT

ik∆̄v −∆CT
ik∆̄r

1

1


∆Cik ∆v ∆r

1

1

 (3.60)

=

∆̄CT
ik∆Cik ∆̄CT

ik

(
∆vik − ∆̄vik

)
∆̄CT

ik

(
∆rik − ∆̄rik

)
1

1

 , (3.61)

and

δBL
B = B̄−1

B BB (3.62)

=

1 −β̄aBi −β̄
g
Bi

1

1


1 βaBi βgBi

1

1

 (3.63)

=

1 βaBi − β̄
a
Bi

βgBi − β̄
g
Bi

1

1

 . (3.64)

Each element in the matrix Lie group is extracted

δ∆Cik = ∆̄CT
ik∆Cik, (3.65)

δ∆vik = ∆̄CT
ik

(
∆vik − ∆̄vik

)
, (3.66)

δ∆rik = ∆̄CT
ik

(
∆rik − ∆̄rik

)
, (3.67)

δβaBi = βaBi − β̄
a
Bi
, (3.68)

δβgBi = βgBi − β̄
g
Bi
. (3.69)
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The attitude and bias errors are identical to (3.30) and (3.49). Thus, the linearization on
the error dynamics remains the same. On the other hand, the velocity and position errors
are propagated as

δ∆̇vik = ˙̄∆CT
ik

(
∆vik − ∆̄vik

)
+ ∆̄CT

ik

(
∆̇vik − ˙̄∆vik

)
(3.70)

=
(

∆̄Cik

(
ω̃BWB − β̄gBi

)×)T (
∆vik − ∆̄vik

)
+ (3.71)

∆̄CT
ik

(
∆Cik

(
ãB − βaBi − η

a
B

)
− ∆̄Cik

(
ãB − β̄aBi

))
(3.72)

= −
(
ω̃BWB − β̄gBi

)×
∆̄CT

ik

(
∆vik − ∆̄vik

)
+ δ∆Cik

(
ãB − βaBi − η

a
B

)
−
(
ãB − β̄aBi

)
(3.73)

= −
(
ω̃BWB − β̄gBi

)×
δ∆vik + δ∆Cik

(
ãB − βaBi − η

a
B

)
−
(
ãB − β̄aBi

)
(3.74)

= −
(
ω̃BWB − β̄gBi

)×
δ∆vik +

(
1 + δ∆φ×ik

) (
ãB − β̄aBi − δβ

a
Bi
− δηaB

)
−
(
ãB − β̄aBi

)
(3.75)

= −
(
ω̃BWB − β̄gBi

)×
δ∆vik + δ∆φ×ik

(
ãB − β̄aBi

)
− δβaBi − δη

a
B (3.76)

= −
(
ω̃BWB − β̄gBi

)×
δ∆vik −

(
ãB − β̄aBi

)×
δ∆φik − δβaBi − δη

a
B, (3.77)

δ∆̇rik = ˙̄∆CT
ik

(
∆rik − ∆̄rik

)
+ ∆̄CT

ik

(
∆̇rik − ˙̄∆rik

)
, (3.78)

=
(

∆Cik

(
ω̃BWB − β̄gBi

)×)T (
∆rik − ∆̄rik

)
+ ∆̄CT

ik

(
∆vik − ∆̄vik

)
(3.79)

= −
(
ω̃BWB − β̄gBi

)×
∆̄CT

ik

(
∆rik − ∆̄rik

)
+ δ∆vik (3.80)

= −
(
ω̃BWB − β̄gBi

)×
δ∆rik + δ∆vik. (3.81)

Combining the linearized error dynamics yields

∆̇ξik = Fik∆ξik + Likη, (3.82)
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where

Fik =



−ad(
ω̃BWB −β̄gBi

) −1

−
(
ãB − β̄aBi

)× − (ω̃BWB − β̄gBi
)× −1

1 −
(
ω̃BWB − β̄gBi

)×

, (3.83)

Lik =


−1

−1

1
1

 . (3.84)

Notice Fik and Lik no longer depends on ∆Cik which may result in more accurate Jacobian
matrices.

3.1.4 Preintegrated Measurement Covariance

Under the zero-order hold assumption, the Jacobian matrices Fik and Lik are constant over
the integration period, such that Fdik = exp (∆tFik). From the linearized RMI model and
given the continuous-time covariance Q associated with the raw IMU measurement noise, it is
possible to compute the preintegrated measurement covariance iteratively using [15, Ch. 4.7],

Σik+1 = FdikΣikFdik + Qd, (3.85)

where Σii = 0 and

Qd =

∫ tj

ti

FdiτLiτ (τ) QLiτ (τ)T FT
diτ

dτ. (3.86)

The integral can be solved by matrix exponential using Van Loan’s method. It is shown that
the exponential of the matrix

Ξ =

[
−F LQLT

0 FT

]
∆t (3.87)
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is

Ψ = exp (Ξ) =

[
∗ F−1

dik
Qd

0 FT
dik

]
. (3.88)

This discretization assumes that F are Q are slowly time varying and are constant over the
time of integration between two measurements, which is not an exact solution of (3.86).
Hence, for IMU measurements at lower frequency, one may consider solving (3.86) using a
higher order numerical integration.

3.1.5 Bias Update

During optimization, the states are updated at every iteration. The RMIs are not func-
tions of robot navigation states, however they are still functions of IMU sensor biases. Biases
are part of the optimization variables, which means they are likely to vary during the opti-
mization. The bias update at every iteration must be incorporated into the RMI somehow.
In this section, the RMI with bias updates are discussed.

Biases are usually very small in its magnitude, and they are updated using the previously
defined error definition (3.49)

β̂uBi = β̄uBi + δβuBi , (3.89)

where β̂uBi is the updated bias. Thus, corresponding change must be applied to the RMI as
well.

Consider the RMI with nominal bias estimates

∆̂Cik = Exp
(∫

τ∈[i,k]

ω̃BWB − β̂gBidτ
)
, (3.90)

∆̂vik =

∫
τ∈[i,k]

∆̂Ciτ

(
ãB − β̂aBi

)
dτ, (3.91)

∆̂rik =

∫∫
τ∈[i,k]

∆̂Ciτ

(
ãB − β̂aBi

)
dτ 2. (3.92)
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Applying Taylor-series expansion to the RMI with respect to the biases results in

∆̂Cik ≈ Exp
(∫

τ∈[i,k]

ω̃BWB − β̄gBi − δβ
g
Bi
dτ
)

(3.93)

= Exp
(∫

τ∈[i,k]

ω̃BWB − β̄gBidτ
)
Exp

(∫
τ∈[i,k]

−Jr (τ ) δβgBidτ
)

(3.94)

= ∆̄CikExp

(
∂∆Cik

∂βgBi

∣∣∣∣
β̄gBi

δβgBi

)
, (3.95)

∆̂vik ≈
∫
τ∈[i,k]

C̄iτExp

(
∂∆Ciτ

∂βgBi

∣∣∣∣
β̄gBi

δβgBi

)(
ãB − β̄aBi − δβ

a
Bi

)
dτ (3.96)

=

∫
τ∈[i,k]

∆̄Ciτ

(
1 +

(
∂∆Ciτ

∂βgBi

∣∣∣∣
β̄gBi

δβgBi

)×)(
ãB − β̄aBi − δβ

a
Bi

)
dτ (3.97)

=

∫
τ∈[i,k]

∆̄Ciτ

(
ãB − β̄aBi

)
dτ −

∫
τ∈[i,k]

∆̄Ciτ

(
ãB − β̄aBi

)× ∂∆Ciτ

∂βgBi

∣∣∣∣
β̄gBi

δβgBidτ− (3.98)

∫
τ∈[i,k]

∆̄Ciτ

(
∂∆Ciτ

∂βgBi

∣∣∣∣
β̄gBi

δβgBi

)×
δβaBidτ (3.99)

= ∆̄vik +
∂∆vik
∂βaBi

∣∣∣∣
β̄aBi

δβaBi +
∂∆vik
∂βgBi

∣∣∣∣
β̄gBi

δβgBi . (3.100)

The bias update for position has a similar form of equation as the velocity

∆̂rik ≈ ∆̄rik +
∂∆rik
∂βaBi

∣∣∣∣
β̄aBi

δβaBi +
∂∆rik
∂βgBi

∣∣∣∣
β̄gBi

δβgBi . (3.101)

The bias Jacobian matrices can be computed recursively with the initial Jacobian Ji = 1,

Ji+1 = Fdii+1
Ji. (3.102)

Notice the bias correction is only a first-order approximation. This is possible because the
bias change during the optimization is assumed to be small. On the other hand, the update is
not incorporated in the bias Jacobian matrices. They remain constant and are precomputed
during the preintegration.
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3.1.6 Preintegrated IMU Factor

Recall that the preintegrated measurements are considered as new inputs to the process
model. Preintegrated measurements and their noise covariance can be computed without
any robot state information using the relative motion increment. Incorporating the bias
update to the kinematic equations (3.24), (3.25), and (3.26) yields

CWBj = CWBi∆̂Cij, (3.103)

vbjw/WW = vbiw/WW + ∆tijgW + CWBi∆̂vij, (3.104)

rbjwW = rbiwW + ∆tijv
biw/W
W + 1

2
∆t2ijgW + CWBi∆̂rij. (3.105)

Now, the residual errors associated with the IMU can be constructed as

eI,i =
[
eT∆Cij eT∆vij eT∆rij eTβaij eT

βgij

]T
, (3.106)

where

e∆Cij , Log
(

∆̂CT
ijC

T
WBi

CWBj

)
, (3.107)

e∆vij , CT
WBi

(
vbjw/WW − vbiw/WW −∆tijgW

)
− ∆̂vij, (3.108)

e∆rij , CT
WBi

(
rbjwW − rbiwW −∆tijv

biw/W
W − 1

2
∆t2ijgW

)
− ∆̂rij, (3.109)

eβaij , β
a
Bj
− βaBi , (3.110)

eβgij , β
g
Bj
− βgBi . (3.111)

The IMU residual is linearized about an operating point X̄ using a first order Taylor-series
expansion. The linearization can be done using two different error definitions mentioned in
section 3.1.3.1 and in section 3.1.3.2. The preintegrated IMU factors constraint two robot
states: the poses, velocities, and IMU sensor biases at t = ti and t = tj.

3.2 Depth-based Vision Factor

Computer vision research has been around since 1970 to mimic human visual systems.
Subsequently, this technology has been widely used in the robot perception and navigation
community. Robot perception is one of the most important fields to achieve the complete
autonomy of a robot. Sub-domains of computer vision such as scene recognition, object de-
tection, object recognition, etc. are used in robot guidance and navigation systems. Particu-
larly, the 3D pose estimation via feature tracking is performed in visual navigation systems.
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In this section, Kanade-Lucas-Tomasi (KLT) sparse optical flow algorithm is presented using
Shi-Tomasi corner features in Section 3.2.1 and in Section 3.2.2 [18]. The image processing
discussed in this section is based on Section 4 of [1]. Further, a depth-based vision factor is
derived using the tracked features in Section 3.2.4.

