
Differentiable Fluid Simulation and Rasterization

Xiangyu Kong, School of Computer Science

McGill University, Montreal

August, 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

©Xiangyu Kong, 2023

Abstract

In this work, we present a fully differentiable fluid simulation and rendering framework

that propagates gradient from rendered 2D images to 3D simulation and rendering

parameters. We implement a differentiable grid-based fluid simulator using both Jax and

PyTorch to solve the Navier-Stokes equation, and evaluate and compare between the two

packages in the context of fluid simulation. We also present the rendering scheme that

transforms the 3D simulated output grid into a mesh and computes the accumulative

direct absorption. We conduct experiments to show that even with the loss of information

by projecting 3D grids to 2D images, the gradient information can still be propagated

throughout the whole pipeline properly. We will show how this gradient information can

be used to solve inverse control problems through optimization techniques in a fast and

automated fashion.

i

Abrégé

Dans ce travail, nous présentons un cadre de simulation et de rendu de fluide entièrement

différentiable qui propage le gradient des images 2D rendues aux paramètres de

simulation et de rendu 3D. Nous implémentons un simulateur de fluide différentiable

basé sur une grille utilisant à la fois Jax et PyTorch pour résoudre l’équation de Navier-

Stokes, et évaluons et comparons les deux packages dans le contexte de la simulation de

fluide. Nous présentons également le schéma de rendu qui transforme la grille de sortie

simulée 3D en un maillage et calcule l’absorption directe cumulée. Nous menons des

expériences pour montrer que même avec la perte d’informations en projetant des grilles

3D sur des images 2D, les informations de gradient peuvent toujours être propagées

correctement dans tout le pipeline. Nous montrerons comment ces informations de

gradient peuvent être utilisées pour résoudre des problèmes de contrôle inverse grâce

à des techniques d’optimisation de manière rapide et automatisée.

ii

Acknowledgements

First and foremost, I would like to offer my sincerest gratitude to my co-supervisors

Prof. Paul G. Kry and Prof. Derek Nowrouzezahrai for their guidance and inspiration

in this project and throughout my master’s program. I am also grateful to my peers

at the McGill Graphics Lab (MGL) for creating an inspiring environment to exchange

insightful discussions and feedbacks. I would like to thank Tianyu Cao for her support

and encouragement that helped me through my master’s program. Finally, I would also

like to thank my parents Keran Xing and Geng Kong. This project could not have been

completed without their financial and mental support.

iii

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . viii

List of Tables . ix

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Overview . 3

2 Related Work 4

2.1 Fluid Simulation . 5

2.2 Fluid Control . 6

2.3 Differentiable Simulation . 7

2.4 Differentiable Fluid Rendering . 9

2.5 Fully Differentiable Frameworks . 10

2.6 Deficiencies of State of the Art . 11

3 Background 13

3.1 Automatic Differentiation . 13

3.1.1 AutoDiff . 13

3.1.2 AutoDiff Modes . 14

3.2 Fluid Simulation . 17

iv

3.2.1 The Incompressible Navier-Stokes Equation 17

3.2.2 Advection . 19

3.2.3 External Forces . 22

3.2.4 Pressure Projection . 23

3.3 Rasterization Pipeline . 32

3.3.1 Vertex Processing . 33

3.3.2 Rasterization . 36

3.3.3 Fragment Processing . 36

3.4 Smoke Absorption . 37

3.4.1 Beer-Lambert Law . 37

3.4.2 Absorption Coefficient . 39

4 Methodology 40

4.1 Differentiable Fluid Simulator . 40

4.1.1 Data Structures . 41

4.1.2 Simulation Parameters . 42

4.1.3 Advection . 43

4.1.4 Inflow Injection . 44

4.1.5 External Forces . 46

4.1.6 Pressure Projection . 48

4.1.7 Jax and PyTorch Backends . 54

4.2 Differentiable Renderer . 57

4.2.1 Mesh Conversion . 57

4.2.2 Absorption Interpolation . 58

4.2.3 Smoke Rendering . 59

4.2.4 Acceleration and Differentiation . 60

4.3 Optimization Methods . 61

v

5 Experiments and Results 63

5.1 Differentiable Fluid Simulation . 63

5.1.1 Forward Simulation . 64

5.1.2 Simulation Learning . 66

5.2 Fully Differentiable Pipeline . 70

5.2.1 Simulation and Rendering . 70

5.2.2 Simulation and Rendering Learning 71

6 Conclusion 80

6.1 Advantages and Limitations . 80

6.2 Future Work . 81

References 83

vi

List of Figures

3.1 AutoDiff forward and reverse modes . 16

3.2 Advection backtracing . 21

3.3 Null space problem . 24

3.4 Staggered grids . 24

3.5 Boundary conditions . 27

3.6 Solid boundary example . 28

3.7 Light through smoke medium . 38

4.1 Differentiable sphere . 46

4.2 Conjugate gradient tolerance and iterations comparison 52

4.3 Mesh conversion . 58

5.1 Forward simulation . 65

5.2 Simulation velocity optimization . 68

5.3 Simulation velocity optimization loss . 69

5.4 Full pipeline forward . 72

5.5 Full pipeline inflow location optimization . 74

5.6 Full pipeline inflow optimization and manually adjusted inflow location . . 75

5.7 Full pipeline inflow optimization and manually adjusted losses 76

5.8 Full pipeline inflow and camera learning result 77

5.9 Full pipeline inflow and camera learning history 78

5.10 Full pipeline inflow and camera learning loss 78

vii

5.11 Full pipeline inflow and camera learning location visualization 79

viii

List of Tables

3.1 2D mathematical operations . 18

4.1 Non-learnable simulation parameters . 42

4.2 Learnable simulation parameters . 43

4.3 Conjugate gradient tolerance and iterations comparison 51

5.1 Simulation forward performance . 66

5.2 Simulation optimization performance against resolution 68

5.3 Simulation optimization performance against time steps 69

5.4 Full pipeline forward performance . 71

ix

Chapter 1

Introduction

Fluid simulation is a crucial aspect to many fields, including robotics, engineering,

gaming, and cinematography. It allows engineers and artists to simulate the flow of

fluids such as liquids and gases accurately and realistically. A common task in the field

of fluid simulation is fluid control. By manipulating the fluid simulation parameters, the

user can produce different simulated outcomes. For example, in robotics, fluid control

can be used to simulate the flow of liquid around a creature to optimize its shape for

swimming performance [23]. Traditionally, gradient-based optimization methods such

as keyframing [14] and adjoint method [15] have been reliable solutions for solving the

fluid control problem. In the recent years, with the advances in machine learning and

automatic differentiation, data-driven solutions have been gaining popularity [26, 36, 55].

Among which, one effective solution is to incorporate the physical knowledge of the fluid

solver into a machine learning pipeline by making the fluid simulator differentiable. By

defining an appropriate loss function between the simulated 3D state and the desired

3D state, the differentiable simulator can propagate the gradient information to the 3D

simulation parameters for learning. Incorporating the differentiable simulator into the

learning pipeline not only accelerates the learning process, but also produces physically

realistic results.

1

Another common workflow that involves fluid simulation is to render the 3D

simulated fluid states into 2D images for visualization and presentation. This process

is usually done with rasterization or ray tracing. Similar to the advances in differentiable

simulation, differentiable rendering [39, 44] has also been an active research area these

years as well. By making the rendering process differentiable, the gradient information

can be propagated from the rendered 2D images to the 3D rendering parameters such as

camera positions and lighting information.

In the past few years, there has been attempts in combining differentiable simulators

and renderers to form a fully differentiable pipeline, so that users can optimize 3D

simulation and rendering parameters using information from 2D images. However,

these methods are typically applied to rigid or soft body simulations [47, 60], and to

our knowledge, there are very few existing systems of fully differentiable pipelines

for fluid simulations. The main challenges of building such frameworks are the full

differentiability and the scalability. The simulator and renderer must be differentiable

themselves, and on top of that, the connection between the two components must be

differentiable as well, so that the gradient can propagate backwards without any loss

of information. Furthermore, the pipeline must be scalable so that it handles not only

significant amount of time steps in the simulation, but also large enough simulation

and rendering resolutions to preserve the details. In this work, we explore the viability

of the a fully differentiable fluid simulation and rendering pipeline, and present our

implementation that overcomes the challenges described above, along with the results

for learning tasks using our framework.

1.1 Contributions

We are interested in optimizing 3D parameters using 2D rendered image. We build and

evaluate a fully differentiable pipeline by implementing a differentiable and physically

accurate grid-based fluid simulator using both Jax and PyTorch to solve the Navier-Stokes

2

equation, and crafting a rendering scheme that renders the 3D simulated output grid

using an existing differentiable renderer. With the fully differentiable fluid pipeline, we

demonstrate the accuracy and efficacy of our framework through forward and learning

experiments. We will show that even with the loss of information by projecting 3D grids

to 2D images, the gradient information can still be propagated throughout the whole

pipeline properly.

1.2 Thesis Overview

Chapter 2 conducts a literature review on existing work regarding fluid simulation,

fluid control problems, differentiable simulation, differentiable renderer, and existing

fully differentiable pipelines. Chapter 3 introduces the background knowledge required

to build our differentiable fluid simulation that solves for the Navier-Stokes equation.

We introduce the rendering scheme for rendering the 3D simulated grid using direct

absorption to the renderer. We will also give an overview on automatic differentiation.

Chapter 4 describes the implementation details of our fully differentiable pipeline. We

discuss the implementation of our version of the stable fluids algorithm [10] and the

rendering scheme introduced in Chapter 3. We will also discuss the techniques used for

performing learning tasks and accelerating the pipeline. Chapter 5 presents the results

of our experiments. We perform both forward and learning experiments on both the

differentiable simulator alone and the full pipeline. We also perform benchmarks on our

simulator to compare the implementation using different backends. Finally, Chapter 6

will conclude with discussions and future work ideas.

3

Chapter 2

Related Work

In this work, we combine differentiable fluid simulation and differentiable fluid rendering

into a fully differentiable pipeline. We then use this framework for optimization tasks

such as fluid control problems. In this section, we will conduct a brief literature review

on the topics related to our work.

First, since our work is based on grid-based fluid simulation, we will give a brief

history of fluid simulation in Section 2.1. Our method aims to solve inverse problems

such as fluid control. For this reason, we then review how techniques prior to the advent

of differentiable simulation methods are used for solving this problem in Section 2.2.

After that, we review the recent progress on differentiable simulation and how it

can be used to solve the fluid control problem using machine learning techniques in

Section 2.3. Then, we shift our focus to discuss previous work on fluid rendering and

differentiable rendering methods in Section 2.4. Finally, we review the recent progress on

fully differentiable frameworks that combine differentiable simulation and differentiable

rendering in Section 2.5.

4

2.1 Fluid Simulation

Simulating the flow of fluids such as water and smoke has a long history in computer

graphics, and it continues to be an active research area due to its importance in the movie

and video game industries.

