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Abstract

In recognition of their broad scope of utility, recent years have seen a surge of interest
in unmanned aerial vehicles (UAVs). As a result of technological advancements, UAVs
have been rapidly expanding into the civilian marketplace. Many of the jobs UAVs have
the potential to fill demand high levels of autonomy, and thus the state-of-the-art is
constantly being pushed forward. Many such jobs require near-ground autonomous flight
through obstacle-dense environments. Achieving proficiency in this regard requires agile
motion, precise tracking performance, and efficient real-time planning.

Many non-traditional UAV platforms have been designed to suit various applications. Ag-
ile fixed-wing UAVs represent one such class of vehicles. They are characterized by their
high thrust-to-weight ratio, large control surfaces, low aspect ratios, and a powerful pro-
peller slipstream (also known as propwash). While they were originally marketed towards
remote control pilots, their design makes them inherently valuable for autonomous flight.
The primary appeal of the design is that it allows for both efficient fixed-wing forward
flying and agile maneuvering, e.g. stopping mid-flight. In this way, these UAVs begin to
bridge the gap in utility between efficient fixed-wing vehicles, and agile rotorcraft.

The broad objective of this thesis is to exploit the full maneuvering capabilities of agile
fixed-wing UAVs for autonomous flight. The main topics covered are maneuver design,
control, and motion planning. The thesis begins with a discussion of preliminary topics:
an aircraft dynamics model, a feedback controller, and an optimization framework, all of
which are utilized throughout the following sections of the thesis. Next, an investigation
is performed to evaluate the significance of sideslip and propeller slipstream in extreme
maneuvering with fixed-wing UAVs. We identify the cost, in terms of performance loss,
if either of these two phenomena are not accounted for in maneuver design.

In the following chapter, we propose a strategy for designing and controlling agile maneu-
vers that takes advantage of the aircraft’s full flight envelope. Optimal and dynamically
feasible trajectories are generated, along with their associated feedforward control laws.
Combining the transient agile maneuvers with steady-state trim conditions, we formulate
a maneuver space, i.e. a library of trajectories. The maneuver space acts as a hybrid rep-
resentation of the vehicle’s dynamics, and as such is useful for efficient real-time motion
planning. This chapter also includes a description of a heuristic for transitioning between
maneuvers, and a methodology for continuously parametrizing agile maneuvers.

As a natural progression towards the ultimate goal of the thesis, the maneuver space is
integrated into a real-time motion planner based on the Rapidly-Exploring Random Trees
(RRT) algorithm. The planner is used to address the problem of generating a dynamically
feasible motion plan to guide the aircraft to a desired goal through a highly-constrained,
three-dimensional environment. For the purposes of this thesis, the environment is as-
sumed to be known, and to only contain static obstacles. The planning framework is able
to exploit the aircraft’s full maneuvering capabilities, and couples well with a control
system for effective trajectory tracking.
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To conclude the main body of the thesis, simulation and flight test results are presented
and discussed. The flight tests are performed in two sets. First, to perform a number of
agile maneuvers, in isolation and in series. The experiments validate the feasibility of the
maneuvers, and test the efficacy of the proposed control system. The second set of tests
validate the real-time motion planner. All experiments, including the real-time motion
planning, are implemented using only the sensors and computers mounted on-board the
UAV.



Résumé

Les drones existent depuis des décennies. Avec les développements technologiques récent,
ils commencent à se développer sur le marché civil. Un grand nombre d’applications des
drones demande des niveaux d’automatisations très élevé, donc la recherche technologique
avancée est nécessaire. Voler de manière autonome dans des environnements encombrés
d’obstacles nécessite, entre autres, de l’agilité, un repérage précis et une planification en
temps réel.

De nombreux modèles de drone non traditionnels ont été développé pour répondre à
plusieurs types d’applications. Les drones agiles à voilure fixe représentent une de ces
catégories de véhicules. Ils se caractérisent par leur rapport de poussée-poids élevé,
leurs grandes surfaces de contrôle, leurs rapports d’aspect bas et leur soufflé d’hélices
puissantes. Originalement conçus pour les pilotes télécommandés, leurs caractéristiques
les rends très utiles pour les vols autonomes. L’attrait principal réside dans le fait qu’ils
sont capables d’un vol avant efficace et des manœuvres agiles (ex : s’arrêter en plein
vol). De cette manière, ils commencent à combler le fossé entre les véhicules à ailes fixes
efficaces et les giravions agiles.

L’objectif général de cette thèse est d’exploiter toutes les capacités de manœuvre des
drones agiles à voilure fixe, pour les vols autonomes. Les sujets principaux sont la con-
ception des manœuvres, le contrôle et la planification des mouvements. La thèse com-
mence avec une discussion sur les sujets préliminaires: un modèle dynamique d’aéronef,
un contrôleur de rétroaction et une structure d’optimisation, qui sont tous utilisés dans les
sections suivantes de la thèse. Ensuite, une enquête est menée pour évaluer l’importance
du glissement latéral et du courant de l’hélice dans les manœuvres extrêmes avec des
drones à voilure fixe. Nous identifions le coût, en termes de perte de performance, si l’un
ou l’autre de ces deux phénomènes n’est pas pris en compte dans la conception de la
manœuvre.

Au chapitre suivant, nous proposons une stratégie de conception et de contrôle pour
les manœuvres agiles qui profite des caractéristiques de vol de l’avion. Des trajectoires
optimales et réalisables de manière dynamique sont générées, ainsi que leurs commandes
de contrôle prédites. En combinant les manœuvres agiles avec les conditions aéronef,
nous formulons un espace de manœuvre - une bibliothèque de trajectoires. L’espace
de manœuvre agit comme une représentation de la dynamique du véhicule, qui devient
utile pour une planification efficace du mouvement en temps réel. Ce chapitre comprend
également des descriptions d’une heuristique de transition entre manœuvres et d’une
méthodologie de paramétrage continu des manœuvres agiles.

En tant que progression naturelle vers le but ultime de la thèse, l’espace de manœuvre est
intégré dans un planificateur de mouvement en temps réel basé sur RRT. Le planificateur
est utilisé pour créer un plan de mouvement réalisable qui guidera l’avion vers l’objectif
désiré, dans un environnement tridimensionnel. Dans cette thèse, l’environnement est
présumé être connu et contient seulement des obstacles statiques. La structure de planifi-
cation est capable d’exploiter toutes les capacités de manœuvre de l’aéronef et est couplé
à un système de contrôle pour un repérage efficace de trajectoire.
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Pour conclure le corps principal de la thèse, des résultats de simulation et de test en vol
sont présentés et discutés. Les tests de vol sont effectués en deux séries. Premièrement,
en effectuant des manœuvres agiles en isolation et en série. Ces expériences permettent
de valider la réalisation des manœuvres et de tester l’efficacité du système de contrôle
proposé. La deuxième série de tests valide le planificateur de mouvement en temps réel.
Toutes les expériences, y compris la planification de mouvement en temps réel, sont mises
en œuvre en utilisant uniquement les capteurs et les ordinateurs montés à bord du drone.
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Claims of Originality

The main contributions of this thesis are listed below, and will be revisited in more detail

in the conclusion:

• An investigation into the role of sideslip and propeller slipstream in the extreme

maneuver capabilities of agile fixed-wing UAVs is performed. The cost, in terms of

performance loss, is identified if either of the two phenomena is not accounted for

in maneuver design.

• A maneuver space for agile fixed-wing UAVs is developed, integrating steady-state

trim conditions and transient agile maneuvers, which are dynamically feasible and

exploit the full extent of the aircraft’s flight envelope.

• A novel method for trajectory parametrization is proposed, making use of dynamic

time warping. The parametrization makes the agile maneuver space more robust

while incurring a negligible cost to the computational load needed in flight.

• The maneuver space is integrated as a library into a real-time, RRT-based motion

planning algorithm. The maneuver space enables the planner to exploit the air-

craft’s full flight envelope, and ensures the trajectories it generates are dynamically

feasible. The trajectory solutions are composed of the aircraft’s full 12-state vector,

as well as all of its control inputs. As a feature of the way in which the maneuver

space is integrated into the planning algorithm, the size of the library has no ef-

fect on planning time; typically, the computational cost of RRT increases with the

number of primitives. Furthermore, the implementation places no constraints on

the sequencing of primitives.

• Flight tests demonstrations are performed for executing agile maneuvers, and for

real-time motion planning. The tests make use of only on-board sensing and com-

puting equipment; no external sensors or ground computers are used for autonomous

flight.
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Notation

Abbreviations

AML The McGill Aerospace Mechatronics Lab

ATA Aggressive Turn-Around

CTH Cruise-to-Hover Transition

DTW Dynamic Time Warping

EKF Extended Kalman Filter

ESC Electronic Speed Controller

HIL Hardware-in-the-Loop

HTC Hover-to-Cruise Transition

IMU Inertial Measurement Unit

MEX C MATLAB Executable File

NLP Nonlinear Programming Problem

PWM Pulse Width Modulation

QGC QGroundControl

RC Remote Control

RMSE Root-Mean-Square Error

RRT Rapidly-Exploring Random Trees

UAV Unmanned Aerial Vehicle

Symbols

Aprop Propeller disk area

b Wing span

c̄ Mean aerodynamic chord

C Rotation matrix
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Notation xii

Clδa , Clδr , Cmδe , Cnδr Control derivative coefficients

E Vector of angular errors about the body frame

F Force vector

g Gravitational acceleration vector

I Inertia matrix about the centre of gravity and resolved in

the body frame

J Optimal control cost function

K Feedback gain

L,M,N Moments about the body frame

m Mass

M Moment vector

p, q, r Angular velocity components in the body frame

q Quaternion vector

r Position vector

S Wing area

t Time

T Thrust

u, v, w Velocity components in the body frame

u Control input vector

V Velocity vector

Vi0,avg Momentum-averaged induced velocity

Vs(x, r) Slipstream airflow velocity field

x, y, z Position components in the inertial frame

x State vector of aircraft

α, β, γ Attitude components in the wind frame: angle-of-attack,

sideslip, and flight path angle

δa, δe, δr Control surface deflections: ailerons, elevator, and rudder

η Node of RRT motion planning tree

ρ Density of air

φ, θ, ψ Attitude components in the body frame: roll, pitch, and yaw

ω Angular velocity

ωT Rotational speed of motor and propeller

(·)aero Aerodynamic

(·)B,I,R Resolved in the body frame, inertial frame, desired frame

(·)cg Centre of gravity

(·)fb,ff Feedback, feedforward

(·)h,v Horizontal, vertical surface



Notation xiii

(·)ref Reference

(·)seg Aircraft segment

(·)T Thrust

(·)× Cross product matrix

(·)T Transposed

� Quaternion product
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Chapter 1

Introduction

1.1 Background and Motivation

Historically, unmanned aerial vehicles (UAVs) have most commonly been associated with

military applications. In recent years, however, there has been a shift in interest towards

civilian applications and a corresponding increase in research and development in this

area. It is expected, for instance, that the integration of civilian UAVs in the US National

Air Space will permit job creation, estimated at 103,776 by 2025 [9]. These vehicles are

now being proposed and utilized for uses as diverse as detection and mapping of forest

fires, monitoring of long distance power lines and pipelines, aerial search and rescue,

wildlife monitoring, road traffic monitoring, and police surveillance.

Unmanned aerial vehicles typically fall into two categories: fixed-wing and rotorcraft.

Fixed-wing aircraft generate lift by moving forward and creating airflow over their wings.

Rotorcraft achieve their lift from rotating blades. Rotorcraft are usually chosen for tasks

that make use of their high maneuverability, such as their ability to handle precisely at

low speeds and stop mid-flight, however, they lack the efficiency and endurance of fixed-

wing aircraft. Advancements in research have begun to bridge the gap between these

two categories of UAVs by increasing the agility of fixed-wing aircraft, and in so doing,

broadening their suitability for missions requiring endurance and maneuverability. In this

regard, it is worth noting that some other strategies have been pursued to reach the same

end, including the design of unconventional aircraft configurations. For example, UAVs

have been re-engineered with articulated wings [10] and flexible wings [11] to increase

their agility. There have also been efforts to increase the endurance of rotorcraft [12, 13].

1
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Figure 1.1: An agile fixed-wing UAV.

A modern class of fixed-wing UAVs, henceforth referred to as agile fixed-wing UAVs, are

designed to be highly maneuverable. They are physically able to perform maneuvers

such as: aggressive turns, flips, and transitions into nose-up hovering [14–16]. One such

aircraft, used here for flight tests, is seen in Fig. 1.1. Their maneuverability is in large part

due to their high thrust-to-weight ratio, which allows the aircraft’s thruster to dominate

its motion. They are also characterized by low aspect ratios, large control surfaces that

can deflect to large angles, and a powerful propeller slipstream (also known as propwash).

The most impressive demonstrations of their maneuvering capabilities are exhibited by

expert RC pilots during aerobatic competitions. Videos of these competitions expose

the great potential that could be harnessed for autonomous flight. Although previous

literature has explored agile UAV flight, piloted demonstrations prove that there is further

room for the agility of these aircraft to be exploited. Our research was also motivated

by the opportunity to capitalize on a state-of-the-art aircraft dynamics model that was

recently developed in the McGill Aerospace Mechatronics Lab (AML). In comparison to

the existing literature, this model is highly accurate and captures the full flight envelope

of an agile fixed-wing UAV, from -180 to 180 degrees in angle-of-attack and sideslip.

We believe that this uniquely comprehensive and accurate model can be used to make

advancements in maneuver design, control, and motion planning.
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1.2 Objectives of Dissertation

In broad terms, the topic of this thesis is autonomous flight with agile fixed-wing UAVs.

Achieving full autonomy requires the coordination of many moving parts; to keep the

scope of the research realistic, this thesis focuses on maneuver design, control, and plan-

ning for agile fixed-wing flight.

The first major goal of the thesis is to design agile maneuvers that take advantage of the

aircraft’s full flight envelope. The aim is to develop a general and systematic approach

to designing and controlling such maneuvers, and to be able to demonstrate them in

hardware experiments.

Once the maneuvers are designed and tested, we move on towards the goal of integrating

the maneuvers into a motion planning framework. There are many different scenarios

for which a motion planner is applicable. Here, we consider the specific problem of

generating a feasible motion plan to guide the aircraft to a desired goal region through

a highly-constrained, three-dimensional, known environment with static obstacles. We

recognize that the last two descriptors of the motion planning problem are contentious

in terms of their real-world practicality, however, a planner that satisfies this scenario

could presumably be augmented in the future to handle more sophisticated conditions.

By way of example, this planner could be used to generate a ‘global’ plan based on the

known environment, which could then be enhanced by a local obstacle detection and

avoidance system that diverts and returns the aircraft to the global plan as needed. The

particular objectives of the planning framework are that it be able to exploit the aircraft’s

maneuvering capabilities, and that it couple with a control system such that the plan can

effectively be tracked. We also intend for the planner to run in real-time, and do so using

the limited computational resources available for use on-board a lightweight UAV. All

flight tests rely solely on on-board sensing and computing equipment.

1.3 Literature Review

The literature review covers the following topics: aircraft dynamics modeling, trajectory

generation, flight control systems, motion planning, and experimental demonstrations.

While the dynamics model used here is not the original work of this thesis, it is integral

to the contributions made, and thus should be understood in the broader context of the

literature. The term trajectory generation is used here to essentially be interchangeable

with maneuver design, i.e. generating trim conditions or finite-time transitions between
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two states. This ought not be confused with motion planning, which is the algorithmic

piecing together of trajectories to connect starting and goal states in an environment with

obstacles. There can be significant overlap between control system design and trajectory

generation (or even motion planning), but we attempt to separate these topics in the

literature review for the sake of clarity and organization. The review mainly focuses on

fixed-wing UAV research, however, there are some relevant works to be considered that

stray outside of this fairly narrow field.

1.3.1 Aircraft Dynamics Modeling

While there has been extensive research conducted on the modeling of conventional air-

craft and combat aircraft [17], these techniques do not necessarily extend well to agile

fixed-wing UAVs. These aircraft are characterized by their high thrust-to-weight ratios,

low aspect ratios, and large control surfaces; and for these reasons are able to maneuver

effectively, even at very low speeds. Their highly nonlinear dynamic behavior would be

cumbersome to capture accurately using the traditional linear stability derivatives ap-

proach. Their nonlinear dynamics, coupled with the substantial forces and slipstream

generated by the thruster, call for new modeling techniques that span the full flight enve-

lope. Only recently has research focused on developing new approaches to the modeling

of agile fixed-wing UAVs and similar small air vehicles [18, 19].

Acquiring flight data is relatively easy and inexpensive, and thus system identification

techniques have become prevalent for these aircraft [20–22]. However, capturing the full

flight envelope of a highly maneuverable vehicle this way is impractical. Physics-based

models are also prevalent, but are often simplified and limited to a small portion of

interest of the aircraft’s flight envelope [23–25]. Recently, a small body of research has

been dedicated to fully and realistically modeling the dynamics of this class of aircraft

through first principles [26], with contributions focusing on aerodynamics [27, 28], thruster

dynamics [29, 30], and propeller slipstream models [7, 31]. In this thesis, we make use of

the model described in [7, 27, 29].

1.3.2 Trajectory Generation

Trajectory generation is the process of designing feasible trajectories, and in some cases,

determining their corresponding control inputs. While some simple trajectory generation

problems can be solved analytically, most require the use of numerical methods, which
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can be computationally intensive. This study has largely been shaped by advancements

in the robotics and control community [32–35].

There are a number of approaches to generating trajectories for UAVs. Schollig et al.

derived basic motion primitives for quadcopter flight by studying the elements of dance,

namely, the usage of: time, space, energy, and structure [36]. Dynamically feasible tra-

jectories can be revealed by flying or simulating flight under the control of feedback

controllers [37, 38]. Another prevalent strategy is to learn trajectories from the flight of

expert human pilots [14, 39–41]. A disadvantage of this approach is the need to rely on

the competence of the pilot. It is difficult for a pilot to consistently perform the same

maneuver manually, and the performance will inevitably be sub-optimal. Anecdotally,

Mellinger et al. sought to define dynamically feasible trajectories for a quadrotor and

found that human pilots were unable to fly the vehicle in their desired manner [38].

Alternatively, trajectories can be generated via optimization, typically by solving optimal

control problems [22, 42, 43]. An optimal control problem is defined by the dynamics of

the aircraft - which may be expressed as a system of differential equations - and an addi-

tional set of constraints. There are many methods for solving optimal control problems

which all loosely fall into two categories: direct and indirect methods. Indirect methods

use analytical or numerical procedures to solve an infinite-dimensional problem by find-

ing a solution where the total differential of the performance measure is zero. In direct

methods, nonlinear programming is used to solve the problem based on the calculus of

variations or the maximum principle [44]. The optimal control approach avoids the is-

sues associated with learning from piloted flight, and can extract the optimal trajectory

and control policy in the absence of external disturbances (e.g. from wind) and state

estimation errors. An additional benefit of this method is that specific functional ob-

jectives can be incorporated into the maneuver design by imposing boundary conditions

and path constraints. Well-defined, functional maneuvers are suitable for primitive-based

real-time motion planning, such as in [45], where the motion planning algorithm is ap-

plied to vehicles described by hybrid representations: trim conditions and finite-time

transitions between them. Generating trajectories by solving optimal control problems is

the approach taken in this thesis. We find this approach particularly advantageous here

because it allows us to exploit the previously mentioned high-fidelity dynamics model,

to generate agile motions that are not bound to specific regions of the aircraft’s flight

envelope.

Trajectories are often defined by and generated using specific conditions (e.g. boundary

conditions). As an alternative to tediously generating and storing each particular trajec-

tory that may be desired, some methods of parametrization have been developed. Using
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a small set of trajectories, Dever et al. developed an algorithm to create continuously

parametrized classes of dynamically feasible trajectories for autonomous vehicles [46].

The algorithm was experimentally applied to a three-degree-of-freedom helicopter. Simi-

larly, Paranjape et al. were interested in the parametrization of extreme maneuvers. In

their work, two families of motion primitives were designed to address the problem of fast

flight through a forest: 3D circular paths between two points and aggressive turn-around

maneuvers [47]. Both classes of primitives were continuously parametrized based on their

corresponding control input sequences. In this thesis we present a novel method of contin-

uous trajectory parametrization that uses Dynamic Time Warping [48]. The methodology

strategically splits off-line and on-line computations such that the parametrization process

is computationally light during flight.

1.3.2.1 Agile Maneuvers for Fixed-Wing UAVs

While some of the literature considers the agility of trajectories in a general sense, e.g.

the aggressiveness of turns, it can be useful to target specific agile maneuvers that achieve

some desirable purpose. Examples of such maneuvers include hovering [14, 24, 25], where

the aircraft is suspended nose-up in mid-air by its propeller, or perching [15, 49, 50],

where the aircraft transitions into a hover as it lands on a vertical surface. Another

useful maneuver that has garnered attention is the knife-edge [51, 52]. This maneuver

consists of rolling the aircraft by 90 degrees and, optionally, maintaining this roll angle

before recovering to wings-level flight. In addition to being a fundamental aerobatic

maneuver, the knife-edge presents a method of passing through passages more narrow

than the aircraft’s wingspan.

Many other agile maneuvers, such as tailslides and inverted spins, are simulated via

piloted flight in [26]. In [53], the authors demonstrated simulations of a turn-around

maneuver in which the aircraft first pulls its flight path angle up to nearly 90 degrees,

then performs a 180 degree roll, drops its nose, and recovers to level flight. The maneuver

was restricted to the vertical plane, similar to an Immelmann turn. Paranjape et al.

investigated a turn-around maneuver [47], that was demonstrated in indoor flight tests.

This thesis provides a general and systematic approach to generating agile maneuvers

that are not restricted to specific regions of the aircraft’s flight envelope. We design

aggressive turn-arounds, transitions into and out of hover, and a knife-edge maneuver.
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1.3.3 Flight Control Systems

Many approaches to controller development exist for conventional fixed-wing flight. The

control systems of most relevance here are those that are able to track aggressive or agile

maneuvers. Flight control systems developed to execute these maneuvers have included

closed-loop and open-loop control strategies. Frank et al. developed controllers indi-

vidually using linear quadratic techniques for each of the following maneuvers: perched

landing, hovering, transitioning from hovering to forward flight, and transitioning from

forward flight to hover [24]. Cory and Tedrake performed an in-depth study of the hov-

ering of fixed-wing UAVs, and subsequently developed an optimal linear controller [54].

In a later work, they developed a controller for perched landing [15]. The vehicle under

consideration here was a glider with only one actuator – its elevator. Instead of relying

on high thrust-to-weight ratios that are typical of agile fixed-wing UAVs, they devel-

oped a nonlinear controller that exploits the pressure drag on the aircraft created at high

angles-of-attack. Also working with a glider, Moore et al. applied an approach termed

LQR-Trees to perching and were able to define a range of initial conditions for which

the maneuver could be performed [49] consistently. LQR-Trees combines locally valid

linear quadratic regulator (LQR) controllers with a nonlinear feedback policy. In [52],

a control system capable of performing knife-edge maneuvers is developed and demon-

strated experimentally by navigating an aircraft through obstacles. In this work, a direct

collocation method was used for trajectory planning, and time-varying linear quadratic

regulators (TVLQRs) were used to stabilize the open-loop trajectories.

Desbiens and Cutkosky also considered perched landing, with the objective of minimizing

the requirements of the fixed-wing UAV’s sensing and control technology [55]. They were

successful in this endeavor by using open-loop control to send the aircraft into a feasible

flight envelope defined by pitch and velocity such that it could cling to a wall using

microspines [56]. In a later work, Glassman et al. fortified this concept by exploiting

barrier certificates to estimate a region of attraction for which the UAV could perch on a

wall [57]. Piedmonte and Feron also found open-loop control to be practical for extreme

maneuvering. In their work on aggressive maneuvering of autonomous aerial vehicles,

they switch between a feedback control system for conventional flight modes and an

open-loop ‘maneuver logic’ for aggressive maneuvering [41]. This control logic strategy

follows from breaking down control input curves into segments that together generate a

maneuver. Just as it is for learning trajectories, human-piloting is a prevalent strategy

for learning control input sequences for classes of extreme maneuvers [14, 40, 41].
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The control system employed here combines optimal open-loop control policies with a

physics-based feedback controller. While staying near the nominal trajectory, the open-

loop policies give the benefit of optimality. The feedback controller has a nested PD/PI

structure that achieves tracking of time-dependent trajectories, including ones that are

transient and aggressive. The scope of the thesis did not extend to addressing the problem

of external disturbances or system uncertainty, and thus the robustness of the control

system is neither imposed by design, nor verified systematically.

1.3.4 Motion Planning

Motion planning is a central component of autonomous flight; defined here as the auto-

matic guidance of a robot through an environment with obstacles, from a specified initial

state to a goal region. A sufficiently sophisticated motion planning algorithm will con-

sider not only obstacles, but the kinematic and dynamic constraints of the robot. The

algorithm will search through the robot’s configuration space to find a ‘path’ to the goal.

In addition to the geometric path the algorithm finds, it may also return the robot’s

full-state time history and/or the input commands needed to follow the path. Advance-

ments in motion planning have largely been shaped by two fields: robotics and artificial

intelligence (AI); and dynamical systems and controls [58]. The unique challenges of mo-

tion planning for UAVs, especially fixed-wings, are that of accounting for their dynamic

constraints and exploiting their flight envelope.

Unless a ground station is going to be used to send commands to the aircraft, small

UAVs are generally limited to the processing capabilities of small, lightweight computers.