3.2.1 Feature Extraction

A feature is an area of a digital image that contains meaningful information, such as a
corner or edge. For example, corner features are the areas of an image where neighboring
pixels have different intensities in all directions. Finding these corners was first done by [19].
Consider an equalized and undistorted grayscale image I with a pixel (x0, y0). The difference
in intensity for a displacement of (δx, δy) is expressed as∑

δx,δy∈W

(I (x0, y0)− I (x0 + δx, y0 + δy))2 , (3.112)

where W is the patch of an image. It is likely a corner if the difference is large. The
neighboring pixels can be approximated using a first order Taylor-series expansion

I (x0 + δx, y0 + δy) ≈ I (x0, y0) +
∂I

∂x

∣∣∣∣
x0,y0

δx+
∂I

∂y

∣∣∣∣
x0,y0

δy. (3.113)

Thus, (3.112) can be rewritten as

∑
δx,δy∈W

(I (x0, y0)− I (x0 + δx, y0 + δy))2 ≈
∑(

∂I

∂x
δx+

∂I

∂y
δy

)2

(3.114)

=
∑([

δx δy
] [ ∂I

∂x
∂I
∂y

] [
∂I
∂x

∂I
∂y

] [δx
δy

])
(3.115)

=
[
δx δy

](∑[
∂I
∂x
∂I
∂y

] [
∂I
∂x

∂I
∂y

])[δx
δy

]
(3.116)

=
[
δx δy

]
M

[
δx

δy

]
, (3.117)

where

M =

 ∑(
∂I
∂x

)2 ∑(
∂I
∂x

) (
∂I
∂y

)
∑(

∂I
∂y

) (
∂I
∂x

) ∑(
∂I
∂y

)2

 (3.118)
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is known as the second moment matrix. A corner is determined by analyzing the eigenvalues
of this matrix in the following way:

1. if λ1 ≈ 0 and λ2 ≈ 0 then (x0, y0) has no features,

2. if λ1 ≈ 0 and λ2 has some large positive value, then (x0, y0) is an edge,

3. if λ1 and λ2 have large positive values, then (x0, y0) is a corner.

The Harris corner detector has this criteria where both eigenvalues of M has to meet a naive
criteria, where the eigenvalues satisfy

λ1λ2 − k (λ1 + λ2)2 > threshold, (3.119)

for small values of k. Shi-Tomasi corner features are based on the Harris corner detector with
a slight variation in different response function [20]. Shi-Tomasi detector has the following
evaluation criteria,

min (λ1, λ2) > threshold. (3.120)

The points in image where (3.120) holds as a feature candidate. For implementation, the
Shi-Tomasi corner detection algorithm from openCV is used [21]. The algorithm finds the
N strongest corners in the grayscale image with corresponding quality levels. Then the
algorithm finds the strongest corners around the neighborhood and provides the minimum
Euclidean distance between corners such that the features are sparse within the image.

3.2.2 Feature Tracking

To track features over a series of images, the extracted features from one image must be
matched to the features of subsequent images. The features are matched by comparing the
feature descriptors. This means that the intensities of the tracking features must not change
between the two frames being compared, and the neighboring pixels, namely the descriptor
as a whole, have a similar motion. The KLT feature tracker is used to track extracted
Shi-Tomasi corner features.

The KLT method takes a patch of the initial image around the feature point, for example a
3×3 patch resulting in 9 neighboring points, and uses them to find the corresponding feature
point on the subsequent image. Consider a 1D problem with a feature point x0 in an image
J (x). A corresponding point x0 +h in a subsequent image I (x) such that I (x0 + h) ≈ J (x0)
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Figure 3.1: Example of Shi-Tomasi corner feature detection shown in green using EuRoC
Machine Hall 01 Dataset [22].

can be found by minimizing the following cost function∑
x∈N

(I (x+ h)− J (x))2 , (3.121)

where N is the number of neighboring pixels around x0. Based on the assumption that the
image is blurred with the Gaussian function and the intensity is smooth, applying a first
order Taylor series expansion on (3.121) yields

∑
x∈N

(
I (x)− J (x) + h

dI (x)

dx

)2

. (3.122)

Because the corresponding point in the subsequent image I (x+ h) is relatively close to the
initial point in the image J (x), it is safe to assume that h is also very small. To find the
corresponding point, the value of h that minimizes the cost function is obtained by taking
the derivative with respect to h and setting it to 0,

∑
x∈N

(
J (x)− I (x) + h

dI (x)

dx

)
dI (x)

dx
= 0. (3.123)

The intensities of an image are usually non-linear, which means in practice, the feature
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tracking process is done iteratively.

Now consider a 2D problem with 2D images I (x, y) and J (x, y). The cost function
becomes ∑

(x,y)∈N

(I (x+ hx, y + hy)− J (x, y))2 . (3.124)

By applying a first order Taylor series expansion, the cost function is

∑
(x,y)∈N

(
I (x, y)− J (x, y) +

∂I (x, y)

∂x
hx +

∂I (x, y)

∂y
hy

)2

. (3.125)

Taking the derivative with respect to hx and hy gives ∑(
∂I
∂x

)2 ∑(
∂I
∂x

) (
∂I
∂y

)
∑(

∂I
∂y

) (
∂I
∂x

) ∑(
∂I
∂y

)2

[hx
hy

]
= −

[∑
(I (x, y)− J (x, y)) ∂I

∂x∑
(I (x, y)− J (x, y)) ∂I

∂y

]
, (3.126)

where the matrix on the left-hand side is equivalent to the second moment matrix. Since the
eigenvalues of the second moment matrix are non-zero around corners, the image registration
can be solved. The KLT tracker outputs points in a target image I (x, y) that correspond to
corner features in a reference image J (x, y). These corresponding points can now be utilized
to form a constraint between the two frames.

3.2.3 Outlier Rejection

Consider x1 and x2 are the corresponding points in the first and the second images respec-
tively. Given an epipolar geometry, the fundamental matrix F relates corresponding points
in two image frames as

xT
2 Fx1 = 0, (3.127)

where

F , K−TEK−1, (3.128)

K is the camera intrinsics, and E is the essential matrix. The fundamental matrix is estimated
using an eight point algorithm [23, Ch. 11]. Random sample consensus (RANSAC) is used
to reject outliers using the algorithm 11.4 in [23, Ch. 11.6].
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3.2.4 Depth-based Projection Factor

The features extracted and tracked are all resolved in the pixel coordinates in the image
plane. To use this information for pose estimation, the relationship between the image plane
and the physical world must be known. In the following section, the basic principles of
a pinhole camera are discussed. Lastly, the depth-based projection factor formulation is
derived.

3.2.4.1 Pinhole Camera

A perspective projection model of a pinhole camera is shown in Figure 3.2. The feature
extraction and tracking are performed on the image plane Π in pixel coordinates. The center
of a robot’s body is denoted as bk while FBk is the frame associated with it. The position of
the camera, also known as the optical center, is denoted as ck with the camera frame FCk .
The image plane has a reference point O with a 2D pixel frame Fp. Consider a feature point
li in a physical space that is projected onto the image plane as qi. The image plane is at the
camera’s focal length f . Thus, the feature in the 3D space is projected onto the plane using

rqiCP =
(x
z
f,
y

z
f
)
, (3.129)

where (x, y, z) is the position of the features relative to the optical center resolved in the
camera frame, rlickCk

, with z > 0. With the feature point on the image plane written in
homogeneous coordinates as

(
x
z
f, y

z
f, 1
)
, the above equation can be rewritten in matrix form

as

xfxf
z

 =

f 0 0

0 f 0

0 0 1



x

y

z

1

 . (3.130)

However, the projected feature point on an image plane has to be transformed into finite
discontinuous pixel coordinates rather than a physical position. Thus, a scaling factor s is
involved. Further, the reference point of the image plane is at point o and thus the translation

of the reference point to the image center rOCP =
[
cx cy

]T
is added. The camera calibration
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(b) Top view of the perspective projection model.

Figure 3.2: Perspective projection model of a pinhole camera.
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matrix K can then be written as

K =

sf 0 cx

0 sf cy

0 0 1

 . (3.131)

3.2.4.2 Unit Sphere Model
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r
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lick

Figure 3.3: Geometrical representation of normalized image coordinates.

Carrying over the concepts of the pinhole camera model, this section defines the camera
measurement on a unit sphere such that the measurement model is not constrained to a
pinhole camera but can be utilized for any other optical device such as wide-angle, fisheye
or omnidirectional cameras. The tracked features are undistorted and back projected onto
a unit sphere from an image plane. The normalized features are stored as a unit vector q̃i
on the sphere with inverse of its depth λi = 1

z
. The back projection function

π−1
c

([
x0

y0

])
= undistort

K−1

x0

y0

1


 (3.132)

can be used to recover the feature location in the physical world from the corresponding
feature point in an image plane

rlickCk
=

1

λi
π−1
c

([
x0

y0

])
. (3.133)
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3.2.4.3 Depth-based Projection Factor

Consider a feature lk tracked in two consecutive images taken at t = ti and t = tj. Given
a feature at ti and an initial estimate of a robot’s state at both time ti and tj, the feature
location at tj can be estimated using

řlkcjCj
= CT

CiCj

(
rlkciCi
− rcjciCi

)
(3.134)

= CT
CiCj

(
1

λk
π−1
c

([
x0

y0

]
i

)
− rcjciCi

)
(3.135)

= CT
BC

(
CT
WBj

(
CWBi

(
CBC

1

λk
π−1
c

([
x0

y0

]
i

)
+ rbcB

)
+ rbiwW − rbjwW

)
− rbcB

)
, (3.136)

where CBC and rbcB are the camera extrinsic parameters that relate the transformation be-
tween the robot’s body and the center of the camera. Therefore, the residual of the depth-
based projection factor or the vision factor can be obtained by comparing the estimated
feature location at tj with the measured feature as

eC ,
[
b1 b2

]T řlkcjCj

r
lkcj
Cj ,3

− π−1
c

[x0

y0

]
j

 , (3.137)

where
[
b1 b2

]
are two arbitrarily selected orthogonal bases which span the tangent plane

of π−1
c

[x0

y0

]
j

. A camera factor constrains two poses sharing a feature. The equation

(3.136) is a function of camera extrinsic parameters and two robot body poses. The camera
measurement residual will be used in an optimization problem investigated in Chapter 4.

3.3 LIDAR Point Cloud Registration Factor

A typical Light detection and ranging (LIDAR) sensor emits light in the form of pulsed
laser into the surrounding and receives the reflected pulses. The sensor uses the time-of-flight
(ToF) to measure the distance between the target object and the center of the sensor using

D =
ctf
2
, (3.138)

where D is the distance measured, tf is the time of flight, and c is the speed of light. There
are 3 categories of LIDAR systems: 1D, 2D, or 3D, and all of them share the time-of-
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flight concept. For a 1D laser scanner, a single laser emitter is used in a static position.
A 2D system uses a single emitter in rotation to capture the a planar information of the
surrounding. Moreover, a 3D LIDAR sensor functions like their 2D counterparts but multiple
emitters are spread out along the vertical axis of the sensor. For example, the Velodyne
Puck (VLP-16), a 3D LIDAR, has 16 scan rings, providing 16 layers of planar scans along
the vertical axis. When the scan rings complete a full revolution in rotation, a complete
360 degree view of the surrounding, referred to as a sweep, is obtained. In this section, the
procedures of using a LIDAR in a SLAM are discussed. The procedures are the processing
of a 3D LIDAR measurements, feature extraction, and constructing a factor.

3.3.1 LIDAR Data Preprocessing

Unlike camera measurements where a complete image data is given at an instance, raw
LIDAR point cloud measures only a subset of a sweep at a time, called a scan packet. A
scan packet does not provide any meaningful information about the scene. Thus, it cannot
be used for navigation. On the other hand, a sweep can be thought of as a 3D image of
the surrounding that may contain some salient information about the scene. Acquiring a
complete sweep requires preprocessing steps such as sweep accumulation, downsampling,
and filtering. Preprocessing is necessary in order to proceed to futher data association like
feature extraction and point cloud registration.

3.3.1.1 Sweep Accumulation

LIDAR points are measured by rotating laser beams. When the sensor receives the re-
flected beams once, a set of points, called a scan packet, is measured. As the laser beams
rotate one revolution, packets are accumulated and complete a full 360 degree view of the
environment. Consider a LIDAR carrying robot is in motion during packet accumulation.
Although scan packets are usually measured at a very high frequency such that the transfor-
mation between two successive packets is negligible, when multiple packets are accumulated,
the transformation between the first packet and the last becomes significantly large that the
accumulated scans become distorted or skewed.
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Figure 3.4: A 2D representation of range data accumulation process. Left figure shows scan
packet at k. Right figure shows the subsequent scan packet at k + 1 with the movement of
a robot. Each dot represents a single point.