In the 1980s, early fluid simulation techniques focus on simulating particle systems

to achieve visually compelling results [3, 6]. While these methods produce satisfactory

effects, they do not accurately reflect the physical model of fluid flows, which is described

by the Navier-Stokes equation.

As early as the 1960s, scientists have developed methods that solve the Navier-Stokes

equation, including Lagrangian (particle-based) and Eulerian (grid-based) approaches [1,

5, 9]. These methods use explicit solvers to solve the Navier-Stokes equation and produce

physically accurate fluid simulations. The problem with these explicit solvers is that

numerical instabilities will occur as the time steps become larger, and the simulations

will become unstable.

To address these problems, methods that combine the two approaches were proposed.

Particle-in-cell (PIC) and fluid-implicit-particle (FLIP) [4, 18] are popular methods that

advect the Lagrangian particles, transfer velocities to Eulerian grids and then project

the velocities in the grid. This approach works exceptionally well with free surface

boundary conditions, where there is a clear boundary between the fluid and the air,

because advecting and tracking particles explicitly allows the algorithm to preserve more

details locally.

Stable fluids [10], proposed by Stam in the early 2000s, is another physically accurate

grid-based fluid simulation algorithm, and this algorithm remains fundamental to many

modern grid-based fluid simulation to this day. Stam proposes the Semi-Lagrangian

scheme that combines the two approaches above. The algorithm advects the fluid using

a Lagrangian view point and stores and computes the velocity in an Eulerian grid. The

5

semi-Lagrangian scheme allows the solver to solve the Navier-Stokes equation implicitly

and accurately, even for larger time steps.

After stable fluids was proposed, researchers have continuously worked on improving

and extending this algorithm. Under certain constraints, the algorithm’s run time can be

sped up extensively. For example, for periodic boundary conditions, using Fast Fourier

Transform (FFT) for the pressure projection solve significantly improves the algorithm’s

run time [13]. Other research has been focused on improving the physical accuracy of

the algorithm further. For instance, the vortex particle method [17, 25] mitigates the

numerical dissipation problem, and the physics-based energy model [22] enhances fluid

turbulence. The algorithm has also been extended to highly viscous Smoothed Particle

Hydrodynamics (SPH) fluids by reconstructing the velocity field from target velocity

gradients [27]. Recently, other improved advect-projection schemes have been proposed

to remove artificial viscosity and preserve the vorticity in fluids [38, 57].

In our work, we simulate a scene of smoke in a box, where the air is the fluid, and

there is no free surface boundary condition. Instead, we are only concerned with solid

boundary conditions, since the fluid is bounded by solid walls. For this reason, in this

thesis, we extend an improved version of the stable fluids algorithm explained in the

Fluid Simulation book by Bridson [21]. Our method is described in Section 4.1. Though

our algorithm is relatively simple, our approach should easily be adapted to other more

complex algorithms described above.

2.2 Fluid Control

Fluid control allows artists and engineers to manipulate the fluid simulation using control

parameters such as velocity and forces to achieve a target flow without losing physical

accuracy. Extending the physics-based fluid simulation and the stable fluid algorithm,

several optimization methods have been explored to solve the fluid control problem.

6

The idea of controlling physics-based fluid simulations can be traced back to as early

as the late 1990s by Foster et al. [8, 12]. In their work, Foster et al. suggested controlling

the simulation outcome by modifying the fluid parameters and imposing velocities at

different locations on the grid. By tweaking the initial conditions, users can modify

the simulation results. However, to have the simulation achieve a specific desired state,

users must go through extensive experiments and trial-and-error to figure out the correct

control parameters.

To mitigate this problem, Treuille et al. [14] proposed a fluid control method that

achieves a user-specified state was proposed by. By defining an objective function that

measures the difference between the simulation state and the user-provided keyframes

and mathematically deriving the gradients for each fluid simulation operation, the

method turns the fluid control problem into a quasi-Newton optimization problem. By

solving the optimization problem, the method computes the external forces acting on

the fluid that minimizes the difference between the simulated and keyframe states. This

method was later extended and improved by McNamara et al. by optimizing the gradient

computation step using the adjoint method [15]. These methods were proposed before

the popularization of differentiable simulation frameworks, but later frameworks highly

benefitted from these earlier research.

2.3 Differentiable Simulation

With the recent boom of automatic differentiation (AutoDiff) frameworks and machine

learning (ML) techniques, differentiable simulations have been gaining popularity in the

field of research. Depending on the extent of the involvement of physical knowledge in

the differentiable framework, these methods can be classified and put on a spectrum.

On the extreme side of the spectrum, scientists have attempted to replace the

traditional simulation entirely using neural networks (NNs) and ML methods [55]. The

convincing results and superior runtime performance demonstrated the potential of ML

7

in this field. However, because these methods lack the knowledge of the physical model,

extensive parameter tuning and NN architecture designing are required, and the trained

networks cannot be easily generalized to adapt to different boundary conditions while

remaining physically accurate.

One approach to including physical knowledge in the training pipeline is

incorporating physics-based constraints in the loss functions. Tompson et al. [32] and

Xiao et al. [37] included the divergence-free constraint in the loss function and used NNs

to replace the iterative PDE solver to infer the pressure term, increasing the speed of the

pressure solve while maintaining the accuracy. However, this approach is limited by the

complexity of the solution manifold. Incorporating the physics knowledge in the loss

function alone is insufficient to capture a more complex range of solutions.

Yet another approach to combining classical numerical methods with machine

learning techniques is to integrate the numerical solvers for the PDEs into the ML pipeline

during training. Instead of having NNs replacing the fluid solver, the gradients for the

fluid solvers are computed during backpropagation [52, 53]. This method is closely

related to and derived from the gradient-based fluid control methods described earlier

[14, 15]. Compared to pure-NN-based models, the accuracy of the models is significantly

improved, and compared to the physics-based loss methods, a lot more details of the

simulation are preserved after training. Recent research improves this idea by introducing

more advanced learning techniques. For instance, Pan and Manocha [31] accelerated

the training by using an alternating direction method of multiplier (ADMM) optimizer

and relaxing constraints in intermediate training iterations, and only enforcing the strong

constraint at the end of the training iterations.

Thuerey et al. have written an excellent textbook, Physics-based Deep Learning (PBDL),

introducing the ideas above [52]. Along the book, Holl et al. implemented PhiFlow [42], a

differentiable fluid simulator implementing the ideas in the PBDL book, with supporting

backends including NumPy [41], PyTorch [40], TensorFlow [24] and Jax [33, 34]. Other

open-source differentiable simulation implementations exist, such as DiffTaichi [43]. Still,

8

DiffTaichi tries to generalize to other physical simulations, such as rigid body simulations,

instead of specializing in fluid simulation.

2.4 Differentiable Fluid Rendering

In industries such as gaming and engineering, after simulation, a common task is to

project the 3D fluid states onto 2D screens for visualization and presentation. There are

two general approaches to rendering fluids: ray tracing-based and rasterization-based

methods. On top of the rendering solutions, to tackle inverse problems, which propagate

gradients from the 2D screens back to the 3D rendering inputs, various differentiable

rendering methods are proposed as well.

Ray tracing-based rendering methods, such as the ray marching algorithm [7, 48,

50], provide the most physically accurate visualization. However, these methods are

usually slow at runtime and require more complex models than rasterization-based

methods. In recent years, significant progress has been made on differentiable ray

marching algorithms [35, 54, 59]. These methods provide accurate gradients for the 3D

parameters, but they also inherit the problem from forward ray-tracing-based methods

that the rendering speed is relatively slow. Because our work mainly focuses on the full

differentiability of the pipeline, instead of pursuing high-quality visual effects, we opted

to use rasterization-based methods.

In rasterization-based fluid rendering, one of the most commonly used methods is

billboarding [16, 19, 20]. These methods project the 3D particle-based fluid states onto 2D

screens and render them as 2D sprites. The main advantage of these methods is that they

are fast and easy to implement, but with a cost that the quality of the rendered images is

inferior and may have trouble encapsulating the density information accurately. Instead

of this option, we will convert the 3D fluid grid into a mesh, interpolate the density values

at the vertices, and render the absorption image. The detail of our method is explained in

Section 4.2.

9

In recent years, differentiable rasterization pipelines have been researched extensively.

OpenDR [58] is one of the first general-purpose differentiable rendering systems, but it

has a relatively limited shading model. Neural 3D Mesh Renderer [29] provides a more

generalized differentiable rendering system, but its backward pass hallucinates on the

triangle edges and thus produces inconsistent gradients. Soft Rasterizer [39] attempted

to fix the gradient accuracy by blurring the rasterized triangles, but the blur also makes

the triangle edges less sharp, trading image accuracy for gradient consistency. Neural

Radiance Fields (NeRF) [46] uses deep neural networks to create 3D scenes from a few 2D

photos, and it has been one of the most successful differentiable rendering systems so far.

In our work, we use an existing differentiable rasterization framework named

NvDiffRast [45], which focuses on fast, GPU-based differentiable rendering for meshes

with support to PyTorch [40] and TensorFlow [24]. The implementation treats basic

rendering operations such as rasterization and attribute interpolation as individual

modules and provides custom gradient computations. This decreases the memory

requirement for backpropagation while maintaining the accuracy of the gradients.

2.5 Fully Differentiable Frameworks

In recent years, researchers have tried to combine the differentiable simulation and

differentiable rendering into a fully differentiable pipeline. Without the differentiability

of both components, connecting them and forming the 2D image will cause a loss

of information. This loss of information makes the inverse problem ill-posed and

unsolvable. However, the fully differentiable frameworks aim to solve these ill-posed

problems using the extra gradient information. In 2021, Murthy et al. [47] were the first

to propose a fully differentiable framework named GradSim that combines differentiable

simulation and differentiable rasterization. GradSim used a loss function defined on the

rendered frame buffer and mainly focused on soft body and cloth simulations and visual

motor control problems. Later research [60] extended this idea to use a depth-based

10

rendering loss function to remove the dependencies of colours, lighting conditions and

textures, but still on soft body simulations.

However, this idea of the fully differentiable pipeline has barely been explored in the

area of grid-based fluid simulations. Guan et al. [56] and Li et al. [49] have explored such

ideas with particle-based fluid simulations with NeRFs [46]. Liu et al. [61] combined

physics-based Eulerian fluid simulations and NeRFs. Their work focuses on liquid

simulations and uses a convolutional neural network (CNN) to replace the Poisson solver,

accelerating the simulation and training runtime. Our work adopts a similar idea but

differs in that we use a fully iterative Poisson solver and focus our work on smoke

simulations.

2.6 Deficiencies of State of the Art

As we have seen in the previous sections, differentiable simulation and differentiable

rendering have been researched extensively in recent years. However, there are still some

deficiencies in the current state of the art, which our work aims to address.

