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PREFACE 

In the following thesis the prime ideals of a ring/ 

are considered as points of a topological space. The 

topology on this space is called the Zariski topology or / 

the spectral topology. 

Many resulta in this paper are topological ones, 

but algebraic methods are usually employed in acquiring 

these resulta. 

Complete proofs are given for all propositions with 

the exception of those in Chapter I. 

The paper presupposes a knowledge of elementary 

Topology and Modern Algebra as can be round, for exemple, 

in [5]. 
I would like to thank Dr. I. Connell for the great 

deal of time and help he has given me. 
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I. Review of basie faots. 

In the following paper all rings will be commutative, 

with an identity. 

1. Prime and primary ideals. 

Definition 1: Let P be an ideal in a ring R. Then P is 

said to be prime if whenever xy is in P, then either x 

is in P or y is in P. 

Definition 2: Let R be a ring. Then the prime radical of 

R, or simply the radical of R, is the intersection of all 

prime ideals of R. We denote the radical of R by p{R). 

Definition 3: Let R be a ring and I an ideal of R. Then 

· the prime radical of I, or simply the radical of I, is the 

intersection of all prime ideals of R whioh oontain I. 

We denote the radical of I by ~(I). 

Note that P(R) = ~(0}. 

We will reoall and prove the following proposition 

whioh will be used often in this paper. 

Proposition 1: p{J) = {x~R : xnE:.J for some positive 

integer nl. 
Proof: Let x~ ll(J}. Suppose xn~J for every positive 

integer n. Let /. be the set of ideals I suoh that JC I 

and xn is not in I for every positive integer n. Sinoe 

J is in 1.. , 1. is not empty. Furthermore, lis partially 

ordered by 1nèlus1on. Finally, suppose C is a ohain in/... • 

Put L = U Li' where the Li are in e. Then L 1s an ideal 

whioh contains J and x n 
is not in L for every positive 

integer n. Also L is an upper bound for e . Renee by 
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Zorn•s Lemma, l contains a maximal element M. 

We will show that M is prime. For suppose that 

abEM, but ajM and bt,M. Then M + aR~M and M + bR~M, 

so that xméM +aR and xnE'M +bR for sorne positive integers 

m and n. It follows that xm + n ~(M + aR) (M + bR) CM + abR 

CM. This is a contradiction. Hence Mis prime. But 

JC M, so Il( J) C cfl(M) = M, and therefore xE M. This is 

a contradiction. 

Conversely, suppose xn~J. Then xn€P for every 

prime ideal P auch that JCP. It follows that xEP for 

all auch P, so that xE cP(J). 

The remaining propositions in this chapter will 

be stated without proofs. (The proofs can be found in ($).) 

Proposition 2: If I and J are ideals in a ring R, then 

the following properties hold: 

(1) If IkCJ for some positive integer k, then 6>(I)C P(J). 

(2} <P (IJ) = 6)(I A J} = P(I) r. 6)(J). 

(3 ) dJ ( 6)( I ) ) = 6) ( I ) • 

Definition 4r Let R be a ring and let Q be an ideal in R. 

Then Q is sa id to be primary if for elements a, bER, 

whenever abE Q and a~ Q, then there exista an integer m 

auch that bm€ Q. 

Proposition 3: Let Q be a primary ideal in a ring R. Then 

P = f>(Q) is a prime ideal. 

P is called the associated prime of Q. 
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2. Primary decomposition theorem. 

Definition $: Let R be a ring. R is said to be a noetberian 

ring if it satisfies the following three equivalent 

conditions: 

(l) (Aacending chain condition) Every strictly ascending 

chain !1 ~ !2 ~ • • • of ideals of R is fini te. 

(2) (Maximum condition) In every non-empty family of ideals 

of R tbere exista • maximal element. (It is not necessarily 

a maximal ideal of R.) 

(3) (Finite basis condition) Every ideal of R is finitely 

generated. 

Definition 6: An ideal I in a ring R is said to be irreducible 

if it is not a finite intersection of ideals strictly 

containing it. 

froposition *: In a noetherian ring every ideal is a finite 

intersection of irreducible ideals. 

Proposition 5: In a noetherian ring every irreducible ideal 

is primary. 

Renee every ideal 1n a noetherian ring is a finite 

intersection of primary ideals. 

"" Definition 7: A representation I = (\Qi of an ideal I as 
(.•\ 

• finite intersection of primary ideals Qi is said to be 

1rredundant (or reduced) if it satisfies tbe following 

conditions: 

(l) No Qi contains tbe intersection of tbe otber ones. 

(2) Tbe Qi's bave distinct associated prime ideals. 
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Proposition 6: In a noetherian ring avery ideal admits 

an irredundant representation as a finite intersection 

of primary ideals. 
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Definition 8: The associated prime ideals of the primary 

ideals occuring in an irredundant primary representation 

of an ideal I are called the associated prime ideals of I, 

or simply the prime ideals of I. 

Definition 9: A minimal element in the family of associated 

prime ideals of I is called an isolated prime ideal of r. 
Y\ 

Definition 10: If I = ('qi is an irredundant primary 
4 ., 

representation of I, the ideals Qi are said to be the primarz 

cgmpanents of I, and Qi is called isolated if its associated 

prime ideal is isolated. 

froposition 7: Let R be an arbitrary ring and I an ideal 

of R admitting an irredundant primary representation 

"" I = 0. Qi, and let Pi : 6l (Qi). Then the Pi are uniquely 

determ~ed by I. Renee the isolated primary components 

of I are uniquely determined by r. 
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II. Quotient rings and quotient modules. 

1. Quotient rings •. 

Definition 1: Let R be a ring and let S be a subset of 

R which is closed under multiplication, such that lt S 

and 0 t s. {Such a set is often called a multiplicative 

system.) Put D = ~; :- sE. S and rE. RJ. Then we define the 

quotient ring of R, s-1R, to be the set of equivalence 

classes in D of the form [;] with r€ R and sES, where 

(;j = t;:)ir and only if there exists an element s•ES 

such that s•{r1s 2 - r 2s1 ) =o. 
We make s-1R into a ring by defining addition and 

multiplication as follows: 

{l) [!:~ + f !:ll = [r1 sg + r2 s, J 
sd l s~J s1s2. 

(2) [;:] [;:] = [~] 
We must show that these operations are well defined. 

Suppose that [~:] = [GQ and [~~1 = lS!]• that is, 

st(r1b1 - s 1a1 ) = 0 and s"{r2b2 - s 2a2) = 0 for some s' 

and s" in s. 

We will show thst (1) (s:1 + [ s;] = [ ;:1 + [ i!) 
that (2) L s:J [ ~~ = L;:] l ;:}· 
(1) (~:) + [~:] = e·bzb:b~ibr] and [i:] + [;~ 

and 

Now we must find an element s ~ S such that 
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a"r2b2 = a"a2a2, we bave, in tact tbat the above expression 

ia equal to zero. 

In a manner very similar to the above it can be 

proved tbat multiplication is also well detined. 

Hencetortb, instead ot working witb a class 

we will work witb one of its representatives. t. 
8 

Note tbat ~ = 0 if and only if tbere exista an 
8 

element s'E S sucb tbat s'r =o. 
froposition 1: Tbere exista a ring bomomorphism b : R _,.. s-~ 

auch tbat 

(1) N = kernel b = {x~ R : sx = 0 tor some s' sf • 
(2) the elements in b(s) are units in S-~. 

Proot: Detine b : R~S-~ by b(r) = t . Then b is clearly 

a ring bomomorpbism. 

{1) b(r) = 0 if and only if i = 0 1 and this is so if and 

only if sr = 0 for some sc:: s. 

{2) If b(s) is in b(S) tben b(s} = t is a unit in S-~. 
1 -1 

(- is in S R.) 
s 

b is called the canonical mapping from R into s-~. 
We denote by Sb{J) the ideal generated by b(J) in 

s-1R, wbere J is an ideal in R. 

Definition 2: An ideal I ot R is said to be a contracted 
-1 

ideal if and only if b (Sb(I)) = r. 
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Definition 3:- An ideal L or s-1R is said to be an extended 

ideal if and only if it is of the form Sh(J) for some 

ideal J in R. 

Proposition 2: Let S be a multiplicative system in a ring 

R, and let s-lR be the quotient ring of R with respect to 

s. Let h be the canonical mapping from R into s-1R. 

(l) If I is an ideal in R, then h-l(Sh(I))= fre.R: sr 

is in I for some s'- sJ. 
(2) Every ideal L of s-1R is an extended ideal. 

Proof: (l) Suppose x€.h-1 (Sh(I) ). Then h(x) €. Sh(I). Renee 

x ""' x . y· 
1
- = L. - ~ -1~ where xi E:. R, s 1 ~ S, and yi E. I. . s, 

l 

sum over a common denomina tor, Tf si = s E. S, 
(. 

Writing the 

we see that 

the numerator is 1n I, so that ! == I , where y€. I. It 
1 s 

follows that xss- Y== o, so that there exista an element 

ste. S auch that s• (xs - y) = o. Therefore xsst = yst E:.I, 

or xs" €.1, where s" = ss •. 

Convers ely, suppose xs E I. Then h(xs) E. h( I), that 
xs xsl x 

is, 
1
--

1
-E:.h(I)C Sh(I). Tb.en -·-·- = - €Sh(I). Therefore 

1 1 s 1 

h-l(r)E: h-1 (Sh(I)) and so xEh-l(Sh(I)). 

(2) We will snow that Sh(h-1 (L)) = L for avery ideal L 

of s-1R. Clearly h(h-1 (L))CL, so Sh(h-1 (L))CL. (Lis 

an ideal of s-1R.) 

sE. s. 

x 
Conversely, if a E.L, then a = - , where xE R and 

s 
Therefore !.! =!er;, so that xE.h-1 (L) and 

s 1 1 



x -1 a =- 6':Sb(b (L) ). 
s 
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! . s . a E. I and se: S J., tben we saw in 

(1) tbat Sb{I) = s-1I tor every ideal I of' R. 

corollary: If' I is an ideal of' R, tben Sb(I) ~ s-1R if 

and only if I f\ S = ~. 
Pl'oof': Sb(!) = s·lR ~b -l(Sb(I)) = b -l(S-~) = R 

-1 
~ 1 éb (Sb(!)) ~tbere exista sn element sES sueb 

tbat l.s E! <=::> S 1"'\ I :f f/. 
froposition 3: Let R be a ring and let S be a multiplicative 

system 11'1 R. Let b be tbe eanonical bomomorpbism from R 

1nto s-1R. If' P l'\ s = ~~ wbere P is a prime ideal of R, 

tben P is a contracted ideal and Sb(P) is a prime ideal 

of' s-1R. 
-1 

Pl'oof': Clearly Pcb (Sb(P)). 
-1 

Conversely, if a €. b (Sb { P)), tben as E: P tor some 

s té s. Tberef'ore a e P (sin ce S f"\ P = ~). 
a b 

Let -·- eSb(P), so tbat ab E.P. (See Remark 1.) 
s 8 

Then a E.P orb E.P, say aE.P. Tberef'ore iE:.Sb(P), 80 

a -E.Sb(P). 
8 

Henee Sb(P} is a prime ideal of S-~. 

