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PREFACE

In the following thesis the prime ideals of a ring//
are consldered as points of a topological space, The
topology on this space is called the Zariski topology or -
the spectral topology.,

Many results in this paper are topological ones,
but algebraic methods asre usually employed in acquiring
these results,

Complete proofs are given for all propositions with
the exception of those in Chapter I,

The paper presupposes a knowledge of elementary
Topology and Modern Algebra as can be found, for example,
in [5]

I would like to thank Dr, I, Connell for the great

deal of time and help he has given me,



I, Review of basic facts.

In the following paper all rings will be commutative,
with an ildentity,

l, Prime and primary ideals,

Definition 1: Let P be an ideal in a ring R, Then P 1is

said to be prime if whenever xy is in P, then elther x
is In Por y is in P,
Definition 2: Let R be a ring; Then the prime radical of

R, or simply the radical of R, is the intersection of all
prime ideals of R, We denote the radical of R by @P(R).
Definition 2: Let R be a ring and I an 1deal of R, Then

" the prime radical of I, or simply the radical of I, is the

intersection of all prime 1ideals of R which contain I,
We denote the radical of I by #(I).

Note that @P(R) = £(0).

We will recall and prove the following proposition
which will be used often in this paper,

Proposition 1: p(J) ={xeR : x?eJ for some positive

Integer n}.
Proof: Let xg £(J). Suppose x"¢J for every positive
integer n, Let £ be the set of 1deals I such that JCI

and xB

is not in I for every positive integer n, Since
Jis ind R L 1s not empty., Furthermore, L is partially
ordered by inclusion, Finally, suppose & is a chain in & ,
Put L = U L;, where the L, are in §. Then L is an idesl
which contains J and xn 18 not in L for every positive

integer n, Also L is an upper bound for § . Hence by
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Zorn's Lemma, o( contains a maximal element M,

We will show that M is prime, For suppose that
ab €M, but ag¢ M and b¢M, Then M + aR2M and M + bRRZN,
so that xMEM + aR and x“€M + bR for some positive integers
m and n. It follows that x® ¥ B E€(M + aR) (M + BR)CM + abR
CM, This 1s a contradiction, Hence M is prime, But
JCM, so P(I)C @(M) = M, and therefore x€M, This is
a contradiction,

Conversely, suppose x"€J, Then x"€P for every
prime ideal P such that JCP, It follows that xE€P for
all such P, so that x€ £(J),

The remaining propositions in this chapter will
-be stated without proofs, (The proofs can be found in (§).)
Proposition 2: If T and J are ideals in a ring R, then

the following properties hold:

(1) If ICJ for some positive integer k, then P(I)C ©(J).
(2) P(13) = P(INT) = P(I) NP,

(2) P(EPI)) = P(I).

Definition lir Let R be a ring and let Q be an ideal in R,

Then Q is said to be primary if for elements a, bER,
whenever ab € Q and a¢Q, then there exists an integer m
such that b"€ Q.

Proposition 2: Let Q be a primary ideal in a ring R, Then

P=((Q) is a prime 1ideal,

P 1s called the assoclated prime of Q,



2, Primary decomposition theorem,
Definition 5: ILet R be a ring, R is said to be a noetherian

ring if 1t satisfies the following three equivalent
conditions:

(1) (sscending chain condition) Every strictly ascending
chain I3 $I> % ... of ideals of R is finite,

(2) (Maximum condition) In every non-empty family of ideals
of R there exists & maximal element, (It is not necessarily
a maximal ideal of R,)

(3) (Finite basis condition) Every 1deal of R is finitely
generated,

pefinition 6: An ideal I in a ring R is said to be irreducible

if 1t is not a finite intersection of ideals strictly
containing it,
Proposition j: In s noetherisn ring every ideal is a finite

intersection of irreducible idesls,

Proposition 5: In a noetherian ring every irreducible ideal

is primary,

Hence every ideal in a noetherian ring is a finite
intersection of primary ideals,
Definition 7: A representation I = ;\Qi of an ideal I as

(€
& finite intersection of primary ldeals Q4 is said to be
irredundant (or reduced) if it satisfies the following
conditions:
(1) No Qi contains the intersection of the other ones,
(2) The Qi's have distinct assoclated prime 1idesls,




Proposition 6: In a noetherian ring every ideal admits
an irredundant representation as a finite intersection
of primary idesals,

Definition 8: The associated prime ideals of the primary
ideals occuring in an irredundant primary representation

of an 1deal I are called the associated prime idesls of I,

or simply the prime 1deals of I,
Definition 9: A minimal element in the family of assoclated

prime ideals of I 1s called an isolated prime ideal of I,
n
Definition 10: If I = (\Q4 is an irredundant primary

(=

representation of I, the 1deals Q; are said to be the primary
components of I, and Qi is called isolated if its assoclated
prime ideal is 1isolated,

proposition 7: Let R be an arbitrary ring and I an 1deal

of R admitting an irredundant primary representation

I =—f§Q1, and let P4 = ¢ (Qi). Then the P, are uniquely
determined by I, Hence the 1solated primary components

of I are uniquely determined by I,




II., Quotient rings and quotlent modules,

1, Quotient rings,
Definltion 1l: Let R be a ring and let S be a subset of

R which is closed under multiplication, such that 1€ S
and 0€S, (Such a set 1s often called a multiplicative

r
system,) Put D = {g + s€S and rER}. Then we define the

guotient ring of R, S'lR, to be the set of equivalence

classes in D of the form [2] with r€R and s €S, where

8,
such that s'(r

[3‘] = [22] if and only if there exlsts an element s'€ S
2

180 = Tp81) =0

We make S™IR into a ring by defining addition and

multiplication as follows:

(1) [g] R [Ea} _ [x%m]
® [&] [3] -[]

We must show that these operations are well defined,

ry] - Jas ry] - ez
Suppose that [é-:] = [b‘] and [szl [bz} » that 1s,

gt (ryby - sqa7) = 0 and s8"(ryb, - spa3) = O for some s!

and s" in S,

We will show that (1) {g:} + [%ﬂ = [E:] * [g:] and
that (2) M%:] [%’ﬂ = E:] Lgﬂ .
(1) [ } . [bz] Liﬂ&sisézh] and[ ] . [:.’g] ’[’wﬁs—;’;‘ﬂ

Now we must find an element s €S such that

s(slsz(alb + a, 1) - b 2(rls2 + rzsl)) = 0, that is,



such that s(slszalb2 + slszaabl-’ blbzrls2 +-b1b2r251) = 0,

Take s = s's", Then, since s'r;b; = s’sja; and

s"r2b2 = s"saaz, we have, in fact that the above expression

is equal to zero,
In a manner very similasr to the above it can be
proved that multiplication is also well defined,
Henceforth, instead of working with a class [glwe
we willl work with one of 1ts representatives, 5.
Note that E = 0 if and only if there exists an
element s'€ S such that s’r = 0,
Proposition 1: There exists a ring homomorphism h : R - S™IR
such that
(1) N = kernel b ={xeR ¢t sx = 0 for some scsf .
(2) the elements in h(s) are units in S'IR.
Proof: Define h : R—S"1R by h(r) = T . Then b is clearly
a ring homomorphism,
(1) h(r) = 0 if and only if E = 0, and this is so if and
only if sr = O for some s€ S,
(2) If h(s) 1s in h(S) then h(s) = 5 1s a wnit in SR,

-1
(} is in S 'R,)
s

Ll 1

h is called the canonical mapping from R into S-lR.

We denote by Sh(J) the i1deal generated by h(J) in
s'lR, where J is an ideal in R,
Definition 2: An ideal I of R is said to be a contracted

ideal if and only if h-l(Sh(I)) =TI,




1

Definition 3: An ideal L of SR is said to be an extended

ideal if and only if it 1s of the form Sh(J) for some
ideal J in R,

Proposition 2: Let S be a multiplicative system in a ring

R, and let s=1R be the quotient ring of R with respect to
S, Let h be the canonical mapping from R into s-1g,

(1) If I is an 1deal in R, then h~1(Sh(I)}= {reR : sr

is in I for some s € S§,

(2) Every ideal L of S'lR is an extended ideal,

Proof: (1) Suppose x€h™1(Sn(I)). Then h(x)€ Sh(I). Hence

X _ X Ji
7= Z 5: i-‘, where x3 €R, 8;€S, and yy eI, Wrlting the
[S
sum over a common denominator, ]Tsi = 3 €S, we see that
¢
the numerator is in I, so that ;-‘ =§ , where ye I, It
follows that EEE:.I = 0, so that there exists an element

8'€ S such that st(xs - y) = 0, Therefore xss! = yste1I,
or xs" &I, where s" = ss!,

Conversely, suppose xs €I, Then h(xs)€h(I), that

is, ;—‘-%E_h(I)CSh(I). Then ;—ti = §€Sh(1). Therefore

h'l(g)e h'l(Sh(I)) and so th-l(Sh(I))-

(2) We will show that Sh(h'l(L)) = L for every ideal L

1

of ST"R, Clearly h(h'l(L))CL, so Sh(h-l(L))CL. (L is

an ideal of S™IR,)

X

Conversely, if a €L, then a = S where x€R and

S€S., Therefore ’5‘35‘ = %€r, so that xeh™1(L) ana



a = <esh(h~1(1)),

WM

Remark 1l: If s"11 = { g- : 8¢l and se S}, then we saw in

(1) that Sh(I) = 8%

I for every ideal I of R,
Corollary: If I is an ideal of R, then Sh(I) # S~IR 1if
and only if INS =4,
Proof: Sh(I) = s'la@h'l(Sh(I)) = h'l(s'la) =R
S1 eb-l(Sh(I)) <> there exists an element s e S such
that 1,8 eI DS NI F#L,
Proposition 3: ILet R be a ring and let S be a multiplicative
system im R, Let h be the canonical homomorphism from R
into S™IR, If P NS = @, where P is a prime idesal of R,
then P 1s a contracted ideal and Sh(P) is a prime ideal
of s~1r,
Proof: Clearly Pch-l(Sh(P)).

