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ABSTRACT

Following the important work on unit roots and cointegration which started in the mid­

1980s, a great deal of econometric works has been devoted to the study of the subtleties and

varieties of near nonstationarity and persistence that characterize so many economic and

financial time series. In recent years research activity has gained importance with outstanding

contributions made on estimation and testing of a wide variety of long memory processes,

together with many interesting and imaginative applications over a wide variety of different fields

of economics and finance. For these reasons, this study provides empirical evidence to an aspect

of fractional differencing and long memory processes, or the long memory of volatility. Evidence

of long memory persistence is explored using stock price indices for eight emerging economies in

both Asian and Latin American markets. The concern with the presence of long memory in higher

moments of return series was first drawn by Ding Granger and Engle (1993), using asset returns.

Baillie, Bollerslev and Mikkelsen (1996) developed the fractionally integrated GARCH, or

FIGARCH, process to represent long memory in volatility. The measure of long-memory

persistence in the volatility is employed either using the original rescaled range statistic by Hurst

(1951) and its modified version proposed by Lo (1991). Further analysis of the presence of long

memory persistence is conducted using autocorrelation analysis. Ali the findings point in the

same direction, that is. the existence of long memory in volatility irrespective of the measure

chosen. Estimation of different models of volatility is undertaken beginning with the ARCH

specification and until the FIGARCH model. The results show the effects to be higher in Latin

American countries than in the Asian ones. This result seems consistent with the degree of

intervention in the Latin American markets, known to be much higher.

Other possible explanations for the occurrence of long term persistence are also pursued

such as the Regime Switching modelisation proposed first by Hamilton and Susnel (1994) with

the SWARCH approach. Results show that this approach can bring another possible explanation

for persistence, specially in economies Iike Brazil that, have very different regimes for the period

covered in this study.

RÉSUMÉ

Depuis des nombreux travaux sur le thème des racines unitaires et de cointégration, une

grande diversité de papiers se sont interessés à étudier les sutilités et varietés des modéles qui

s'adressent à la quasi-stationarité et persistence qui semblent décrire plusiers séries

économiques et financiéres. L'éstimation et le test d'un grand nombre de modéles de longue



memoire ensemble avec d'autres innovations aussi créatives ont occupé des différents champs

d'intérêt de l'économie et des finances. À cause de tout cela. cet étude fournit de l'évidence

empirique pour la persistence de la volatilité. L'évidence de l'existence de longue mémoire est

fouillé en utilisant des données des marchés boursiers de huit différents économies en

émergence, et en particulier pour les marchés de l'Asie et de l'Amérique Latine. L'attention pour

ce genre de modële a été attiré par Ding, Granger et Engle (1993) en utilisant des donnés pour

les prix actifs. Baillie, Bollerslev et Mikkelsen (1996) ont developé une approche qui a été nommé

de Fractionally Integrated ARCH, ou tout simplement FIGARCH pour représenter la longue

memoire en volatilité. Plusiers mesures de persistence sont alors employés pour identifier

l'occurrence ou pas de persistence dans la volatilité des rendements boursiers. La mesure de

Hurst (1951), ensuite celle de Lo (1991) aboutissent au même résultat, c'est-à-dire, l'effet de

longue mémoire est présent dans la volatilité des marchés boursiers des pays en émergence.

L'analyse d'autocorrélation est aussi employé et encore une fois les résultats précedents sont

confirmés.

Ensuite, plusiers modèles sont estimés en débutant avec le modële ARCH jusqu'à la

especification de FIGARCH. Il faut mantioner que les marchés Latino-Américains présentent plus

d'effets de longue mémoire que ceux de l'Asie.

D'autres possibilités pour expliquer la persistence sont cherchés comme les modéles de

changement de régimes appliqués il la volatilité (SWARCH). On poursuit des estimations sous

des différentes hipothéses et on constate que ces modèles peuvent expliquer la persistence et en

particulier pour des pays comme le Brésil où le degré d'inteventions est assez elevé.
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Chapter 1

1ntroduction

1.1. Purpose and Scope of the Thesis

The world economy has undergone significant changes during the decade of the

nineteen-nineties. National economies have become increasingly open to international trade and

investment, and new patterns have emerged in global financial markets. Many countries have

abolished capital controls, leading to tremendous growth in international financial flows. Less

developed countries in particular have been the recipients of unprecedented amounts of foreign

savings, which many have used to finance current-account deficits. Most striking of ail has been

the growth of capital markets relative to the investment banks that traditionally supplied most

funds to less-developed economies. Since the so-called Black September crisis of 1982, when

Mexico defaulted on its debt servicing payments. many investment banks have been unwilling to

lend to developing countries. Faced with this situation, developing country governments and

companies have increasingly relied on capital markets to get access to funds. This development

has been encouraged by recent advances in information technology, which have allowed

individuals to transfer money from one bank to another in a matter of seconds. Technology has

also made it easier for investors to participate in markets in two or more countries at the same

time. It follows. then, that if something disturbs markets in country A, it is very likely to have an

effect in country B as weil, since individuals may have to sell their positions in one market in order

to make up for a loss in another. The result has been increased volatility in financial markets over

time.

We have observed international financial markets becoming more integrated as reduced

information and transaction costs have opened up new opportunities for investors. A

consequence of these increased linkages between markets is that we can no longer talk about

isolated effects. Of particular interest is the fact that market disturbances today appear to last

much longer than those observed in the past. In other words, there is evidence of long memory in

volatility. The traditional ARCH methodology has not done a satisfactory job of accounting for

these changes in market volatility that persist for a long time after the initial movement of stock

priees. Consequently, a general objective of this thesis is to compare the volatility of established

and emerging markets in order to confirm the existence of long memory in volatility and, if such

evidence is found, to see whether it is more pronounced in emerging markets. This chapter will

discuss the definition of volatility, review the existing literature on the subject, and examine the

history of volatility in US markets in order to establish a benchmark for posterior comparisons with

emerging markets.
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Volatility is an important characteristic of markets for most financial instruments, and it

plays a central role in many areas of finance, foreign exchange. etc. It is crucially important in

asset pricing models and dynamic hedging strategies, as weil as in the determination of option

priees. From an empirical standpoint, it is therefore very important to carefully model any

temporal variation in volatility. The ARCH model and its various extensions have proven to be

effective tools along these lines, and as a result the literature on ARCH has expanded

dramatically since the seminal paper by Engle (1982). The question of whether markets have

become more volatile in recent years has been the subject of much debate, especially in the

aftermath of events such as the Asian Crisis and the recent collapse of technology stocks in the

NASDAQ market in the United States. The development of derivatives in ail markets is also seen

to have contributed not only to liquidity but also to increased volatility.

Currency devaluations, failed economic plans, regulatory changes, coups and other

national financial "shocks" are notoriously difficult to predict and may have disasterous

consequences for global portfolios. Despite these difficulties, researchers have managed to

identify severa1 regular features of emerging markets, including: high average returns, high

volatility and low correlations both across emerging markets and with developed markets. Indeed,

the lesson of volatility was learned the hard way by many investors in December 1994 when the

Mexican stock market began a fall that would reduce equity value in U.S. dollars by 80% over the

next three months.

This thesis takes the well-established Iiterature on financial volatility in developed

economies and applies it to the so-called emerging markets that occupy an increasingly important

place in the menu of choices for investors. The objective is to determine whether some of the

findings on volatility for more established markets are still true. and to use these findings as

benchmarks to evaluate differences between markets.

ln doing so, the hope is to determine the effects of the globalisation of the world economy

on a sub-sample of countries, the "emerging" economies. The analysis is restricted to the most

important emerging economies, as described by the International Monetary Fund (IMF) and the

World Bank. Despite the fact that many countries can be c1assified as emerging markets,

concerns about the accuracy of information and the availability of data have forced us to focus on

the following: Argentina, Brazil, Mexico, Thailand, Taiwan, South Korea, Malaysia and Hong-Kong.

For certain countries (e.g. Brazil) data are available fram 1968 through 1999, but in most cases

the period of available data extends from the end of the nineteen-seventies until the middle of the

nineteen-nineties.

This thesis could have focused on a variety of themes, but what attracted our attention

most was the question of the behaviour of volatility over time. Other researchs have suggested
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that developed countries have experienced considerable changes in market volatility during this

period, so it is natural to ask whether this has also occurred in emerging economies. However, as

we will make clear later in this chapter, volatility is a rather vague term that needs to be defined

more precisely. In order to make comparisons easier and also more precise, the focus of anatysis

will be the huge field of the heterocedasticity models. The homocedasticity hypothesis is central

to many econometric models, but since the development of the ARCH model a substantial

amount of applied work on heteroskedasticity in time-series has been done. We will apply this

methodology and the models derived fram it to the available data from emerging economies.

The thesis is organised as follows. Chapter 1 defines emerging markets and

characterises the data and indices used in the subsequent analysis. Some important differences

between developed and emerging economies are higlighted, especially with reference to the

United States. Chapter 2 consists of an extensive review of the Iiterature on volatility, with the

aims of showing the growing importance of this issue and identifying work that remains to be done

with regard to less developed or "emerging" economies. Chapter 3 addresses the question of

long memory volatility. A variety of methods are used to arrive at the conculsion that emerging

economies do indeed exhibit this long memory property. Chapter 4 deals with the estimation of a

great deal of time-series models. from ARCH models through to FIGARCH models. Comparisons

between developed and emerging markets are also examined. Chapter 5 contains a discussion

of alternative methods of estimating long memory models.

1.2 - EMERGING MARKETS1
: Definition and Descriptive Remarks

Equity market returns in emerging economies differ substantially from those in developed

economies. The term "emerging market" can be defined in various ways. On the one hand,

"emerging" implies that a market has begun a process of change, growing in size and in

sophistication compared to smaller markets that give Iittle appearance of change. Alternatively,

"emerging" can refer to any market in a developing economy, with the implication that ail have the

potential for development. The International Finance Corporation (IFC) follows a definition that

considers most of low- and middle-income countries to be developing, regardless of their

particular stage of development, and ail stock markets in these cauntries are considered ta be

emerging. IFC follows the criteria of the Warld Bank in classifying economies as low-income,

middle-income or high-income:

* low-incame ecanomies are those with a GNP per capita of $695 or less in 1993;
* middle-incame economies are those with a GNP per capita of $696- $8.625 in 1993;
* high-income economies are those with a GNP per capita of $8.626 or more in 1993

1 Broadly defined, an emerging market is a financial market in a country making an effort to change its economy with the
goal of raising its performance to the level of the world's more advanced nations.
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Table 1.1

WORLD BANK CLASSIFICATIO:'ll OF ECONOMIES BY INCOME A:'IID REGION 1994-95

Low Incorne India
Middle Incorne Indonesia
(Lower) Philippines

Thailand
Middle-Incorne South Africa
(Upper) South Korea

Malaysia
Argentina
Brazil
Mexico

High-Incorne Singapore
(Lower) Taiwan

Hong-Kong
Chile

Source: The International Finance Corporation

Table 1.1 shows the classification used by the International Finance Corporation, which

will be adopted in the remainder of this thesis. Based on this definition, we have chosen a sample

of countries that should give a representative view of the emerging markets as a whole. Tables

1.2 and 1.3 show the relative importance of each market. In Table 1.2, countries are listed in

order of world capitalisation. We can easily see that Hong Kong, South Africa, Malaysia, Taiwan,

India and Brazil are the most important markets among the emerging markets by this criterion.

The growing importance of Asia relative to Latin America is obvious and impressive (see Brazil

and Mexico, for instance). During the seventies and the eighties the majority of Latin American

countries were governed by dictatorships which were often very c10sed to foreign capital. The

Mexican debt crisis of 1982 also discouraged the flow of capital to Latin America, which was then

redirected to Asian countries. Recently, in the aftermath of the Asian Crisis, this trend has been

reversed to some extent.

Table 1.3 shows world value traded. and again we can see the increased importance of

the south-Asian countries vis-à-vis Latin America. Taiwan is the leader, followed by South Korea,

Hong-Kong, Malaysia and finally Brazil. The same pattern found before is reproduced here.

Movements in both tables indicate the growing relative importance of south-Asian markets,

especially in the 1980-1994 period. The exact ranking differs according to the classification used,

but the same countries are present in Tables 1.2 and 1.3. For our purposes, this is the really

important issue in the analysis we are pursuing. As mentioned before, the relative importance of

Latin American markets has increased after the Asian Crisis.
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Table 1.2
WORLD MARKET CAPITALIZATION 1986-1999 (USS BILLIONS)

Source: The International Finance Corporation

The Emerging Markets Factbook 1994, published by the International Finance

Corporation, presents the share of emerging markets based on several criteria, including

capitalisation, value, and performance among others. We show these shares in tables 1.4 and

1.5 below. Again we see the importance of the Asian market during the period in question. The

Latin American market has also an outstanding performance during these periods. Both markets

summarise the behaviour of the emerging markets since the nineties and for this reason we will

be analysing these markets in the thesis.

These markets have, however, very different behaviours. The Asian markets are more

market-oriented and as such show a lower degree of intervention compared to the latin

American markets. These markets have passed through an opening and liberalizing process that

is more recent, since the beginning of the nineties.
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Table 1.3
WORLD VALUE TRADED 1986-1999 (USS BILLIONS)

Emerging 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1999
Markets
Argentina 0.6 0.3 0.3 0.6 1.9 0.9 4.8 15.7 10.3 11.4 12.0
Brazil 21.5 28.9 9.6 18.0 16.8 5.6 13.4 20.5 57.4 109.5 120.0
Chile 0.06 03 0.5 0.6 0.9 0.8 1.9 2.0 2.8 5.3 18.0
India 5.0 10.8 6.7 12.2 17.4 21.9 24.3 20.6 21.9 27.3 13.3
Korea 4.2 10.9 24.9 79.2 121.3 75.9 85.5 116.1 211.7 286.1 63.3
Malaysia 2.3 1.2 3.8 2.6 6.9 19.9 10.7 21.7 153.7 126.5 44.4.
Mexico 2.4 3.8 15.6 5.7 6.2 12.2 31.7 44.6 624.5 83.0 51.6
Philippines 0.1 0.6 1.5 0.9 2.4 1.2 1.5 3.1 6.8 13.9 19.2
South Africa 2.8 5.0 9.6 4.9 7.1 8.2 8.1 7.8 13.0 16.0 6.1
Taiwan 5.0 18.9 84.1 275.6 965.8 715.0 365.2 240.7 346.5 711.3 1070.4
Thailand 0.6 1.1 4.6 5.6 13.5 22.9 30.1 72.1 86.9 80.2 43.2
Hong-Kong 9.7 15.3 47.6 23.4 34.6 34.6 38.6 78.6 131.6 147.2 150.0
Totals 45.2 82.9 164.7 408.6 1,165.5 894.4 605.5 612.3 1,068.9 1,640.1 2852.4

Source: The International Finance Corporation - Emerging Markets Factbook 1995

Table 1.4

Shares orthe Emerging Markets

The Latin American country with the largest stock market is Brazil, followed by Mexico,

Chile and Argentina. Together, these markets are responsible for some 23% of emerging

markets as compiled by the IFC in 1994. If we exclude the former socialist countries (Poland, the

Czech Republic, etc.) and also ignore China, this percentage increases to 38%, as is depicted in

Figure1.1 below. This confirms our assertion above that these are, together with the Asian

markets the more important representative of the emerging economies.
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Figure!.l

% SHARES OF LATIN AMERlCAN MARKETS - END 1994

ARGENTINA
9%

Source: International Finance Corporation

Table 1.5

Shares of the Emerging Markets

Source: The International Finance Corporation - Emerging Markets Factbook 1995

looking at the Asian markets, the most important of these at the end of 1994 was

Taiwan, followed by Malaysia, South Korea, Thailand, India, the Philippines and Indonesia (this list

excludes Hong-Kong). Together, these markets are responsible for some 72% of overall

emerging markets (see Figure 1.2).
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Figure 1.2

% SHARES OF SOUTH ASlAN MARKETS· END 1994

TAIWAN
24%

Source: International Finance Corporation

MALAYSIA
20",(,

INDONESIA
5%

SOUTH KOREA
19%

A fundamental factor explaining the return of private capital to emerging markets has

been the process of deregulation of financial markets in developed economies since the 1980s,

especially in the United States, United Kingdom and Japan. In these countries, deregulation

increased the number of investment opportunities for banks, insurance companies and

institutional investors (e.g. pension funds) that were previously operating in relatively segmented

markets. Deregulation also brought with it increased mobility of capital between markets, a sharp

expansion of Iiquidity, and consequently an increase in the prices of ftnancial assets that has

generated an accelerated growth of net ftnancial wealth.

Secondly, the Iiberalisation of the capital accounts of several countries, along with the

reduction and maintenance of low real interest rates in developed economies to offset the effects

of recession, have amplifted these movement of capital at the international level. The immediate

consequence of the expansion of international capital flows has been increased interdependence

of national economies. Specifically, for economies with less-developed capital markets, the

sudden and unprecedented increases in Iiquidity caused sharp rises in the priees of financial

assets. We have also the change in the regime of financial repression - the practice of very high

real interest rates. The financial Iiberalisation made possible the quick expansion of the so-called

.. emerging markets" with a big increase in the potential returns of capital in these economies.

Also, the consensus view of Washington was an important reference point for policy-makers in

implementing policies that were largely based on the idea of liberalisation.
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We have already sean that capital f10ws into Asian countries have far exceeded those into

Latin America in racent decades. until1997. This can be explained by the tact that the process of

financial liberalisation was quickier in the Latin America than it was in Asia. Moreover, this

happened in thecontext of a change in financial regime. where fiscal deficits began to be financed

by the market and not by the printing of new money. If we add to this the liberalisation of capital

controls and the privatisation of many state-owned companies. we can appreciate the impressive

growth of portfolio investment in Latin American countries, particularly Mexico. Argentina and

Brazil. However. the strategies pursued by these regions are different. In the case of Latin

America, it appears that short-term capital has been attracted to the region. In the decade of the

nineteen-nineties Asia has confirmed to be a magnet for long-term capital. especially due to (i)

the development strategy implemented in the last 15 years, and (ii) the cautious approach of

Asian governments towards liberalizing financial markets2
. This approach has created direct and

indirect "filters" to the f10w of short-term capital. (See Figure 1.3.)

Figure 1.3

FLOWS OF CAPITAL TO LATIN AMERICA AND SOUTH ASIA IN 1994

BRAZIL
5%

MALAYSIA
8%

JNDONESIA
10%

SINGAPORE
6%

Source: Unctad, J994

2 Some argue that it is not true that capital movements to Asia were predominantly long-term. In fact, of the fast growing
countries of Asia which depended on foreign capital (South Korea, Thailand, Indonesia and Malaysia), ail depended on
mostly bank-based short term capital (and got into trouble in 1997). On the other hand, Taiwan, Hong-Kong and
Singapore which were net exporters of capital had less trouble.
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The rates of economic growth observed in Latin American countries have been slow and

erratic, and economic policies have not shown any indication of leading to sustainable growth.

Foreign capital has been attracted mostly by the interest rate differentials (Le. differences between

internai and external interest rates) caused by the change in the regimes, and by capital gains

from speculation activity related to the privatisations that occurred in many countries. However,

we have already stressed that the f10ws changed dramatically after the Asian crisis, with Brazil

being by far the most desired country for foreign investors. This is an important point, but it does

not change the fact the emerging markets are an important destination for foreign investors. From

the investor's stand-point, the only difference is the geographic destination. Table 1.6 shows the

magnitude of the flows of capital towards the emerging economies in 1995.

Table 1.6

Flows of Capital to Latin America and South Asia in 1995

Source: Unctad, Trade and Development Report 1996.

The Mexican balance-of-payments crisis was accompanied by a substantial drop in that

country's stock market, the consequences of which were not limited to Mexico. The so-called

"tequila effect" caused drops in stock markets in other Latin American countries, especially Brazil

and Argentina. Several ministers of finance went to New York to explain that their countries were

not like Mexico and so should not be penalised for that country's difficulties. The Latin American

emerging markets have become an important alternative destination for investors in the

developed countries, the United States in particular. The openness of Latin American markets to

foreign investors at a time of historically low American interest rates created an enormous flow of
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capital from North to South in the Americas. Among the largest recipients were Argentina, Mexico

and Brazil. According to the World Bank, Latin America received 30 percent of foreign direct

investment in the world between 1989 and 1993 (World Bank, 1995). The volume of securities

issued by developing countries reached an astonishing $59 billion U.S. at the end of this period.

Among the biggest issuers were again the major Latin American countries, espeically Brazil,

Mexico and Argentina. In terms of stocks in the international market, the total issued was around

some US$12 billions U.S. in 1993. Nearly half of the original amount came from Latin America

(IMF, 1995). The investment in securities and stocks coming from Latin America became very

popular among the American investors. Recently a lot of Brazilian companies have launched

ADR's (American depositary receipts) that are stocks traded in the New York Stock Exchange.

1.3 - Stock Price Indices and their definitions

The stock priee indices used here are indicators of the performance of the stock priees in

each market, showing the behaviour of the principal shares traded on each stock exchange. For

each market used we have relied on the most representative index for that market. As our

analysis is based on the evolution of the emerging markets, we have restricted our focus to these

representative indices for each country. The indices used are as follows: the MERVAL (MERcado

de VALores - Argentina), IBOVESPA (Indice da Boisa de Valores do Estado de Sào Paulo ­

Brazil), IPC (Indice de Precos de Cotizaciones - Mexico), KCSPI (Korea Composite Stock Price

Index -Korea), SET (Stock Exchange Thailand -Thailand), Kuala Lumpur Stock Exchange (KLSE

- Malaysia) , TSEWSI ( Taiwan Stock Exchange Weighted Stock Index -Taiwan) and Hang-Seng

Index for Hong-Kong (HIS - Hong Kong). We discuss briefly some of the characteristics of these

indices below.

1.3.1 - Definition of a Weighted Stock Price Index (used by ail the countries

in the sample)

An index represents the current value, in domestic currency, of a portfolio made up on a

specific date, varying fram country to country and starting from a hypothetical investment. Only

the reinvestment of the dividends received, the amount resulting from the sale of subscription

rights and the maintenance in the portfolio of shares received as bonuses are considered.

Indices should be reliable and should use a methodology that is easily followed by the

market. They should represent not only the average behaviour of the prices of the main stocks,

but also the profile of trading carried out during each trading session.

A stock market index aims to give an indication of average market behaviour. As such, it

seeks to reflect as c10sely as possible the real configuration of cash tradings (round lot) on the
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stock market in order for the investor to have an idea of how a particular market is changing over

time.

a) Portfolio

The portfolio of an index is composed of stocks which jointly represent at least 70-90%

of the amount of cash transacted during the twelve months preceeding the establishment of the

index for each of the countries under consideration. This can vary from stock market to stock

market. As an additional criterion, it is required that a stock be traded on 70-90% of the trading

sessions of the reference period. The percentage varies from market to market, but at least 70%

of the market should be included in the established index. This rule of thumb has been found to

be effective when considering the coverage of an index.

The share of each stock in the portfolio is directly related to the significance of this

security on the cash market in terms of number of trades and the amount in domestic currency,

adapted to the size of the sample.

ln order to maintain the representativeness of the Index, a revaluation of the market is

carried out every four months, always based on the twelve preceding months. Again these

figures can vary from country to country, but this is the procedure found in most stock

exchanges. After changes in the relative participation of each stock have been identified, a new

portfolio is formed and a new weight is given to each security according to the market distribution

as assessed by the revaluation study. An example of this is the recent importance of shares of

companies related to information technology, the so-called 'neweconomy' stocks that have led

to changes in most of indices around the world.

1.3.2 - The Indices as Representative of Market Capitalisation

The issuing companies whose stocks are part of the portfolios of the indices are

responsible, on average, for approximately 70-90% of the total market capitalisation of ail

companies Iisted on any particular stock market. Each stock market calculates its index in real

time, taking into account ail trades on the cash market involving stocks in its portfolio.

Information is then disseminated through each stock market's network and also by a series of

vendors. Consequently, it is possible to follow the behaviour of an index on-line throughout the

day, anywhere in the world.
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a) Transparency

An easy calculation methodology and limited changes in that methodology over time are

highly desirable. These elements, together with easy access to data, ensure the usefulness of

the index. This can be confirmed by the fact that, for several stock markets, these indices are

the sole indicators of the performance of stocks to be traded on a liquid futures market.

Each stock market is responsible for the management, calculation, diffusion and

maintenance of the index. This responsibility ensures strict observance of regulations and

technical procedures in its methodology.

1.3.3 - Calculation of the Indices

The weighted index stands for the summation of the weights of the stocks (Le. the

hypothetical amount of the stock multiplied by its last price) that compose the theoretical

portfolio. It can be calculated, at any moment using the following formula:

n

INDEXT = l:P;,TQi,T (1.1)
i=1

where:

INDEXT =the stock market index at time T

n = the total number of the stocks that compose the theoretical portfolio

P = the most reeent priee of stock i at time T

Q =the theoretical quantity of stock i in the portfolio at time T (equally value weighted)

1.3.3.1 Adjustment of the theoretical amount due to distribution of benefits

The mechanism of change is similar to the one used for the adjustment of the portfolio as

a whole. That is, one considers that the investor sold the shares for the latest closing price at

the beginning of the distribution of benefits and used the resources in the purchase of the same

shares without the benefits distributed.

Formula for Changing in the Theoretical Quantity (at the time of distribution of benefits)

Qn = QoPo (1.2) where:
p

ex
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Qn =the new quantity, Qo =the previous quantity, Po =last c10sing priee prior to the beginning of

distribution of benefits, Pex = ex-benefit theoretical priee, calculated based on P

General Formula of Calculation of Ex-benefit theoretical Priee

P =~. + (S.z) - DIV
ex l+B+S

where:

(1.3)

Pex =the ex-theoretical priee

~. =the last closing priee prior to the beginning of distribution of the benefit

% S = the subscription percentage

Z = the issue priee in domestic currency of each share to be subscribed

Div = the value in domestic currency received by each share as dividend

% B = the bonus percentage

a) Criteria for Inclusion of Stocks in the Portfolio

ln order to have a stock included in an index, it is necessary that it simultaneously fulfil the

following requirements, always in relation to the preceding 12 months (the period may vary slightly

from one stock market to another, but this is the figure most commonly used):

- It must be among the Iist of stocks comprising 80% of the value traded in the stock market. This

Iist results from the accumulation of the value traded for each security, disposed in decreasing

order, with the eut-off limit set at 80.

- Its share of total value traded must be greater than 0.1 %.

- It must have been traded in more than 70% of the total trading sessions during the period.

Each stock market calculates the index of negotiability for each of the stocks traded on

the exchange in the last twelve months according to the formula given below. These indices are

placed on a chart in decreasing order, and one column shows the sum of these indices as one

reads the chart from the highest to the lowest. The participation of each index in the summation is

then calculated, listing the stocks until the total number of accumulated participations reaches 70­

80%. The stocks so chosen will enter the portfolio of the index if they fulfil the two other criteria. If

a stock does not fulful the criteria it is replaced by the next stock on the Iist that does fulful them.



15

When the minimum of 70% of the sum of the index of negotiability is reached, one has

the Iist of stocks which are going to compose the index for the next four months. This process is

repeated constantly. The indices of these chosen stocks are listed again and the participation of

each of these indices, with respect to the sum of the indices of ail the securities in the portfolio, is

calculated. The result is multiplied by the original index of negotiability and the adjusted

participation is then obtained. The adjusted participation of each stock, applied to the value of the

index of the last day of the preceding four-month period, will determine the composition of the

portfolio for the next four-month period and so on.

The theoretical amount of each stock will remain the same for the period of validity of the

portfolio. It will be altered only in case of a distribution of benefits (dividends, cash and bonus

shares, subscriptions) by a company. On the other hand, once a stock is chosen to participate in

the index portfolio it will only be withdrawn when it cannot fulfil at least two of the indicated criteria.

1.3.4 . Stock Negotiability Index

lliv-.- (1.4)
N V

where:

n = the number of trades involving the stock carried out on the cash market (round lot) in the last

12 months

N = the total number of trades on the cash market (round lot) in the last 12 months

v =the value in domestic currency obtained with trades with the stock on the cash market (round

lot) in the last 12 months

V =the value in domestic currency of the total amount traded on the cash market (round lot) in the

last 12 months.

1.4 . Data Used in the Thesis

According to Harvey (1995), we have learned some regular features of emerging markets.

First, we need to be careful in interpreting the average performance of these markets as the

International Finance Corporation (IFC) has backfilled some of the index data, resulting in a

survivor bias in average returns. This problem arises when we choose to work on an average

index for the market as a whole like the IFCG (Global Index). For this reason we decided to work

with each country individually. Second, the countries that we have currently chosen are the ones

the have proven track records. This choice of "winners" introduces a selection bias. Third, some

markets have long histories beginning in the last half of the 19th century. At one point in the
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1920's, Argentina's market capitalization exceeded that of the U.K. However, this market declined

in subsequent years. We will only consider returns in the re-emergence period since the 1960s.

Argentina

The best known index is the Merval index (the most widely used, it is weighted by the

traded volume of shares). This index is prepared at the Buenos Aires Stock Market. The index is

computed daily based on constituent stocks representating the commercial-industrial, property,

mining, and oil sectors. The Merval index comprises only 20 companies. It began to be

computed on a daily basis in 1989. This index is revised every three months on up to 80 per cent

of the volume of shares traded during the preceding six months.

The data used in the thesis are daily quotes for the period from January 2, 1989 through

December 31,1997. The base date used in the index is September 30,1994.

Brazi!

The IBOVESPA is the most representative Brazilian indicator, due to its continuity - it has

not been subject to any methodological changes since its implementation on January 2, 1968 ­

and also to the fact that BOVESPA is responsible for up to 85 % of the total business transactions

carried out by ail Brazilian stock exchanges.

Index Subgroups

Many stock markets disseminate information about the performance of subgroups of the

principal index in daily bulletins. Group 1 is composed of stocks with greater importance in the

portfolio of the index for a period of four months, chosen according to the criterion of dispersion.

Group Il evaluates the average performance of other stocks that compose the IBOVESPA index.

The existence of these indices helps investors adequately follow the behaviour of the market.

Recently (May, 2000) a new group, Group III, has been introduced in order to take account of the

so-called 'new economy' stocks.

The calculation methodology used by the IBOVESPA index is published by the stock

market in its Methodological Issue (most recently in May 2000). Weights and sources used in

preparing the index are revised periodically, with statistics depending on the volume of shares

traded in the stock exchange.

IBOVESPA is a composite index of share price movement. The index is computed daily,

based on the traded volume of shares of constituent stocks representative of the commercial-
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industrial sector, property, mining, and oil sectors. The method of computation is based on a

comparison of the trade volume of shares of constituent stocks on a given day with the total

traded volume on the previous day.

Weighting for each stock varies daily as traded volume changes. The base date used in

the index is September 30, 1994. The data used are quoted daily from January 2, 1968 through

December 31,1999. IBOVESPA has 1994=100 as its base year, and uses 56 shares quoted on

the Sao Paulo Stock Exchange.

Malaysia

The Kuala Lumpur Composite Index (KLCI), has its base year in 1977=100, and uses

100 shares quoted on the Kuala Lumpur Stock Exchange (KLSE). Quotes are for market closing

prices. The data start on January 2, 1975, and we have daily observations through December

31, 1997. It is a composite index that comprises industrial, financial, mining and other sectors.

Various sub-indices by industry also exist to help investors follow movements in the market.

The index is computed daily, based on the market capitalisation of constituent stocks

representative of the commercial-industrial, property, mining, and oil sectors. The method of

computation is cal/ed the "Weighted Market Capitalisation Method," where the composite index

for the day is computed by comparing the total market capitalisation of constituent stocks for the

day with the total market capitalisation on the previous day.

Mexico

The "Indice de Precios y Cotizaciones" (IPC), or Price and Listing Index, is calculated

using the shares of enterprises making up the sampie designed for this purpose, which has

national coverage.The Mexican Stock Exchange (BMV), located in Mexico City, is responsible for

preparing the IPC.

"Indicadores Bursatiles" reports indices that allow statistical cross-checks and that

provide assurance of reliability of the IPC by dividing it into severa1 sub-indices: industrial

enterprises, public utilities, and transportation. The index comprises 45 companies. The base

date used is October 1978=100. The data coverage is from November 1, 1978 through

December 31, 1997.
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Thailand

The share priee index used here is from the Stock Exchange of Thailand (SET). The

SET index is calculated from ail common stocks listed on the stock exchange. The base period

is April 30, 1975. The SET index is defined as the current market value divided by the base

market value, multiplied by 100.

The index is computed daily. based on the market capitalisation of constituent stocks

representative of the commercial-industrial, property, mining, and oil sectors. The method of

computation is the "Weighted Market Capitalisation Method" where the composite index for the

day is computed by comparing the total market capitalisation of constituent stocks for the day

with the total market capitalisation on the previous day. The base date used in the index is 4th

January 1980 and uses 39 companies begining on the 30 April 1975 and going until 30

Deêèmbèr 1997.

Korea

The Korea Composite Stock Price Index (KCSPI) starts on January 4, 1977 and ends on

Dècember 31, 1997. The base period is January 4, 1980. It comprises 14 industry sectors

including some 743 companies.

The index is computed daily, based on the traded volume of shares of constituent stocks

representative of the commercial-industrial, property, mining, and oil sectors. It is a composite

index of share price movements in the stock market. The method of computation is the

"Weighted Trade Value Method," where the composite index for the day is computed by

comparing the trade volume of shares of constituent stocks for the day with the total traded

volume on the previous day.

The KCSPI disseminates information about the performance of subgroups of the

principal index in its daily bulletin. These indices are divided into tirst and second section

stocks. There are also indices by capital size: Large-Sized Capital stocks are those whose

capital is more than W$15 billion, Medium...Sized Capital stocks are those with more than W$5

and less than W$15 billion, and Maliy, Small-Sized Capital stocks are those with less than W$5

billion.

Taïwan

We utilize the share price index quoted on the Taiwan Stock Exchange Weighted Stock Index.

The data we use start on January 4, 1975 and finishes on December 31, 1997. The base period
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is January 5, 1981 = 100. The index comprises 67 companies and is computed daily, based on

the traded volume of shares of constituent stocks representative of the commercial-industrial,

property, mining, and oil sectors. The method of computation is the "Weighted Trade Value

Method" where the composite index for the day is computed by comparing the trade volume of

shares of constituent stocks for the day with the total traded volume on the previous day.

Hong-Kong

We utilize the share price index quoted on the Hang Seng Exchange Weighted Stock

Index. It starts on the January 4, 1975 and we use observations up to December 31, 1997. The

base period is January 5, 1981 =100. The index comprises 27 companies and is computed daily,

based on the traded volume of shares of constituent stocks representative of the commercial­

industrial, property, mining, and oil sectors. The method of computation is the "Weighted Trade

Value Method" where the composite index for the day is computed by comparing the trade volume

of shares of constituent stocks for the day with the total traded volume on the previous day.

It is a well-established fact that there is a fairly low correlation among the world's equity

markets, and this is frequentiy presented as evidence in support of the portfolio gains to investors

from international diversification. Some studies have documented a significant increase in the

correlation between national equity market co-movements during the 1987 international equity

market crash and other periods of high volatility, reducing the benefits of international

diversification.

For the period covered in our thesis. the data used for Hong Kong cover the period during

which it remained under British protection. so that for much of this time it was seen as an

extension of part of the London market. We have not captured the passage from Hong Kong to

China that took place in 1997, and the attendant effects on the volatility. While the period covered

was one in which Hong Kong's status as an emerging market might be questioned because of the

links with London, we have at least avoided mixing the pre- and post- 1997 market movements in

one data set.

1.4.1 The Choice for the Returns

The choice of nominal returns rather than another possible specification for the returns is

based on a number of observations gathered fram the literature. For example, some studies of

volatility have used daily inflation-adjusted returns instead of the raw returns. These studies have

suggested that for closed economies (i.e., closed to foreign investors) one couId use either real

returns (adjusted by inflation) or simply the US$ dollar returns.
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However there are problems with each of these procedures. In the case of real returns,

there is no estimate of the inflation on a daily basis, so some ad-hoc procedures have to be used,

such as that described by Harvey (1995). Harvey took annualized monthly inflation rates for each

country obtained from the International Financial Statistics database; each monthly inflation rate

was then divided by 240 to estimate daily inflation (assuming 12 months with 20 trading days in

each month as an approximation.)

The daily returns are then computed as the difference between the nominal return and the

inflation rate computed for that day, using the methodology above. This is an approximation that

can be extremely rough during hyperinflationary times; hyperinflation does occur in a number of

periods covered by the analysis of this thesis, so that this is a serious shortcoming for our

purposes, although it might be an acceptable approximation in other circumstances.

The other alternative identified above is to transform the returns in local currency into US$

using the prevailing exchange rate. However, for these countries the exchange rate has been

fixed for some part of the sampie period of interest; again, this transformation would be

misleading for a part of the sample period. Calculating the returns in U.S. dollars eliminates local

inflation, but retains the U.S. inflation that may be a problem for longer periods of data coverage.

Perhaps more importantly, the series under study will be affected by the relatively long periods in

which the exchange rate does not reflect purchasing power.

ln Brazil. during periods of hyperinflation, new standard lots for transactions were defined

as stock prices went up to reflect the inflation. For example, on February 28, 1986, when the new

currency was introduced through a division of the old monetary standard by dividing by 1000, the

unit became round lots of 1000 shares instead of one single share (see, e.g., Barry et al. 1998).

Many local and foreign researchers have studied the Brazilian stock market, one of the

largest emerging markets in the world. A few examples are Aggarwal and Tandon (1994),

Aggarwal and Leal (1996), Lemgruber et al. (1998), Costa Jr. (1990), Costa Jr. and Lemgruber

(1993), Almeida et al. (1993) and Leal and Sandoval (1994). Ali of these studies used nominal

returns.

For Argentina, by contrast, the data used in this thesis begin in 1989 with the Austral Plan,

and so do not suffer from the problem of the potential effects hyperinflation.

One final point about returns could be related to the choice of returns and not the excess

returns (gross returns minus the risk free rate). We have been influenced in this decision by the

fact that for most of the emerging economies, it is difficult to define precisely what would be a risk

free rate; the usual Treasury bonds are not viewed as risk-free assets, as for example in the U.S.
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ln the absence of an acceptable measure of the risk free rate, we have chosen to work with the

returns themselves and their power transformations.

We do not remove possible calendar effects, such as the well-known January effect, in

this thesis. While such effects may weil exist, our primary purpose it to compare patterns in

emerging markets with those in developed markets: we prefer minimal pre-filtering of data, so that

any differences in markets are observed in the data chosen for analysis.

1.5 - Descriptive Statistics and Features of the Emerging Economies

It has been argued that in the nineteen-nineties we have seen a return of voluntary capital

flows to South-Asian and Latin American countries, with important differences between the two

regions. Both regions have received significant amounts capital in the last five years, but some of

the Asian newly industrialised countries (NICs) have succeeded in attracting greater volumes of

high quality capital with longer maturities. Table 1.7 shows some descriptive statistics for the

Emerging economies.

Table 1.7
Descriptive Statistics from Monthly Returns in percent (Returns in l'$S) (January 1982 to April 1995)

Source: The International Finance Corporation

The renewed interest in Latin American markets, as weil as the openness of these

markets to foreign investors, draws our attention to their relations to American and world markets.

The American crisis of 1987 suggests that these markets have changed in some fundamental

respects. so it may be interesting to re-examine the behaviour of returns in Latin American
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markets. An investigation of the ways in which American, Latin American and other markets

influence each other would be particularly worthwhile.

It would be especially interesting to determine if there is any causality among the Latin

American markets and the developed country markets. This may be important in the event that

investors could exploit the relationships to explain the behaviour of these markets. The emerging

markets are more predictable than the developed markets in the sense that they exhibit strong

seriai correlation (Harvey, 1995). The research of Aggarwal and Leal (1995), Harvey (1995),

Mullin (1993), and Divecha, Drach and Stefek (1992) has shown low correlations between these

markets, but recent events suggest that this may be changing. The low correlations show

important gains from diversification for foreign investors. The ability to predict weil may generate

abnormal risk-adjusted gains.

Causality among developed markets has been extensively examined by Eun and Shim

(1989) and Hamao, Masulis and Ng (1980). among others. The term "causality" as it is used here

follows the usage of Granger. That is, we examine which series precedes the other and which

follows if they are or not contemporaneous (Granger and Newbold, 1977). This definition does

not imply that one series determines another, since both can be affected bya third non-observed

series. We say that one market "Granger causes" another if the first series precedes the other

series. It has been observed that the American market precedes or "causes" several other

developed country markets, for example Japan, Canada and the United Kingdom.

The number of studies of emerging markets has been increasing rapidly. However, the

vast majority Iimit themselves to the study of Asian markets and especially to correlation among

these markets. In general, studies of this type assume implicitly that relationships between

markets are linear, and that markets are completely integrated. which is obviously not the case.

An incomplete list of recent works in this area would include Aggarwal and Leal (1995), Mullin

(1993), Divecha, Drach and Stefek (1992). Speidell and Sappenfield (1992), Cheung and Ho

(1991) and Bailey and Stulz (1990). The general conclusion fram this literature is that correlations

between emerging markets and markets in the United States and Japan have been increasing,

but these increases have not been sufficient to allow for important gains in diversification. It is

c1ear that larger correlations do not necessarily imply greater integration, since common factors

can affect two different markets in similar ways. One possible expianation is increased capital

flows between countries. Despite growing interest in the emerging markets, investment in

international assets by large American pension funds has been restricted to 5% of their portfolios.

This indicates enormous potential for growth in these capital flows in the future (Errunza, 1994).

Other authors suggest that low observed correlations may be due to non-Iinearity in the

relationships between markets (Mullin, 1993: Cheung, 1993). The correlations are not stable over
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time (Agggarwai e Leal, 1995; Cheung, 1993) and the transmission mechanisms are affected by

the volatility of the developed markets (Bekaert e Harvey, 1995; Aggarwal, Inclan e Leal, 1995).

Corhay, Rad and Urbain (1994), Chan, Gup and Pan (1992). DeFusco, Geppert and

Tsetsekos (1994), Leal and Austin (1996) use unit root and co-integration to test the efficiency of

several Asian markets. In general they find support for the hypothesis of independence between

Asian markets and developed markets. The developed market indices cannot be used to predict

the behaviour of these markets. Other authors, using the methods of ratio of variances and

vector auto-regression, conclude that no significant relationships exist between Asian and

developed markets. See Lo, Fung, Chen, Lai (1993), and Park and Fatemi (1993).

It seems that it is impossible to use an index for a developed market to predict the

behavior of an emerging market. If there is any relationship, either it is non-linear or intra-day.

There is also evidence that these markets only move together in periods of extremely volatility, as

was the case during the Gulf War and the Crash of 1987 (Aggarwal e Leal, 1995).

ln the case of Latin American markets, the empirical evidence is much more limited.

Aggarwal, Inclan and Leal (1995) study the relationships between several emerging markets by

examining variances and sudden changes in these variances. They conclude that the variance

does not seem to change smoothly over time, but rather institutional and economic changes can

generate sharp changes in its behaviour. After taking this into account in an ARCH model,

variance can be considered to be constant. After controlling for sudden changes in variance,

there does not seem to be any strong relationship between these markets. Aggarwal and Leal

(1995) arrive at a similar conclusion using much simpler econometric models. It has also been

observed that the emerging market returns are more predictable than those in developed

markets. Harvey (1995) points out that the source of this predictability couId be time-varying risk

exposures and/or time-varying risk premiums. This predictability could also be the result of

fundamental inefficiencies.

The American market affects other developed country markets through the transmission

of innovations in the market index. The other markets, on the contrary, do not transmit their

innovations to the American market. Hamao, Masulis and Ng (1989) find evidence of the

transmission of volatility from the American market to the Japanese and British markets, but not in

the reverse direction.

Other authors have documented the fact that the American market affects Asian markets,

whereas other developed markets, including the Japanese market, do not seem to affect Asian

emerging markets in any significant way (Liu, Pan and Hsueh, 1994; Leal and Austin, 1996). Roll

(1992) shows that many of the relationships between markets can be explianed by developments

in the international sector. There are high correlations between data for enterprises of the same
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sector in different countries. However, Heston and Rouwenhorst (1994) have suggested that

factors affecting sectors of the economy are dominated by domestic factors in every country.

Some studies have tried to create models to explain the variabilty of returns and volatility

across countries. Harvey (1995), for example, showed that volatility of emerging markets can be

explained by the concentration of certain economic sectors in markets. However, he was unable

to build a model that would predict changes in returns in any significant way. Harvey used several

factors, including petroleum prices, returns from American markets, international interest rates,

and unexpected changes in inflation and exchange rates in an arbitrage model and concluded that

the only significant variables were American market returns and exchange rates.

Even 50, the explanatory power of the model is low. Mullin (1993) suggests that returns in

Asian countries appear to be related to the performance of exports, and volatility seems to be

related to changes in exchange rates and the inflation.

ln terms of the best way to model the time series in these markets, there is a trend

towards considering the ARCH/GARCH family of models to be most appropriate. This type of

model permits autocorrelation in the series. allowing the variance to change in a smooth way. It

also allows asymmetries in the distribution of returns (EGARCH), and for the distribution to be

leptokurtic with fat tails by modelling returns with a Student's t distribution instead of the normal

distribution. The process of resolution of these models through numeric iterative methods is

dynamic and non-linear. Among the many papers that favour the use of these models in

examining emerging markets is Errunza, Hogan, Kini and Padmanabahn (1994). Others studies

for specific markets include Woo, Lai and Cheung (1995) for the Thailand and Hong Kong,

Nicholls and Tonuri (1995) for Australia, Hargis (1994) for Latin America. and Sewell, Stansel, Lee

and Pan (1993) for Taiwan and Korea.

A representative sampie consisting of the biggest markets in terms of capitalisation in

Latin America are Argentina, Brazil, Chile and Mexico. We present some statistics for emerging

countries below. According to the International Finance Corporation (1995), these countries were

collectively responsible for 94.3 percent of the $450 billion US total capitalisation of the Caribbean

and Latin America markets in 1994. Tables 1.8 and 1.9 below present a summary of descriptive

statistics for these markets. Brazil was the largest market in the region, followed by Mexico. The

Brazilian market was 20 times smaller than the American market. In 1994, the Brazilian market

was the 15th largest in the world and the Mexican market was 21 st.

The capitalisation of the emerging markets in Latin America and the Caribbean was 3.0

percent of world capitalisation and 23.3 percent of the capitalisation of emerging markets, also

according to the 1nternational Finance Corporation (1995). The level of concentration of a market

is related to volatility (Harvey,1995b). Chile was the most concentrated and Mexico the least
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concentrated. Brazil seemed to be the most under-valued market, not only in terms of priee-profit

but also in terms of market value relative to patrimonial value. The 1994 figures show that Brazil

was the cheapest among the Latin America markets. Tables 1.8 and 1.9 also show summary

statistics for monthly returns in US$ dollars. Looking at the coefficient of variation for monthly

returns, we can see that Argentina's market was the one that presented the most risk to investors

for each percentage point increase in returns, and that the Chilean market was the safest for the

foreign investor. That is, the degree of volatility was higher in Argentina and lower in Chile for the

period 1982-1995. Brazil also showed a very high degree of volatility, and as the returns are in

U$S dollars, the coefficients of variation are not that bad. Taking into account only the standard

deviation as a measure of volatility, the of US$ dollar returns for Argentina's and Brazil's markets

were at least 5 times more volatile than that those for the United States and other developed

countries. The volatility of the Mexican market was nearly 4 times greater than that of the US

market, while the Chilean market was only 1.8 times more volatile. In dollar terms, the Latin

American markets are more than 2 times more volatile than the developed markets and about 1.5

times more volatile than the other emerging markets as measured by Morgan Stanley Capital

International data. This can be partly explained by the growing inflow of capital from developed

countries to emerging markets. This flow of capital is inherently extremely volatile, and with

improvements in information technology making the international transfer of funds much easier,

the result seems to be an increase in volatility.

Below we have some figures. Values are for U.S. dollar returns and are based on

monthly data from January 1976 to June 1992 fram International Finance Corporation. Arithmetic

and geometric mean returns have an important difference. The arithmetic average is the return to

a strategy that requires equal investment in each period. That is, the gains are not reinvested in

the market. The geometric mean has a more appealing portfolio interpretation. The geometric

average represents the average return to a buy-and-hold strategy. In this strategy, a fixed amount

is invested in the tirst period, and the portfolio is heId until the end of the sampie period.

Mean ( in terms of the US$ dollar returns) in these emerging markets range from 72 per

cent in Argentina to -6 percent in Indonesia. This range sharply contrasts with the range of

average returns in the industrialised country markets. No developed market has an arithmetic

mean that exceeds 25 per cent. In the emerging markets sample, nine markets have returns that

average above 25 per cent.

The emerging markets returns are characterised by high volatility, which produces large

differences between the arithmetic and geometric mean returns. These differences are especially

evident for Argentina, where the arithmetic mean is 72 per cent and the geometric mean is 27 per

cent. Volatility, as measured by standard deviations, ranges from 18 per cent to 105 per cent. In

contrast, volatilities for the industrial markets range from 15 to 33 percent. 13 emerging markets

have volatilities greater than 33 percent.



