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Abstract

In this work, we present a fully differentiable fluid simulation and rendering framework
that propagates gradient from rendered 2D images to 3D simulation and rendering
parameters. We implement a differentiable grid-based fluid simulator using both Jax and
PyTorch to solve the Navier-Stokes equation, and evaluate and compare between the two
packages in the context of fluid simulation. We also present the rendering scheme that
transforms the 3D simulated output grid into a mesh and computes the accumulative
direct absorption. We conduct experiments to show that even with the loss of information
by projecting 3D grids to 2D images, the gradient information can still be propagated
throughout the whole pipeline properly. We will show how this gradient information can
be used to solve inverse control problems through optimization techniques in a fast and

automated fashion.



Abrégé

Dans ce travail, nous présentons un cadre de simulation et de rendu de fluide entiérement
différentiable qui propage le gradient des images 2D rendues aux parameétres de
simulation et de rendu 3D. Nous implémentons un simulateur de fluide différentiable
basé sur une grille utilisant a la fois Jax et PyTorch pour résoudre 1’'équation de Navier-
Stokes, et évaluons et comparons les deux packages dans le contexte de la simulation de
fluide. Nous présentons également le schéma de rendu qui transforme la grille de sortie
simulée 3D en un maillage et calcule 'absorption directe cumulée. Nous menons des
expériences pour montrer que méme avec la perte d’informations en projetant des grilles
3D sur des images 2D, les informations de gradient peuvent toujours étre propagées
correctement dans tout le pipeline. Nous montrerons comment ces informations de
gradient peuvent étre utilisées pour résoudre des problemes de contrdle inverse grace

a des techniques d’optimisation de maniere rapide et automatisée.
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Chapter 1

Introduction

Fluid simulation is a crucial aspect to many fields, including robotics, engineering,
gaming, and cinematography. It allows engineers and artists to simulate the flow of
fluids such as liquids and gases accurately and realistically. A common task in the field
of fluid simulation is fluid control. By manipulating the fluid simulation parameters, the
user can produce different simulated outcomes. For example, in robotics, fluid control
can be used to simulate the flow of liquid around a creature to optimize its shape for
swimming performance [23]. Traditionally, gradient-based optimization methods such
as keyframing [14] and adjoint method [15] have been reliable solutions for solving the
fluid control problem. In the recent years, with the advances in machine learning and
automatic differentiation, data-driven solutions have been gaining popularity [26, 36, 55].
Among which, one effective solution is to incorporate the physical knowledge of the fluid
solver into a machine learning pipeline by making the fluid simulator differentiable. By
defining an appropriate loss function between the simulated 3D state and the desired
3D state, the differentiable simulator can propagate the gradient information to the 3D
simulation parameters for learning. Incorporating the differentiable simulator into the
learning pipeline not only accelerates the learning process, but also produces physically

realistic results.



Another common workflow that involves fluid simulation is to render the 3D
simulated fluid states into 2D images for visualization and presentation. This process
is usually done with rasterization or ray tracing. Similar to the advances in differentiable
simulation, differentiable rendering [39, 44] has also been an active research area these
years as well. By making the rendering process differentiable, the gradient information
can be propagated from the rendered 2D images to the 3D rendering parameters such as
camera positions and lighting information.

In the past few years, there has been attempts in combining differentiable simulators
and renderers to form a fully differentiable pipeline, so that users can optimize 3D
simulation and rendering parameters using information from 2D images. However,
these methods are typically applied to rigid or soft body simulations [47, 60], and to
our knowledge, there are very few existing systems of fully differentiable pipelines
for fluid simulations. The main challenges of building such frameworks are the full
differentiability and the scalability. The simulator and renderer must be differentiable
themselves, and on top of that, the connection between the two components must be
differentiable as well, so that the gradient can propagate backwards without any loss
of information. Furthermore, the pipeline must be scalable so that it handles not only
significant amount of time steps in the simulation, but also large enough simulation
and rendering resolutions to preserve the details. In this work, we explore the viability
of the a fully differentiable fluid simulation and rendering pipeline, and present our
implementation that overcomes the challenges described above, along with the results

for learning tasks using our framework.

1.1 Contributions

We are interested in optimizing 3D parameters using 2D rendered image. We build and
evaluate a fully differentiable pipeline by implementing a differentiable and physically

accurate grid-based fluid simulator using both Jax and PyTorch to solve the Navier-Stokes



equation, and crafting a rendering scheme that renders the 3D simulated output grid
using an existing differentiable renderer. With the fully differentiable fluid pipeline, we
demonstrate the accuracy and efficacy of our framework through forward and learning
experiments. We will show that even with the loss of information by projecting 3D grids
to 2D images, the gradient information can still be propagated throughout the whole

pipeline properly.

1.2 Thesis Overview

Chapter 2 conducts a literature review on existing work regarding fluid simulation,
fluid control problems, differentiable simulation, differentiable renderer, and existing
tully differentiable pipelines. Chapter 3 introduces the background knowledge required
to build our differentiable fluid simulation that solves for the Navier-Stokes equation.
We introduce the rendering scheme for rendering the 3D simulated grid using direct
absorption to the renderer. We will also give an overview on automatic differentiation.
Chapter 4 describes the implementation details of our fully differentiable pipeline. We
discuss the implementation of our version of the stable fluids algorithm [10] and the
rendering scheme introduced in Chapter 3. We will also discuss the techniques used for
performing learning tasks and accelerating the pipeline. Chapter 5 presents the results
of our experiments. We perform both forward and learning experiments on both the
differentiable simulator alone and the full pipeline. We also perform benchmarks on our
simulator to compare the implementation using different backends. Finally, Chapter 6

will conclude with discussions and future work ideas.



Chapter 2

Related Work

In this work, we combine differentiable fluid simulation and differentiable fluid rendering
into a fully differentiable pipeline. We then use this framework for optimization tasks
such as fluid control problems. In this section, we will conduct a brief literature review
on the topics related to our work.

First, since our work is based on grid-based fluid simulation, we will give a brief
history of fluid simulation in Section 2.1. Our method aims to solve inverse problems
such as fluid control. For this reason, we then review how techniques prior to the advent
of differentiable simulation methods are used for solving this problem in Section 2.2.
After that, we review the recent progress on differentiable simulation and how it
can be used to solve the fluid control problem using machine learning techniques in
Section 2.3. Then, we shift our focus to discuss previous work on fluid rendering and
differentiable rendering methods in Section 2.4. Finally, we review the recent progress on
tully differentiable frameworks that combine differentiable simulation and differentiable

rendering in Section 2.5.



2.1 Fluid Simulation

Simulating the flow of fluids such as water and smoke has a long history in computer
graphics, and it continues to be an active research area due to its importance in the movie
and video game industries.

In the 1980s, early fluid simulation techniques focus on simulating particle systems
to achieve visually compelling results [3, 6]. While these methods produce satisfactory
effects, they do not accurately reflect the physical model of fluid flows, which is described
by the Navier-Stokes equation.

As early as the 1960s, scientists have developed methods that solve the Navier-Stokes
equation, including Lagrangian (particle-based) and Eulerian (grid-based) approaches [1,
5, 9]. These methods use explicit solvers to solve the Navier-Stokes equation and produce
physically accurate fluid simulations. The problem with these explicit solvers is that
numerical instabilities will occur as the time steps become larger, and the simulations
will become unstable.

To address these problems, methods that combine the two approaches were proposed.
Particle-in-cell (PIC) and fluid-implicit-particle (FLIP) [4, 18] are popular methods that
advect the Lagrangian particles, transfer velocities to Eulerian grids and then project
the velocities in the grid. This approach works exceptionally well with free surface
boundary conditions, where there is a clear boundary between the fluid and the air,
because advecting and tracking particles explicitly allows the algorithm to preserve more
details locally.

Stable fluids [10], proposed by Stam in the early 2000s, is another physically accurate
grid-based fluid simulation algorithm, and this algorithm remains fundamental to many
modern grid-based fluid simulation to this day. Stam proposes the Semi-Lagrangian
scheme that combines the two approaches above. The algorithm advects the fluid using

a Lagrangian view point and stores and computes the velocity in an Eulerian grid. The



semi-Lagrangian scheme allows the solver to solve the Navier-Stokes equation implicitly
and accurately, even for larger time steps.

After stable fluids was proposed, researchers have continuously worked on improving
and extending this algorithm. Under certain constraints, the algorithm’s run time can be
sped up extensively. For example, for periodic boundary conditions, using Fast Fourier
Transform (FFT) for the pressure projection solve significantly improves the algorithm’s
run time [13]. Other research has been focused on improving the physical accuracy of
the algorithm further. For instance, the vortex particle method [17, 25] mitigates the
numerical dissipation problem, and the physics-based energy model [22] enhances fluid
turbulence. The algorithm has also been extended to highly viscous Smoothed Particle
Hydrodynamics (SPH) fluids by reconstructing the velocity field from target velocity
gradients [27]. Recently, other improved advect-projection schemes have been proposed
to remove artificial viscosity and preserve the vorticity in fluids [38, 57].

In our work, we simulate a scene of smoke in a box, where the air is the fluid, and
there is no free surface boundary condition. Instead, we are only concerned with solid
boundary conditions, since the fluid is bounded by solid walls. For this reason, in this
thesis, we extend an improved version of the stable fluids algorithm explained in the
Fluid Simulation book by Bridson [21]. Our method is described in Section 4.1. Though
our algorithm is relatively simple, our approach should easily be adapted to other more

complex algorithms described above.

2.2 Fluid Control

Fluid control allows artists and engineers to manipulate the fluid simulation using control
parameters such as velocity and forces to achieve a target flow without losing physical
accuracy. Extending the physics-based fluid simulation and the stable fluid algorithm,

several optimization methods have been explored to solve the fluid control problem.



The idea of controlling physics-based fluid simulations can be traced back to as early
as the late 1990s by Foster et al. [8, 12]. In their work, Foster et al. suggested controlling
the simulation outcome by modifying the fluid parameters and imposing velocities at
different locations on the grid. By tweaking the initial conditions, users can modify
the simulation results. However, to have the simulation achieve a specific desired state,
users must go through extensive experiments and trial-and-error to figure out the correct
control parameters.

To mitigate this problem, Treuille et al. [14] proposed a fluid control method that
achieves a user-specified state was proposed by. By defining an objective function that
measures the difference between the simulation state and the user-provided keyframes
and mathematically deriving the gradients for each fluid simulation operation, the
method turns the fluid control problem into a quasi-Newton optimization problem. By
solving the optimization problem, the method computes the external forces acting on
the fluid that minimizes the difference between the simulated and keyframe states. This
method was later extended and improved by McNamara et al. by optimizing the gradient
computation step using the adjoint method [15]. These methods were proposed before
the popularization of differentiable simulation frameworks, but later frameworks highly

benefitted from these earlier research.

2.3 Differentiable Simulation

With the recent boom of automatic differentiation (AutoDiff) frameworks and machine
learning (ML) techniques, differentiable simulations have been gaining popularity in the
field of research. Depending on the extent of the involvement of physical knowledge in
the differentiable framework, these methods can be classified and put on a spectrum.

On the extreme side of the spectrum, scientists have attempted to replace the
traditional simulation entirely using neural networks (NNs) and ML methods [55]. The

convincing results and superior runtime performance demonstrated the potential of ML



in this field. However, because these methods lack the knowledge of the physical model,
extensive parameter tuning and NN architecture designing are required, and the trained
networks cannot be easily generalized to adapt to different boundary conditions while
remaining physically accurate.

One approach to including physical knowledge in the training pipeline is
incorporating physics-based constraints in the loss functions. Tompson et al. [32] and
Xiao et al. [37] included the divergence-free constraint in the loss function and used NNs
to replace the iterative PDE solver to infer the pressure term, increasing the speed of the
pressure solve while maintaining the accuracy. However, this approach is limited by the
complexity of the solution manifold. Incorporating the physics knowledge in the loss
function alone is insufficient to capture a more complex range of solutions.

Yet another approach to combining classical numerical methods with machine
learning techniques is to integrate the numerical solvers for the PDEs into the ML pipeline
during training. Instead of having NNs replacing the fluid solver, the gradients for the
fluid solvers are computed during backpropagation [52, 53]. This method is closely
related to and derived from the gradient-based fluid control methods described earlier
[14, 15]. Compared to pure-NN-based models, the accuracy of the models is significantly
improved, and compared to the physics-based loss methods, a lot more details of the
simulation are preserved after training. Recent research improves this idea by introducing
more advanced learning techniques. For instance, Pan and Manocha [31] accelerated
the training by using an alternating direction method of multiplier (ADMM) optimizer
and relaxing constraints in intermediate training iterations, and only enforcing the strong
constraint at the end of the training iterations.

Thuerey et al. have written an excellent textbook, Physics-based Deep Learning (PBDL),
introducing the ideas above [52]. Along the book, Holl et al. implemented PhiFlow [42], a
differentiable fluid simulator implementing the ideas in the PBDL book, with supporting
backends including NumPy [41], PyTorch [40], TensorFlow [24] and Jax [33, 34]. Other

open-source differentiable simulation implementations exist, such as DiffTuichi [43]. Still,



DiffTaichi tries to generalize to other physical simulations, such as rigid body simulations,

instead of specializing in fluid simulation.

2.4 Differentiable Fluid Rendering

In industries such as gaming and engineering, after simulation, a common task is to
project the 3D fluid states onto 2D screens for visualization and presentation. There are
two general approaches to rendering fluids: ray tracing-based and rasterization-based
methods. On top of the rendering solutions, to tackle inverse problems, which propagate
gradients from the 2D screens back to the 3D rendering inputs, various differentiable
rendering methods are proposed as well.

Ray tracing-based rendering methods, such as the ray marching algorithm [7, 48,
50], provide the most physically accurate visualization. However, these methods are
usually slow at runtime and require more complex models than rasterization-based
methods. In recent years, significant progress has been made on differentiable ray
marching algorithms [35, 54, 59]. These methods provide accurate gradients for the 3D
parameters, but they also inherit the problem from forward ray-tracing-based methods
that the rendering speed is relatively slow. Because our work mainly focuses on the full
differentiability of the pipeline, instead of pursuing high-quality visual effects, we opted
to use rasterization-based methods.

In rasterization-based fluid rendering, one of the most commonly used methods is
billboarding [16, 19, 20]. These methods project the 3D particle-based fluid states onto 2D
screens and render them as 2D sprites. The main advantage of these methods is that they
are fast and easy to implement, but with a cost that the quality of the rendered images is
inferior and may have trouble encapsulating the density information accurately. Instead
of this option, we will convert the 3D fluid grid into a mesh, interpolate the density values
at the vertices, and render the absorption image. The detail of our method is explained in

Section 4.2.



