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Abstract

Chronic pain, defined as pain persisting for three or more months, is a multifactorial problem with
a heterogeneous genetic architecture and diverse phenotypic expressions, including chronic
musculoskeletal pain (CMSKP). Individuals with chronic pain often present with comorbidities,
most commonly psychiatric disorders, cardiovascular conditions, and autoimmune diseases.
Standard genome-wide association (GWA) studies typically focus on single phenotypes,
potentially overlooking shared genetic and comorbidity patterns. To address this limitation, we
explored the application of Graph-Embedded Topic Modeling (GETM) (Wang et al., iScience 2022)
to UK Biobank self-reported non-cancer conditions, medications, and hospital-derived ICD-10
codes to identify latent comorbidity patterns. Using data from 401,013 individuals of European
ancestry from UK Biobank, we derived the probability of individuals by topics (8) and assessed
the feasibility of using 6 as the phenotypic input for the GWA scans to investigate genetic
associations underlying CMSKP. We used REGENIE to run GWA scans adjusting for age and sex
and Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) for post-
GWA scan analysis. While our study demonstrated that GETM effectively reduces high-
dimensional clinical data into structured topics, topics lacked biologically meaningful features
related to CMSKP, leading to the failure of identifying novel genetic associations. Nevertheless,
this study introduces a novel framework to use GETM-derived GWA scan to study CMSKP,
highlighting the potential and challenges of leveraging multimorbidity patterns to study the genetic

architecture of complex traits.



Résumé

La douleur chronique, définie comme une douleur persistant pendant trois mois ou plus, est un
probléme multifactoriel dont I'architecture génétique est hétérogeéne et les expressions
phénotypiques diverses, y compris la douleur musculo-squelettique chronique (CMSKP). Les
personnes souffrant de douleur chronique présentent souvent des comorbidités, le plus souvent des
troubles psychiatriques, des affections cardiovasculaires et des maladies auto-immunes. Les études
standard d'association a I'échelle du génome (GWA) se concentrent généralement sur des
phénotypes uniques, négligeant potentiellement les schémas génétiques et de comorbidité partagés.
Pour remédier a cette limitation, nous avons exploré l'application de Graph-Embedded Topic
Modeling (GETM) (Wang et al., iScience 2022) aux affections non cancéreuses autodéclarées de
la UK Biobank, aux médicaments et aux codes CIM-10 dérivés des hopitaux, afin d'identifier des
schémas de comorbidité latents. En utilisant les données de 401 013 individus d'ascendance
européenne de la UK Biobank, nous avons dérivé les individus par thémes (0) et évalué la
faisabilité de l'intégration de 0 avec les analyses GWA pour étudier les associations génétiques
sous-jacentes a la CMSKP. Nous avons utilis¢ REGENIE pour effectuer des analyses GWA
ajustées en fonction de 1'dge et du sexe et Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) pour I'analyse post-GWA. Bien que notre étude ait démontré que le
GETM réduit efficacement les données cliniques a haute dimension en sujets structurés, les sujets
manquaient de caractéristiques biologiquement significatives liées au CMSKP, ce qui a conduit a
I'échec de 1'identification de nouvelles associations génétiques. Néanmoins, cette étude introduit
un nouveau cadre d'utilisation de l'analyse GWA dérivée du GETM pour étudier le CMSKP,
soulignant le potentiel et les difficultés de l'exploitation des schémas de multimorbidité pour

¢tudier l'architecture génétique de traits complexes.
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Chapter 1 — Introduction

1.1 Pain

Pain is a complex health issue that often acts as an initial signal of underlying medical
conditions, accounting for approximately 78% of emergency department visits (Todd et al., 2007).
It arises from diverse biological mechanisms and presents various forms and intensities across
individuals. Pain can be categorized into distinct types based on its origin: nociceptive pain,
resulting from tissue damage (Gold & Gebhart, 2010); neuropathic pain, caused by lesions in the
somatosensory system (Colloca et al., 2017); and inflammatory pain, driven by the activation of
immune cells (Baral et al., 2019). These classifications highlight the complexity of pain. In
addition to its physiological effects, pain significantly diminishes people’s quality of life, leading
to significant socioeconomic and public health burdens (Henschke et al., 2015). As a result,

advancing the understanding of pain is an urgent and essential priority for public health.

1.2 Chronic Pain

Chronic pain is defined as pain that persists or recurs for three or more months. Individuals
experiencing chronic pain frequently present with comorbid conditions, particularly psychiatric
disorders, cardiovascular diseases, and autoimmune conditions (Foley et al., 2021). In clinical
observations, depression, anxiety, and substance use disorders are highly prevalent among chronic
pain patients, with a bidirectional relationship potentially driven by shared neural mechanisms and
overlapping genetic risk factors (Hooten, 2016; Johnston & Huckins, 2023; Weihua Meng et al.,
2020). Chronic pain is also associated with an increased risk of coronary artery disease, myocardial
infarction, heart failure, and stroke (Lin et al., 2023; Ronnegérd et al., 2022). Additionally,

reciprocal interactions between neural and immune systems contribute to associations between
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chronic pain and autoimmune disorders, such as multiple sclerosis and rheumatoid arthritis (Tang
etal., 2023). These comorbidities present significant challenges for studying and managing chronic

pain.

The International Association for the Study of Pain (IASP) Task Force categorizes chronic
pain in three ways: (1) by etiology, such as cancer-related pain; (2) by pathophysiological
mechanisms, such as neuropathic pain; and (3) by body site, such as back pain (Treede et al., 2015).

In this thesis, we studied pain by body site, as it is the most common assessment recorded in

biobanks.

Chronic pain can affect various body sites. In a large population-based study of ~500,000
individuals, the UK Biobank, which is the primary data resource for this study, chronic pain was
assessed at seven body sites, including headache, facial pain, neck or shoulder pain, back pain,
stomach or abdominal pain, hip pain, knee pain, and pain all over the body. The data was collected

by asking the participants: “Have you had *** pain for more than 3 months?"

1.2.1 Chronic Musculoskeletal Pain

Chronic musculoskeletal pain (CMSKP), defined as persistent pain arising from joints,
bones, and muscles, is a leading cause of disability worldwide, affecting about 1.71 billion people
(El-Tallawy et al., 2021). The definition and classification of CMSKP vary across studies and
literature, reflecting the complexities and inconsistencies in how this condition is characterized
(El-Tallawy et al., 2021; Hodges et al., 2023). For this study, we defined CMSKP based on
common occurrences reported in the literature, focusing on chronic pain localized to one or more
of four body sites: knee, back, neck/shoulder, or hip (Pan et al., 2019). Given the shared

characteristics of these sites, such as the involvement of musculoskeletal tissues and similar
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pathological mechanisms, we analyzed them as a unified phenotype. This approach enhances the
statistical power of the analysis by maximizing the sample size and enables a binary classification

of chronic pain cases.

1.3 Biobank Era

1.3.1 Emergence of Large-Scale Biobanks

Large-scale biobanks have transformed biomedical research by enabling investigations of
genetic and environmental factors influencing health and disease. National biobanks in the UK,
Canada, Finland, Japan, Taiwan, and the United States systematically collect biological samples,
demographic data, and longitudinal health records, supporting studies on disease risk, progression,
and outcomes (Coppola et al., 2019; De Souza & Greenspan, 2013). Pioneering biobanks such as
the UK Biobank, which includes data from approximately 500,000 participants, have featured in
over 14,000 findings (Free, 2024). Other major biobanks, including the All of Us Research
Program in the US and the FinnGen project in Finland, continue to expand the diversity of
participant populations, enhancing cross-biobank research opportunities (Bick et al., 2024). By
integrating genetic, imaging, and health record data, these biobanks advance the study of
multifactorial diseases, including chronic pain, facilitating biomarker discovery and novel

therapeutic targets.