26

Priees and returns reveal some of the most crucial differences between emerging

markets and mature markets. Many markets in developing countries offer yields far in excess of

developed-market returns and offer low-to-negative correlation with world markets. 80th of these

facts suggest that unexploited profit opportunities may exist. High autocorrelation in returns,

characteristic of speculative inefficiency, indicates that lagged priees may contain information

about future returns; volatile stock prices also indicate inefficiency. High price volatility in

emerging markets may stem from smail market effects or from informational imperfections. With

few trades occurring, information about stock values (and therefore stock prices) tends to be

noisy.

Table 1.8

Means and Standard Deviations ofInternational Equity Returns, 1976-92 (%)
lndustrial Markets based on U.S. dollar returDS from monthly data

Source: The World Bank

Moreover, Iimited reporting requirements in many markets mean that investors typically

have less information about firms and receive less frequent updates than do investors in

industrialised country markets. Uncertainty about the financial condition of firms may introduce

high variance in expected returns.

The low correlation between returns in emerging markets and industrial markets suggests

that the global investor would benefit from diversification in emerging markets. New interest in

international investing has been partly caused by the emerging equity markets, which are

attractive because of their high average returns and low correlations with industrial markets. So,
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we have seen from simple comparisons of data from emerging and developed economies that

volatility tends to be higher in emerging economies. We will be investigating this point further

throughout the thesis.

Table 1.9

Means and Standard Deviations of International Equity Returns, 1976-92 (%)
Emerging Markets

Arithmetic Mean
-._----~

71.66
22.69
38.65
45.60

9.75
21.45
-6.29
10.14
20.02
13.56
30.44
2.18
25.65
51.16
40.85
16.72
39.93
47.89
21.55
37.92
10.92

Source: The World Bank

1.6 - Stock Market Volatility definition and principles

Standard Deviation-- .
105.06
60.83
39.84
32.57
36.27
26.87
34.95
18.04
31.97
26.90
45.00
37.20
22.38
38.79
51.43
26.21
54.06
25.69
76.71
47.52
34.30

As stated above, one of the most important measures of risk in financial markets is

volatility, usually understood as the standard deviation of returns in annualised percentage terms.

The volatility of an asset can vary greatly over time, and recent volatility in global markets has

risen substantially, particularly since the Asian Crisis. However, over the long-term, the volatility of

a financial asset tends to hover around an average figure. A general indication of volatilities of

various financial investments can be seen in Table 1.10.
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Table 1.10 - Volatilit)· of different Investments in 1997

Inve.~tment Long-Term Vola/ility
Gold
US Stocks
US Dollar
French Stocks
Japanese Stocks
Hong Kong Stocks
Si/ver
[BMStock
Mexico Stocks
Russian Stocks
Netscape Stocks

Source: Bloomberg

7.5%
10.5 %
11.5 %
15.5 %
19%
22%
22%
28%
30%
52%
75%

Note: The above volatillty estimates are crude estimatesb~ on histoncal analysis over periods of about 1 year Volatihty is
detined as the annuallsed standard deviation of the naturallogarithms of the consecutive price relatives of the financial mstrument

ln practice, volatility is measured by the degree of fluctuation in share priees during the

previous 12 months based on the last 52 weekly values. Volatility is then calculated as the

standard deviation of the priee, and is a measure of its dispersion around the 12-month average.

ln this common definition, the absolute value of the returns is preferred to the more usual

squared value or more generally to any power. This is because the former quantity beUer

captures the autocorrelation and the seasonality of the data (Granger and Ding, 1993; Müller et

al., 1990 and Taylor, 1986). This greater capacity to reflect the structure of the data can also be

easily derived from the non-existence of a fourth moment in the distribution of the priee changes.

Although this definition is the most appropriate for the assessment of risk and for

forecasting, one might prefer other definitions of volatility that would give more weight to the tails

of the distribution. For instance, the cubed root of the third moment couId be used for the

evaluation of extreme downside risk in portfolio optimisation, as in Roy (1952). One might also

prefer the use of conditional volatility such as defined by the option model (Cox and Rubinstein,

1985) or the Generalized Autoregressive Conditional Heteroskedastic (GARCH) model

(Bollerslev, 1986).

However, although both approaches might hold some appeal in the case of daily

frequency, their use in cases of intra-daily frequency presents important drawbacks. On the one

hand, the implicit volatility cannot be computed at very high frequency since options are not

quoted at such frequencies. On the other hand, as a consequence of the heterogeneity of the

stock market, intra-daily stock indices cannot be described by one homogeneous GARCH model

(Guillaume et al., 1994a).

There are two kinds of volatility: historical volatility and implied volatility. Historical

volatility is a statistical measurement of past priee movements, and is what people are usually
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refering to when they use the term 'volatility'. Implied volatility measures whether option

premiums are relatively expensive or inexpensive. This type of volatility is calculated based on

currently traded option premiums. Ideally, what traders would like to know is what volatility is

going to be in the future. If we knew what future volatility would be, we could make a fortune

quite easily. Because we do not in fact have this information, we make an educated guess. The

starting point for this guess is historical volatility. One would ask, "What has been the volatility

of this stock or security over a cetain period of time?" Black and Scholes (1973) have built their

model based on the idea of implied volatility.

When evaluating volatility, we may look at several different periods. We may look at

what the volatility has been for the past week, or we may choose sorne other period. A longer

time period will give a better idea of average volatility. Stocks or other securities that are volatile

on a daily or weekly basis usually remain that way over time. When evaluating the purchase of

an option, it is the historical volatility of the underlying security we are looking al.

However, there is a different interpretation of volatility that is not associated with the

underlying security. This is implied volatility. However, what if we use our historical volatility

formula and come up with a price that is very different from the range where the option is

currently trading? We are ail using the same inputs. We ail use the price of the underlying

security, the time until expiration, the strike priee, dividends to be paid by the stock, the current

risk free interest rate, and volatility. The only factor that is not known, and for which we have to

take a guess, is volatility. What has happened is that the marketplaee is assuming a different

volatility than historical volatility. The way to solve for this implied volatility is to use the option

pricing model in reverse. We know the price of the option and ail the other variables except the

volatility the marketplace is using. Therefore, instead of using the equation to solve for the

option's price, we use the model to solve for the option's volatility. If we insert the price into the

model, leaving out volatility (which is what we are looking for) and keeping the other variables

constant, we will find the level of volatility that would yield the current market priee.

The first thing that one thinks about when trying to evaluate historical volatility is that the

standard deviation should be used. If a person is looking for a simple way to measure volatility,

the simple standard deviation will work weil enough. However. use of the standard deviation

assumes that there is a normal distribution. If stock priees were normally distributed, the

implication would be that there could be negative priees. This assumption is a very strong one.

ln reality, the furthest a stock's priee can fall is to zero, but it can rise infinitely. To account for

this asymmetry we can take the standard deviation of the logarithmic price changes measured at

regular intervals.ln what follows we will discuss the treatment of volatility in a more precise way.

. / 1 "T -2
S =11----=- L(1n.x i -lnX) (1.6)

~ n 1 i;J
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However, in the next section we will be using the definition of volatility as defined in (1.6),

above.

1.7 - Facts about Volatility in the US Market and Emerging Economies

According to Schwert (1990) investors, regulators, brokers, dealers, and the press have

ail expressed concern over the level of stock market volatility. However, the perception that priees

move a lot, and have been moving a lot more in recent years, is in part a reflection of the

historically high levels of popular indices. The drop in stock prices on October 13, 1989, while

large in terms of a point decline, was not even among the 25 worst days in NYSE history in terms

of percentage changes, and this is also the case with the impact of the Asian crisis. While a 6

percent drop in priees is not inconsequential. neither is it a rare event when considered within the

context of the behaviour of stock returns over the 1885-2000 period.

Apart from October 1987, October 1989, September 1998, October 1997 and March

2000, volatility was not particularly high in the 1980s and 1990s. Moreover, the growth in stock

index futures and options trading has not been associated with an upward trend in stock volatility.

There is Iittle evidence that computerised trading per se increases volatility, except perhaps within

the trading day.

On October 13, 1989, ail major networks flashed reports on the market decline. The

ability of investors to track stock prices on a continuous basis has raised a public question of a

volatility problem. As intra-day data on stock prices are simply unavailable, do the large but

extremely brief price drops that have characterised recent market declines also occurred in the

past? The growing interest in addressing this question can be seen in the profusion of recent

papers on the subject.

The evidence to date as to whether trading halts or circuit breakers can reduce volatility in

a beneficial way is inconclusive, in spite of the fact that these mechanisims are widely used. They

were introduced in Brazil in 1996 and have been used quite a few times. Even if circuit breakers

do reduce volatility, the important question to ask is whether the benefits of stability are greater

than the inefficiency costs associated with trading halts. Despite the fact that this question

remains unanswered, ail major stock markets have adopted similar mechanisms.

The stock market crash of October 19, 1987, and the drops in stock prices of October 13,

1989 and October 1997 left many people wondering whether stock prices have become too

volatile. Since the 1987 crash, numerous studies have looked at the effects of modern

investment techniques on the volatility of stock prices. Various means of limiting volatility have

been proposed since then. The evidence so far indicates that the volatility of rates of return to

broad portfolios of NYSE common stocks has been unusually high in the 1990s.
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Volatility has appeared high to many people because the level of stock priees is much

higher than it has ever been. Thus. while there have been large absolute changes in the level of

the Dow Jones Industrial Average (DJIA), in percentage terms these changes have only been

moderate.

There is little evidence that the level of stock return volatility has increased since the start

of index futures and options trading in the early 1980s. Although high volatility has been

associated with high levels of trading in stocks, futures and options, it is unclear whether the large

volume of trading has caused the high volatility, or whether the high volatility and trading volumes

reflect the arrivai of important information.

The remarkable technological advances in the computer and communication industries

(the so-called 'new economy') and the globalisation process have made it much easier for large

numbers of people to learn about and react to information more quickly. They have also made it

possible for financial markets to provide Iiquidity for investors. These changes have had two

imporant by-products. First, there are large incentives for investors to obtain and act on new

information. Second, because new information spreads more quickly, the rate at which prices

change in response to information has aise accelerated. The liquidity of organised securities

markets plays an important part in supporting the value of traded securities, but it also means

prices can change quickly. From this perspective, volatility is a symptom of highly liquid securities

markets.

On April 14, 2000, the Dow Jones Industrial Average (DJIA) fell from 10,923.6 to

10,305.8, over 617 points. This was the largest one-day drop since Dow Jones began computing

index numbers in 1885, but the 5.66 per cent drop was not the largest in percentage terms.

Nevertheless, most public attention focused on the absolute size of the drop. The 508 point drop

on October 13, 1987 also caused a large public reaction, as it represented 22 per cent drop in

value.

By focusing on the absolute level of the DJIA, we can exaggerate the severity of recent

volatility. For example, the DJIA reached 509.76 for the first time on March 19, 1956; prior to that

date; it would have been impossible for the index to drop 508 points. Alternatively, the DJIA fell

"only" 38 and 31 points on October 28 and 29, 1929, yet these are the second and the third

largest daily percentage drops in the history of the NYSE.

Keeping this distinction in mind, the reaction to the decline on October 13, 1989, which

was not even among the 25 largest percentage drops in stock prices, would not appear to be

justified. Table 1.11 shows the 25 highest and lowest daily returns to the DJIA between January

1900 and April 2000. If we also compute the 25 highest and lowest monthly returns from January

1900 through April 2000, we see that many of these extremes occurred during the Great
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Depression. October 1987 is only the fifth lowest return in the sampie, and the recent episodes of

the Asian crisis appear but are surpassed by earlier events.

The highest and lowest returns tend to be c1ustered in brief sub-periods over the whole

period, indicating an increase in stock priee volatility during these periods. The recent episode of

the Asian crisis does not even appear in the best/worst list, as we might expect a priori. From a

visual inspection of table 1.11, we can see that the recent episodes of volatility, including the

market crashes in Thailand (1997), Russia (1998) and Brazil (1999) have not been among the

most severe in history despite the large amount of public attention and media coverage they have

received.

As stated, the most commonly used measure of stock return volatility is standard

deviation. This statistic measures the dispersion of returns. Financial economists find it to be

useful because it summarises the probability of seeing extreme values of returns. When the

standard deviation is large, the chance of a large positive or negative return is large also.
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Table 1.11

THE 25 HIGHEST AND LOWEST DAILY PERCENTAGE RETURNS TO MARKET 1900-2000

Source: The Wall Street Jomnal

Figure 1.4 plots the standard deviations of monthly returns to the DJIA from 1900-2000.

Daily returns are used to calculate the standard deviation for each month. There are 1200

standard deviation estimates and the average value for the whole period was 1.1831%. Months

like October 1929, October 1987 and November 1997 appear as periods of high volatîlity. It is

also clear that, except for 1987 and 1997, the 1980s and 1990s have not been a period of

unusually high volatility. Except for the last three months of 1987 and November 1997, the

1980s and 1990s do not stand as being a period of very high volatility. October 1989 has a

lower deviation than the 1973-74 bear market for example. We must stress that October 1998

was also a period of instability. We can also see quite easily the period of turmoil caused by the

Great Depression.
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Figure 1.4

Volatlllty of Monthly Returns using Daily Returns within the Month
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Source: Wall street Journal

The industrial average rocketed to a then-record high of 2722.42 in 1987, crashed 508

points on Oct.13, 1987 then clambered upward by 32.5% in 33 months to a new two-day peak of

2999.75 in mid-July 1990. The transportation average crackled to life as take-over fever spread

to the airline industry, reaching a record 1532.01 on Sept. 5, 1989. In April 2000 the DJIA

crashed, falling by 617 points.

Because of take-overs, and partly because of a host of new computer-guided trading

techniques, the stock market was often described as volatile in the late 1980s and 1990s.

However, this description of the DJIA is off the mark În at least one respect. Ten years ago, a

one-day move of 10 points in the DJIA was noteworthy; a 20-point change made headlines and a

50-point move was unheard of. Today, 50 points up or down from one day to the next means

nothing. Many people conclude from these changes that the stock market is becoming more

volatile.

The perception of what constitutes a big market move simply has not kept up with the rise

of the industrial average te higher and higher levels. And yet the impression that stocks are

increasingly volatîle seems to be supported by a different set of statistics. For example, nearly
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everyone wouId agree that a 2% change in the Dow Jones in one day would qualify as volatile,

and such moves are occurring more and more frequently.

According to many investors, the first quarter of 1996 was a volatile period for the US

stock market. The 50-point circuit breaker in the Dow Jones Industrials was trigered 31 times in

the first quarter alone, more than in ail of 1995. And in 1997 this happened 86 times! However,

does this necessarily mean that the US stock market is more volatile today than in the past?

Despite the apparently wild swings that we have seen this year, the market's volatility is actually

quite normal. Coming off a period of historically low volatility in 1995-97, today's market swings

may appear to be quite high. However, in a historical context they are actually in-Iine with the

average for most of the post-war period, and are in fact smaller than those in earlier periods.

It is easy to see why investors argue that the US market is more volatile today than

previously. Still according to Schwert (1990) with the 50-point circuit breaker kicking in 31 times in

1995, or nearly every other day, and with 171-point drops in the Dow being followed by 110-point

gains, investors assume that the market is becoming increasingly volatile. However, Schwert

reminded that it is important to keep in mind that the 50-point rule today has a completely

different meaning with the Dow at 5600 than it did when it was instituted in 1990 and the Dow at

2900. At that time, a 50-point move translated into a change of 1.7%. Today, it is less than 1%.

To put the Dow's wild tumble and subsequent rebound in March into perspective, although they

were among the largest point movements ever, they didn't even rank in the top 100 in percentage

terms.

With this in mind, it is useful to look at the market a little more closely to see if volatility

has actually increased as much as investors and market watchers have contended. As a basis,

both daily absolute percentage changes and annualised standard deviation in the Dow Jones

Industrials going back nearly 50 years were analysed. Interestingly, volatility was lower during the

1993-1995 period than it has been at any time in nearly 30 years. 1993 marked a low point, with

the market moving up or down only 0.40% each day on average. In 1994, volatility did increase to

0.50%, but the three year period between 1993-1995 was still one of the least volatile periods in

recent years, with the market experiencing absolute percentage changes of only 0.44% on

average.

ln terms of standard deviations, the volatility during this three-year period was 9.31%, with

1993 and 1995 exhibiting relatively low levels of only 8.51%. However, this can be considered an

anomaly. The last time that the market exhibited such low risk levels was during the 1964-65

period when volatility was a mere 6.81 %.

So where do we stand today? Granted, the market's volatility was higher in the first

quarter of 1996 than in 1995, with the market moving up or down 0.67% each day in 1996 on
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average compared to 0.41% in 1995. However, this is only slightly higher than its long-term

average of 0.60%, and is roughly in line with the most racent 10-year average of 0.64%.

ln terms of annualised standard deviations. the US stock market's volatility in 1996 is in

line with historic norms. During most of the post-war period (1950-96), the standard deviation of

returns averaged 13.49% compared to 13.75% in 1996. This is actually less than the average

(16.44%) over the last ten years.

As we can see from Figure 1.5, which displays the volatility of returns in Brazil (one of the

more important emerging markets), volatility as measured by the standard deviation is much

larger in the later periods than in the earlier ones. This is quite easily seen in the case of Brazil.

Especially in the 1980s, due to the risk of hyperinflation, Brazil's volatility far exceeded that of the

United States. This volatility was maintained through several of the Brazilian government's

economic plans. and was only reduced after the introduction of the Real Plan in 1994.

Figure 1.5

VoIatllity of Monthly Returns uslng Dally Returns w1thln the Month

--BRAZll

--EUA

Years

Source: Bovespa (BraziJ) and DJIA (USA)

To summarize the perspective of this thesis. we are interested in using econometric tools

in order to measure the effects of volatility in the emerging economies. A result that stands out

from an inspection of the data. and one that will be explored further in chapter three. is the fact of

c1ustering of returns. This striking fact was observed for every economy under consideration. A
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possible explanation for it is the sucession of financial crises that occurred in the 1990s. We will

elaborate more on this in later chapters.

What is most striking is the fact that volatility in these markets exceeds by far the volatility

of markets in the US, independent of the time period (18 years for Brazil, 7 years for Argentina) or

the period of computation (daily or weekly). This is consistent with other studies that found the

volatility of Latin American markets to be higher than US volatility (see World Bank Review).

1.8 - Stock Market Volatility- How to explain it? - Econometrie Toois

1.8.1 - A First Attempt to treat it - An Alternative View of Volatility

The volatility of stock priees is a well-known phenomenon to ail investors. However, why

is this volatility frequently so pronounced?

It is apparent that there are extremely wide day-to-day variations in the priees quoted on

most stock exchanges. Many people have tried to put forward theories to explain this

phenomenon, and more still have tried to use these theories in order to predict future changes in

priees. However, most economic theorists ignore the fact that there is no universally accepted

body of work explaining what lies behind day-to-day priee changes. Instead, they have

concentrated on market details in the mistaken belief that the question has already been

answered. In fact, theorists cannot agree whether economic or psychological factors are the most

important causes of priee fluctuations in stock markets. This is an important issue in the study of

investment analysis, as it brings into question the whole realm of fundamental and technical

analysis, something on which millions of dollars are spent every year.

Among the literature most relevant to the whole issue of volatility is Robert Shiller's

Market Vofatility. Shiller is a firm advocate of the popular model explanation of stock market

volatility. Popular models represent a qualitative explanation of price fluctuations. Briefly, the

theory proposes that investor reactions due to psychological or sociological beliefs exert a greater

influence on the market than rational economic reasoning. It should be noted, however, that

Shiller does not totally disregard the work of earlier economists who proposed the Efficient Market

Hypothesis (EMH). In fact, he admits that the EMH can be substantiated by statistical data, but he

also believes that investor attitudes are of great importance in determining priee levels. He daims

that substantial priee changes can be explained by a collective change of mind on the part of the

investing public, which can only be explained by thoughts and beliefs about future events, Le.

psychology.

Schiller's popular model theory proposes that people act inappropriately to information

that they receive. Thus, freely available information is not necessarily already incorporated into a
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stock market priee, as the EMH would have one believe. He says that investor behaviour

depends on ex-post values, which is the value of an asset taking into account the future

dividends. By definition though, ex-post values cannot be known ahead of the payment of

dividends, 50 if future dividends are expected to be high then the ex-post value today will also be

high. If investors already knew the future dividend, then forecasting the future priee ( P,) would

present no problem under the EMH, using ex-post values ( p,.):

p, = Erp,·

ln other words, the priee is equal to the best possible forecast, or expectation, of ex-post

values. Efficient markets theorists claim that the EMH can be used to expiain sudden movements

in priee. For example, new information about dividends could be released. Shiller's argument is

that fluctuations are far too big to be accounted for by mere changes in information. He provides

statistical evidence suggesting that fluctuations in dividends, due to their nature of being

calculated on a moving average, would have to be quite substantial, both in terms of size and

length of trend, to resemble observed fluctuations in priee. Even during the great depression of

the 1930s, dividends were only slightly below their growth path.

ln the conclusion of his article, Shiller shows that volatility in stock market priees is five to

thirteen times higher than the volatility that could be explained by the EMH and new information.

Some efficient markets theorists try to attribute this excess volatility to changes in expected real

interest rates. However, Shiller c1aims that the movements in expected real interest rates needed

to explain this excess volatility are far larger that the movements in nominal interest rates over a

sampie period. The other argument in support of the EMH is that perhaps the fears of investors

are greater than the actual changes in priee.

Stephen Le Roy and Richard Porter conducted a study that came to virtually the same

conclusions as those of Shi11er. They published their work in the May 1981 issue of Econometrica

under the title "The Present-Value Relation: Tests Based on Implied Variance Bounds." ln this

paper, which was an in-depth statistical study of excess volatility, Le Roy and Porter observed that

stock priees based on aggregated and dis-aggregated data are more volatile than the efficient

capital markets modei would suggest. This conclusion differs greatly from ail previous work on

the subject by such noted economists as Fama. The importance of the conclusions of this article,

the authors suggest, lies in their similarity to results on stock price movements found by Shiller, so

neither article's findings can be dismissed as statistical accident.

Not ail investors are equally weil informed, 50 insider information can be used to one's

advantage as long as no one else is in receipt of the information. This is at complete odds with

the strong form of the EMH, which c1aims that ail information, both publicly and privately held, is

incorporated into the stock priee. Investors may also react differently to the same information.
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Risk averse investors might sell as the market becomes bearish, whereas more speculative

investors might sell short to gain high profits. Finally, long term 'buy and hold' investors might see

a market downturn as a buying opportunity.

ln his article "Meltdown Monday or Meltdown Money: Consequences of the Causes of a

Stock Market Crash," Mullins claims that the Meltdown Monday explanation is incorrect. This is

the name given to the theory that technology and herd behaviour of investors was the cause of the

crash. On the contrary, Mullins suggests that investors were reacting rationally to changing

economic circumstances. He also cites government intervention in the financial markets as a

cause of the crash. Mullins points out that. leading up to 1987, there had been a five-year bull

market due to the economic recovery in the US and falling interest rates. From August 25th 1987,

it can be seen that prices began to fall at a slow rate until they accelerated into a sheer drop on

October 19th. The important point to note is that is that Mullins sees this crash as a rational

reaction. This is in contrast to the Meltdown Mondayapproach.

The author, however, says that it would be inaccurate to view the crash as a bubble

bursting. Price movements in the U.S. from 1982 to 1987 have been shown to be random, so

there was no bubble to burst. If a bubble were to have burst, surely it would have occurred on

August 25th when priees were highest. Thus, this argument has no grounding in statistical

evidence. However, an important point to note is that Mullins accepts the possibility that the crash

could be explained by investors believing that a bubble existed and fearing that it was about to

burst! Indeed, 38% of normal investors felt that the market was overvalued in the week October

12th to 16th, 1987. Thus, we can see that. although Mullins is a supporter of the EMH, Shiller's

popular model argument can be applied here. Mullins defends the EMH by c1aiming that the

assumptions about investor rationality, preferences and ability to act are too restrictive. If one

relaxes these assumptions then one can examine the fundamentals within the context of the

EMH.

1.8.2 - Treatment of Volatility - Econometrie Toois

An agent must make decisions based upon the distribution of a random variable, for

instance a stock priee, at some time in the future. For a risk averse agent, a measure of

dispersion would be also be of primary importance, as stated above. Much of the work in

conventional econometrics on deriving measures of risk and uncertainty has not addressed this

question adequately. In these models, the variance of the disturbance term is assumed to be

constant, a convenient but often implausible assumption.

However, many economic series do not fit this description, since they exhibit periods of

unusually large volatility followed by periods of relative tranquillity. In such circumstances, the

assumption of constant variance clearly does not apply. Also, as an asset holder you would be
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interested in forecasts of the rate of return and its variance over the holding period. The

unconditional variance (i.e. the long-run forecast of the variance) wouId be unimportant if you were

planning to buy the asset at t and sell it at t+ 1.

The analysis of financial series data usually requires the study of the first and possibly

second conditional moments of the series in order to characterise the dependence of future

observations on past values. These two conditional moments are often identified with important

economic concepts. For example, if we consider the stochastic process for stock market returns,

we would have the first two conditional moments given the information set as being Il, and cr;.
ln this context, 11, is usually associated with the risk premium as a whole and cr; with its

volatility. From an empirical standpoint. the first step often consists of estimating of the

conditional mean and variance.

It is possible to simultaneously take account of the mean and variance of a series, giving

a much more reasonable description of stock prices. The first to introduce this technique was

Engle (1982) with the so-called autoregressive conditional heteroskedastic (ARCH) class of

models. In the ARCH model, the conditional variance is allowed to change through time as a

function of both current and past information. Although this new class of time series models

allows for a much wider class of non-linear dynamic econometric models, the Iinear ARCH(p) has

been found to be a particularly useful parameterisations in the modelling of monetary and financial

data. We have then:

or (1.7)

A practical difficulty with ARCH models is that. with large p, estimation often leads to

violations of the non-negativity constraints that are needed to ensure that the conditional variance

is always positive. This has led to the imposition of a rather arbitrary declining lag structure to

ensure that these constraints are met. To obtain more flexibility, we can use the GARCH(p,q)

model, a generalised form of ARCH that posesses a richer conditional variance function.

A great deal of work using this methodolgy has been applied to both emerging markets

and developed economies. Hargis (1994) examines several Latin American markets using

various forms of GARCH models, and concludes that these models do have some explanatory

power in the period after the liberalisation of market access to foreign investors. Hargis, Aggarwal
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and Leal (1995) also conclude that when there is an important variation in the American market,

such as during the Gulf War in 1991, ail markets tend to move together. These joint movements

are strongest when the events that cause them are perceived to be negative. Several other

papers examining the relationships between emerging markets using ARCH techniques or

models of co-integration suggest that links between markets are weak, particularly for Latin

American markets, and that several of these markets appear to be segmented.

There is a trend towards considering the models of the ARCH/GARCH family to be the

most appropriate for modelling volatility. This type of model allows for autocorrelation in the

series, smooth changes in variance over time, asymmetries in the distribution of returns (e.g.

EGARCH) and leptokurtic distribution, modelling fat tails with a Student's t distribution rather

than using the Normal. The process of resolution of these models is dynamic and not linear

through numeric iterative methods.

1.9 Conclusion

The stock market crash of October 1987 was a traumatic event, raising fears of financial

collapse and depression, and reviving the spectre of the 19305. Little wonder then that the

volatility of stock markets subsequently came under intense scrutiny by governments, market

professionals and academics. Of central concern was the issue of what causes volatility: if

volatility were predictable, then steps might be taken to reduce il. We have seen that the market

volatility of the 1980s and 19905 has not been unusually high by historical standards. We have

also found that volatility increases during recessions and major financial panics, that it is lower in

bull markets than in bear markets, and that shocks to returns have a persistent influence upon

volatility. The evidence also shows sub-periods for which volatility was markedly higher than in

other periods. It is possible to characterise part of this volatility, the deterministic part. This

predictable component of volatility, taken to be the conditional variance of stock returns, can be

identified and calibrated using a variety of models of the ARCH/GARCH type. Modelling

predictable volatility allow us to distinguish periods of unusual volatility. These models show that

volatility was noticeably higher during various financial crises. the Depression years of the

19305, both World Wars, and for much of the past two decades.

The first thing we notice when looking at the data is that the market volatility in recent

years has not been higher than it was in the past, although we can see some periods where

volatility increased substanstially. This has already been extensively stated for the United

States, and is a fairly good description of what has been happening. The second notable feature

is that the emerging market retums are indeed more volatile than those in the US, a

phenomenon that deserves careful examination. Hardly any work has been done to characterise
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the behaviour of returns in these markets, and any additional knowledge would represent

important progress in our understanding of stock markets.

This first chapter has shown that the conventional wisdom that volatility has increased in

reeent years cannot be confirmed on a non-technical basis. No matter what conclusion we

ultimately reach, we have seen that priee movements in emerging markets have been much

more pronouneed than those observed in US markets. Bearing this observation in mind, we will

measure this effect in a more technical fashion in subsequent chapters. In particular, we will

make use of the FIGARCH approach that has been used as a tool to assess the long memory of

volatility. We hypothesize that if researchers have suceeeded in finding significant evidence for

long memory in developed markets, then similar evidenee should also be found for emerging

markets.
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Appendix to Chapter One

The distribution of the Stock Priee Index Pt

We can perform a simple experiment to determine what kind of disitribution we should expeet

from the priee Pt. The experiment consists of listing the deviations of priees (inereases or

deereases of priees) observed during a given time period and drawing a histogram. We could do

it for tomorrow's priees, for priees over the next 30 days, or any number of days we care to

ehoose.

It is wrong to suppose that the average deviation of stock priees should be an absolute value for

any level of priees. For example, a stock that varies US$ 10 per day on average when its priee

is US$ 100 cannot be expected to vary the same US$ 10 when its priee is US$ 1, sinee priees

can never be negative.

A second experiment involves examining relative changes in priees (as opposed to the absolute

changes considered previously) to see if they follow sorne specifie distribution. It is not

unreasonable to suppose that a 1% rise and a 1% fall in priees might be equally likely to occur.

However, it is diffieult to imagine what magnitude of faU would have the same probability of

occuring as a 120% inerease in nominal terms.

The only way to solve for the negative priee problem is to suppose that priees Pt have the same

probability of varying upwards or downwards by some factor, 1.01 for example. In this case, the

priee Pt has equal probability of rising to 1.01 times its initial value or falling 1.01 times. A rise of

100% (2 times intial value) might have the same probability as a fall of 50% (a reduetion by 2).

Even for very big factors we would never prediet negative priees. A simple mathematical

expression for a distribution in which multiplication and division by a factor are equally Iikely is

the distribution of the differenee in the logarithm of the priees. An increase by a factor of 1.15

(i.e. an increase of 15%) has the same probability as a fall by 1.15 (13,04%). This happens

because the distanee between the logarithm of 100 and 100 11.15 = 86.96 is:

Ln (115) - Ln (100) = 0.1397

Ln (1 00) - Ln (115) = O. 1397

It is this differenee that we want to represent as a random variable. We can find the same

number by computing the logarithm of the returns (or factors):

Ln (115/100) =0.1397
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Ln (100/86.96) =0.1397

ln order to derive the equivalent factor from this logarithmic difference, we need to raise the

number e (2.71881 ... ) to the difference. To get the difference from the factor, we take the

neperian logarithm of the factor. For very small numbers (differences up to O.OS), the factor is

approximately the logarithmic difference plus 1, and the pereentual change in Pt upwards or

downwards is apprximately equal to the differenee itself.

Table 1

Logarithmic Difference Factor FaU Change (%) Hike Change (%)

0.01 1.010 1 1

0.02 1.020 2 2

0.05 1.0S1 4.9 S.1

0.10 1.10S 9.S 10.S

0.20 1.221 18.1 22.1

0.50 1.649 39.3 64.9

0.70 2.014 SO.3 101.4

1.00 2.718 63.2 171.8

Log-Normal Distribution

From a series of logarithmic differences of Pt (or of a series of logaritmic retums of Pt), we may

arrive at the conclusion that this series is normally distributed. In this event we would say that

stock priees Pt follow a log-normal distribution. In that case, what measure of dispersion is to be

used? This measure is the standard deviation of the distribution. If we assume that the retums

of Pt are not serially correlated and that the variance of daily retums is constant, our experiment

is simplified. Instead of taking the differences observed in periods equally spaced over thirty

days, we can take the differenees from one day to the next, as the variance computed for 30

days will be equal to 30 times the variance for one day.

If we have Rmt = the monthly retum of the Priee Pt counting from date t and assuming that we

have 21 working days (and 21 daily observations) within a month, Ln (Rmt) = Ln (Pt+21/ Pt) =

Ln[(Pt+1/ Pt) x (Pt+z/Pt+1) x x (Pt+21 /Pt+20). If we use the operative properties of the logarithm,

we would have, then:
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Ln {Rmt} = Ln (Pt+21/ Pt) = Ln (Pl+l/ Pl) + Ln (P1+z1PI+1) +... ..... + Ln (Pt+21/PI+2O). If we write the

daily retum of the stock priee Pt in date t as ~, we would have that Rml =~ + Rdl+1 + ~+2

+.....+ ~+21' The variance of the monthly retums can then be written as Var {Rml} =Var (~+

~+1 + ~+2 + + Rdl+21 ). If we assume that daily retums are not serially correlated, then Var

(Rmt) =Var (~) + Var (~+1) + Var (~d + + Var {Rdl+21 } and also under the hypothesis that

daily variances are constant and equat to 52, we would have finally that Var (Rmt) = 52 + S2 + S2

+ + S2 = 21 S2 and the standard deviation would be equal to the square root of the

variance.[i1;2 = sJ2ï. That is, the standard deviation of the distribution of differences for a

period of 30 days would be J30 = 5,48 times the standard deviation of the daily distribution for

the differenees. If the 30 day standard deviation of the logarithmic difference of the stock priee is

0.1397, there is a probability of 68% that the priee Pt would be between eO.1397 = 1.15 times below

and eO l397 = 1.15 times above its most likely value (between 100/1.15 = 86.96% and 100 x 1.15 =
115%) or between a faU of 13.04% and an increase of 15%.

Volatility

The standard deviation of a log-normal distribution of priees is defined as its volatility,

represented by cr and indicated in pereent terms. A volatility of 20% means that the standard

deviation of the logarithmic differences is 0.20. A priee Pl that has volatility for 30 days equal to

20% means that there is a probability of 68% of it being between e-O·2O = 0.82 times (or 18%

below) and eO.2O = 1.22 times (or 22% above) its most likely value.

There are 22 dates, but only 21 retums. By definition the variance of a random variable X, of an

infinite population, is:

(J"2 =V(X) = E[X - E(X)]2 =E(X - #)2

Dividing the sum of square of deviations by the number of observations, we have the variance of

the stock price:

Le; L(X; - X)2
Var(X) ==N- =

N

If Xl , X2 , , XN are the observed values in a sample, the non-biased estimator of VAR(X) is:
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The standard deviation is by definition the square root of the variance, so the historical volatility

(standard deviation) can be computed as:

a(day) =

1'2, (2:1niJ2Lln;- -N

N-}

\/2

0010771 ~ (OO~~IOI)'
= = 0.022975

22 -}

ln this case the annual volatility is a(year) = .J252xa(day) = 0.3647 = 36,47%, where 252 is the

number of working days in a year.
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Date Day Stock Priee 1+~ 1 Ln (1+~) Ln(1 +R(U)L
1

02118/1997 1 102.30 - - -
02/19/1997 2 103.09 1.0077

1
0.0077 0.0001

02120/1997 3 99.20 0.9623 , -0.0385 0.0015

02121/1997 4 100.20 1.0101 0.0100 0.0001

02/24/1997 5 104.10 1.0389
1

0.0382 0.0015

02125/1997 6 106.10 1.0259 i 0.0256 0.0007
1

02126/1997 7 103.60 0.9700
1

-0.0304 0.0009

02127/1997 8 101.60 0.9807
1

-0.0195 0.0004

02128/1997 9 102.60 1.0098 0.0098 0.0001

03/03/1997 10 105.20 1.0253
1

0.0250 0.0006

03/04/1997 11 104.60 0.9943
;

-0.0057 0.0000

03/05/1997 12 106.80 1.0220 0.0218 0.0005

03/06/1997 13 108 1.0103 0.0102 0.0001

03/07/1997 14 108.70 1.0065
1

0.0065 0.0000

03/10/1997 15 112.30 1.0331 i 0.0326 0.0011

03/11/1997 16 115.10 1.0249
1

0.0246 0.0006

03/12/1997 17 111.90 0.9722 -0.0282 0.0008

03/13/1997 18 112 1.0009 0.0009 0.0000

03/14/1997 19 115 1.0268 i 0.0264 0.0007

03/17/1997 20 111.40 0.9687
1

-0.0318 0.0010

03/18/1997 21 110.40 0.9910 i -0.0090 0.0001

03/19/1997 22 109.40 0.9909
1

-0.0091 0.0001

L
1

0.0067101 0.010771



48

Chapter 2

Review of the Literature of Long Memory and Volatility

2.1 - Introduction

ln this chapter we will be reviewing a variety of models that have become commonplace in

the literature dealing with volatility (i.e. the second moment or variance). In spite of the fact that

these developments are relatively recent, having been introduced only in the last twenty years, a

great deal of research has already been conducted. An extensive review of this literature is included

here, with the objective of showing the evolution and the variety of these models. The first model

dealing with variance, ARCH, is discussed, including its inability to account for persistence in

variance. Other developments, up to and including the recent FIGARCH model, are also discussed.

Our objective is to review and define the models that will be estimated in the next chapter. As we

will see, the vast majority of the results have been established for the developed markets, but little

evidence has been shown for emerging markets. The review is structured so that we begin with the

simpler models of variance, and then build up to the more elaborated ones that constitute the focus

of this thesis. By proceeding this fashion, we will show the shortcomings of the earlier models, as

weil as the ways in which professionals and researchers have overcome them.

This review does not pretend to add anything new, but rather aims at being a

comprehensive survey of the literature on volatility models fram a more technical standpoint than

that of the overview supplied in the first chapter. We will see that there are in fact many different

ways of defining volatility beyond the definition used thus far. The review also demonstrates that,

while is useful to understand what has happened with volatility in the past, it is equally important to

be able to forecast it in order to anticipate future movements in stock prices. We will also attempt to

show that the concern about what is going on in the stock market is not limited to the developed

world. Our ultimate objective is to learn more about emerging markets by discovering the extent to

which their behaviour conforms with existing findings for developed markets. In this sense, the

review provides hints about how one should proceed when dealing with data from emerging

markets.

We begin with the earliest developments in this area: the autoregressive conditional

heteroskedasticity model (ARCH) and an extension of this methodology, the GARCH model (G

standing for "generalised"). We then discuss the inability of ARCH/GARCH models to deal with

persistence in volatility, a result established by several authors. We show that the development of
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long memory models in volatility follow the development of long memory in the first moment through

the ARFIMA specification.

2.2 - Autoregressive Conditional Heteroskedasticity (ARCH) and Generalised

ARCH (GARCH)

The history of ARCH is a very short one. The technique was introduced by Robert Engle in

1982, and the ARCH literature has grown in spectacular fashion since then. As we have seen,

much attention has been paid to its application to stock markets. The development of the ARCH

methodology defies the general trend in scientific advancements, where applications usually lag

behind theoretical developments. Engle's original ARCH model and its various generalisations have

been applied to numerous economic and financial data series in many countries, but the models

have experienced relatively few theoretical refinements. Nowadays, with the increased availability of

high-frequency financial series, interest in ARCH has been renewed.

Bachelier (1900) was the first to conduct a rigorous study of speculative behaviour in stock

markets. After Bachelier, it appears that the issue was completely forgotten for some time.

Mandelbrot (1963a,b, 1967) revived interest in the time series properties of asset priees with his

theory that "random variables with an infinite population variance are indispensable for a workable

description of price changes" (cf. 1963b, p. 421). His observations, such as the fact that

unconditional distributions have thick tails, that variances change over time and that large (small)

changes tend to be followed by large (small) changes of either sign, are 'stylised facts' for many

economic and financial variables. Even today, too few models can convincingly account for these

observations.

The first noticeable thing about time series data dealing with stock markets is that the mean

appear to be constant while the variance change over time. Prior to the introduction of ARCH,

researchers were very much aware of changes in variance but they only used informai procedures

to deal with il. Mandelbrot (1963a) used recursive estimates of the variance over time to account for

changes in variance. Klien (1977) took five period moving variance estimates around a ten period

moving sampie mean. Engle's (1982) ARCH model was the first formai model that seemed to

capture the stylised facts mentioned above without the improvisation of the approaches just

described. The ARCH model is useful not only because it captures the salient features of these

stylised facts, but also because it can be applied usefully in a variety of areas. It has been used to

measure the term structure of interest rates; to develop optimal dynamic hedging strategies; to

examine how information flows across countries, markets and assets; to priee options; and to model

risk premia. The literature on ARCH is so vast that it is almost impossible to provide a

comprehensive review. A few survey papers have already been written on this topic. In particular,
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the reader may wish to refer to Engle and Bollerslev (1986) and Bollerslev, Chou and Kroner (1992).

The latter noted several hundred papers that apply the ARCH methodology to various financial

markets. Some recent references to this rapidly growing bibliography include Bekaert (1992),

Bollerslev and Hodrick (1992), Duffee (1992), Koedijk, Stork and De Vries (1992) and Ng and

Pirrong (1992), to name just a few.

Agents sometimes must make decisions based upon the distribution of a random variable

some time in the future (e.g. the exchange rate). In many rational expectations models it is

assumed that only the mean of the conditional distribution affects the decision. Of course this a

simplification, but for more general utility functions and risk averse agents, a measure of dispersion

should also be very important. Many standard econometric methods have not been responsive to

the need for quantitative measures of risk and uncertainty. An example is price dispersion. In

conventional econometric models, the variance of the disturbance term is assumed to be constant,

a convenient but often implausible assumption of linear covariance stationary models with finite

unconditional second moments and time invariant conditional variances and covariances.

However, many economic series exhibit periods of unusually large volatility followed by periods of

relative tranquillity. In such circumstances, the assumption of constant variance seems inadequate.

It is easy to imagine situations in which one might want to forecast the conditional variance of a

series. For example, an asset holder might be interested in forecasts of the rate of return and its

variance over the holding period. The unconditional variance (i.e. the long-run forecast of the

variance) would be unimportant if the investor planned to buy the asset at time t and sell it at time

t+1. One approach to forecasting the variance is to explicitly introduce an independent (exogenous)

variable that would help to predict volatility (e.g. Y'+i =&'+IX,),

The analysis of economic and financial time-series data usually involves the study of the first

and possibly the second conditional moments of the series in order to characterise the dependence

of future observations on past values. These two conditional moments are often identified with

important economic concepts. For example, consider a univariate stochastic process for stock

market returns, whose tirst two conditional moments given the information set are j..J ( and CT;. In

this context, j..J ( is usually associated with the risk premium as a whole and CT; with its volatility,

and JL( / CT; with the market price of risk. From an empirical standpoint. the first step often consists

of estimating the conditional mean and variance. This is not a simple task in practice, since both the

mean j..J( •• ) and variance CT; (..) are generally unknown functions of the information set and are

thus unobservable. The most common approach employed in practice is to assume a particular

functional form for j..J( •• ) and CT; (.. ) , which are characterised by certain unknown parameters that
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need to be estimated. Although non-parametric and semi-parametric techniques have received a lot

of attention recently, the parametric approach is still dominant in practice.

Instead of using ad-hoc variable choices for x, (e.g. y,+! = c,+,x,), it is possible to

simultaneously model the mean and variance of a series, which results in a more reasonable

description of stock priees. The first to use this approach was Engle (1982) when he introduced the

so-called autoregressive conditional heteroskedastic (ARCH) c1ass of models. In the ARCH model

the conditional variance is allowed to change through time as a function of both current and past

information. Although this group of time-series models provides scope for a much wider class of

non-Iinear dynamic econometric models, the linear ARCH(q) model has been found to be a

particularly useful parameterisation for modelling monetary and financial data.

Detailed discussions of the ARCH(q) model, setting out further technical conditions that do

not concern us here, may be found in Engle (1982), Milh0j (1985) and Weiss (1986a). A practical

difficulty with ARCH is that, with q large, estimation (to be discussed later) will often lead to the

violation of the non-negativity constraints that are needed to ensure that the conditional variance is

always positive. This has led to the imposition of a rather arbitrary declining lag structure to ensure

that these constraints are met. To obtain more flexibility, a further extension to the ARCH(q) model

has been proposed by Bollerslev, (1986, 1988). The GARCH(p,q), or Generalised ARCH, includes

a richer conditional variance function.

The distinguishing feature of the model is not simply that the conditional variance is a

function of the conditioning information set, but rather that the particular functional form allows us to

reproduce some stylised facts. Episodes of volatility are generally characterised by c1usters of

shocks to the dependent variable. The conditional variance function specified by Engle is

formulated to mimic this phenomenon. In the regression model, a large shock is represented bya

large deviation from its conditional mean or equivalently, a large positive or negative value of the

error term. In the ARCH regression model, the variance of the current error conditional on realised

values of lagged errors is an increasing function of the magnitude of the lagged errors, irrespective

of their signs. Hence, large errors of either sign tend to be followed by more large errors of either

sign. Similarly, small errors of either sign tend to be followed by small errors of either sign. The

order of the lag q (ARCH(q» determines the length of time for which a shock persists in

conditioning the variance of subsequent errors. The larger the value of q, the longer the episodes of

volatility will tend to be. This permits the ARCH specification to model a lot of financial and

monetary series.

ln the first empirical application of ARCH, which studied the relationship between the level

and the volatility of inflation, Engle (1982, 1983) found that a large q was required in the conditional
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variance function to avoid the problem of a negative variance parameter. This would necessitate

estimating a large number of parameters subject to inequality restrictions to avoid a negative

conditional variance. To reduce the computational burden, Engle (1982, 1983) parameterised the

conditional variance as a linear combination of past squared errors, where the weights declined

linearly and were constructed so that they would sum to one. With this parameterisation (which is

not unique) a large lag can be specified, yet only two parameters need to be estimated in the

conditional variance function. Although linearly declining weights are plausible, the formulation puts

too many undue restrictions on the dynamics of the ARCH. With this in mind, it seemed particularly

important to extend the ARCH class of models to allow both longer memory and a more flexible lag

structure.

The availability of long duration high frequency time series on returns from speculative

assets led researchers to devote more time to studying the long run behaviour of financial data. A

common finding in much of the empirical literature was that absolute returns (or squared returns)

are significantly correlated over long lags. This suggested that the financial data might require many

ARCH lags in order to be fully described, but this approach is potentially burdensome. In fact, the

models estimated in Engle (1983), Engle and Kraft (1983), and Engle, Lilien and Robins (1985)

imposed Iinearly declining weights in the errors so that the only free parameters were q and the sum

of the weights. The choice of q can be addressed by model selection techniques, but since this can

be somewhat awkward another way of dealing with a longer lag structures was highly desirable.

Bollerslev (1986) developed an extension of the conditional variance function proposed by

Engle, which he called generalised ARCH (GARCH), and this model has proven to be very useful in

empirical work. The GARCH model was also independently proposed by Taylor (1986), who used a

different acronym. Both suggested that the conditional variance be specified as a linear combination

of past squared errors (as in Engle) while also allowing past conditional variances to appear in the

current conditional variance equation. The process is defined as GARCH(p,q). Some additional

restrictions must also be imposed in order to ensure that the conditional variance is positive.

The motivation of the GARCH(p,q) process can be seen by expressing it as:

hl = a ü + a (L)&; + f3(L)hl (2.1)

where a( L) and f3( L) are polynomials in the backshift operator L. If the roots of 1- f3( L) lie

outside the unit circle, we can invert (2.1) and rewrite this as:



53

(2.2)

Hence, expression (2.2) reveals that a GARCH(p,q) process is an infinite order ARCH

process with a rational lag structure imposed on the coefficients. The generalisation of ARCH to

GARCH is similar to the generalisation of an MA process to an ARMA process. The intention is for

GARCH to parsimoniously represent higher order ARCH processes. Instead of working with an

ARCH (q) with a very high q, which is burdensome, we can achieve the similar results using

GARCH(p,q) representation.

Using the law of iterated expectations, we can easily derive the fundamental properties of

ARCH/GARCH processes. First, a GARCH process has zero mean. This property is observed in

many monetary and financial series.

For the general GARCH (p, q) process, Bollerslev (1986) gave the necessary and sufficient

condition

q q

a(l) +P(l) =La, + LP, < 1 (2.3)
;;) ;;]

for the existence of the variance. When this condition is satisfied, the variance is

Although the variance of the error term (conditional on past realised values) changes with

the elements of the information set, the ARCH process is unconditionally homoskedastic. So the

visual appearance of an ARCH/GARCH series conveys the impression that the unconditional

variance changes over time. This false perception results from the c1ustering of large deviations. A

major contribution of the ARCH Iiterature is the finding that apparent changes in the volatility of

economic time series may be predictable and result from a specific type of non-linear dependence

rather than an exogenous structural change in the variance.