Conversely, if aeh-l(Sh(P)), then ase P for some
s¢S, Therefore a€P (since S NP = ¢),

Let S-E e¢Sh(P), so that ab &P, (See Remark 1,)

Then a €P or b €P, say a € P, Therefore %eSh(P), 80

§€Sb(P). Hence Sh(P) 1s a prime idesl of S-]‘R.
s

Corollary: The mapping P—»>Sh(P) is a one to one mapping
of the set of all contracted prime ideals of R (or equiv-

alently: the set of all prime ideals of R which are disjoint

from S) onto the set of all prime 1deals of S'lR.

Proof: If Sh(Pl) = Sh(P ), then h-l(Sh(P ))= b-l(Sh(P ))e
2 1 2
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Since P1 and P2 are contracted ideals, it follows that

Pl = P , Therefore the mapping is one to one,
Let L be a prime ideal of S™IR, Then P = h (L)
is a contracted ideal in R, So we have Sh(P) = L and the
mapping 1s onto, |

Note: PAS = g, For 1f PNS # 4, then Sh(p) = s‘ln.
(See Corollary of Proposition 2,) But Sh(P) = L so that
L= S-lR, which is a contradiection,

Remark 2: If P 1s a prime ideal in R then S =R - P 1s a

multiplicative system, We denote s=1p by Rp.
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2., Quotient modules,

Definition lj: Let R be a ring and let S be a multiplicative

gystem in R, Iet A be an R-module, Put F = {3 st agh

and sessf. Then we define the quotient module of A, S-lA,

to be the set of equivalence classes in F of the form

[3] with a €A and s ¢S, where [E'J::IEI} if and only 1if
\ 82

there exists an element s'(S such that s'(a‘sz - azs,) = 0,
- =1
We make S~1A into an S R-module by defining addit-

ion and multiplication by an element of S-lR as follows:
a a,s,+ 8,8

(1) [f' * -2]= L2 20

8, S, 8,8,
@) 122 =122

8|} s, 8,8,

As in section 1, 1t can easily be shown that these
operations are well defined, Again we work with a repre-
gentative g of the class [s] Instead of with the whole

class,

Note that =
- ]

0 1f and only if there exists an element

s €S such that s'a = 0,

We have the canonical group homomorphism h : A@~>s'1&

defined by h(a) = % , which satisfies the two conditions

of Proposition 1 in section 1, with R replaced by A and

1

s-lR replaced by S A, The image of an R-submodule of

1

A is made into an R-submodule of S "4 by defining rh(a)

to be equal to ?h(a).
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Remark 3: If S =R -~ P, where P 1a a prime ideal of R,

we denote S™1a by Ap.

Proposition L: If A is a finitely generated R-module, then
s-l
that sA = 0,

A = 0 1f and only if there exists an element s ¢S such

Proof: If sA = 0 then clearly S-IA = 0,
Conversely, since A 1s finltely generated, there

exist elements 87500098y In A such that A = a;R + ,,, + anR.

Since S-lA = 0, for all a; in 4, 1 =1,,,.,n there exists
an element s; in S such that 84 a3 =0, Put s = SqeeeSy e
Then sa = 0 for all ag¢gA, and so 8A = 0,

Temma 1: Iet R be a ring, If I is an ideal in R, then
the set S = { l+x: erf is a multiplicative system

of R, The 1deal S™1I of S™IR 1s contained in the Jacobson
radical of S™IR; R (s~1r),

Proof: The first assertion 1s clear,

To show that S']'Ic R(S']'R) it 1s sufficient to
show that for all Ees'-lI, % - f is a wnit in s'lR. Now
]
n
l_:_t=s+x=1+x tx_1+x and since 1 + x" 1is
1l s s s s

1 in s~1gr,

in S, by the definition of S, therefore
1+ x"

Thus % - E is a unit in S']’R.

Proposition 5: If A 1is a finitely generated R-module and

I is an ideal in R, then IA = A if and only if there exists

an element x €I such that (1 + x)A = 0,
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Proof: If there exists an element x¢ I such that (1 + x)4 =0
then clearly IA = A,

Conversely, let S = {1 + x er} e Since 4 is
a finitely generated R-module, therefore s71a 15 a finitely

generated S-]R-module. For 1if 89,¢e.y8y 13 a system of

generators for A then i!:‘ ,...,%" is a system of generators

1

for ST'A, Since IA =A, therefore S™T

I,51p = s71a, For

a -1 .
ir ;eS A, where a €A and s¢ S, then a = ylal * cee *+ .5,

where y, is in 4, 1 =1,,.,.,n, Hence =Z-é-a—‘ # 0ee + Yé‘ﬁa

1

- -1 -
ll.S A, But by Lemma 1, S I ®R(S lR).

= Z' a“*‘ ese F I"E"GS-
s 1 s 1l

=0, ( R(sIm).s™1s

is contained in ® (S-IA) and (R(S-]'A) = 571 imply that
1

Therefore, by Nakayama's Lemma, S

S A =0,) Hence, by Proposition li, there exists an element

1 + xeS such that (1 + x)& = O,




II, Topology
1, Irreducible topological spaces,

Definition 1l: A topological space X is said to be irreducible

if every finite intersection of non-empty open sets is
non-empty,

For a topological space X to be irreducible it is
necessary and sufflclient that 1t be non-empty and that
the intersection of two non-empty, open sets in X be non-
empty (or what is the same, that the union of two closed sets
different from X be different from X),

Proposition 1: Let X be a non-empty topological space,
The following conditions are equivalent:

(1) X 1s irredﬁcible.

(2) Every non-empty, open set in X is dense in X,

(3) Every open set in X 1is connected,

Proof: (1l)<=>(2), By definition, A 1is dense in X if and
only if ANG # @ for every non-empty, open set G in X,
(3) =P (1), Suppose X is not irreducible, Then there
exlist non-empty, open sets U1 and U2 in X such that
Ul/\ U2;= #. Then Ul\J U, is an open set in X which 1is
not connected,

(1) => (3). Suppose U is an open set in X which is not
connected, Then there exists a non-empty subset of U,
not equal to U, say A, which 1s both open and closed in
U. € (A) in U is also both open and closed in U (hence
in X) snd A N 6 (4) = g, Hence X is not irreducible,
Remark l: A Hausdorff space is irreducible only if it
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consists of a single point,
Definition 2: In an irreducible space X, a point x 1s sald

to be a generator if fi? = X,

Remark 2: If X 1s a T,-space (that is, for every two distinct
points of X there exists a neighborhood of at least one
which does not contain the other) then X has at most one
generstor, For 1f x and y are two distinct generators

of X, that 1is, i;} = f;} = X, then clearly every neigh-
borhood of x meets fyj and conversely,

Remark 3: If X 1s a T,=-space (that is, for every two dis-
tinct points of X there is a neighborhood of each which

does not contain the other) then X has no generators, unless
it consists of only one point, For if x and y are two
distinct points of X, then {xj = X implies that every
neighborhood of y meets {xg. This is a contradiction,
Proposition 2: Let X and Y be two irreducible spaces, each
with at least one generator, Iet f : X—Y be a continu-
ous function, Then f?fj = Y if and only if for every gen-
erator x in X, f(x) = y is a generator in Y,

Proof: Let £(X} = Y, Suppose f£(x) =y, where i;? = X,

Then f(X) = f({—x-})c: {f(x)f o« (See (3, page 86,) Hence
f(X)c m}, that 1s, {f(x)f =Y,

Conversely, there exists a point x in X such that

)

ixj = X and {£(x)] = f}? =Y, Now f(x) is in £(X), so
{£(x)} c£(X) and T(X) = ¥,

A subset E of a topological space X 1s an irreducible
set 1f the subspace E is irreducible,
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Iet E be a subs;t of X, Then E 1s irreducible if
and only if for every two open sets U and V in X, such
that UNE # @ and VN E # @, we have that (U NV) NE # ¢,
or (what 1s the same) for every two closed sets F and G
in X such that ECF U G, we have either ECF or EcG,

The proof 1s as follows, If U and V are open in
Xand U' = UNE # @, V! =VNE # ¢, then U' and V! are
both open in E, Hence U'MN V! # @, Therefore
(UNV)NE # 4,

Conversely, let U and V be two non-empty open sets
in E, We must show that UNV # g, Now U NE # ¢ and
VNE # @, 8o (NAV)NE # ¢ and clearly UNV # ¢,

By induction on n we deduce that if {F1§ 1<isn 18
a family of closed sets in X such that EC C} F‘1 then

=i
EcCFy for some 1, lsisn,
Proposition 3: In a topological space X, a subset E is
irreducible if and only 1if E is irreducible,
Proof: If G is open in X then G NE # @ 1f and only 1if
¢ \E # @, For if xeE NG then every neighborhood of
x meets E, But there exist;s a neighborhood of x, say N,,
such that N, CG, so G meeta E, that is, G NE # ¢, The
proposition follows immediately,
Proposition L: (1) If X is an irreducible space, every

non-empty, open set in X 1s irreducible,
(2) Let Wa}agﬁa be a non-empty, open covering of a
topological space X such that U, N U, # @ for all a, be A,
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If the sets U, are irreducible then X 1s irreducible,
Proof: (1) If X 1s irreducible, U is a non-empty, open
subset of X, and V is a non-empty, open subset of U, then
V 1s also open in X and hence dense in X, Therefore V
is dense in U, so U is irreducible by Proposition 1,

(2) We will show that for every non-empty, open set V in
X, VNTU, # ¢ for all aeA, Now since X< Q\{AUQ, there
exists &t least one c € A such that V NUc # ¢, Since
Ug N T, # ¢ for all ae 4 and VN T, is dense in U,, (It
is open in U, and U, is irreducible,) therefore

VAT, \NUy #@ for all acA, Hence U, NV # ¢ for all
a€aA,

Now V F\Ua is open in Ug and so is dense in U& for
all a€ A, We will show that V = X, Let xeX, Then
x€U, for some acA, But -V_R_fl-a = Uy, Therefore for every
neighborhood Nx of x, N_ N\ (VN Ty) # @, In particular
Ny NV # g, Hence xeV and V = X, that 1s, V is dense
in X, so X is irreducible,

Proposition 5: Let X and Y be two topological spaces and

£ a continuous function from X into Y, Then for every
irreducible set E in X, f(E) is irreducible in Y,
Proof: Suppose U and V are open sets in Y such that
UNEE) #F and VN £(E) #F., Then £71(U) N E # ¢; for
1f x€U A £(E), then x ef(E), so £*1(x) N E # ¢, But
£ = e Hu), so £THW) N E £ 4.