In recent years, differentiable rasterization pipelines have been researched extensively.
OpenDR [58] is one of the first general-purpose differentiable rendering systems, but it
has a relatively limited shading model. Neural 3D Mesh Renderer [29] provides a more
generalized differentiable rendering system, but its backward pass hallucinates on the
triangle edges and thus produces inconsistent gradients. Soft Rasterizer [39] attempted
to fix the gradient accuracy by blurring the rasterized triangles, but the blur also makes
the triangle edges less sharp, trading image accuracy for gradient consistency. Neural
Radiance Fields (NeRF) [46] uses deep neural networks to create 3D scenes from a few 2D
photos, and it has been one of the most successful differentiable rendering systems so far.

In our work, we use an existing differentiable rasterization framework named
NuDiffRast [45], which focuses on fast, GPU-based differentiable rendering for meshes
with support to PyTorch [40] and TensorFlow [24]. The implementation treats basic
rendering operations such as rasterization and attribute interpolation as individual
modules and provides custom gradient computations. This decreases the memory

requirement for backpropagation while maintaining the accuracy of the gradients.

2.5 Fully Differentiable Frameworks

In recent years, researchers have tried to combine the differentiable simulation and
differentiable rendering into a fully differentiable pipeline. Without the differentiability
of both components, connecting them and forming the 2D image will cause a loss
of information. This loss of information makes the inverse problem ill-posed and
unsolvable. However, the fully differentiable frameworks aim to solve these ill-posed
problems using the extra gradient information. In 2021, Murthy et al. [47] were the first
to propose a fully differentiable framework named GradSim that combines differentiable
simulation and differentiable rasterization. GradSim used a loss function defined on the
rendered frame buffer and mainly focused on soft body and cloth simulations and visual

motor control problems. Later research [60] extended this idea to use a depth-based

10



rendering loss function to remove the dependencies of colours, lighting conditions and
textures, but still on soft body simulations.

However, this idea of the fully differentiable pipeline has barely been explored in the
area of grid-based fluid simulations. Guan et al. [56] and Li et al. [49] have explored such
ideas with particle-based fluid simulations with NeRFs [46]. Liu et al. [61] combined
physics-based Eulerian fluid simulations and NeRFs. Their work focuses on liquid
simulations and uses a convolutional neural network (CNN) to replace the Poisson solver,
accelerating the simulation and training runtime. Our work adopts a similar idea but
differs in that we use a fully iterative Poisson solver and focus our work on smoke

simulations.

2.6 Deficiencies of State of the Art

As we have seen in the previous sections, differentiable simulation and differentiable
rendering have been researched extensively in recent years. However, there are still some
deficiencies in the current state of the art, which our work aims to address.

Firstly, although there are plenty of research and implementations on grid-based
differentiable fluid simulations, there has not been many comprehensive benchmarks
between implementations using different differentiable frameworks, specifically between
Jax and PyTorch. Holl et al. provided the PhiFlow framework [42], which supports
both the Jax and PyTorch backends, but since they aim to provide a generalized facade
that abstracts away the underlying implementation, a lot of unnecessary overhead is
introduced, thus causing the benchmarks to be inaccurate. While introducing the
DiffTaichi [43] framework, Hu et al. provided benchmarks of the framework against
implementations using Jax. However, their implementation did not fully utilize the JIT
(Just In Time) compilation feature of Jax, which is one of the main advantages of using

Jax. For this reason, the benchmarks are not accurate either. In our work, we fill this gap

11



by providing both runtime and memory benchmarks using both Jax [33] and PyTorch [40]
implementations.

Secondly, as mentioned in Section 2.5, there has not been many research on fully
differentiable frameworks that combine grid-based differentiable fluid simulation and
rasterization-based differentiable fluid rendering. Existing implementations [39, 49, 56]
use either particle based fluid simulations, neural network as fluid solvers, or NeRFs as
differentiable renderers. Our work aims to fill this gap by combining a grid-based fluid
simulation that uses a Poisson solver and a rasterization-based fluid renderer using the
NvDiffRast [44] rasterizer.

Finally, memory consumption has been a long-lasting issue in learning-based methods
due to the construction of the computational graph during backpropagation. This is
especially significant in the context of grid-based differentiable fluid simulation since
the memory consumption increases non-linearly with the grid resolution. In our work,
we show how we tackle this problem using the checkpointing technique, and present
the memory consumption result using the Jax and PyTorch implementations for both the

differentiable simulation alone and the fully differentiable pipeline.

12



Chapter 3

Background

In this chapter, we will introduce the background knowledge required to build our fully
differentiable framework. We will first give a brief overview of automatic differentiation,
along with some common frameworks in Section 3.1 After that, we introduce fluid
simulation in Section 3.2. Finally, we describe the rasterization pipeline in Section 3.3

and how smoke can be visualized and rendered using direct absorption in Section 3.4.

3.1 Automatic Differentiation

With the boom of machine learning, automatic differentiation (AutoDiff) [28] has become
a popular technique for computing the gradient of a differentiable function. In this work,
we use AutoDiff to make our fluid simulator backwards differentiable to compute the
gradients of the loss with respect to simulation parameters. In this section, we will
introduce AutoDiff, and one of the main approaches for computing the gradient of a

function: reverse-mode AutoDiff.

3.1.1 AutoDiff

Traditionally, there are other methods in computer science that are used for computing

gradients. One of which is numerical differentiation. This method approximates the
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gradient by taking the central difference of the function at two points that are close to

each other. For a function f, the gradient at a point = can be approximated by

of _flate)—flz—¢)
or 2¢ ’

where € is a small number.

However, this method is not accurate because of numerical errors, and it is not scalable
to complex functions with multiple input variables because the number of evaluations is
proportional to the number of input variables.

Another method used for computing the gradients of a function is symbolic
differentiation. This method uses expression manipulation and works by applying the
chain rule to expand the function into a composition of simpler elementary functions.
This solves the problem of numerical errors, but it can often result in lengthy and cryptic
expressions, known as “expression swells”, and only works with closed-form functions.

AutoDiff provides an alternative to these methods that is automated, accurate, and
scalable. It works by decomposing a function into a sequence of elementary operations
and applying the chain rule to compute the gradients of the function. The gradients
for each elementary function, such as addition, multiplication, trigonometric functions,
etc., are defined manually through operator overloading. Depending on the order and
direction of the AutoDiff, multiple passes are traversed in the computation graph to

compute the gradients of the function.

3.1.2 AutoDiff Modes

There are two main approaches for computing the gradient of a function: forward-
mode AutoDiff and reverse-mode AutoDiff. Both approaches work by recording the
elementary operations in a computation graph and applying the chain rule to compute
the gradients of the function. The difference between the two modes is that they traverse

the computation graph in different order and will require different passes to compute the
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Jacobian (the matrix of all first-order partial derivatives of a vector-valued function where
there are multiple outputs and inputs). To illustrate the difference, we work with a toy
example that computes the gradient of the function y = \/z; — 2.

Forward-mode AutoDiff is also known as the tangent linear method. After computing
the function value and recording the elementary operations in the computation graph,
subsequent forward passes are traversed to compute the gradient of the function with
respect to each input variable. For each gradient pass, only one input variable is marked
as active, so to compute the Jacobian, the gradient pass needs to be repeated for each
input variable. In our toy example, this is illustrated in Figure 3.1a. After recording the
computation graph, when computing the gradient of the function with respect to z;, we
mark z; as active by setting the tangent trace #; = 1 and others to 0. Then, we traverse the
computation graph in the forward direction to compute the gradient of the intermediate
results with respect to x; after each operation. Finally, we reach the output of the function
and we obtain the gradient of the function against z;. We repeat the same computation
for z, for the its gradient as well. We can see that in order to compute the full Jacobian,
we need 2 gradient forward passes. This mode is useful particularly in scenarios where
the number of input variables is smaller than the number of output variables.

On the other hand, reverse-mode AutoDiff is also known as the backpropagation
algorithm. Different from the forward-mode, reverse-mode AutoDiff computes the
gradient backwards, starting from the output of the function. For each gradient pass, one
output variable is marked as active, and the gradient is computed with respect to all the
inputs. In our example, this is illustrated in Figure 3.1b. After recording the computation
graph, we set the reverse adjoint for the output of the function y = 1. Then, we traverse
in the backward direction to compute the gradient of the function with respect to each
intermediate variable after each operation. Finally, we arrive at the inputs of the function
and we obtain the gradient of the function against z; and z,. If there were multiple
outputs to the function, we repeat the same computation for the rest of the outputs for

their gradient as well. We can see that in order to compute the full Jacobian, in this case,
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Figure 3.1: An example of computing gradient of a function with forward-mode and
reverse-mode AutoDiff. The computation graph is shown in blue on the left, and the

gradient computation pass is shown in green on the right.
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we only require 1 gradient reverse pass. The reverse-mode Autodiff is useful when the
number of output variables is smaller than the number of input variables.

In our work, we use a scalar-valued loss function for learning, and there are a lot
more degrees of freedom for the input variables, including both simulation and rendering
parameters. Therefore, we use reverse-mode AutoDiff to compute the gradients of the
loss function with respect to these parameters because of the efficiency of the algorithm

in this scenario.

3.2 Fluid Simulation

In this section, we will introduce the basic concepts of fluid simulation. We will explain
the Navier-Stokes equation along with the assumptions we make in our work. After
that, we describe how the stable fluids [10] algorithm is used to solve the Navier-Stokes
equation using the splitting method, and we will cover each part of the fluid solve
operations separately along with how these operations affect the differentiability of the

simulator.

3.2.1 The Incompressible Navier-Stokes Equation

A fluid simulation composes of multiple time steps, where each time step is a simulation
of the fluid’s motion over a small time interval At. These fluid motions are governed by

the Navier-Stokes equation. The Navier-Stokes equation is given by

1
a—u—ku~Vu:——Vp—i—uV2u—|—f, (3.1)
ot P

V-u=0, (3.2)

where u is the velocity as a vector field, p is the pressure as a scalar field, p is the density
of the fluid as a scalar, v is the kinematic viscosity of the fluid as a scalar, and f is the

external force as a vector field.

17



Table 3.1: 2D mathematical operations used in the Navier-Stokes equation

Notation | Expanded formula Explanation
Vp ?)1; ?gz The gradient of the scalar field p
Vu [Vu V] The gradient of the vector field u
Vu V-Vu The Laplacian of the vector field u
V-u Ou/0x 4+ 0v/dy | The divergence of the vector field u

During the simulation, we are also interested in other quantities that are not included
in the equation above. Specifically, we use s to represent the smoke marker density as
a scalar field for visualization purposes. Note that this is different from the density p of
the fluid. We also use T' to represent the temperature of the fluid as a scalar field. Later,
we will use q to generalize for quantities (both scalars and vectors) carried by a fluid;
we will use the superscript q' to represent the quantity at time step ¢. For 2D vector
field u = (u, v), and scalar field p, the mathematical operations used in the Navier-Stokes
equations are defined in Table 3.1. The 3D mathematical operations follow naturally by
extending both the spatial dimension and the vector dimension by one.

The Navier-Stokes equation is derived from Newton’s second law of motion. The
derivation is beyond the scope of this thesis. However, it is covered in detail in the Fluid
Simulation book by Bridson [21].

In the Navier-Stokes equation, Equation (3.1) encapsulates the conservation of
momentum. It describes that in the limit, as the volume of the fluid particles get

infinitesimally small, the rate of change of the particles’ velocities over time, also known

Du

as the material derivative of the velocity, D

is equal to the sum of the forces acting on
that particle. The definition of material derivative and its meaning will be explained in
more detail when we introduce advection in Section 3.2.2.

Equation (3.2) specifies the incompressibility constraint. This means that for a patch
of fluid, the amount of fluid flowing into the patch equals the amount of fluid flowing out

of the patch. The constraint is enforced by the force caused by pressure, which we will

explain in Section 3.2.4.
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For our work, we make the assumption that the fluid is inviscid, meaning the fluid
is non-sticky and has zero viscosity. We make this assumption because we get diffusion
partly for free due to numerical dissipation. Mathematically, this means that we assume

v = 0. This assumption simplifies the Navier-Stokes Equation to

1
a—u—i—u-Vu:——Vgﬂ—f', (3.3)
ot p

V-u=0. (3.4)

The Navier-Stokes Equation does not have an analytical closed-form solution because
it contains a partial differential equation (PDE). To solve the Navier-Stokes equation, we
use the stable fluids algorithm [10, 21]. The algorithm takes a semi-Lagrangian approach,
and it is based on the splitting method, which is a technique for solving a PDE by
decomposing it into a set of simpler equations or PDEs. Specifically, in our case, the
equation is decomposed into three smaller operations - advection, external forces, and
projection. This is useful because it allows different parts to be solved separately with

methods that are best suited to them.

3.2.2 Advection

The first step in the stable fluids algorithm is advection. This step describes the fluid
particles and the quantities q they carry being moved by the velocity field. In the stable
fluids algorithm, this is done by using a semi-Lagrangian approach, which combines the
Lagrangian and Eulerian approaches.

In a continuum, the Lagrangian approach tracks each fluid particle individually. The
observer is attached to the fluid particle, and the fluid particle moves with the velocity
field. The particles carry quantities q(t) that change over time ¢. These quantities include

the position x(t) and velocity u(¢).
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The Eulerian approach uses a fixed grid, and the observer is fixed at a location x in the
grid. Depending on the location x, as time ¢ changes, the quantities q(¢, x) changes. Note
that in this case, the position x is an independent variable unrelated to time.

The semi-Lagrangian approach combines the Lagrangian and Eulerian approaches. It
uses a fixed grid, while the observer is attached to the fluid particle. At time ¢, for an

observer at location x(), the changes of quantities q can be parametrized as q(t, x(t)).

The material derivative, %, which can be think of as the total derivative, captures the
rate of change of the quantities carried by the fluid in the semi-Lagrangian view. It is

derived by combining the two viewpoints into

Dq(t,x) d

Dt = %q(ux(t))
dx

dq
_ . 3.5
i Vq (3.5)

_9Jq
= o +u-Vaq.

In fluid simulation, in the advection step, because there are no external forces acting
on the fluid, the quantity carried by fluid particles will move around in the fluid grid,
but should not change in the Lagrangian viewpoint. This means the material derivative

should be set to 0. This is equivalent to solving the quantity q for

dq
E—l—u-Vq—O. (3.6)

Note the velocity is a quantity carried by the fluid particles, and it can be self-advected.
In a semi-Lagrangian viewpoint, since advection is the transportation of quantity by
the velocity field, to obtain the quantity q at target location x at time step ¢, we simply
back trace the velocity field to the source location xp, and use the quantity qp carried by
the same imaginary particle at the source location at one time step before, ¢ — 1. This is

illustrated in Figure 3.2.
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Figure 3.2: Advection by back tracing the particle through the velocity field

With this intuition, solving for advection can be decomposed into two steps. First, we
need to find the source location xp given the target location x¢, and second, we need to
properly determine the quantity qp carried by that particle at the source location.