These scan packets are initially resolved in the sensor frame Lk. They are transformed to
the robot’s body frame using a simple LIDAR extrinsic parameter

TBL =

[
CBL rlbB

0 1

]
, (3.139)

to facilitate the further derivations. In practice, this extrinsic parameter is already known
based on the 3D model of a robot, and can safely be assumed constant if the robot is
considered as a rigid body. For cases where the extrinsic parameter is not given, they are
sometimes estimated along with the states in the optimization problem.

The de-skewing process is essentially resolving the scan packets into a common frame to
avoid distortion until scanning a complete revolution. This set of de-skewed packets resolved
in a common sensor frame is called a sweep. A sweep is accumulated using scan packets
and IMU sensor measurements. Figure 3.6 shows the sweep accumulation process. When
multiple scan packets are measured between two IMU measurements, all the in-between scan
packets are assumed to be measured at the same pose although in reality it is not necessarily
the case. Every scan packet is assumed to be resolved in the current robot pose. The current
robot pose is immediately updated at every IMU measurement using the robot kinematics.
For example, a scan packet measured after an IMU measurement is resolved in a different
frame than a scan packet measured before. Thus, the scan packets must be transformed to
a local frame, usually the frame at which the first scan packet resolved

pLk+1bk
Bk

= T−1
WBk

TWBk+1
rLk+1bk+1

Bk+1
, (3.140)
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Figure 3.5: Geometric representation of the robot’s body and the sensor.

where TWBk and TWBk+1
in SE (3) are the poses at t = tk and t = tk+1 respectively. The

locations of a set of points Lk+1 relative to bk+1 and resolved in frame FBk+1
are denoted

as rLk+1bk
Bk

. After transformation the set of points are now relative to bk and resolved in
frame FBk . This process is continued until a sweep is formed. Once the sweep is formed and
resolved in a local frame, it is back transformed into the current robot pose.

Figure 3.7 shows a sweep of an office with and without de-skewing process. In Figure 3.7b,
the warping is alleviated as the four walls form a rectangular shape unlike the scan in
Figure 3.7a.

3.3.1.2 Point Cloud Downsampling

Downsampling a point cloud is essential to reduce computational complexity in point cloud
processing. Thus, every incoming sweep is downsampled prior to further processing. A Voxel
Filtering method is used in this thesis for its simplicity and effectiveness [24]. A Voxel filter
uses a voxel grid to reduce the number of points, where a voxel grid is a set of 3D boxes in
space that divides the point cloud into many subspaces. Then, all the points in a voxel are
spatially averaged to a single point. The dimension of the voxel is given by a user, and the
downsampling rate depends on the voxel size.
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Figure 3.6: Graphical representation of de-skewing process is shown. Each cross around the
wall represents a packet point cloud taken at different time. The robot’s motion is captured
only when IMU measurement is obtained.
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(a) Skewed sweep collected using OS-0 128.

(b) Deskewed sweep collected using Velodyne Puck 16.

Figure 3.7: Scan of an office shown from top down view. Both (a) and (b) are aligned at the
top right corner of the image. Top wall looks warped in Figure 3.7a.
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(a) LIDAR measurements without filtering.

(b) LIDAR measurements with filtering.

Figure 3.8: LIDAR measurement of an office is filtered using Voxel Filtering method.
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3.3.1.3 Point Cloud Filtering

Prior to extracting feature points from the de-skewed sweep, a filtering process is per-
formed. Based on sensor characterization in Chapter 3 of [25], LIDAR points with a small
angle of incidence or with a very large distance are filtered out. Additionally, measurements
occluded by objects are also omitted because they can appear as corners as shown in Fig-
ure 3.9. These points are identified through a sudden change in the vector length between
consecutive points.

δθ

FLk unreliable point

due to small

approach angle

unreliable point

due to occluded

region

FLk

Figure 3.9: Unreliable points due to small angle of incidence and due to occlusion [25].

3.3.2 Feature Extraction

LIDAR sweep provides a complete 360 degree field of view (FoV) of the surrounding. For
a 3D LIDAR, multiple laser beams are arranged along the axial direction of the sensor such
that each laser beam provides a planar sweep. For example, one of Velodyne LIDARs, VLP-
16, has 16 laser beams providing 16 planar scans while one of Ouster LIDAR, OS-0 128, has
128 laser beams providing 128 planar scans. Each planar sweep is called a ring, and these
rings collectively give a complete 3D view of the surrounding. A sensor with more scan rings
can output a denser point cloud.

The point cloud is dense along the scan ring, and is sparse along the axial direction.
Therefore, the feature extraction is performed on each scan ring to make a use of the high
resolution point cloud. 2D planar features are obtained using the approach described in [26]
where the local curvature is computed based on nearby points using

s =
1

N
∥∥∥r

B
pibk
k

∥∥∥
∥∥∥∥∥

i+N∑
j=i−N,j 6=i

rpibkBk
− rpjbkBk

∥∥∥∥∥ , (3.141)

where ‖·‖ is the Euclidean norm of a physical vector, and N is the number of nearby points
used to evaluate the local curvature. Note that this is based on the assumption that the
neighboring points are spaced relatively equally. In fact, the space between the points on
the same ring vary based on the angle of incidence and range.

46



Once the curvature values are computed for each point, the points with the low curvature
value are classified as surface features, and the points with the high curvature value are
classified as corner features. When each ring has its own set of surface and corner points,
it is then possible to extract planes and lines in 3D space. For example, a group of corner
features shown in red in Figure 3.11 can be seen as edges of the room in 3D. Additionally, a
cluster of surface features shown in blue can be seen as a plane at the four walls of the room.
Suppose there’s an corner feature pck extracted from a sweep Sj. And pcm and pcn are the

p
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Figure 3.10: Graphical representation of feature extraction.

two nearest corner points from pck extracted from a sweep Si. A unit vector e−→
k of the edge

formed by these two points is

e−→
k =

r−→
pcm li − r−→

pcn li∥∥∥ r−→pcm li − r−→
pcn li

∥∥∥ . (3.142)

Further, consider a surface feature pek extracted from a sweep Sj. Let pem , pen , and peo be
the surface features near pek taken at Si near pek . Then, a normal vector of a plane n−→

k near
the edge point pek is formed by

n−→
k =

(
r−→
pem li − r−→

peo li

)
×
(
r−→
pen li − r−→

peo li

)
∥∥∥( r−→pem li − r−→

peo li

)
×
(
r−→
pen li − r−→

peo li

)∥∥∥ . (3.143)

This feature extraction method has been tested on a simulated environment. Figure 3.11
shows the extracted features. Blue points represent surface features, and orange points
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represent corner features. They collectively form planes and lines in 3D space respectively.
Figure 3.12 shows the extracted features of a sweep taken by a Velodyne Puck VLP-16 on a
street. White and blue points represent surface features, and red and orange points represent
corner features. Once the lines and planes are deduced from the extracted corner and surface
features, they can be used in point cloud registration.

3.3.3 Point Cloud Registration

Assume a LIDAR mounted to a mobile robot accumulates a sweep at one instance in
time at a particular location, and takes another sweep at another instance in time at a
different location. If these two sweep measurements have enough scene overlap, it is possible
to align these two point cloud. This process is called point cloud registration. Once the two
point clouds are aligned, the transformation required to do so is equivalent to the robot’s
relative motion between the two instances. Point cloud registration can be done using various
methods.

Iterative Closest Point (ICP), first introduced by [27], is one of the most popular point
cloud registration algorithms. The algorithm steps are as follows: 1) for each point in the
source point cloud, find a corresponding point in the reference point cloud, 2) weigh the
corresponding pairs, 3) reject outliers, 4) minimize an error via iteration. These steps are
discussed in this section.

3.3.3.1 Finding Correspondence

Unlike some camera features where the features are described by descriptors such as ORB,
SURF, SIFT, etc., LIDAR features are only defined by their curvature. Further, in most
cases, the points in the target sweep do not have an equivalent point in the reference sweep.
Despite this, a point correspondence step is performed to find a nearest point-to-point asso-
ciation between two sweeps. To do so, an initial pose estimate is necessary. Thankfully, this
initialization is naturally provided in mobile robotics by odometry based on inertial sensors
or vision. The target point cloud is transformed using the initial pose, then the transformed
target points are matched with the closest points in the reference point cloud based on Eu-
clidean distance. To facilitate the process, k-NN search algorithm [28] is performed using
k-d tree space partitioning structure.

According to [29], among the ICP sources of error which include wrong initialization,
under-constrained situations, and sensor noise and biases, the initialization is proven to
be the dominant error. The wrong initialization makes the algorithm converge to a local
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(a) Top-down view.

(b) 3D view.

Figure 3.11: Simulated LIDAR sweep of an empty room. Blue points are edge features and
orange points are corner features.
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(a) LIDAR measurement with features.

(b) Street from Google Map.

Figure 3.12: LIDAR sweep of a street collected using VLP-16. White points are surface
features and blue points are flat surface features. Orange points are corner features and red
points are sharp corner features. Flatness and sharpness are determined by the curvature
values.
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minimum out of the attraction basin of the true solution. This is due to wrong point
correspondence.

3.3.3.2 Outlier Rejection

Outlier rejection of a LIDAR sweep is performed to remove unreliable points. Most of the
unreliable points are filtered out using the methods in Section 3.3.1.3. One way to detect
outliers is by setting a minimum threshold for the point-to-point distance. Corresponding
points with point-to-point distances greater than this threshold are rejected.

Another common method is by using RANSAC algorithm [24]. The first step of RANSAC
would be to pick a random sample of consensus, namely N number of points along with
their correspondences. Then, transform sampled points in the target point cloud to match
the reference point cloud using the relative transformation, and compute the point-to-point
residuals. This process is iterated until a relative transform whose consensus set exceeds some
pre-determined threshold is found. One can choose the relative transformation which yielded
the largest consensus set and use that consensus set to re-estimate the relative transform.
However, usually a LIDAR feature cloud is much denser than camera features. Thus iterating
through the LIDAR point cloud would be very computationally heavy.

Outlier rejection is already performed during the pre-processing step by filtering the un-
reliable points by occlusion and the angle of incidence. Therefore, in LIVO, no other outlier
rejection method is applied. However, all the aforementioned outlier rejection methods can
be applied to improve robustness of the odometry solution.

3.3.3.3 LIDAR Point Cloud Registration Factor

This section presents a derivation of the point-to-line and point-to-plane error metrics for
an ICP algorithm. The conventional point-to-plane error metric proposed by [30] involves
small angle approximations. In a recent publication [31], the solution is obtained via the
weighted optimal linear attitude and translation estimator (WOLATE) using the Cayley
transform. Here, the derivation is an extension of the work in Section 5.3 of [25].

Consider Figure 3.14. Let qj be a point in a target point cloud, and pj be the corresponding
point in the reference point cloud. Recall that the corresponding point is not the same point
in physical space, yet the closest point. This means that the distance between the two
corresponding points e−→

j is not zero unless the points are identical. Note that these points
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are always subject to noise thus,

r̃pjbkBk
= rpjbkBk

+ η
pj
Bk
, (3.144)

r̃qjbk+1

Bk+1
= rqjbk+1

Bk+1
+ η

qj
Bk+1

, (3.145)

where ηpjBk ∼ N (0,Rpj) and ηqjBk+1
∼ N (0,Rqj) are the are the noises associated with the

measurement of point pj and qj, respectively.. Then, the distance between the two points is

ē−→
j = r̄−→

qjbk+1 + r−→
bk+1bk − r̄−→

pjbk . (3.146)

Resolving each physical vector in their respective frames yields

ēqjpjBk
= CBkBk+1

r̄qjbk+1

Bk+1
+ rbk+1bk

Bk
− r̄pjbkBk

. (3.147)

The relative position rbk+1bk
Bk

and rotation CBkBk+1
can be found by solving a least squares

problem. If the cost function is defined to minimize the distance between the two points,
ē−→
j, this error metric is called point-to-point. Instead of minimizing the euclidean distance

between the measured points pj and qj, if the distance between a point qj in a target point
cloud and the local line formed by a point pj and some neighboring corner feature pl is
minimized, this error metric is called point-to-line. A line vector is extracted using corner
points in Section 3.3.2. The closest distance between a point and a line is the difference
between the distance between the two points and its projection on top of the line vector

d =

∥∥∥∥∥∥ ē−→j −
l̄−→∥∥∥ l̄−→∥∥∥ l̄−→

j · ē−→
j

∥∥∥∥∥∥ . (3.148)

Given that the line vector is normalized, (3.148) can be simplified as

d =
∥∥∥ ē−→j − l̄−→

j
l̄−→
j · ē−→

j
∥∥∥ . (3.149)

Thus, by resolving the physical vectors in the their respective frames, the point-to-line resid-
ual el can be written as

ejl = ēqjpjBk
− l̄jBk l̄jBk

T
ēqjpjBk

, (3.150)

where ēqjpjBk
is previously defined in (3.147).