Similarly, £1(V)\E # @, Therefore
(f"l(U) N f'l(V)) AE # ¢, that 1s, £ 2 (T NAV) NE # ¢,
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Hence (UNYV) NFf(E) # &,
Definition 3: A maxlimal 1rreducible set in a topological

space 1s called an irreducible component,

By Proposition 3 every irreducible component of
X 1s c¢losed iIn X,

Proposition 6: Let X be a topological space, Every irred-

ucible set in X is contained in an irreducible component
~of X, and X 1s the union of its irreducible components,
Proof: Let G be an irreducible set in X, Let %) be the
family of 1rreducible sets which contain G, Since G is
in 9 , 7 is not empty, Furthermore, 7 is partially
ordered by inclusion, Finally, suppose & is a chain in
9. Put E =UF,;, where the F; are in G,

We will show that E is irreducible, ILet U and V
be two open sets in X such that UNE # @ and VN E # ¢,
Since § is totally ordered, there 1s a set Fy in & such
that Py N U # ¢ and Fa OV # #. Since F; 1s irreducible,
F;,N (UNV) #4, so EN(UNV) # ¢, Hence E is irred-
ucible, Clearly E is an upper bound for € , It follows
by Zorn's Lemma that 7 contains a maximal element T, which
is clearly an irreducible component, and GaT,

The second assertion follows from the first and
the fact that every set consisting of a single point 1s
irreducible,

Corollary: Every connected component of a topological space
X i1s the union of irreducible components of X,

Proof: Let D be a connected component of X, Let {F‘jz jed
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be the family of irreducible components of X such that

De UF'.1 and such that for each j€J some x in Fj i1s also
jev

in D, (If F;N D=4, Dc.#lpj.)

We will show that D= UF,,
jev

For each J, F'j is
irreducible and hence connected by Proposition 1, It 1s
therefore contained in a connected component which must
be D (since some x in FJ is also in D), Hence ch;D for

gll j€J and UF‘JCD.
JeT

Remark lj: Two distinct irreducible components of X may
have points in common, In fact, as we have seen above,
they may both be contaihed in the same connected component,
An example of such s case will be given later,

Proposition 7: Let X be a topological space and {Pif 1€isn

a finite covering of X formed with closed irreducible sets,
Then the irreduclible components of X are the maximal elements
(by inclusion) of the set of P4y's,

Proof: We may assume that the Py's are pairwise Iincompar-

"
able, Let E be an 1irreducible set in X, then EC UP:\.‘

(=2
Since the P, are closed, therefore ECP; for some i, l%lsn,

so the P, are the only maximal irreducible sets in X and

i
hence are the only possible irreducible components, Clearly

the maximal sets of {Pif 1¢i<n 8T® irreducible components,

Corollary: Let X be a topological space and let E be a
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subspace of X having only a finite number of distinct
irreducible components, SQ13151sn' Then the irreducible
components of the closure E in X are the closures Q4
(1sisn) of Q, (1ssfn) and Q1 #Qy 1f i;é 3o

Proof: Since E = UQy, therefore E = UJQy and Q1 1s

(st =t
irreducible (l¢isn), It remains to show that each‘ﬁi is
én irreducible component in'ﬁ. It suffices to show that
31¢51 for 1 # J, Now Q 1s closed in E, so Q NE = Q.
If Q3¢ Qy, then Q f\EcQ'J NE and Q3 €Qy. This is a cont-
radiction,

Proposition 8: Iet U be an open set in a topological space

X, The mapping V—V (closure in X) is a bijection from
the famlily of closed irreducible subsets of U onto the
family of closed irreducible sets in X which meet U, The
inverse mapping is Z—>Z MU, In particular, this bijection
maps the set of irreducible components of U onto the set

of irreducible components of X which meet U,

Proof: If V 1s a closed, irreducible subset of U, then

7 is irreducible, (See Proposition 3,) and V 1s closed

in X, Also VNU =V # ¢ (since V is closed in U),

——— ——

Suppose V, =V,, Then ViN\TU = VZ(W U and V; = Vs

Therefore the mapping i1s one to one, If Z is a closed,
irreducible subset of X and ZNU # g, then ZNU is a
non-empty, open subset of Z and so is irreducible, (See
Proposition L4,) Also 2N\ U is dense in Z, by Proposition
1, PFurthermore, since Z 1is closed, ZNAU = Z, Finally,




ZMNTU is closed in T,

Hence the mapping is onto,

21
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2. Noetherian spaces,

Definition l4: A topological space X 1s said to be noetherian

if every non-empty family of closed sets in X, ordered
by 1nclusion, has a minimal element,

Equivalently, every non-empty family of open sets
in X, ordered by inclusion, has a maximal element; or every
decreasing (respectively incressing) sequence of closed
(respectively open) sets in X is stationary,
Proposition 9: (1) Every subspace of a noetherian space

is noetherian,

(2) Let §Ai§iel be a finite covering of & topological

space X, If the subspaces A1 of X are noetherian for all
1€I, then X is noetherian,
proof: (1) Let X be a noetherian space, let A be a subspace

of X, and let {Fn be a decreasing sequence of subsets

n20

of A, closed in A, Then F, = F, M A for all n, and the
closures f; of Fn form a decreasing sequence of closed
sets in X, This sequence 1is stationary since X 1s noetherian,

Hence the sequence-{FhSnzo is stationary,
(2) Let {annzo be a decreasing sequence of closed sets

in X, For each n, G, N Ay 1s closed in A, for all 1€T

i
and hence {an\ Aifn,o is stationary for all 1€I, Since

I is finlte, there exists an integer ny such that for nr,

G, N A4 = Gpg N Ay for all 1e€I., But for each n,
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Gn = !JI(Gnn Ai)' therefore for nzng, Gn = Gng and {annzo
€
is stationary, so X 1s noetherian,

Proposltion 10: A topological space X is noetherian 1if

and only 1if every open set in X 1s compact,

Proof: Suppose X is noetherian, By Proposition 9 it is
sufficlent to show that every noetherian subspace of X

is compact, Suppose Y is a noetherian subspace of X,

Let {Uifiel be an open covering of Y, Let J be the
family of all finite unions of the Uy, ‘j 1s not empty
and g is ordered by inclusion, so ) has a maximal element,

say V =UU1, where H 1s a finite subset of I, Now VU Uy
(eH

1s in T and VeV U U, for all 1€I, Hence V=V U Ty for

i
all 1€eI, If xe¥, x€U; for some 1€I, 80 xeV UUi.
Therefore x€V and V = Y,

Conversely, suppose that every open set in X is

compact, and let {Unfnzo be an increassing sequence of open

o0
sets in X, V =U U, is open and hence compact, Since
n=Q

{Unfnzo 1s an open covering of V, there exists a finite
sub-family of {Unfnzo which covers V, say Ul,...,Um. There-
fore V = U, for some index r (11€U2<.., CUy) and

Up =Up 4 1 = eee 5 80 {Un nzo 1s stationary,

Lerma 1l: (Principle of noetherian induction), ILet E be
an ordered set such that every subset of E has a minimal
element, Let FCE with the following property: If a in
E 1s such that the relation x<sa implies that xeF, then
a is in F, We have then that F = E,
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Proof: Suppose F # E, Then G(F) # #, so it has a minimal
element b, Now b€E and x<b, so xeF, Hence beF, which
is a contradiction,

Proposition 11: If X is & noetherlan space, the set of irred-

ucible components of X (and a fortiori, the set of connected
components of X) 1s finite,
Proof: We will show that X 1s a finite union of closed
irreducible sets, (The proposition will follow from
Proposition 8,) Let E be the family of closed sets in X
(ordered by inclusion) and let F be the family of finite
unions of closed irreducible sets, (FCE,) Let Y be a
closed set in X such that every closed subset of Y (not
equal to Y) belongs to F, We will show that YEF,

If Y is irreducible, then Y is in F by the definition
of F, If Y is not irreducible, there exist closed sets
Y{' and ¥,' In X such that Ye¥;'U Yo' but YEY,! and

YEY,'s Let ¥y =Y3' Y and ¥, = Y,' N Y, Both ¥, and
Y, are closed in X (and Y), Then Y =YyU Yp, but Y # 7Y,

and Y # Yo, Now Y,€F and Y,€F, soY =Y

5 1U Y2 €F and

F =E by Lemma 1, Hence X 1s a finite union of closed
irreducible sets,

Remark 5: Suppose X is a noetherian Hausdorff space, Then
X 1s finite, This will follow if we can show that every
point in X is an irreducible component, But 1if {x}_&_F,
there exists an element y # x, in F and the subspace F is

Hausdorff, hence not irreduéible. (See Remark 1,)
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IV, The prime spectrum and support of a module,

1, The prime spectrum of a ring,

Let R be a ring and let X be the set of prime ideals
of R, For every subset M of R we write V(M) = iPCX st MC P}.
It is clear that if I is the ideal generated by M, then
V(M) = V(I), If M consists of one point a, we write
Vv(a) = V({af), and we have V(a) = V(Ra),

The mapping M-—»V(M) 1is monotone decreasing for the
relation of iInclusion in R and X, Moreover, we have the
following formulas:

(1) V(0) =X and V(1) = &,

(2) V(U My) =NV(My), M being subsets of R,
el cel

(3) (INJ) =V(IJ) = V(I)U V(J), where I and J are ideals
in R,
(4) V(“z‘jAIa) =£\AV(I&), where the I sre ideals in R,
Remark 1l: If I is asn ideal in R such that V(I) = @, then
I =R, For if I # R then ICM, a maximal ideal which 1is
also prime,
Remark 2: If I is an ideal in R, then V(I) = V(®(I)), For
if ICP then P(I)< #(P) = P,

Formulas (1) to (3) show that the family of sets
V(M) in X satisfy the axioms of closed sets for a topology,
Definition 1l: Let R be a ring, Let X be the set of prime
1deals of R with the topology whose closed sets are precisely
the sets V(M), where M runs through the set of subsets of

R, We call X the prime spectrum of R and we denote 1t by

Spec(R). The topology so defined is called the spectrsal
topology or the Zariski topology on X,
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Clearly Spec(R) = g if and only if R = J0f.