1.3.2 Leveraging Biobank Data in Pain Research

The application of biobank data in pain research has provided an integrative approach to
understanding the multifactorial etiology of chronic pain (Khoury et al., 2022). Notably,
population-based biobanks facilitate large-scale genome-wide association studies (GWAS),

enabling the identification of genetic loci associated with pain susceptibility and persistence
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(Mocci et al., 2023). These loci often reside in or near genes that influence gene expression,
epigenomic regulation, and downstream biological pathway. By integrating GWAS findings with
functional genomics approaches, researchers have uncovered genetic correlations between chronic
pain and a wide range of comorbid conditions, highlighting shared biological pathways and risk
factors. Beyond genetics, biobank data allow researchers to incorporate lifestyle, demographic,
and environmental risk factors, providing a more comprehensive understanding of pain risk and

progression (Tanguay-Sabourin et al., 2023).

Variability in the definition, measurement, and quantification of pain further complicates
research efforts, limiting the reproducibility and comparability of findings (Robinson-Papp et al.,
2015). Addressing these challenges by expanding the inclusion of pain-related health data may

enhance the accuracy and depth of future pain research.

1.4 Medical Ontologies

Medical ontologies provide standardized frameworks for classifying medical diagnoses
(Haendel et al., 2018). In population-based biobank studies, medical ontologies are often used.
The UK Biobank includes multiple medical ontologies. In this study, we focused on three key
ontologies: (1) self-reported non-cancer conditions, which capture participants’ medical histories,
(2) treatment/medication code, recorded through structured questionnaires, and (3) hospital-

derived ICD-10 codes, which provide clinically validated disease classifications.

1.4.1 Self-Reported Non-Cancer Conditions

Self-reported non-cancer conditions in the UK Biobank were captured through structured
questionnaires, stored in data field 20002. Participants were asked to report lifetime medical

conditions from a predefined list of 474 non-cancer illnesses (Mutz et al., 2021). These conditions
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are organized into 10 top-level parent categories, such as cardiovascular, musculoskeletal/trauma,
and immunological/systemic disorders. These responses provide insights into chronic and long-
term health conditions that may not always be reflected in hospital records. The self-reported data
is particularly valuable for tracking conditions that do not require hospitalization or specialist
diagnoses, offering a broader perspective on participants' health histories. However, self-reported
medical histories are subject to certain limitations. Recall bias may lead to inaccuracies in reporting,
as participants might forget or misclassify past diagnoses. Additionally, the absence of clinical
validation means that some conditions may be under- or over-reported (Papez et al., 2022). For
example, autoimmune disorders such as rheumatoid arthritis (RA) are often over-reported, as
indicated by the discrepancy between self-reported RA and clinical validated cases based on MRI

findings (Stanciu et al., 2022).

1.4.2 Treatment/Medication Code

Medication use in the UK Biobank is recorded in data field 20003, where participants self-
reported their regular medication and health supplements at the time of recruitment (Wu et al.,
2019). This dataset provides insight into commonly used drugs among the cohort but lacks
longitudinal tracking, meaning changes in medication use over time are not captured. Unlike self-
reported non-cancer conditions, the UK Biobank does not incorporate a predefined medical
ontology for medications. To standardize the reported medication data, we manually mapped the
entries to the Anatomical Therapeutic Chemical (ATC) Classification system. The ATC
classification categorizes drugs based on their therapeutic use and chemical composition,
providing a hierarchical structure that facilitates pharmacological analysis (Chen et al., 2012).
Figure 1 illustrates the layout of ATC codes, which consist of five levels: the first level represents

the anatomical group, the second level represents the therapeutic subgroup, the third level
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represents the pharmacological subgroup, the fourth level represents the chemical subgroup, and
the fifth level represents the chemical substance (WHO, n.d.). At the first level, the ATC system

comprsies 14 main anatomical groups.

Alimenary tract and metabolism
Drugs used in diabetes

Blood glucose lowering drugs, excl. insulins
Biguanides
Metformin

Figure 1. An example of the ATC code, adapted from the WHO website on the ATC classification

system

1.4.3 Hospital-derived ICD-10 Codes

The International Classification of Diseases (ICD) is a standardized diagnostic coding
system developed by the World Health Organization (WHO) to classify diseases and health
conditions. Originally designed for mortality statistics in the 19th century, the ICD has evolved
into a comprehensive framework for tracking diseases, supporting clinical care, and facilitating
research (Hirsch et al., 2016). ICD-10, the tenth revision, introduced increased granularity and a
hierarchical structure based on etiology, anatomic location, severity, and other relevant clinical
characteristics to capture disease complexity (Hirsch et al., 2016). In the UK Biobank, hospital-
derived ICD-10 codes are recorded in data field 41270, capturing primary and secondary diagnoses
from the National Health Service (NHS) Hospital Episode Statistics (HES) (Davis et al., 2018).
Primary diagnoses represent the main reason for hospitalization, and secondary diagnoses include
comorbid conditions or contributing factors that provide additional clinical context. The

hierarchical structure of ICD-10 enables the precise classification of diseases. Each code consists
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of an alphanumeric sequence, as shown in Figure 2 (Sammani et al., 2021). The first character is
a letter indicating a general disease category, with total 22 categories, and the next two characters
specify a disease group. Additional characters add specificity regarding laterality, severity, or

etiology. We included ICD-10 data as a source of phenotypic information in our study.

Alpha Additional
(except U) Characters
' I\

[ ] —

Diagnosis Other vital details Extension
v v l l

3-7 characters

2 — Always Numeric .
3rd - 7th - A|gha or Numeric Terminal part of ICD-10 codes

Figure 2. An example of the ICD-10 code, adapted from Figure 1 of Sammani et al. (2021)

1.5 Chronic Pain Genetics

Chronic pain results from the complex interplay of genetic, environmental, and
psychosocial factors. Studying the genetic architecture of chronic pain can improve our

understanding of underlying mechanisms of chronic pain development.

1.5.1 Genetic Basis of Chronic Pain

As introduced in Section 1.1 and 1.2, individuals experience different types of chronic pain,
with substantial variability in pain susceptibility and sensitivity. Genetic factors contribute
significantly to these individual differences, as evidenced by heritability estimates ranging from
~10-50%, depending on chronic pain subtype and study design (Diatchenko et al., 2005; Zorina-
Lichtenwalter et al., 2016). For CMSKEP, heritability estimates vary from 10.2% - 54%, depending

on its definition (Johnston et al., 2019; Rahman et al., 2021).
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A major challenge in studying chronic pain genetics is its substantial genetic heterogeneity,
meaning the genetic factors contributing to the development and experience of chronic pain vary
across individuals and populations (Tsepilov et al., 2020). This heterogeneity complicates the
identification of specific genetic markers and the development of targeted treatments, as different
genetic variants may underlie similar pain conditions in different individuals. Several genes, such
as ADRB2, HLA/MHC region, and SLC6A44, have been implicated in CMSKP, but the underlying
mechanism of CMSKP remains unclear (Diatchenko et al., 2013). This genetic complexity
highlights the polygenic nature of chronic pain, wherein numerous genetic variants each exert
small effects. Chronic pain development results from the cumulative influence of both common

and rare variants, further modulated by environmental and lifestyle factors.