Firstly, although there are plenty of research and implementations on grid-based

differentiable fluid simulations, there has not been many comprehensive benchmarks

between implementations using different differentiable frameworks, specifically between

Jax and PyTorch. Holl et al. provided the PhiFlow framework [42], which supports

both the Jax and PyTorch backends, but since they aim to provide a generalized facade

that abstracts away the underlying implementation, a lot of unnecessary overhead is

introduced, thus causing the benchmarks to be inaccurate. While introducing the

DiffTaichi [43] framework, Hu et al. provided benchmarks of the framework against

implementations using Jax. However, their implementation did not fully utilize the JIT

(Just In Time) compilation feature of Jax, which is one of the main advantages of using

Jax. For this reason, the benchmarks are not accurate either. In our work, we fill this gap

11

by providing both runtime and memory benchmarks using both Jax [33] and PyTorch [40]

implementations.

Secondly, as mentioned in Section 2.5, there has not been many research on fully

differentiable frameworks that combine grid-based differentiable fluid simulation and

rasterization-based differentiable fluid rendering. Existing implementations [39, 49, 56]

use either particle based fluid simulations, neural network as fluid solvers, or NeRFs as

differentiable renderers. Our work aims to fill this gap by combining a grid-based fluid

simulation that uses a Poisson solver and a rasterization-based fluid renderer using the

NvDiffRast [44] rasterizer.

Finally, memory consumption has been a long-lasting issue in learning-based methods

due to the construction of the computational graph during backpropagation. This is

especially significant in the context of grid-based differentiable fluid simulation since

the memory consumption increases non-linearly with the grid resolution. In our work,

we show how we tackle this problem using the checkpointing technique, and present

the memory consumption result using the Jax and PyTorch implementations for both the

differentiable simulation alone and the fully differentiable pipeline.

12

Chapter 3

Background

In this chapter, we will introduce the background knowledge required to build our fully

differentiable framework. We will first give a brief overview of automatic differentiation,

along with some common frameworks in Section 3.1 After that, we introduce fluid

simulation in Section 3.2. Finally, we describe the rasterization pipeline in Section 3.3

and how smoke can be visualized and rendered using direct absorption in Section 3.4.

3.1 Automatic Differentiation

With the boom of machine learning, automatic differentiation (AutoDiff) [28] has become

a popular technique for computing the gradient of a differentiable function. In this work,

we use AutoDiff to make our fluid simulator backwards differentiable to compute the

gradients of the loss with respect to simulation parameters. In this section, we will

introduce AutoDiff, and one of the main approaches for computing the gradient of a

function: reverse-mode AutoDiff.

3.1.1 AutoDiff

Traditionally, there are other methods in computer science that are used for computing

gradients. One of which is numerical differentiation. This method approximates the

13

gradient by taking the central difference of the function at two points that are close to

each other. For a function f , the gradient at a point x can be approximated by

∂f

∂x
≈ f(x+ ϵ)− f(x− ϵ)

2ϵ
,

where ϵ is a small number.

However, this method is not accurate because of numerical errors, and it is not scalable

to complex functions with multiple input variables because the number of evaluations is

proportional to the number of input variables.

Another method used for computing the gradients of a function is symbolic

differentiation. This method uses expression manipulation and works by applying the

chain rule to expand the function into a composition of simpler elementary functions.

This solves the problem of numerical errors, but it can often result in lengthy and cryptic

expressions, known as “expression swells”, and only works with closed-form functions.

AutoDiff provides an alternative to these methods that is automated, accurate, and

scalable. It works by decomposing a function into a sequence of elementary operations

and applying the chain rule to compute the gradients of the function. The gradients

for each elementary function, such as addition, multiplication, trigonometric functions,

etc., are defined manually through operator overloading. Depending on the order and

direction of the AutoDiff, multiple passes are traversed in the computation graph to

compute the gradients of the function.

3.1.2 AutoDiff Modes

There are two main approaches for computing the gradient of a function: forward-

mode AutoDiff and reverse-mode AutoDiff. Both approaches work by recording the

elementary operations in a computation graph and applying the chain rule to compute

the gradients of the function. The difference between the two modes is that they traverse

the computation graph in different order and will require different passes to compute the

14

Jacobian (the matrix of all first-order partial derivatives of a vector-valued function where

there are multiple outputs and inputs). To illustrate the difference, we work with a toy

example that computes the gradient of the function y =
√
x1 − x2.

Forward-mode AutoDiff is also known as the tangent linear method. After computing

the function value and recording the elementary operations in the computation graph,

subsequent forward passes are traversed to compute the gradient of the function with

respect to each input variable. For each gradient pass, only one input variable is marked

as active, so to compute the Jacobian, the gradient pass needs to be repeated for each

input variable. In our toy example, this is illustrated in Figure 3.1a. After recording the

computation graph, when computing the gradient of the function with respect to x1, we

mark x1 as active by setting the tangent trace ẋ1 = 1 and others to 0. Then, we traverse the

computation graph in the forward direction to compute the gradient of the intermediate

results with respect to x1 after each operation. Finally, we reach the output of the function

and we obtain the gradient of the function against x1. We repeat the same computation

for x2 for the its gradient as well. We can see that in order to compute the full Jacobian,

we need 2 gradient forward passes. This mode is useful particularly in scenarios where

the number of input variables is smaller than the number of output variables.

On the other hand, reverse-mode AutoDiff is also known as the backpropagation

algorithm. Different from the forward-mode, reverse-mode AutoDiff computes the

gradient backwards, starting from the output of the function. For each gradient pass, one

output variable is marked as active, and the gradient is computed with respect to all the

inputs. In our example, this is illustrated in Figure 3.1b. After recording the computation

graph, we set the reverse adjoint for the output of the function ȳ = 1. Then, we traverse

in the backward direction to compute the gradient of the function with respect to each

intermediate variable after each operation. Finally, we arrive at the inputs of the function

and we obtain the gradient of the function against x1 and x2. If there were multiple

outputs to the function, we repeat the same computation for the rest of the outputs for

their gradient as well. We can see that in order to compute the full Jacobian, in this case,

15

Forward Forward

forward_mode_autodiff

v2 = v1 = 4 = 2

·v−1 = ·x1 = 1v−1 = x1 = 6 v0 = x2 = 2

v1 = v−1 − v0 = 6 − 2

·v0 = ·x2 = 0

·v1 = ·v−1 − ·v0 = 1 − 0

·v2 = 1
2 v− 1

21
·v1 = 1

4

x1

−

x2

z1

y
∂y
∂x1

∂z
∂x1

 Derivative

 Derivative−

∂x1
∂x1

∂x2
∂x1

(a) Forward-mode autodiff

∂y
∂y

∂y
∂z

 Backward

 Backward−

∂y
∂x1

∂y
∂x2

reverse_mode_autodiff

v−1 = x1 = 6 v0 = x2 = 2

v1 = v−1 − v0 = 4

v2 = v1 = 2

v̄−1 = v̄1
∂v1
∂v−1

= v̄1 = 1
4 v̄0 = v̄1

∂v1
∂v0

= − v̄1 = − 1
4

v̄1 = v̄2
∂v2
∂v1

= v̄2
1
2 v− 1

21 = 1
4

v̄2 = ȳ = 1

x1

−

x2

z1

y

Forward Reverse

(b) Reverse-mode autodiff

Figure 3.1: An example of computing gradient of a function with forward-mode and

reverse-mode AutoDiff. The computation graph is shown in blue on the left, and the

gradient computation pass is shown in green on the right.

16

we only require 1 gradient reverse pass. The reverse-mode Autodiff is useful when the

number of output variables is smaller than the number of input variables.

In our work, we use a scalar-valued loss function for learning, and there are a lot

more degrees of freedom for the input variables, including both simulation and rendering

parameters. Therefore, we use reverse-mode AutoDiff to compute the gradients of the

loss function with respect to these parameters because of the efficiency of the algorithm

in this scenario.

3.2 Fluid Simulation

In this section, we will introduce the basic concepts of fluid simulation. We will explain

the Navier-Stokes equation along with the assumptions we make in our work. After

that, we describe how the stable fluids [10] algorithm is used to solve the Navier-Stokes

equation using the splitting method, and we will cover each part of the fluid solve

operations separately along with how these operations affect the differentiability of the

simulator.

3.2.1 The Incompressible Navier-Stokes Equation

A fluid simulation composes of multiple time steps, where each time step is a simulation

of the fluid’s motion over a small time interval ∆t. These fluid motions are governed by

the Navier-Stokes equation. The Navier-Stokes equation is given by

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ f , (3.1)

∇ · u = 0, (3.2)

where u is the velocity as a vector field, p is the pressure as a scalar field, ρ is the density

of the fluid as a scalar, ν is the kinematic viscosity of the fluid as a scalar, and f is the

external force as a vector field.

17

Table 3.1: 2D mathematical operations used in the Navier-Stokes equation

Notation Expanded formula Explanation

∇p

[
∂p/∂x
∂p/∂y

]
The gradient of the scalar field p

∇u
[
∇u ∇v

]
The gradient of the vector field u

∇2u ∇ · ∇u The Laplacian of the vector field u
∇ · u ∂u/∂x+ ∂v/∂y The divergence of the vector field u

During the simulation, we are also interested in other quantities that are not included

in the equation above. Specifically, we use s to represent the smoke marker density as

a scalar field for visualization purposes. Note that this is different from the density ρ of

the fluid. We also use T to represent the temperature of the fluid as a scalar field. Later,

we will use q to generalize for quantities (both scalars and vectors) carried by a fluid;

we will use the superscript qt to represent the quantity at time step t. For 2D vector

field u = (u, v), and scalar field p, the mathematical operations used in the Navier-Stokes

equations are defined in Table 3.1. The 3D mathematical operations follow naturally by

extending both the spatial dimension and the vector dimension by one.

The Navier-Stokes equation is derived from Newton’s second law of motion. The

derivation is beyond the scope of this thesis. However, it is covered in detail in the Fluid

Simulation book by Bridson [21].

In the Navier-Stokes equation, Equation (3.1) encapsulates the conservation of

momentum. It describes that in the limit, as the volume of the fluid particles get

infinitesimally small, the rate of change of the particles’ velocities over time, also known

as the material derivative of the velocity, Du
Dt

, is equal to the sum of the forces acting on

that particle. The definition of material derivative and its meaning will be explained in

more detail when we introduce advection in Section 3.2.2.

Equation (3.2) specifies the incompressibility constraint. This means that for a patch

of fluid, the amount of fluid flowing into the patch equals the amount of fluid flowing out

of the patch. The constraint is enforced by the force caused by pressure, which we will

explain in Section 3.2.4.

18

For our work, we make the assumption that the fluid is inviscid, meaning the fluid

is non-sticky and has zero viscosity. We make this assumption because we get diffusion

partly for free due to numerical dissipation. Mathematically, this means that we assume

ν = 0. This assumption simplifies the Navier-Stokes Equation to

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ f , (3.3)

∇ · u = 0. (3.4)

The Navier-Stokes Equation does not have an analytical closed-form solution because

it contains a partial differential equation (PDE). To solve the Navier-Stokes equation, we

use the stable fluids algorithm [10, 21]. The algorithm takes a semi-Lagrangian approach,

and it is based on the splitting method, which is a technique for solving a PDE by

decomposing it into a set of simpler equations or PDEs. Specifically, in our case, the

equation is decomposed into three smaller operations - advection, external forces, and

projection. This is useful because it allows different parts to be solved separately with

methods that are best suited to them.