Let X be the prime spectrum of a ring R, For all
reR, let X, = iP €X : rq‘.P}. Then X, ‘=X - V(r), so that
X, 1s open In X, By (2) above every closed set in X 1is the
intersection of closed sets of the form V(r)., Hence the
X form a base for the spectral topology on X, Moreover
it follows immediately from the definitions that XO = dg,
X=X snd more generally X, = X for every unit r €R,

(X, = X = V(r), but reP, so rr-leP and 1P, which 1s a
contradiction, Hence V(r) = d,)
Remark 3: X, = X, N Xg for r and s in R, For X,4 = € (V(rs))

and X, N Xg = &(V(r) U V(s)), and rs<P if and only if
reP or s€P,

Proposition 1: Let R be a ring and let I be a finitely

generated 1deal in R, Then the following are equivalent:
(1) 12 =1I.

(2) I = eR where 62 = e eI,

(3) V(I) is open and the two conditions @(J) = @ (I} and
JCI imply that J = I,

Proof: (1) =>»(2), By Proposition 5, Chapter II, Section 2
12 = I implies that there exists an element f €I such that
(1L + £)I = 0, that is, for all aeI (1 + f)a = 0, Hence

a = «fa for all a€elI, Take e = -f, Then a = ea for all
ael, In psrticular 92 = e and I = eR,

(2) =»(3)., Let PeV(I), We will show that PeXy . e CV(I),
Now 1 -~ e¢P, For eelcP; so Pe€X, _ g+ Furthemore,

X eCV(I). For let Q€X; _ o, that is, 1 - e €Q, We

1l -
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will show that ICQ, It suffices to show that e€Q., Now
if e¢Q then e(l - ) = 0¢ Q. This is a contradiction,
Let ((J) = P(eR) and suppose that JC eR, We will show
that eRC J by showing that e €J, Now e€ P (eR) = P (J),
so e"€ J for some positive integer n, that 1s, e€J,
() =>(1). P(12) = @(I)N P(I) = £(I) by Proposition
2, Chapter I, Sectlon 1, Also I°CTI, so IZ = I.

For every subset Y of X, let €] (Y) = N {P : P€Y}.
Clearly €J(Y) is an ideal in R, The mapping Y—><J(Y)
1s monotone decreasing for the relation of inclusion in

X and in R, Moreover, we have ‘](ﬁ) = R and

(U Y) = N J(Yy) for every family {Ya‘i'aeA of subsets
acA a€EA

of X,
Proposition 2: Let R be a ring, let I be an 1ldeal in R,

and let YCX = Spec(R),

(1) V(I) is closed in X and €J(Y) is an 1deal in R equal

to its radiesal,

(2) CJ(V(I)) = P(I) and V(J(YV)) =T,

(3) The mappings ¢} and V define inverse monotone decreasing

bijections (that is, V =+

= ¢} ) between the set of closed
subsets of X and the set of ideals in R equal to their
radicals,
Proof: (1) V(I) is closed by definition,

YY) =N §{P : PEY} s an 1deal and (] (Y))

PN iP : PEY}) B {x : x%¢P for all PeY} =N £(P)
PeY

L}

NP = FJ(I).
Pey
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2 I =nfr:prev(Df=n {pr: 1cpf = P (1.
To show that V(J (Y))= Y we will show that V{J(Y)) is the
smallest closed set containing ¥, Let V(M)DY, If PeY
then P V(M) and MCP, that is, MCP for all PcY, Hence
Mc F(Y), so V(I (Y))cV(M), But YCV(TI(Y)) (since
V(D)) ={P : n{P : PeY} CcP} >Y), therefore VI("J(Y))
1s the smallest closed set containing Y,

(2) By (1)) is a mapping from the set of closed subsets
of X to the set of ideals in R equal to thelr radicals;

V is a mapping from the set of ideals in R equal to theilr
radicals to the set of closed subsets of X,

Jv=1, By (2),

I, If Y is closed

It remains to show that V9]

]

if T = € (I) then J(V(I)) = @(I)
in X then V(J(Y)) =Y = ¥V,
Remark Li: If McR, then V(M) = V(I) where I is the ideal
generated by M, Now V(I) is closed so V(% (V(I))) = V(I)
by Proposition 2, Hence V(T (V(M))) = V(M),

Similarly, F(V(I(Y))) = J(Y) for any YCX,

of closed subsets

a ¢ F fa
Corollary 1 or every family {Ya}aeA

of X, 9 ( r\Aya) = (X T (Y)).
ae

Q€A

Proof: Since Y, 1is closed for all a €A, therefore f\Ya
—_— acA

is closed, We will show that SJ( N Y,) is the smallest
% <A

1deal equal to its radical and containing all the J(Y,).

Suppose that I = @ (I) and J(Y¥,)<I for all aeA, Then
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V(I)CV("J(Y )) = Y, for all a A, that is, V(I)c N Y,

aen
Hence “J(V(I))D (N ¥,) and I> fJ(n Y,). Thus
ach
2 T(y,)c ‘JmY) and ®(Z T (%)) = (T (N,Y))
a &P ®cA

= T(QYa)e But @(Z,T(Y)) = P(C(Z T (,))) and

T (Ya)C P (2 T (Y,)) for all ae A, therefore
REA

TN T)C @ T(T,)), s0 RIS T(Y,)) = TN, T,).
oG

ach ach a¢A

Corollary 2: If I and J are two 1idesals in R, then the follow-

ing are equivalent:

(1) V(I)C V(J).

(2) J< (1),

(2) ® (7)< @(1),

Proof: (2)€>(3). This is clear,

(1)>(2)., V(I) = V(L (I)) and V(J) = V(P (J)) by Remark
2, so V(I)eV(J) SRV (V(P(J))) < T(V(F(I)))

<SS P (I e P(I),

Corollary 3: Let -ffafa < a e a family of elements of R,

If g€ R, then a necessary and sufficient condltion for

X,C UXe 1is that there exists an integer n such that
€ aca g

gn belongs to an ideal generated by the fa.
Proof: X € U Xp &> V(g)d M V(£ ) V(U fa)c V(g)
=" "g acA ‘2 POy S @’; aen 20 8

&> V(I)C V(Rg) where I is the 1deal generated by the £,
<> RgC P (I) (See Corollary 2,)& ge £(I) <= g¢e I for

some integer n,
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Corollary L: Xp = Xg if and only if there exist integers

m and n> 0 such that fMeRg and g eRf,
Proof: XfCXg if and only if fMe Rg for some integer m
and ch Xf if and only if gPe Rf for some integer n,

Corollary 5: X, = @ if and only if f 1s nilpotent,

f
Proof: XpCX, = g if and only if f2® = g for some integer n,

Corollary 6: (1) {Pf = V(P), where PEX = Spec(R).

(2) P} 1s closed in X if and only if P is maximal,
Proof: (1) A({rf) =n {P : pe{r}f =P, 50

V(g ({p§)) = 5} = V(P) by Proposition 2,

(2) {7} = P}e>V(P) = 47} &> Ja : Pcaf = {P} S P 1s
maximal,

Corollary 7: If R 1is a noetherian ring, X = Spec(R) 1s a

noetherian space,

Proof: Let {Ynf be a decreasing sequence of closed sets,

n>0

Then §(Y )}

n>0 is an Increasing sequence of 1deals in

R, Hence there exists an integer ny such that ¢J (¥,)

for n>n,, 8o V(¢ (Yn)) = V(% (Yno)) for n>ny and Y, = Yno

for n>no. Therefore X 1s a noetherlan space,
Proposition 2: Let R be a ring, Then for every reR the

open set Xr in X = Spec(R) is compact, In particular the
space X 1is compact,

Proof: Since the X, form a base for the topology, it 1s

sufficient to show that if {rafa ey 18 a set of elements
in R such that X,C v X, then there exists a finite subset
acA "8

T (¥,,)
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a\G)Xra, therefore
A

there exists an integer n> 0 such that r” 1s in the 1deal

{raga cH such that XrCQLJHXra. Since XI,C

generated by the r,, by Corollary 3, Proposition 2, Hence

r? is in the ideal generated by a finite number of the

r.s 887 {Tpfae He Therefore XrC;:ina (again by Corollary

3, Proposition 2),
In particular, X = Xy 1s compact,
Proposition li: Let R be a ring and let # be its radical,

Then X = Spec(R) is discrete if and only if R/® is a direct
sum of a finite number of fields,