The problem of finding the source location can be categorized as a transient problem.
Given the target location x¢ and the ordinary differential equation (ODE) that describes

the rate of change of location
Oz

5 u(x), (3.7)
we would like to go in the reverse direction for At amount of time to find the source
location x5!

These transient problems are very well-studied and there are many existing solutions.
One of the simplest solutions is to use the “forward” Euler method to go backwards

in time. More concretely, this method solves the problem by using the velocity field

u evaluated at x; to take one time step backward. Formally, obtaining xp using the
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“forward” Euler method can be written as

xp = Xg — Atu(xg). (3.8)

For higher accuracy and stability, we can use the Runge-Kutta method, which is a
generalization of the forward Euler method by taking intermediate steps back. Although
we did not find this necessary because we focused on low velocity smokes with relatively
simple (boxed) boundary conditions, these higher order time integration methods can be
integrated into our framework in a straightforward fashion.

The final remaining task is to properly obtain the quantity qp carried by the imaginary
particle at xp. Because the particle location may not lie exactly on the discretized grid, we
need to interpolate the quantity using the neighbouring particles. In 2D, we achieve this
by bi-linear interpolation, and in 3D, we achieve this by tri-linear interpolation.

Finally, combining the time integration (backtracing) step and the interpolation step,
we can obtain the quantity qp after the fluid is advected. Note that for vector quantities,
each component of the vector will be advected separately. This step is completely
differentiable as well since all mathematical operations used for both components are

differentiable.

3.2.3 External Forces

In fluid simulation, external force fields f will act on the fluid and change the velocity
tield u. Depending on the scene and the simulation configuration, the force field is either
given as a simulation parameter or computed during each time step. Given the time step
size At, the amount of change in velocity caused by the external forces can be calculated

as Atf, and the velocity update can be written as

ul = u'! 4 Atf. (3.9)
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As for the differentiability, as long as the external force field f is provided as a constant,

or the computation of it is differentiable, the velocity update is differentiable as well.

3.2.4 Pressure Projection

In fluid simulation, the goal of pressure projection is to solve for the pressure field p that
satisfies both the incompressibility constraint and the boundary conditions. Then, the

velocity field u can be updated using the first-order update
y p & p
W =u"t - At%Vp. (3.10)

Staggered Grids

The incompressibility constraint states that the divergence of the velocity field u should
be 0, which means

ou Ov
Tt (3.11)

V-u
To compute the divergence of the velocity field, we need to compute the partial
derivative of the components of the velocity field with respect to the corresponding
spatial coordinates. In a discretized simulation, we compute partial derivatives by central
tinite differencing. However, if the velocity components are stored at grid centers, we will
run into a non-trivial null space problem, where our finite differencing estimation will be
0 while the actual gradient of the velocity field is non-zero. In 1D, this can be illustrated
in Figure 3.3. For the piecewise linear function in the figure, the gradient is non zero
everywhere and not defined at integers, but at + = 2, using finite differencing, we will
obtain an incorrect gradient estimate of w =L1l=0.

In order to avoid this non-trivial null space problem, we will adopt a Staggered Grid,

also known as Marker and Cell (MAC) Grid, to store the velocity field [1].
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Figure 3.3: Null space problem
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Figure 3.4: Staggered grids

In a 2D staggered grid, the vector components (u, v) are stored at the grid faces with
half-indices, while the scalar components such as pressure (p) are stored at the grid centers

with integer indices. This is shown in Figure 3.4a.
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With staggered grids, taking central differences for the velocity components will give
spatial derivatives at the center of the cell. With u = (u, v), the spatial derivative for the

velocity components can be written as

@ C Uig1/25 — Ui-1/2,5
ox i Ax 7

(@) _ Yig+1/2 = Vij-1/2
9/, Ay

After computing the spatial derivatives, we can evaluate the divergence of the velocities

(3.12)

at the center of the grid cells (V - u), ;.

Another advantage of using a staggered grid is that when we evaluate the gradient of
the pressure field using central finite differencing, the derivatives will be evaluated at cell
face centers, making it easier to compute the velocity update. The spatial derivatives of

the pressure field can be written as

(@) _ Pit1j — Dij
O i+1/2,j Az

(@) _ Dij+1 — Diyj
dy ij+1/2 Ay

However, the disadvantage of using a staggered grid is that during the advection step,

(3.13)

we need to interpolate the velocity components to different locations depending on the
quantity being advected. When advecting scalar grids, we need to sample the velocity
at grid cell centers, where each sampling point has integer indices u; ;, which can be

computed by

Ui—1/25 + Uit1/2,5 Vij—1/2 T Vij+1/2
um-=< 20} tenjag Uogmajn ¥ vy /)_ (3.14)

When we use the velocity field to advect itself, we advect each component separately,
and for each component, we need to sample the velocity at different locations so that
the sampled velocity aligns with the component being advected. For example, when

advecting the u component of the 2D velocity field, we need to interpolate the velocity
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so that the sampled points align with the data points stored in the u component, which
live on the cell face centers where the x component has half-indices and y component has
integer indices (u,1 ;). Similarly, when advecting the v component, we need to sample

)

the velocity at u, ;, 1. Sampling at these locations can be computed by

Vij—1/2 T Vij+1/2 + Vit1j—1/2 T Vit1,5+1/2
Wir1/2,5 = | Uit1/2,55 1 )
(3.15)

(Wim1y2 T Uigry2,5 Tt Uic1/2,541 T Wik1/2,5+41
W;ir1/2 = 1 y Vi j+1/2

In a 3D staggered grid as shown in Figure 3.4b, computing the divergence of the
velocity field, the gradient of the pressure field, and sampling the velocity field for
advection are very similar to the 2D case. The only difference is that we need to take

into account the third dimension.

Boundary Conditions

One of the goals of pressure projection is to enforce boundary conditions. In fluid
simulation, if we think about the grid as a voxelized model, as shown in Figure 3.5, then
each voxel can be labelled as a fluid (F), solid (S), or empty (E). Then, we can describe two
types of boundary conditions: Dirichlet and Neumann boundary conditions.

The Dirichlet boundary condition is also known as the free surface boundary
condition. This boundary condition is enforced on voxel faces between fluid and empty
voxels. In Figure 3.5, Dirichlet boundary conditions are marked with blue lines.

The Neumann boundary condition is also known as the solid boundary condition.
This boundary condition is enforced on voxel faces between fluid and solid voxels. In
Figure 3.5, Neumann boundary conditions are marked with lines.

Since our work is focused on smoke simulations, the air acts as the fluid, and there
will not be empty cells in our simulation, so we do not need to solve for the Dirichlet
boundary conditions. Therefore, we will only cover Neumann boundary conditions in

this thesis.
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Figure 3.5: Boundary conditions

For solid (Neumann) boundary conditions, we would like to enforce the fact that no
fluid should flow into or out of the solid body. Mathematically, this means that in the
normal direction, denoted by n, the relative velocity between the fluid and the solid
should be zero and can be written as Equation (3.16) and Equation (3.17). Note that for the
tangent component, the relative velocity between the fluid and the solid can be non-zero,
and the fluid velocity is independent of the solid velocity.

In general, the relationship between the fluid and solid velocities can be written as

U N = Ugyqg - N. (3.16)
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If we make an additional assumption that the solid is stationary, then the relationship
can be simplified to

u-n=0. (3.17)

To utilize Equation (3.16) and Equation (3.17) to solve for pressure, we will use a ghost
pressure, p?"°% to act as an imaginary pressure value for a solid cell right next to a fluid
cell. We will take a 2D solid boundary example of having a solid cell on the left at location
(,7), and a fluid cell on the right at location (i + 1, j). The solid cell will have a ghost

ghost

pressure of p;

¢ ,and we would like to solve for the pressure in the fluid cell p;y, ; so that

it satisfies Equation (3.16). This is illustrated in Figure 3.6.

In our example, since the normal direction of the solid boundary is the © component,
we can rewrite Equation (3.16), so that in the next time step (¢ + 1), the updated velocity’s
u component satisfies

t+1 __solid
Uiry/2,5 = Wit1/2,5- (3.18)

Given the ghost pressure, we can also rewrite the u-component of the velocity update

Equation (3.10) as

host
1 { pit1; — v
t+1 ot ) 1,J
Uiyr/25 = Wit1/25 — At; (A—$ . (3.19)
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Substituting Equation (3.18) into Equation (3.19) and rearranging, we can derive that

the ghost pressure needs to satisfy

host /)AJJ soli
Pl = Pivi T+ AL <u§+1/2,j - ui—i-l172,j) . (3.20)
Note that this ghost pressure constraint can be generalized to the v-component, as well

as the 3D case.

The Pressure Equation

In our work, we will assume that the solid is stationary. Therefore, we will proceed under
the assumption of Equation (3.17).
We expand the first order velocity update Equation (3.10) into the u-component and

v-component as

t+1 _ ot i+1,j 1,J
Uiy95 = Wit1/2,5 — At; ( Az ) )

t+1 ot 1,5+1 3
Vija1/2 = Yij+1/2 — At; (—j Ay ]) .

(3.21)

Likewise, we expand the divergence free constraint in Equation (3.2) into the u-

component and v-component, and get

t+1 t+1 t+1 t+1
i+1/2, i—1/2, 1,j+1/2 4,j—1/2
Vbt n 2 [20 4 W2 WELR ), (3.22)
b Ax Ay

For simplicity, we assume the grids are squared, meaning Ay = Ax. Substituting
Equation (3.21) into Equation (3.22), and rearrange so that the pressure terms are on the

left, and the known velocity terms are on the right, we obtain

¢ ot ¢ ot
At (4pi,j — Pi+1y — Pi-1,j — Dij+1 _pi,j—l> L (uz‘+1/2,j Wi qy25  Yijy12 — Vij-1/2

p Az? Ax + Ax

(3.23)
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Note that this equation is the finite difference approximation for the Poisson equation

for pressure

—VVp=-V-u (3.24)

For cells that are marked as solid, we use the ghost pressure in Equation (3.20) to
substitute the corresponding pressure terms in Equation (3.23).

In general, for a cell that is marked as solid, we will modify the pressure equation in
Equation (3.23) by reducing the coefficient for the central pressure term by 1 on the left-
hand side and removing the pressure term that is solid, and add the velocity term on the
right-hand side.

For example, for the central pressure at index (i, j), if the cell on the right (i + 1, j)
is marked as solid, then we substitute the ghost pressure in Equation (3.20) into the

Equation (3.23), and get

ﬁ (Bpi,j —Pi-1; — Pij+1 — pi,j—l) _

P Ax?
t t t t t
Uity/25 — Wi1yo;  Yigri2 — Vij-1/2 Uit1/2,5
— ’ : : : —== 1. (3.25
( Az + Az T\ Tar (325

The Pressure Equation in Vector Form

For each cell in the simulation domain, we can use the above to construct a pressure
equation. By combining all these pressure equations, we obtain a system of equations

that can be written in vector form as

Ap =d, (3.26)

where A is a laplacian coefficient matrix for each cell, and is sparse and symmetric positive
definite, as long as the boundary conditions are valid. The vector p is the unknown

pressure values for each cell, and the vector d is the negative velocity divergences.
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This kind of linear systems are often very large, and solving for exact solutions is time
consuming. However, in fluid simulation, to obtain a visually pleasing result, we do not
need to solve the pressure exactly. Instead, it is desirable to solve for an approximation of
the pressure in order to reduce the run time. To achieve this, iterative methods such as the
Jacobi, Gauss-Seidel, or conjugate gradient are often used. In our work, we chose to use
the conjugate gradient method, which usually converges to an acceptable approximate
to the solution within a low amount of iterations. The solver is differentiable as long as
the matrix-vector product operator is differentiable as well. However, the convergence
tolerance and the number of maximum iterations allowed still needs to be fine-tuned. As
the tolerance decreases, the solver will produce a more accurate pressure estimate that
enforces the divergence free constraint, but it will also increase the number of iterations it
takes to converge. The larger the number of iterations causes more elementary operations
to be performed thus increasing the memory requirement for storing a larger computation
graph. More importantly, the more iterations, the longer it takes for the solver to run.
In our work, we compared different convergence tolerances and maximum iterations in
Section 4.1.6, and chose a tolerance of 0.1 and a maximum of 20 iterations for the conjugate
gradient solver.

Another important aspect of the iterative solver is the choice of the matrix-vector
product operator. The operator should be time-efficient to compute and should not take
up too much memory. A naive way to construct the operator is to compute and use
the dense matrix A directly. However, for a grid with high resolution of n x n x n, a

dense matrix A will have n3

x n® entries, which is too large to store in memory. One
alternative to this is to use the sparse matrix A, where the Os are not stored in memory.
This will reduce the memory usage to around ™n? entries, since there will be n?® rows,
and for each row, the non-zero entries correspond to the neighbors of the cell and the cell
itself, and each cell has at most 6 neighbors. This is still very large to store in memory for

a high resolution grid, and the matrix-vector product operator will be time-consuming to

compute as well. Instead of these options, we take advantage of the fact that the matrix
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A is a sparse laplacian matrix, and use convolution filters and paddings to construct the
operator. With this approach, the operator is a lot more memory friendly since we only
need to store the 3 x 3 x 3 convolution filter, along with the padded simulation grid.
The operator is also time-efficient to compute as well since the packages we use, such
as PyTorch and Jax, have optimized implementations for convolution operations using
vectorization and memory stride management, and even parallelization on GPUs. The
details of the convolution implementations are described in Section 4.1.6.

Finally, after solving for the pressure values, we can use them to update the velocities
using Equation (3.10). As long as the memory concerns above are addressed, the pressure

projection step is differentiable and can be integrated into the pipeline without problem.

3.3 Rasterization Pipeline

In our work, we use a rasterization-based rendering method to render the fluid. For
the rasterization and its corresponding gradient computations, we use an existing
differentiable rasterizer, NvDiffRast [44]. Prior to rasterization, our work mainly involves
vertex transformation and vertex property interpolation. In this section, we will give a
quick overview of part of the rasterization pipeline.

In rendering, the 3D scene is usually described by meshes. A mesh is represented
using a set of primitives such as triangles, described by vertices and faces. Each vertex
will contain information about its position and other attributes such as normals and
texture coordinates. Each face will contain information about the indices of the vertices
that form the face. The rasterization pipeline takes these object space vertices and the
faces as input, and outputs a set of pixels that will be displayed on the screen.