Similarly, the point-to-plane error metric minimizes the distance between a point qj and
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ē
−→

j
· n
−→

j

r̄
−→

qjbk+1r
−→

pjbk

plane

e
−→

j

FW

Figure 3.15: Geometrical representation of point to plane registration problem. Blue points
are measured relative to point bk, and the red point is measured relative to point bk+1 [25].

the local surface found around the corresponding point pj in the reference frame. The local
surface is found using the method described in Section 3.3.2. The closest distance between
a point and a plane is the projection of ē−→

j on to the normal vector of the plane n−→
j given as

d = n−→
j · ē−→

j. (3.151)

Thus, the point-to-plane residual is given as

ejpl = njBk
T
(

CBkBk+1
r̄qjbk+1

Bk+1
+ rbk+1bk

Bk
− r̄pjbkBk

)
, (3.152)

= njBk
T
(

CT
WBk

(
CWBk+1

r̄qjbk+1

Bk+1
+ rbk+1w

W − rbkwW
)
− r̄pjbkBk

)
. (3.153)

Lastly, the LIDAR point cloud registration factor can be made with the combination of
these errors. Using point-to-line and point-to-plane error metrics together yields

eL =
[
eTpl eTl

]T
, (3.154)
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where

epl =


e1
pl

e2
pl
...

e
Npl
pl

 , el =


e1
l

e2
l
...

eNll

 . (3.155)

The LIDAR point cloud registration factor constrains two robot poses using the point cloud
registration error metric. In practice, a local map is used as the reference point cloud. A
local map is built using multiple sweeps resolved in some common frame, a frame where a
reliable robot pose is resolved in, to create a denser point cloud to match against. The usage
of this factor in the back-end of SLAM is discussed in Chapter 4.
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Chapter 4

LIVOM - Optimization and Results

The back-end of SLAM solves the constrained optimization problem established in the
front-end. The first attempt at solving the SLAM back-end is using a nonlinear variant
of the linear Kalman Filter (KF), the extended Kalman Filter (EKF), which makes use of
a prediction-correction scheme based on a Markov process [32]. The filter-based methods
perform well in real-time applications due to their simplicity and low computation require-
ment. However, Markov-based odometry solutions cannot update past estimates given new
measurements, and this can cause problems in the mapping processes. Batch methods, also
known as graph-based methods, can efficiently solve this problem by keeping a window of
the robot’s old poses. This is made possible thanks to recent advancements in hardware able
to execute expensive computations and in the field of linear solvers. Graph-based uncon-
strained optimization problems are formulated as least squares problems, and can be solved
using various optimization methods such as Gauss-Newton (GN) or Levenberg-Marquardt
(LM). The Ceres solver [33] is used to solve the back-end least squares problem associated
with SLAM. This chapter discusses novel tightly-coupled LIDAR-Inertial-Visual Odometry
and Mapping by solving the factor graph established in Chapter 3. The proposed navigation
solution comprises of odometry initialization in Section 4.1, the sliding window filter prob-
lem setup in Section 4.2, marginalization in Section 4.3, and finally experimental results and
comparison to the state-of-the art solutions in Section 4.4.

4.1 Odometry Initialization

The initial robot pose estimation is essential as the successive trajectory estimate is relative
to the robot’s initial state. Sometimes, a poor initialization can affect the data association in
the front-end. For example, LIDAR sweeps are deskewed using inertial sensor measurements
and the robot kinematics. If the initial robot pose is not properly aligned with the gravity,
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the sweep may not be de-skewed thoroughly, and can cause drift in the odometry solution.
For a case like monocular visual SLAM, the scale is not directly observable. The scale factor
relates the physical dimensions of the objects to the corresponding dimensions in a camera
image [34]. Wrong scale estimate hinders directly fusing the relative vision factor with other
sensor data in monocular vision SLAM.

A loosely-coupled sensor fusion method is adopted by [1] to realize estimator initialization.
In traditional vision-only SLAM, the Structure from Motion (SfM) method, a photogram-
metric range imaging technique, is used to estimate the initial camera poses [1]. Relative
motion can be estimated using eight-point [23] or five-point [23] algorithms. By aligning
the relative camera poses from the SfM with the preintegrated IMU poses, the IMU sensor
biases, velocities, and the camera scale factor can be recovered. Similarly, a LIDAR scan-to-
scan matching is performed to provide LIDAR poses [35], and with sufficient motion of the
sensor pair, the initial attitude of the robot with respect to the gravity vector as well as the
IMU sensor biases can be obtained [2].

In this section, the initialization scheme proposed by [2] is discussed because LIDAR
scan matching can provide more accurate relative poses, and the monocular camera’s scale
factor can be directly computed. The system initialization is done in four steps that include
rate gyroscope bias estimation, gravity vector alignment, velocity estimation with gravity
refinement, and accelerometer bias estimation.

4.1.1 Rate Gyroscope Bias Estimation

Consider two body poses at t = tk and t = tk+1. Recall that the rotation relative motion
increment has the form

∆Ckk+1 , CT
WBk

CWBk+1
, (4.1)

and its first order update is

∆̂Ckk+1 ≈ ∆̄Ckk+1Exp
(
∂∆Ckk+1

∂βgB
δβgB

)
. (4.2)

A window of the robot poses is used to initialize the system. Assuming constant bias across
the window, the gyroscope bias can be estimated by minimizing the difference between the
relative robot pose and the corresponding preintegrated IMU angular velocity measurements
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(3.19),

δβgB = arg min
δβgB

∑
k∈W

Jk
(
CWBk ,CWBk+1

)
, (4.3)

where W indexes the robot poses in the window, and

Jk
(
CWBk ,CWBk+1

)
= 1

2

∥∥∥Log(∆̂CT
kk+1CT

WBk
CWBk+1

)∥∥∥2

. (4.4)

The optimization problem can be formulated as a nonlinear least squares problem. The error
residual between the rotation relative motion increment and the relative rotation from scan
matching can be linearized as

ek (βgB) = ek
(
β̄gB + δβgB

)
(4.5)

= Log

(∆̄Ckk+1Exp

(
∂∆Ckk+1

∂βgB

∣∣∣∣
β̄gB

δβgB

))T

CT
WBk

CWBk+1

 (4.6)

= Log

Exp

(
∂∆Ckk+1

∂βgB

∣∣∣∣
β̄gB

δβgB

)T

∆̄CT
kk+1CT

WBk
CWBk+1

 , (4.7)

where ∆̄Ckk+1 = ∆Ckk+1

(
β̄gB
)
, and β̄gB = 0. Using the first order approximation (2.36), the

property of the exponential map give in (2.30), and by setting

∆̄CT
kk+1CT

WBk
CWBk+1

= δ∆̃Ckk+1, (4.8)

the above equation can be rewritten as

ek
(
β̄gB + δβgB

)
= Log

(
Exp

(
−∂∆Ckk+1

∂βgB

∣∣∣∣
β̄gB

δβgB

)
δ∆̃Ckk+1

)
. (4.9)

= Log

(
δ∆̃Ckk+1Exp

(
−δ∆̃CT

kk+1

∂∆Ckk+1

∂βgB

∣∣∣∣
β̄gB

δβgB

))
(4.10)

≈ Log
(
δ∆̃Ckk+1

)
− J−1

r

(
Log

(
δ∆̃Ckk+1

))
δ∆̃CT

kk+1

∂∆Ckk+1

∂βgB

∣∣∣∣
β̄gB

δβgB

(4.11)

= ēk +
∂ek
∂βgB

∣∣∣∣
β̄gB

δβgB. (4.12)
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Having the linearized error residual, the objective function can be perturbed as

Jk (βgB) = 1
2
ek (βgB)T ek (βgB) (4.13)

= 1
2
ek
(
β̄gB + δβgB

)T ek
(
β̄gB + δβgB

)
(4.14)

≈ 1
2

(
ek +

∂ek
∂βgB

∣∣∣∣
β̄gB

δβgB

)T(
ek +

∂ek
∂βgB

∣∣∣∣
β̄gB

δβgB

)
(4.15)

= 1
2
ēTk ēk +

(
∂ek
∂βgB

∣∣∣∣
β̄gB

)T

ēkδβgB + 1
2
δβgB

T

(
∂ek
∂βgB

∣∣∣∣
β̄gB

)T(
∂ek
∂βgB

∣∣∣∣
β̄gB

)
δβgB, (4.16)

so the Jacobian and the Hessian matrices of each objective function are

∂Jk
∂βgB

∣∣∣∣
δβ̄gB

=

(
∂ek
∂βgB

∣∣∣∣
β̄gB

)T

ēk, (4.17)

∂2Jk

∂βgB
2

∣∣∣∣
δβ̄gB

=

(
∂ek
∂βgB

∣∣∣∣
β̄gB

)T(
∂ek
∂βgB

∣∣∣∣
β̄gB

)
. (4.18)

The complete Jacobian and Hessian matrices are simply the summation of all the Jacobian
and Hessian in the window,

∂J

∂βgB

∣∣∣∣
δβ̄gB

=
∑
k∈W

∂Jk
∂βgB

∣∣∣∣
β̄gB

, (4.19)

∂2J

∂βgB
2

∣∣∣∣
δβ̄gB

=
∑
k∈W

∂2Jk

∂βgB
2

∣∣∣∣
β̄gB

. (4.20)

Finally, the gyroscope bias can be estimated using the Gauss-Newton method,

δβgB = −

(
∂2J

∂βgB
2

∣∣∣∣
δβ̄gB

)−1
∂J

∂βgB

∣∣∣∣
δβ̄gB

, (4.21)

β̂gB = β̄gB + δβgB. (4.22)

4.1.2 Gravity Vector Initialization

The pose estimates of the initial window obtained by the LIDAR scan matching assumes

that the gravity in the initial body frame is gB0 =
[
0 0 −9.81

]T
. However, the initial

orientation of the robot is not always aligned with the Earth’s gravity vector. This section
shows how the gravity can be estimated using the inertial sensor measurements and the
estimated poses. Consider the preintegrated IMU measurements between three consecutive
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sweeps, namely sweep at t = tk, t = tk+1, and t = tk+2, or simply 1, 2, 3 for short,

rb2b0B0
= rb1b0B0

+ vb1b0/B0

B0
∆t12 + 1

2
gB0∆t

2
12 + CB0B1∆r12, (4.23)

rb3b0B0
= rb2b0B0

+ vb2b0/B0

B0
∆t23 + 1

2
gB0∆t

2
23 + CB0B2∆r23, (4.24)

vb2b0/B0

B0
= vb1b0/B0

B0
+ gB0∆t12 + CB0B1∆v12. (4.25)

Because the scan matching does not provide any velocity estimates, the velocities are elim-
inated using (4.1), (4.2), and (4.3) via a parametrization. First, substituting (4.25) into
(4.24) yields

rb3b0B0
= rb2b0B0

+
(

vb1b0/B0

B0
+ gB0∆t12 + CB0B1∆v12

)
∆t23 + 1

2
gB0∆t

2
23 + CB0B2∆r23 (4.26)

= rb2b0B0
+ vb1b0/B0

B0
∆t23 + gB0∆t12∆t23 + CB0B1∆v12∆t23 + 1

2
gB0∆t

2
23 + CB0B2∆r23.