A class of algorithms that are well-suited for efficient real-time planning with limited re-

sources are sampling-based algorithms. The most prevalent sampling-based methods are

the Probabilistic Roadmap (PRM) [59], Rapidly-Exploring Random Trees (RRT) [60],

and their variants [61–63]. The PRM algorithm is a multi-query algorithm that is proba-

bilistically complete, but requires solving two-point boundary value problems to steer the

system between two states. Solving a boundary value problem is a costly operation that

can be impractical to do in real-time with limited resources. The RRT algorithm, on the

other hand, is a single-query planner that is highly effective at generating dynamically

feasible trajectories rapidly. The RRT algorithm handles complex constraints easily, find-

ing a path to the goal region with minimal map exploration. An asymptotically optimal

version of RRT exists, termed RRT* [62]. This algorithm succeeds by finding a feasible so-

lution quickly and then improving upon it in the remaining time to converge to the global

optimal motion plan. It has been demonstrated on a robotic arm [64], and extended to
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suit non-holonomic dynamic constraints [62]. Recently, there have been implementations

of RRT-based algorithms for fixed-wing UAVs [65, 66]. Koyuncu et al., in their work on

motion planning for agile unmanned air vehicles, used the RRT algorithm as a top-level

planner to identify a path from initial to goal positions [67]. From here, they get rid of

all unnecessary waypoints through a line-of-sight argument, and then a low-level planner

selects dynamically feasible paths to connect the waypoints using a PRM algorithm. In

a later work, the same authors proposed another multi-layer planner that incorporates

an RRT-based algorithm and the line-of-sight argument, this time employing a B-Spline

method to generate dynamically feasible trajectories to join together waypoints [68].

A useful concept termed the ‘maneuver automaton’ is formalized in Frazzoli et al. [69], to

address the problem of planning in the high-dimensional state space of robots like fixed-

wing UAVs. The maneuver automaton, which captures formal properties of a trajectory

library, is used as a hybrid representation of a vehicle model, wherein motion primitives

are used to pre-compute a cost-to-go map. In a real-time implementation of RRT, the

maneuver automaton replaces the vehicle’s first-order dynamics. In Frazzoli et al. [45],

the states of the automaton are trim states of the vehicle, and maneuvers are used to

transition between the states. In Gavrilets et al. [41], the concept is explored for learning

motion primitives from human-piloted aerobatic flight, and in Schouwenaars et al. [70], the

hybrid model replaces trim states with ‘linear time-invariant modes’ and fixed-duration

transitions.

A number of planning methodologies for UAVs have been explored that combine motion

primitives with sampling-based planners. In [65], a pre-defined motion primitive set is

used for 2D RRT-based path planning with a fixed-wing UAV. Pre-computed motion

primitives are used in an A*-based planner in [71]. In [72], a real-time framework was

developed, which incorporates a look-up table of boundary-value problem solutions into

a sampling-based algorithm called Fast Marching Trees (FMT*). Trajectory funnels for

robust motion planning were applied to a highly maneuverable fixed-wing aircraft in [73].

A modern and prevalent alternative for robot planning and control is model predictive

control (MPC), also known as receding horizon control [74, 75]. The MPC planning

method is basically equivalent to repeatedly solving an optimal control problem on-line,

with obstacles as additional constraints. This method can be highly effective with linear

and even nonlinear models, but real-time optimizations can be resource-intensive.

Two-phase planning techniques have been proposed for a number of fixed-wing applica-

tions. First, a high-level planner constructs a course grid or path, and then a low-level

planner refines it to account for more restrictive constraints [76]. In, [77], for example, a
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two-phase navigation plan is proposed, which consists of a top-level (global) planner and

a local motion planner. The global planner, based on the A* algorithm [78], considers

only the vehicles kinematic constraints; the local planner computes a finer trajectory for

the aircraft to track, using sampling-based motion planning under differential constraints.

This thesis utilizes the approach mentioned above of combining pre-generated motion

primitives with a sampling-based planner (RRT). Relative to the existing literature, the

following contributions differentiate this work. The motion primitives are generated us-

ing a high-fidelity dynamics model, and thus can exploit the aircraft’s full agility. The

trajectory solutions are composed of the aircraft’s full 12-state vector, as well as all of

its control inputs. Additionally, we note that by the way in which the motion primi-

tives are integrated into the planning algorithm, the size of the library has no effect on

planning time; typically, the computational cost of RRT increases with the number of

primitives [79]. Furthermore, our implementation places no constraints on the sequencing

of primitives. Eliminating the need for an extremely large set of pre-defined transition

maneuvers, a transition heuristic is applied to allow any primitive to follow another.

1.3.4.1 Motion Planning Under Uncertainties

There are various complications to motion planning problems that arise due to uncer-

tainties [80]. While the specific topic of handling uncertainties falls out of the scope of

this thesis, it is a pressing and relevant problem that many have considered, and thus

warrants some discussion. Uncertainties, as identified by LaValle and Sharma in [81], can

be classified into the following types:

• Uncertainty in vehicle dynamics

• Uncertainty in the knowledge of the environment, i.e. obstacles

• Disturbances in the operational environment (e.g. wind)

• Uncertainty in pose information (where the UAV is in relation to the map)

An approach to making the motion planner robust to modeling uncertainties in the vehi-

cle dynamics was to implement the aircraft into an optimization as a closed-loop system,

storing the resulting trajectories in the maneuver automaton [82]. This is effective to the

extent that the closed-loop policy will correct for small perturbations caused by uncer-

tainties in the model. Robust MPC is another method of accounting for uncertainties in

vehicle dynamics [83].

Incremental graph search algorithms specialize in being able to account for obstacles that

are spotted in real-time, as opposed to being determined as part of the environment a
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priori. When obstacles arise, these algorithms work by updating their plan based on

information from the previous plan [80]. Missiuro and Roy extended the PRM algorithm

to incorporate environment uncertainties [84]. In this paper, they modeled a cost for col-

lisions when travelling through uncertain regions of the environment. Reactive Planning

(RP) can also deal with obstacles that can not be predicted a priori [85, 86]. RP typically

resorts to allowing the local planner to take priority, temporarily ignoring the high-level

planner for the sake of avoiding obstacles spotted by sensors. Evolutionary algorithms

present another approach to the problem of handling uncertainties in the knowledge of

the environment. Nikolos et al. employed a modified breeder genetic evolutionary al-

gorithm, in part to solve a UAV navigation problem in an unknown three-dimensional

environment [87].

Due to their size and relatively slow speed, UAVs are particularly susceptible to wind

disturbances. McGee et al. explored the problem of generating optimal time paths

in a two-dimensional plane for an aircraft subject to a constant wind [88]. Using the

Minimum Principle they were able to draw conclusions about the shape of such optimal

paths. Nelson et al. accounted for ambient winds while approaching the problem of

fixed-wing UAVs following straight lines and orbits. Their intention was to guide the

aircraft by a path, rather than a trajectory, making it easier to regulate the speed of the

aircraft [89]. Jennings et al. tackled the presence of wind disturbances with Dynamic

Programming by changing the problem of traveling to a fixed point in wind to travelling

to a moving point without wind [90].

Uncertainty in pose introduces the issue of the aircrafts position and orientation being

uncertain with respect to the environment. This is most often a problem when a GPS

cannot be used, and can even be an issue with a GPS, when its own deficiencies are

present. An adaptation of PRM, called Belief Roadmap (BRM), proposed by Prentice

and Roy, uses a variant of the Kalman filter to account for uncertainties in pose [91].

1.3.5 Experimental Demonstrations

Being relatively new, the study of autonomous agile fixed-wing UAV flight has only yet

produced a few experimental demonstrations. This section will describe some of the most

relevant work in this area.

In [49], nonlinear feedback control designs are used for perching of a light-weight (85

g) fixed-wing glider; an airplane whose only actuator is an elevator. Experiments were

performed indoors, using off-board sending and control. A Vicon motion capturing system
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was used for sensing, and a ground control station performed estimation and control. The

experiments were demonstrated for different initial speeds (6 - 8 m s−1, using a custom-

made launching device. Under these conditions, the aircraft had a high rate of success

performing precise perched landings.

Paranjape et al., in [47], aimed to perform fast and agile flight through dense obstacle

fields. Two types of motion primitives were developed and experimentally validated: 3D

circular paths between two points in space, and aggressive turn-arounds. Indoor flight

tests were performed using a very small, 11 g aircraft. The tests also relied on a Vicon

motion capturing system to measure the aircraft’s position and orientation. The paper

included motion planning simulations, but experiments were restricted to flights that

terminated after the first waypoint.

In [73], the authors were interested in motion planning with guaranteed success in the

face of disturbances, and uncertainties in the model and environment. Libraries of trajec-

tory funnels were pre-computed for use in real-time motion planning. The indoor flight

experiments were performed with a small, highly maneuverable RC airplane. A launching

mechanism sent the aircraft into flight, at which point the position and geometry of all

obstacles became known to the computer, thereby forcing the planner to run in real-time.

Once again, these experiments made use of a Vicon motion capture arena, and compu-

tations were solely performed off-board. The indoor testing environment was small, and

thus only one funnel, i.e. one obstacle-evasion maneuver, was tested at a time. Many

successful runs were recorded, where the aircraft was able to avoid a small but dense

obstacle field composed of complex geometries.

Bry et al. developed trajectory planning and state estimation algorithms for aggressive

flight of micro aerial vehicles in known, obstacle-dense environments [92]. In contrast to

the previously mentioned demonstrations, the fixed-wing experiments in this work per-

form all of sensing, state estimation, and control on-board. The aircraft was equipped

with a laser rangefinder, an IMU, and an Intel Atom flight computer. Prior to flying,

waypoints were hand-selected and Dubins-Polynomial trajectories were optimized to con-

nect them. The indoor experiments demonstrated impressive closed-loop tracking of these

plans, with small position and velocity errors.

In [93], pushbroom stereo was used for obstacle detection and avoidance in high-speed

flight. The experiments in this work used a 664 g fixed-wing aircraft with two moving

flaps - the aircraft had no conventional fuselage or tail. The computation and GPS-denied

sensing was done fully on-board, using two ODROID-U3 single-board computers, an IMU
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platform, a barometric altimeter, and two cameras. Outdoor flight tests showed obstacle

detection and avoidance at speeds of up to 14 m s−1.

The flight test demonstrations presented in this thesis show tracking of highly agile ma-

neuvers, as well as full start-to-goal motion plans. The flight tests are the first to demon-

strate their level of implementation, in terms of the extent of the flight envelope utilized,

and fully relied on on-board sensing and computing – including for motion planning.

1.4 Thesis Organization

The thesis is organized as follows. First, preliminaries are discussed, including an aircraft

dynamics model and a feedback controller, both of which are contributions of past and

present students of the AML. Also in the preliminaries chapter is a framing of a general

optimization problem. The optimization problem is formalized upfront because it is sub-

sequently used in Chapters 3 and 4. Chapter 3 discusses a slight sidetrack from the main

objectives of the thesis; an investigation performed to evaluate the significance of sideslip

and slipstream in extreme maneuvering. Chapter 4 describes the strategy for designing

maneuvers. As a precursor to the further goal of motion planning with maneuvers, the

chapter is framed as the development of a maneuver space. The maneuver space includes

motion primitives, which are classified as either agile maneuvers or trim conditions. This

chapter also discusses the methodology of transitioning between primitives, and how the

agile maneuvers can be continuously parametrized. The main contribution of Chapter 5

is to take this maneuver space and integrate it into a real-time motion planner. We illus-

trate the advantages of using the maneuver space by contrasting the planning framework

to a baseline approach that uses Dubins curves [94]. Chapter 6 describes the steps taken

to validate the work of the previous chapters. We describe simulations and flight tests of

agile maneuvers and real-time motion planning.

Figure 1.2 shows how the topics and chapters of the thesis are connected. As illustrated,

the preliminary topics - the aircraft dynamics model, feedback controller, and optimiza-

tion framework - relate to multiple sections. The general optimization framework, which

utilizes the dynamics model as a set of constraints, is used in Chapter 3 for an investi-

gation of the role of sideslip and slipstream in extreme maneuvering. In Chapter 4, the

framework is used for generating the trajectories that make up the maneuver space, and

in Chapter 5, the maneuver space is integrated into a motion planner. Simulations and

flight tests are used to validate the agile maneuver design and motion planner. Both sets
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Figure 1.2: Organization of thesis components.

of tests make use of the feedback controller, which is an integral part of the full control

system, and the simulation environment includes the aircraft dynamics model.



Chapter 2

Preliminaries

This chapter discusses preliminary work that will be exploited throughout the thesis.

The first two sections of this chapter describe work that was originally authored by

other members of the McGill Aerospace Mechatronics Lab. Section 2.1 summarizes an

aircraft dynamics model, and Section 2.2 describes a feedback controller. Both of these

components are used as tools towards achieving the objectives of the thesis, but do not

represent contributions of this thesis. The final section, Section 2.3, lays out a general

optimization framework that is utilized in Chapters 3 and 4.

2.1 Aircraft Dynamics Model

The aircraft dynamics model is a comprehensive representation of the dynamics of an agile

fixed-wing UAV. Parts of the model are generalizable, but where appropriate, it has been

tailored to the fixed-wing UAV used for experimental validations. The full flight envelope

of the aircraft is captured, accounting for a ±180 degree range in both angle-of-attack

and sideslip. The model addresses the dynamics of the thruster, the slipstream effects of

the propeller, and the aircraft’s nonlinear aerodynamics. The most complete description

of the model can be found in Waqas Khan’s thesis [95]. The main components of the

model are also described individually in a number of articles that will be cited throughout

the summary of the model presented in this chapter.

To the best of our knowledge, this is the most detailed and accurate model to be used

for motion planning and control of an agile fixed-wing UAV. The objectives of the thesis

were in part motivated by the opportunity to take advantage of the model, since it

accurately and uniquely captures dynamic behavior that would be difficult to harness

15
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Figure 2.1: McFoamy: an agile fixed-wing UAV.

for autonomous flight otherwise. The model is exploited in multiple ways throughout

the thesis. In Chapter 3, it is used to analyze the significance of slipstream and sideslip

modeling, and in Chapter 4, it is used for trajectory generation. The model is also used

for simulations throughout the thesis.

There are a number of assumptions present in the model. It is assumed that there is no

swirl component of the induced velocity created by the thruster; the slipstream model has

only been validated for a stationary propeller [7]; and there is no modeling of unsteady

aerodynamic effects. The last assumption is based on the reduced frequency parameter,

kα̇, that characterizes the degree of unsteadiness during flight. For fixed-wing flight,

kα̇ = α̇c
2V

> 0.05 [28, 96] characterizes unsteady flow, which was found to very rarely and

very briefly occur during any of the maneuvers investigated in this thesis.

2.1.1 Aircraft Configuration

The work of Khan was tailored to an RC plane built upon the Yak54 by Great Planes

airframe. This airframe recently went out of production, and thus we switched to a

similar one (for experiments in this thesis), the McFoamy by West Michigan Park Flyers.

The two airframes are very similar, with the major difference being that the foam of the

McFoamy is more resilient to crashes. The McFoamy aircraft, shown in Fig. 2.1, has a

wingspan of 0.86 m. Updating the dynamics model for the new airframe involved creating

a CAD model and measuring properties of the airframe’s geometry.
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Table 2.1: Properties of the McFoamy aircraft.

Parameter Symbol Value Unit
Mass m 0.576 kg
Moments and products of inertia Ix 4.02× 10−3 kg m2

Iy 1.44× 10−2 kg m2

Iz 1.77× 10−2 kg m2

Ixz 4.60× 10−4 kg m2

Location of cg xcg −0.270 m
(measured from propeller plane) ycg 0 m

zcg 6.0× 10−3 m
Wing area S 0.143 m2

Wing span b 0.86 m
Mean aerodynamic chord c̄ 0.21 m
Propeller disk area Aprop 5.07× 10−2 m2

Maximum control surface deflections δamax 42 deg
δemax 45 deg
δrmax 46 deg

Control derivative coefficients Clδa −6.78× 10−4 deg−1

Clδr 9.31× 10−4 deg−1

Cmδe −1.18× 10−2 deg−1

Cnδr −3.57× 10−3 deg−1

The airframes were chosen because they are lightweight, easily assembled, and the foam

absorbs most of the impact in crashes. The mass, inertia, center of gravity location, and

other properties of the UAV are listed in Table 2.1. The moments and products of inertia

are determined using the CAD model. The thruster includes a RimFire 400 Outrunner

brushless DC Motor by Great Planes, and an Electrifly PowerFlow 10×4.5 propeller. It

is powered by an 11.1 V lithium polymer battery through an Electrifly Silver Series 25A

brushless electronic speed controller. The testbed also includes sensing and computing

equipment (accounted for in the values given in Table 2.1), which are described in Chapter

6.

2.1.2 Frames of Reference

There are three frames of references referred to throughout this chapter. They are the

inertial frame, the body frame, and the desired frame. The former two are pictured in

Fig. 2.2. The inertial frame has an arbitrary origin, fixed relative to the surface of the

Earth. The xI axis points north, the yI axis east, and the zI axis towards the center of

the Earth. The body frame is aligned with the aircraft, with its origin at the aircraft’s

center of gravity. The xB axis points out the nose of the aircraft. The zB axis points
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zI

Figure 2.2: Frames of reference: inertial frame (xI , yI , zI) and body frame
(xB, yB, zB).

below the aircraft, and the yB axis points out the aircraft’s right wing (from the top-

down perspective). The third frame of reference, the desired frame, is aligned with the

body frame as it is meant to be at a given time on a given reference trajectory. If the

aircraft were tracking a reference trajectory perfectly, the desired and body frame would

be aligned. The desired frame is only relevant to the feedback controller; it is used there

to express position and velocity errors in terms of where the aircraft is meant to be at a

given time on a given reference trajectory.

2.1.3 Equations of Motion

The full aircraft dynamics model is summarized by the equations of motion for a rigid

body:

V̇cg
B =

1

m
FB − ω×BVcg

B

ω̇B = I−1
B [MB − ω×BIBωB] (2.1)

ṗI = CT

BIV
cg
B

q̇ =
1

2
q� ωB

The translational and angular velocity of the aircraft, Vcg
B = [u, v, w]T and ωB = [p, q, r]T,

are resolved in the body frame, as are the inertia matrix, IB, and the net forces and

moments acting on the aircraft, FB and MB. The position vector, pI = [x, y, z]T, is

resolved in the inertial frame. A quaternion, q, is used to represent attitude, because
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unlike the standard Euler angles, quaternions do not suffer from issues of singularity.

The aircraft’s full state vector is x = [u, v, w, p, q, r, q1, q2, q3, q4, x, y, z]
T, together

with the constraint ||q|| = 1, needed for quaternion rotation. The modeling challenge is

to properly characterize the net forces and moments acting on the aircraft, FB and MB.

These have three sources: gravity, propulsion, and aerodynamics, which will be discussed

in Sections 2.1.4 - 2.1.6. The cross product matrix of vector ωB is given by:

ω×B =

 0 −r q

r 0 −p
−q p 0

 , (2.2)

and the quaternion product, �, in the last line of Eq. 2.1 produces:

q� ωB =


q2p+ q3q + q4r

q1p+ q3r − q4q

q1q + q4p− q2r

q1r + q2q − q3p

 (2.3)

The term CBI is the rotation matrix that transforms vectors from the inertial frame to

the body frame. This matrix is constructed from the quaternion attitude representation,

which is defined as q = q1 + q2i + q3j + q4k:

CBI =

q
2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

 (2.4)

2.1.4 Thruster Model

The thruster model is responsible for computing the aerodynamic and gyroscopic forces

and moments produced by the thruster unit, expressed in the body frame as FB,T and

MB,T . These terms are dependent on the thrust control input, as well as the aircraft’s

translational and angular velocities. To compute the forces and moments, blade element

momentum theory is employed, and all flow conditions - static, axial, oblique, and reverse

flow - are captured. The model was experimentally validated in [29], where full details

of the modeling of the battery, electronic speed controller, brushless DC motor, and

propeller can be found.
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Figure 2.3: Propeller slipstream: near field and far field regions [7].

2.1.5 Propeller Slipstream Model

The propeller slipstream effect, also referred to as propwash, describes the additional

airflow induced over the aircraft by the rotating propeller. This additional airflow adds

to the effectiveness of the control surfaces to produce forces and moments. The slipstream

model calculates the propwash in the form of a velocity field, denoted in general as Vs(x, r).

This is an axial airflow that is calculated differently for two regions: a near-field region

and a far-field region, which are separated by the ‘efflux plane’, located roughly 20% of

the fuselage length downstream of the propeller, as seen in Fig. 2.3. The front of the

aircraft’s fuselage and part of its main wing (that which is closest to the fuselage and

inside the slipstream) reside in the near-field region. In this region, the axial airflow’s

motion is dominated by the pressure force created by the propeller, which induces an

acceleration. The airflow here is calculated using momentum theory [97]:

Vs(x) = Vi0,avg

[
1 +

x/Rp√
(1 + (x/Rp)2)

]
, (2.5)

where Vs(x) is the momentum-averaged induced velocity at an axial distance, x, from the

propeller plane. The variable Rp is the propeller radius, and Vi0,avg is the momentum-

averaged induced velocity at the propeller plane (x = 0).

The horizontal and vertical tail surfaces and aft fuselage are located in the far-field region.

In this region, air viscosity and turbulence become more prominent and cause diffusion

of the slipstream radially into the ambient flow. As a result of the momentum transfer
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Table 2.2: Slipstream parameters of the McFoamy aircraft.

Parameter Symbol Value [m]
Propeller radius Rp 0.127
Slipstream radius at the efflux plane R0 0.0940
Radial position of maximum induced
velocity at the efflux plane Rmax0 0.0589
Axial position of the efflux plane x0 0.194

between the fast-moving slipstream and the slow-moving ambient flow, the slipstream ve-

locity decreases and the slipstream expands radially. In the far-field region, the slipstream

velocity profile is calculated in terms of the axial distance from the propeller plane, x, and

the radial distance, r, via a one-term Gaussian function that accounts for the diffusion

phenomenon:

Vs(x, r) = Vmax exp

[
−
(

r −Rmax

a3Rmax0 + b3(x− x0 −R0)

)2
]
, (2.6)

where Vmax and Rmax are the maximum induced velocity and its radial position, respec-

tively. Both are linear functions of axial distance:

Vmax = V0

(
a1 − b1

x− x0

D0

)
Rmax = Rmax0

(
a2 − b2

x− x0

D0

) (2.7)

The slipstream radius, R0, contracted diameter, D0 = 2R0, and radial position of the

maximum induced velocity, Rmax0 , are measured at the efflux plane (x = x0, see Fig. 2.3).

Coefficients a1, a2, a3 and b1, b2, b3 are determined semi-empirically based on experiments

with a propeller slipstream in air. Their values, listed in [7], correspond to piecewise

linear curve fits, split by axial distance. The slipstream parameters for the McFoamy

testbed are listed in Table 2.2. To give a rough sense of the slipstream’s magnitude, when

flying straight and level at 5 m s−1, the additional airflow is as large as 9.5 m s−1 at some

points on the aircraft. The slipstream is less dominant, but still significant, when the

aircraft is flying at higher speeds. For example, at 13 m s−1 ground speed, the maximum

additional airflow is 7.8 m s−1.

The slipstream effect also includes a swirl component. This effect is modeled as a reduc-

tion of 60% on the thruster’s reaction torque, MB,Tx . Further details can be found in

[7].
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2.1.6 Aerodynamics

For the aerodynamic modeling, a component breakdown approach is employed. Each of

the aircraft’s main components (the main wing, tail, rudder, and fuselage) are split into

segments, whose aerodynamics are computed individually and then summed together.

The component breakdown approach is used because aerodynamic behavior varies over

the surfaces of the aircraft. For instance, the propwash velocity field varies by body frame

location, and segments have different ratios of chord length to flap chord length. The

velocity at the aerodynamic center of each segment is calculated as follows:

Vseg = Vcg
B + ω×Bpseg + Vs,seg, (2.8)

where the position vector, pseg, measures from the aircraft’s center of gravity to the

aerodynamic center of the segment. Note that the slipstream only has an axial component,

thus Vs,seg = [Vs, 0, 0]T. The components of Vseg = [Vseg,x, Vseg,y, Vseg,z]
T are used to

calculate the angle of attack on the segment:

αh,seg = arctan
Vseg,z

Vseg,x

, αv,seg = arctan
Vseg,y

Vseg,x

(2.9)

The terms αh,seg and αv,seg apply to horizontal and vertical surfaces, respectively. The

aerodynamic forces and moments on each horizontal segment are calculated as:

FB,seg =
1

2
ρbsegc̄seg(V 2

seg,x + V 2
seg,z)[CFseg,x, 0, CFseg,z]

T

MB,seg =
1

2
ρbsegc̄

2
seg(V 2

seg,x + V 2
seg,z)[0, CM,ac,seg, 0]T,

(2.10)

with analogous equations for the vertical segments:

FB,seg =
1

2
ρbsegc̄seg(V 2

seg,x + V 2
seg,y)[CFseg,x CFseg,y 0]T (2.11)

MB,seg =
1

2
ρbsegc̄

2
seg(V 2

seg,x + V 2
seg,y)[0 0 − CM,ac,seg]T,

The terms bseg and c̄seg are the span and mean aerodynamic chord of the segment, and

ρ is the density of air. The force coefficients are obtained by resolving lift and drag

coefficients, CL and CD, using the segment’s angle-of-attack:
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CFseg,x = CL,seg sinαh/v,seg − CD,seg cosαh/v,seg

CFseg,z/y = −CL,seg cosαh/v,seg − CD,seg sinαh/v,seg

(2.12)

The forces and moments are transferred to the aircraft’s center of gravity and summed

to give the total aerodynamic forces and moments acting on the UAV:

FB,aero =
∑

FB,seg

MB,aero =
∑

(MB,seg + p×segFB,seg)
(2.13)

The quasi-steady lift, drag, and moment coefficients, CL,seg, CD,seg, and CM,ac,seg, are

calculated with an account of whether the segment is in a low-angle-of-attack or high-

angle-of-attack regime, capturing the full ±180 degree range in both angles. Effects of

aspect ratio, stall, control surface deflection, bound vortices, and trailing vortices are

all modeled, as detailed in [27]. As a basic sanity check, aerodynamic coefficient curves

are plotted in Fig. 2.4 for McFoamy’s main wing. The plotted coefficients of lift, CL,

drag, CD, and moment, CM , correspond to the mean aerodynamic chord, when no flap

deflection is applied. The coefficient curves are clearly nonlinear over the full angle-of-

attack range. In [95], Khan plots coefficient curves for various flap deflections and notes

the similarities to data that has been collected for other flat plate UAV wings [26, 98].