The nature of the unconditional density of an ARCH process can be analysed by higher

order moments. If the error term is conditionally normal1, the skewness coefficient is immediately

1 Engle's (1982) ARCH model assumes YI = XI''; + &,

where Y, is the dependent variable and X, is a k X 1 veetor of exogenous variables, which may include lagged values of the

dependent variable, and ç is a k X 1 vector of regression parameters. The ARCH model characterises the distribution of the
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seen to be zero. Since the error is continuous, this implies that the unconditional distribution is

symmetric. Higher moments indicate further properties of the ARCH process. An expression for the

fourth moment of a general GARCH (p, q) process is not available, but Engle (1982) gave it for the

ARCH(1) process and Bollerslev (1986) for the GARCH(1,1). Recently Terasvirta (1999) derived

the necessary and sufficient condition for the existence of an unconditional fourth moment of a

GARCH (p,q) process, as weil as an expression for the fourth moment itself and the aucorrelation

function of the centred and squared observations.

The ARCH(1) process has tails heavier than a normal distribution. This property makes the

ARCH attractive because the distributions of asset returns frequently display tails heavier than the

normal distribution. Although no known closed form for the unconditional density function of an

ARCH process exists, Nelson (1990b) demonstrated that under suitable conditions, as the time

interval goes to zero, a GARCH (1,1) process approaches a continuous time process whose

stationary unconditional distribution follows a Student's t distribution. Nelson's result indicates why

heavy tailed distributions are prevalent in high frequency financial data rather than the normal

distribution. That the parameterisation of the ARCH process does not impose a priori the existence

of unconditional moments is an important characteristic of the modal. It has long been suggested,

at least as early as Mandelbrot (1963b) that the distribution of asset retums is such that the variance

may not exist. In empirical applications of GARCH, estimated parameters frequently do not satisfy

(2.3).

The fact that ARCH models admit an infinite variance is desirable because such behaviour

may be a characteristic of the data generating process that should be reflected in the estimated

model, especially when dealing with persistence. Fortunately, as will be noted later, even for

GARCH models with infinite variances, standard results on consistency and asymptotic normality

are still be valid.

The GARCH process is serially uncorrelated with a constant mean of zero. The process is

also weakly stationary as long as the variance exists. The lack of seriai correlation is a

characteristic of the ARCH process that makes it suitable for modelling financial time series. The

efficient markets hypothesis (EMH) discussed in chapter 1 asserts that past rates of return can not

be used to improve the prediction of future rates of return. Suppose thatYI is the rate of return on

an asset and that there is no regression component in the modal. Then YI is identical to the error

term and becomes a pure GARCH process. The optimal prediction of the return is the expectation of

stochastic error &, conditional on the realised values of the set of variables WI.1 ={Yl-l . Xt-1 ,YI-2 ,XI-2 , .....}. So we can

standardise the error term divinding by the standard deviation to get it normal.
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the return conditional on any available information. But because the GARCH model specifies that

the expected value of )'1 conditioned on the information set is equal to zero, the past observations

do not alter the optimal prediction of the rate of return. Therefore, the presence of ARCH does not

represent a violation of market efficiency. Of course, the lack of seriai correlation does not imply

that the error terms are independent. We suggested above that the qualitative appearance of data

generated from an ARCH process arises from a particular type of dependence. Bollerslev (1986)

gave a representation for the GARCH(p,q) process that reveals the nature of this dependence.

Thus, the GARCH model appears to be a natural and simple generalisation of ARCH, and empirical

evidence suggests that GARCH models fit the data as weil as or better than ARCH models with

Iinearly declining weights and roughly the same mean lag. See Bollerslev (1986) for more details.

One reason for the GARCH model's popularity is its convenience in implementation. One

can find a counterpart in Box-Jenkins' ARMA technique in modelling means.

Taylor (1986) gives the autocorrelation function for the error term of an ARCH (p) process,

and shows that it follows the same Yule-Walker equation for the associated zero-mean AR (p)

process provided the fourth moment of the error term exists.

Sastry Pantula (1986) and Bollerslev (1986) show that the squared error has an ARMA

(m,p) representation with m= MAX {p,q}2. In this representation, the autoregressive parts of the

process are given by the sum of the a' s, and the moving average part is characterised by the

a + fJ coefficients. Such an analogy has been used by Bollerslev (1988) to motivate the use of the

autocorrelogram and partial autocorrelogram for G; in model identification in assessing the number

of lags (p).

The autocorrelation and partial autocorrelation functions of the squared process will display

the familiar patterns of an ARMA process. Bollerslev (1988) has suggested that these

autocorrelation functions may be used to identify the orders p and q of the GARCH process. In

practice, the identification of the order of a GARCH(p, q) has not posed much of a problem, at least

in comparison with the earlier modelling experience with ARMA(p,q) processes. In applied work, it

has been frequently demonstrated that the GARCH(1, 1) process is able to represent the majority of

financial time series. A data set that requires a model of order greater than GARCH (1,2) or

q p
, J 0 J ,",' ~ J
- Let VI = G(- - Œ(- ,then in the conditional variance expression, Œ(- = l1J + L.Ja;G(-_1 +~ fJ;Œ(-_; ,we can

1;1 /;1

ni P

rewrite it as G(2 = l1J +L (a; + fJi )GL - L fJYI-/ + VI
/;\ /;1
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GARCH (2, 1) is very rare, and may be difficult to estimate given the restrictions that may have to be

imposed.

ln empirical research, the most often used GARCH model is GARCH(1, 1). It is interesting

to see the theoretical autocorrelation functions for GARCH(1,1) processes. For ease of exposition,

it is assumed that the distribution is conditional normal and covariance stationary. The

autocorrelation function still decreases exponentially like those of an ARMA process. This result is

also given in Bollerslev (1988), along with an excellent discussion on the structure of a GARCH(1,1)

model when its fourth moment exists. Much of the above discussion is valid even when the fourth

moment does not exist.

A natural question that has been asked concerns temporal aggregation. Ooes a high

frequency (e.g. fitted to daily data) ARCH/GARCH process aggregate to a low frequency (e.g. fitted

to weekly data) ARCH/GARCH process? Orost and Nijman3 (1993) considered this issue in detail

and showed that it is possible to have algebraic expressions between the parameters corresponding

to low and high frequencies. However, as the frequency decreases the aggregate process behaves

more like a conditional homoskedastic model, as pointed out by Oiebold (1988).

Going from low to high frequency, in the limit the process will be an integrated ARCH as

noted by Nelson (1990). Also, the distribution is no longer normal. Therefore, from a distributional

point of view an ARCH process is not c10sed under aggregation, but this still remains an open area

for research.

For practical purposes, if we specify an ARCH model only in terms of moments it is possible

to estimate the low frequency parameters from an estimation of a high frequency model, and vice

versa. Orost and Nijman (1993) demonstrated this using the empirical results of Baillie and

Bollerslev (1989), who fitted a GARCH(1, 1) model to several exchange rates. They found that, for

the Swiss franc, estimates of a] and f31 fram the daily data were 0.073 and 0.907. Using the

relationship between the parameters of high and low frequency data. Orost and Nijman (op.cit.)

showed that the implied weekly estimates were 0.112 and 0.792. Baillie and Bollerslev's estimates

using actual weekly data were 0.121 and 0.781, close to the ones obtained previously by Orast and

3 Consider ARCH(1) with &1!If'-1 - N(O,a}) and a l

2 =a ü +a] &,2_] , t =1,2, ....T and we wantto find the

corresponding for Et, when t =m,2m, ..... ,T. Orest and NiJman showed that E(&,IIfH ml) =°and

o l-at' m 2
E(&-,IIfHm)) =a ü 1 +al &,-m' Therefore in terms of the first two moments, na ARCH process is closed

-al
under temporal aggregation and we have na algebraic relationship between the parameters corresponding to high and low
frequency data.
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Nijman. Except for the Japanese yen, Drost and Nijman found that direct estimates were very close

to the implied weekly estimates.

We have noted that ARCH takes account of the c1ustering of large and small errors and the

fat tails observed in the distributions of many financial data series. One of the major considerations

in the introduction of ARCH by Engle (1982, p.989) was that econometricians' ability to predict the

future varies from one period to another. Predictions are usually done using a conditional mean

modal. This is easy to see if we take an AR(1) process as an example. In this case, neither the

one-step ahead nor k-step ahead forecast variance depends upon the information set. Thus, ail

forecast variances will be constant over the sampie period. This is not very interesting and even not

very descriptive for asset prices. Aiso for this reason, the ARCH/GARCH model seems more

appropriate as it allows the forecast to change as new information is incorporated. This is especially

important in the context of implied volatility, as discussed before.

2.3- Other Models dealing with Variance - Persistence in Variance

A common finding in most studies of the ARCH model concerns the possible presence of an

approximate unit root in the estimated autoregressive polynomial for the conditional second

moment. In this kind of model shocks to the variance are persistent in the sense that current

information remains important for forecasts of ail horizons. Although many economic or financial

time series may exhibit persistence in their conditional variances, as previously noted by Engle and

Bollerslev (1993) a non-trivial linear combination of such variables may have no persistence. This

discussion puts in perspective the possibility of shocks affecting volatility forever. There is a

practical interest nowadays in assessing to what extent developments in financial market have a

permanent effect on volatility.

Even though many time series may exhibit persistence in variance, it is likely that several

different variables share the same common long-run component. In such a situation, the variables

are naturally defined to be co-persistent in variance, and the co-persistent linear combination is

interpretable as a long-run relationship. Conditions for co-persistence to occur in the multivariate

linear GARCH model are presented. These conditions parallel the conditions for linear co­

integration in the mean, as developed by Engle and Granger (1987). The presence of co­

persistence has important implications for asset pricing relationships and in optimal portfolio

allocation decisions.
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We have already stressed that the use of an autoregressive model (AR) with variance a:
gives a conditional variance that depends on the forecast horizon but not on the available

information set and therefore does not change over time. ARCH/GARCH models have been

developed to account for this change in variance. This c1ass of models has been designed so that

the conditional variance and the conditional mean depend on the available information set.

If generated by a GARCH(p,q) model, the forecast of the conditional variance is a non-trivial

function of the information set today, just as in the case of the ARCH(1) model. This allows a

solution to a rational expectations model to be found, which gives a recursive solution for the

conditional expectations. In particular, for the GARCH(1, 1) model with horizon greater than two, if

ail roots of the autoregressive polynomial lie outside the unit circle then the sum of the a' s and the

p s is less than one (the stationary case).

When the ARCH effect is present, current information is useful for assessing the accuracy

with which a process can be forecast, and this can be important for producing forecasts of volatility.

It is interesting to consider how the available information affects forecast uncertainty as the forecast

horizon s increases. For s > p, the conditional variance of the innovation to the forecast error

reduces to a linear difference equation for the sequenceE(e;+,Ilf/,) for s =p+1 to infinity. If the

roots lie outside the unit circle, the solution converges to:

(2.5)

which is the unconditional variance of the innovation. In this case, as the forecast horizon becomes

very large, the conditioning set provides no information about the variance. If, however, the roots lie

on or inside the unit circle, this will not be the case we would have the denominator in (2.5) to sum to

zero. For example, consider a GARCH(1, 1) process with l-a(L)-fl(L) having a unit root,

implying al + fll = 1. Then the solution reduces to

E(e;+sllf/ t) =sa + E(e;Ilf/,) (2.6)

Therefore the conditional variance grows linearly with the forecast horizon and the

dependence on the information set persists forever.

Engle and Bollerslev (1986) were the first to consider GARCH processes with al + /31 = 1

as being a distinct c1ass of models that deserved attention. They termed it integrated GARCH

(IGARCH) because of the similarity between IGARCH processes and processes that are integrated
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in the mean (like ARIMA). A process that is integrated in the mean is one that must be differenced

to induce stationarity, and in which a shock in the current period affects the level of the series into

the indefinite future. In an IGARCH process. a current shock persists indefinitely in conditioning the

future variances. The IGARCH model is important because a remarkable empirical regularity,

repeatedly observed in applied work, is that sums of estimated coefficients of GARCH conditional

variances are very close to one. Baillie and Bollerslev (1989) estimated GARCH(1,1) models for six

U.S. exchange rates and found a+ fJ ranging between 0.94 and 0.99 for these six series.

Bollerslev and Engle (1991) considered multivariate IGARCH processes and defined a

concept of co-integration in variance that they calied co-persistence. Sets of univariate IGARCH

processes are co-persistent if there exists a linear combination of the processes that is not

integrated in variance. Here again we can see the similarity with the concept of co-integration.

However, Nelson (1990) has cautioned that drawing an analogy with processes that are integrated

in the mean may be somewhat misleading. Nelson (1990a) also demonstrated that although

IGARCH models are not weakly stationary. because they have infinite variances they could be

strongly stationary. Processes that are integrated in the mean are not stationary in any sense. The

consistent finding of very large persistence in variance in financial time series is perplexing because

currently no theory predicts that this should be the case. Lamoureux and Lastrapes (1990) have

argued that large persistence may actually represent misspecification of the variance and result

from structural change in the unconditional variance of the process, as represented by changes

in a . A discrete change in the unconditional variance of a process produces c1ustering of large and

small deviations that may show up persistence in a fitled ARCH mode!. Lamoureux and Lastrapes

used 17 years of daily returns on the stocks of 30 random selected companies and estimated

GARCH(1,1) models holding a constant and allowing a to change discretely over sub-periods of

the sample. For the restricted model, in which a is constant, the average estimate of a for 30

companies was 0.978, while for the unrestricted model, in which a is allowed to change, the

average estimate fell to 0.817. Lamoureux and Lastrapes present Monte Carlo evidence

demonstrating that the MLE of al + fJI has a large positive bias when changes in the unconditional

variance are ignored.

ln the IGARCH model, the conditional variance s steps ahead is the same as the conditional

variance one-step ahead for ail horizons s. The model is obviously closely related to the traditional

random walk, which has a unit root in the conditional mean rather than a unit root in the conditional

variance. The effect on future conditional variances is permanent: shocks are not forgotten and

their effects are permanent. Consequently, information today is important for forecasting. As in the

case of the conditional mean with a unit root, shocks to the conditional variance in integrated

GARCH(1,1) models are not forgotten. The integrated GARCH(1,1) model which restricts al +fJI
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=1 was introduced by Engle and Bollerslev (1986) and was an attempt to modellong run volatility

persistence. The IGARCH(1,1) model is always related to the random walk process in mean.

A plot of the first differences of the logarithm of these series shows that even though the

series seems to be uncorrelated over time, the observations are clearly not independent. There is a

tendency for large changes to be followed by large changes but of unpredictable sign. The modified

Box-Pierce test statistic can be used to test for seriai correlation and this would be the case in an

IGARCH mode!.

The first autocorrelations and partial autocorrelations die out fairly slowly. The estimate for

the GARCH(1,1) suggests consideration of a particular class of GARCH models that have the

property that the multi-step forecasts of the variance do not approach the unconditional variance. A

necessary condition is that the a' s and !J' s sum to one. In this way, the integrated GARCH(p,q)

models are part of a wider class of models with a property calied "persistent variance," in which

current information remains important for forecasting conditional variances for ail horizons.

The empirical plausibility of IGARCH models has been established by findings in Engle,

Lilien and Robbins (1985) and Bollerslev, Engle and Wooldridge (1988) that ARCH and GARCH

models of interest rates typically exhibit parameters that are not in the stationary region. Mills (1994)

presents some evidence on the dollar/pound exchange rate. He asserts that "since the changes in

the dollar/sterling exchange rate are uncorrelated, but the squared changes are correlated, an

alternative possibility for modelling this series is an ARCH process. Formai tests for the presence of

ARCH are provided by the Q statistics and the LM test statistic from the regression of x on lagged

values of itself. Using p = 4 lags, Mills finds the statistic 18.71 (chi-square), c1early indicating the

presence of ARCH. If the PACF dies out fairly slowly, an (I)GARCH(1,1) process seems a

reasonable candidate for modelling x. Estimation of such a process obtains a J + !JI =0.921, which

is close to one. Multi-step forecasts from the model will approach the unconditional variance quite

slowly. The estimated mean lag of this variance expression, is found to be 7.75, or about eight

weeks, which shows persistence of variance in such markets where the changes are daily.

It certainly seems plausible to conclude that changes in exchange rates for many countries,

although serially uncorrelated, have a time-varying conditional variance that can be modelled as an

IGARCH process. In fact, this conclusion relies on many studies of exchange rates that find ARCH

models to provide a satisfactory representation of the dynamic behaviour of such series: see, for

example, Milh0y (1987), Diebold and Nerlove (1989), Hsieh (1988, 1989a, 1989b) and Baillie and

Bollerslev (1989). It has also been found in other empirical research that the sum of the estimated

ARCH and GARCH parameters in a GARCH(1,1) model is very close to one. For example, Taylor
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(1986) estimated GARCH(1,1) models for 40 different financial time series. The results show that,

for ail but six of the 40 series, the estimated value of al +PI is greater than or equal to 0.97. In

Ding et al. (1993), the estimated value of al + PI for daily S&P 500 returns is equal to 0.97. As

has already been remarked, this regularity is widely considered to be a characteristic of volatility

persistence.

Assuming conditional normality the usual procedure for estimating the IGARCH model is by

estimating the GARCH model by maximum Iikelihood (MLE) and imposing the restriction for

integration in the variance (a 1 +PI = 1). Most of the applied work on ARCH/GARCH (including

IGARCH) models use the Berndt, Hall, Hall and Hausman (1974) algorithm (BHHH) to maximise the

log Iikelihood function. In most applications it is very difficult to justify conditional normality, and

therefore the log likelihood function is misspecified. Weiss (1986) studied the asymptotic properties

of quasi-maximum likelihood estimators (QMLE) to estimate the log likelihood when normality is not

imposed. His results were extended by Lumsdaine (1991), who established the consistency and

asymptotic normality of the QMLE of the GARCH(1,1) and IGARCH(1,1) models under a different

set of assumptions. He showed that the QMLE for the IGARCH(1,1) model has the same

asymptotic distribution as that of the GARCH(1,1). This result is important because it asserts that

the difficulties of the unit root model are not encountered with IGARCH.

As pointed out in Ding et al. (1993), the sampie autocorrelation function for absolute returns

and squared returns remains significantly positive for ail of these lags, while most sampie

autocorrelations are not significantly different from zero. In this paper, Ding et al. provide new

evidence of long-term dependence in speculative returns series. Five speculative returns series

from different markets are examined. Absolute returns and their power transformations are found to

have long, positive autocorrelations. Usually this property is strongest for absolute returns. One

exception is the exchange rate return, which has the strongest property when taken to Y4 power.

(This property is examined in more detail in a later paper). The theoretical autocorrelation functions

for various GARCH(1, 1) models are derived and found to be exponentially decreasing, which is

rather different from the sampie autocorrelation function for the real data. A general class of long

memory models with no memory in returns but long memory in absolute returns and power

transformations is proposed. The issue of estimation and simulation for this class of models is

discussed. The estimated results show that the proposed models give much better descriptions of

the real data.

ln spite of the fact that it is common to view volatility persistence as being best represented

by ARCH/GARCH with parameters summing very close to one, Ding et al. (1994) prove that the
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ACF for an IGARCH (1,1) process is exponentially decreasing and very different from the sample

autocorrelation function found for various speculative returns. The IGARCH(1, 1) process is not at

ail persistent in volatility in the sense that the autocorrelation function for the returns dies out quickly.

Ding et al. have proved, under the assumption that the distribution is conditional normal,

that the theoretical autocorrelation functions for GARCH(1, 1), IGARCH(1, 1) and IGARCH (1,1) with

drift processes are ail exponentially decreasing, which is different from what we have found in real

data. This is probably due to the fact that the effect of a lagged squared error on the conditional

variance is exponentially decreasing. This can be generalised to a situation where the distribution is

not normal, and the conditional variance equation is not a linear function of the lagged residuals.

They simulate a covariance stationary model where the fourth moment exists, so the theoretical

autocorrelation function is precisely defined. We can see that the sampie autocorrelations are very

close to the theoretical ones. As predicted by the theory, they decrease exponentially and very

quickly.

The first negative sampie autocorrelation occurs at lag 47, and the sample autocorrelations

after this lag are not significantly different from zero. We still see that the theoretical autocorrelation

function fits the sampie data quite weil. The sample autocorrelation decreasestoo fast to account

for the long memory property found in the real data. The authors also plot the simulated sample

autocorrelations and their theoretical approximations for IGARCH(1, 1) process. One can see that

the pattern of the sampie autocorrelation is very different from previous ones. It decreases linearly

for about the first 400 lags then collapses to zero. Thus we see that the IGARCH(1, 1) process

without drift is not at ail persistent in volatility. Aiso the sampie and theoretical autocorrelations for

IGARCH(1,1) process with drift is shown. The shape of the simulated sample autocorrelation is

quite similar to that of a covariance stationary GARCH (1,1) process. The theoretical exponentially

decreasing autocorrelation function provides a very good approximation.

From the discussion above, we see that the patterns of sampie autocorrelations for various

speculative returns are quite different from those of the theoretical autocorrelation functions given

for GARCH(1, 1) or IGARCH(1, 1) processes. Usually, the real data has a longer memory in volatility

than the GARCH( 1,1) model would suggest. The autocorrelation from a GARCH(1, 1) process

decreases exponentially while the sampie autocorrelation usually decreases faster than

exponentially at first, then much more slowly, remaining significantly positive over long lags. Usually

a GARCH(1, 1) process can describe short run effects better than long run effects. It is quite c1ear

from the sample autocorrelation that there are different volatility components that will dominate in

different time periods. Some volatility components may have large short run effects but will die out
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very quickly. Some of them may have relatively smaller short run effects but williast for long periods

of time.

2.4 - Long-Memory models

Much of the analysis of financial time series considers the case when the order of

differencing, d, is either 0 or 1. If the latter, x, is 1(1) its ACF declines linearly. If it is the former, x,

is stationary (1(0)) and its ACF will exhibit an exponential decay: observations separated by a long

time span may, therefore, be assumed to be independent, or at least nearly so. As it is weil known,

1(1) behaviour of financial time series is an implication of many models of efficient markets.

However, many empirically observed time series, although satisfying the assumption of

stationarity (perhaps after some differencing transformation), seem to exhibit dependence between

distant observations that, although small, is by no means negligible. Such series are commonly

found in hydrology, where this 'persistence' is known as the Hurst phenomenon, (see, for example,

Mandelbrot and Wallis (1969), and Hosking (1989)), but many economic time series exhibit similar

characteristics. This may be characterised as a tendency for large values to be followed by large

values of the same sign so that the series may seem go through a succession of 'cycles,' including

long cycles whose length is comparable to the total sample size.

2.4.1- Some Preliminary Ideas and Definitions

Interest in long memory processes in economics appears to have been stimulated by

developments in data analysis from the physical sciences, especially in hydrology. These

developments preceded the recent work done by economists. The first original work in the field of

physical sciences has been found in Hurst (1951). He analysed 900 geophysical time series

including tidal flows and inflows into reservoirs in the hope of understanding the determinants of

persistence in streamflow data and to improve the design of reservoirs. The idea that economic

time series exhibit long-range dependence has been the subject of many early theories. For an

example, see Granger (1966).

There are several possible definitions of the so-called property of 'long memory'. Given a

discrete time series process YI with autocorrelation function PJ at lag j, then according to McLeod

and Hipel (1978), the process possesses long memory if the quantity
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is non-finite. In otherwords, the spectral density I(m) will be unbounded at lowfrequencies.

The correlogram plot of the estimated correlation between y, and y,_} against j is

sometimes very useful to describe some of the linear properties of a single time series. In cases

where the plot declines either exponentially or very slowly, Box and Jenkins (1970) suggested two

models as possible candidates for the generating mechanism of the series: the stationary ARMA or

the integrated ARIMA. However, not ail correlogram plots have exactly these shapes, so new

classes of models have been proposed as possible generating mechanisms. In some cases the

correlogram declines steadily but not exponentially, or may start with a small estimated

autocorrelation (for example Pl = 0.45), and decline only slowly from this value. Among the models

that have been derived as possible explanations to generate series with such properties are the

fractionally integrated I(d) models or 'long memory' models. In other words, a stationary process y,

is said to have long memory if the covariance between y, and Y,_j declines slowly as j increases.

More specifically, the autocorrelation function p} at lag jean be approximated as follows:

- K· o- l
p} = .j as j ~ 00 (2.8)

for some nonzero constant K and a positive è. That is, the autocorrelation function decreases at a

slow hyperbolic rate rather than the fast exponential rate that characterises short memory ARMA

processes. As we can see in Graph 2.1, this is indeed the case when we compare the long memory

ARFIMA with ARMA. The correlogram of these two series shows that the autocorrelation for the

long memory process exhibits a clear pattern of slow decay and persistence.

The Efficient Market Hypothesis (EMH) states that, because current priees reflect ail

available public information, priee changes can only be brought about by the arrivai of new

information. With ail prior information already reflected in priees, markets should follow a random

walk and priee movements on any given day should be unrelated to the previous day's activity. EMH

implicitly predicts that ail investors react immediately to new information, and therefore future priees

will be unrelated to past or present values. The presence of long memory components in asset

returns has important implications for modern financial economics, since recent tests of investor

rationality and the "efficiency" of markets hinge on the presence or absence of long memory.
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Graph 2.1

AUTOCORRELATION FUNCTION OF A LONG MEMORY PROCESS X ARMA
d =0.4 and rho = 0.4
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Do people really make decisions in this manner? Generally speaking, some do react to

information as soon as they receive it. However, most people wait for additional information to

confirm their suspicions and do not react until a trend is clearly established. The amount of

confirming information necessary to validate a trend varies, but an uneven assimilation of

information may cause a biased random walk. In the 1970s and 1980s Mandelbot used the term

"fractional brownian motion" to describe biased random walks. Regular Brownian motion is a

continuous-time stochastic process, denoted as B(r), and is composed of severa1 independent

Gaussian increments. Mandelbrot and Van Ness (1968) also note that in a certain way, fractional

Brownian motion, BH(r) , can be regarded as the approximate (1/2 - H) fractional derivative of

regular Brownian motion,

r

BH(r) =[1/ r(H+ 1/2)] fer - X)H-I/2 dB(x) , for
o

r E (0,1) (2.9)
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where r(.) is the gamma function, B(x) is regular Brownian motion with unit variance and H is the

Hurst exponent, originally due to Hurst (1951) and to be introduced later on. When H =1/2, BH(r)

reduces to regular Brownian motion, B(r). The autocovariance function Brownian motion is given by

and

rJ =liI2H
-

2 (2.10)

so that for high lags hyperbolic decay occurs in the autocovariance function exhibiting the long

memory property. Continuous time fractional Brownian noise is denoted by BH(t) and is the

derivative of fractional Brownian motion. The (1/2 - H) fractional derivative of continuous time white

noise reduces to white noise when H = 1/2.

2.4.1.1 - The Hurst Exponent4

As has already been mentioned, Hurst was a hydrologist who began working on the design of

reservoirs and inflows and outflows of rivers. especially in Egypt. Since an ideal reservoir should

never overflow, a policy should be put in place to ensure the discharge of a certain amount of water

each year. On the other hand, if inflows into a reservoir are too small then water levels can become

dangerously low. In this context, the important question for policy makers is "What level of

discharge should be chosen so that a reservoir will never overflow or be empty?"

Many variables must be considered in building a model that can address this question. One of the

most important is clearly uncontrollable, namely the amount of water coming from rainfall. Hurst

made the reasonable assumption that inflows from rainfall were a random walk, but naturally he

wanted to test this hypothesis. This is the origin of the Hurst exponent (H). Among its desirable

properties are its high degree of robustness and its broad applicability to time series analysis. It

allows us to characterize time series while making only a few underlying assumptions. It can

distinguish a random series fram a non-random series, even if the random series is non-Gaussian

(Le. not normally distributed). Hurst found that most natural systems do not in fact follow a random

4 Il has been widely eSlablished that Hurst exponenl is a biased estimator. We just want to recover the discussion of long­
memory and the need to develop a better estimator. This discussion is taken in nex! chapters and we will see that the
Geweke-Portar-Hudak (GPH) and minimum distance estimators do much better.
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walk.

Hurst measured how the reservoir level fluctuated around its average level over time. As

might be expected, the range of this fluctuation changed depending on the length of the time used

for measurement. If the time series were random, the range would increase with the square root of

time ('J"ls). This is the TOS rule. To standardise the measure over time, Hurst created a

dimensionless ratio by dividing the range by the standard deviation of the observations. Hence the

analysis is called re-scaled range analysis (RIS analysis). Hurst found that most natural

phenomena, induding river discharges, temperatures, rainfall, and sunspots, follow a "biased

random walk"- a trend with noise or fractional Brownian motion. The level of noise could be

measured by how the RIS is linked to time, or by how far H is above 0.50. A natural extension of

Hurst's study is to see how we can apply it to capital market time series. Among the first to have

considered the possibility and implications of persistent statistical dependence in asset returns was

Mandelbrot (1971). Since then, several studies have lent further support to Mandelbrot's findings.

For example, Greene and Fielitz (1977) daim to have found long-range dependence in daily returns

for many securities listed on the New York Stock Exchange. More recent investigations have

uncovered anomalous behaviour in long-horizon stock returns; alternately attributed to speculative

fads and to time-varying conditional expected returns, these long-run swings may be further

evidence of the Joseph effect (Iong-memory).

The original statistical measurement of long memory due to Hurst (1951) is the re-scaled

range or RIS statistic. The rescaled range statistic Rr / Sr is defined as

1 / _ / -
RI' =-[Max" (Yk - YI)- l\fi,,!" (y - YI)]

S 1< <1' L.i 1< <1 L.i /r -/- k=1 - '- k=1

(2.11 )

where R is the range (the difference between the maximum and the minimum levels), Y is the

sampie mean and Sr is the sample variance:

1'2

Sr = {l / T)[L(Yk - Yr)2]
k

(2.12)

As we can see, the RIS statistic is the range of partial sums of deviations of a time series

from its mean. The first term in brackets in (2.11) is the maximum (over j) of the partial sums of the
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first j deviations of Y, from the sample mean. Since the sum of ail T deviations of the Y, from their

mean is zero, this maximum is always non-negative. The second term is the minimum (over j) of the

same sequence of partial sums: hence it is always non-positive. The difference between the two

quantities, calied the 'range' for obvious reasons is therefore always non-negative, hence RT ~ O.

ln order to compare different types of time series, Hurst divided this range by the standard

deviation of the original observations. This 'rescaled range' wouId increase with time. Hurst and

Mandelbrot (1972, 1975) formulated the following relationship:

RI S =a.(T)H

where RIS = rescaled range

T =number of observations

a = constant

H = Hurst exponent

Or written differently (2.13), we wouId have then:

log[RT1ST] ~ a + H[log(T)]

(2.13)

(2.14)

and then the Hurst exponent is then estimated as log[RT1ST] 1[loge T)], or alternatively by taking

the slope coefficient of a regression of log[Rr 1ST] on 10g(T), for different values of T.

According to statistical mechanisms (fractional brownian motion), H should equal 0.5 if the

series is a random walk. In other words, the range of cumulative deviations should increase with the

square root of time, T. Since a short memory process would have a value H equal to 1/2, an

estimated value of H that exceeds 1/2 is interpreted as evidence of long memory. Mandelbrot

(1972,1975) focused on the relation of the RIS statistic's logarithm to the logarithm of the sample

size as the sampie size increases without bound. For short-range dependent time-series, the ratio

approaches 1/2 in the limit, but converges to quantities greater or less than 1/2 according to whether

there is a positive or negative long-range dependence. The limit of this ratio is also called H, which

is precisely the Hurst coefficient. For example, the fractionally differenced process satisfies the

simple relation: H =d + 1/2, where dis the fractional differencing parameter. Mandelbrot and Wallis

(1969) suggest estimating H by plotting the log of RIS against the log of the sample size. Beyond

some large T, the slope of such a plot would settle down to H. However, although H =1/2 across

general classes of short-range dependent processes, the finite-sample properties of the estimated H
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are not invariant to the form of short-range dependence. When Hurst applied his statistic to the Nile

River discharge record, he found H =0.90! He then tried other rivers, and H was usually found to be

greater than 0.50. He finally tried different natural phenomena. In ail cases, he found H to be

greater than 0.50. What did it mean?

When H differed from 0.50, the observations were not independent. Each observation

carried a 'memory' of ail the events that preceded it. Furthermore, this was not a short-term

memory, which is often called 'Markovian', but a different kind of memory altogether. This memory

was long-term and. theoretically at least, lasted forever. More recent events had a greater impact

than distant events, but there was still residual influence from the distant past. On a broader sense,

a system that exhibits this kind of memory is the result of a long stream of interconnected events.

What happens today influences the future, and events in the past are important for explaining we

are today. The impact of the present on the future can be expressed as a correlation

C = 2(2H-I) - 1

where C = correlation coefficient

H = Hurst exponent

There are three distinct classifications for the Hurst exponent (H):

(1) H = 050

(2) 0 ~ H < 0.50

(3) 050 < H < 1.00

(2.15)

H equal to 0.5 denotes a random series. Events are random and uncorrelated. Equation

(2.15) equals zero when H = 1/2. In this case the present does not influence the future. Its

probability density functionis normal, but it does not have to be, RIS statistics can classify an

independent series, no matter what the shape of the underlying distribution. In statistics courses we

are usually taught that natural processes follow a normal distribution. Hurst's findings refute this

notion, since H is typically greater than 0.5 implying that the probability distribution is not normal. In

the case, a~ H < 050 is an antipersistent series. In other words, if the system has been up in the

previous period, it is more likely to be down in the next period. The strength of this antipersistent

behaviour depends on how close H is to zero. The closer it is to zero, the c10ser C in (2.15) moves

towards -0.50. In other words, this negative correlation implies an indirect relationship between past

and future values of the variable. If it has been high (up) in the past it will be more Iikely to be down

in the future (Le. there is a negative relationship). This relation is more volatile than a random series

because of the 'mean reverting' property and frequent reversais that characterise the process.
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When 0.50 < H < 1.00, we have a persistent, or trend-reinforcing, series. If the series has

been up (down) in the last period, then the changes will continue to be positive (negative) in the next

period. The strength of the trend-reinforcing behaviour, or persistence, increases as H approaches

1.0, or 100 percent correlation in equation (2.15). That is, if past values of the series are moving in

a positive (negative) direction, future values will tend to move in the same direction. The closer His

to 0.5, the series will be noisy and trends will not be weil defined. Persistent series are examples of

fractional Brownian motion, or biased random walks. The strength of the bias depends on how far H

is above 0.50. Persistent time series are the most interesting class because, as Hurst found, they

are plentiful in nature.

ln equation (2.14), finding the slope of the log/log graph of RIS versus Twill therefore give

us an estimate of H. This estimate of H requires no assumptions about the nature of the underlying

distribution. For very large T we would expect H to converge to 0.50, because the memory effect

diminishes over time and is expected to exhibit properties similar to regular brownian motion, or a

pure random walk. The regression referred to above would thus give us an indication of the process

and would be performed on the data prior to the convergence of H to 0.50.

It is important to remember that the correlatior:t measure in (2.15) is not related to the

Autocorrelation function (ACF) of gaussian random variables. The ACF works weil in determining

short-run dependence, but fails to capture long-run correlations for non-gaussian series. Graph 2.2

shows the logllog plot of RIS versus T for H = 0.5, using data fram a pseudo-random number

generator in the Gauss programming language. The estimation used by the Hurst methodology

shows H = 0.47. This estimate is a liUle lower than expected, but these are pseudo-random

numbers generated by a deterministic algorithm. In this case, rescaled range analysis seems to

have captured this bias. It is important to note that the R/S statistics is an extremely useful tool

since it does not require the assumption that the underlying distribution is gaussian. However,

finding H = 0.50 does not prove a gaussian random walk. It only proves that there is no long

memory process. In other words, any independent process, gaussian or otherwise, would produce

H = 0.50.

Even if we find a value for H that is significantly different from 0.50, we should not

automatically accept this estimate as valid. It may be that the span of the data is not sufficient, or

there may still be a problem with the RIS statistic. An estimate of H that is significantly different from

0.50 has two possible explanations:
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a) There is a long memory component present in the time series being studied. In this case each

observation of the process is correlated with the observations that follow.

b) The analysis is f1awed, and an anomalous value of H does not mean that there is a long memory

component in the time series.

Sometimes we do not know if have enough data to perform a valid test, since there are no

clear guidelines as to what constitutes a sufficient amount. We can test the validity of our results by

randomly scrambling the data so that the arder of the observations is completely different fram that

of the original time series. The frequency distribution of the reordered data would remain

unchanged since the observations are the same. If we then calculate the Hurst exponent using the

scrambled data, H should remain virtually unchanged, since there would be no long memory in the

reordered data. Consequently, scrambling the series would have no effect on the qualitative

aspects of the data. However, if a long memory component is present the order of the data is

important. In scrambling the observations we break the structure of the system, so the H estimate

should be very close to 0.50 even though the frequency would not change. The rule would be as

follows:



72

Graph 2.2

HURST EXPONENT
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a) Take the original series and compute H. Scramble the series from which the H was computed

and plot the 10gl109 of the scrambled and unscrambled series. If there is virtually no qualitative

difference between the two, then the original series does not have long memory.

b) Take the original series and compute H. Scramble the series from which H was computed and

plot the 10gl109 of the scrambled and unscrambled series. Different values of H for the scrambled

and unscrambled data would indicate the presence of long memory in the original series. This is

because the scrambled series would be independent despite having the same non-normal

frequency distribution as the original series.

Applying the RIS statistic is simple and straightforward, but we do need a considerable

amount of data in order to calculate il. When analysing financial markets, we generally use the

logarithm of returns, defined as follows:

s, = log(~ / ~_I) (2.16)
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where S, = return in logarithm

p, = stock priee index at time t

For the RIS statistic, the logarithm of returns is more appropriate than the more commonly

used percentage change in priees. The range used in RIS analysis is the cumulative deviation from

the average, and log returns sum to cumulative returns while percentage changes do not. The first

step, then, is to convert the priee series into log returns. The second step is to apply equation (2.11)

for various increments of time. We should start with a reasonably fine increment. For example, a

monthly time series covering 40 years of data could be converted into 480 log returns according to

(2.16). We could then split the series into 80 independent six-month increments, being careful that

they do not to overlap. Because these are non-overlapping six-month periods the observations

should be independent, but this might not atways be the case. For instance, they would not be

independent if there were a short-term Markovian-type dependence lasting longer than six months.

We can again use equation (2.11) to calculate the range of each six-month period, then rescale

each range by the standard deviation of the observations in the respective period according to (2.12)

to obtain 80 separate RIS observations. By averaging the 80 observations, we obtain the RIS

estimate for the series with T = 6 months.

We continue in this manner for T=7,8,9, ... , 240. The stability of the estimate can be

expected to decrease as T increases since we have fewer observations to average. Eventually we

would run a regression of 10g(T) versus 10g(RlS) for the full range of T, taking the slope of T as the

estimate of H according to (2.14). A natural question arises here concerning the amount of data.

How much data should we consider? Simulated data with fewer than 2,500 observations are not to

be considered but however there is no clear indication of how many data points should be

considered. In our work we will consider several daily data series beginning in the nineteen

seventies with some 4,500 observations. This should be sufficient for our purposes. It is worthwhile

that this procedure is a sort of bootstrap procedure. This procedure has been proposed by Peters

(1991) in order to produce a formai test for the Hurst statistic by means of using a bootstrap

distribution. We do not pursue the discusion about the procedure itself as the reader should refer to

Peters (1991). We will use other tests as weil in order to verity for the existence of long-memory

effects, so at this point the procedure described above should be seen as an earlier attemp and an

example of testing for long-memory.

This point has been persuasively argued by Mandelbrot (1969, 1972) in extending his work

on non-Gaussian (marginal) distributions in economics, and in particular on financial priees (1963),
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to an exploration of the structure of seriai dependence in economic time series. While Mandelbrot

considered processes that took the form of discrete time fractional gaussian noise, attention has

recently focused on extensions of the ARIMA (p,d,q) c1ass for modelling long-term persistence.

However, if dis not an integer then XI is said to be fractionally integrated. Such models are termed

ARFIMA by Diebold and Rudebusch (1989), with the F standing for 'fractionally.'

ln the analysis of stationary ARMA, models the ACF will exhibit an exponential decay as the

lag increases. Thus, observations separated by a long time span can be taken to be independent,

or at least nearly 50. However, many observed time series are seen to exhibit dependence between

distant observations that is not negligible. This is not taken into account in traditional ARMA models.

The notion of fractional differencing seems to have been proposed independently by

Hosking (1981) and Granger and Joyeux (1980). Further references include Hosking (1982),

Granger (1980) and Geweke and Porter-Hudak (1983). ARIMA processes with non-integral d are

often referred to as long memory models in this literature. The reason for this terminology may be

found in the property exhibited by the simplest member of the class, the ARIMA (O,d,O) process

(fractional integrated white noise). Hosking (1981a) shows that, if Id 1< 1/2, then

(i) x is stationary and invertible.

(ii) The ACF declines monotonically and hyperbolically to zero as the lag increases. This is a much

slower rate than the exponential decay of an ARMA (d = 0) process.

(iii) The PACF is independent of d.

ARFIMA models possess interesting and potentially useful long memory properties. Non­

integer d values provide for flexible modelling of low frequency variation, which gives better long-run

forecasts than conventional models. The ARFIMA(p,d,q) offers much greater flexibility in

simultaneous modelling of short-term and long-term behaviour of time series.

How does the ARFIMA model incorporate long memory behaviour? For 0 < d < 1/2, it can

be shown that its ACF declines hyperbolically to zero, i.e. at a much slower rate than the exponential

decay of a standard ARMA (d=O) process. For d > 1/2, the variance of x, is infinite, so the process

is non-stationary. Examples of how autocorrelations vary with d are provided in Hosking (1981),

Diebold and Rudebusch (1989) and Lo (1991). Typically, autocorrelations from ARFIMA processes

remain noticeably positive at very long lags. even after the autocorrelations from 1(0) processes

have declined to near zero.
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So when 0 < d < 1/2 the autocorrelations have an infi~ite sum and the ARIMA (O,d,O) is said

to have a long memory. As such it should be useful for modelling long-term persistence. When -1/2

< d < 0, ail auto and partial correlations are negative, and even though the autocorrelations have an

infinite sum such negative correlations do not allow for long-term persistence. The ARIMA (0, d, 0)

process then has short memory, a property which is also referred to as "antipersistence". When d >

1/2 the variance of x is infinite and the process is nonstationary. When d = 1/2 will be invertible but

not stationary, whereas the converse applies when d=-1/2. Thus, the ARFIMA(O, d, 0) process has

special long memory properties that make it useful for modelling long-term persistence. However,

there is still a need for a family of models flexible enough to account for both the short term and

long-term behaviour of time series.

The effect of the d parameters on distant observations declines hyperbolically as the lag

increases, whereas the effects of the AR and MA parameters declines exponentially. It is important

for modelling purposes that d be chosen to describe the high lag correlation structure of a time

series, while the other parameters should be chosen describe the low-Iag correlation structure.

Indeed, the long-term behaviour of an ARIMA (p, d, q) process may be expected to be similar to that

of an ARIMA (0, d,a) process with the same value of d, since the effects of the AR and MA

parameters will be negligible.

Since it is the fractional difference parameter d that allows long persistence to be modelled,

the value chosen for d is obviously crucial in any empirical application. Typically, this value will be

unknown and therefore must be estimated.

A number of different methods have been proposed, but there are no clear guidelines to

suggest which techniques are superior. However, this state of affairs will surely be remedied before

long. Early suggestions are discussed in Mills (1990, chapter 11.7), Pagan and Wickens (1989)

and Sowell (1992a). To summarize, four suggestions have been made in the literature:

(i) Granger and Joyeux (1980) use a grid search of d values, using a measure of h-step ahead

forecastibility to determine the chosen value. They stress that this method is c1early arbitrary and

sub-optimal, but they argue that it appears to work quite weil in their, admittedly limited empirical

experience with the method.

(ii) Hosking (1981 a) suggests that a maximum likelihood estimate (MLE) of d may be obtained by

the methods of McLeod and Hipel (1978), although no details are given.
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(iii) Hosking (1981 a) also suggests that d could be estimated by the rescaled range or RIS

exponent. This statistic was explicitly developed to measure long-term persistence, and its use in

the analysis of economic time series has been established by Mandelbrot (1972). A more recent

survey of RIS analysis and applications may be found in Mandelbrot and Taqqu (1979). The biggest

problem associated with this method appears to be bias.

(iv) Geweke and Porter-Hudak (1983) propose an estimator of d based on a simple linear

regression of the logarithm of the periodogram of a time series on an associated deterministic

regressor. The estimator is the OLS slope parameter in this regression, formed using only the

lowest frequency ordinates of the log periodogram. An alternative frequency domain estimator has

recently been proposed Kashyap and Eom (1988).

Geweke and Porter-Hudak (GPH) has been used widely due to its ease of implementation.

They propose estimating d by regressing the periodogram at different frequencies against a

constant and the frequency. As pointed out by Pagan and Wickens (1989), Kunsch (1986) shows

that frequencies around the origin need to be excluded to obtain consistent estimates. He also

shows that k should expand with sample size, and setting K =g(T) = .fT has been found to work

weil.

Having obtained an estimated of d, x can be transformed by the long memory filter,

truncated at each point to the available sampie. The transformed series is then modelled as an

ARMA process. Further details of this procedure and a discussion of its properties may be found in

Geweke and Porter-Hudak (1983) and Diebold and Rudebusch (1989). Sowell (1992a, 1992b)

discusses joint maximum likelihood estimation of d and the ARMA parameters, and presents Monte

Carlo experiments which show that maximum likelihood gives more accurate estimates than

Geweke and Porter-Hudak's method when the correct specification is known. However, Sowell

emphasises that, when the specification is uncertain (as is usually the case in practice), which

method is superior remains an open question. GPH has several merits as weil as some drawbacks:

1) The GPH estimation method is a very simple procedure. Under regularity conditions on 9 (.), the

consistent and asymptotically normal estimate of d is just the negative of the OLS estimate of the

slope coefficient in a simple linear regression.

2) This method does not require a large amount of data. The experimental results of Geweke and

Porter-Hundak (1983) suggest that the effect of sample size on the reliability of the confidence
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interval is negligible compared to the Granger and Joyeux (1980) grid-search method, where an

AR(50) is used to form ten-step forecasts.

3) The GPH method provides consistent and asymptotically normal estimates of d regardless of the

orders and parameterisations of the polynomials underlying the stationary process.

Alternative procedures, such as maximum-likelihood methods for simultaneous estimation

of d and the parameters of the polynomials. have desirable properties if the model is correctly

specified, but may be inconsistent otherwise (Brockwell and Davis (1987) and Sowell (1987)).

One drawback of the GPH method is the difficulty of choosing k = g(T), i.e. the number of

low-frequency periodogram ordinates used in the regression. Alternative choices of g(T) either

produce biased estimates if g(T) is too large, or imprecise estimates (large standard errors) if g(T) is

too small.

Diebold and Rudebusch (1989b) suggest that, since d is estimated from the long-run

dynamics of the time series, economic considerations can suggest a reasonable GPH sample.

Their choices are K = T/5 for annual series and K = T/20 for quarterly series. However, their

estimates have large associated standard errors.

Based upon theoretical considerations and Monte Carlo simulation, Geweke and Porter­

Hundak (1983), Brockwell and Davis (1987) and Shea (1989) recommend using g(T)= Ta and

obtain good results with a = 0.5. However a lot of doubts remains why we should use a = 0.5. The

estimates of d of U.S. GNP series are quite robust, but the standard errors for these estimates are

also quite large. Thus, the confidence we can have in the estimates of d is quite low.

Experience with each of these methods is presently too limited to offer any firm guidance as

to which is most useful. Nevertheless, the empirical experience of forecasting economic time series

and fractionally differenced series is quite encouraging. Both Granger and Joyeux (1980) and

Geweke and Porter-Hudak (1983) find that such models perform better out-of-sample with long

forecast horizons than do conventional ARMA models, and Granger (1980a) finds that fractionally

differenced models arise naturally in economics through component aggregation. One approach to

detecting the presence of long memory in time series is to use the "range over standard deviation",

or "rescaled range", statistic originally developed by Hurst (1951).
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Semiparametric estimates of long memory are useful in the analysis of financial time series

because they are consistent under much broader conditions than parametric estimates. However,

recent large sam pie theory on semiparametric estimation forbids conditional heteroskedasticity.

Robinson and Henry(1999) show that a leading semiparametric estimator, the Gaussian or local

White estimate, can be consistent and have the same limiting distribution under conditional

heteroskedasticity as under Robinson's (1995) assumption of conditional homoskedasticity.

Actually, noting that long memory has been observed in the squares of financial time series, they

allow (under regularity conditions) for conditional heteroskedasticity of the general form introduced

by Robinson (1991). This may include long memory behaviour for the squares, such as the

fractional noise and autoregressive fractionally integrated moving average form, and also standard

short memory ARCH and GARCH specifications.

2.5 - Long Memory volatility processes

Due to the fact that long-memory has recently attracted a great deal of attention, there has

been growing interest in the second moment of a process following the example of the ARFIMA

mode!. Many applications of long memory have emerged fram studies of financial market data. The

availability of large amounts of data exhibiting this phenomenon has justified the development of

theoretical tests and models of long memory in volatility. However, in many cases the choice of

model has generally been restricted by mathematical tractability. The first contribution was Taylor

(1986), who observed that autocorrelations inthe absolute values of stock returns tend to decay

very slowly. Ding, Granger and Engle (1993) note the same stylized fact for the power

transformations of daily returns, and Dacorogna, Muller, Nagler, Olsen and Picet (1993) find similar

evidence for squared exchange rate returns recorded every twenty minutes over a four-year period.