The pipeline consists of the following steps, and each step will be explained in more

detail in the following sections.
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1. Vertex Processing - Transforms object space vertices of the mesh into the clip space
by performing a series of transformations including world, look at and projection

transformations.

2. Clipping and Rasterization - Clips the primitives against the view frustum, and

then rasterize them into fragments.

3. Fragment Processing - Processes the fragments to determine the visibility and the

colour of the pixels.

4. Display - Displays the rasterized image onto the screen.

3.3.1 Vertex Processing

In a rasterization pipeline, when a mesh is first defined, the vertex coordinates are defined
in model space. The vertex processing stage is in charge of transforming the vertices from
the model space into the screen space. The transformation is done by applying a series of
transformation matrices including the model/view /projection (MVP) matrices and the
viewport transform matrices to the vertices. These transformation matrices are 4x4, and
the coordinates of the vertices are represented as 4D homogeneous coordinates, with the
fourth component being 1, making the coordinates [x,y, z, (w = 1)]. The transformation
matrices are defined as follows.

The model matrix M,,,q. transforms vertices from the model space into the world
space. This matrix is usually arbitrarily defined by artists or programmers.

The view matrix M,;..,, also known as the look-at matrix, transforms vertices from the
world space into the camera space. This matrix is defined by the position of the camera
c, the position of the target t, and the up vector u. In our work, we use a right-handed
coordinate system, where the camera’s z-axis points out of the screen, the x-axis points to

the right, and the y-axis points up. Using these three vectors, we can define the camera
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space coordinate system by

c—t
e —t’
uxz

" Juxaz|

y =2 X X.

Then, the view matrix is defined as the inverse of the camera-to-world matrix

-1
Xy z cC

0 0 01

Mview -

The projection matrix M,,,; transforms the view space into the clip space. Depending
on the type of projection, the projection matrix can be defined differently.
For orthographic projection, the projection matrix is defined by the left (), right (r),

bottom (b), and top (¢) planes of the view frustum and the near (n) and far (f) planes, and
is given by

M,

proj_ortho —

For perspective projection, the projection matrix is defined by the field of view (¢) in

radians, aspect ratio (), and the near (n) and far (f) planes. Using the field of view, we

can calculate the top (¢), bottom (b), left (), and right (r) planes using

t =ntan —,
b=—t,
r =t
l=—r



Using these planes, we construct the perspective projection matrix using

2 I+r
o 0= 0
2 b+t
M B 0o = = 0
proj_persp — - 2/n
0 0 F Fom
0 O 1 0

Note that the model, view and projection matrices can be combined into a single MVP
matrix My;vp and be used to transform the vertices v from the model space into the clip
space by

Velip = MMVPVmodel = MprojMviemeodeleodel-

Then, by dividing the z, y, and z components of the vertices by the w component,
called the perspective division, we can transform the vertices from the clip space into the
canonical view volume space or normalized device coordinates (NDC) space. The NDC
space is defined by the range [—1, 1] for all three axes.

Finally, the view port transform transforms the NDC space into the screen space.
Given the width (n,) and height (n,) of the screen in pixels, the viewport transform matrix

is defined as

¥ o000
0 2 o X
Mm’ew,port = 2 2
0 0 1 0
0 0 0 1

In summary, a 3D coordinate of a vertex v in the model space can be transformed into

the 2D coordinates in screen space by combining all the transformations

VSCT‘C@’H, -

Mview,port MMVPVmodel
" .
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Note that the v..c.,, Will have 4 coordinates, (zs, ys, z., 1), where (xg, y,) are coordinates

in the screen space, and z. is the depth value of the vertex in the clip space that is stored

for the depth buffer.

3.3.2 Rasterization

The rasterization step converts the continuous geometric primitives into discrete pixel
fragments. For each primitive in the scene, the rasterization process computes the pixels
covered by the primitive and generates a fragment for each pixel. Barycentric coordinates
are used to determine whether a pixel is within the primitive. For each pixel, interpolated
attributes are computed based on the barycentric coordinates and the attributes of the
vertices of the primitive. In our case, the interpolated attribute mainly refers to the

absorption coefficient of the smoke.

3.3.3 Fragment Processing

Fragment processing composes of two main tasks: visibility determination and shading.

The visibility problem determines whether a fragment is visible or not. A z-buffer,
as known as the depth buffer, is used to perform the depth test. The depth value is
computed in the vertex transformation stage and stored as the depth coordinate z. in the
screen space coordinates. When drawing the primitives onto the screen, for each pixel,
the depth value of the pixel is compared with the depth value stored in the depth buffer.
If the depth value of the pixel is smaller than the depth value stored in the depth buffer,
the pixel is visible and the depth value in the depth buffer is updated. Otherwise, the
pixel is occluded and is discarded.

Another important task of the fragment processing stage is shading, which means
computing the colour of the pixel. In our case, we compute a gray-scale colour for each
pixel based on the absorption of the smoke; see Section 4 for more detail. Hence, we will

not cover shading in this thesis.
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Due to its if-statement like branching logic when performing the depth test, the task
of determining the visibility of a fragment is discontinuous and thus non-differentiable.
This is one of the main challenges in designing a differentiable renderer. As described in
Section 2.4, there exists different techniques and frameworks to address this problem.
Among them, we use an existing differentiable rasterizer, NvDiffRast [44], in our
framework. The rasterizer avoids this problem and provides gradient against the vertex
information by analytically post-process edge antialiasing, which means computing and
interpolating the pixel colour blending depending on the pixel location of the triangle

edges during the antialiasing operation.

3.4 Smoke Absorption

In this section, we will introduce the absorption of the smoke, which is used to compute
the outgoing light radiance after a light beam traverses the smoke medium. We will first
introduce the Beer-Lambert law for computing the outgoing light radiance that traverses
out of a smoke medium, then we introduce the absorption coefficient used in the Beer-

Lambert law and how it is computed.

3.4.1 Beer-Lambert Law

When a beam of light traverses through a smoke medium with incoming radiance L;, it
will get absorbed by the smoke, and the outgoing radiance L, will decrease due to this
absorption. This is illustrated in Figure 3.7.

This phenomenon is modelled by the Beer-Lambert law. The Beer-Lambert law
defines the transmittance of light through a medium. The transmittance 7" is defined

as the ratio of the outgoing radiance L, to the incoming radiance L;.

37



Figure 3.7: Illustration of light traversing through a smoke medium

For a homogeneous medium, the absorption coefficient does not change throughout

the medium, and the Beer-Lambert law is defined as
T=22=¢ 4 (3.27)

where o, is the absorption coefficient, and d is the length of the light path in the medium.

This can be rearranged and solved for the outgoing radiance L, by
L, = Lje %, (3.28)

For a heterogeneous smoke medium, the smoke absorption coefficient varies
depending on the sampling location in the medium. The Beer-Lambert law can be written
in the continuous form

Ly = Liekt —oe(@de, (3.29)

where z is the a point on the light path and o, is a function of absorption coefficient that

depends on z.
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By assuming that the absorption coefficient 7, is constant along each small segment of

the light path, we can discretize and rewrite the integral form in Equation (3.29) as

L, = LjeXi=o~0ailz

n
= L,L H €7Ua’iAm,
=0

(3.30)

where 0, ; is the absorption coefficient at the i-th segment of the light path, and Az is the

length of each segment.

3.4.2 Absorption Coefficient

The Beer-Lambert law uses the absorption coefficient o, to compute the transmittance of
the light through the smoke medium. In our work, because we work with a simulated
smoke grid, and at each cell, the amount of smoke s is different, the absorption coefficient
for each cell will be different as well. We will work with a discretized heterogeneous
smoke medium and need to compute the absorption coefficient for each segment of the
light path.

To compute the absorption coefficient o, given the smoke density s for a patch of
smoke in ppm, we can compute the absorption coefficient o, for the patch using the light
extinction coefficient equation

Oq = Km3> (331)

where K, is the extinction coefficient of the medium, which is a constant value defined by
the user. In Section 4.2, we detail how we convert the smoke grid into a triangle mesh and
how the smoke density stored in each grid cell is converted into the per-vertex absorption

coefficient.
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Chapter 4

Methodology

We will present our methods of implementing the fully differentiable fluid pipeline in
this section. The goal of this framework is to solve for simulation inverse problems by
optimizing the 3D parameters of the fluid simulator and the renderer using the gradient
of 2D image losses. First, we will introduce our implementation of the differentiable
fluid simulator, including the data structures we use and our variation of the stable
fluids [10] algorithm. Then, we will describe the differentiable fluid renderer. Since
NvDiffRast [44] does most of the heavy lifting for the rasterization pipeline, we will focus
on discussing how the simulated 3D smoke grid is converted into geometry mesh and
how the absorption of light is computed. Finally, we describe the optimization process

used in the framework to solve for inverse problems.

4.1 Differentiable Fluid Simulator

Our project implements the differentiable fluid simulator based on the stable fluids [10]
algorithm described in Section 3.2. We use the Python language and implement both
a Jax [33] version and a PyTorch [40] version of the simulator. Both implementations
can perform forward simulation and backward differentiation. In the following

sections, we will first describe the data structure used in the simulator, and then the
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specific implementation of the stable fluids algorithm, and finally we will explain some
acceleration techniques used and give a brief comparison between the Jax and PyTorch

implementations.

4.1.1 Data Structures

Before detailing the implementation of the algorithm, we will first introduce the data
structures used for storing the grid data in the simulator.

For the simulation, we define the spatial resolution in the z, y and z axes as nz, ny
and nz respectively. They represent the number of cells in the grid along each axis. On
top of the spatial resolution, we also include a batch size B for our simulation to support
batched operations.

For scalar grids such as the smoke density grid and the temperature grid, we will use a
centered grid that stores values at the center of the cell. The Centered Grid is represented
by a 4D tensor of shape (B, nz, ny, nz).

For vector grids such as the velocity grid and the force grid, we will use a staggered
grid that stores values at the cell face centers, described in Section 3.2.4. The Staggered
Grid is represented by a tensor of shape (B, 3, nx+1, ny+1,nz+1). The second dimension
corresponds to the (u,v,w) components of the vector field. For each component, the
corresponding spatial dimension will have one more value stored compared to the rest
of the two because the values are stored at the cell face centers. Then, for the rest
of the two spatial dimensions, empty values are padded to fit the dimension of the
tensor. For example, given a vector field u of shape (B,3,nz + 1,ny + 1,nz + 1), we
query the u-component by setting v = u[:,0,,:,:]. Then, the u-component of the vector
field u is of shape (B,nz + 1,ny + 1,nz + 1). For the u-component, index [b,1, j, k|
represents the (b,i — 1/2, j, k) coordinate. Hence, the valid shape of the u-component
is (B,nz + 1,ny,nz). Programmatically, stacking the vector components together will
bring significant speedup to later computations. To do so, the shapes of the components

must be consistent, so in the u-component example, to make the shape consistent with
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Table 4.1: Non-learnable configuration parameters

Parameter Functionality
time_steps (int) The number of time steps to simulate
At (float) The time step size
size_x, size_y, size_z (floats) The physical size of the grid
nx,ny,nz (integers) The spatial resolution of the grid
T mpient (float) The ambient temperature
g (vector of 3 floats) The gravitational acceleration
k_max (integer) The maximum iterations for the pressure solve
€ (float) The convergence tolerance for the pressure solve

the rest of the two components, we take the ceiling of each spatial dimension of the
shapes, and pad the u-component with an extra column and an extra channel so that
it has shape (B, nz + 1, ny(+1),nz(+1)). The similar logic applies to the v-component and
the w-component as well.

An alternative to the using arrays to store staggered grids is to use custom objects
and store each component as a separate array as the object’s property. This approach
might sound more intuitive and easier to debug, but since we would like to use Jax’s and
PyTorch’s JIT compilation to speed up the simulation, and only functional programming
works with JIT and object-oriented programming is not supported, we have to use arrays

to store the staggered grids.

4.1.2 Simulation Parameters

The parameters for our simulation can be separated into non-learnable configuration
parameters and learnable simulation parameters. Table 4.1 summarizes the list of non-
learnable parameters used in the simulator. These parameters are fixed throughout the
simulation and are not optimized. Table 4.2 summarizes the list of learnable simulation
parameters used in the simulator. During learning, any subset of these parameters can be

optimized.
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Table 4.2: Learnable simulation parameters

Parameter Functionality
s (Centered Grid of floats) The smoke marker concentration grid
u (Staggered Grid of floats) The velocity grid
Xin flow (Vector of 3 floats) The spatial location of the inflow source
Tinflow (flOat) The radius of the inflow source
Sinflow (float) The concentration of the inflow source
Tinfiow (float) The temperature of the inflow source
f (vector of Staggered Grids of floats) | The acceleration caused by external forces

41.3 Advection

The first step of each fluid solve is the advection step. As described in Section 3.2.2, the
advection step consists of backtracing the velocity field and interpolating the values from
the previous time step.

First, the velocity field usumpieq is sampled at different locations depending on the type
of grid being advected. For scalar fields such as smoke concentration s and temperature
T, the velocity is sampled at the center of the cell. For vector fields such as velocity u, for
each component of the vector field, the velocity is sampled at different cell face centers.
The sampling scheme follows Equation (3.15) in Section 3.2.4.

Then, we backtrace the velocity field to find the locations at the previous time step. A
naive implementation of this is to use a for loop to iterate through each cell and backtrace
the velocity field. However, this is extremely inefficient because Python is an interpreted
language and its for-loops are very slow. Instead, throughout our implementation, we
would like to use vectorized and library built-in operations as much as possible to speed
up our simulation.

In the context of backtracing, we first create a grid coordinate system representing the
locations of each cell x¢. For this step, we use functions such as torch.linspace and
torch.meshgrid. These coordinate systems are represented as a 5D tensor of shape
(B,3,nx,ny,nz), where the second dimension corresponds to the z,y, z components.

Using the grid coordinate system and the sampled velocity usumpica, the backtraced
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Algorithm 1 Advection

1: procedure ADVECTION(q', u’, At)

2: Usampled = SAMPLE_VELOCITY (¢, u)

X = CREATE_COORDINATE SYSTEM(q")
Xp =Xg — Atusampled

q'™! = TRILINEAR_INTERPOLATION(q’, xp)
return q'*!

locations xp are computed using the forward Euler integration scheme
Xp =Xg — Atusampled-

With the backtraced locations xp, the values corresponding to these locations qp
are then interpolated using tri-linear interpolation. Different packages have different
vectorized implementations for tri-linear interpolation. In PyTorch, this is achieved using
torch.nn. functional.grid_sample. In Jax, the equivalent function for tri-linear
interpolation is jax.scipy.ndimage.map_coordinates.