Corollary: Tbe mapping P--.Sb(P) is a one to one mapping 

ot the set of all contracted prime ideals of R (or equiv­

alently: the set of all prime ideals of R wbicb are disjoint 

from S) onto the set of all prime ideals of s·1R. 

Proof: If Sb(P
1

) = Sb(P
2

), tben b-l(Sb(P
1

))= b-1 (Sb(P
2
)), 



Since P1 and P2 are contracted ideals, it follows tbat 

p = P • Tberefore tbe mapping is one to one. 
1 2. 1 

Let L be a prime ideal of s-la. Tben P = b- (L) 

10 

is a contracted ideal 1n R. So we bave Sb(P) = L and tbe 

mapping is onto. 
• -1 

Note: P (\ S = ~. For if PAS yi~' tben Sb(P) = S R. 

(See Corollary of Proposition 2.) But Sb(P) = L so tbat 

L = s-Ia, wbicb is a contradiction. 

Remark 2: If P is a prime ideal 1n R tben S = R - P is a 

multiplicative system. We denote s-1R by Rp• 
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2. quotient modules. 

nefinition 4: Let R be a ring and let s be a multiplicative 

system in R. Let A be an R-module. Put P = {; : a E. A 

and sE. S Ï • Tben we define tbe guotient module of A, s-1A, 

to be tbe set of equivalence classes 1n P of the form 

[;J with HA and sE. s. where [;:]- [!:] it and only if 

tbere exista an element s 1
(S auch tbat s 1 (a,sl- a~s 1 ) =O. 

We make s-1A into an s-1
R-module by defining addit­

ion and multiplication by an element of S-~ as follows: 

(l) 

(2) 

As 1n section 1, it can easily be shown tbat tbese 

operations are well defined. §gain we work witb a repre­

sentative ; ot the class [!] tnstead ot with the wbole 

clas8. 
a 

Note tbat - = 0 if and only if tbere exista an element 
8 

8 ~ S sucb tbat s '• = o. 
We bave the canonical group bomomorpbism b : A ~S-lA, 

defined by b(a) = ! 1 wbicb satisfies the two conditions 
1 

ot Proposition l 1n section 1, witb R replaced by A and 

S-~ replaced by S-1A. The image of an R-submodule of 
-1 . 

A is made into an R-submodule of S A by defining rb(a) 

to be equal to Îh(a). 
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Remark 3: It S = R - P, where P is a prime ideal of R, 
-1 we denote S & by Ap• 

froposition 4: If A is a tinitely generated R-module, tben 

s·1A = 0 if and only if there exista an element sc S auch 

that sA = o. 
-1 

froo~~ It sA = 0 then clearly S A = o. 

Conversely, since A is tinitely generated, there 

exist elements a1, ••• ,an in A auch that A = a1R + ••• + anR• 

Since s-1
A = 0, tor all ai in A, i = l, ••• ,n there exista 

an element si in s auch that si ai =o. Put s = s1 ••• sn• 

Then sa = 0 tor all a c: A, and so sA = o. 

Lemme 1: Let R be a ring. If I is an ideal in R, then 

the setS= { 1 +x : x,Ij is a multiplicative system 

ot R. The ideal s-1r or s·la is contained in the Jacobson 

radical or s·Ia; 6t (S-~). 

Proot: The tirst assertion is clear. 

To show that s·1I c. R(s-1R) it is sutticient to 
X -1 1 x L show that tor all -e-S I, - - - i8 a unit in s·-a. Now 
s 1 s 

1 x 8 + x 1 + x + x 1 + x" ---= ------- and since 1 + x" is 
1 s s 8 s 

in S, by the definition of S, theretore 
8 

is in s-1R. 
1 + x" 

Tbus l - ! is a unit in s-1R. 
1 s 

Proposition 5: It A is a tinitely generated R-module and 

I is sn ideal in R, then IA = A it and only if there exista 

an element x €I auch that (1 + x)A = o. 
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Proof: If tbere e:x:ists an element :x: E: I sucb tbat {l + :x:}A = 0 

tben clearly IA = A. 

Conversely, let S = { 1 + :x: : :x: t:. I J • Since A is 

8 finitely gener8ted R-module, tberefore S-lA is 8 finitely 

generated S-~-modu1e. For if 81, ••• ,an is a system of 

generators for A tben !• , ••• ,!~ i8 a system of generstors 
l l 

for s-1A. Since IA =A, tberefore s-1I.s-1A = s-1A. For 
a -1 

if - E. S A, wbere a 4t A and 8 ce:. s, tben 8 = y a + ••• + Yn•n 
8 l l 

wbere yi is 1n A, i = l, ••• ,n. 

v, al = 111,; - + ••• 
s 1 

Hence! =y, a, +. 
s s • •• + l:::1!:l s 

-1 -1 
But by Lemma 1, S I <: <R.(S li). 

Tberefore, by-Nakayama rs Lemma, s-1.AI =o. ( cR, (S-~) .s-1.1, 

is contained in cR {S-1A) and cR(s-1A) = s-1A 1mp1y tbat 

s-1A =o.) Hence, by Proposition 4, tbere e:x:i8ts an element 

1 + :x: ES sucb tbat ( 1 + :x:)AI = o. 



II. Topolosy 

1. Irreducible topological spaces. 

Definition 1: A topologicsl spsce X is said to be irreducible 

if every finite intersection of non-empty open sets is 

non-empty. 

For a topological space X to be irreducible it is 

necessary and sufficient tbat it be non-empty and tbat 

tbe intersection of two non-empty, open sets 1n X be non­

empty (or wbat is tbe same, tbat tbe union of two closed sets 

different from X be different from X). 

Proposition 1: Let X be a non-empty topological space. 

Tbe following conditions are equivalent: 

(1) X is irreducible. 

(2) Every non-empty, open set 1n X is dense in x. 
(3) Every open set in X is connected. 

Proof: (1)~(2). By definition, A is dense 1n X if and 

only if A f'\ G '1 fi for every non-empty, open set G in x. 
{3)~(1). Suppose X is not irreducible. Tben tbere 

exist non-empty, open sets u1 and u2 in X sucb tbat 

u1 f\ u2, = ;. Tben U1 U u2 is an open set in X wbicb is 

not connected. 

(1) ~ (3). Suppose U is an open set in X wbicb is not 

connected. Tben tbere exista a non-empty subset of u, 
not equal to u, say A, wbicp is botb open and closed 1n 

u. ~ (A) 1n U is also botb open and closed 1n U {bence 

in X) and A f"\ e (A) = ;. Hence X is not irreducible. 

Remark 1: A Hausdorff' spsce is 1rreduc1ble only if it 
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consiste of a single point. 

Definition 2: In an irreducible space X, a point x is said 

to be a generator if {ii = x. 
Remark 2: If X is a T0-space (tbat is, for avery two distinct 

points of X tbere exista a neigbborbood of at least one 

wbich does not contain the other) tben X bas at most one 

generator. For if x and y are two distinct generators 

ot x, tbat is, {x} = fYj = X, tben clearly avery neigh­

borhood of x meets fyJ and conversely. 

Remark 3: If X is a T1-space (that is, tor avery two dis­

tinct points of X tbere is a neigbborhood of each whicb 

does not contain tbe otber) tben X bas no generators, unless 

it consiste of only one point. For if x and y are two 

distinct points of x, tben {x] = X implies that avery 

neigbborhood of y meats ix~. This is a contradiction. 

Proposition 2: Let X and Y be two irreducible spaces, eacb 

with at least one genera tor. Let f : X __,.y be a continu-

-oua function. Tben f(X) = Y if and only if tor avery gen-

erator x in x, f(x) = y is a generator in Y. 

froot: Let f(X) = Y. Suppose f(x) = y, wbere {xJ = X. 

Then f(X) = f(fij)c {f(x)j. (See (l} 1 page 86.) Renee 

f(X)c f f(x)}, tbat is, ~f(x)f =Y. 

Conversely, tbere exista a point x in X such that 
-{xj = X and {f(x)f = ~y} = Y. Now f(x) is in f(X), so 

ff(x)J Ct(X} and f(X) = Y. 

A subset E of a topological space X is an irreducible 

~ if the subspace E is irreducible. 
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Let E be a subset of x. Tben E is irreducible if 

and only if tor every two open sets U and V in x, sucb 

tbat U (\ E ~ ~ and V 11 E rf j, we have tbat (U l'lV) A Bl: ~ ~~ 

or (wbat is the same) tor every two closed sets F and G 

in X sueh tbat ECF U G, we have eitber Ec.F or Ec..G. 

Tbe proot is as tollows. If U and V are open in 

x and u• = u 1'\ E 1 ~, v• =v f"'. E 1 ~. tben U' and v• are 

both open in E. Hence Ut f'\ Vt ~ ~. Theretore 

(U "V) l') E fe ~. 

Conversely, let U and V be two non-empty open sets 

in E. We must show tbat U 1"\ V 1 ~. Now U t"'\ E f. j and 

V f"\ E 1 ~. so (U f\ V) 1\ E ~ ~ and elearly U n V fe ~. 
B.J induction on n we deduee tbat if {FiJl~i•n is 

"" a tamily ot closed sets in X sueb tbat EC ~ Fi tben 
( :1 

E c: Fi tor some i, 16isn. 

fropositian 3: In a topological spaee X, a subset E is 

irredueible if and only if Ë is irredueible. 

rroot_: If G is open in X tben G f'\ E # ~ if and only if 

G 1'\ Ë rf:. ;. For if X'C' Ë 1'\ G tben every neigbborbood of 

x meets E. But tbere exista a neighborbood of x, say Nx, 

sueb tbat NxCG, so G meets E, tbat is, G f\ E :f: ~. Tbe 

proposition tollows 1mmediately. 

Proposition ~: (1) If X is an irredueible spsee, every 

non-empty, open set in X is irredueible. 

(2) Let ~Uala c.J be a non-empty, open covering of a 

topological spaee X sueb tbat Ua f"\ Ub f. ; tor all a, bE:.&. 
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If the sets u8 are irreducible tben X is irreducible. 