Proof: Suppose X = Spec(R) is discrete, Then {Pf 1s open
for every prime ideal P in R, and SP} = X, for some reR,

that 1s, r¢ P, and if r¢Q then Q = P, Now U{Pf 18 an
PCR

open cover of X and since X is compact, by Proposition 2,

there exlsts a finite subcover, that is, there exist only

finltely many orime ideals in R, Also since X 1s discrete

each prime ideal is maximal, by Corollary 6, Proposition 2,

(§Pf 1s closed for every prime ideal P,)

We will show that R/@ =R/ APy *R/P; ®. . .@®R/P,

(=t

by induction on n, Define f from R/Py M P, to R/Py ® R/Pp

by £f (r + Py NPp) =r + Py + 7 + Py,

Clearly f is a homomorphism,
If f(r + Py F\Pz) =0 thenr + Py + v+ Pp =0 s0

P+ Py =0andr+ Py = 0, Hence r ePy and r ¢P, and
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rePy N Py, so that r + Py NP, = 0, Therefore f is one

to one,

Now P; + P =R, Let r = py + ps. Then
f(r+P1f\P2)=p2+P1+pl+P2. If r) + P; + r5 + P,
is in R/P; @ R/P,, say rq = p; + P, and rp = q1 + qp, Wwhere
P and q, are in P, and p, and q, are in Py, then
ry + Py +rp+ Ppr= Py + Pl +qq + Py and
f(q; + py + Py f\PZ) = p, + Py + q; + P,, Hence f is onto,

Suppose R/P; N ... NP, _ 1 TR/ ® ... ®R/P, _ 1,

N :
Now P, + C.\,Pi = R, For there exists an element p; ¢ P_
such that P1€P1' i=1l...,n -1, S0 p = PyeecePn . léPn
n-l n-t

but pe /)Py, Hence R/(\Py NP, SR/ VP, + R/P, by the

=t (=t ¢

case n = 2, Therefore R/ .;'\Pn = R/Pl D ... @R/Pn by
(g
induction,

Conversely, suppose R/P € F, @ ... ®F,, where

the F; are fields, Then R/ has only finitely many prime
ideals (all of the formF; ® ... ®F; _ 1 DODOF; , 1 D use

@ Fn) and hence so does R, These are clearly all maximal,

Suppose the prime 1deals are Py,...,P We will show that

n.

these are all open, We will show, for example, that Pl

is open, Since P1 is maximal, therefore P14‘. Pj for



J =2,00.yn 80 there exists an element r, ¢P1 such that

rjer for § = 2,,..,n, Then r =r2...rn¢.P1 and Jr'eP‘1

for J = 2,,..,n., Hence {P1§ = X, is open, ,
Proposition 5: Let R and S be two rings and let X = Spec(R)

and Y = Spec(S), Suppose h 1s a homomorphism from R into
S, Then the mapping Spec h : Y—>X defined by
Spec h(Q) = h-l(Q) is continuous,

Proof: Let V(M) be closed in X, where M 1s a subset of R,
We will show that Spec h'l(V(M)) 1s closed in Y, Now
Spec h-l(V(M)) ={QE-Y : Spec h(Q) e V(M)}

={qeY : n-l(qQ)e v(m)?
={qey : mcn Y ()?
={QeY r h(McQf

V(h(M)), which is closed in Y,

The function Spec h 1s called the function associated

with the homomorphism h,
Remark 5: Spec is a contravariant functor from the category
of commutative rings to the category of topological spaces,

Proposition 6: Let h ¢+ R—>»S be a homomorphism such that

for all seS, s = uh(r), where u is a unit in S and reR,
Then there exists a subspace V of X = Spec(R) such that
Spec h : Spec(S)—>V is a homeomorphism,

Proof: (1) Spec h is continuous by Proposition 5,

(2) Spec h is clearly onto, |

(3) Let Spec h(Qj) = Spec h(Q2), where Q, and Q, are prime

1deals in S, that 1s, h™l(g) = h"l(Q2). We will show
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that @ = Qe Let q€Q, then q = uh(r), where r €R and
u is a unit in 8, Hence uh(r)EQl so h(r)éQl, since u
is & unit in S, Tt follows that r€h™1(q) = h~1(Q,) and

so h(r)€ Q,. Therefore uh(r) = qug! so @€ Qy. Similarly,
QZCQ,]_. Hence Ql = Q2 and Spec h 1s one to one,

(4) It remains to show that Spec h™L 1s continuous, Tt
suffices to prove that Spec h 1s an open mapping, Let
Xg be a base member in Spec(S)., We will show that Spec h(Xs)

is open in V by showing that Spec h(Xs) = VMU, where
U 1is open in Spec(R), Now s = uh(r), where u is a unit
in S and r€R. We clalm that Spec h(Xg) = VN X,,

Let PE Spec h(Xg), that is, P€ Spec h({Q r s¢Q})
= {h'l(Q) : s¢Q}, that 1s, P = h'l(Q) where s €Q, so
clearly PEV, We will show that r &P, Since s€q,
uh(r) ¢ Q so that h(r)¢Q and r¢h‘l(Q)

Conversely, if PEV M X, then P

P,
h"l(Q) and r P,
Then 3¢Q. For if sE€Q then uh(r)€ Q so that h(r)e€ q and

reh~1(Q) = P, which is a contradiction,

Corollary: Suppose h 1is an epimorphism from R onto S and
suppose K = kernel h, Then Spec h is a homeomorphism from
Y = Spec(S) onto the closed subspace V(K) of X = Spec(R),
Proof: For all s€S, s = lh(r), where 1€S and r€R, so

by Proposition 6, there exists a subspace V of X such that
Spec h : Spec(S)—~»V is a homeomorphism, We will show that
V=V(K). Let PEV, Then P = h™1(Q) so KCP, Hence
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V(P)C V(K) and PE€ V(K),
Conversely, if P€ V(K) then KCP so that h(P) = Q,
- -1
a prime ideal of S, Therefore h 1(Q,) =h (h(P)) =P so
that PeV,

Proposition 7: Let h : R—>S be a ring homomorphism, Then

for every 1deal J of S, Spec B(V(3)) = V(h~1(J)).

Proof: If P&Spec h(V(J)) then P = h™1(Q), where JcQ,
Q being a prime ideal in S, that is, n (3 ent(Q) = .
Hence PéV(h-l__(J)). Therefore Spec h(V(J)) c:V(h"l(J))
and since V(h S(J)) 1is closed, it follows that

Spec B(V()TC V(™ ().

Conversely, let PeV(h"l(J)), that 1is, h'l(J)CP.
We must show that if P 1s not in Spec h(V(J)) then P 1is
a limit point of Spec h(V(J)), that is, for all r such
that PeX,, X,/ Spec h(V(J)) # #, or, for all r such that
r ¢P, there exlsts a prime ideal Q of R such that r&Q
and Q = h-l(P'), where JCP', P! being a prime ideal in S,

Now JC M, where M 1s a maximal ideal and hence a
prime ideal In S, Suppose that r¢P, We claim that there
exists a prime ideal P! of S such that JC P! and such that
h(r) ¢ P!, For if h(r)e€P for all P such that JCP, then
h(r)e @(J) = {xeR : x"eJ}, that is, h(r™) = h(r)PeJ
so h'l(h(rn))c,h_l(J) and r’e h'l(J')CP. Therefore r ¢ P,
which is a contradiction,

Let @ = h™l(Pt), Since h(r) ¢P'!, therefore
réQ = h-l(P'). (If reQ then h(r) €h(Q) = h(h"l(P'))cP',)
Hence P i3 a 1limit point of Spec h(V(J)). Therefore



36

P cSpec B(V(J)) and Spec h(V(T)) = V(b 1(3)).

Corollary: Let h : R—>S3 be a ring homomorphlism, Then

Spec h(Spec(S)) = Spec(R) if and only if kernel h is a
nil ideal,

Proof: Suppose kernel h is a nil ideal, so that
kernel hCP(OR), where Or 1s the zero of R, Then

Spec h(Spec(S)) = Spec h(V(0g)) = V(h’l(os)) by Proposition
7. Now V(h'l(os)) = V(kernel h) DV( P (0g)) = V(0g) (See

Remark 2,) = Spec(R), Therefore Spec h(Spec(S)) = Spec(R),

Conversely, suppose Spec h(Spec(S)) = Spec(R), that

1s, Spec h(V(04)) = V(0z)., Then v(h"l(os)) = V(0g) by
Proposition 7, so that fJ(V(h-l(OS))) = TJ(V(OR)). It

follows that ©(h™1(0g)) = @(0g) by Proposition 2, so
that @ (kernel h) = P(oR). Hence kernel h is a nil ideal,
Proposition 8: Let R be a ring, let S be a multiplicative

system In R, and let h be the canonical homomorphism from
R into S-lR; Then Spec h is a homeomorphism from Y =
Spec(s-lR) onto the subspace of X = Spec(R) consisting

of those prime 1deals Iin R which do not Intersect S,
Proof: (1) Spec h is continuous by Proposition 5,

(2) Suppose Spec h(Ql) = Spec h(QZ) or h'l(Ql) = h'l(Qe).

Then Sh(h™'(q;)) = Sh(h™}(Q,)) so that @ = Q, by Proposition

2, Chapter II, Section 1, Hence Spec h is one to one,

(3) Suppose P is an element of X such that PN S = ¢,
Then Sh(P) is a prime ideal of S™IR and h™1(Sh(P) = P by



Proposition 2, Chapter II, Section 1, Put Q = Sh(P),
Then Spec h(Q) = P so that Spec h 1is onto,
(4) It remains to prove that Spec h'l 1s continuous,

Let r' = Eé:S"lR, where rgR and s€S, Then Y . = Yy,
8 r! T

For Y., = {Q€Y : rr¢qf = {aey ; §¢Q} =4Q€Y ¢ §-§¢Q§
= : & = Y, r.s r '
={Qey : 1¢Q} Ye. (E-2eq if and only if < Q, since

is a unit in S-]‘R and hence 1is not in Q.)