In general, to advect a quantity ¢’ (either a scalar grid or the components of a vector
grid) at time step ¢ to get the quantity at the next time step ¢ + 1, the advection step can
be described by Algorithm 1.

414 Inflow Injection

After advection, the next step is to inject smoke and temperature into the scene, so
that the smoke forms a continuous plume throughout the simulation time steps. The
inflow is injected in the form of a sphere mask described by the inflow source location
Xinflow = (Tinflow, Yinflows Zinflow) and the inflow radius 7, i, The amount of inflow and
the temperature being injected into the scene is described by the inflow concentration

Sinfiow and the inflow temperature T, 10, respectively.
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One important note is that we need to be careful of how the inflow sphere mask is
created so that the differentiability of the inflow parameters is not broken, as described
bellow.

One common method to create a sphere mask is to use a sphere function

1 lf (l’ - Iinflow)Q + (y — ymflow)2 + (Z — Zinflow>2 S Tzznflow

fsphe7'e<x7y7z> = )
0 otherwise

where if (z,y, 2) lies inside the sphere, the mask value is 1, otherwise the value is 0. The
problem with this method is that the function is not differentiable at the boundary of the
sphere because of the discontinuity where the function jumps from 0 to 1. This causes the
gradient to be undefined at the boundary, and the optimization algorithm will not be able
to learn the inflow location parameter.

To solve this problem, we use a differentiable sphere function with the edge smoothed

out using the tanh function. The function is defined as

<1 + tanh <\/(x —20)?+ (y —yo)? + (2 — 20)? — 1")) . 4.1)

N | —

fsphere(xa Y, Z) =

Note that the part within the tanh function is very similar to the discontinuous sphere
function above, and it encompasses information regarding whether a point in space
lies within the sphere. The tanh function is a well-known smoothing function that is
commonly used in machine learning to deal with discontinuities. In our case, it helps
make the sphere edges continuous. Finally, we rectify the range of the function to between
0 and 1, so that it is easier to apply it to the smoke or temperature directly. This function
is differentiable everywhere, and the gradient can be computed using the chain rule.
A visualization of the function in a 2D slice can be shown in Figure 4.1. Note that an
alternative to the tanh function is the sigmoid function, which is also commonly used

in machine learning. However, given the same function outputs, the tanh function has a
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Figure 4.1: Visualization of a differentiable sphere function in a 2D slice

Algorithm 2 Inflow Injection

1: procedure INFLOW_INJECTION(S", T, Xin fiow, Tin flow, Sin fiows Lin flow)
2: I = CREATE_CIRCLE_MASK (X, Xin fiow, Tin flow)

3: ST = §' + Sinrow]

4: T =T + CZ“%nflowj

5: return sttt TtH!

steeper gradient than the sigmoid function, which in our case, helps with the optimization
process.

With the differentiable sphere mask creation function, the operation of injecting smoke
and temperature into the scene is differentiable as well, since the operation includes only

addition and multiplication. The inflow injection step can be described by Algorithm 2.

4.1.5 External Forces

In our work, the external forces applied to the smoke body consist of two parts. One is
the user-defined external forces, and the other is the buoyancy force that makes the smoke
rise and form a plume. The two forces are combined and applied to the velocity grid at

the external forces computation step.
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The user-defined external forces take the form of a tensor of Staggered Grids
throughout the temporal dimension. At each time step ¢ in the simulation, the

corresponding external force f* is applied directly to the velocity grid u’ using the formula
u't =u' + Atf'

The buoyancy force is computed using the Boussinesq approximation. It takes two
factors into account - temperature and density.

At the beginning of our simulation, we assume an ambient temperature 7g,,pic,; in our
scene. As smoke is being injected, the inflow location will also introduce heat into the
scene. This is represented by the inflow temperature T3, ,,,. We track the temperature
tield as a scalar field that is being advected in the advection step. After advection and
injection, we also want to update the temperature field to account for the heat dissipation

or diffusion modelled by the Newton law of cooling [2, 51], which can be expressed as
T =T+ (T" — Tympient) (1 — exp(—At)).

The difference between the temperature carried by the smoke and the ambient
temperature causes hot smoke to float and cool smoke to sink, thus the higher the
temperature carried by the smoke, the greater the smoke will experience a buoyancy force
in a positive y-direction.

On the other hand, because the air carrying smoke is denser than the air without any
smoke, they will tend to fall down due to gravity. This means that for a constant smoke
volume, the more concentrated the smoke, the heavier it is, and the more gravitational
force will be applied to the smoke in a negative y-direction.

The buoyancy force is computed by combining the two factors together. It is then

applied to the velocity grid u using the Boussinesq approximation [9, 11]
ut =u' + At (as — BT g,
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Algorithm 3 External Forces

1: procedure EXTERNAL _FORCES(u’, f*, ', T* g, At)
2: u = u’ + Atf?

3: T =T+ (T — Tompient) (1 — exp(—At))

4 utl=u+At(as—pTHg

5: return u’*!

where o and 3 are user defined constants.

The external forces step can be described by Algorithm 3. Note that in Section 3.2.3,
we mentioned that the differentiability of the external force step is dependent on how
the force is generated. In our method of generating the external forces, both the Newton
law of cooling and the Boussinesq approximation are continuous and differentiable, thus

making the external forces step differentiable as well.

4.1.6 Pressure Projection

After advection and applying external forces, the final step of the stable fluids algorithm
is to apply pressure projection to make the fluid incompressible and conform with the
boundary conditions. In this section, we describe our implementation of the pressure
projection step. We will first describe the boundary conditions for our framework and
how we construct our linear system. Then, we will describe our implementation of the

conjugate gradient solver that is used to solve the linear system.

Boundary Conditions

In our framework, since we work with smoke, we will only work with Neumann
boundary conditions or solid boundary conditions. In addition, we will also assume
that we are working with a closed cubed domain with no obstacles in the scene. This
assumption is made to simplify the implementation of the linear system construction.
Extending the 2D per-cell pressure equation Equation (3.23) from in Section 3.2.4 to 3D,
to construct the linear system, for each pressure p; ;;, using the neighbouring pressure

values and the divergence of the velocity field u = (u,v,w), we can construct a linear
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system

At (6pijk = Pit1jk = Pi-1jk = Pijtik = Dij-1k = Pijht1l = Pijh-1) _
0 Ax?

ul Ul ot _ ot wh _wt (4.2)
i+1/2,5.k i—1/2,5k ij+1/2.k ij—1/2.k i, k+1/2 i,5,k—1/2
— + + :
Az Ax Az

In the matrix-vector form, this can be expressed as
Ap =d. (4.3)

Note that for cell (i, j, k), the coefficient of the pressure terms on the left is the
equivalent of convolving a 3D Laplacian kernel with the 3 x 3 x 3 neighbouring pressure

terms, where the kernel is defined by

0 0 0 0 -1 0 0 0 0
kernel = | [0 —1 0 -1 6 -1 0 —1 0f]- (4.4)
0 0 0 0 -1 0 0 0 0

Then, the operation of Ap can be expressed as by a function that encodes the
convolution between kernel and the pressure field p.

For the boundary conditions, as described in Section 3.2.4, we need to make
modifications to both the left-hand side and the right-hand side of Equation (4.2).

For the left-hand side, because we assume a closed boxed domain as our solid
boundary condition when we apply the ghost particle updates for the solid surfaces at
the edges, it is equivalent to replacing the solid boundary cells with the same value as
the center cell that is next to the boundary. By doing so, the equation on the left will not
contain the pressure term for the solid cells, and the coefficient of the center pressure will
be reduced by one.

As for the right-hand side of the equation, before computing the divergences, we need

to account for velocity in the normal direction to the boundary surfaces. To do so, for
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the boundary cells, we simply set the velocity component that is perpendicular to the
boundary to be zero. In our case, this is equivalent to setting the first and the final element
of the velocity component that is perpendicular to the edges of our domain box to zero.
Take the u-component for example, the boundary cell faces are vertical cell faces that
point perpendicular to the u-direction, and they are located at the cells with i = 0 and
i = n,. Then, for all j € [0,n,] and k € [0,n,], we set ug;r = up, jr = 0. In Python, this
can be done withu(:, [0, -11, :, :1 = 0.

After the edge normal velocities have been set to zero, computing the divergence of the
velocity field with the Staggered Grid data structure is fairly straightforward, as described
in Section 4.1.1. We will denote the computed divergence vector as variable d.

Given the left-hand side matrix-vector multiplication operator A_operator and the
right-hand side velocity divergence vector, we can now solve the linear system using the
conjugate gradient solver. With Jax and PyTorch, the convolution operation comes built-

in and differentiable, and hence the A_operator is differentiable as well.

Conjugate Gradient Solver

The conjugate gradient solver is a well-known iterative solver that is used to solve linear
systems of the form Ax = b, where A is a symmetric positive definite matrix. With a good
pre-conditioner, it can usually converge to a pressure estimate that produces a visually
acceptable simulation in just a few iterations. In our work, we did not use any pre-
conditioner since we put more focus on the differentiability instead of the performance
of the solver. As described in Section 3.2.4, choosing the residual tolerance and the
maximum number of iterations for the solver is a trade-off between the accuracy of the
solution and time along with memory requirement. Without fine tuning the maximum
iteration or the residual tolerance, if the residual tolerance is too low or the maximum
iterations allowed is too high, the solver converges to an accurate solution, but the
runtime becomes too long and the memory required to store the computation graph

also increases. On the other hand, if the residual tolerance is too high or the maximum
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Table 4.3: A comparison of the simulation performance produced using different

conjugate gradient solver settings combination.

Iterations | Tolerance | Runtime (s) | Memory (GB)
10 1.00 14.4 2.0588
20 0.10 29.3 2.2248
50 0.01 40.9 2.5014

iterations allowed is too low, the solution will be inaccurate and a lot of local details in
the simulation will be lost.

To determine the optimal setting for the residual tolerance and the maximum number
of iterations, we ran the simulation on a 128 x 128 x 128 grid for 60 time steps with different
settings combinations and record both the visual results and the performance of the
simulator. We will illustrate with a few examples in this section. Figure 4.2 and shows the
result of the simulated final states rendered using a simple absorption scheme described
in Section 5.1.1. Table 4.3 records the corresponding performance of the simulator with
these different settings combinations. Figure 4.2a shows the result of the simulation using
10 iterations and a residual tolerance of 1.0. We can see that the simulation has a relatively
poor result compared to the other configurations because there are less details of the
smoke and a lot of unwanted dissipation exists. The simulation took relatively less time
to converge because of this low iteration allowance and the high tolerance. Figure 4.2b
shows the result of the simulation using 20 iterations and a residual tolerance of 0.1. We
observe that compared to the previous result, the simulation produced much more details
and the smoke looks more realistic. Compared to before, the simulation took longer to
converge and also requires more memory. Figure 4.2c shows the result of the simulation
using 50 iterations and a residual tolerance of 0.01. This is the most detail-rich simulation
among all the configurations. However, it took the longest time to converge and the
memory required to store the computation graph is also the largest.

After experimenting with these different conjugate gradient solver settings, we chose

to use a tolerance of ¢ = 0.1 and a maximum iteration of 20, because this setting
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(a) Rendered final frame of the simulation using 10 iterations and a residual tolerance of 1.0

Simulation Smoke Front t=60 Simulation Smoke Top t=60 Simulation Smoke Side t=60

z

(b) Rendered final frame of the simulation using 20 iterations and a residual tolerance of 0.1

Simulation Smoke Front t=60 Simulation Smoke Top t=60 Simulation Smoke Side t=60

z

(c) Rendered final frame of the simulation using 50 iterations and a residual tolerance of 0.01

Figure 4.2: A comparison of the simulation result produced by different conjugate
gradient solver settings combination. Yellow indicates light and blue indicates absorption

by the smoke
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combination gives a visually convincing result while keeping the number of iterations
required for the solver to reach the tolerance low. Naturally, as the grid resolution
increases, the runtime and memory requirements also increase due to the larger degrees
of freedom.

For the Jax package, the conjugate gradient solver comes built-in with the package.
The advantages of the Jax implementation are that it is both fast and memory-friendly.
The implementation is written with XLA (accelerated linear algebra) support and the
iterations are executed in low-level C++-like for-loops, making the implementation faster.
It also comes bundled with a custom gradient computation for the solver, so that the
gradient of the pressure with respect to the inputs can be computed by solving the
gradient using the same iterative solver pass. By doing so, there is no need to store all
elementary operations used in the CG solver in the operation tape, thus saving memory.

As for the PyTorch package, the conjugate gradient solver does not come with
the package, and we coded our version of the implementation. The implementation
uses Python for-loops, so it is considerably slower compared to the Jax built-in
implementation. In addition, because the gradient computation is not custom, the
gradient must be computed by storing all operations in the CG solver in the tape and
traversing the tape backwards when computing gradients. This makes the gradient

computation more memory-costly than Jax.

Pressure Projection Algorithm

With the boundary conditions and the conjugate gradient solver described, we can now
describe the pressure projection step along with the velocity update. The pressure

projection step can be described by Algorithm 4.
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Algorithm 4 Pressure Projection

1: procedure PRESSURE_PROJECTION(u’, A_operator, At)

2: u = ADJUST_VELOCITY(u")

d = COMPUTE_DIVERGENCE(u)

p = CONJUGATE_GRADIENT(A _operator,d, k_maz, €)
! = ut — %Vp

return u‘*!

4.1.7 Jax and PyTorch Backends

In this section, we compare the implementation of the fluid simulation using Jax and
PyTorch backends. We describe the similarity and differences in both the differentiability

and acceleration techniques used by the two packages.

Differentiability

As described in Section 3.2 and the sections above, each step of the simulation, including
advection, inflow injection, external forces and pressure projection are all differentiable.
The main concerns regarding the differentiability and the memory consumption, such
as the sphere mask creation, external force computation and pressure projection have all
been addressed. This means that with a autodiff package such as Jax and PyTorch, with
their elementary operation overloading and back propagation abilities, we are able to
compute the gradients of the simulation outcome with respect to the inputs.

One main difference between the two packages is that Jax provides built-in conjugate
gradient solver, along with custom gradient computations for the solver. They utilize the
fact that to compute the gradient is equivalent to passing the upstream gradient into the
same iterative solver pass. The custom gradient definition eliminates the need to store all
elementary operations in the operation tape and reduces memory consumption. Hence,
regardless of the number of iterations it takes for the solver to converge, the amount of
memory used for Jax to compute the gradient is the same. On the other hand, defining
custom gradient computations in PyTorch is less accessible, and we were not able to

implement this due to time constraints. For this reason, the gradients must be computed
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by storing all operations in the CG solver in the tape and traversing the tape backwards

when computing gradients.