Proof: (1) If X is 1rreduc1ble, U is a non-empty, open 

aubset of x, and V is a non-empty, open subset of u, ~ben 
V is also open 1n X and bence dense 1n x. Therefore V 

is dense 1n U~ so U is irreducible by Proposition 1. 

(2) We will show that for every non-empty, open set V 1n 

x, V 1'\ U8 :j:. ~ for all a~ A. Now since Xc. U U8 , there 
O. CA 

exista at leest one c € A auch that V f"\ Uc :j:. ~. Since 

u8 1'\ Uc :j:. ~ for all a E. A and V r\ Uc is dense in Uc, (It 

is open 1n Uc and Uc is irreducible.) therefore 

V f\ Uc A Ua :f:. ~ for all a E. A. Renee U8 î\ V :j:. ~ tor all 

Now V (""\Ua is open 1n U
8 

and so is dense 1n U
8 

for 

all a«: A. We will show that V = x. Let x c:.X. Tben 

xE. U8 for some a E. A. But V f\ U8 = Ua. Therefore tor every 

neighborhood Nx -of x, Nx A (V f\ U8 ) :j:. ~. In particular 
- -Renee xE:. V and V = x, th at is, V is dense 

1n X, so X is irreducible. 

Proposition 5: Let X and Y be two topological spaces and 

t a continuous tunction from X into Y. Then tor every 

irreducible set E 1n X, f(E) is irreducible 1n Y. 

proot: Suppose U and V are open sets 1n Y sucb that 

u ""f(E) :j:. ~ and v 1\ t(E) :j:. ~. Then f-1 (u) f\ E :j:. ~; tor 

if x € u (') f(E), then x E:f(E)' 80 r-1 (x) (') E F ~. But 

f-l(x)C t-l(U), so f-l(U) (") E # ~. 
Similarly, t-1 (V)r\ E :j:. ~. Tberet'ore 

(f-1 (u) 1\ f-1
(v)) ~ E :j:. ~. tbat is, f-1 cu 1"\ V) nE fi~. 
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Hence {U (\ V) 1\ .t'(E) -rJ ~. 

Definition 3: A maximal irreducible set in a topologies! 

space is called an irreducible component. 

B,y Proposition 3 every irreducible component o.t' 

X is closed in x. 
Proposition 6: Let X be a topologies! space. Every irred­

ucible set in X is contained in an irreducible component 

o.t' x, and X is the union o.t' its irreducible components. 

Proo.t': Let G be an irreducible set in x. Let ~ be the 

ramily o.t' irreducible sets which contain G. Since G is 

in -:1 , ~ is not empty. Furthermore, CJ is partially 

ordered by inclusion. Finally, suppose C is a chain in 

0J • Put E = U Fi, where the Fi are 1n e. 
We will show that E is irreducible. Let U and V 

be two open sets in X such that U ('\ E -rJ ~ and V(\ E F= ~. 

Since (; is totally ordered, there is a set Fi 1n f! such 

that Fi f\ U # ~ and Fi f\ V -rj. ~. Since Fi 1s irreducible, 

Fi f\ (U 11 V) # $4, so E f\ (U l1 V) -rj. tj. Renee E is irred­

ucible. Clearly E is an upper bound .t'or e • It .t'ollows 

by Zorn's Lemma tbat ~ contains a maximal element T, which 

is clearly an irreducible component, and Gc.T. 

The second assertion .t'ollows .t'rom the .t'irst and 

the .t'act that every set consisting or a single point is 

1rreduc1ble. 

Corollary: Every connected component or a topological space 

X is the union or irreducible components o.t' x. 
Proo.t': Let D be a connected component o.t' x. Let {F j ~ j c.J 
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be the family of irreducible components of X auch that 

De. U Fj and auch that for eacb j ~ J some x in Fj is also 
}iJ' 

in D. (If Fi f1 D = ~~ De. j~lFj.) 

We will show that D = UFj. For each j, Fj is 
j'-1 

irreducible and bence connected by Proposition 1. It is 

therefore contained in a connected component wbicb must 

be D (a ince some x in F j is also in D). Hence F j c.D for 

all jE.J and ~Fjc:D. 
JwT 

Remark 4: Two distinct irreducible components of X may 

have points in common. In fact, as we have seen above, 

they may both be contained in the seme connected component. 

An exemple of auch a case will be given later. 

Proposition 7: Let X be a topological space and {Pil l~i•n 

a finite covering of X formed with closed irreducible sets. 

Then the irreducible components of X are the maximal elements 

(by inclusion) of the set of P1 's. 

Proof: We may assume tbat the Pi's are pairwise incompar­

"' able. Let E be an irreducible set in x, then EC: ~Pi• 
f.:'\ 

Since the Pi are closed, therefore EC Pi for some 1, l~t.n, 

so the Pi are the only maximal irreducible sets in X and 

bence are the only possible 1rreduc1ble components. Clearly 

the maximal sets of fP1J l~i~n are 1rreduc1ble components. 

Corollary: Let X be a topological space and let E be a 
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subspace of X having only a finite number of distinct 

irreducible camponents, {Q1J 1~~n· Then the irreducible 

-components of the closure E 1n X are the closures Qi 

(l~i~n) of Qi (l.fi~n) and Qi f:. Qj if i #- j. 

"" ..... "'- ---Proof: Since E = U Qi, therefore E = U Clti and Qi is 
(cf t';' 

irreducible (l(i~n). It remains to show that eachQi is 

-en irreducible component in E. It suffices to show that 

'Q14;.Qj for i 'F j. Now Qi is closed in E, so 'Qi f"\ E = Q1• 

If Qic Qj, then Qi f\ E cQj f\ E and Qi C.Qj• This is a cont­

radiction. 

Proposition 8: Let U be en open set in a topological spece 

x. The mapping V -+V ( closure in X) is e bijection from 

the family of closed irreducible subsets of U onto the 

family of closed irreducible sets in X which meet u. The 

inverse mapping is z_,.z ('\ u. In particuler, this bijection 

meps the set of irreducible components of U onto the set 

of irreducible components of X which meet u. 
Proof: If V is a closed, irreducible subset of u, then 

Vis irreducible, (See Proposition 3.) and Vis cloaed 

1n x. Also V tt U = V 'F ~ ( since V is closed in U). 

Suppose v1 = V2• Then V1 f\ U = v2 f\ U and V1 = v2• 

Therefore the mapping is one to one. If Z is a closed, 

irreducible subset of X and Z f"\U ~ ~~ tben Z nuis a 

non-empty, open subset of Z end so is irreducible. (See 

Proposition 4.) Also Z (\ U is dense in z, by Proposition 

1. Furthermore, since Z is closed, Z AU= z. Finally, 
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Z ("\ U is closed in u. Renee the mapping is onto. 
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2. Noetberian spaces. 

Definition 4: A topological space X is said to be noetherian 

if every non-empty family of closed sets in X, ordered 

by inclusion, bas a minimal element. 

Equivalently, every non-empty family of open sets 

in x, ordered by inclusion, bas a maximal element; or every 

decreasing (respectively incressing) sequence of closed 

(respectively open) sets in X is ststionary. 

Proposition 9: (1) Every subspace of a noetberian space 

is noetberian. 

{2) Let ~Ail i E. I be a fini te covering of a topological 

space x. If the subspaces Ai ot X are noetberian for all 

i ~ I, tben X is noetherian. 

Proof: (1} Let X be a noetberian space, let A be a subspace 

of X, and let fFnfn?O be a decreasing sequence of subsets 

of A, closed in A. Then Fn = ~ f1 A for all n, and the 

closures Fn of Fn torm a decreasing sequence of closed 

sets in x. This sequence is stationary since X is noetberian. 

Hence tbe sequence { Fnf n:ZO is stationary. 

(2) Let [Gnfnzo be a decreasing sequence of closed sets 

in x. For each n, Gn 11 Ai is closed in A'~1 for all i E.I 

and bence iGn f'\ A if n:zO is stationary tor all i E: I. Since 

I is finite, tbere exista an integer n0 such that for n?n0 

Gn 1\ Ai = Gno 'Î Ai tor all i ~I. But for eacb n, 
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Gn = ~ ( Gn (\ Ai), therefore for n-zno 1 Gn = Gno and f Gnf n~O 
t(.I 

is stationary, so X is noetberian. 

Proposition 10: A topological space X is noetberian if 

and only if every open set in X is compact. 

Proof: Suppose X is noetberian. By Proposition 9 it is 

sufficient to sbow that every noetherisn subspace of X 

is compact. Suppose Y is a noetherian subspace of x. 
Let iuif i E. I be an open covering of Y. Let c:J be tbe 

:t'emily of all finite unions of the Ui• <:] is not empty 

and~ is ordered by inclusion, so1 bas a maximal element, 

say V =Uui, wbere His a finite aubset of I. Now VU Ui 
idl 

is in :J and Vc V U Ui for all i € I. Hence V = V l) Ui for 

all i e I. If x~ Y, xE. ui for some i e: I, so xE. v V ui• 

Therefore xE. V and V = Y. 

Conversely, suppose that every open set in X is 

compact, and let {unfn?O be an increasing sequence of open 

DO 

sets in x. V =U Unis open and bence compact. Since 
h:O 

iunfntO is an open covering of V, there exista a finite 

sub-family of 1unfnt0 wbich covers V, say u1, ••• ,um• There­

fore V = Ur for some index r {Ul C. U2 C. ••• C1Jm) and 

Ur =Ur + 1 = ••• 1 so funfnzo is stationary. 

Lemma 1: (Principle of noetherian induction). Let E be 

an ordered set auch tbst every subset of E bas a minimal 

element. Let FC E witb the following property: If a in 

E is auch tbat the relation x< a implies that x E.F, then 

a is 1n F. We have tben that F = E. 
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Proof: Suppose F ~ E. Then ~(F) # ~# so it bas a minimal 

element b. Now b'-E and x<b, so xEF. Renee bE.F# wbiob 

is a contradiction. 

Proposition 11: If X is a noetberian space, the set of irred­

ucible components of X (and a fortiori, the set of connected 

components of X) is finite. 

P.roof: We will show that X is a finite union of closed 

irreducible sets. (The proposition will follow from 

Proposition 8.) Let E be the family of olosed sets in X 

(ordered by inclusion) and let F be the family of finite 

unions of closed irreduc1ble sets. (FeE.) Let Y be a 

closed set in X such that every closed subset of Y (not 

equal to Y) be longs to F. We will show that Y €-F. 

