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Abstract 

The objective of this thesis research project is to provide a complete, systematic 

characterization of spatial image cross-correlation spectroscopy (ICCS) for its use in 

quantifying molecular interactions via analysis of fluorescence microscopy images. In 

spatial ICCS, cross-correlation of fluctuations in fluorescence intensity recorded as 

images from two independent wavelength detection channels in a fluorescence micro­

scope is used to determine the average number of interacting particles in a sample. 

Other statistical image analysis methods exist that can be performed on fluores­

cence microscopy images of fixed or live cells and have been routinely applied for 

biophysical studies of molecular interaction. These approaches measure the fraction 

of interacting particles by analyzing fluorescence images from two detection channels 

for colocalized pixels. Colocalization algorithms have been widely used, although the 

dynamic range and accuracy of these measurements has never been well established. 

Using computer simulations, control experiments of fluorescently labeled antibodies 

adsorbed on glass, and cell measurements, we show that ICCS is more accurate than 

standard colocalization. algorithms at moderate to high densities of particles, which 

are often encountered in cellular systems. Furthermore, it was found that the density 

ratio between the two labeled species of interest plays a major role in the accuracy of 

the colocalization analysis. By applying a direct and systematic comparison between 

the standard, fluorescence microscopy colocalization algorithms and spatial ICCS, we 

show regimes where each approach is applicable, and more importantly, where they 

fail to yield accurate results. Spatial ICCS was then used to measure a 4-fold increase 

in the dissociation rate of phosphorylated AP-2//5-arrestin complexes, important reg­

ulatory proteins of G protein-coupled receptors in living cells. New approaches to 

improve ICCS were also studied. Spatial scrambling of pixel blocks within fluores­

cence images was investigated as a way of extending the detection of two-channel 

ICCS to measure lower interaction fractions as well as colocalization within large 

structures. ICCS theory was also extended to handle the analysis of systems with 

multiple ligand-binding sites. 

vi 



Resume 

L'objectif de cette these de doctorat est de fournir une caracterisation systematique de 

la spectroscopic par correlation croisee d'images (SCCI) pour quantifier des interac­

tions moleculaires via 1'analyse d'images prises par microscopie en fluorescence. Pour 

la SCCI spatiale, la correlation croisee de fluctuations de la fluorescence enregistree 

par les images de deux canaux de detection avec des longueurs d'onde differentes 

est utilisee pour determiner le nombre moyen de particules en interaction dans un 

echantillon. D'autres methodes statistiques d'analyse d'images existent et peuvent 

etre appliquees sur des images de microscopie en fluorescence de cellules vivantes ou 

fixees. Ces approches mesurent la fraction de particules en interaction par l'analyse 

d'images provenant de deux canaux de detection pour chaque pixel colocalise. Les al­

gorithmes de colocalisation out ete grandement utilises, bien que l'etendue dynamique 

et l'exactitude de ces mesures n'a jamais ete bien etablies. En utilisant des simula­

tions, des experiences de controle impliquant des anticorps marques adsorbes sur le 

verre et des mesures faites sur des cellules, nous demontrons que la SCCI est plus 

exacte que les algorithmes de colocalisation utilises pour des densites de particules 

de moderees a elevees, ce qui est souvent le cas pour les systemes cellulaires. En 

appliquant une comparaison directe et systematique entre la methode standard, les 

algorithmes de colocalisation de la microscopie en fluorescence, et la SCCI, nous 

demontrons des regimes ou chaque approche est applicable, et d'une plus grande im­

portance, oil elles echouent a fournir des resultats exacts. La SCCI spatiale a ete 

utilisee pour mesurer une augmentation de 4 fois dans le taux de dissociation de 

complexes phosphoryles de AP-2//?-arrestin, une proteine regulatrice importante de 

recepteurs couples aux proteines G dans les cellules vivantes. De nouvelles approches 

pour ameliorer la SCCI ont aussi ete etudiees. Un melangeage spatial de blocs de pix­

els a l'interieur meme d'images en fluorescence a ete etudie comme moyen d'etendre a 

des fractions d'interaction plus basse et a des structures plus larges la SCCI. La theorie 

de la SCCI a aussi ete etendue de fagon a couvrir l'analyse de systemes contenant de 

multiples sites ligaiid-liants. 
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Statement of Originality 

The author claims the following aspects of the thesis constitute original scholarship 

and an advancement of knowledge: 

1. The complete characterization of the dynamic range and accuracy of spatial image 

cross-correlation spectroscopy (1CCS) for its use in measuring intermolecular inter­

actions from two-channel fluorescence images. ICCS is a spatial intensity fluctuation 

cross-correlation technique that can be applied to fluorescence images of fixed or live 

cells to quantify any molecular interactions that exist between labeled molecules of 

interest. The following points summarize the major findings that led to establish­

ing the first experimental guidelines to be proposed for the broader use of ICCS in 

biological systems. 

• Fundamental limits on the minimum numbers of interacting particles that could 

be detected using ICCS were found to exist, and quantified in terms of the 

amount of spatial sampling that was recorded in the two channel images. 

• Accurate measurements of the particle interaction fractions were obtained, pro­

vided the ratio between the particle number densities in each detection channel 

was less than 10. 

• Accurate measurements of the particle interaction fractions were obtained, even 

in the presence of significant levels of noise, provided the levels of noise in each 

detection channel were comparable. 

2. A systematic comparison of ICCS with other, common two channel fluorescence 

microscopy 'colocalization' analysis methods was performed, and it was demonstrated 

for the first time, that these methods lead to significant errors in the measured particle 

interaction fractions when the densities of the two labeled species differ. These statis­

tical colocalization techniques are widely applied to fluorescence images of biological 

systems, but their accuracy has never been well established. 

The simulations and cell experiments from which these conclusions are drawn are 

presented in detail in Chapter 4. All simulations were performed by the author us­

ing custom written Matlab programs with the following exceptions: David Kolin 

vm 



(Wiseman Group) wrote the nonlinear fitting routines used to fit the calculated cor­

relation functions. Dr. Santiago Costantino (Wiseman Group) wrote the program 

for simulating fluorescence images, which was extended by the author to include a 

cross-correlated population between two images. Dr. Santiago Costantino wrote the 

Matlab routine for adding background and counting noise to an image, which was 

modified by the author to add noise to cross-correlated images. Dr. Costantino 

modified the automatic colocalization routine that was written by the author to sig­

nificantly increase its speed. 

3. In collaboration with the group of Stephane Laporte (Department of Medicine, 

McGill University), spatial ICCS was applied to live cells to identify and quantify the 

interaction between two important cell-signal regulatory proteins AP-2 and /9-arrestin 

(Chapter 5). The HEK293 cells used in this study were cultured and transfected with 

small interfering RNA and fluorescent protein constructs by members of the Laporte 

group (Brandon Zimmerman, May Simaan). The confocal fluorescence images pre­

sented were acquired by Stephane Laporte, Brandon Zimmerman, and myself using 

Prof. Laporte's microscope in the Department of Medicine at McGill University. The 

quantification of the interaction between AP-2 and /3-arrestin via ICCS analysis of 

these images sets was then performed by the author in the Department of Chemistry 

at McGill University. These ICCS measurements confirmed that a specific phospho­

rylation site on the AP-2 protein, that was hypothesized to regulate its interaction 

with /3-arrestin after several biochemical studies by the Laporte group, does in fact 

control the affinity of AP-2 for /3-arrestin in vivo. 

4. The design and implementation of new procedures toward improving the range 

of applicability of spatial ICCS was performed. The extension of ICCS analysis to 

molecules with multiple binding sites was demonstrated through simulation studies. 

Spatial image scrambling, combined with 'mean-padding' of images, was shown to ex­

tend the technique of spatial ICCS to the analysis of small, arbitrarily selected regions 

within the images, which is not possible without the procedures described in Chapter 

6. The TIRF microscopy images that were analyzed by these new techniques as a 

proof of principle were generously provided by Dr. Claire Brown at McGill University. 
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1 

Introduction 

1.1 An Overview of the Eukaryotic Cell 

Atoms and molecules are the basic building blocks of all matter on Earth, while 

micrometer-sized, membrane-enclosed cells that are present in all living things con­

stitute the basic units of life. From the simplest single-celled bacteria, to the more 

complex, multi-cellular plants and animals, it is the cell that is the common thread 

that unites all living organisms. Since the description presented by Robert Hooke in 

the 17th century of the microscopic structure of cork [1], the cell has been the subject 

of intense study by scientists, due in part to the inspiring complexity they possess, 

and the fact that the cell represents the ever-engaging mystery of life itself. 

The eukaryotic cell consists of several smaller compartments called organelles that 

carry out the necessary functions of life. The nucleus, enclosed in a porous, double 

lipid-bilayer envelope, contains double-stranded deoxyribonucleic acid (DNA), which 

is the genetic blueprint for the cell and encodes all of the information that is required 

to synthesize all of the cellular components. Double-membrane enclosed organelles 

called mitochondria, that are present in almost every cell, generate the fuel that 

powers all cellular functions. These organelles oxidize nutrients, such as glucose, to 

produce adenosine triphosphate (ATP), which is eventually hydrolyzed to provide en­

ergy to cells. The endoplasmic reticulum and Golgi apparatus are equally important 

organelles that work together to synthesize and sort proteins destined for incorpora­

tion into the cell membrane or to be exported from the cell altogether [2]. 

1 



I : Introduction 2 

Figure 1.1: The eukaryotic cell is comprised of specialized compartments called organelles, which 
are enclosed within a phospholipid membrane bilayer. Eukaryotic cells typically range from 2-100 
/im in diameter. Adapted from [3]. 

As we can see in Fig. 1.1, many other organelles exist in eukaryotic cells, such, as 

lysosomes, which act as isolated compartments for intracellular digestion as well as 

many smaller vesicles, which are used to transport a variety of cargoes to various loca­

tions throughout the cell. All of these organelles are present in a highly concentrated 

aqueous solution of large and small molecules called the cytosol. 

The shape of the cell is actively maintained by a network of polymeric micro­

tubules, intermediate and actin filaments, referred to collectively as the cytoskeleton. 

The cytoskeleton is by no means a static, rigid structure as the name might suggest. 

In fact, it is an extremely dynamic meshwork that is largely responsible for cell migra­

tion, generation of contractile forces, and. separating chromosomes during cell division 

[4, 5]. The cytoskeleton also serves as an intracellular highway on which specialized 

motor proteins travel and actively transport vesicle or molecular cargoes throughout 

the cell [6]. 

The entire cell is enclosed by the plasma membrane, which consists of a lipid bilayer 
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Extracellular Matrix 

Figure 1.2: Focal adhesions are composed of a large number of interacting components and are 
formed when a cell binds to a surface. Integrin membrane receptors are adhesion molecules that 
link the extracellular matrix to elements of the cytoskeleton, but also act as signaling molecules by 
mediating cell signaling pathways, which lead to proliferation and differentiation. Many different 
signaling molecules (Cas, Crk, Csk, Src) are recruited to focal adhesions where they initiate signal 
propagation, which is often carried out by means of phosphorylation of target proteins. FAK; focal 
adhesion kinase. P; phosphorylated tyrosine. PM; plasma membrane. Adapted from [9]. 

composed of several types of phospholipids. Many integral proteins are incorporated 

into the plasma membrane. These proteins span across the entire bilayer and provide 

a link between the cytosolic interior and exterior, or extracellular matrix, of the cell. 

Numerous types of transmembrane proteins exist to carry out an array of important 

functions. For instance, certain integral proteins act as ion channels to maintain small 

concentration gradients across the plasma membrane, which is particularly important 

for signal transduction in the nervous system [7]. Others act as signaling receptors by 

the binding of extracellular ligands, which results in the initiation of specific signaling 

pathways within the cell [8]. Yet others act as direct sites of adhesion and migration 

by linking extracellular substrate proteins to intracellular cytoskeletal components [5] 

(see Fig. 1.2). The plasma membrane, therefore, not only serves as a selective barrier 

between the outside and the inside of the cell, but a dynamic and responsive locale 

that is implicated in many essential cellular processes. 

From a chemist's perspective, the cell could be considered an amalgamation of 
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many different coordinated chemical reactions that are often complex and far from 

equilibrium. This has always made the cell a particularly difficult system to study, 

in addition to its small size. There is, however, an extraordinary number of under­

lying chemical similarities in the cells of all living species. Cellular DNA encodes for 

sequences of twenty different amino acids that are strung together by peptide bonds 

to produce the vast array of different proteins. This stored information, once tran­

scribed and translated, leads to a large variety of specialized cell types, like the highly 

extended motor neurons of the central nervous system or the sound-transducing hair 

cell of the inner ear. Fortunately, the similarities in chemical composition allow for 

the systematic study of particular cellular components and processes, and the ability 

to extend any knowledge gained to the life process in general. 

1.2 The Role of Protein Interactions 

From the beginning of a cell's life during the M-phase of the cell cycle, until its even­

tual programmed death by apoptosis, the cell carries out many biochemical reactions 

and functions, practically all of which are regulated by polypeptides called proteins. 

Moreover, the overwhelming majority of proteins do not function alone, but through 

direct associations with other proteins and molecules in sequence or as part of larger 

complexes. These direct protein interactions are essential to the proper function of 

any cell and. regulate some of the most important cellular processes such as DNA 

transcription [10], cell cycle regulation [11], metabolic pathways [12] and virtually 

every other crucial endeavor carried out by a given cell. 

One example of protein-protein interaction is seen in the many classes of multi-

subunit proteins that have been identified. The functional forms of these proteins 

consist of separate protein macromolecules that associate with one another through 

multiple, non-covalent, but essentially permanent, bonds. Functional hemoglobin, for 

example, which transports oxygen from the lungs to tissues throughout the rest of 

the body, exists as a tetramer of two pairs of identical protein subunits, each of which 
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are held together by weak ionic bonds, hydrogen bonds, and hydrophobic interactions 

[13]. 

Another important class of transient protein-protein interactions is the association 

of a biological catalyst protein, or enzyme, with its substrate. Protein kinases are a 

large class of enzymes that transfer phosphate groups from ATP to target proteins 

[14]. The initial step of this phosphorylation reaction is the non-covalent binding of 

the substrate protein to the binding pocket of the enzyme. Phosphorylation typically 

activates or deactivates target proteins by increasing or decreasing their affinity for 

other proteins, and is therefore implicated in a series of cellular signal transduction 

mechanisms [15 17]. 

The net effect of a multitude of cellular interacting partners is to maximize a 

variety of functions from a limited set of components. Accordingly, the first step in 

understanding the underlying mechanisms that regulate cellular function is quite often 

the detection and quantification of molecular interactions in cells. To this end, many 

techniques for measuring protein interactions have been developed, and continue to 

be applied for both in vitro and in vivo studies, each with varying degrees of success. 

1.3 Measuring Protein Interactions 

Classical approaches to measure protein-protein interactions include several biochem­

ical assays, which have proved particularly useful for the initial identification of 

potential interacting protein pairs. Protein affinity chromatography is such an as­

say, whereby proteins of interest are covalently attached to a column of cross-linked 

agarose, and screened against cell extracts. The proteins identified in the fraction of 

the extract with the longest retention time along the column are considered possible 

interacting partners [18]. Proteins may also be separated by electrophoresis and sub­

sequently screened against possible high affinity binding partners on a nitrocellulose 

membrane (affinity blotting). A significant advantage of this approach is that no 

protein purification is required prior to the analysis, which facilitates the testing of 
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the often difficult to purify membrane proteins [19]. 

Perhaps the most common biochemical approach for measuring protein interac­

tions is by exploiting the specificity of the antibody-antigen interaction through co-

immunoprecipitation [20, 21]. An antibody is developed against a particular protein of 

interest and added to a cell extract where it selectively binds to the protein (antigen). 

The resulting antibody-protein complex is then precipitated by an antibody-binding 

protein (e.g. protein G) attached to a solid support, and analyzed for the presence 

of other proteins/molecules that were co-precipitated with the original protein of 

interest. It is assumed that any proteins identified in the precipitate are interact­

ing partners, and are therefore related to a particular function of the target protein 

in vivo. However, as is the case in each of the methods briefly described above, further 

investigation is usually warranted to justify this assumption. 

Understanding the complex interconnected relationships between all the protein-

protein interactions that drive most cellular functions is a daunting task that has only 

started to be achieved in last fifteen years with the development of high-throughput 

techniques such as two-hybrid screening [22]. The two-hybrid system is a genetic 

based method that relies on the activation of a reporter gene to indicate the presence 

of particular protein interactions. An important step in protein synthesis is tran­

scription, or the transfer of the information encoded in the four base pairs of DNA 

to ribonucleic acid (UNA). This process is regulated by special proteins called tran­

scription factors, which bind to DNA promoter sequences and activate the synthesis 

of RNA by controlling the binding of RNA polymerase. The first two-hybrid system 

was based on the GAL4 transcription factor in a species of budding yeast [23]. Fields 

and Song showed that the transcription factor could still be activated (i.e. a gene was 

expressed), if the binding domain and the activating domain were split and separately 

attached to two hybrid proteins that were known to interact. 

A typical two-hybrid screening experiment consists of engineering DNA plasmids 

that produce two sets of hybrid proteins. One of the hybrid proteins is composed 
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of the binding domain of a transcription factor, such as GAL4, fused to a protein of 

interest (bait). In the second set of hybrids, a different protein, or an entire library of 

proteins (prey), is fused to the activating domain of the transcription factor. Yeast 

cells are transformed with the DNA plasmids encoding for these hybrid proteins 

and the reporter gene will only be transcribed if both the binding domain and the 

activating domain of the transcription factor are able to come into close proximity by 

the binding of the bait and prey proteins. The transcription of the reporter gene itself 

must then be detected in the phenotype of the cell in order to confirm the interaction 

of the two proteins of interest. This is accomplished in several ways depending on 

the reporter gene used in the experiment, and can be as simple as the death of cells 

that do not successfully express the reporter gene [24]. Two-hybrid experiments set 

the stage, not only for large-scale screening of interacting proteins, but for mapping 

of the entire network of interactions in cells [25, 26] (Fig. 1.3). 

Although high-throughput screening approaches are promising and offer a wealth 

of information, the presence of numerous false-positive results has led to questions 

regarding the accuracy of these methods [27]. Also, spatial and temporal informa­

tion with respect to the individual protein interactions is lost with high-throughput 

screening methods, which means other techniques that are capable of extracting this 

information are essential to a better understanding of the protein-interaction networks 

in cells. Nevertheless, the accuracy of two-hybrid approaches is steadily improving 

[28], and as such, they continue to play an important role in identifying the protein 

binding partners involved in a myriad of cellular interactions. 

A molecular binding event inside a cell results in a number of measurable effects, 

which can be used to monitor the presence of such interactions. Changes in binding 

affinities [29], secondary structural changes [30], or reduced diffusion coefficients [31] 

are just some of the effects that have been observed following molecular binding 

events. Perhaps this is the reason why so many different techniques can be tailored 

to fit the particular detection needs of a given system. Surface plasmon resonance 
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Figure 1.3: Protein-protein interaction map depicting part of the complex network of interacting 
proteins in yeast. Each circle represents a protein and lines are used to represent interactions with 
other proteins. Adapted from [26]. 
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[32], isothermal titration calorimetry [33], mass spectroscopy [34] and atomic force 

microscopy [35] have all been successful in measuring, and in some cases quantifying, 

the interaction between two proteins. None of these methods, however, has found 

as widespread application as optically based spectroscopic techniques, in particular, 

fluorescence spectroscopy and microscopy. 

1.4 Fundamentals of Fluorescence 

The molecular property of luminescence was first observed by Sir John Herschel who 

reported on the blue light emanating from a solution of quinine sulphate [36]. Since 

Herschel's detailed observation over 150 years ago, luminescence has been studied 

extensively and continues to be an important phenomenon employed for a broad 

range of spectroscopic and microscopy applications. 

Luminescence is defined as the emission of light that results when a molecule 

relaxes from an excited electronic energy state to its ground state. Two types of 

luminescent emission are possible depending on the nature of the excited state prior 

to relaxation. The first is fluorescence, which is the emission of a photon that occurs 

when a molecule makes a transition from an excited electronic singlet state to the 

singlet ground state (Si —> So). Phosphorescence is the emission that occurs as a 

result of a forbidden transition from an excited triplet state to the singlet ground 

state (Ti —• So), and therefore, occurs at much slower rates than, that of fluorescence 

for most molecules [37]. 

A typical Jablonski energy level diagram, named after the Ukrainian physicist 

who was a pioneer in the photoluminescence field, is shown in Fig. 1.4 to illustrate 

the relaxation processes that may result in fluorescence, phosphorescence, or non-

radiative transitions to the ground state. Very rapid absorption (~10"~15 s) of a 

photon of sufficient energy will promote an electron from the ground state to one of 

the electronic excited states of the molecule. This is followed by internal conversion, 

that is, the rapid non-radiative relaxation (~10 - 1 2 s) to the Si state in addition to 
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Figure 1.4: A typical Jablonski energy diagram to illustrate the mechanism by which a molecule 
undergoes fluorescence emission upon relaxation from an excited electronic energy level to the ground 
state (S'I —> So). Non-radiative decay processes include any mechanism by which quenching, i.e. 
non-radiative energy transfer, occurs. 

molecular relaxation to the lowest vibrational energy level of Si. After a period of time 

that is typically on the order of nanoseconds, the molecule may relax to the ground 

state, So, by emission of a fluorescence photon, which is followed by rapid equilibration 

to the lowest vibrational level of the ground state (< 10' - 1 2 ^ The combination of loss 

of energy by internal conversion followed by transitions to different vibrational levels 

of the ground state results in an equally broad, red-shifted (Stoke's shift) emission 

spectrum with respect to the absorption spectrum (Fig. 1.5). If intersystem crossing 

to the triplet state occurs prior to photon emission then the molecule may relax to 

the ground state through phosphorescence emission rather than fluorescence. 

Several other relaxation mechanisms exist that are non-radiative in that no pho­

ton is emitted upon return to the ground state. These include collisions with other 

molecules, energy transfer to acceptor molecules through dipole-dipole interactions, 

as well as others. The ratio of the number of photons emitted to the number of pho­

tons absorbed is defined as the fluorescence (or phosphorescence) quantum yield of a 

particular molecule. Quantum yields are usually the highest for aromatic molecules 

with conjugated ring systems. 

An important characteristic of a fluorescent molecule is the average time spent in 

the excited state before emission of a photon, which is referred to as the fluorescence 

lifetime, Tf. Fluorescent lifetimes are on the order of 10~9 s, which allows sufficient 
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Figure 1.5: Absorption and emission spectrum of fluorescein isothiocyanate (FITC). The molecular 
structure of FITC is shown in the upper right portion of the figure. Adapted from [37]. 

time for reorientation of solvent molecules (< 40 ps) around excited state dipoles prior 

to photon emission. This rearrangement alters the excited state energy. Consequently, 

the local solvent environment can be probed by measuring shifts in the fluorescence 

wavelength [38], as well, information regarding rotation of the fiuorophore itself can 

be obtained by applications that use polarized light excitation and detection [39]. 

Due to several factors including the inherent sensitivity derived from detection 

against a dark background, the molecular information contained therein and the 

timescales described above, fluorescence experiments have found many applications 

in biological (and non-biological) systems [37]. 

1.5 Fluorescence Microscopy 

Cellular imaging using conventional light (transmission) microscopy suffers from an 

inherent lack of contrast, which can only be partially overcome by following appropri­

ate staining procedures. The development of specific fluorescence labeling techniques 

on the other hand, combined with the inherent sensitivity of fluorescence detection 

(low background signals with single molecule detection possible) has propelled fluo-
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Figure 1.6: Schematic diagram of a conventional fluorescence microscope depicting the optical path 
taken by the light from the excitation source and the corresponding emitted fluorescence. Typical 
light sources are either the mercury or xenon arc lamps, while detection is accomplished by use of 
charge-coupled device (CCD) cameras. 

rescence imaging to the forefront of biological light microscopy. 

A typical optical path of a fluorescence microscope is shown in Fig. 1.6. Light from 

an excitation source, such as a mercury lamp, is reflected and focused on the sample 

using a wavelength selective dichroic mirror and an objective lens respectively. The 

red-shifted emitted fluorescence is then collected with the same objective, separated 

from the excitation light by passing through the dichroic mirror, and wavelength 

filtered before reaching the detector (e.g. a charge-coupled device (CCD) camera). 

Conventional fluorescence images obtained using this type of microscope, however, 

suffer from a significant amount of out-of-focus light, which originates from different 

axial image planes within the sample, but still reaches the detector. The result is a 

significant decrease in the overall contrast of the acquired image [40]. 

In order to alleviate this problem, a confocal microscope is used where small aper­

ture (~100 /im) pinholes are placed in a confocal arrangement on the excitation and 

detection paths to spatially filter the fluorescence emission from out-of-focus planes. 

This arrangement permits imaging of light from a single focal plane and the focus can 

be changed to allow optical sectioning imaging within a 3-dimensional (3D) sample. 
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The confocal optical geometry allows the light that is in focus at the image plane 

to be focused within the small pinhole aperture and therefore reach the detector. 

In contrast, light emanating from out-of-focus image planes will not be in focus at 

the detection pinhole and will therefore be blocked from reaching the detector (see 

Fig. 1.7). In modern confocal laser scanning microscopy, a laser is used for excitation 

and the beam is focused through the objective lens and the confocal geometry to 

achieve a tiny diffraction limit focal volume. The beam focus is raster scanned point-

by-point across the sample and the fluorescence excited sequentially at each point 

is collected and focused onto a point detector (e.g photomultiplier tube (PMT)) to 

build up an image of Nx by Ny pixies. The resulting optical sectioning offered by 

the confocal laser. scanning microscope (CLSM) set-up described above, has made 

confocal fluorescence imaging the tool of choice for imaging relatively thick biological 

specimens. In addition, the CLSM set-up is easily modified for the excitation and 

detection of two spectrally distinct fluorophores, which enables fluorescence from two 

separate molecules of interest to be monitored simultaneously. 

Most of the advantages that are provided by confocal imaging over conventional 

fluorescence microscopy have only been realized commercially in the past twenty years, 

although they were first proposed by Marvin Minsky in his 1957 patent application. 

These include, reduced blurring within the image due to out-of-focus light, in addition 

to a 30% increase in both lateral and axial resolution for a lens of a given numerical 

aperture (NA) (0.16 /mi and 0.65 /an respectively for NA = 1.4) [41], increased 

signal-to-noise (S/N) ratios, and the possibility of z-scanning for effective 3D imaging 

of thick samples. 

Only with the rapid development of laser technology and digital imaging in the 

early 1970's and 80's did Minsky's vision for the confocal microscopy culminate in 

the commercial CLSM found in many laboratories throughout the world today (see 

[40] for a review). 