Ll ]

Now §€Q if and only if reh-l(Q) = Spec h(Q).

For 1if reh-l(Q) then h(r)€ Q so §e Q. If h(r) = =€Q

=i

then h'l(h(r)) ch'l(Q,) and r eh'l(Q). Hence Eé.Q if and
only if r¢h™1(Q) = Spec h(Q), that is, QEYy if and only
if Spec h(Q) €X,. Therefore Spec h(Yr,) = X, N Spec h(Y),

For if Pe X, N Spec h(Y) then P = Spec h(Q), where Qe¥,

and Q€Yy = Y, so that P = Spec h(Q) €Spec h(¥,,).
{

Conversely, if Pe Spec h(Yr.) then P = Spec h(Q),

where QeYr, = Y., and so PeX_,
2 b ol

Therefore the image of a member of the base in Y
is the intersection of Spec h(Y) and a member of the base
in X, Hence Spec h=l 1s continuous,

Proposition 9: Let R be a ring, Then YCX = Spec(R) is

irreducible if and only if J(Y) is prime,
Proof: Let P = €J(Y), We claim that if reR, then reP
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1f and only if YCV(r), that is, re N {P' : Pre Y} ir and
only if YC{Q : re Q}. For suppose that re J(Y), Let
P'€Y, Then re¢P' so P'edQ : reqf,

Conversely, suppose that YC {Q : reQF, that 1s,
for all Q€Y, reQ. Thenre N {Q, : QeYf,

Now suppose Y 1s Irreducible and suppose that rselbP,
where r and s are elements of R, Then YL V(rs) =
Vir) U V(s), and since Y is irreducible, and V(r) and
V(s) are closed, therefore YC V(r) or YCV(s), that is,
reP or s€eP, Hence P is prime,

Conversely, suppose P is prime, Now Y = V(] (Y))

V(P) by Proposition 2, and since P is prime, P = J (P)
N {P : Pe {P}}. Terefore T = V(J(P)) = (Pf. Now

{P} 1s irreducible (since every set consisting of a single
point is irreducible), therefore so is {?} = Y and hence
so is Y, (See Proposition 2, Chapter III, Section 1,)
Corollary l: Let R be a ring., Then X = Spec(R) is irred-

ucible if and only if R/ (0) is an integral domain,
Proof: °J(X) = £ (0), so X is irreducible if and only if
® (0) is prime by Proposition 9, that is, if and only if
R/ P(0) is an integral domain,

Corollary 2:r The mapping P——?V(P') is a bijection from

X = Spec(R) onto the set of closed, irreducible subsets

of X, In particular, the 1lrreducible components of a

closed subset Y of X are the sets V(P), where P runs through
the set of minimal elements In the set of prime 1ldeals

of R which contain €J(Y),.
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Proof: If P&X then V(P) 1s irreducible, since
§(V(P)) = #(P) = P 1s prime by Proposition 9, Clearly
V(P) 1s closed,

If V(Py) = V(P,) then J(V(Py)) = J(V(P,)) and

P, = P», so the mapping is one to one,

If Y is a closed, irreducible subset of X then
°J(Y) is prime by Proposition 9, and V(¢ (Y)) = Y=Y by
Proposition 2, Hence the mapping 1s onto,

Let Y be closed in X, Its irreducible components
are among the V(P), where P is prime, Now V(P)CY if and
only if SJ(V(P))D J(Y), that is, if and only if PD J(Y)
by Proposition 2, Also V(P) is a maximal irreducible set
if and only if P is a minimal prime 1deal, For suppose
V(P) is maximsl, Then if QCP, V(P) CV(Q), so that

V(P) = V(Q). Therefore J(V(P)) = J(V(Q)) and @ = P,
Hence P is a minimal prime ideal,

Conversely, if P is a minimsl prime ideal, suppose
V(P)C V(Q), Then J (V(P))DI(V(Q)) so Q€P and Q = P,
Hence V(Q) = V(P)., Therefore V(P) is a maximal irreducible
set,

Corollary 2: The set of minimal prime 1deals of a noeth-

erian ring R is finite,

Proof: Since R is a noetherian ring, therefore X = Spec(R)
1s a noetherlan space by Proposition 2, Corollary 7, Hence
X has only a finite number of irreducible components,

But the irreducible components of X are the sets V(P),
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where P runs through the set of minimal prime ideals of
R which contain §(0), that 1s, all minimal prime ideals
of R, (See Proposition 9,) Hence R has only a finite
number of minimal prime ideals,

Proposition 10: Let R be a ring., Then

(1) X = Spec(R) 1is a T, space,

(2) every irreducible component of X has a unique generator,
Proof: (1) Suppose P1 and P, are two points in X such that
P, # P, Then either qut P, or P,& Py, say Py ¢ Py, We

then have that there exists an element rePl such that
rﬁ.Pz. It follows that Xr 1s a neighborhood of Pz‘which
does not contain P.,

1
(2) Let Y be an irreducible component of X, Then Y = V(P)
for some PEY by Proposition 9, Corollary 2, and
f;} = V(¢ (P)) = V(P) = Y, Hence Y has at least one
generator, That it 1s unique follows from the fact that
X 1s a T0 space and Remark 2, Chapter III, Section 1,
Corollary: If R 1s an integral domain and X = Spec(R), then
(1) X is irreducible and its generator 1s {(0)f.
(2) {(0)} is an isolated point of X if and only if the
intersection of all non-zero prime ideals of R 1s not equal
to zero,
Proof: (1) Since R 1s an integral domain, therefore (0)
is a prime ideal, so (0) = @ (0) and X is irreducible by
Proposition 9, Corollary 1, Also {?67} = V( ({(0)}))
= V(0) = X, (See Proposition 2,)

(2) Let M= §PEX : P # (0)}. Suppose {(0)} 1s an
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isolated point of X, that is, {(O)} is open in X, Then
S(O)} = X, for some reR and r€M. For if there exists
some P # (0) such that r¢ P then PE€X,, which 1s a contra-
diction,

Conversely, if M ;! (0) then there exists an element
r€M such that v # 0 and X, = {(0)}. For if PEX, then
r¢ P and P = (0). Hence {(0)} 1s an isolated point of X,

Proposition 1ll: Let R be a noetherlan ring and let X =

Spec(R)., Then a subset F of X is closed if and only if
1t satisfies the following two properties:
(1) For all PEF, V(P)CF,
(2) For all P¢F, there exists a closed set V(N), where
N is a subset of R, such that FN V(P)CV(N)CV(P) and
such that PEV(N),
Proof: Suppose F is closed in X, Then F = V(M), where
M is a subset of R,
(1) If PEV(M) then MCP, so if QEV(P), that is, PCQ,
then MC Q and Q€ V(M), Hence V(P)C V(M) =F,
(2) Suppose P& V(M), Take N =MUP, MEP so N # P,
Hence N¢ P and P¢V(N), Furthermore, if QEV(N) then
NcCcQ so that PCNCQ and Q€ V(P), Therefore V(N)C V(P),
Finally, if Q€ V(M) N V(P) then Q€ V(MU P) = V(N), Hence
F N V(P)CV(N),

Conversely, suppose F satisfies conditions (1) and
(2), Since F is a closed subset of X, 1ts 1rreducible
components are of the form V(P), where P is a minimal

prime ideal in ¥, (See Proposition 9, Corollary 2,)
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Also since X is a noetherian space, the subspace F 1s also
noetherian by Proposition 9, Chapter III, Section 2, and

hence F has only finitely many irreducible components,

(See Proposition 11, Chapter III, Section 2.) Suppose
"

F = UV(Pi), where the V(P;) are the irreducible components
(=1t

of F, Now for each 1 there exists a closed set V(Ni),
N; being a subset of R, such that FﬁV(Pi)CV(Ni)CV(Pi)

CF. For if Py€F, we may take Ny = P, and if P, §&F, then
by (2), there exists NyjCR such that F (\V(Pi)CV(Ni)

CV(Pi)C‘ﬁ. Hence O(F ﬁV(Pi))C O (Ni) Cf". It follows

(&) ¢ =1

that F N ( O V(Py))C _OV(Ni) CF., Therefore FNTF = F

(= 1)

" - - "
C UV(N4)CF, so that OV(Nj_) =F= UV(Pi). Now for
) ( =t

¢=t ¢ =1

each i, V(P,) is irreducible and V(Py)CV(N;) U ... U v(N,),
Therefore V(Pi)CV(NJ) for some j, = 1l,...,n. If J #1

it follows that V(Pi)CV(N )CV(PJ), which 18 a contradiction,

3
Hence j = 1 and V(Pi)C. V(Ni) so that V(Ni) = V(Pi). There-
fore P;€ V(Ng). Now if P;¢F then by (2) P1¢.V(Ni), which
1s a contradiction, Hence P;e€F, 1 =1,...,,n. Therefore
n —
V(Py)CF, 1 =1,,..,n by (1), so that UV(Pi)CF or FCF,

(=)

Tt follows that F = F and F is closed,



2. Support of a module,

Definition 2: Let R be a ring and let A be an R-module,

Then the set of prime ideals P in R such that Ap # O (See
Chapter II, Section 2, Remark 2,) 1s called the support

of A and is denoted by Supp(A).

Proposition 12: If T is an ideal in R, then V(I) = Supp(R/I).

Proof: We first show that if S 1s a multiplicative system
in R, then S~1(r/I) ¥ s~imr/s~11.
Define f : S”1(R/I)—>S~1R/S"11 as follows:

(22 L) = T4 571y,
s 8

(1) £ is well defined:

Suppose ELE—I = 23—%-2. Then there exists an element s!
' 2 ,

in S such that st(sy(ry + I) - sy(rp + I)) =0 In R/I,

s's,r, - 8's,r -1
that is, s'sor; - s'syr,€I. Hence 18'3.8.2 -2 57T,

so that = - Z2eS711 ana T + s7l1 = 2+ g7g

8, 82 8, S»
(2) £ 1s clearly an S'lR-homomorphism.