3.2.2 Advection

The first step in the stable fluids algorithm is advection. This step describes the fluid

particles and the quantities q they carry being moved by the velocity field. In the stable

fluids algorithm, this is done by using a semi-Lagrangian approach, which combines the

Lagrangian and Eulerian approaches.

In a continuum, the Lagrangian approach tracks each fluid particle individually. The

observer is attached to the fluid particle, and the fluid particle moves with the velocity

field. The particles carry quantities q(t) that change over time t. These quantities include

the position x(t) and velocity u(t).

19

The Eulerian approach uses a fixed grid, and the observer is fixed at a location x in the

grid. Depending on the location x, as time t changes, the quantities q(t,x) changes. Note

that in this case, the position x is an independent variable unrelated to time.

The semi-Lagrangian approach combines the Lagrangian and Eulerian approaches. It

uses a fixed grid, while the observer is attached to the fluid particle. At time t, for an

observer at location x(t), the changes of quantities q can be parametrized as q(t,x(t)).

The material derivative, Dq
Dt

, which can be think of as the total derivative, captures the

rate of change of the quantities carried by the fluid in the semi-Lagrangian view. It is

derived by combining the two viewpoints into

Dq(t,x)

Dt
=

d

dt
q(t,x(t))

=
∂q

∂t
+

dx

dt
· ∇q

=
∂q

∂t
+ u · ∇q.

(3.5)

In fluid simulation, in the advection step, because there are no external forces acting

on the fluid, the quantity carried by fluid particles will move around in the fluid grid,

but should not change in the Lagrangian viewpoint. This means the material derivative

should be set to 0. This is equivalent to solving the quantity q for

∂q

∂t
+ u · ∇q = 0. (3.6)

Note the velocity is a quantity carried by the fluid particles, and it can be self-advected.

In a semi-Lagrangian viewpoint, since advection is the transportation of quantity by

the velocity field, to obtain the quantity qG at target location xG at time step t, we simply

back trace the velocity field to the source location xP , and use the quantity qP carried by

the same imaginary particle at the source location at one time step before, t − 1. This is

illustrated in Figure 3.2.

20

advection

xG

xP

Figure 3.2: Advection by back tracing the particle through the velocity field

With this intuition, solving for advection can be decomposed into two steps. First, we

need to find the source location xP given the target location xG, and second, we need to

properly determine the quantity qP carried by that particle at the source location.

The problem of finding the source location can be categorized as a transient problem.

Given the target location xG and the ordinary differential equation (ODE) that describes

the rate of change of location
∂x

∂t
= u(x), (3.7)

we would like to go in the reverse direction for ∆t amount of time to find the source

location xt−1
P .

These transient problems are very well-studied and there are many existing solutions.

One of the simplest solutions is to use the “forward” Euler method to go backwards

in time. More concretely, this method solves the problem by using the velocity field

u evaluated at xG to take one time step backward. Formally, obtaining xP using the

21

“forward” Euler method can be written as

xP = xG −∆tu(xG). (3.8)

For higher accuracy and stability, we can use the Runge-Kutta method, which is a

generalization of the forward Euler method by taking intermediate steps back. Although

we did not find this necessary because we focused on low velocity smokes with relatively

simple (boxed) boundary conditions, these higher order time integration methods can be

integrated into our framework in a straightforward fashion.

The final remaining task is to properly obtain the quantity qP carried by the imaginary

particle at xP . Because the particle location may not lie exactly on the discretized grid, we

need to interpolate the quantity using the neighbouring particles. In 2D, we achieve this

by bi-linear interpolation, and in 3D, we achieve this by tri-linear interpolation.

Finally, combining the time integration (backtracing) step and the interpolation step,

we can obtain the quantity qP after the fluid is advected. Note that for vector quantities,

each component of the vector will be advected separately. This step is completely

differentiable as well since all mathematical operations used for both components are

differentiable.

3.2.3 External Forces

In fluid simulation, external force fields f will act on the fluid and change the velocity

field u. Depending on the scene and the simulation configuration, the force field is either

given as a simulation parameter or computed during each time step. Given the time step

size ∆t, the amount of change in velocity caused by the external forces can be calculated

as ∆tf , and the velocity update can be written as

ut = ut−1 +∆tf . (3.9)

22

As for the differentiability, as long as the external force field f is provided as a constant,

or the computation of it is differentiable, the velocity update is differentiable as well.

3.2.4 Pressure Projection

In fluid simulation, the goal of pressure projection is to solve for the pressure field p that

satisfies both the incompressibility constraint and the boundary conditions. Then, the

velocity field u can be updated using the first-order update

ut = ut−1 −∆t
1

ρ
∇p. (3.10)

Staggered Grids

The incompressibility constraint states that the divergence of the velocity field u should

be 0, which means

∇ · u =
∂u

∂x
+

∂v

∂y
= 0. (3.11)

To compute the divergence of the velocity field, we need to compute the partial

derivative of the components of the velocity field with respect to the corresponding

spatial coordinates. In a discretized simulation, we compute partial derivatives by central

finite differencing. However, if the velocity components are stored at grid centers, we will

run into a non-trivial null space problem, where our finite differencing estimation will be

0 while the actual gradient of the velocity field is non-zero. In 1D, this can be illustrated

in Figure 3.3. For the piecewise linear function in the figure, the gradient is non zero

everywhere and not defined at integers, but at x = 2, using finite differencing, we will

obtain an incorrect gradient estimate of f(3)−f(1)
2

= 1−1
2

= 0.

In order to avoid this non-trivial null space problem, we will adopt a Staggered Grid,

also known as Marker and Cell (MAC) Grid, to store the velocity field [1].

23

nullspace_problem

2 31
0

1

2

f(3) = 1

f(2) = − 1

f(1) = 1

Figure 3.3: Null space problem

staggered_grid_2D

pi, j

pi, j−1

pi, j+1

pi−1, j pi+1, j

vi, j+ 1
2

vi, j− 1
2

ui+ 1
2 , jui− 1

2 , j

(a) 2D staggered grid

staggered_grid_3D

vi, j+ 1
2 ,k

pi, j,k
ui+ 1

2 , j,kwi, j,k+ 1
2

(b) 3D staggered grid

Figure 3.4: Staggered grids

In a 2D staggered grid, the vector components (u, v) are stored at the grid faces with

half-indices, while the scalar components such as pressure (p) are stored at the grid centers

with integer indices. This is shown in Figure 3.4a.

24

With staggered grids, taking central differences for the velocity components will give

spatial derivatives at the center of the cell. With u = (u, v), the spatial derivative for the

velocity components can be written as

(
∂u

∂x

)
i,j

=
ui+1/2,j − ui−1/2,j

∆x
,(

∂v

∂y

)
i,j

=
vi,j+1/2 − vi,j−1/2

∆y
.

(3.12)

After computing the spatial derivatives, we can evaluate the divergence of the velocities

at the center of the grid cells (∇ · u)i,j .

Another advantage of using a staggered grid is that when we evaluate the gradient of

the pressure field using central finite differencing, the derivatives will be evaluated at cell

face centers, making it easier to compute the velocity update. The spatial derivatives of

the pressure field can be written as

(
∂p

∂x

)
i+1/2,j

=
pi+1,j − pi,j

∆x
,(

∂p

∂y

)
i,j+1/2

=
pi,j+1 − pi,j

∆y
.

(3.13)

However, the disadvantage of using a staggered grid is that during the advection step,

we need to interpolate the velocity components to different locations depending on the

quantity being advected. When advecting scalar grids, we need to sample the velocity

at grid cell centers, where each sampling point has integer indices ui,j , which can be

computed by

ui,j =

(
ui−1/2,j + ui+1/2,j

2
,
vi,j−1/2 + vi,j+1/2

2

)
. (3.14)

When we use the velocity field to advect itself, we advect each component separately,

and for each component, we need to sample the velocity at different locations so that

the sampled velocity aligns with the component being advected. For example, when

advecting the u component of the 2D velocity field, we need to interpolate the velocity

25

so that the sampled points align with the data points stored in the u component, which

live on the cell face centers where the x component has half-indices and y component has

integer indices (ui+ 1
2
,j). Similarly, when advecting the v component, we need to sample

the velocity at ui,j+ 1
2
. Sampling at these locations can be computed by

ui+1/2,j =

(
ui+1/2,j,

vi,j−1/2 + vi,j+1/2 + vi+1,j−1/2 + vi+1,j+1/2

4

)
,

ui,j+1/2 =

(
ui−1/2,j + ui+1/2,j + ui−1/2,j+1 + ui+1/2,j+1

4
, vi,j+1/2

)
.

(3.15)

In a 3D staggered grid as shown in Figure 3.4b, computing the divergence of the

velocity field, the gradient of the pressure field, and sampling the velocity field for

advection are very similar to the 2D case. The only difference is that we need to take

into account the third dimension.

Boundary Conditions

One of the goals of pressure projection is to enforce boundary conditions. In fluid

simulation, if we think about the grid as a voxelized model, as shown in Figure 3.5, then

each voxel can be labelled as a fluid (F), solid (S), or empty (E). Then, we can describe two

types of boundary conditions: Dirichlet and Neumann boundary conditions.

The Dirichlet boundary condition is also known as the free surface boundary

condition. This boundary condition is enforced on voxel faces between fluid and empty

voxels. In Figure 3.5, Dirichlet boundary conditions are marked with blue lines.

The Neumann boundary condition is also known as the solid boundary condition.

This boundary condition is enforced on voxel faces between fluid and solid voxels. In

Figure 3.5, Neumann boundary conditions are marked with green lines.

Since our work is focused on smoke simulations, the air acts as the fluid, and there

will not be empty cells in our simulation, so we do not need to solve for the Dirichlet

boundary conditions. Therefore, we will only cover Neumann boundary conditions in

this thesis.

26

boundary_conditions

E E E E E E

E F E E E E

S E E E F S

S F E F F S

S F F F S S

S S S S S S

Figure 3.5: Boundary conditions

For solid (Neumann) boundary conditions, we would like to enforce the fact that no

fluid should flow into or out of the solid body. Mathematically, this means that in the

normal direction, denoted by n, the relative velocity between the fluid and the solid

should be zero and can be written as Equation (3.16) and Equation (3.17). Note that for the

tangent component, the relative velocity between the fluid and the solid can be non-zero,

and the fluid velocity is independent of the solid velocity.