Acceleration

Python is an interpreted language, and it is not as fast as compiled languages such
as C++. This disadvantage impacts the runtime when we use loops for repeating
multiple simulation time steps and iteratively solving for the pressure in the CG solver.
One mitigation to this is the just-in-time (JIT) compilation method. JIT works by
tracing or scanning the Python functions to convert them into lower-level interpreted
representations (IRs) and compiling the IRs into machine code before the next execution.
This method significantly speeds up the simulation. However, even though both Jax and
PyTorch support JIT compilation, the performance and the extent of JIT support for the
two packages are still very different.

For Jax, both forward and backward passes can be JIT compiled, thus accelerating the
learning process the most. For PyTorch, only forward passes can be JIT compiled, and the
backward process must be executed in uncompiled Python code. This makes the learning
process much slower than Jax’s. However, compared to Jax, PyTorch requires fewer
modifications to the plain Python code to make it JIT compilable. Jax requires special
XLA syntax to substitute for for-loops and while-loops, making the implementation effort
non-trivial.

To illustrate the Jax XLA syntax, we show the top level simulation pseudocode
written in both Python and Jax’s JIT compatible syntax in Algorithm 5. We abstract
away a function STEP that takes in the current velocity field u’ and returns the velocity
field at the next time step u’*!. In the Python implementation, we use a for-loop to
iterate over the simulation time steps. When JIT compiling with PyTorch, this syntax
works without problem. However, in the Jax implementation, we use the JAX.LAX.SCAN
function to substitute for the for-loop, so that the code can be JIT compiled. On top of

substituting the for-loop with JAX.LAX.SCAN, the STEP function must also conform with
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Algorithm 5 Simulation in Python and Jax code

: procedure SIMULATE_PYTHON(u)
for t in range(0, N) do

u‘t! = sTEP(u’)
return u’v

: procedure SIMULATE_JAX(u?)
u?, {u’ ..., u"} =JAX.LAX.SCAN(STEP, u’, N)

1
2
3
4
5:
6
7
8 return u?

Jax’s required function signatures, making the conversion from plain Python code to Jax’s
JIT compatible syntax complex.

Another acceleration technique we used for our simulation is the use of GPUs.
Because the simulation is highly parallelizable, we can take advantage of the parallel
computing power of GPUs to speed up the simulation. Both Jax and PyTorch support
GPU acceleration and have built-in methods for device management. Programmatically,
PyTorch is much more mature in this aspect with better documentation and less

complexity.

Conversion between Jax and PyTorch

As described above, the Jax and PyTorch packages specialize and excel in different
aspects. The fluid simulation that we described is also modular as it is split into different
steps. For this reason, a reasonable idea is to implement the simulation using both
packages at the same time. For example, writing the for-loops with PyTorch and using
Jax’s built-in CG solver with custom gradient definition will greatly increase not only the
performance but also the maintainability of the simulator.

Unfortunately, to our knowledge, this idea is not feasible because the types in the
two packages are not compatible. Although there are ways to convert Jax data types
to PyTorch data types, there is not a straightforward way to do so while also keeping

the gradient information. Without preserving the gradient information, backpropagation
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will break and the learning framework will not work. For this reason, we could not build

a third version of the simulator that incorporates both packages.

4.2 Differentiable Renderer

This section describes the differentiable renderer and the smoke rendering scheme we
used in our framework. We first describe how the simulated 3D smoke grid is converted
to meshes; then we describe the rendering process used to render the smoke from 3D

mesh to 2D image.

42,1 Mesh Conversion

From the smoke simulation described in Section 4.1, as an output, we obtain a 3D scalar
grid of smoke density stored as a 4D tensor of shape (B, nx, ny, nz). The goal is to convert
this 3D grid into a 3D mesh that can be rendered by NvDiffRast.

For our 3D grid, each grid cell can be viewed as a voxel containing 8 vertices and
6 faces. We triangulate each grid cell faces into 2 triangles to form 12 triangles for a
single voxel. However, we do not want the triangle faces to be duplicated and overlap for
neighbouring grid cells. Otherwise, when computing the absorption in the next step, the
amount of absorption will be double-counted and will not result in an accurate image.

The mesh in the scene is defined by an array of vertices and an array of faces. We
will first describe how the mesh vertices are constructed. For a 3D grid, the vertices
are simply the corners of each grid cell. For a grid with shape (nz,ny,nz), there are
(nx + 1) x (ny + 1) x (nz + 1) vertices. The coordinates of these vertices should be in
the model space. For our framework, for convenience, we arbitrarily decided that the
model space origin starts from the center of the grid instead of the corner of the grid. For
a grid-space coordinate x4, = (i, j,k), we convert it to model-space coordinate X, ,qe;

using
max (Xgrid) — Min(Xgria)

5 (4.5)

Xmodel = Xgrid —
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Figure 4.3: Mesh conversion for faces normal to the z-axis.

For the mesh faces, we construct the faces separately according to the cell face normal
directions. For each cell face, there will be 2 triangles. Take faces normal to the z-axis
for example, if the cell center coordinate is Xccper = (4, j, k — 1/2), the two triangles will
be constructed by splitting squared the cell face diagonally. The vertices constructing the
triangle faces willbe {(i—1/2,7—-1/2,k—1/2), (i+1/2,j—1/2,k—1/2), (i—1/2,j+1/2, k—
1/2)}and {(i +1/2,5 —1/2,k—1/2), (i +1/2,j +1/2,k —1/2), (i — 1/2,j + 1/2,k — 1/2)}.
This can be shown in Figure 4.3.

For the faces normal to the z-axis direction, there will be 2 x (n, + 1) X ny x nz faces in
total. The conversion for faces normal to the z-axis and y-axis follow a similar logic, and

there will be 2 x nz x (ny + 1) X nz and 2 x nz X ny x (nz + 1) faces respectively.

4.2.2 Absorption Interpolation

After converting the grid into a mesh consisting of triangles defined by vertices and faces,
we now need to compute the absorption coefficient carried by each vertex.
From the simulation, we obtain a 3D scalar grid with smoke density s at each grid

cell center, with unit ppm (parts per million). We first compute the smoke density at
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each vertex. Since the mesh’s vertices are just the grid cell corners, we can use tri-linear
interpolation to take the average smoke density of the 8 neighbouring smoke density
values stored at grid cell centers. With these per-vertex smoke densities, we can use
the extinction coefficient parameter K, to compute the absorption coefficient o, at each

vertex using the absorption coefficient Equation (3.31) described in Section 3.4.2.

4.2.3 Smoke Rendering

With the mesh defined and the per-vertex absorption coefficient value computed, we
can now render the smoke. For our renderer, we assume an orthographic camera and
compute the direct absorption for each ray of light hitting the camera. We assume
an incoming backlight of radiance L; down the z-axis and put the smoke between the
backlight and the camera. The incoming light L, traverses through the smoke and gets
partially absorbed, and finally forms the outgoing light L, that reaches the camera, and
we will render the outgoing light L, onto the screen. The outgoing light can be computed
using the Beer-Lambert law described in Section 3.4.1. Specifically, we will use the
discretized heterogeneous version of the Beer-Lambert law, described by Equation (3.30).

At a high-level, our renderer first assumes that there is no smoke medium in the
scene and initialize the outgoing light L, to be equal to the incoming light source L;.
Then, incrementally, starting from the camera, the algorithm marches along the light path
towards the light source. For each segment, we compute the absorption coefficient of the
smoke and reduce the amount of the outgoing light radiance after it has been absorbed by
the smoke in the segment. We accumulate for each light path, and finally, after iterating
over the entire smoke medium, we will obtain the final outgoing light radiance L, after
absorption.

Programmatically, we use a rendering technique called depth peeling, which is
provided by the NvDiffRast package. This is a common technique used to render semi-
transparent objects in a scene. The method iteratively “peels” the mesh layer by layer,

where each layer is rasterized and processed separately. In our framework, for each

59



Algorithm 6 Absorption Accumulation Rendering

1: procedure ABSORPTION_ACCUMULATION_RENDERING(s, L;, K,,)
2 V, F' = CONVERT_GRID_TO_MESH(S)
V _0, = PER_.VERTEX_COEEF(s, K,,)
L,=1L;
while depth peeling not finished do
rast_out = RASTERIZE_NEXT_LAYER(V, F)
pizel_o, = INTERPOLATE(V _o, rast_out, F)
Lo — Loefaan
L, = ANTI_ALIAS(L,, rast_out, V, F)
10: return L,

layer, we first rasterize the mesh layer to obtain the u,v coordinates and the depth
value. Then, we use the rasterization output and the per-vertex absorption coefficients
to interpolate the per-pixel absorption coefficient. We use the per-pixel absorption
coefficient to accumulate the absorption for the outgoing light L, using Equation (3.31).
After that, we apply anti-aliasing to our computed L, for a better-looking output and,
most importantly, to allow the gradients to be propagated properly in the backward pass.
Finally, we update the outgoing light accumulated for each pixel.

This absorption accumulation rendering process is shown in Algorithm 6.

4.2.4 Acceleration and Differentiation

NvDiffRast automatically provides GPU-accelerated forward and backward
computations for the rendering algorithm above. One important note is that
although NvDiffRast provides elementary operations including Rasterization,
Interpolationand AntiAlias, these operations are not bundled with their gradient
computations. The Rasterization operation does not propagate gradients related to
occlusion and visibility, because the AntiAlias operation provides these gradients by

smoothing out the discontinuous silhouette edges.
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NvDiffRast and PyTorch

We make an important note that, unfortunately, NvDiffRast supports only the PyTorch
and TensorFlow backends. To our knowledge, there is no official support for the Jax
backend. As mentioned in Section 4.1.7, there is no official support for converting
between Jax and PyTorch while keeping the gradient information. For this reason, we
only use the PyTorch version of our implementation when we conduct experiments on
the fully differentiable framework. However, we will still run experiments to compare

the performances of Jax and PyTorch backends of the fluid simulators.

4.3 Optimization Methods

In this section, we give a quick overview of the optimization methods used in our work
for solving inverse problems.

For our experiments, we use L2 pixel-wise image losses to compute the loss between
the rendered image L and the target image L. The loss is defined as

L2
L; — Li|| , (4.6)
2

1 N
Long = 37 3|
=1

where N is the number of pixels in the image.

For the optimization method, we use the Adam optimizer [30] with varying epochs
and learning rates depending on the experiment cases. We also implemented a custom
learning rate scheduling scheme that decreases the learning rate over time to prevent the
optimization from overshooting at later time steps. Our learning rate scheduler is defined
by

a(t) = apl0~ 0, (4.7)

where o is the initial learning rate, and ¢ is the number of epochs.
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In order to save GPU memory, we also adapted the checkpointing technique to our
simulation. The checkpointing technique works by saving the intermediate results to the
disk, and only loading them back to the GPU memory when needed. In our case,for each
time step of the simulation, we save the simulated states and their gradients to the disk.
This allows us to run the simulation and compute the gradients in smaller batches of
time steps. This technique alleviates the GPU memory bottleneck and allows us to run
the simulation with a larger resolution, but at the cost of slower simulation time because
operations need to be re-evaluated, and the gradient and results need to be saved to the

disk and loaded back to the GPU memory.
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Chapter 5

Experiments and Results

This chapter details the experiments we ran on our framework and their results. The
experiments were run on both the simulation and the full pipeline for forward and
backward tasks. For each experiment, we will discuss the setup, results, runtime, and
memory performances.

For all our experiments, unless otherwise specified, we run the JIT compiled
simulation with Intel Gold 6148 Skylake CPU and Nvidia V100SXM2 (16GB) GPU on
the Compute Canada Beluga compute cluster. Each runtime and memory measurement

is computed by taking 3 independent runs and averaging the results.

5.1 Differentiable Fluid Simulation

First, since one of our contributions is the implementation of the differentiable fluid
simulator using both the Jax and PyTorch packages and the evaluation between them,
we run our simulator on a few scenes to verify its correctness and performance, and also
perform some learning tasks to show case how the gradients can be propagated from 3D
simulated states to the 3D initial states. For these experiments, the differentiable renderer

isnotincluded. The rendering follows a similar logic to the direct absorption computation

63



described in Section 4.2.2, but without rasterization, using a non-differentiable Python

library Matplotlib.

5.1.1 Forward Simulation

First, we run the forward simulation without any external force or initial velocities. We
run the experiment using both Jax and PyTorch backends on different resolutions, and
we compare the results and their performances. All simulations are run for 60 time steps,
with time step size At of 0.5. The smoke is injected at the center bottom of the grid with a
fixed radius.

A few key frames of the PyTorch simulation with resolution 128 x 128 x 128 can be seen
in Figure 5.1. Each row corresponds to the starting frame of the smoke, the frame where
the smoke forms a plume, the frame where the smoke plume hits the top of the grid, and
the end frame of the plume. The left column corresponds to the absorption accumulation
viewed from the front (zy-plane), the middle column corresponds to the absorption
accumulation viewed from the top (zz-plane), and the right column corresponds to the
absorption accumulation viewed from the side (zy-plane). From the results, we can see
that the smoke rises naturally and forms a plume with a considerable amount of detail.
As the plume hits the top and side of the grid, it does not go past the domain, and the
velocity is divergence free and also conforms with the boundary conditions. The results
are stable and physically accurate.

The Jax version of the simulation produces the same results as the PyTorch version
because the simulation logic is the same despite the package-specific semantic differences.

As for runtime and memory performances, we compare the performances between
different resolutions and between the Jax and PyTorch backends in Table 5.1. The
measurements are made by taking the average for multiple simulation passes in order
to account for the initial JIT compilation run. In general, as the resolution doubles, the
number of cells in the grid increases by a factor of 8, and the runtime and memory

requirements increase by roughly the same magnitude as well.
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(c) 40th frame of the simulation
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(d) 60th (final) frame of the simulation

Figure 5.1: Forward simulation with resolution 128 x 128 x 128. Yellow indicates low
absorption and high light intensity, and blue indicates high absorption and low light

intensity.
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Table 5.1: Forward Simulation Runtime and Memory Performance

Resolution PyTorch Jax
Runtime (s) | Memory (GB) | Runtime (s) | Memory (GB)
32 x 32 x 32 4.0 0.0302 3.8 0.0288
64 x 64 x 64 4.2 0.2308 4.1 0.2250
128 x 128 x 128 29.1 1.8055 22.3 1.7617
256 x 256 x 256 2154 14.2843 160.3 13.7764

Comparing the two backends, the Jax version of the implementation runs significantly
faster than the PyTorch version. For JIT compilation, Jax compiles the simulation much
faster than PyTorch, and the compiled Jax function also runs faster than the compiled

PyTorch function. As for memory, the two implementations do not differ significantly.