(3) £ is one to one:

r+ I
]

Ir £( 1

) =0 then ¢ + 57T = 0, so that 5 €5™T and

r+ 1 =0,

rel, Hence

(4) £ is clearly onto,
Therefore S_l(R/I) z's'lR/s'll.

In particular, when S = R = P, where P is a prime
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ideal in R, then (R/I)p ¥ Rp/Ip.  Now by the corollary

of Proposition 2, Chapter II, Section 1, I, = R, if and

P P
only if SN I # ¢, that is, 1f and only if I P, Hence
(R/I)P = 0 if and only 1if I¢ P, Therefore P &€V(I) if and
only if Pe Supp(R/I).

In particular, Supp(R) = V(0) = Spec(R).

Proposition 13: Let R be a ring and let A be an R-module,

(1) If B is a submodule of A, then Supp(A) =
Supp(B) U Supp(A/B),
(2) If A is the sum of a family iBiiieI of submodules,

then Supp(4) = ) Supp(By).
el

(2) If {131}‘:‘ 1s a finite family of submodules of A, then
" "
Supp(A/QBi) = ‘_Lg)'Supp(A/Bi).
Proof: (1) Suppose P €Supp(A), that is, A, # O, Then there
exists an element a € A such that for all seS, as # 0,
If P¢ Supp(B) then Bp = 0, We will show that (a + B)s # 0
for all s€S, If (a + B)s = 0 for some se€S, then aseB
and (as)s' = as" # O for all s'<€S, that is By # O, This
is a contradiction., Hence (A/B)P # 0,
Conversely, if P €Supp(B) then By # 0 and therefore

Ap # 0 (since B,CA,), If PE Supp(A/B) then (A/B)P #0

P

so AP/BP # 0 and therefore Ag # 0, Hence in both cases
P €Supp(A).

(2) If A, # 0 and A = 251, then there exists 1 €I such
<el

that (By)p # 0. For suppose (By)p = 0 for all 1 €I, Let
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g€A, then & = by + .., + bn. Now there exists sies =R - P
such that bys; =0, 1 =1,.,.,n, Take s = 8;,..5,. Then

as = 0 and Ap = 0, This 1s a contradiction,

Conversely, if (By)p # 0 for some 1€I, then there
exists an element b, € B; such that bys £ 0 for all se8S,
Consider @ = 0 + o0 + 0 + by + 0 + 0o Now as # 0 for
all s €S so that A, # O,

(2) Let PeSupp(A/('\Bi), that 1s, (A/F\Bi)P # 0. Then
(=

L=y

N "
there exists an element a + M\ B, such that(a + M By)s £ 0

(.‘:' ¢ =

n
for all s €S, that 1s, as¢ /\By for all seS, We will

=t

show that there exists B;] such that as ¢Bj for all se€S,
If not, for all Bi there exists s; €S such that asy €By,
1=1,...,n, Let 8 = 8y,..5n. Then as€By, 1 =1,,..,n

"
so that as¢ f\Bi. This is a contradiction, Hence for

{3
some j, aséB:I for all s€S and therefore as + B, # 0 for
all s €3, Therefore (A/BJ)P # 0 and Pé.Supp(A/Bj).
Conversely, let Peg OSupp(A/Bi), say P€Supp(A/Bj).

=i
Then (A/BJ)P # 0 so there exists an element a + Bj such

that (a + B,)s # O for all s€S, Hence as€¢B, for all

J

N (2%
s€S, so that as¢ (\B; for all s €S and as + N\ By #0
<=y S

J

a3
for all se€S, that is, (A/(\Bi)P # 0, Therefore

L=t

"
¢
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Notice that in case (2) we required a finite family
of submodules of A, We will show that this is in fact
necessary, Before we can do this, however, we shall require
a few more results,

Corollary: Let R be a ring and let A be an R-module, Let
{mi}i el be a system of generators for A, and let

Jy = Ann my = {reR :rmy = O}. Then Supp(4) =£Le')IV(J1).

Proof: A = >, Rmy so Supp(A) = .U Supp(Rmi) by Proposition
cel cel

13, Now Rmy = R/Ji, where r + Jy—>rm;., Hence

Supp(4) = QL Supp(R/Ji) = U V(J’i) by Proposition 12,
te (el

Proposition 1lli: Let R be a ring, let A be an R-module,

and let J = Ann A, If A is finltely generated then
Supp(4) = V(J),

n
Proof: Let Saij‘.:‘ be a system of generators for A and
[ 4
let Jy = Amn ay, 1 =1,,..,n, Then J = [\J;., (For
(= ,

[ 4
JETES> 1A = 0P J(Z Ra,) = ODRIa; = 0, 1 = 1,,,.,n
¢ =)
—>jag =0, 1 =1,,,.,n&pJ€Am a4, 1 =1,,.,.,n,) Hence
" n
V(3) = v(MN3y) = UV(Iy) = Supp(A) by the corollary of
=y t=)
Proposition 13,
Supp(A) 1is thus a closed set in Spec(R) = Supp(R),

Corollary l: Let R be a ring, let A be a finltely generated

R-module, and let r be an element of R, Then reP for
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all P€ Supp(A) if and only if r™A = O for some integer n,
Proof: N {P : P€Supp(aA)} =N {P : PeV(J)} where J = Am A,
(See Proposition 1l.) Now M §P : PEV(I} = F(V(I))

= P (J) by Proposition 2, Section 1, But re P(J) if and
only if r®€J for some integer n, that is, 1f and only

if A = 0, Hence the proposition follows,

Lemma 1: Let R be a ring, let J be an ideal in R, and let

I be a finitely generated ideal iIn R such that IC P(J).

Then there exlsts an integer k> 0 such that IkC Je

1 o)

Proof: Let I be generated by {xjf Now there exists

le‘
an integer h such that xjheJ, 1€jsn, Take k = nh,

Then if x€I, x = Rxy + ... + Rx, and xk = (RX] + oee *+ Rxn)k
is in J,

Corollary 2: Let R be a noetherian ring, let A be a finitely

generated R-module, and let I be an ideal in R, Then
Supp(A)C V(I) if and only if there exists an integer k >0
such that 1A = 0,
Proof: Let J = Ann A, Then by Proposition 1l, Supp(A)
= V(J)., Hence Supp(A)<CV(I) if and only if V(J)C V(I)
and this is true if and only if IC £(J) by Proposition
2, Corollary 2, Section 1, Now since R 138 noetherilan,
I is finitely generated and so IC @ (J) if and only if
there exists an ilnteger k>0 such that ¥cs by Lerma 1,
that is, if and only if I¥A = 0,

We can now show that case (2) of Proposition 13
holds only for a finite number of submodules of A, Conslder

the case where R = A = Z, the set of integers, Let p be
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oo
a prime number, We will show that Supp(Z/r\ka)
k=

£ U sSupp(2/p%z). Now ﬁpkz = (0) so that

T ks

o
Supp(Z/ ﬂpkz) = Supp(2) = Spec(Z) and therefore contains
k=

qZ for every prime number q, On the other hand Z/ka is
finitely generated, (It 1s generated by 1 + ka.) Hence
by Proposition 1, Supp(Z/ka) = V(ka’) (since p¥Z

v K ") ok
= Ann (Z/p¥Z)). Therefore :}Supp(z/p z) = U v(p%zZ).

Py k=

¥ K ¥

Now suppose qZ€ U Supp(Z/p<Z), that is, qZ €V(p<Z) for

some integer k., Then pXZC qZ and qf pk. Hence q = p.

)
The only prime ideal in U Supp(Zz/pXZ) is therefore pZ.

We recall that in Proposition 1l we proved that

1f J = Ann A, where A 18 a finitely generated R-module,

then Supp(A) = V(J), We will now show that the condition
that A be finitely generated is actually necessary,
Consider again the case where R = A = Z and let
p be a prime number, Put M = Z/pZ @ z/p22® ees o Mis
clearly not finitely generated, Now Supp(M) = 6 Supp (Z/p¥Z)
=0

by Proposition 12, If J = Ann M, then
J=4freZ: r(Z/PZ @D vea) = Of'

={rez : r2cp’z, k = 1, 2,...f

={rez pklr,k=1, 2,...f

= (0)

So V(J) = Supp(Z), But in the example above we saw that
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Supp(Z) # 6 Supp(Z/p*Z). Therefore V(J) # Supp(M),
k=

We will show, however, that in this case Supp(M)
1s closed, Let K}= Supp(M) and suppose gZ is a limit point
of K, q being a prime number, that is, for all reZ such
that qZ€X,, Xp NK # @#, This means that if r¢qZ then
there exists qlz, where 9 1s a prime number, such that
r¢qlz and kaCqIZ" for some integer k (See above example,),
that 1is, q1| pk so that qq = Ps Hence we have 1if r4:_qZ
then r ¢ pZ, Now if q # p then p ¢qZ and it would follow
that p § pZ which 1s clearly impossible, Therefore q = p
and qZ = pZ€K = Supp(M)., Hence Supp(M) is closed,

It may seem that for any R-module A, Supp(A) is
closed in Spec(R). (For example, this 1s always true when
A is finitely generated,) However we will now give an
example where this 1is not so,

Let N = 2/Z2® 2/22 ® /32 ® ... . Then
Supp(N) = USupp(Z/nZ) (SeeProposition 12,) = U V(nZ)

n=t n=i

by Proposition 1L, Now (0) is a prime ideal in Z and
o0

(0)¢ U V(nz), We will show that (0) is a 1imit point
nst

of Supp(N),

Suppose (0)€X,, that is, r # 0, We must show that
X, N Supp(N) # ¢, that 1s, there exists qZ, q being a prime
number, such that r¢ aZ and nZC qZ for some Integer n,
Take q to be any prime number greater than r, Then r¢qZ

o0
(since q'F') and qZ€V(qz)C (J V(nZ), Therefore Supp(N)
nsi
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is not closed in Spec(Z),
Finally, we proved in Proposition 12 that if

A = z Bys where A is an R-module and the B; are submodules,

el
that Supp(a) = USupp(Bi). We will show that this prop-
(el
osition does not necessarily hold if A = |[B,.