Figure 2.5 provides further data on the lift and drag coefficients: the drag polar, which

plots the lift and drag coefficients against each other, and the lift-to-drag ratio. These

plots are a good indication of the aircraft’s maneuvering capabilities. For one, we can

consider the amount of thrust required for the aircraft to maintain steady, straight and

level flight. By combining the two equilibrium equations – thrust equals drag, T = D,

and lift equals weight, L = W – we can deduce the required thrust for a given lift-to-drag

ratio:

Treq =
W
L
D

=
W
CL
CD

(2.14)

We note from Fig. 2.5b that the angle-of-attack for the most efficient cruising condition

is approximately 5 degrees, where the lift-to-drag ratio is 5.95. From Eq. 2.14, we can

calculate that the thrust required to maintain this cruise condition is 0.95 N, which is

only 10% of the maximum thrust the propeller can produce, approximately 9.5 N.

Continuing on from Eq. 2.13, we can finally compute the net forces and moments acting

on the aircraft, including the effect of gravity, gI = [0 0 9.81]Tm s−2:
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(a) Lift coefficient

(b) Drag coefficient

(c) Moment coefficient

Figure 2.4: Aerodynamic coefficient curves for McFoamy’s main wing.

FB = CBIgI + FB,aero + FB,T

MB = MB,aero + MB,T

(2.15)

The full aircraft dynamics model is illustrated in block diagram form in Fig. 2.6.
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(a) Drag polar

(b) Lift-to-drag ratio

Figure 2.5: Lift and drag coefficient data.

Figure 2.6: Block diagram of aircraft dynamics model.
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Figure 2.7: High-level overview of feedback controller.

2.2 Feedback Controller

In Chapter 4, feedforward control policies are generated for executing maneuvers. These

feedforward control inputs must be complemented by a feedback controller to compensate

for modeling inaccuracies, external disturbances, and measurement noise. This section

summarizes the components of the largely physics-based feedback controller, initially

developed and fully detailed in [99]. The controller was developed with the intent of

creating a single set of control laws and gains that could be used to track any feasible

trajectory. In achievement of these goals, the feedback controller is simple to tune, and

enables robust transitions between maneuvers (there are no discontinuous transitions

between control laws).

The controller consists of three main components: a position tracker, a quaternion-based

attitude tracker, and a thrust controller. These components make up a modular archi-

tecture that addresses the inherent under-actuation problem of fixed-wing aircraft. The

position tracker indirectly counteracts position errors by modifying the reference attitude,

and the attitude tracker uses the control surfaces to track this modified reference attitude.

The thrust controller’s task is to regulate the aircraft’s forward speed and altitude about

their reference values. Figure 2.7 illustrates a high-level overview of the full feedback

controller. The controller has been tested in hardware-in-the-loop simulations and flight

text experiments for tracking a number of flight modes and agile maneuvers [99].
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Figure 2.8: Feedback position tracking via reference attitude modification.

2.2.1 Position Tracker

Before being fed to the attitude tracker, the reference attitude passes through the position

tracker. At any point in time, if the aircraft’s actual position has deviated from the

reference position, the position tracker will slightly reorient the reference attitude. In

doing so, the direction of the propeller’s thrust force (i.e. the direction of the body frame

x axis) is used to indirectly diminish position errors. This general concept is illustrated

in Fig. 2.8.

The position tracker performs two rotation operations on the reference quaternion, in

order to enforce the shortest (cross product) rotation. Quaternion terms qy and qz are

constructed from position and velocity errors, ep and eV (which are expressed in the

desired frame, see Section 2.1.2):

qy = [cos
Θy

2
, 0, − sin

Θy

2
, 0]T

qz = [cos
Θz

2
, 0, 0, sin

Θz

2
]T

Θy = Kppepz +KpdeVz

Θz = Kppepy +KpdeVy

(2.16)

This is an incomplete attitude requirement, since only pitch and yaw are needed to

completely define where the thrust vector points. In terms of the position tracker, the

roll angle, by design, is not unique.

The reference position, pref , and actual position of the aircraft (as measured on-board),

p, are known in the inertial frame, and thus must be converted to the desired frame:

ep = CRI∆pI , (2.17)
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where ∆pI = pref − p. The rotation matrix, CRI , can be expressed in terms of the

reference attitude quaternion (here, qrn represents a component of the reference attitude

quaternion, qref):

CRI =

q
2
r1 + q2

r2 − q2
r3 − q2

r4 2(qr2qr3 + qr1qr4) 2(qr2qr4 − qr1qr3)

2(qr2qr3 − qr1qr4) q2
r1 − q2

r2 + q2
r3 − q2

r4 2(qr3qr4 + qr1qr2)

2(qr2qr4 + qr1qr3) 2(qr3qr4 + qr1qr2) q2
r1 − q2

r2 − q2
r3 + q2

r4

 (2.18)

The velocity errors are computed as follows, where VB is the measured body frame

velocity of the aircraft:

eV = VBref
−CRICIBVB, (2.19)

Note that CIB = CT
BI . The terms Kpp and Kpd in Eq. 2.16 are proportional and derivative

gains. Using these rotation quaternions, a new reference attitude is generated and sent

to the attitude tracker:

q′ref = qref � qz � qy (2.20)

The rotations qy and qz are limited to 45 degrees so that the controller will prioritize the

reference attitude, as opposed to the modifications made to it by the position tracker.

2.2.2 Quaternion-Based Attitude Tracker

The quaternion-based attitude tracker actuates the ailerons, elevator, and rudder, to track

the modified reference attitude, q′ref . As in [23], the attitude controller first computes an

error quaternion, ∆q = q∗ � q′ref - where q∗ is the conjugate of q - and then converts it

to three angular errors about the body frame axes, Ex, Ey, and Ez:

Ex = 2 cos−1(∆q1)
∆q2

||∆q2:4||

Ey = 2 cos−1(∆q1)
∆q3

||∆q2:4||
(2.21)

Ez = 2 cos−1(∆q1)
∆q4

||∆q2:4||
,
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In Eq. 2.21, the nonlinear function on the vector component of the quaternion error

linearizes around the angle variable of the axis-angle parametrization, which means that

the controller reacts proportionally to angular errors.

Here, we introduce first-order angular errors about the body frame axes, which are com-

puted from the commanded and actual angular rates, ωBref
and ωB:

Ė = CT

IBCT

RIωBref
− ωB (2.22)

In much of the literature, the commanded control surface deflections are directly propor-

tional to angular errors. This method neglects the dependency of the resulting control

input on the local airflow over the flap’s surface, i.e. that the control surfaces are much

more effective at high speeds than at low speeds. To address this issue, an additional step

is taken here. Instead of mapping control surface deflections directly to angular errors

(and angular rate errors), we first calculate desired moment terms. Desired moments,

∆L, ∆M , and ∆N , are found from:

∆L = (KapEx +KadĖx)Ix

∆M = (KapEy +KadĖy)Iy (2.23)

∆N = (KapEz +KadĖz)Iz

where Kap and Kad are proportional and derivative control gains, while Ix, Iy, and Iz are

the aircraft’s moments of inertia about its body axis. Equation (2.23) considers that more

moment is needed to correct a given angular error about an axis with a large moment

of inertia. Introducing the inertia terms into the equation makes it possible for the one

proportional and one derivative gain to be appropriate for all axes.

In order to determine the control surface deflections that would be needed to obtain

the desired moments, we first consider the basic aerodynamic relations between these

variables [100]:
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∆L =
1

2
ρv2

sSb(Clδa∆δa + Clδr∆δr)

∆M =
1

2
ρv2

sScCmδe∆δe (2.24)

∆N =
1

2
ρv2

sSbCnδr∆δr,

where vs is the airspeed over the wing and S is the wing area. The first of these equations

accounts for the effect of rudder deflection on the roll moment, since the rudder is not

centered on the aircraft’s roll axis. Rearranging the above gives the following:

δafb =

(
∆L

1
2
ρv2

sSb
− Clδr∆δr

)
1

Clδa

δefb =
∆M

1
2
ρv2

sSc̄Cmδe
(2.25)

δrfb =
∆N

1
2
ρv2

sSbCnδr
,

where δafb , δefb , and δrfb have been substituted in to denote that the deflections are feed-

back terms. The control derivative coefficients, Clδa , Clδr , Cmδe , and Cnδr can be retrieved

from the aircraft dynamics model. While these terms are not explicitly calculated in [95],

they are determined for use here based on the experimental findings of that work.

The airspeed over the wing accounts for the slipstream effect. To be able to perform at

real-time speeds, the slipstream model used in the control laws is simpler than that of

Section 2.1.5. For this purpose, the slipstream is estimated using momentum theory [97].

Combined with the forward speed of the aircraft, the airspeed over the wing is calculated

as:

vs =

√
u2 +

2T

ρAprop

, (2.26)

where the propeller disk area is denoted by Aprop, and the thrust, T , is approximated as

the commanded value (the combination of feedforward and feedback inputs). Recall that

the aircraft’s properties are listed in Table 2.1.
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Table 2.3: Feedback controller gains.

Symbol Value Unit
Kpp 0.08 rad m−1

Kpd 0.1 rad m−1 s−1

Kap 180 s−2

Kad 8 s−1

Kup 3 s−1

Kzp 5 s−2

Kzi 0.5 s−1

2.2.3 Thrust Controller

The thrust feedback term, Tfb, is used to regulate the aircraft’s forward speed, u, and

altitude, z, about the desired trajectory. The following PI control law acknowledges that

only the vertical component of thrust can influence the aircraft’s altitude:

Tfb = m

(
Kup∆u+ (Kzp∆z +Kzi

∫
∆z dt) sin θ

)
, (2.27)

where the PI gains are Kup , Kzp , and Kzi . The thrust force must be converted to the

control input: the rotational speed of the motor, ωT . Because of the quadratic relationship

between thrust and motor speed, the conversion can only be done after the feedforward

thrust, Tff , is computed (in Chapter 4):

ωT =

√
Tff + Tfb

kT
(2.28)

The thrust coefficient, kT , is a function of the advance ratio, as detailed in [99]. All

feedback gains were initially tuned in the hardware-in-the-loop simulator, mainly through

trial and error, and then refined in flight tests. Some details on the tuning process are

described in [99]. The gain values are listed in Table 2.3.

While it does have a position-tracking component, the feedback controller is not a path-

following scheme, and has no intrinsic mechanism to adjust the reference path the aircraft

is commanded. The control system as a whole attempts to achieve trajectory tracking,

rather than path-following, and the rest of the thesis is concerned with creating time-

dependent trajectories that the control system will track.
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2.3 Optimization Framework

Chapters 3 and 4 make use of an optimal control framework that will be presented here

in its most general form. In Chapter 3, such problems are solved to gain insight into

the dynamics of the aircraft, and in Chapter 4, the problems are formulated to produce

dynamically feasible trajectories and associated feedforward control inputs. In both cases,

the optimization framework allows the full aircraft dynamics model to be exploited.

The general optimal control problem is stated as follows. The continuous time optimiza-

tion solves for the time-dependent state and control vectors, x(t) and u(t), respectively:

min J
∆
= Φ[x(t0), t0,x(tf ), tf ] +

tf∫
t0

L[x(t),u(t), t]dt (2.29)

subject to the dynamics constraints

ẋ = f(x(t),u(t), t), (2.30)

the inequality path constraints

Γ[x(t),u(t), t] ≤ 0, (2.31)

and the boundary conditions

Θ[x(t0), t0,x(tf ), tf ] = 0, (2.32)

where Φ and L are the boundary and Lagrangian path cost functions.

The aircraft’s state vector is x = [u, v, w, p, q, r, q1, q2, q3, q4, x, y, z]T, and

its control inputs are: ailerons, δa, elevator, δe, rudder, δr, and thrust, ωT . For the

optimizations, the aircraft’s actual control inputs are added to the state vector, x, and

their derivatives make up the optimization problem’s ‘control vector’, u = [δ̇a, δ̇e, δ̇r, ω̇T ]T.

This is done because it allows the control input rates - in addition to the control inputs

themselves - to be constrained in the problem definition. By imposing rate limits, we

are also, at least partially, accounting for actuator dynamics, i.e. their lag in response

to commanded inputs. The control inputs commanded to the aircraft in simulations and
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flight tests are still the ailerons, elevator, rudder, and thrust (not their derivatives). As

the aircraft sees it, the open-loop control policy determined via optimization is: u(t) =

[δa(t), δe(t), δr(t), ωT (t)]T.

The optimization framework is used in various ways throughout Chapters 3 and 4, but

the dynamic constraints never change, and they are equivalent to the aircraft dynamics

model. Equation 2.30 can be expanded as:

u̇ =
Fx
m

+ 2g(q2q4 − q1q3) + rv − qw

v̇ =
Fy
m

+ 2g(q3q4 + q1q2) + pw − ru

ẇ =
Fz
m

+ g(q2
1 − q2

2 − q2
3 + q2

4) + qu− pv

ṗ =
IzMx + IxzMz − Ixz(Iy − Ix − Iz)pq − (I2

xz + Iz(Iz − Iy))qr
IxIz − I2

xz

q̇ =
My − (Ix − Iz)pr − Ixz(p2 − r2)

Iy

ṙ =
IxzMx + IxMz − Ixz(Iy − Ix − Iz)qr − (I2

xz + Ix(Ix − Iy))pq
IxIz − I2

xz

q̇1 = −1

2
(q2p+ q3q + q4r)

q̇2 =
1

2
(q1p+ q3r − q4q)

q̇3 =
1

2
(q1q + q4p− q2r) (2.33)

q̇4 =
1

2
(q1r + q2q − q3p)

ẋ = u(q2
1 + q2

2 − q2
3 − q2

4) + 2v(q2q3 − q1q4) + 2w(q1q3 + q2q4)

ẏ = 2u(q2q3 + q1q4) + v(q2
1 − q2

2 + q2
3 − q2

4) + 2w(q3q4 − q1q2)

ż = 2u(q2q4 − q1q3) + 2v(q3q4 + q1q2) + w(q2
1 − q2

2 − q2
3 + q2

4)

δ̇a = uδa

δ̇e = uδe

δ̇r = uδr

ω̇T = uωT ,

where the thruster, slipstream, and aerodynamic components of the model are all housed

in the force and moment terms, Fb = [Fx, Fy, Fz]
T, and Mb = [Mx,My,Mz]

T. Including

the first-order dynamics of the aircraft’s true control inputs allows constraints to be placed
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Table 2.4: Control input saturation values.

Symbol Value Unit
δamax 42 deg
δemax 45 deg
δrmax 46 deg
ωTmin 1716 rpm
ωTmax 6710 rpm

δ̇amax 258 deg/s

δ̇emax 430 deg/s

δ̇rmax 430 deg/s
ω̇Tmax 10000 rpm/s

on the optimization’s control vector: u = [uδa , uδe , uδr , uωT ]T. Unless otherwise specified,

the control inputs and their derivatives are constrained by the physical limits of the

aircraft’s actuators. Each control surface is actuated using a servomechanism, and thus

the maximum deflections and deflection rates correlate with the servo operation angular

and rate limits. The motor’s rotational speed limits correspond to the user-commanded

pulse width modulation (PWM) signal range, and the motor rate limits employed were

arrived at using conservative knowledge of the thruster’s capabilities. These limits are all

implemented as path constraints:

δa ∈ [−δamax , δamax ], δ̇a ∈ [−δ̇amax , δ̇amax ]

δe ∈ [−δemax , δemax ], δ̇e ∈ [−δ̇emax , δ̇emax ]

δr ∈ [−δrmax , δrmax ], δ̇r ∈ [−δ̇rmax , δ̇rmax ]

ωT ∈ [ωTmin , ωTmax ], ω̇T ∈ [−ω̇Tmax , ω̇Tmax ],

(2.34)

The saturation values are listed in Table 2.4. The thrust input, ωT , measured in revolu-

tions per minute (rpm), maps approximately quadratically to Newtons of thrust, where

1716 rpm ∝∼ 0 N and 6710 rpm ∝∼ 9.5 N for a stationary propeller. Unlike some other

aerobatic UAVs, the thruster used here does not have the ability to reverse the propeller’s

direction of rotation.

At times, Euler angles are used to present a more intuitive formulation of a problem,

however, it should be understood that their respective constraint equations are actually

nonlinear functions of the quaternion, as per the following conversions:
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φθ
ψ

 =


arctan 2(q1q2+q3q4)

1−2(q22+q23)

arcsin(2(q1q3 − q4q2))

arctan 2(q1q4−q2q3)

1−2(q23+q24)

 (2.35)

The unity norm constraint on the quaternion attitude representation, q2
1 +q2

2 +q2
3 +q2

4 = 1,

is also present, as a path constraint, in all versions of the optimization framework. What

differs between optimal control problems presented throughout this thesis are the cost

function, additional path constraints, and boundary conditions.

Apart from Chapters 3 and 4, there is one other way in which optimal control was

used in this thesis. Appendix A describes a distinct reformulation of the problem that

incorporates a feedback controller. This was done to optimize gains, and evaluate how

effectively feedback control laws could be used to perform agile maneuvers. Valuable

insight was gained from this work, but for reasons detailed in the appendix, it was not

pursued further.

2.3.1 Optimal Control Problem Solver

There are a number of methods for solving optimal control problems. Our problems

offer no analytical solutions, and must be solved numerically. Numerical methods for

solving optimal control problems are split into indirect and direct methods. The indirect

method employs the calculus of variations to solve boundary value problems. There has

been software developed to implement the indirect method, however, solving boundary

problems is normally extremely difficult, and thus direct methods have been more widely

adopted. In the direct method, the states and controls are approximated by appropriate

functions, and the problem is converted to a nonlinear programming problem (NLP) of

the form:

min f(x)

subject to: (2.36)

g(x) = 0

h(x) ≤ 0



Chapter 2. Preliminaries 36

An explanation of the conversion can be found in [101]. The advantage of converting the

problem to an NLP is that many well-developed software packages can easily solve these

problems.

Every optimal control problem solved in this thesis is done so using GPOPS-II [102], which

is MATLAB-based general purpose optimal control software. It employs a variable-order

adaptive orthogonal collocation method. It first approximates the continuous-time opti-

mal control problem as an NLP, using a number of points in the domain (called collocation

points), and then calls upon the well-known NLP solver, SNOPT [103]. GPOPS-II was

favored over other direct method software because of its ease of use, and that it is written

in MATLAB. The software is general and works well for solving all the optimal control

problems found throughout this thesis, which all adhere to the format expressed by Eqs.

2.29 - 2.32. The benefit of the software being MATLAB-based is that the aircraft model,

and updates to the model, can easily be integrated into the problem. The major functions

of the optimal control problems (for computing forces and moments) are converted to C

MATLAB executable (MEX) files, which run almost two orders of magnitude faster than

MATLAB script files. Most optimal control problems presented in this thesis are solved

- using GPOPS-II - in a matter of seconds or minutes.



Chapter 3

Investigation of Sideslip and

Slipstream in Extreme Maneuvering

This chapter uses the aircraft dynamics model of Section 2.1 to investigate the role of

sideslip and propeller slipstream in the extreme maneuvering capabilities of agile fixed-

wing UAVs. We identify the cost, in terms of performance loss, if either of these two

phenomena are not accounted for in maneuver design. The entire investigation is the

author’s original work.

3.1 Motivation

Among other characteristics of the design of agile fixed-wing UAVs that allow for improved

agility and extreme maneuvering, is the effect of the propeller’s slipstream, and the ability

to induce large sideslip angles. The most impressive demonstrations of the maneuvering

capabilities of these aircraft are exhibited during RC aerobatics competitions, where

these two phenomena are clearly seen at play. These phenomena have been exploited

in some of the research on planning and control, even if not explicitly modeled. For

instance, once in a (stationary) nose-up hover, the control mechanism of an agile fixed-

wing UAV becomes similar to that of a ducted fan aircraft (e.g. the RQ-16 T-Hawk

[104]), wherein all control authority of the flaps would be lost if not for the slipstream’s

energetic flow. Many fixed-wing maneuvers that have been researched involve sideslip

angles, such as the skid-to-turn [105], and even an aggressive perching variant [106].

For some maneuvers, such as knife-edge flight [52], the inclusion of sideslip is obvious and

inevitable. For others, such as aggressive turns [47], the utility of sideslip is less apparent.

37
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This chapter evaluates the effect of sideslip and gathers insight as to its utility, or lack

thereof, in extreme maneuvering. We investigate whether performance is benefited by

not constraining sideslip to be zero - which might, for instance, be done in the interest of

controllability and stability. To the best of our knowledge, the literature on these aircraft

have yet to include a systematic study of the significance of sideslip and slipstream in

maneuvers. Having access to a dynamics model that comprehensively includes these two

phenomena presented a unique opportunity to gather valuable insight.

3.2 Analysis Methodology

Considering the number of extreme (e.g. aerobatic) maneuvers that agile fixed-wing UAVs

are able to perform, a comprehensive analysis of the use of sideslip and slipstream in each

maneuver is unrealistic. Instead, a few distinct maneuvers are investigated. The analysis

is framed as a series of questions relating to maneuver performance, wherein each question

is answered by means of trajectory optimization. The generic optimization framework is

described in Section 2.3, and here we further specify the problem definitions. For each

optimization problem, we first compute the solution using the complete dynamics model,

and then use this result as an initial guess in solving for the cases where sideslip and/or

the slipstream effect are neglected. The investigation is conducted by comparing the

maneuvers that result from accounting for these phenomena versus those that result from

ignoring them. We quantify the significance of sideslip and slipstream by analyzing the

disparity in answers depending on which of the two phenomena are incorporated into the

optimization problem.

Neglecting sideslip means to constrain it to be zero in the optimization, i.e. β = 0,

or equivalently v = 0. The swirling flow from the thruster is modeled as a reduction in

reaction torque, and this reduction in torque is retained in the zero-sideslip case, since the

swirling flow is assumed to be unaffected. The slipstream can be neglected by removing

the axial airflow term, Vs (see Eq. 2.8), from the dynamics model, and removing the

reduction in the thruster reaction torque that was introduced to account for the thruster-

induced swirling flow.

3.3 Maneuver Performance Investigation

In this investigation we tailor the optimization framework of Section 2.3 to address a

number of problems relating to maneuver performance, and discuss the results.
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3.3.1 What is the slowest speed the aircraft can fly while main-

taining a constant altitude?

The cost function for this problem integrates speed over time:

J =

∫ tf

0

V dt (3.1)

The following path constraints are implemented to enforce steady straight and level flight:

[u̇, v̇, ẇ, p, q, r, φ, θ̇, ψ, y, z]T = 0 (3.2)

Constant control input action, u = 0, is also enforced. Recall that u represents the rates

of the actual control inputs. Where state derivatives appear in constraints, they denote

their respective nonlinear functions from the equations of motion, Eq. (2.33). The only

boundary condition is on the final time, tf = 10 s. Specifying the final time helps the

solver converge on a solution, but the exact value of 10 s is ultimately arbitrary.

It should be noted that because we have solved for equilibrium conditions rather than

time-varying trajectories, the solutions are independent of the cost function, i.e the so-

lution depends only on the dynamics, and thus a lower speed could not be obtained by

employing a different cost function.

Using the full dynamics model to solve the problem, results showed that the aircraft is

effectively able to fly as slowly as is desired, operating well into the post-stall region. For

instance, at an 80◦ pitch angle, the aircraft will fly straight and level at 0.8 m s−1. At this

speed, the elevator deflection is approximately -10◦, and the motor speed is also far from

saturation, at 4730 rpm, producing 4.95 N of thrust. The slowest speed that the aircraft

could fly without accounting for the slipstream was 5.62 m s−1, with a motor speed of

4190 rpm producing 3.02 N of thrust. In this condition, the elevator is fully saturated

and holding a 40◦ angle-of-attack. Without the additional flow of the slipstream, the

aerodynamic forces generated by the elevator deflection are lesser. The aircraft cannot

maintain steady-state flight at any slower of a speed because the elevator would be unable

to balance out the aerodynamic moments to zero.

This case exemplifies the very large benefit that can be derived from the propeller slip-

stream; allowing the aircraft to perform a very extreme maneuver; and such maneuvers

have been routinely demonstrated by RC pilots.
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Table 3.1: Final times and costs of heading reversals

Case tf [s] Cost
Full model 1.90 18.18
No sideslip 2.03 21.19
No slipstream 4.00 284.81
Neither 4.01 302.61

3.3.2 How much space and time is required to reverse the air-

craft’s heading?

The cost function now penalizes the final time and displacements in all three dimensions

of space:

J = w1tf + w2

∫ tf

0

(x2 + y2 + z2)dt, (3.3)

where w1 = 1 s−1 and w2 = 1 m−2 s−1. The weighting terms are set to unity because we

started with these values and found no reason to alter them. This rationale extends to

other parts of the thesis in which weights are set to one. The cost function separates x,

y, and z instead of calculating a volume, because a one- or two-dimensional maneuver

(with zero volume) would still take up space and should therefore not have zero cost.

The only path constraints are for the general saturation of the control inputs and their

rates, see Eq. 2.34. Boundary conditions at t = 0 define straight and level flight at the

desired speed, which in this case is V = 7 m s−1 (a typical cruising speed for the testbed

aircraft). Therefore, at t = 0,

[v, p, q, r, φ, ψ, x, y, z, δa, δr]
T = 0, (3.4)

and u,w, θ, δe, and ωT take on their trim conditions for straight and level flight. The

boundary conditions at t = tf , where tf is a free variable, are the same (including Vf = 7

m s−1) except that ψ(tf ) = π. Note that the aircraft must end the maneuver at the same

position it began from. In Chapter 4, we discuss how useful a turn-around maneuver like

this is for motion planning in obstacle-dense environments.