Another challenge in studying chronic pain genetic architecture is pleiotropy, where
genetic variants associated with chronic pain also influence other complex traits. This shared
genetic architecture explains the high comorbidity between chronic pain and other medical
conditions. For instance, a recent study identified several colocalized genes between chronic back
pain and inflammation-related musculoskeletal conditions, such as rheumatoid arthritis and
osteoporosis, suggesting that chronic pain and its comorbidities may arise from common
inflammatory mechanisms (Kasher et al., 2023). To disentangle these complex genetic
relationships and identify key loci and genes associated with chronic pain, genome-wide

association studies (GWAS) have been an important tool.

1.5.2 Genome-wide Association Studies (GWAS) in Chronic Pain

GWAS provides a hypothesis-free approach to identifying genetic variants associated with

complex traits, including chronic pain development. By examining genetic variation across the
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genome, GWAS can pinpoint susceptibility loci linked to different pain conditions, offering

insights into potential biological pathways and mechanisms (Mills et al., 2020).

Several GWAS have leveraged the UK Biobank to identify risk loci for chronic pain by
body site. For knee pain, a GWAS found significant associations with GDF5 and COL27A1 genes,
involved in skeletal development and collagen formation, respectively (Meng et al., 2019). For
neck or shoulder pain, a GWAS identified 3 genetic loci, and the most significant locus was in an
intergenic region on chromosome 17, with the lead SNP rs12453010 (P = 1.66 x 10'!!; beta =
0.0095) (W. Meng et al., 2020). A review summarized GWAS for different chronic pain conditions
by body site: 4 studies for chronic back pain with total 7 loci been identified, 1 study for chronic
knee pain with 2 loci been identified (as mentioned above), and 1 study for chronic neck or
shoulder pain with 3 loci been identified (as mentioned above) (Li et al., 2023). Up to date, the
most recent GWAS meta-analysis on chronic low back pain, involving 325,078 participants from
the UK Biobank and HUNT population studies from Norway, identified 18 genetic loci (Martinsen
et al., 2025). Overall, while these studies have provided insights into the genetic architecture of
chronic pain, the number of loci identified for each chronic pain condition by body site remains

relatively small.

Given the limited number of loci identified for chronic pain at individual body sites, studies
have combined multiple body sites to explore chronic pain under varying definitions of cases and
controls. Johnston et al. (Johnston et al., 2019) studied multisite chronic pain (MCP), a measure
of the number of chronic pain sites in individuals, and they found 76 independent lead SNPs at 39
risk loci within the same UK Biobank population. Khoury et al. (Khoury et al., 2022) identified
distinct genetic signals between single-site chronic pain and chronic overlapping pain, with the

latter exhibiting significantly stronger genetic associations. These findings suggest that evaluating
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chronic pain as a quantitative trait may uncover a broader and more comprehensive genetic

architecture of chronic pain.

Considering the complex nature of chronic pain, traditional GWAS that focus on a single
chronic pain body site or MCP phenotypes are not sufficient to capture the genetic complexity of
chronic pain, especially when excluding comorbid conditions. A more integrative approach that
accounts for chronic pain across multiple body sites and incorporates comorbid conditions could
potentially cover the complex genetic heterogeneity by identifying shared genetic factors and
common biological pathways that underlie chronic pain across different medical conditions.
Therefore, we need a method that can effectively study chronic pain development by incorporating

genetic heterogeneity and accounting for comorbidities.

1.6 Topic Modeling

Topic modeling is an unsupervised machine learning technique developed to discover the
underlying themes, or topics, among the words within a collection of documents. In this context,
a topic is a set of words that frequently co-occur in the same documents, representing a distinct
semantic theme. Unlike clustering, which assigns each word to a single cluster, topic modeling
allows words to belong to several different topics with different probabilities. There are many

different types of topic modeling, which are briefly discussed below.

1.6.1 Common Topic Models

Several topic modeling algorithms have been developed, including Latent Dirichlet
Allocation (LDA), Tree-structured Logistic Factor Analysis (treeLFA), and Embedded Topic

Model (ETM).
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LDA is a classical probabilistic topic modeling technique that extracts topics from a
collection of documents based on the bag-of-words assumption, which treats all words
independently without considering their orders in the documents (Blei et al., 2003). LDA models
the joint probability distribution over words, latent topics, topic proportions, and topic assignments.
Specifically, it assumes that each document is generated from a mixture of latent topics, where
each topic is characterized by a distinct distribution over words. The Dirichlet distribution is a
multivariate probability distribution that serves as a prior for both the topic distribution within
documents and the word distribution within topics, ensuring that the assigned probabilities sum to
one and enabling the modeling of proportions in applications of topic modeling. By leveraging this
probabilistic framework, LDA can effectively infer the latent topic structure from the batches of

documents.

treeLFA is a topic model designed for analyzing patterns of disease co-occurrence in binary
healthcare data (Zhang et al., 2023). Based on the presence or absence of disease codes for
individuals, treeLFA factors data into two matrices: one representing topics (disease clusters) and

the other representing individual topic weights.

Embedded Topic Modeling (ETM) is a probabilistic framework that combines neural
network embeddings and traditional topic models to infer latent topics (Dieng et al., 2019). Unlike
LDA and treeLFA, ETM represents words in a continuous latent space using word embeddings,
which capture the semantic relationships between words. An embedding is a mathematical
representation that maps discrete entities, such as words, into a continuous vector space, where
similar entities are positioned closer together. By leveraging embeddings, ETM can capture
nuanced relationships in language, making it particularly effective for analyzing high-dimensional

datasets.
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1.6.2 Topic Modeling in the Biomedical Context

Topic modeling has been increasingly applied in biomedical research to uncover latent
structures within complex health data. In this context, each study subject is treated as a document,
and their features, such as medical conditions or medications, are treated as a mixture of words.
Topics then represent the clusters and categories of related features that are grouped based on
shared patterns or associations in the data. Previous research has demonstrated the use of topic
modeling to derive phenotypic categories from electronic health record (EHR) data. These topic
weights, calculated at the individual level, have subsequently been utilized as derived phenotypes
in genome-wide association (GWA) scans. By incorporating these novel clusters/topics into GWA
scans, researchers may identify different or novel genetic loci associated with these broader
phenotypic categories rather than using single-condition labels (Jiang et al., 2023). For instance,
Zhang et al. (Zhang et al., 2023) had a topic about metabolic and heart diseases with 50 associated
loci, including 5 unique ones, suggesting that topic-derived GWAS enhanced the discovery of
novel loci. This approach improved risk prediction for some disorders by uncovering genetic
variants in complex traits. However, prior uses of topic modeling in a GWA study context did not
allow for the incorporation of prior knowledge of relationships among medical condition variables.

Furthermore, topic modeling has not been applied to chronic pain.

1.7 Objectives and Hypothesis

This thesis explores the application of Graph-Embedded Topic Modeling (GETM) (Wang
et al., 2022) to high-dimensional UK Biobank data. GETM has the potential to uncover
multimorbidity patterns because it integrates biomedical hierarchies into pre-trained graph
embeddings, which are structured representations that capture the relationships between features

in a continuous vector space. This study aims to test whether GETM can effectively generate
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informative topics from UK Biobank medical data and, subsequently, whether these topics can
serve as refined phenotypic inputs for GWA scans, improving the identification of genetic variants

associated with CMSKP.