A long-memory conditional variance pracess can be based on the ARCH model of Engle

(1982). Saillie, Sollerslev and Mikkelsen (1996) have considered a long memory process in the

conditional variance, known as Fractionally Integrated Generalised AutoRegressive Conditional

Heteroskedasticity, or FIGARCH. This process implies a slow hyperbolic rate of decay for lagged

squared innovations and persistent impulse response weights. The cumulative weights also tend to

zero, a property shared by weakly stationary5 process or stable GARCH processes. However, the

impulse response weights of the FIGARCH process decay at a very slow hyperbolic rate. The

FIGARCH(p,d,q) is defined as

5 A recent paper by Giraitis, Kokosaka and Leipus (2000) study a broad c1ass of nonegative ARCH(oo) models. Sufficient
conditions for the existence of a stationary solution are established and an explicit representation of the series is found.



79

where ail the roots of r/J( L) and {I - fJ( L)} lie outside the unit circle. The FIGARCH process can

also be represented as

{l- fJ(L)}cr; = (ù + {I- fJ(L) - r/J(L)(1- L)d}&; (2.18)

and as

cr; =cv{l-jJ(1)}-J +À(L)&; (2.19)

where À(L) = {l- [1- fJ(L)r l r/J(L)(1- L).1} (2.20)

A necessary and sufficient condition for the FIGARCH (1,d,O) process to have nonnegative

impulse response coefficients, À} ;::: 0 for positive integer j is for 0:::; d :::; fJ . Following Saillie et al

(op.cit.), the polynomial in the lag operator of the impulse response coefficients is denoted by y(L),

00

where y(L) =2:y kLk . Then,
k=O

(1- L)&; = cv + y(L)v, ,and y(L) = (1- L)I-d r/J(L)-I {I- fJ(L)} (2.21)

The impact of past shocks on the volatility process is given by the limit of the cumulative

response weights,

oc

y(1) = IimÀ k =2:y } (2.22)
k->O }=O

For the FIGARCH process and for a value of d > 1, then y(1) will be infinite, while for the

FIGARCH(1 ,d,a) process,

}e k= [1(k + d -1) / {1(k)1(d)} ][(1- fJ) - (1- d) / k] (2.23)

The cumulative effect of a shock will be zero on the volatility process since y(l) =0; and

from Stirling's approximation,
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À k ~ [(1- fJ) / r(d)]k d
- ' , (2.24)

so that hyperbolic decay occurs in the response of the conditional variance to past shocks. Since

À(I) = l, it follows that E( &;) is undefined, and hence the second moment of the unconditional

density of &( is infinite. The FIGARCH process is then clearly not weakly stationary, a common

feature with the IGARCH process. Approximate maximum Iikelihood estimates of the parameters of

the FIGARCH(p,q,d) process can be estimated through maximisation of Quasi-Maximum Likelihood

which realises Tl consistent estimates of the FIGARCH parameters. Then,

1 A

Tl (fh- Bo) => N{O,A(Bo)-J B(Bo)A(Bo)-I} (2.25),

where A(.) and B(.) represent the Hessian and outer product gradient, respectively, and Bo denotes

the true parameter values. Simulation evidence indicates that the limiting distribution theory works

weil in sampie sizes of 1500 and 3000. Baillie et al (op.cit.) also report the effects of estimating

stable GARCH process where the true data generating process is FIGARCH. The sum of the

estimated GARCH(1,1) parameters is always close to one, which implies integrated GARCH or

IGARCH behaviour and suggests that the apparent widespread IGARCH property so frequently

found in high frequency financial data (see Bollerslev, Chou and Kroner, 1992) may weil be

spurious.

Fiorentini et al. (1995) have employed analytic derivatives to compute GARCH estimates.

They show that, in the context of univariate GARCH models, these derivatives can be successfully

used for estimation purposes. They argue that this approach is better than maximum likelihood

GARCH estimation, which relies on numerical approximation of log-likelihood derivatives since exact

analytic differentiation burdensome.

Following Nelson's (1991) Exponential ARCH model, which allows for asymmetries,

Bollerslev and Mikkelsen (1996) have extended the FIGARCH process to FIEGARCH, E standing

for "exponential." The FIEGARCH(p,q,d) model is then

logea;) = OJ + rjJ( Lrl (1- L) -d [1- À( L)]g(çt_J) (2.26)
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and ail the roots of «p(L) and Â(L) lie outside the unit circle. When d=O, we have the EGARCH

process and when d=1, the process becomes IEGARCH. They also present evidence on the

efficacy of QMLE applied to estimate the parameters of the FIEGARCH process and illustrate its

application to the pricing of options.

Bailie et al. (1995) consider the application of long-memory processes to describing inflation

for ten countries using GARCH-type conditional heteroscedasticity. They find strong evidence of

long-memory, and mean-reverting behaviour for ail countries except Japan, which appears to be

stationary.

Breidt, Crato and de Lima (1993) and Harvey (1993) propose a different modelling of

persistence in volatility. The model is then;

YI =r;,ŒI (2.28) and Œ; =Œ: exp(h
l

) (2.29)

where r;1 is NID(O,1). It is common to specify that hl is an AR(1) process, which implies an

ARMA(1,1) representation for log(YI2 ). If it is assumed that hl is the fractional white noise

process,

where ê 1 is NID(0, Œ;) then the previous model generates a long memory stochastic volatility

process. The usual procedure for regular stochastic volatility models has been the estimation

through the state space representation and uses QML via the Kalman tilter. Since astate space

representation does not exist for long memory processes, estimation of the long memory stochastic

volatility process is correspondingly difficult. Breidt, Crato and de Lima (op.cit.) use frequency

domain approximate MLE to estimate an ARFIMA(O,d,1) model for log(y;) , while Harvey (1993)

uses the GPH estimator to obtain an estimate of d in a fractional white noise model for log(YI2 ) .

Mahieu et al. (1997) study the empirical performance of stochastic volatility models using

twenty years of weekly exchange rate data for four major currencies. They focus on the effects of

innovations, both on estimates of parameter and on estimates of the latent volatility series. The

density of the log squared exchange rate innovations is modelled as a flexible mixture of normals.

They find that explicitly incorporating fat-tailed innovations increases estimates of the persistence of

volatility dynamics. Another finding is that estimates of the errors in the volatility time series are very
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large. In fact, they are so large that calculated option priees are rarely significantly different from

those in models with constant volatility.

Watanabe (1998) develops a new model for the analysis of stochastic volatility (SV). Since

volatility is a latent variable in SV models, it is difficult to evaluate the exact Iikelihood. A non-linear

filter, which yields the exact likelihood, is constructed and a smoothing algorithm for volatility

estimation is also used. The model is first tested in Monte Carlo experiments, where it performs

weil. It is then used to analyze daily stock returns on the Tokyo Stock Exchange, where the results

confirm the earlier findings.

Liesenfeld and Jung (1999) compare the SV model, which assumes that the conditional

distribution of returns given the latent volatility process is normal, to ones based on conditional

heavy-tailed distributions, especially Student's t and the generalized error distribution. Their

methodology is based on a simulated maximum Iikelihood approach. The results are based on daily

data for exchange rates and stock priees. They reveal that the SV model with a conditional normal

distribution does not adequately account for the leptokurtik distribution of returns and the low but

slowly decaying autocorrelation functions of the squared returns. These empirical facts are better

explained by SV models with conditional heavy-tailed distributions. They also argue that the choice

of conditional distribution has systematic effects on the parameter estimates of the volatility process.

One of the most exciting current applications of long memory processes concerns the

volatility of asset priees. The work of Ding, Granger and Engle (1993) promises an additional

stylised fact in asset pricing. They suggest an Asymmetric Power ARCH (A-PARCH), model to

describe the long memory properties encountered in returns data. The model imposes a power

transformation on the conditional standard deviation and the asymmetric absolute innovations. This

still implies an exponential decay of the volatility process. In a recent paper, McCurdy and Michaud

(1996) extend the A-PARCH model to the class of Fractionally Integrated A-PARCH by the

introducing the FIAPARCH process.

Loudon et al. (1999) present empirical evidence on the effectiveness of eight different

parametric ARCH models in describing daily stock returns. They use twenty-seven years of UK

daily data on a broad-based value weighted stock index for the period 1971-1997. The results

demonstrate the utility of parametric ARCH models for describing time-varying volatility in this

market. The parameters proxying for asymmetry in models that recognise the asymmetric

behaviour of volatility are highly significant in each and every case. However, the authors find that

the various parameterizations often perform similarly, with the exception of the multiplicative



83

GARCH model. This model performs qualitatively differently on several dimensions of sampie,

suggesting that the optimal choice of a model is period specifie. Performance is not consistent as

we change from in-sample inference to out-of-sample inference within the same period.

Greene and Fielitz (1977) and Aydogan and Booth (1988) both use the original RIS analysis

of Hurst to test for the long memory in common stock returns. Lo (1991) uses the modified re­

scaled range statistic on returns from value and equally weighted CRSP indices from July 1962

through December 1987. Lo (1991) obtains significant results using the regular re-scaled range

statistic and insignificant results using his modified rescaled range statistic. He attributes the

difference in the test statistics to short-term persistence within the return series. He also reports

finding a lack of evidence for long-range persistence in annual returns trom 1872 through 1986.

Hamilton and Lin (1996) investigate the joint time series behaviour of monthly stock returns

and growth in industrial production. They find that stock returns are weil characterised by year-Iong

episodes of high volatility, separated by longer quiet periods. Real output growth is subject to

abrupt changes in the mean associated with economic recessions. They propose a bivariate model

in which these two changes are driven by related unobserved variables, and conclude that economic

recessions are the primary factor that drives fluctuations in the volatility of stock returns. This

tramework can then be used for forecasting stock volatility and for identitying turning points.

Fornari and Mele (1996) develop two conditionally heteroscedastic models that allow

asymmetric reactions to arrivai of news. Such reactions in conditional volatility are related to both

the sign and size of past shocks. They propose a volatility-switching ARCH model that differs trom

existing asymmetric reaction models in its ability to capture a particular aspect of volatility, namely

the reversion of asymmetric reactions to news. Empirical evidence from stock market returns in six

countries shows that such a model outperforms traditional asymmetric ARCH equations.

Rydén et al. (1997) show that a mixture of normal variables with zero mean can generate

series which display long-memory properties. In this case, the temporal higher-order dependence

observed in return series can be described by a hidden Markov modal. They estimate the model tor

ten sub-series of the well-known S&P series. which contains around 17.000 daily observations. The

results reproduce the stylized tacts of long-memory series quite weil, but the parameter estimates

sometimes vary considerably from one sub-series to the next.

Dijk et al. (1998) investigate the properties of the Lagrange Multiplier (LM) test for ARCH

and GARCH in the presence of additive outHers (AOS). They show that both asymptotic size and
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power are adversely affected if AOS is neglected. The test rejects the null hypothesis of

homoscedasticity too often when it is in fact true, and it also has difficulty detecting genuine GARCH

effects. The authors then design and implement a robust test with better size and power properties

than the conventional test in the presence of AOS. The tests are applied to a number of US

macroeconomic time series, iIIustrating the danger of routinely using nonrobust tests for ARCH to

diagnose misspecifications.

Wright (1999) proposes a test for non-stationarity of volatility processes by testing for a unit

root in the log-squared time series. This strategy has many advantages, but is not followed in

practice because these unit roots tests are known to have very poor size properties. He shows that

newer tests that are robust to negative MA roots allow a reliable test for a unit root in the volatility

process to be conducted. In applying these tests to exchange rate and stock returns, strong

rejections of non-stationarity in volatility are obtained.

Perron (1999) suggests that the conditional variance of financial returns may exhibit sudden

jumps. This was first proposed by Delgado and Hidalgo (1996), who used a non-parametric

procedure to deteet discontinuities in otherwise continuous functions of a random variable. Perron

extends this procedure to higher moments, in particular the conditional variance. His results provide

a method to identify the locatation and number of jumps.

2.6 - Conclusion

We have seen that the first attempt to model changes in volatility, which is a stylised fact in

finance, was the ARCH model proposed by Engle in 1982. This technique was a belated response

to a phenomenon that had been detected early in the century, namely the clustering of volatility. A

natural extension of ARCH was the GARCH model proposed by Engle and Bollerslev (1986).

However, although both couId deal with volatility in a reasonable way, they failed to take account of

persistence in volatility, which had been discovered in several studies dealing with stock priees and

foreign exchange.

The challenge was to model this persistence in volatility. The first attempt was the IGARCH

model, which incorporated a unit root for the second moment as another variant of ARCH had done

for the mean. Many studies were produced for the advanced industrialised countries (North­

America, Europe, etc.), but very little work was done on the emerging markets of Latin America and

Asia.
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The literature reviewed in this chapter will allow us to pursue extensive estimations in

chapter four and to compare our findings with results found elsewhere. We will begin by estimating

ARCH models, before turning to the GARCH specification. We will finish our examination of

traditional models by using the IGARCH specification.

Next, we will estimate related models such as the asymmetric power ARCH (A-PARCH) that

embodies the flexibility of these different competing models. We will estimate the TaylorlSchwert

model that uses the absolute value of the returns in estimating volatility. This model stimulated

other researchers to investigate alternative definitions of volatility, for example Ding et al. (1993).

We have seen that the phenomenon of persistence was first observed in hydrology, where

the RIS statistics was proposed by Hurst (1951) and later revised by Lo (1981). We will use these to

investigate the occurrence of long memory in volatility. Another approach would be to use the

autocorrelations of returns to determine whether long memory is present in stock markets in

different countries. These results would beinteresting since they would not depend on any

assumption about the underlying distribution of stock priees. We will conduct this analysis in chapter

three, where we will be interested in RIS and autocorrelations analysis for the emerging markets.

We will introduce in chapter three as weil the idea that keeping in mind the existence of an

unit root in the mean of a process that conducts to persistence in the first moment, this idea can be

extended to higher moments.

As it will become clearer later we have chosen to use power transformations of the returns

(Iog-squared and so on) following Ding et al. (1993), who applied this methodology to the U.S. equity

market. The suggestion of working with power transformations of returns was first made by

Mandelbrot (1963) and later by Taylor (1986). 80th recognized that there may be more correlation

among power transformations of the returns than among the returns themselves. Since our goal has

been to try to replicate such results for the emerging markets and make comparisons between

developed and developing markets, it is clearly advantageous to do so using the same types of

transformations that have already been studied in the developed markets.

Wright (1999) introduced a methodology in order to test for the existence of an unit root in

the log of the squared returns that will enable us to identify the occurrence of persistence in volatility.

This will be also pursued in chapter three.

After having tested for the existence of long memory effects, in chapter four we will turn to

the estimation of long memory volatility models (FIGARCH), and will compare our results to the

those obtained for well-known market indexes such as the S&P 500 (USA). We hope ta determine
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whether the standard results for these markets are reproduced in less developed countries and

especially the emerging markets.

Finally, in chapter five we will pursue the investigation of other possible expianations for the

occurrence of long memory in volatility.
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Chapter 3

Inference About Long Memory in Volatility in the Emerging

Economies

3.1 - Introduction

The issue of long-memory in financial time series has been the subject of much debate in

the econometrics literature. This discussion has produced a number of proposed measures to

confirm the presence of this property. These procedures belong to one of two groups: parametric

and non-parametric. These will be presented in this chapter and the next, in order to apply them

to our data for emerging markets.

We will begin with a brief description of the data set used in this thesis, which will form the

basis for the more thorough examination to follow.

The first empirical measure to be discussed is the Hurst exponent. We will employ the

methodology developed in the previous chapter and use it to estimate Hurst exponents for each of

the countries in our sample. We will then compare our findings with earlier results for developed

markets.

We will then proceed to RIS analysis, which has received some criticism of late (see Lo

(1991». The RIS statistic represents an attempt to correct for the bias inherent in Hurst's original

formulation. We will estimate this index for ail of the countries in our sample and compare the

results to established findings for developed country markets.

We will also use a methodology proposed by Wright (1999), which tests for the presence

of a unit root in squared and absolute returns. This is yet another method of confirming

persistence in the volatility of returns.

Finally, we will use autocorrelation analysis in order to characterise the long-memory

properties of our data, following the approach used by Ding (1993). The autocorrelation function

(ACF) will be employed to verify slow decay in the ACF. This will be done both for returns and

powers of returns. As it will become clearer later we have chosen to use power transformations of

the returns (Iog-squared and so on) following Ding et al. (1993), who applied this methodology to

the U.S. equity market. The suggestion of working with power transformations of returns was first

made by Mandelbrot (1963) and later by Taylor (1986). 80th recognized that there may be more

correlation among power transformations of the returns than among the returns themselves.
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We have found that the same results are obtained regardless of which measure is chosen

to identify long-memory in the series for the emerging economies. Our findings ail point in the

same direction, confirming the presence of long-memory in the data for emerging markets. This

result is consistent with existing studies of markets in developing countries. What is more striking

is that the magnitudes of our results are greater than those found elsewhere.

3.2 - Characterisation of the Data used

The data used in this paper consist of daily closing priees for stock market indices in

several emerging markets. Ali indices are weighted, with the weights given by shares of stocks in

transactions over a 12-month period. The primary data sources were the Economatica and

PACAP databases.

If we denote ~ as the priee index t=O, ..... ,T, we can define the compounded return or

logarithm retum as follows, we will also be considering different definitions of volatility understood

as power transformations of the absolute returns :

r, =ln ~ - ln ~-l (3.1 )

As stated in chapter 1, for Argentina, we have 2501 daily observations from the Merval

index fram 1989 to 1997. For Hong-Kong. we have 6138 daily observations from 1975 to 1997.

For Taiwan, we have 6124 observations from 1975 to 1997. For Brazil, we have 7829 daily

observations from the Bovespa index from 1968 to 1999. For Korea, there are 5722 daily

observations for 1977 through 1997. For Thailand, we have daily data from 1975 to 1997, for a

total of 6133 observations. For Mexico, we use data from the IPC index fram 1978 thraugh 1997,

for a total of 5523 data. Finally, there are 6144 daily observations for Malaysia from 1975 through

1997.

3.3 - RIS Statistics and the Capital Markets

Peters (1981) applies RIS analysis to the S&P 500 return's using monthly data over a 38­

year period, from January 1950 to July 1988. He finds H to be 0.78, which clearly indicates that

the stock market is fractal (Le. it has long-memory) and is not characterised by a random walk.

He applies a scrambling test to the series of monthly returns and the log-log plots of the two series

are clearly different. H is equal to 0.51 for the reordered series, so scrambling destroys the long

memory property of the original series. The sequence of priee changes is important in preserving

the scaling feature of the series. Changing the sequences of returns by scrambling has changed

the character of the time series.
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The independence assumption (EMH) seems seriously f1awed. Time series of market

returns are persistent, with an underlying fractal probability distribution, and seem likely to follow a

biased random walk as noted by Hurst. Table 3.1 shows the results for the S&P 500 and sorne

individual stocks identified by Peters. In this study, stocks grouped by industry tend to have

similar values of H. Industries with higher levels of innovation, such as the technology industry,

tend to have higher values for H. In contrast, utilities have lower levels of innovation and

consequently lower values for H. If the value of H for a series is low, then the series is noisy its

behaviour more random. For example, Consolidated Edison's time series is less persistent and

more jagged than Apple's, which has a value of H = 0.68. 1

Because both stocks have H values greater than 0.5 they are both considered fractal (Le.

they have long memory). A final observation is that the S&P 500 has a higher value of H than any

of the individual stocks in the index. The high H value shows that diversification in a portfolio

reduces risk by decreasing the noise factor and reducing randomness. Variances in the case of

long-memory are frequently undefined or infinite, possibly making volatility a misleading indicator

of risk. H values are associated with less noise, more persistence and clearer trends in series. It

is frequently suggested that larger H values imply less risk since there is less noise in the data.

Table 3.1 - Analysis of RIS of Individual Stocks

Source: Chaos in Capital Markets, Edgar Peters, 1991

1 As we have already argued Hurst Exponent is a biased estimator and our intent here is that even using Hurst Exponent
there is a strong evidence lowards 'long memory'. Bul however we will contrast further these results with other
estimators Iike GPH.
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We can also calculate Hurst statistics for international markets. Table 3.2 shows Hurst

exponents (H) for the U.K., Japan, and Germany using the Morgan Stanley Capital International

(MSCI) index for each country. The monthly MSCI data used by Peters are for January 1959 to

February 1990. If we take the S&P 500 to be representative of U.S. markets, the ail four countries

have different H values. The U.K. has the lowest H (0.68), followed in ascending order by Japan

(0.68), Germany (0.72) and U.S. (0.78). Market efficiency can be judged by the amount of noise

in the data. Because the United States has the highest H, it is the most efficient" market, since it

has less noise than the others do.

Table 3.2 - Hurst Exponent for Several Countries

Source: Chaos in the Capital Markets, Edgar Peters, 1991

We now analyse the Hurst Exponents for the emerging markets of Argentina, Brazil,

Mexico, Taiwan, Korea, Thailand, Malaysia, Hong-Kong and Indonesia, where the returns shown

are actually logarithmic of returns. The results are shown in Graphs 3.1 to 3.8, below. We use

the same methodology proposed by Hurst (1951). That is, we use the slope of the logllog graph

of RIS against r to give us an estimate of H. We have developed a procedure in RATS to

compute the H exponent.

Graph 3.1 displays the results found for Argentina. We find the estimated Hurst

coefficient to be equal to 0.63, which possibly indicates a long-memor(. Scrambling the data

produces a Hurst coefficient of 0.54, which is a big change from the previous result and seems to

confirm the existence of long-memory using the methodology of Hurst. Compared with data

shown in Table 3.1 above, we can see that this finding for Argentina is moderate compared to

markets in other countries. It is possible that we do not have enough observations to perform a

valid test, 50 this result should be treated with caution. We must also point out that the Merval

index only started in 1989, replacing the General Index that was used before.

ln Graph 3.2, we present the H estimate for Hong-Kong. We found Hong-Kong's value to

be 0.48. This would mean that the series is mean-reverting and possibly contains no long­

memory component. Scrambling the data does not change the H estimate (0.45), an indication

2 We should bear in mind throughout that an estimator is not a stalislic for inference per si. We cannot conclude that an
estimate of , let's say 0.65, shows that there is long memory. This is an estimate based on the assumption of long
memory which needs to be tested by Lo/MacKinlay and aetually we do perform these tests below.
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that H is indeed less than 0.5 and that the market does not have long-memory. We should keep

in mind that, according to the IFe, Hong-Kong is a developed market, so this may be the result of

efficiency Iinked to development and the fact that investors exploit ail gains from available

information.

Graph 3.3 displays the results we found using data for Taiwan. In this case, we found the

estimate of H to be equal to 0.59, an indication of long-memory. Scrambling the data gives an H

value of 0.47 and seems to indicate that the series is persistent. This is because changing the

order of the observations caused a big impact on the value of the H Exponent, indicating

persistent behaviour of the series. The number of observations for Taiwan is very large, which

gives us more confidence in our estimate of H. Details for the Taiwan stock priee index can be

found in the statistical appendix in chapter one. However, the degree of persistence in the Taiwan

data seems to be smaller than that of Argentina as expressed by the values of the Hurst

exponents (0.63 for Argentina vs. 0.59 for Taiwan).

Graph 3.4 displays the Hurst exponent for the Brazilian market using Bovespa data. The

estimate for Brazil (0.83) is higher than any of the countries reported by Peters (1991) in Table 3.1

and 3.2. This strongly indicates that the series is persistent with a considerable long-memory

effect present. Scrambling the data changes the estimate of H from 0.83 to 0.88, which confirms

the pattern exhibited by the data. Perhaps it is not surprising to find such a large number for a

country such as Brazil, where stabilisation plans have frequently been required. Also, periods of

high inflation have been common due to the widely used system of indexation. Details for the

methodology of the Bovespa index can be found in the statistical appendix.

ln Graph 3.5 we show the results of Hurst's methodology for the Korean stock market.

The estimate we found for H was 0.66, not terribly high by international standards. For example,

the H values for ail of the developed countries in Table 2 (U.K, USA, Germany and Japan) exceed

the value found for Korea. Using the technique of scrambling the data, we found H to 0.55, giving

an indication that changing the order of the observations is important and suggesting that the

series has a long-term component. However, Korea's H is not as high as the value found for

Brazil. Since H > 0.5 with both scrambled and unscrambled data, we are lead to think that this

series is persistent, as stated by Hurst-Mandelbrot.

Graph 3.6 shows the estimate for Thailand. We found the value of H to be equal to 0.55,

which suggests that the series is persistent. We proceed as usual by using the scrambling

technique. In this case we found H to be equal to 0.65 after scrambling. Since the change is "big"

we accept that the series has long memory effects. The same pattern was found for Brazil,

Argentina, Taiwan and Korea. Thailand's value for H is moderate compared to Brazil's and

Argentina's but large compared those for the other countries. Actually, the value of H for Thailand

would be the lowest among the countries listed in Table 3.2.
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Graph 3.7 shows the results for Mexico. H was found to be 0.73, a clear indication of

possible long-memory effects. Scrambling the data changes the value to 0.64, suggesting that

the series indeed has long-memory. Mexico's H = 0.73 is high compared to the developed

countries in Tables 3.1 and 3.2. However, the effect is lower than that found for Brazil and higher

than those of Argentina, Taiwan, Thailand, Korea, Hong-Kong. The Mexican market has suffered

from frequent speculative attacks and the risk of crisis is almost permanent. However, even

under these circumstances we do observe persistent behaviour. Perhaps the existence of a

indexation in the economy can explain this result.

Finally, Graph 3.8 shows the data used for Malaysia. H is calculated to be 0.51 and

scrambling the data indicates that the series is anti-persistent since the new value is 0.50,

representing only a small change from the original value. One interesting thing to note is that the

Latin American countries (Argentina, Brazil and Mexico) generally have higher estimates of H than

those from Asia. We will return to this point later. However, we should be sceptical about the

Hurst exponent since we are not certain of what constitutes a "big" change in H after scrambling.

As we will see shortly, there is not a strong sampling theory provided by it to help to decide the

statistical significance of our findings when applying this technique.

Tests for long-range dependence have been developed as a simple generalisation of the

statistic first proposed by the English hydrologist Hurst (1951), calied "rescaled Range" or "range

over standard deviation" or "RIS" statistic. This statistic has been refined by Mandelbrot (among

others) in some important ways. However, these refinements were not designed to distinguish

between short-range and long-range dependence. This is a shortcoming in the application of RIS

to returns data, since Lo and McKinlay (1988,1990) show that such data display substantial short­

range dependence. Therefore, to be of current interest, any empirical investigation of long-term

memory in stock returns must first account for the presence of higher frequency autocorrelation.

That is, although it has been established that RIS has the ability to detect long-range dependence,

this statistic is also sensitive to short-range dependence. Thus, any incompatibility between the

data and the predicted behaviour of the RIS statistic under the null hypothesis of no long-run

dependence need not come from long-memory, but could be merely a symptom of short-term

autocorrelation. By modifying the rescaled range appropriately, Lo (1991) constructs a test

statistic that is robust to short-range dependence. He also derives its limiting distribution under

both short-range and long-range dependence. Contrary to the findings of Greene and Fielitz

(1977) and others, when this statistic is applied to daily and monthly stock returns data over

different sampie periods, there is no evidence of long-range dependence once the effects of

short-range dependence are accounted for. In several papers, Mandelbrot, Taqqu and Wallis

demonstrate the superiority of RIS analysis to more conventional methods of determining long­

range dependence, such as analysing autocorrelations, variance ratios, and spectral

decompositions. For example, Mandelbrot and Wallis (1969a) can detect long-range dependence

in highly non-Gaussian time series with large skewness and kurtosis. Further aspects of the RIS

statistic's robustness are derived in Mandelbrot and Taqqu (1979). Although these claims may
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atlest to the fact that long-range dependence can indeed be detected by the "classical" RIS

statistic, perhaps the most important shortcoming of the rescaled range is its sensitivity to short­

range dependence. This implies that any incompatibility between the data and the predicted

behaviour of the RIS statistic under the null hypothesis need not come from long-term memory,

but may merely be a symptom of short-term memory. As we have seen and stated before the

Hurst estimator is a biased estimator, if the value moves away from 0,5 by randomising it through

a sort of bootstrap technique ("scrambling"), it may only mean that we have got an unfortunate

single sampie with short memory that makes the estimates biased.

To see this specifically, Lo (1991) takes the example of an AR(1) stationary process. He

argues that it is weil known, bya Central Limit Theorem, that as T increases without bound, the

RIS converges in distribution to a weil defined random variable V when properly normalised, i.e.,

(3.2)

where "=>" denotes weak convergence and V is the range of a Brownian bridge on the unit

interval. Supposing that YI is an AR(1) stationary process, it yields a RIS that does not satisfy

(3.2). Actually, the limiting distribution in this case would be ~V, where ~ == J(1 + p) / (1- p)

and p is the autoregressive parameter of the AR(1) process. So if p is 0.5, the mean of RIS

may be biased upward 73 percent (.J(l + 05) i (l - 05) = 1.73) and since the mean of V is

.JJr / 2 ~ 1.25 (see Feller (1951), Kennedy (1976), and Sidiqui (1976», the mean for the c1assical

RIS would be 2.16 (1.73*1.25) for such an AR(1) process what exceeds by far the critical values

(1.862) and this would yield a rejection of the null hypothesis at any conventional significance level

, 50 that we would be accepting the hypothesis of long-term memory. This bias is the problem

with the RIS statistics. It would be possible to correct for this bias by dividing RIS by ~, 50 that

convergence may be restored. But this requires knowledge of ~, and also of p. Moreover if YI

follows a process other than an AR(1), ~ would change so that we would have to correct it case­

by-case what becomes impracticable. The estimated Hurst coefficient is not invariant to the form

of short-range dependence. Davies and Harte (1987) show that even though the Hurst coefficient

of a stationary Gaussian AR(1) is precisely 112, the 5 percent RIS statistics rejects this null

hypothesis 47 percent of the time for an autoregressive parameter of 0.3. Ideally, we would like to

have a form to correct for short-range dependence without requiring too many restrictions. Its

limiting distribution should also be invariant to many forms of short-range dependence and still

sensitive to long-range dependence.

To distinguish between long-range and short-range dependence, the RIS statistic must be

modified so that its statistical behaviour is invariant over a general class of short memory
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processes, but that also takes in account long-memory processes. Lo (1991) constructs a test

statistic that is robust to short-range dependence. He considers a modified RIS statistic in which

the standard deviation becomes (the square root of) a consistent estimate of the variance of the

partial sum in

where

(3.3)

2 q

Crr(q) =si + 2Lw/q)ik '
k=1

w (q)=l-i-,q<n
J q + 1

(3.4)

and si and ik are the usual sampie variance and autocovariance estimators of y,. Rr

differs from Rr only in its denominator, which is the square root of a consistent estimator of the

partial sum's variance. If y, is subject to short-range dependence, the variance of the partial

sum is not simply the sum of the variances of the individual terms, but also includes the

autocovariances. Therefore the estimator d;.(q) involves not only sums of squared deviations of

the series. but also its weighted autocovariances up to lag q. The weights w/q) are those

suggested by Newey and West (1987). By allowing q to increase with the number of observations

T, but at a slower rate. the denominator of Rr adjusts appropriately for general forms of short­

range dependence. There is, however, little guidance in selecting a truncation lag q. Andrews

(1991) and MacKinlay and Lo (1989) have shown that when q becomes too large relatively to T,

we have a radical different finite-sample distribution from the asymptotic limit of the estimator.

But, on the other side, q can not be chosen to small since by doing this, we can be skipping

autocovariances beyond q that may be very high and that should be considered in the weighted

sumo The truncation is then subject to the criticism of data. Andrews (1991) provides a data­

dependent rule for choosing q. It is based on an asymptotic mean-squared error criterion but not

too much is known about how to best choose q in finite samples.

Greene and Fielitz (1977) were probably the first to apply RIS analysis to common stock

returns. Other applications are related to the price of goId (Booth and Kaen,1979), foreign

exchange rates (Booth, Kaen and Koveos, 1982) and futures markets (Helms, Kaen and

Rosenman, 1984). AIl of these empirical studies share some features in common:

1) They provide no sampling theory to determine the statistical significance of their findings.
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2) They also use the "classical RIS", which is not robust to short-range dependence.

3) They do not focus on the RIS statistic itself but rather on the regression of its logarithm on (sub)

sampie sizes.

Point (3) is supported by Davies and Harte (1987), who show such regression tests to be

significantly biased toward rejection even for a stationary AR(1) process with an autoregressive

parameter of 0.3.

Lo (1991) tests for long-memory in stock returns using data from the Center for Research

in Security Priees (CRSP) monthly and daily returns observations from July 1962 through

December 1987, amounting to 6409 observations for the daily data and 744 observations for the

monthly data. For the daily returns, the RIS statistic is significant at the 5% level but the modified

RIS is not. While the modified RIS is found to be 1.46, the classical RIS is 2.63. The bias in this

case amounts to some 80%! The statistical significance of the modified RIS is consistent with the

short-memory null hypothesis. For the monthly returns, none of the modified statistics was found

to be significant.

We present the results for the classical RIS statistic and the modified RIS statistics as

proposed by Lo (1991) for Argentina, Brazil, Mexico, Thailand, Korea, Taiwan, Malaysia and

Hong-Kong. Table 3.3 presents the values for the modified RIS statistics. We used a procedure

in Gauss based on the Andrew's (1991) data-dependent formula to choose the truncation lag (q)

in the process of computing the modified RIS. Table 3.3 also measures the bias of the c1assical

RIS when compared to the modified RIS. The bias is defined to be: ((c1assical RlS)/(modified

RlS)-1 )*1 00. We also contrast these results with those for the US Market described by the

Standard & Poor's index (S&P).

The statistics computed in table 3.3 have a distribution with critical values given in Lo

(1991, pg.1288, Table Il). Using these values, we can test the null hypothesis at the 95 percent

level of confidence by accepting or rejecting according to whether the modified RIS is or is not

contained in the interval (0.809,1.862) which assigns equal probability to each tai\. The classical

RIS is also shown and the Hurst exponent. Tests marked with an asterisk indicate those that are

significant at the 95 percent leve\.
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Table 3.3 - Modified RIS Statistics for the Couotries uoder Aoalysis

Some interesting results can be seen in Table 3.3. The first is the fact that ail three Latin

American markets show long-range dependence whether measured by the classical RIS, the

modified RIS or the Hurst exponent. For Argentina, we found values of 2.18 (classical), 2.15

(Modified) and 0.63 (Hurst Exponent). The bias is relatively small compared to that found by Lo

in his 1991 paper. The same pattern is found for Brazil: 5.81 (classical), 4.36 (Modified) and

0.83 (Hurst Exponent). The effects in the case of Brazil appear to be much larger than for

Argentina, and the process is highly persistent. The bias, however, is higher: 33.3 percent.

Mexico is an intermediate case between Argentina and Brazil. The classical RIS was found to

be 3.05, the modified 2.37 and the Hurst Exponent 0.73. Ali of the values for Mexico are

between those for Argentina and Brazil, and there is also evidence of long-range dependence.

The bias is 28.7 percent.

For the Asian countries, none of the statistics are significant at the 95 percent level

except for Korea, where the classical RIS was found to be 1.90. However, the modified RIS is

not significant. For ail other countries there is no significance for both statistics. Concerning the

Hurst Exponent, it only follows the pattern indicated by the RIS analysis in the case of Hong­

Kong and possibly Malaysia. We do find confirmation of the fact that Latin American markets

present more long-range dependence than Asian markets. It is also interesting to see that the

results for the US markets follow the same pattern as those found for the Asian markets in the

sense that we find no significance for both statistics. In our view, this may reveal two different

things. The Latin American markets have suffered from many interventions during the period

under consideration, which may have created confusion among investors untîl they understood

the nature of each new measure. This means that after new information arrives in the market it

takes some time for investors to digest it fully and these markets were far more closed than the

Asian/US markets. Foreign investors react much more quickly than domestic investors. This
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could contribute to long-range dependence, especially in case of Brazil. It could also be explained

by the widespread practice of indexation.

ln order to put this into perspective and provide some intuition, we show the

autocorrelation functions up to 260 lags (approximately one year) for the countries under

consideration. These are depicted in Graphs 3.9a and 3.9b below. For the Asian countries, only

the lowest order autocorrelation coefficients are statistically significant. For the latin American

countries, the highest order coefficients are still statistically significant.

3.4 Unit Roots in the Volatility of Stock Returns

Another way to test for long-memory in the volatility of returns is to consider a stochastic

volatility model where the volatility process is non-stationary.3 The stochastic volatility model

implies that the log of the squared time series is an ARMA process, the largest autoregressive

root of which is the same as the largest autoregressive root of the volatility process. It is then

possible to test for a unit root in the unobserved volatility process by testing for a unit root in the

log of the squared time series. This test is straightforward and does not require a distribution to

be specified for the error term. However, it is a weil established result that standard unit raots

suffer from extreme size distortions in the presence of negative MA roots. Perron and Ng (1996)

have proposed modified unit roots tests which are robust. Wright (1999) proposed using Perron's

method to test for a unit root in the log of the squared time series and hence to test for a unit root

in the volatility process.

let's start by considering the standard autoregressive stochastic volatility (ARSV) model

which specifies that {YI Y~J is a time series of returns such that

The model further specifies that l:: is i.i.d. with mean zero and variance 1. log(cr}) = j.1 + hl '

a(l)ht = Tlt and a(l) = b(l)(1 - al) is a pth-order autoregressive lag polynomial such that b(l) has

ail roots outside the unit circle. The parameter a is the largest autoregressive root of the volatility

process. It is assumed that Tlt is i.i.d. with mean zero and variance cr~ and is distributed

independently of l::t. Clearly we can write,

(3.5)

3 See Hansen, 1992; Harvey et al., 1994; and Ruiz. 1994.
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where St = log(Et 2) - E(log(Et 2)), m= a(1)(/l+E(log(Et 2»» and Xt = 11t + a(L) ~t. If we are

only interested in deciding whether a = 1 or not, then we can use an approach that does not

require any distributional assumption to be made concerning the error term (unlike for estimation)

and that is simple to apply for any value of p. The time series Xl = 11t + a(L) ~t has a Wold

representation and, from inspection of its autocovariance funcion, this is non-MA(p) reduced form.

It follows from equation (3.5) that 10g(Yt 2) is a stationary ARMA(p,q) process if lai < 1, but it is an

ARIMA process if a =1. 50, one may test the hypothesis that a = 1 by testing for a unit root in

10g(Yt 2) using, in principle, any one of the unit roots tests available in the econometric Iîterature.

However, it has been pointed out by Harvey (1994) that these unit root tests have very

poor size properties, and thus they attach little significance to the rejection of the unit root nuit that

they obtained using exchange rate and stock market data. The presence of a large negative

moving average root is known to cause serious distortions in standard unit roots in finite samples.

Accordingly, standard unit root tests applied to the log of squared time series on asset returns

may in principle be interpreted as tests for a unit root in the volatility process, but should in

practice suffer from serious finite sample size distortions as suggested by Wright (1999), and

possibly even in the large sample sizes that are available for asset returns data.

Perron and Ng (1996) have proposed modified unit root tests which have much better

finite sampie properties in the presence of large negative MA roots. Wright (op.cit.) tests the

hypothesis that a =1 against the alternative lai < 1 applying these tests to 10g(Yt 2). The three

statistics are

T

where Vt = 10g(Yt 2), V=T-1L v: and S2 is the autoregressive spectal density estimate
1=1

obtained from the autoregression

k

VI =a o +ajl'I_I + LajtJ.v,_j +e:
)=1
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where k = o(T1

!3). These unit roots have power against local alternatives in a T 1

neighbourhood of unity. This contrasts with maximum-likelihood tests for a unit root in a

GARCH/IGARCH model which use root-T asymptotics and correspondingly have power only in a

T 1
!2 neighbourhood of unity.

The unit root tests are designed to have power against the alternative that the volatility is a

stationary autoregression (the ARSV model with lai < 1). The squared. log-squared and aboslute

value of stock returns often have correlograms that decay very slowly, as we showed in chapter

three. This finding has motivated some researchers to propose a fractionally integrated stochastic

volatility model. A simple case of this model specifies that {YI };=1 is a time series of returns such

that

where & is i.i.d. with mean zero and variance 1, \og(a/
2

) =Il + hl and (1 - L)d(1 - aL)hl = Tll,

(1 - L)d denotes the fractional differencing operator and Tll is i.i.d. N(0,cr2~) and is independent of

&1. More generally hl can be an arbitrary Gaussian fractional ARIMA process. He shows the tests

to have power agains the FISV alternatives.

We apply these tests for a unit root in volatility developed by Wright (1999) to the stock

returns data used in our thesis. The procedures described above were then applied to testing for

a unit root in the volatility of each of the series of stock returns for Argentina, Brazil, Mexico,

Taiwan, Thailand, Hong-Kong, Korea and Malaysia. For comparison, the familiar la, lI, and ADF

statistics were also used. The results are reported in Tables 3.4 to Table 3.19 for both log­

squared returns and absolute returns). In obtaining S2, the autoregressive spectral density

estimator, the results are reported for k = 5, 10, 15 and 20. For the laand li, statistics S2 was

used as the spectral density estimate. For the ADF test, k lags of the differenced data were

added to the Dickey-Fuller regression.
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Table 3.4 - Unit Root test statistics for log-squared stock returns

ADF la lt Mla MSB Mlt

Thailand, k =5 -16,84 -1.579,6 -50,54 -487,84 0,032 -15,61

Thailand, k =10 -11,52 -1.252,5 -69,73 -160,76 0,057 -8,95

Thailand, k =15 -9,34 -1.181,8 -87,76 -90,14 0,074 -6,69-

Thailand, k =20 -8,11 -1.157,4 -100,58 -65,67 0,087 -5,71

Note: Ali test statistics are significant at 1% level

Table 3.5 - Unit Root test statistics for log-squared stock returns

ADF la lt Mla MSB Mlt

Brazil, k =5 -22,20 -2.850,8 -72,44 -774,13 0,025 -19,76

Brazil, k =10 -14,50 -2.299,1 -108,96 -222,51 0,047 -10,55

Brazil, k =15 -10,76 -2.172,4 -156,89 -95,75 0,072 -6,92

Brazil, k =20 -8,88 -2.133,6 -199,74 -56,94 0,094 -5,33

Note: Ali test statistics are significant at 1% level

Table 3.6 - Unit Root test statistics for log-squared stock returns

ADF la lt Mla MSB Ml!

Argentina, k =5 - 9,70 -663,32 -38,41 -147,79 0,058 - 8,56

Argentina, k =10 -5,86 -548,83 -65,94 -33,46 0,120 -4,22

Argentina, k =15 -4,68 -533,65 -85,55 -18,29 0,160 -2,93

Argentina, k =20 -4,07 -528,69 -98,19 -13,34 0,186 -2,48

Note: Ali test statistics are significant at 1% level

Table 3.7 - Unit Root test statistics for log-squared stock returns

ADF la II Mla MSB Mlt

Mexico, k =5 -20,86 -2.280,3 -57,60 -783,49 0,025 -19,79

Mexico, k =10 -14,61 -1.767,6 -75,94 -270,78 0,043 -11,63

Mexico, k =15 -12,40 -1.680,3 -87,68 -183,52 0,052 -9,58

Mexico, k =20 -10,83 -1.619,2 -103,45 -122,40 0,064 -7,82

Note: Ali test statistics are significant at 1% level
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Table 3.8 - Unit Root test statistics for log-squared stock returns

ADF Za lt MZa MSS Mlt

Korea,k=5 -20,03 -2.512,2 -71,96 -610,27 0,029 -17,46

Korea, k = 10 -13,81 -2.112,8 -103,50 -207,87 0,049 -10,18

Korea, k = 15 -11,01 -2.013,4 -136,37 -108,53 0,068 -7,35

Korea, k = 20 -8,91 -1.961,7 -103,23 -56,86 0,093 -5,31

Note: Ali test statistics are significant at 1% level

Table 3.9 - Unit Root test statistics for log-squared stock returns

ADF la l, MZa MSS Ml,

Taiwan, k = 5 -19,48 -2.690,7 -81,86 -539,07 0,030 -16,40

Taiwan, k = 10 -12,41 -2.291,8 -136,29 -140,33 0,060 -8,35

Taiwan, k = 15 -9,34 -2.215,5 -194,15 -64,08 0,088 -5,62

Taiwan, k = 20 -8,29 -2.197,7 -226,02 -46,25 0,103 -4,76

Note: Ali test statistics are significant at 1% level

Table 3.10 - Unit Root test statistics for log-squared stock retums

ADF la lt MZa MSS Mlt

Hong-Kong , k = 5 -21,74 -2.860,8 -75,35 -720,75 0,026 -18,98

Hong-Kong, k = 10 -14,27 -2.338,4 -117,39 -198,34 0,050 -9,98

Hong-Kong, k = 15 -11,39 -2.242,9 -156,35 -102,86 0,070 -7,17

Hong-Kong, k = 20 -9,98 -2.211,0 -185,54 -70,96 0,084 -5,96

Note: Ali test statistics are significant at 1% level

Table 3.11 - Unit Root test statistics for log-squared stock retums

ADF Za l, MZa MSS Ml,

Malaysia, k = 5 -21,88 -2.630,4 -64,95 -820,04 0,025 -16,40

Malaysia, k = 10 -14,78 -2.056,1 -92,72 -245,76 0,045 -11,08

Malaysia, k = 15 -11,69 -1.924,2 -127,48 -113,82 0,066 -7,54

Malaysia, k = 20 -10,49 -1.893,3 -146,90 -82,97 0,078 -6,44

Note: Ali test statistics are significant at 1% level
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Table 3.12 - Unit Root test statistics for log-squared stock returns

ADF Zn Zt MZa MSS MZt

Thailand, k =5 -16,44 -1.309,7 -41,27 -503,23 0,032 -15,86

Thailand, k =10 -11,52 -999,1 -50,87 -192,63 0,051 -9,81

Thailand, k =15 -9,84 -920,9 -60,79 -114,55 0,066 -7,56

Thailand, k =20 -8,64 -899,0 -66,00 -92,57 0,073 -6,80

Note: Ali test statistics are significant at 1% level

Table 3.13 - Unit Root test statistics for absolute stock returns

ADF Za Zt MZa MSS MZ\

Srazil, k =5 -18,01 -2.149,6 -66,44 -523,08 0,031 -16,17

Srazil, k =10 -12,02 -1.792,8 -98,23 -166,34 0,055 -9,11

Srazil, k =15 -9,78 . -2.172,4 -156,89 -95,75 0,072 -6,92

Srazil, k = 20 -8,88 -1.695,0 -143,77 -69,36 0,084 -5,88

Note: Ali test statistics are significant at 1% level

Table 3.14 - Unit Root test statistics for absolute stock returns

ADF Za Zt MZa MSS MZt

Argentina, k =5 -8,97 -498,76 -29,48 -142,83 0,059 - 8,44

Argentina, k =10 -6,17 -403,30 -41,30 -47,40 0,102 -4,85

Argentina, k =15 -5,63 -395,32 -44,36 -39,42 0,112 -4,42

Argentina, k =20 -4,94 -385,99 -49,52 -30,10 0,128 -3,86

Note: Ali test statistics are significant at 1% level

Table 3.15 - Unit Root test statistics for absolute stock returns

ADF Zn Z\ MZa MSS MZ\

Mexico, k =5 -24,55 -2.539,9 -40,68 -1948,70 0,016 -31,21

Mexico, k =10 -18,09 -1.694,3 -36,07 -1.102,8 0,021 -23,48

Mexico, k =15 -15,00 -1.339,7 -34,63 -748,51 0,026 -19,35

Mexico, k =20 -12,96 -1.068,6 -34,58 -476,84 0,032 -15,44

Note: Ali test statistics are significant at 1% level
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Table 3.16 - Unit Root test statistics for absolute stock returns

ADF Za ZI MZa MSS MZI

Korea,k=5 -18,39 -2.020,6 -61,14 -545,82 0,030 -16,52

Korea, k = 10 -13,99 -1.746,4 -74,88 -271,62 0,043 -11,65

Korea, k = 15 -11,96 -1.666,3 -85,06 -191,52 0,051 -9,78

Korea, k = 20 -10,20 -1.594,1 -103,04 -119,32 0,065 -7,72

Nole: Ali lest statistics are significant at 1% level

Table 3.17 - Unit Root test statistics for absolute stock returns

ADF Za ZI MZa MSS MZI

Taiwan, k = 5 -14,66 -1.621,6 -62,38 -337,41 0,039 -12,98

Taiwan, k = 10 -9,27 -1.385,7 -97,03 -101,56 0,070 -7,11

Taiwan, k = 15 -7,10 -1.341,9 -124,39 -57,78 0,092 -5,36

Taiwan, k = 20 -6,52 -1.325,9 -144,32 -41,80 0,109 -4,55

Note: Ali test statistics are significant al 1% Ievel

Table 3.18 - Unit Root test statistics for absolute stock returns

ADF Za ZI MZa MSS MZ,

Hong-Kong, k = 5 -19,58 -2.082,6 -58,17 -640,66 0,028 -17,90

Hong-Kong, k = 10 -12,97 -1.641.2 -82,19 -199,23 0,050 -9,98

Hong-Kong, k = 15 -11,12 -1.570,5 -97,88 -128,58 0,062 -8,01

Hong-Kong, k = 20 -10,51 -1.561. -101,00 -119,35 0,054 -7,72

Note: Ali test statistics are significant at 1% level

Table 3.19 - Unit Root test statistics for absolute stock returns

ADF la Z, Mla MSS MZ,

Malaysia, k = 5 -18,90 -1.726.3 -47,58 -657,99 0,028 -18,14

Malaysia, k = 10 -13,02 -1.304,5 -60,00 -236,20 0,046 -13,02

Malaysia, k = 15 -11,78 -1.233,3 -67,86 -164,94 0,055 -9,08

Malaysia, k = 20 -11,54 -1.207,1 -72,41 -138,74 0,060 -8,32

Note: Ali test statistics are significant at 1% level
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The Zaand Zt statistics yield overwhelming rejections, specially for Mexico. The ADF

statistics also yield rejections at ail conventional significance levels, though are less extreme than

the Zaand Z, statistics. Using the unit root tests that are robust to a large MA root, the hypothesis

of a unit root in the volatility is clearly rejected at ail conventional significance levels, regardless of

the choice of k, for ail countries and irrespective of log-squared stock returns or absolute stock

returns. In Iight of the fact that these tests control size reasonable weil, this is strong evidence

against the model of a unit root in the volatility process.