Another mode of fluorescence microscopy is called total internal reflection fluores-
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Figure 1.7: Multiple laser lines can be used to raster scan across the sample and excite two spectrally 
distinct fluorophores. The emitted fluorescence is collected with the same objective used to focus 
the excitation light and a pinhole is used to reject out-of-focus fluorescence emission. The emitted 
light is separated by a dichroic mirror, filtered and detected in two different detection channels. 
Typical excitation wavelengths are the 488 and 514 nm lines of the Argon laser and the 633 run 
line of the Helium-Neon (HeNe) laser. Photo multiplier tubes (PMTs) are generally used for the 
detection of emitted photons and the subsequent conversion to an electrical signal. Shown in the 
inset is a simplified diagram of the optical path of the emitted fluorescence to illustrate the optical 
sectioning ability of the confocal pinhole. Adapted from [40]. 
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Figure 1.8: Total internal reflection fluorescence (TIRF) microscopy. A evanescent wave is produced 
at the interface between a high and low refractive index medium. The wave decays exponentially as 
a function of the distance from the interface, and can be used to excite fluorescent molecules that 
are present at small distances from the interface (< 100 nm) in the low refractive index medium. 
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cerice (TIRF), which employs the excitation of fluorophores with an evanescent wave. 

This type of radiation is produced when light strikes the interface between a higher-

refractive index medium and a lower refractive index medium, at angles larger than 

some critical angle, 6C (Fig. 1.8). At 6 > 0C, total internal reflection of the light leads 

to the formation of an evanescent wave that propagates into the medium of lower 

refractive index, parallel to the interface, but which decays exponentially as a func­

tion of the distance away from the surface. This exponential decay in the intensity of 

the evanescent wave makes total internal reflection an excellent source of excitation 

for fluorophores that reside in close proximity (< 100 nrn) to the boundary between 

different refractive index media. Only those fluorophores that are close enough to 

the refractive index interface will be excited by the evanescent wave, which results in 

small optical sectioning of the sample [42]. 

In TIRF microscopy, an objective lens can be used to focus a laser onto a glass 

coverslip at angles greater than 0C, producing an evanescent wave that propagates 

into a cell sample on the opposing side of the coverslip. The objective lens can 

then be used to collect the resulting fluorescence emission, and a CCD camera can 

be used to detect the emitted fluorescence photons. This TIRF microscopy set­

up has been used extensively to study the basal membrane of living cells, which is 

an active site for many of the proteins involved in cellular adhesion and migration, 

and many other cell signaling processes [43, 44]. TIRF microscopy, as compared to 

other fluorescence microscopy techniques, results in better isolation of the signal from 

fluorescently tagged proteins in the plasma membrane from that of the same proteins 

in the cytosol. 

Fluorescence microscopy techniques have become an essential tool for studying 

specific fluorescently tagged biomolecules in living cells. However, in order to apply 

this sensitive tool to a wide variety of different macromolecules in cells, specific fluo­

rescence labeling methods are required that will tag the molecule of interest, but will 

not affect its biological functionality. 



1: Introduction 16 

1.6 Fluorescence Labeling 

Some cellular molecules are inherently fluorescent (intrinsic fluorescence), such as the 

amino acid tryptophan and its indolarnine derivatives, and several proteins found in 

connective tissues like collagen, fibrillin and elastin. However, the contrast of the 

resulting fluorescence signal is generally quite low for the purposes of most studies, 

as well, specific imaging of other components is usually desired. In fact, autofluores-

cence originating from these types of species typically results in increased background 

signals during cellular imaging. In order to increase the contrast and the range of ex­

periments that can be performed, fluorescent probes are introduced to specific targets 

within the cell (extrinsic probes). Organic dyes [45], fluorescent proteins [46], as well 

as inorganic, semi-conductor quantum dots [47] have all been used to label specific 

molecules within living cells. The two most common labeling techniques involve the 

use of fluorescently tagged antibodies to label macromolecules of interest as well as 

genetically encoded fluorescent protein fusion constructs such as the green fluorescent 

protein (GFP), both of which will be described in the next sections. 

1.6.1 Immunofluorescence Labeling 

An animal's ability to locate, neutralize and eventually eliminate foreign invaders 

(like viruses) from the body is an extremely important task that is essential to its 

continuing survival. Specialized white blood cells called lymphocytes, which are part 

of the immune system, are the cells responsible for adapting to the constant barrage of 

potentially infectious organisms. It is imperative, therefore, that the lymphocytes be 

able to alter their response specifically based on the molecular surface properties of the 

foreign species that are mounting an attack at any particular time. One mechanism 

to cope with these fast-changing threats posed by foreign bacterial or viral invaders 

is by secretion of glycoproteins called antibodies or immunoglobulins, which bind to 

target antigens on the surface of the invaders in a highly specific manner. Several 

mechanisms exist that result in mutations of the antigen binding site to ensure the 
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Figure 1.9: The antibody IgG molecule is composed of two pairs of polypeptides held together by 
disulfide bridges and noncovalent interactions. Two identical antigen binding sits are found at one 
end of the Fab fragment, which is separated by a flexible hinge from the Fc region responsible for 
immune cell regulation. 

necessary ability to adapt to many different target molecules. 

Several classes of antibodies exist, all of which share a similar, bivalent Y-shaped 

structure. Antibodies of the IgG class consist of two smaller proteins called the light 

chains (~25 kDa), and two identical polypeptide heavy chains (~55 kDa), held to­

gether by disulfide bridges and noncovalent interactions (Fig. 1.9). The arms of the 

Y-shaped molecule are referred to as the Fab fragments, the ends of which form two 

identical antigen binding sites. The base of the antibody molecule, or F c fragment, is 

responsible for the regulation of various cells of the immune system and has a rela­

tively constant amino acid sequence over a large range of antibodies. A hinge region 

separates the Fab and F c domains and provides important flexibility to the antibody 

for accommodating antigen binding. The remaining four isotypes of antibodies found 

in mammals are composed of higher oligomers of the same Y-shaped IgG monomer 

[48]. 

Antibody proteins that bind specifically to virtually any antigen can be produced in 

almost unlimited quantities and can be chemically linked to a fluorescent dye, which 

is the reason why immunolabeling has developed into such a common fluorescence 

labeling technique. The plasma cells of the immune system that are responsible for 
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• Receptor ligand 

Figure 1.10: (A) Schematic diagram depicting the indirect immunofluorescence labeling procedure. 
Not drawn to scale. (B) CLSM fluorescence image of fluorescein isothiocyanate (FITC) labeled 
platelet derived growth factor receptor-/? (PDGF-/3) in human foreskin fibroblast cells (AG01523). 
Primary mouse IgG's were used to selectively bind to the PDGF-/5 receptor, which were then labeled 
with FITC conjugates of a goat-anti-mouse IgG. 

the secretion of antibodies can be readily isolated from an animal that was subjected 

to a foreign antigen, but cannot be grown in culture unless they are fused with a 

myeloma tumor cell [49]. The resulting hybridoma cells, however, can be grown 

in culture indefinitely and will continue to produce large amounts of the desired 

antibody. Antibodies produced in this manner are monoclonal, that is, they were 

derived from a single parent cell, and are all identical and recognize one single antigen 

molecule. 

Direct immunofluorescence labeling consists of producing monoclonal antibodies 

for a desired target molecule as described above, and subsequent covalent attach­

ment of a desired fluorescent dye molecule. Typically, however, an indirect labeling 

approach is taken, which employs a non-fluorescent primary antibody specific to the 

molecule of interest, and a secondary, fluorescently labeled antibody that binds specif­

ically to the primary antibody (Fig. 1.10). Indirect immunostaining is a much more 

flexible alternative to direct labeling because the secondary antibodies are usually 

species specific, and will therefore bind any primary IgG that was originally pro­

duced in a given species. This means that a single, fluorescently tagged secondary 

antibody can be used to label a large array of primary antibodies, regardless of the 
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Figure 1.11: Enhanced green fluorescent protein (EGFP) is most efficiently excited at 488 run 
and maximum emission occurs at 508 nm. The /3-barrel structure of the molecule is important in 
mediating the autocatalytic reaction that results in the formation of a fluorescent species, which 
is folded in the middle of the barrel, and is shown on the right side of the figure. In EGFP, the 
hydrogen of wild-type GFP (wt-GFP) is substituted for a methyl group (serine65 to threonine65). 
Adapted from [56]. 

particular antigen target. In certain cases, greater signal is obtained with indirect im-

munolabeling clue to the fact that multiple secondary antibodies can bind to a single 

primary antibody. Immunofluorescence labeling has been applied to both fixed and 

living cells in order to identify an essential protein in maintaining polarity in epithe­

lial cells [50], and for the quantitation of retroviruses [51], respectively, in addition to 

countless other applications. 

1.6.2 Genetically Encoded Fluorescent Proteins 

Beginning with the purification of the green fluorescent protein (GFP) by Osarnu 

Shimomura from the crystal jellyfish, Aequorea victoria, in the early 1960's [52, 53], 

and culminating with the cloning [54] and expression of the fluorescent protein in 

bacteria [55] over 30 years later, GFP and its derivatives have become some of the 

most widely employed reporter molecules in molecular biology today. 

The GFP is composed of an 11-stranded /^-barrel that forms a hollow cylinder 

and surrounds an irregular a-helix containing the fluorescence moiety [57, 58]. The 

fluorophore itself is formed from an autocatalytic cyclization reaction of the amino 
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acid residues serine65-tyrosine66-glycine67 at the center of the /3-barrel structure 

[59] (Fig. 1.11). Interestingly, this amino acid sequence is found in numerous proteins, 

none of which demonstrate fluorescent properties, which is an indication of the im­

portance of the /3-barrel structure in forming and protecting the luminescent nature 

of the protein. Point mutations of Aequorea wild-type GFP (wt-GFP, F64L/S65T) 

resulted in a brighter, enhanced form of GFP (EGFP) [60, 61] as well as a series of 

fluorescent proteins with emission peaks that spanned a large portion of the visible 

spectrum from blue to yellow [62]. Recent advances have made the red part of the 

spectrum accessible using proteins derived from several species of coral [63]. 

One important property of GFP that has made it such a useful labeling tool for 

cellular experiments is the overall stability of the fluorophore as a direct result of its 

tertiary structure. Typical fluorescence quenchers such as halides and oxygen have 

little to no effect on the fluorescence properties of GFP [64]. Common proteases, 

which are enzymes that cleave proteins by peptide bond hydrolysis, have no effect on 

GFP, even, under optimal conditions for the hydrolysis reaction [65]. Perhaps most 

importantly, cellular fixatives such as paraformaldehyde that are commonly used to 

preserve tissues for imaging do not alter the fluorescent properties of GFP even over 

long periods of time [55]. Other useful properties of GFP include a high quantum 

yield (wt-GFP - 0 . 8 , EGFP -0.60)[56], relatively small size (27kDa, - 3 x 4 nm)[58] 

and the ability to create and express chimeric proteins, in vivo, that consist of GFP 

fused to the end of a particular protein of interest. 

Well established transfection procedures are used to generate GFP-fusion proteins 

by introducing into cells foreign DNA molecules that encode for an amino acid se­

quence of a protein target as well as the 238 amino acids of GFP. Once inside the 

cell, the DNA is transcribed and translated into protein by the normal cellular mech­

anisms. The result is expression of a single polypeptide composed of the protein of 

interest with an attached GFP [66, 67]. Many different fluorescent constructs have 

been developed, which were shown to be functionally unaltered by fusion to fluores-
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cent proteins, and were therefore used in subsequent experiments. The transfection 

may be performed in a transient manner such that the foreign gene is expressed by 

the cell, but the DNA (and fluorescently tagged protein) is eventually lost when the 

cell divides during mitosis. Stable transfections may also be carried out in which the 

foreign DNA is actually incorporated into the nuclear genome of the cell and therefore 

results in indefinite expression of the fluorescent fusion protein as long as the cells 

continue to proliferate. 

1.7 Fluorescence Microscopy Colocalization Measurements 

To date, most approaches for measuring interacting cellular constituents based on 

fluorescence microscopy require the labeling of two component species with different 

fluorophores and imaging the emissions in two detection channels. The two detection 

channel images are then analyzed for the presence of colocalized signals, that is, spa­

tially overlapping signals within images collected on the separate detection channels. 

The measurement of a high degree of colocalization indicates close proximity of the 

two labeled species, and therefore suggests a nonrandorn interaction between the two 

labeled molecules of interest. 

Several different approaches to two channel image analysis can be employed to 

measure the colocalization of biomolecules. The simple overlay of RGB microscopy 

images for qualitative assessments of colocalization. has been, and continues to be, 

a common practice in many biological studies [68, 69]. Frequently, images of green 

and red fluorophores labeling different species are overlapped and assessed for the 

predominance of yellow pixels in the combined image, which, to a first approximation, 

indicates the presence of interacting species. Overlaying images is a relatively quick 

and straightforward method for detecting interactions between molecules, but it is 

strictly qualitative and can be misleading due to the relatively large size of the optical 

microscopy diffraction resolution limit focus (~250 nm) relative to the size of the 

macromolecules of interest (^5-10 nm). 
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Numerous strategies have been employed in the past to implement a more quan­

titative measure of colocalization. For example, the creation of a binary image mask 

of fluorescein labeled mitochondria together with images of Texas Red labeled hex-

okinase, led to the measurement of ~70% colocalization between the enzyme and the 

organelle [70]. The association of poly(A) RNA with different cytoskeletal elements 

of human diploid fibroblast cells was quantified by detailed statistical analysis of pixel 

intensity distributions [71]. The analysis of fluorescence intensity second-order his­

tograms and improved color look-up tables was proposed for the characterization of 

colocalization in two detection channel fluorescence images, as well as any image ac­

quisition artifacts affecting the measurement [72]. Similar histograms were employed 

by Li et al. but plotted as a function of the covariance between the two detection 

channels, which led to sensitive visual cues to the type of colocalization present be­

tween components at a presynaptic nerve terminal [73]. 

More recently, single particle fluorescence imaging techniques were used to quan­

tify colocalization by statistical analysis of either the overlap integral [74], or via 

estimation of the intermolecular distance by point spread function (PSF) centroid 

fitting [75, 76], for single particles within images. Nevertheless, single particle meth­

ods require very sensitive detectors and, more importantly, are not feasible at higher 

molecular densities where the individual particles cannot be optically resolved within, 

the images. 

Fluorescence resonance energy transfer (FRET) occurs without the appearance of 

a photon via long-range dipole-dipole interactions between a donor and an acceptor 

molecule. Energy transfered from the donor molecule will then lead to either fluo­

rescence emission by the acceptor or relaxation to the ground state by non-radiative 

mechanisms. The rate, kr at which energy is transfered from the donor to the ac­

ceptor depends on the spectral overlap of the two fluorophores (donor emission with 

acceptor excitation), the orientation of the donor/acceptor transition dipoles, and 

is extremely sensitive to the distance between the two molecules (kr ot r~6). The 
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Figure 1.12: The fluorescence emission spectrum of cyan fluorescent protein (CFP) significantly 
overlaps with the excitation spectrum of yellow fluorescent protein (YFP) as shown in the shaded 
area of the top left panel. This overlap can lead to non-radiative energy transfer at a rate, kx, 
from excited CFP donor molecules to YFP acceptor molecules followed by subsequent fluorescence 
emission of the acceptor. The efficiency, E, of fluorescence resonance energy transfer (FRET) is a 
measure of the fraction of photons absorbed by the donor that are transfered to the acceptor. The 
FRET efficiency has an inverse sixth power dependence on the separation distance, r, between the 
two fluorophores, and the Forster radius, RQ, for a donor/acceptor pair is defined as the distance at 
which the energy transfer efficiency is 50%. RQ for C F P / Y F P is ~ 5 nm, and typically ranges from 
2-6 nm for most donor/acceptor pairs. 
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Forster radius, R0, is a convenient constant that describes the spectral overlap and 

dipole-dipole orientation of a particular donor/acceptor pair, and is defined as the 

distance at which 50% of the donor molecules decay by resonance energy transfer to 

the acceptor, while the other 50% decay by the normal radiative and non-radiative 

pathways. The distance sensitivity of FRET has been exploited to measure short 

(2 — 10 nm) inter- and intramolecular distances on the order of the size of many 

biological macromolecules, as well as the distance between protein subunits, and con­

sequently, has proven to be an effective measure of molecular interactions [77, 78], 

protein conformational changes [79], and the distance between two sites of interest 

on a protein [80]. Besides the useful distance sensitivity on biological spatial scales, 

FRET has also found widespread use in biological experiments due to the ability to 

accurately predict the extent of energy transfer from the spectral properties of the two 

fluorophores, and the fact that the FRET between these two fluorophores is typically 

unaffected by other molecules within a cellular environment. 

FRET is typically quantified as the fraction of photons absorbed by the donor 

that are transferred to the acceptor. This fraction is defined as the FRET efficiency, 

E, and is given by the ratio of the energy transfer rate to the total decay rate of the 

donor in the presence of the acceptor. The most common experimental method to 

determine the FRET efficiency is by measuring the extent to which the donor fluores­

cence emission (or lifetime) is quenched by the presence of an acceptor molecule. In 

an imaging experiment, this can be accomplished by recording the fluorescence signal 

from the donor in the presence of the acceptor, followed by the irreversible photo-

bleaching of the acceptor molecule and measuring the resulting increase in donor 

emission [81]. Similarly, the FRET efficiency can be determined by the enhanced 

acceptor emission observed in the presence of donor molecules. This method will 

lead to the same FRET efficiency as that measured by donor quenching, but is more 

susceptible to error due to donor fluorescence bleed-through into the acceptor detec­

tion channel, as well as the direct excitation of the acceptor by the donor excitation 
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source [82]. Several other experimental approaches to quantify FRET efficiencies in 

fluorescence microscopy images have been proposed to minimize the effects that can 

lead significant errors in the determination of E (see [83] for review). 

While the sensitivity of FRET to the separation distance between fluorophores can 

essentially serve as an informative spectroscopic ruler, it may also be a disadvantage 

in cases where colocalized structures are composed of large multi-protein complexes so 

that the distance scale exceeds the Forster radius where the FRET efficiency begins 

to decrease rapidly with distance. In addition, most FRET experiments in cells 

have shown limited success in measuring interaction distances between molecules, and 

are not easily adaptable to quantification of the fraction, or numbers, of interacting 

molecules [84], and therefore, most cellular FRET applications have simply acted as 

sensitive diagnostic tests for the presence of interactions. 

Two channel fluorescence cross-correlation spectroscopy (FCCS) is capable of mea­

suring interacting fluorescently tagged macromolecules via temporal cross-correlation 

analysis of fluorescence intensity fluctuations collected from a small microscopic (<1 fL) 

observation volume defined by the beam focus of an excitation laser(s) [85]. Inten­

sity fluctuations arising from changes in fluorophore concentration within the beam 

focus are recorded simultaneously in two channels and correlated in time to reveal 

transport properties and number densities of interacting and noninteracting species. 

Image cross-correlation spectroscopy (ICCS) relies on the same principles as FCCS, 

but utilizes spatial correlation analysis of intensity fluctuations in fluorescence images 

collected via laser scanning microscopy. It can access transport dynamics on slower 

timescales (D = 0 — 10~10 cm2/s) such as those often encountered for cell membrane 

proteins or immobilized proteins in chemically fixed cells [86, 87]. Until now, the 

dynamic range and accuracy of ICCS has not been investigated and the application 

to measure interactions within single, two channel images has not been extensively 

investigated. Both FCCS and ICCS will be covered in more detail in the next chapter. 

Several statistical measures between images have been used to measure colocal-
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Figure 1.13: Each pixel pair in images recorded in two detection channels, i(x,y)a and i(x,y)n, is 
recorded by measuring the emitted fluorescence that results from excitation of fluorescent dyes within 
a diffraction-limited laser beam focus. Two fluorescence images are acquired by raster scanning two 
aligned excitation laser beams across the sample, and separating the resulting fluorescence into the 
two spectrally resolved detection channels. The two images can then be analyzed for the presence 
of colocalized pixels by calculation of coefficients, M l and M2, which are calculated from the ratio 
of the pixel intensities that are deemed colocalized (i(x,y)c & i{x,y)R > irhreshoid to the total 
intensity for a given detection channel [88] (Eq. 2.22). Pearson's correlation coefficient, rp, is a 
single-parameter measure of the covariance between two signals and can be used as a measure of 
colocalization in dual-color fluorescence images when the concentrations of particles in each detection 
channel image are equivalent [89] (Eq. 2.23). 
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ization between two channel images. Pearsons correlation coefficient, r> (Eq. 2.23), 

is a measure of the covariance between two signals and was first applied to measure 

colocalization within two channel fluorescence images of biological samples by Man-

ders and co-workers, but was limited to samples with approximately equal number 

densities detected in each channel [89]. To overcome this limitation, Manders and 

co-workers introduced a method to calculate colocalization coefficients, M l and Ml 

(Fig. 1.13), which has become the most widespread approach for quantitative colocal­

ization measurements via fluorescence microscopy [88]. The authors demonstrated, 

using the analysis of simulation and fixed cell images, that Ml and M2 were sensitive 

measures of the degree of colocalization in doubly labeled systems and were therefore 

particularly useful when the two species of interest differed in total number. The 

correct identification of colocalized pixels pairs is essential to the accurate evaluation 

of Ml and M2, and is accomplished by defining a threshold value for each detection 

channel. Specific pixels will contribute to the colocalized signal, only if both channel 

intensities are above their respective threshold values. For a particular channel, the 

ratio of the colocalized pixel intensities to the total pixel intensities, define the in­

teracting fraction for that species. Recent work by Costes and co-workers has shown 

that automatic determination of the colocalization threshold is possible by testing a 

variable intensity threshold and finding the highest intensity value for which evalu­

ation of rp for pixels with intensities below this threshold yield an rp value of zero 

[90]. Their automatic colocalization algorithm proved to be a fast, reliable method 

for calculating Ml and M'2 and eliminated ambiguity in threshold determination. 

The method, however, was not evaluated at higher particle densities or for different 

density ratios detected between channels. 

Similar to ICCS analysis, spatial correlation techniques that measure rP as a func­

tion of spatial lag in one or two dimensions have been applied previously to two chan­

nel images, but did not take full advantage of the information contained within the 

correlation function [91, 92]. Barbarese and co-workers defined a correlation index, 
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7, to measure the colocalization of protein translation components in oligodendro­

cytes using such an approach, but did not determine the amount of colocalization 

with respect to each detection channel. Defining the amount of colocalization present 

between two images using a single parameter is often difficult to interpret and cannot 

fully characterize the system. 

The popularity of two detection channel fluorescence image colocalization analyses 

stems from the developments in fluorescence labeling techniques, confocal imaging and 

image processing software. In fact, several algorithms, including those for calculating 

Manders' colocalization coefficients, M l and M2, are commercially available, or freely 

shared, which accounts for why these types of colocalization measurements are so 

widely used. Most methods, however, have not been rigorously tested, and provide 

absolutely no indication of failure, which is why it is extremely important to know 

the limitations of any particular technique before applying it to a given biological 

system. 
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2 

Theory 

In this chapter, the basic theory of two methods that measure the amount interac­

tion between two fluorescently labeled molecules will be discussed. Both methods 

predict the fraction of labeled species that interact with a second, distinctly labeled 

species on the molecular level, from the statistical analysis of two images recorded in 

separate detection channels. Spatial image cross-correlation spectroscopy (ICCS) is 

an intensity fluctuation correlation technique that is capable of measuring the abso­

lute numbers of both interacting and non-interacting molecules from two detection 

channel images. The theory of ICCS will be presented in terms of its development 

from another fluctuation correlation technique, fluorescence correlation spectroscopy 

(FCS). The second method that will be discussed, which measures molecular inter­

actions from two images, is called automatic colocalization. Unlike ICCS, in this 

method, the absolute number of interacting particles is not determined, but the ratio 

of the interacting particles to that of the total number of particles is evaluated by 

classifying pixel pairs within the two images as 'colocalized'. These colocalized pixels 

can then be used to calculate the interaction fraction (IF) within the image, which 

is interpreted as a strong indication of intermolecular interaction between the two 

labeled molecules themselves. 

39 
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Figure 2.1: Fluctuations in fluorescence intensity arise from changes in the concentration of fluores­
cent molecules within an excitation volume defined by the focus of a laser beam. Autocorrelation 
of the intensity fluctuations leads to characterization of the transport properties giving rise to the 
fluctuations as well as the average particle number density. Adapted from [5]. 

2.1 Fluorescence Correlation Spectroscopy (FCS) 

Stochastic fluctuations of a concentration dependent signal about a mean value may 

resemble random noise, but, as shown in numerous dynamic light scattering experi­

ments carried out in the past [1], these fluctuations contain a wealth of information 

about the molecular dynamics of the species from which they are measured. In order 

to facilitate the application of the principles of fluctuation analysis to monitor the 

motion of molecules in the presence of high concentrations of other species, as well as 

the investigation of chemical reaction kinetics, Elson, Webb and Magde exploited the 

sensitivity and specificity of fluorescence in the development of the fluctuation method 

called fluorescence correlation spectroscopy (FCS) [2 4]. By applying the same the­

ory developed for the analysis of fluctuations in scattered laser light to fluctuations 

in fluorescence intensity, they showed that the molecular details accessible through 

fluctuation analysis could be exploited in new and exciting systems, especially in the 

biological realm. 

Spontaneous fluctuations in fluorescence intensity, 5i(t), arise from changes in the 
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concentration of fluorescent molecules that are driven by thermal energy, as they enter 

and exit a small, stationary, excitation volume defined by the focus of a laser beam. 

The fluctuation is formally defined as the difference between the intensity of a given 

time point in the time series, i(t), and the mean intensity for the time series, (i): 

5i(t) = i(t) - <i> . (2.1) 

In order to extract the dynamic properties of the observed molecules, such as, diffusion 

coefficients or chemical rate constants, a large number of fluctuations must be recorded 

and statistically analyzed. In FCS, statistical analysis of the fluctuation record is per­

formed by calculation of a normalized time-averaged autocorrelation function (ACF), 

G ( T ) , whose functional decay and time-zero amplitude contain information about the 

dynamic properties and the average number density of the molecules within the laser 

beam excitation volume, respectively. The ACF is calculated as: 

(6i(t)6i(t + T)) 
G(T) = 7T2 •> (2-2) 

W 

where r is the time-lag variable and the angular brackets represent the time average 

over all possible time lags. 