In general, the relationship between the fluid and solid velocities can be written as

u · n = usolid · n. (3.16)

27

solid_boundary_example

pghost
i,j pi+1,j

ui+ 1
2 ,jS F

Figure 3.6: Solid boundary example

If we make an additional assumption that the solid is stationary, then the relationship

can be simplified to

u · n = 0. (3.17)

To utilize Equation (3.16) and Equation (3.17) to solve for pressure, we will use a ghost

pressure, pghost to act as an imaginary pressure value for a solid cell right next to a fluid

cell. We will take a 2D solid boundary example of having a solid cell on the left at location

(i, j), and a fluid cell on the right at location (i + 1, j). The solid cell will have a ghost

pressure of pghosti,j , and we would like to solve for the pressure in the fluid cell pi+1,j so that

it satisfies Equation (3.16). This is illustrated in Figure 3.6.

In our example, since the normal direction of the solid boundary is the u component,

we can rewrite Equation (3.16), so that in the next time step (t+1), the updated velocity’s

u component satisfies

ut+1
i+1/2,j = usolid

i+1/2,j. (3.18)

Given the ghost pressure, we can also rewrite the u-component of the velocity update

Equation (3.10) as

ut+1
i+1/2,j = ut

i+1/2,j −∆t
1

ρ

(
pi+1,j − pghosti,j

∆x

)
. (3.19)

28

Substituting Equation (3.18) into Equation (3.19) and rearranging, we can derive that

the ghost pressure needs to satisfy

pghosti,j = pi+1,j +
ρ∆x

∆t

(
ut
i+1/2,j − usolid

i+1/2,j

)
. (3.20)

Note that this ghost pressure constraint can be generalized to the v-component, as well

as the 3D case.

The Pressure Equation

In our work, we will assume that the solid is stationary. Therefore, we will proceed under

the assumption of Equation (3.17).

We expand the first order velocity update Equation (3.10) into the u-component and

v-component as

ut+1
i+1/2,j = ut

i+1/2,j −∆t
1

ρ

(
pi+1,j − pi,j

∆x

)
,

vt+1
i,j+1/2 = vti,j+1/2 −∆t

1

ρ

(
pi,j+1 − pi,j

∆y

)
.

(3.21)

Likewise, we expand the divergence free constraint in Equation (3.2) into the u-

component and v-component, and get

∇ · ut+1
i,j ≈

ut+1
i+1/2,j − ut+1

i−1/2,j

∆x
+

vt+1
i,j+1/2 − vt+1

i,j−1/2

∆y
= 0. (3.22)

For simplicity, we assume the grids are squared, meaning ∆y = ∆x. Substituting

Equation (3.21) into Equation (3.22), and rearrange so that the pressure terms are on the

left, and the known velocity terms are on the right, we obtain

∆t

ρ

(
4pi,j − pi+1,j − pi−1,j − pi,j+1 − pi,j−1

∆x2

)
= −

(
ut
i+1/2,j − ut

i−1/2,j

∆x
+

vti,j+1/2 − vti,j−1/2

∆x

)
.

(3.23)

29

Note that this equation is the finite difference approximation for the Poisson equation

for pressure
∆t

ρ
∇ · ∇p = −∇ · u. (3.24)

For cells that are marked as solid, we use the ghost pressure in Equation (3.20) to

substitute the corresponding pressure terms in Equation (3.23).

In general, for a cell that is marked as solid, we will modify the pressure equation in

Equation (3.23) by reducing the coefficient for the central pressure term by 1 on the left-

hand side and removing the pressure term that is solid, and add the velocity term on the

right-hand side.

For example, for the central pressure at index (i, j), if the cell on the right (i + 1, j)

is marked as solid, then we substitute the ghost pressure in Equation (3.20) into the

Equation (3.23), and get

∆t

ρ

(
3pi,j − pi−1,j − pi,j+1 − pi,j−1

∆x2

)
=

−

(
ut
i+1/2,j − ut

i−1/2,j

∆x
+

vti,j+1/2 − vti,j−1/2

∆x

)
+

(
ut
i+1/2,j

∆x

)
. (3.25)

The Pressure Equation in Vector Form

For each cell in the simulation domain, we can use the above to construct a pressure

equation. By combining all these pressure equations, we obtain a system of equations

that can be written in vector form as

Ap = d, (3.26)

where A is a laplacian coefficient matrix for each cell, and is sparse and symmetric positive

definite, as long as the boundary conditions are valid. The vector p is the unknown

pressure values for each cell, and the vector d is the negative velocity divergences.

30

This kind of linear systems are often very large, and solving for exact solutions is time

consuming. However, in fluid simulation, to obtain a visually pleasing result, we do not

need to solve the pressure exactly. Instead, it is desirable to solve for an approximation of

the pressure in order to reduce the run time. To achieve this, iterative methods such as the

Jacobi, Gauss-Seidel, or conjugate gradient are often used. In our work, we chose to use

the conjugate gradient method, which usually converges to an acceptable approximate

to the solution within a low amount of iterations. The solver is differentiable as long as

the matrix-vector product operator is differentiable as well. However, the convergence

tolerance and the number of maximum iterations allowed still needs to be fine-tuned. As

the tolerance decreases, the solver will produce a more accurate pressure estimate that

enforces the divergence free constraint, but it will also increase the number of iterations it

takes to converge. The larger the number of iterations causes more elementary operations

to be performed thus increasing the memory requirement for storing a larger computation

graph. More importantly, the more iterations, the longer it takes for the solver to run.

In our work, we compared different convergence tolerances and maximum iterations in

Section 4.1.6, and chose a tolerance of 0.1 and a maximum of 20 iterations for the conjugate

gradient solver.

Another important aspect of the iterative solver is the choice of the matrix-vector

product operator. The operator should be time-efficient to compute and should not take

up too much memory. A naive way to construct the operator is to compute and use

the dense matrix A directly. However, for a grid with high resolution of n × n × n, a

dense matrix A will have n3 × n3 entries, which is too large to store in memory. One

alternative to this is to use the sparse matrix A, where the 0s are not stored in memory.

This will reduce the memory usage to around 7n3 entries, since there will be n3 rows,

and for each row, the non-zero entries correspond to the neighbors of the cell and the cell

itself, and each cell has at most 6 neighbors. This is still very large to store in memory for

a high resolution grid, and the matrix-vector product operator will be time-consuming to

compute as well. Instead of these options, we take advantage of the fact that the matrix

31

A is a sparse laplacian matrix, and use convolution filters and paddings to construct the

operator. With this approach, the operator is a lot more memory friendly since we only

need to store the 3 × 3 × 3 convolution filter, along with the padded simulation grid.

The operator is also time-efficient to compute as well since the packages we use, such

as PyTorch and Jax, have optimized implementations for convolution operations using

vectorization and memory stride management, and even parallelization on GPUs. The

details of the convolution implementations are described in Section 4.1.6.

Finally, after solving for the pressure values, we can use them to update the velocities

using Equation (3.10). As long as the memory concerns above are addressed, the pressure

projection step is differentiable and can be integrated into the pipeline without problem.

3.3 Rasterization Pipeline

In our work, we use a rasterization-based rendering method to render the fluid. For

the rasterization and its corresponding gradient computations, we use an existing

differentiable rasterizer, NvDiffRast [44]. Prior to rasterization, our work mainly involves

vertex transformation and vertex property interpolation. In this section, we will give a

quick overview of part of the rasterization pipeline.

In rendering, the 3D scene is usually described by meshes. A mesh is represented

using a set of primitives such as triangles, described by vertices and faces. Each vertex

will contain information about its position and other attributes such as normals and

texture coordinates. Each face will contain information about the indices of the vertices

that form the face. The rasterization pipeline takes these object space vertices and the

faces as input, and outputs a set of pixels that will be displayed on the screen.

The pipeline consists of the following steps, and each step will be explained in more

detail in the following sections.

32

1. Vertex Processing - Transforms object space vertices of the mesh into the clip space

by performing a series of transformations including world, look at and projection

transformations.

2. Clipping and Rasterization - Clips the primitives against the view frustum, and

then rasterize them into fragments.

3. Fragment Processing - Processes the fragments to determine the visibility and the

colour of the pixels.

4. Display - Displays the rasterized image onto the screen.

3.3.1 Vertex Processing

In a rasterization pipeline, when a mesh is first defined, the vertex coordinates are defined

in model space. The vertex processing stage is in charge of transforming the vertices from

the model space into the screen space. The transformation is done by applying a series of

transformation matrices including the model/view/projection (MVP) matrices and the

viewport transform matrices to the vertices. These transformation matrices are 4x4, and

the coordinates of the vertices are represented as 4D homogeneous coordinates, with the

fourth component being 1, making the coordinates [x, y, z, (w = 1)]. The transformation

matrices are defined as follows.

The model matrix Mmodel transforms vertices from the model space into the world

space. This matrix is usually arbitrarily defined by artists or programmers.

The view matrix Mview, also known as the look-at matrix, transforms vertices from the

world space into the camera space. This matrix is defined by the position of the camera

c, the position of the target t, and the up vector u. In our work, we use a right-handed

coordinate system, where the camera’s z-axis points out of the screen, the x-axis points to

the right, and the y-axis points up. Using these three vectors, we can define the camera

33

space coordinate system by

z =
c− t

∥c− t∥
,

x =
u× z

∥u× z∥
,

y = z× x.

Then, the view matrix is defined as the inverse of the camera-to-world matrix

Mview =

x y z c

0 0 0 1

−1

.

The projection matrix Mproj transforms the view space into the clip space. Depending

on the type of projection, the projection matrix can be defined differently.

For orthographic projection, the projection matrix is defined by the left (l), right (r),

bottom (b), and top (t) planes of the view frustum and the near (n) and far (f) planes, and

is given by

Mproj ortho =



2
r−l

0 0 − r+l
r−l

0 2
t−b

0 − t+b
t−b

0 0 2
f−n

−f+n
f−n

0 0 0 1


.

For perspective projection, the projection matrix is defined by the field of view (θ) in

radians, aspect ratio (α), and the near (n) and far (f) planes. Using the field of view, we

can calculate the top (t), bottom (b), left (l), and right (r) planes using

t = n tan
θ

2
,

b = −t,

r = tα,

l = −r.

34

Using these planes, we construct the perspective projection matrix using

Mproj persp =



2n
r−l

0 l+r
l−r

0

0 2n
t−b

b+t
b−t

0

0 0 n+f
n−f

2fn
f−n

0 0 −1 0


.

Note that the model, view and projection matrices can be combined into a single MVP

matrix MMV P and be used to transform the vertices v from the model space into the clip

space by

vclip = MMV Pvmodel = MprojMviewMmodelvmodel.

Then, by dividing the x, y, and z components of the vertices by the w component,

called the perspective division, we can transform the vertices from the clip space into the

canonical view volume space or normalized device coordinates (NDC) space. The NDC

space is defined by the range [−1, 1] for all three axes.

Finally, the view port transform transforms the NDC space into the screen space.

Given the width (nx) and height (ny) of the screen in pixels, the viewport transform matrix

is defined as

Mview port =



nx

2
0 0 nx

2

0 ny

2
0 ny

2

0 0 1 0

0 0 0 1


.