The path solutions for the four cases are plotted in Fig. 3.1: the full model, no sideslip, no

slipstream, and neither sideslip nor slipstream. Additionally, Table 3.1 lists the values of

the final time and cost for each trajectory. Even though the final times of each maneuver

represent a relatively small portion of the cost, it is noteworthy that there is more than a
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Figure 3.1: Heading reversal paths.

twofold difference between the first and last cases. The results show that a small penalty

to the optimality of the maneuver is incurred by constraining sideslip, and a much larger

penalty arises from neglecting the modeling of the slipstream.

The utility of sideslip in this maneuver is two-fold. First, the sideslip angle points the

nose inwards of the turn, creating a component of the thruster force that acts laterally, in

the direction the aircraft is turning. Sideslip also has the effect of generating aerodynamic

forces off of the aircraft’s body, which, about halfway through the maneuver, help it slow

down and change heading.

The effect of the slipstream is noticeably more significant. For one, the additional airflow

of the slipstream greatly increases the maximum aerodynamic forces each control surface

can produce; thus increasing their control authority. A closer investigation of the results

also reveals that the aircraft is having to fly faster, on average, without the slipstream.

The mean speed of the maneuver generated with the full model is 4.7 m s−1, compared to

8.1 m s−1 without the slipstream. An increase in speed is needed to produce more airflow
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Figure 3.2: Transition paths from wings-level to hover.

over the control surfaces. Each control surface becomes saturated at one point or another

during the maneuver, and needs enough airflow to produce aerodynamic forces capable

of aggressively turning the aircraft around.

3.3.3 How much space and time is required to put the aircraft

into a hover?

The cost function is

J = w1tf + w2

∫ tf

0

(x2 + z2)dt (3.5)

Once again, w1 = 1 s−1 and w2 = 1 m−2 s−1. Lateral displacement, y, is now placed in the

path constraints, [v, p, r, φ, ψ, y] = 0. These constraints force the aircraft to operate in

the vertical plane, keeping the problem tractable and relevant to the existing literature on

pitch up transitions into hover. The initial boundary conditions again define straight and

level flight at V = 7 m s−1. The final boundary condition is set to a stationary nose-up

hover, i.e. [u,w, q, θ] = [0, 0, 0, 90◦].

Given the nature of the hover transition as per the problem definition, sideslip is irrelevant

(v = 0). The use of the slipstream, however, is clearly not, as illustrated in Fig. 3.2. We

see that both space and time needed to transition into a hover are penalized when the

slipstream is neglected. The cost function value associated with the full model trajectory

is only 12.06, in contrast to a cost of 200.37 in the case without slipstream. The reasons

for these disparities are very similar to those stated for the previous maneuver. Without
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Figure 3.3: Velocity, altitude, and sideslip angle in knife-edge flight.

the slipstream accounted for, the aircraft first increases its speed as it begins to pitch up

(thus causing a large gain of altitude), whereas the speed only decreases when the full

model is employed. In either case, full elevator deflection is used throughout most of the

maneuver, which is less effective at pitching the aircraft upwards when the slipstream is

omitted.

3.3.4 Can the aircraft hold a constant altitude in knife-edge

flight?

We first ask whether such a maneuver is possible at any (constant) velocity. The cost

function penalizes deviations in altitude:

J =

∫ tf

0

z2dt (3.6)

Constant control input action is forced in the path constraints, as in Section 3.3.1.

The other path constraints force straight and steady knife-edge flight: φ = 90◦ and

[u̇, v̇, ẇ, p, q, r, ψ, y] = 0. Also as in Section 3.3.1, the only boundary condition is on the

final time: tf = 10 s.
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To fly a knife-edge (90◦ roll angle) at a constant altitude, the aircraft must counterbalance

its weight with aerodynamic and/or thruster forces. By virtue of its conventional layout,

our aircraft can only generate vertical components from these forces by tilting its nose

upwards. In doing so, the velocity vector of the aircraft, which remains in the horizontal

plane to maintain altitude, will have components along the body-frame x- and y-axes.

The maneuver, therefore, necessarily utilizes sideslip.

Figure 3.3 plots the results of solving with and without the slipstream modeled. Without

the slipstream modeled, the aircraft cannot maintain a constant altitude, even without

constraints on the velocity. The rudder saturates, and without the additional control

authority provided by the slipstream, is unable to keep the aircraft from descending.

This observation is analogous to the case of straight and level flight in Section 3.3.1, in

that no rudder input is enough to zero the net moment on the aircraft. With the full

model, however, the aircraft can in fact perform a straight, constant velocity and altitude

knife-edge maneuver. In this case, the aircraft is flying at V = 9.0 m s−1, using full

rudder but less than maximum throttle, ωT = 4990 rpm. Note that the 26◦ sideslip angle

is equivalent to the aircraft’s pitch, since altitude is constant. Being able to maintain

straight and level knife-edge flight expands the scope of utility of the maneuver. In

Section 5.2, we exploit this maneuverability to integrate the knife-edge maneuver into

motion planning.

With this knowledge that the knife-edge maneuver can be performed at some velocity

(using the full model), we then re-frame the problem to identify the full velocity range for

which it is feasible. The altitude is moved from the cost function into the path constraints,

such that z = 0. Two problems are then solved, one to find the minimum velocity, with

J =

∫ tf

0

V dt, (3.7)

and another to find the maximum velocity, with

J =

∫ tf

0

1

V
dt (3.8)

As in Section 3.3.1, the minimum and maximum speeds are inherent to the aircraft’s

dynamics, and independent of the cost function used to find them. The results reveal

that the full model solution in Fig. 3.3, where the rudder is saturated and V = 9.0 m s−1,

is the minimum velocity case. The maximum velocity for which straight and constant

altitude knife-edge flight can be maintained is V = 10.8 m s−1. In this case, the rudder
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deflection has room to spare, at 33◦, but maximum throttle is used. The sideslip angle is

21◦.

3.4 General Remarks

All findings of the analysis showed that ignoring sideslip and slipstream in the modeling

will lead to sub-optimal results, and that this is especially true of the slipstream effect.

While the comprehensive aircraft model could be used to determine steady level flight at

any slow speed, the version of the model that omitted the slipstream could not be used to

find an equilibrium state at any speed under 5.62 m s−1. An aggressive heading-reversal

maneuver took up approximately twice as much space when sideslip was constrained to be

zero, but over 100 times more space when the slipstream model was left out. To transition

into a hover without the slipstream required twice the forward distance and time, and

four times as much vertical displacement. With and without the slipstream effect, these

two aggressive maneuvers saw 15- and 16-fold differences, respectively, in cost function

values (the metric used to evaluate performance). It was also found to be impossible

to generate a constant altitude knife-edge condition without modeling the slipstream; at

best it could maintain a high velocity of 15.8 m s−1 while descending at 7.4 m s−1. With

the slipstream modeled, however, the maneuver was found to be possible within a range

of speeds from 9.0 m s−1 to 10.8 m s−1. When designing maneuvers, one should be aware

of the significance of these phenomena, and of the penalties incurred if the methods are

reliant on sideslip constraints or simplified modeling techniques that neglect slipstream

effects.





Chapter 4

Maneuver Space and Motion

Primitives

This chapter presents the aircraft’s maneuver space, which acts as a hybrid representation

of the aircraft’s dynamics, in place of the nonlinear ordinary differential equations. It is

constructed off-line, using the aircraft dynamics model of Section 2.1, as a collection

of maneuvers that can be accessed by the motion planner. Its purpose is to allow the

planning algorithm to generate dynamically feasible trajectories without having to solve

complex dynamic constraints in real-time. Instead, it simply has to choose maneuvers

out of the set.

The maneuver space consists of a finite number of motion primitives, where motion primi-

tives are dynamically feasible trajectories and their associated feedforward control inputs.

The set of primitives was designed to be large enough to represent a significant portion

of the aircraft’s flight envelope, yet suitably compact to fit in the limited computational

resources available on the aircraft’s autopilot system (as described in Section 6.1).

Motion primitives are classified here as either trim primitives or agile maneuver primitives.

Trim primitives are steady maneuvers with constant control inputs that can be coasted

along indefinitely. Agile maneuver primitives are finite-time transitions that accomplish

a specific, purposeful change in the aircraft’s pose.

The motion primitives are generated via optimization, solving optimal control problems

to produce reference state trajectories and their corresponding feedforward control inputs.

This approach to trajectory generation avoids the issues associated with learning from

piloted flight (e.g. [14, 39]): relying on the competence of a pilot, the inconsistency

inherent in manual flight, and the sub-optimality. Additionally, the trajectories are not

47
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corrupted by external disturbances (e.g. from wind) or state estimation errors. A further

benefit of this method is that specific functional objectives can be incorporated into the

maneuver design by minimizing a cost function, and imposing constraints and boundary

conditions.

The general optimization framework is set up and solved in the same way as was described

in Section 2.3. The specifics of the optimal control problem formulations - cost function,

path constraints, and boundary conditions - are particular to each motion primitive and

will be described here.

The maneuver space is bound to a specific flight velocity, and this is consistent with

the motion planner. Many applications of automated flight would not require speed to

change throughout the task. Incorporating velocity into the planning problem would

make it considerably more complex, by increasing the dimension of the configuration

space by one. With that said, we do see the value in future work exploring more complex

planning algorithms that can choose from maneuvers with different flight speeds. It may

be useful, for example, to proportion the flight speed to the density of obstacles in an

area; slowing the aircraft down in highly constrained areas, and allowing it to fly at the

most energy-efficient speed otherwise. A move was made in this direction by developing a

methodology for parametrizing maneuvers by speed, using a novel application of Dynamic

Time Warping. The methodology makes the maneuver space more robust while incurring

a negligible cost to the computational load needed in flight. It is strategically split into off-

line and on-line portions, such that the storage requirements and computational burden

on the flight controller are minimal.

As this chapter proceeds, the generation of trim primitives, agile maneuver primitives,

transitions, and a knife-edge maneuver are discussed in detail. The velocity parametriza-

tion methodology is then described, and a final note on the implementation of the ma-

neuver space is given.

4.1 Trim Primitives

Trim primitives are steady maneuvers ([u̇, v̇, ẇ, ṗ, q̇, ṙ, φ̇, θ̇] = 0) with constant control

inputs that can be held indefinitely. They are the aircraft’s basic flight modes, and the

set of trim primitives make up the greater portion of the maneuver space. These primitives

can be used by the motion planner for any length of time, since they are steady, and the

feedforward control inputs needed to hold them remain constant. The trim primitives

included in the maneuver space are:
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Table 4.1: Control input saturation values that are 80% of the aircraft’s actual limits

Symbol Value Unit
δamax 34 deg
δemax 36 deg
δrmax 37 deg
ωTmin 1716 rpm
ωTmax 5368 rpm

• straight and level flight

• climbs/descents

• banked turns

• helical banked turns

• hover

Trim primitives can be used by the planner for any length of time, since the feedforward

control inputs needed to hold them remain constant. Trim primitives can be solved for

in various ways; for example, using MATLAB’s fsolve function, or a bifurcation analysis

[107]. With the exception of hover, all trim primitives are found here by solving a tra-

jectory optimization problem. The exact form of the cost function used to solve for the

trim primitives is not relevant, except to minimize actuation if there are multiple sets of

control inputs that can be used to achieve the same trim condition.

min J ,
∫ tf

0

(
w1δ

2
a + w2δ

2
e + w3δ

2
r + w4ω

2
T

)
dt

subject to the first-order dynamics of the aircraft (Eq. 2.1),

and the path constraints:

V = Vd, φ̇ = θ̇ = 0, ψ̇ = ψ̇d, ż = żd

δa ∈ [−δamax , δamax ], δ̇a = 0◦ s−1

δe ∈ [−δemax , δemax ], δ̇e = 0◦ s−1

δr ∈ [−δrmax , δrmax ], δ̇r = 0◦ s−1

ωT ∈ [ωTmin , ωTmax ], ω̇T = 0 rpm/s

(4.1)

The weights in the cost function are set to w1 = w2 = w3 = 1 rad−2 s−1 and w4 =

1.56 × 10−8 rpm−2s−1]. The last weight is much smaller than the others due to the

mismatch in units; we want the penalty on thrust to be roughly similar in magnitude to

that on the control surface inputs so that it does not dominate the cost.
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The control inputs may take on any value within their physical limits, but constraints are

put on their derivatives so that they remain constant. The saturation values of the control

inputs themselves are set to 80% of the actual limits of the McFoamy aircraft (see Table

2.4), to ensure there is room for feedback control. The new maximum values are listed in

Table 4.1. The desired speed, Vd, is set to a constant 7 m s−1, which is a normal cruising

speed for the aircraft. The planner is developed for constant speed flight, except when

hovering and when performing agile maneuvers. The roll and pitch rates, φ̇ and θ̇, are

set to be zero so that the maneuvers are steady. Because the maneuvers are steady, there

are no boundary conditions to satisfy. With the exception of hover, each trim primitive is

obtained for different combinations of the desired yaw rate, ψ̇d, and climb/descent rate,

żd, as per the following, where ψ̇c and żc represent non-zero constants:

• straight and level flight: ψ̇d = 0, żd = 0

• climbs/descents: ψ̇d = 0, żd = żc

• banked turns: ψ̇d = ψ̇c, żd = 0

• helical banked turns: ψ̇d = ψ̇c, żd = żc

As mentioned, the planner is developed for constant speed flight, except when hovering

and when performing agile maneuvers. Fixed-wing aircraft can maximize their range

and endurance predictably at specific flight speeds, and the aircraft would navigate close

to some such suitable speed. Operating at a specific flight speed is consistent with the

objective of the motion planner, which is to guide the aircraft to a desired goal region.

The objective does not, for instance, include arrival time constraints. While further

agility could be harnessed by loosening constraints on the flight speed, doing so would

increase the size of the maneuver space and presumably result in a more difficult trajectory

tracking problem.

For the sake of preserving computational resources, we keep the maneuver space compact

by solving for primitives in incremental values. For the yaw rate, ψ̇c, we find primitives

from -110◦ s−1 to 110◦ s−1 in increments of 10◦ s−1, and for the climb/descent rate, żc,

we sample from -2 m s−1 to 2 m s−1 in increments of 1 m s−1. There are a total of 116

trim primitives; straight and level flight at 7 m s−1, 4 climbs/descents, 22 banked turns,

88 helical banked turns, and the hover. While smaller incremental values could have

been used at the cost of increased memory consumption, the simulations and flight test

experiments of Chapter 6 confirmed that this number of primitives sufficiently covers the

aircraft’s flight envelope such that it can effectively traverse obstacle-dense environments.

The resulting maneuver space is depicted in Fig. 4.1. The lines in the figures represent

the dynamically feasible paths associated with each trim primitive, which can extend
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Figure 4.1: Trim primitive maneuver space.
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Figure 4.2: A helical turn trim primitive, where ψ̇ = 110◦ s−1 and ż = 2 m s−1. The
aircraft is drawn approximately to scale.

indefinitely. For banked turns and helical banked turns - which are circular - the smallest

turn radius available in the maneuver space is 3.65 m, and the largest turn radius is

40.1 m. We can compare these turn radii to other minimum turning radii found in

the literature on simulations and experiments of automated flight with small fixed-wing

UAVs. In [108], a path-following algorithm implements a minimum turning radius of 45

m in simulations. In [77], simulations of a small fixed-wing UAV include turns with a

minimum radius of 15 m. Fixed-wing simulation results for a trajectory generation and

control methodology used 8 m radius Dubin’s turns in [92].

To showcase an example, Fig. 4.2 illustrates the trajectory of one of the most ag-

gressive trim primitives, for which ψ̇ = 110◦ s−1 and ż = 2 m s−1. The plot shows

the trajectory spanning over 5 seconds - the direction illustrated by the path transi-

tioning in colour from blue to yellow - but the trim primitives all have arbitrary end

times that can be dictated by the motion planning algorithm. The steady-state roll

and pitch angles are 50.4◦ and 0.96◦, respectively. The constant control inputs are

[δa, δe, δr, ωT ] = [−2.58◦,−33.45◦,−5.08◦, 5336 rpm]. Whilst the aileron and rudder input
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are relatively small, the elevator and thrust input are nearing saturation (i.e. 80% of the

aircraft’s actual limits).

Figure 4.3 uses the trim primitive data to show how the states and controls evolve as the

aircraft turns more aggressively in either direction. Each marker on the plots represents

a trim primitive associated with the corresponding turn rate (on the x axis), and zero

climb rate. The findings are similar for the other, non-zero climb/descent rates. From

one extreme turn to its opposite, the roll angle varies greatly, from approximately -55 to

55 degrees, while the pitch angle always hovers between 13 and 15 degrees. As observed

in Fig. 4.3b, very little rudder and aileron are needed to hold a banked turn. Even the

most aggressive turns need barely more than a 5 degree input in either control surface.

As discussed in Chapter 3, the slipstream has a significant impact on the effectiveness

of the control surfaces. This is especially true of the ailerons, because they are closest

to the propeller and have a large surface area. To maintain the steady state maneuvers,

the elevator deflections range more vastly during turns, from approximately -15 degrees

during straight and level flight to -30 degrees during either of the most aggressive turns.

The thrust also notably increases with sharper turns. All these trends remain true for

the cases where the aircraft is turning with non-zero climb/descent rates.

Assembling the information in these plots uncovers an interesting observation. As the

aircraft deviates from ψ̇ = 0, the ailerons and rudder change slightly, while the elevator

and thrust change more significantly, but in a symmetrical fashion, i.e. a -20 degree turn

requires approximately the same elevator and thrust input as a 20 degree turn. This

means that greater changes in roll angle and turn rate do not necessarily correlate with

greater changes in all the control inputs.

The one trim primitive yet to be discussed is the hover. The hover primitive is determined

via solution of the aircraft’s equations of motion. The only variable we solve for is the

value of thrust that achieves an equilibrium state when the pitch angle is 90 degrees.

For the McFoamy aircraft, this value happens to be 5334 rpm. We note that, as per the

dynamics model, the equilibrium condition is actually achieved with a combination of all

control inputs, not just thrust. This is because the aircraft isn’t perfectly symmetrical,

and the spinning propeller produces an aerodynamic torque and a swirl effect. However,

the control surface inputs that theoretically produce the equilibrium state are negligibly

small (less than 3 degrees). Combining this with the fact that the hover equilibrium

is unstable, and thus in practice requires significant feedback control to maintain, the

feedforward control surface inputs for this primitive are simply set to zero to avoid needless

complications.
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Figure 4.3: Trim primitive states and control inputs for each turn rate, ψ̇.
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4.2 Agile Maneuver Primitives

Agile maneuver primitives enhance the maneuver space - and hence the motion planner

- with functional changes of the aircraft’s pose, which could not otherwise be achieved,

or at least not as effectively, using trim primitives. In contrast to trim primitives, ag-

ile maneuvers are executed over a pre-computed finite amount of time (determined by

the free-terminal-time problems), and the states and control inputs are time-dependent.

Three agile maneuvers were developed for use in the maneuver space: an aggressive

turn-around (ATA), a cruise-to-hover transition (CTH), and a hover-to-cruise transition

(HTC). The aggressive turn-around maneuver rapidly reverses the aircraft’s heading.

With this maneuver in its repertoire, the aircraft can turn away from dead-ends using

only one primitive, and while occupying less space than would be required by piecing

together even the most aggressive trim primitives. The cruise-to-hover transition, as its

name suggests, transitions the aircraft from straight and level flight (cruise) to a hover.

The hover-to-cruise transition performs the reverse maneuver. Together, these two prim-

itives allow the aircraft to start and stop in a hover.

The agile maneuver primitives are also found by solving trajectory optimization problems.

While this method does not preclude well-known maneuver sequences from appearing as

a solution, such an outcome is not forced.

min J , w1tf +

∫ tf

0

(
w2δ̇

2
a + w3δ̇

2
e + w4δ̇

2
r + w5ω̇

2
T

)
dt

subject to the first-order dynamics of the aircraft (Eq. 2.1),

the path constraints:

δa ∈ [−δamax , δamax ], δ̇a ∈ [−δ̇amax , δ̇amax ]

δe ∈ [−δemax , δemax ], δ̇e ∈ [−δ̇emax , δ̇emax ]

δr ∈ [−δrmax , δrmax ], δ̇r ∈ [−δ̇rmax , δ̇rmax ]

ωT ∈ [ωTmin , ωTmax ], ω̇T ∈ [−ω̇Tmax , ω̇Tmax ]

and the boundary conditions (see Table 4.2):

x(0) = x0, u(0) = u0

x(tf ) = xf , u(tf ) = uf

(4.2)

Equation 4.2 includes a minimum-time cost function that additionally penalizes control

inputs rates, to produce smooth control input time histories. It is well known that abrupt

changes in control inputs can be detrimental to a mechanical system, and smooth inputs
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Table 4.2: Boundary conditions for agile maneuver primitives. Straight and level trim
conditions denoted by subscript SL, hover trim conditions denoted by subscript H .

States Boundary Conditions
and ATA CTH HTC

Controls t = 0 t = tf t = 0 t = tf t = 0 t = tf
u uSL uSL uSL 0 0 uSL
v 0 0 0 0 0 0
w wSL wSL wSL 0 0 wSL

p, q, r,φ 0 0 0 0 0 0
θ θSL θSL θSL 90◦ 90◦ θSL
ψ 0 π 0 0 0 0
x 0 0 0 – 0 –
y 0 0 0 0 0 0
z 0 0 0 – 0 –
δa 0 0 0 0 0 0
δe δeSL δeSL δeSL 0 0 δeSL
δr 0 0 0 0 0 0
ωT ωTSL ωTSL ωTSL ωTH ωTH ωTSL

tend to result in more robust trajectories. The weights in the cost function are again

proportional to units and aim to balance the penalties on each control input. They

are set to w1 = 4 s−1, w2 = w3 = w4 = 0.01 rad−2 s, and w5 = 2.5 × 10−7 rpm−2s. The

minimization of time (tf is a free variable) leads to aggressive maneuvers that require little

space. The maneuvers are no longer steady, but the control inputs and their derivatives

are constrained by the physical limits of the aircraft, namely, the limits and rate limits of

the motor and control surface servomechanisms. Additionally, the maneuvers are finite-

time transitions and thus must satisfy boundary conditions on the state and control

vectors, x = [u, v, w, p, q, r, q1, q2, q3, q4, x, y, z]T and u = [δa, δe, δr, ωT ]T, at t = 0

and t = tf . The boundary conditions for each maneuver are listed in Table 4.2. The

solutions to each agile maneuver problem come in the form of time-dependent reference

trajectories and feedforward control inputs. Recall that Euler angles map onto quaternion

attitude representations in the actual problem formulations, as per Eq. 2.35.

4.2.1 Aggressive Turn-Around

In full, the formulation for the ATA maneuver is a minimum time problem for reversing

heading, in which the aircraft must begin and end in straight and level flight, with the

same velocity and at the same position. The maneuver is similar to that of Section

3.3.2, however, a different cost function is used here to make the maneuver suitable for
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Figure 4.4: 3D visualization of ATA reference trajectory, V0 = 7 m s−1. The aircraft
is scaled down by a factor of approximately four and the drawings of the aircraft are

spaced out by a consistent time interval.

integration within the motion planner. Having the ATA in the planner’s repertoire makes

the fixed-wing UAV useful for a number of applications for which fixed-wings are currently

ill-suited. One possible application of the maneuver is the situation in which the aircraft

encounters a rapidly-approaching dead-end and must back-track. The ATA is not unlike

the well-known Herbst maneuver for combat aircraft [17], which is designed as an evasive

technique to minimize the time for reversing the heading. Unlike the ATA, which is

found via optimization, the Herbst maneuver is a concatenation of well-known combat

maneuver sequences.

The boundary conditions for the ATA, summarized in Table 4.2, represent trimmed

straight and level flight, denoted by the subscript SL, at the beginning and end of the ma-

neuver. The trim conditions correspond to the initial speed of V0 = 7 m s−1. The heading

reversal is enforced here, and the aircraft must also terminate at the same position and

with the same velocity as when it began (another way in which the ATA differs from

the Herbst maneuver). Relaxing the boundary conditions and constraints could result in

a lower cost, however, their strict enforcement makes for an easier implementation of a

highly functional maneuver.

Figures 4.4 and 4.5 plot the reference trajectory of the aggressive turn-around maneuver,

with V0 = 7 m s−1. We see in Fig. 4.5a that the velocity indeed begins and ends at

7 m s−1, dropping to approximately 1 m s−1 in between, transferring kinetic energy to

potential energy as the aircraft changes direction. Figure 4.5b shows the smooth heading

reversal, and that large pitch and roll angles are used in the process. The angle-of-attack,

α, exceeds 70 degrees, well into the post-stall region, and large values of sideslip, β,
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Figure 4.5: ATA reference trajectory and feedforward control, V0 = 7 m s−1.
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are used as well. We also note that the flight path angle, γ, begins and ends at zero,

consistent with the boundary conditions for straight and level flight. As shown in Fig.

4.5c, all control inputs are smooth. We see that each control surface deflection saturates

for some time during the maneuver. Recall, however, that the saturation values in the

optimization are only 80% of the aircraft’s actual limits. Finally, we note that all control

inputs end at the values they began with, to trim the aircraft at straight and level flight

with the desired velocity of 7 m s−1.

4.2.2 Cruise-to-Hover

The ability to transition into and out of a hover is arguably the most useful innovation

of these novel fixed-wings, since it achieves a key advantage of rotorcraft over traditional

fixed-wing aircraft: the ability to stop mid-flight. For easy integration into the motion

planning framework, the two maneuvers were restricted to the vertical plane. The fol-

lowing path constraints were added to the optimization framework:

y = φ = 0 (4.3)

The boundary conditions for the two maneuvers are listed in Table 4.2. The two maneu-

vers use essentially the same two boundary conditions, only in opposite order. Straight

and level flight is again consistent with V0 = 7 m s−1. The final forward and vertical

position, xtf and ztf , are free variables.