(4.27)

By pre-multiplying (4.23) and (4.27) by ∆t23 and ∆t12, respectively, results

rb2b0B0
∆t23 = rb1b0B0

∆t23 + vb1b0/B0

B0
∆t12∆t23 + 1

2
gB0∆t

2
12∆t23 + CB0B1∆r12∆t23, (4.28)

rb3b0B0
∆t12 = rb2b0B0

∆t12 + vb1b0/B0

B0
∆t23∆t12 + gB0∆t

2
12∆t23+ (4.29)

CB0B1∆v12∆t23∆t12 + 1
2
gB0∆t

2
23∆t12 + CB0B2∆r23∆t12. (4.30)

Subtracting and isolating the gravity terms on the left hand side yields

a123gB0 = b123, (4.31)

where

a123 = 1
2

(
∆t212∆t23 + ∆t12∆t223

)
gB0 , (4.32)

and

b123 =
(
rb1b0B0

− rb2b0B0

)
∆t23 −

(
rb2b0B0

− rb3b0B0

)
∆t12+ (4.33)

CB0B1∆r12∆t23 − CB0B2∆r23∆t12 − CB0B1∆v12∆t12∆t23. (4.34)

Thus, the gravity term can be computed by the system of the linear expressions obtained
via the remaining consecutive sweep triplets in the window such that

AgB0 = B, (4.35)
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where

A =


a123

a234

...
ak−2k−1k

 , (4.36)

and

B =


b123

b234

...
bk−2k−1k

 , (4.37)

for k ∈ W .

4.1.3 Velocity Estimation and Gravity Refinement

The estimated gravity is further refined in this section by solving a nonlinear least squares
problem. Consider the equations (4.23) and (4.25). Note that the gravity vector is con-
strained with its magnitude g = 9.81m s−2. Let the gravity direction resolved in FB0

be g′B0
=

gB0

g
. Then, the gravity direction in the inertial frame FW is known to be

g′W =
[
0 0 −1

]T
. The attitude of the initial body frame FB0 with respect to FW can

be defined as

CWB0 = Exp (φB0) = Exp (φa) , (4.38)

where

a =
g′B0

×g′B0∥∥g′B0

×g′B0

∥∥ , (4.39)

φ = arctan

(∥∥g′B0

×g′B0

∥∥
g′B0

Tg′B0

)
. (4.40)

Thus the gravity in the initial body frame can be rewritten as

gB0 = gCT
WB0

gW . (4.41)
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However, any rotation around the gravity direction will not be observable. Hence, the
perturbation around this initial attitude is going to have a form

CWB0 = C̄WB0Exp (δφB0) , (4.42)

where δφB0 =
[
δφT

xy 0
]T

. Thus the first order approximation of the gravity in the initial
body frame is written as

gB0 = gExp (−δφB0) C̄T
WB0

g′W (4.43)

= g
(
1− δφ×B0

)
C̄T
WB0

g′W (4.44)

= gC̄T
WB0

g′W + g
(
C̄T
WB0

g′W
)×
δφB0 . (4.45)

Substituting this gravity into (4.23) and (4.25) yields

rb2b0B0
= rb1b0B0

+ vb1b0/B0

B0
∆t12 + 1

2

(
gC̄T

WB0
g′W + g

(
C̄T
WB0

g′W
)×
δφB0

)
∆t212 + CB0B1∆r12,

(4.46)

vb2b0/B0

B0
= vb1b0/B0

B0
+
(
gC̄T

WB0
g′W + g

(
C̄T
WB0

g′W
)×
δφB0

)
∆t12 + CB0B1∆v12. (4.47)

Isolating the δφB0 and the velocities on the left hand side results

a12

vb1b0/B0

B0

vb2b0/B0

B0

δφxy

 = b12, (4.48)

where

a12 =

1∆t12 0
(

1
2
g
(
C̄T
WB0

g′W
)×

∆t212

)
(:,1,2)

1 −1
(
g
(
C̄T
WB0

g′W
)×

∆t12

)
(:,1,2)

 , (4.49)

and

b12 =

[
rb2b0B0

− rb1b0B0
− CB0B1∆r12 − 1

2
ḡB0∆t

2
12

−CB0B1∆v12 − ḡB0∆t12

]
. (4.50)

The subscript (·)(:,1,2) indicates that only the first two columns of the matrix are kept. Again,
the system is expanded to every doublet in the window. However, in this case, every doublet
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has different velocities to be estimated. The normal equations matrices are used

A12 = aT
12a12 =

Av11 Av12 Av1g

Av21 Av22 Av2g

Agv1 Agv2 Ag

 ∈ R8×8, (4.51)

B12 = aT
12b12 =

bv1
bv2
bg

 ∈ R8×1. (4.52)

The normal equations matrices are concatenated into a single matrix,


∑

Av11

∑
Av12 · · ·

∑
Av1N

∑
Av1g∑

Av21

∑
Av22 · · ·

∑
Av2N

∑
Av2g

...
... . . . ...

...∑
Agv1

∑
Agv2 · · ·

∑
AvNN

∑
Ag





vb1b0/B0

B0

vb2b0/B0

B0

...
vbN b0/B0

B0

δφxy


=



∑
bv1∑
bv2
...∑
bvN∑
bg


. (4.53)

This linear system is solved iteratively. Once the gravity vector is refined in the initial body
frame, CWB0 can be used to transform all the robot poses relative to the gravity-aligned
inertial frame.

4.1.4 Accelerometer Bias Estimation

Once the gravity vector is refined, substituting the first order bias update (3.101) into
(4.34) results in

b123 =
(
rb1b0B0

− rb2b0B0

)
∆t23 −

(
rb2b0B0

− rb3b0B0

)
∆t12+ (4.54)

CB0B1

(
∆̄r12 +

∂∆r12

∂βaB
δβaB

)
∆t23− (4.55)

CB0B2

(
∆̄r23 +

∂∆r23

∂βaB
δβaB

)
∆t12− (4.56)

CB0B1

(
∆̄v12 +

∂∆v12

∂βaB
δβaB

)
∆t12∆t23. (4.57)

Again, assuming constant bias over the initial window, rearranging (4.54) such that the δβaB
is on the left hand side yields

ã123δβ
a
B = b̃123, (4.58)
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where

ã123 =

(
−CB0B1

∂∆r12

∂βaB
∆t23 + CB0B2

∂∆r23

∂βaB
∆t12 + CB0B1

∂∆v12

∂βaB
∆t12∆23

)
, (4.59)

and

b̃123 = −1
2
gB0

(
∆t212∆t23 + ∆t12∆t223

)
+
(
rb1b0B0

− rb2b0B0

)
∆t23 −

(
rb2b0B0

− rb3b0B0

)
∆t12+ (4.60)

CB0B1∆̄r12∆t23 − CB0B2∆̄r23∆t12 − CB0B1∆̄v12∆t12∆t23. (4.61)

Similar to solving gravity vector estimation, to estimate δβaB, linear expressions for the
remaining consecutive sweep triplets in the window are concatenated in a matrix.

4.2 Sliding Window Filter

Xk

Xk+1 Xk+2 Xk+3 Xk+4

Local Map

Window

Sk+1 Sk+2 Sk+3

l0

l1

l2

l3

l4

l5

Sk+4Sk−5 SkSk−1Sk−2Sk−3Sk−4

Constraint

Vision feature

Preintegrated IMU

States in the window

Feature Map
Marginalization factor

Pivot Sweep

LIDAR sweep

Transformed

Figure 4.1: Illustration of proposed sliding window filter.

In this section, the sliding window-based tightly-coupled LIDAR-Visual-Inertial Odometry
and Mapping (LIVOM) solution is presented for high accuracy and robust state estimation.
After estimator initialization, the robot states are estimated using sliding window filter
(SWF) as shown in Figure 4.1. The filter uses the sensor factors that constrains poses in the
window as well as the marginalization factor. The states in the window are

X = {Xk,Xk+1, . . . ,Xk+N , λj, λj+1, . . . , λj+M}, (4.62)
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where

Xk =



CWBk vbkw/WW rbkwW
0 1

0 1

1 βaBk βgBk
0 1 0

0 0 1


(4.63)

is the state in a matrix Lie group that contains position, velocity and orientation of the robot
as well as the IMU accelerometer and gyroscope biases. The states in vector space can be
obtained via

xk =
[
φWBk

T vbkw/WW

T
rbkwW

T
βaBk

T βgBk
T
]T
∈ R15×1, (4.64)

where φWBk = Log (CWBk). Similar to errors defined in Section 3.1.3.2, the state error is
defined by matrix multiplication δX = X̄−1X, and each element of the matrix is given as

δCB = C̄T
WBCWB, (4.65)

δvB = C̄T
WB

(
vbw/WW − v̄bw/WW

)
, (4.66)

δrB = C̄T
WB

(
rbwW − r̄bwW

)
, (4.67)

δβgB = βgB − β̄
g
B, (4.68)

δβaB = βaB − β̄aB. (4.69)

Additionally, λj is the inverse depth value of jth vision feature which is optimized along
with the robot states. N is the total number of states, and M is the total number of visual
features in the window. The factor graph is optimized by forming a least squares problem

arg min
X

J (X ) , (4.70)

where

J (X ) = 1
2
‖bp − ApXk‖2 + 1

2
‖eI (X )‖2

ΣI
+ 1

2
‖eC (X )‖2

ΣC
+ 1

2
‖eL (X )‖2

ΣL
, (4.71)

and bp and Ap are the prior information from marginalization. Also, eI (X ), eC (X ), and
eL (X ) are preintegrated IMU measurement factor, depth-based vision factor, and LIDAR
point cloud registration factor respectively. The optimization problem is solved using the
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Gauss-Newton method. The linearized objective function is given as

J
(
X̄ + δX

)
= 1

2
‖bp − Ap (Xk + δXk)‖2 + 1

2
eTI
(
X̄ + δX

)
Σ−1
I eI

(
X̄ + δX

)
+ (4.72)

1
2
eTC
(
X̄ + δX

)
Σ−1
C eC

(
X̄ + δX

)
+ 1

2
eTL
(
X̄ + δX

)
Σ−1
L eL

(
X̄ + δX

)
.

(4.73)

Linearization of the objective function requires the linearization of the error residuals of
each factor. In the following sections, linearization of each factor is discussed. For brevity
of notation, Cj = CWBj , vj = vbjw/WW , rj = rbjwW are used.

4.2.1 Preintegrated IMU Factor

The IMU cost function is given as

JI (X ) =
∑
k∈B

JI,k (Xk,Xk+1) , (4.74)

where

JI,k (Xk,Xk+1) = 1
2
eTI,k (Xk,Xk+1)Σ−1

I,kk+1eI,k (Xk,Xk+1) , (4.75)

and B indexes body states in the window. Recall the preintegrated IMU factor residual that
links two states Xi and Xj from Section 3.1.6 is given by

eI,i =
[
eT∆Cij eT∆vij eT∆rij eTβaij eT

βgij

]T
. (4.76)

The preintegrated IMU factor residual is perturbed using the error defined by matrix mul-
tiplication. The analytic expressions for the Jacobian matrices are derived in the following
sections.