In summary, a 3D coordinate of a vertex v in the model space can be transformed into

the 2D coordinates in screen space by combining all the transformations

vscreen =
Mview portMMV Pvmodel

w
.

35

Note that the vscreen will have 4 coordinates, (xs, ys, zc, 1), where (xs, ys) are coordinates

in the screen space, and zc is the depth value of the vertex in the clip space that is stored

for the depth buffer.

3.3.2 Rasterization

The rasterization step converts the continuous geometric primitives into discrete pixel

fragments. For each primitive in the scene, the rasterization process computes the pixels

covered by the primitive and generates a fragment for each pixel. Barycentric coordinates

are used to determine whether a pixel is within the primitive. For each pixel, interpolated

attributes are computed based on the barycentric coordinates and the attributes of the

vertices of the primitive. In our case, the interpolated attribute mainly refers to the

absorption coefficient of the smoke.

3.3.3 Fragment Processing

Fragment processing composes of two main tasks: visibility determination and shading.

The visibility problem determines whether a fragment is visible or not. A z-buffer,

as known as the depth buffer, is used to perform the depth test. The depth value is

computed in the vertex transformation stage and stored as the depth coordinate zc in the

screen space coordinates. When drawing the primitives onto the screen, for each pixel,

the depth value of the pixel is compared with the depth value stored in the depth buffer.

If the depth value of the pixel is smaller than the depth value stored in the depth buffer,

the pixel is visible and the depth value in the depth buffer is updated. Otherwise, the

pixel is occluded and is discarded.

Another important task of the fragment processing stage is shading, which means

computing the colour of the pixel. In our case, we compute a gray-scale colour for each

pixel based on the absorption of the smoke; see Section 4 for more detail. Hence, we will

not cover shading in this thesis.

36

Due to its if-statement like branching logic when performing the depth test, the task

of determining the visibility of a fragment is discontinuous and thus non-differentiable.

This is one of the main challenges in designing a differentiable renderer. As described in

Section 2.4, there exists different techniques and frameworks to address this problem.

Among them, we use an existing differentiable rasterizer, NvDiffRast [44], in our

framework. The rasterizer avoids this problem and provides gradient against the vertex

information by analytically post-process edge antialiasing, which means computing and

interpolating the pixel colour blending depending on the pixel location of the triangle

edges during the antialiasing operation.

3.4 Smoke Absorption

In this section, we will introduce the absorption of the smoke, which is used to compute

the outgoing light radiance after a light beam traverses the smoke medium. We will first

introduce the Beer-Lambert law for computing the outgoing light radiance that traverses

out of a smoke medium, then we introduce the absorption coefficient used in the Beer-

Lambert law and how it is computed.

3.4.1 Beer-Lambert Law

When a beam of light traverses through a smoke medium with incoming radiance Li, it

will get absorbed by the smoke, and the outgoing radiance Lo will decrease due to this

absorption. This is illustrated in Figure 3.7.

This phenomenon is modelled by the Beer-Lambert law. The Beer-Lambert law

defines the transmittance of light through a medium. The transmittance T is defined

as the ratio of the outgoing radiance Lo to the incoming radiance Li.

37

absorption

x
LiLo

d

Figure 3.7: Illustration of light traversing through a smoke medium

For a homogeneous medium, the absorption coefficient does not change throughout

the medium, and the Beer-Lambert law is defined as

T =
Lo

Li

= e−σad, (3.27)

where σa is the absorption coefficient, and d is the length of the light path in the medium.

This can be rearranged and solved for the outgoing radiance Lo by

Lo = Lie
−σad. (3.28)

For a heterogeneous smoke medium, the smoke absorption coefficient varies

depending on the sampling location in the medium. The Beer-Lambert law can be written

in the continuous form

Lo = Lie
∫ d
0 −σa(x)dx, (3.29)

where x is the a point on the light path and σa is a function of absorption coefficient that

depends on x.

38

By assuming that the absorption coefficient σa is constant along each small segment of

the light path, we can discretize and rewrite the integral form in Equation (3.29) as

Lo = Lie
∑n

i=0 −σa,i∆x

= Li

n∏
i=0

e−σa,i∆x,
(3.30)

where σa,i is the absorption coefficient at the i-th segment of the light path, and ∆x is the

length of each segment.

3.4.2 Absorption Coefficient

The Beer-Lambert law uses the absorption coefficient σa to compute the transmittance of

the light through the smoke medium. In our work, because we work with a simulated

smoke grid, and at each cell, the amount of smoke s is different, the absorption coefficient

for each cell will be different as well. We will work with a discretized heterogeneous

smoke medium and need to compute the absorption coefficient for each segment of the

light path.

To compute the absorption coefficient σa given the smoke density s for a patch of

smoke in ppm, we can compute the absorption coefficient σa for the patch using the light

extinction coefficient equation

σa = Kms, (3.31)

where Km is the extinction coefficient of the medium, which is a constant value defined by

the user. In Section 4.2, we detail how we convert the smoke grid into a triangle mesh and

how the smoke density stored in each grid cell is converted into the per-vertex absorption

coefficient.

39

Chapter 4

Methodology

We will present our methods of implementing the fully differentiable fluid pipeline in

this section. The goal of this framework is to solve for simulation inverse problems by

optimizing the 3D parameters of the fluid simulator and the renderer using the gradient

of 2D image losses. First, we will introduce our implementation of the differentiable

fluid simulator, including the data structures we use and our variation of the stable

fluids [10] algorithm. Then, we will describe the differentiable fluid renderer. Since

NvDiffRast [44] does most of the heavy lifting for the rasterization pipeline, we will focus

on discussing how the simulated 3D smoke grid is converted into geometry mesh and

how the absorption of light is computed. Finally, we describe the optimization process

used in the framework to solve for inverse problems.

4.1 Differentiable Fluid Simulator

Our project implements the differentiable fluid simulator based on the stable fluids [10]

algorithm described in Section 3.2. We use the Python language and implement both

a Jax [33] version and a PyTorch [40] version of the simulator. Both implementations

can perform forward simulation and backward differentiation. In the following

sections, we will first describe the data structure used in the simulator, and then the

40

specific implementation of the stable fluids algorithm, and finally we will explain some

acceleration techniques used and give a brief comparison between the Jax and PyTorch

implementations.

4.1.1 Data Structures

Before detailing the implementation of the algorithm, we will first introduce the data

structures used for storing the grid data in the simulator.

For the simulation, we define the spatial resolution in the x, y and z axes as nx, ny

and nz respectively. They represent the number of cells in the grid along each axis. On

top of the spatial resolution, we also include a batch size B for our simulation to support

batched operations.

For scalar grids such as the smoke density grid and the temperature grid, we will use a

centered grid that stores values at the center of the cell. The Centered Grid is represented

by a 4D tensor of shape (B, nx, ny, nz).

For vector grids such as the velocity grid and the force grid, we will use a staggered

grid that stores values at the cell face centers, described in Section 3.2.4. The Staggered

Grid is represented by a tensor of shape (B, 3, nx+1, ny+1, nz+1). The second dimension

corresponds to the (u, v, w) components of the vector field. For each component, the

corresponding spatial dimension will have one more value stored compared to the rest

of the two because the values are stored at the cell face centers. Then, for the rest

of the two spatial dimensions, empty values are padded to fit the dimension of the

tensor. For example, given a vector field u of shape (B, 3, nx + 1, ny + 1, nz + 1), we

query the u-component by setting u = u[:, 0, :, :, :]. Then, the u-component of the vector

field u is of shape (B, nx + 1, ny + 1, nz + 1). For the u-component, index [b, i, j, k]

represents the (b, i − 1/2, j, k) coordinate. Hence, the valid shape of the u-component

is (B, nx + 1, ny, nz). Programmatically, stacking the vector components together will

bring significant speedup to later computations. To do so, the shapes of the components

must be consistent, so in the u-component example, to make the shape consistent with

41

Table 4.1: Non-learnable configuration parameters

Parameter Functionality
time steps (int) The number of time steps to simulate

∆t (float) The time step size
size x, size y, size z (floats) The physical size of the grid

nx, ny, nz (integers) The spatial resolution of the grid
Tambient (float) The ambient temperature

g (vector of 3 floats) The gravitational acceleration
k max (integer) The maximum iterations for the pressure solve

ϵ (float) The convergence tolerance for the pressure solve

the rest of the two components, we take the ceiling of each spatial dimension of the

shapes, and pad the u-component with an extra column and an extra channel so that

it has shape (B, nx+1, ny(+1), nz(+1)). The similar logic applies to the v-component and

the w-component as well.

An alternative to the using arrays to store staggered grids is to use custom objects

and store each component as a separate array as the object’s property. This approach

might sound more intuitive and easier to debug, but since we would like to use Jax’s and

PyTorch’s JIT compilation to speed up the simulation, and only functional programming

works with JIT and object-oriented programming is not supported, we have to use arrays

to store the staggered grids.

4.1.2 Simulation Parameters

The parameters for our simulation can be separated into non-learnable configuration

parameters and learnable simulation parameters. Table 4.1 summarizes the list of non-

learnable parameters used in the simulator. These parameters are fixed throughout the

simulation and are not optimized. Table 4.2 summarizes the list of learnable simulation

parameters used in the simulator. During learning, any subset of these parameters can be

optimized.

42

Table 4.2: Learnable simulation parameters

Parameter Functionality
s (Centered Grid of floats) The smoke marker concentration grid
u (Staggered Grid of floats) The velocity grid
xinflow (vector of 3 floats) The spatial location of the inflow source

rinflow (float) The radius of the inflow source
sinflow (float) The concentration of the inflow source
Tinflow (float) The temperature of the inflow source

f (vector of Staggered Grids of floats) The acceleration caused by external forces

4.1.3 Advection

The first step of each fluid solve is the advection step. As described in Section 3.2.2, the

advection step consists of backtracing the velocity field and interpolating the values from

the previous time step.

First, the velocity field usampled is sampled at different locations depending on the type

of grid being advected. For scalar fields such as smoke concentration s and temperature

T , the velocity is sampled at the center of the cell. For vector fields such as velocity u, for

each component of the vector field, the velocity is sampled at different cell face centers.

The sampling scheme follows Equation (3.15) in Section 3.2.4.

Then, we backtrace the velocity field to find the locations at the previous time step. A

naive implementation of this is to use a for loop to iterate through each cell and backtrace

the velocity field. However, this is extremely inefficient because Python is an interpreted

language and its for-loops are very slow. Instead, throughout our implementation, we

would like to use vectorized and library built-in operations as much as possible to speed

up our simulation.

In the context of backtracing, we first create a grid coordinate system representing the

locations of each cell xG. For this step, we use functions such as torch.linspace and

torch.meshgrid. These coordinate systems are represented as a 5D tensor of shape

(B, 3, nx, ny, nz), where the second dimension corresponds to the x, y, z components.