Fluorescence correlation spectroscopy relies on theoretical models to predict the 

functional form of the time correlation function decay, which are required to extract 

the transport coefficients. The appropriate decay model must be used to fit the 

observed data and extract the relevant information. For the case of a single population 

of particles that are freely diffusing in 3-dimensions (3D), and are excited by a laser 

beam that is assumed to have a Gaussian intensity profile in x, y, and z, the decay of 

the time autocorrelation function is governed by the following equation (for derivation 

see [6]): 

G(T) = BM{T) = B l l (2.3) 

( 1 + *V 1 + (* )s 
where UQ and z0 are the experimentally determined lateral and axial e"'2 radii of the 

laser focal volume, respectively, and T(I = -^ is the characteristic lateral diffusion 
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time, which is inversely proportional to the diffusion coefficient, D. The zero-time 

lag amplitude is given by, B, and M(T) represents the appropriate decay model for a 

defined transport/dynamic process. 

Regardless of the dynamics occurring within the system (e.g. diffusion, flow, etc.), 

which will change the shape and rate of decay of the correlation function, the ampli­

tude, B, is inversely proportional to the average number of independent fluorescent 

entities within the excitation volume, assuming they are ideal (non-interacting). This 

is shown below by evaluation of the correlation function when r = 0. First, let us 

describe the measured fluorescence intensity, i, in terms of the local concentration of 

fluorescent particles within the excitation volume, C: 

(i) = ;/ (C) f W(r)dV (2.4) 

Si(t) =r, I 5C(r,t)W(r)dV, (2.5) 

where the integral is taken over all 3D space, rj is the product of the excitation 

intensity, overall photon detection efficiency, absorption cross-section and the fluores­

cence quantum yield, and W(r) describes the beam focus excitation volume, which is 

usually approximated as a 3D Gaussian: 

2x2+v2 -2*2 

W{r)&e ~^5e 3, (2.6) 

where the LU0 and z0 are the lateral and axial distances, respectively, at which the 

function decays to 1/e2. Substituting Eq. 2.4 and 2.5 into Eq. 2.2, and assuming all 

fluctuations in the fluorescence intensity can be attributed to fluctuations in particle 

number, we get: 

CM = Sfw(r)wWf(*>*'>')<&<&' (2 7) 

[{C)JW(r)dV]2 

where 

/ ( r , r', T) = (8C(r, t + T)8C(T', t)) 

is the concentration correlation function. When r is equal to zero, the concentration 

correlation function for noninteracting particles, / ( r , r ' ,0), is nonzero only if r = r', 
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i.e., particles are correlated at the same time, only at the same position. Therefore, 

G(Q) = JfW(r)W(r')(C)6(T-T>)dVdV' 

[(C)jW(v)dV]'2 

J K ! (2.9) 
(C) ( / W(r)dV) 

1 1 
(2.10) 

(C) Veff (N)' 

where we have defined the integral ratio of the beam excitation volume as the effective 

focal volume, K/ / , and (N) is the average number of particles per laser excitation 

beam volume. 

Evaluation of the amplitude of the autocorrelation function is therefore a direct 

measure of the average number of particles within the focal volume. The amplitude, 

G(0) = ' . 2 , however, cannot be calculated directly from the intensity fluctuation 

data due to various white noise sources, and is usually obtained by fitting to the 

appropriate model without weighting the zero-lag value and extrapolating the fit to 

r = 0. 

Due to the stochastic nature of the fluorescence intensity fluctuations, it is im­

perative that a sufficient number of spontaneous fluctuations be recorded, if accurate 

transport coefficients are to be measured. Experimentally, this criterion was met 

by minimization of the excitation, volume (< 1 fL) to ensure a reasonably small resi­

dence time (< 1 s) within the volume for each molecular species, which defines a single 

fluctuation. By minimizing the time in which a single fluctuation occurs, hundreds 

or thousands can be sampled in a matter of seconds ensuring reasonable statistics 

to extract phenomenological data from the correlation of the intensity fluctuations. 

The small excitation volume also leads to very low numbers of particles within the 

focus at any particular time (~l-2 particles), which ensures the size of the fluctu­

ations are large enough to be measured. Low concentrations are essential for FCS 

since the relative fluctuations, ^ , are proportional to -4=. The reduction in the 

focal volume was made possible by the use of confocal pinholes to restrict the size of 
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the illuminated volume [7] in combination with extremely sensitive photon detectors 

(e.g. avalanche photodiodes) to capture the brief bursts of fluorescence that occur as 

molecules rapidly diffuse in solution (~9 x 1 0 ~ 7 £ Y - for GFP in water [8]) through 

the excitation volume. 

Due to several technological advances in fluorescence detection and data acquisi­

tion, FCS is sensitive to dynamic processes occurring on the /is to rns timescale, and 

since its inception in the early 1970's, has led to the measurement of intersystem cross­

ing rates [9], translational [10—12] and rotational [13, 14] diffusion coefficients, flow-

rates [15], molecular weights [16], particle aggregation [17], as well as several other 

applications, including detection and quantification, of interactions through extension 

of FCS to cross-correlation analysis (see [18] for a detailed review). 

2.1.1 Fluorescence Cross-Correlation Spectroscopy (FCCS) 

Molecular interactions between different macromolecules are the basis for almost all 

biochemical reactions. To measure these interactions using the principles of fluo­

rescence fluctuation spectroscopy it is advantageous to introduce a second, spectrally 

distinct fluorescent label in order to record intensity fluctuations from two separate de­

tection channels simultaneously. Three different time-averaged correlation functions 

can be calculated from this type of data including the two autocorrelation functions 

for each detection channel, in addition to a cross-correlation function (CCF) between 

the two signals. 

The value of the cross correlation function will be non zero, only if the fluctuations 

recorded in the two detection channels are correlated in time. In such a case, the CCF 

contains information regarding the number densities and dynamics of those particles 

which are moving in unison, i.e. those that are interacting. Analogous to Eq. 2.5, one 

can define equations for the fluorescence intensity fluctuations for the two separate 

detection channels, but they will include contributions from both interacting and 
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Figure 2.2: Schematic diagram of an FCCS experiment. Fluorescently labeled particles (green and 
red) move in and out of the excitation laser beam focus. The green detection channel contains 
fluorescence intensity contributions from all of the green labeled particles, as well as the interacting 
green/red particles that are moving together. Similarly, the red detection channel contains fluores­
cence intensity contributions from all of the red particles and the interacting particles. Temporal 
cross-correlation of the two detection channels will only contain contributions from those particles 
which are interacting. The ratio of the zero-lag amplitude of the cross-correlation function to that 
of the autocorrelation functions, provides a measure of the fraction of interacting molecules, while 
the decay of each of the correlation functions provides information on the dynamics of each of the 
three distinct molecular species (green, red and interacting, green-red particles). Adapted from [19]. 

non-interacting particles: 

8h{t) = m I S (6\(r , t) + C12(r, t)) W^dV (2-11) 

5h(t) = r/2 / 5 (C2(r, t) + C12(v, t)) W2(r)dV, (2.12) 

where iV12 is the number density of interacting particles and Nk is the number density 

of non-interacting particles detected in channel, k = 1 or 2, and VI4 defines the beam 

focus excitation volume for channel k. By assuming that there is sufficient separa­

tion between the emission spectra of the two fluorescent labels such that negligible 

spectral bleed-through of signal between channels exists, and that the effective de­

tection volumes of the two channels are equivalent, then the autocorrelation function 

for channel A; may be written as. 

G (r) = <C)fcMfc(r) + (C)1 2M1 2(r) 
] VeSs{(C)k + (C)12f ' ' ' 

and the cross-correlation function as, 

<C12)M12(r) 
Gl2(r) = 

y e / / ( (C 1 ) + (C12))({C2) + {C\2)) : 

(2.13) 

(2.14) 



2: Theory 46 

where M(T) is the model that describes the decay dynamics for either the singly 

labeled species, M&, or the interacting species, M'n, (see Eq. 2.3). Therefore, fitting 

the two auto- and cross-correlation curves with the appropriate functional model will 

yield the number densities (at r = 0) and dynamic properties of both interacting and 

non-interacting species, which makes FCCS a potentially powerful tool for real-time 

monitoring of small concentrations of interacting particles in vitro and in cells. 

The first experimental realization of FCCS was performed by Schwille et al. in 

1997, who used two separate laser lines to excite two distinct fluorophores attached 

to DNA strands and successfully followed the renaturation of DNA using this method 

[19]. Fluorescence cross-correlation spectroscopy has since been used for kinetic bind­

ing studies [20, 21], detection of molecular interactions in the presence of large con­

centrations of non-interacting species [22], and has even been extended to the analysis 

of triple-color labeled systems to monitor higher order complex formation [23]. 

2.2 Image Correlation Spectroscopy (ICS) 

Image correlation spectroscopy (ICS) is an extension of FCS in that fluorescence 

intensity excited in a diffraction-limited laser beam focal volume is recorded, followed 

by correlation of the intensity fluctuations, although unlike FCS, the laser focus is 

rapidly scanned across the sample and the intensity is recorded in a two-dimensional 

(2D) image pixel array, and the scanning can be repeated in time to generate an 

image time series [24]. In principle, ICS can be applied to molecules that are free to 

move in three dimensions, but is typically performed on systems that are restricted 

to 2D, such as proteins that are embedded in the planar cell membrane. The image 

collection is typically achieved by employing a confocal laser scanning microscope, 

but practically any fluorescence imaging system would suffice. With ICS therefore, 

two distinct types of fluctuations are recorded; spatial fluctuations as a function of 

pixel position within a given image (i.e. a single time sample), and fluctuations in 

time defined for each pixel position through the entire image time series (Fig. 2.3). 
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Figure 2.3: Image series are recorded in two separate detection channels, k and I, at different 
emission wavelength windows. The images are subsequently correlated in time and averaged over 
all pixel positions, (x,y). The images sampled in channel 1 or 2 can be correlated with themselves 
(autocorrelation), or with each other (cross-correlation). The decay of the resulting time correlation 
functions can then be used to extract the transport properties of the system and the amplitudes 
used to determine the number of particles per beam area (BA) in channel 1, (N)1, channel 2, (N)2 

and the number of interacting particles per BA, (N)12. 

The spatio-temporal fluctuation is defined as the difference between the fluorescence 

intensity recorded at pixel position, (x,y), and time, t, and the mean intensity of the 

image sampled at that time: 

5i(x,y,t) = i(x,y1t) - {i)t, (2-15) 

where (i)t is the average intensity over the image. It should be noted that in this 

definition all the pixels in a given image are assumed to be recorded simultaneously, 

even though a typical 256 x 256 pixel image may take ~0.5 s to be acquired on a laser 

scanning microscope. This assumption is not problematic as long as the dynamics 

of the system are slower than the image acquisition rate while correlations for those 

species that move faster than the imaging rate will be lost. 

By incorporating spatial fluctuations in addition to those recorded in time, ICS 
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can access processes that occur at much slower time scales than that of FCS, without 

having to extend sampling time periods excessively. This is because the ICS measure­

ment is effectively performed in a quasi parallel fashion over a region of the sample 

(> 10 /iin2) as opposed to the single point collection set-up employed in FCS. Image 

correlation also allows for visual inspection of the system of interest via the image, 

which is advantageous for cellular applications. 

Analogous to FCS (and dynamic light scattering), the correlation of fluctuations in 

fluorescence intensity to generate an ACF that is fit with the appropriate model, will 

allow determination of the average number density and quantification of transport 

properties. For ICS, this involves the calculation of a normalized 2D intensity fluc­

tuation spatio-temporal correlation function from the intensity fluctuations for the 

image time series. The general form of this 2D spatio-temporal correlation function 

from which all of the related ICS techniques are derived is written as, 

{f s _ {(Mk (x,y, t) 8it (x + ^y + r],t + T)}) 
r ( f ' * T j « - M*,v,t)>tft(*,y,t + T)>t+T ' {2Ab} 

where £ and rj are spatial lag (or shift) variables, r is the temporal lag variable, and 

the angular brackets in the denominator represent the average intensity of the images 

sampled at time, t and t + r. The inner angular brackets in the numerator represent 

a spatial average over all equivalent spatial lag values, and the outer angular brackets 

are included for cases in which temporal averaging is performed over equivalent time 

lags. Subscripts, k and I, are included to allow for the possibility of correlating 

fluorescence fluctuations recorded in two separate detection channels. The function, 

r(£> V> T)kh is a n autocorrelation function when k = I and a cross-correlation function 

when k ^ I. 

Several methods exist to analyze the correlation of spatio-temporal fluctuations 

in order to extract different types of information. The decay of the zero spatial-lags 

temporal autocorrelation function, r(0, 0 ,T)M, can be followed as a function of r to 

provide analogous information on transport dynamics as those measured using FCS 

(see Fig. 2.1). This temporal ACF would also be fit with the appropriate decay func-
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tion to measure dynamic processes that occur on the s to min timescale, such as 

the relatively slow transport of membrane proteins. This approach is referred to as 

temporal ICS (TICS) [25]. Similar dynamic information may be obtained by Fourier 

transforming each image in the time series prior to correlation and fitting the de­

cay of r(kx, ky, r)ki to the appropriate model. The advantage of performing the time 

correlation on the Fourier transformed image time series is that any fluorescence in­

tensity fluctuations that arise from the motion of the labeled molecules are separated 

from the intensity fluctuations due to photobleaching or intermittent blinking of the 

fluorescence probe. This approach is referred to as k-space image correlation spec­

troscopy (kICS) [26]. By correlating in space and time to generate a full space-time 

correlation function, r(£,r),T)ki, and then tracking the center, (v,u), as a function 

of time lag, r, high resolution vector maps of the velocities of fluorescently labeled 

molecules can be produced. This approach is referred to as space time image correla­

tion spectroscopy (STICS) [27, 28]. In order to measure particle dynamics on faster 

time scales (/is to s) than those described above, the inherently fast time structure 

contained within a CLSM acquired image is exploited. Although it may take 0.5 s 

or longer to acquire a full 256 x 256 pixel image, each pixel is acquired on the order 

of //s, and each line of pixels on the order of ms. Therefore, spatial correlations, 

r(£,77, 0)fc(, along the fast raster scan direction of the image, which account both for 

the movement of molecules and the time of the raster scan, can be used to extract 

the fast dynamics of molecules in solution or in cells. This approach is referred to as 

raster image correlation spectroscopy (RICS) [29, 30]. 

Finally, the spatial correlation function, r(£,rj,Q)ki, can be calculated for a given 

time sample (image) whose amplitude is inversely proportional to the average num­

ber of independent particles within the excitation laser beam area (BA) [31]. This 

technique is referred to spatial ICS and will be the focus of subsequent chapters. The 

spatial correlation function is expected to have the form of a 2D Gaussian function 

due to the profile of the excitation laser beam used to excite the fluorescently la-
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beled particles. In practice, the spatial correlation function for a given time sample 

is efficiently calculated by use of a fast Fourier transform algorithm, 

where F and F~x represent the Fourier and inverse Fourier transform respectively, 

F* is its complex conjugate and Ik(x, y, t) and II(.T, y, t) are the 2D pixel image arrays 

recorded in detection channel, k and I, respectively, at time t. 

Assuming that the particles are uniformly randomly distributed over the entire 

area of interest, are smaller than the point spread function (PSF) of the microscope, 

and that the excitation laser BA at the focus can be approximated by a 2D Gaus­

sian function, then the spatial correlation function, r(£,r),0)ki, will decay as a 2D 

Gaussian function. A 5-parameter, nonlinear least squares fit of the spatial ACF to 

the following Gaussian function is therefore used to extract all possible information 

contained therein. 

\2 , / , \2" 
r(£>''7>°)jy = r ( °>0 ,0 ) k l exp 

W n 2 
+ r o c . (2.18) 

where the fit parameters are in shown in bold and are the zero-lags amplitude, 

r(0,0, 0)M, the e - 2 laser beam radius, LJQ, the position of the maximum, (v, u), and an 

offset parameter, r ^ , to account for long-range spatial correlations. Spatial ICS can 

be used to measure particle number densities in single images of fixed cells [32], and 

by employing the spatial cross-correlation of two detection channel images, can be 

used to measure molecular interactions in fixed or living cells. Since spatial ICS will 

be the focus of subsequent chapters the techniques will be explained in more detail 

in the following section. 

2.2.1 Image Cross-Correlation Spectroscopy (ICCS) 

For single photon, confocal laser scanning microscopy ICCS, two separate laser lines 

are usually used to excite two spectrally distinct fluorophores and the fluorescence 

emission is separated and collected in two detection channels. As in the previously 
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Figure 2.4: In order to determine the amount of particle colocalization present between two images, 
image cross-correlation spectroscopy (ICCS) relies on direct measurement of the ratio of the number 
of interacting particles to that of the total number of particles in a given detection channel, by 
evaluation of the amplitude of the spatial cross-correlation and autocorrelation functions respectively. 
Due to the statistical nature of the measurement, ICCS is well-equipped to distinguish the amount 
of interacting (colocalized) particles from those which are simply found by chance in close proximity. 
Note the sharp peak at the zero spatial-lags position of the autocorrelation functions, which is due 
to the presence of white noise in the respective images. 
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discussed fluctuation techniques, the inverse of the number of particles per beam area 

(BA) for channel k, including both interacting and noninteracting species, is equal to 

the square relative fluctuation, 

W = ^ - (2-19) 

In practice, white noise sources contributing to every pixel intensity within the im­

age prevent a direct calculation of the square relative fluctuation, thus necessitating 

its indirect evaluation via extrapolation of the best fit function (Eq. 2.18) to the 

zero-lags amplitude of the normalized spatial intensity fluctuation correlation func­

tion (Eq. 2.16). By definition, the spatio-temporal correlation function described by 

Eq. 2.16 is a spatial correlation function when r = 0 and, therefore, the time-lag value 

of zero will be omitted in subsequent references to spatial auto- or cross-correlation 

functions, i.e r(£,r),Q)ki = r(£,r?)fc(. 

If there is complete spatial overlap of the foci of the two laser beams and no quench­

ing or fluorescence enhancement upon interaction of the two fluorescent species, the 

zero-lags amplitude of the spatial cross-correlation function is directly proportional 

to (N)kl, the average number of interacting particles per beam area [33]: 

(N) - rt°'°)fc' A (2 20) 
( }kl~r(Q,Q)kkr(0,0)uAk ^ 

where the number of interacting particles may be determined directly from the fitted 

amplitudes of the cross-correlation function, and the two autocorrelation functions, 

as well as the ratio of the effective areas defined by the focal spots of the two lasers 

(Ai > Ak = TTUJI). The effective area ratio, which is included in Eq. 2.20 when the 

two excitation and detection volumes differ by a small amount [34], can be measured 

directly from the fitted beam radii for each detection channel. 

For each pair of images collected, a spatial autocorrelation function can be calcu­

lated for each detection channel, along with a cross-correlation function. Each corre­

lation function is fit to a 2D Gaussian (Eq. 2.18) to obtain best fit r (0,0)n, r(0, 0)22, 

and r(0,0)12 values. Particle colocalization coefficients, Mliccs a n ( i M2iccs, which 
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are defined as the ratio of the number of interacting particles to the total number of 

particles per beam area for a particular detection channel, are determined using the 

following equations [35]: 

m _ r(0,0)« _ (N)kl r(0,0)M _ (N)kl 
Ml ice S — , n n, • — TTTT— MZiccs = lr, nN = / . A (2.21) 

r(0,0)„ <iV}fcfc r ( 0 , 0 ) u (N)u 

The colocalization coefficients are the parameters which are measured to char­

acterize the interaction between the two fluorescently tagged species. Due to the 

importance of molecular interactions in regulating biochemical reaction pathways, 

and the readily available fluorescent probes, many approaches have been developed 

to measure such interactions from two fluorescence images recorded in separate de­

tection channels. One group of image analysis techniques relies on the statistical 

calculation of interaction fractions (IFs) based on correlation coefficients determined 

for overlapping pixels in the two detection channel images. These techniques are re­

ferred to as automatic colocalization, and will be described in detail in the following 

section. 

2.3 Automatic Colocalization 

Few would have anticipated the widespread application of the statistical colocalization 

coefficients, Ml and M2, since being introduced by Manders et al. almost 15 years 

ago. The need for a relatively simple, robust approach to measuring colocalized 

signals in dual labeling fluorescence imaging experiments, however, led to commercial 

availability of the technique and numerous applications in different biological systems 

[36, 37]. 

For automatic colocalization, pixels in the two detection channels are classified as 

either colocalized or not based on comparison to a predetermined intensity threshold, 

and the colocalization coefficients are then calculated from the ratio of the sum of the 
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intensities of colocalized pixels to the total intensity in each channel. 

/ j ^l,coZoc / j '''2,c.oloc 

M l = ^ = Ml = ^ , (2-22) 
E «i E ?-2 

(*,y) 0,2/) 

where ihcoioc = ii{x,y) if i2{x,y) > threshold and ihcoioc = 0 if i2(x,y) < t̂hreshold-

i2,coioc = i'i(x, y) if ix(x. y) > threshold and i2yCoioc = 0 if h(x, y) < t̂hreshold- The sum is 

taken over all pixels in the image. Originally, the colocalization threshold value was 

chosen to be zero. Due to the size of the PSF, however, this choice leads to significant 

contributions from random overlap of adjacent pixels and therefore results in over-

estimation of the colocalization coefficients at relatively moderate particle densities. 

Manual determination of the threshold value, such as estimation of the background 

noise level, aids the situation somewhat, but still includes randomly overlapping pixels 

of higher intensities as the particle density increases. 

Recently, Costes et al. developed an automatic method to determine the colo­

calization threshold used to calculate M l and Ml based on Pearson's correlation 

coefficient, rP [38]. Note that rP is a statistical correlation coefficient and not a cor­

relation function as discussed earlier. Pearson's correlation coefficient is an accurate 

measure of colocalization when the densities of the two species of interest are approx­

imately equal [39, 40]. Pearson's correlation coefficient ranges from - 1 , for perfect 

anticorrelation, to +1 for perfect correlation between the two variables. For the two 

channel image data sets, it is calculated as, 

E {ii{x,y) - (ii))(i2{x,y) - {i2)) 

r = ^'^ . (2 23) 

' £ (»i(*,y)-(WE &(*,!/)-fa))2' 

where i\ (x, y) and i2(x, y) are the intensities in detection channel 1 and 2, respectively; 

the angular brackets indicate an image average of the intensity; and the sum is over 

all pixels. 

Costes' automatic threshold method relies on determination of the threshold in­

tensity value, Tcriucah below which pixels yield an 7> value of zero, i.e, no correlation 
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Figure 2.5: Automatic colocalization proceeds by successively lowering pixel intensity thresholds, 
2 i and T2 = aT\ + b, and determining Pearson's correlation coefficient, rP, for all pixel positions 
below both threshold values. The slope, a, and intercept b, which define the brightness relationship 
between image 1 and image 2, are determined from orthogonal linear regression of the two channel 
pixel intensities. Pearson's correlation coefficient decreases as the thresholds are lowered, eventually 
reaching zero when no correlation between pixels of image 1 and image 2 exists. The pixel intensity 
value, TcritiCai, which leads to the rp value of zero is subsequently used for calculation of the 
colocalization coefficients for the two images as defined by Eq. 2.24. 
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remains. The idea stems from the fact that, in general, colocalized, or positively 

correlated pixels are of higher intensity than non-correlated pixels and the inten­

sity threshold value that separates these two populations can be found by successive 

evaluation of a correlation coefficient between the two images (Fig. 2.5). The auto­

matically determined threshold can then be used to evaluate Manders' colocalization 

coefficients as follows: 

E k{x,y) E i2{x,y) 
, f 1 i\{x,y)>Ti & h{x,v)>T2 iiix^n & i2(x,y)>T2 , 
ML Auto = ^ —, c MZAuto = = — r [Z.Z4) 

All i\(x,y) All i2(x,y) 

Both ii(x,y) > T\ and iaix.y) > T2 must be true for pixel intensities ii(x,y) and 

i2(x,y) to contribute to the sum in the numerator of their respective colocalization 

coefficient. Pixels below the channel threshold value contribute zero to the sum in 

the numerator. The colocalization threshold values, T\ and T2, are found by first 

performing orthogonal linear regression on the two-dimensional histogram of pixel 

intensities (i.e., a plot of ii(x, y) versus i>2(x, y), see Fig. 2.5) to account for differences 

in intensity between the two channels. Once the slope, a, and intercept, 6, of this line 

are determined, an initial threshold, Tiniuah is chosen and the locations of all. pixels 

below T] = TiniUai and the T2 = aT\ + b are found. If the ?> value calculated for the 

pixels below T\ and T2 is positive, then the colocalization threshold, Tinitiai, is lowered 

and the process is repeated incrementally until the chosen threshold, T = Tcruicah 

leads to rp = 0 for those pixels below T\ and T2. The colocalization thresholds are 

then used in calculation of Ml Auto a n ( i M2 Auto y i a Eq. 2.24. 

2.3.1 Colocalization Significance Test 

Automatic colocalization relies on intensity threshold determination via calculation 

of Pearson's correlation coefficient. Calculation of rp, however, for two uncorrelated 

images will still lead to non-zero values, which places a fundamental limit on the min­

imum interaction fraction that can be detected using this type of statistical analysis. 