4.2.1.1 Rotation Jacobian

The residual associated with the rotation was earlier defined as

e∆Cij = Log
(

∆̂CT
ijC

T
i Cj

)
. (4.77)

By substituting the rotation error (4.65) and gyroscope bias error (4.69), and by defining
the nominal error in a matrix Lie group Ē∆Cij = ∆̄CT

ijC̄T
i C̄j defined earlier, (4.77) can be
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rewritten as

e∆Cij = Log

((
∆̄CijExp

(
∂∆Cij

∂βgBi
δβgBi

))T (
C̄iδCi

)T C̄jδCj

)
(4.78)

= Log

(
Exp

(
∂∆Cij

∂βgBi
δβgBi

)T

∆̄CT
ijδC

T
i C̄T

i C̄jδCj

)
(4.79)

= Log
(
Exp

(
−∂∆Cij

∂βgBi
δβgBi

)
∆̄CT

ijC̄
T
i C̄jExp

(
−
(
C̄T
i C̄j

)T
δφi

)
Exp (δφj)

)
, (4.80)

= Log
(

Ē∆CijExp
(
−ĒT

∆Cij
∂∆Cij

∂βgBi
δβgBi

)
Exp

(
−
(
C̄T
i C̄j

)T
δφi

)
Exp (δφj)

)
. (4.81)

By defining the nominal error in a matrix Lie algebra ē∆Cij = Log
(
Ē∆Cij

)
and using the

BCH formula from Definition 2.2.1, (4.81) can be approximated as

e∆Cij ≈ ē∆Cij+ (4.82)

J−1
r

(
ē∆Cij

)
Log

(
Exp

(
−ĒT

∆Cij
∂∆Cij

∂βgBi
δβgBi

)
Exp

(
−
(
C̄T
i C̄j

)T
δφBi

)
Exp (δφj)

)
(4.83)

= ē∆Cij + J−1
r

(
ē∆Cij

)(
−ĒT

∆Cij
∂∆Cij

∂βgBi
δβgBi − C̄T

j C̄iδφi + δφj

)
(4.84)

The matrix logarithm of the perturbations are assumed very small. Further, the nominal
residual is assumed to be very close to zero. Thus, by neglecting the higher order terms,
J−1
r

(
ē∆Cij

)
≈ 1. Therefore, the linearized rotation residual is

e∆Cij ≈ ē∆Cij − C̄T
j C̄i∆̄Cij

∂∆Cij

∂βgBi
δβgBi − C̄T

j C̄iδφi + δφj. (4.85)

4.2.1.2 Velocity Jacobian

The residual associated with the velocity was earlier defined as

e∆vij = CT
i (vj − vi −∆tijgW )− ∆̂vij. (4.86)

Substituting the velocity error (4.66) as well as the rotation error (4.65) into (4.86) yields

e∆vij =
(
C̄iδCi

)T (v̄j + C̄jδvj − v̄i − C̄iδvi −∆tijgW
)
− ∆̂vij (4.87)

= Exp (−δφi) C̄T
i

(
v̄j − v̄i −∆tijgW + C̄jδvj − C̄iδvi

)
− ∆̂vij, (4.88)
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To linearize (4.88), let Exp (−δφi) ≈ 1− δφ×i and use the first order update of the biases

∆̂vij ≈ ∆̄vij +
∂∆vij
∂βaBi

δβaBi +
∂∆vij
∂βgBi

δβgBi . (4.89)

Neglecting the higher order terms, (4.88) becomes

e∆vij ≈
(
1− δφ×i

)
C̄T
i

(
v̄j − v̄i −∆tijgW + C̄jδvj − C̄iδvi

)
− (4.90)(

∆̄vij +
∂∆vij
∂βaBi

δβaBi +
∂∆vij
∂βgBi

δβgBi

)
(4.91)

= C̄T
i (v̄j − v̄i −∆tijgW )− ∆̄vij + C̄T

i C̄jδvj − δvi− (4.92)

δφ×i C̄T
i (v̄j − v̄i −∆tijgW )− ∂∆vij

∂βaBi
δβaBi −

∂∆vij
∂βgBi

δβgBi (4.93)

= ē∆vij + C̄T
i C̄jδvj − δvi +

(
C̄T
i (v̄j − v̄i −∆tijgW )

)×
δφi −

∂∆vij
∂βaBi

δβaBi −
∂∆vij
∂βgBi

δβgBi .

(4.94)

4.2.1.3 Position Jacobian

Similar to velocity Jacobian derivation, recall the residual associated with the position
defined earlier

e∆rij = CT
i

(
rj − ri −∆tijvi − 1

2
∆t2ijgW

)
− ∆̂rij. (4.95)

Substituting the position error defined by the matrix multiplication (4.67) as well as the
rotation and velocity errors into (4.95) yields

e∆rij =
(
C̄iδCi

)T (r̄j + C̄jδrj − r̄i − C̄iδri −∆tij
(
v̄i + C̄iδvi

)
− 1

2
∆t2ijgW

)
− ∆̂rij (4.96)

= Exp (−δφi) C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

)
+ (4.97)

Exp (−δφi) C̄T
i

(
C̄jδrj − C̄iδri −∆tijC̄iδvi

)
− ∆̂rij. (4.98)

To linearize (4.97), let Exp (−δφi) ≈ 1− δφ×i and use the first order update of the biases

∆̂rij ≈ ∆̄rij +
∂∆rij
∂βaBi

δβaBi +
∂∆rij
∂βgBi

δβgBi . (4.99)
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Neglecting the higher order terms, (4.97) becomes

e∆rij ≈
(
1− δφ×i

)
C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

)
+ (4.100)(

1− δφ×i
)

C̄T
i

(
C̄jδrj − C̄iδri −∆tijC̄iδvi

)
− ∆̄rij −

∂∆rij
∂βaBi

δβaBi −
∂∆rij
∂βgBi

δβgBi

(4.101)

= C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

)
− ∆̄rij + C̄T

i C̄jδrj − δri −∆tijδvi− (4.102)

δφ×i
(
C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

))
− ∂∆rij

∂βaBi
δβaBi −

∂∆rij
∂βgBi

δβgBi (4.103)

= ē∆rij + C̄T
i C̄jδrj − δri −∆tijδvi+ (4.104)(

C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

))×
δφi −

∂∆rij
∂βaBi

δβaBi −
∂∆rij
∂βgBi

δβgBi . (4.105)

4.2.1.4 Bias Jacobian

The bias residuals defined earlier are

eβaij = βaBj − β
a
Bi
, (4.106)

eβgij = βgBj − β
g
Bi
. (4.107)

Perturbing bias residual using the bias errors defined by the matrix multiplication (4.68) and
(4.69) yields

eβaij = β̄aBj + δβaBj − β̄
a
Bi
− δβaBi (4.108)

= ēβaij + δβaBj − δβ
a
Bi
, (4.109)

eβgij = β̄gBj + δβgBj − β̄
g
Bi
− δβgBi (4.110)

= ēβgij + δβgBj − δβ
g
Bi
. (4.111)

4.2.1.5 Summary

The preintegrated IMU factor residual (4.76) is linearized such that

eI,k (Xk,Xk+1) = eI,k
(
X̄k, X̄k+1

)
+
∂eI,k
∂Xk

δξk +
∂eI,k
∂Xk+1

δξk+1, (4.112)
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where

∂eI,k
∂Xk

= (4.113)

−C̄T
j C̄i −ĒT

∆Cij
∂∆Cij
∂βgBi(

C̄T
i (v̄j − v̄i −∆tijgW )

)× −1 −∂∆vij
∂βaBi

−∂∆vij
∂βgBi(

C̄T
i

(
r̄j − r̄i −∆tij v̄i − 1

2
∆t2ijgW

))× −∆tij1 −1 −∂∆rij
∂βaBi

−∂∆rij
∂βgBi

−1
−1


,

(4.114)

∂eI,k
∂Xk+1

=


1

C̄T
i C̄j

C̄T
i C̄j

1
1

 , (4.115)

and δξk = Log (δXk). In addition, the weight associated with the preintegrated IMU factor
ΣI,kk+1 is the covariance matrix obtained by (3.85) in Section 3.1.4.

4.2.2 Depth-based Vision Factor

The visual cost function is given as

JC (X ) =
∑
p∈V

JC,p (X ) , (4.116)

where

JC,p (X ) = 1
2
eTC,p (X )Σ−1

C,keC,p (X ) , (4.117)

and V indexes the vision feature points in the window. Suppose a kth feature lk is tracked
in frames i and j. The depth-based vision factor residual is given as

eC,k (Xi,Xj) =
[
b1 b2

]T řlkcjCj

r
lkcj
Cj ,3

− π−1
c

[x0

y0

]
j

 , (4.118)
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where

řlkcjCj
= CT

BC

(
CT
j

(
Ci

(
CBC

1

λk
π−1
c

([
x0

y0

]
i

)
+ rbcB

)
+ ri − rj

)
− rbcB

)
. (4.119)

Note that only the estimated measurement řlkcjCj
is state dependent in the vision factor resid-

ual. Thus, to linearize the innovation equation (4.118), the chain rule is applied

∂eC,k
∂X

=
∂eC
∂řlkcjCj

∂řlkcjCj

∂X
. (4.120)

For simplicity, řlkcjCj
=
[
xlk ylk zlk

]T
. The first partial derivative is given as

∂eC
∂řlkcjCj

=

 1
zlk

0 − xlk

(zlk)
2

0 1
zlk
− ylk

(zlk)
2

 . (4.121)

The next partial derivative is obtained by perturbing řlkcjCj
. Let the features in frame i be

resolved in the body frame such that rlkbiBi
= CBC

1
λk
π−1
c

([
x0

y0

]
i

)
+ rbcB . Then, the estimated

measurement now becomes

řlkcjCj
= CT

BC

(
CT
j

(
CirlkbiBi

+ ri − rj
)
− rbcB

)
. (4.122)

Recall that the inverse depth λk is optimized along with other robot navigation states. Thus
linearizing (4.122) with respect to λk is

∂řlkcjCj

∂λk
= −CT

BCCT
j CiCBC

1

λ2
k

π−1
c

([
x0

y0

]
i

)
. (4.123)

Further, (4.122) is perturbed using the pose errors defined by the matrix multiplication (4.65)
and (4.67),

řlkcjCj
= CT

BC

((
C̄jδCj

)T (C̄iδCirlkbiBi
+ r̄i + C̄iδri − r̄j − C̄jδrj

)
− rbcB

)
. (4.124)
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To linearize (4.124), let δCj ≈ 1 + δφ×j . Neglecting the second order terms, (4.124) is now
approximated as

řlkcjCj
≈ CT

BC

((
1− δφ×j

)
C̄T
j

(
C̄i

(
1 + δφ×i

)
rlkbiBi

+ r̄i + C̄iδri − r̄j − C̄jδrj
)
− rbcB

)
(4.125)

= CT
BC

(
C̄T
j

(
C̄irlkbiBi

+ r̄i − r̄j
)
− rbcB

)
+ (4.126)

CT
BC

(
−δφ×j C̄T

j

(
C̄irlkbiBi

+ r̄i − r̄j
)

+ C̄T
j C̄iδφ

×
i rlkbiBi

+ C̄T
j C̄iδri − δrj

)
(4.127)

= r̄lkcjCj
+ CT

BC

((
C̄T
j

(
C̄irlkbiBi

+ r̄i − r̄j
))×

δφj − C̄T
j C̄irlkbiBi

×
δφi + C̄T

j C̄iδri − δrj
)
.