Objective 1: To apply GETM to reduce the dimensionality of medical conditions,
medication codes, and ICD-10 codes in the UK Biobank. By structuring these high-dimensional
data into a smaller set of topics, we aimed to capture meaningful disease patterns and generate

topics that represent multimorbidity.

Objective 2: To use GETM-derived outputs as phenotypic inputs for GWA scans to identify
genetic variants associated with CMSKP. For our investigation of the genetic heterogeneity of
CMSKEP and verification of whether GETM can improve GWA scan outputs, we compared GWA
scan results across three different schemes. This evaluation aims to determine whether GETM-
derived phenotypes improve GWA scan resolution by refining trait definitions and enhancing the

detection of pain-related genetic loci.

Hypothesis: The hypothesis is that phenotypes derived from GETM topics, used to run
GWA studies, may be used to identify genetic variants underlying CMSKP with less genetic

heterogeneity than a single-trait CMSKP GWA scan.
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Chapter 2 — Materials and Methods

2.1 Data Availability

In this study, we retrieved all of our data from the UK Biobank. The UK Biobank is one of
the largest biobanks available to researchers worldwide, which includes extensive phenotypic and
genotypic data of ~500,000 individuals aged between 40 to 69 years recruited between 2007 and
2010 (Sudlow et al., 2015). Participants’ blood samples were collected at the baseline visit, and
whole genome sequencing of every participant was conducted to study the genetic determinants
across various medically related traits. We drew on the more restricted UK Biobank genetic dataset,
which included genotypes for 488,377 participants, 49,950 genotyped using the UK BiLEVE
Axiom Array (807,411 markers), and the remaining 438,427 genotyped using the UK Biobank
Axiom Array (825,927 markers) (Bycroft et al., 2018). Genotypes were further imputed using a
combination of reference panels, including the UK10K, 1000 Genomes Project, and HRC

(Haplotype Reference Consortium), to increase variant density and accuracy (Bycroft et al., 2018).

To avoid spurious association due to population stratification, we restricted both the topic
modeling and GWA scan analyses to individuals of White British, maximizing the number of
available participants. We conducted a series of quality control steps on these participants,
including filtering SNPs and individuals with a high level of missingness, checking for the
inconsistencies between reported sex and genetic data, keeping autosomal SNPs, deleting SNPs
with minor allele frequency (MAF) lower than 0.05, and filtering SNPs which are not in Hardy-
Weinberg equilibrium (HWE), resulting in 577,232 SNPs that were used for modeling polygenic

effects to account for relatedness in running the GWA scans.
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For the phenotypic data, we extracted 443 self-reported non-cancer conditions, 529

medications, and 1,922 top-3-digit ICD-10 codes from the UK Biobank.

2.2 Graph-Embedded Topic Modeling

In this study, we used Graph-Embedded Topic Modeling (GETM) (Wang et al., 2022), an
advanced topic modeling approach that integrates medical ontologies into pre-trained graph
embeddings to uncover latent topics within a collection of health-related data. Unlike traditional
ETM, GETM incorporates graph structures, which consist of nodes (features) and edges that

capture hierarchical relationships among nodes.

GETM incorporates two existing algorithms, node2vec and Embedded Topic Modeling
(ETM). Node2vec is a graph-based algorithm that captures the relationships between words by
constructing a graph and generating embeddings, which are vectors that encode the relationships
between features with their biomedical hierarchies (Grover & Leskovec, 2016). ETM then takes
these graph-based embeddings as input and uses them to generate topics that reveal patterns of co-
occurrence and meaning across large document collections (Dieng et al., 2019). By integrating
graph-structured data into topic modeling, GETM preserves hierarchical connections between

features, unlike traditional models that treat them as independent enities.

The overview of the GETM design is shown in Figure 3. We first constructed graphs for
medical conditions and ICD-10 codes using biomedical hierarchies from the UK Biobank and for
medications using the ATC classification system. These graphs were then processed using
node2vec, which learned their structure and generated vector embeddings for each feature. Next,
these embeddings were incorporated into ETM’s encoder network, along with individual-level data

containing corresponding features. The encoder generated latent variables capturing relationships
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between embeddings and topics, and the decoder network reconstructed the original data and

generated three matrices, individuals-by-topics (0), topics-by-embedding (a), and embedding-by-

conditions/ICD-10 codes (p). These three matrices allow the exploration of topics, individuals, and

relationships among features in a highly interpretable way.
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Figure 3. Overview of GETM
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For an alternative explanation, Figure 4 presents the mathematical representation of GETM.
Given input features X; for individual i, a neural network (NN) encoder parameterized by Wy

estimated the variational parameters y; and loga#, which defined a Gaussian latent space:
(i, log o] = NN(z;; Wp)
The latent variable &; was then sampled as:
a(8,) = ; + diag(a,) N (0, I)
To obtain a topic mixture ;, we applied a softmax transformation:
q(0,|x;) = softmax(J;)
Where each topic proportion 6;,x was computed as:

9 — CXP(5i.A~)
WY, exp(6; )

The decoder reconstructed the observed features using a linear model. Specifically, feature
representation rir was determined by a weighted combination of topic embeddings a and feature

embeddings p, with batch effect correction A:
7, f = Biop; + As(i), f

The final probability distribution over features was obtained using a softmax

transformation:
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. exp(i, f)
o > fexp(7; ;)

This formulation enabled the model to capture latent topic structures underlying UKB

features while accounting for batch effects, improving the interpretability of feature associations.
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Figure 4. Mathematical representation Of GETM

Due to the design of GETM, only two features are allowed as the inputs for topic generation.
To assess embedding performance, we used Uniform Manifold Approximation and Projection
(UMAP) to visualize the generated embeddings after topic modeling (MclInnes et al., 2018). Based
on these evaluations, we selected two out of three feature classes (self-reported conditions,
medications, and hospital-derived ICD-10 codes) to ensure optimal interpretability and

downstream genetic analysis.
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2.3 Topic Selection for GWA Scans

To identify the most discriminative topics for CMSKP cases and controls in downstream
genetic analysis, we implemented a three-step evaluation process. First, we assessed average topic
quality, which combines topic coherence (how closely related the top 5 features are within a topic)
and topic diversity (the proportion of distinct features among the top 5 across all topics) (Wang et
al., 2023). We generated topics five times using different node2vec embeddings under a predefined
number of topics and averaged the quality scores. The second step is to test for the difference in
0 value means between CMSKP cases and controls using the t-test p-value. The selected M topics

were used as the phenotypic inputs for the GWA scans.

2.4 Comparison of GWA Scans

We compared four GWA scan approaches to evaluate how different methods of integrating
topics with CMSKP to generate derived phenotypes impact the identification of genetic variants
associated with CMSKP. Approaches 1 and 2 use binary traits as phenotype inputs, while
Approaches 3 and 4 use quantitative traits. In Approach 1, individuals are classified as either cases
or controls: cases are individuals who have at least one pain site at any of the four body sites of
CMSKEP, and controls are individuals without acute or chronic pain at any body site. Approach 2
derives categorical phenotypes across the M topics by taking the top 50% 6 values from CMSKP
cases (new cases), contrasted with the bottom 50% from CMSKP controls (new controls).
Approach 3 uses the topic weights (0) of all individuals as quantitative input for GWA scans, while

Approach 4 interprets the topic weights (6) of CMSKP cases only.
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2.5 Genetic Analysis