If Y 1s irreducible, then Y is in F by the definition 

of F. If Y is not irreducible, there exist closed sets 

Yi r and Y2 ' in X auch that Yc: Y1 r V Y2 • but Y~Y1 • and 

Yz are closed in X (and Y}. Then Y = Y1 U Y2, but Y # Y1 

F = E by Lemma 1. Renee X is a finite union of closed 

irreducible sets. 

Remark 2: Suppose X is a noetberian Hausdorff space. Tben 

X is finite. This will follow if we can show that every 

point in X is an irreducible component. But if {xJ ~F, 

there exista an element y # x, in F and the subspace F is 

Hausdorff, bence not irreducible. (See Remark 1.) 



IV. The prime spectrum and support or a module. 

1. The prime spectrum of a ring. 

Let R be a ring and let X be tbe set or prime ideals 

or R. For avery subset M or R we write V(M) = ~PE:.X : MC P}. 

It is clear that if I is tbe ideal generated by M, tben 

V(M) = V(I). If M consista or one point a, we write 

V(a} = V({al), and we have V(a) = V(Ra}. 

The mapping M~V(M) is monotone decreasing for the 

relation of inclusion in R and x. Moreover, we have the 

following formulas: 

(1} V(O) =X and V(l) = ~. 
(2) V(~ Mi) =(\V(Mi)• Mibeing subsets of R. 

'-'-l 'ti 

(3) V(I fl J) = V{IJ) = V(I) l) V(J), wbere I and J are ideals 

in R. 

(4) V( I: I
8

} =tl V( I 8 ), where the I
8 

are ideals in R. 
•4.A CHA 

Remark 1: If I is an ideal in R auch that V(I) = ~~ then 

I = R. For if I -:# R then IC.M, a maximal ideal which is 

also prime. 

Remark 2: If I is an ideal in R, then V{I) = V(~{I)). For 

if I C:.P then fP (I) c:. <P(P) = P. 

Formulas (1) to {3) show that the family of sets 

V(M) in X satisfy the axioms of closed sets for a topology. 

Definition 1: Let R be a ring. Let X be tbe set of prime 

ideals of R with the topology whose closed sets are precisely 

tbe sets V(M}, wbere M runa througb tbe set of subsets of 

R. We call X tbe prime spectrum of R and we denote it by 

Spec(R). The topology so defined is called tbe spectral 

topology or tbe Zariski topology on x. 
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Clearly Spec(R) = ~ if and only if R = foJ. 
Let X be the prime spectrum of a ring R. For all 

rE:R, let Xr = ~PE.X: rtPJ. Then Xr =X- V(r), so that 

~ is open in x. By (2) above every closed set in X is the 

intersection of closed sets of the form V(r). Hence the 

Xr form a base for the spectral topology on X. Moreover 

it follows immediately from the definitions thst x
0 

= ~~ 
Xl = X and more generally Xr = X for every unit r €R. 

(~ = X - V{r), but r G P, so rr-1 e.P and 1 E.P, which is a 

contradiction. Hence V(r) = ~.) 
Remsrk 3: ~s = Xr f"\ Xs for r and s in R. For Xrs = C (V(rs)) 

and Xr ('\ Xs = e(V(r) Ù V(s)), and rs c:.P if and only if 

r ~P or sE: P. 

Proposition 1: Let R be a ring and let I be a finitely 

genersted ideal in R. Then the following are equivalent: 

( 1) I 2 = I • 

(2) I = eR where e2 = e E.I. 

(3) V(I) is open and the two conditions @(J) = tP {!) and 

J C.I imply tbat J = I. 

Proof: (1):;>(2). By Proposition 5, Chapter II, Section 2 

I2 = I implies that there exista sn element fE:. I such tbat 

(l + f)I = 0 1 that is, for all a €.I, (1 + f)a = o. Renee 

a = -fa for all a € I. Take e = -r. Tben a = es for all 

a E I. In particular e2 = e and I = eR. 

(2).:::::;>{3). Let P€V(I}. We will show tbat Pe:.X1 _ eCV{I). 

Now l- ef-P. For ee.Ic::.P; so PE.X1 _ e• Furtbemore, 

x1 _ ec:V(I). For let Q4:Xl _ e• thst is, l-e ,Q. We 



27 

will show that ICQ. It suffioes to show that e€Q. Now 

if e f. Q then e (1 - e) = 0 f. Q. This is a contradiction. 

Let ~(.J} = \P(eR) and suppose that .JC. eR. We will show 

that eRC .J by showing that e E..J. Now e E 6l{eR) = 6> (.J), 

so en€..J for some positive integer n, that is, e~.r. 

(3) ~(1). tP (I2 ) = Q>(I) f"\ f>(I) = &> (I) by Proposition 
2 2 2, Chapter I, Section 1. Also I CI, so I = I. 

For avery subset Y of X, let ':J(Y) = f\ tp: PE.Y}. 

Clearly 'J (Y) is an ideal in R. The mapping Y-+ c.J (Y)' 

is monotone decreasing for the relation of inclusion in 

X and in R. Moreover, we have 'J (~) = R and 

of X. 

= (\ CJ (Y a) for avery family iYal a E A of subsets 
o.f.A 

Proposition 2: Let R be a ring, let I be an ideal in R, 

and let YC.X = Spec (R). 

(1) V{I) is closed in X and 'j(Y) is an ideal in R equal 

to its radical. 

(2) c:J (V(I)) = f(I) and V( CJ (Y)) =Y. 
(3) The mappings ~ and V define inverse monotone decreasing 

bijections (that is, v-l = ~ ) between the set of closed 

subsets of X and the set of ideals in R equal to their 

radicale. 

Proof: (1) V(I) is closed by definition. 

CJ {Y) = Il ~ P : P €. Y} is an ideal and ())(c:J (Y)) 

= 6> ( A \ P : P e: Y l) = {x : xn € P for a 11 P E:. Y f = (\ 6> ( P} 
PE.'I 

= (\ p = 'J (Y) • 
P€'Y 
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( 2) 'j (v ( I) ) = f'\ I p : p E:V ( I) f = ll f p : I c p 1 = dl ( I) • 

To show that V( CJ (Y))= Y we will show that V{~ (Y)) is the 

smallest olosed set oontaining Y. Let V(M) :JY. If P4!:. Y 

then P E. V(M} and Mc P 1 that is, Mc P for all P E:. Y. Renee 

MC. Cj (Y) 1 ao V( tj (Y)} C V(M). But Y CV(c:J (Y)) ( sinoe 

V(CJ (Y)) = { P : " { P : P fé Y} CP} :lY), therefore V( 'j (Y)) 

is the smallest olosed set oontaining Y. 

(3) By (1) CJ is a mapping from the set of olosed subsets 

of X to the set of ideals in R equal to their radicale; 

V is a mapping from the set of ideals in R equal to their 

radicale to the set of olosed subsets of x. 
It remains to show that V'l = c:J V = 1. By (2), 

i!' I = f (I} then CJ (V(I)} = P (I) = I. I!' Y is olosed 

in X then V( CJ (Y)) = Y = Y. 

Remark 4: I!' MeR, then V(M) = V(I) where I is the ideal 

generated by M. Now V(I) is olosed so V(~ (V(I))) = V(I) 

by Proposition 2. Renee V{ c:J (V{M))) = V(M). 

Similarly 1 c::l (V( c:J (Y))} = t:] (Y) !'or any YC x. 
Corollary 1: For every family \Y} of olosed subsets 

a ac. A 

Proof: Since Y8 is olosed !'or all a €:A, theref6re (\Y 
o.tA a 

is olosed. We will show that CJ ( (\ Y8 ) is the smallest 
~'A 

ideal equal to its radical and oontaining all the 'J (Ya)• 

Suppose that I = Il ( I) and 'J {Ya) cI for all at. A. Then 
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V(I) cV( C] (Y ) ) = Ya for all a ~A, that is, V(I)c f1 Y9 • 
a "~A 