The cruise-to-hover maneuver is visualized in Fig. 4.6, and the relevant states and control

inputs are plotted in Fig. 4.7. We see in Fig. 4.6 that the maneuver requires approx-

imately 5 m of forward distance and 2 m vertically to complete. Distance flown was

indirectly penalized in the cost function via the time to complete, tf . As depicted in Fig.

4.7a, the initial cruising speed of 7 m s−1 is reduced to zero in just over 2 seconds. During

the maneuver, the pitch angle exceeds the terminal condition of 90◦, such that the nose of

the aircraft points backwards with respect to its velocity for approximately half a second.

This phenomenon occurs because the direction of the thrust force, pointing backwards

with the nose, acts to reduce the aircraft’s forward velocity. Figure 4.7c shows that the

elevator deflection is saturated for the first second of the maneuver. It is interesting to

note that the thrust is mainly increasing during this time, even as the aircraft is slowing

down. The reason for this is that the increased thrust enhances the control authority of

the maxed-out elevator deflection. With the increased airflow over the aircraft’s tail, the

elevator can more effectively pitch the aircraft upwards.
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Figure 4.6: 3D visualization of CTH reference trajectory, V0 = 7 m s−1.

4.2.3 Hover-to-Cruise

The hover-to-cruise trajectory is seen in Fig. 4.8. In this figure, we see that the maneuver

takes approximately the same forward distance as the cruise-to-hover to accomplish, but

uses very little vertical space. The states and controls are plotted in Fig. 4.9. As seen in

Fig. 4.9a, the maneuver takes less than 1.5 s to reach the cruise condition at Vf = 7 m s−1.

The pitch angle, see Fig. 4.9b, rapidly decreases over the first 0.6 s and then stabilizes to

the trim straight and level condition. In Fig. 4.9c, we see the elevator initially and briefly

rise to its maximum value, and then continue to descend as the pitch angle decreases.

The thrust input increases for the first second, then smoothly reduces to the rpm value

corresponding to the straight and level flight condition.

4.3 Transitioning Between Primitives

The aircraft is not infinitely agile and thus requires time to transition from one primitive

to another. In theory, finite-time transition primitives could be used, but to connect

the 116 trim primitives alone would require a massive and impractical expansion of the

maneuver space. Instead, we implement a transition maneuver heuristic in the planner

and control system.
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Figure 4.7: CTH reference trajectory and feedforward control, V0 = 7 m s−1.
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Figure 4.8: 3D visualization of HTC reference trajectory, V0 = 7 m s−1.

To smooth the transition between any two primitives (trim or agile), a time-delay heuristic

is implemented. For the duration of the time-delay, the feedforward inputs and reference

trajectory of the subsequent primitive are commanded, except for the path and heading,

which are extended from the previous primitive. Consider Fig. 4.10, in which A to B is

one trim primitive, and B′ to C is another. The trajectory from B to B′ is the transition

maneuver. The maneuver extends the curvature of the path and heading of the A to B

primitive, while all steady states tracked and control inputs commanded are that of the

B′ to C primitive.

The rationale behind the transition maneuver is based on the time-scale separation prin-

ciple, as it applies to the physics of fixed-wing flight [109]; in particular, the modal time-

scales of the fast rotational and slow translational dynamics. Accordingly, we diminish

position tracking errors by allowing the aircraft a short amount of time to continue along

the path predicted by its current motion as it begins to transition into the steady states of

the next primitive. What this enables is a transition that avoids sudden changes in vari-

ables that cannot react fast enough, while preparing the fast variables for the next state.

The time-scale separation principle is mirrored in the design of the feedback controller,

which has independent inner (attitude) and outer (position) control loops.

An analysis of the aircraft’s dynamics is used to determine the duration of the delay.

Essentially, we want to determine the time it typically takes for the roll angle to reach

a commanded value. It is the roll dynamics which should dominate the calculation of

the duration because the roll angles are undergoing large discontinuous changes. Pitch

angles are also discontinuously commanded, but the changes are relatively small. Under

the control system (the combination of feedforward inputs and feedback control laws),

the roll dynamics behave similarly to a low-pass filter of the form 1
τs+1

. This low-pass

filter may be viewed as the first-order Padé approximation of a time-delayed input, td

[110, p.183]. For step input commands (as is the case for the change in commanded roll
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Figure 4.9: HTC reference trajectory and feedforward control, V0 = 7 m s−1.
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C

Figure 4.10: Structure of a transition maneuver.

angle between primitives), it can be shown that τ is a suitable value of the time-delayed

input, td [47].

To determine the value of τ , simulations of the aircraft model and control system were run

in Simulink. Step input commands for roll were given, and the outputs of these commands

superimposed with low-pass filters was observed. The value of τ in the low-pass filter was

tuned until the output of the filter closely matched the aircraft’s actual dynamics under

the control system. The value of τ found this way, 0.23 s (at V = 7m s−1), was given

to the transition trajectory time-delay constant, td. Figure 4.11 shows the simulated

roll dynamics as the controller tracks a pre-defined motion plan that involves three trim

primitives. During the first 10 seconds, the reference trajectory is the straight and level

primitive. During the next 20 seconds, a banked turn at a rate of ψ̇ = −60◦ s−1 is

commanded; and finally a banked turn with ψ̇ = 60◦ s−1 is commanded. The blue line

is the commanded roll angle throughout the plan, and the black line shows the actual

roll, under the control system. The final line, in magenta, plots the reference roll angle

having gone through the low-pass filter. As can be seen, with τ = 0.23 s, the actual roll

dynamics are approximated closely by the low-pass filter.

The transition maneuver heuristic was also validated in trajectory tracking simulations.

A series of primitives were sequenced in the following order: straight and level flight, a

banked turn to the left, and a banked turn to the right. Using the feedback controller and

simulation environment, the primitive sequence was tracked; first with and then without

including the transition maneuver. Two sets of trials were conducted, one using turns

of ψ̇ = 30◦ s−1, and another using turns of ψ̇ = 60◦ s−1. In both cases, the transition

maneuver reduced the overall position tracking errors by approximately 35%. With the

30◦ s−1 turns, the root-mean-square error (RMSE) on position was reduced from 0.33 m

to 0.21 m, and with 60◦ s−1 turns, the error was reduced from 0.44 m to 0.28 m. The

position tracking errors for the first case, ψ̇ = ±30◦ s−1, are plotted in Fig. 4.12. The plot
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Figure 4.11: Comparison of actual roll dynamics to low-pass filter.

Figure 4.12: Position tracking errors with and without using the time-delay transition
maneuvers, for turns using ψ̇ = ±30◦ s−1. The background is colored light blue during

the time periods when the transition maneuver is being executed.

illustrates how the position tracking performance is improved by using the time-delayed

transitions. Notice as well that the position error, ep, remains stable throughout the

transition maneuvers (the light blue sections).

4.4 Knife-Edge Maneuver

A final maneuver, called the knife-edge, was generated using a similar approach to the

others. The knife-edge maneuver does not fit the description of either a trim primitive

or an agile maneuver primitive, because it is a combination of both. The maneuver is

composed of three phases. First is a transition from level flight to knife-edge flight, a

90◦ roll. Knife-edge flight is then held for a desired duration before transitioning back to
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Table 4.3: Steady knife-edge states and control inputs

Symbol Value Unit

θKE 42.6 deg

δaKE 0.626 deg

δeKE -1.49 deg

δrKE 37.0 deg

ωTKE 4434 rpm

level flight. The maneuver differs from the knife-edges designed in [52] and [51] in terms

of the highly transient nature of the transitions and that the knife-edge roll can be held

indefinitely as a trim condition. The differences in the design of the maneuver from our

other agile maneuvers make it ill-suited for the maneuver space, however, the knife-edge

is incorporated into a planning problem that is presented in Chapter 5.

An optimal control problem is solved for each stage of the maneuver: one to determine

a steady 90◦ roll trim condition, and two others connecting this trim condition to level

flight. First formulated is the problem of holding knife-edge, the 90◦ roll, steady. The

cost function was defined in such a way as to minimize the maneuver’s deviation from a

straight-line trajectory. Changes in velocity and deviations from the straight path were

penalized:

min J ,
∫ tf

0

(
w1(V − V0)2 + w2y

2 + w3z
2

)
dt, (4.4)

where w1 = 1 m−2 s and w2 = w3 = 1 m−2 s−1. The velocity selected here and for the

motion planner in Section 5.2 is V0 = 5 m s−1, which is also within the normal cruising

speed range of the aircraft. The slower speed, relative to the other agile maneuvers, was

chosen to be slightly more appropriate for the size of the environments used for motion

planning in Section 5.2. Path constraints on constant control input action are enforced

- just as they were for the trim primitives - and an additional path constraint is placed

on the roll angle, φ = 90◦. Finally, a boundary condition is placed on the final time,

tf = 10 s, to ensure the knife-edge can in fact be held steadily.

The results of this problem are summarized in Table 4.3 and Fig. 4.13, which confirms

that velocity, altitude, and lateral position are steady. It follows that the solution to this

optimization problem can similarly be generated using the trim condition cost function

of Eq. 4.1.
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Figure 4.13: Steady knife-edge flight reference trajectory, V0 = 5 m s−1.

The cost function for the transition maneuvers to and from knife-edge flight is similar to

the previous agile maneuver primitives, except that it also penalizes deviations in velocity

and deviations from the straight-line path:

min J , w1tf +

∫ tf

0

(
w2(V − V0)2 + w3y

2 + w4z
2+

w5δ̇
2
a + w6δ̇

2
e + w7δ̇

2
r + w8ω̇

2
T

)
dt

(4.5)

The penalties on velocity and path deviations are included in this optimization as a

deliberate design choice that makes the maneuver easy to integrate into the planner

described in Section 5.2.1.1. The weights in the cost function, which combine those

from Eqs. 4.2 and 4.4, are listed in Table 4.4. Like the other agile maneuvers, the

knife-edge transitions must also enforce boundary conditions. The two sets of boundary

conditions, for wings-level and knife-edge flight, are summarized in Table 4.5. The level

flight boundary conditions are the trim conditions corresponding to the desired speed,

V = 5 m s−1. The knife-edge boundary conditions are the solution to the first optimal

control problem (Table 4.3). Note that the body-frame velocity components, uKE and

vKE, follow directly from θKE and V0. Assigning the sets of boundary conditions, one as

the initial condition and the other as the final condition, is the only difference in problem

formulation between the transition maneuvers to and from knife-edge flight.

Figure 4.14 displays the solution for transitioning into knife-edge flight from the wings-

level condition. At this speed, it takes less than 0.5 s and 2.5 m to complete the transition.

As seen in Fig. 4.14a, the roll is rapid and smooth, the initial angle-of-attack, α, is traded



Chapter 4. Maneuver Space and Motion Primitives 68

(a) Attitude

(b) Velocity, thrust, lateral displacement and altitude

(c) Control surface deflections

Figure 4.14: Reference trajectory for transition from level to knife-edge flight, V0 =
5 m s−1.
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Table 4.4: Weights in the cost function for transition maneuvers to and from knife-
edge flight.

Term Value Unit
w1 4 s−1

w2 1 m−2 s
w3 1 m−2 s−1

w4 1 m−2 s−1

w5 0.01 rad−2 s
w6 0.01 rad−2 s
w7 0.01 rad−2 s
w8 2.5× 10−7 rpm−2s

Table 4.5: Boundary conditions for knife-edge transition maneuvers. Straight and
level trim conditions denoted by subscript SL, knife-edge flight conditions denoted by

subscript KE

.

States and Controls
Boundary Conditions

Wings Level Knife-Edge

u uSL uKE

v 0 vKE

w wSL 0

p, q, r 0 0

φ 0 90◦

θ θSL θKE

ψ 0 0

δa 0 δaKE

δe δeSL δeKE

δr 0 δrKE

ωT ωTSL ωTKE

for positive sideslip, β, and the flight path angle, γ, stays near zero. Figure 4.14b confirms

that the velocity remains nearly constant throughout the maneuver, as does the lateral

displacement and altitude. The feedforward control surface deflections are seen in Fig.

4.14c. Each control surface hits its saturation limit constraint at some point in time

(80% of the actual saturation limits). Plots of the transition from knife-edge to wings-

level flight are omitted, since the problem definition only differs by the reversal of the

sets of boundary conditions, and thus the solution’s characteristics are largely analogous.
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4.5 Velocity Parametrization

Up to this point, the maneuver space has been developed for flight at a constant speed

(other than the temporary changes that occur during agile maneuvers). While this may

be sufficient for many applications of autonomous flight, there is certainly value to be

found in extending this maneuver space to allow for speed changes during flight. One of

the impediments to doing so is the need for additional computational resources. In this

section, we present a methodology that was developed to, at least partially, address this

concern. The methodology is used to continuously parametrize agile maneuvers - or any

finite-time transition - by initial speed. In effect, only two maneuvers need to be generated

and stored on-board the aircraft for a maneuver class, e.g. aggressive turn-arounds, to

be continuously parametrized by speed.

Throughout this section, the aggressive turn-around maneuver will be used as an example

to explain the methodology. In Section 4.2.1, we solved for the ATA with an initial speed

of V0 = 7m s−1. Here, we use the resulting solution as an initial guess in GPOPS-II

to solve the problem for V0 = 5m s−1 and then for V0 = 9m s−1. The results from the

three cases show very similar patterns in the trajectories and control input time histories.

Figure 4.15 presents the path and velocity time histories. The two results associated

with V0 = 5m s−1 and V0 = 9m s−1 are kept for use in the trajectory parametrization

process that allows maneuvers to be generated in real-time over the range of intermediate

velocities.

4.5.1 Dynamic Time Warping for Interpolation of Agile Maneu-

ver Primitives

Dynamic Time Warping (DTW) is an algorithm used to find an optimal alignment be-

tween two time-varying sequences which need not necessarily be of the same duration.

The two sequences’ time axes are warped so that the sequences match each other based

on similarities, as shown conceptually in Figure 4.16. DTW has been applied to speech

recognition [111], image matching [112], and recognition of human walking patterns [113],

but its use is general and extends well to measuring similarities between any two temporal

sequences, such as our agile maneuver primitives. In Section 4.2, the terminal time of

the agile maneuvers is left as a free variable, and therefore the maneuver duration will be

different for each optimal control solution pertaining to a particular initial velocity. For

more information on DTW, the reader is referred to [48]. In [114], a similar use of DTW

is employed for apprenticeship learning of aerobatic helicopter trajectories.
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(a) Paths

(b) Velocities

Figure 4.15: Trajectories for ATA’s generated from different initial velocities.

Figure 4.16: DTW alignment of two time-varying sequences [8].
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Here, we use DTW to prepare pairs of vectors with different durations for linear inter-

polation. The DTW-based interpolation methodology we employ can be strategically

separated into an off-line and an on-line portion.

4.5.2 Off-Line

As described by the process in Section 4.2, we generate two sets of trajectories and control

inputs for the maneuver, each a solution to an optimal control problem at a particular

initial velocity. Let vectors xi ∈ RS, i = 1, ..., N and yj ∈ RS, j = 1, ...,M be the state

and control vectors at the ith and jth point in time, for initial velocities V01 and V02

respectively, where S = 17 is the number of states (13) plus the number of control inputs

(4), and N , M are the number of collocation points for each trajectory. We define two

time series matrices that store all vectors of each solution: X := [x1, ...,xN ] ∈ RS×N and

Y := [y1, ...,yM ] ∈ RS×M , where X is the matrix for V01 and Y is the matrix for V02 .

The rows of X and Y describe states that do not all have the same units, e.g. the states

u and p have different units. In preparation for the DTW alignment, we compute their

respective normalized matrices, Xn and Yn, by the following procedure. Consider the

first entry (in row and column) of X, denoted as uX1 since it is represents a value of the

body-frame x-axis speed, u. The normalized value of uX1 is computed as follows:

uX1n
=

uX1 − umin

umax − umin

, (4.6)

where umin and umax are the minimum and maximum of all u values in both X and Y .

All values in Xn and Yn thus range between 0 and 1.

The standard DTW algorithm [48] is performed off-line, to calculate an optimal match

between the two normalized matrices. The algorithm returns the warping paths i1 and

i2. The two warping paths are vectors of column indices, and they have the same length,

because one or both of i1 and i2 will contain repeated indices. The warping paths are

calculated so that two new matrices, X ′ and Y ′, have the smallest total cost (to be

defined) between them. These matrices, X ′ ∈ RS×L and Y ′ ∈ RS×L, are stretched

versions of X and Y such that some of the columns of X and Y may be repeated

as necessary in X ′ and Y ′ – as per i1 and i2 – to minimize the total cost. Hence,

L ≥ max(N,M). Note that the normalized matrices are used to generate the warping

paths, but it is the original matrices that are stretched to construct X ′ and Y ′.
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DTW allows the user to define precisely how the cost computed at each time instant, ck,

is calculated. Here we use the Euclidean distance:

ck :=
√

(x′1k − y′1k)2 + (x′2k − y′2k)2 + ...+ (x′Sk − y′Sk)2, (4.7)

where x′ik and y′ik are the i, k elements of X ′ and Y ′, respectively. Since X ′ and Y ′ will

necessarily be the same size - and optimally aligned - they can be stored on-board the

aircraft’s autopilot in memory and used for the following process.

4.5.3 On-Line

All that is left to do in real-time is linear interpolation. First, a weight, σ, is generated

based on the aircraft’s actual velocity at the start of the maneuver, V0int , and the initial

velocities of the two pre-computed trajectories, where V01 = 5m s−1 and V02 = 9m s−1:

σ =
V0int − V02

V01 − V02

(4.8)

Using this weight, we interpolate between the pairs of columns of X ′ and Y ′ to get state

and control input time histories associated with V0int , denoted in general here as sint:

sint = σs′1 + (1− σ)s′2, (4.9)

where the vectors s′1 and s′2 represent a warped state or control input time history (i.e.

rows of X ′ and Y ′) associated with V01 = 5m s−1 and V02 = 9m s−1.

An amendment is made to the above when interpolating quaternions, since Eq. (4.9)

would not produce unit quaternions in general. Instead, we interpolate quaternions using

spherical linear quaternion interpolation, or Slerp [115]:

qint = q′1 � (q′∗1 � q′2)σ, (4.10)

where q′1 and q′2 are the warped quaternions, and in general, q∗ is the conjugate of a

quaternion. The entire interpolation step is performed immediately before the maneuver

begins to generate a reference trajectory and feedforward control policy.
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Figure 4.17: Alignment of original velocity vectors generated by optimal control (solid
curves) and velocity vector found from interpolation (dashed curve); solid near-vertical

lines are the alignment lines.

Figure 4.17 is a visual representation of the alignment between the velocity profiles of

the two original bounding ATA trajectories (V0 = 5m s−1 and V0 = 9m s−1) generated by

optimal control, as well as a velocity profile found through interpolation for V0 = 7m s−1.

Notice how some of the alignment lines joining the collocation points on the two bounding

velocity profiles start or end at the same point in time, indicating repeated indices in i1

and i2. For clarity, only velocity is displayed, however, the alignment extends consistently

to all states and control inputs such that all values in a column of X ′ or Y ′ correspond

to the same value of time.

To verify that the algorithm produces feasible reference trajectories and suitable control

policies, we compare the ATA optimal control solution for the case where V0 = 7m s−1

to the output of the interpolation for V0int = 7m s−1, again performed using reference

trajectories with V0 = 5m s−1 and V0 = 9m s−1. As represented by the path and attitude

time histories in Fig. 4.18, the two results nearly align, implying that the proposed scheme

will yield a result very similar to the optimal control solution. Note that the velocity

parametrization method does not explicitly ensure dynamic feasibility of interpolated

trajectories. Engineering oversight is needed to ensure that the bounding trajectories are

near and similar to each other, such that it can reasonably be inferred that no physical

constraints will be violated by an interpolation.
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(a) Path

(b) Body-frame attitude

Figure 4.18: DTW interpolated trajectory (solid lines) versus optimal control trajec-
tory (dashed lines).

4.6 Storage of Maneuver Space

The maneuver space is compactly stored in memory on-board the aircraft’s autopilot,

discussed in Chapter 6. There are 116 trim primitives, but each one of them only requires

a few values to be stored: the steady states and constant control inputs. While the path

and heading do evolve during the execution of a trim primitive, they can be calculated

from simple algebraic equations based on the starting time, position, and heading of the

primitive. The agile maneuver primitives are time-dependent and thus are each stored

as matrices. As an agile maneuver is being flown, the control system is interpolating

the matrix by time. The optimal control solutions for each agile primitive contain many

points in time along the maneuver, so the interpolations are highly accurate. No space

in memory is required to implement the transitioning maneuver heuristic. To implement

the velocity parametrization method, each agile maneuver primitive must be replaced by
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its respective X ′ and Y ′ matrices, as described in Section 4.5.2. Chapter 5 goes into

more detail about the implementation of the maneuver space.



Chapter 5

Motion Planning

The objective of the work presented in this chapter is to integrate the motion primitives

developed in Chapter 4 into a motion planning framework. While they share many

similarities, two separate motion planning strategies are presented here. At the time

of investigating agile maneuvers, the knife-edge appeared to serve a valuable purpose

for autonomous applications, as it would allow the aircraft to pass through gaps more

narrow than its wingspan. As described in Section 4.4, though, the knife-edge maneuver

is different than the other agile maneuvers because it has multiple phases, and thus could

not be incorporated into the maneuver space or the planning framework that uses it.

Rather than disregard it entirely, we integrated the knife-edge into a slightly different

planner that could accommodate the maneuver.

The two planning frameworks share fundamental similarities. For one, they are both

based on an RRT-variant algorithm, originally described in [45]. Additionally, both frame-

works utilize the full six degrees-of-freedom of the aircraft’s motion. In other respects,

the two planners are different. One main difference is that the planner that uses the

knife-edge – which we will call Planner 1 – employs a two step process: first generat-

ing a two-dimensional straight-line path, and then transforming it into a time-dependent

trajectory. The other planner, Planner 2, builds the tree using dynamically feasibly tra-

jectories; it was Planner 2 that was pursued for flight tests. Another significant difference

between the two is that Planner 2 runs in real-time, while Planner 1 only works off-line.

There are other, more minor differences that will become apparent as the two planners

are described in detail.

With respect to the real-time capabilities of Planner 2, there is a line of communica-

tion between the on-board motion planning computer and the on-board autopilot system

77
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(which includes the sensor suite and controller). When planning is commenced, the air-

craft’s pose is measured and sent to the planner for initialization. As the motion planning

algorithm runs, it iteratively sends back to the autopilot trajectories to be executed. For

the sake of the ‘re-planning’ portion of the algorithm, which will be discussed in Section

5.3.5.1, the autopilot sends estimates of the aircraft’s true position back to the motion

planning computer for integration within the algorithm.

This chapter continues with a brief description of the RRT algorithm. Planner 1 is first

discussed in Section 5.2, since it is more basic in nature. Section 5.3 will then describe the

more general motion planning framework, Planner 2, which builds off of the development

of the maneuver space from Chapter 4. This section includes a comparison of Planner 2

to a baseline approach that uses Dubins curves.

5.1 Rapidly-Exploring Random Trees

The motion planner is based on the RRT algorithm, which is a single-query planning

method that efficiently explores an environment such that a feasible path to the goal

region can be constructed rapidly. The RRT algorithm works by extending a tree -

starting from a predefined initial node - by sampling random nodes in the environment

and connecting them to their nearest node in the tree. The connection is discarded if it

happens to incur a collision with an obstacle in the environment. This method biases the

search into the largest Voronoi regions, i.e. the unexplored areas [60]; in our case, in the

three-dimensional Cartesian space, C = R3. This concept is known as the Voronoi bias,

which is the key aspect of the RRT algorithm and what makes it efficient at exploration.

The algorithm used here varies from the standard algorithm in the way it attempts to

connect random nodes to the nearest node in the tree. In the standard algorithm, a

connection is attempted only with the one nearest node in the tree. If a collision results,

the random node is rejected and a new one is generated. In the algorithm implemented

here, the random node goes partially through the sorted list of nearest tree nodes, checking

for one it can connect to collision-free. This helps the tree build through corridors and

narrow passages [45].
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5.2 Planner 1: Off-Line Planning with the Knife-

Edge Maneuver

In this section we demonstrate how the knife-edge maneuver was incorporated into a

motion planning framework. In brief, this is accomplished with a top-level planner gener-

ating a trajectory for conventional path following, which afterwards is overlaid with the

knife-edge maneuver where appropriate. In the motion plan, we prioritize smoothness

and feasibility over optimality. We assume that the aircraft is equipped with a map of

the environment surrounding the initial position and goal region, and can recognize the

locations of narrow passages. We command the aircraft to maintain a constant velocity

and altitude as it navigates the environment. As a departure from most of the rest of the

thesis, where we use a cruising speed of V = 7m s−1, a slower speed of V = 5m s−1 is used

in this section. While there is nothing particularly unique about this speed, we found the

slower speed to be slightly more appropriate for planning with the knife-edge maneuver.

Unlike the other agile primitives, the knife-edge begins and ends with transition maneu-

vers, which for the sake of agile motion planning, can be made shorter in distance using

the slower speed.

5.2.1 Top-Level Planning

The objective we set for the motion planner is to generate a smooth and feasible trajectory

to traverse a planar environment with obstacles. This is accomplished in three stages.

First, the RRT-variant algorithm constructs a collision-free path composed of straight

segments. The planned path has a constant altitude - the nodes of the RRT tree store

2D Cartesian coordinates. Next, the path is automatically smoothed by shortcutting, i.e.

getting rid of redundant nodes. A node is unnecessary if it can be discarded without the

resulting path encountering a collision or violating the accessible space condition that

will soon be defined. Lastly, the path is algebraically converted into a time-dependent

trajectory and augmented with the states used in the feedback control laws. Although

the path we consider is two-dimensional, the actual motion of the aircraft utilizes its full

six degrees of freedom; the dynamics model - used for optimal control and simulations -

is never constrained to 2-D motion.