Therefore, a colocalization significance test was outlined by Costes et al. [38] based 
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on previous statistical tests [41], which was intended to assess whether or not a pair of 

images contained 'true' colocalization. This test was designed to be performed prior 

to automatic colocalization analysis in order to decide whether to proceed with the 

automatic determination of the colocalization coefficients, MlAuto a n d M2^„t0. This 

test will be discussed in the context of colocalization analyses in subsequent chapters 

and will therefore be discussed here. Briefly, subregions of one image, approximately 

the size of the Gaussian convolution function (simulating the PSF or beam focus), are 

randomly permuted in space and then used together with the second, non-permuted 

image, to calculate rp. A large number (~2000) of rp values are calculated that 

correspond to different random permutations of one of the images. If rp calculated 

between the two unaltered images is greater than the correlation between 97% of 

the permuted images, then the images are said to have significant colocalization see 

Fig. 2.6. 
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Figure 2.6: The colocalization significance test is applied to two images that are suspected to contain 
colocalized pixels intensities due to the presence of molecular interaction. The test is designed to 
be performed prior to automatic colocalization analysis in order to identify whether or not ' t rue' 
colocalization exists between the two images. Pearson's correlation coefficient is calculated between 
the first image, and a large number of randomized versions of the second image. In this case, 
two images were simulated with 2% interaction, and 2000 permutations of the second image were 
performed. The distribution of the rP values calculated for the 2000 image pairs is shown in the 
histogram. The shaded area represents the probability, P , that rP calculated with the randomized 
images will be less than rP calculated between the two original images. A line is plotted at rP = 
0.0878, which is the value calculated for the two original images. If P > 0.97, then the images 
are said to contain significant colocalization and automatic colocalization analysis can be performed 
to quantify the IF. In this case P = 0.87, and therefore, automatic colocalization analysis is not 
applicable to this image pair. Adapted from [38]. 
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3 

Materials and Methods 

3.1 Computer Simulated Images with Interacting Popula­

tions of Point Emitters 

All the computational work, including image simulations, correlation function, and 

automatic colocalization calculations, was performed using custom written MatLab 

7.0 (TheMathWorks, Natick.MA) routines and two toolboxes (Image Processing Tool­

box and Optimization Toolbox) running on a personal computer equipped with a 1.5 

GHz processor and 512 Mbytes of RAM. Computer simulated images were created to 

model those obtained with a two channel CLSM of fluorescently tagged membrane 

receptors in two-dimensional cellular membranes and the simulations were run with 

user set particle densities and interaction fractions. Three matrices were created in 

the image simulations. Matrix C contained the locations of the colocalized point 

emitters, with particle positions being generated by randomly choosing both x and 

y coordinates within a A^ x A^ matrix (usually 256x256 for most studies). Ones 

were inserted into the matrix at the randomly selected particle positions, while all 

other matrix elements were set to zero. It is possible that the same coordinates may 

be chosen at random more than once, especially at higher particle densities. In this 

case, the recorded value was the sum of the unity values for each particle located 

at that position, thus simulations did not model excluded volume effects. Matrix C 

was then convolved with a two-dimensional Gaussian function with an e"~2 radius of 

64 
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five pixels to simulate excitation of point emitters with a focused TEM00 (Gaussian) 

laser beam typical of CLSM imaging. Two more image matrices, G and R, with 

variable particle numbers were generated in the same fashion as C to represent the 

noninteracting components imaged in each detection channel. The addition of the 

colocalized particle matrix, C, to each of the noninteracting particle matrices, G and 

R, resulted in two images with a known percentage of interaction and fully defined 

particle densities. The interaction fraction, with respect to channel G, is given by 

NC/(NC + NG), while that of channel R is given by NC/{NC + NR), where iV* is the 

number of species, i = C(colocalized), G(green), R(red), per image. 

Both ICCS and automatic threshold colocalization determination were then ap­

plied to these two images and the results analyzed. Between 20 and 100 images were 

generated for each set of simulation parameters so that statistics could be calculated 

for each colocalization method and their accuracy and precision could be compared. 

To study the effects of photon detection shot or counting noise, a noise matrix 

was added to each image before the colocalization analyses were performed. The 

noise matrices, U and H, consisted of random numbers with a Gaussian distribution 

around zero and a standard deviation of one, multiplied by the square-root of the pixel 

intensity. The standard deviation of this matrix was varied with a scaling coefficient 

defined as the width factor (WF). The WF represents the ratio of the real PM.T 

signal intensity standard deviation to that of a purely Poisson distribution to model 

analogue detection typical of a CLSM. Therefore, the intensities, Kx>y and Lx,y, of 

each pixel (x,y) in the final image set were defined as follows,where aXiV and bx>y are 

the image matrix elements with known interaction fraction as described above: 

Kx,y = Cbx,y + WFny/a^U^y 

Lx,y = bx>v + WFLy/k^h^y 

The effects of uniform background noise were investigated by adding different 
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noise matrices, U and H, to each image. For background noise, the noise matrix 

elements were randomly chosen from the absolute values of a normal distribution 

with a mean of zero and a standard deviation of one. The standard deviation of the 

normal distribution was varied with a scaling coefficient to alter the total amount of 

noise present in the final images. This approach simulates the residual background 

count left after subtraction of a mean background from each pixel, as is standard 

practice for image background correction. Using this definition of background noise, 

the final pixel values in each image were defined as follows: 

Kx,y = aXtV + (TKUX)y 

lJx,y ®x,y "T &L<lx,y 

The signal/noise ratio in a simulation image set was then defined as the ratio of 

the signal (maximum of image matrix A or B) to the standard deviation of the noise 

(a). In practice, the signal is calculated as the mean of the most intense pixels to 

help minimize the artifacts introduced by abnormally bright pixels, 

. max (A or B) 
O/BKOTL = ' - • 

O'K or L 

To simulate images resulting from a species with two binding sites for a particular 

ligand, Eq. 6.9 was used to calculate the expected distribution of interacting com­

plexes given the single site-binding constant, Kc, the amount of free ligand, NRFree, 

and the total number of target molecules, NcTotah (the molecule with two binding 

sites). The x and y pixel coordinates were generated as described above for the free 

receptor molecules (only channel 1), the free ligand molecules (only channel 2), and 

the interacting molecules, N(GR\) and N(GR>2), (channels 1 and 2). To generate the 

image from channel 1, ones were placed at the pixel coordinates of the free target 

molecules as well as at the locations of all the interacting species. The channel 2 

image was generated similarly, by placing ones at the pixel coordinates of the free 
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ligand and. the interacting N(GRi) species. In addition, twos were placed at the pixel 

locations of the N(GR2) particles to simulate a twofold increase in brightness when 

two ligands are bound to one target molecule. 

3.2 Antibodies 

The primary antibody used for cell labeling and in vitro controls was a monoclonal 

anti-platelet derived growth factor /3-receptor (IgG PDGF-/3 4.3 mg IgG/mL) (isotype 

2b), and was purchased from Sigma-Aldrich (Cat. No. P7679, St. Louis, MO). 

The primary antibody binds to an epitope located on the extracellular domain of 

the PDGF-/3 receptor and only recognizes human and pig receptors. One of the 

secondary antibodies used for immunofiuorescent staining of the primary IgG was 

a fluorescein isothiocyanate (FITC) conjugated goat anti-mouse IgG (Fab-specific, 

Cat. No. F5262, Sigma-Aldrich). It had a protein concentration of 4.7 mg/mL, a 

dye/protein molar ratio of 5, and showed no binding to the Fc fragment. The other 

secondary antibody used in these experiments was Alexa Fluor 633 goat anti-mouse 

IgG2b (Fc-specific, Cat. No. A-21146, Molecular Probes, Eugene, OR). The Alexa 

Fluor 633 conjugated antibody had a concentration of 2 mg/mL and a dye/protein 

molar ratio of 2. 

3.3 Antibody Adsorption on Glass 

The; primary antibody was diluted 1:1000 in phosphate-buffered saline (PBS, pH 7.4) 

and incubated for 20 min at room temperature on a 35 mm, No. 1.5 glass-bottom 

microwell dish (P35G-1.5-14-C, MatTek, Ashland, MA). The dishes were then rinsed 

twice with PBS. Both the FITC and Alexa 633 conjugated secondary IgGs were 

mixed and diluted 1:1000 in PBS. This mixture of secondary antibodies was then 

incubated on the microwell dish at room temperature for times ranging from 15 min 

to overnight. Control measurements were performed without the presence of primary 

antibody (i.e., a mixture of fluorescent secondary antibodies was adsorbed on bare 



3: Materials and Methods 68 

glass surface). The spreading of the solution on the surface was greatly reduced 

when the primary IgG was not present, and resulted in large clusters of antibody. 

This was significantly different than samples prepared in the presence of the primary 

mouse IgG, which resulted in complete spreading on the glass surface and completely 

uniform secondary antibody distributions. 

3.4 Cell Culture and PDGF-p Labeling 

Human foreskin fibroblasts (AG01523) were purchased from the NIA Aging Cell Cul­

ture Repository, Coriell Institute for Medical Research (Camden, NJ). The cells were 

cultured in Dulbeccos Modified Eagles Medium supplemented with 10% fetal bovine 

serum, 4 rriM L—glutamine, 100 units/ niL penicillin, 0.1 mg/mL streptomycin, and 

0.1 mM nonessential amino acids (Gibco, Carlsbad, CA). Cells were maintained in 

a humidified 5.0% CO2 atmosphere at 37°C. Cells were plated on 35 mm microw-

ell dishes (MatTek) and grown for 2-3 days. Cells were incubated with 50 ng/mL of 

platelet-derived growth factor-BB (PDGF-BB) (R&D Systems, Minneapolis, MN) for 

60 min at 37°C to promote clustering of the PDGF-/3 receptors [1], Cells were rinsed 

once with PBS and then fixed with 4% (w/v) paraformaldehyde for 20 min at room 

temperature. Cells were incubated with 0.2% (v/v) Triton X-100 (Sigma-Aldrich) 

for 5 min at room temperature followed by rinsing three times with PBS. To reduce 

nonspecific antibody binding, cells were incubated for 30 min with 1% (w/v) bovine 

serum albumin (BSA) (Sigma- Aldrich) in PBS at room temperature. Cells were 

then incubated with IgG PDGF-/3 diluted 1:500 in 1% BSA for 40 min and washed 

with PBS. Goat anti-mouse IgG FITC conjugate was diluted 1:200 in 1% BSA and 

incubated 40 min followed by rinsing in PBS. The final step in the labeling process 

was to incubate the cells for 40 min with goat anti-mouse IgG Alexa 633 conjugate 

diluted 1:200 in 1% BSA followed by rinsing in PBS. Control samples were prepared 

in the same manner just described, except labeling with the primary IgG PDGF-/3 

antibody was omitted. 
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3.5 Transfection ofYFP-Talin constructs in CHO-K1 cells 

Chinese hamster ovary (CHO-K1) cells (Sigma-Aldrich) were cultured in Dulbec-

cos Modified Eagles Medium supplemented with 10% fetal bovine serum, 4 mM 

L—glutamine, 100 units/ inL penicillin, 0.1 mg/mL streptomycin, and 0.1 mM nonessen­

tial amino acids (Gibco, Carlsbad, CA). Cells were maintained in a humidified 5.0% 

CO2 atmosphere at 37°C. Cells were plated on 6-well dishes (VWR) and grown for 2 

days. Two solutions were prepared for each well to be transfected (12 solutions total). 

The first set of solutions was prepared by diluting 5 /,/,L of lipofectamine (Invitrogen, 

Carlsbad, CA) in 50 /xL of OptiMEM (Invitrogen). The second set of solutions was 

prepared by diluting 1 /xL DNA plasmid endcoding for YFP-talin (Prof. Horwifz Lab, 

University of Virginia) in 50 /xL OptimMEM. These two sets of solutions were mixed 

and left at room temperature for 20 min. The resulting 100 /iL lipofectamine/DNA 

solutions were then added to the 6-well plates containing the cells, and were incubated 

for 6 h at 37°C, and 5.0%) CO2. After the 6 h incubation time, the liquid was removed 

from each well and replaced with normal growth media. After 25 h, the cells were 

removed from the surface of the 6-well plate by addition of a 0.25% (w/v) trypsin 

solution. The cells were then incubated at 37°C on 35 mm microwell dishes (MatTek) 

that had been coated with fibronectin. These dishes were coated by incubation for 1 h 

at 37°C with a 2 /xg/mL solution of fibronectin in PBS. The cells were then fixed with 

a 4% (w/v) paraformaldehyde solution for 10 min at room temperature and imaged 

using an Olympus FV300 (Olympus America, Melville, NY) confocal laser scanning 

microscope (CLSM), as described in the next section. 

3.6 Microscopy 

Human foreskin fibroblast cells as well as antibodies adsorbed on glass were imaged 

using an Olympus FV300 (Olympus America, Melville, NY) CLSM. Simultaneous 

excitation of FITC and Alexa 633 was provided by the 488 nm line of an Ar ion 

laser as well as the 633 nm line of a HeNe laser, respectively. Emission from both 
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dyes was collected with an Olympus 60x PlanApo oil immersion objective (NA 1.4). 

The resulting fluorescence was split with a 570 nm dichroic mirror, and wavelengths 

between 510 nm and 530 nm were selected using BA510IF and BA530RIF emission 

filters (Chroma, Rockingham, VT) and detected with a PMT. Longer wavelength 

emission was collected using another PMT and a LP660 filter (Chroma Technology, 

Rockingham, VT). The PMT voltages were adjusted such that no pixels were satu­

rated in the image and no threshold was applied. The pixel resolution for cell images 

was 0.23 /iin/pixel while a digital zoom was used to achieve a resolution of 0.058 

/im/pixel for images of the antibody on glass. Mean background intensity levels were 

calculated from image regions outside of the cells. For the case of antibody adsorp­

tion on glass where the entire field of view appeared to contain signal, a region in 

the middle of the image was deliberately photobleached and the post-bleach mean 

intensity in that region was used as a measure of background noise. Identical back­

ground levels were obtained for control images of primary antibody-coated coverslips 

in the absence of the fluorescent secondary antibody. All images before ICCS or auto­

matic colocalization analysis were corrected for background noise by subtracting the 

mean background, plus one standard deviation from all pixels. Bleedthrough between 

channels was measured by excitation with the 488 nm laser line and collecting the 

resulting fluorescence in both channels. No detectable cross talk was observed for 

these experiments. 

The CLSM analogue noise width factor was measured at a particular PMT volt­

age by recording images of a sample slide with a high concentration of embedded 

fluorophore (Chroma Technology), and then comparing the standard deviation of the 

image to the square root of the mean. 

CHO-K1 cells that were transfected with YFP-talin protein fusion constructs were 

imaged using the Olympus FV300 CLSM described above. YFP was excited using 

the 514 nm laser line of an Ar ion laser. Emission was collected with an Olympus 60x 

PlanApo oil immersion objective (NA 1.4). The resulting fluorescence was collected 
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using a 535-565 band pass emission filter (Chroma, Rockingham, VT) and detected 

with a PMT (V = 550). The pixel resolution was 0.12 /jm/pixel. 

Human embryonic kidney (HEK293) cells were plated on 35 mm glass-bottomed 

culture dishes and transfected with hemagglutinin-tagged angiotensin II type 1 re­

ceptor (HA-AT1R), /3-arrestin2-CFP, small interfering RNA (siRNA) /32-adaptin and 

wild-type siRNA resistant /32-adaptin-YFP or Y737F mutant. The HEK293 cells were 

imaged at several time points following addition of a 1 /JM solution of angiotensin II 

(Ang II) using a Zeiss LSM-510 Meta laser scanning microscope (Carl Zeiss Canada 

Ltd., Toronto, Ontario). Excitation of cyan fluorescent protein (CFP) and yellow flu­

orescent protein (YFP) were provided by the 458 nm and 514 nm lines, respectively, of 

an argon-ion laser. Emission from both dyes was collected with a Zeiss Plan-Neofluar 

40x oil immersion objective (NA 1.3) and was split into two detection channels with 

a 490—nm dichroic mirror. Further wavelength selectivity was provided in the CFP 

channel by use of a 470-500 nm band pass filter and in the YFP channel by use of 

a 530-600 nm band pass filter. Fluorescence in both channels was recorded with two 

separate PMTs whose voltage was adjusted to obtain maximal signal but avoid large 

numbers of saturated pixels. Two adjustable pinholes were set at 90 //m and 76 /im 

for the CFP and YFP channels respectively. The pixel resolution varied between 

images from 0.08-0.11 /im/pixel. Due to the overlap between the emission spectra of 

CFP and YFP, images were recorded in multi-track mode to ensure no bleedthrough 

of the CFP emission into the YFP detection channel. In this mode, each detection 

channel image is acquired sequentially on a line-by-line basis. A single line scan of the 

sample is performed with the 458 nm laser line, which in turn, is followed by a single 

line scan with the 514 nm laser line. Since at no time do both lasers excite the sample 

simultaneously, the detection of CFP in the YFP channel is greatly reduced, which 

facilitates subsequent colocalization analysis of the acquired dual-channel images. 

Prior to ICCS analysis, images were corrected for background noise by subtracting 

the mean plus one standard deviation of the noise from all pixels as measured from 
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image regions outside of the cell. S/B ratios were calculated from the maximum of 

the image and the remaining standard deviation of the noise following background 

correction. For each time point recorded following the addition of Ang II, ICCS 

measurements were performed on manually selected areas of the cell. Approximate 

locations and sizes of the selected areas were kept as similar as possible but due to 

the large alterations in cell shape following stimulation with Ang II it was impossible 

to perform the ICCS analyses on identical regions of the cell. 
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4 

Accuracy and Dynamic Range of Colocalization Measurements 

Since the theory of image cross-correlation spectroscopy was established over a decade 

ago, only a handful of experiments have been performed to date [1, 2], and the pos­

sibility of measuring" interactions in single images using spatial ICCS in particular, 

has not been extensively investigated. In order to unequivocally demonstrate the fact 

that ICCS is a viable technique for assessing the amount of colocalization present be­

tween two fluorescently tagged species imaged at high particle densities, and, for the 

first time, to determine the dynamic range and accuracy of ICCS for such measure­

ments, a complete systematic study of the spatial fluctuation correlation technique 

was performed with comparison to a more commonly employed automatic colocaliza­

tion method. 

In order to fully characterize the statistical accuracy and dynamic range of ICCS, 

hundreds of simulated images were created and analyzed under varying conditions 

of particle number densities, interaction fractions, and noise levels. Simulations are 

essential in such a study to provide the level of control necessary to assess the quality of 

the technique employed in recovering the simulation input parameters. For the details 

of how the simulated images were created the reader is referred to the Materials and 

Methods section (3.1). 

Some example simulation images created to model a sample consisting of two flu­

orescent species with 50% interaction (i.e half of the particles share complete spatial 

overlap) detected in two separate detection channels of a confocal laser scanning mi­

croscope are shown in Fig. 4.1. The total input particle surface numbers for the 

74 
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Figure 4.1: Simulated overlay images of two particle populations detected in two channels corre­
sponding to a 50% interaction fraction between the two interacting species. The two-channel overlaid 
images consist of Nt total particles, Nt/4 are noncolocalized for each color (red and green), and Nt/4 
particles are colocalized, with each color emitting equal intensity signals for both channels, which 
appear as yellow (i.e, N\ = iV2 = Nt/2). The particles were randomly distributed in an image 
matrix of 256x256 pixels, and convolved with a Gaussian function with e"2 radius of 5 pixels. The 
first row shows different particle densities per image all with 50% interaction. (A) Nt = 2 x 10,? 

(2.4 particles/BA), (B) Nt = 2 x 104 (24 particles/BA) (C) Nt = 2 x 105 (240 particles/BA). In the 
second row, background noise was added to images with Nt = 2 x 103 as described in Materials and 
Methods. (D) S/B = 1.90, (E) S/B = 14, (F) S/B = 1.7. In the third row, the counting noise WF 
was varied in images with Nt = 2 x 104. (G) WF = 1, (H) WF = 5, (I) WF = 15. ©Biophysical 
Journal 89, 1251-1260 (2005). 
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images shown in Fig. 4.1 A-C, were 2 x 103, 2 x 104, 2 x 105 particles, respectively, 

per 256x256 pixel array, which corresponds to 2.4, 24 and 240 particles/beam area 

(BA), due to the fact that the area of the Gaussian convolution function (simulated 

BA) that was used to create these images was 78.5 pixels2. Most subsequent ref­

erences to particle densities will be expressed in units of particles/BA because, as 

shown explicitly in the following section, the BA represents a single spatial fluctua­

tion sample, and is therefore an important parameter in the characterization of ICCS 

accuracy and precision. The channel 1 particles are displayed as green, channel 2 

particles as red, and the overlay image of the two contains yellow pixels as a visual 

aid in identifying areas of colocalization. It becomes obvious that at higher particle 

number densities (Fig. 4.1 C), yellow pixels dominate the display, and it is therefore 

extremely difficult to distinguish, by eye, any true colocalized areas from regions with 

randomly overlapping independent particles. 

4.1 Simulation Results 

4.1.1 Colocalization Detection Limits 

To investigate the minimum interaction fraction (IF) that can be detected by the 

two colocalization analyses, images were simulated in which the interaction fraction 

was varied while the total particle densities in channels 1 and 2 were held constant 

and equal. This procedure was repeated at different total particle densities in each 

channel (but still equal numbers per channel) in order to see if the overall particle 

density had any effect on the measured detection limit. 

Automatic colocalization led to accurate results at low densities for all interac­

tion fractions > 3% which is the detection limit as determined by the colocalization 

significance test described in Section 2.3.1. At higher particle densities (~100 parti­

cles/BA), automatic colocalization significantly overestimates the amount of interact­

ing particles at large interaction fractions (> 60%), but the detection limit remains 

at 3% (Fig. 4.2). The standard deviation of the measurement was calculated from 
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Figure 4.2: Automatic colocalization measured interaction fractions (IF) (Ml^,uto) as a function of 
the simulation input interaction fraction, MIQ for two different particle densities. Each point is an 
average of 50 image sets with error bars representing the standard deviation of the measurements. 

the results of 50 simulations under identical conditions for each data point and was 

seen to increase with increasing particle density. 

The detection limits of spatial ICCS were significantly worse than those of auto­

matic colocalization, varying from between 5% for 512x512 pixel images to almost 

75% for the much smaller 16x16 pixel images. These values were not dependent on 

the total particle density per channel, which was varied from < 0.1 particles/BA to 

120 particles/BA. The minimum interaction fraction that could be detected by ICCS 

was determined by successively decreasing the number of interacting particles for a 

given particle density until the two-dimensional Gaussian fit of the cross-correlation 

function failed (Fig. 4.3). A failed fit was defined as more than half of the 20 trials 

returning a fitted e~2 beam radius outside a range of ±50% of the simulation input 

value, or the fitted peak position, (v,v), was shifted by more than 2 pixels from the 

center, (£ = 0,?7 = 0). This second criterion was included because it was found that 

in some instances, large off-center peaks would appear as well-defined Gaussian func-
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Figure 4.3: The minimum interaction fraction that could be detected using ICCS analysis as a 
function of the number of independent fluctuations (NIF) in the analyzed images. Both channel 
densities were held constant and equal (8 particles/BA) as the number of interacting particles was 
decreased. The minimum IF was determined by successively decreasing the number of interacting 
particles until the two-dimensional Gaussian fit of the cross-correlation function failed (i.e. the 
detection limit was reached when more than half of the 20 trials returned a fitted e~2 beam radius 
outside a range of ±50% of the simulation input value, or the fitted peak position, (v, v), was shifted 
more than 2 pixels from the center, (£ = 0,77 = 0). Shown below are three cross-correlation functions 
calculated for 256 x 256 pixel images at three different IFs. As the IF approaches values <0.15, the 
amplitude of the central peak of the cross-correlation function is reduced to the same level as that 
of the noise due to random spatial correlations 
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tions that would pertrub the fitting of the central peak. It should be noted that to 

obtain the ICCS detection limits reported, the full correlation function was cropped 

around the central peak before fitting of the Gaussian function. Excluding long-range 

correlations (large spatial lag values) led to better fits, especially as the interaction 

fraction was decreased. In all cases, the number of points fit was at least six-times 

that of the e~~2 Gaussian convolution radius to ensure complete decay of the central, 

zero-lags, correlation peak. All interaction fractions above the limit of detection led 

to relative errors of < 15% for ICCS. The poorer ICCS detection limits as the size of 

the image is decreased is a direct result of the difference in the number of independent 

(spatial) fluctuations (NIF) sampled for different image sizes. The NIF is defined as 

the ratio of the total image area to the area of the Gaussian convolution function, 

which simulates the area of the beam local spot, and represents one fluctuation area 

sampled [3]. Similarly, greater sampling of temporal fluctuations has been shown in 

FCS to increase the statistical accuracy of the measurement [4], which is analogous 

to the decrease in the interaction fraction detection limit shown here with increased 

spatial fluctuation sampling. 

4.1.2 Dynamic Range 

The effect of density on the accuracy of both types of colocalization methods was 

investigated by varying the particle density in both channels independently, while 

fixing the amount of interaction with respect to channel 1 at 50% (Ml = 0.5). This 

interaction fraction was chosen as it was above the measured detection limits and 

allowed a reasonable range of densities to be explored and still have interacting par­

ticles in the simulation images. The results of these simulations are summarized in 

the 2D surface plot in Fig. 4.4. From this plot it is possible to see that the correct 

result is obtained, with relatively low error over the entire particle density range, 

only when the density ratio between the two channels is <10. When the channel 1 to 

channel 2 density ratio is larger than one order of magnitude, it is not possible to fit 
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the spatial cross-correlation Gaussian function with the proper beam radius (±50% 

^input), and it becomes easy to reject the result with confidence. In this limit, the 

failed fit is due to the calculated correlation between randomly overlapping particles 

being approximately equal in magnitude to the correlation between truly interact­

ing particles. This is demonstrated by the fact that it becomes increasing difficult 

to differentiate the central zero-lags peak of the cross-correlation function from the 

random noise due to the statistical correlations that occur over the entire spatial-lag 

scale (this can also be seen in Fig. 4.3). As shown in Fig. 4.4, however, the ratio 

between random and nonrandom correlation was only a function of the ratio of the 

densities between channels (i.e., when, one of the interaction fractions is < 5%) and 

not the total density, which allowed ICCS to provide accurate results at extremely 

high particle densities even when random overlap appears to dominate the overlay 

image by eye. The top right of the surface plot in Fig. 4.4 corresponds to densities 

one order of magnitude greater than, those shown in the simulation image depicted in 

Fig. 4..1C. 

The accuracy of automatic colocalization is more severely affected by the particle 

density of the two images than ICCS as shown in Fig. 4.5. The pronounced V-

shape of this plot illustrates the fact that the absolute value of the relative error in 

Ml Auto was small only when the particle densities in each channel were almost equal. 

As the density ratio of the two species of particles deviated from one, the absolute 

value of the relative error in Ml Auto increased dramatically, up to ~80% when the 

particle density of channel 1 was only twice that of channel 2. It is important to 

note that even though the algorithm led to a relative error of 80% in this case, the 

colocalization significance test, which only gives an indication as to whether or not 

true colocalization exists, was positive and, therefore, the experimenter would have no 

way of knowing the result obtained was inaccurate. This is in stark contrast to ICCS 

analysis where large errors in the measured interaction fraction were not observed 

due to the failed fits that occurred well outside the depicted density range. The error 



4: Accuracy and Dynamic Range of Colocalization Measurements 81 

Nj (Particles/BA) 

Iff' 1<f 10" 10! 103 

density 1 (Particles/image) 

Figure 4.4: 2D Surface plot of the ICCS measured interaction fraction as a function of the densities 
of particles in both simulated image detection channels. The interaction fraction was set to 50% 
of channel 1 for all the simulations, and the total number of particles was varied independently for 
both types of particles. The bottom-right red area of the plot corresponds to regimes where the fit of 
a Gaussian to the spatial cross-correlation function failed and the upper-left black area to densities 
that cannot exist, given the restriction that 50% of the particles of channel 1 are interacting. The 
mean result for 50 trials for each set of conditions is plotted. The images consisted of 256x256 
pixels, and the e - 2 radius of the Gaussian convolving function was set to 5 pixels. ©Biophysical 
Journal 89, 1251-1260 (2005). 
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Figure 4.5: (A) Plot of the absolute value of the relative error in Ml Auto (solid color) and Mliccs 
(mesh) as a function of set particle density in each detection channel. Relative errors were calculated 
from the mean of 20 different sets of simulated images with an input MIQ value of 0.5. (B) Plot 
of the relative error in Ml Auto a s a function of the particle density ratio between channel 1 and 
channel 2. MIQ was set to 0.5 and JV1 was kept constant at either 0.01 particle/BA, 1 particle/BA, 
or 100 particles/BA while N2 was varied. ©Biophysical Journal 91, 4611-4622 (2006). 

in Mliccs (Fig 4.4) over the density range investigated for automatic colocalization 

analysis is also plotted (mesh) in Fig. 4.5A for comparison purposes (note: in this 

case, the same image pairs were analyzed by both automatic colocalization and ICCS 

analysis). 