We used REGENIE (Mbatchou et al., 2021) to run GWA scans, adjusting for age, sex, and
the top 40 principal components to account for population stratification among subjects. For post-
GWA scan analysis, we used Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA) (Watanabe et al., 2017) to conduct functional annotations of the genetic loci and
interactive visualizations. Utilizing the 1000 Genomes Project Phase 3 (Auton et al., 2015) as the
reference panel, we identified independent significant SNPs with a genome-wide significance
threshold (P < 5 % 107®) that were independent at r> < 0.6. From these, lead SNPs were defined as
those further independent at r> < 0.1. Genomic risk loci were established by merging lead SNPs
within a 250 kb window, incorporating all SNPs in linkage disequilibrium (r* > 0.6) with the
independent significant SNPs. For gene definition, SNPs were mapped to 19,111 protein-coding
genes using a +10 kilobase window around each gene to include potential regulatory regions, and
the genome-wide significance threshold for gene-based test was P <2.616 x 10~° (Watanabe et al.,
2017). Additionally, we conducted Multi-marker Analysis of GenoMic Annotation (MAGMA)
Tissue Expression Analysis utilizing GTEx v8 data across 53 tissue types to identify tissue-specific

gene expression patterns associated with the traits of interest (de Leeuw et al., 2015).
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Chapter 3 — Results

3.1 Summary Statistics

Figure 5 shows the overall design of the study. A total of 401,013 people of European
descent have either condition, medication, or ICD-10 data in the UK Biobank. Fig. 6A, 6B, and
6C show the distributions of the condition, medication, and ICD-10 code counts in European
individuals, respectively. On average, each individual has 2.16 conditions, 2.70 medications, and
12.55 ICD-10 codes. The distributions indicate that most of the individuals have more than one

medical conditions.
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Figure 5. Overall study design
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Figure 6. (A) Histogram and table of condition counts; (B) Histogram and table of medication

counts; (C) Histogram and table of ICD-10 code counts

Table 1 summarizes the number of individuals with CMSKP by body site and as a unified
phenotype, comparing all European individuals to those with at least one conditions, medications,
or ICD-10 codes in the UK Biobank. European individuals with at least one conditions or ICD-10
codes have higher percentages of chronic neck or shoulder pain (16.30% vs. 15.46%), chronic
back pain (18.07% vs. 17.12%), chronic hip pain (9.23% vs. 8.56%), chronic knee pain (17.47%
vs. 16.42%), and CMSKP (38.96% vs. 37.17%). All differences are statistically significant based

on two-sample t-tests, with CMSKP showing the most significant difference (P-value =3.13 x 10

65).
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European individuals with at least 1 or
European individuals

more condition/medication/ICD-10 code
(N = 457,461)

(N =401,013)

70,723 (15.46%) 65,385 (16.30%) 1.11e-26
78,298 (17.12%) 72,445 (18.07%) 8.68e-31
39,144 (8.56%) 37,016 (9.23%) 6.55¢-28
75,109 (16.42%) 70,043 (17.47%) 3.47e-38
170,033 (37.17%) 156,235 (38.96%) 3.13e-65

Table 1. Summary of chronic musculoskeletal pain by body site and as a unified phenotype
between European individuals and European individuals with at least one conditions, medications,

or ICD-10 codes

3.2 Topic Selection for GWA Scans

3.2.1 Evaluation of Topic Quality

To determine which two of the three feature classes (self-reported conditions, medications,
and hospital-derived ICD-10 codes) had the best embedding performance, we visualized both
feature embeddings and topic embeddings using UMAP (Figure 7-9). Each dot represents a feature,

color-coded by category, while black stars indicate topic embeddings.

In the UMAP plots for condition and ICD-10 embeddings (Figures 6 and 7), features from
the same category are well-clustered, and black stars are randomly distributed, indicating strong
alignment between feature embeddings and topic embeddings. However, in the UMAP plot for
medication embeddings (Figure 8), although features of the same category tend to cluster together,

there is substantial overlap between groups, making it difficult to distinguish distinct categories.
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This lack of clear separation reduces interpretability, making medications a less suitable feature
class for downstream genetic analysis. Based on these observations, we selected self-reported

conditions and ICD-10 codes for subsequent analyses.
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Figure 7. UMAP for condition embedding and topic embedding
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Figure 9. UMAP for medication embedding and topic embedding

After selecting the two input features for topic generation, we determined the optimal
number of topics for GETM by testing predefined values of 10, 20, 30, 40, and 50. These values
were selected based on previous literature and a balance between interpretability and granularity.
A smaller number of topics may lead to noisy or overly broad groupings, while a larger number
may introduce feature redundancy and reduce interpretability. Table 2 presents the average topic
coherence, topic diversity, and overall topic quality for ICD-10 codes and conditions across five
different embeddings. Notably, these five embeddings represent the results from different runs of
node2vec, reflecting the inconsistency in the version of embeddings generated, which contributed
to variability in topic coherence and diversity across analyses. Although setting the topic number
at 10 yielded the worst ICD-10 topic quality, the differences across the five scenarios were minimal.
Since conditions achieved the highest topic quality at 10 topics, we selected this as the best out of

the tested options for downstream analysis.
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Mean + SD
ICD-10 ICD-10 Condition Condition ICD-10 Condition
Topic #| Coherence Diversity Coherence Diversity Quality Quality
10 |0.550 £0.035/0.940 + 0.055|0.550 = 0.035{1.000 £+ 0.000|0.517 + 0.044 |0.550 = 0.035
20 [0.535+0.029(0.970 £ 0.0270.535 +0.014{0.970 = 0.045{0.519 £ 0.032 [0.519 + 0.022
30 10.523 £0.007/0.960 + 0.015{0.560 = 0.019|0.900 £ 0.053(0.509 £ 0.009 |0.505 + 0.045
40 [0.518 £0.026(0.940 + 0.0490.545 + 0.034|0.850 = 0.035(0.486 + 0.033 [0.463 + 0.022
50 10.544+£0.0110.920 +0.032{0.556 = 0.021(0.796 £ 0.026|0.500 + 0.0200.443 + 0.021

Table 2. ICD-10-specific and condition-specific topic quality evaluation across 10, 20, 30, 40,

and 50 topics; SD: Standard Deviation; coh: coherence; div: diversity

To further investigate the identified topics, we visualized the top five features for each topic

using a heatmap, with conditions as an illustrative example (Figure 10). The heatmap illustrates

the probability of each feature belonging to its respective topic. However, we observed that the top

five conditions are not from the same category. For example, top 3 features in Topic 3 were from

three different categories: “peripheral nerve injury” (neurology/eye/psychiatry), “fracture

metatarsal” (musculoskeletal/trauma), and “glomerulonephritis” (renal/urology). This discrepancy

highlights the need for further refinement in topic modeling to ensure that the identified topics are

both coherent and meaningful. As this thesis aims to explore the potential and feasibility of using

topic-derived result as the phenotypic input for GWA scans, we continued our analysis to identify

the most discriminating topic between CMSKP cases and controls.
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Figure 10. Heatmap displaying the top 5 conditions for a random selection of 5 out of the 10 topics,
with the color intensity representing the probability of each condition belonging to its respective

topic

3.2.2 Identifying the Most Discriminating Topic for CMSKP

To identify the most predictive topic for GWA Scans of CMSKP, we performed a t-test
(Table 3) and found that Topic 9 exhibited a statistically significant difference between CMSKP
cases and controls (P-value = 0.004). We further examined the top 5 features in Topic 9 based on
their probabilities. Given that the total sample size was 401,013 individuals, the top features in
Topic 9 were predominantly rare features. Top 5 conditions of Topic 9 with its corresponding
individuals with this feature were 'fracture nose' (668 individuals; 0.17%), 'nasal polyps' (3,017
individuals; 0.75%), 'pulmonary fibrosis' (0 individual; 0%), 'thyroiditis' (1,989 individuals;
0.50%), and "bronchiectasis’(1,096 individuals; 0.27%). Top 5 ICD-10 codes of Topic 9 with its
corresponding individuals with this feature were '188 Nonspecific lymphadenitis' (164 individuals;

0.04%), 'P14 Birth injury to peripheral nervous system' (8 individuals; 0.002%), 'G08 Intracranial
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and intraspinal phlebitis and thrombophlebitis' (97 individuals; 0.02%), '180 Phlebitis and
thrombophlebitis' (7,306 individuals; 1.8%), and 'S76 Injury of muscle and tendon at hip and thigh
level’ (632 individuals; 0.16%). This finding was in contrast the GETM paper (Wang et al., 2022),
which reported that topics were primarily composed of common features. The reason for this

discrepancy remains unclear.