To ensure the geometric path can feasibly be tracked, we impose a constraint on turning

(heading) rate by only constructing nodes within an ‘accessible space’ relative to the

previous (parent) node. By enforcing this constraint in the path planning process, the

solution is guaranteed to meet our goals of smoothness and feasibility. This eliminates
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Figure 5.1: Accessible space.

the need for post-process trajectory optimization, which would be cumbersome given our

complex, high-dimensional dynamics model (Section 2.1). As illustrated in Fig. 5.1, the

flight path turn radius, R, is related to the accessible space by the distance between the

parent and sample nodes, d, and the line-of-sight angle, χ:

R =
d cosχ

sin 2χ
=

d

2 sinχ
(5.1)

Generically, a turn radius is also given by R = V/ψ̇, and thus it follows that the term we

are interested in, the heading rate, is a function of d and χ:

ψ̇ =
2V sinχ

d
(5.2)

We conservatively limit the heading rate to |ψ̇|max = 60◦ s−1, with d = 2m and χ = 12◦.

If a new node falls outside of its parent node’s accessible space, the closest vertex of

the accessible space is considered instead. This decision making process replaces the

NEW STATE function in the standard RRT algorithm [60], which returns a potential

new node.

Once the random sampling algorithm has constructed a path, the automatic smoothing

process samples pairs of nodes to shortcut unnecessary ones. Figure 5.2 shows generated

paths through two predefined maps before and after smoothing.

The feedback controller in Section 2.2 was not designed for path-following, but rather to

track a time-dependent trajectory of multiple states. Therefore, we next assign a time

history to the nodes, and augment them with reference attitudes and a constant velocity.
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(a) Map 1

(b) Map 2

Figure 5.2: Path plan before and after smoothing. Red circles represent goal regions.

This additional information can be derived from the path itself. A time history follows

from the distance between points and the constant velocity. The reference heading profile

is determined based on the direction between each pair of successive nodes. The reference

roll angle is determined as a function of speed, and the distance and change in heading

between successive nodes:

tanφ =
2V 2 sinχ

gd
(5.3)

A derivation of the above expression, based on aircraft outer-state dynamics, can be found

in [47]. We use an empirical formula for the pitch angle, calculated as a function of speed

and roll:

θ = c1 +
c2

V 2 cosφ
, (5.4)



Chapter 5. Motion Planning 82

where c1 and c2 are coefficients tuned in simulations for maintaining constant altitude

flight.

5.2.1.1 Integration of Knife-Edge Maneuver

Once the top-level motion plan has generated a conventional trajectory, the knife-edge

maneuver is integrated into the plan. It is assumed here that the aircraft can identify

narrow passages in the map, and place landmarks at the positions in the plan where

knife-edge flight should begin and end. It is known from Section 4.4 that it takes 2.5m

to transition into knife-edge while flying at V = 5m s−1, therefore the aircraft requires at

least 2.5m in advance of the passage to begin the maneuver. A deliberate feature of the

maneuver design is that knife-edge flight can be superimposed on straight paths without

compromising the original motion plan; the knife-edge stays on the straight-line path at

a constant velocity.

As the aircraft is in flight and begins to execute the knife-edge maneuver, two things

happen. For one, the precomputed feedforward control policies are activated and summed

with the feedback control inputs. Additionally, the reference trajectory to the feedback

controller is overridden. The aircraft will continue to track the same path, but the body-

frame x-axis speed, pitch, and roll angle references are switched to the optimal control

solutions for the duration of the maneuver. Due to the boundary conditions imposed in

the optimal control problem formulation for the knife edge maneuver, see Table 4.5, these

transitions are smooth.

5.2.1.2 Simulations

Simulations are run to test the entire proposed methodology of motion planning and

control. The dynamics model of Section 2.1 is built into Simulink and simulations are

conducted wherein the aircraft is tasked with tracking the motion plan.

For this demonstration, we use the smoothed paths displayed in Fig. 5.2. For Map 1, the

aircraft starts and ends in wings-level flight before and after the entrance and exit to the

environment. For both maps, tracking performance is illustrated in Fig. 5.3, for velocity

and altitude, and Fig. 5.4, for the planar path. Figure 5.3 shows nearly constant altitude

held throughout both maps, but the feedback controller does not perfectly stabilize about

the desired velocity. Nevertheless, even during the most dynamic portions of the aircraft’s

flight - transitioning to and from the knife-edge maneuver - its actual motion rarely

deviates more than 1m s−1 from the reference velocity. Figure 5.4 confirms that the
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Figure 5.3: Velocity and altitude tracking for Maps 1 and 2 of Fig. 5.2. Knife-edge
maneuver highlighted in light blue.

deviations in velocity have a negligible effect on the aircraft’s ability to stay on the

desired planar path, which is of greatest concern, given the presence of narrow passages.

Furthermore, we can see from the different layout of Maps 1 and 2 that the control system

is able to track the desired planar path whether the aircraft remains in the knife-edge trim

condition through longer passages (Map 1), or transitions more immediately in and out of

knife-edge flight through shorter passages (Map 2). Figure 5.5 shows a 3D visualization

of the full flight through Map 1; the size of the aircraft has been scaled up by a factor of

approximately 4.

5.3 Planner 2: Real-Time Planning with the Maneu-

ver Space

The planner detailed in this section is more general and sophisticated in a number of

ways: the maneuver space is more loosely constrained, the configuration space of the

planner is three-dimensional, it can run in real-time, and the RRT tree is built using

dynamically feasible motion primitives. For these reasons, when it came to flight testing,

we focused on validating this planner.
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(a) Map 1

(b) Map 2

Figure 5.4: Planar path following. Blue boxes outline where knife-edge is performed.

Figure 5.5: 3D visualization of flight through Map 1. Blue boxes outline where knife-
edge is performed.
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The planning algorithm is applicable to the case of a known, three-dimensional environ-

ment with static obstacles. The assumptions therein, that the environment is known and

that the obstacles are static, exist to limit the scope of the problem to one that could

realistically be addressed in this thesis. One may naturally wonder why we are concerned

with real-time planning when the environment is known and static; and there are two

reasons for this. First, a real-time application of RRT can build from the vehicle’s initial

condition as measured at the time. This is important for our application, since a fixed-

wing UAV, unlike a robotic arm or ground vehicle, cannot easily be placed in a desired

initial state. Secondly is that the planning methodology was developed with future re-

search in mind. We sought to construct a framework that could be extended to more

complex problems, involving environments that can only be mapped, or fully mapped, in

real-time. Recommendations to this effect are noted in the conclusion.

Just like the previous planner, a tree of nodes is built by steering towards randomly

generated points until the goal region is reached. The major difference here is that

steering is done in three dimensions, and uses the dynamically feasible trajectories of the

maneuver space (as opposed to straight lines). The focus of this section will be to describe

the ways in which this motion planner deviates from the standard RRT algorithm. The

deviations center mainly around the incorporation of the maneuver space, using the agile

maneuvers intelligently, and the real-time functionality. A pseudo-code version of the

high-level algorithm is presented in Algorithm 1. Note that the algorithm is specifically

set up to guide the aircraft from an initial hover to a hover in the goal region.

Algorithm 1: RRT

input: Map, initial configuration (xi)

Initialize tree with xi
Generate hover-to-cruise primitive from xi via SteerAgile (hover-to-cruise)
while the goal region has not been reached do

while time interval has not elapsed do
Generate a random point in the map, prand
ExtendTree towards prand (Algorithm 2)

end
UpdateTree (Algorithm 3)

end

5.3.1 Tree Data Structure

The tree that is built by the planner consists of nodes, each of which defines the state of

the aircraft and the type of motion primitive that precedes it. In Fig. 5.6, the node n2,
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Figure 5.6: Tree nodes and motion primitives.

for example, contains not only the pose and time when the aircraft should reach it, but

the edge (or motion primitive) that connects it to n1. The full list of information stored

in each node is as follows:

• Position (in Cartesian coordinates)

• Heading

• Time

• Type of preceding trajectory

The state of the aircraft at the node is defined by the position, heading, and time. The

type of preceding trajectory denotes the type of primitive (trim or agile maneuver) that

was used to arrive at that state from the previous node. If the preceding trajectory is a

trim primitive, the type of preceding trajectory will include the yaw rate and climb/de-

scent rate. In the case of an agile maneuver primitive, the type simply defines which of

the agile maneuver primitives it is.

5.3.2 Extend Tree

The Extend Tree function aims to grow the tree by generating random nodes in the map

and connecting them to the nearest in the existing tree. During the generation of random

nodes, we introduce a slight goal node bias, sampling the end point instead of a random

one every 40 iterations. By default, the algorithm searches the environment uniformly,

and thus sampling the goal node every so often helps balances exploration with movement

towards the desired end region. If the primitive extended from the nearest node ends up

colliding with an obstacle, a new attempt is made with the next nearest node, and so

forth for five iterations. These few iterations help build through narrow corridors and

around walls [45]. The chosen value of five was arrived at via manual tuning. A value
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too high results in the aforementioned benefit of the endeavor being lost, while too high

a value needlessly slows down the algorithm while searching for connections in hopeless

dead ends.

The Extend Tree function terminates in any of the following cases: a collision-free prim-

itive is found, the list of tree nodes has been exhausted, or the maximum number of

iterations through the list has been reached. Upon completion, the function outputs the

node that is being extended away from, the primitive used for steering, and, in the case

of a trim primitive, the time to remain along it.

The planning algorithm makes use of the agile maneuver primitives in specific ways. The

plan is designed to begin from a hover, and thus the first primitive generated is always a

hover-to-cruise maneuver. The cruise-to-hover maneuver is attempted every time it would

land the aircraft in the goal region. The algorithm, therefore, always terminates with this

maneuver, and thus with the aircraft in a hover. The aggressive turn-around maneuver

is generated if a trim primitive extended from the nearest node results in a collision.

This signals that the tree is headed towards an obstacle, and the aggressive turn-around

maneuver can be used to immediately steer away from it, in a minimal amount of space.

The maneuver is connected to the nearest node to which the random sample failed to

connect. Note that the maneuver is only attempted after the first of the five iterations

mentioned above. Although sequential turn-around maneuvers would be unlikely to occur

anyway – because the end of the maneuver points the aircraft back into previously charted,

obstacle-free territory – a simple amendment to the algorithm eliminates the possibility

of this occurring. The basics of the Extend Tree logic are described in Algorithm 2.

Algorithm 2: ExtendTree

input: prand

List nodes in order of nearness to prand
foreach node, η, in the list, if maximum number of iterations have not been reached do

if a cruise-to-hover maneuver would land the aircraft in the goal region then
Generate maneuver primitive ρprim from η via SteerAgile (cruise-to-hover)

else
Generate ρprim from η via Steer (prand)
if η is the first node in the list and ρprim results in a collision then

Generate ρprim from η via SteerAgile (aggressive turn-around)
end

end
if ρprim is collision-free then

break
end

end



Chapter 5. Motion Planning 88

5.3.3 Steer

There are two steer functions, one for trim primitives, Steer, and the other for agile

maneuver primitives, SteerAgile. These functions determine the connections of new nodes

to the tree. The primary goal of the steer functions designed here is to efficiently expand

the tree. The primary steer function, that for trim primitives, analytically determines

which single trim primitive to use for the connection, and for how long to coast along it,

i.e. the optimal cost-to-go. The function solves for yaw rate, ψ̇, climb/descent rate, ż, and

coasting time, ∆t (as will be described in Eq. 5.5). This approach to steering highlights

a salient feature of our methodology, which is that the size of the motion primitive

library can be increased indefinitely without having any effect on the time spent creating

connections. We found that in practice, for our purposes, nothing apparent is lost by

failing to extend the tree to exactly meet the randomly generated nodes, nor neglecting to

consider a larger subset of available connections (i.e. piecing together multiple primitives

to connect nodes). Results demonstrating this observation are provided in Section 5.3.6.1.

The steer function for trim primitives searches in the neighborhood of circular arc param-

eters. It takes as input the configuration of the node it is steering away from, p1(x1, y1, z1)

and ψ1, and the point it is steering towards, p2(x2, y2, z2) = prand. Determining which

trim primitive to use and for how long to coast along it is solved for analytically. This

information is derived from the geometry of the circular arc connecting the two node

points, as seen in Fig. 5.7. The point p1 is not in fact the node being steered away from;

the node being steered away from is the one which comes after it by way of the time-delay.

Referring back to Fig. 4.10, p1 would correspond with B′ and p2 with C. The equations

relating to Fig. 5.7 solve for the trim primitive (yaw rate, ψ̇, and climb/descent rate, ż)

and coasting time, ∆t, that bring the aircraft as close as possible to p2:
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p1(x1; y1; z1)

p2(x2; y2; z2)

Figure 5.7: Top view of 3D circular arc defining trim primitive geometry.

d = ||p2 − p1||

θL = arctan(
y2 − y1

x2 − x1

)− ψ1

rx,y =

√
(x2 − x1)2 + (y2 − y1)2

2 sin θL

L =
dθL

sin θL
(5.5)

ψ̇ =
V

rx,y

∆t =
L

V

ż =
z2 − z1

∆t
,

where θL measures the difference between the vector d and the heading, ψ1, of the node

at p1. The term rx,y is the projection of r on the horizontal plane. The desired constant

speed, V = 7m s−1, appears in these equations to calculate the coasting time. Given that

there are a finite number of trim primitives in the maneuver space, the yaw rate and

climb/descent rate calculated in Eq. 5.5 are each approximated to the closest available

rates. In addition to the end node of the trim primitive, intermediate nodes are also

returned by this function. This is useful to the planner in that it generates more tree

node options to be steered away from in the subsequent Extend Tree phases.

The steer function that handles agile maneuver primitives requires as input only the type

of agile maneuver (of the three) and the node to steer away from. The function uses this

information to output the end node of the maneuver, the data of which is precomputed.
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motion primitive

buffer distance

Obstacle

Figure 5.8: Collision check with obstacle.

No intermediate nodes are returned from this steer function because the planner and

controller are not designed to exit agile maneuvers partway through.

5.3.4 Collision Check

The collision checking function detects if a primitive is outside the bounds of the envi-

ronment or overlapping an obstacle. The function checks in intervals along the primitive

and discards the primitive as a whole if any segment has a collision. The displacements

of each of the three agile maneuvers are nearly restricted to the vertical plane and are

pre-computed. Therefore, the collision check on agile maneuvers is trivial; it looks for

any collision along a path with the same forward and vertical displacements.

As implemented here, the function detects collisions with obstacles that are rectangular

prisms, based on geometric constraints. It could presumably be replaced with a function

that can handle more complex obstacle geometries, so long as they can be approximated

by polyhedrons. For an alternative approach based on circular or cylindrical obstacles

and circular trajectories, see Paranjape et al. [47].

To account for the aircraft’s geometry (i.e. that it is not a point mass) and non-ideal

tracking performance from the controller, a buffer distance is added to all obstacles and

environment boundaries. In effect, obstacles are inflated in the collision checker so that

the aircraft stays a safe distance away from them. Figure 5.8 shows a motion primitive

that would be discarded as having a collision because it falls within the buffer around

the obstacle. This figure also shows the importance of checking for collisions in small

intervals along the primitive. If the primitive were only checked for collisions at its ends,

for instance, it would be deemed collision-free.
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Figure 5.9: Nearness quantity.

5.3.5 Update Tree

The Update Tree function allows the planner to run in real-time, and is the point of

communication between the planner and the control system. Its jobs are to choose which

nodes of the tree the aircraft should follow until the next time the function is called, and

to update the tree of nodes to account for the aircraft’s real-time motion. The function

is called iteratively as the aircraft moves up the tree.

The Update Tree function first determines the optimal node - of those available at the

time - to guide the aircraft towards. It checks all nodes to find out which is ‘nearest’

(as will be defined) to the goal. It then determines how far along the tree to move in

the direction of that node for the current iteration, i.e. how many nodes to commit to

for one time interval, given the aircraft’s dynamics. The aircraft commits to following

these nodes, and they are sent to the control system to be tracked. In the unlikely

scenario that the optimal node itself would be reached before the end of the time interval

(and is not within the goal region), the node’s children will be followed. If there are no

such children to follow, the algorithm sends a cruise-to-hover primitive to the controller.

While the aircraft is hovering, the algorithm can rebuild a tree, starting over again with

the hover-to-cruise maneuver.

The ‘nearness’ quantity is calculated based on the length of the path to the node, the

straight-line distance between the node and the goal, and the distance between the current

root and the node, see Eq. 5.6. In the hypothetical situation depicted in Fig. 5.9, node

number 3 would be ‘nearest’ to the goal of the three options. It is not as close to the goal

as node 1, nor is the path to it from the root node as short as node 2, but the balance of

these quantities - evaluated by Eq. 5.6 - makes it ‘nearest’ the goal.

nearness =
length of path to node+ distance from node to goal

distance from current root to node
(5.6)
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Algorithm 3: UpdateTree

input: ηroot, pgoal, ep

Find tree node, ηopt, nearest pgoal
Get list of nodes connecting ηroot to ηopt
Initialize list of nodes, l, to send to controller for ηtemp ← ηroot to ηopt do

if ηtemp is in goal region or ηtemp exceeds time interval then
break

end
if ηtemp is ηopt then

if ηopt has children then
Continue along children of ηopt

else
Add cruise-to-hover node to l

end

else
Add ηtemp to l

end

end
if ep > ε then

Re-orient l to align with aircraft’s actual pose
Prune tree of all nodes other than l

end
Send l to controller
Prune tree of infeasible nodes

To account for the aircraft’s real-time motion, the Update Tree function also prunes the

tree of the nodes that become infeasible as a result of the commitment (nodes that will be

‘behind’ the aircraft in time - and their children - as it moves ‘up’ the tree). The Update

Tree function is presented in Algorithm 3.

5.3.5.1 Re-planning

The steps in Algorithm 3 under the conditional statement, if ep > ε, constitute a re-

planning operation. The re-planning operation exists to account for the fact that the

aircraft may not track the planned trajectory as closely as is needed or desired. If the

position error of the aircraft, ep becomes too large (greater than a constant magnitude,

ε), the re-planning step in the update phase is triggered. This function performs two

actions, the first of which is to modify the nodes being sent to the controller so that

they align with the actual position and heading of the aircraft. Re-orienting the nodes to

align with the aircraft’s actual position involves revisiting Eq. 5.5. The motion primitives

themselves remain the same, i.e. ψ̇, ż, and ∆t are known, but the positions and headings

of each node must be recalculated. This is done through rearrangement of Eq. 5.5:
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x2 = x1 +

(
V

ψ̇
sin(ψ1 + ψ̇∆t)− V

ψ̇
sinψ1 cos(arcsin

ż

V
)

)

y2 = y1 +

(
−V
ψ̇

cos(ψ1 + ψ̇∆t) +
V

ψ̇
cosψ1 cos(arcsin

ż

V
)

)
(5.7)

z2 = z1 + ż∆t

ψ2 = ψ1 + ψ̇∆t

If there happens to be an agile maneuver in the list of nodes to be modified, the modifi-

cation is simply a coordinate transformation, since the planner only deals with the end

points of agile maneuvers.

The other action taken during re-planning is to prune the tree of all nodes other than

the ones in the list being sent to the aircraft. While it may seem detrimental to throw

away these previously generated nodes, the algorithm is very efficient at building (or

re-building) a tree in real-time - this is tested in Section 6.1.3. The alternative, to keep

the tree nodes, would require translating each node and re-checking each primitive for

collisions. This is a much more costly process (namely, the collision checking), that would

not be of any great benefit, given how quickly the tree can be re-built. The worst case

scenario of the Update Tree function remains, in that the aircraft will be commanded to

perform the cruise-to-hover maneuver if no other collision-free options for pursuing the

goal node exist.

5.3.6 Simulations

Simulations were run to validate the motion planner. Figure 5.10 displays two sample

cases of planning in highly-constrained environments. In the figures, the axes stretch the

length of the environment and the grey objects represent obstacles. The blue dots are the

aircraft’s initial points, and the blue spheres are the desired goal regions. The trajectory

flown is also colored blue, except for the agile maneuvers, where magenta is the hover-

to-cruise maneuver, red is the aggressive turn-around, and green is the cruise-to-hover

maneuver. The remaining parts of the tree, which were not flown, are in black. Figure

5.10a shows a top view of a case where the aircraft had to fly through corridors. When

the aircraft starts at (x, y) = (5, 50), its heading is pointing downwards with respect to

the figure, and thus the aggressive turn-around maneuver ends up being used to change

direction and move towards the goal. Figure 5.10b shows a 3D environment in which the
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(a) Map with corridors

(b) Map with narrow passages

Figure 5.10: Sample motion plans.

aircraft has to pass through narrow gaps. Note that the paths are not optimally short

but that they are smooth in the horizontal plane, i.e. continuity of heading is ensured.

5.3.6.1 Comparison to Dubins Curves

Simulations were also run to contrast the motion planning framework against a baseline

approach. The approach employed for this purpose is RRT with Dubins curves, which is

a commonly used technique for path-planning with ground vehicles [116, 117] and fixed-

wing UAVs [72, 118–120]. Dubins curves are minimum-distance paths between two points

with prescribed headings, for a vehicle that is subject to the constraints of the Dubins

kinematic model [94]:
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ẋ = V cosψ

ẏ = V cosψ (5.8)

ψ̇ = u,

where (x, y) is the position of the vehicle, V is a constant speed, and ψ is the heading.

By incorporating an additional configuration variable for altitude, the Dubins model has

been extended to 3D problems [121], but for simplicity we will use the 2D model here

for comparison. From these equations, we see the most apparent difference between the

two approaches, which is that Dubins curves are the product of a very simple kinematic

model evolving on the configuration space C = R2 × S1. Using this model, p1 and p2 of

Fig. 5.7 (in 2D and with prescribed headings) are connected using the shortest feasible

path. The solution to this problem, given the constraints of Eq. 5.8, is proven to always

consist of minimum-radius circular arcs and/or straight line segments [94]. Therefore,

using the Dubins curve approach, every time the trajectory changes heading, it does so

using the most aggressive turn.

To employ the Dubins curve approach, we replaced our steer functions with one that

solves for the optimal Dubins path. Both motion planning frameworks were run on a 100

m by 100 m map that includes 50 randomly generated obstacles. Representative samples

of trajectory solutions are shown in Fig. 5.11. To compare the two approaches, Maps

A and C use the same layout, as do Maps B and D. In the figures, the axes stretch the

length of the environment, the black objects represent obstacles, and the orange spheres

are the desired goal regions. The trajectories flown are colored blue, except for the agile

maneuvers, where magenta is the hover-to-cruise maneuver, green is the cruise-to-hover

maneuver, and the aggressive turn-arounds are colored red. The remaining parts of the

tree, which were not flown, are colored black. Note that we had to incorporate a part of

our maneuver space, the hover transitions, into the Dubins curve approach just to be able

to solve the desired planning problem, which includes stationary initial and final states.

The few cases plotted in Fig. 5.11 highlight features of the proposed approach. Because

the maneuver space includes many more primitives than there are Dubins curves, the

turns of the trajectories tend to be smoother and less aggressive. Although the Dubins

curves do solve for the shortest paths connecting individual nodes, this optimality tends

to be lost in terms of the full trajectory solutions, as can be seen in Figs. 5.11c and 5.11d.
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(a) Map A: using maneuver space (b) Map B: using maneuver space

(c) Map C: using Dubins curves (d) Map D: using Dubins curves

Figure 5.11: Motion plans through a 100 m by 100 m map with 50 randomly generated
obstacles. Maps A and B use the proposed maneuver space approach; Maps C and D

use Dubins curves.

In a different map, we investigate how the two approaches would fare in a situation that

necessitated a near 180-degree turn-around; the results are plotted in Fig. 5.12. While

Dubins curves can indeed be used to generate a feasible path through this map, there are

disadvantages to the approach relative to ours. The planner using Dubins curves generally

takes more time to solve such a problem (the greater number of black paths in Fig. 5.12b

signifies the longer time it took to find a feasible solution). This is because many positive

collision checks have to occur before the Dubins curves can navigate a path out of the dead

end. Using the proposed maneuver space, however, one of the first positive collision checks

results in the generation of the functionally-designed aggressive turn-around maneuver,

which immediately provides the beginning of a way out. Figure 5.12 also illustrates how
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(a) Map E: using maneuver space

(b) Map F: using Dubins curves

Figure 5.12: Motion plans involving a retreat from a narrow corridor with a dead
end. Map E uses the proposed maneuver space approach; Map F uses Dubins curves.

our planner tends to generate smoother trajectories through narrow corridors, where the

Dubins approach bounces around between the minimum-radius curves.

We evaluated the performance of each algorithm, in terms of computational efficiency

and cost (length of the path solution). To do so, we programmed them both on the test

platform’s computer (an ODROID XU4 – see Section 6.1.3). Each algorithm was run

1000 times over the map of Fig. 5.11, and again over the map of Fig. 5.12. Only the

former map uses randomly generated obstacles, but in either case the planner itself is

random in its sampling of the environment, making each solution unique. For the map of

Fig. 5.11, the average time to find a feasible trajectory using the maneuver space was 150

milliseconds, compared to 96 milliseconds using Dubins curves. The average path length

was 180 m using the maneuver space, and 182 m using Dubins curves. These results

reinforce the point that the optimality of individual Dubins paths does not carry over to

the full solution. For the map of Fig. 5.12, in which the aircraft had to retreat from a

dead end, the average computation time and path length using the maneuver space was

20 milliseconds and 71 m, respectively. With Dubins curves, the algorithm took slightly

longer, 26 milliseconds, and averaged a significantly longer path of 102 m.
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A final matter of differentiation between the two approaches is how well they lend them-

selves to the trajectory tracking problem. In this respect, there are a few things to

note about the Dubins curves approach. There are no transition maneuvers between

curves, and the kinematic model assumes accelerations can be controlled directly. Be-

ing restricted by the aircraft’s dynamics, no such arbitrary accelerations can in fact be

generated. Also recall that the only turns available are the minimum-radius turns. A

conservatively chosen turn-rate constraint will limit the abilities of the planner to nav-

igate around obstacles, while a high turn-rate will require the aircraft to track a more

aggressive trajectory. Minimum-radius turns without transitions make the tracking prob-

lem demanding, and on top of this, the Dubins model offers no feedforward control input

solutions for the aircraft’s actuators. We revisit this matter in Section 6.5.1.