It is not apparent in Fig. 4.5A, but the relative error in MlAuto was a function of 

the total density as well. This effect is shown more clearly in Fig. 4.5B by plotting the 

relative error in Ml Auto as a function of the particle density ratio between channels for 

three different densities that span five orders of magnitude. Here, the particle density 

of channel 1 and M l (0.5) were kept constant while varying the particle density of 

channel 2. For densities on the order of 0.01 particles/BA, the relative error in the 

automatic colocalization measurement was < 15% for all density ratios. As the total 

density increases, the slope of the line increases, which demonstrates an increased 

sensitivity to the density ratio between channels. The relative error was close to zero 

at a density ratio of one, but increased rapidly for larger and smaller ratios, reaching 

values of > 50% at a density ratio of 1:5 (Chl/Ch2), when the total density was 

on the order of one particle/BA. The relative error at this N-v/N2 ratio rose to even 
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Figure 4.6: The measured interaction fraction calculated using ICCS, automatic colocalization and 
automatic colocalization with threshold zero (T=0) as a function of simulation set particle density. 
Each point is an average of 100 simulations, and error bars are the corresponding standard deviations. 
MIQ and M 2 Q input values were set at 0.5 and 1, respectively. ©Biophysical Journal 91, 4611-4622 
(2006). 

higher values as the total density increased. It should be noted that in all of the 

results, the relative error in M2 showed the same trends as that for Ml. 

Fig. 4.6 presents a more detailed view of the density dependence of the colocal­

ization coefficients at a fixed N1/N2 ratio of 2, and clearly shows that as the density 

is increased, Ml Auto a n ( i M2Auto converge to the same value, which is significantly 

different than the actual set interaction fractions, MIQ and M2(). In Fig. 4.6, MIQ 

and M2Q were held constant at 0.5 and 1, respectively, while the particle density was 

varied. When the density reached one particle/BA, the error in Ml Auto n a d climbed 

to ~35% and leveled off at ~60% at densities > 10 particles/BA. At this density 

ratio, the calculation of Mliccs a n d M2iccs w a s accurate over all densities simu­

lated. Also shown in Fig. 4.6 is Ml calculated with a colocalization threshold of zero 
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(Ml (T = 0)), which has been used as a first approximation when the contribution 

from all noise sources was known precisely [5]. In this case, however, M l is extremely-

sensitive to random particle overlap because all pixel pairs are classified as colocalized 

unless one of the pixels has a value of zero. M l calculated in this manner classifies 

all randomly overlapping pixels as colocalized and therefore approached unity very 

quickly as the particle density increased. The same trend was observed when evalu­

ating colocalization between two independent images of randomly distributed nonin-

teracting particles using a threshold of zero, in which case, the measured interaction 

fraction rose steadily until reaching one at a density of ~0.6 particles/BA. 

4.1.3 Effect of Noise on Colocalization Measurements 

A careful consideration of noise contributions that are inherently present in real im­

ages is important to evaluate in any quantitative image analysis method. To simulate 

the overall uncertainty in analogue photon detection using a PMT on a CLSM, a 

counting noise width factor (WF) was introduced that broadens the underlying ex­

pected Poisson distribution that governs shot noise. The WF is intended to model the 

additional sources of noise inherent in photon detection on an analog CLSM system 

(i.e., signal amplification, digitization, etc.). It is not an attempt to model the under­

lying physical processes but rather simulate the overall statistical result observed in 

the acquisition of real CLSM images (see Materials and Methods 3.1, and Fig. 4.10). 

Background noise is also considered that is uniform across the image and inde­

pendent of the fluorescence signal in each pixel. The background noise simulates 

fluorescence intensity that remains after correcting images for noise through mean 

subtraction of a background. Real background noise originates from dark current, 

autofluorescence, or scattered light. In practice, both counting and background noise 

are present in real images simultaneously, but have been separated here to examine 

their contributions individually. In the following set of simulations, equal magnitudes 

of either counting or background noise were added to the images of channel 1 and 
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Figure 4.7: Plot of relative error in measured M l as a function of the counting noise width factor 
(WF) (A) and the signal-to-background ratio of the image (S/B) (B). The densities in each channel 
were equal and MIQ and M20 were both set at 0.5. Each point is an average of 50 simulations and 
the error bars are standard deviations. ©Biophysical Journal 91, 4611-4622 (2006). 

channel 2. 

The effect of photon counting noise on error in automatic colocalization measure­

ments increases as the overall density is increased. This is demonstrated in Fig. 4.7A, 

where the relative error in MIAuto approaches 1 (i.e., Ml Auto approaches 0), as a 

function of increasing width factor. As a consequence of the increased noise, rp goes 

to zero at very high threshold values, which results in only a small fraction of pixels 

being identified as colocalized (i.e., above threshold). In contrast, the error in 1CCS 

analysis is small and constant as a function of the width factor for all the densities 

investigated. Low signal-to-background (S/B) ratios will affect the error in Ml Auto, 

especially when the overall image density is large as shown in Fig. 4.7B. As was seen 

in the case of counting noise, the S/B ratio has little effect on the accuracy of the 

interaction fraction measured with IOCS. This is not the case, however, for the mea­

sured number densities. The error in the particle density measured by ICCS for each 

channel increases as the S/B decreases, and this effect is more pronounced for lower 

particle densities. For example, for lower densities (< 10 particles/BA) with S/B 
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ratios < 10, the error in the measured absolute densities is > 60% for ICCS. At this 

same S/B ratio of 10, but densities > 100 particles/BA, the error in the measured 

absolute channel densities is ~ 20%. Essentially, these errors cancel out when cal­

culating the interaction fraction as long as the background noise in each channel is 

comparable. 

In real images obtained using CLSMs or other types of imaging systems, however, 

the S/B ratio measured with respect to each detection channel, (S/B)\ and (S/B)2, 

will quite often differ by varying amounts. Therefore, in order to determine to what 

extent these differences in the S/B ratio alter the measured interaction fractions for 

both ICCS and automatic colocalization analysis, the S/B ratio was varied in each 

channel independently and both colocalization detection methods were applied to 

each set of two channel images simulated. The results are plotted in Fig. 4.8 where 

the densities of each image were held constant and equal at 1.2 particles/BA, and the 

amount of colocalization was set to 50% (Mlo = M2Q = 0.5). The diagonal of these 

plots, in which both images have equal S/B ratios, is equivalent to Fig. 4.7B, where 

we see that the absolute value of the relative error in Ml ices is small (<5%) and 

constant, while the error in Ml^uto increases to >50% when the S/B ratios of both 

channels are small but equal {S/B < 10). The more interesting result is illustrated 

by the off-diagonal values, in which the S/B ratios of each image are significantly 

different. In this case, we see that the error in both Mliccs and Ml^uto a r e quite 

similar, ranging from 20-60%, with the exception of the upper left corner of the plot 

((S/B)i << (5/5)2) , where the error in Mliccs is over three times larger than that 

of Ml Auto- This observation can be explained by the fact that Mliccs is calculated 

from the ratio of the cross-correlated particle number density, JV12, to the total particle 

number density in channel 1, N\. At low (S/B) 1 ratios, the error in N\ is significantly 

larger than the error in Ni2, which leads to very large errors in the calculated Mliccs 

values. This also explains why the absolute error in Mliccs as a function of both 

(S/B)i and (S/B)2 is non-symmetrical around the diagonal. In fact, the magnitudes 
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Figure 4.8: 2D surface plot of the absolute value of the relative error in Ml as a function of the 
signal to background ratio in each image, (S/B)i and (5/5)2- The densities in each channel were 
1.2 particles/BA and MIQ and M2Q were both set at 0.5. Each point is an average of 25 simulations. 

of the absolute errors in M2JCCS were identical to those plotted in Fig. 4.8 except 

that the largest errors were found at the lower right corner where (S/B)i » (S/B)2. 

Identical trends were observed in the relative error of Mliccs and M2JCCS as 

a function of both (S/B)i and (S/B)2 for greater total particle densities equaling 

120 particles/BA. The magnitude of the relative errors, however, was ~5 times lower 

in the highest-error regions of the surface plot than those measured for N\ and N2 

densities of 1.2 particles/BA as described above. This is simply due to the fact that 

for a given S/B ratio, the error in any of the measured number densities, N\, N2, or 

A/12, is significantly lower as N increases. The relative error in Ml Auto and M2AUto 

were relatively unchanged as a function of overall particle density. 

Differences in the counting noise width factor, WF, between the two images had 

no effect on the measured ICCS interaction fractions, Mliccs and M2iccs, which 

were determined with accuracies of <10% regardless of the respective WF channel 

values and irrespective of the particle densities in each channel. This is due to the 

fact that even high WF values led to relatively small errors in the measured number 
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densities. The error in M^uto as a function of both WF\ and WF2 was similar to 

the errors plotted in Fig. 4.7A in that the error was relatively high, especially as the 

overall particle densities increased, as long as one of the images had an elevated WF 

value. 

4.2 Experimental Results 

4.2.1 Adsorption of Antibody on Glass 

To examine the results of the simulations in the context of real systems with high par­

ticle densities imaged using a typical CLSM, fluorescently labeled antibodies adsorbed 

to a glass coverslip were imaged and analyzed for the presence of colocalization. After 

coating a coverslip with mouse monoclonal anti-PDGF /3-receptor IgG, a mixture of 

secondary anti-mouse IgGs conjugated with either fluorescein isothiocyanate (FITC) 

or Alexa 633 (Fab- and Fc-specific, respectively) were incubated on the coverslip for 

varying amounts of time. The calculated colocalization, as measured by either ICCS 

or automatic colocalization analysis, is plotted as a function of secondary antibody 

incubation time in Fig. 4.9. ICCS analysis showed the expected increase in interaction 

fraction as the incubation time was increased. The overall density was between 100 

and 400 particles/BA for each channel and automatic colocalization failed to detect 

any interactions for this high density sample. 

In order to estimate the accuracy of these colocalization measurements by compar­

ison to the simulation results under similar conditions, it was necessary to measure 

the contributions of both background and counting noise present in the recorded 

images. To estimate the S/B ratio of the images as defined in the Materials and 

Methods (3.1), the signal was calculated as the maximum image intensity due to the 

ease at which it can be measured, and the background as the standard deviation of 

an image area devoid of specific fluorescence signal. Due to the fact that the fluores­

cently tagged antibodies covered the entire field of view, the fluorescence signal was 

photobleached by repeating many scans and the mean intensity of the bleached region 
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Figure 4.9: Plot of the measured interaction fractions as a function of incubation time for a secondary 
FITC goat-anti-mouse IgG (Fab-specific), and a secondary Alexa 633 goat-anti-mouse IgG (Fc-
specific) incubated on a coverslip coated with mouse monoclonal IgG. Each point is an average of 10 
dual color image analyses recorded from different regions of the sample. Error bars are propagated 
standard errors of the mean. Shown below are representative images taken at different incubation 
time points and a control image prepared in the absence of primary antibody, which shows significant 
clustering in contrast to the specifically bound antibodies. ©Biophysical Journal 91, 4611-4622 
(2006). 
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Figure 4.10: Fluorescence intensity histograms of images of highly concentrated fluorescence dyes 
recorded in the two detection channels used to collect fluorescence from FITC and Alexa 633 are 
plotted. The ratio of the standard deviation to the square root of the mean of these histograms 
was used as a measure of the CLSM width factors for the experimental set-up employed in the 
two-channel fluorescently tagged antibodies adsorbed on glass experiments. 

was used as an approximation of the background noise. The signal/background ratio 

defined in this manner can be biased if there is an abnormally bright pixel in the 

image. This may occur as a result of random overlap of multiple molecules, especially 

at low particle densities. To verify that this was not the case, the mean of the 50 

brightest pixels was taken as a measure of the signal and compared to that of using 

the global maximum as a measure of the signal. Both values were very similar and 

led to identical accuracies in these measurements. Unlike the 6 7 5 , the WF cannot 

be measured directly from acquired images, and was therefore evaluated for identical 

detector settings (PMT voltages) as those used in the antibody imaging by employing 

highly concentrated dye samples (3.6, Fig. 4.10). 

At the measured densities of between 100 and 400 particles/BA determined from 

the autocorrelation amplitudes, and the measured noise levels, the error in ICCS was 

<10% (S/Bj = 69 -158 , S/B-2 = 100175, and WFX = 3.0, WF2 = 5.9), but automatic 
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colocalization greatly overestimated the colocalization threshold, which led to a severe 

underestimation of the interaction fraction (MlAuto and M2Auto = 0). The difference 

in the Mliccs and M2iccs values shown in Fig. 4.9 are a result of the significantly 

greater amount of free red species (Alexa 633 IgG) compared to that of the free green 

species (F1TC IgG). This trend was observed for several different initial concentration 

ratios between the red and green labeled antibodies for a given incubation time as well 

as for the PDGF-/3 labeling on human fibroblasts (see Fig 4.11). Control samples were 

prepared in the absence of the primary anti-PDGF /3-receptor IgG antibody. For the 

control samples, the spreading of the secondary IgG mixture on the glass coverslip was 

significantly reduced and resulted in large clusters of antibody on the glass coverslip, 

which was considerably different than samples prepared in the presence of the primary 

antibody (see control image in Fig. 4.9). 

4.2.2 Analysis of PDGF-fl Receptor Labeled AG01523 Human Fore­

skin Fibroblasts 

To compare the two colocalization methods for measurements at much lower particle 

densities than those described above for adsorption on glass, experiments were con­

ducted on cells. The PDGF-/? receptor expressed in chemically fixed AG01523 human 

foreskin fibroblasts was immunolabeled using the same antibodies as the previous ex­

periment on glass, and hence tagged with the two distinct fluorophores, FITC and 

Alexa 633, and then imaged by CLSM. An overlay, two channel confocal image of the 

cells is shown in Fig. 4.11 with, boxes to indicate the regions analyzed. In the region 

outlined by the blue box, the low density of the receptors (~0.01 particles/BA) is 

such that both methods give similar results. After correcting for background noise 

and nonspecific binding of antibodies, the following colocalization coefficients were 

calculated: MlICcs = 0.98, M2ICcs = 1-0, MlAut0 = 0.96, and M2Auto = 0.94. 

These coefficients are expected to be close to one because the cells were pretreated 

with PDGF-BB to promote clustering of the PDGF-/3 receptors. The images were 
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Figure 4.11: Two-channel overlay RGB image of PDGF-/3 receptors on human foreskin fibroblast 
cells immunolabeled with FITC (green) and Alexa 633 (red). The boxes indicate the regions chosen 
for colocalization analysis. Both methods lead to analogous results in the region indicated by the 
blue box (MlICCS = 0.98, M2ICcs = 1-0, MlAuto = 0.96, and M2Auto = 0.94). IOCS fails 
in the region indicated by the red box due to the edge boundaries of the nuclear region while 
automatic colocalization works well in this regime (MlAut0 = 0.92 and M2Auto — 0.35). Shown 
below are the corresponding spatial cross-correlation functions for the IOCS analysis of the two 
regions of analysis. The solid colored plot is the raw cross-correlation function and the mesh is the 
corresponding fit. Note the poor Gaussian fit of the nuclear region of analysis due to edge effects. 
A nonspecific control (no primary antibody) image is shown for comparison and was used to correct 
for nonspecific fluorescence signals. ©Biophysical Journal 91, 4611-4622 (2006). 
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corrected for nonspecific antibody binding before the colocalization analyses by sub­

traction of the mean intensity value of cells labeled in the absence of primary antibody. 

Some pixels, however, will still contain residual, nonspecific intensity contributions, 

especially when the measured nonspecific intensity distribution is broad. The red box 

indicates a region around the nucleus where ICCS analysis fails due to the heteroge­

neous nature of this part of the cell (edge boundaries). The corresponding correlation 

function is highly non-Gaussian due to the edges, which prevented fitting for the ICCS 

analysis. This type of situation is often encountered when the particle distribution in 

the region of analysis deviates from that of a purely uniform distribution. If it is not 

feasible to choose a more uniform area within the cell, then spatial ICCS is no longer 

a valid method for colocalization analysis and another technique should be used. It 

should be noted, however, that ICCS does not lead to false-positive results in these 

situations because the failed fit is readily apparent. On the other hand, automatic 

colocalization does not require a uniform distribution of labeled species, and success­

fully located, the colocalized pixels for this lower density receptor system (MlAuto — 

0.92, M2Auto = 0.35). The low value measured for M 2 Auto is a direct result of the 

larger amount of nonspecific binding of the Alexa 633 (red) tagged antibody that was 

observed around the nucleus, as compared with all other regions of the cell. 

The results of this systematic study of the factors affecting colocalization mea­

surements in fluorescence microscopy images are tabulated in Table 4.1. By applying 

spatial ICCS and automatic colocalization analysis to a range of simulated image sets, 

images of high density fluorescent antibodies and PDGF-/3 receptor labeled cells, we 

have developed important experimental guidelines to consider when performing flu­

orescence microscopy colocalization measurements. Taken together, automatic colo­

calization and ICCS provide a large dynamic range for accurate measurements within 

dual-color fluorescence microscopy images. This study demonstrated that the intrin­

sic variable of the particle number density, which is often overlooked, must carefully 

be considered when measuring colocalization. 
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Automatic Colocalization ICCS 

Colocalization 
Detection Limit 

< 3 % 75%-5% 
for NIF « 3 - 3300 

Applicable 
Density Range 

N2 
2 < Ni < 2N2 at 1 particle/BA 
Ni = N2 at 100 particles/BA 

f < N-, < 10N2 

for all densities 

Variable Binding 
Ratios 

not 
applicable 

< 10% 
error 

Pixel Shifts sensitive not sensitive 

Image Heterogeneity not sensitive sensitive 

Table 4.1: Automatic Colocalization vs. ICCS 
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5 

In vivo studies of AP-2//3-arrestin Complexes 

In the previous chapter, important experimental guidelines were established for the 

application of ICCS and automatic colocalization methods to measure interactions 

from data sets of dual-color fluorescence microscopy images. These were established 

by systematically studying the dynamic range and accuracy of these techniques by 

both simulation and experimental approaches. It was clear that for fluorescence im­

ages with uniform particle distributions, ICCS led to lower errors than automatic 

colocalization under most of the experimental conditions investigated, such, as, ele­

vated noise levels, and differing particle number densities for each, detection channel. 

In addition to the significantly lower error in the recovered interaction fractions un­

der these experimental conditions, ICCS provides a built-in check as to whether it 

actually works under these conditions, because it returns a failed fit to the 2D spatial 

cross-correlation function when it is applied outside of its dynamic range. This is not 

the case for the automatic colocalization method, which will always return a value 

for the colocalization coefficients. 

In this chapter, ICCS is applied to accurately measure interactions from single 

pairs of dual-color fluorescence images to determine the nature of the interaction be­

tween two important components of the clathrin-mediated endocytic pathway, which 

together, regulate the cell signaling activity of a large family of membrane recep­

tors. By approaching these cellular measurements with a better understanding of the 

strengths and weaknesses of spatial ICCS, we were able to optimize the measurement 

and quantify the interaction between these two endocytic adaptor proteins in live 

96 
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human embryonic kidney cells. 

5.1 Introduction 

G protein-coupled receptors (GPCRs) are the largest family of eukaryotic transmem­

brane receptors that regulate a wide variety of coordinated cellular responses to a 

large number of external stimuli. GPCRs are 'sensing' molecules that bind extra­

cellular proteins or small ligand molecules in order to activate signal transduction 

pathways within the cell, which in turn, ultimately lead to specific cellular responses. 

Physiological responses derived directly from the activation of specific GPCRs include 

vision, olfaction, regulation of the immune system, neurological activity, as well as 

numerous other important processes (see [1] for review). Due to the wide array of 

processes regulated by GPCRs, deficiencies in these transmembrane receptors have 

been implicated in various disease states, and as such, are the target of a large fraction 

of the medicinal drugs available on the market today [2]. 

All GPCRs share a similar structure that consists of a single amino acid chain that 

spans the plasma membrane seven separate times, an extracellular ligand-binding 

domain, and an intracellular G protein-binding domain [3](Fig. 5.1). The extra­

cellular binding of specific ligands (agonists) to GPCRs induces a conformational 

change within the intracellular domain of the receptor, thus enabling the binding of 

a receptor-specific G protein, i.e. a guanine nucleotide binding protein that resides 

on the cytoplasmic side and binds to the GPCR at the membrane. All heterotrimeric 

G proteins are structurally similar, consisting of three separate protein subunits, a, 

f3, and 7, and function by similar mechanisms. The a subunit is bound to guanosine 

diphosphate (GDP) in the inactivated state and contains intrinsic GTPase activity, 

that is, the ability to catalyze the hydrolysis of guanosine triphosphate (GTP) to 

GDP. Binding of a G protein to the GPCR results in separation of the GDP-bound a 

subunit from the rest of the heterotrimeric G protein and exchange of GDP for GTP. 

The resulting 'activated' a and j3j subunits dissociate from the GPCR and diffuse 
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Figure 5.1: G protein-coupled receptors (GPCRs) are heptahelical transmembrane receptor pro­
teins that transduce chemical stimuli into sensory signals within cells. Extracellular ligand binding 
induces conformational changes within the GPCR, which allows binding of a trimeric intracellular 
membrane-associated guanine nucleotide binding protein (G protein). This causes 'activation' of the 
G protein by separation of the a subunit from the p-y subunit and exchange of guanosine diphosphate 
(GDP) for guanosine triphosphate (GTP). The activated G protein subunits interact with target-
molecules along the plasma membrane, which propagate the signal downstream to subsequent sig­
naling molecules. The signal is 'shut off' by recombination of the two activated protein subunits, 
which is triggered by hydrolysis of G T P to GDP by the the GTPase activity of the a subunit. This 
process occurs on the order of a few seconds following activation of the G protein. Adapted from 
[4]. 

along the plasma membrane where they activate other target effector proteins by in­

creasing their binding affinity for other secondary messenger molecules. The eventual 

hydrolysis of the bound GTP to GPD by the a subunit causes dissociation from the 

target protein and recombination of the a and /?7 subunits. This completes the ac-

tivation/deactivation cycle of the G protein, which may be repeated by subsequent 

re-binding to the specific GPCRs that triggered the cycle initially. The activation of 

target proteins by the activated G protein subunits forms the basis of the initial steps 

in many cell signaling pathways that control many important physiological responses. 

From the discussion above, it is clear that the activation of GPCRs is an ex­

tremely important signaling mechanism that occupies a central role in the regulation 

of many biochemical signaling pathways. Equally important, however, is the deac­

tivation mechanism for GPCRs, which functions to reduce the coordinated cellular 

responses induced by the specific binding of extracellular ligands. A class of proteins 

called arrestins are entrusted with this critical task. Three types of arrestin proteins 

have been identified including those that regulate light responsiveness via interaction 

with rhodopsin (v-arrestin)[5], as well as /j-arrestinl and /3-arrestin2, which together, 

regulate all other non-visual processes [6]. There are two mechanisms by which f3-
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arrestins desensitize GPCRs; first, by binding to activated, phosphorylated GPCRs 

thus preventing the binding and subsequent activation of associated G proteins, and 

secondly, by linking the receptor to elements of the endocytic pathway that results 

in its removal from the plasma membrane (internalization). The fate of internalized 

GPCRs is determined in subsequent steps along the endocytic pathway where they 

are processed for re-incorporation back into the membrane (receptor recycling) or the 

complete degradation of the receptor altogether in lysosomal compartments within 

the cell [7]. 

In addition to its role as a GPCR-desensitizing-endocytic adaptor protein, mount­

ing evidence has shown that /3-arrestin plays an active role in the various cell signal, 

transduction pathways initiated at GPCRs, by sequestering several different types of 

signaling molecules to the activated receptors in an agonist-dependent manner [8]. 

Recruitment of the nonreceptor tyrosine kinase, c-Src, by /3-arrestin for instance, 

facilitates activation of the well-studied mitogen-activated protein kinase (MAPK) 

signaling pathway, which results in cell division and differentiation [9]. The dual role 

of /3-arrestin as both an endocytic and signaling adaptor has made this protein and 

its interacting partners the focus of many studies that attempted to unravel the key 

features of GPCR activation and deactivation [10 12]. 

5.2 p-arrest in Mediated Endocytosis 

Endocytosis is the process by which cells actively transport material (e.g. small 

molecules, proteins, microorganisms) from the exterior to the interior of the cell 

without the need of direct passage through the non-polar environment of the plasma 

membrane. This occurs by invagination of the cell membrane, incorporating extra­

cellular fluid in the process, which eventually pinches off from the membrane itself 

to form a lipid-bilayer bounded vesicle within the cytosol of the cell. Perhaps the 

most common method employed by cells to internalize various molecular species in a 

highly specific manner is through receptor-mediated endocytosis [13]. Receptor ligand 
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binding causes clustering of the receptors in small pits on the plasma membrane fol­

lowing the recruitment to, and 'coating' of, the intracellular membrane by a trimeric, 

triskelion-shapecl protein known as clathrin. Development and growth of clathrin-

coated pits causes the membrane to bend and invaginate, and within minutes leads 

to the formation of clathrin-coated vesicles (CCVs) composed of the regions of the 

membrane where the clathrin-coat was formed, thus facilitating the specific transport 

of receptors and ligands into the interior of the cell for further processing. The CCV 

endocytic pathway has been extensively studied and is responsible for transporting 

cholesterol that is present in low density lipoproteins in the blood stream to the in­

terior of the cell through specific cell-surface receptors. The cholesterol is then used 

as an important component in future synthesis of the cell membrane [14]. 

An important component of CCVs is the heterotetrameric adaptor protein, AP-2, 

which links intracellular-destined membrane cargo to the clathrin lattice. This link 

is provided by direct interaction of the (32 subunit of AP-2, /32-adaptin, with both 

clathrin and specific amino acid sequences on the membrane receptor protein itself 

[15]. /3-arrestin has also been shown to interact directly with /32-adaptin [16], and 

mutants that lack the ability to bind to the AP-2 subunit fail to target GPCR,s to 

clathrin-coated pits [17, 18]. 