Since this thesis aims to explore the feasibility of implementing GETM to refine
phenotypes for GWA scans, we proceeded with applying Topic 9 to GWA scans, despite the small

mean differences between cases and controls and the large standard deviations.

Case Control
Mean SD Mean SD P-value
Topic 1 0.571 2.410 0.573 2.417 0.783
Topic 2 0.777 1.875 0.777 1.882 0.999
Topic 3 -0.626 3.048 -0.618 3.045 0.458
Topic 4 0.002 2.066 0.007 2.068 0.486
Topic 5 -0.056 2.762 -0.045 2.776 0.299
Topic 6 1.005 1.954 1.008 1.962 0.642
Topic 7 0.251 2.194 0.255 2.194 0.533
Topic 8 -0.093 2.373 -0.092 2.365 0.964
Topic 9 -1.564 4.242 -1.609 4.301 0.004
Topic 10 -0.272 3.131 -0.262 3.154 0.392

Table 3. T-test results for identifying the most predictive topic for GWA scans in CMSKP;

Statistical significance was determined using a thresold of P < 0.05.
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3.3 GWAS of CMSKP Using Binary Case-Control Design

A total of 310,300 individuals were included in three different approaches to GWA scans.
In the first approach, CMSKP cases (N = 156,245) were defined as individuals with at least one
chronic pain site at any of the following four body sites: neck or shoulder, back, hip, and knee, and
CMSKEP controls (N = 154,055) were defined as individuals who do not have acute or chronic pain
at any body site. Figure 11 shows the Manhattan and QQ plots for the GWA scan summary statistics,
identifying 27 genomic risk loci, 29 lead SNPs, and 58 independent significant SNPs. Figure 12
shows the Manhattan plot and the QQ plot for the GWA scan gene-based tests. The gene-based test
revealed 95 genes, and based on the ranking of the p-value significance, the top 5 genes are
PABPC4, TCTA, DCC, MACF1, and BSN. Notably, the QQ plot for the gene-based test shows a
lambda value of 2.36, indicating substantial inflation. This level of inflation is common in chronic

pain GWAS and reflects the polygenic nature of the trait.
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Figure 11. (A) Manhattan plot of GWA scan summary statistics between CMSKP cases and
controls. Each point represents a SNP. The red horizontal line indicates the genome-wide
significance threshold (P = 5 x 10%); (B) QQ plot of GWA scan summary statistics between

CMSKEP cases and controls
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Figure 12. (A) Manhattan plot; (B) QQ plot of GWA scan gene-based test between CMSKP cases

and controls

In addition to the gene-level information, Multi-marker Analysis of GenoMic Annotation
(MAGMA) tissue expression analysis also integrates the tissue-specific expression to annotate the
functional information, and the result shows that the genetic signals associated with CMSKP are
significantly expressed in cerebellum, cortex, and basal ganglia (Figure 13). Complementary to
MAGMA result, the differentially expressed genes (DEG) results show that the genes are
significantly downregulated in basal ganglia (Figure 14). To visualize the expression of each of
the top 5 gene across different tissues, Figure 15 shows the gene expression heatmap of the top 5
genes. PABP4 shows a high expression across various tissues, suggesting its involvement in

multiple CMSKP pathways. In contrast, DCC shows a low expression across all tissues.
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Figure 15. Gene Expression Heatmap of the top 5 genes
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3.4 Refined GWAS of CMSKP with Stricter Case and Control

Definitions

The second approach, which selected the top 50% 0 values of Topic 9 from CMSKP cases
(new cases) contrasted with the bottom 50% of Topic 9 from CMSKP controls (new controls),
included 78,117 CMSKP cases and 77,022 CMSKP controls. Figure 16 shows the Manhattan and
QQ plots for the GWA scan summary statistics, identifying 9 genomic risk loci, 9 lead SNPs, and
16 independent significant SNPs. Figure 17 shows the Manhattan and QQ plots for the GWA scan
gene-base tests. The top 5 genes based on the ranking of the p-value significance were 7CTA, BSN,
AMIGO3, GMPPB, and RNF123. Although Approach 2 had lost 50% of individuals compared to
Approach 1, it replicated the finding of 7C74 and BSN, along with new genes.

A) (62))

A=1.19

-log10 P-value
Observed -log10 P-value
o 4 M ®© & a0 o N ® ©

2 3 4 5
Expected -log10 P-value

Chromosome

Figure 16. (A) Manhattan plot; (B) QQ plot of GWA scan summary statistics between stricter

CMSKEP cases and controls

48



TCTA

§ AMIGO3
* GMPPB
RNF123

.....................................................................................................................................

-log10 P-value
Observed -log10 P-value

it st Sttt M e e A 000
2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19202122 05 1

0 15 20 25 30 35 40
Chromosome Expected -log10 P-value

Figure 17. (A) Manhattan plot; (B) QQ plot of GWA scan gene-based test between stricter CMSKP

cases and controls

3.5 GWAS of CMSKP individuals Using Topic 9 Theta Values as a

Continuous Trait

The third approach included a total of 310,280 CMSKP individuals, using their Topic 9
theta values as a continuous input trait for GWA scans. No SNPs passed the genome-wide
significance threshold of P < 5x10% (Figure 18), and no genes passed the genome-wide

significance threshold of P <2.616x10° (Figure 19).
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Figure 18. (A) Manhattan plot; (B) QQ plot of GWA scan summary statistics for CMSKP

individuals with theta values
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Figure 19. (A) Manhattan plot; (B) QQ plot of GWA scan gene-based test for CMSKP individuals

with theta values

3.6 GWAS of CMSKP Case-only Using Topic 9 Theta Values as a

Continuous Trait

The fourth approach focused on only CMSKP cases, a total of 156,235 individuals. No
SNPs passed the genome-wide significance threshold of P < 5x10°® (Figure 20), and no genes

passed the genome-wide significance threshold of P <2.616x10° (Figure 21).
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Figure 20. (A) Manhattan plot; (B) QQ plot of GWA scan summary statistics for CMSKP cases

with Topic 9 theta values
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Figure 21. (A) Manhattan plot; (B) QQ plot of GWA scan gene-based test for CMSKP cases with

Topic 9 theta values
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Chapter 4 — Discussion

This study applied GETM to three UK Biobank features, self-reported non-cancer
conditions, medications, and ICD-10 codes, to investigate its utility in structuring biomedical data
into biologically meaningful topics. By integrating biomedical hierarchies into pre-trained graph
embeddings, GETM aimed to capture multimorbidity patterns and refine phenotypic
representations for CMSKP GWA scans. The results demonstrated that GETM effectively reduced
about 2,000 features into 10 topics, uncovering latent patterns of disease co-occurrence. However,
it failed to generate coherent and biologically relevant topics for CMSKP. To assess the feasibility
of topic-derived phenotypes for GWA scans, four GWA scan approaches with different phenotype
definitions were designed. Only the traditional binary case-control GWA scan yielded meaningful
results for CMSKP, while all GETM-related approaches failed to confidently identify elevant
genetic loci. Despite this limitation, this study introduces an innovative framework for integrating
multi-phenotype data with genetic analyses, contributing to exploration of the genetic architecture

of complex traits such as CMSKP.