5.1.2 Simulation Learning

We conduct a learning example to verify the gradients are propagated from the 3D
simulated smoke state to the simulation parameters correctly. The optimization goal is
to make the final frame of the simulated smoke state match a target smoke state as much
as possible by adjusting the initial velocity parameter while keeping all other parameters
the same. The target smoke state is generated by running the forward simulation with a
different inflow injection location. Note that because the injection location is different, the
learned simulation state will never be able to match the target state perfectly.

The simulation is run on different resolutions (323, 64* and 96%) for the same physical
domain size. The simulation is run for 30 time steps, with time step size At of 0.5, so that
the smoke reaches the top of the box to form a plume and does not fill the box excessively.
There is no external force applied to the smoke. Training is done with the Adam optimizer
with learning rate scheduling described in Section 4.3. The loss function is the 3D voxel-
wise L2 loss between the final frame of the simulated and reference smoke state grids.
In order to benchmark the implementations’ performances, we run the learning tasks on
different resolutions. Because the resolution of the experiments is different, the learning

rate and epochs are tuned and adjusted for each resolution.
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Figure 5.2 shows the optimization results of the Jax implementation with a simulation
resolution of 64 x 64 x 64. The PyTorch version produces similar results. Figure 5.2a
shows the reference smoke state. We place the reference inflow location at the corner of
our simulation domain. The smoke rises at the corner and hits the top while conforming
with the boundary conditions. Figure 5.2b shows the smoke state of the simulation with
a different inflow location and unlearned initial velocity. The inflow location is placed at
the bottom center of the grid. Figure 5.2c shows the of the simulated smoke state using
the learned initial velocity for the center inflow location. From the results, we can see
that even though the inflow location is different, the learned velocity still produces a final
smoke state that tries to match the reference smoke state as much as possible. For this
experiment, a learning rate of 0.5 was used, and the initial velocity was trained for 500
epochs. The loss plot can be seen in Figure 5.3.

As for the performance for the learning task, we compare the runtime and memory
performances between the PyTorch and Jax backends in Table 5.2 and Table 5.3.
Because the epochs differ for different resolutions, the runtime is computed as the per
epoch runtime. The general trend is similar to the forward performance. The Jax
implementation is faster than the PyTorch implementation, and the runtime and memory
requirements increase as the resolution and number of time steps increase. We make
an observation that compared to the runtime, the memory requirements for the learning
task are much higher than the forward task. This is because the backward computation
requires the computation graph or operation tape to be stored in memory. Depending on
the learning task, the size of the computation graph increases non-linearly with respect
to the resolution. Note that a resolution of 128 x 128 x 128 is not included in the table

because the GPU ran out of memory.
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(a) Final state of the reference simulation

Unlearned Smoke Front Unlearned Smoke Top Unlearned Smoke Left
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(b) Final state of the simulation with unlearned initial velocity

Learned Smoke Front Learned Smoke Top Learned Smoke Left

X X z

(c) Final state of the simulation with optimized initial velocity

Figure 5.2: Optimizing initial velocity with resolution 64 x 64 x 64

Table 5.2: Optimization runtime and memory performance against resolution for 30 time

steps
Resolution PyTorch Jax
Runtime (s) | Memory (GB) | Runtime (s) | Memory (GB)
32 x 32 x 32 1.3 0.2644 1.2 0.2630
64 x 64 x 64 1.6 2.1159 1.5 2.0271
96 x 96 x 96 2.7 6.8530 23 6.3560
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Figure 5.3: Loss values over training epochs

Table 5.3: Optimization runtime and memory performance against time steps for 64 x

64 x 64 resolution

Time steps PyTorch Jax
Runtime (s) | Memory (GB) | Runtime (s) | Memory (GB)
15 1.0 1.1543 0.9 1.1388
30 1.6 2.1159 1.5 2.0271
60 3.1 3.9420 2.7 3.7338
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5.2 Fully Differentiable Pipeline

This section presents the experiments and results of the fully differentiable simulation
and rasterization pipeline described in Section 4. We first present the results of the
forward simulation and rendering experiments in Section 5.2.1. Then we present the
results of the simulation and rendering optimization experiments in Section 5.2.2. Since
the differentiable renderer we use (NvDiffRast) does not support the Jax backend, we will
only use the PyTorch backend for the full pipeline experiments.

For our scene setup, we use an orthographic projection with a near plane of 1 unit
away from the camera for simplicity. We would like to place the center of the smoke
grid at the center of the viewing frustum. We’d also like the viewing frustum to be 2nz x
2ny x 2nz large so that no matter how we rotate the camera, the smoke grid will always be
fully contained in the viewing frustum and the rendered image will have some paddings
around the smoke box. To satisfy the requirements above, we first place the smoke grid
center at the world space origin. Then, we place the camera at nz units away in the
negative z axis in the world space. To position the grid center at the viewing frustum
center, we set the far plane 2n, + 1 units away from the camera, the left and right planes
n, units away from the camera in the z-axis, and the top and bottom planes n, units away
from the camera in the y-axis. As for the light scenario, for simplicity, we use a first order
lighting setting, where we have a directional back light that points towards the camera,
and we only compute the direct absorption described in Section 3.4. To simplify matters
further, We assume the backlight L, = 1.0 and render the outgoing light reaching the

camera, L,, after the light traverses through the smoke.

5.2.1 Simulation and Rendering

In this experiment, we test the rendered result of the fully connected differentiable

simulation and rendering pipeline and analyze the runtime and memory performance.
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Table 5.4: Full pipeline forward performance

Simulation Resolution | Rendering Resolution | Runtime (s) | Memory (GB)
3232 32 1024 1094 5| owes
64 x 64 x 64 1024 1094 51| oem
128 x 128 x 128 13;21 » ?(1)3 A 155;51 ijgﬁ‘;’

For rendering, we use the setup described above. For simulation, we use the same
simulation setup as described in Section 5.1.1. We experimented with combinations of
different grid resolutions and image resolutions. Figure 5.4 shows the result of different
stages of a 64 x 64 x 64 grid simulation rendered on a 1024 x 1024 resolution screen.
Compared to Figure 5.1, the rasterization renders the image in a much higher resolution
with less pixelation and aliasing artifacts. All details of the fluid simulation are preserved,
and the rendered image is stable and physically accurate.

The runtime and memory performance for the forward simulation and rendering
pipeline is shown in Table 5.4. The runtime is computed taking into account both the
simulation and rendering. The memory is computed as the peak memory usage during
the simulation and rendering process. Note that NvDiffRast supports batched rendering,
and the memory used for rendering depends on the batch size. For our experiment, we
tixed a batch size of 16 for all our test cases. The results show that the most significant
factor of the runtime and memory requirement is the simulation resolution. Increasing
the rendering resolution has a relatively smaller effect on the runtime and memory

requirements compared to increasing the simulation resolution.

5.2.2 Simulation and Rendering Learning

In this section, we present learning experiments using the fully differentiable pipeline. We
will show how the gradient information can be propagated from 2D rendered image back

to 3D simulation and rendering parameters. We will first show the result of a learning
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Figure 5.4: Experiment 3: simulation and rendering with grid resolution 64 x 64 x 64 and

image resolution 1024 x 1024
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task that uses the gradient information to learn 3D simulation parameters. Then, we will
show a more complex learning task that optimizes for both simulation and rendering

parameters.

Inflow Location Optimization

In this experiment, we try to learn the 3D coordinate of the inflow location of the smoke,
but base on only the 2D rendered image. This task requires the gradient to be propagated
from the rendered 2D image through the renderer and the simulator and finally to the
input inflow location. The learning goal is to find an inflow location that gives an image
as close to the rendered image using the reference inflow location as possible.

The initial setup is similar to that of Section 5.1.2. The simulation is run for 30 time
steps with time step size At of 0.5, with no external forces or initial velocity applied to the
smoke. The rendering process is the same as described in Section 5.1.1, and the resolution
used in this experiment is 512 x 512. The loss function this time is the L2 pixel-wise
difference between the rendered 2D final images of the simulations with the learned and
reference inflow locations. The learning method is the same as described in Section 5.1.2,
and the learning rate is set to 1.0, and trained for 100 epochs.

Figure 5.5 shows the learning results. Each row shows the rendered simulation using
the reference, unlearned, learned inflow locations respectively. Each column shows the
10th, 20th and 30th (final) time step of the simulation respectively. We can see that the
learned inflow location is very close to the reference inflow location, and the rendered
images are almost identical.

Figure 5.6a shows the history of the learning process. We make an observation that
the learned inflow location moves in the upper-left direction first before moving down
to reach the reference location, instead of intuitively moving directly in the bottom left
direction towards the reference location, as suggested by Figure 5.6b. This happens due
to the non-linear nature of fluid simulation. Moving the inflow location in the negative y

direction will reduce the size of the plume reaching the top, thus reducing the absorption
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(c) Rendered final state of the learned simulation

Figure 5.5: Optimizing inflow location
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(b) Manually Adjusted Inflow Location at Different Epochs

Figure 5.6: A comparison between the learning history and the manually forced “linear”

history

image. Because the images overlaps less, the loss will also not decrease effectively, even
though the inflow location is moving towards the correct location.

Figure 5.7a shows the loss plot comparison of the learning process against the
manually adjusted inflow location. We can clearly see that although the starting and
ending losses for the two plots are the same, the loss plot for the learning process makes
a faster descent initially by moving the inflow location to the top left corner to reduce the

pixel-wise L2 loss.

Inflow and Camera Location Learning

Finally, we present a more complex experiment that optimizes both the inflow location

and the camera location. The goal of this experiment is to show that the proposed
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Figure 5.7: A comparison of the loss plot between the learning history and the manually

forced “linear” history

method can be used to optimize multiple parameters, including simulation and rendering
parameters, simultaneously.

We use the same setup as the previous experiment, except that on top of the different
inflow locations, we also initialize the learning process with a different camera location.
The reference and unlearned inflow locations are initialized the same as the previous
experiment. The reference camera position sits on the negative z-axis in the world space,
where as the unlearned initial camera position is shifted off-axis. For the learning process,
we continue to use the L2 pixel loss of the rendered final frame. We use a learning rate of
1.0 and train for 100 epochs.

Figure 5.8 shows the results of the learning experiment. Similar to Section 5.2.2, each
column represent the rendered smoke at a different time step, and each row represent the
simulation using the reference, unlearned and learned inflow and camera parameters. We
can see that the learned inflow and camera locations are able to produce a rendered image
that is very similar to the reference image.

Figure 5.9 shows the learning history at different epochs.
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(c) Rendered final state of the Learned Simulation

Figure 5.8: Optimizing inflow and camera locations
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Figure 5.9: Learning history at different epochs
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Figure 5.10: Loss curve of the learning process

Figure 5.10 shows the loss curve of the learning process. We can see that the loss
decreases quickly at the beginning of the learning process, and then slowly converges to

a local minimum.
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Figure 5.11: A visualization of the learned inflow and camera location trajectories

Figure 5.11 shows the reference and learned inflow and camera locations.
transparent box represents the simulation domain in the world space. The green point in
the simulation domain represents the reference inflow location, where as the green point
outside the simulation domain represents the reference camera location. The blue points
represent the unlearned initial inflow and camera locations. The blue lines represent the
learned inflow and camera locations throughout the training process. We can see that
the learned inflow location is very close to the reference inflow location, but the learned
camera location is not quite the same because the z-axis is different from the reference
location. However, because we use an orthographic camera, the rendered image is not

affected by the z-axis of the camera location, and the learned rendered image is very

similar to the reference rendered image.
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Chapter 6

Conclusion

In this work, we built a fully differentiable fluid simulation and rendering pipeline.
We implemented a differentiable grid-based fluid simulator using Jax and PyTorch and
compared performances for both implementations. We conducted experiments to show
that the differentiable fluid simulator can be used to optimize the simulation parameters.
By connecting the 3D output from the simulator to a differentiable renderer (NvDiffRast),
we showed further that even with the loss of information by projecting 3D states to 2D
rendered images, the gradient information can still be propagated to 3D fluid simulation

and rendering control parameters.

6.1 Advantages and Limitations

Our framework is fully differentiable, which means that gradients can be passed from
the rendered image to both the renderer and the fluid simulator. The framework
allows users to optimize multiple parameters for both components simultaneously to
achieve a desired rendered image. This replaces the traditional trial-and-error process
of manually tuning parameters. Furthermore, our framework is physically accurate. The
simulator solves the Navier-Stokes equations, which are the governing equations for fluid

dynamics. The renderer also uses a physically accurate scheme to compute and render the
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absorption of light by the smoke. Finally, our framework is flexible and easy to use. The
implementation is modular, and the simulation is generalized to allow various parameter
configurations. Users can easily create physically realistic fluid simulations for different
scenarios.

Our work also has limitations. First, the simulator is not optimized for runtime.
The main bottleneck is the Conjugate Gradient solver for the PyTorch implementation,
which has a runtime a lot slower than the Jax implementation. This is because the
implementation uses a Python for-loop, which is extremely slow compared to other
lower-level languages such as C++. Secondly, the simulator does not scale well with
the simulation resolution. Because the simulation solve is non-linear, the memory
requirement for backpropagation increases non-linearly as the resolution increases. This
is a common problem for most differentiable physics-based simulators and is an active
research field in the community. Also, our simulation currently only supports a box-
shaped domain and boundary because of the padding and convolution implementation
mentioned in Section 4.1.6. This limits the possibility of learning smoke parameters in a

more complex environment or even learning the boundary condition itself.

6.2 Future Work

There are many possible future directions for this work. First, we can improve the runtime
of the simulator. As mentioned in Section 6.1, the simulator is not optimized for runtime.
We can improve the runtime by implementing the conjugate gradient solver in a lower-
level language such as C++ before wrapping it with Python.

We also plan to combine existing optimization and training methods into our
framework. The adjoint method [15] can provide custom gradients for the fluid
simulation operations instead of storing all elementary operations on the computation
tape, thus potentially reducing the computation time and memory requirement. Multi-

grid and Alternating direction method of multiplier (ADMM) [31] can improve our
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training method by optimizing parameters with reduced spatial and temporal resolutions
before up-sampling and optimizing for the full resolution parameters. The lower
resolution parameters can be used as a good initialization for the full resolution
parameters, potentially reducing the training time.

Finally, we plan on expanding our implementation to support more boundary
conditions. By doing so, we can make boundary conditions a parameter and perform
optimization tasks. This will give us more degrees of freedom and enable us to explore

more applications using our framework.

82



References

[1]

2]

[3]

[4]

[5]

[6]

Francis H. Harlow and J. Eddie Welch. “Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface”. In: The Physics of Fluids

8.12 (1965), pp. 2182-2189. DOI: 10.1063/1.1761178.