(4.128)

In summary, the depth-based vision factor (4.118) is linearized such that

eC,k
(
X̄ + δX

)
= eC,k

(
X̄
)

+
∂eC,k
∂Xi

δξi +
∂eC,k
∂Xj

δξj +
∑
k∈Z

∂eC,k
∂λk

δλk, (4.129)

where,

∂eC,k
∂Xi

=

 1
zlk

0 − xlk

(zlk)
2

0 1
zlk
− ylk

(zlk)
2

[−CT
BCC̄T

j C̄irlkbiBi

×
0 CT

BCC̄T
j C̄i 0 0

]
, (4.130)

∂eC,k
∂Xj

=

 1
zlk

0 − xlk

(zlk)
2

0 1
zlk
− ylk

(zlk)
2

[CT
BC

(
C̄T
j

(
C̄irlkbiBi

+ r̄i − r̄j
))×

0 −CT
BC 0 0

]
, (4.131)

∂eC,k
∂λk

=

 1
zlk

0 − xlk

(zlk)
2

0 1
zlk
− ylk

(zlk)
2

− CT
BCC̄T

j C̄iC̄BC
1

λ2
k

π−1
c

([
x0

y0

]
i

)
, (4.132)

and Z indexes all the features seen at both frames i and j. The weight associated with the
camera factor ΣC,k has a size of 2 × 2. In fact, the image coordinates of the feature points
are affected by noise, and the effect is carried on when tracking is performed in the 3D
reconstruction equations. The noise model by [36] denotes the covariance associated with a
point in camera frame and allows weighting each point accordingly. In practice, computing
weights for each point may be computationally heavy. Given that the outlier rejection has
removed most of the non reliable points, some constant weight is given to each feature.
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4.2.3 LIDAR Point Cloud Registration Factor

The LIDAR PCR factor is given as

JL (X ) =
∑
S∈M

∑
p∈S

JplL,S,p (Xi,XS) + J lL,S,p (Xi,XS) , (4.133)

where S indexes all the points in a sweep andM indexes the LIDAR sweeps in the window.
XS denotes the robot state at sweep S, and Xi denotes the robot state where the reference
point cloud is resolved in. Thus, the point-to-plane and the point-to-line cost associated
with jth point qk in jth sweep are given respectively as

JplL,j,k (Xi,Xj) = 1
2
Σpl
L,j,k

−1
eplL,j,k

2
(Xi,Xj) , (4.134)

J lL,j,k (Xi,Xj) = 1
2
elL,j,k

T
(Xi,Xj) Σpl

L,j,k
−1

elL,j,k (Xi,Xj) . (4.135)

In this section, the corresponding point of point qk is denoted as pk.

4.2.3.1 Point-to-line Factor

LIDAR PCR point-to-line factor residual is given as

elL,j,k (Xi,Xj) = epL,j,k (Xi,Xj)− lkBil
k
Bi

TepL,j,k (Xi,Xj) , (4.136)

where

epL,j,k (Xi,Xj) = CT
i

(
Cjr

qkbj
Bj

+ rj − ri
)
− rpkbiBi

(4.137)

is the point-to-point error. Note that only the point-to-point error is a function of states.
Thus, a first order Taylor-series approximation is used in (4.137). Substituting the state
error definitions (4.65) and (4.67) in (4.137) results in

epL,j,k (Xi,Xj) =
(
C̄iδCi

)T (C̄jδCjr
qkbj
Bj

+ r̄j + C̄jδrj − r̄i − C̄iδri
)
− rpkbiBi

. (4.138)
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To linearize (4.138), let δCj ≈ 1 + δφ×j . By setting ēpL,j,k = epL,j,k
(
X̄i, X̄j

)
and neglecting the

second order terms, (4.138) is approximated as

epL,j,k (Xi,Xj) ≈
(
1− δφ×i

)
C̄T
i

(
C̄j

(
1 + δφ×j

)
rqkbjBj

+ r̄j + C̄jδrj − r̄i − C̄iδri
)
− rpkbiBi

(4.139)

= C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
)
− rpkbiBi

− (4.140)

δφ×i C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
)

+ C̄T
i C̄jδφ

×
j rqkbjBj

+ C̄T
i C̄jδrj − δri (4.141)

= ēpL,j,k +
(

C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
))×

δφi − C̄T
i C̄jr

qkbj
Bj

×
δφj + C̄T

i C̄jδrj − δri
(4.142)

= ēpL,j,k +
∂epL,j,k
∂Xi

δξi +
∂epL,j,k
∂Xj

δξj, (4.143)

where

∂epL,j,k
∂Xi

=
[(

C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
))×

0 −1 0 0
]
, (4.144)

∂epL,j,k
∂Xj

=
[
−C̄T

i C̄jr
qkbj
Bj

×
0 C̄T

i C̄j 0 0
]
. (4.145)

Combining the linearized point-to-point error with (4.136) yields

elL,j,k (Xi,Xj) = ēpL,j,k +
∂epL,j,k
∂Xi

δXi +
∂epL,j,k
∂Xj

δXj− (4.146)

lkBil
k
Bi

T
(

ēpL,j,k +
∂epL,j,k
∂Xi

δXi +
∂epL,j,k
∂Xj

δXj

)
(4.147)

= ēpL,j,k − lkBil
k
Bi

TēpL,j,k+ (4.148)(
∂epL,j,k
∂Xi

− lkBil
k
Bi

T∂epL,j,k
∂Xi

)
δXi +

(
∂epL,j,k
∂Xj

− lkBil
k
Bi

T∂epL,j,k
∂Xj

)
δXj

(4.149)

= ēlL,j,k +
∂elL,j,k
∂Xi

δξi +
∂elL,j,k
∂Xj

δξj. (4.150)

4.2.3.2 Point-to-plane Factor

Moreover, the LIDAR PCR point-to-plane factor residual is given as

eplL,j,k (Xi,Xj) = nkBi
T
(

CT
i

(
Cjr

qkbj
Bj

+ rj − ri
)
− rpkbiBi

)
. (4.151)
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The analytic expressions for Jacobian matrix of the residual is derived via linearization of
(4.151) using a first order Taylor-series expansion. Substituting the errors (4.65) and (4.67)
into (4.151) yields

eplL,j,k (Xi,Xj) = nkBi
T
((

C̄iδCi

)T (C̄jδCjr
qkbj
Bj

+ r̄j + C̄jδrj − r̄i − C̄iδri
)
− rpkbiBi

)
. (4.152)

To linearize (4.152), let δCj ≈ 1 + δφ×j . Neglecting the second order terms, (4.152) becomes

eplL,j,k (Xi,Xj) ≈ nkBi
T
((

1− δφ×i
)

C̄T
i

(
C̄j

(
1 + δφ×j

)
rqkbjBj

+ r̄j + C̄jδrj − r̄i − C̄iδri
)
− rpkbiBi

)
(4.153)

= nkBi
T
(

C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
)
− rpkbiBi

)
+ (4.154)

nkBi
T
(
−δφ×i C̄T

i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
)

+ C̄T
i C̄jδφ

×
j rqkbjBj

+ C̄T
i C̄jδrj − δri

)
(4.155)

= ēplL,j,k + nkBi
T
(

C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
))×

δφi− (4.156)

nkBi
TC̄T

i C̄jr
qkbj
Bj

×
δφj + nkBi

TC̄T
i C̄jδrj − nkBi

T
δri. (4.157)

= ēplL,j,k +
∂eL,j,k
∂Xi

δξi +
∂eL,j,k
∂Xj

δξj, (4.158)

where

∂eL,j,k
∂Xi

=
[
nkBi

T
(

C̄T
i

(
C̄jr

qkbj
Bj

+ r̄j − r̄i
))×

0 −nkBi
T 0 0

]
, (4.159)

∂eL,j,k
∂Xj

=
[
−nkBi

TC̄T
i C̄jr

qkbj
Bj

×
0 nkBi

TC̄T
i C̄j 0 0

]
. (4.160)

The point-to-plane error metric has been widely used in structured environment. To reduce
computational burden, only the point-to-plane factor is used in the LIVO. However, point-
to-line can be still used to increase the robustness of the navigation solution.
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4.2.4 Optimization

Finally, using the linearized factors and by setting ē = e
(
X̄
)
, the objective function can

be linearized as

J (X ) = 1
2
eTp
(
X̄ + δX

)
Hpep

(
X̄ + δX

)
+ 1

2
eTI
(
X̄ + δX

)
Σ−1
I eI

(
X̄ + δX

)
+ (4.161)

1
2
eTC
(
X̄ + δX

)
Σ−1
C eC

(
X̄ + δX

)
+ 1

2
eTL
(
X̄ + δX

)
Σ−1
L eL

(
X̄ + δX

)
(4.162)

= 1
2
eTp
(
X̄ + δX

)
Hpep

(
X̄ + δX

)
+ 1

2

(
ēI +

∂eI
∂X

δX
)T

Σ−1
I

(
ēI +

∂eI
∂X

δX
)

+ (4.163)

1
2

(
ēC +

∂eC
∂X

δX
)T

Σ−1
C

(
ēC +

∂eC
∂X

δX
)

+ 1
2

(
ēL +

∂eL
∂X

δX
)T

Σ−1
L

(
ēL +

∂eL
∂X

δX
)

(4.164)

=
(

1
2
ēTpHpēp + rTp δX + 1

2
δXTHpδX
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= J (X ) +
∂J (X )

∂X
δX + 1

2
δXT∂

2J (X )

∂X 2
δX, (4.171)

where δX =
[
δξTk δξTk+1 . . . δξTk+N

]T
. Given that the approximate Hessian matrix, ∂

2J(X )
∂X 2 ,

is positive definite, Gauss-Newton method solves iteratively by solving for δX that minimizes
the cost

∂J (X )

∂δX
=
∂2J (X )

∂X 2
δX∗ +

∂J (X )

∂X
= 0. (4.172)

→ δX∗ = −∂
2J (X )

∂X 2

∂J (X )

∂X
, (4.173)

and updating the nominal solution using the error definitions defined in Section 4.2

X̂t = X̄tδXt, (4.174)
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for t ∈ [k,N ].

4.3 Marginalization

As the robot continuously moves and observes new features, the size of the state X in the
window constantly increases. To bound the computational complexity, older measurement
factors get discarded from the sliding window and get integrated into a prior. This process
is called marginalization [37]. Marginalization is necessary not only to bound the compu-
tational complexity but also to carry over the uncertainty associated with the prior state
as a covariance P0. Consistency of an estimator is crucial as it determines how reliable the
estimator is despite the accuracy estimated trajectory. The marginalization is carried out
using the Schur complement [38]. As a result, a new prior can be integrated into the existing
prior.

Consider a set of states in a window

X = {X0,X1, . . . ,Xk, λ0, λ1, . . . , λn}. (4.175)

Then the set of states can be divided intoms, andml. The index for marginalizing states and
marginalizing landmarks are denoted as ms and ml respectively, and the index for remaining
states and remaining landmarks are denoted as k −ms and n−ml. Let

Xm = {X0,X1, . . . ,Xms , λ0, λ1, . . . , λml}, (4.176)

Xr = {Xms+1,Xms+2, . . . ,Xk, λml+1, λml+2, . . . , λn}. (4.177)

The robot collects more measurements between time t = k and t = k′. Thus, new robot and
landmarks states Xn are augmented. Without marginalization, the augmented state Xk′ can
be solved by minimizing the cost

arg min
Xk′

J (Xk′) . (4.178)

Given that Xk′ = {Xm,Xr,Xn}, the cost function can be rewritten as

arg min
Xm,Xr,Xn

J (Xm,Xr,Xn) = arg min
Xr,Xn

(
arg min
Xm

J (Xm,Xr,Xn)

)
(4.179)

= arg min
Xr,Xn

(
Jn (Xr,Xn) + arg min

Xm
Jm (Xm,Xr)

)
. (4.180)
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Now, solving for arg min Jn (Xr,Xn) is exactly as shown in (4.70) without marginalization
factor. To obtain the marginalization factor the marginal cost Jm (Xm,Xr) is minimized.
Since the measurement and process models are nonlinear, Taylor-series approximation is
employed on the marginal cost function

Jm (Xm,Xr) ≈ Jm
(
X̄m, X̄r

)
+ δXT∂Jm (Xm,Xr)

∂X
+ 1

2
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∂X 2

δX (4.181)
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where
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. (4.184)

The Jacobian and Hessian matrices of Jm are obtained by the linearization of the cost
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function J (Xk). For brevity of notation, let

bm =

[
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∂Xm
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]
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]
, (4.185)
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The solution for Xm is obtained by finding
[
δXT

m δXT
r

]
that minimizes Jm (Xm,Xr)[
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][
δXm
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(4.187)[

AmmδXm + AmrδXr

ArmδXm + ArrδXm

]
= −

[
bmm
bmr

]
. (4.188)

Rearranging the above equation yields

δXm = −A−1
mm (bmm + AmrδXr) . (4.189)

Using (4.189), the cost function can be parametrized such that Jm (Xm,Xr) = J̃m (Xr), and

J̃m (Xr) ≈ J̃m
(
X̄r
)

+ bT
p δXr + 1

2
δXT

r ApδXr, (4.190)

where bp and Ap can be obtained via schur complement

bp = bmr − ArmA−1
mmbmm, (4.191)

Ap = Arr − ArmA−1
mmAmr. (4.192)

Detailed derivation is given in Appendix A. Substituting (4.190) into (4.178) yields

arg min
Xr,Xn

J = arg min
Xr,Xn

Jn (Xr,Xn) + J̃m
(
X̄r
)

+ bT
p δXr + 1

2
δXT

r ApδXr. (4.193)

Solving for (4.193) using Gauss-Newton method results in

∂J

∂δX
=
∂Jn (Xr,Xn)

∂δX
+ bp + ApδXr, (4.194)

where ∂Jn(Xr,Xn)
∂δX is the partial derivative associated with the active measurement factors in

the window. Finally, the marginalization information bp and Ap are augmented to a matrix

79



by

rp = Πrbp, (4.195)

Hp = ΠrAp, (4.196)

where Πr =
[
1 0 0 . . .