This indicates that. while there is considerable persistence in the volatility of returns, a unit

root in the stochastic volatility model is too extreme a specification. Models in which the volatility

process is modelled as an AR(p) with a large root (but not a unit root) or in which the volatility

process is fractionally integrated may provide a better representation of the data.

3.5 - Autocorrelation analysis of Stock Market Returns

With the availability of high frequency long time series from returns on speculative assets,

much research has been devoted to the study of long-run behaviour of financial data. A common

finding in much of the empirical literature is that, contrary to what was previously thought, the

returns themselves carry little seriai correlation, which is an indication that the efficient markets

hypothesis holds. However, the absolute returns and their power transformations are highly

correlated. Taylor (1986) was the first to study this in a systematic way. III has significant

positive seriai correlation over long lags. These findings were rediscovered by Ding, Granger and

Engle (1993). They examined this property for long daily stock market price series. They found it

possible to characterise 1~ Id as having 'long memory', with quite high correlations for long lags.

ln this paper they found positive autocorrelation for the S&P 500 series for more than 2700 lags

with a series of 17054 observations. Similar results were also found for other values of d, and this

seems to be strongest when d = 1 compared to both smaller and larger values of d. This result

seems to argue against ARCH specifications based upon squared retums.

Table 3.20 gives the summary statistics for ~ (returns itselr) for Argentina, Brazil, Mexico,

Korea, Taiwan, Thailand, Malaysia, Hong-Kong and US. Table 3.20 can also be used to illustrate

some stylised facts that have been noted other researchers and that we reproduce here.

4 ln what follows retums will mean the retums itself.
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STA TlST/CS .IRG BRI .lIE.\' /\OR Til TlI.II .llt/, ('S 11/\
~'_-'--""""-_'_---_'_--_'__'_---_'_-~---'.,._ .._--,.------- ..._.. - --'---------_.~._-_._.__._._._ ..__._._._-----_._-------_.....__.... -'--.'- .." -~-~._-------_.._,.-._------
M/N -0.313 -0.223 -0.183 -0.159 -0.078 -0.094 -0.156 -0.228 -0.333

.,. ""',.__._~ ~. . . ,__,_. __ •__• ._.""•• ,. ••....•.•,.,., •...,' •. ,_,,_",._,._. ••,···,__,· ·__ ···········,_•• .·_••••__ .,.·_·••• m " .. " ,_ .• .. ._. , __"'_. ". __

MAX 0.336 0.360 0.266 0.053 0.067 0.101 0.144 0.154 0.123_._.-., .._....._._.,.._----._---._-_.--,.---_., -"--'--'.._.""--

MEAN 0.0026 0.0049 0.002\ 0.0005 0.0007 0.0005 0.0008 0.0002 0.0090
STD 0.043 0.029 0.0210 0.0112 0.016 0.0132 0.0148 0.0115 0.0170
KURTOS/S 25.57 8.635 20.42 11.22 2.549 12.28 11.25 25,42 35.73
RANGE/STI) 15.09 20.10 21.38 19.02 9.13 7.65 20.27 33.04 26.82
SKEI"".,\ESS 0.497 1.231 0.872 -0.365 -0.015 0.681 0.382 -0.487 -1.761__".•...."._,"_" .,. .,_.__._. __ ,__~__.. - • ._n .__._.. ",."•.,. ~ __ ,__ ,__._. . .._ ..__.. ,_._~._._ ...__._... ~__.__.~_._~_. __._

NORil-1AL/T'i 46663 23858 76812 27042 1512 31 1 25928 357788 278604
CLASS/CAL 2.18 5.81 3.05 1.90 1.72 1.75 1.70 1.25 1.15
MOD/FIED RIS 2.15 4.36 2.37 1.74 1.45 1.55 1.43 1.16 1.06

~ ····_~ ·H·. ·····__··_

VARIANCE 3707.4 2341.9 1467.6 346.9 507.8 478.9 580.6 360.2 1385.4
SAMPLE S/ZE 2501 7879 5223 6022 6524 5583 5674 17054 6138

--_.~,_._---- -_.._.,,, __.__ .. __.. -

RANGE 0.649 0.583 0.449 0.213 0.146 0.101 0.300 0.380 0.456

There exists a wide variety of opinion about the distributions of stock price returns and the

data generating processes. Some authors claim the distributions to be Paretian stable

(McFarland et al., 1982), some say they follow the Student's t distribution (Boothe and Glassman,

1987), and others reject any single distribution (Calderon-Rossel and Ben-Horim, 1982).

Instead of looking at the centre of the distribution, an alternative way to characterise the

distribution is to look at the tails.

(i) Thin-tailed distributions are those for which ail moments exist and whose cumulative

distribution function declines exponentially in the tails.

(iï) Fat-tailed distributions are those whose cumulative distribution function declines with a power

in the tails

(iii) Bounded distributions are those with no tails.

A nice result is that these categories can be distinguished by the use of only one

parameter, the tail index for distributions of category (i), for category (ii) and for category (iii).

The empirical estimation of the tail index and its variance crucially depends on the size of

the sample. On the one hand, using too many observations introduces a bias in the tail index

since some of the observations do not belong to the tail anymore. On the other hand, using too

few observations introduces inefficiency in the estimation of the variance. The very large sampie

sizes available with intra-daily data ensure that enough tail observations will be present.

An important result is that the tails of a fat-tailed distribution are invariant under addition,

although the distribution as a whole may vary according to temporal aggregation (see Feller,

1971). That is, if weekly returns are identically and independently distributed Student's t, then
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monthly returns will not follow the t distribution. However, the tails of the monthly returns

distribution will be like the taits of the weekly returns, with the same exponent.5

Another important result in the case of fat-tailed distributions concerns the existence of

the moments of the distribution. It can be easily seen that only the first k-moments of the

distribution are bounded. Finally, the tail index reflects the interaction of different agents in the

market. Indeed, the probability of extreme events depends on the presence or absence of certain

market participants such as medium-term investors or pure speculators, as weil as on changing

market conditions.

We al50 use a kernel estimator to compare the empirical distribution of returns with a

Standard Normal distribution. We can easily see from Graphs 3.10a and 3.10b that the

distribution for the returns have fatter tails than the standard normal for ail countries, which seems

to confirm the fact that the distribution for the returns have fat-tails. We can also see in Table 3.20

that the kurtosis for ~ is higher than that of a normal distribution (3.0) for ail countries except for

Taiwan and Korea. The kurtosis varies from 35.73 for Hong-Kong to 2.549 for Taiwan. The

Jarque-Bera test for normality is far beyond the critical values of 5.99 (at the 5 percent level) and

7.38 (at the 2.5 percent level). We reject the hypothesis of normality for the distribution of the

returns without exception. The Jarque-Bera test statistic varies from 1512 (Taiwan) to 278604

(Hong-Kong). Table 3.20 indicates that the returns belong to the class of fat-tailed non-stable

distributions that have a finite tail index. We also find evidence of 'fat-tailed' behaviour for the

United States. Here, the Jarque-Bera statistic is also far beyond conventional critical values,

which suggests that returns are far fram being distributed normally. This is consistent with our

findings for the emerging economies.

Table 3.20 suggests that the variance exists for ail stock markets. We also note that the

variances for the Latin American countries are higher than those for their Asian counterparts (with

the exception of Hong Kong), a fact that we noticed previously in Chapter 1. Again we find that

markets in Asian countries behave more like U.S. markets than Latin American markets. The

degree of intervention in Latin American economies couId help to explain this higher variance.

It appears from Table 3.20 that the third moment exists. Skewness is also computed for

ail countries, and the distributions are found to be symmetric in every case. We can see this

either by looking at Graphs 3.1 Oa and 3.10b or by examining the skewness statistics. We do not

reject the null hypothesis for ail countries except for Hong-Kong. We observe a small amount of

right skewness for Brazil and Argentina, while the US skewness is to the left. What is important to

5 Actually the kurtosis and the studentized range statistics (which is the range divided by the standard deviation) are used
as an index of the tai! behaviour compared to a normal distribution. For those more interested in the tai! index, a good
reference is Koedijk et allii (1990)
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remember here is that returns do not follow a normal distribution, and that this is true for emerging

markets as weil for developed ones.

We can see from Graphs 3.10a and 3.10b and fram Table 3.20 that the distributions of

returns for Argentina, Taiwan, Hong-Kong, Thailand, Korea and US are leptokurtic. For Brazil and

Mexico, they are platykurtic. Finally, Malaysia's distribution it is mesokurtic.

Table 3.20 shows the classical and modified RIS statistics again. Just as a reminder, we

have seen that Latin American markets display long-memory effects, whereas this property is not

present for U.S. and Asian markets.

ln Graphs 3.11 a and 3.11 b we plot the returns for ail countries in our sample. We can

see that r, is stable around the mean in every case. We also observe some clustering in the

data, i.e. large (small) returns are more likely to be followed by more large (smail) returns (see,

Ding et ail). For comparison, we also show the series of absolute returns for ail countries in

Graphs 3.12a and 3.12b. We can clearly see the observation of Mandelbrot (1963) and Fama

(1965) that large absolute returns are more likely than small absolute returns to be followed bya

large absolute return. Market volatility changes over time, which suggests that a suitable model

for retums should have a time varying volatility structure similar to that suggested by the ARCH

methodology. Every market shows some periods of increased volatility. For example, volatility

was much higher during the Great Depression than in any other period. There was also a sudden

drop in share prices after the Black Monday crash of 1987, but unlike the Great Depression, the

increased volatility didnot last very long. To establish a comparison to emerging markets, Brazil

also experienced a period of extremely high volatility during the hyperinflation of 1989-93. Thus,

emerging and developed markets both show periods of higher volatility followed by periods of

relative calm, and these periods tend to be clustered.

Until now we have been concerned with returns themselves, but we should also consider

higher moments as weil. It is now an established fact that stock market returns themselves

contain Iittle seriai correlation (see Fama (1970) and Taylor (1986». This is a point in favour of

the efficient markets hypothesis (EMH). We have already detected a long-memory effect in the

Latin American countries, but this standard finding does not appear to apply in the Asian

countries. In Graphs 3.13a and 3.13b, where we plot the autocorrelation functions (of the returns)

up to 2500 lags, we see that some countries do indeed display persistent correlation over time, as

is the case for Brazil and Taiwan.

Taylor (1986) studied the correlations between 40 different transformed returns series and

concluded that absolute returns and squared returns are even more highly correlated than the

original series. Following this study, as weil as Granger (1993), we will examine the

autocorrelations for r, and Ir, Id with positive d's. Table 3.21 to 3.29 gives the sample
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autocorrelations for r" Ir, 1and r/ with lags 1 to 5, 10, 20, 30,40, 70 and 100 for each country.

We also plot the autocorrelograms for r" 1r, 1 and r,2 with lags 1 to 100 in Graphs 3.14 to 3.21.

The 95 percent confidence interval for the estimated sample correlation if the process r, is

independently and identically distributed (LLd.) is ± 1.96/ JT. In our data, T ranges from 2501

for Argentina to 7829 in the case of Brazil. There is a lower bound of ±1.96/ JT = 0.0392 (or

0.015, in the case of US) and an upper bound of ± 1.96/ JT = 0.0222. Bartlett (1946) proved

that if r, is an LLd. process then the sample correlation PI is approximately N(0,1fT). In Graphs

3.14 to 3.21 and also in Tables 3.21 to 3.29, about one quarter of the sampie autocorrelations

within lag 100 are outside the 95 percent confidence interval for an Li.d process. This is true for

ail countries including the U.S. The first autocorrelations are significantly positive for ail countries.

Other researchers have found similar evidence, for example Fama (1976), Taylor (1986), Ding et

al. (1993). In some of the countries the first order autocorrelations are very small (e.g. Argentina,

Hong Kong, and US), which could suggest that r, does have some memory albeit very short.

Some portion of stock market returns is predictable, even though it might not be important in

practice. As a result of these finding we can conclude that the EMH or random walk theory does

not hold strictly.

Actually, we can establish an interesting comparison with the results found for US

markets. This overall picture would lead us to conclude that emerging markets generally do show

higher persistence, taking the ACF into account. However, the degree of persistence differs

across countries. For example, in Tables (3.21 to 3.29) Brazil and Taiwan have higher ACF

values compared to other countries, an indication of a higher persistence. This is also true for

other emerging markets compared to U.S. market. We will return to this result later on. On the

other hand, sorne markets such as Hong-Kong and Korea have ACFs that die out very quickly,

even more quickly than the U.S. This is an indication that these markets would have short

memory compared to the U.S. market. This can be explained by the fact that these markets are

much smaller than the U.S. markets and so the lack of synchronization is much smaller affecting

the degree of persistence. In Hong-Kong, for instance, only a few stocks are negotiated. Another

interesting characteristic that appears in these tables is that some markets have strong 'mean­

reverting' tendencies. This is the case for Thailand and Malaysia.

However, for the other markets the first lag is highly positive, which confirms the

unreliability of the efficient market hypothesis. The second lag is significantly negative for sorne of

the countries (Argentina, Mexico, Thailand, Hong-Kong, Korea and US), and this supports the

hypothesis of "mean-reversion" in stock market returns. This behavior suggests that the stock

market returns in our sampie are not realisations of LLd. processes.
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"t'-LJMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 100

r, 0.1160 0.0072 0.1117 0.0398 0.0078 0.0402 0.0086 -0.0233 -0.0180 0.0269 0.0190

Ir, 1 0.3325 0.3746 0.3743 0.3626 0.3459 0.3427 0.2989 0.2858 0.2814 0.2568 0.2151

r2 0.3558 0.4010 0.3923 0.3737 0.3691 0.3423 0.3236 0.3010 0.2945 0.2658 0.2023
1

TABLE 3.22 - AUTOCORRELATION FUNCTION - THAILAND

"t'-LJMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 100

rI 0.1407 -0.0175 0.0281 0.0465 -0.0058 -0.0140 0.0118 0.0306 0.0001 -0.0007 -0.0383

Ir,l 0.4261 0.3789 0.3502 0.2999 0.2782 0.2395 0.1840 0.1704 0.1613 0.1156 0.0910

r 2 0.3248 0.2864 0.2556 0.2045 0.1403 0.1511 0.0872 0.0753 0.1022 0.0472 0.0425
1

TABLE 3.23 - AUTOCORRELATION FUNCTION - MALAYSIA

NUMBER OF LAGS

DATA 1 2 3 4 5 10 20 30 40 70 100

rI 0.1459 0.0172 0.0544 0.0514 0.0154 0.0489 -0.0133 -0.0036 0.ü15 -0.0030 0.0102

Ir/l 0.3438 0.3057 0.2709 0.2048 0.2139 0.1826 0.0862 0.0864 0.1050 0.0469 0.0496

2 0.3699 0.2856 0.2683 0.1696 0.1246 0.1749 0.034 0.0543 0.0541 0.0057 0.0116rI

TABLE 3.24 - AUTOCORRELATION FUNCTION - HONG-KONG

l'.LJMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 100

rI 0.0688 -0.0042 0.0681 0.0129 -0.0129 -0.0006 -0.0091 0.0182 -0.0024 -0.0197 -0.0041

Ir/l 0.2682 0.2350 0.2199 0.2005 0.1899 0.1736 0.1163 0.0951 0.1035 0.0538 0.0203

r 2 0.1415 0.0425 0.00602 0.0395 0.0308 0.0543 0.0181 0.0236 0.0258 0.0029 -0.0016,

TABLE 3.25 - AUTOCORRELATION FUNCTION - MEXICO

NUMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 100

r, 0.2760 -0.0360 -0.0700 0.0200 0.0830 0.030 0.009 0.007 -0.0009 0.014 0.007

Ir,l 0.397 0.249 0.214 0.220 0.196 0.190 0.147 0.115 0.138 0.088 0.039

2 0.333 0.212 0.184 0.159 0.131 0.181 0.129 0.077 0.07 0.038 0.012r,
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TABLE 3.26 - AUTOCORRELATION FUNCTION - ARGENTINA

NUMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 100

rI 0.083 -0.117 0.040 0.105 0.081 0.0246 -0.0229 0.0778 0.00924 0.006 -0.0296

Ir,1 0.3603 0.3653 0.2943 0.2915 0.3050 0.2534 0.2219 0.2324 0.1524 0.1062 0.0752

2 0.1848 0.2974 0.0941 0.1091 0.1083 0.0560 0.1552 0.1229 0.0327 0.0055 0.0133rI

TABLE 3.27 - AUTOCORRELATION FUNCTION - BRAZIL

NUMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 \00

rI 0.1952 0.0705 0.0349 0.0663 0.0767 0.0343 0.0159 0.0474 -0.0072 0.0317 0.0350

Ir,l 0.3295 0.3163 0.2967 0.3018 0.3014 0.2894 0.2475 0.2208 0.1948 0.2025 0.1970

? 0.1693 0.1920 0.1189 0.1527 0.1645 0.1686 0.1039 0.0686 0.0565 0.0781 0.0630r-
I

TABLE 3.28- AUTOCORRELATION FUNCTION - KOREA

NUMBER OF LAGS
DATA 1 2 3 4 5 10 20 30 40 70 \00

rI 0.1233 -0.0340 0.0152 0.0175 0.0073 -0.0002 -0.0050 -0.0252 0.0278 -0.0041 -0.0024

Irll 0.2530 0.257\ 0.2503 0.2197 0.1977 0.1378 0.0810 0.0742 0.1045 0.0827 0.0773

r 2 0.0916 0.0865 0.0850 0.0591 0.0577 0.0330 0.0050 0.0052 0.0253 0.0155 0.0136
1

TABLE 3.29- AUTOCORRELATION FUNCTIOl"- US

DATA 1 2 3 4 5 10 20 40 70 100

rI 0.063 -0.0390 -0.0040 0.0310 0.0220 0.0180 0.0170 0.0000 0.0000 0.0040

Irll 0.318 0.3230 0.3220 0.2960 0.3030 0.2470 0.2370 0.2000 0.1740 0.1620

2 0.218 0.2340 0.1730 0.1400 0.1930 0.1070 0.0830 0.0590 0.0580 0.0450r,

Furthermore, if r; is an i.i.d. process, then any transformation of r; is also i.i.d., for

example Ir; 1 and r;2. The standard error of 1r;lwill be 1/.fT =[0.02396 (Argentina) to 0.011014

(Brazil)] if r; has finite variance, and the same standard error is applicable for the sampie

autocorrelations of r/ providing r; has also finite kurtosis. From Graphs 3.14 to 3.21 we can see

that, not only are the sample autocorrelations of l'i 1and 'i2 outside the 95% confidence interval

but they are also positive over long lags in every case. Also, the sample autocorrelations for

absolute returns are greater than those for the squared errors at every lag up to 100 and for every

country. It is clear that stock market returns for emerging markets are not generated by i.i.d.

processes, and this finding also applies to the United States. A long- memory component is

present, and the fact that absolute returns are more positive over long lags is indicative of this.
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We now examine the sample autocorrelations for the transformed absolute stock market

returns IJ; Id and various positive values of d. Tables 3.30 to 3.38 give pCI,.J ,1J;+l) for various

d (d =0.125,0.25,0.5,0.75,1,1.25,1.5,1.75,2 and 3) at lags 1 to 5,10,20,40,70 and 100. From

these tables and also from Graphs 3.22 to 3.29 we can see that the conclusions found above

remain vaUd. Ali power transformations of absolute returns have significant positive

autocorrelations up to lag 100, which supports the claim that stock market returns have long­

memory. In particular, Taiwan, Brazil and Thailand show slow decays in their respective

autocorrelation functions. Ali power transformations for ail countries show the same pattern. The

power transformations of absolute returns have significant positive autocorrelations at least up to

lag 100, supporting the claim that stock market returns have long-term memory. The

autocorrelations decrease quickly after the first lag, then decrease very slowly while remaining

positive for long lags. We can verity from table 3.30 that the same pattern is found for the US.

We can see that the ACF's for It;!'-" exceed those for the US for various values of d and

various lags, reinforcing our perception that emerging markets do show higher persistence than

developed marketsG
• However, this does not appear to be true for Korea and Hong-Kong, two

markets with lower ACF values for the different lags and various values for d. This is consistent

with our earlier finding that these markets have a shorter memory than the US market.

Perhaps, the most striking finding fram the autocorrelations is that 1t; Id has the largest

autocorrelation up to lag 100 when d is close to 1. Thailand, Brazil, Argentina, Mexico, Hong-Kong

and Korea have d = 0.75. The exceptions are Taiwan and Malaysia, where d = 1.75. To highlight

this, we calculated the sampie autocorrelations Pr Cd) as a function of d, d > 0 for T =1, 2, 5, and

10 and setting d = 0.125,0.0, 130, , 1.745, 1.750, , 2.0, 2.05, , 4.95,5. Graphs

3.30 to 3.37 show the plots of calculated Pr Cd) for 1t; Id. Here we see that the autocorrelation

Pc Cd) is a smooth function of d except in the case of Mexico. There is a saddle point Q between

2 and 3 (roughly) such that when d > d, PrCd) is a convex function of d. Again, Mexico is an

exception. There is a unique point d* near 1 where PrCd) reaches its maximum point, Le.

PrCd*) > Pr(d) for every d other than d*. Ding et al. (1993) report the same findings for the

US.

6 This is only true for Brazil for d lower than 1,25 and for Argentina except for d =3.
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NUMBER OF LAOS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.3772 0.3323 0.3153 0.2891 0.2706 0.2617 0.2035 0.2022 0.2011 0.1678 0.1702

d=0.250 0.4044 0.3630 0.3291 0.3037 0.2912 0.2642 0.2068 0.1979 0.1950 0.1606 0.1757

d=0.500 0.4343 0.3924 0.3572 0.3235 0.3112 0.2705 0.2167 0.2020 0.1917 0.1534 0.1364
d=0.750 0.4387 0.3939 0.3627 0.3196 0.3037 0.2605 0.2065 0.1919 0.1795 0.1371 0.1135

d=l.OOO 0.4261 0.3789 0.3502 0.2999 0.2782 0.2395 0.1840 0.1704 0.1613 0.1156 0.0910

d=1.250 0.4041 0.3562 0.3282 0.2738 0.2437 0.2147 0.1573 0.1442 0.1424 0.0941 0.0725

d=1.500 0.3779 0.3316 0.3030 0.2475 0.2068 0.1906 0.1310 0.1182 0.1259 0.0751 0.0589

d=I.750 0.3509 0.3080 0.2783 0.2241 0.1717 0.1692 0.1074 0.0949 0.1125 0.0595 0.0494

d=2.000 0.3248 0.2864 0.2556 0.2045 0.1403 0.1511 0.0872 0.0753 0.1022 0.0472 0.0425

d=3.000 0.2411 0.2189 0.1880 0.1574 0.0575 0.1038 0.0368 0.0287 0.0794 0.0201 0.0266

TABLE 3.31- ALiOCORRELATlON OF Ir/Id ARGENTINA

NUMBER OF LAOS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.2003 0.2442 0.1941 0.2094 0.2243 0.2307 0.1768 0.1285 0.1369 0.1483 0.0752

d=0.250 0.2684 0.3023 0.2595 0.2575 0.2849 0.2822 0.2167 0.1696 0.1674 0.1738 0.0891

d=0.500 0.3349 0.3495 0.3124 0.3006 0.3288 0.3104 0.2384 0.2093 0.1844 0.1722 0.0936

d=0.750 0.3635 0.3665 0.3200 0.3105 0.3318 0.2963 0.2361 0.2292 0.1772 0.1454 0.0884
d=I.000 0.3603 0.3653 0.2943 0.2915 0.3050 0.2534 0.2219 0.2324 0.1524 0.1062 0.0752
d=I.250 0.3296 0.3526 0.2464 0.2496 0.2577 0.1951 0.2035 0.2188 0.1177 0.0663 0.0569
d=I.500 0.2822 0.3348 0.1909 0.1966 0.2026 0.1369 0.1858 0.1915 0.0825 0.0352 0.0384
d=1.750 0.2310 0.3159 0.1399 0.1449 0.1508 0.0896 0.1700 0.1572 0.0535 0.0157 0.0234
d=2.000 0.1848 0.2974 0.0991 0.1019 0.1083 0.0560 0.1522 0.1229 0.0327 0.0055 0.0133
d=3.000 0.0742 0.2233 0.0223 0.0200 0.0246 0.0068 0.0966 0.0347 0.0025 -0.011 0.0006
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~UMBER OF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.2531 0.2372 0.2415 0.2225 0.2255 0.2242 0.1721 0.1487 0.1394 0.1481 0.1606

d=0.250 0.2982 0.2687 0.2739 0.2625 0.2560 0.2507 0.2166 0.1974 0.1815 0.1885 0.1884
d=0.500 0.3351 0.3048 0.3068 0.2999 0.2931 0.2784 0.2538 0.2346 0.2118 0.2152 0.2110
d=0.750 0.3415 0.3186 0.3123 0.3103 0.3065 0.2835 0.2609 0.2382 0.2126 0.2170 0.2124
d=I.000 0.3295 0.3163 0.2967 0.3018 0.3014 0.2714 0.2475 0.2208 0.1948 0.2025 0.1970
d=1.250 0.3005 0.3004 0.2636 0.2779 0.2807 0.2464 0.2119 0.1883 0.1641 0.1761 0.1686
d=1.500 0.2611 0.2723 0.2179 0.2415 0.2477 0.2384 0.1811 0.1472 0.1264 0.1428 0.1324
d=1.750 0.2152 0.2345 0.1669 0.1976 0.2069 0.2035 0.1407 0.1051 0.0886 0.1085 0.0952
d=2.000 0.1693 0.1920 0.1189 0.1527 0.1645 0.1686 0.1039 0.0686 0.0565 0.0781 0.0630
d=3.000 0.0528 0.0611 0.019 0.0386 0.0288 0.0721 0.0271 0.0062 0.0040 0.0180 0.0073

TABLE 3.33 - AUTOCORRELATIO~ OF Ir/Id HONG-KONG

~LJMBEROF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.1386 0.1504 0.1511 0.1529 0.1294 0.1153 0.0940 0.0741 0.0918 0.0525 0.0272

d=0.250 0.1673 0.1791 0.1762 0.1754 0.1548 0.1369 0.1075 0.0848 0.1030 0.0604 0.0320
d=0.500 0.2142 0.2197 0.2096 0.2033 0.1869 0.1639 0.1235 0.0976 0.1140 0.0672 0.0343
d=0.750 0.2496 0.2408 0.2254 0.2128 0.2001 0.1765 0.1271 0.1012 0.1137 0.0648 0.0295
d=l.OOO 0.2682 0.2350 0.2199 0.2005 0.1899 0.1736 0.1163 0.0951 0.1035 0.0538 0.0146
d=I.250 0.2626 0.1972 0.1901 0.1650 0.1549 0.1532 0.0921 0.0797 0.0852 0.0370 0.0104
d=1.500 0.2314 0.1382 0.1433 0.1160 0.1055 0.1192 0.0616 0.0586 0.0626 0.0204 0.0030
d=I.750 0.1860 0.0816 0.0960 0.0708 0.0607 0.0832 0.0353 0.0386 0.0416 0.0089 -0.0006
d=2.000 0.1415 0.0425 0.0602 0.0395 0.0308 0.0543 0.0181 0.0236 0.0258 0.0029 -0.0016
d=3.000 0.0431 0.0017 0.0093 0.0033 0.0010 0.0093 0.0007 0.0028 0.0031 -0.0005 -0.0007

TABLE 3.34 - AUTOCORRELAnON OF Ir/Id KOREA

",'UMBER OF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.1684 0.1698 0.1896 0.1623 0.1335 0.1302 0.0931 0.0885 0.0755 0.0819 0.0678

d=0.250 0.2049 0.2107 0.2248 0.1981 0.1672 0.1468 0.1097 0.0990 0.0954 0.0923 0.0829
d=0.500 0.2387 0.2482 0.2530 0.2269 0.1967 0.1556 0.1126 0.1011 0.1104 0.0978 0.0917
d=0.750 0.2544 0.2624 0.2602 0.2326 0.2057 0.1517 0.1009 0.0914 0.1123 0.0939 0.0883
d=l.OOO 0.2523 0.2571 0.2503 0.2197 0.1977 0.1378 0.0810 0.0742 0.1045 0.0827 0.0773
d=I.250 0.2323 0.2318 0.2234 0.1899 0.1738 0.1153 0.0573 0.0531 0.0887 0.0661 0.0614
d=1.500 0.1925 0.1886 0.1433 0.1469 0.1369 0.0866 0.0342 0.0323 0.0617 0.0469 0.0432
d=1.750 0.1411 0.1357 0.1813 0.0996 0.0948 0.0571 0.0161 0.0156 0.0442 0.0290 0.0263
d=2.000 0.0916 0.0865 0.1313 0.0591 0.0577 0.0330 0.0050 0.0052 0.0253 0.0155 0.0136
d=3.000 0.0085 0.0073 0.0850 0.0029 0.0036 0.0013 -0.0016 -0.0014 0.0005 -0.0001 -0.0005
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~MBER OF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.1990 0.1577 0.1519 0.1162 0.1386 0.1157 0.0715 0.0805 0.0526 0.0538 0.0507

d=0.250 0.2287 0.1900 0.1743 0.1327 0.1597 0.1341 0.0800 0.0795 0.0666 0.0597 0.0580
d=0.500 0.2751 0.2396 0.2126 0.1633 0.1916 0.1594 0.0908 0.0847 0.0880 0.0617 0.0625

d=0.750 0.3134 0.2785 0.2454 0.1883 0.2101 0.1751 0.0935 0.0873 0.1013 0.0567 0.0586
d=I.000 0.3438 0.3057 0.2709 0.2048 0.2139 0.1826 0.0882 0.0864 0.1050 0.0469 0.0496

d=J.250 0.3655 0.3196 0.2867 0.2108 0.2037 0.1839 0.0769 0.0821 0.0993 0.0347 0.0384
d=I.500 0.3771 0.3197 0.2911 0.2057 0.1824 0.1817 0.0622 0.0747 0.0864 0.0227 0.0274
d=1.750 0.3782 0.3072 0.2842 0.1909 0.1544 0.1782 0.0472 0.0650 0.0702 0.0128 0.0183

d=2.000 0.3699 0.2856 0.2683 0.1696 0.1246 0.1749 0.0340 0.0543 0.0541 0.0057 0.0116

d=3.000 0.2945 0.1816 0.1740 0.0817 0.0394 0.1643 0.0062 0.0199 0.0150 -0.0023 0.0013

TABLE 3.36 -AUTOCORRELATION OF 1r, Id TAIWAN

~TUMBEROF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.1679 0.2223 0.2154 0.2132 0.1902 0.2163 0.1734 0.1686 0.1687 0.1412 0.1355

d=0.250 0.2035 0.2567 0.2523 0.2486 0.2251 0.2486 0.2021 0.1964 0.1967 0.1690 0.1573
d=0.500 0.2609 0.3095 0.3090 0.3027 0.2801 0.2952 0.2459 0.2374 0.2372 0.2112 0.1880
d=0.750 0.3036 0.3483 0.3488 0.3396 0.3196 0.3254 0.2775 0.2664 0.2814 0.2397 0.2065
d=J.OOO 0.3325 0.3746 0.3743 0.3626 0.3459 0.3427 0.2989 0.2858 0.2814 0.2568 0.2151
d=J.250 0.3496 0.3907 0.3888 0.3748 0.3617 0.3505 0.3125 0.2975 0.2909 0.2657 0.2168

d=1.500 0.3576 0.3992 0.3951 0.3793 0.3695 0.3516 0.3201 0.3031 0.2951 0.2689 0.2140
d=I.750 0.3590 0.4021 0.3956 0.3784 0.3714 0.3484 0.3234 0.3041 0.2959 0.2685 0.2087
d=2.000 0.3558 0.4010 0.3923 0.3737 0.3691 0.3423 0.3236 0.3018 0.2945 0.2658 0.2023
d=3.000 0.3229 0.3770 0.3615 0.3387 0.3399 0.3074 0.3090 0.2747 0.2799 0.2445 0.1763

TABLE 3.37 - AUTOCORRELATION OF 1r, Id MEXICO

~MBEROF LAGS

1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.2762 0.2178 0.1605 0.1653 0.1649 0.1636 0.1604 0.1471 0.1686 0.1439 0.1391

d=0.250 0.2745 0.1892 0.1340 0.1416 0.1338 0.1236 0.1184 0.1050 0.1295 0.1068 0.0867
d=0.500 0.3206 0.1995 0.1534 0.1641 0.1475 0.1274 0.1117 0.0955 0.1219 0.0916 0.0521
d=0.750 0.3685 0.2290 0.1894 0.1994 0.1781 0.1605 0.1308 0.1081 0.1341 0.0925 0.0450
d=I.000 0.3978 0.2495 0.2149 0.220:- 0.1963 0.2108 0.1472 0.1155 0.1390 0.0884 0.0399
d=I.250 0.4054 0.2545 0.2247 0.2231 0.1967 0.2069 0.1547 0.1137 0.1324 0.0778 0.0329
d=1.500 0.3931 0.2463 0.2198 0.2097 0.1818 0.2083 0.1526 0.1045 0.1169 0.0639. 0.0250.
d=1.750 0.3669 0.2304 0.2047 0.186:- 0.1578 0.1980 0.1430 0.0915 0.0972 0.0501. 0.0178.

d=2.000 0.3336 0.2124 0.1845 0.1597 0.1313 0.1810 0.1291 0.0778 0.0775 0.0384 0.0120

d=3.000 0.2062 0.1543 0.1054 0.0729 0.0525 0.1104 0.0718 0.0370 0.0256 0.0126 0.0016
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TABLE 3.38 - AUTOCORRELATION OF Ir( Id US

NUMBER OF LAGS
1 2 3 4 5 10 20 30 40 70 100

d=0.125 0.110 0.\08 0.102 0.098 0.121 0.100 0.100 0.100 0.095 0065. 0.089

d=0.250 0.186 0.181 0.182 0.176 0.193 0.164 0.164 0.164 0.148 0.120 0.131
d=0.500 0.257 0.255 0.263 0.251 0.259 0.222 0.221 0.221 0.192 0.166 0.165
d=0.750 0.297 0.299 0.305 0.286 0.291 0.246 0.241 0.241 0.207 0.180 0.173
d=1.000 0.318 0.323 0.322 0.286 0.303 0.247 0.237 0.237 0.200 0.174 0.162
d=1.250 0.319 0.326 0.312 0.280 0.295 0.227 0.211 0.211 0.174 0.153 0.138
d=I.500 0.300 0.309 0.278 0.242 0.270 0.192 0.170 0.170 0.136 0.122 0.106
d=1.750 0.264 0.276 0.228 0.192 0.234 0.149 0.125 0.125 0.095 0.088 0.073
d=2.000 0.218 0.234 0.173 0.140 0.193 0.107 0.083 0.083 0.059 0.058 0.045
d=3.000 0.066 0.088 0.036 0.025 0.072 0.019 0.009 0.009 0.004 0.006 0.003

ln fact, Il;ld has a positive autocorrelation over a much longer lags than 100. Table 3.39

shows the lags (r*) at which the first negative autocorrelation of II; Id occurs for various d.

TABLE 3.39 -LAGS AT WHICH FIRST NEGATIVE AUTOCORREL\TION OF 1rd 1 OCCURS

1

ARG 1 408 446 450 177 82 78 17
, BRA 1799 1621 1588 1574 1415 1378 145
1 MEX 780 375 119 102 102 102 66

HON 1 133 133 98 94 63 60 12
1 THA 547 862 497 485 167 155 73

TAI 956 , 956 996 990 1 990 973 i 682
USA 2028 2534 i 2705 2705 ' 1685 2598 1 520
KOR 370 370 325 162 ' 161 123 13
MAL 163 167 129 129 80 76 1 59

It can be seen from Table 3.39 that Il;ld has positive autocorrelations ranging fram more

than 1799 lags (Brazil) to 12 (Hong-Kong). This seems to show that sorne countries have a very

strong long-memory effect, up to 1799 days or almost 7 years. For d = 1 lags vary from 120

(Hong-Kong) to 1595 (Brazil). To summarize, Brazil, Taiwan, Thailand and Mexico do display

long-memory effects, and these effects are strong even with long lags. It is worthwhile to note

that the first lag for which a negative autocorrelation for II; Id occurs for the United States is always

bigger than no matter which emerging market we consider. Again, this provides support for the

view that the US market exhibits a stronger mean reverting behaviour than the less developed

markets.

We typically observe slow decays in autocorrelation functions in the presence of long­

memory, which we see for Brazil, Taiwan and Thailand in Graphs 3.13a and 3.13b. Many
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different models have been employed to try to explain this pattern in the sampie autocorrelation

curve. Among them we can identity:

(l) Pt an exponentially decreasing function of T (Pt =afF) Iike an ARMA model .

(2) P, as the same in the autocorrelation function of a fractionally integrated process

(T+P-l)
(Granger and Joyeux(1980) , that is Pt =Pr-l p.

(T- )

(3) PI as a polynomially decreasing function of T (Pr = a / TP), which is approximately

the same as (2) when T ÎS large.

ln the literature it has been found that when we use real data, the fitted autocorrelations using (1)

decrease too slowly at the beginning and too fast at the end, whereas the opposite occurs if (2)

and (3) are used. A preferred model would have to combine the effects of (1), (2) and (3). The

theoretical autocorrelation function proposed by Granger (1993) is then:

(3.6)

which we can change into a Iinear model with just a few transformations:

logPr = loga + Pl logPr_l + TlOgP2 - P310gT (3.7)

We can let a* = loga, P; = Pl' P; = logP2' and P; = -P3 ' then

We have estimated the relationship (3.8) for some countries that had been

identified before as having a long-memory according to the autocorrelation function, Le.

Brazil, Taiwan and Thailand. Ordinary Least Squares estimates are shown below.
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TABLE 3.40 OLS ESTIMATES OF EQUATION 3.8

D.W.
--~-, .._-~-_._-_.~ .._- _. __ ._-_ .._--~-~----~-----_ ..~-------_.__._--~---

BRAZIL -0.2~ 1841 0.745069 -O.OOOl:;:' 0.039353 0.92 2.632

(-10.96948) /43.466~(6) (-I~.I04542) (5.35·FI7)

T.-1IWAX -0.139905 0.616428 -0.000241 -0.047036 0.871 2.567

(-4.680133 ) (24.304403) (-9.1825) (-3.159659)

USA -0.049 0.784 -0.000195 -0.057 0.92 2.65

(-3.9) /62.9) (-5.9) (-9.1 )

TI/A ILA SD -0.0819 0.759177 -0.000014 -0.081688 0.743 ~.543

(-1.993683) (37.631087) (-0.5019) (-3.713581)

The t-statistics are in parentheses. Nearly ail coefficients are significant, with the

single exception being /3; for Thailand. If we re-transform the equation we find that, for

Brazil,

Graphs 3.38, 3.39 and 3.40 plot the fitted autocorrelations and the sampie

autocorrelations using (3.8) above. We see that the theoretical model fits the actual

sampie autocorrelations quite weil.

Other studies have been conducted for the New York Stock Exchange daily price

index, producing results similar to those in table 3.40. Granger(1993) also finds support

for the existence of long memory in most financial time series.

3.6 - Conclusion

ln this chapter we investigated the long-memory properties of stock market returns series

using data for emerging markets. We found that there are substantially higher correlations among

absolute returns series than among non-transformed series. This is also true for power

transformation of the absolute returns Ill, which have quite high autocorrelation even for long

lags. This result has been established for the US markets using S&P data, but we have managed

to show that the same phenomenon is present in emerging markets. It is worthwhile mentioning

that the overall picture shows emerging markets to be more persistent than the US market,

regardless of the measure used to capture this effect. We have used the Hurst exponent, the

classical RIS statistic, the modified RIS and finally the autocorrelation function to arrive at the
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same conclusion, Le. that 'Iong-memory' is more pronounced in emerging markets than in

developed ones (using the U.S. as a benchmark).

ln coming to this conclusion, we must highlight the fact that the degree of persistence

appears to vary across countries. On one hand, we have the Korean and Hong-Kong markets

displaying even shorter memory than the US market. On the other hand, we see other emerging

markets with longer memory than the U.S. market. Longer memory is summarised by higher

values of the ACF for different lags and different power transformations. In particular, we observe

Brazil and Taiwan as extreme cases, where we consistently have values for the ACF much higher

than those for the US. We also found mean reverting behaviour to be stronger in emerging

markets, especially in Malaysia.

These results accord weil with the idea that investors may react more quickly and use

information more efficiently in sorne markets than in others. In particular, results may differ

depending on whether interventions are frequent (e.g. Brazil) or infrequent (e.g. the United

States).
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Graph 3.90 Autocorrelation Function
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Graph 3.100 Empiricol Oensity x Normal
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Graph 3.1üb Empirical Density x Normal
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Graph 3. 11 a Returns
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Graph 3.12b Absolute Returns
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Groph 3.130 - Autocorrel aU 0 n up to 2500 logs
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Groph 3.13b Autocorrelation up to 2500 logs
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Graph 3.30 - Autocorrelotions of Irl**d at 1098
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graph 3.31 - Autoco rrel otio ns of Irl**d at logs
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Graph 3.32 - Autoco rrel oti on s of Irl**d at log8
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Graph 3.33 - Autoco rrel ati on s of Irl**d at la9 8
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Graph 3.34 - Autoco rrel oti on s of Irl**d at log8
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Graph 3.35 - Autocorrelotions of Irl**d at logs
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Graph 3.36 - Autocorrelations of Irl**d at lag8
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Graph 3.37 - Autocorrelations of Irl**d at lags
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Chapter 4

Modelling Long Memory in the Volatility in the Emerging Markets

4.1 - Introduction

ln this chapter we estimate the effects of long memory in the emerging markets

economies. We begin by using the first development in this area, the ARCH model. We then

proceed to a elaborate model designed to test for the existence of a unit root in the second

moment, the FIGARCH modal. We then present the conclusions we were able to reach using the

data in our sampie.

As we have seen in the previous chapter, there is much evidence that for the stock

market series under study, the returns are correlated over time. Indeed, we can conclude that

large changes tend to follow large changes. though the sign is unpredictable. The modified Box­

Pierce test statistic on standardised absolute residuals and squared residuals for up to hundredth

order seriai correlation. seen below in table 4.1. 1

Table 4.1

Country O( 100) - Absolute Retums 0(100) - Squared Returns
Taiwan 5542.66" 87.00
Thailand 409.47' 49.57
Korea 191.19" 0.61
Malaysia 648.52" 39.09
Hong-Kong 542.75" 40.46
Mexico 168.92" 0.10
Brazil 781.83" 50.11
Argentina 645.21' 45.12
(*) Significant at 95%

As we can see from the table above, the corresponding 0(100) is highly significant at any

level of absolute returns. while the same is not true for squared returns. For a precise definition of

the Box-Pierce test statistic and a discussion of its applicability in testing for absence of seriai

correlation see McLeod and Li (1983). Remember from the previous chapter that the

autocorrelations and the partial autocorrelations die out fairly slowly. Ding, Granger and Engle

(1993) find that there are substantially more correlations between absolute returns than the

correlation between returns itself. This is also the case for the returns studied in this thesis. The

1 The lesl slalislic is a l(30) = 50.892 al a 99% level and l(30) = 53.67 al a 99.5% level. The crilical values are X2(50)
= 75.35 al a 99% level and l(50) = 78.45 al a 99,5% level. Finally lhe lesl slalislic is a /(100) = 135.807 al a 99% level
and /(100) =140.169 al a 99.5% level.
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positive correlations for long lags indicate the existence of long memory in these financial return

series. This correlation pattern suggests a predictable structure for volatility that can be exploited

for forecasting. To statistically evaluate whether or not there might be a long run predictable

structure in the volatility of daily returns, we couId also have computed the Ljung and Box (1978)

portmanteau statistic for the joint signîficance of the return autocorrelation for various lag lengths.

Under the null hypothesis these statistics should have an asymptotic chi-square distribution. In the

case of volatility autocorrelation the test statistics have very small p-values, so we can safely

reject the null hypothesis. Table 4.2 shows the Ljung-Box test statistic2 for no seriai correlation up

to the end of the 500th day. As suggested by these figures, there is no doubt that a significant

seriai correlation exists in the volatility of daily returns, even for quite long lags. These features of

the data support the noted volatility clustering; however, up to the present, we have not been

concerned with the long memory component in the volatility of daily returns. It is worthwhile to

attempt to model this persistence so that we can use these forecasts to improve financial

decisions.

Table 4.2

Country Ljung-Box - Absolute Retums
Hong-Kong 935.66
Brazil 17725.71·
Argentina 1220.75·
Mexico 3036.71·
Taiwan 75638.29·
Thai1and 6362.57
Korea 1089.93"
Malaysia 3043.28·

(*) Slgmficant at 95%

4.2 - Review of sorne existing models and estimation results

ln conventional econometric models, the variance of the disturbance term is assumed to

be constant over time. However, the above empirical evidence suggests that this is not the case.

ln the previous chapters, we have seen that the financial time series in question exhibit periods of

unusually large volatility followed by periods of relative tranquility. In such circumstances, the so­

calied assumption of constant variance (homoskedasticity) no longer seems appropriate. It is fairly

simple to imagine situations where we might want to forecast the conditional variance of a series.

As asset holders, for instance, we would be interested in forecasts of the rate of return and its

n

2 The Ljung-Box Q-statistics is: Q =T(T + 2)L pU) / (T - i)
i=l

._-~.~ ---.-~-.. --
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variance over the holding period. The unconditional variance (i.e. the long-run forecast of the

variance) would be unimportant for anyone intending to buy an asset at t and sell at t+1.

The conditional variance appears to be the key variable. Let El denote a discrete-time real­

valued stochastic process. In order to forecast this variable, one possible approach would be to

explicitly introduce an independent variable (with respect to El ) to help predict volatility. Consider

a very simply case in which

where YI = the variable of interest (returns, for example)

El = a white-noise disturbance term with variance ci

Zt-1 = an IID N(O, 1) variable that can be observed at period t-1

If Zt is constant over time, Yt would be a white-noise with constant variance, the variance

of Yt conditional on the observable value of 41 is then3

The conditional variance of YI is then dependent on the observed value of Zt-1. Since we

can observe ZI.1 we can therefore form the variance of Yt conditionally on the realised value of ZI_1.

Instead of using this ad-hoc variable choice Zt-1, the ARCH methodology proposes another way to

proceed. If we define Et-1 to be the mathematical expectation conditional on the information set

available at t-1, then, a discrete-time real-valued stochastic ARCH process k/} is such that

B, =zlal with Et_1(Z21) = 0 and Et-1(Zt) = 1 and al is measurable with respect to the time t-1

information set. Note that the El are, in the majority of cases, innovations for the conditional mean

of a stochastic process such as {YI} ,that is, El == Yt - EI-1(YI) such that the conditional variance is

a21 = EI_1(il ). We can therefore note that it is possible to model simultaneously the mean and the

variance of a series of returns.

It is clear from above that for empirical application, the conditional variance function

requires a specifie parameterisation. Economie theory does not stipulate information on which
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expectations of volatility are formed. This means that various functions of past information on a

process such as {YI} can be suggested.

4.2.1 The Autoregressive Conditional Heteroskedasticity (ARCH)

As outlined above, an ARCH process can be defined in a large variety of contexts. One

possibility is to define it in terms of the distribution of errors of a dynamic linear regression modal.

The dependent variable is assumed to be generated by

Y, = XI ~+ &, (4.1)

where Yt the dependent variable and Xt is a k x 1 vector of exogenous variables, which may

include lagged values of the dependent variable, and /; is a k x 1 vector of regression parameters.

The ARCH model characterises the distribution of the stochastic error Et conditional on the

realised values of the set of variables \IIt-1 = { Yt-1 , Xt-l ,Yt-2 ,Xt-2 , .....}. More specifically, Engle's

(1982) original ARCH model assumes

where

with ao > 0 and a; ~ 0, i = 1,..... ,q , to ensure that the conditional variance is positive. We should,

however, notice that as &1-1 =Y'_I - X;_1 ~ , i = 1, 2, ... q, the conditional variance (cr/) is c1early a

function of the elements of \IIt-l.