4.1 CMSKP Findings Before Incorporating GETM

Since Section 3.3 (GWAS of CMSKP using a binary case-control design) was the only
approach to yield biologically meaningful results for CMSKEP, it serves as a baseline for evaluating
the effectiveness of implementing topic-derived phenotypes in GWA scan. Examining these
findings provides a foundation for assessing the impact of incorporating GETM-derived topics on

the identification of genetic variants associated with CMSKP.

In 29 lead SNPs and 58 independent significant SNPs, three SNPs, rs3811474, rs13135092,

and rs11599236, have been previously reported in the literature. rs3811474 has been associated
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with an increased risk of MCP (Johnston et al., 2019), and has also been implicated in the genetic
architecture of osteoarthritis (Aubourg et al., 2022). rs13135092 has been linked to a decreased
risk of MCP (Johnston et al., 2019), and has shown a significant association with MCP in females,
with a consistent protective direction of effect (Johnston et al., 2021). rs11599236 has been
reported to increase the risk of MCP (Johnston et al., 2019), and has also been identified in a multi-
trait GWA study of atheroschlerosis, suggesting potential pleiotropic effects (Bellomo et al., 2021).
These findings highlight the shared genetic mechanisms between CMSKP and MCP, while also

revealing 26 novel lead SNPs associated with CMSKP. Notably, these

In the gene-based test, the top 5 genes were PABPC4, TCTA, DCC, MACF1, and BSN, each

with varying degrees of evidence linking them to pain mechanisms.

PABPC4 (Poly(A) Binding Protein Cytoplasmic 4) encodes an RNA-binding protein that
regulates gene expression by stablizing mRNA and enhancing translation (Jiao et al., 2021). The
inhibition of PABPC4 has been shown to reduce pain sensitization in mice, and its expression in
spinal cord, dorsal root ganglia (DRG), and sciatic nerve tissues overlaps with pain-related markers,
such as TRPV1, CGRP, and IB4-positive fibers, suggesting a potential role in nociception and pain
regulation (Barragan-Iglesias et al., 2018). Notably, our study is the first to identify PABPC4 in

relation to pain phenotypes in humans.

TCTA (T Cell Leukemia Translocation Altered) was orignially identified in chromosomal
translocations in T-cell leukemia and involves in osteoclast differentiation and fusion, with
potential implications for bone-related conditions (Kotake et al., 2009). However, its relevance to

CMSKP or other pain phenotypes remains unexplored.
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DCC (Deleted in Colorectal Cancer) encodes a netrin 1 receptor involved in neuronal
guidance and has been reported to be associated with pain. DCC is the only gene that is

significantly associated with MCP in both genders (Johnston et al., 2021).

MACFI (Microtubule-Actin Crosslinking Factor 1) encodes a cytoskeletal crosslinking
protein involved in Wnt signaling and neural processes (Moffat et al., 2017). Despite its role in

neuronal function, no direct evidence currently links MACFI to pain mechanisms.

BSN (Bassoon Presynaptic Cytomatrix) encodes Bassoon, a large scaffolding protein
essential for synaptic transmission. A genomic structural equation modeling (SEM) study on 24
distinct pain conditions in the UK Biobank identified BSN among the top 31 genes associated with

a general pain factor (Zorina-Lichtenwalter et al., 2023).

4.2 Insights into GETM Development and Application

4.2.1 Challenges in Including Medication Data for Phenotyping

When we incorporated medication data into GETM, the UMAP of medication embedding
and topic embedding showed that medications from the same anatomical category were poorly
grouped together. The inadequate clustering of medications influenced the quality and
interpretability of the embeddings and topic generation, ultimately leading us to exclude

medication data from the further analyses.

This discrepancy may arise from the inherent complexity of medication categorization. For
example, ibuprofen, a common pain-relieving medication, can be classified under multiple
categories due to its diverse applications, such as an anti-inflammatory drug and an analgesic (Guo
et al., 2024). While categorizing each medication based on its first level in the ATC classification

system ensures a manageable number of categories and maintains comparability with other
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features, such as condition classifications, it also overlooks the medication’s therapeutic versatility.
This simplification can introduce noise into the embeddings and reduce the reliability of the topics
generated by GETM. Additionally, the ATC classification provides detailed information, including
detailed chemical properties of medications, which may not work well in helping with bringing
comorbidities together. Medications often have multiple indications and off-label uses, further
complicating their integration into topic modeling (Rusz et al., 2021). For example, a medication
prescribed for pain relief may also be used for non-pain-related conditions, introducing ambiguity
in the relationships between medications and disease phenotypes. This ambiguity can hinder the

interpretability of topics and reduce the precision of embeddings.

In addition, medication records may reflect socio-economic and behavioral factors.
Although the UK healthcare system aims to provide equal access to care, individuals with higher
socio-economic status may be more proactive in seeking preventive care or receive earlier
diagnoses, which could influence the likelihood and type of medications prescribed. These
differences may introduce biases into the medication data, potentially affecting how GETM infers

topics.

In summary, while medication data may offer valuable insights into chronic pain
management and treatment, its inclusion in GETM presented several challenges, including
inadequate clustering, misclassification, and excessive granularity. These challenges highlight the
need for careful consideration when integrating medication data into phenotyping models. For this
study, excluding medication data allowed us to focus more effectively on identifying meaningful

pain-related phenotypes in CMSKP.
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4.2.2 Embedding Approaches in GETM: Strengths and Limitations

The uniqueness of GETM lies in its graph-embedding approach, which captures the
biomedical hierarchy of features and encodes them into a low-dimensional matrix. This strength
makes GETM particularly valuable for studying multifactorial phenotypes, such as chronic pain
(Wang et al., 2022). We aimed to evaluate whether GETM’s ability to account for these

relationships improves the discovery of underlying patterns in clinical data.

By incorporating node2vec to generate graph-based embeddings as input to the ETM
algorithm, GETM presents several strengths. First, it effectively captures and preserves
relationships among medical conditions and ICD-10 codes, such as parent-child or comorbid
associations, in its data representation. Second, its flexibility of input data allows it to take in
different health-related data depending on the phenotype and associated features being studied.
Additionally, unlike traditional bag-of-words approaches, graph embeddings enhance the
interpretability of the resulting topics, enabling GETM to investigate the probability and

contribution of features within each topic.

While the embedding function of GETM offers several advantages, it also has limitations
when applied to the study of chronic pain. First, the quality of node2vec embeddings highly
depends on the input graph structure. The confusing relationships within features, such as
ibuprofen that can belong to anti-inflammatory or analgesic category, can propagate through the
embedding process, resulting in less distinct topic generation. Second, the graph embedding may
bias the model toward relationships explicitly encoded in the graph, such as the over-detailed
representation of condition in ICD-10 codes, potentially overshadowing less structured but

important associations in the text data. These limitations reduce the model’s capacity to capture
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unexpected or novel connections and contribute to the failure of using topic-derived phenotypes

for GWA scans.