A schematic diagram is shown in Fig. 5.2 outlining the sequence of events in (3-

arrestin mediated endocytosis following GPCR activation (associated G proteins are 

omitted for clarity), /i-arrestin is a cytosolic protein that translocates to GPCRs fol­

lowing agonist binding and subsequent phosphorylation of the receptor by G protein-

coupled receptor kinase (GRK) [21]. An important signaling kinase, c-Src, and the 

clathrin adaptor protein, AP-2, both of which can bind directly to /3-arrestin, are 

sequestered to the phosphorylated GPCR-/3-arrestin complex. This is followed by 

initiation of clathrin cage formation through direct interactions of /32-adaptin (the 

(32 subunit of AP2) as well as /3-arrestin [19] with clathrin monomers, eventually lead­

ing to the formation of CCVs containing the entire complex, or, as is observed most 
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Figure 5.2: Desensitization of GPCRs by /i-arrestin mediated endocytosis. 1) Following agonist 
binding to GPCRs and subsequent phosphorylation of the receptor by G protein-coupled receptor 
kinase (not shown), /3-arrestin translocates to punctated areas of the plasma membrane and binds 
the activated GPCR. 2) /?-arrestin recruits clathrin adaptor protein, AP-2, and the tyrosine kinase, 
c-Src, to the receptor by directly binding to both proteins. c-Src is known to be a key component 
in many cell signaling pathways and plays a key role here in regulating the interaction between 
/3-arrestin and the /32-subunit of AP-2 (/32-adaptin). 3) and 4) Clathrin-coated pits begin to bud 
from the plasma membrane, and eventually, the formation and internalization of clathrin-coated 
vesicles containing the ternary GPCR complexes is triggered by the presence of multiple complexes 
and other molecules involved in the endocytic pathway such as the protein dynamin (not shown). 5) 
As the vesicles are internalized, c-Src promotes the dissociation of /32-adaptin from /3-arrestin, which 
allows for recycling of AP-2 for further internalization cycles. GCPR; G coupled-protein receptor. 
A; Agonist. P; Phosphorylated site. PM; Plasma membrane. AP-2; Adaptor protein 2. CCV; 
Clathrin-coated vesicle. Adapted from [19] and [20]. 
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frequently, multiple complexes are sequestered into single vesicles. Internalization of 

the GPCR proceeds as the CCVs detach from the plasma membrane and enter the 

cellular interior. Subsequently, the internalized receptor complex dissociates and the 

adaptor protein returns to the membrane to repeat the cycle of CCV formation, while 

the GPCR, itself continues along either a degradation or recycling pathway [20]. The 

focus of the following study is to identify and quantify the nature of the dissociation 

of the endocyctic complex formed between GPCRs, /3-arrestin, and AP-2 in living 

cells, as well as the role of c-Src in regulating this dissociation reaction. 

5.3 Regulation of the Interaction between (3-arrestin and 

AP-2 investigated by Image Cross-Correlation Spec­

troscopy 

It was recently shown that both the c-Src kinase and the clathrin adaptor protein, 

AP-2, form a complex with /3-arrestin following stimulation of angiotensin II type 1 

receptor (AT1R), which is a GCPR involved in the regulation of vasoconstriction and 

hormone synthesis and secretion [20]. Not only was c-Src identified as part of the com­

plex, but was explicitly shown to phosphorylate three tyrosine residues (Y737, Y874, 

Y926) in the C-terminal ear domain of /32-adaptin in an agonist-dependent manner 

[22]. Phosphorylation of /32-adaptin by c-Src, followed by incubation with /3-arrestin, 

was shown to significantly decrease the association of the two proteins as analyzed 

by Western blotting, and phosphorylation of the Y737 residue, in particular, showed 

the greatest effect on regulation of this interaction. These experiments demonstrated 

that the c-Src phosphorylation of Y737 in the C-terminal ear domain of /32-adaptin 

reduces its ability to bind to /3-arrestin. Moreover, a point mutation in /32-adaptin 

that disrupted its interaction with /3-arrestin eliminated the ability of /32-adaptin to 

be phosphorylated following AT1R stimulation with angiotensin II (Ang II). These 

results suggested that formation of a complex of the three proteins, /3-arrestin/AP-



5: In vivo studies of AP-2//3-arrestin Complexes 103 

HEK293 Cells 

Angiotensin II 
type 1 receptor 

Wild Type 

Mutant 
Y737F 

(3-arrestin2-CFP 

p2-adaptin-YFP 

Y737 

P2-adaptin 

Figure 5.3: Two distinct types of human embryonic kidney (HEK293) cells were generated by 
transfection of fluorescent-fusion proteins for dual-color confocal imaging. Angiotensin II type 1 
receptor (AT1R) along with a fluorescent /?-arrestin2 construct of cyan fluorescent protein (CFP) 
were transfected into the HEK293 cells. In one set of cells, referred to as 'wild type', a second, yellow 
fluorescent protein (YFP) tagged /32-adaptin subunit was introduced and expressed. In a second 
set of cells, referred to as 'mutant', a mutated form of the fluorescently tagged /32-adaptin was 
expressed in which the tyrosine 737 residue was replaced with the non-phosphorylatable amino acid 
phenylalanine (Y737F). The three tyrosine residues, Y926, Y874, and Y737, that are phosphorylated 
by c-Src (not shown), are labeled in the crystal structure of /32-adaptin shown in the bottom right 
portion of the figure. A; agonist, angiotensin II. P; phosphorylated site. Crystal structure adapted 
from supplemental material of [22]. 

2/c-Src, following addition of the agonist, Ang II, is necessary for phosphorylation of 

/32-adaptin by c-Src, which in turn, regulates the interaction between /32-adaptin and 

/3-arrestin. Whether this interaction is regulated by c-Src in live cells, and to what 

extent the phosphorylation of /32-adaptin alters its affinity for /3-arrestin remains to 

be seen. 

In order to address these questions, ICCS was used to measure the persistence 

of the interaction between /32-adaptin and /3-arrestin over time by analyzing two 

channel confocal fluorescence images of doubly labeled cells. To carry out this in­

vestigation, human embryonic kidney cells (HEK293) were transfected with AT1R, 

and fluorescent constructs of both /3-arrestin2 (/3-arrestin2-CFP) and /32-adaptin {(32-
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adaptin-YFP). In addition, a non-phosphorylatable mutant form of /32-adaptin was 

engineered by substituting phenylalanine for tyrosine 737 (Y737F) and transfected 

into the HEK293 cells (see Fig. 5.3). Small interfering RNA (siRNA) was also syn­

thesized and transfected into the HEK293 cells in order to significantly reduce the 

expression of endogenous /32-adaptin with respect to its fluorescent analogue. All con­

structs and transfection procedures were performed by the lab of Stephane Laporte 

in the department of medicine at McGill University. 

Two channel confocal fluorescence images of both wild type and mutant cells were 

acquired at 37°C at several time points following the addition of a 1 /iM solution 

of Ang II (t = 0 s). Following the addition of Ang II, /3-arrestin2 translocated to 

activated GPCRs and punctate areas on the cell membrane appeared in the images, 

which in most cases, was accompanied by significant changes in cell shape (Fig. 5.4). 

Due to these cell-shape changes after stimulation, microscope refocusing was usually 

performed prior to acquisition of subsequent images. Large vesicles were formed 

after several minutes following the addition of agonist. These vesicles are most likely 

internalized at this stage, although, due to the size of the plasma membrane (~5 nm) 

with respect to axial radius of the microscope PSF (~500 nm), it is impossible to 

resolve the exact location of these vesicles in the cell. 

In order to quantitatively assess the observed colocalization between /?-arrestin2-

CFP (channel 1) and /32-adaptin-YFP (channel 2) in images such as those shown 

in Fig. 5.4, spatial IOCS was applied to manually selected regions of each set of 

two channel images that were acquired as a function of the time after the addition 

of Ang II. The measured spatial cross-correlation and respective detection channel 

autocorrelation functions were fit to 2D Gaussian functions as in Eq. 2.18 and the 

fitted amplitudes and beam radii were used in Eq. 2.20 to calculate the number of 

interacting particles/BA (BA = beam area), and in Eq. 2.21 to calculate the two 

interaction fractions, Mljccs a n d M2iccs- I n each colocalization measurement, the 

NIF (number of independent fluctuations) contained within the manually selected 
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Figure 5.4: Two channel confocal laser scanning microscopy images of /3-arrestin2-CFP and (32-
adaptin-YFP were recorded at several time points after addition of Angiotensin II (Ang II). Four 
representative images from each detection channel are shown. Initially, /3-arrestin is uniformly 
distributed throughout the cytosol but rapidly translocated to punctate structures following addition 
of agonist and eventually formed large (~0.5—1 lira) vesicles. /^2-adaptin is pre-clustered, which 
suggests its incorporation into clathrin-coated pits even in the absence of agonist. Scale bar, 5 /mi. 

regions of analysis was ~100 (e.g. 60 x 60 pixels, 0.11 /im/pixel, U)Q = 0.35 /.on). 

According to Fig. 4.3, this means that the IF detection limit for these measurements 

is somewhere between 20% and 30%. The vast majority (~90%) of measured MJCCS 

values were well above these detection limits, although there were some as low as 10%. 

This value can still be considered reliable, however, if we consider the definition that 

was used to establish the detection limit. Following the analysis of twenty simulations, 

the minimum interaction fraction at which half of the trials returned a failed cross-

correlation fit (u0 ± 50% of the input value) was deemed the detetion limit. In the 

majority of cases, however, several of the trials led to successful fits according to the 

chosen criterion, moreover, all successful fits led to relative errors of <15%. This 

means that in certain cases, depending on the particular image pairs in question, 

smaller IFs than those reported in Fig. 4.3 are possible. 

The measured interaction fraction, A42rccs, of five separate wild type and five 

mutant image time series are plotted in Fig. 5.5. Error bars were omitted for clarity 

but were estimated to be ~20% given the measured S/B ratios of 30 and 150 for 
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detection channels 1 and 2 respectively (see Materials and Methods for the definition 

of S/B and Fig. 4.8). A relatively fast initial increase in the measured colocalization 

between /3-arrestin2 and /32-adaptin was observed for both wild type and mutant cells 

after the addition of the agonist, Ang II, which was followed by a slower decrease that 

persisted significantly longer in the case of all mutant cells analyzed. The measured 

Mliccs interaction fractions showed identical trends to those of M2JCCS- In order to 

assess this difference in the persistence of colocalization over longer times in the case 

of cells transfected with the Y737F /32-adaptin mutant as compared to the wild type 

cells, linear regression was performed on the post-maxima decrease in the measured 

IF as a function of time for both wild type and mutant cells. Linear regression was 

performed on a cell-by-cell basis insteasd of averaging over the five measured curves 

for each cell type due to the temporal differences in the initial response of each cell, 

as well as the fact that the exact time points at which images were recorded were not 

identical for all experiments. 

Results of the linear fits for a single wild type and mutant cell are shown in Fig. 5.6 

along with estimated error bars. The average decrease in the wild type /?-arrestin2//32-

adaptin interaction fraction measured using ICCS was almost 4 times faster than that 

of the mutant complex (slope: -0.011 ± 0.005 s_ 1 WT vs. -0.0029 ± 0.0006 s"1 for 

the mutant where errors are the standard deviation of the 5 measurements). A plot of 

the absolute number density of the the cross-correlated (interacting) species, (N)12, 

decays exponentially to zero with a first order rate constant of 0.079 s_ 1 and 0.015 s~' 

for the wild type and mutant cell respectively. 

These results are consistent with the previously measured biochemical data, which 

suggested that the c-Src-dependent phosphorylation of /32-adaptin regulates its inter­

action with /3-arrestin2 during AT1R internalization, however, for the first time, the 

effect that phosphorylation of the Y737 residue of /32-adaptin has on dissociation 

of important regulatory endocytic complexes has been quantified in live cells by this 

successful application of ICCS. The mechanism by which /32-adaptin phosphorylation 
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Figure 5.5: Following addition of the AT1R agonist, Aug II, a relatively fast initial increase in the 
measured colocalization between /3-arrestin2 and /32-adaptin was observed for both wild type and 
mutant (/32-adaptin Y737F) HEK293 cells. The onset of this initial response varied from cell to cell 
but typically reached a maximum after approximately 60 to 100 s. After reaching a maximum, the 
amount of colocalization decreased steadily to zero and persisted significantly longer in the case of 
all mutant cells analyzed. 

alters its binding affinity for /3-arrestin remains unclear, but interestingly, it has been 

shown that receptor stimulation is a necessary condition to bring about this effect [20], 

which implies a more complicated mechanism than a simple conformational change 

that disrupts binding or recruitment and binding of other regulatory molecules. 
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Figure 5.6: A representative two channel overlay image of wild type /?2-adaptin (red) and /?-arrestin2 
(green), 1 minute after the addition of Ang II is shown in the (A) panel of the figure with the 
corresponding spatial cross-correlation function (solid) and nonlinear least squares lit (mesh) of the 
outlined region displayed in (B).(C) depicts the measured colocalization for this cell, as well as a 
/32-adaptin mutant cell as function of time after addition of agonist. Linear fits of the post-maxima 
colocalization decrease are plotted as solid lines with wild type and mutant slopes of-0.00756 s~' 
and -0.00356 s_ 1 , respectively. Error bars were estimated for the measured S/Bi and S/B2 ratios 
of 30 of 150, respectively. (D) A plot of the concentration of associated complexes as a function of 
time decays exponentially with first order dissociation rate constants of 0.079 s~~L and 0.015 s_1 for 
the wild type and mutant cell respectively. Error bars were estimated from the S/B ratios as in (C). 
©Journal of Cell Science 120, 1723-1732 (2007). 
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6 

Advances in ICCS 

As discussed in the previous chapters, noncovalent interrnolecular interactions regu­

late practically all cellular processes and are essential to the survival and proliferation 

of every cell type in all living organisms. It has also been shown that ICCS is a pow­

erful tool to detect these interactions in a minimally-invasive fashion in cultured cell 

lines using readily available fluorescence probes and microscopy techniques. Of course, 

as is the case with any analytical technique, ICCS has limitations and must be ap­

plied in the proper fashion under the appropriate conditions to obtain valid results. 

Some of these limitations were tested and discussed in previous chapters and include 

the interaction fraction detection limits that were observed when the NIB1 sampled 

in a pair of images was low, and the large perturbations of the spatial correlation 

functions introduced by nonuniform particle distributions. Other limitations of ICCS 

include the error that is observed in the measured number densities when the relative 

particle brightness yields in either of the recorded images deviates from unity, as in 

the case when a few very bright particles are imaged in the same detection channel 

as several particles of lesser brightness. This type of situation can arise from a num­

ber of molecular mechanisms, including the case with a distribution in the binding 

stoichiometry of interacting particles due to the presence of multiple ligand binding 

sites. In this chapter, new strategies for overcoming some of these limitations are 

presented that significantly increase the range of applicability of ICCS for measuring 

interrnolecular interactions from two-channel fluorescence microscopy images. 

112 
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Figure 6.1: Polyvalent interactions in biological systems. There are many types of polyvalent in­
teractions in cellular systems including many enzymes that have multiple binding sites for their 
substrates. Another example is the influenza virus, which binds to its host cell by association of 
the trimeric hemagglutinin protein on its surface with sialic acid residues on the surface of the cell. 
Adapted from [1]. 

6.1 Variable Binding Stoichiometry 

Polyvalent interactions, in which single receptor molecules are found to bind simul­

taneously to multiple ligands, are prevalent throughout biological systems [1]. Many 

viruses and bacteria bind to their host cells through polyvalent interactions, which 

serves to increase the overall strength of the binding as compared with several mono­

valent interactions (see Fig. 6.1). The surface of the influenza virus, for example, is 

covered with the trimeric protein, hemagglutinin, which associates with three sep­

arate copies of the densely packed sialic acid, moiety on the surface of its host cell 

[2]. Another example of multiple ligand binding in cellular systems is the specific 

interaction of an antibody molecule with its antigen. As described in detail in Chap­

ter 1, all antibody monomers possess two identical antigen binding sites, and the 

binding of antibody molecules serves as a surface marker to target foreign invader 

species to immune cells for subsequent removal from the body. Also, the functional 

form of an abundant enzyme in the brain, Ca2+/calmodulin-dependent protein kinase 

II (CaMKII), consists of 12 separate subunits, each of which can bind the calcium-

binding protein calmodulin (CaM). The binding of CaM to an autoinhibitory domain 

of CaMKII results in activation of the enzyme by autophosphorylation, and subse­

quent phosphorylation of other target proteins [3]. The 12 different CaM binding 

sites allow for varying degrees of enzymatic activity depending on the ligand occu-
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pation number per enzyme molecule. The CaMKII enzyme has been shown to be an 

important regulatory molecule in neurological signal transmission [4] and has been 

implicated in playing a role in the formation of long-term memories [5]. These are 

just a few examples of the numerous multiple-ligand binding proteins that are found 

in cells, which carry out critical functions in many different regulatory pathways. 

Any attempt to quantify molecular interactions using ICCS in systems where mul­

tiple ligand binding is possible, would require that both the macromolecule of interest 

and its ligand be fiuorescently labeled with two spectrally distinct fiuorophores. Flu­

orescence images recorded in two detection channels of the two interacting species 

would then be spatially auto- and cross-correlated in order to determine the corre­

sponding interaction fractions for each detection channel. If, however, two (or more) 

fiuorescently labeled ligands are bound to various receptor molecules, then their loca­

tions within the fluorescence image for the ligand channel will appear twice as bright 

as compared with image locations where only one of the ligands is bound to a receptor 

(Fig. 6.2). 

Due to the diffraction-limited resolution of the microscope used to collect the 

fluorescence images, it is not possible to resolve the two bound ligands as separate 

spots. The same is true for higher order complexes as well, and in the following 

discussion it is assumed that n;, number of bound particles will be rib times as bright as 

a single particle for an imaged location, i.e. no fluorescence quenching or enhancement 

occurs between fiuorophores. 

Let us consider the effect that the presence of particles with varying numbers of lig­

ands and hence variable brightness yields will have on the calculated spatial auto- and 

cross-correlation functions. It can easily be shown by substitution of the equations 

for the spatial intensity fluctuations in each detection channel, (spatial equivalent 

of Eqs. 2.11 and 2.12), into the general spatial correlation function (Eq. 2.16), that 

if each fiuorescently labeled species, s, has the same brightness factor in channel k, 

denoted 77^, then the autocorrelation of channel k is independent of the value of 
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Figure 6.2: An example of an IgG antibody molecule that can bind either one or two antigen ligands 
is shown. In the case where two ligands are bound, the resulting image intensity profile of the 
unresolved particles is twice as bright as the case where only a single ligand is bound. 

this brightness factor. Similarly, if all the fluorescently labeled species, s, have equal 

brightness in channel, L then the cross-correlation (and autocorrelation of channel /) 

calculated between channel k and / will again be independent of the absolute value 

of r/s>/. Note that it is not necessary that r]s<k = T]SII, and in fact, these two brightness 

factors are not usually equal. This factor is itself the product of the excitation inten­

sity, overall photon detection efficiency, absorption cross-section and the fluorescence 

). We do not need to know the actual quantum yield for a given fiuorophore (^^ u l e . s / 

values of the particle brightness, r/s>/t, but only the relative value for each species in 

detection channels, k and /, due to its presence in the numerator and denominator of 

the equations for both the auto- and cross-correlation functions. For ICCS analysis 

it is more practical to define a relative brightness factor measured with respect to a 

single species (usually the rnonomeric form) in each detection channel, Qs,k = ~ ^ , 

since it is much more difficult to measure the absolute value of the molecular bright­

ness in ICCS as compared to FCS, where rjsk is measured continuously throughout 
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the experiment. If the image recorded from detection channel k or / contains con­

tributions from particles with two or more different brightness factors, then the two 

autocorrelation function amplitudes are given by the sum of the number of fluorescent 

species contributing in that particular detection channel, weighted by the square of 

their respective brightness yields, Q2
ak [6]. Using the definition of the relative par­

ticle brightness, the zero spatial-lags amplitudes of the autocorrelation functions for 

channels, k and Z, are given by, 

E Qlu (N)s,k E Q'i, (N)S!l 

r (0, 0)kk = - f - j r (0, 0)„ = - f - T > (6.1) 

where the sum is over the total number of distinct fluorescent species, S, which 

contribute to either detection channel, k or I, and (N) 9 k orl is the mean number of 

particles in the respective detection channel. Similarly, the amplitude of the cross-

correlation function is given by, 

E Q,,kQ.A (N)aM 

r (0,0)kl = -r-Q ^ T-r-< ^ . (6-2) 
tQs,k(N)s<k)(J2Qs,i(N)s, 
s= l / \ s = l 

where (N) s kl is the mean number of particles that are detected in both channels, 

k and I, i.e the mean number of interacting particles. These equations can just as 

easily be expressed in units of concentration, simply by dividing the auto- and cross-

correlation functions by the effective volume of the excitation laser beam focus, K//? 

or in the 2D case (that is most common for ICCS analysis applied to membranes), 

by the excitation laser beam area, BA. 

It should be noted that in situations where multiple binding is present and QStk 

is relatively small, it would be extremely difficult to distinguish whether or not a 

particular image contained contributions from two distinct populations of particles 

with different brightnesses, and would certainly be impossible at elevated number 

densities. From the equations above we can see that assuming a single population of 
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fluorophores with equal brightnesses in their respective detection channels, and the 

subsequent calculation of the ratio between the auto- and cross-correlation function 

amplitudes will not represent the 'true' interaction fractions between the molecules 

due to the increased weighting of the brighter particles. However, while the error in 

the measured interaction, fractions that results from the different relative brightnesses 

in a given detection channel can be significant, especially when Qa^ is large, the fact 

remains that the correlation function amplitudes do contain valuable information 

about the concentrations of the various molecular complexes formed between macro-

molecules and their ligands. Extracting this information can be a formidable task, 

but, if some of the underlying properties of the system are known, such as the total 

number of binding sites, and certain assumptions about these binding sites are valid, 

then it is possible to use ICCS analysis of two channel images to measure multiple 

ligand interactions in systems with variable binding stoichiometry. 

It is clear that as the number of binding sites, n, increases, extracting of any in­

formation from these amplitudes about the underlying distribution of bound ligands 

becomes increasingly difficult. It is possible, however, to simplify the expression for 

the spatial correlation function amplitudes given in Eqs. 6.1 and 6.2 by deriving an 

expression that will allow for the evaluation of the concentrations of all the given 

species with b ligands bound simply by knowing the total macromolecular concentra­

tion of the receptor species, the free ligand concentration, and a single equilibrium 

association constant. In effect, all of the concentrations of the species that would con­

tribute to the correlation function amplitudes can be related to each other through 

a single association constant. We can then substitute this expression into Eqs. 6.1 

and 6.2, which describe the auto- and cross-correlation amplitudes, to significantly 

reduce the number of variables in the sums. By measuring the correlation amplitudes, 

the resulting three equations with three unknowns can then be solved and all of the 

concentrations of the variable stoichiometric binding complexes can be determined. 

To do this, let us recapitulate some of the general equations used to describe multiple 
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equilibria. For a more complete treatment of the subject, see [7]. 

Consider the n association constants that are required to describe, in general, the 

binding of a number of small ligands, [A], to a macromolecule, [P], with n binding 

sites: 

P + A^ PA Kx = ^ 

PA + A^ PA2 K-t 

[P] M 

[PM 
[PA] [A] 

(6.3) 

\PA 1 
PAn^ + A^PAn Kn=

 [ nJ 

[PA,-i] [A] 

where the square brackets represent molar concentrations of the respective species. 