The distinguishing feature of the model (4.2) and (4.3) is not simply that the conditional

variance (crt2) is a function of the conditioning set \lit-l, but rather it is that the particular functional

form is specified. Episodes of volatility are generally characterised by the c1ustering of large

shocks to the dependent variable. The conditional variance function (4.3) is formulated to mimic

this phenomenon. In the regression model, a large shock is represented by a large deviation of Yt

from its conditional mean Xt'/; or equivalently. a large positive or negative value of Et. In the ARCH

regression model, the variance of the current error Et, conditional on the realised values of the

lagged errors Et-i, i = 1 , ..... , q, is an increasing function of the magnitude of the lagged errors,

irrespective of their signs. Hence, large errors of either sign tend to be followed by a large error of

either sign. And similarly, small errors of either sign tend to be followed bya small error of either
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sign. The order of the lag q determines the length of time for which a shock persists in

conditioning the variance of subsequent errors. The larger the value of q, the longer the episodes

of volatility will tend to be.4

A linear function of lagged squared errors, of course, is not the only conditional variance

function that would produce clustering of large deviations. Actually any monotonie increasing

function of the absolute values of the lagged errors would lead to this clustering. However. since

variance is the expected measure of the squared deviations, it seems natural to use such a linear

combination of lagged squared errors to lead with this trend in variance.5

For our present purposes, this means that the ARCH(q) parameterisation models the

conditional variance as a weighted average of past squared forecast errors,

or (4.4)

It follows that if Ua = 0 anduj = 1/q then (4.4) is precisely the conditional variance of the

sample variance of the most recent q returns. As Engle (1982) noted, the great advantage of the

ARCH specification is that coefficients can be estimated from historical data and the resulting

statistical model can be used to forecast future volatility and improve estimates.

Assuming the disturbances are normally distributed (or that the standardised residuals,

ZI =G/(JI-I), the conditionallog-likelihood function for the ARCH class of models can be written,

LogL(O;G".....'GT If/o) =t -~[lOg(2Jr)+lOg«(J,2)+ GI
:] (4.5)

1=\ 2 (J,

for which the initial conditions, \jJo, used to start the recursions for the conditional mean and the

variance function. 6 The method of estimation was based on the Berndt, Hall, Hall and Hal.lsman

4 Actually we could think as YI as being the logarithm of the retum of a given stock at t and XI'/; as its conditional mean. In
this context Et is an innovation for the conditional mean of the retum.

5 Consider the properties of {Et} sequence. It is easy to show that this sequence has a mean of zero and is uncorrelated ,
tha! is. E(Et Ilj/t-1l = 0 and Var(Et Ilj/t-1) = cr?

6 Actually to start up these recursions we need the pre-sample values for E(J2 and crQ2. A natural choice is given by the
T

1" 2
sampie analogue T~ GI

/=1
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(BHHH) algorithm that is relatively simple although it sometimes requires more computation and

iterations than necessary.7

The results found for the countries under study can be found in Table 4.3 below. We first

estimated an ARCH(1) model and then an ARCH(4) model. The model estimated is then:

Y, = f.1 + 6,

-1
z{ =6PI i.i.d. N(O,1) (4.6)

Following standard practice, we transformed the price index into a continuously

compounded capital gains series, where the variable Yt is defined as the logarithm difference

between the stock price at t and t - 1 for the stock price index in each of these countries. The

parameter Il is the conditional mean of the returns and Et is an innovation for the conditiona' mean

of the returns such that the conditional variance is cr/ =Et•1(Et
2
).

We can see ail the parameters are very significant in the below models. In table 4.3 we

have the results for the ARCH(1). In order to allow for longer effects of shocks we increased the

order of the lag q. We know that the order of the lag determines the length of time for which a

shock persists in conditioning the variance of subsequent error. As we are interested in examining

the persistence of volatility it seems plausible to allow for a longer lag8
. Indeed, a visual inspection

of table 4.4 suggests that ail coefficients are still highly significant for ail of the countrres under

consideration. This means that estimating a model like ARCH(1) imposes restrictions that can

lead to misspecification. In this case, as ail the

7 For a description of the BHHH algorithm see Greene (1993). It is a very effective class of algorithms that has. been
developed that eliminates second derivatives altogether and has excellent convergence properties, even for iIl-behaved
rrob'ems. Sometimes there are also called quasi-Newton methods.

For some authors, it is useful to note that the ARCH(q) specification as (3.4) can be rewritten as an AR(q) process for

E?, [1 - a ( L )]6,
1 =a o + V, in which L denotes the lag operator and v,:; [E?-a?] is an unforecastable innovallion to

2
Et .
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Table 4.3 - ARCH(l) Results·

Country I.! lX{) al LogL
Mexico 0.000438 0.0000378535 0.6321 17132.83

(7.21) (58.10) (17.32)
Taiwan 0.000521 0.000032892 0.4040 25901.40

(8.74) (55.22) (18.34)
Thailand 0.000741 0.0000130255 0.9332 23488.15

(4.58) (99.11) (38.60)
Korea 0.000855 0.0000172309 0.3187 25595.83

(6.54) (99.85) (15.72)
Malaysia 0.000121 0.0000248355 0.4200 22832.96

(8.21) (69.18) (21.15)
Brazit 0.000662 0.0000848185 0.5778 27995.33

(7.45) (66.87) (35.02)
Hong- 0.000225 0.0000366787 0.3507 24088.75
Kong (4.54) (140.71) (25.80)

Argentina 0.000748 0.0001355474 0.9471 6346.55
(8.47) (62.71 ) (72.37)

(*) Ali coefficients are significant at 95% and 99%.

Table 4.4 - ARCH(4) Results·

Country I.! <Xo al a:! a) a4 LogL
Mexico 0.000421 -0.0000013973 0.56 0.1836 0.1625 0.3695 16410.12

(6.21 ) (-1134.61 ) (10.15) (1153.2) (17.85) (1086.0)
Taiwan 0.000221 0.000012914 0.1383 0.2030 0.2279 0.2026 26493.79

(5.74) (26.61) (10.31) (12.02) (12.87) (13.54)
Thailand 0.000341 0.0000049434 0.5417 0.2890 0.1450 0.1891 24113.18

(6.45) (53.44) (28.95) (24.83) (11.06) (15.71)
Korea 0.000345 0.0000075755 0.2434 0.2494 0.1551 0.2003 25862.57

(9.45) (28.88) (15.59) (17.57) (9.36) (13.93)
Malaysia 0.000321 0.0000145581 0.2720 0.2112 0.1426 0.0595 23095.62

(9.12) (39.68) (14.93) (17.87) (12.90) (5.55)
Brazil 0.000542 0.000020556 0.3263 0.2223 0.2977 0.2171 28868.16

(8.32) (30.54) (19.29) (16.43) (21.69) (14.91)
Hong- 0.000125 0.0000154753 0.25 0.2817 0.1810 0.1246 24495.37
Kong (5.54) (42.48) (27.66) (19.21) (15.03) (9.88)

Argentina 0.000923 0.00036583 0.3366 0.3293 0.1965 0.1690 6683.99
(6.31) (12.65) (13.37) (11.83) (7.20) (5.09)

(*) Ali coeffiCients are slgmficant at 95% and 99%.

coefficients are significant, there is a persistence that is described by this high order lag. We could

probably continue to include more lags to take account this persistence in volatility. By using the

estimated log-likelihood values, a nested test can easily be constructed to test ARCH(4) against

ARCH(1). Let Lo be the Iikelihood value under the null hypothesis that the true model is ARCH(1)

(restricted model) and let L1 be the likelihood under the alternative hypothesis that the true model

is ARCH(4) (unrestricted). Then 2(log L1 - log Lo) should have a chi-square distribution with 3

degrees of freedom when the null hypothesis is true. In our case, 2(log L1 - log Lo) lies between



163

533,48 (Korea) and 3358.58 (Mexico), which is weil beyond the critical value for any reasonable

value. Hence, we can reject the hypothesis that the data are generated by an ARCH(1) in favour

of ARCH(4).

4.2.2 Generalised Autoregressive Conditional Heteroskedasticity (GARCH)

There is a cost involved in estimating more parameters. In the first empirical applications

of ARCH to the relationship between the level and the volatility of inflation, Engle (1982, 1983)

found that a large lag q was required in the conditional variance function. This necessitated

estimating a large number of parameters subject to inequality constraints. To reduce the

computational burden, Bollerslev (1986) proposed an extension of the conditional variance

function (4.4), which he termed generalised ARCH, or GARCH. This model has proven very

useful in empirical work. GARCH was also proposed independently by Taylor (1986), who used a

different acronym.

They suggested that the conditional variance be specified as

(4.7)

The main purpose of GARCH(p.q) is to capture the long memory property of the

conditional variance process. 9 Taylor (1986) and Schwert (1989) proposed a similar model where

the conditional standard deviation function instead of the conditional variance is defined as

O"{ =ao +al!&t-J 1+.. ···.···+aq j8t _ q + AO"t-l + +/3"0",-,, (4.8)

At first glance. one might think that it would be better to use TaylorlSchwert's specification

since this model is expressed in terms of absolute returns rather than squared returns. 10

However, as Ding, Granger and Engle (1993) have argued, this is not true when the model is

highly non-linear one. Both models were estimated for ail the countries under study. Following

the example of other studies, such as Bollerslev et ail (1986), we estimated a GARCH(1,1)

process:

y, = j.1 + BI Y'_I + 8,

-1
Z, = 8Pt i.i.d. N(O, 1) (4.9)

9 Actually there are some inequality restrictions to ensure that the conditional variance is strictly positive as ao > 0, ai 2 0
\for i =1,.....q) and 13, 2 0 (for i =1,.....p).
oThis is because, as noted before, there are a lot more of correlation among the absolute returns than the square of

retums.



164

where YI stands for the stock index price for each market. The intention is that GARCH can

parsimoniously represent a high order ARCH process, in the sense that there are fewer

parameters to be estimated, while conserving the property of persistence in volatility11.

The results for the GARCH(1, 1) model are shown below in table 4.5. There are severa1

interesting things to note. Ali of the coefficients concerning the GARCH parameters are highly

significant at both 95% and 99% levels. This confirms what we already suspected, that is, there is

indeed a persistence that can be described by an ARCH model with very high order lags. We

probably could have included more lags to take on account this persistence in volatility. However,

there is a cost involved in estimating more parameters. By estimating a GARCH(1,1)12 we have

comparatively fewer parameters to estimate while still managing to account for this persistence.

We stopped here in estimating the GARCH mode!. Actually in applied work, it has been frequently

demonstrated that the GARCH(1, 1) process is able to represent a majority of financial time series.

A data set which requires a model of order higher than GARCH(1,2) or GARCH(2,1) is very rare.

For our present purposes we are satisfied by these results. The magnitudes of the parameters are

also similar to those found in other studies of returns, such as Ding, Granger and Engle (1993)

and McCurdy and Michaud (1996), among others. Ding, Granger and Engle reported results for

the US market. It is clear that the coefficients for the US market are ail significant. However, we

can also see that the magnitudes of the coefficients are lower than those for emerging markets,

with the exception of the ~1 term that relates the conditional variance to its lagged value. 13

By using the log-likelihood values estimated, a nested test can easily be constructed to

test GARCH(1, 1) against ARCH(4). Let La be the likelihood value under the null hypothesis that

the true model is ARCH(1) (the restricted model) and let L1be the likelihood under the alternative

11 It is easy to show that the GARCH(p,q) can be expressed as a} = a o + a(L)&/ + fJ(L)a} with J3(L) and

a(L) are polynomials in the lag operator. If the raots of 1 - J3(L) lie outside the unit circle, we can rewrite (4.7) as
oc

a} =ao• + l &/~' . Hence a convenient choice of parameters allows us to interpret the GARCH(p,q) as an infinite
1=1

ARCH(q) with few parameters. Nelson and Cao (1992) have stated weaker conditions for the variance to be strictly
positive. McCurdy and Michaud (1996) point out also that a GARCH(p,q) can also be wrillen in an ARMA(m,p)

representation, with m = max {p,q J as [1 - a( L) - P( L) ]&12 =a o +[1- fJ( L) ] VI ,J3(L) is a polynomial in the

lag operator of order p.

12 There has also been many other extensions or altemative specifications of the very successful ARCH mode!. However,
several authors have noted some shortcomings of the ARCH specification - particularly for forecasting (see Hamilton
and Rusnel (1994)).
13 For an extensive review of literature see Bollerslev . Chou and Kroner (1992)
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that the true model is GARCH(1,1) (the unrestricted model). Then 2(log L1 - log La) should have a

chi-square distribution with 3 degrees of freedom when the null hypothesis is true. In this case,

2(1og L1 - log La) ranges fram 136,78 (Argentina) to 2803.98 (Mexico), which is far beyond the

critical value for any reasonable value. Hence we can reject the hypothesis that the data is

generated by the ARCH(4) model in favour of the GARCH(1, 1).

Table 4.5 - GARCH(l,l) Results

Country J.l 81 ao al 131 LogL

Mexico 0.00115 0.32" 0.00015 0.317" 0.6012 17512.11
(2.33) (20.43) (31.44) (23.24) (3.14)

Taiwan 0.00128 0.43" 0.00021" 0.221* 0.722" 26659.53
(1.48) (21.14) (25.42) (12.25) (142.21)

Thailand 0.0214 0.46" 0.00209" 0.2214" 0.714" 24275.71
(1.95) (19.22) (20.54) (31.01 ) (128.12)

Korea 0.0221 0.47" 0.000241" 0.224" 0.721" 25994.68
(1.41 ) (11.57) (20.24) (20.14) (102.46)

Malaysia 0.0212 0.33" 0.000311 0.2304" 0.721 23178.63
(1.55) (30.30) (14.44) (18.14) (54.20)

Brazil 0.0314 0.52" 0.00009 0.3617" 0.6504 28998.03
(13.12) (18.47) (31.41 ) (39.55) (165.12)

Hong-Kong 0.000172 0.24" 0.00001" 0.2817" 0.7001' 24675.23
(3.41) (30.42) (34.12) (18.41) (22.01 )

Argentina 0.0217" 0.45" 0.0005" 0.2002" 0.841" 6742.38
(3.95) (47.15) (11.69) (12.12) (65.34)

USA 0.0000438 0.144" 0.0000008 0.091' 0.906 56822.0
(7.20) (18.40) " (50.7) (43.40)

(12.50)
(*) Coefficients significants at 95% and 99%. (**) Coefficients significant at 95%

We will now examine the Taylor/ Schwert GARCH(1,1) model, where

(4.10)

Our results for the Taylor/Schwert model can be found in table 4.6 below. The parameters

that describe the conditional variance are ail highly significant at both 95% and 99% levels.

Nevertheless, the log-likelihood value for Bollerslev's GARCH is significantly higher than that of

Taylor/Schwert modal. The same result was found in Ding, Granger and Engle (1993). The

results for US markets shown in Table 4.6 come from this study. The magnitudes of ail
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coefficients are lower than those found for emerging markets except for the ~I term that relates

the conditional variance to its lagged value. Comparing tables 4.5 and 4.6 we can see that the

magnitudes of coefficients vary considerably fram one situation from another. For some countries

like Thailand and USA this variation is not very large, but in other cases such as Mexico, Taiwan

and Argentina there is more variation. We can see that the log likelihood value for GARCH is

larger than that of the TaylorlSchwert model for ail countries except for Brazil, a finding that is

consistent with Ding, Granger and Engle's results for the United States.

Table 4.6 - Taylor/Schwert Results

Country II 81 ao al BI LogL
Mexico 0.00102 0.32" 0.00477" 0.2158" 0.7242 16255.21

(2.37) (18.31) (58.32) (24.11 ) (101.21 )
Taiwan 0.00110 0.33" 0.00748 0.2150" 0.7100 2645 I.l2

(1.41 ) (26.42) (152.14) (20.12) (103.12)
Thailand 0.00218 0.40" 0.000441" 0.2565" 0.7102" 24250.10

(1.34) (28.14) (56.44) (42.22) (170.24)
Korea 0.000200 0.37" 0.000514 0.2414" 0.7411 25920.14

(1.21 ) (9.42) (75.10) (20.56) (135.14)
Malaysia 0.00201 0.33" 0.00408 0.2809" 0.7114" 23123.12

( 1.44) (14.21) (71.01) (20.10) (78.01)
Brazil 0.00330 0.42" 0.000657 0.2144" 0.8102" 29120.01

(12.12) (19.32) (78.15) (39.99) (214.1)
Hong- 0.000195" 0.39" 0.00806 0.2511" 0.7145" 24554.54
Kong (4.62) (27.54) (74.54) (74.32) (280.20)

Argentina 0.00041t 0.41" 0.00847" 0.3142" 0.64521 6677.27
(2.54) (39.21) (49.21) (15.41) (45.21)

USA 0.0004" 0.139" 0.000096" 0.104" 0.913" 56776.00
(7.00) (19.60) (12.60) (67.00) (517.00)

(*) CoeffiCIents slgmficant at 95% and 99%.

One interesting fact that is apparent from a visual inspection of tables 4.5 and 4.6 is that

the sums of a1 and ~1 in equation (4.9) are very close to one. These range fram 0.9182 to 1.02,

and that a conventional Likelihood Test (LR) could be then performed to test the hypothesis that

a1 + ~1 = 1. 14 For our present purposes, we have denoted the null hypothesis as the one

associated with the GARCH model, and the alternative is that the model is IGARCH, where we

impose the restriction a1 + 1)1 = 1. Table 4.8 shows the maximum log likelihood value for each of

the cases, the unrestricted (L1 = GARCH) and the restricted (L-o = IGARCH), in arder to apply the

14 If the restriction. cie) = 0 is valid, imposing it should not lead to a large reduction in the log-Iikelihood function.
Therefore. we can base the test on the difference log L - log LR, where L is the value of the likelihood function at the
unconstrained value of e and LR is the value of the likelihood function at the restricted value. The LR test, the Wald test
and the Lagrange Multiplier test (LM) are a trio of testing procedures that can be applied in the conteX! of maximum
likelihood estimation. Asymptotically they are equivalent and we have then chosen to calculate the LR test, what should
not be a problem as our samples are very big for each country.
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LR test. In this case 2(log L1 - log La) has a l distribution with 2 degrees of freedom when the

null hypothesis is true.

ln table 4.8 we see that GARCH (1,1) is indeed rejected in favour of IGARCH (1,1) for

most of the countries in our sampie. The exceptions are Korea and Argentina. This reinforces the

effect of persistence

Table 4.7 - IGAReH Results

Country u 81
" LogLaa al

Mexico 0.00105 0.39' 0.00014' 0.98' 16601.56
(2.17) (12.32) (541.23) (472.05)

Taiwan 0.00100 0.30 0.000019' 0.2414 26646.10
(1.04) (20.12) (24.12) (31.99)

Thailand 0.00218 0.65 0.000021' 0.2401 24262.49
(1.75) (19.12) (16.44) (40.11)

Korea 0.000175 0.47 0.0000110' 0.2401 25994.12
(0.48) (9.15) (54.67) (65.12)

Malaysia 0.00100 0.43' 0.0000147' 0.2470' 23178.63
(1.31) (27.30) (20.55) (17.10)

Brazil 0.00305 0.42 0.0000221' 0.2104 28944.10
(13.20) (29.40) (31.61 ) (28.44)

Hong-Kong 0.000187' 0.41' 0.0000140' 0.2018 22501.37
(4.41 ) (12.48) (39.64) (34.58)

Argentina 0.0114' 0.51' 0.0000154' 0.2014' 6741.75
(3.94) (29.11 ) (21.34) (19.32)

USA 0.000457' 0.179' 0.0000034' 0.3650' 67212.00
(7.20) (15.19) (4.24) (7.15)

(*) Coefficients significant at 95% and 99%. al" = al + 131

in variance that we suspected when we dropped the ARCH specification in favour of GARCH.

Engle and Bollerslev (1986) were the first to consider GARCH processes with a1 + 131 = 1 as a

distinct class of models, which they termed Integrated GARCH (IGARCH). They pointed out the

similarity between IGARCH processes and processes that are integrated in the mean. In an

IGARCH model a current shock persists indefinitely in conditioning the future variances. That is,

from a forecasting perspective the difference between the covariance-stationary GARCH and the

IGARCH model provides a natural analogue to the difference between 1(0) and 1(1) processes for

the conditional mean. The IGARCH model is important because there is a remarkable empirical

regularity found in applied work that these estimated two coefficients of a GARCH conditional

variance sum close to one. We do show the results obtained by testing for a IGARCH model in

Table 4.7. We can see that the coefficients reinforce what we have found previously. This result is

also consistent with a variety of studies of stock markets in developed economies. In table 4.7 we

report findings provided by the study of Bollerslev and Mikkelsen (1996). There we can see that ail
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coefficients are significant and that, except for the term containing the sum of al + 131 = 1, the

coefficients for the emerging economies are larger than those found for developed economies.

Table 4.8 - Log Likelihood for both the (GARCH and GARCH models

Country IGARCH (log Lü) GARCH (log LI) 2(1og L J - log Lü)

Mexico 16601.56 17512.11 1821.10"
Taiwan 26646.10 26659.53 26.86"

Thailand 24262.49 24275.51 23.04"
Korea 25991.0\ 25994.12 6.22

Malaysia 23151.17 23178.63 54.92"
Brazil 28944.\0 28998.03 107.86"

Hong-Kong 22501.37 24675.23 4347.72"
Argentina 6741.75 6742.38 1.26
(.) ReJect the Null

For example, Baillie and Bollerslev (1989) estimated GARCH(1, 1) models for six u.s.
exchange rates and found al + 131 ranging between 0.94 and 0.99 for the six series. 15 The

consistency of this finding lead Lamoureux and Lastrapes (1990b) to argue that large persïstence

may actually represent misspecification of the variance result from structural change ïl1l the

unconditional variance of the process, represented by changes in ao in (4.9). A discrete change in

the unconditional variance of a process produces clusters of large and small deviations that may

show up as persistence in a fitted ARCH modal. To illustrate this possibility, Lamoureux and

Lastrapes used 17 years of daily returns data for stocks of 30 randomly selected companies and

estimated GARCH(1, 1) models holding Ua constant and allowing aD to change discretely over sub­

periods of the sample. For the restricted model, in which aD is constant, the average estimarte of

al + 131 for 30 companies was 0.978, while for the unrestricted model, in which aD is alil.<Med to

change, the average estimate fell to 0.817. Lamoureux and Lastrapes a present Monte Carlo

evidence that demonstrated that the MLE of al + 131 has a large positive bias when changes in the

unconditional variance are ignored. Taylor (1986) estimated GARCH(1,1) models for 40 different

financial time series. The results show that. for ail but six of the 40 series, the estimated value of

al + 131 is greater than or equal to 0.97. In Ding, Granger and Engle (1993), the estimated vatue of

al + 131 for daily S&P 500 returns is equal to 0.91.This regularity is widely considered 10 be a

characteristic of volatility persistence, which we can see in table 4.5 above.

15 Bollerslev and Engle (1989) considered multivariate IGARCH processes and defined a concept of co-inte.gramion in
variance that they termed co- persistence. A set of univariate IGARCH processes are co-persistent if there exists a hnear
combination of the processes which is not integrated in variance. Nelson (1990) has cautioned that drawing an analogy
with processes that are integrated in the mean, however may be somewhat misleading. Nelson (1990a) demonstrated
that although IGARCH models are not weakly stationary, because they have infinite variances, they can be s1rongly
stationary. Processes that are integrated in the mean are not stationary in any sense.
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It appears that the series under analysis does indeed show long-run persistence in

variance. Ding, Granger and Engle (1993) also argue that there is a stylised fact that should be

taken on account. The asymmetric response of volatility to positive and negative 'shocks' is an

established fact in the finance literature as the leverage effect of the stock market returns (see

Black (1976), for example). This suggests that stock returns are negatively correlated with

changes in return volatility, Le. that volatility tends to rise in response to 'bad news' (Iower returns

than expected) and to fall in response to 'good news' (higher returns than expected). Nelson

(1989) was the first to formally model this potential asymmetry. Several other empirical studies

have shown that it is crucial to include the asymmetric term in financial time series model.16 Ding,

Granger and Engle (1993) also found that the empirical autocorrelation of alternative definitions of

volatility 1 YI 1 8, were strongest for the power ô 1 < Ô < 1.25, for most series we have seen this in

and the previous chapter. This fact motivated them to propose a Box-Cox transformation so that

the coefficient ô could be estimated rather than imposed as unity.

Therefore Ding, Granger and Engle (1993) proposed the asymmetric Power ARCH

(named A-PARCH) with 17the following specification:

q P

O'l
c5 =a o +L a, (Ic,-,I- Y"'I_J

c5 +L P:O'/~; (4.11)
1=1 ;=1

There is another interesting property with the A-PARCH. This specification nests at least

seven other members of the ARCH family. This new model is estimated for the countries under

study and we used MLE and the BHHH algorithm. The model estimated is then:

YI = Ji + (}IYt-I + CI

CI =zIŒI ZI = CrŒI -
1 LLd. N(O, 1) (4.12)

The results are shown in table 4.9. Several observations18 can be drawn from these

results. First, the estimated ô is different from 1 with the TaylorlSchwert model and different from

2 with GARCH for ail countries. However, for the United States this coefficient is much larger than

those found for the emerging economies. The same observation is valid for the ~I term that

relates the conditional variance to its lagged value, which is higher for the US data. The t-statistic

16 See Nelson (1989). Glosten, Jaganathan and Runkle (1989) and Engle and Ng (1992).
17 Another possibility wouId be to introduce the E-GARCH (q,p) model as proposed by Nelson (1991).
18 If cS =2, Yi =0 ,v q and Pl =0, V P we have the ARCH mode!. If cS =2, Yi =0 .'1 q we have the GARCH mode!. If cS =1 ,
Yi = 0 ,V q , we have the TaylorlSchwert model and so on. We should emphasise that other possible specifications to take
on account this asymmetry is the Exponential GARCH by Nelson (1991),
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for the asymmetric term (a1) is highly significant, implying that the leverage effect does exist in ail

the countries. This result seems to indicate that asymmetries tend to be different between US

markets and emerging markets, which seems plausible.

Actually by using the estimated log-likelihood values, a nested test can easily be

performed against either Bollerslev's GARCH or the TaylorlSchwert modal. Let Lü be the log­

likelihood value under the null hypothesis that the true model is GARCH or TaylorlSchwert and let

L1 be the log-likelihood value under the alternative that the true model is A-PARCH. Then, 2 (log

L1 - log Lü) should have a x2(2) distribution when the null hypothesis is true. For ail the countries

the calculated statistic test is beyond the critical value at any reasonable value. Hence we can

reject the hypothesis the data is generated by either GARCH or TaylorlSchwert in favour of the

more flexible A-PARCH specification. This result was reported in Ding, Granger and Engle (1993).

Hence, we can reject the hypothesis that the data are generated by GARCH or TaylorlSchwert

when we consider the APARCH as the true model. This implies that a more flexible structure

should be used. We have also determined that the sum of the coefficients a1 and ~1 is close to

one. Even when we estimate the IGARCH model we get good results that are consistent with

other findings for the developed economies. This leads us to a further investigation of this

persistence in volatility as we begin to deal with a new variety of model. the so-called Fractionally

Integrated GARCH (FIGARCH).

Table 4. 9 - A-PARCH Results

Country U 81 aü al 'f] Ô ~I Log L
Mexico 0.00108' 0.69' 0.000004 3.83' 0.59' 2.55' -0.00006 17719.05

(2.27) (21.32) (1.44) (9.76) (52.58) (17.84) (-0.03)
Taiwan 0.00108 0.73' 0.073' 0.15 0.14 0.39 2.44 26369.79

(1.08) (25.37) (334.04) (143.23) (3.90) (716.61) (1495.6)
Thailand -0.00218 0.80' 0.000079' 0.87' -o.loi 1.67' 0.592' 23514.22

(-1.82) (29.02) (2.73) (21.40) (-8.23) (25.85) (3.17)
Korea 0.000218 0.77' 0.0527' 0.183' 0.09' 0.426' 3.24' 25893.39

(0.26) (10.58) (24.13) (25.69) (4.10) (59.59) (25.03)
Malaysia 0.00184 0.83' 0.058' 0.23' 0.00008 0.434' 2.54' 23087.23

(1.35) (37.30) (29.24) (32.91) (0.004) (66.18) (34.53)
Brazil 0.00303' 0.82' 0.152' 0.161' 0.072 0.267' 1.1809' 28705.41

(14.21 ) (28.47) (58.09) (44.14) (3.73) (72.62) (83.96)
Hong- 0.000174' 0.69' 0.090' 0.198' 0.377 0.349' 1.833 24451.85
Kong (4.56) (32.48) (39.32) (75.03) (21.36) (67.37) (41.50)

Argentina 0.0117' 0.81' 0.099 0.239' 0.121' 0.375 1.502 6634.15
(3.89) (49.19) (28.30) (18.47) (3.17) (59.16) (78.74)

USA 0.000021' 0.14' 0.000014' 0.083' -0.373' 1.43' 0.920' 56974.00
(3.20) (19.00) (4.50) (32.40) (-20.70) (32.40) (474.00)

(*) CoeffiCIents slgmficant at 95% and 99%.
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4.3 Persistence in Volatility - FIGARCH Models

It is now weil known that using an ARMA-type specification such as GARCH to model the

conditional variance of very high frequency returns commonly results in estimates of (0.1 + ~1) that

are close to unity in the AR polynomial. This suggests, as mentioned earlier, very high or infinite

persistence for the effect of squared innovations to returns on conditional variance. In the

covariance stationary GARCH, the effect of past squared innovations to returns, on the current

conditional variance of returns, decay exponentially as the lag length increases. On the other

hand, the integrated GARCH (IGARCH) process exhibits infinite persistence. That is, the effects

of squared innovations on volatility never die out. As Baillie, Bollerslev and Mikkelsen (1996) point

out, this knife-edge distinction between exponential decay and infinite persistence may be too

restrictive and we should be willing to allow for some more flexibility.

Several recent studies19 have reported the existence of long memory in the

autocorrelations of some power of absolute returns. They have found that even if the GARCH

specification is able to explain the short-run pattern of volatility, it fails to match the long-run

volatility persistence. Therefore, motivated by this evidence of a long memory component in

volatility, Baillie, Bollerslev and Mikkelsen (1996) proposed the fractionally integrated GARCH

model of FIGARCH.

As was already mentioned, an extensive Iist of works concerning fractionally integrated

processes has been done for the conditional mean.20

The Baillie, Bollerslev and Mikkelsen (1996) fractionally integrated GARCH model

FIGARCH (p,d,q), allows for a fractional unit root, I(d), in the conditional variance process as it is

the case for the mean in an ARFIMA (p,d,q) process. As we have seen above, in the GARCH

(p,q) model, the conditional variance is parameterised as a distributed lag of past squared

innovations,

or,

Rearranging the terms in (4.13) we could have written this as:

19 Saillie, Sollerslev and Mikkelsen (1996), Dacorogna et al. (1993) and Harvey (1993) among others for exchange rates;
Sollerslev and Mikkelsen (1996), Ding, Granger and Engle (1993) for S&P 500 equity retums and McCurdy and Michaud
~1996) for the NYSE retums.
o A good survey of these works can be found in Saillie (1996).
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Alternatively, we could have factorised (4.13) the polynomial, 1 - a(L) - ~(L) =(1-L)4>(L)21.

~(L)(1- L)c/ =a o+[1- P(L)]vI (4.15)

The FIGARCH model is then obtained by replacing the difference operator in (3.14) with the

fractional difference operator (1_L)d. That is

~( L)( 1- L)dc,2 =a o +[1- P( L)] v, (4.16)

where the roots of 4>(z) =0 lie outside the unit circle. The fractional differencing operator has an

infinite power series expansion. So, the FIGARCH(p,d,q) model nests the covariance-stationary

GARCH(p,q) model for d = 0 and the IGARCH(p,q) model for d = 122 . Allowing for values of d in

the interval between zero and unity gives added flexibility that may be interesting when modelling

long-term dependence in the conditional variance. Sowell (1992) showed that an ARFIMA model

of the conditional mean with parameter d would be able to capture the long memory component.

This would be case for the FIGARCH. The d parameter would capture the long memory

component of volatility while 4>(L) and ~(L) would model the short-term structure. This specification

could, then, prevent the mispescification of long memory components that could result from

imposing less flexible GARCH/IGARCH structures on volatility data. As argued by Baillie,

Bollerslev and Mikkelsen (1996) we might expect the fractionally integrated, I(d), specification to

capture the volatility dependence in returns better than the knife-edge alternatives of either an 1(0)

or an 1(1) specification.23

21 ln the case that the autoregressive polynomial has a unit root and ~(z) has ail the roots outside the unit circle.
22 This power series can be written as a binomial expansion which can be expressed as the Maclaurin series expansion

CD

(1- L)d =1-dL r(k - d)r(1- d)-I r(k + 1)-' Lk == 1- 8d (L) in which f(.) denotes the gamma
k;)

function. Also, by definition (1-L)o '" 1.
23 While a shock to the optimal forecast of the future conditional variance decays at an exponential rate for the
covariance-stationary GARCH (p,q) model, and remains and remains important for forecasts of ail horizons for the
IGARCH (p,q) model, in the FIGARCH (p.d,q) model the effect of a shock to the forecast of the future conditional
variance will die out at a hyperbolic rate. The fractional differencing parameter is therefore identified by the rate of decay
of a shock to the conditional variance.
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ln order to better understand the statistical properties and the estimation strategy used

below, it is convenient to rewrite the FIGARCH (p,d,q) model in (4.15) in terms of the

observationally equivalent infinite ARCH representation,24

As we have already seen, the most common approach used for testing ARCH/GARCH

models relies on the maximisation of a conditionallikelihood function. In particular, assuming that

the one-step ahead prediction errors are conditionally normally distributed, the likelihood function

forthe sample {Yl , Y2, ... , YT} equals (4.5) or ,

where the initial conditions, \VO , are used to start-up the recursions for the conditional mean and

variance functions. However, it has been argued that in many applications with high-frequency

data, the assumptions of conditionally normally standardised innovations, z, = 8/0"/-1 , is violated.

Following Weiss (1986) and Sollerslev and Wooldridge (1992) there is an alternative

procedure regarding the normal Quasi-Maximum Likelihood Estimates (QMLE). The FIGARCH

process is clearly not stationary as the IGARCH one. QMLE appear as an alternative to estimating

the parameters of (4.15) or equivalently (4.16). The maximisation of QMLE realises T1/2

consistent estimates of the parameters, then,

(4.17)

where A(.) and S(.) denote the Hessian and outer product of the gradient, respectively and 00 are

the parameter values. Simulation evidence based in Sollerslev and Saillie (1996) indicates that the

Iimiting distribution theory works weil for sampie sizes of 1500 and 3000 elements. 25

24 For the FIGARCH(p,d,q) model be a well-defined one and the conditional variance positive. ail the coefficients in the
infinite ARCH representation must be nonnegative on the basis of Nelson and Cao(1991).
For example for the FIGARCH (1.d.1) model estimated below, see Bollerslev and Mikkelsen (1996).

25 Let's say that 8 is the vector of estimates resulting from (4.16). An asymptotic robust covariance matrix for the

parameter estimates is consistently estimated by A(8)-1 B(B)A(B) -1 .where A(6) and 8(6) denote the Hessian and

the outer product of the gradients, respectively. estimated at 6.
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Of course, for the FIGARCH (p,d,q) model with d > 0.5 , the population variance does not

exist. However, subject to some regularity conditions, conditioning on the pre-sampie values will

not affect the asymptotic distributions of the resulting estimators and test statistics. In most

practical applications with high frequency financial data the standardised innovations z/ = &/Œ/-
1

are leptokurtic and not i.i.d. normal through time. In these situations, the robust Quasi MLE

(QMLE) procedures discussed by Weiss (1986) and Sollerslev and Wooldridge (1992) may be

invoked to permit valid asymptotic inference.

Unfortunately, the consistency and asymptotic normality of the QMLE based ARCH

estimators and test statistics have only been formally established for the IGARCH (1,1) case to

date. In particular, following Lee and Hansen (1994), and assuming that, if

1) Zl is stationary and ergodic

2) Zt
2 is non-degenerate

3) EI-1(Zt) ~ K < 00 almost surely, and

4) sUPIEt_1[log~1 + U1Z12) < 00 almost surely

It is possible to show that the quasi-likelihood function and the corresponding score vector and

Hessian are ail strictly stationary and ergodic. Therefore, by a central limit theorem it follows that

the QMLE obtained is both consistent and asymptotically normally distributed. While this result

applies to IGARCH (1,1), this case extends directly to the FIGARCH(1,d,0) model through a

dominance type argument. Proving the consistency and asymptotic normality of the estimators for

the general FIGARCH (p,d,q) model remains an important avenue for future research.

Given the infinite series involved in computing (1_L)d, initial conditions for fractionally

integrated parameterisations are much more demanding than in ARCH/GARCH implementations.

We have also used the unconditional sampie variance for the pre-sample values of E/ and crt
The infinite power series expansion was truncated at 3000 lags rather than the 1000 lags used by

Saillie et al. (1996). Since the fractional differencing operator is designed to capture the long­

memory component of volatility, truncating it at too low a lag couId destroy important long-run

dependencies.

Using returns for eight of the countries in our sample, we estimated several models

assuming the conditional variance to be FIGARCH (p,d,q). Since ail of components of the index

do not trade at the same time there is a lack of synchronisation that will generate seriai correlation

(see Scholes and Willian (1977) and Lo and MacKinlay (1990)). Therefore, it has been argued
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that an alternative model would parameterise the conditional mean function as an MA(1) rather

than an AR(1). For this reason, we will consider both parameterisations as there is no conclusion

about the superiority of one or the other.26 The FIGARCH(1 ,d, 1) model is, then:

&1 =zIO";
-1

z; =&;0"1 i.i.d. N(O,1) (4.18)

The results can be seen in table 4.10 below for ail countries. Several interesting facts can

be seen from a visual inspection of this table. First of ail, the parameters describing the

conditional mean are ail positive. Second, the parameters describing long memory in volatility (d)

are also extremely significant

Table 4,10 - F1GARCH(I,d,l) ResuIts

Country Il 81 UO ~I <1>1 ct LogL
Mexico 0.00108' 0.89' -0.585 1.01' -0.70' 0.184 17671.09

(5.87) (54.32) (-0.85) (74.4) (-2.07) (0.477)
Taiwan 0.0028 0.77' 0.162 1.00 -0.479' 0.402' 26712.21

(2.08) (25.37) (1.17) (539.15) (-4.10) (3.33)
Thailand 0.00418 0.81' 0.0832 2.70 -0.008 0.405' 24351.23

(1.82) (29.02) (0.83) (2.85) (-1.82) (2.94)
Korea 0.0148 0.69' -0.035 1.1 00' -0.049 0.950' 26001.25

(1.50) (30.58) (-0.890) (8.41 ) (-0.65) (84.9)
Malaysia 0.0184 0.79' 5.402' 1.090' -0.0001 0.554' 23201.36

(1.35) (35.30) (3.27) (4.76) (-0.008) (8.86)
Brazil 0.0303 0.85' \.640' 1.951' -0.0016 0.644' 29010.6\

(1.21) (20.47) (1.160) (3.06) (-0.607) (7.84)
Hong-Kong 0.0174 0.79 3.780' 1.360' 0.00\ 0.680' 24700.\0

(1.56) (42.48) (2.75) (5.24) (0.892) (11.40)
Argentina 0.0117 0.59' 2.099' 1.239' -0.001 0.675' 6751.21

(1.89) (49.19) (2.30) (8.47) (-0.17) (9.16)
USA 0.00048 0.182' 0.0000013' 0.657' 0.387 0.447' 67147.50

(6.96) (15.17) (3.26) (11.53) (7.44) (6.30)
(*) CoeffiCIents slgl1lficant at 95%. The numbers 10 parenthesls refer to the Robust t-statlstlc denved from the QMLE. We
have non-convergence of ail estimates. T-stat are very high and reflect the non-convergence. As d is higher than 0.5 for a
lot of countries, this is an indication that the variance does exist and by so will affect the asymptotic distribution of test
statistics

26 Bollerslev and Mikkelsen (1996) used the AR-FIGARCH parametrization while McCurdy and Michaud (1996) used the
MA-FIGARCH parametrization.
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. The values found for d range from 0.184 (Mexico) to 0.95 (Korea) and are fairly concentrated at

0.40. This seems to confirm the findings of other studies, such as Bollerslev and Mikkelsen

(1996) and McCurdy and Michaud (1996). who found values of 0.447 and 0.471 respectively.

Table 4.10 reports the findings for the US market using the S&P 500 as described in Bollerslev

and Mikkelsen (1996). We can see that ail coefficients are also significant and tend to be higher

for the emerging economies. An exception is the <1>1 term. Also, the fractional parameter is in the

middle of the range of values found. It is worth a while that d higher than 0.5 indicates that the

variance does not exits and so we should be sceptical in the interpretation of the t-stats (for

instance, see Korea).

It is striking that ail values for d are bigger than 0 and less than 1. This means that neither

the GARCH nor IGARCH models are the correct specification for the conditional variance. Thus

imposing either structure would produce specification error. Baillie, Bollerslev and Mikkelsen

(1996) report the effects of estimating stable GARCH processes where the true data generating

process is FIGARCH. The sum of the estimated GARCH (1,1) parameters is always close to one

(as above) which implies integrated GARCH (IGARCH) behaviour and suggests that the apparent

widespread IGARCH property so often found in high frequency studies of financial data may weil

be spurious. The IGARCH process is indeed poor at distinguish between integrated versus the

long memory formulations of conditional variance. We also note that, as the parameter <1>1 is not

significant for the majority of countries, we could re-estimate the model allowing for an FIGARCH

(1,d,O).

We are not interested in modelling the conditional mean itself. Given, that the data used

represent an index retum at daily intervals, it is possible to have 'stale' returns, since the

components of the index are not ail traded at the same time. This lack of synchronised trading

times has been pointed out by certain authors who argue that it will generate seriai correlation.

Actually, this would be a reason for using an MA specification for returns. 27 The exact structure of

this autocorrelation will depend on the specific features of the non-synchronicity. In order to take

account of such seriai dependence, we extended the AR specification and parameterised the

mean for ail countries as an unrestricted AR(3) modal. More complicated parametric formulations

of the conditional mean, where the degree of seriai correlation depends on the level of volatility,

have been investigated by LeBaron (1992) and Bollerslev, Engle and Nelson (1994). According to

Bollerslev and Mikkelsen (1996), the degree of predictability in the mean is marginal and of minor

consequence for the conditional variances. We must also convey that the more conventional

27 Scholes and Williams (1977) and Lo and MacKinlay (1990) argue that discontinuous trading in the stocks that make up
the index may result in significant seriai dependence in the index retums. Aiso the ARCH-M/GARCH-M has been
proposed to deal with this kind of problem.
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ARCH/GARCH type models that imply either exponential or infinite persistence may be overly

restrictive. Thus, another reason for allowing a more rich specification is appreciated. However,

no other more complicated structures will be pursued here.28 The model, then, is the following:

z, =GrCY,-1 i.i.d. N(O,I) (4.19)

The results for the AR(3)-FIGARCH(1,d,0) are depicted in table 4.11. Again the

estimates for the fractional differencing parameter, d, is strikingly significant. Judged at standard

significance levels, the estimated d is statistically different from zero or one. The parameter for the

autoregressive part of the conditional mean is significant and conforrns to other findings in the

literature. Again the evidence supports the idea of specification error. The range for d lies

between 0.284 (Mexico) and 1.15 (Hong-Kong) and is centred around 0.40 as weil. For the US

market we obtain the same results. Ali coefficients are significants. The coefficients for the

emerging economies are generally larger than those found for the US market except for the ~I

and the fractional parameter. Again, we cannot reject the hypothesis of d different either from 0

(stable GARCH) and 1 (IGARCH). The largest value for d is for Korea (0.826) and the lowest for

Mexico (0.284). The estimate for the USA is 0.447, around the mean value found for the overall

data.

Our readings from the last tables (4.10 and 4.11) suggest that a GARCH, ARCH or

IGARCH specification for the conditional variance may be inappropriate. In some cases the

GARCH estimates may spuriously indicate an IGARCH process. Saillie, Sollerslev and Mikkelsen

(1996) point out that inference with an IGARCH parameterisation will have less power to

discriminate between integrated versus fractionally integrated data generating processes than will

inference using the fractionally integrated parameterisation. This conforrns the evidence found for

the conditional mean. Therefore, we conclude that it is desirable to increase the flexibility of the

conditional variance specification in the direction of the FIGARCH modal.

28 Actually it seems that imposing an AR(1) specification for the conditional mean could have imposed too much
restrictions, so we allow for sorne more f1exibility.
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Table 4,11 -AR(3)-FIGARCH(I,d,O) Results

Country U 81 82 83 <Xo BI d Log L

Mexico 0.0008' 0.193' -0.034 0.035' 0.0001 0.646 0.284 17681.24
(5.27) (5.30) (5.32) (5.33) (0.50) (6.39) (2.84)

Taiwan 0.0010 0.291' 0.051' 0.062' 0.050' 0.266' 0.346' 26725.12
(4.25) (6.25) (6.4)) (6.37) (58.0) (6.39) (9.50)

Thailand -0.00218 0.151' 0.060 0.057' 0.067' 0.013 0.400' 24352.12
(-4.82) (9.02) (9.32) (9.45) (3.96) (0.17) (6.31 )

Korea 0.00318 0.198' 0.041 0.055' 0.051 0.689 0.826 26011.26
(3.21 ) (4.52) (4.89) (5.00) (0.45) (0.857) (0.956)

Malaysia 0.00184 0.141' 0.057 0.047' 0.143' 0.235 0.463 23204.33
(4.35) (3.30) (3.31) (3.35) (4.29) (2.155) (3.85)

Brazil 0.00303' 0.278' 0.061' 0.05s' 0.138' 0.256' 0.423' 29031.21
(14.21) (2.47) (2.49) (2.51) (4.07) (4.02) (7.95)

Hong- 0.0074' 0.220' 0.031' 0.061' 0.039' 0.864' 1.15' 24701.10
Kong (3.56) (6.48) (6.5)) (6.5)) (2.35) (15.7) (11.38)

Argentina 0.0117 0.257' 0.044 0.071 0.065 0.435 0.598 6753.41
(3.89) (8.19) (8.49) (8.01 ) (1.33 ) (4.08) (8.33)

USA 0.00048 0.182' -0.061' 0.026 0.0000013 0.365 0.447' 67043.21
(6.96) (15.17) (-5.08) (2.17) (3.26) (7.02) (6.30)

(*) Coefficients significant at 95%. The numbers in parenthesis refer to the Robust t-statistic derived from
theQMLE

We confirm the stylised fact that for high frequency, the IGARCH model describes

financial returns as the parameters for the GARCH (1,1) sum up to close one. Estimates of these

persistence coefficients (<Xl + ~1) are such that an integrated process may not be rejected by the

data. On the other hand, the fractionally integrated GARCH shows that an integrated hypothesis

would be rejected in favour of versions with a fractional unit root. Saillie et al (1996) and McCurdy

and Michaud (1996) have found similar results. This finding supports the hypothesis that the

IGARCH or infinite persistence case can be a specification that is not flexible enough to fit the

data.

We recaIl, however, that for financial returns there is an asymmetric movement of volatility

in response to the sign of innovations to returns. The asymmetric response of volatility to positive

and negative 'shocks' is known in the finance literature as the leverage effect of stock market

returns. This means that stock returns are negatively correlated with changes in return volatility,

i.e. volatility tends to rise in response to 'bad news' (Iess return than expected) and to fall in

response to 'good news' (returns higher than expected). As a result, McCurdy and Michaud

(1996) proposed a Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) specification.

Another possibility would be the Fractionally Integrated Exponential GARCH (FIEGARCH) by

Sollerslev and Mikkelsen (1996), which will not be pursued in this thesis.



179

Rewriting the A-PARCH specification (4.11) in an analogous form, we have:

(4.20)

in which cjl(L) == [1-a(L)-~(L)] [1-Lr1 but , however, now VI == (IEtl -"('ë.l - (J/'. The fractionally

integrated form of the APARCH, which Mccurdy and Michaud label FIAPARCH (p,d,q) is then,

given by:

(4.21)

ln order to write the conditional variance, we can rearrange (4.21) finding:

Thus the FIAPARCH(p,d,q) nests the APARCH model (d=O), as weil as any one of the

other seven models listed before nested by the APARCH. This allows testing against more

restrictive specifications using likelihood ratio (LR) tests. The FIAPARCH specification should also

have advantages over the FIGARCH model in that it allows for asymmetry and also for the power

exponent to vary to help match the temporal pattern of volatility found in previous studies. In the

FIAPARCH model, we had the same problem as the FIGARCH, that is, given the infinite series

involved in computing (1_L)d, initial conditions for the fractionally integrated parameterisation are

much more demanding. In particular, we had to use the unconditional sample standard deviation

for the pre-sampie values of Et and (Jt required in the terms (IEtl -"('ë.t)Ô and (Jtô . As already

mentioned above, we truncate the infinite lag at 3000 rather than the 1000 lags used in Saillie et

al. (1996).