]
.

4.3.1 Visual Feature Management

Visual features are regularly removed from the window alongside the marginalization. The
feature management scheme herein is based on [1]. The feature manager is responsible for
organizing a feature list and an observation list. A feature list contains the feature points
tracked in the current window, and each feature contains a list of observations that marks
the frames where it has been tracked. When a new image measurement arrives, it is tagged
as either a keyframe or a non-keyframe. New features detected in the new image are added
to the feature list, and existing features that have been tracked in the new image are added
to the observation list.

KLT tracker needs features to be updated as the features detected in the initial image
will no longer be detected in the new image in different angle of view. When the features
detected in the initial image is tracked below threshold, it means that there is not enough
features to track. As a result, features are detected at every image frame and a keyframe is
selected to update the features for tracking. A keyframe is selected using two criteria that
include average parallax apart from the previous keyframe and tracking quality. A frame
is considered a keyframe if the average parallax of all features between the current frame
and the latest keyframe exceeds some threshold. Also, a frame is automatically considered
a keyframe if it tracks less than 20 previously-observed features.

When a new image is acquired, if the second latest frame is a keyframe, the current frame
is kept in the window, and the oldest frame is marginalized. Marginalized measurements are
stored in a prior factor. Otherwise, if the second latest frame is a non-keyframe, the frame
as well as all the observations are discarded from the window without marginalization.

4.3.2 LIDAR Local Map Management

Similar to visual features that are regularly discarded from the window to bound the com-
putational complexity, LIDAR sweeps are discarded to reduce the size of the map. The local
map manager is responsible of managing the size of sweeps stored in cache and building the
local map out of sweeps in memory. When a new sweep comes in alongside with the camera
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Figure 4.2: Illustration of visual feature management.
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Figure 4.3: Illustration of LIDAR sweep management.

measurement, if the second latest frame is a keyframe, the oldest sweep gets discarded. Oth-
erwise, if the second latest frame is a non-keyframe, the corresponding sweep gets thrown
away.

N number of sweeps are stored in cache and used to build a map. A larger N means
denser map to be matched and yet higher computation power is required. Smaller N may
not have enough points to find accurate point correspondence. The size of N can be chosen
by a user.

A local map is built by transforming sweeps in the cache and resolving them in a pivot
frame using T̂ ∈ SE (3). A pivot frame is usually chosen such that it is a frame where
reliable robot state is resolved in. Consider a list of sweeps

M = {Sk−N , . . . ,Sk−W , . . . ,Sk−1}, (4.197)
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and the window size W < N . The most recent sweep acquired Sk is not used to form local
map since the corresponding robot state is yet to be optimized. Thus, the local map is built
using the Algorithm 1.

Algorithm 1

1: Set pivot frame Tp ← T̂WBp

2: for Sj ∈M do
3: L← T−1

p T̂WBjSj
4: end for
5: VoxelFilter(L)

4.4 LIVOM Results and Discussions
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Figure 4.4: Block diagram illustrating the full pipeline of the proposed LIVO.
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The full pipline of the proposed LIVO in Figure 4.4 is tested in an experimental setting.
Experimental testing is necessary to test the algorithm using real sensor data difficult to
model in simulation setting.

4.4.1 Initialization

The initialization scheme is tested on the 3D Cartographer - Deutsches Museum dataset
[39]. This data was collected using a 3D LIDAR backpact at the Deutsches Museum with an
IMU and two Velodyne VLP-16 LIDARs. The result of LIO, shown in Figure 4.5, demon-
strates the 3D reconstruction with and without system initialization. The frame associated
with the sensor suite is initially not aligned with the gravity vector as shown in Figure 4.5a,
and after the initialization the local frame that the map is resolved in is aligned with gravity.

4.4.2 Experimental Results

Experimental results comprises of running the LIDAR-Inertial, Visual-Inerital, and the
proposed solution to test the robustness of the algorithm. A Velodyne Puck VLP-16, FLIR
Camera and MEMS IMU are mounted on a sensor head as shown in Figure 4.6a. For indoor
navigation, the sensor head is carried around inside a room while collecting data. To collect
the ground truth data to compare with the proposed navigation solution, an Optitrack
motion capture system is used. Several Optitrack cameras are installed in the room to
accurately track spherical objects mounted on the sensor head, providing the poses of sensor
head. Optitrack provides the robot poses resolved in some reference frame. On the other
hand, the odometry solution provides the state estimates in its own local frame. Thus, to
overcome this issue, Evo trajectory package [40] is used for post processing and evaluation
of the odometry.

Solution RMSE Std Max Min

VIO 0.710595 0.130835 1.04826 0.40776

LIO 0.479786 0.0494921 0.718802 0.361876
LIVO 0.465473 0.0304656 0.536912 0.375523

Table 4.1: Summary of odometry results on McGill Lab 1 dataset. RMSE is computed in
SE (3) as only the robot poses are available as ground truth.
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(a) A 3D Reconstruction of Deutsches Museum without initialization.

(b) A 3D Reconstruction of Deutsches Museum with initialization.

Figure 4.5: Initialization result shown in a 3D reconstruction of Deutsches Museum data.
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Solution RMSE Std Max Min

LIO 2.8321 0.00476637 2.85698 2.81935
LIVO 2.82975 0.00142881 2.83694 2.82774

Table 4.2: Summary of odometry results on McGill Lab 2 dataset. VIO fails to navigate.

Two sets of dataset were taken. The first data, McGill Lab 1, consists of slower motion
with static initialization and the second data, McGill Lab 2, consists of faster motion with
aggressive initialization. Figure 4.7 demonstrates the 3D reconstruction of the lab space
and the estimated trajectory result with LIVO. All three odometry solutions are able to
perform on the easy dataset with some disparity in accuracy. Notice that the LIO and LIVO
outperforms the vision-based solution although the absolute pose error between LIO and
LIVO are not significant. One can assume that visual odometry suffers from tracking features
due to lack of features in the environment or high illumination inside the room. For McGill
Lab 2 dataset, visual-inertial odometry system fails to track features due to fast motion and
fails in navigation. On the other hand, laser-based odometry is able to perform just as well
as the former dataset. Overall, the proposed solution, LIVO, outperforms both odometry
solutions for both datasets by its accuracy as shown in Table 4.1. Further, Figure 4.8 shows
that the standard deviation associated with the LIVO results is much smaller than that of
LIO. Such comparison is more distinguishable in Figure 4.9. This proves in higher confidence
in LIVO results than LIO. LIVO achieves better accuracy and consistency by leveraging the
strengths of laser-based sensors in the case when vision fails.

Further, for the outdoor navigation, the sensor head is mounted on a car while the car
drives around Saint-Henri neighborhood of Montreal. An accurate point cloud map of the
city block is demonstrated in Figure 4.10 with the estimated trajectory shown in green line.
The resulting map is compared with the Google Earth image that was reconstructed using
bundle adjustment of aerial images.
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Figure 4.6: Data collection with Optitrack motion capture system.

Figure 4.7: A 3D reconstruction of the lab space with the estimated trajectory in green.
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Figure 4.8: Results of odometry solutions on McGill Lab 1 dataset.
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Figure 4.9: Results of odometry solutions on McGill Lab 2 dataset.
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(a) Isometric view.

(b) Google Earth view.

Figure 4.10: Outdoor navigation using LIVO.
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Chapter 5

Closing Remarks and Future Work

5.1 Conclusions

This thesis has contributed in developing a novel tightly-coupled LIDAR-Inertial-Visual
Odometry and Mapping solution in sliding window framework for robot navigation. As an
extension to [1] and [2], the depth-based vision factor and point cloud registration factor are
derived using matrix Lie group theory. This proposed solution is shown to attain greater
accuracy and robustness in experimental trials.

As mentioned in the introduction, most SLAM solutions struggle with a change in opera-
tion environment. Also, the SLAM problem does not provide any prior information about the
surrounding or the operating conditions. This motivates engineers to research and develop
a SLAM solution that can perform in unpredictable real-world environments. LIVO is pro-
posed as a robust odometry solution that can work in both LIDAR-failing and camera-failing
GPS-denied environment. To test the accuracy and robustness of the proposed algorithm,
indoor and outdoor data are collected using a sensor suite equipped LIDAR, monocular cam-
era, and an IMU. Due to the difficulty of obtaining the outdoor ground truth data, indoor
ground truth data is obtained via Optitrack motion capture system. It is shown in Chap-
ter 4 that LIVO can outperform the state-of-the-art solutions by achieving higher accuracy
in most cases. In the VIO failing scenario, LIVO not only overcomes the tracking failure due
to motion blur caused by fast motion, but also surpasses the accuracy of LIO by adding more
constraints between a doublet of robot poses. LIVO is one of the many SLAM solutions that
attempts to tackle the robustness and adaptiveness to various environment and provide an
accurate and consistent navigation solution.
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5.2 Future Work

The proposed work still needs to go through rigorous testing both in simulation and in
experimental settings. For instance, LIVO has not been tested in the case when laser-based
odometry fails yet vision sustains the navigation system. Such test is essential to prove the
adaptiveness of the solution to various environment.

LIVO still suffers from drift after extended periods of time. In practice, SLAM back-end
incorporates the loop-closure constraints. Loop closing is the task of deciding whether or
not a robot has returned to a previously visited area, and the loop-closure constraints link
between the two poses that have visited the same place. Furthermore, the tightly-coupled
system requires high computational complexity, and cannot be applied in real time thus
far. This problem can be solved by developing a loosely-coupled system with a global pose
optimization using loop-closure constraints. Recently Zhao et al. [41] proposed coupling the
two odometry outputs, LIO and VIO, in a loosely-coupled method and performing a pose
graph optimization in the back-end. This method enables the real time application of the
solution while preserving the robustness of the solution.

Lastly, the weights associated with the factors used in LIVO are not studied. Consistency
of an estimator is equally important as its accuracy because the uncertainty associated with
the state estimate determines the confidence in the estimate. As mentioned earlier, the
result of the navigation system directly affects guidance and control systems, and a consis-
tent estimator is one where the uncertainty associated with the state estimate is captured
properly. In order to achieve consistency, proper weights must be assigned to the factors,
and the weights must be derived from the uncertainty characteristics of the sensors. For
example, the weight associated with the preintegrated IMU sensor is derived based on the
IMU noise parameters. On the other hand, the weights associated with the LIDAR point
cloud registration factor nor the depth-based vision factor are derived in this thesis.
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Appendix A

Marginalization

This section derives the derivation of (4.193). It is based on the assumption that A is
positive semi-definite.

Jm (Xm,Xr) ≈ Jm
(
X̄m, X̄r

)
+
[
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Now expanding the matrices yields
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