Bence c::l (V(I)).) CJ { r'\ Y9 ) and I :> 'J ( f1 Ya) • Thus 
~~~ ~~A 

~ e'J (Ya)c ':1 ( (\ Ya) and <PCE :J (Y8 )) = d>(c:l ( n Y ))' 
~~A 4ti!J •EA o.E.A. 9 

= '] { n Y8 ). But ~ (L 'J (Ya)) = P ( <P ( ~ r:J (Y8 ))) and 
a~A ~'A ~c~ 

CJ (Y8 ) C. P (Î:. lJ {Y9 )) for all a E A, therefore 
tt~A 

Corollary 2: If I and J are two ideals in R, then the follow­

ing are equivalent: 

(1) V{I)c V(J). 

(2) Je. o>(I). 

(3) ~ (J)c. @(I). 

Proof: (2)~(3). This is clear. 

(1)~(3). V(I) = V{6> (I)} and V(J) =V( {P(J)) by Remark 

2 1 so V(I)cV(J) ~1(V(G'(J)))C. CJ(V{ t?{I))) 

~f'(J)c@{I). 

Corollary 3: Let 1f ~ A be a family of elements of R. 
a a'-

If ge;. R, then a necessary and sufficient condition for 

XgC o.lf.AXfa is that there exista an integer n such that 

gn belongs to an ideal generated by the ra. 

Proof: X C U Xr ~ V{g):> (1 V{f ) <fi:;> V( V fa) c V{g) 
g a.~tA a GUA a ~liA 

~ V(I) C V{Rg) where I is the ideal generated by the fa 

# RgcP{I) {See Corollary 2.)~ gE. @(I)~ gn"I for 

some integer n. 
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Corollary 4: Xf = Xg if and only if there exist integers 

m and n'> 0 auch that fm E: Rg and gn E:Rf. 

Proof: Xr C: Xg if and only if rme.. Rg for some integer m 

and xgc. Xf if and only if gn E. Rf for some integer n. 

Corollary 5: Xf = ~ if and only if f is nilpotent. 

Proof: Xr C x0 = ~ if and only if rn = ; for soma in te ger n. 

Corollary 6: (1) {'Pi= V(P), where PE:.X = Spec(R). 

(2) fP1 is closed in X if and only if P is maximal. 

Pro of: ( 1} 'l ( { P f) = 1\ 1 P : P E.' {P} J = P, so 

V( 'J ({Pl)) = \PJ = V(P) by Proposition 2. 

(2) ~pj = \Pf ~V(P) = \P/ ~ \Q :· PCQ/ = {P/ ~Pis 

maximal. 

Corollary 7: If R is a noetherian ring, X= Spec(R) is a 

noetherian space. 

Proof: Let {Ynf n? 0 be a decreasing sequence of closed sets. 

Then ~c:l(Yn)fn,.O is an increasing sequence of ideals in 

R. Renee there exista an integer n0 auch that 'J (Yn) = 7 (Yn
0

} 

for n > n 0 , so V( c:l (Yn)} = V( c:1 {Yno>) for n ;-n0 and Yn = Yn
0 

for n > n 0 • Therefore X is 8 noetherian Space. 

Proposition 3: Let R be a ring. Then for every rE. R the 

open set X in X = Spec{R) is compact. In particular the 
r 

space X is compact. 

Proof: Since the ~ form a base for the topology, it is 

suffie ient to show tha t if ir a? a E. A is a set of elements 

in Rauch that ~C U~ then there exista a finite subset 
"''-A a 
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Sin ce ~ c U Xr , therefore 
a.~~ a 

there exista an intege? n? 0 such that rn is in the ideal 

generated by the ra, by Corollary 3, Proposition 2. Hence 

rn is in the ideal generated by a finite nurnber of the 

Therefore XrC U ~ (again by Corollary 
Q.;J~ a 

3, Proposition 2). 

In particular, X = x1 is compact. 

Proposition 4: Let R be a ring and let ~ be its radical. 

Then X = Spec(R) is discrete if and only if R/~ is a direct 

sum of a finite number of fields. 

Proof: Suppose X = Spec(R) is discrete. Then ~Pf is open 

for every prime ideal P in R, and ÎPI = ~ for some re:. R, 

that is, rf. P, and if r t Q then Q = P. Now U{Pi is an 
Pc:R 

open cover of X and since X is compact, by Proposition 3, 

there exists a finite subcover, that is, there exist only 

finitely many prime ideals in R. Also since X is discrete 

each prime ideal is maximal1 by Corollary 6, Proposition 2. 

(~Pf is closed for every prime ideal P.) 

"' We will show that R/P = R/ ('\Pi 9! R/Pl E> • • • e R/Pn 
( S\ 

by induction on n. Define f from R/P1 fl P2 to R/Pr 0 R/P2 

Clearly f is a homomorphism. 

If f(r + Pl n P2) = 0 then r + P1 + r + P2 = 0 so 
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> 

rE:. P1 () P2, so that r + P1 (\ P2 = o. Therefore f is one 

to one. 

IJ'\-1 

Now Pn + (\Pi = R. For there existe an element pif. Pn ,., 

IJ'\-l 

but pE. () Pi• 
( ., 

"'-' ~-\ 
Hence R/ (\Pi(\ Pn ~ R/ (\Pi + R/Pn by the ,., ,~~.~ 

osse n = 2. Therefore R/ f\ P n ":it R/P1 e ... E> R/P n by 
c ... , 

induction. 

Conversely, suppose R/P ~ F1 EP ••• Œ> Fn, where 

the Fi are fields. Then R/P has only finitely many prime 

ideals {all of the form F1 ~ ••• ti> Fi _ 1 EE) 0 Et) Fi + 1 ~ ·~~ 

~ F0 ) and henoe so does R. These are olearly all maximal. 

Suppose the prime ideals are P1 , ••• ,Pn• We will show that 

these are all open. We will show, for example, that P1 
is open. Sinoe P1 is maximal, theretore P1~Pj tor 
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j = 2, ••• ,n so there existe an element r j j P 
1 

such· that 

rj .::;pj for j = 2, ••• ,n. Then r =- r 2 ••• rn tP1 and rc:.Pj 

for j = 2, ••• ,n. Hence {PJ = ~ is open. 
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Proposition 5: Let R and S be two rings and let X= Spec(R) 

and Y= Spec(S). Suppose h is a homomorphism from R into 

s. Then the mapping Spec h : Y~X defined by 

Spec h{Q) = h-1 (Q) is continuous. 
• 

Proof: Let V(M) be closed in X, where M is a subset of R. 
-1 We will show that Spec h (V(M)) is closed in Y. Now 

Spec h-l(V(M)) =f Q~Y: Spec h(Q) E. V(M)j 

= ~ QE.Y : h-1 (Q) E V(M)/ 

= i Q~Y : M(; h-l(Q) l 
= ~ Q'-Y :· h(M)c: Q/ 

= V(h(M)), which is closed in Y. 

The function Spec h is called the function associated 

~ the homomorphism h. 

Remark 5: Spec is a contravariant functor from the category 

of commutative rings to the category of topological spaces. 

Proposition 6: Let h : R~S be a homomorphism such that 

for all sE. s, s = uh(r), where u is a unit in S and r6: R. 

Then there exista a subspace V of X = Spec(R) auch that 

Spec h : Spec(s)--.v is a homeomorphism. 

Proof: (1} Spec h is continuous by Proposition 5. 
(2) Spec h is clearly onto. 

(3) Let Spec h(Q1 ) = Spec h(Q2), where Q1 and Q2 are prime 

ideals in s, that is, h-1 {Q1 ) = h-1 (Q2). We will show 
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that Q1 =- ~· Let qE:.Q1 , then q = uh(r), where rê.R and 

u is a unit in s. Renee uh(r)~Q1 so h(r)E.Q1 , sinee u 

is a unit in s. It :follows that r~h-1 (~) = h-1 (Q2 ) and 

so h(r)t Q2• There:fore uh(r) = qE.~, so Q1C~. Similarly, 

Q2C~. Renee Ql = Q2 and Spee h is one to one. 

(4) It rems ins to show that Spec h-l is eontinuous. It 

su:ffiees to prove that Spee h is an open mapping. Let 

Xs be a base member in Spee(S). We will show that Spec 

is open in V by showing tha t Spec h ( X
8

) = V f\ U, w'here 

U is open in Spec(R). Now s = uh(r), where u is a unit 

in Sand r~R. We claim that Spec h(X8 ) =V(\~. 

Let PESpee h(X8 }, that is, P€ Spec h({Q: s .. Ql) 

= {h-1 {Q) : s tQt, that is, P = h-1 (Q) where s f.Q, so 

clearly PEV. We will show that rf,P. Since stQ, 

uh(r) f. Q so that h(r) f. Q and rf.h-1 {Q) = P. 

h(X
8

) 

Conversely, i:f P~ VA Xr then P = h-1 (Q) and r f.,P. 

Then sj:Q. For if sEQ then uh(r)E: Q so that h(r)E.Q and 

r&.h-1 (Q) = P, whieh is a contradiction. 

Corollarz: Suppose h is an epimorphism from R onto S and 

suppose K = kernel h. Then Spec b is a homeomorphism :from 

Y= Spec(S) onto the closed subspace V(K) o:f X= Speo(R). 

Proof: For all sEs, s = lh(r), where 16: S and rE:.R, so 

by Proposition 6, there exista a subspace V of X auch that 

Spec h : Spec(S)~V is a homeomorphism. We will show that 

V= V(K). Let PEV. Then P = h-l(Q,) so KCP. Renee 
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V(P)CV(K) and PE:V(K). 

Convers ely, if P E:. V(K) then KC P so that h(P) == Q, 

-1 -1 a prime ideal of s. Therefore h (Q) = h {h(P)) = P so 

that P E. v. 
Proposition 1: Let h : R~S be a ring homomorphism. Then 

for every ideal J of s, Spec h(V(J)) = V(h-1 (J)). 

Proof: If P€-Spec h(V(J)) then P = h-1 (Q), where JcQ, 
-1 -1 

Q being a prime ideal in s, that is, h (J) Ch (Q) ==P. 
-1 -1 Hence P~V(h (J)). Therefore Spec h(V(J)) CV(h (J)) 
-1 

and since V(h (J)) is closed, it follows that 

Spec h(V(J)J C V(h -l (J)). 

Conversely, let PE.V(h-1 (J)), that is, h-
1

(J)CP. 

We must show that if P is not in Spee h(V(J)) then P is 

a limit point of Spec h{V(J)), that is, for all r such 

that P E :xr, ~ (') Spec h{V(J)) :J ~~ or, for all r such that 

r;.P, there exists a prime ideal Q of R such that r4:,Q 

and Q = h-
1

{P'), where JCP•, P• being a prime ideal in s. 

Now J cM, where M is a maximal ideal and hence a 

prime ideal in s. Suppose that r 4 P. We claim that there 

exista a prime ideal P• of S such that J(:pt and sueh that 

h(r) f. P'. For if h(r) ~P for all P such that Jc.P, then 

h ( r ) E.. cP ( J) = { x E. R : xn E. J l, t ha t i s , h (rn) = h ( r ) nE:. J 

so h-1 (h(rn))C.h-1 {J) and rn~h-1 {J)CP. Therefore rEP, 

which is a contradiction. 

Let Q = h-l (P 1). Since h(r) 'f. P 1, therefore 

-1 1 
r • Q = h ( P ') • (If r ~ Q then h ( r) € h ( Q) = h ( h- (Pt) ) <:Pt.) 