Using the retums associated value-weighted index for each of the eight countries in our

sample, we introduce the FIAPARCH model in our analysis. Our main concern is not estimating

the conditional mean per se. However, the lack of synchronisation of trading times is expected to

generate seriai correlation. Another way to proceed involves modelling the conditional mean

function as an MA(1) process rather than an AR(1). We follow McCurdy and Michaud (1996)29 in

using this specification. Therefore, the conditional mean function for each is parameterised as

29 We must keep in mind that modelling the retums as an AR(1), that is, Y, = Il + ~Y'-l + &, allows us to find a

Moving average representation of this AR(1). Using the lag operator L, we can rewrite this as (1 - ~ L)y/ = Il + &, .

Observing some restriction in the parameters 81 we can invert the polynomial in the lag operator leading to a convergent
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We then present the results of our estimations for the MA(1)-FIAPARCH (1,d,1) in table

4.12. Following the same steps used previously we are lead to conclude that this latter

specification produces belter results, which argues in favour of a long-memory component in

volatility. In this case, any of the previous specifications (GARCH, ARCH, APARCH etc.) would

lead to specification errors. Ali parameters have been estimated using approximate Maximum

likelihood (QMLE) as above. We then present the following model:

-1
ZI = el al i.i.d. N(O,1) (4.24)

The results are depicted in the table 4.12 below. The results for the US market are from

McCurdy and Michaud (1996). As we can see, most of the coefficients are significant. The d

(fractional) and ô (asymmetry) parameters are positive for ail countries in the sample. This

highlights the facts that, not only are there are long memory effects but it seems there are also

asymmetry effects that should be taken account of. On the basis of likelihood ratio (LR) tests, the

fractionally integrated models provide a statistically significant improvement over the non­

integrated specification. This is indeed another fact that points to the existence of long memory

effects. The LR test statistic for FIGARCH (1,d,1) versus GARCH(1,1) is 54.6 and for

FIAPARCH(1 ,d,1) versus APARCH (1,1) is 121.3. Under the null hypothesis that the standardised

residuals have a conditional normal distribution, these test statistics have an asymptotic chi­

square distribution with 1 degree of freedom (the restriction that d = 0). We can reject the non­

integrated models in favour of the more flexible integrated versions, a conclusion found to be true

above when the conditional mean of the retums is assumed to be AR( 1) or AR(3).

f.J e
series. If 50. we cano then, find a moving average representation, YI = (1- BI L) +1 (1- ~I L) . Thinking of the

term in the denominator as the sum of an infinite geometric progression with first term El and ratio equal to el we would

f.J 00

have then: YI =-=-n +L 0eH where the Oi parameters are functions of the original parameter. This means that
1 U1 ;=0

YI can be represented by an MA(oo) process.
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One can also reject the more restrictive FIGARCH (1 ,d,1) model in favour of the

FIAPARCH (1 ,d, 1) parameterisation. Therefore, the FIAPARCH(1 ,d, 1) specification rejects ail the

alternatives and consequently ail the existing models nested by the APARCH(1, 1) structure.

Table 4.12 -MA(I)- FIAPARCH(I,d,l) Results

Country ro \III 0.0 BI cb l d YI Ô LogL
Mexico 0.009 0.2471 0.0043 0.3711 0.253S" 0.5412" 0.2514" 1.5798 17811.01

(4.31 ) (6.55) (1.54) (1.84) (9.54) (5.42) (4.22) (11.97)
Taiwan 0.002· 0.6807 0.0656· 0.4432 0.0870 0.4289 0.0436· 2.0451 26369.79

(3.08) (5.37) (3.04) (1.23) (3.90) (4.67) (5.45) (16.61)
Thailand 0.003· 0.4614· 0.0051· 0.4214· 0.2478· 0.3641· 0.0179" 1.5874· 23612.34

(5.32) (8.44) (6.12) (3.21 ) (6.32) (4.99) (4.15) (21.32)
Korea 0.005· 0.4224 0.1427 0.4833 0.1158" 0.4988 0.1436· 0.7436" 25893.39

(2.60) (5.58) (2.13) (2.69) (7.10) (8.12) (4.55) (9.59)
Malaysia 0.002 0.3280 0.0068 0.1971 0.0203 0.3615" 0.0865 2.2871 23087.23

(3.35) (4.35) (1.24) (3.91) (0.004) (5.55) (1.23) (6.18)

Brazil 0.005 0.6584 0.0049 0.3690 0.0564 0.4639 0.0348 2.3062 28705.41
(4.21) (2.47) (5.09) (4.14) (13.73) (8.90) (9.12) (7.62)

Hong- 0.011 0.4684 0.0027 0.4693 0.1670 0.4878" 0.1241· 2.1308 24451.85
Kong (4.63) (6.48) (3.32) (7.03) (21.36) (9.21) (4.32) (6.37)

Argentina 0.019 0.6234 0.0016 0.6336 0.1461 0.6598 0.1361· 2.2298 17719.05
(5.71) (4.32) (1.44) (7.34) (5.81) (3.45) (5.54) (17.84)

USA 0.049" 0.2060" 0.0030 0.5730· 0.377· 0.2880· 0.6100· 1.7340" 1036.36
(5.71) (4.32) (1.44) (7.34) (5.81) (3.45) (5.54) (17.84)

(*) Coefficients significant at 95%. The numbers In parenthesis refer to the Robust t-statistic derived from
theQMLE

Finally we could ask if the estimation methods and models used exhaust ail possibilities.

The answer is no. As an example, an altemative for the modelling persistence in variance is the

stochastic volatility process developed by Breidt , Crato and de Lima (1993) and Harvey (1993).

Their model is

YI =z,a, Zt is Li.d. N(O,1)

a,2 =a 2exp(h,) (4.25)

ln previous work on stochastic volatility models, it is commonly assumed that hl is an

AR(1) process, which implies an ARMA(1, 1) representation for log(y/), If is assumed that hl is the

fractional white noise process,
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(4.26)

where Et is i.i.d N(O,<l), then (3.25) and (3.26) generate a long memory stochastic volatility

process. Estimation of regular stochastic volatility models has generally been through the state

space represen18tion and used Quasi-Maximum Likelihood Estimation (QMLE) via the Kalman

tilter. Since astate space representation does not exist for log memory processes, estimation of

the long memory stochastic volatility process is difficult. Breidt, Crato and Lima (1993) use

frequency domain approximate MLE to estimate and ARFIMA (O,d,1) model for log(Yt2), while

Harvey (1993) uses the GPH estimator to obtain an estimation of d in a fractional white noise

model for log(Yt2). The comparison of long memory ARCH and stochastic volatility models remains

an interesting area for future research.

4.4 Conclusion

We have estimated a great variety of models in this thesis. Our goal was to investigate and verity

whether or not an indication of the existence of long memory in volatility would persist when we

used data collected from emerging markets. We have found several useful and interesting results.

First of ail, we have found the expected result that ARCH/GARCH does not adequately represent

the volatility present in the stock markets of emerging economies. This finding is consistent with

what we found for more developed economies, and in particular the US market. We began to

observe that in spite of the coefficients' significance, they tend to be systematically higher in

emerging economies than in more developed economies. This may indicate that the effects are

larger in emerging economies.

Secondly, we have looked at the existence of asymmetries. The findings of Ding, Granger and

Engle (1993) and their A-PARCH model do apply for emerging economies: the asymmetry also

appears to be higher in emerging economies as described by the magnitude of this parameter.

This result may also be consistent with the fact that these markets subject to greater movements

caused by intervention in the economy.

Third, in Chapter 3 we have found persistence in volatility using the autocorrelation analysis. The

specification proposed by Engle and Bollerslev (1986) with their IGARCH model allows the shock

to exist forever. We have seen that for ail economies including the US, we cannot reject the null

hypothesis that the sum of the coefficients is equal to one. This specification, however, is much

too restrictive, and other possibilities must be explored. The natural progression is to use the

FIGARCH approach.



183

Fourth, with respect to the results of the FIGARCH specification. we have found that the

coefficients related to the existence of long memory are significant. It is striking that d (the

fractional parameter) is different from 0 and 1. This is consistent for ail economies, emerging or

developed. We have also found, however, that the coefficients for emerging economies are

higher than the ones found for the US. Having said this, we must stress that the samples differ in

not only coverage period but also the amount of data used.

Even when using the FIGARCH specification, we should allow for asymmetries to be present. It

appears that the FI-PARCH specification produces the best results. Again, ail coefficients are

found to be significant, and the coefficients are higher for emerging economies.
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Chapter 5

Switching Regimes in Volatility - Testing the Change in Regimes
for Volatility in the Emerging Markets

5.1 Introduction

ln the past fifteen years, a great deal of attention has been paid to the properties of the

second moments of financial data series. It is important to account for the conditional variance of

such series not only for inference purposes but also for empirical implementation Several

models have been developed to capture the observed c1ustering of volatility found in these data,

beginning with the ARCH model in 1982. Since then, numerous extensions of this model have

been proposed in order to capture other phenomena such as asymmetry, kinks and

discontinuities.

ln two recent papers, Granger and Ding (1995) consider long return series containing first

differences of log priees, or priee indices. They establish a set of temporal and distributional

properties for such series, suggesting that returns are weil characterized by a double exponential

distribution that displays persistence and long memory properties. Rydén et al. (1997) show that

a mixture of normal variables with zero mean can generate a series with most of the properties

that Granger and Ding (op. cit) have identified. In this case, they show that the temporal higher­

order dependence observed in return series can be described by a hidden Markov model. They

estimate this model for ten sub-series of the well-known S&P 500 series, including about 17,000

daily observations. This study reproduces the stylised facts of Granger and Ding quite weil, but

the parameter estimates vary considerably from one sub-series to the next.

1n some statistical applications, the observed time series is an aggregation of many

individual time series. The question arises as to whether aggregation has any relevant effect on

the dependence structure. To c1arify this point, suppose the individual time series XtU) ( j =
1,2,3, ... ) are summarised in a single aggregate time series as follows:

oc

XI =LX/(J)
);)

Assuming that the individual time series are ail stationary with short memory, is it

possible for the aggregate series Xl to exhibit long-memory? This question was addressed by
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Granger (1980) He shows that aggregation of short-memory processes can indeed produce the

appearance of long memory. The main point is that one cannot confirm the presence of long

memory in individual series by observing long-range dependence in aggregated series since long

memory can be artificially introduced by aggregation. To find the source of long memory, the

behaviour of individual series needs to be examined. Hamilton (1994) treats certain Markov

processes known as mixture distributions as an instructive case. In previous chapters we have

explored some possible explanations of long-memory. However, as noted above, it is possible

for aggregation to produce series with long-memory. Therefore, it is worthwhile considering other

potential sources of long-memory, for example changes of regime. We would also like to

examine other explanations for the presence for long-memory.

It is possible to reconcile the idea of mixture distributions with the occurrence of two

different regimes. Let the regime that a given process is in at date t be indexed by an

unobserved random variable St, where there are N possible regimes (St =1, 2 , 3, ... , N). When

the process is in regime 1, the observed variable VI is presumed to have been drawn fram a

N(1l1,a/) distribution. If the process is in regime 2, then Yt is drawn from a N(llz,a/) distribution,

and so on. Hence, the joint density of YI conditional on the random variable St taking on the value j

is

1 {-(V -J..l )2}
f(Yr/sr = j;O) =~ exp • r 2./ (5.1)

2Jra r 2a./

for j =1, 2, 3, ..... N. Here e is a vector of population parameters that includes Ill, Ill, .... IlN and a/
z z

1 CJ2 1 •••••• , aN

The unobserved regime {st! is presumed to have been generated by some probability

distribution, for which the unconditional probability that St takes on the value j is denoted 1tj :

P{Sr = j;O} = Jr 1 for j =1,2,....., N (5.2)

The probabilities 1t1 , 1tz, .ïtN are also included in e. That is, e is given by:

Recalling that for any events A and B, the conditional probability of A given B is defined as
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assuming that the probability that the event B occurs is not zero. This expression implies that the

joint probability of A and B occurring together can be calculated as

For example, if we are interested in the probability of the joint event that St = j and that YI falls

within some interval [c.d], this couId be found by integrating

P{J'/,S: = j:f)} = f{yrfs/ = j;f)}.p{sl = j;f)} (5.3)

over ail values of YI between c and d. Expression (5.3) will be called the joint density-distribution

function of YI and SI. From(5.1) and (5.2), this function is given by :

. f) Tr} {- (YI - f..l) 2 }
P(Y/'Sr = j; ) = ~ exp .2 (5.4)

.y2mJ! 2CJ/

The unconditional density of YI can be found by summing (5.4) over ail possible values for

j:

.\

f(y/;f) = LPCvr,sr = j:f) =
}=I

+

+ .

(5.5)
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Since the regime St is unobserved, expression (5.5) is the relevant density describing the

actually observed data YI' If the regime variable St is i.i.d. across different dates t, then the log

likelihood for the observed data can be calculated from (5.5) as

\'

L((}) = Ilog!(y,;(}) (5.6)
1:)

The maximum likelihood estimate of 8 can be obtained by maximizing (5.6) subject to the

constraints that it1 + 1r2 +. '" + 1rN =1 and itJ 2 0 for j =1, 2, .... , N. Functions of the form of (5.5)

can be used to represent a broad class of different densities. For example, if N =2, then the

unconditional density for the observed variable f (YI; 8) is the sum of these two magnitudes.

Once one has obtained estimates of 8, it is possible to make an inference about which

regime was more likely to have been responsible for producing the date t observation of YI' Again,

from the definition of a conditional probability. it follows that

(5.7)

Given knowledge of the population parameters 8, it is possible to use (5.1) together with

(5.5) to calculate the magnitude of (5.7) for each observation YI in the sample. This number gives

us the probability, given the observed data, that the unobserved regime responsible for

observation t was regime j. For example let's imagine a density of mixture of two gaussian

distributions with Yt 1St = 1 - N(0,1) , YI 1 St = 2 - N(4, 1) and P[SI = 1] = 0.8. If an observation YI

were equal to zero, one could be virtually certain that the observation had come from a N(O, 1)

distribution rather than a N(4, 1) distribution.

Many variables undergo episodes in which the behaviour of the series seems to have

changed quite dramatically. We have found this pattern for almost ail series in our present study.

Similar dramatic breaks will be seen if one follows any macroeconomic or financial time series for

a sufficiently long period. Such apparent changes in the time series process can result from

events such as wars, financial crises or significant changes in government policies. In the recent

devaluation of the Mexican peso, there was quite a dramatic change in many of the underlying

series for the Mexican economy. In Graph 5.1 we have plotted daily data for the log of the ratio of

the peso value of US$ denominated bank accounts to the peso denominated bank accounts in

Mexico from 1978-1992. The data show a sharp decrease in this ratio due to the devaluation of

the Mexican peso. The Mexican government adopted various measures in 1982 to try to

discourage the use of dollar-denominated accounts, and the effects are dramatically seen in a

plot of the series.
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Suppose that we are trying to better understand the data in graph 5.1. One simple

explanation would be that the constant term for the autoregression changed at date 1000 (the

point at which the devaluation happened). But if the process changed in the past, it could also

change in the future. Moreover, the change in regime surely should not be regarded as the

outcome of a deterministic event, but rather should be viewed as a random variable. These

observations suggests that we might consider the process to be somehow influenced by an

unobserved random variable St " which stands for the state or regime that the process was in

date at date 1. Note that one of the variables may be the volatility. This is the idea behind

Hamilton and Susnel (1994) who proposed a Switching ARCH Model (SWARCH).

Graph 5.1

Log of the ratio of the peso value of dollar denomInated ban!< acc:ounts in Mexico to the peso.<!enomlnated ban!<
acc:ounts in Mexico, dally. 1978-1992
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Source: Rogers (1992) in Hamilton (1994)

As we have seen in the preceding chapters, persistence and long memory in the volatility

of asset returns appears to be very high. This observation has led to a consideration of a wide

variety of models, from IGARCH to FI-GARCH. Volatility clustering is a well-documented feature

of financial rates of return: price changes that are large in magnitude tend to occur in bunches

rather than with equal spacing. A natural question is how long financial markets will remain
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volatile.

Two stylised facts that conventional volatility models, notably GARCH, have difficulty

explaining are (1) that conditional volatility can increase substantially in a short amount of time at

the onset of a turbulent period, and (2) that the rate of mean-reversion in stock-market volatility

appears to vary positively and nonlinearly with the level of volatility. Hamilton and Susnel (1994)

highlighted the forecasting difficulties of conventional GARCH models by showing that they can

provide worse multi-period volatïlity forecasts than constant variance models. It would be possible

to address this question by not allowing the conditional variance to respond proportionately to

large and small shocks. In this way, the conditional variance could be prevented from increasing

to a level at which volatility forecasts would be undesirably high. One drawback of this approach

is that in such a model could understate the true variance by not responding sufficiently to large

shocks and thereby never be pressed to display much mean reversion. Such "threshold" models

do not address the two stylised facts listed above, Le. sharp upward jumps in volatility, followed

by fairly rapid reversion to near-normallevels.

Lamoreux and Lastrapes (1990) observed that structural breaks in the variance couId

account for high persistence and long memory in the estimated variance. This would be an

alternative way to exploit long memory in volatility. It is then desirable to properly address the two

stylised facts from within the c1ass of ARCH/GARCH models with Marl<ov-switching parameters.

Markov-switching parameters ought to enable the volatility to experience discrete shifts and

changes in the persistence parameters. A number of researchers have suggested that the poor

forecasting performance and spuriously high persistence of ARCH models might be related to

structural changes in the ARCH process'. Perron (1989) argued that changes in regime may give

the false impression of unit reots in characterising of the level of a series. Cai (1994) stresses

that volatility in Treasury bill yields are much less persistent when one models changes in

parameters using a Markov-switching process. We will pursue this idea to verity whether this

methodology can account for long memory in volatility.

The advantage of switching regime models relative to standard GARCH formulations is

that they adapt more quickly to periods of high or low volatility. GARCH models are too persistent

to capture a sudden increase in volatility. Similarly, shocks to the conditional variance die out too

slowly to capture certain historical episodes.

i Diebold (1986) and Lamourereux and Lastrapes (1990) argued that the high estimated for the persistence parameter
may reflect structural changes that occurred during the sample in the the variance process. This is related to Perron's
(1989) observation thal changes in regime may give the spurious impression of unit rools when dealing with the level of a
series. Hamilton and Susnel (1994) found that ARCH/GARCH models have bigger MSE Loss than simple models that
consider the constant unconditional sampie variance to forecast variance. They also found that ARCH/GARCH models
can lead to nonegligible consequences a full year later (high persistence).
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It has been suggested that the conditional variance of stock returns may exhibit sudden

jumps. A paper by Perron (1999) proposes a non-paramètric procedure to detect discontinuities

in higher conditional moments, particularly the conditional variance. This procedure enables us to

estimate the number and location of jumps. We use this procedure to detect several jumps in the

conditional variance of daily returns.

ln this chapter we exploit further the two ideas highlighted above. In section 5.2 we

describe the methodology used by Perron (1999) and apply it to the data used in our thesis. In

section 5.3 we present the methodology proposed by Hamilton and Susnel (1994) for the

Switching ARCH (SWARCH) and Dueker (1997) in the context of a Switching GARCH (SW­

GARCH) and we estimate these models for the countries in our study. Section 5.4 concludes.

5.2 - Jumps in the Volatility of Stock Returns

A large number of models using non-parametric estimation of the conditional variance

have been developed as alternatives to parametric models. These estimators assume that the

conditional variance process is smooth, 50 they will be inconsistent at any point of discontinuity.

The first to propose such a methodology was Lamoureux and Lastrapes (1990). Hamilton and

Susnel (1994) and Cai (1994) provided simple parametric forms by adding a Markov chain to an

ARCH modal. This was recently extended by Dueker (1997) by allowing for GARCH processes.

1n view of the variety of available parametric models to describe time-varying volatility

and long-memory. the non-parametric approach seems a good way to proceed. It has been

established that misspecification of the continuous component of the conditional variance leads to

erroneous inference in the presence of jumps. The test relies on Muller (1992) that derived it by

using one-sided window in estimating the conditional variance. At points where a jump occurs,

the left-hand side and right-handside estimates converge respectively to the left and right limits

at that point. The difference between these estimates provides the basis for determining the

detection of the jump.

Let us assume that y, is a random variable with zero mean. The conditional moments y, of can be

estimated using the following functional representation suggested by Perron (1999)

where G(.) and g(.) are continuous functions, Xl =(X" , ...... , X!>'1')' is a p + 1 vector whose last
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element is time defined as a fraction of the sample Xp+ 1 =tIT, T is the sample size, S(XI) is a step

function with finite jumps whose argument is a member of XI, and u(XI) is a stochastic disturbance

term with E(u(X,) / XI) =O. For simplicity, we can assume that the dependence of Sand Z and u

on XI will be suppressed and written as SI and ul . The natural candidates for inclusion in XI are

lagged values of the dependent variable YI-1 , YI_P'

There are triggering changes in St that are supposed to be explained by the kth member

of X, which we can denote Z. We can use ''time'' to identify the occurrence of jumps. Actually, any

variable that causes the jumps must be consistent with the findings obtained by the assumption

that "time" causes them.

Discontinuities can be detected by looking at the differences between kernel estimates

with one-sided windows along the values of Z:

(5.2)

(5.3)

These estimators are referred to as the right and left side estimators. respectively, and they are

the usual Nadaraya-Watson2 kernels. At points of continuity of S(Z), ail three estimators will

2 The Nadaraya-Watson kemal estimator of m(x) is
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converge to the same value, m(z). At points where S(Z) is not continuous, ail three estimators

will converge to different values.

Using the same idea, it is possible to decompose the conditional variance as:

where FI-1 is the sigma-field parameter generated by past information and estimate each term by

left-sided and right-sided kernel estimates. The appropriate estimator is

I.:t

h (z)~ iK'[Zt-zJ
1=1 b

= (5.5)

The asymptotic distribution of (5.5) is found in Perron (1999) and the behaviour

A ±

for each ml (z) and me. (z)can be found in Delgado and Hidalgo (1986). The framework

proposed is applicable to multiple jumps and these can be estimated sequentially. Suppose there

are M jumps.

Define the following process:

, where K, is a kernel, b is the usual bandwidth parameter

f(x)
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+

t1(z) =h (=)- h (=) (5.6)

Defining the first jumps as ;, =arg max[~(z)] .After the first jump is estimated by
overZ

Z l ,the second point estimate is obtained in a similar fashion, and so on. Perron (1999) has

shown that the rate of convergence is slower than the usual root-T obtained in parametric

models. However, the absence or presence of other jumps does not change the behaviour of the

break point estimates due to the local nature of kernel estimation. If we accept that the mean

function does not have any discontinuity, the problem simplifies since the estimates of the mean

cancel out from (5.6) m, = ml = m, . In this case, we can look for jumps in the conditional

variance by looking for jumps in yt

5.2.1 - Estimation Results of Jumps in the Volatility of Stock Returns

ln this section we present results from the application of Perron's (1999) methodology to

stock returns in emerging markets. We use a common GARCH(1, 1) model:

-1

The bandwidth is choses as b1 =ca} T p+S , where c is the bandwidth constant, a} is

the estimated standard deviation of variable j. T is the sampie size, and p is the lag length. Three

values of c are allowed: 0.8, 1 and 1.2. Moreover, there is a data-determined selection rule for

minimizing a variation of the following cross-validation criterion:

A +

where m21 (respectively m21) is the right side (respectively left side) estimate of Et-1(Yt\ The

criterion uses only the fit of the second moment of Yt to choose the bandwidth. The bandwidth
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constant is allowed to vary between 0.8 and 1.2 with a step of 0.1. Finally, the one-sided kernel is

k+ (x) =x(3 - x)e -x (x ~ 0) , while the two-sided kernel is Gaussian. Ali tests are carried out at

a 5% significance level with normality imposed and ten percent of the observations deleted at the

beginning and end of the sample.

ln this section we apply the jump detection procedure to the series of daily returns for

each of the countries under study. The moments E(f}) and E(EI4 - 1) are estimated by using a

two-sided kernel over the data remaining after deleting twice the bandwidth on each side of the

currently estimated jump. The use of the two-sided kernel provides more reliable estimates of

these moments. We allow the constant to vary between 0.8 and 1.2 in increments of 0.1. The

results are quite interesting in two respects First, the procedure did not run out of observations

at ail lags, and some jumps dates seem to be recurring in different countries. Second, some

countries show more jumps than others.

The results for the detection of jumps are reported in Tables 5.1 to 5.9 for 4 lag lengths

considered with the bandwidth chosen by the cross validation criterion described above. For

each of the lags considered, we present the date the jump occurred, the size of the jump and the

associated p-value. In what follows, almost ail p-values are effectively O. We report not only the

breaks that reject the null strongly but also the next borderline break and its p-value in each case,

so that the reader may judge the gap between the included and the excluded dates. We can see

that the sizes of shocks vary a great deal from one country to another, with Brazil showing the

biggest ones. This might be explained by the succession of economic plans since 1986.

It is interesting to note that some markets, including Brazil's. show a large number of

jumps regardless of the number of lags used. Indeed, Brazil has experienced many interventions

and considerable disruptions associated with its economic plans. The period June-July 1975 was

one of sudden changes in volatility. This coincided with an abrupt increase in the inflation rate,

which led the Brazilian Central Bank and the Ministry of Finance to announce a series of

measures. Aiso. the period of June-July 1984 coincided with the election of the first civilian

government following years of military dictatorship. The years 1988, 1989, 1990 and 1991 were

marked by very high inflation (almost hyperinflation) and increases in the volatility of markets.

These results appear to be consistent with those found by Perron (1999) for S&P returns, in the

sense that he found a number of similar jumps in the U.S. economy.

Taiwan is also a country that has experience a number of large jumps in market volatility.

For Hong-Kong, August 1980 was the most important period of turbulence. For Mexico, we only

found evidence for one la9 with three jumps. One of the jumps occurred before the debt crisis,
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and the other two were related to political crises. For Korea, 1980 and 1988 were the years

where volatility increased. For Thailand, 1979-1980 was a period of instability, and we can

identify various jumps in this period. Even though Brazil and Taiwan seem to have had more

unstable periods than the other countries under consideration, the size of the jumps were bigger

in Brazil than in Taiwan, but smaller than those found by Perron (1999) (see table 5.8). He found

a jump in late 86 that preceded the October 1987 crash by a few months. This makes sense

intuitively, as does the August 1990 jump that coincided with Iraq's invasion of Kuwait.

Table 5.1 - Results from estimation of jumps in conditional variance - Brazil

LAG 0 (c =0.8) LAG 1 (c =1.2) LAG 2 (c =0.8) LAG 3 (c =0.9)

Date Size p-value Date Size p-value Date Size p-value Date Size p-value

0.7407 -0.456 0.00 0.3082 -693.0 0.00 0.6214 39228 0.00 0.8200 19421 0.00

07.02.88 13.05.76 11.11.84 02.04.90

0.8499 -0.277 0.00 0.6188 105.8 0.00 0.2778 -10450 0.00 0.6069 11248 0.00 :

23.01.91 16.10.84 17.07.75 20.06.84

0.6080 0.686 0.00 0.8474 -5.152 1.00 0.8063 1913 0.00 0.1533 -762.7 0.00

01.07.84 12.12.90 17.11.89 29.02.72

0.2688 0.0137 0.00 - - - 0.4455 254.9 0.00 0.4100 -13.62 0.1069

19.04.75 02.02.80 19.12.81

0.4496 -0.0390 0.083 - - - 0.00014 0.000 1.00 - - -
21.05.82 02.05.68

Table 5.2 - Results from estimation of jumps in conditional variance - Hong-Kong

LAG 0 (c =1.2) LAG 1 (c =0.8) LAG 2 (c =1.10) LAG 3 (c =1.10)

Date Size p-value Date Size p-value Date Size p-value Date Size p-value

0.5547 0.022 0.00 0.2728 197.0 0.00 0.8200 3030 0.00 0.2712 -2213 0.00

17.06.86 21.08.80 09.12.91 09.08.80

0.6791 -0.011 0.00 0.4376 -219.6 0.00 0.1758 -2403 0.00 0.6598 559.8 0.00

11.01.89 15.01.84 20.08.78 18.08.88

0.4297 -0.031 0.743 0.6921 20.71 0.00 0.5932 -381.1 0.717 0.00018 0.000 1.00

12.10.83 18.04.89 15.03.87 19.05.75

- - - 0.8153 106.7 1.00 - - - - - -
18.06.90



Table 5.3 - Results from estimation of jumps in conditional variance· Mexico
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LAGO LAG 1 (c = 1.0) LAG2 LAG3

Date Size p-value Date 1 Size p-value Date Size p-value Date Size p-value1

1

0.5458 0.195 0.073 0.5004 14755 0.00 0.5150 -237.4 1.00 0.5069 481.1 1.00

25.03.88 31.07.86 12.12.86 07.07.86

- - - 0.7545 1345.1 0.00 - - - - - -
11.02.90

- - 1 - 0.1829 i 7.57 0.00 - - - - - -
1

06.02.81 1

- - - 0.3417 1 0.658 1.00 - - - - - -
12.03.82 i

1

Table 5.4 - Results from estimation of jumps in conditional variance - Korea

LAG 0 (c = 0,8) LAG 1 (c= 1.10) LAG2(c=1.10) LAG 3 (c = 1.10)

Date Size 1 p-value Date Size p-value Date Size p-value Date Size p-value

0.7286 -0.0051 1 0.271 0.3519 1-98.09 0.00 0.5854 36688 0.00 0.8352 249.9 0.00

15.04.90 11.02.84 31.10.88 17.11.93
1

- - - 0.5561 1.85 0.00 0.1876 -59.20 0.00 0.2667 -244.8 0.00

28.03.88 17.10.80 23.05.82

- -

1

- 0.1574 -13.42 0.00 0.833 1.999 1.00 0.5929 86.8 0.00

08.03.80 15.09.93 25.12.88

- - - 0.777 -0.120 0.051 - - - 0.0002 0.00 1.00

15.04.75

Table 5.5 • Results from estimation of jumps in conditional variance - Malaysia

LAG 0 (c = 0.8) LAG 1 (c = 1.1) LAG 2 (c = 1.2) LAG 3 (c = 0.8)

Date Size p-value Date Size p- Date Size p-value Date Size p-value

value

0.6659 -0.010 1 0.00 0.3280 -42.77 0.00 0.7805 362.90 0.00 0.7654 2184 0.00

27.07.87 11.03.81 24.09.89 12.06.89

0.3548 0.011 1
0.00 0.7376 3.72 0.00 0.2870 -437.64 0.00 0.2975 -1683 0.00

19.12.81 02.12.88 01.06.80 13.08.80

0.2703 -0.021 ! 0.067 0.5705 2.59 0.00 0.5457 3.429 1.00 0.6038 869.9 0.00
1

01.03.80
1

08.10.85 26.05.86 25.05.86

- -

1

- 0.1629 0.802 1.00 - - - 0.0002 0.00 1.00

05.03.78 12.02.75



Table 5.6 - Results from estimation of jumps in conditional variance - Thailand
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LAG 0 (c =1.2) LAG 1 (c =1.20) LAG 2 (c = 0.9) LAG 3 (c = 1.10)

Date Size p-value Date i Size p-value Date Size p-value Date Size p-value
i

0.7522 -0.012 0.00 0.2381 1 -531.4 0.00 0.6405 5338 0.00 0.2375 -792 0.00

26.12.88 06.06.79 29.11.86 02.06.79

0.5945 -9.06 0.00 0.6380 206.6 0.00 0.2880 -150.6 0.00 0.5920 901 1.00

20.01.86 12.11.86 10.05.80 15.12.85

0.2367 0.0001 0.00 0.8423 3.1488 1.00 0.4846 3.31 1.00 - - -

27.05.79 25.04.93 10.04.83

0.4024 0.0001 0.00 - - - - - - - - -
30.06.81

0.002 0.0000 1.00 - - - - - - - - -
30.03.75



Table 5.7· Results from estimation of jumps in conditional variance - Taiwan
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LAG 0 (c :: 0.8) LAG 1 (c:: 0.9) LAG 2 (c :: 0.8) LAG 3 (c:: 1.0)

Date Size p-value Date 1 Size p-value Date Size p-value Date Size p-valuei

0.8220 0.0139 0.00 0.4602 1-595.6 ' 0.00 0.6370 1531 0.00 0.7897 3601 0.00

01.03.93 03.03.85 15.11.89 14.06.92

0.7402 0.0447 0.00 0.2507 -104.8 0.00 0.4600 -965.7 0.00 0.1765 -9.324 0.00

11.05.91 16.07.80 02.03.85 25.11.78

0.6145 -0.1589 0.00 0.6199 178.9 0.00 0.1948 -805.2 0.00 0.4188 41.38 0.193

31.07.88 12.09.88 22.04.79 02.06.84

0.4840 0.0206 0.00 0.7724 1 4.95 0.00 0.8490 326.9 0.00 - - -
11.09.85 26.01.92 1 05.10.93

0.2526 -0.0163 0.00 0.00017 0.00 1
1.00 0.00017 0.00 1.00 - - -

31.07.80 15.04.78 15.04.78

0.3746 -0.0101 0.00 - i - i - - - - - - -i

112.04.83 !

0.1707 0.010 1.00 - - - - - - - - -

Table 5.8 - Results from estimation of jumps in conditional variance - Argentina

LAG 0 (c:: 1.2) LAG 1 (c:: 1.2) LAG 2 (c:: 1.2) LAG 3 (c:: 1.2)

Date Size p-value Date
1 Size p-value Date Size p-value Date Size p-value

0.1505 -0.5606 0.000 0.2567 1 -755 0.00 0.7657 17349 0.00 0.7668 424.6 0.00

16.12.86 07.07.86 27.11.87 03.08.90

0.7082 0.0024 0.000 0.7410 ! 290 0.00 0.2533 64.99 0.00 0.1947 -27.38 0.4792

07.03.89 23.08.90 1 15.11.91 01.03.87

0.3067 0.6001 0.000 0.4601 i -0.139' 1.00 0.4968 0.0848 1.00 - - -
17.06.83 12.05.85 1 12.03.84

0.4687 0.0825 0.1225 -
1

- - - - - - - -
17.06.86

1
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Table 5.9 - Results from estimation of jumps in conditional variance - USA

LAG 0 (c =1.2) LAG 1 (c =0.9) LAG 2 (c =1.2) LAG 3 (c =1. 1)

Date Size p-value Date Size p-value Date Size p-value Date Size p-value

(x107
) (x104

) (x104
) (x103

)

0.4099 6.878 0.001 0.3829 32.8 0.00 0.4652 129.8 0.00 0.6229 25.15 0.00

16.12.86 07.07.86 27.11.87 03.08.90

0.5399 -0.452 0.001 0.6262 -20.7 0.00 0.6988 -0.038 0.00 - - -
07.03.89 23.08.90 15.11.91

0.2038 0.686 0.54 0.7720 4.1 - - - - - - -
17.06.83 16.02.93

The resutts from our examination of daily stock returns in emerging markets show that

sudden changes in volatility have occurred for ail countries in our sample, without exception. The

findings that the volatility of financial markets cannot be described as a smooth function of lagged

returns casts doubt on the practice of fitting GARCH-type models. It remains to be seen how

much is lost by neglecting to model this feature of the data. It may very weil be that GARCH

models can still provide a good first approximation to the behaviour of the data.

Tables 51 to 5.8 show that it is possible to statistically detect changes in stock market

return volatility processes. This finding poses a number of interesting questions. For example,

how common are high volatility states? Do periods of high volatility coincide across countries? Is

it possible to statistically identify groups of countries that jointly experience high volatility? A

visual inspection of tables 5.4 (Korea) and 5.6 (Thailand) show that jumps occurred on December

25, 1988 in Taiwan and December 26, 1988 in Thailand. Also, comparing table 5.5 (Malaysia) to

the others, we see that a jump happened in Malaysia on December 2, 1988. These results

provide some preliminary evidence of (roughly) coincident volatility switches among countries.

5.3 - Switching Regimes in Volatility Models

5.3.1 - Markov Chains

ln the previous section, we identified a number of discrete changes in market volatility

that occurred in our sample of countries. We will now investigate the matter more fully. A natural

extension of our analysis would be to attempt to deal with discrete changes in volatility.

How should we model changes in the process followed by a particular time series, such

as the one shown by Figure 5.1? For the data plotted in this figure, a simple approach would be

to assume that the constant term in the autoregression changed around observation 1000. For

data prior to observation 1000, wecould use a model such as:
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while data after observation 1000 could then be described by

where !lz < !l1· This specification would appear to provide a good description of the data in

Figure 5.1. On the other hand, how can we use it for forecasting if the series keeps changing? If

the process changed in the past it could certainly change again in the future, which would have to

be taken into account in forecasting. The change in regime should not be regarded as the

outcome of a perfectly deterministic event but as a random variable. A complete time series

model would include a description of the probability law governing the change from !l1 to !lz.

These observations suggest that we can consider the process to be influenced by an unobserved

random variable St", which is commonly called the state or regime the process was in at date t. If

St" =1, then the process is in regime 1, while St" =2. means that the process is in regime 2., so

that we can rewrite (5.7) and (5.8) as:

(5.9) where JL. indicateS!l1 when St = 1 and
.1,

indicates !lz when St" =2.

We then need a description of the time series process for the unobserved variable St".

Since St" only takes on discrete values (in this case either 1 or 2), this model will differ slightly from

those with continuous-valued random variables seen in the previous section.

Financial markets sometimes appear quite calm and at other times highly volatile.

Describing how this volatility changes over time is important. Hamilton and Susnel (1994) argue

that a promising alternative is to allow for the possibility of sudden. discrete changes in the

parameter values of an ARCH(q) process, as in the Markov-switching mode!. The simplest time

series model for a discrete-valued random variable is a Markov-chain.

We introduce switching volatility to capture possible exogenous shocks. An exogenous

shock could be discrete if it resulted from a change in the underlying regime, or continuous if it

took the form of a "market-news" event. Models of switching regimes follow different dynamics in

each regime. Imagine the most basic model with a constant, where both the constant and the

volatility of the process suffer from switching changes in regime as a function of a first order

Markov Chain. The model is then defined as:
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Observing (5.10)3, both the mean and the variance in this model are influenced by the

variable St. This random variable is called a state variable. Let YI denote the daily stock return in

percent terms. For example, Yt =-2,0 would mean that stock priees fell 2% on day 1. If St =1, the

prevailing regime would be the first, if SI = 2, the regime would be the second, and so on. This

state variable St follows a first order Markov process and can only assume the integer values

{1,2,3, ..... ,N}. The probability that St equals some particular value j depends on the past only

through the most recent value of St in the previous state: St-l:

P{s, = j / S'_1 = i. S'_2 = y S'_k = r} = P{SI = j / SI_I = i} = P'i (5.11)

Such a process is called a N-state Markov chain with transition probabilities {Pij}i.j=1.2.,N.

The transition probability Pij gives the probability that state i will be followed by state j. Note that

we must have

Pli + P,2 + + P,;\' =1 (5.12)

Given that we are in state 1, there will be certain probabilities of evolving to k different

states of the nature. The economic rationale4 is that the economy may be in different economic

states. For instance, a stock market may have three regimes: one where stocks rise in a

consistent fashion, with high returns and low volatility: another where stocks move neither up nor

down, but where there are low returns and higher variance; and one last regime where there is a

crisis, with negative returns and very high volatility.

It is often convenient to collect the transition probabilities associated with each

regime in a (N x N) matrix P known as the transition matrix:

p = ;: : p~, .......p"

pJl ...... .p"

3 ln the models we investigate, the process u, that is described either by the ARCH or the GARCH process is the residual
from a first order autoregression for stock retums y, = c • 80 y,., • ;,.
4 A better rationale is that the k-discrete state model may serve as an approximation to a richer underlying model, being
better than a one regime model, without being Iiterally true.
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The row j, column i element of P is the transition probability Pi)' For example, the element

in row 2, column 1 gives the probability that state 1 will be followed by state 2. In the event that

N =2, we have the following Markov chain:

Pli 1- P::

1-PII P::

Suppose that Pl1 = 1, so that the matrix P is upper triangular. Then once the process

enters into state 1 there is no possibility of going back to state 2. In such a situation we would

cali state 1 an absorbing state and the Markov chain reducible5
. A Markov chain that is not

reducible is said to be irreducible. For example, take a two-state chain where Pl1 < 1 and P22 < 1

An important concept related to Markov chains is ergodic probability. This is the

probability associated with each steady state. In the specific case of a two-state Markov chain,

the eigenvalues of the transition matrix P satisty6

Pli -.?. 1- P::

det 0

so we can write

= (Pl1 - Î.) (P22 - i.) - (1- Pll) (1- P22) =

= - P11 À - P22 J" - 1.
2

- 1 + P22 - P11 =
= (À - 1)( À - Pl1 - P22 + 1 )

Thus, the eigenvalues for a two-state chain are given by À1 =1 and À2 =-1 + Pll + P22

7. The eigenvectors associated with À1, for the two-state chains turn out to be

5 More generally, an N-state Markov chain is said to be reducible if there is a way to label the states. !hat is a way to
choose to cali state 1, which to cali state 2. and so on. This characteristics is not very common in financial series, for
instance, in the previous example, if the market is rallymg, there is no reason for it to continue always rising.
6 Consider an N-state irreducible Markov chain with transition matrix P. Suppose that one of the eigenvalues of P is unity
and that ail other eigenvalues of Pare inside the unit root interval. Then the Markov chain is said to ergodic. More
generally the eigenvalues of the transition matrix P for any N-state Markov chain are found from the solutions to ! P - À-IN 1

= O. Hamilton (1994) shows that the vector of ergodlc probabilities can also be viewed as the uncoditional probability of
each of the N-different sates. Aiso an ergodic Markov chain is a covariance-stationary process.
7 The second eigenvalue will be inside the unit root as long as 0 < P11 + P22. Thus we would have a two-state markov

chain ergodic provided that P" < 1 and P22 < 1 and 0 < P" + P22
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From here we can obtain the ergodic probabilities (or unconditional probabilities) for thetwo-state

mode!. Thus, the unconditional probability that the process will be in regime 1 at any given time is

and the unconditional probability that the process will be in regime 2 at any given time is

just 1 minus the magnitude above, that is:

P{SI = 2} = 1- PlI

2- Pli - P22

ln switching regime models it is useful to know the average duration of each regime given

that we are in a specifie state. If we define D as the duration in a determined state, we can write

the following from the definition given above:

D =1, if St =j and St+, =j; P{D =1} =(1 - p,,)

D =2, if St = St+1 =j and St-2 =j ; P{D =2} =PiJ (1 - PiJ)

D =3, if St =St+1 = St+2 =j and SSt+3 =j ; P{D =3} =PiJ 2(1 - PiJ} and 50 on

The expected duration of state j can de derived by:

'"
E(D) =2:jP[D = j]

J=1

=P[SI+I :t- j S, = j]+2P[SI+1 = j,SI+2 :t- jlS, = j]+ ..

l-p ..
(5.13)
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Equation (5.13) is very useful for collecting information on switching regimes. For

example, when we estimate a model for changes in GDP we can obseNe the average duration of

the cycle of growth and recession.

5.3.2. - SWARCH and SWGARCH

Many researchers have suggested that the poor forecasting performance and spuriously

high persistence of ARCH models may be related to structural changes in the ARCH process,

which produce so-called long-memory effects in volatility. This is related to Perron's (1989)

obseNation that changes in regime may give the spurious impression of unit roots in

characterisations of the level of a series. Cai (op. cit.) in particular noted that volatility in Treasury

bill yields appears to be much less persistent when one models changes in parameters through a

Markov-switching process. It seems promising to investigate whether a similar result might

characterise stock returns.

A natural way to control for structural breaks is to use models of Markovian switching

states for the variance. Several econometric models were developed in recent years to account

for changes in states through a first order Markov chain.

A common empirical finding on volatility is the high persistence of the conditional

variance. For example, Brenner et al. (1996) estimate a persistence parameter of 0.92 using

weekly three-month U.S T-Bill data. Bali and Torous (1995) report a persistence parameter of

0.9152 using monthly one-month U.S. T-Bill data. Anderson and Lund (1997) report a

persistence parameter of 0.98 for weekly data. Such long memory in volatility, as weil as high

persistence in interest rates or stock prices. might lead to biased forecasts.

High persistence, or long memory. in the conditional variance implies that shocks to the

conditional variance do not die out quickly. That is, current information has a significant effect on

the conditional variance for future horizons. Engle and Bollerslev (1986) proposed the IGARCH

model to address this issue. Under an IGARCH model, shocks to the conditional variance never

disappear.

There is some evidence that such long memory could be related to structural changes in

the variance process that occurred during the sample period. Lamoreux and Lastrapes (1990)

find that a single-regime GARCH specification leads to spurious high persistence in the presence

of structural breaks. By allowing for the possibility of regime switching. the high persistence and

long memory observed in single regime models no longer appears to be valid. Similar results

have been documented by Hamilton and Susnel (1994), Cai (1994) and So, Lam and Li (1998).

Bali and Torous (1995) consider regime switching in the variance but do not model persistence in
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hl =ao+ La,u,2_, (5.15)
,=1
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variance. When low volatility can switch randomly between different regimes, and when each

regime is associated with its own mean and variance parameter, we may find high persistence

when we average data from different regimes. In our presentation we follow Hamilton and Susnel

(1994), but we extend their model to allow for switching GARCH based on Duecker (1997) in

order to deal with long memory effects in volatility.

Hamilton (1989) suggested the following regime-switching model for the conditional mean

Yi = f.11, + Y, (5.14)

Here f.1, denotes the parameter f.l1 when the process is in the regime represented by St =

1, while f.1" indicates ~12 when St =2. and so on. The variable Y t is assumed to follow a zero­

mean qth-order autoregression:

The idea behind this specification is that ocasional abrupt shifts in the average level of Yt

can be captured by the values of f.1, .

A natural extension of this approach to the conditional variance would be to model the

residual Ut as Hamilton and Susnel (1994) did. They present a model of change in state for an

ARCH, where we could also inciude the leverage effect along the lines of Glosten et al. (1989)B

This model is defined below, where Ut follows a standard ARCH (q) process and Vt is an LLd.

sequence with zero mean and unit variance.

.;,. = ji: Ut (5.16)

8 Glosten's formulation takes in account leverage effects. A stock priee decrease tends to increase subsequent volatility
by more than would a stock priee increase of the same magnitude. This is the so-called leverage effect. This specification
follow Black (1976) and Nelson (1991).
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Alternatively we could have Glosten's formulation that implies rewriting (5.18) as

(5.18' )

where SI assigns values 1,2, ..... ,k, and follows a St Markov Chain of first order. When k = 1, we

have the following probabilities of transition: P{ St = 1 1 St-l =1} = p; P{ St = 2\ St-1 =1} = 1 - p; P{ St

= 21 St-l =2} = q and P{ St = 1 1 St-1 =2} = 1-q. However, gSt , is a function of St standardised for

the first state (i.e. g1 = 1). We then find that the conditional variance follows an ARCH(q) process,

whereas Ut is multiplied by the constant-fii when it is state 1, by .fi; when it is state 2, and so

on. The main point is to model the changes in state as changes in the scale of the conditional

variance process. In (5.18') dt-1= 1 if Ut > 0 and dt-1 = 0 if Ut < O.

ln the absence of leverage effects (5 = 0), we will say that St follows a K-state qth_order

Markov-switching ARCH process, denoted SWARCH(K,q). In the presence of leverage effects,

we will cali it a SWARCH-L(K,q) specification. We investigate both Gaussian (VI - N(O, 1)) and

Student's t (Vt distributed t with v degrees of freedom and unit variance) versions of the mode!.

These models ail have the same problem common to ail ARCH variants, namely the

necessity of incorporating a large number of lags in order to describe the features of the model

vis-à-vis GARCH (see Bollerslev (1986))B

On the other hand, Duecker(1997) extends the model for four different specifications of

GARCH. This procedure facilitates the estimation of the Iikelihood of the process without incurring

in big losses. As such, we will be estimating equations (5.16), (5.17), (5.18) and10

,/ !'

h, =ao..... La, uL + LfJ)h'-J (5.19)
,=1 )=1

The model comprising (5.16), (517) and (5.18) is calied SWARCH(k,p) where k

designates the number of states. If we use (5.18') we would have the SWARCH(k,p)-L mode!. In

the same vein, the model comprising (5.16). (5.17) and (5.19) is called SWGARCH(k,p,q) where k

designates the number of states. If we use (5.19') we would have the SWGARCH(k,p,q)-L mode!.

9 This common empirical finding might be the result of estimation biases near the boundary in the QML-GARCH.
10We may also consider a slight different version of (5.91 called SWGARCH(k,p,q)-L that takes in account the leverage

4' !'

effect so common in the stock market h, =a o +L a, U,2_, + LfJ)h,_) - &lt_IU;_1 (5.19')
I~' J=l
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The estimation of the models SWARCH(k,q) and SWGARCH(k,p,q) is similar the

estimation of GARCH models reported in the literature and is usually based on maximum

likelihood estimation. For the normal distribution, the likelihood is given b/ 1

1

L(O) = LlogfCy/ 1 SpSI_I······,s/_!"I,Z/;O)
1=1

Or written differently

(5.21)

where pq =max{p,q}. Note that the conditional variance defined above is a function of ail

states.