5.4 Benefits and Limitations of RRT

The RRT algorithm was determined to be the most suitable planning algorithm for the

objectives of this research, but it is worth noting both its benefits and limitations. The

main appeals of RRT in any application are that it efficiently explores high-dimensional

state spaces, and can easily handle obstacles and differential constraints. The algorithm

can produce dynamically feasible trajectories in a short period of time. Another strong

appeal of RRT for our work is that it allowed integration of the maneuver space. When

a random point is sampled, the connection drawn to it from the tree is not required to

reach the random point exactly to maintain the integrity of the algorithm. In fact, it is

common of RRT implementations to limit the length of the connections, such that the

random samples are controlling the direction of the tree growth but not the rate. This is

something the maneuver space can be used for - growing the tree in a desired direction.

It cannot, however, guide the aircraft exactly to a commanded point. In terms of the

advantages of RRT, it is also worth noting that the algorithm is widely used and actively

being developed; variations and improvements are consistently surfacing in the literature.

The main disadvantage of RRT is that the plan produced by the algorithm is likely sub-

optimal, which is generally the price of efficiency. In some applications, RRT is used as an

initial planning step, then followed by a post-processing method that may smooth or even

optimize the trajectory. There is also an optimal version of RRT available, called RRT*,

but employing this version of the algorithm requires the ability to find exact connections

between nodes. The maneuver space is not appropriate for this operation, which entails

solving costly boundary value problems that dominate the complexity of the algorithm.

Furthermore, RRT* takes many iterations before any significant benefit is seen over the
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standard algorithm, i.e. even if RRT* could be employed using the maneuver space, it is

unlikely we would see any noticeable difference in optimality if we aimed to maintain the

short execution time of the planner.

Another drawback of RRT is that completion, i.e. reaching the goal, is only guaranteed

given infinite time. In practice, however, we never found this to be a serious issue. Rarely

was the algorithm unable to find a trajectory to the goal in more than two seconds.

Furthermore, with our proposed implementation, the user could always decide to restart

the motion planner if it did not immediately find a solution. Because the planner is based

around random sampling, restarting it would begin drawing a completely new tree, even

given the same initial condition.

The algorithm is also known to function poorly in certain types of environments. Like

many other planning algorithms, RRT can struggle to pass through narrow halls and

passages, and is much better at exploring open spaces with dispersed obstacles than

maze-like maps. As described in Section 5.3.2, this deficiency can be mitigated with a

simple alteration of the Extend Tree function. Finally, we note that while the planner

produces feedforward control inputs, it is detached from the feedback controller. The

planner outputs a trajectory that must be tracked well; failings of the feedback controller

are not addressed within the planner, except via re-planning if errors grow sufficiently

large.





Chapter 6

Simulation and Flight Test

Validation

In this chapter we discuss the setup and results of simulations and flight tests. A first

set of simulations and flights was aimed at validating the methodology for generation

and control of the agile maneuver primitives. The agile maneuvers were performed au-

tonomously to test how well they could be tracked. In the second set of testing, the

real-time motion planner is evaluated. Both sets of flight tests demonstrate a significant

level of implementation. For one, all tests are performed using only on-board sensing

and computing – including the real-time motion planning. Additionally, unlike some of

the relevant literature [49, 73], no launching device is used, meaning that maneuvers

and motion plans are not begun from precisely controlled initial conditions; the tests are

initiated midair, either from level flight or a hover.

This chapter begins with a description of the aircraft platform and its various components

used for autonomous flight testing. Section 6.2 will describe the MATLAB/Simulink

simulation environment. Section 6.3 will discuss the hardware-in-the-loop setup that was

used as an intermediate step between Simulink simulations and flight tests. The first set

of tests on agile maneuver performance is described in Section 6.4, and the tests involving

the motion planner are discussed in Section 6.5.

6.1 Platform Description

This section details the aircraft platform. We discuss the basic layout of the aircraft on

which the autonomous hardware is mounted, as well as the autopilot flight controller and

101
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the computer used to run the motion planning algorithm.

6.1.1 Aircraft

The aircraft used for flight test experiments is constructed around the McFoamy airframe

by West Michigan Park Flyers. The airframe is meant for RC piloting, and was designed

for smooth flying, aggressive maneuvers, and easy hovering. It is made of EPP foam, has

a 0.86 m wingspan, and weighs under 0.2 kg out of the box. The airframe is intended

to be loaded with servos, carbon fiber reinforcement rods (that support the fuselage), a

receiver for the RC remote, a battery, an electronic speed controller (ESC), and a motor

and propeller. For flying autonomously, we also had to add an autopilot flight controller,

an ODROID computer, a GPS, and a radio telemetry kit. The full list of equipment

attached to the airframe is as follows:

• Great Planes RimFire 400 Outrunner brushless DC motor

• Electrifly Powerflow 10×4.5 propeller

• Electifly Silver Series 25A brushless electronic speed controller

• Venom 50C 3S 850mA 11.1V LiPo battery

• 4 × HiTEC HS-65MG metal gear feather servos

• Pixhawk flight controller

• 3DR uBlox GPS

• 2mm-diameter carbon fiber reinforcement rods

• Futaba R6303SB micro receiver

• HKPilot micro radio telemetry kit

• ODROID XU4 single board computer

Equipped with only the parts needed for RC piloting, the weight and weight distribution

of the aircraft are ideal for agile flight. Adding the extra parts needed to fly autonomously,

we aimed to keep the weight low, and the weight distribution minimally affected. Parts

of the foam fuselage, near the middle of the wing, are cut away to make room for the

autopilot and ODROID near the aircraft’s center of gravity. The LiPo battery is bigger

and heavier than what is typically used for RC flight because, in addition to the motor,

it has to power the two computers. Because it is relatively heavy, the battery is also

placed near the aircraft’s center of gravity. To avoid magnetic interference with other

components, the GPS is mounted on the aircraft’s nose.

The radio telemetry kit is used for communication between the aircraft and a ground

station. MAVLink [122] is the protocol used for communication between the Pixhawk
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(a) Top view of aircraft

(b) Bottom view of aircraft

Figure 6.1: Aircraft platform setup.

flight controller and the ground station software, QGroundControl (QGC). QGC is only

used to calibrate sensors and tune gains on the fly; the aircraft does not need the ground

station to fly autonomously.

Because of the extra weight on the aircraft, the motor we chose is more powerful than

the ones typically used for RC flight. To keep the motor safely secured to the airframe, a

custom-designed motor mount was 3D printed in the McGill Aerospace Mechatronics Lab

to replace the mount that comes with McFoamy. Figure 6.1 shows the aircraft assembly

for the first set of flight tests, for which the ODROID was not needed. For the flight tests

involving motion planning, the battery was moved further towards the aircraft’s nose,

and the ODROID was placed directly behind it. For the first set of tests, the aircraft

weighed 0.484 kg. Fully equipped, i.e. with the ODROID, the aircraft weighs 0.576 kg.
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6.1.2 Pixhawk

The autopilot flight controller used on the aircraft is the Pixhawk. It runs the PX4 flight

stack on a NuttX OS. Among other standard operations, the autopilot handles RC and

desktop communication, data logging, sensor fusion, interpreting the motion plan, and

control. The control system is programmed as a custom module within the PX4 open-

source flight stack. This module implements the feedback control laws, and the control

loop runs at 200 Hz. For the second round of flight tests, the control system module

is additionally responsible for reading in the motion plan and converting it into a time-

dependent trajectory with feedforward control inputs. The maneuver space developed

in Chapter 4 is stored as a library of maneuvers on a micro SD card that is inserted

in the Pixhawk. All the relevant information detailing the maneuvers is here and can

be accessed by the control system module. For trim primitives, the states and control

inputs that define each primitive are stored in the form of a look-up table. The agile

maneuver primitives - because they are finite-time transitions - are stored in the form of

time-dependent reference trajectories and feedforward control inputs; as matrices that are

interpolated by time within the control system. When the planning algorithm is running,

it tells the control system which maneuver to execute at a given time. The controller seeks

out this maneuver from the library in order to compute the exact trajectory to track, and

feedforward control inputs to use. As such, the planning algorithm does not need to

deal with the contents of the library, it only needs to know basic characteristics of the

maneuver space, in terms of the spatial geometry of the primitives. For instance, unlike

the control system, the planner does not need to know the time-dependent trajectory, nor

the control inputs corresponding to an agile maneuver. It simply needs to know where

the maneuver begins and ends, and with what value of heading.

Two different Pixhawks were used throughout the flight tests. The first set of tests - on

agile maneuver performance - used the Pixhawk 1, see Fig. 6.2a. The second set of tests -

on motion planning - used the Pixhawk Mini, see Fig. 6.2b. The main difference between

the two autopilots is their size and weight. The Pixhawk Mini is approximately a third the

size and half the weight of the Pixhawk 1. Nevertheless, it has more powerful processors

and sensors. The only reason the Pixhawk 1 was used for the first set of flight tests is

that the Pixhawk Mini did not exist at the time. The sensors that the Pixhawks are

housing include two inertial measurement units (IMUs), a gyroscope, a magnetometer,

and a barometric pressure sensor. The only other sensor used on the aircraft is an external

GPS. State estimation is performed using the flight stack’s default extended Kalman filter

(EKF). The EKF fuses measurements from the Pixhawk’s internal sensors and the GPS

to estimate the aircraft’s full state vector.
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(a) Pixhawk 1

(b) Pixhawk Mini

Figure 6.2: Pixhawk autopilot flight controllers.

6.1.3 ODROID

The motion planning algorithm requires more processing power and memory than the

Pixhawk can provide. Instead, it is programmed (in C++) on an ODROID XU4, see Fig.

6.3. The ODROID is a single-board computer with a 2GHz quad-core processor and 2GB

of RAM. The board runs Ubuntu on a Linux kernel. The ODROID is connected to the

Pixhawk via an FTDI USB-to-UART cable. Communication goes both ways and uses the

MAVLink protocol. When the motion planner is triggered to begin, the Pixhawk sends

the aircraft’s initial pose to the ODROID. As the motion planning algorithm runs, the

ODROID sends individual nodes to the Pixhawk (in the Update Tree function), which

are read within the control system module. The data stored in the nodes is interpreted

by the Pixhawk’s control system as time-dependent trajectories and feedforward control

inputs.

Before conducting flight tests, the motion planning algorithm of Section 5.3 was repeat-

edly tested on the ODROID to gain insight into the efficiency of the algorithm and the

processing capabilities of the computer. Twenty runs of each of the maps in Section

5.3.6 were performed on the ODROID. The average time to find a feasible path to the

end goal was 0.5 s, and the maximum time never exceeded 5 s. There were no failure

cases, although we cannot make any theoretical guarantees for finding a feasible path in
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Figure 6.3: ODROID XU4.

a reasonable amount of time. Note that the execution time of the algorithm is subject to

the size and complexity of the environment.

Tests were also run on the ODROID to evaluate the practicality of employing the re-

planning step (as described in Section 5.3.5.1). We questioned whether the planner was

efficient enough to recover from discarding (‘pruning’) almost all of the tree nodes in real-

time, during flight. Using the map of Fig. 5.10b, we ran the motion planning algorithm

again twenty times. This time, the planner was left to run until the Update Tree function

had commanded a path that ended in the goal region; as though the aircraft were in flight

and the algorithm were running in real-time. Instead of setting up the ODROID in a

simulation loop with the aircraft dynamics model, we simply programmed fake position

errors into the algorithm such that the re-planning step would be repeatedly triggered.

For each run, the re-planning step was triggered twice, as though the aircraft had deviated

too far from the commanded path. Each time the re-planning step occurred, the algorithm

was able to rapidly rebuild a new tree. By the next time the Update Tree function was

called after re-planning - it is called every half second - the tree would have already grown

to hold approximately 1000 new nodes, on average. For reference, the tree rarely ever

grew to have many more than 2000 nodes at a time, for the map in question. In the

twenty runs, nineteen successfully resulted in a path to the goal region. In the one other

case, the planner got stuck and had to send a command to perform the cruise-to-hover

maneuver before reaching the goal region. It cannot necessarily be determined that the

re-planning step was the cause of this failure. We noted that the number of tree nodes in

subsequent calls of the Update Tree function - before and after re-planning - was barely

affected, and thus we can at least rule out the notion of the failure being caused by a lack

of trajectory options post-tree-pruning.
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Figure 6.4: Block diagram of simulation architecture.

6.2 Simulation Environment

Simulations are performed in MATLAB/Simulink prior to conducting flight tests. Be-

ing much less expensive and more convenient, simulations were a valuable tool for rapid

development and preliminary validation. Simulations were used to evaluate trajectory

generation, motion plan generation, and the control system. In particular, the simula-

tion environment was useful for developing and tuning the feedback controller, and also

provided a sanity check of the full control system architecture, i.e. the combination of

feedforward and feedback inputs.

Simulations were run for testing agile maneuver tracking and full motion plan tracking,

and will be discussed in those respective sections. Where appropriate, simulation results

will be contrasted with experimental results. A block diagram of the simulation is shown

in Fig. 6.4. The agile maneuver trajectory or motion plan is output as a reference

trajectory, xref , and feedforward control vector, uff . As the simulation is running, the

output of the feedback controller, ∆ufb, is summed with the feedforward component to

produce the full control input, u. The full aircraft dynamics model of Section 2.1 is

modeled in Simulink.

6.3 Hardware-in-the-Loop Testing

To mitigate the transition from pure simulations to flight tests, an intermediate step

of hardware-in-the-loop (HIL) testing is performed. The HIL testing captures the com-

plexities and issues associated with a real-time implementation of the control system on

the autopilot board. These include sensor noise, state estimation errors, controller dis-

cretization, and timing delays. By incorporating these factors, the HIL testing provides



Chapter 6. Simulation and Flight Test Validation 108

Pixhawk QGC Simulink Model

X-Plane

control

MAVLink UDP

sensor
measurements

state
vector

inputs
control
inputs

sensor
measurements

Figure 6.5: Hardware-in-the-loop configuration.

a further level of validation of the control system prior to flight testing. The HIL tests

also ensure that implementation mistakes do not result in crashes or wasted time during

flight testing; in that respect, the value of the HIL setup cannot be overstated.

The HIL configuration is illustrated in Fig. 6.5. The setup includes the Pixhawk autopilot,

the ground control station, the Simulink aircraft dynamics model, and X-Plane. The

ground control station sits between the flight controller and the dynamics simulator to

act as a user interface. Our uses for the QGC interface include tuning gains on the fly,

downloading data logs, and configuring the RC transmitter. The Pixhawk communicates

with QGC using the MAVLink protocol via a USB connection. The ground control station

in turn talks to the dynamics model via UDP messaging. By design, the PX4 flight stack

can be integrated with X-Plane to harness their physics engine. However, given the high

fidelity of our aircraft dynamics model, we use it in place of the X-Plane model. The

X-Plane software stays in the loop to provide 3D visualization, which can be useful for

interpreting the simulation outputs, i.e. the aircraft’s motion.

The move from a pure simulation environment to the hardware-in-the-loop setup intro-

duces outlier data and noisy signals (the characteristics of the sensors’ noise is artificially

generated in Simulink). Achieving effective autonomous flight in the HIL setup thus

required detection and removal of outliers, as well as signal smoothing. The absence of

these factors in the pure simulation environment meant that the feedback controller gains

tuned there were not appropriate for the HIL, nor would they be for actual flight, and thus

gains were re-tuned in the HIL. While the gains tuned in the pure simulation environment

would be too large for flight test implementations, the gains tuned in the HIL were much

more appropriate. This was a major benefit of the HIL implementation; having to tune

the gains down in flight tests from the values attained in the pure simulation environment

would be a tedious and time-consuming process that would have increased the likelihood

of crashing the aircraft.
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Details on outlier detection and removal, signal smoothing, and the general HIL setup

are discussed in [123]. Results of various aerobatic maneuvers performed in the HIL,

using the same aircraft model, can be found in [99]. In this thesis we focus only on the

results of the pure (Simulink) simulations and flight tests. Although the HIL served as

a useful tool for all the reasons stated, we found the pure simulation environment better

suited for generating reproducible results that could be compared to flight tests. The

pure simulation environment provides a more convenient way to generate, capture, and

analyze data; and contrasting these results to those of experiments is useful for exposing

practical implementation issues. As the chapter proceeds, the simulations we discuss will

refer to pure simulations.

6.4 Agile Maneuver Tests

The first set of flight tests were used to validate the methodology of trajectory genera-

tion and control of the agile maneuvers developed in Section 4.2. Under evaluation was

whether the motion primitives were in fact feasible, and whether the combined feedfor-

ward and feedback control scheme would effectively track the agile maneuver trajectories.

Tests were performed for the aggressive turn-around, the cruise-to-hover, the hover-to-

cruise, and the knife-edge maneuvers.

The concept of trim primitives had not been explored at the time that these tests took

place. At the beginning of the second round of testing - the following year - some of

the trim primitives were tested in a similar manner to the agile maneuvers. The results

are not discussed in the thesis since they are trivial in comparison to the agile maneuver

primitives.

6.4.1 Flight Test Implementation Details

Flight tests are performed in the Concordia University Stinger Dome. The dome is made

of fabric that is GPS-transparent. The following procedure is adhered to each time an agile

maneuver is tested. Using the Futaba T7C transmitter, an expert RC pilot manually has

the aircraft take-off. The pilot then flips a binary switch on the transmitter (programmed

via QGC and a custom PX4 module), putting the aircraft into fully automatic straight

and level flight. Straight and level flight commands the trim conditions associated with

the speed of V = 7m s−1, and the heading estimated when the switch was flipped. After

the aircraft stabilizes at the desired speed, in approximately 1 to 3 s, the pilot flips
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another switch to trigger the agile maneuver. In the case of the ATA, for example, the

maneuver terminates with the aircraft recovering to automatic straight and level flight

with the opposite heading. From there, the pilot switches back to manual control to land

the aircraft.

6.4.2 Aggressive Turn-Around

Results for the aggressive turn-around maneuver are displayed in Figs. 6.6 and 6.7. Sim-

ulations and experimental results are contrasted with the optimization solution, i.e. the

reference trajectory and feedforward control found in Section 4.2.1 (note that simulations

refer to Simulink simulations, not HIL simulations). Flight tests involved repetitions of

each maneuver, however, for clarity the plots show only one experiment. In order to com-

pare simulation and flight test results to the optimal maneuver, the optimization states

and controls plotted are the direct solution associated with V0 = 7m s−1; they have not

been contaminated by the velocity parametrization process of Section 4.5.1.

In simulations, the trajectory tracking performance is nearly ideal. Note in Fig. 6.7a,

that the feedback controller is contributing to the full control action, since the simulated

deflections are not perfectly aligned with the optimal feedforward inputs.

Observing the experimental results in Fig. 6.6a, we see that the attitude at the start

and end of the maneuver is reasonably near the reference attitude. At approximately 0.5

s, the flight test attitude profiles begin to advance ahead of the optimization reference

trajectory. This phenomenon is common among all flight tests and all maneuvers, and

will be addressed shortly. Figure 6.6b shows room for improvement in position tracking.

Such an improvement might be gained from tuning the position tracker gains for the

maneuver specifically, and swapping into these gains when the maneuver begins. The

forward speed, shown in Fig. 6.6c, is not tracked perfectly, but does start and end near

the desired speed.

Examining the control surface deflections of the experiment shown in Fig. 6.7a, we note

that they never deviate too far from the feedforward inputs, which would be the case if

the tracking errors were large (and hence the feedback compensation was large as well).

Figure 6.7b is where we see the most concerning results of the experiment. When initial

testing began and the aircraft was first put in automatically controlled straight and level

flight, it was immediately apparent that not enough thrust was being produced to fly

at the desired velocity. The suspected reason for this is inaccuracies in drag modeling.

At the time of modeling, the carbon fibre reinforcement rods (see Fig. 6.1b) were not
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(a) Attitude

(b) Position

(c) Forward speed

Figure 6.6: ATA trajectories from optimization, simulation, and experiments, V0 =
7m s−1.
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(a) Control surface deflections

(b) Thrust

Figure 6.7: ATA control inputs from optimization, simulation, and experiments, V0 =
7m s−1.

considered, and thus there was no accounting for the drag they produce. To address

this issue temporarily, a gain is introduced into the mapping of the commanded motor

rotational speed, ωT , to the actual thrust input to the aircraft, in PWM. The gain is tuned

to a value of 1.1 by trial and error flights in the Stinger Dome. Where ωT is plotted in

Fig. 6.7b, the gain is removed to show the disparity between the feedforward and actual

thrust input. This disparity presumably contributes to the phenomenon we see in the

attitude curves in Fig. 6.6a. With a higher thrust input, the propeller is creating a greater

slipstream effect, and thus the feedforward control surface deflections are more effective

than as simulated. This hypothesis was confirmed using Simulink. Simulations of the

ATA were conducted with a slight modification to reproduce this effect. With the rest of

the model untouched, the slipstream velocities were multiplied by a gain, as though the
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thrust input, ωT , were as high as the flight test values in Fig. 6.7b. As predicted, the

simulated attitude changes preceded the reference trajectory, just as in Fig. 6.6a.

We make some final observations about the experimental results, recognizing that the

trajectory generation phase is pursued with specific objectives for the maneuver in mind

- realized by the optimal control problem formulation. The rapid heading reversal is

achieved as desired; the heading reaches 180 degrees by t = tf . The optimal control

problem is also defined such that the aircraft returns to straight and level flight at the

initial position and with the initial velocity. We see from Figs. 6.6a–6.6c that the aircraft

does in fact recover to straight and level flight, very near the initial velocity, but off

from the desired final position. Given the importance of position tracking for following a

motion plan, further gain tuning of the position tracker was required during that phase

of implementation.

6.4.3 Cruise-to-Hover

Figure 6.9 displays the results from simulations and flight tests for the cruise-to-hover

maneuver. The maneuver ends with a 90 degree pitch angle, which creates a singularity

in the Euler angles. For this reason, the body-frame angular errors derived from the

quaternion (see Section 2.2.2) are displayed for the body-frame x- and z-axes, instead of

roll and yaw.

The pitch-up motion of the flight experiment precedes the trajectory it is meant to track

(see Fig. 6.8a), as was observed during the ATA. At the end of the maneuver, the aircraft

is pitched nose-up, as intended, with some errors in Ex and Ez. As shown in Fig. 6.8b,

position tracking errors are present, however, just after 1 s, the aircraft maintains a

near steady position. Note, in Fig. 6.8c, that the forward velocity is near zero by this

point in time. We see in Fig. 6.9a that the control surfaces are normally far from being

saturated, but the ailerons and rudder are consistently being actuated in attempt to keep

the aircraft from rolling or yawing. This figure also reveals that less elevator deflection is

needed to pitch the aircraft upwards than the modeling suggested, as observed between

approximately 0 and 1.2 s. Shown again in Fig. 6.9b, more thrust is needed to overcome

drag in experiments than in simulations.
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(a) Attitude

(b) Position

(c) Forward speed

Figure 6.8: CTH trajectories from optimization, simulation, and experiments, V0 =
7m s−1.
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(a) Control surface deflections

(b) Thrust

Figure 6.9: CTH control inputs from optimization, simulation, and experiments,
V0 = 7m s−1.

Figure 6.10: 3D visualization of HTC experiment trajectory, Vf = 7m s−1. Aircraft
drawings are scaled down and spaced out over a consistent time interval.
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Table 6.1: Root-mean-square error for ATA, CTH, and HTC maneuvers in simulations
(‘Sim’) and experiments (‘Exp’).

States Unit
ATA CTH HTC

Sim Exp Sim Exp Sim Exp
u m s−1 0.10 1.15 0.05 0.70 0.11 0.62

φ/Ex
◦ 4.57 24.2 3.80 4.67 11.1 13.9

θ ◦ 2.62 15.1 1.38 10.3 2.80 4.50
ψ/Ez

◦ 2.44 25.3 1.72 6.43 4.50 6.34
x m 0.05 0.41 0.05 0.61 0.20 0.24
y m 0.02 0.67 0.03 0.87 0.29 0.36
z m 0.07 0.69 0.01 0.53 0.03 0.23

6.4.4 Hover-to-Cruise

In terms of the procedure, the experimental tests for the HTC maneuver always follow the

CTH maneuver. In flight testing, the aircraft automatically executes the CTH maneuver,

holds a stationary hover for a few seconds, and then executes the HTC maneuver. A 3D

visualization of an HTC flight test is shown in Fig. 6.10. In the case plotted, Vf = 7m s−1.

A quantitative assessment of the tracking performance exhibited in this maneuver and

all others plotted (Figs. 6.6–6.10) is provided in Table 6.1. Table 6.1 lists the root-mean-

square error (RMSE) values of the states being tracked with feedback. Note that for

the hover transition maneuvers, Ex and Ez are listed in place of φ and ψ. As expected,

the tracking performance is superior in simulations than in experiments. The gap in

the performance metrics between simulations and experiments is smallest for the HTC

maneuver, which has comparable RMSE values for most tracked states. In experiments,

the attitude tracking was best during the CTH maneuver, while the position tracking was

best during the HTC maneuver. Multiple flight test demonstrations of each maneuver are

included in a supplementary video: https://www.youtube.com/watch?v=_hEF10_yiE4.

6.4.5 Knife-Edge

The flight tests for the knife-edge maneuver were not as successful as the others. Only

after some heuristic tuning on the fly was the knife-edge able to be performed adequately,

as seen in the video. To get the knife-edge working, the feedforward rudder input used to

hold the steady maneuver - the one found in Section 4.4 - had to be lowered significantly.

Another unexpected observation from the flight tests was that, after the tuning, the

aircraft could transition directly from straight and level flight into a 90 degree roll, and

https://www.youtube.com/watch?v=_hEF10_yiE4
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vice-versa, very quickly (in a fraction of a second). In practice, the transition maneuvers

were redundant; they made no noticeable difference to the maneuver performance.