Renee Pis a limit point of Spec h(V(J)). Therefore 



P ~Spec h(V(J)) and Spec h(V(J)) = V(h-1 (J)). 

Corollary: Let h : R~S be a ring homomorphism. Then 

Spec h(Spec(S)) = Spec(R) if and only if kernel his a 

nil ideal. 

Proof: Suppose kernel h is a nil ideal. so that 

kernel h C P(OR) • where ~ is the zero of R. Then 
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Spec h(Spec(S)) = Spec h(V(Os)) = V(h-1 (os)) by Proposition 

7. Now V(n-1 (o5J) = V(kernel h):>V( P(oR)) = V(OR) (See 

Remark 2.) = Spec(R). Therefore Spec h(Spec(S)) = Spec(R). 

Conversely• suppose Spec h(Spec(S)) = Spec(R)• that 

is, Spec h(V(03)) = V(OR)• Then V(h-l(08)) = V(OH')' by 

<:1 -1 Proposition 7, so that ..J(V(h (03 ))) = 'j(V(OR)). It 

follows that P(h-1 (o8)) = @(OR) by Proposition 2, so 

that @(kernel h) = PcoR). Hence kernel h is a nil ideal. 

Proposition 8: Let R be a ring, let S be a multiplicative 

system in R, and let h be the canonical homomorphism from 
-1 R into S R. Then Spec h is a homeomorphism from Y = 

-1 Spec(S R) onto the subspace of X = Spec(R) consisting 

of those prime ideals in R which do not intersect s. 

Proof: {1) Spec h is continuous by Proposition 5. 
(2) Suppose Spec h(Q1 ) = Spec h(~) or h-1 (Q1 ) = h-l(Q2). 

Then Sh(h-1 (Q1 )) = Sh(h-1 (Q2)) so that Q1 = ~ by Proposition 

2, Chapter II, Section 1. Renee Spec h is one to one. 

(3) Suppose P is an element of X sucb. that P n s = ~. 

Then Sh{P) is a prime ideal of s-1R and h-1{Sh(P) = P by 



Proposition 3, Chapter II, Section 1. Put Q = Sh(P). 

Then Spec h(Q) = P so that Spec h is onto. 

(4) It remains to prove that Spec h-1 is continuous. 

Let ri = ~ ~s-1:œ, where reR and sE. s. Then Y 
1 

=Y-v. 
s r T 
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For Yr 1 = { Q € Y : r 1 ~ Qf = ~ Q E Y : ; t Ql = t Q E" Y : ; · Î ~ Q ~ 

= \ Q f: Y : r
1
- 4 Q} = Y.r

1 
• (t! .§ e.Q if and on1y if !: c& Q,. since 

s 1 s 

s 
- is a 
1 

unit in s-1R and hence is not in Q.) 

r -1 
Now i~Q if and on1y if rE.h (Q) = Spec h(Q). 

For if r€: h-1 (Q) then h(r) €. Q so f€ Q. If h(r) = iE: Q 

then h-1 (h(r)) c h-1 (Q) and r éh-1 (Q). Hence f4.Q if and 

on1y if r t h-1 ( Q) = Spec h( Q), that is, Q € Y,r if and on1y 
1 

if Spec h(Q)~~. Therefore Spec h(Yr 1 ) = ~f"\Spec h(Y). 

For if P € Xr f'\ Spec h (Y) th en P = Spec h ( Q) , where Q E: Y, 

and QE:.Yr= Yr 1 so that P = Spec h(Q) ~Spec h(~ 1 ). 

Converse1y, if P~ Spec h(Yr 1 ) then P = Spec h(Q)', 

where Q~ Yr 1 = Y.r and so P~Xr• 
1 

Therefore the image of a member of the base in Y 

is the intersection of Spec h(Y) and a member of the base 

in x. Hence Spec h-l is continuous. 

Proposition 9: Let R be a ring. Then YCX = Spec(R) is 

irreducible if and on1y if 1(Y) is prime. 

Proof: Let P = "J(Y). We claim that 1!' reR, then r~P 
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if and only if YC.V(r), that is, r€. f\ -\:P•: P 1 E.Y?if and 

only if Y<: {Q. : rE:. Ql. For suppose that rE. C) (Y). Let 

ptE: Y. Then r c: pt so P' €. \Q. : rE. Qf. 

Conversely, suppose that YC {Q. : r E..Qf, that is, 

for all Q€.Y, re.Q,. Then re(\ fQ: QE:.Yj. 

Now suppose Y is irreducible and suppose that rs ~ P, 

where r and s are elements of R. Then Y C. V(rs) = 
V(r) l) V(s), and sinceY is irreducible, and V(r) and 

V(s) are closed, therefore YC..V{r) or YCV(s), that is, 

r C. P or s f: P. Hence P is prime. 

-Convers ely, suppose P is prime. Now Y = V('J (Y)) 

= V{P) by Proposition 2, and since P is prime, P = C) (P) 
-= Il tP : P~ {P} J. Therefore Y = V( c:J (P}} = \P~. Now 

{P} is irreducible (since every set consisting of a single 

point is irreducible), therefore so is ~P} = Y and hence 

sois Y. (See Proposition 3, Chapter III, Section 1.) 

Corollary 1: Let R be a ring. Then X = Spec(R) is irred­

ucible if and only if R/6> (0) is an integral domain. 

Proof: "J(X) = ~ (0), so X is irreducible if and only if 

~(0) is prime by Proposition 9, that is, if and only if 

R/ f>(O) is an integral domain. 

Corollary 2: The mapping P~V(P) is a bijection from 

X= Spec(R) onto the set of closed, irreducible subsets 

of x. In particular, the irreducible components of a 

closed subset Y of X are the sets V(P), where Pruns through 

the set of minimal elements in the set of prime ideals 

of R which contain 'J(Y). 
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Proof: If P~X" then V(P) is irreducible, since 

c::J (V(P)) = f (P) = P is prime by Proposition 9. Clearly 

V(P) is elosed. 

If V(P1 ) = V(P2) then c:J(V(P1 )) = 'J(V(P2)) and 

P1 = P2, so the mapping is one to one. 

If Y is a elosed, irreducible subset of X then 

'J (Y) is prime by Proposition 9, and V( c.J (Y)) = Y = Y by 

Proposition 2. Renee the mapping is onto. 

Let Y be closed in x. Its irredueible eomponents 

are among the V(P), where P is prime. Now V(P) C. Y if and 

only if 'J (V(P)) ::> c:1 {Y) 1 that is, if and only if P ') <J (Y) 

by Proposition 2. Also V(P) is a maximal irreducible set 

if and only if P is a minimal prime ideal. For suppose 

V( P) is maximal. Then if Q CP, V( P) CV( Q), so that 

V(P} = V(Q). Therefore CJ(V(P)) = Cj(V(Q)) and Q= P. 

Renee P is a minimal prime ideal. 

Conversely, if P is a minimal prime ideal, suppose 

V(P) CV( Q). Then 'J (V(P)) :> C) (V( Q)) so Q cP and Q = P. 

Renee V{Q) = V(P}. Therefore V(P} is a maximal irreducible 

set. 

Corollary 3: The set of minimal prime ideals of a noeth­

erian ring R is finite. 

Proof: Since R is a noetherian ring, therefore X = Spec(R) 

is a noetherian space by Proposition 2, Corollary 7. Hence 

X has only a finite number of irreducible components. 

But the irreducible components of X are the sets V(P), 
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where P runa through the set of minimal prime ideals of 

R which contain P(o), that is, all minimal prime ideals 

of R. {See Proposition 9.) Hence R has only a finite 

number of minimal prime ideals. 

Proposition 10: Let R be a ring. Then 

{1) X = Spec(R) is a T0 space. 

(2) every irreducible component of X has a unique generator. 

Proof: (1)' Suppose P1 and P2 are two points in X such that 

P1 # P2• Then either P1 </:.Pz or P2 <t: P1 , say P1 f,. P2• We 

then have that there exista an element rE. P1 such that 

r ,._ P 2• It follows that Xr is a neighborhood of P 
2 

which 

does not contain P1• 

(2) Let Y be an irreducible component of x. Then Y = V(P) 

for some PE.Y by Proposition 9, Corollary 2, and -{Pf = V( CJ (P)) = V(P) = Y. Hence Y has at least one 

generator. That it is unique follows from the fact that 

X is a T0 space and Remark 2, Chapter III, Section 1. 

Corollary: If R is an integral domain and X = Spec(R), then 

(l) X is irreduc1ble and its generator is {(o)J. 
(2) t(O)f is an isolated point of ~ if and only if the 

intersection of all non-zero prime ideals of R is not equal 

to zero. 

Proof: (1) Since R is an integral domain, therefore (0) 

is a prime ideal, so ( 0) = GJ ( 0) and X is irreduc ible by 

Proposition 9, Corollary 1. Also { (O)j = V( '1 ( {(O)l)) 

= V(O) =x. {See Proposition 2.) 

(2) Let M = () ~ P ~X : P # (O)f. Suppose {(o)f is an 
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isolated point of X, that is, {(0)} is open in x. Then 

\{O)J = X}. for some r €-R and rE. M. For if there exista 

some P # {0) such that r ~ P then P E ~~ which is a contre­

diction. 

Conversely, if M # (0) then there exista an element 

r~M such that r # 0 and Xr = \_(o)}. For if PE:Xr then 

rf. P and P = (0). Hence \(O)f is an isolated point of x. 
Proposition 11: Let R be a noetherian ring and let X = 

Spec(R). Then a subset F of X is closed if and only if 

it satisfies the following two properties: 

( 1) For all P E F, V ( P) C F. 

(2) For all Pf..F, there exista a closed set V(N), where 

N is a subset of R, auch that F l'"\ V(P) C V(N} C V(P) and 

such that Pt V{N). 

Proof: Suppose F is closed in x. Then F = V(M), where 

M is a subset of R. 

(1) If Pt::V(M) then MCP, soif Q~V{P), that is, PC.Q, 

then MC Q and QE: V(M). Hence V(P) C V(M) = F • 

(2) Suppose P4:V(M). Take N = MUP. Mcf.P soN# P. 

Hence Ntj:.P and Pf,V(N). Furthermore, if QE:.V{N) then 

NCQ so that PCNCQ and Q€V(P). Therefore V(N)C.V(P). 

Finally, if QE. V(M) () V(P) then QEV(M lJ P) = V(N). Hence 

F n V(P) C. V(N). 

Conversely, suppose F satisfies conditions (1) and 

(2). Since F is a closed subset of X, its irreducible 

components are of the form V(P), where P is a minimal 

prime ideal in F. {See Proposition 9, Corollary 2.) 



-Also since X is a noetherian space, the subspace F is also 

noetherian by Proposition 9, Chapter III, Section 2, and 