The concentrations of each complex in terms of the free macromolecule concentration, 

P, and the free ligand concentration, A, can be written by rearrangement of Eq. 6.3: 

[PA] = K, [P] [A] 

[PA2}=K1K2[P][A]2 

• (6.4) 

[PAn]=KlK2...Kn[P][A}n 

Let us assume that each of the n binding sites are identical, such that each site 

recognizes the same ligand, A, and that the binding of one ligand will not alter the 

binding affinities for subsequent ligands (noncooperative binding). If this assumption 

is valid, then, it might appear as though we can simply equate all of the n binding 

constants described above (i.e. K\ = K2 = • • • Kn = K). This is not the case, 

however, due to the difference in the number of ways that each of the molecular 

complexes can be formed. For instance, consider the initial reaction of A binding to 

unligated P. The ligand, A, can bind to any one of the binding sites of P, so there 
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axe n different possible forms of the PA complex. Let us imagine for a moment that 

we can distinguish between each of these equally probable forms of PA and denote 

each by PA*. Now we can rewrite our expression for K\ as, 

n 

[P] [A] [P] [A] 

= nKc, (6.5) 

where Kc is the equilibrium constant that describes the binding of a ligand, A, to 

any free site on the molecule (i.e. PA*h_A + A v=* PA\). Similarly, we can write 

expressions that relate each of the n equilibrium constants shown in Eq. 6.3 to the 

same constant, Kc, by realizing that, in general, the number of distinct complexes 

that can be formed with b ligands bound, PAb, out of n binding sites is given by the 

binomial coefficient, (rfe
l) = , _"i,b!- From these expressions we can derive a general 

formula that allows us to calculate any of the equilibrium constants, Ki,K2 ... Kn, 

from the 'single-site' equilibrium binding constant, Kc' 

K„ = KC ( ^ f t i ) (6-6) 

It is now possible to simplify our expression for the concentration of each of the 

individual PAb species by substitution of Eq. 6.6 into Eq. 6.4: 

b 

and since the product, 

.7 = 1 

.7 = 1 V J 

is simply the binomial coefficient, we may write, 

™ - 6 r/iifc \PAh]=["h)Kc[AX{P}. (6.7) 
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So for identical and independent binding sites we can calculate the concentrations 

of all of the possible molecular complexes, [PA,], formed between a macromolecule 

that has any number of binding sites and varying amounts of ligand, simply from the 

single-site equilibrium binding constant, Kc, the concentration of free ligand, [A], 

and the concentration of free macromolecule, [P]. We can therefore substitute this 

expression into Eqs. 6.1 and 6.2 as mentioned at the outset of the derivation of Eq. 6.7 

in order to solve for these three variables that relate to the concentrations of all the 

species within the system. However, we can increase the ease of solving for these 

variables, especially when n is large, by noting that in the absence of any higher 

order complex formation between different macromolecules (e.g. P2A), all of the 

fluorescently labeled P A species that are recorded in their respective fluorescence 

detection channel images will be of equal brightness, regardless of the number of 

ligands to which they are bound (i.e Qpti = QPA,I = QPA„,I)- This implies that 

the amplitude of the autocorrelation, function calculated for this detection channel, 

r (0 ,0 )n , will simply equal the reciprocal of the average number of P molecules within 

the focal volume. This means that, if it is possible, it would be advantageous at this 

stage to rewrite Eq. 6.7 in terms of the total macromolecular concentration, [Ptotai], by 

elimination of the concentration of free macromolecule, [P]. If one of our unknowns, 

[Ptotai], can be calculated directly from the reciprocal of the autocorrelation function 

amplitude, then solving the system of equations will be that much easier. It is in fact 

quite easy to rewrite Eq. 6.7 in terms of [Ptotai!] by taking the summation all [PA] 

complexes including [PA] = [P]: 
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[Pu^]=i2(fjKb
c[A]b[P] 

6=0 ^ ' 

= iP} + it(rl)KciA}b{P] 
6=1 ^ ' 

=W('+I:(I)RCM'), 

which can be simplified by using the binomial theorem to obtain: 

[Ptotai} = [P](l + Kc[A])n (6.8) 

Solving Eq. 6.8 for [P] and substitution into Eq. 6.7 leads to an expression that 

allows for calculation of the concentrations all of the [PAj,] species from just the 

three parameters, Kc, [A] and [/"total]-' 

"•*'= < / + w lP"",] (M) 

6.1.1 ICCS Analysis of Multiple Binding Interactions: Stoichiometric 

ICCS 

In order to demonstrate that ICCS is capable of quantifying the interactions in poly­

valent systems we have applied the FCCS theory of Kirn et al. [8] to the ICCS analysis 

of single, dual-detection channel image pairs. Consider the case where a single fluo-

rescently labeled macromolecule, G (green detection channel), has two binding sites 

for a second, fluorescently labeled ligand, B, (red detection channel). The auto- and 

cross-correlation function amplitudes for this type of system can be calculated by us­

ing the form shown in Eqs. 6.1 and 6.2. In this case, NRFTCC
 IS the number of unbound 

species R per beam area, and N(GRi,) is the number of complexes with b particles 

of R bound to G per beam area, and Qs^ is the relative brightness of particle s in 

channel k. 
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r(0,0)12 2 

QGR0,I (N(GRQ)) + Q2
GRul (NjGR,)) + Q%R^ (N(GR2)) 

(QGflo.i (N(GR0)) + QGR,,I (N{GR,)) + QGH,,I (N(GR2))f 

QlFree,2 (NRFree) + QlR1,2 (NjGR,)) + Q%R2fl (N(GR2)) 

(QRFree,2 (NRFree) + QGR1,2 ( ^ ( G ^ ) ) + QGRV2 (N(GR2))f 

QGRI,IQGRI,2 (NJGRJ) + QGR.2,IQGR2,2 (N(GR2)) 

QGRO,I (N(GBO)) + QGRUI (N(GR,)) + QGR2,I (N(GR2)) 

1 
X QRFree,2 (NRFree) + QcRlfl <^(Gi2l)> + QGR2,2 (N(GR,2)) ' ^ ' ^ 

It is assumed that no crosstalk exists between channels, no changes in fluorescence 

intensity occur upon binding, and that noncooperative binding occurs with equal 

probability at either site, defined by the single-site binding constant, KG. All values 

of Qs,k c a n be s e t to one with the exception of QGR2,2 = 2. This is due to the fact 

that the GR2 species will appear twice as bright as each of the other species, GR\ 

and R,Free, that are detected in channel R. There are four different unknown number 

densities in Eqs. 6.10-6.12. However, substitution of Eq. 6.9, which relates all of these 

number densities to KG, Ncruai, and NRFree, will result in three equations with three 

unknowns: 

L, (l+Kc(NRFree))2 WGTotal) 

r(0,0)„ = -f— : ^ (6.13) 
f f , g c(^^) ' /A/ 
[L,o (l+Kc{NRFree)f ^GTotal, 

{NRFree) + £ ^ p ^ f (NGTotal) 

r ( 0 , 0 ) 2 2 = ^ — — r r (6-14) 

{^RFree) + 2^ W,2 ( 1 + X c ( J V a p r e f ) )J {^GTotal) J 

alfTJT™^ (NGTotai) (1 + Kc (NRFree)) 
_ ^ \ ( . 2 {2^)K"c{NRFr>;ry

 V"'"V 
\^L (l+Kc(NRFrKC)f (NGTotal) J ( ^ F r e e ) + ^ QGRi,2 {1+Kc{NRFree)f (N GTotal) J 

By measuring the amplitudes of the auto- and cross-correlation functions, Eqs. 6.13-

6.15 can be readily solved for Kc, (NRFree) and (NGTotai), which in turn, can be used 
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to calculate the number densities of all {GRb) species using Eq. 6.9. 

The error in this type of analysis was estimated by creating simulated images of 

interacting pairs that had multiple sites for ligand binding. Images were simulated 

to represent binding of either one or two particles with a known distribution and 

density. Channel 1 was composed of particles in three distinct states: free (i.e., 

not associated with a particle from Channel 2); associated with one particle from 

channel 2; or associated with two particles from channel 2. Association was defined 

by simply placing particles in the same pixel location in both images (see Materials 

and Methods, Chapter 3.1). 

For these sets of simulations, the distribution of interacting particles was deter­

mined by Eq. 6.9 given the total number of channel 1 particles (receptors), NGTotah 

the number of free channel 2 particles (ligands), NRpree; and the single-site binding 

constant, Kc- To recover the concentrations using ICCS, the fitted amplitudes of 

the spatial cross-correlation function and the two autocorrelation functions were used 

in Eqs. 6.13-6.15 to numerically solve for Kc, (NGTotai), and (NRFree). Once these 

three values were obtained, the concentrations of the different interacting species were 

calculated using Eq. 6.9. The error associated with ICCS colocalization analysis of 

a system with two binding sites for a single ligand was small over the density range 

investigated, as illustrated in Fig. 6.3. 

In order to apply the ICCS analysis of multiple binding systems to experimen­

tally acquired images, we re-examined the experiment described in Chapter 4, which 

compared the ICCS analysis of images with a high density of fiuorescently labeled 

antibodies adsorbed on glass to measurement using automatic colocalization. Briefly, 

a coverslip was coated with mouse monoclonal anti-PDGF /3-receptor IgG, followed 

by incubation of the coated coverslip with a mixture of secondary anti-mouse IgGs 

conjugated with either fluorescein isothiocyanate (FITC) or Alexa 633 (Fab- and Fc-

specific, respectively). The incubation time of the fiuorescently labeled secondary 

antibody mixture was varied, and the amount of colocalization was assessed by ICCS 
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Figure 6.3: Plot of measured species number densities and equilibrium binding constant from ICCS 
variable stoichiometric analysis as a function of input number density, A ô and equilibrium binding 
constant, Kc, calculated from the analysis of 50 multiple binding simulation image sets with identical 
settings for each density. Error bars are standard deviations. No counting or background noise was 
added to these images. 

analysis of the CLSM images recorded for each sample. The measured colocalization 

was found to increase as a function of incubation time and reached a maximum af­

ter ~100 min (Fig. 4.9). All IgG antibodies have two Fab domains and and one Fc 

domain. In principle, the primary mouse monoclonal antibody that was coated on 

the glass surface had two available binding sites for the Fab-specific FITC conjugated 

secondary antibody and one binding site for the Fc-specific Alexa 633 secondary an­

tibody. Therefore, in order to assess whether or not both binding sites of the primary 

antibody were accessible to the FITC-conjugated secondary antibody, and to measure 

the distribution of the resulting complexes, the stoichiometric ICCS analysis described 

above for a two-ligand binding system was applied to the two channel CLSM images 

of the surface adsorbed antibodies that were recorded after overnight incubation of 

the secondary antibody mixture on the primary antibody coated glass coverslip. The 

results are tabulated in Table 6.1. Note that in this case, because the unlabeled pri-



6: Advances in ICCS 

complex 

RG0 

Rd 

RG2 

Gpree 

(N) ± 10% (particles/BA) 

313 

255 

52 

49 

Table 6.1: Average number densities of fluorescently tagged antibodies incubated with primary 
antibodies adsorbed on glass measured using stoichiometric ICCS analysis. The error associated 
with the measurement of (A') was estimated from the measured noises levels of, S/B\ = 140, 
S/B2 = 125, WFi = 3.0, and WF2 = 5.9 using Fig. 4.7 and Fig. 4.8. 

mary antibody molecules have two possible binding sites for the green fluorescently 

tagged secondary antibody, and only one binding site for the red fluorescently tagged 

secondary antibody, we will denote the resulting complexes as RG}} (and not GR\, as 

above), even though the red and green species do not directly bind to each other but 

instead bind to distinct locations of the primary antibody. 

From the measured number densities presented in Table 6.1, it is possible to cal­

culate two-ligand binding interaction fractions analogous to Mlrccs a n d M2JCCS-

For the fluorescent red labeled antibody that can only bind to the primary antibody 

in a 1:1 ratio we can define the fraction of bound molecules as, 

total R bound {N (RGi)) + (N (RG2)} 
VR (6.16) 

total R (N (RG0)) + {N (RGi)) + (N (RG2))' 

and for the fluorescent green labeled antibody that is capable of binding in a 2:1 ratio 

with the primary antibody, the fraction of interacting molecules is defined as: 

_ total G bound __ {N (RGi))+ 2(N (RG2)) 
VG ~ toUlG ~ {NGFree) + {N (RGi)} + {N (RG2))

 ( ' ' 

The interaction fractions, UR and VQ, were determined to be 0.50 and 0.88 respectively. 

These values are equivalent to the interactions fractions that were measured using 

conventional ICCS analysis, as shown in Fig. 4.9 at t = 1140 min (M2JCCS = 0.46 ± 

0.04, Mljccs — 0.88 ±0.07). This implies that when two binding sites are present on 

a molecule of interest, conventional ICCS can still be applied to measure the overall 
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interaction fractions. This is due to the fact that a factor of two in the brightness 

difference between particles detected in a given channel, results in relatively small 

errors in the recovered number density, regardless of the density ratio between the two 

species. Application of stoichiometric ICCS, however, is advantageous if knowledge 

of the distribution of bound particles is desired or if the brightness ratio is > 2 (i.e., 

there are more than two binding sites available). 

6.2 Improving the ICCS Detection Limits 

Another important parameter that should be carefully considered when attempting to 

measure interactions using spatial ICCS is the size of the image pairs to be analyzed, 

or more precisely, the NIF contained within the images. Due to the statistical nature 

of ICCS it is imperative that a sufficient number of independent spatial samples (fluc­

tuations) be recorded if meaningful results are to be obtained. The effect of spatial 

sampling was investigated by measuring the detection limit of ICCS as a function of 

NIF as shown in Chapter 4, Fig. 4.3. From this plot we determined that at NIF values 

of ~ 1000, which corresponds to 256 x 256 pixel images at typical pixel resolutions 

of 0.1 /iin/pixel, the zero spatial-lags amplitude of the cross-correlation function be­

comes indistinguishable from the background correlation peaks at all higher spatial 

lag values when the interaction fraction is < 15%. Thus, when ~1000 independent 

fluctuations are sampled within both of the images the ICCS IF detection limit was 

determined to be 15%, and this value decreased to even lower IFs as more independent 

samples were measured. 

In most experimental situations 15%) would be an acceptable interaction fraction 

detection limit. The difference between 0, 2% or 5% interaction, for instance, is 

typically not significant in the context of biological systems due to the large cell-to-

cell variability often encountered when measuring any parameter in cells. Of greater 

concern is the dramatic increase in the IF detection limit as the NIF is reduced. Low 

sampling is a common obstacle encountered for ICCS measurements on various types 
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Figure 6.4: A 256x256 two channel overlay image with 10% interaction (below IF detection limit) (A) 
and the corresponding spatial cross-correlation function (solid)(B). The central zero spatial-lags peak 
is almost equivalent, in amplitude to larger spatial-lags peaks and is therefore difficult to (it to a 2D 
Gaussian function (mesh)(C). 

of cells. The area of a typical cell may be 1000 /iin2 or less, while the diffraction-limited 

excitation laser beam area of a CLSM is on the order of 0.1 fim2. This means that 

across the entire cell, 104 independent fluctuations could in principle be measured, 

which, according to Fig. 4.3 leads to very low IF detection limits of < 5%. A problem 

arises, however, because in most cases, ICCS analysis over the entire cell is simply 

not an option, either because the particle distribution is nonuniform throughout the 

entire cell (to be discussed later in the chapter), or, it is of interest to measure the 

amount of interaction in a particular subregion within the cell. In either case, we see 

that it is often necessary to select a 64 x 64, or 32 x 32 pixel subregion within the 

image. For some cell morphologies, even smaller areas would be required for ICCS 

analysis. This is a major disadvantage, because from the simluation experiments we 

determined that analysis of these small areas (NIF < 50) is not possible unless the 

IF is very high (> 40% in the case of a 64 x 64 pixel region). Analysis of such regions 

could lead to false-negative results when in fact the true IF is quite large. 

The reason that ICCS analysis fails to detect interaction fractions below the de­

tection limits plotted in Fig. 4.3 is simply due to the difficulty in fitting the cross-

correlation function for such limited sampling (see Fig 6.4). The zero spatial-lags 

amplitude of the cross-correlation function is not well resolved from the background 

correlation peaks at nonzero spatial lags, which significantly perturbs the fitting rou­

tine. An important observation, however, is that the absolute value of the zero 

spatial-lags amplitude is still representative of the number of interacting particles 

A B 
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even at several IFs values below the reported detection limits, it is just extremely 

difficult to extract this value from the 2D Gaussian fit. It is worthwhile then, to 

investigate alternative methods for obtaining the cross-correlation zero spatial-lags 

amplitude. 

Recall that the reason for fitting of the spatial autocorrelation function is the 

presence of the correlated white noise peak that is present at spatial lags of zero. In 

principle, however, the zero spatial-lags amplitude of the cross-correlation function 

could be calculated directly from the spatial intensity fluctuation data (Eq. 6.18) as 

there should be no cross-correlated white noise (by definition of this noise) present 

between the two detection channels. 

r ( 0 l 0 ) , = ( « ^ M ) (6.18) 

There are some other factors, however, that must be considered before deciding 

to abandon the spatial cross-correlation function fitting routine altogether. First, it 

is not uncommon that the peak of the spatial cross-correlation function occurs at 

spatial lags greater than zero, and the Gaussian fitting function allows for shifts in 

the cross-correlation peak. Positional shifts of several pixels in the central peak of the 

cross-correlation function away from the zero spatial-lags position has been observed 

in several experiments including the ICCS analysis described in the previous chapter. 

These pixel shifts would introduce error into the direct calculation of the zero spatial-

lags cross-correlation amplitude from the image pixels. Since this is the case, we could 

also determine the cross-correlation amplitude by searching for a local maximum at 

small spatial lag values to account for these small pixel shifts, although, due to the fact 

that multiple peaks are commonly observed at small spatial lags in low IF situations 

due to sampling noise, this method would be difficult. Secondly, the zero spatial-lags 

amplitude of the spatial cross-correlation function fails to be a good estimator of the 

average number of interacting particles at low enough IFs for a given NIF sampled. 

There will simply not be enough cross-correlated fluctuations to precisely measure 

these interactions. Therefore, fitting has the added advantage of providing a built-in 
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check of the quality of the measurement, which the simple calculation directly from 

the pixel data of the zero-lags cross-correlation does not provide. 

In the following section it will be shown that spatial rearrangement, or 'scram­

bling', of two channel images in a random fashion prior to performing ICCS analysis 

can significantly reduce the measured IF detection limit for a given NIF. The scram­

bling procedure that will be described has the effect of lowering the IF detection limit 

by considerably increasing the ease of fitting the calculated spatial cross-correlation 

function to a 2D Gaussian function in order to extract the desired amplitude infor­

mation. 

6.2.1 Image Scrambling for Spatial ICCS 

All information regarding the locations of the particles within an image is lost when 

a spatial correlation function is calculated from that particular image due to the av­

eraging performed over all equivalent spatial lag values. This implies that spatial 

rearrangement of all the pixels, or blocks of pixels, within an image, and subsequent 

spatial correlation, will result in an identical zero spatial-lags value as that of the un­

altered image (see Eq. 6.18). Fig. 6.5 shows a schematic diagram of the image scram­

bling procedure. The only difference between the spatial auto- and cross-correlation 

functions calculated for a particular image and a spatially scrambled variant of that 

image, is the width of the correlation function decay, which in turn depends on the 

size of the scrambled motif. For example, scrambling all of the individual pixels in an 

image by randomly assigning each one of them a new location will destroy the inher­

ent spatial correlation that was present prior to the rearrangement procedure (i.e. the 

particles were correlated with themselves over several pixels due to the diffraction-

limited width of the focussed laser beam used to excite them). In this case, the spatial 

correlation (at nonzero spatial lags) of the particles within the image was destroyed 

by the pixel scrambling, the spatial autocorrelation will have one peak at zero spa­

tial lags (identical to the peak that would result from correlation of the unscrambled 
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Figure 6.5: Image scrambling procedure. Overview of the process leading to the randomization of 
Sx x Sy pixel blocks within an Nx x Ny pixel image. First, the images are evenly divided into 

x 32 pixel blocks. The first block of both Sx x Sy pixel blocks. In this example there are 64, 32 
images (highlighted) is randomly assigned a new position within the 8 x 8 block array. This process 
is repeated for the remaining blocks within the images until the resulting scrambled images are 
obtained. 
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image) and will effectively be a delta function. We can, however, preserve some of 

the spatial correlation of the particles within the image if instead of scrambling in­

dividual pixels, we divide the image into 2 x 2 pixel blocks, and then perform the 

random assignment of these blocks to new locations within the image. This time, 

the spatial autocorrelation function will only decay to zero after two spatial lags be­

cause the 2 x 2 pixel blocks are still spatially correlated after a shift of only one pixel 

(Fig. 6.6). The same will be true of the spatial cross-correlation function calculated 

between two images that were randomly scrambled in an identical fashion. Again, 

the zero spatial-lags value of the autocorrelation function for the scrambled image is 

identical to that of the unscrambled image, although the value at a spatial lag of one 

is lower for the autocorrelation of the scrambled image. By dividing the image into 

2 x 2 pixel sections, and changing the position of these blocks, we have effectively 

thrown away several of the spatial lag=l values that would normally be included in 

the overall spatial average used to calculate this point in the correlation function. 

Therefore, the overall effect on the correlation function of spatially rearranging the 

image in this manner is to artificially increase the rate at which the function decays 

to zero, while leaving the zero spatial-lags amplitude unaffected. The degree to which 

this rate of decay to zero is increased by scrambling, depends solely on the size of the 

pixel scrambling blocks used to create the rearranged image. 

Artificially increasing the rate at which the spatial cross-correlation function (and 

autocorrelation functions) decays to zero aids significantly in resolving its central zero 

spatial-lags peak from background noise correlation at longer lags. This becomes a 

considerable advantage when attempting to fit this function in a low spatial sampling 

situation. For this reason, simulation experiments identical to those performed to 

determine the IF detection limits in ICCS in Chapter 4 were carried out, except this 

time, the images were randomly scrambled prior to ICCS analysis in order to see to 

what extent the effect of scrambling had on lowering the IF detection limit. The 

results are plotted in Fig. 6.7 along with the results obtained by simply fitting the 
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Figure 6.6: The effect of random spatial scrambling of individual pixel blocks within a 256 x 256 pixel 
image on the spatial cross-correlation function calculated for the resulting scrambled image. The 
IF was set to 0.5 for the simulation. A one-dimensional section of the 2D autocorrelation function 
through the maximum is shown for clarity. Scrambling does not alter the zero spatial-lags value, 
r (0, 0)1 1 , but reduces the value of the function at each successive spatial lag. Smaller pixel block 
sizes used for spatial scrambling will increase the rate at which the spatial cross-correlation (and 
autocorrelation) function decays to zero. 
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spatial correlation functions calculated for the unaltered images. 

The minimum IF was determined by creating 20 different sets of images with a 

set IF0 value (preset colocalization). The images were then analyzed using ICCS to 

determine the measured IF for the two simulated images. These images were subse­

quently divided into 4 x 4 pixel blocks, which were randomly redistributed throughout 

the image space, and then normal ICCS analysis was applied to calculate the IF for 

the two scrambled simulated images. This analysis of the unaltered and scrambled 

image pairs was repeated with decreasing set IF0 values until more than half of the 

twenty 2D Gaussian fits of the cross-correlation function failed. The IF0 at which 

half of the trials failed was defined as the IF detection limit. A failed fit was defined 

as a fitted e~2 beam radius outside a range of ±50% of the simulation input value, or 

when the fitted peak position, (v, v), was shifted more than 2 pixels from the center, 

(£ = 0) 7? = 0)- I n a n cases the total particle density in each channel was held con­

stant and equal at 8 particles/BA. The measured IF approximatley varied with the 

square root of the NIF sampled in the simulated images as is expected for statistical 

fluctuation analysis. 

We can see from Fig. 6.7 that performing random spatial scrambling of pixel 

blocks within the images prior to ICCS analysis significantly lowered the measured IF 

detection limits. This observed reduction is entirely due to the increased probability 

of obtaining a successful fit of the spatial cross-correlation function, as a result of pre­

analysis spatial image scrambling. However, there still exists a fundamental detection 

limit that can not be overcome by image scrambling. It was found that the measured 

IF detection limit using the spatial scrambling method was minimized as long as the 

scrambled block diameter was less than the number of pixels in the e~2 radius of 

the Gaussian convolution function (simulating the laser beam focus radius, LUQ). The 

4 x 4 pixel block size was chosen to provide the maximum advantage in fitting of the 

reduced-width cross-correlation function, while maintaining a reasonable number of 

points in the decay of the spatial correlation function to permit fitting. 
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Figure 6.7: The minimum interaction fraction that could be detected using ICCS analysis as a 
function of the number of independent fluctuations (NIF) in the simulated images for both unaltered 
and the corresponding scrambled image. Both channel particle densities were held constant and 
equal (8 particles/BA) as the number of interacting particles was decreased. The detection limit 
was defined as the IF at which more than half of the 20 trials returned a fitted e - 2 beam radius 
outside a range of ±50% of the simulation input value, or the fitted peak position, (v, u), was shifted 
more than 2 pixels from the center, (f = 0,77 = 0). Shown below is an overlay image of a 256 x 256 
pixel image with 10% interaction (below the detection limit) and the corresponding cross-correlation 
function. The 4x4 pixel block scrambled image is also shown with the corresponding cross-correlation 
function to demonstrate the much better 2D Gaussian fit when the image is randomly scrambled 
prior to ICCS analysis. 
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6.3 Particle Distribution in ICCS 

In addition to the NIF sampled within a given image, an equally important parame­

ter that should be considered carefully before applying ICCS to measure interactions 

is the spatial distribution of the particles themselves. In all of the ICCS measure­

ments presented thus far, it was assumed that the positions of the particles within 

a given image are randomly distributed from a uniform distribution. If this assump­

tion is valid, then the distribution of particles within each of the small subregions 

defined by the excitation laser beam area (i.e. a single independent spatial fluc­

tuation) will follow a Poisson distribution. The amplitude of the 2D spatial auto-

and cross-correlation functions calculated for these types of images will be related 

to the particle density, and the functions will decay to zero over the spatial scale 

defined by the beam focus. If, however, the positions of the particles within a given 

image are not distributed in a random, uniform fashion, then an additional spatial 

correlation due to this nonuniform particle distribution will result. The spatial au­

tocorrelation function calculated for these images will then consist of contributions 

from the spatial correlation of this additional, nonuniform particle distribution, and 

from the underlying spatial correlation of the individual particles that is related to 

the desired particle densities (see Fig. 6.8). These additional contributions to the 

spatial correlation function will, in certain cases, greatly affect its shape, and perturb 

the subsequent nonlinear least squares fitting. It also influences the relationship be­

tween the zero spatial-lags amplitude and the particle number density in a non-trivial 

way. Not surprisingly, perturbations in. either of the two autocorrelation functions 

due to nonuniform particle distributions will also be manifested in the calculated 

cross-correlation function between the two images. 

As would be expected, nonuniform distributions of fiuorescently labeled proteins 

and other biomolecules in cells are very common, and hence, this presents a difficult 

challenge for spatial ICS and ICCS analysis of such systems. Typical manifestations of 

nonuniform particle distributions in cells include large concentration gradients within 
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Figure 6.8: The effect of uniform and nonuniform spatial distributions of particles on the auto­
correlation function. (A) The probibility distribution function from which the particle x (and y) 
coordinates were randomly chosen to create the images shown in (B). The spatial autocorrelation 
functions calculated for the images are plotted in (C). Background noise was added to the im­
ages, which manifests itself in the autocorrelation functions as a sharp peak augmenting the zero 
spatial-lags value. 

the imaging region, as well as the formation of large clusters of particles arranged in 

elongated structures when incorporated into macromolecular complexes (simulated in 

Fig. 6.8B). 

6.3.1 ICCS Analysis of Focal Adhesion Proteins 

Cellular adhesion and migration is largely regulated by a class of heterodimeric trans­

membrane proteins called integrins. Integrin proteins provide a direct structural link 

between the extracellular matrix and elements of the cytoskeleton thereby providing 

'anchorage' points for attachment and subsequent migration across surfaces. Many 

different proteins are recruited to these sites of attachment, in addition to integrins, 

forming large multi-protein complexes, which are collectively referred to as focal ad­

hesions (FAs) (see Fig. 1.2). In a similar fashion as the GPCRs discussed in the 
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previous chapter, integrin proteins also act as signaling molecules, by relaying signals 

that are initiated at the exterior of the cell by the binding of extracellular matrix 

ligands to integrins in the membrane, and ultimately passing the signal to the in­

terior of the cell. Integrin receptor proteins have been shown to be involved in the 

signaling pathways leading to cell growth and differentiation as well as cell survival 

and apoptosis [9]. 

A complete understanding of the spatial and temporal relationships between the 

multitude of proteins (e.g. talin, a-actinin, paxillin) that comprise FAs is the goal 

of many current studies. To this end, the study of integrin and integrin-associated 

proteins is particularly well suited to ICCS analysis because of the fact that the 

protein is restricted to a planar surface as it resides in the plasma membrane, and 

because of the relatively slow dynamics of cell migration that allows for the process to 

be adequately sampled in time. One major drawback of using spatial ICCS analysis 

to measure interactions between FA proteins, however, is the spatially nonuniform 

particle distribution that so often results from the formation of these complexes in the 

membrane. As shown in Fig. 6.8, any deviation from a uniform particle distribution 

can make the fitting of the autocorrelation and cross-correlation function amplitude 

problematic, which makes determination of the interaction fractions, Ml ices and 

M2jccs, virtually impossible. 