We have also used a Student's t distribution for the estimation of the maximum­

likelihood12. When the inference is based on information observed through date t it is called the

'filtered probability'. Alternatively, the full sampie of observations can be used to construct the

'smoothed probability,13 ln what follows we will report only the smoothed probability. as is usually

done in the Iiterature. When inference about a particular state of the process is based on the

information through date t, not ail information is used for the filtered probability.

"The normal distribution applies to the standardised innovations Zt = Et/a, in the standard GARCH mode!.
12 ln this case v is supposed to be drawn from a t-Student distribution with v degrees of freedom normalised in order to

have unit variance. In this case we would have (5.20)

as

f(\'-1/2) { (y-Z'/A }-(V+II;
f(y,ls"s,_" ...,s,_ .. S,_pq'Z,)= exp 1+ "

f(v/2)'~ ~\'.., h(s s S (\'-2)h,(s,.s,_I' .... s,_,.s'_nq)"" v\'- .:. , "'-1 '""" '_pq) r

13 The filtered probability p(S,. S'_I / Y")'1-I ,.... Y,_pq) stands for the conditional probability that the state in date t

is St and that in date t-1 was St-1. These probabilities are conditional on the values of y observed through t (does not use

ail information). The smoothed probability p(S r / y r . Y r-I ,... , Yr- pq) are inferences about state t based on the data

available through some future date T (end of the sample) using ail data. The smoothed probability is an ex-post inference
made about state t.
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We fitted a variety of different SWARCH specifications to daily stock returns data for

selected emerging markets. We estimated models with q =2 (ARCH) terms and K =3 states, with

Normal and Student's t innovations and without the leverage parameter 1;. For the SWGARCH

specification we have chosen p =q =1 (ARCH and GARCH effects) and K =2 states. For each

model, the negative log-likelihood was minimized numerically using the optimisation program

OPTIMUM in the GAUSS programming language.

Tables 5.10 to 5.25 show the results of the SWARCH and SWGARCH estimations. 14 A

majority of the parameters are significant, including the parameters for the leverage effect. 15 The

significance of these models indicates that they are superior. We based the choice of the models

shown here on Akaike's Information Criterion (AIC) and Schwarz's Information Criterion (BIC).

We report these in Tables 5.10 to 5.25, below. Our findings are similar to others in the literature.

Standard errors are shown in parentheses. The tables also report the model selection statistics

proposed by AIC and BIC. Based on these statistics, it is c1ear that the models accounting for

leverage effects and using the Student's t distribution perform better.

ln estimating these models we obtained two probabilities associated with different states

of nature, that is, the smoothed probability and the filtered probability. To estimate the filtered

probability we used information up to period t. whereas the whole series was used to estimate the

smoothed probability. With this in mind, we see that the filtered probability is much more erratic

than the smoothed one since it uses less information. We have estimated models with two and

three regimes. For the SWARCH model, we used up to four lags but retained the specification

SWARCH(3,2). As has already been stated. the GARCH specification can represent an ARCH

structure with many lags in a parsimonious way. However, the estimation of SWGARCH models

does pose a large computational burden since the rate of convergence is slower and we have to

impose some constraints to make estimation tractable. We have worked with SWGARCH(2,1).

ln ail of the SWARCH/SWGARCH estimations we have allowed the distribution to be

normal or Student's t and have also included the leverage effect. We can observe some

interesting results in the tables below. With regard to the SWARCH models estimated for ail

countries, the scale parameter (g2) that describes the moderate volatility was roughly between 2

and 4, independent of the alternative specifications used. This means that the moderate volatility

is twice to four times as high as the low volatility. This is consistent with Hamilton and Susnel

(1994), who found (g2) to be 4.5. It is also interesting to note the scale parameter that describes

14 We estimated only models with Iwo and three states For models SWARCH we estimated models with up to four lags.
For models SWGARCH we have estimated only SWGARCH(1,1) models, and changing the distribution and using or not
the leverage effect. This is explained by the model chOice selection criteria on one hand and on the other hand the
burdensome of estimating higher complex models. However, these specifications are the more common and found in the
vast majority of studies.
15 These models are highly non-linear and some times we had problems in getting standard errors as the inverse of the
hessian sometimes was not positive definite. Multicolinearity could have led to this.
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the high volatility (g3)' The estimates vary between 13.12 and 19.3 for ail but two countries. Again

this is consistent with Hamilton and Susnel (1994), who found (g3) to be 13.8.

ln what follows, we can make the overall remark that the Asian countries tend to produce

smaller estimates of the parameters, while the Latin American countries tend to produce larger

ones. This could be an indication of the higher volatility of Latin American markets relative to their

Asian counterparts. For example, the constant term in the autoregression (c) is estimated

between 0.02 and 0.06 with the exceptions of Thailand (-0.01) and Argentina (0.13). For the

autoregressive parameter (80), our estimates vary between 0.08 and 0.19 with the exceptions of

Brazil (0.2615) and Mexico (0.2825).

When we turn to the parameters of the conditional variance (hl! we find estimates for the

ARCH parameters (al and (2) that follow the same pattern described above. It is indeed

interesting that, for both parameters, the countries of Latin America are concentrated around the

upper limit and the Asian countries around the lower Iimit.

We can still apply these general comments when we examine asymmetries (s) by

estimating a SWARCH-L model except for the parameters ao (Hong-Kong and Malaysia) and CX1

(Taiwan). However, the general conclusion that Latin American countries show bigger effects

remains valid. These results may be due to the greater degree of intervention in the Latin

American economies compared with similar Asian countries, especially during the years in our

sample.

With respect to the SWGARCH specifications, we must stress that the estimation of

these models is more difficult, since there are not only more parameters to be estimated but also

certain conditions that must for estimation to be feasible. For instance. we may have problems if

al + ~1 =1. In certain cases we were not able to obtain standard errors because convergence

was not assured. so we used the eigenvalues as estimates to them.

Generally speaking the results follow what we have stated before. However. in the case

of the SWGARCH estimation we can see the parameters varying a great deal across countries,

much more so than those associated with the SWARCH estimates. Few studies have estimated

SWGARCH effects across countries, so a comparison is not straightforward. However, Duecker

(1997) used a SWGARCH model to assess volatility in the American market and found a lot of

variation between different specifications. This reinforces the general idea that SWGARCH

allows the parameters to vary a lot with compared to SWARCH.



Table 5.10· SWARCH

210

Argentina

Model g2 93 C 00 0.0 0.1 Ciz
t: VS

SWARCH(3,2) 5.623 45.27 0.1339 0.08310 2.3575 0.06896 0.1133 - -
AIC = 4.95 1BIC = 4.99 (1.52) (7.54) (0.013) (0.021) (0.521) (0.0154) (0.021) - -

SWARCH(3,2)-L 5.698 45.97 0.1296 0.0821 2.31843 0.04031 0.11770 0.0691 -

AlC = 4.95 1BIC = 4.99 (1.31) (8.43) (0.021) (0.012) (0.311) (0.0127) (0.065) (0.0111) -
SWARCH(3,2)-L -t 1.936 13.84 0.1370 0.0788 1.14826 0.14195 0.1687 0.0387 7.626

AIC = 4.95 1BIC = 4.99 (0.52) (6.51) (0.041) (0.013) (0.214) (0.0101) (0.031) (0.0107) (1.587)

Table 5.11 • SWARCH

Brazil

Model 92 93 C (lo ex·o (x, a2 c V
':J

SWARCH(3,2) 2.642 13.40 0.1819 0.2615 0.8837 0.1385 0.1636 - -
AIC = 4.41 1BIC = 4.42 (0.33) (4.51) (0.052) (0.043) (0.204) (0.2101) (0.331) - -

SWARCH(3,2)-L 2.588 13.29 0.1731 0.2598 0.8801 0.09490 0.1603 0.10478 -
AlC = 4.41 1BIC = 4.42 (0.42) (7.42) (0.062) (0.053) (0.214) (0.0214) (0.431) (0.0307) -

SWARCH(3,2)-L -t 4.351 13.15 0.1559 0.2649 0.9680 0.09744 0.1366 0.1266 9.7398

AIC = 4.39 1BIC = 4.40 (1.12) (5.32) (0.070) (0.035) (0.297) (0.0111) (0.337) (0.0127) (2.274)

Table 5.12 - SWARCH

Mexico

Model 92 93 C 00 Cl.o 0'., 02 ':J
V

SWARCH(3,2) 0.249 117.0 0.0604 0.2825 0.8868 0.2351 0.1452 - -
AIC =2.19 1BIC = 2.21 (0.06) (11.5) (0.020) (0.098) (0.214) (0.101) (0.0251)

SWARCH(3,2)-L 0.252 114.3 0.0570 0.2821 0.8578 0.1821 0.1434 0.1053 -
AIC =2.19 1BIC - 2.21 (0.07) (12.1) (0.031) (0.089) (0.210) (0.100) (0.0312) (0.0311)

SWARCH(3,2)-L -t 2.806 23.04 0.0526 0.2924 0.2515 0.2172 0.1056 0.0704 6.028

AIC =2.15 1BIC = 2.17 (0.92) (6.15) (0.091) (0.092) (0.251) (0.141) (0.041) (0.0321) (1.693)
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Thailand

Model 9z 93 C 00 0:0 CLl HZ .:; v

SWARCH(3,2) 2.166 18.92 -0.0115 0.0981 0.09925 0.3591 0.2886· - -
AIC =2.46 1BIC =2.48 (0.45) (4.31) (0.004) (0.011) (0.0128) (0.0714) (0.0651) - -

SWARCH(3,2)-L 2.166 18.92 -0.0115 0.0981 0.09925 0.3591 0.2886 5.6x10-11 -
AIC =2.46 1BIC =2.48 (0.50) (4.27) (0.004) (0.013) (0.0124) (0.0704) (0.0621) (1.6x10- ) -

SWARCH(3,2)-L -t 3.844 21.82 -0.0035 0.1033 0.1879 0.4428 0.1662 2.6x10'lU 3.120

AIC =2.40 1BIC =2.42 (0.52) (6.51) (0.041) (0.013) (0.214) (0.0101) (0.031) (1.1 x10'11
) (1.151)

Table 5.14 - SWARCH

Taiwan

Model 9z 93 C 00 (Xo 0.1 O:z
~ VS

SWARCH(3,2) 3.655 13.12 0.0664 0.0864 0.7829 0.02455 0.0920 - -
AIC =3.47 1BIC =3.49 (0.45) (2.54) (0.0157) (0.0241) (0.221) (0.0051) (0.0147) - -

SWARCH(3,2)-L 3.670 13.29 0.0614 0.0864 0.7846 2.8x10-w 0.0940 0.0795 -
AIC =3.47 1BIC - 3.49 (0.47) (2.65) (0.0141) (0.0240) (0.224) (1.0x10-V"') (0.0150) (0.0125) -

SWARCH(3,2)-L -t 3.938 14.96 0:0599 0.0817 0.7944 1.4x10-vO 0.0972 0.0806 16.90

AIC =3.42 1BIC =3.46 (0.53) (2.71) (0.0122) (0.0222) (0.235) (1.0x10-V') (0.0174) (0.0121) (3.54)

Table 5.15 - SWARCH

Korea

Model 92 93 C (Jo (io (;(1 CiZ
~ V
'"'

SWARCH(3,2) 3.780 19.30 0.0336 0.1361 0.1933 0.0122 0.0681 - -
AIC =2.70 1BIC =2.72 (0.62) (2.91) (0.010) (0.0412) (0.021) (0.003) (0.0014) - -

SWARCH(3,2)-L 3.800 19.39 0.0332 0.1357 0.1927 0.0019 0.0696 0.025 -
AlC =2.70 1BIC =2.72 (0.66) (3.04) (0.012) (0.0410) (0.028) (0.004) (0.0012) (0.0012) -

SWARCH(3,2)-L -t 3.408 10.35 0.0215 0.1430 0.1778 0.0791 0.1366 0.0315 8.20

AIC - 2.69 1BIC - 2.71 (0.61) (2.01) (0.011) (0.0302) (0.018) (0.0101) (0.0121) (0.0021) (1.05)
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Hong-Kong

Model g2 g3 C 00 Ua U1 Œ2
t: VS

SWARCH(3,2) 2.848 18.53 0.1162 0.1001 0.8721 0.0241 0.1016 - -
AIC = 3.46 1BIC =3.48 (0.45) (4.01) (0.011) (0.0203) (0.210) (0.005) (0.012) - -

SWARCH(3,2)-L 2.948 19.48 0.1063 0.1101 0.6715 0.0291 0.1146 0.1028 -
AIC = 3.46 1BIC =3.48 (0.47) (4.07) (0.013) (0.0214) (0.125) (0.004) (0.021) (0.0021) -

SWARCH(3,2)-L -t 2.724 10.90 0.1009 0.1028 0.7102 0.0291 0.1146 0.1028 9.79

AIC - 3.45 1BIC - 3.48 (0.46) (4.04) (0.012) (0.0210) (0.128) (0.004) (0.021) (0.0021) (2.54)

Table 5.17 - SWARCH

Malaysia

Model 92 g3 C 00 ci.{) Cf. 1 CJ2
~ V
~

SWARCH(3,2) 2.731 16.59 0.0211 0.1928 0.3338 0.12289 0.0973 - -
AIC-3.17 1BIC =3.19 (0.36) (4.12) (0.006) (0.0374) (0.047) (0.042) (0.012) - -

SWARCH(3,2)-L 2.461 8.96 0.0140 0.1804 0.4574 0.1845 0.1324 3.0x10""'" -
AIC = 3.17 1BIC - 3.19 (0.28) (3.14) (0.004) (0.0381) (0.041) (0.041) (0.045) (1.0x10''''') -

SWARCH(3,2)-L -t 2.461 8.95 0.0140 0.1804 0.4575 0.1845 0.1324 2.9x10""'" 5.46

AIC = 2.40 1BIC = 2.42 (0.27) (3.12) (0.004) (0.0380) (0.040) (0.041) (0.052) (1.0x10"""') (1.25)

Table 5.18 - SWGARCH

Argentina

Model 92 c ao (;(1 01 S V

SWGARCH(2,1,1) 0.0116 0.1889 0.00533 0.00955 0.9232 - -
AIC =-0.26 1BIC - -0.25 (0.005) (0.061) (0.0012) (0.0012) (0.245) - -

SWGARCH(2.1.1)-L 0.0166 0.1262 3.18x10"" 7.6x10'·" 0.8981 2.014 -
AIC = -0.27 1BIC = -0.24 (0.004) (0.041) (1.2x10"") (3x10"") (0.245) (0.821) -

SWGARCH(2.1.1)-L 317.33 0.0353 0.03766 0.03259 0.8951 0.8442 2

AIC = -0.28 1BIC =-0.26 (12.25) (0.001) (0.0005) (0.0021) (0.245) (0.241) (0.512)
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Brazil

Model 92 c ao (11 ~)1
\: Vs

SWGARCH(2,1,1) 0.0475 0.0739 0.1398 0.1124 0.9289 - -
AIC =-0.33 1BIC =-0.33 (0.0125) (0.014) (0.051) (0.052) (0.211 ) - -

SWGARCH(2,1,1)-L 0.00014 13.79 8500.3 4095.61 0.71282 82.97 -
AIC=-0.33 1BIC =-0.32 (0.001) (2.54) (32.54) (25.12) (0.254) (21.12) -

SWGARCH(2,1,1)-L 8481.63 0.024 672.69 1593.56 0.7905 28.76 2

AIC = -0.35 1BIC = -0.35 (12.32) (0.001) (45.21) (124.2) (0.321) (12.1) (0.254)

Table 5.20 - SWGARCH

México

Model 92 c (10 a1 ~1
\: V
."

SWGARCH(2,1,1) 37.73 0.070 0.0666 0.0753 0.0658 - -
AIC = -0.80 1BIC = -0.79 (5.24) (0.021) (0.0012) (0.015) (0.0125) - -

SWGARCH(2,1,1)-L 0.0002 0.0697 309.86 349.40 0.0717 21.92 -
AIC = -0.79 1BIC = -0.78 (0.001) (0.002) (32.12) (54.21) (0.0123) (5.41) -

SWGARCH(2,1,1)-L 65.76 0.0755 0.2515 0.3191 0.7766 1.8x10......, 2

AIC = -0.83 1BIC = -0.81 (12.54) (0.021) (0.052) (0.021) (0.214) (1x10-U
") (0.125)

Table 5.21 - SWGARCH

Thailand

Model 92 c ao \.11 })1 .., V

SWGARCH(2,1,1) 0.0003 0.0084 6.662 305.68 0.2644 - -
AIC =-0.88 1BIC =-0.87 (0.0001) (0.0032) (2.12) (24.51) (0.110) - -

SWGARCH(2,1,1)-L 1.2x10-O:> 0.0093 217.97 9590.44 0.2033 13.97 -
AIC=-O.88 1BIC =-0.87 (1x10""") (0.0012) (51.24) (241.21) (0.051) (2.45) -

SWGARCH(2,1,1)-L 6.3x101
" -0.0063 1.2x10~ 1.2x10·"" 0.3019 1.5x10'L 2

AIC=-0.94 1BIC =-0.93 (2x10"') (0.0012) (1x10UO
) (2x10'UO

) (0.112) (3x10 ) (0.212)
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Taiwan

Model 92 c <Xo <X1 131 .., V

SWGARCH{2,1,1) 0.9226 0.0627 0.0030 0.00107 0.9716 - -
AIC=·0.50 1BIC =-0.49 (0.214) (0.021) (0.0011) (0.0001) (0.351) - -

SWGARCH{2,1,1 )-l 0.8727 0.0561 0.1610 0.0021 1.8x10·lU 2.3x10·'U -
AIC=-0.49 1BIC =-0.48 (0.312) (0.012) (0.312) (0.005) (4x10-U") (5x1 0" lU) -

SWGARCH(2, 1,1)-L 191.78 -0.0243 12.69 6.684 0.4306 0.0888 2

AIC = -0.51 1BIC =-0.50 (25.12) (0.005) (3.45) (2.54) (0.012) (0.021) (0.05)

Table 5.23 - SWGARCH

Korea

Model 92 c (:(0 <Xl 131 S V

SWGARCH{2,1,1) 0.20 -0.0179 0.00666 0.02166 0.8406 - -
AIC=-O.66 1BIC =-0.65 (0.01) (0.002) (0.0012) (0.002) (0.21) - -

SWGARCH{2,1 ,1 )-L 1 -0.0181 0.00666 0.02166 0.8406 1.6x10"'U -
AIC=-o.66 1BIC = -0.65 (0.02) (0.004) (0.0002) (0.001) (0.232) (6x10-=) -

SWGARCH{2,1,1)-L 2232.6 -0.0228 52.12 117.34 0.8404 4.094 2

AIC =-0.69 1BIC =-0.68 (123.1) (0.005) (12.4) (25.4) (0.212) (1.542) (0.121)

Table 5.24 - SWGARCH

Hong-Kong

Model g2 C ao <X1 j.h S v

SWGARCH(2,1,1) 0.781 -0.0101 0.0174 0.0129 0.844 - -
AIC =-0.49 1BIC =-0.48 (0.212) (0.001) (0.002) (0.004) (0.251) - -

SWGARCH{2,1,1)-L 3.551 -0.0086 0.0169 0.0114 0.836 9.1x1O"'U -
AIC =-0.49 1BIC =-0.48 (1.23) (0.0007) (0.003) (0.0012) (0.14) (3x1O· 'U) -

SWGARCH{2,1 ,1)-L 6.67 -0.0312 11.766 7.200 0.822 7.4x10""" 2

AIC =-0.52 1BIC = -0.51 (1.25) (0.012) (3.54) (2.12) (0.212) (4x10-U ) (0.257)
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Table 5.25 - SWGARCH

Malaysia

Model g2 c (iO 0'.1 (3 1 S V

SWGARCH(2,1,1) 1.200 -0.056 0.0171 0.0073 0.768 - -
AIC=-Q.58 1BIC=-Q.57 (0.012) (0.001) (0.002) (0.0002) (0.254) - -

SWGARCH(2,1,1)-L 1.786 -0.06 0.0178 0.00412 0.6410 0.011 -
AIC --0.58 1BIC --0.57 (0.232) (0.01) (0.002) (0.0002) (0.231) (0.01) -

SWGARCH(2,1,1)-L 15.94 -0.076 21.469 3.560 0.4013 15.94 2

AIC =-Q.62 1BIC=-Q.60 (4.12) (0.002) (5.41) (1.21 ) (0.145) (5.21) (0.365)

An inspection of the tables above reveals sorne interesting results. With regard to the

SWARCH models estimated for ail countries, the scale parameter (g2) that describes the

moderate volatility is roughly between 2 and 4, except for Argentina (5.623) and Mexico (0.249),

regardless of the alternative specifications used. The same observation is valid for the scale

parameter for high volatility (g3)' The estimates vary between 13.12 and 19.3 except for Mexico

(117) and Argentina (45.27). For the constant term in the autoregression (c) the estimates range

from 0.02 to 0.06 with the exceptions of Thailand (-0.01) and Argentina (0.13). For the

autoregressive parameter (So) estimates vary fram 0.08 to 0.19 with the exceptions of Brazil

(0.2615) and Mexico (0.2825).

For the parameters of the conditional variance (hl) most estimates were between 0.09

and 0.88. Again," the exception was a Latin American country: Argentina (2.35). The ARCH

parameters (U1 and (2) follow the same pattern described above. For we have U1 estimates from

0.01 and 0.13. And for U2 the results indicate the parameter to vary between 0.09 and 0.16. It is

indeed interesting that for both parameter, the countries of Latin America are concentrated

around the upper Iimit and the Asian countries are around the lower limit except for Thailand (U1

found to be 0.28).

These remarks are still valid when we allow for asymmetries (s) estimating a SWARCH-L

model except for the parameters Ua (Hong-Kong and Malaysia) and U1 (Taiwan). But the general

finding that Latin American countries show bigger effects remains valid.



216

The results are slightly different when we allow the distribution to be Student's t by

incorporating v (degrees of freedom). In this case the scale parameter (g2) that describes the

moderate volatîlity ranges from 2 to 4 and (g3), the parameter describing the high volatility ranges

from 10 to 15 with Mexico presenting the higher estimate (23.04). For the constant term in the

autoregression (c) we have the estimates ranging from 0.05 to 0.15 with exceptions for Thailand

(-0.0035» and Korea (0.0215). For the autoregressive parameter (90) the estimates vary from

0.08 to 0.19 with exceptions for Argentina (0.03259), Brazil (0.2649) and Mexico (0.2924).

Turning to the parameters of the conditional variance (hl), we found estimates between

0.09 and 0.88 for the constant (ao ). Again the exceptions are countries form Latin America:

Argentina shows a big variation from 2.35 (SWARCH) to 1.14 (SWARCH-L-t) and Mexico varies

from 0.89 (SWARCH estimates) to 0.25 (SWARCH-L-t estimates). This sharp change may be

due to the adoption of a market practice that prevents stocks from rallying or dropping suddenly:

the circuit breaker. This instrument was only introduced in Brazil and Argentina in the late

nineties. It can create large difference in asymmetric effects when comparing Asian and Latin

American countries. Another possibility, which we already examined in chapter three, is that the

distribution of returns for Latin American countries departs much more from the Normal

distribution than does the Asian countries' distribution. This explains why we have different

estimates when we change from Gaussian to Student-t errors.

Estimates of the ARCH parameter (<x'1) range from 0.02 and 0.21, the exception being

Taiwan, which shows a dramatic change from 0.02 (SWARCH) to 1.4 x 10-8. This result is more

difficult to explain, since this only happens for one parameter and one country. For <X.2, the results

indicate that the parameter varies between 0.09 and 0.16, which were the results reported above

for the SWARCH case. For the asymmetric parameter (1;), bigger effects are found for Brazil,

Argentina and Mexico (0.12, 0.04 and 0.07, respectively) than for the Asian countries. For the

parameter related to the Student's t distribution (v) we have estimates ranging from 3 to 10, with

Taiwan's estimate of 16 being an exception. Again, the abnormality of the estimate of (<X.1) may be

related to this. A general conclusion is that the effects found for the Latin American countries are

larger than those found for the Asian countries. It is worth noting that nearly ail of the coefficients

are significant at a 95% level.

We also estimated SWGARCH models and found the scale parameter (g2) that describes

the low volatility to be roughly between 0.01 and 1.2. The exceptions are Thailand (0.0003) and

Mexico (37). However these estimates are highly sensitive to the specification used. In the case

of the SWGARCH-L model with Gaussian errors and leverage effect, estimates range from 0.87

to 3.5 except for Thailand (0.000012). The most striking results are due to the SWGARCH-L-t

specification with Student's t innovations and leverage effect. In this case, the estimates are
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between 6.67 and 65.76. Brazil and Argentina show rather high estimates of 8481 and 317,

respectively. On the other hand, Malaysia shows a small value of 1.5. Again we still have the

Latin American countries showing bigger estimates than the Asian countries.

For the constant term in the autoregression (c) we have the estimates ranging from 0.06

to 0.18 with exceptions for Korea (-0.0179) and Argentina (0.18). For the SWGARCH-L model we

have an interval of -0.06 to 0.12, with Brazil showing the biggest estimate (13.79) and Hong­

Kong the lowest (-0.0086). For the SWGARCH-L-t, we have estimates between -0.0226 and

0.0755, with Mexico at the upper Iimit of the interval and Thailand at the lower bound (-0.0063).

We now turn to the parameters of the conditional variance (hl)' Beginning with the ARCH

component ao, we found estimates of between 0.0171 and 6.662 for the SWGARCH

specification. For the other specifications we found estimates to vary between 0.0169 and 217.87,

a wider range than in the case of SWGARCH-L, with Brazil showing the biggest value (8500).

When we dealt with SWGARCH-L-t, we found estimated ranging fram 0.25 to 21.469. Yet again,

the biggest value is for a Latin American country, Brazil (672.69), and the lowest value is for an

Asian country, Thailand (1.225x 10 -9). It is indeed interesting that for ail specifications, the

countries of Latin America are concentrated around the upper limit and the Asian countries

around the lower limit. With respect to a1 . when we deal with the SWGARCH specification, the

estimates are comprised between 0.00107 and 0.1124. When we adopt the SWGARCH-L

specification, the amplitudes increase substantially to between 0.00114 and 349. For the

SWGARCH-L-t the interval is 0.03257 to 7.2. In this case, Brazil has the biggest value (1593.56)

while Thailand has the lowest (7.6x1 0-13
).

Turning to the GARCH parameter. P1 ,the overall results follow the pattern described

above, but in this case the variability of the estimates is lower when we switch from one model to

another. For the SWGARCH specification. we have estimates ranging from 0.76 to 0.92. For the

SWGARCH-L specification, estimates are between 0.07 and 0.84 with Argentina having an

estimate of 0.8987 and Taiwan 1.8 x 10-10 ln the SWGARCH-L-t specification, the estimates are

within the interval 0.30 and 0.84, Argentina being at the upper limit and Thailand at the lower

bound.

These remarks are still valid when we allow for asymmetries (ç) in estimating a

SWARCH-L modal. For the SWGARCH-L, the estimates lie between 2 and 21, with Brazil having

a figure of 82 and Hong-Kong showing 9.1 x1 0-10
. For the SWGARCH-L-t, the interval is 0.84 to

15.94. Again Brazil has an estimate of 28.76. while Hong-Kong has 1.8x1 0-6
.
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Finally, when we look at the parameters for the Student's t distribution incorporating v

(degrees of freedom), we find that it is around 2 irrespective of the country.

The general conclusion is that the Latin American countries do present bigger estimates

than the Asian countries, an indication that the effects of volatility tend to be higher in these

countries. We also found this result in the previous chapter. A nice conclusion is that using

SWARCH/SWGARCH models reduces the ARCH/GARCH effects. This reinforces the idea that

ARCH/GARCH tends to produce too much persistence and long memory.16 Diebold (1986)

remarks that this high persistence (or long memory) may be due by the non-observation of the

change in the non-conditional volatility in the series under analysis. Lamureux and Lastrapes

(1990) verify, through simulations of GARCH models, that the persistence is much higher when

there are structural breaks in the unconditional variance. That is, we have periods in where the

series shows higher volatility than it does in other periods where we do not control for this. This

may result in an estimated persistence that is higher than the actual persistence. Hamilton and

Susnel (1994) address this problem with models such as the GARCH-L and the high degree of

persistence they imply for stock volatility

An interesting observation is that. except for Malaysia and Thailand, the estimated

transition probabilities describe each state as being highly persistent with durations ranging from

84 days to 256 days. These results are similar to the ones reported by Hamilton and Susnel

(1994). Also, the variance of each state shows that some countries have a more volatile profile

than others. For example, for Mexico the high-volatility state is between 37 and 117 times as

great as the low-volatility state, whereas the spread is lower for other countries. For Thailand the

variance in the high-volatility state is almost twice as large as the low-volatility variance. The

same observations apply to Korea, Thailand and Taiwan.

Again our finding lead us to the conclusion that there are different degrees of persistence

in volatility among emerging markets, with a general tendency for Latin American countries to be

more volatile than Asian countries. Again the expianation seems straightforward. During the

period under consideration each of the Latin American countries were subjected to several

economic plans. For example, Brazil had 10 different plans since 1967. The degree of

intervention is also much lower in Asian countries.

ln graph 5.2, we see the smoothed probability of Brazil being in state St. Initially the

series is in regime one (Iow volatility). This period of growth is known as the "Miracle" in the

Brazilian economy. However, approximately two years later the regime of high volatility begins to

16 One could argue that the tact that SWARCH/SWGARGH produce less persistence doesn't imply that ARCH/GARCH
has too much persistence per se. although this is one possible interpretation. Another possibility is that ifs the
SWARCH/SWGARCH that are bad because they falsely attribute genuine persistence to regime switches.
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be dominant (1971). At this stage there is a crash in the stock market of Rio de Janeiro that

affects the market in Sao Paulo. We can also see the effect of the 1973 oil shock, which pushes

the Brazilian economy into a recession that lasts until 1974. In 1985 the high volatility regime

becomes important again due to the first civilian government after 21 years of dictatorship. This

event is followed bya succession of economic plans: the Cruzado Plan (1986), the Bresser Plan

(1987) and the Verao Plan (1989). In 1990 a new government is elected which produces two

more economic plans (Collor 1 and Collor Il). After President Collor resigns in 1992 there is a

period of volatility that lasts until 1996. In June 1994 the Real Plan was adopted. This plan was

successful in bringing the inflation rate to a very Iow level. We can see the estimated transition

matrix for the model SWGARCH(2,1,1)-t with leverage effect below.

Graph 5.2 - Probability that market was in regime one for each indicated day (Smoothed)

Smoothed Probabilities - IBOVESPA

o
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Years
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We can compute, based on the transition probability, the average duration of each regime. That

p= [:~~:: ]
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is, we calculate the expected duration of each regime given that we are in a specifie regime. As

stated previously, the transition probabilities Pkk stand for the probability associated with each

state. For example, Pkk shows the prabability of state St =k, given that St-l =k. For Brazil Pl1 P22

are very high 0.9931 and 0.98364 respectively. This means that the prabability that state 1 is

followed by state 1 is high (0.9931). The probability that state 2 is followed by state 2 is also high

(0.983364), indicating a high persistence in states that is compatible with the series for Brazil and

with the findings of earlier chapters. On the other hand, the probability that17 state 1 is followed by

state 2 and the probability that state 2 is followed by state 1 is very small 0.01636 and 0.00688.

We have information about duration dependence in the sense that, if we are in state St, we can

say something about the "exit probability." which is related to the transition probability. This

confirms the existence of long memory in volatility in the sense that a state tends to persist until

there is a change in regime, which may not happen very frequently.

We then find that the average durations of low and high volatility periods are given by

1 =144.93 days and 1 = 61.12 davs, which is clearly high for bath states.
1- 0.9931 1- 0.98364 -

Indeed, from a visual inspection it appears that the periods of low volatility last longer than the

high volatility periods. From other side we can compute the ergodic probabilities discussed above

as 1- 0.98364 = 0.70335 and 1- 0.9931 = 0.29665, so that there is a larger
2 - 0.9931 - 0.98364 2 - 0.9931- 0.98364

probability that the economy is in a period of a low volatility than high volatility. This could be the

result of numerous crises in the international environment that affected the Brazilian economy. It

is interesting to note that this result is very similar to that found by Almeida and Pereira (1997) for

the Brazilian economy. The results for the rest of the countries in our sample can be found in the

appendix to this chapter. The reason for this is that an expianation of these different regimes

requires a great deal of specifie knowledge of the individual economies. However, we can clearly

see the conditional variance switching fram high volatility to low volatility period (or vice-versa).

As has been stated previously, 9 represents a scale effect related to volatility. That is, it

represents the number of times the volatility in the high volatility state is larger than the one in the

low volatility state. For Brazil, we have 9 assuming very high values. In the SWGARCH-L model 9

is found to be 8000, which is as large as the volatility in the low volatility state. This indicates that

there is a sharp increase in volatility during crises, a finding that is consistent with some of the

experiences we have faced during crashes and other turbulent periods in the Brazilian economy.

Below we show ail of the transition matrices for the countries in our sample. As discussed

above, the transition probabilities Pkk stand for the probability associated with each state. For

17 Generally speaking Pij is defined as the probability of St assuming a value j given tha! the state prevailing in t"1 was i.
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instance Pkk shows the probability of state St = k, given that SI-l = k. In general the transition

probabilities are very high. and this seems to apply to ail of the countries.

For Mexico, Pll and P22 are 0.9769 and 0.9908, respectively. This means that the

probability that state 1 is followed by state 1 is 0.9769, and the probability that state 2 is followed

by state 2 is also high 0.9908, indicating high persistence in states that is compatible with the

series for Mexico and our findings in the other chapters. On the other hand, the probability that18

state 1 is followed by state 2 is low, 0.0231. and the probability that state 2 is followed by state 1

is very small, 0.0092, for Mexico. Again, long memory in volatility is present.

The numbers appear to be consistent across countries. The only one that deserves

attention is Thailand, where Pll and P22 are 0.9696 and 0.5743, respectively. Here the probability

that state 1 is followed by state 1 is high (0.9696), but the probability that state 2 is followed by

state 2 is only moderate (0.5743), indicating greater persistence in state 1 than state 2. On the

other hand, the probability that19 state 1 is followed by state 2 is small, 0.0304, and the probability

that state 2 is followed by state 1 is moderate 0.4257.

We now have information about duration dependence in the sense that if we are in state

SI we can say something about the "exit probability" that is related to the transition probability.

That is, we can compute the average duration of each state along Iines sketched above. The

average durations of a periods of low and high volatility are _1_ and _1_, respectively. We
\- Pli \- Pn

have computed these average durations for each country in our sample (see table 5.25). Indeed,

from a visual inspection it seems that the periods of low volatility last longer than periods of high

volatility, and these periods tend to have a high persistence (Le. longer memory), except that

Thailand shows a small duration for each of the periods.

From the other side we can compute the ergodic probabilities discussed above as

\- Pli and
2- P22 - Pli

\- P22 . These probabilities are also shown in table 5.25 below, so that there
2- P:: - Pli

is a larger probability of the economy being in a period of low volatility than one of high volatility.

We can see from the table that the probability of being in state 1 is greater than that of being in

state 2. This might be explained by the fact that these economies have been subjected to a high

degree of intervention. However, these interventions are not so frequent so that they make the

periods of low volatility more likely.

18 Generally speaking Pij is defined as the probability of St assuming a value j given that the state prevailing in t-1 was i.

19 Generally speaking Pij is defined as the probability of St assuming a value j given that the state prevailing in 1-1 was i.
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Figure 5.2- Transition Matrices for the Countries under Study
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Table 5.25 - Ouration of Both Regimes

Mexico

Argentina

Thailand

Taiwan

Korea

Hong-Kong

Malaysia

Ouration of the First Regime

43.29

129.87

32.29

256.41

99.01

133.33

44.64

Ouration of the Second Regime

108.70

188.68

2.35

84.03

27.93

45.45

25.64

Note: Ali test statistics are significant at 1% level
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Table 5.26 - Ergodic Probabilities for Each Regime

First Regime Second Regime

Mexico

Argentina

Thailand

Taiwan

Korea

Hong-Kong

Malaysia

5. 4 - Conclusion

0.2848

0.4077

0.4334

0.7532

0.7799

0.7458

0.6352

0.7152

0.5923

0.7532

0.2468

0.2201

0.2542

0.3648

ln this chapter we have considered different approaches to modelling the phenomena of

persistence and long memory. The search for new models that produce these features must deal

with two stylised facts that conventional volatility models have difficulty reconciling. The first is

that conditional volatility can increase substantially in a short amount of time with the advent of a

turbulent period. The second is that the rate of mean-reversion in stock-market volatility appears

to vary positively and nonlinearly with the level of volatility. For example, this can happen when

governments intervene in markets.

Several authors have brought this subject to our attention. Hamilton and Susnel (1994),

for instance, highlighted the difficulty of forecasting with conventional GARCH models by showing

that they can provide worse volatility forecasts than constant variance models on the basis of the

MSE loss criterion. One possible way to deal with this question would be to not allow the

conditional variance to respond proportionately to "large" and "small" shocks. If this approach

were taken, the conditional variance could be restrained from increasing to a level at which

volatility forecasts would be undesirably high. One problem with this strategy is that such a model

might understate the true variance by not responding sufficiently to large shocks, thereby not

showing much mean reversion. Such "threshold" models do not treat the two stylised facts listed

above, namely sharp upward jumps in volatility followed by fairly rapid reversion to near-normal

levels. Thus, we should look for a different way to deal with this problem.
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Lamoreux and Lastrapes (1990) suggest that structural breaks in the variance could

account for high persistence and long memory in the estimated variance. Along these Iines, they

argue in the same direction as Perron (1989) in dealing with the mean of a series. This alternative

could exploit persistence and long memory in volatility. A natural way to do this that would also

address the two stylised facts above would be to allow for Markov-switching parameters. This

approach was suggested by Hamilton and Susnel (1994) and has been pursued in this chapter.

Markov-switching parameters allow the volatility to experience discrete changes in

persistence, leading to jumps. Many researchers have suggested that the poor forecasting

performance and long memory properties of ARCH models might be related to structural changes

in the ARCH process. As discussed previously, Perron (1989) argues that changes in regime may

give the spurious impression of unit roots.

Based on this view. we have used Perron's (1999) methodology in order to measure the

occurrence of jumps in volatility that couId suggest structural breaks. Our results indicate that, for

the stock returns under study, we cannot reject the hypothesis that many of these jumps occur in

the data. One interesting result is that some countries do show more jumps than others. This is

the case with Brazil. a country that experienced significant interventions during the period

covered by the data. However, the overall results do show the occurrence of jumps. In this

sense, we revert to the fact that changes in regime may give the spurious impression of unit roots

in characterising the volatility of a series. This is consistent with the work of Hamilton and Susnel

(1994), which suggested "spuriously high persistence" in volatility.

This chapter introduced Markov-Switching ARCH and GARCH to describe the volatility of

stock prices. SWARCH and SWGARCH can offer alternatives for estimating the persistence and

long memory effects in volatility. Our estimates attribute most of the persistence and long memory

in stock price volatility to the persistence of low and high volatility regimes, which typically last for

several months. The high-volatility regime is to some degree associated with economic

recessions. The analysis also seems to confirm the finding of researchers that stock price

decreases lead to bigger increases in volatility than would price increases of similar magnitude,

and that Student's t innovations are much better for describing fundamental innovations on the

basis of the AIC and BIC criteria.

We have also found Latin American markets to be more persistent and to show greater

long memory effects than Asian markets. This finding is intuitive given the degree of intervention

in these markets vis-à-vis the Asian economies. It is also consistent across different model

specifications. A nice conclusion is that using SWARCH/SWGARCH models causes the

ARCH/GARCH effects to be reduced. This reinforces the idea that ARCH/GARCH tends to

produce too much persistence.
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We could pursue our analysis further by examining whether periods of high volatility

spillover across countries. If such evidence were found, it could support the idea of contagion

models. The extent of changes in volatility has played an important role in discussions of whether

emerging economies have indeed been subject to "contagion". This could be done with a simple

analysis of the behaviour of correlation coefficients. But however, it couId lead to a misleading

picture of contagion if the country in question experiences changes in volatility regimes.

The fact that high volatility states roughly coincide across countries is indeed suggestive,

but does not constitute statistical evidence in favour of the "volatility contagion" hypothesis. This

might be confirmed using a bivariate switching volatility model, and would be an interesting

avenue for future research.
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Chapter 6

Conclusion

6.1 Background

ln developed countries during the late 1980s, a huge amount of financial capital was

available through pension and investment funds that could be drawn to developing countries,

providing that they liberalised their markets externally and developed their markets internally.

Liberalisation was imperative: foreign bank loans, which dominated inward capital flows to

developing countries in the 1970s, were decreasing in the aftermath of the Latin American debt

crisis.

ln less developed countries, the speed and extent of stock market developments in the

last twenty years has been unprecedented. and has led to fundamental shifts in the capital flows

received from developed countries. In leading developing countries during the 1970s and 1980s,

the capitalisation ratio (market capitalisation as a proportion of GDP). a key indicator of stock

market development, rose at an unprecedented rate. In the course of twenty years, the ratio

climbed from 10% to over 70% in countries like Chile and Taiwan. In contrast, it probably took

the US over 80 years to achieve a similar ratio. In terms of comparative market capitalisation,

many emerging markets have now surpassed the average-medium-sized European stock market.

ln addition, the numbers of new listings and investors in these markets have soared. The total

value of shares traded on LDC markets rose over twelve-fold during 1986-95, an increase from

just over 2% to nearly 9% of the total world value.

The development of these markets was aided by external financial Iiberalisation and by

the consequent influx of foreign portfolio capital flows. As seen in Table 6.1, the scale and

composition of capital flows to developing countries have undergone major changes, the salient

one being the huge increase in private finance. The average net private capital flow to developing

countries was $15.1 billion in 1983-88, whereas the figure surged to 5107,6 billion in 1989-95,

and reached $200.7 billion in 1996. While net direct investment has remained an important

component of these flows, the surge in net portfolio investment is mostly responsible for the

increased flows, which rose $3.4 billion to $44 billion.
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Table 6.1

COUNTRIES 1983-88 1989-95 1996

Net Private Flows 15.1 107.6 200.7

Net Direct Investment 10.4 41.8 90.7

Net Portfolio Investments 3.4 44.0 44.6

Other Net Investments 1.3 22.1 64.9

Developing countries currently account for a dispraportionate share of global issuance. In

1994, developing countries accounted for only 12.6% of total world market capitalisation, but a full

37% of global equity issues. Portfolio capital inflows are invariably short-term and speculative.

They are often not related to economic fundamentals, but rather to whlms and fads prevalent in

international financial markets. Thus, rapid reversais can lead to crises. collapses in economic

growth and increased volatility. The volatility of share prices tends to be higher in emerging

markets than in developed economies. Some authors argue that the increase in volatility is

largely the result of "excessive" capital mobility. Accordingly, the imposition of controls on capital

flows should help countries reduce externally induced financial instability. Some authors argue

that changes in volatility have played an important raie in discussions of whether or not emerging

markets have indeed been subject to "contagion". Volatility is a crucial variable present in most

financial markets. For instance, it plays a central raie in many areas of finance and foreign

exchange. It is important for government as weil as the private sector to act in order to contain

volatility, which may in turn cause disturbances in the economy.

From an empirical standpoint, it is very important to carefully model any temporal

variation in the volatility process to understand the way it affects the economy. Interest in the

study of volatility has increased since the beginning of the eighties. Models were first applied to

developed economies mainly because the data was readily available: however, some countries

are making efforts to change and improve their economies with the goal of raising their

performance to that of more advanced nations. These economies are calied emerging markets.

Currently, some investors favour emerging market stocks and bonds since they have the potential

for high returns in a relatively short period of time. There is a great deal of risk involved in these

investments because by definition, emerging markets are in a state of transition, and thus subject

to unexpected political and economic upheavals. The values of their stocks, bonds and currency

can change dramatically and unpredictably. Irrespective of the measure chosen (see graph 6.1

and graph 6.2), emerging markets have shown a huge increase in their transactions and so, it is

important to analyse these markets more precisely and this was the major aim of this thesis.
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6.2 Long Memory Volatility in Emerging Countries

This thesis examines the discussion about volatility, and expands it to the so-called

emerging markets that currently occupy an important place in the menu of choices for foreign

investors. The growth in the attention dedicated to volatility, however, has not been symmetrical:

emerging markets take an unimportant place in the vast majority of studies on this theme. Our

investigation takes some of the findings for more established markets, and applies them instead

to emerging markets to determine whether or not the findings hold true. Taking the more

developed markets as a benchmark. we further explore the differences between both markets.

After considering a non-technical discussion about volatility in Chapter One and characterising

volatility in the US, we conclude that there IS no clear trend for volatility. The results reveal only

that movements in volatility are more frequent than they were in the past. After extending this

discussion to encompass the existence of emerging markets, we show that changes in volatility

are indeed much greater in emerging markets than in the US. In other words, if the findings for

the US stock markets (Dow Jones) show significant results, we can expect more pronounced

movements in emerging markets.

To narrow the focus of this thesis, only the more capitalised markets were chosen since

these have a stronger tradition of computing stock market indices for a longer period of time. For

this reason, we have not chosen the ex-socialist countries, but instead have worked with Latin

American countries (Argentina, Brazil and Mexico) as weil as countries from Southeast Asia

(Taiwan, South Korea, Thailand, Indonesia and Hong-Kong). These countries are more

representative of the emerging economies and for this reason they are studied.

Chapter one puts in perspective the question of volatility and discuss the different

definitions of volatility and establishes a comparison among the US stock market and the

emerging economies. It can be seen that movements in the emerging economies tend to be more

pronounced than the movements observed for developed economies such as the U.S. economy.

The higher volatility is related to the flow of capitals and liberalisation in the emerging economies.

But however a more technical approach is needed in order to study the differences in terms of

modelling and treatment of volatility.

There is a great deal of interest in the subject of volatility in financial markets, as

evidenced by the enormous quantity of papers and different specifications described in the

literature review in Chapter two. The ARCH model and its various extensions have proven to be

very effective tools, and as a result. the literature on ARCH has expanded dramatically since the

seminal paper by Engle (1982). There has been much speculation about whether or not volatility
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has changed in past years primarily because recent episodes like the Asian Crisis and the decay

of the NASDAQ market in the US are linked to the new economy. Derivatives, which have been

greatly developed in ail markets, have contributed to the increase of liquidity as weil as the

change in volatility.

Financial integration increases greatly as lower information costs and technology provide

more opportunities for investors. One effect of this integration is to create a link between ail

markets, which in turn makes it difficult to talk anymore about isolated effects. It is particularly

interesting, however, that the effects tend to last much longer than previous movements noticed

in capital markets, i.e. long memory in volatility. From a technical perspective, the traditional

ARCH methodology does not satisfactorily account for the changes in volatility that remain for

long periods after the first movement in stock priees is detected. The general objective of this

thesis was to establish a comparison between developed and emerging markets, then conclude

that while studies of established markets confirm the existence of long memory in volatility, the

results are much more pranounced in emerging markets.

Chapter three c1early shows that regardless of the way we choose to characterise long

memory in volatility, there is indeed a long memory effect in these economies. We have seen the

Hurst exponent is higher than 0.5 (persistence) for ail economies. We have also seen that the

autocorrelation analysis shows the correlation among returns to be significantly higher than zero

after long lags. In fact, not only is there substantially more correlation between absolute returns

than returns themselves, but the power transformation of the absolute returns also has quite a

high autocorrelation for long lags. This finding is consistent with others in the Iiterature, which

shows that emerging markets mimic the pattern established for other developed markets.

ln Chapter four, we estimate the long-memory effects in the volatility of the retuns for the

emerging economies. After estimating these effects in emerging markets, we have seen that the

ARCH/GARCH specification imposes too much restriction on the parameters of the variance

function. Even the cutting-edge IGARCH specification proposed by Engle and Bolerslev (1986)

proves to be unnecessary. What emerges fram our analysis is that the long memory volatility

models are extremely significant and useful to estimate persistence in variance. The FIGARCH

and FI-APARCH specification produces estimates significant for ail countries studied. We have

found that the evidence in emerging economies follows that found in developed economies. As

we have already stressed, the movements are stronger in emerging economies, which indicates

that investors should approach these stock markets carefully.
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Finally, Chapter five discusses the occurrence of structural breaks in the series of

volatility. This offers an alternative to the parametric methods of the FI-GARCH estimation when

dealing with high persistence in the series we have studied. With this intention in mind, we have

researched the number of jumps occurring in selected emerging markets. The results indicate

that a certain number of jumps occur during the periods in our data. Some of these series, like

Brazil, show that more jumps indicate more volatility. Based on the estimation of the number of

jumps, we have chosen to model volatility using a Markov chain and switching regimes modelling.

It is a useful description of the process. The results also prove that we cannot disregard this

methodology when describing the volatility in emerging markets.

We have produced some evidence of the volatility in emerging markets by pursuing

different modelling strategies as weil as tests that could lead us to draw conclusions about high

persistence in volatility. We have found that regardless of the way we choose to measure

volatility. there seems to be no doubt about the so-called long-memory property. Although much

work can be done on this topic, the scope of this thesis must remain focused. We have produced

some evidence on a subject that has attracted the attention of academics and non-academics

alike, and expanded knowledge in areas we judged important. Some developments are

necessarily beyond the scope of this thesis, but remain a fertile ground for further study.
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