hence F has only finitely many irreducible components. 

(See Proposition 11, Chapter III, Section 2.) Suppose 

.., 
F = ~ V (Pi) 1 where the V (Pi) are the irreduc i ble componen ts 

( =t 

ofF. Now for each i there exists a closed set V(Ni), 

Ni being a subset of R, such that F f"\ V(Pi) CV(Ni) C V(Pi) 

CF. For if Pi €. F 1 we may take Ni = Pi and if Pif. F 1 then 

~ ~ -
Renee \J (F () V( Pi)) C Y V(N i) CF • It follows 

,:., <=1 

~ M -

that F (\ ( l) V(Pi) )C lJ V(Ni) CF. Therefore F () F = F 
{:t t'::l 

\1\ - l'\ - "' 
C U V (Ni) C F, s o tha t U V (Ni) = F :=. V V {Pi) • N ow for 

,·:, i :.t c: =• 

Therefore V(Pi)CV(Nj) for some j, j = l, ••• ,n. If j ~ i 

it follows that V(Pi)CV(Nj)CV(Pj), which is a contradiction. 

is a contradiction. Renee PiEF, i = l, ••• ,n. Therefore 

"" V(Pi)CF, i = l, ••• ,n by {1), so that i'!,V(Pi)CF or FCF. 

-It follows that F = F and F is closed. 
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z. Support of a module. 

Definition 2: Let R be a ring and let A be an R-module. 

Then the set of prime ideals P in R auch that Ap ~ 0 (See 

Chapter II, Section 2, Remark 3.) is called the support 

of A and is denoted by Supp(A). 

Proposition 12: If I is an ideal in R, then V(I) = Supp(R/I). 

Proof: We first show that if S is a multiplicative system 

in R, then s-1 {R/I) ~ s·1R;s-1I. 

Define t : s-1 (R/I)~s-1R;s-1I as follows: 

(1) r is wall defined: 

Suppose rl+ I = r 1 + ]. Then there exista an element s' 
s, 8.2 

so tha t !:· - !:~ E. s·1I and t' + s-1I = !:.t + s-1I 
s1 s.2 s, s~ 

(2} f is clearly an s·1R-homomorph1sm. 

(3) r is one to one: 
r + I r -1 r 1 If f ( ) = 0 then - + S I = o, so that - 4S s- I and 

8 8 8 

r c.I, r + I Renee = o. 
8 

(4} t is clearly onto. 

Therefore s·1 (R/I) ~ s·1R/S-1I. 

In particular, when S = R - P, where P is a prime 
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ideal in R, then (R/I) p ';;( Rp/Ip•· · Now by the corollary 

of Proposition 2, Chapter II, Section 1, Ip = Rp if and 

only if S f"\ I ri ~~ that is, if and only if It P. Renee 

(R/I) p = 0 if and only if I cF P. Therefore P ~V ( I) if and 

only if P E. Su pp (R/I) • 

In particular, Supp{R) = V(O) = Spec(R). 

Proposition 13: Let R be a ring and let A be an R-module. 

(l) If B is a submodule of A, then Supp{A) = 
Supp (B) LJ Supp(A/B). 

(2) If A is the sum of a family \Bi~ i E. I of submodules, 

then Supp{A) = USupp(Bi)• 
Ùi.t 

"' (3) If \BJi=• is a finite family of submodules of A, then 

" Il'\ 
Supp(A/ ('Bi) = ~ Supp(A/Bi)• 

(. =-· ( 'l:, 
Proof: (l) Suppose P é: Supp(A), that is, AP ri o. Then there 

existe an element a E:.A such that for all sE: s, as ri o. 
If P~ Supp(B) then Bp = o. We will show that (a + B)s ri 0 

for all sc. s. If (a + B) s = 0 for some sE. s, then as E. B 

and (as)s' =as" :yi 0 for all s•-.s, that is Bp :yi o. This 

is a contradiction. Renee (A/B)P ri o. 
Conversely, if P €Supp{B) then BP :yi 0 and therefore 

Ap :yi 0 {since BPC Ap)• If P€. Supp{A/B) then (A/B)p ri 0 

so Ap/Bp ri 0 and therefore AP ri o. Renee in both cases 

P E: Supp{A). 

(2) If Ap ri 0 and A = L: Bi, then there exista i.e:I such 
i~I: 

that (Bi)P :yi o. For suppose (Bi)P = 0 for all i ~I. Let 
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a E A, then a = b1 + ••• + bn• Now there exista si E:.S = R - P 

as = 0 and Ap = o. This is a contradiction. 

Conversely, if (Bi)P '1 0 for some iE.I, then there 

exista an element bi~ Bi such that bis '1 0 for all s'- s. 

Consider a = 0 + ••• + 0 + bi+ 0 + ••• • Now as 1 0 for 

all s é S so that Ap '1 o. 
"' {3) Let P E Supp(A/ (\Bi) 1 

t "" 

"' that is, (A/(\ Bi) p # o. 
( :, 

Th en 

" "' there exista an element a + (\ Bi such that (a + (\Bi )s 1 0 ,:., ,:., 

"" for all sEs, that is, as tf. 0 Bi for all s ~s. We will 
(. ::1 

show that there exista Bj such that as 4-Bj for all s's. 

If not, for all Bi there exista siE. S auch that asiE:: Bi, 

i = 1, ••• ,n. Let s = s1 ••• sn• Then as E.Bi, i = 1, ••• ,n 

"' so that as E: (\ Bi• This is a contradiction. Hence for 
',., 

soma j, as 4 Bj for all sE. S and therefore as + Bj 1 0 for 

all s '-S. Therefore (A/Bj)p 10 and PE.Supp(A/Bj)• 

"' Conversely, let PE. ~Supp(A/Bi), say PE:.Supp(A/Bj)• 
4. =1 

Then (A/Bj)P 1 0 so there exista an element a + Bj auch 

that (a+ Bj)s # 0 for all s E:S. Hence as j.Bj for all 

~ ~ 

sE: s, so that as f. (\Bi for all s € S and as + (\ Bi 1 0 
''=-1 l :., 

"' for all sEs, that is, (A/ 0 Bi )p ':f o. Therefore 
l :1 

" P € Su pp (A/ (\ Bi) • 
' :. ' 
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Notice that in case (3) we required a finite family 

of submodules of A. We will show that this is in tact 

necessary. Before we can do this, however, we shall require 

a few more resulta. 

Corollary: Let R be a ring and let A be an R-modnle. Let 

{mili E I be a system of genera tors for A, and let 

Ji = Ann mi = { r e. R : rmi = 01. Then Supp(A) = ~ V(J1). 
,~x 

Proof: A = l: Rmi so Supp(A) = .U Supp(Rmi) by Proposition 
i~I ~~r 

13. Now Rmi ~ R/Ji, where r + Ji~rmi. Renee 

Supp(A) = .U Supp{R/Ji) = U V(Ji) by Proposition 12. 
t €1. C:i.I 

Proposition 14: Let R be a ring, let A be an R-module, 

and let J = Ann A. If A is finitely generated then 

Supp(A) = V(J). 

"' Proof: Let ~ail,K, be a system of generators for A and 

Il'\ 

let Ji= Ann ai, i = l, ••• ,n. Tb.en J = (\ J1• (For 
(. O:.l 

Il'\ 

j'-J#jA = O~j(~ Rai)= O~Rjai = O, i = l, ••• ,n 
(al 

"" "' V(J) =V( (\Ji) 
(li:' 

= ~ V( Ji) = Su pp (A) by the corollary of 
t:l 

Proposition 13. 

Supp(A) is thus a closed set in Spec(R) = Supp(R). 

Corollary 1: Let R be a ring, let A be a finitely generated 

R-module, and let r be an element of R. Then r E. P for 
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all P e. Su pp (A) if and only if rnA = 0 for soma integer n. 

Proof: (\ {P: PE.Supp(A)f = () {P: PE:V(J)f where J =AnnA. 

{ See Propos! tion 14.) Now l\ lP : P E. V( J)J = 'J (V( J)) 

= <P (J) by Proposition 2, Section 1. But rE.. f'(J) if and 

only if rn E:. J for some integer n, tha t is 1 if and only 

if rnA = o. Renee the proposition follows. 

Lemma 1: Let R be a ring, let J be an ideal in R, and let 

I be a finitely generated ideal in R such that IC cP(J). 
k Then there e:xists an in te ger k > 0 such that I C J. 

"" Proof: Let I be generated by \:xjfjst• Now there exista 

an integer h such that xjh E. J, 1.,; j ~ n. Take k = nh. 

Then if xE: I, :x = R:x1 + • •• + R:J:n and xk = (Rx1 + • •• + rutn)k 

is in J. 

Corollary 2: Let R be a noetherian ring, let A be a finitely 

generated R-module, and let I be an ideal in R. Then 

Supp(A) C. V(I) if and only if there exista an integer k >O 

auch that IkA = o. 
Proof: Let J = Ann A. Then by Proposition 14, Supp(A) 

= V(J). Renee Supp(A) CV(I) if and only if V(J)C. V(I) 

and this is true if and only if I c @ (J) by Proposition 

2 1 Corollary 2, Section 1. Now since R is noetherian, 

I is finitely generated and so I c. fP (J) if and on1y if 

there exista an integer k)-'0 auch. that rkc.J by Lemma 1, 

that is, if and only if IkA = o. 
We can now show that case (3) of Proposition 13 

holds only for a finite number of submodules of A. Consider 

the case where R = A = z, the set of integers. Let p be 



a prime number. 

oO 

f. U Su pp ( Z/pkz) • 
k-: t 

We will show that Supp(Z/ (\ pkZ) 
"2'1 

CIO 

Now f\ pkz = (O) so that 
k•• 
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Supp(Z/ {)pkz) = Supp{Z) = Spec(Z) and therefore contains 
~ç., 

qZ for every prime number q. On the other band Z/pkz is 

finitely generated. (It is generated by 1 + pkz.) Renee 

by Proposition 14, Supp{Z/pkZ) = V(pkZ) (since pk~ 

oO 00 

Therefore Usupp(Z/pkz) = U V(pkz). 
k•l k=n 

oO 

Now suppose qZ E. Usupp(Z/pkz), that is, qZE.V(pkz) for 
k=• 

sorne integer k. :t'han pkz C qZ and qf pk. Hence q = p. 
oO 

The only prime ideal in U Supp(Z/pkz) is therefore pZ. 
k:~o~ 

We recall that in Proposition 14 we proved that 

if J = Ann A, where A is a finitely generated R-module, 

then Supp(A) = V(J). We will now show that the condition 

that A be finitely generated is actually necessary. 

Consider again the case where R = A = Z and let 

p be a prime number. Put M = Z/pZ@ Z/p2Z Œ> • • • • M is 

00 

clearly not fin1tely generated. Now Supp{M) = U Supp(Z/pkz) 
k::t 

by Proposition 13. If J = Ann M, then 

J = \rE. Z : r(Z/pZ G) ••• ) = 0 f 
=~rE. z : rZ'Cpkz, k = 1, 2, ••• / 

= -\' r E Z pkf r, k = 1, 2, • • • f 
= (0) 

So V(J) = Supp{Z). But in the example above we saw that 
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oO 

Supp(Z) -:/ U Supp(Z/pkz). Theref'ore V(J) -:/ Supp(M). 
k~• 

We will show, however, that in this case Supp(M) 