Figure. 6.9A shows a CLSM image of YFP-talin fusion protein in a Chinese hamster 

ovary (CHO) cell plated on a glass coverslip coated with fibronectin, which is the 

extracellular binding ligand of a5 integrin proteins. Talin is a protein that is known 

to bind to the cytosolic tail of the majority of the 8 mammalian integrin j3 subunits, 

and acts as an intermediary protein that provides a link between the integrin and the 

cytoskeleton [10]. Recent studies have shown that the binding of talin to the integrin 

j3 subunit causes a conformational change in the transmembrane receptor that leads 

to its activation (i.e an increase in its affinity for extracellular ligands) [11]. It is this 

integrin activation process that initiates most of the cell signal transduction pathways 
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Figure 6.9: (A) A CLSM image of YFP-talin fusion protein in a CHO-K1 cell. (B) A 256 x 256 
pixel region of the cell was selected for spatial correlation analysis. 8 x 8 pixel blocks of the selected 
subregion were randomly scrambled. The spatial autocorrelation functions calculated for both the 
image and the scrambled image are shown in (C) along with 2D Gaussian fit functions (mesh) 

regulated by integrin proteins [12]. 

We can see in Fig. 6.9A that talin is localized in distinct elongated structures 

which are the FAs. It is also clear from the figure that the spatial autocorrelation 

of the YFP-labeled talin image is not well fit by the 2D Gaussian function and the 

fit amplitude is underestimated. As was shown in section 6.2, randomly scrambling 

blocks of pixels within an image can significantly enhance the ability to fit the cor­

responding cross-correlation function and extract accurate amplitude information in 

low sampling situations. Similarly, in cases where a nonuniform spatial distribution 

of particles leads to large perturbations in the Gaussian fitting to the autocorrelation 
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function, spatially scrambling the images prior to correlation analysis will allow for a 

more reliable estimation of the autocorrelation function amplitude from the fit. This 

is demonstrated in Fig. 6.9B where the region of analysis has been divided into 8 x 8 

pixel blocks, the positions of which have been randomly permuted. The correspond­

ing autocorrelation function is shown in solid color and its nonlinear least squares 

fit (mesh) appears to provide a much better estimation of the correlation function 

amplitude than the identical analysis on the non-scrambled image. The actual zero 

spatial-lags point was not weighted in the 2D fit due to the presence of white noise, 

and is omitted from the plot. 

Although the amplitude of the spatial autocorrelation function determined after 

applying spatial scrambling is a better estimate of the true zero spatial-lags ampli­

tude, the absolute value of the amplitude is difficult to interpret. Due to the fact 

that the adhesions in this case are ~10 times larger than the excitation laser beam 

area, conversion, of the autocorrelation function amplitude into a more meaningful 

number density is difficult [13]. Nevertheless, in an ICCS experiment the ratio of 

the cross-correlation function amplitude to that of the autocorrelation functions will 

still represent a measure of interaction between the two labeled species of interest 

within the sample. The exact meaning of this measure of interaction remains to be 

seen. In other words, will the cross-correlation of the adhesions themselves dominate 

the IF or will we be able to extract some information from the 2D fit regarding the 

interaction of the particles within the adhesions? In order to address this question, 

the talin image shown in Fig. 6.9A was used to create a binary mask, which in turn, 

was used to create simulated images with particles confined to specific regions within 

the image with a set amount of interaction. A schematic overview of this simulation 

experiment is shown in Fig. 6.10. 

The IF measured by randomly scrambling the simulated images and subsequent 

fitting of the resulting spatial correlation functions was ~ 1 , regardless of the in­

teraction fraction for the particles inside of the adhesions. The large spatial in-
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Figure 6.10: A CLSM image of YFP-talin fusion protein in a CHO-K1 cell was used to create a 
binary mask of FA structures. The mask was multiplied by a simulated two channel overlay image 
with a density of 120 particles/BA and 50% interaction. The resulting image was convolved with a 
2D Gaussian function to simulate the excitation laser beam focus. 4 x 4 pixel blocks of the convolved 
image were then scrambled and ICCS analysis was performed. The measured IPs represented the 
colocalization of the adhesion structures and not the particles within the adhesions (Mljccs = 0.96 
and M 2 J C C S = 0.97. 
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tensity fluctuations arising from the presence of the adhesions dominate the cross-

correlation function. Image scrambling does in fact aid in extracting the auto- and 

cross-correlation function amplitudes, but the calculated IFs represent a measure of 

the cross-correlation between the adhesions. In certain situations the measurement 

of the IF between large structures as opposed to smaller molecular complexes might 

be desired. However, if this is not the case, then practical considerations presented 

in the following section may aid in the measurement of the molecular IF inside the 

larger multicomponent complexes. 

6.4 ICCS Analysis of Arbitrary Regions within Images 

ICCS analysis is typically performed on small subregions of the acquired two channel 

images, due in part to the problems faced by nonuniform particle distributions that 

was discussed in the previous section, but also because the actual region of interest 

may only be a small, or oddly shaped subregion of the cell itself (e.g. the leading 

edge of a migrating cell, Fig. 6.13). Due to the perturbations of the spatial correlation 

functions caused by the presence of any 'edges' in the images to be analyzed, it is 

not always possible to select a completely arbitrary square or rectangular subregion 

of the image for analysis. These constraints restrict the use of ICCS in a number 

different situations. 

In ICCS, spatial intensity fluctuations, 5i(x,y)k = i(x,y)k — (i)ki recorded at 

each pixel position are cross-correlated. The fluctuations that are measured for any 

pixel that has an intensity value equal to the average intensity of the image recorded 

in detection channel k, (i(x,y))k, will be zero by definition. Similarly, these pixels 

will contribute zero to the calculated spatial auto- and cross-correlation functions, 

r (£>V)ki = ^x'y'k,di^
x,t y l. This simple observation can be used to aid in the ICCS 

analysis of arbitrarily shaped subregions of the images. For instance, if an arbitrary 

region of the imaged cell is selected, then the resulting matrix can be 'padded' with 

the mean intensity of the selected pixels to create a final Nx x Ny image for subsequent 
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Figure 6.11: For each channel of the 256 x 256 pixel two channel overlay image, the respective 
mean intensities were 'padded' around the outside of the image matrix creating a final 512 x 512 
pixel image. The resulting spatial cross-correlation function (and autocorrelation functions) for the 
'mean-padded' image is exactly 4 times lower than that of the original image due to the increased 
area that was added. 

ICCS analysis. The number of pixels that are added to the selected region of interest is 

not important as long as they surround this region to complete a rectangular Nx x Ny 

pixel array. It is easy to see from the equation for the spatial auto- and cross-

correlation functions given above and in Eq. 2.16, that any 'padding' of the selected 

region of interest with its average intensity will not contribute to the mimerator of the 

spatial correlation functions, but will in fact, decrease the entire function by a factor 

that is proportional to the number of pixels that were added to the image (Fig 6.11). 

This is because we have artificially introduced additional spatial lag values to 

included in the spatial averaging that is performed when calculating the correlation 

functions. This is easily accounted for, however, and in cross-correlation experiments, 

where we are only interested in the ratio of the cross-correlation function amplitude 

to that of the autocorrelation function, no adjustments are necessary because this 

ratio will remain unchanged. 

Arbitrary subregions of images can now be analyzed by simply 'padding' the re­

sulting selection with the mean intensity of the fluorescence signal of that selection. 

Normal ICCS analysis of such images will then result in accurate IF measurements. 

A proof of this principle is shown in Fig. 6.12. A simulated 512 x 512 pixel image 

was created with equal particle number densities in both detection channels of 120 

particles/BA and 50% interaction. An area of interest within the two channel overlay 
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Figure 6.12: (A) A simulated 515 x 512 two channel overlay image was created with 120 particles/BA 
in each detection channel and 50% interaction. An area of interest was selected using the 'ICCS' 
binary mask shown on the right. (B) All pixels outside of the region of interest were set to the mean 
intensity of the pixels inside the region of interest for each respective detection channel. The spatial 
cross-correlation function calculated using conventional ICCS analysis was used to determine that 
Mliccs a n d M2JCCS were equal to 0.46 and 0.49, respectively. 
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image was manually selected. Each pixel in the image that was not selected for the 

analysis was replaced with the mean intensity of those pixels that were chosen for 

the analysis. Conventional ICCS analysis was applied to the resulting images, and 

Mliccs and M2ICcs were determined to be 0.46 and 0.49, respectively. The total 

area of the selected region of interest was 168 pixel2, which corresponds to a NIF of 

~360. From Fig. 6.7 we can see that, at an IF of 0.50 and with 360 NIF sampled in 

this selected region of interest we are well above the IF detection limit in this case. 

However, if either the region of interest or the IF was significantly smaller, then the 

random scrambling procedure would have to be applied to the 'mean-padded' images 

prior to performing the ICCS analysis. 

This method for selecting arbitrary subregions within images was applied to two 

channel TIRF microscopy images in order to measure the IF between the cytoskele-

tal protein, actin, and one of its binding partners a-actinin. The a-actinin protein 

constitutes an important component of FAs by linking intracellular actin filaments to 

transmembrane integrin receptors, thus coupling the cytoskeleton to the extracellular 

matrix [14, 15] (Fig. 1.2). While these two proteins are known to interact, less is 

known about the fraction of interacting molecules, especially in different regions of 

the cell. 

In order to measure the interaction between actin and a-actinin at the leading edge 

of a migrating cell (outside of well-formed FAs), a small subregion of the two channel 

TIRF image (GFP-a-actinin and monomeric red fluorescent protein (mRFP)-actin) 

was manually selected. The mean intensity of this small subregion was then used 

to 'pad' the surrounding regions to create two images with a total size of 256 pix­

els (Fig. 6.13). 4 x 4 pixel sub-blocks of these images were then randomly spatially 

scrambled and ICCS analysis was performed on the resulting images. It was found 

that there was significant interaction between actin-mRFP and a-actinin-GFP in this 

manually selected region (Mlices — 0.71 and M2JCCS = 0.62). Further study of this 

system is required in order to determine the biological implications of this measure-
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Figure 6.13: The interaction of actin and a-actinin at the leading edge of a migrating cell. A sub-
region of a two channel TIRF microscopy image of actin-mRFP and a-actinin-GFP was manually 
selected (white area). Pre-processing of the images by mean-padding, and spatial sub-block scram­
bling methods was used to determine the IFs between the two proteins via ICCS {Mliccs = 0.71 
and M'liccs = 0.62). Data courtesy of Dr. Claire Brown. 
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ment. However, as we have shown in this example, the extension of ICCS analysis 

to manually selected image subregions is possible in two channel fluorescence images, 

which can be an important tool in measuring molecular interactions in subregions 

within cells. 

Selection of arbitrary regions of interest within the image in this manner signifi­

cantly increases the range of images to which ICCS can be applied. Combined with 

random scrambling of pixel blocks within the image, the 'mean-padding' procedure 

allows for small numbers of interacting particles in small user-defined regions of the 

cell to be measured with relative ease using ICCS, which would be extremely difficult 

to measure without the use of such tools. In addition, stoichiometric ICCS analysis 

can be applied to determine the distribution of multiply-bound ligand complexes, as 

long as the total number of possible ligand binding sites on the receptor molecule 

is known. As was shown throughout this chapter, simple methods for overcoming 

some of the inherent limitations in the ICCS technique have extended its practical 

application to measuring interactions in cells. 
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7 
Conclusion 

In the post genomic era, there is a growing trend in biological research to measure, 

in vivo, the myriad of molecular interactions that have been implicated through in 

vitro molecular biological and biochemical experiments. Thus, there is much inter­

est in the development of biophysical measurement techniques that can measure the 

molecular properties of biomolecules in living cells. Reliable, noninvasive detection 

and quantification of the complex network of molecular interactions, which forms 

the basis of all biochemical reactions, is the ultimate goal of many emerging tech­

niques. Technological advances in fluorescence labeling methods and fluorescence 

microscopy, have sparked the development of several analysis methods for in vivo 

detection of molecular interactions that use fluorescence as the observation variable. 

Some of these techniques, such as FCCS and FRET, have been studied extensively 

in an effort to understand their fundamental limitations, and to discover new ways 

of extending these methods to address an even wider variety of biological questions. 

These types of studies, combined with the known capabilities of FCCS and FRET, 

are the reasons why these techniques, in particular, have become reasonably well 

established biophysical approaches for measuring interactions in living cells. Other 

microscopy based techniques, that were specifically designed to measure molecular 

interactions by assessing the amount of colocalization present between overlapping 

pixels from fluorescence images acquired in two detection channels, are widely used 

by biologists, even though the accuracy of these techniques has never been extensively 

characterized. 

149 
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For these reasons, we initiated the studies reported in this thesis to rigorously test 

specific methods to measure interactions from analysis of fluorescence microscopy im­

ages. We used computer simulations to systematically study the dynamic range and 

accuracy of spatial ICCS and automatic colocalization, two statistical image analysis 

techniques for measuring interactions between two fluorescently labeled molecules, 

which are based on fundamentally different principles (Chapter 4). ICCS is a spatial 

intensity fluctuation correlation technique that developed as an extension of ICS and 

FCCS, while automatic colocalization is based on calculation of a single correlation 

coefficient, which identifies individual colocalized pixel pairs. This study was intended 

to serve as an experimental guide to using spatial ICCS to measure interactions in 

single image pairs and to provide a direct comparison to the common automatic colo­

calization algorithm. Next, by applying the specific knowledge gained through this 

systematic study, spatial ICCS was used to study a pair of important cell-signal reg­

ulating proteins involved in the endocytic pathway. For the first time, the interaction 

between these two regulatory proteins, /3-arrestin and AP-2, was quantified in living 

IIEK293 cells (Chapter 5). Finally, several strategies were outlined to extend the 

range of applicability of ICCS and to significantly improve its practical usage. The 

purpose of this study was to demonstrate that spatial ICCS was indeed capable of 

measuring interactions, not just for ligand receptor systems with a 1:1 binding ratio, 

but in principle, in systems with l:n binding stoichiometrics. As well, novel image 

pre-processing procedures were applied to fluorescence images prior to ICCS analysis, 

to overcome several of the previously determined limitations of ICCS (Chapter 6). 

In detail, Chapter 4 presents a critical comparison of colocalization methods that 

have been used to analyze fluorescence microscopy images for macromolecular in­

teractions in cells. By applying the analysis methods on simulated image sets, we 

have been able to establish important guidelines on the accuracy and range of ap­

plicability of colocalization measurements in two-dimensional systems. Our results 

from simulated images, as well as control-experiment antibody labeling at high den-
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sity on glass coverslips, demonstrate that widely used colocalization techniques that 

employ Pearson's correlation coefficient (automatic colocalization) are not applicable 

for higher densities due to density dependent systematic errors. The pertinent den­

sities are typical of many biologically relevant situations. We demonstrate that the 

magnitudes of the number densities of the two labeled species of interest are of the 

utmost importance in obtaining meaningful quantitative results when using different 

colocalization techniques. In many ways, the colocalization techniques compared in 

this study are complimentary, each with their own advantages and disadvantages and 

conditions where they work accurately. It was found that the IF detection limits in 

ICCS varied significantly, from 5%-75%, as the NIF sampled in each image decreased. 

As the IF detection limit was approached, fitting of the spatial cross-correlation func­

tion that is required to obtain a measure of the number of interacting particles, was 

increasingly difficult. If a sufficient number of spatial fluctuations were not recorded 

in an image pair, then the off-center peaks in the cross-correlation function due to the 

random correlation of overlapping particles were approximately equal in magnitude 

to the zero spatial-lags amplitude of the cross-correlation function. Therefore, it was 

determined that when using ICCS, every effort should be made to maximize the NIF 

sampled in a particular image. At all IFs above the measured detection limits, the 

relative error obtained using ICCS was < 10%. On the other hand, the IF detection 

limits in automatic colocalization were found to be ~ 3 % for all NIF values. However, 

at densities approaching 100 particles/BA and interaction fractions > 0.6, automatic 

colocalization significantly overestimated the IF. 

A major drawback of automatic colocalization is that when the two labeled species 

of interest differed in total number, even by a, factor of 2, large systematic deviations 

from the true colocalization fraction were observed. In addition, automatic colocaliza­

tion was much more sensitive to noise than ICCS, especially when the particle density 

of the image was increased. More importantly, these errors go largely undetected be­

cause of the difficulty in determining the validity of the result. ICCS analyses are 
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limited in the same manner, but only when the density ratio of the two labeled species 

is > 10. Above this ratio, the method fails, but this is clearly indicated by the shape 

and the aberrant fitting of the cross-correlation function. Thus, the fitting routine 

provides a built-in check of the ICCS result. 

ICCS analyses on two-dimensional systems can also be performed when there are 

registry shifts between the two image channels, which are common occurrences when 

the optical system is not perfectly aligned. As long as the shift is equivalent for all 

pixels, the central peak of the cross-correlation function will simply appear shifted 

from the zero lags point and accurate results can still be obtained since the fitting 

function includes variables to account for these systematic pixel shifts. 

The major drawback of ICCS is that it requires a relatively uniform spatial distri­

bution of particles within the images to be analyzed. Heterogeneous structures that 

are larger than the optical diffraction limit, as well as edge boundaries, can distort 

the spatial correlation function, which makes the fitting routine difficult or impossible; 

to perform. Automatic colocalization, however, is not sensitive to the arrangement of 

particles and can therefore be used to analyze the colocalization of large structures 

such as cytoskeletal elements and organelles. Also, unlike automatic colocalization, 

application of ICCS to two detection channel fluorescence images does not provide 

information regarding the specific pixel location of the colocalized particles, although 

it can be applied to smaller image subregions within sampling limits. 

Due to the importance of colocalization measurements in biology, and the ease of 

applicability of image analysis algorithms, it is extremely important to understand the 

errors associated with different colocalization techniques. Automatic colocalization 

methods, taken together with ICCS, provide a large dynamic range for accurate, 

quantitative colocalization measurements for a wide range of cellular processes. 

The results of this study of the accuracy and dynamic range of spatial ICCS colo­

calization measurements were then applied in Chapter 5 to quantify, for the first time 

in living cells, the interaction between /3-arrestin and AP-2, which are two proteins 
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involved in the clathrin-mediated endocytosis of GPCRs. GPCRs regulate a wide 

variety of coordinated cellular responses to a large number of external stimuli, and 

it is a protein called /3-arrestin that is largely responsible for the important task of 

desensitization of these transmembrane receptors. /3-arrestin functions as signaling 

adaptor by recruiting signaling molecules, such as c-Src kinase, to GPCRs for their 

subsequent interaction with downstream target molecules. /3-arrestin also acts as 

an endocytic adaptor protein, by linking activated GPCRs to elements of the CCV 

machinery, such as the clathrin adaptor protein, AP-2. The targeting of GPCRs to 

CCVs by /3-arrestin results in the internalization of activated receptors, which ef­

fectively provides a signal 'damping' mechanism by preventing extracellular agonists 

from initiating cellular responses. 

Using ICCS, it was possible to show in live cells that mutation of a critical tyrosine 

residue (Y737) in ,/32-adaptin (/3-subunit of AP-2), which prevented phosphorylation 

at this site, significantly prolonged its association with /?-arrestin in clathrin-coated 

pits. The amount of colocalization between CFP-/?-arrestin and YFP-/?2-adaptin was 

measured from fluorescence images acquired in two detection channels at several time 

points following the addition of the GPCR agonist, Ang II. It was found that the 

phosphorylation of AP-2 by c-Src kinase led to a 4-fold increase in the measured 

dissociation rate of the /3-arrestin//32-adaptin complex. 

The ICCS measurements, together with previous in vitro studies of this system, 

showed that the phosphorylation of AP-2 by c-Src kinase regulates the dissociation 

of endocytic complexes during GPCR., internalization via the CCV pathway. This 

study also demonstrated the ability of ICCS to follow the interaction of two proteins 

over time, by successive application of spatial ICCS analysis to a time series of two 

detection channel fluorescence images. 

In the final chapter, several strategies were presented to extend the scope of ICCS 

analysis, and to significantly improve some of the limitations that were discussed in 

the previous chapters such as the IF detection limits and the sensitivity of ICCS to the 
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distribution of particles within the cellular system. First, the FCCS theory developed 

by Kim et al. for measuring the distribution of particle number densities in systems 

where any number of ligands, 1 to n, can bind to a single receptor macromolecule, was 

extended to the spatial ICCS. Using simulations, it was shown that ICCS analysis 

could accurately determine all of the particle number densities present in a system 

at binding equilibrium when the receptor had two identical binding sites for a single 

ligand ({N(GR0)),{N(GRi)),(N(GR2)),{NRFree)). As well, the method could be used 

to measure the equilibrium association constant, Kc, that describes the binding of 

the ligand to an unoccupied site on the macromolecule. This type of stoichiometric 

ICCS analysis was applied to experimental data from imaging studies of fluorescently 

tagged antibodies adsorbed on glass. The results showed that this antibody binding 

experiment was consistent with a system where one antibody molecule could bind to 

another in a 2:1 fashion, as was expected based on the use of IgG antibodies. 

As demonstrated in Chapter 3, the IF detection limits of ICCS are strongly depen­

dent on the NIF sampled within the image, which in many experimental situations 

severely hinder the effectiveness of spatial ICCS. However, it was shown that dividing 

the image into smaller Sx x Sv pixel sub-blocks and randomly redistributing these 

blocks throughout the entire Nx x Ny image, dramatically improved the fit quality 

for the calculated spatial cross-correlation function for images with low NIF sam­

pling, thereby, decreasing the IF detection limits. The random scrambling of smaller 

sub-blocks within the image increases the rate at which the spatial cross-correlation 

(and autocorrelation) function decays to zero, but does not affect its zero spatial-lags 

amplitude. The net result is a narrowing of the correlation functions, which increases 

the chance of obtaining a good fit to the 2D Gaussian function because it leads to bet­

ter spatial resolution of the central peak from random background correlations. The 

use of this scrambling method was also shown to extend the application of ICCS to 

the measurement of the colocalization within large, irregularly shaped objects within 

the images, such as focal adhesions that normally would preclude the application of 
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ices. 
Finally, as a practical tool for implementation of ICCS, a procedure was outlined 

to select arbitrary regions of the images for analysis. This procedure consisted of 

'padding' the matrix that contained the selected region of interest with the mean 

intensity of that region. ICCS analysis of these types of images resulted in identical 

spatial correlation functions, reduced by a factor proportional to the number of pixels 

that were added around the region of interest. This practical tool, combined with 

the image scrambling procedure, allows one to select individual focal adhesions, cell 

protrusions, or other small regions of interest for subsequent ICCS analysis of the 

molecular interactions within these structures. 

The development and application of temporal image correlation and cross-correlation 

based techniques to measure particle dynamics and interactions in living systems has 

progressed steadily since their initial inception almost 15 years ago. However, the spa­

tial cross-correlation of fluorescence intensity fluctuations has not undergone a similar 

progression over these years. This is due in part to the interest in obtaining dynamic 

molecular properties in cells, such as diffusion coefficients or flow speeds, but also to 

some of the limitations of spatial ICCS investigated throughout this thesis. In many 

cases, such as the application of spatial ICCS to endocytic complexes presented in 

Chapter 5, temporal information regarding any of the interacting molecules can still 

be obtained using spatial ICCS, by acquiring fluorescence images in two detection 

channels as a function of time with subsequent spatial analysis of each image in the 

time series. In fact, in any case where the amount of interacting particles changes 

as a function of time, spatial ICCS is the only image correlation method capable of 

extracting this information. This observation alone makes spatial ICCS an important 

tool for measuring interactions in the highly dynamic milieu that comprises the cell. 

The results presented in the previous chapters will aid in a broader understanding 

of the capabilities and limitations of ICCS, and allow this powerful technique to be 

appropriately applied and more widely used to decipher the molecular interactions 
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that drive the processes of life. 

Future work is necessary to fully realize the numerous advantages of spatial ICCS 

analysis on a much broader scale. This includes a more detailed biological study of the 

techniques presented in the final chapter. A cellular system with a known interaction 

fraction of fluorescently labeled interacting proteins would be an ideal system to study 

the arbitrary selection and scrambling process in a 'real' experimental situation. This 

system could also be used to study the effects that the shape of the arbitrarily selected 

region have on the measured interaction fractions. It is possible that selected regions 

with many vertices could lead to erroneous results, which was occasionally observed in 

simulation experiments but was not investigated systematically. Finally, combining 

the programs used to perform spatial ICCS analysis in an easy-to-use graphical user 

interface could significantly aid other scientists who are unfamiliar with ICCS in 

applying the technique to their particular system of interest. 
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Appendix A: Derivation of Equation 6.5 

The association constants, Ki...Kn, defined in Eq. 6.4 are referred to as 'macro­

scopic' equilibrium constants because they include all species with equal numbers of 

bound ligands, regardless of the particular ligand binding sites that are occupied on 

a macromolecule. From these constants we can derive an experimentally useful ex­

pression for the extent of binding, X, which is defined as the ratio of the number of 

moles of bound ligand, A, to that of the total moles of macromolecule, P. For the 

simple case of two ligand binding sites per macromolecule, X has the following form: 

[PA,] + 2[PA2] 
X = 

[P] + [PA,] + [PA2] 

Kx [A] + 2KXK2 [Af 
.1 

1 + Kx [A] + K,K2 [Af 

However, if we consider the case where macromolecule, P, has two distinguishable 

binding sites for the ligand A, then we can define four distinct 'microscopic' binding 

constants as follows: 

,, _ PAH h t ^ l u _ \PM 1? [PA2] 
1 [P][AY2 [P][A]M [PAmY * [PA$[AY [6-Z) 

where [PA\] and [PA^] represent the two microscopically distinct forms of [PA]. The 

extent of binding can now be written in terms of these microscopic binding constants: 

[PA\\ + [PA*] + 2 [PA2] 
X = 

[P] + [PA\] + [PAl] + [PA2] 

h [P] [A] + k2 [P] [A] + 2fc3 [PAl] [A] 

[P] + [PA*] + [PAl] + [PA2] ' 
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and substituting for the [PA*] species and [PA2] : 

[P] + h [P] [A] + k2 [P] [A] + hk3 [P] [A]2 

fc] [A] + k2 [A] + 2fc!fc3 [A]2 

1 + fcx [4] + k2 [A] + hh [A? 

= (fci + fc2)[^] + 2fcifc3[A]2 

1 + (A;i + fc2) [A] + £ ^ 3 [A]2 

If we assume independent and identical binding sites (i.e. k\ — k2 — k^ — k± = KQ) 

then Eq. 8.3 can be written as: 

x = 1KC [A] + 2KC [A]2 

1 + 2KC [A] + Kc [A]2 

From Eqs. 8.1 and 8.4 we can see that the macroscopic constant, K\, is simply the 

sum of the microscopic constants Kc (i.e. K[ = 2KC)- Similarly, K2 = KcjK\ = 

Kc/2. We can therefore write K\ as a summation of the n microscopic equilibrium 

binding constants, which for independent and identical binding sites, are all equal to 

a single constant, Kc-



^ ^ = ^ = . 9 ^ ^ = 
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