The knife-edge maneuver that was flown in tests is one optimized using V = 7 m s−1. In

Section 4.4, we used V = 5 m s−1 because a slower speed seemed more appropriate for

the small size of the flight test environment. However, once flight tests began we found

the aircraft to generally be more stable at a slightly higher speed. At V = 5 m s−1, the

aircraft had to pitch up to a large angle to fly in trimmed straight and level flight.

Figures 6.11 and 6.12, show the optimization and experimental results. The transition

to a 90 degree roll happens in approximately 0.25 s, and by approximately 1.5 s, the

aircraft has stabilized about the desired attitude. In Fig. 6.11b, we see that the plane

climbs approximately one meter during the knife edge, and begins to stray from the

desired horizontal-plane path as the knife-edge is held. This highlights another reason

why the knife-edge maneuver was not further pursued for motion planning. The purpose

of flying a knife-edge would be to allow the aircraft to pass through passages more narrow

than its wingspan. This utility is negated by the path-tracking errors that result from

executing the maneuver. If the knife-edge maneuver cannot very closely track a desired

path to thread the needle between two neighboring obstacles, it loses its utility for motion

planning. Note that in Fig. 6.11c, the reference value for u is approximately 6 m s−1,

rather than 7 m s−1, since u is the component of velocity aligned with the body frame

x-axis, and doesn’t represent the full magnitude of the velocity.

In Fig. 6.12a, we see that the aileron and elevator usage once knife-edge flight is steady

is nearly as commanded by the optimization, but, as mentioned, the rudder input is far

from the feedforward input of the optimization. The actual thrust used to hold the knife-

edge is also between 500 and 1000 rpms more than the optimized value; these results all

suggest model inaccuracies. As previously noted, one source of error is that the aircraft

is experiencing more drag than was accounted for in the model during optimization,

because at the time there was no modeling of the carbon fibre reinforcement rods. We

acknowledge the possibility that there are other modeling inaccuracies present, which are

more relevant during this maneuver than the other three.

6.5 Motion Planning Tests

The second set of tests sought to validate the motion planner in concert with the control

system. We look at simulation and flight test results separately, since flight test motion

plans are generated on the fly and thus will be different from simulated plans.
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(a) Attitude

(b) Position

(c) Forward speed

Figure 6.11: Knife-edge trajectories from optimization and experiments, V0 = 7m s−1.
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(a) Control surface deflections

(b) Thrust

Figure 6.12: Knife-edge control inputs from optimization and experiments, V0 =
7m s−1.

6.5.1 Simulations

Simulations were run to evaluate how well a generated motion plan would be tracked by

the control system. A benefit of simulation testing is that, relative to the actual testing

area, the simulation environment allows for flight on larger maps.

To establish the role that the planner plays in terms of the trajectory tracking problem,

we also used simulations to track plans generated using the Dubins approach introduced

in Section 5.3.6.1. Unlike our planner, the Dubins approach solves only for the reference

path and heading, since it is based on the simple kinematic model of Eq. 5.8. Of particular

note is that the Dubins model provides no means of calculating the feedforward control

inputs. Accordingly, these terms were set to zero when tracking the Dubins curves (we
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Figure 6.13: Simulated path tracking, obstacles have been removed for clarity.

Table 6.2: Root-mean-square errors and maximum errors for position tracking in
simulations. Feedforward control inputs denoted by ‘FF’.

Map RMSE [m] max(ep)[m]max(ep)[m]max(ep)[m]
A (Maneuver Space) 0.22 0.86
B (Maneuver Space) 0.27 0.62
E (Maneuver Space) 0.38 0.71

C (Dubins) 5.04 12.37
D (Dubins) – –
F (Dubins) 3.81 13.68

C (Dubins + FF) 1.21 2.76
D (Dubins + FF) 1.58 2.91
F (Dubins + FF) 2.13 3.79

made the exception to include feedforward inputs during hover transitions). For good

measure, we ran the set of simulations associated with the Dubins approach an extra

time, including the feedforward inputs generated using the high-fidelity model. In effect,

we thereby treat the Dubins paths as a small subset of our trim primitives: straight and

level flight, a sharp banked turn to the right, and a sharp banked turn to the left.

We simulated all of Maps A-F in Figs. 5.11 and 5.12. As an example, the path tracking

performance for the trajectory shown in Fig. 5.11b is plotted in Fig. 6.13. The RMSE

and maximum error on position for each simulation are listed in Table 6.2. Maps A, B,

and E use the maneuver space, while Maps C, D, and F use Dubins curves – note the

large discrepancies in tracking performance between the two approaches. In the case of

Map D, the aircraft essentially failed to track the trajectory; the position errors grew
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so large we opted not to list them. Also shown in this table are the results of tracking

the Dubins curves whilst incorporating the feedforward inputs generated using the high-

fidelity model. Even after integrating this aspect of our motion primitives into the Dubins

approach, the tracking performance remained inferior. With respect to the RMSE values,

there was still a difference in position error by a factor of approximately five between the

two methods. These results can be attributed to the lack of transition modeling between

the straight segments and highly aggressive turns.

With respect to the maneuver space approach, the position errors, along with the 0.86 m

wingspan of the aircraft, can be used to inform the buffer distance parameter found in the

collision checker. Given these values, it would be reasonable to set the buffer distance to

at least 1.5 m to ensure safe, collision-free flight. The tracking performance and buffer size

must be interpreted with respect to the environment the aircraft is tasked with passing

through. As long as there is sufficient room left after the obstacles are buffered for the

tree to efficiently expand through the map, as has been the case here, the 1.5 m distance

is acceptable.

6.5.2 Flight Test Implementation Details

Once again, flight tests are performed in the Concordia Stinger Dome. The flights were

mainly limited to one quarter of the dome, a 30 m by 60 m field. For a limited number of

tests, we were able to utilize half of the dome, a 60 m by 60 m field. Overall, the dome was

a convenient setting for performing flight tests, however, one disadvantage was that there

was no practical way of installing extra obstacles in the environment. The dome itself is

too empty to show off the capabilities of the planner and control system. Obstacles that

we would have liked to install in the dome were programmed into the motion planner

code on the ODROID as inertial coordinates. As such, the only thing lacking due to this

restriction is the visual presence of the obstacles in videos. The supplementary videos,

however, have been post-processed to include obstacle shapes edited into the environment

as they would exist according to the coordinates programmed in the motion planner.

The experimental procedure for testing the motion planner and control system is as

follows. Using the Futaba T7C RC transmitter, the trained pilot manually takes off and

flies the aircraft into a hover. He then flicks a switch on the transmitter to put the aircraft

into an autonomously controlled hover (the hover trim primitive). Next, he flicks another

switch to trigger the motion planner to begin. It is at this time that the Pixhawk Mini

sends the aircraft’s current measured pose (position and heading) to the ODROID as the

initial condition to the motion planning algorithm.
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As a practical measure, the planner was programmed to delay the first iteration of the

Update Tree function until the tree reached the goal region. While not strictly necessary,

doing so added an extra measure of safety by ensuring that at least some feasible path

to the goal region existed before taking off from the hover. This step also allowed us to

demonstrate in video how efficient the planner was at finding a feasible path. The delay

never lasted more than a few seconds, and often less than one. The planner continues to

run while in flight, and as per the Update Tree function, may end up on a more direct

path towards the goal. The step of delaying the first iteration of the Update Tree function

can certainly be discarded for applications in which an immediate take-off is preferable.

The dome is only open for a few months of the year, and our access to it during those

months is limited. For this reason, we unfortunately did not have the time to validate

every part of the motion planner. Specifically, we did not get to implementing and testing

the re-planning algorithm. In Section 6.1.3, we included it in simulations of the full motion

planning algorithm to show that, in terms of efficiency, the re-planning step is feasible.

The flight tests that follow in this section, however, omit the re-planning step from the

algorithm, and thus we cannot yet quantify the effect it has on tracking performance.

6.5.3 Flight Tests

With flight tests, we aimed to discover how efficiently and effectively the motion planning

algorithm could generate a plan to guide the aircraft to the goal region, and how well

that plan would be tracked. Three maps of virtual obstacles were programmed onto the

ODROID. The available sections of the dome are relatively small and thus the flights are

short; nonetheless, they showcase many features of the motion planner.

Figure 6.14 shows trajectories and path tracking results for the three new maps, where the

plot edges match the maps’ boundaries. The maps are different than those of Section 5.3.6

because the space in the dome is limited to a smaller area. The plots show the reference

paths and the actual paths flown, and the red spheres represent the goal regions. In the

first map, the aircraft must climb to and navigate through a narrow gap. In the second

map, the aircraft begins with a heading that is pointed towards a dead-end, and thus

must turn around to proceed in the proper direction. It executes an aggressive turn-

around maneuver here to do so. The third map uses a larger portion of the dome, a 60

m by 60 m field. The obstacles in this plot overlay actual obstacles in the environment -

wires and meshing that separate quarters of the field and thus exist in this larger portion

of the dome. The values of RMSE and max error in position for the three maps are
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(a) Map 1

(b) Map 2

(c) Map 3

Figure 6.14: Motion planning flight test results.
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Table 6.3: Root-mean-square errors and maximum errors for position tracking in
flight tests.

Map 1 Map 2 Map 3
RMSE [m] 2.82 3.03 3.88
max(ep)[m]max(ep)[m]max(ep)[m] 4.49 4.56 6.30

given in Table 6.3. A supplementary video includes the flights through Maps 1 and 2:

https://www.youtube.com/watch?v=63g5NSn-odU.

Figure 6.15 shows time histories of the state variables and control inputs for the flight

test associated with Map 3 in Fig. 6.14c. We take a closer look at the results of this

map because it has the longest trajectory of the three, and the discussion of its results

largely extends to the findings of the other maps. The position errors are shown in Fig.

6.15a, and note that the x, y, and z axes are aligned with the map, as in Fig. 6.14c. We

see that around 2 s the position errors start to grow as the hover-to-cruise maneuver is

occurring. Thereafter, the errors more or less plateau and only diminish around when the

cruise-to-hover maneuver takes place. The reason the errors plateau instead of diminish

is attributed to the fact that the aircraft is continually being destabilized by switching

motion primitives. As demonstrated in Section 4.3, the transition maneuver heuristic

helps deal with this tracking problem, however, it does not eliminate it. The change from

one primitive to the next can most clearly be seen in Fig. 6.15b, where every step input

change in the reference roll angle implies that a new primitive is being commanded.

The values of RMSE and max error in position for all three maps are given in Table

6.3. The position errors are larger than those found in Section 6.5.1, for simulations,

because of the presence of measurement noise, imperfect state estimation, and modeling

inaccuracies in the experimental setup. The errors could presumably be resolved in

a number of different ways in future work. One option would be to implement gain

scheduling, so that the optimal gains for the hover-to-cruise maneuver could be used and

thus the initial errors would be reduced. Position errors could also be addressed on the

side of the motion planner, via the re-planning algorithm, which would be triggered when

position tracking errors become sufficiently large.

Figure 6.15b plots the attitude as Euler angles. Note that the aircraft is in a hover at

the beginning and end of the plan. This causes a singularity in the Euler angle attitude

representation, which is why the roll and yaw values are spiking back and forth. The

reference yaw angle time history is continuous, but the roll and pitch values change in

steps because they are associated with the primitives. This highlights the importance of

the transition maneuvers, which allow the aircraft time to reach - and ideally settle - at

https://www.youtube.com/watch?v=63g5NSn-odU
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(a) Position errors

(b) Attitude tracking

(c) Speed tracking

(d) Control inputs

Figure 6.15: Flight test states and control inputs for Map 3 of Fig. 6.14c.
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Figure 6.16: Flight test involving crash with wire.

the state of the new primitive. The attitude tracking is at its worst at the beginning of

the plan. At approximately two seconds in, the hover-to-cruise maneuver is initiated. We

note that the pitch profile is not tracked as accurately during this maneuver as it is for

the remainder of the plan.

In Fig. 6.15c, the speed throughout the plan is plotted. Throughout the middle portion

of the plan, the aircraft is able to stay near the desired constant speed of V = 7m s−1.

The most challenging sections for the speed tracking portion of the control system are

the hovers. The aircraft is inherently unstable in this configuration, and often has to use

non-zero velocities to maintain a commanded position.

The feedforward and full control inputs are plotted in Fig. 6.15d. The difference between

the feedforward and actual inputs is the feedback control. By comparing the solid and

dashed lines, we can see from these plots that both feedforward and feedback inputs are

valuable. The elevator, rudder, and thrust control are largely guided by the feedforward

inputs, i.e. the actual control is close to the feedforward control. The ailerons, however,

are using a large amount of feedback control. The aileron response is proportional to the

large step input changes in roll that are being commanded.

A final set of flight test results is presented that demonstrates the outcome of a flight

that involved a mid-air collision. As previously mentioned, when using half of the dome

(as opposed to a quarter) there are actual obstacles that run down the middle of the

environment. There is a mesh divider that spans the length of the field and rises a few

meters from the ground, and there is a wire that attaches to this divider and holds it up
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(a) Position errors

(b) Attitude tracking

(c) Control inputs

Figure 6.17: Position errors and control inputs for flight test involving crash with
wire.

from the ceiling. In Fig. 6.16, these obstacles are plotted as inflated rectangular prisms.

This figure shows that the motion plan’s reference trajectory avoids the obstacles, but

due to position errors, the actual path of the aircraft ends up colliding with the wire.

The crash was not insignificant; the wing was struck and this spun the aircraft around,

reducing its speed and pointing its propeller in a very different direction. Interestingly,

rather than plummeting to the ground, the aircraft recovers and then continues to track

the motion plan until it ends in a hover. Figure 6.17 plots the position errors and control

inputs of the flight. The yellow background in these plots begins when the crash took

place. In Fig. 6.17a, we see that the position errors grow quite large, over 15 m, and
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yet the control system is able to keep the aircraft in the air, and continues to greatly

reduce the position errors over the next few seconds. The attitude tracking, Fig. 6.17b,

also takes a large hit at the time of the collision, but is nearly right back on track after

approximately 2 seconds. In Fig. 6.17c we can observe that the difference between the

feedforward and actual control inputs is large at the time of the crash. The feedforward

inputs cannot react to disturbances from the nominal trajectory and thus the feedback

control inputs become dominant. After a couple seconds, as the tracking errors are

diminishing, the differences between the feedforward and actual controls reduce as well.

Although the control system should have kept the aircraft closer to the desired path and

avoided the collision altogether, it is valuable to know that the control system was able

to recover from such major deviations from the reference trajectory.



Chapter 7

Conclusion

To conclude the thesis, we summarize the contributions made in the order they were

originally presented, and make suggestions for future work.

7.1 Summary of Contributions

An investigation into the role of sideslip and propeller slipstream in the extreme ma-

neuvering capabilities of agile fixed-wing UAVs was performed. The cost, in terms of

performance loss, was identified if either of the two phenomena is not accounted for in

maneuver design. It was concluded that ignoring these effects in the model used for

trajectory generation will lead to sub-optimal results. This is especially true in the case

of the slipstream effect, where differences in the space and time required to perform ex-

treme maneuvers was found to be multiple orders of magnitude different depending on

whether the effect was modeled or not. This highlights the importance of model fidelity

in trajectory generation for this class of agile fixed-wing UAV.

Next, a general and systematic approach for generating and automating a variety of

steady and transient agile maneuvers was developed. Trajectories were generated by

solving optimal control problems. The framework for the problems involved an accurate

physics-based model, and therefore the trajectory solutions are dynamically feasible and

fully exploit the aircraft’s physical capabilities. To track the trajectory, feedforward

control inputs - found as part of the optimization solution - are paired with a general and

largely physics-based feedback controller.

The trajectories generated – trim and agile maneuver primitives - compose a maneu-

ver space that can be used for motion planning. The maneuver space acts as a hybrid

129
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representation of the aircrafts dynamics, such that the planning algorithm can generate

dynamically feasible trajectories in real-time without have to solve complex dynamic con-

straints. The maneuver space was made large enough to represent a significant portion

of the aircraft’s flight envelope, while being suitable for the available computational re-

sources. The maneuver space concept borrows from [45], however, the development of

the maneuver space itself and its particular integration within an RRT-based planner are

original contributions.

To complement the maneuver space, a novel method for trajectory parametrization, mak-

ing use of dynamic time warping, was proposed. The parametrization makes the agile

maneuver space more robust while incurring a negligible cost to the computational load

needed in flight. The parametrization method is strategically split into off-line and on-

line portions, such that the storage requirements and computational burden on the flight

controller are minimal.

The maneuver space was integrated into an RRT-based real-time motion planner in such

a way that the planner is able to exploit the extent of the aircraft’s flight envelope and

account for the full dynamic constraints of the aircraft while retaining computational effi-

ciency on-line. The agile maneuvers are used in the planner following a logic of achieving

functional goals that allow the aircraft to stop and start in a hover, and turn around

in minimal space as needed. Altogether, the motion primitives of the maneuver space

enable the aircraft to navigate through obstacle-dense, three-dimensional environments.

In simulations, the planner was evaluated against a baseline approach that uses Dubins

curves. The most significant finding of the comparison was that our proposed planning

approach generated smoother trajectories that brought about superior tracking perfor-

mance. Position errors resulting from tracking plans generated using Dubins curves were

more than an order of magnitude greater than when tracking plans generated using the

maneuver space.

Finally, flight test experiments with an agile fixed-wing UAV were performed to shed

insight into practical implementation issues. A first set of flight tests was used to validate

the execution of four agile maneuvers: a cruise-to-hover transition, a hover-to-cruise

transition, an aggressive turn-around, and a knife-edge maneuver. The second and final

set of flight tests evaluated the real-time motion planner. To the best of our knowledge,

these flight tests were the first to demonstrate their level of implementation in terms of

the extent of the flight envelope utilized. Furthermore, all testing fully relied on on-board

sensing and computing, which had yet to be demonstrated for real-time motion planning

with a fixed-wing UAV.
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7.2 Recommendations for Future Work

In pursuit of the objectives of this thesis, many possible avenues for future research were

opened:

• It was revealed during flight tests that the weight and weight distribution of the

aircraft have a significant effect on tracking performance. Mounting both the Pix-

hawk and ODROID on the aircraft increased its weight significantly, and the size

and layout of the airplane made it difficult to keep all the peripheral equipment

near the aircraft’s center of gravity. In light of this, we see value in implementing

all computations on one capable single-board computer.

• While the feedback controller generally performed well given only one set of gains,

tracking performance could presumably be improved by using gain scheduling (and/or

gain optimization) for different maneuvers. It would also be valuable to perform a

comparison of tracking performance with other feedback controllers, such as time-

varying linear quadratic regulators [124].

• The collision check function in the motion planning algorithm could be replaced with

one that can handle more complex geometries. More capable algorithms exist, such

as the Bullet Physics SDK [125], but one would have to ensure that the motion

planner’s efficiency is not compromised; the collision check function represents a

costly portion of the full algorithm.

• The motion planner currently has two methods of dealing with disturbances and un-

certainties: buffers are placed around obstacles, and re-planning can be performed

when position errors grow too large. Nevertheless, it would be worthwhile to in-

vestigate more sophisticated ways of dealing with these issues; approaches that can

provide guarantees such that the motion planner does not generate trajectories that

may result in collisions. One such approach is to compose the maneuver space of

closed-loop reachable sets, i.e. trajectories with guaranteed robustness properties

[73].

• The motion planning framework is based on two assumptions, the first of which is

that the environment is known in advance. In this regard, the planner could be

enhanced towards a broader set of real-world applications, i.e. for partially known

environments, by augmenting it with an obstacle detection and avoidance system.

In this case, the RRT-based planner would create a ‘global’ plan based on the known

environment. Then, when a new obstacle is sensed in real-time, the detection and

avoidance system would temporarily take over to evade the obstacle and return to

the global plan. One possible approach to obstacle avoidance would be to employ

Potential Field methods [126].
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• The second assumption of the motion planner is that obstacles in the environment

are stationary. This could also be addressed within the planner’s framework. If

obstacles are in motion and their dynamics are known, the problem becomes only

slightly more complex. The algorithm would have to forward simulate the obstacles’

dynamics to know their position and orientation with respect to time before check-

ing for collisions. The more difficult problem of avoiding obstacles with uncertain

motion would involve detecting them in real-time, predicting their dynamics, and

accounting for the uncertainty of the prediction in the avoidance system [127].

• The re-planning algorithm of Section 5.3.5.1 should be tested in experiments in

order to determine how effectively it can reduce tracking errors.

• A strategy should be devised to deal with the switching problem observed in Section

6.5.3. The transition maneuver heuristic could potentially be improved by making

the time-delay value a function of the trim primitives it is switching between, rather

than a constant.

• Lastly, a system for taking off and landing could be investigated as a means of

enhancing the autonomous capabilities of the UAV. If the aircraft could take-off

from a stationary state more stable than a hover, the overall tracking performance

during motion planning might be improved. Ground take-off and landing maneuvers

could be investigated, but the aircraft is not currently equipped with landing gear

because it would increase weight and drag. An alternative option would be to create

a launching mechanism, like in [49, 128]; the aircraft could then land by hovering

over a safety net and reducing or shutting off its thrust.



Appendix A

Feedback Gain Optimization

This appendix describes a methodology that was explored but not further pursued because

it did not directly contribute to the objectives of the thesis. The idea was to include

feedback control laws in the optimal control problem used for trajectory generation, and

the reasoning for doing so was two-fold. First, the gains of the feedback controller could be

optimized as part of the solution to the problem. Additionally, we could then evaluate the

feedback controller’s efficacy for executing the maneuver in question, by comparing the

trajectory solutions that result from framing the problem with and without the inclusion

of the control laws.

A.1 Optimal Control Framework with Feedback Con-

trol Laws

The maneuver that was considered during this study was one very similar to the aggressive

turn-around of Section 4.2.1. One difference was the cost function,

min J ,
∫ tf

0

(ηxx
2 + ηyy

2 + ηzz
2)dt, (A.1)

which penalized displacements in space. The other difference was that there were no

boundary conditions on the final position of the maneuver. The weights in the cost

function, ηx, ηy, and ηz, were tuned to shape the path of the turn-around; the values used

for the study were set to [ηx, ηy, ηz] = [1, 1, 5] m−2 s−1.
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The purpose of the endeavor was not to delve into the details of feedback controller design,

but rather to present a framework for optimizing gains and evaluating the performance

of control laws. For this purpose we chose to consider a combination of four single-input

single-output (SISO) proportional-integral (PI) controllers: one channel controlling the

elevator as a function of angle-of-attack; one channel controlling the aileron as a function

of roll angle; one channel controlling the rudder as a function of sideslip angle; and a

last channel controlling thrust as a function of speed. The feedback terms are one-to-one

mappings between (a) α and δe; (b) φ and δa; (c) β and δr; and (d) V and T . The control

inputs, δe,a,r and T , thus become state variables. The elevator deflection, for instance, is

found using:

δe(t) = kpα(t)(αc(t)− α(t)) + kIα(t)

t∫
0

(αc(t)− α(t))dt+ δetrim (A.2)

where αc(t) is the commanded angle-of-attack, and δetrim is a constant level flight trim

value. The gains kp and kI are also set as state variables in the optimal control problem,

governed by the following dynamics:

k̇p = ũp (A.3)

k̇I = ũI

The optimization solves for αc(t), ũp(t), and ũI(t) as the control inputs. The same

procedure is followed for δa, δr, and T .

Two methods of optimally tuning the PI gains were investigated. In the first method,

the gains kp and kI were optimized but constrained to be constant values by equating ũp

and ũI to zero. In the other method, they were allowed to vary with time. The reason for

conducting two methods of gain tuning was to compare how well a very simple, constant

gain PI controller would perform in contrast to one with varying gains. We were also, at

the time, interested in investigating whether gain scheduling could be a viable strategy

for performing turn-around maneuvers.
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Figure A.1: Optimized proportional kp and integral kI gains for varying gain con-
troller.

Table A.1: Optimized proportional kp and integral kI gains for constant gain con-
troller.

kpα kIα [s−1] kpβ kIβ [s−1] kpφ kIφ [s−1] kpV kIV [s−1]
-0.64 -0.84 -0.83 0.94 0.36 0.01 -58 7.6

Table A.2: Cost function values.

No Controller Varying Gains Constant Gains
7.912 8.203 8.203

A.1.1 Results and Discussion

The optimal control problem was first solved without the control laws, and then for each

of the two SISO control policies: constant gains and varying gains. Figure A.1 shows the

optimized evolution of the gains when allowed to vary, and Table A.1 lists the optimized

constant gains.

In Fig. A.2, the paths are plotted for the three trajectory solutions. Adding control laws

to the aircraft dynamics is equivalent to further constraining the optimization problem.

The cost function values, Table A.2, act as a performance metric and confirm that the

control laws slightly diminish performance. With that said, however, performance is

practically identical between the two cases of control policies. This information aligns

with the fact that the optimally varying gains, Fig. A.1, remain practically constant,

and nearly equivalent to the gains found in Table A.1. While we were initially interested
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Figure A.2: Paths resulting from different controller setups.

in investigating the merits of gain scheduling throughout a maneuver, these results show

that this strategy may be superfluous, at least for the maneuver in question.

We conclude this appendix with a few general remarks about the proposed methodology.

In this approach, gains are optimized based on the constraints imposed by the control

law, which is not how gains are typically tuned or optimized. Feedback gains are normally

tuned to make up for uncertainties and appropriately respond to disturbances. With that

said, the methodology proposed here could potentially be found useful as a first step in the

gain tuning/optimization process. We also note that this method of gain optimization

is only applicable if the control laws do in fact put constraints on the control inputs.

For instance, if in Eq. A.2, the constant elevator trim value, δetrim , were instead a free

feedforward input variable, the control laws would be imposing no constraints. With all

gains set to zero, the resulting trajectory would be equivalent to the one found without

the inclusion of the feedback controller. This was precisely the case of the approach taken

in this thesis; feedforward control inputs were only constrained by their saturation values,

and thus nothing could be gained by including feedback control laws in the optimal control

problem.
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