(el

o0
Consider the case where A = || 2/p¥Z, where Z is
k=

the set of integers and p 1s a prime number, We will show

that Supp(A) = Supp(Z), that is, qZ € Supp(A) or (A)qz,;! 0
for every prime number q, Now (1 + pZ, 1 + pEZ,...) is

o0
in A = 1T 2/p%Z and (1 + pZ, 1 + p°Z,...)s # O for all
k=1

S€S =72 - qZ, For if (1 + pZ, 1 + p°

Zyese)8 = 0 for some
s¢S, then se€p”Z, n=1, 2,.,,. So that pn\s, n=1, 2,000 o
This is of course impossible, Therefore Supp(A) = Supp(Z).
However, as we have seen In an earlier example,

od
U Supp(Z/ka) # Supp(Z)., Hence the counter-example is

established,
Proposition 15: Let R be a ring and let A and B be two

R-modules such that A 1s finitely generated, Then

Supp (Homp (4,B) ) < Supp(A) M Supp(B),

Proof: Let P € Supp(H), where H = Homg(A,B), that is, H, # O.
Then there exists f¢ H such that sf # 0 for all se€S =R - P.

Hence sf(A) # O for all s€S, If A, = 0 then there exists

P
an element s € S such that sA = 0 by Proposition Y, Chapter
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II, Section 2, Therefore f{(sA) = O for all f&H, or s8f(A) =
for all f€H, This is a contradiction., Hence A # 0 so
P € Supp(A). |

Now for any f€H, f(A) 1s finitely generated, There~
fore Supp(H)<C Supp(f(A))<C Supp(B) (since f(A)CB)., Hence
Supp (Homg (A,B)) C Supp(A) N Supp(B).

Proposition 15 does not hold if A is not finitely
generated, For let A = Z/pZ @ 2/p°2 @ ... , where Z 1s
the set of integers and p is a prime number, We wlll show
that Supp(Homz(A,A))¢Supp(A). Recall that the only element
in Supp(A) is pZ. Suppose q # p. Then qZ € Supp(Homy (4,4)),
that 1s, (HomZ(A,A))qZ # 0. For 1€Hom,(A,A) and 1s # 0

for all s€eS = Z - qZ, Therefore qZéSupp(HomZ(A,A)) but

aZ ¢ Supp(A),
Definition 2: Two 1ideals I and J of a ring R are sald to

be co-maximal iIf T + J = R or if there exlist elements

a€l and b&€J such that a + b = 1,
Proposition 16: Let R be a ring and let Jy,...,J, be ideals

in R,

(1) If T is an 1deal in R such that I and J) are co-maximal,
k =1,...,n, then I and J3 N ... NJ, are co-maximal,

Also T and Jy...J, are co-maximal,

(2) If J1,ee0,J, are pairwise co-maximal (that is,

Ji + Jk =R for 1 #k), then Jln oo ﬂJn = Jlooano

n n
Proof: (1) R=R"=T[ (I + J) =1 +;lTch:R. Hence
k=t '

| 4
=I+TrJ NowTTJC/‘\Jk,soI+f'\Jk R,
k\ K= k=t kl
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(2) We use induction on n, Suppose J, and J2 are co-maximal,

1
Then J) M T, = (I, N T)(J; + Jp) = J1(3 N T,) + T,(3p N\ T,)

2

Clearly J1J2CJlf\ Toe

Assume that the result holds for n - 1 Ji's. By
(1) J, 1is co-maximal with Jlf\ e N Jn - 1+ Therefore

(N ong NI =@ N N T,

= (3.3 _ )T

Remark 6: I and J are co-maximal ideals of R if and only

1f V(I)NV(J) =g, For 1f T + J = R then V(I) N V(J)

=V(I+J)=V(R) =¢, and 1f VW(I)N\V(JI) = # then

V(I +J) =@ s0oI+ J=R, (See Remark 1, Section 1,)
We conclude this paper with the followlng rather

lengthy but quite important proposition,

Proposition 17: Let R be a noetherian ring and let A be

a finitely generated R-module, Then A admits a decomposition
as a direct sum of modules Aj,...,Ag (A = A1® cee @ As),
where Ann A, = Jgs 1 = 1,...,8, and the Jy are pairwise
co-maximal (1 = 1,,..,8). Each A1 can be decomposed no
further in the above manner, If T = Ann A, then

I= Ji.f\,., f\Jé = Jl...Js and we thus obtaln a representa-

tion of I as an intersection of palrwise co-maximal ideals,

Each J1 can no longer be represented as such an intersection,
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Proof: Since R 1s 2 noetherian ring, X = Spec(R) is a noeth-
erian space, by Corollary 7, Proposition 2, Section 1,

and hence so i1s Supp(A). (See Proposition 10, Chapter III,
Section 2,) Therefore Supp(A) has only a finite number

of connected components, say Supp(A) = VI\) ees M Vg, where
the V1 are the connected components, 1 = 1,,..,3. (3ee
Proposition 12, Chapter III, Section 2,)

Let I= Jl’ln ...,\Jl’t r\ [ N r\Js,anOQan’t

1 8

be an irredundant primsry decomposition of I (See Chapter I,
Section 2,) with Q 4 = £(3y,4) and such that Q; €y

(J = l’ooo,tj_ and i = 1’0.018)0 PUt Ji = Ji’lf\ oo ,\Ji,ti.
Then I = Jy N ... N Jg and Supp(4) = V(I) = V(J; N ,,, N J,)

= V(Jl) U...U V(Jg). (A is finitely generated::See
. V(Iy) = V(I, N ...NT
Proposition 14.) Now V(Jy) (341 1,6y

= V(T )Y 0 UV ) = V(Q 5) Vel VTl )
(See Remark 2’ Section 1.) CVi. (Qi’J€Vi’ J = l’ooo’ti

and V1 is closed; see Proposition 11, Section 1.,) Further-
more V(Jy) N V(R )Cvy N v, = g for 1 # k¥ and since v(J3y)

and V(Jk) are both closed they are separated, We will
show that V(Ji) is a connected component of Supp(A),
1=1,...,8. Suppose V(Ji)CY, where ¥ 1s connected and
YC Supp(A). Then YCV(J;) U.,.. U V(Jg) so that YCV(J,)
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for some k., Hence V(Ji)CV(Jk)' It follows that V(J‘i) =Y,
Therefore V(Ji) is a connected component in Supp(A)., By
the uniqueness of connected components V(Ji) = Vy» 1 =1,00e)5.

Also since V(J,) N V() = g for 1 # k, Jy and J_ are co-

maximal by Remark 6,
Let Ly = M J_, let A, = L A, and let B, = 2 &,
1 .k i 1 i .
k#( k¢
1=1,00ey8., We will show that A = Al@ ces @ Ag and

J’1 = Ann Ai’

(1) J1=AnnA

i
JiAy = T L4A = (Ji(\ Li)A (since J; and L, are co-maximal;

see Proposition 16) = IA = 0, Therefore Ann Aij Ji‘
Conversely, suppose xAi = 0, We will show that

x€J,., Now xLiA = 0 so that xL_,LC ICJT Since J1 and

i 1°
Ly are co-maximal, therefore there exist elements a1€. Ji
and bié Li such that 1 = a, + by, Hence x = xay + xbiEJi.

(2) The A, generate A:

Since the Jk are pairwise co-meximal, k = 1,...,38, there-

fore Ji and 1TJk = (-\. Jk = Li are co-maximal, by Proposition
k#c .

K¢

16, Hence for every 1 there exist elements cié Ji and

dieLi such that cy + d1 =1, It follows that

1=4d) +oc (4, +o,(d + .o+ 05 _g(dg+ 03)))-4-)))»

-t

2

that is, 1=x1+ ces + Xg + y, where xiEL 1=1,04,,8

i’
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and yE:I. Hence A = xlA + see t st *‘YAC:L A+ ,,0 + L_A

1 s

(81nce yA = O) = Al + e AS so A = Al + c00 + AS'

(3) The sum is direct:
If 1 # ], LAy = (l‘f;\LJk)AJ J4Ay = 0 by (1), Therefore
LB, = Li(,é:c. A;) = 0. Hence 1if x€A; N By, then (J; + Ly)x
= J4x + Lyx = Rx = O, It follows that x = O,

We will now show that (1) for each 1, Ay # A;' @ A"

with J,' + J4" = R, where J;' = Ann A;' and J4" = Ann A4"

" L -
and (11) for each k, J, # I, (\Jk such that J ' + J " = R,
(1) Supp (4, @ Ai") = V(Ann(As' & Ay")) = V(Ann A;'MN Ann Ai")
= V(Igr N TyM) = V(31U V(34" But V(I3 N V(I = 4,

since J4' and Ji" are co-maximal by Remark 6, Therefore

Supp(A4) = V(J4) = V4 is not connected, This is a contra-
diction,

(ii) I Lk' = Jk"’ Lk“ = Jk': Ki' = Ei'l) and Kin = LI"&)

"= Ann A"

- n -
we obtain Ay = A:‘_'GDA.i s J,' = Ann A,', and Ji 1

i i

by an argument similar to that in (1), (2) and (3) above,

However this 1s impossible as we have Just seen,
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