is closed. Let K = Supp(M) and suppose qZ is a limit point 

of' K, q being a prime number, that is, for all rE..Z such 

that qZ E ~, Xr n K -:/. ~. This means that if rf. qZ then 

there exista q1 Z, where q1 is a prime number, such that 

rtJ:.q1 Z and pkZcq1Z'for sorne integer k (See above example.), 

that is, q1 J pk so that q1 = p. Renee we have if r. qZ 

then rf. pZ. Now if q -:/. p then p j.qZ and i t would follow 

that pif pZ which is clearly impossible. Therefore q = p 

and qZ = pZEK = Supp(M). Hence Supp(M) is closed. 

It may seem that for any R-module A, Supp(A) is 

closed in Spec(R). (For example, this is always true when 

A is f'initely generated.) However we will now give an 

example where. this is not so. 

Let N = Z/Z ~ Z/2Z é& Z/3Z $ • • • • Tb.en 

- 00 Supp(N) = U Supp(Z/nZ) (SeeProposition 13.) =- U V(nZ) 
" ., "' ::., 

by Proposition 14. Now (0) is a prime ideal in Z and 

crO 

(0)~ U V(nZ). We will show that (0) is a limit point 
1'\ :a 1 

of Supp(N). 

Suppose {O)EXr, that is, r-:/ o. We must show that 

~ nsupp(N) '1 ~~ that is, there exista qZ, q being a prime 

number, auch that rf qZ and nZC qZ for some integer n. 

Take q to be any prime number greater than r. Then r4,.qZ 
CIO 

(since qy) and qZCV(qZ}C VV(nZ). Theref'ore Supp(N) 
"' 'C 1 
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is not closed in Spec(Z). 

Finally, we proved in Proposition 13 that if 

A = l:; Bi, where A is an R-module and the Bi are submodules 1 

,·E.r 
that Supp(A) = Usupp{Bi). We will show that this prop­

C:EI 

osition does not necessarily hold if A= TTBi• 
,·~1 

00 

Consider the case where A = IT Z/pkz, where Z is 
k-=• 

the set of integers and p is a prime number. We will show 

that Supp(A) = Supp(Z), that is, qZE.Supp(A) or (A)qZ' # 0 

for every prime number q. Now (1 + pZ, 1 + p2z, ••• ) is 

00 

in ~, = TI Z/pkz and (1 + pZ, 1 + p2z, ••• )s # 0 for all 
k-=t 

sES = z - qZ. For if (1 + pZ, 2 
0 for some 1 + p z, ••• )s = 

s' s, th en sE:. pnz, n = 1, 2, ••• so that pn\s, n = 1, 2, ••• 

This is of course impossible. Therefore Supp(A) = Supp(Z). 

However, as we have seen in an earlier exemple, 
oc:t k lJ Supp(Z/p Z) # Supp(Z). Hence the counter-example is 
kst 

established. 

Proposition 1$: Let R be a ring and let A and B be two 

R-modules such that A is finitely generated. Then 

Supp (H01:nR (A ,B)) C. Supp (A) f't Supp(B). 

• 

Proof: Let PE.Supp(H), where H = Ho~(A,B), that is, Hp# o. 
Then there exista f C. H such that sf # 0 for all s E:. S = R - P. 

Hence sf (A) # 0 for all sE s. If Ap = 0 then there existe 

an element sE. S such that sA = 0 by Proposition 4, Chapter 



II, Section 2. Therefore f(sA) = 0 for all fE.H, or sf(A) = 0 

for all fE: H. This is a contradiction. Hence Ap F 0 so 

P C. Su pp (A) • 

Now for any f ~ H, f (A) is fini tely generated. There­

fore Su pp (H) C. Su pp (f (A)) C Su pp (B) ( s ince f (A) C B )'. Hence 

Supp (HomR {A ,B)) C Su pp (A) (\ Supp (B). 

Proposition 15 does not hold if A is not finitely 

generated. For let A = Z/pZ e Z/p2z Ef] ••• 1 where Z is 

the set of integers and p is a prime number. We will show 

that Supp(Hom~(A,A))<tsupp(A). Recall that the only element 

in Supp(A) is pZ. Suppose q 1- p. Then qZE'.Supp(Homz(A,A)), 

that is, (Hom2 (A,A)}qZ 1- o. For l~Hom2 (A,A) and la-:! 0 

for a 11 s ~ S = Z - qZ. Therefore qZ E Su pp (Hom2 {A, A)) but 

qZ f. Supp(A) • 

Definition 3: Two ideals I and J of a ring R are said to 

be co-maximal if I + J = R or if there exist elements 

a 4::I and b LJ auch that a + b = 1. 

Proposition 16: Let R be a ring and let J1 , ••• ,Jn be ideals 

in R. 

(1) If I is an ideal in R auch that I and Jk are co-maximal, 

k = 1, ••• _,n, then I and J1 () ••• f"\ Jn are co-maximal. 

Also I and Jl•••Jn are co-maximal. 

(2) If J1 , ••• ,Jn are pairwise co-maximal (that is, 

J 1 + Jk = R for 1 F- k)_. then J1 f\ ••• () Jn = J1 ••• Jn• 

J'\ 1'\ 

Proof: (1) R = Rn = 1T {I + Jk) = I + 1T Jk CR. Hence 
k=l k=• 

r\ tl\ 

Now 1TJkC (\ Jk' 
1<=• \or.:a 

r\ 

so I + () Jk = R. 
k=• 
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(2) We use induction on n. Suppose J1 and J2 are co-maximal. 

Then Jl A J2 = (Jl" J2)(Jl + J2) = Jl (Jl (\ J2) + J2(JI (\ J2) 

Assume that the result holds for n- 1 Ji•s. By 

(1) Jn is co-maximal wi th J1 (\ ••• f) Jn _ 1 • Therefore 

= (Jl ••• J l)J • n- n 

Remark 6: I and J are co-maximal ideals of R if and only 

if V(I) f'\ V(J) = ~. For if' I + J = R then V(I) f'\ V(J) 

= V(I + J) = V(R) = ~~ and if' V(I) f\ V(J) = ~ then 

V(I + J) =~soI+ J = R. (See Remark 1, Section 1.) 

We conclude this paper with the f'ollowing rather 

lengthy but quite important proposition. 

Proposition 17: Let R be a noetherian ring and let A be 

a finitely generated R-module. Then A admits a decomposition 

as a direct sum of modules A1 , ••• ,As (A = Al G) ••• (f) As), 

where Ann Ai= Ji, i = l, ••• ,s, and the Ji are pairwise 

co-maximal (i = l, ••• ,s). Each Ai oan be decomposed no 

f'urther in the above manner. If I = Ann A, then 

I = J1 f"\ ••• f"\ J 8 = J1 ••• Js and we thus obtain a representa-

tion of I as an intersection of pairwise co-maximal ideals. 

Eaoh Ji can no longer be represented as auch an intersection. 
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Proof: Since R is a noetherian ring, X = Spec(R) is a noeth­

erian space, by Corollary 7, Proposition 2, Section 1, 

and hence so is Supp(A). (See Proposition 10, Chapter I~I, 

Section 2.) Therefore Supp{A} has only a finite number 

of connected components, say Supp(A) = v1 \) ••• V V8 , where 

the Vi are the connected components, i = l, ••• ,s. (See 

Proposition 12, Chapter III, Section 2.) 

Let I = J 1 1 f'\ • • • f\ J 1 t (\ • • • (\ J s 1 (\ • • • () J s t 
' ' 1 ' ' s 

be an irredundant primary decomposition of I (See Chapter I, 

Section 2.) with ~,j = 6l(Ji,j) and auch that Qi, je Vi 

(j = l, ••• ,ti and i = l, ••• ,s). (\Ji t • 
J i 

Then I = J1 f\ ••• f'\ Js and Supp{A) = V(I) = V(J1 (\ ••• 1'\Js) 

= V(J1 ) U ••• U V(Js)• (Ais finitely generated::See 

Proposition 14.) Now V(Ji) = V{Ji,l (\ ••• (\Ji, ti) 

= v (Ji 1) u • . • u v (Ji t ) = v (Qi 1) v • . • u v ( Qi t ) 
J ' i , J i 

and vi is c1osed; see Proposition 11, Section 1.) Further­

more V(Ji) f"\ V(Jk)C Vi(\ Vk =~for i :F k and since V(Ji) 

and V(Jk) are both c1osed they are separated. We will 

show that V(Ji) is a connected component of Supp(A), 

i = l, ••• ,s. Suppose V{Ji)CY, where Y is connected and 

YCSupp(A). Then YCV(J1 ) U ••• U V(Js) so that YC.V(Jk) 
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for some k. Hence V(Ji)CV(Jk). It follows that V(Ji) =Y. 

Therefore V(Ji) is a connected component in Supp(A). By 

the uniqueness of connected components V(Ji) = Vi, i = l, ••• ,s. 

Also since V(Ji) fl V{Jk) = ~ for i # k 1 Ji and Jk are co­

maximal by Remark 6. 

Let Li = 1\. Jk' let Ai = LiA' and let Bi = Z ~~ 
k?:' k*C: 

i = 1, ••• ,s. We will show that A = A1 Et) ••• <tl As and 

J 1 = Ann Ai. 

{ 1) Ji = Ann Ai: 

JiAi = JiLiA = (Ji(\ Li)A {since Ji and Li are co-maximal; 

see Proposition 16) = IA = o. Therefore Ann Ai:::> Ji. 

Conversely, suppose xAi = o. We will show that 

xE' Ji. Now xL1A = 0 so that xL1C IC Ji. Since Ji and 

Li are co-maximal, therefore there exist elements ai~Ji 

and bi~ Li such that 1 = ai + bp Hence x = xai + xbi E:.Jp 

(2) The Ai generate A: 

Since the Jk are pairwise co-maximal, k = l, ••• ,s, there­

fore J1 and ~Jk = rl.Jk =Li are co-maximal, by Proposition 
k#<. k•to<. 

16. Renee for every i there exist elements ci~ J1 and 

di~ Li such that ci + di = 1. It follows thst 

1 = d1 + c1 (d2 + c2 {d~ + ••• +cs_ 1 (d8 +cs))) ••• ))), 
""' 

that is, 1 = x1 + ••• + xs + y, where xi€ Li, i = l, ••• ,s 



(sinee yA = 0) = A1 + ••• +As so A = A1 + ••• + As• 

(3) The sum is direct: 

If i ~ j, LiAj = <t:,Jk)Aj JjAj = 0 by (1). Tberefore 

LiBi = Li(~'Aj) =o. Renee if x€'Aif"\Bi, then (Ji+ Li)x 
J*C.. 

= Jix + Lix = Rx = o. It tollows that x = o. 
We will now show that (i) tor each i, Ai #Ai' (!)Ai" 

with Ji'+ Ji"= R, where Ji'= Ann Ai' and Ji"= Ann Ai" 

= V ( Ji ' Il Ji" ) = V ( Ji ' ) U V ( Ji" ) • But V ( Ji ' ) f\ V ( Ji ") = ~ 1 

since Ji' and Ji" are co-maximal by Remark 6. Theretore 

Supp(Ai) = V(Ji) = Vi is not conneeted. This is a contra­

diction. 

( ii ) If T... t = J. " T... '' - J t 1\ t - E tA: and A: " - L ""'· tc k 1 tc - k 1 i - i 1 i - i a, 

We Ob ta in A = A ' LI:\ A " J ' - Ann A ' and J " - Ann A 11 
i i ~ i , i - i ' i - i 

by an argument similar to that in (1), {2) and (3) above. 

However this is impossible as we have just seen. 
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