Using the grid coordinate system and the sampled velocity usampled, the backtraced

43

Algorithm 1 Advection

1: procedure ADVECTION(qt,ut,∆t)
2: usampled = SAMPLE VELOCITY(qt,ut)
3: xG = CREATE COORDINATE SYSTEM(qt)
4: xP = xG −∆tusampled

5: qt+1 = TRILINEAR INTERPOLATION(qt,xP)
6: return qt+1

locations xP are computed using the forward Euler integration scheme

xP = xG −∆tusampled.

With the backtraced locations xP , the values corresponding to these locations qP

are then interpolated using tri-linear interpolation. Different packages have different

vectorized implementations for tri-linear interpolation. In PyTorch, this is achieved using

torch.nn.functional.grid sample. In Jax, the equivalent function for tri-linear

interpolation is jax.scipy.ndimage.map coordinates.

In general, to advect a quantity qt (either a scalar grid or the components of a vector

grid) at time step t to get the quantity at the next time step t + 1, the advection step can

be described by Algorithm 1.

4.1.4 Inflow Injection

After advection, the next step is to inject smoke and temperature into the scene, so

that the smoke forms a continuous plume throughout the simulation time steps. The

inflow is injected in the form of a sphere mask described by the inflow source location

xinflow = (xinflow, yinflow, zinflow) and the inflow radius rinflow. The amount of inflow and

the temperature being injected into the scene is described by the inflow concentration

sinflow and the inflow temperature Tinflow respectively.

44

One important note is that we need to be careful of how the inflow sphere mask is

created so that the differentiability of the inflow parameters is not broken, as described

bellow.

One common method to create a sphere mask is to use a sphere function

fsphere(x, y, z) =


1 if (x− xinflow)

2 + (y − yinflow)
2 + (z − zinflow)

2 ≤ r2inflow

0 otherwise
,

where if (x, y, z) lies inside the sphere, the mask value is 1, otherwise the value is 0. The

problem with this method is that the function is not differentiable at the boundary of the

sphere because of the discontinuity where the function jumps from 0 to 1. This causes the

gradient to be undefined at the boundary, and the optimization algorithm will not be able

to learn the inflow location parameter.

To solve this problem, we use a differentiable sphere function with the edge smoothed

out using the tanh function. The function is defined as

fsphere(x, y, z) =
1

2

(
1 + tanh

(√
(x− x0)2 + (y − y0)2 + (z − z0)2 − r

))
. (4.1)

Note that the part within the tanh function is very similar to the discontinuous sphere

function above, and it encompasses information regarding whether a point in space

lies within the sphere. The tanh function is a well-known smoothing function that is

commonly used in machine learning to deal with discontinuities. In our case, it helps

make the sphere edges continuous. Finally, we rectify the range of the function to between

0 and 1, so that it is easier to apply it to the smoke or temperature directly. This function

is differentiable everywhere, and the gradient can be computed using the chain rule.

A visualization of the function in a 2D slice can be shown in Figure 4.1. Note that an

alternative to the tanh function is the sigmoid function, which is also commonly used

in machine learning. However, given the same function outputs, the tanh function has a

45

x

0.0 0.2 0.4 0.6 0.8 1.0

y
0.0

0.2
0.4

0.6
0.8

1.0

z

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.1: Visualization of a differentiable sphere function in a 2D slice

Algorithm 2 Inflow Injection

1: procedure INFLOW INJECTION(st, T t,xinflow, rinflow, sinflow, Tinflow)
2: I = CREATE CIRCLE MASK(xG,xinflow, rinflow)
3: st+1 = st + sinflowI
4: T t+1 = T t + TinflowI
5: return st+1, T t+1

steeper gradient than the sigmoid function, which in our case, helps with the optimization

process.

With the differentiable sphere mask creation function, the operation of injecting smoke

and temperature into the scene is differentiable as well, since the operation includes only

addition and multiplication. The inflow injection step can be described by Algorithm 2.

4.1.5 External Forces

In our work, the external forces applied to the smoke body consist of two parts. One is

the user-defined external forces, and the other is the buoyancy force that makes the smoke

rise and form a plume. The two forces are combined and applied to the velocity grid at

the external forces computation step.

46

The user-defined external forces take the form of a tensor of Staggered Grids

throughout the temporal dimension. At each time step t in the simulation, the

corresponding external force f t is applied directly to the velocity grid ut using the formula

ut+1 = ut +∆tf t.

The buoyancy force is computed using the Boussinesq approximation. It takes two

factors into account - temperature and density.

At the beginning of our simulation, we assume an ambient temperature Tambient in our

scene. As smoke is being injected, the inflow location will also introduce heat into the

scene. This is represented by the inflow temperature Tinflow. We track the temperature

field as a scalar field that is being advected in the advection step. After advection and

injection, we also want to update the temperature field to account for the heat dissipation

or diffusion modelled by the Newton law of cooling [2, 51], which can be expressed as

T t+1 = T t + (T t − Tambient)(1− exp(−∆t)).

The difference between the temperature carried by the smoke and the ambient

temperature causes hot smoke to float and cool smoke to sink, thus the higher the

temperature carried by the smoke, the greater the smoke will experience a buoyancy force

in a positive y-direction.

On the other hand, because the air carrying smoke is denser than the air without any

smoke, they will tend to fall down due to gravity. This means that for a constant smoke

volume, the more concentrated the smoke, the heavier it is, and the more gravitational

force will be applied to the smoke in a negative y-direction.

The buoyancy force is computed by combining the two factors together. It is then

applied to the velocity grid u using the Boussinesq approximation [9, 11]

ut+1 = ut +∆t
(
αs− βT t

)
g,

47

Algorithm 3 External Forces

1: procedure EXTERNAL FORCES(ut, f t, st, T t,g,∆t)
2: u = ut +∆tf t

3: T t+1 = T t + (T t − Tambient)(1− exp(−∆t))
4: ut+1 = u+∆t (αs− βT t)g
5: return ut+1

where α and β are user defined constants.

The external forces step can be described by Algorithm 3. Note that in Section 3.2.3,

we mentioned that the differentiability of the external force step is dependent on how

the force is generated. In our method of generating the external forces, both the Newton

law of cooling and the Boussinesq approximation are continuous and differentiable, thus

making the external forces step differentiable as well.

4.1.6 Pressure Projection

After advection and applying external forces, the final step of the stable fluids algorithm

is to apply pressure projection to make the fluid incompressible and conform with the

boundary conditions. In this section, we describe our implementation of the pressure

projection step. We will first describe the boundary conditions for our framework and

how we construct our linear system. Then, we will describe our implementation of the

conjugate gradient solver that is used to solve the linear system.

Boundary Conditions

In our framework, since we work with smoke, we will only work with Neumann

boundary conditions or solid boundary conditions. In addition, we will also assume

that we are working with a closed cubed domain with no obstacles in the scene. This

assumption is made to simplify the implementation of the linear system construction.

Extending the 2D per-cell pressure equation Equation (3.23) from in Section 3.2.4 to 3D,

to construct the linear system, for each pressure pi,j,k, using the neighbouring pressure

values and the divergence of the velocity field u = (u, v, w), we can construct a linear

48

system

∆t

ρ

(
6pi,j,k − pi+1,j,k − pi−1,j,k − pi,j+1,k − pi,j−1,k − pi,j,k+1 − pi,j,k−1

∆x3

)
=

−

(
ut
i+1/2,j,k − ut

i−1/2,j,k

∆x
+

vti,j+1/2,k − vti,j−1/2,k

∆x
+

wt
i,j,k+1/2 − wt

i,j,k−1/2

∆x

)
.

(4.2)

In the matrix-vector form, this can be expressed as

Ap = d. (4.3)

Note that for cell (i, j, k), the coefficient of the pressure terms on the left is the

equivalent of convolving a 3D Laplacian kernel with the 3× 3× 3 neighbouring pressure

terms, where the kernel is defined by

kernel =



0 0 0

0 −1 0

0 0 0




0 −1 0

−1 6 −1

0 −1 0



0 0 0

0 −1 0

0 0 0


 . (4.4)

Then, the operation of Ap can be expressed as by a function that encodes the

convolution between kernel and the pressure field p.

For the boundary conditions, as described in Section 3.2.4, we need to make

modifications to both the left-hand side and the right-hand side of Equation (4.2).

For the left-hand side, because we assume a closed boxed domain as our solid

boundary condition when we apply the ghost particle updates for the solid surfaces at

the edges, it is equivalent to replacing the solid boundary cells with the same value as

the center cell that is next to the boundary. By doing so, the equation on the left will not

contain the pressure term for the solid cells, and the coefficient of the center pressure will

be reduced by one.

As for the right-hand side of the equation, before computing the divergences, we need

to account for velocity in the normal direction to the boundary surfaces. To do so, for

49

the boundary cells, we simply set the velocity component that is perpendicular to the

boundary to be zero. In our case, this is equivalent to setting the first and the final element

of the velocity component that is perpendicular to the edges of our domain box to zero.

Take the u-component for example, the boundary cell faces are vertical cell faces that

point perpendicular to the u-direction, and they are located at the cells with i = 0 and

i = nx. Then, for all j ∈ [0, ny] and k ∈ [0, nz], we set u0,j,k = unx,j,k = 0. In Python, this

can be done with u[:, [0, -1], :, :] = 0.

After the edge normal velocities have been set to zero, computing the divergence of the

velocity field with the Staggered Grid data structure is fairly straightforward, as described

in Section 4.1.1. We will denote the computed divergence vector as variable d.

Given the left-hand side matrix-vector multiplication operator A operator and the

right-hand side velocity divergence vector, we can now solve the linear system using the

conjugate gradient solver. With Jax and PyTorch, the convolution operation comes built-

in and differentiable, and hence the A operator is differentiable as well.

Conjugate Gradient Solver

The conjugate gradient solver is a well-known iterative solver that is used to solve linear

systems of the form Ax = b, where A is a symmetric positive definite matrix. With a good

pre-conditioner, it can usually converge to a pressure estimate that produces a visually

acceptable simulation in just a few iterations. In our work, we did not use any pre-

conditioner since we put more focus on the differentiability instead of the performance

of the solver. As described in Section 3.2.4, choosing the residual tolerance and the

maximum number of iterations for the solver is a trade-off between the accuracy of the

solution and time along with memory requirement. Without fine tuning the maximum

iteration or the residual tolerance, if the residual tolerance is too low or the maximum

iterations allowed is too high, the solver converges to an accurate solution, but the

runtime becomes too long and the memory required to store the computation graph

also increases. On the other hand, if the residual tolerance is too high or the maximum

50

Table 4.3: A comparison of the simulation performance produced using different

conjugate gradient solver settings combination.

Iterations Tolerance Runtime (s) Memory (GB)
10 1.00 14.4 2.0588
20 0.10 29.3 2.2248
50 0.01 40.9 2.5014

iterations allowed is too low, the solution will be inaccurate and a lot of local details in

the simulation will be lost.