4.2.3 Evaluating Topic Quality: Methodological Insights

Evaluating the quality of topics generated by the GETM is crucial for two main reasons.
First, topic quality reflects whether the topics effectively capture the patterns in the input data.
Second, it informs the selection of the optimal number of topics, which is essential for conducting
GWA scans. The optimal number balances the features’ coherence within the topics and the
features’ distinction across topics, enabling accurate associations between genetic variants and
clinical phenotypes. A topic count that is too high may lead to overfitting, producing overly specific
or fragmented topics with limited generalizability. On the other hand, a count that is too low may
result in underfitting, capturing excess noise and masking important relationships. Striking the
right balance enhances both interpretability and precision in subsequent analyses, such as GWA

scans.

In this study, we adopted the topic quality evaluation method from the GETM publication,
where topic quality is determined by the product of topic coherence and topic diversity (Wang et
al., 2022). Our results indicated that the best number of topics out of tested options for this study
was 10, which aligns with findings from similar studies that also used 11 topics for subsequent
GWA scans (Zhang et al., 2023). As expected, we observed a trend where increasing the number
of topics led to an increase in coherence, accompanied by a decrease in diversity. This trend is
reasonable, as smaller topics tend to be more focused and cohesive, while larger topics may capture
broader, less specific patterns. However, despite this expected trend, the values for both topic
coherence and diversity did not show substantial variation across different numbers of topics. This

suggests that the current method may not be optimal for evaluating topic qualities. For future work,
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we plan to implement other methods, such as using K-nearest neighbors to evaluate the accuracy

at various values of K to identify the optimal number of topics (Zhang, 2016).

4.3 Application of GETM-GWAS to Pain Genomics

4.3.1 Relevance of GETM-derived GWA Scans in Studying CMSKP

The GETM-derived GWAS offers a novel framework for studying chronic pain
development. By using the topic as the latent representation of co-occurrence patterns of medical
conditions, GETM-derived GWA scans have the potential to address genetic heterogeneity and
enhance the detection of genetic signals. This is particularly important for complex conditions like
CMSKP. Our goal was to observe whether GETM-derived GWA scans could provide new insights
into CMSKP by identifying novel loci that may be overlooked by traditional GWA scans. However,
due to the lack of biologically meaningful topics for CMSKP, we could not confidently assess its

ability to uncover genetic variants that traditional methods might miss.

Several challenges remain in applying GETM-derived GWAS to study CMSKP. Topic
interpretability emerged as a notable limitation, with features within the predictive topic lacking
direct relevance to pain phenotypes. Incorporating more precise data, such as medication use with
careful annotations regarding dosages, treatment durations, and off-label uses, could potentially
improve the clinical relevance and accuracy of derived topics. Also, optimizing the GETM
algorithm by focusing on one feature input could be another approach. Despite these challenges,
this study provides a novel design for incorporating multi-phenotype data into pain genetics and

proposes a possible approach for future research on the genomics of complex traits.
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4.4 Overall Strengths and Limitations of this Study

This study presents several strengths that highlight its contributions to the field of chronic
pain development. First, it represents a novel application of GETM-derived GWA scans to
investigate CMSKP, marking the first time topic modeling has been used in a pain context. Second,
by leveraging GETM for dimensionality reduction, the study successfully distilled complex
medical data into latent topics, capturing meaningful patterns of disease co-occurrence. Third, the
integration of these topic-derived phenotypes into GWA scans provides a new approach for
studying CMSKP. Unlike traditional single-condition GWA scans, topic-derived GWA scans have
been shown to identify novel or distinct genetic loci associated with broader phenotypic categories
(Zhang et al., 2023). This was also evident in our analysis, where comparisons between the binary
case-control design and the refined GWA of CMSKP with different case definitions, using their
respective theta values, highlighted the same and additional genetic loci. Fourth, the use of the UK
Biobank, a large and well-characterized dataset with pain-related data, provided high statistical
power and enhanced the validity of the findings. Finally, this study demonstrates scalability in
terms of its ability to be adapted for use with diverse datasets and complex traits. The framework
is not limited to CMSKP but can be applied to other pain-related conditions by incorporating

relevant data features.

This study also has several limitations that should be considered when interpreting the
findings. First, the lack of a consistent version of embeddings generated by node2vec and the
absence of consistent topic generation across analyses introduced variability in the topic modeling
process, which may affect the reproducibility and robustness of results. Second, GETM was
designed to incorporate only two classes of features. While the self-reported medical conditions

and hospital-derived ICD-10 codes used in this study were informative for chronic pain
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development, other features, such as functional assessments (e.g., pain severity scales,
psychological questionnaires, or quality of life measures), could provide additionally meaningful
insights. Third, the interpretability of topics was impossible. Fourth, the definition of CMSKP
itself posed challenges. Although CMSKP in the UK Biobank is typically defined as chronic pain
localized to one or more out of four body sites (knee, back, neck/shoulder, or hip), there is no
consistent or absolute definition of this condition. This variability in the definition could limit the
generalizability of findings across different study designs or populations. Fifth, we only kept
autosomal SNPs from our analyses. Finally, the limitations of the GETM framework, including its
reliance on unsupervised learning, may have hindered the ability to uncover pain-specific
biological mechanisms. These limitations highlight the need for further methodological refinement

in future research.
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Chapter S — Conclusions and Future Directions

This study introduces a novel application of GETM-derived GWA scans to explore the
genetic architecture of CMSKP within the UK Biobank dataset. By structuring self-derived
medical conditions and hospitalized ICD-10 codes into topics, this approach captured disease co-
occurrence patterns that highlighted the phenotypic complexity. These topic-derived phenotypes,
when integrated into GWA scans, enabled the identification of novel genetic loci and reinforced
findings from traditional design of binary CMSKP cases and controls. Furthermore, this work
emphasizes the value of incorporating comorbid conditions into genetic studies, offering insights
into the shared biological pathways between CMSKP and related disorders. Collectively, these
findings underscore the promise of combining topic modeling with genetic analyses as a
transformative framework for unraveling the complexities of chronic pain and similar

multifactorial traits.

Building on the findings of this study, several future directions could enhance the utility
and applicability of GETM in pain genomics. First, refining topic modeling methodologies is
essential to improve the interpretability and clinical relevance of the derived topics. Strategies to
achieve this include Adjusted Rand Index (ARI) (Chacén & Rastrojo, 2020) or Normalized Mutual
Information (NNI) (McDaid et al., 2011) to check embedding performance and enhance the
relevance of topics. Additionally, incorporating domain knowledge, such as clinical expert input
or phenotypic annotations, could help ensure that topics reflect meaningful clinical phenotypes
while avoiding the inclusion of irrelevant features. Second, integrating additional data types could
improve the clinical relevance and validity of the derived topics. These additional layers of
information would offer a more comprehensive view of the phenotypic diversity in CMSKP and

refine our understanding of how genetic variation interacts with environmental factors. Third,
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increasing the sample size could increase the statistical power for identifying the genetic loci
associated with CMSKP, such as leveraging multi-biobank meta-analyses. Fourth, refining
CMSKP phenotype definitions could also lead to more precise and reproducible genetic
associations. This could involve adopting more granular phenotypic classifications, such as
considering specific subtypes of chronic pain (e.g., neuropathic versus nociceptive pain) or
incorporating biomarkers to enhance phenotypic stratification. Collectively, these future directions
have the potential to bridge the gap between complex, data-driven methodologies and their clinical

and translational applications, thereby advancing the study of chronic pain.
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