D. J. Tritton. “Thermal Flows: Basic Equations and Concepts”. In: Physical Fluid
Dynamics. Dordrecht: Springer Netherlands, 1977, pp. 127-134. DOIL: 10.1007/

978-94-009-9992-3_13.

W. T. Reeves. “Particle Systems—a Technique for Modeling a Class of Fuzzy
Objects”. In: ACM Trans. Graph. 2.2 (Apr. 1983), pp. 91-108. DOI: 10 . 1145/

357318.357320.

J. U. Brackbill and H. M. Ruppel. “FLIP: A Method for Adaptively Zoned, Particle-
in-Cell Calculations of Fluid Flows in Two Dimensions”. In: Journal of Computational
Physics 65.2 (Aug. 1, 1986), pp. 314-343. DOI: 10.1016/0021-9991 (86) 90211~

1.

Larry Yaeger, Craig Upson, and Robert Myers. “Combining Physical and Visual
Simulation—Creation of the Planet Jupiter for the Film “2010””. In: SIGGRAPH
Comput. Graph. 20.4 (Aug. 1986), pp. 85-93. DOI: 10.1145/15886.15895.

Karl Sims. “Particle Animation and Rendering Using Data Parallel Computation”.
In: SIGGRAPH Comput. Graph. 24.4 (Sept. 1990), pp. 405-413. DOI: 10 . 1145/

97880.97923.

83


https://doi.org/10.1063/1.1761178
https://doi.org/10.1007/978-94-009-9992-3_13
https://doi.org/10.1007/978-94-009-9992-3_13
https://doi.org/10.1145/357318.357320
https://doi.org/10.1145/357318.357320
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1145/15886.15895
https://doi.org/10.1145/97880.97923
https://doi.org/10.1145/97880.97923

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

John Hart. “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing
of Implicit Surfaces”. In: The Visual Computer 12 (June 13, 1995). DOI: 10.1007/

s003710050084.

Nick Foster and Dimitris Metaxas. “Controlling Fluid Animation”. In: Proceedings of
the 1997 Conference on Computer Graphics International. CGI'97. USA: IEEE Computer
Society, 1997, p. 178.

Nick Foster and Dimitris Metaxas. “Modeling the Motion of a Hot, Turbulent Gas”.
In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH "97. USA: ACM Press/Addison-Wesley Publishing Co.,
1997, pp. 181-188. DOI: 10.1145/258734.258838.

Jos Stam. “Stable Fluids”. In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH '99. USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 121-128. DOI: 10.1145/311535.311548.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. “Visual Simulation of Smoke”.
In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’'01. New York, NY, USA: Association for Computing
Machinery, Aug. 1, 2001, pp. 15-22. DOI: 10.1145/383259.383260.

Nick Foster and Ronald Fedkiw. “Practical Animation of Liquids”. In: Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ‘01. New York, NY, USA: Association for Computing Machinery, 2001,

pp- 23-30. DOI: 10.1145/383259.383261.

Jos Stam. “A Simple Fluid Solver Based on the FFT”. In: J. Graph. Tools 6.2 (Sept.

2002), pp. 43-52. DOT: 10.1080/10867651.2001.10487540.

Adrien Treuille, Antoine McNamara, Zoran Popovi¢, and Jos Stam. “Keyframe
Control of Smoke Simulations”. In: ACM Trans. Graph. 22.3 (July 2003), pp. 716-723.

DOI: 10.1145/882262.882337.

84


https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/258734.258838
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/383259.383260
https://doi.org/10.1145/383259.383261
https://doi.org/10.1080/10867651.2001.10487540
https://doi.org/10.1145/882262.882337

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Antoine McNamara, Adrien Treuille, Zoran Popovi¢, and Jos Stam. “Fluid Control
Using the Adjoint Method”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 449-456.

DOI: 10.1145/1015706.1015744.

Andrew Selle, Alex Mohr, and Stephen Chenney. “Cartoon Rendering of Smoke
Animations”. In: Proceedings of the 3rd International Symposium on Non-Photorealistic
Animation and Rendering. NPAR ’04. Annecy, France: Association for Computing

Machinery, 2004, pp. 57-60. DOI: 10.1145/987657.987666.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. “A Vortex Particle Method for
Smoke, Water and Explosions”. In: ACM Trans. Graph. 24.3 (July 2005), pp. 910-914.

DOI: 10.1145/1073204.1073282.

Y. Zhu and R. Bridson. “Animating Sand as a Fluid”. In: ACM Transactions on

Graphics. Vol. 24. 3. 2005, pp. 965-972. DOI: 10.1145/1073204.1073298.

Morgan McGuire and Andi Fein. “Real-Time Rendering of Cartoon Smoke and
Clouds”. In: Proceedings of the 4th International Symposium on Non-Photorealistic
Animation and Rendering. NPAR ‘06. Annecy, France: Association for Computing

Machinery, 2006, pp. 21-26. DOI: 10.1145/1124728.1124733.

Tamds Umenhoffer, Laszl6 Szirmay-Kalos, and Gabor Szijart6.  “Spherical
billboards and their application to rendering explosions”. In: vol. 2006. Jan. 2006.

DOI: 10.1145/1143079.11430809.
Robert Bridson. Fluid Simulation. USA: A. K. Peters, Ltd., 2008.

Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. “Fast Animation
of Turbulence Using Energy Transport and Procedural Synthesis”. In: ACM
SIGGRAPH Asia 2008 Papers. SIGGRAPH Asia ‘08. Singapore: Association for

Computing Machinery, 2008. DOI: 10.1145/1457515.14091109.

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. “Articulated Swimming
Creatures”. In: ACM Trans. Graph. 30.4 (July 2011). DOI: 10 .1145/2010324 .

1964953.

85


https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/987657.987666
https://doi.org/10.1145/1073204.1073282
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1124728.1124733
https://doi.org/10.1145/1143079.1143089
https://doi.org/10.1145/1457515.1409119
https://doi.org/10.1145/2010324.1964953
https://doi.org/10.1145/2010324.1964953

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.  Software

available from tensorflow.org. 2015.

Zhanpeng Huang, Ladislav Kavan, Weikai Li, Pan Hui, and Guanghong Gong.
“Reducing numerical dissipation in smoke simulation”. In: Graphical Models 78

(2015), pp. 10-25. DOI: https://doi.org/10.1016/j.gmod.2014.12.002.

Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. “OmniAD: Data-Driven
Omni-Directional Aerodynamics”. In: ACM Trans. Graph. 34.4 (July 2015). DO

10.1145/2766919.

Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. “An Implicit
Viscosity Formulation for SPH Fluids”. In: ACM Trans. Graph. 34.4 (July 2015). DOI:

10.1145/2766925.

Atilim Giines Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey
Mark Siskind. “Automatic Differentiation in Machine Learning: A Survey”. In: J.

Mach. Learn. Res. 18.1 (Jan. 2017), pp. 5595-5637.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D Mesh Renderer.

Nov. 20, 2017. DOI: 10.48550/arXiv.1711.07566. preprint.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: (2017).

86


https://doi.org/https://doi.org/10.1016/j.gmod.2014.12.002
https://doi.org/10.1145/2766919
https://doi.org/10.1145/2766925
https://doi.org/10.48550/arXiv.1711.07566

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Zherong Pan and Dinesh Manocha. “Efficient Solver for Spacetime Control of

Smoke”. In: ACM Trans. Graph. 36.5 (July 2017). DOI: 10.1145/3016963.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin.
“Accelerating Eulerian Fluid Simulation with Convolutional Networks”. In:
Proceedings of the 34th International Conference on Machine Learning - Volume 70.

ICML'17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 3424-3433.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs. Version 0.3.13. 2018.

Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning

programs via high-level tracing. 2018.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. “Differentiable
Monte Carlo Ray Tracing through Edge Sampling”. In: ACM Transactions on
Graphics 37.6 (Dec. 4, 2018), 222:1-222:11. DOI: 10.1145/3272127.32751009.

Nobuyuki Umetani and Bernd Bickel. “Learning Three-dimensional Flow for
Interactive Aerodynamic Design”. In: ACM Transactions on Graphics (SIGGRAPH
2018) 37.4 (2018). DOI: 10.1145/3197517.3201325.

Xiangyun Xiao, Cheng Yang, and Xubo Yang. “Adaptive learning-based projection
method for smoke simulation”. In: Computer Animation and Virtual Worlds 29.3-4

(2018). 1837 cav.1837, €1837. DOIL: https://doi.org/10.1002/cav.1837.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. “An advection-
reflection solver for detail-preserving fluid simulation”. In: ACM Transactions on

Graphics 37 (July 2018), pp. 1-8. DOIL: 10.1145/3197517.3201324.

Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. “Soft Rasterizer: A Differentiable
Renderer for Image-Based 3D Reasoning”. In: 2019 IEEE/CVF International

87


https://doi.org/10.1145/3016963
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3197517.3201325
https://doi.org/https://doi.org/10.1002/cav.1837
https://doi.org/10.1145/3197517.3201324

[40]

[41]

[42]

[43]

[44]

Conference on Computer Vision (ICCV) (Oct. 2019), pp. 7707-7716. DOI: 10.1109/

ICCV.2019.00780.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala.  “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024-8035.

Charles R. Harris, K. Jarrod Millman, Stéfan J.van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson,
Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array programming with
NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357-362. DOI: 10.1038/s41586~

020-2649-2.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to Control PDEs with
Differentiable Physics. 2020.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. Difflaichi: Differentiable Programming for Physical
Simulation. 2020.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and
Timo Aila. “Modular Primitives for High-Performance Differentiable Rendering”.

In: ACM Transactions on Graphics 39.6 (2020).

88


https://doi.org/10.1109/ICCV.2019.00780
https://doi.org/10.1109/ICCV.2019.00780
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and
Timo Aila. “Modular Primitives for High-Performance Differentiable Rendering”.
In: ACM Transactions on Graphics 39.6 (Nov. 27, 2020), 194:1-194:14. DOI: 10.1145/

3414685.3417861.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis. Aug. 3,2020. DOI: 10.48550/arXiv.2003.08934. preprint.

Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti,
Linda Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin
Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja
Fidler. gradSim: Differentiable simulation for system identification and visuomotor control.

2021.

Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novak. “An Unbiased
Ray-Marching Transmittance Estimator”. In: ACM Transactions on Graphics 40.4
(July 19, 2021), 137:1-137:20. DOI: 10.1145/3450626.3459937.

Yunzhu Li, Shuang Li, V. Sitzmann, Pulkit Agrawal, and A. Torralba. “3D Neural

Scene Representations for Visuomotor Control”. In: ArXiv (July 8, 2021).

Daqi Lin, Chris Wyman, and Cem Yuksel. @ “Fast Volume Rendering with
Spatiotemporal Reservoir Resampling”. In: ACM Transactions on Graphics 40.6

(Dec. 10, 2021), 279:1-279:18. DO1: 10.1145/3478513.3480499.

Shigenao Maruyama and Shuichi Moriya. “Newton’s Law of Cooling: Follow up
and Exploration”. In: International Journal of Heat and Mass Transfer 164 (Jan. 2021),

p- 120544. DOI: 10.1016/j.1ijheatmasstransfer.2020.120544.

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and
Kiwon Um. Physics-based Deep Learning. WWW, 2021.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. 2021.

89


https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.1145/3450626.3459937
https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Cheng Zhang, Zihan Yu, and Shuang Zhao. “Path-Space Differentiable Rendering
of Participating Media”. In: ACM Transactions on Graphics 40.4 (July 19, 2021),

76:1-76:15. DOI: 10.1145/3450626.3459782.

Li-Wei Chen and Nils Thuerey. Towards high-accuracy deep learning inference of

compressible turbulent flows over aerofoils. 2022.

Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. NeuroFluid: Fluid
Dynamics Grounding with Particle-Driven Neural Radiance Fields. June 17, 2022. DOI:

10.48550/arXiv.2203.01762. preprint.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert
Chern. “Covector Fluids”. In: ACM Trans. Graph. 41.4 (July 2022). DOI: 10.1145/
3528223.3530120.

N. Passalis, S. Pedrazzi, R. Babuska, W. Burgard, D. Dias, F. Ferro, M. Gabbouj,
O. Green, A. losifidis, E. Kayacan, J. Kober, O. Michel, N. Nikolaidis, P. Nousi,
R. Pieters, M. Tzelepi, A. Valada, and A. Tefas. “OpenDR: An Open Toolkit for
Enabling High Performance, Low Footprint Deep Learning for Robotics”. In: 2022
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS) (Oct. 2022).

DOI: 10.1109/1iro0s47612.2022.9981703.

Sebastian Weiss and Riidiger Westermann.  “Differentiable Direct Volume
Rendering”. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (Jan.

2022), pp. 562-572. DOI: 10.1109/TVCG.2021.3114769.

K. Arnavaz, M. Kragballe Nielsen, P. G. Kry, M. Macklin, and K. Erleben.
“Differentiable Depth for Real2Sim Calibration of Soft Body Simulations”. In:

Computer Graphics Forum 42.1 (2023), pp. 277-289. DOI: 10.1111/cgf.14720.

Jinxian Liu, Ye Chen, Bingbing Ni, Jiyao Mao, and Zhenbo Yu. Inferring Fluid

Dynamics via Inverse Rendering. 2023.

90


https://doi.org/10.1145/3450626.3459782
https://doi.org/10.48550/arXiv.2203.01762
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1109/iros47612.2022.9981703
https://doi.org/10.1109/TVCG.2021.3114769
https://doi.org/10.1111/cgf.14720

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Overview

	Related Work
	Fluid Simulation
	Fluid Control
	Differentiable Simulation
	Differentiable Fluid Rendering
	Fully Differentiable Frameworks
	Deficiencies of State of the Art

	Background
	Automatic Differentiation
	AutoDiff
	AutoDiff Modes

	Fluid Simulation
	The Incompressible Navier-Stokes Equation
	Advection
	External Forces
	Pressure Projection

	Rasterization Pipeline
	Vertex Processing
	Rasterization
	Fragment Processing

	Smoke Absorption
	Beer-Lambert Law
	Absorption Coefficient


	Methodology
	Differentiable Fluid Simulator
	Data Structures
	Simulation Parameters
	Advection
	Inflow Injection
	External Forces
	Pressure Projection
	Jax and PyTorch Backends

	Differentiable Renderer
	Mesh Conversion
	Absorption Interpolation
	Smoke Rendering
	Acceleration and Differentiation

	Optimization Methods

	Experiments and Results
	Differentiable Fluid Simulation
	Forward Simulation
	Simulation Learning

	Fully Differentiable Pipeline
	Simulation and Rendering
	Simulation and Rendering Learning


	Conclusion
	Advantages and Limitations
	Future Work

	References