To determine the optimal setting for the residual tolerance and the maximum number

of iterations, we ran the simulation on a 128×128×128 grid for 60 time steps with different

settings combinations and record both the visual results and the performance of the

simulator. We will illustrate with a few examples in this section. Figure 4.2 and shows the

result of the simulated final states rendered using a simple absorption scheme described

in Section 5.1.1. Table 4.3 records the corresponding performance of the simulator with

these different settings combinations. Figure 4.2a shows the result of the simulation using

10 iterations and a residual tolerance of 1.0. We can see that the simulation has a relatively

poor result compared to the other configurations because there are less details of the

smoke and a lot of unwanted dissipation exists. The simulation took relatively less time

to converge because of this low iteration allowance and the high tolerance. Figure 4.2b

shows the result of the simulation using 20 iterations and a residual tolerance of 0.1. We

observe that compared to the previous result, the simulation produced much more details

and the smoke looks more realistic. Compared to before, the simulation took longer to

converge and also requires more memory. Figure 4.2c shows the result of the simulation

using 50 iterations and a residual tolerance of 0.01. This is the most detail-rich simulation

among all the configurations. However, it took the longest time to converge and the

memory required to store the computation graph is also the largest.

After experimenting with these different conjugate gradient solver settings, we chose

to use a tolerance of ϵ = 0.1 and a maximum iteration of 20, because this setting

51

x

y
Simulation Smoke Front t=60

x
z

Simulation Smoke Top t=60

z

y

Simulation Smoke Side t=60

(a) Rendered final frame of the simulation using 10 iterations and a residual tolerance of 1.0

x

y

Simulation Smoke Front t=60

x

z

Simulation Smoke Top t=60

z

y

Simulation Smoke Side t=60

(b) Rendered final frame of the simulation using 20 iterations and a residual tolerance of 0.1

x

y

Simulation Smoke Front t=60

x

z

Simulation Smoke Top t=60

z

y

Simulation Smoke Side t=60

(c) Rendered final frame of the simulation using 50 iterations and a residual tolerance of 0.01

Figure 4.2: A comparison of the simulation result produced by different conjugate

gradient solver settings combination. Yellow indicates light and blue indicates absorption

by the smoke

52

combination gives a visually convincing result while keeping the number of iterations

required for the solver to reach the tolerance low. Naturally, as the grid resolution

increases, the runtime and memory requirements also increase due to the larger degrees

of freedom.

For the Jax package, the conjugate gradient solver comes built-in with the package.

The advantages of the Jax implementation are that it is both fast and memory-friendly.

The implementation is written with XLA (accelerated linear algebra) support and the

iterations are executed in low-level C++-like for-loops, making the implementation faster.

It also comes bundled with a custom gradient computation for the solver, so that the

gradient of the pressure with respect to the inputs can be computed by solving the

gradient using the same iterative solver pass. By doing so, there is no need to store all

elementary operations used in the CG solver in the operation tape, thus saving memory.

As for the PyTorch package, the conjugate gradient solver does not come with

the package, and we coded our version of the implementation. The implementation

uses Python for-loops, so it is considerably slower compared to the Jax built-in

implementation. In addition, because the gradient computation is not custom, the

gradient must be computed by storing all operations in the CG solver in the tape and

traversing the tape backwards when computing gradients. This makes the gradient

computation more memory-costly than Jax.

Pressure Projection Algorithm

With the boundary conditions and the conjugate gradient solver described, we can now

describe the pressure projection step along with the velocity update. The pressure

projection step can be described by Algorithm 4.

53

Algorithm 4 Pressure Projection

1: procedure PRESSURE PROJECTION(ut, A operator,∆t)
2: u = ADJUST VELOCITY(ut)
3: d = COMPUTE DIVERGENCE(u)
4: p = CONJUGATE GRADIENT(A operator,d, k max, ϵ)
5: ut+1 = ut − ∆t

ρ
∇p

6: return ut+1

4.1.7 Jax and PyTorch Backends

In this section, we compare the implementation of the fluid simulation using Jax and

PyTorch backends. We describe the similarity and differences in both the differentiability

and acceleration techniques used by the two packages.

Differentiability

As described in Section 3.2 and the sections above, each step of the simulation, including

advection, inflow injection, external forces and pressure projection are all differentiable.

The main concerns regarding the differentiability and the memory consumption, such

as the sphere mask creation, external force computation and pressure projection have all

been addressed. This means that with a autodiff package such as Jax and PyTorch, with

their elementary operation overloading and back propagation abilities, we are able to

compute the gradients of the simulation outcome with respect to the inputs.

One main difference between the two packages is that Jax provides built-in conjugate

gradient solver, along with custom gradient computations for the solver. They utilize the

fact that to compute the gradient is equivalent to passing the upstream gradient into the

same iterative solver pass. The custom gradient definition eliminates the need to store all

elementary operations in the operation tape and reduces memory consumption. Hence,

regardless of the number of iterations it takes for the solver to converge, the amount of

memory used for Jax to compute the gradient is the same. On the other hand, defining

custom gradient computations in PyTorch is less accessible, and we were not able to

implement this due to time constraints. For this reason, the gradients must be computed

54

by storing all operations in the CG solver in the tape and traversing the tape backwards

when computing gradients.

Acceleration

Python is an interpreted language, and it is not as fast as compiled languages such

as C++. This disadvantage impacts the runtime when we use loops for repeating

multiple simulation time steps and iteratively solving for the pressure in the CG solver.

One mitigation to this is the just-in-time (JIT) compilation method. JIT works by

tracing or scanning the Python functions to convert them into lower-level interpreted

representations (IRs) and compiling the IRs into machine code before the next execution.

This method significantly speeds up the simulation. However, even though both Jax and

PyTorch support JIT compilation, the performance and the extent of JIT support for the

two packages are still very different.

For Jax, both forward and backward passes can be JIT compiled, thus accelerating the

learning process the most. For PyTorch, only forward passes can be JIT compiled, and the

backward process must be executed in uncompiled Python code. This makes the learning

process much slower than Jax’s. However, compared to Jax, PyTorch requires fewer

modifications to the plain Python code to make it JIT compilable. Jax requires special

XLA syntax to substitute for for-loops and while-loops, making the implementation effort

non-trivial.

To illustrate the Jax XLA syntax, we show the top level simulation pseudocode

written in both Python and Jax’s JIT compatible syntax in Algorithm 5. We abstract

away a function STEP that takes in the current velocity field ut and returns the velocity

field at the next time step ut+1. In the Python implementation, we use a for-loop to

iterate over the simulation time steps. When JIT compiling with PyTorch, this syntax

works without problem. However, in the Jax implementation, we use the JAX.LAX.SCAN

function to substitute for the for-loop, so that the code can be JIT compiled. On top of

substituting the for-loop with JAX.LAX.SCAN, the STEP function must also conform with

55

Algorithm 5 Simulation in Python and Jax code

1: procedure SIMULATE PYTHON(u0)
2: for t in range(0, N) do
3: ut+1 = STEP(ut)
4: return uN

5:
6: procedure SIMULATE JAX(u0)
7: uN , {u0, . . . ,uN} = JAX.LAX.SCAN(STEP, u0, N)
8: return uN

Jax’s required function signatures, making the conversion from plain Python code to Jax’s

JIT compatible syntax complex.

Another acceleration technique we used for our simulation is the use of GPUs.

Because the simulation is highly parallelizable, we can take advantage of the parallel

computing power of GPUs to speed up the simulation. Both Jax and PyTorch support

GPU acceleration and have built-in methods for device management. Programmatically,

PyTorch is much more mature in this aspect with better documentation and less

complexity.

Conversion between Jax and PyTorch

As described above, the Jax and PyTorch packages specialize and excel in different

aspects. The fluid simulation that we described is also modular as it is split into different

steps. For this reason, a reasonable idea is to implement the simulation using both

packages at the same time. For example, writing the for-loops with PyTorch and using

Jax’s built-in CG solver with custom gradient definition will greatly increase not only the

performance but also the maintainability of the simulator.

Unfortunately, to our knowledge, this idea is not feasible because the types in the

two packages are not compatible. Although there are ways to convert Jax data types

to PyTorch data types, there is not a straightforward way to do so while also keeping

the gradient information. Without preserving the gradient information, backpropagation

56

will break and the learning framework will not work. For this reason, we could not build

a third version of the simulator that incorporates both packages.

4.2 Differentiable Renderer

This section describes the differentiable renderer and the smoke rendering scheme we

used in our framework. We first describe how the simulated 3D smoke grid is converted

to meshes; then we describe the rendering process used to render the smoke from 3D

mesh to 2D image.

4.2.1 Mesh Conversion

From the smoke simulation described in Section 4.1, as an output, we obtain a 3D scalar

grid of smoke density stored as a 4D tensor of shape (B, nx, ny, nz). The goal is to convert

this 3D grid into a 3D mesh that can be rendered by NvDiffRast.

For our 3D grid, each grid cell can be viewed as a voxel containing 8 vertices and

6 faces. We triangulate each grid cell faces into 2 triangles to form 12 triangles for a

single voxel. However, we do not want the triangle faces to be duplicated and overlap for

neighbouring grid cells. Otherwise, when computing the absorption in the next step, the

amount of absorption will be double-counted and will not result in an accurate image.

The mesh in the scene is defined by an array of vertices and an array of faces. We

will first describe how the mesh vertices are constructed. For a 3D grid, the vertices

are simply the corners of each grid cell. For a grid with shape (nx, ny, nz), there are

(nx + 1) × (ny + 1) × (nz + 1) vertices. The coordinates of these vertices should be in

the model space. For our framework, for convenience, we arbitrarily decided that the

model space origin starts from the center of the grid instead of the corner of the grid. For

a grid-space coordinate xgrid = (i, j, k), we convert it to model-space coordinate xmodel

using

xmodel = xgrid −
max(xgrid)−min(xgrid)

2
. (4.5)

57

mesh_conversion_face_z

(i − 1
2 , j + 1

2 , k − 1
2)

(i − 1
2 , j − 1

2 , k − 1
2)

(i + 1
2 , j + 1

2 , k − 1
2)

(i + 1
2 , j − 1

2 , k − 1
2)

(i, j, k − 1
2)

Figure 4.3: Mesh conversion for faces normal to the z-axis.

For the mesh faces, we construct the faces separately according to the cell face normal

directions. For each cell face, there will be 2 triangles. Take faces normal to the z-axis

for example, if the cell center coordinate is xcenter = (i, j, k − 1/2), the two triangles will

be constructed by splitting squared the cell face diagonally. The vertices constructing the

triangle faces will be {(i−1/2, j−1/2, k−1/2), (i+1/2, j−1/2, k−1/2), (i−1/2, j+1/2, k−

1/2)} and {(i+1/2, j − 1/2, k− 1/2), (i+1/2, j +1/2, k− 1/2), (i− 1/2, j +1/2, k− 1/2)}.

This can be shown in Figure 4.3.

For the faces normal to the z-axis direction, there will be 2× (nx+1)×ny×nz faces in

total. The conversion for faces normal to the x-axis and y-axis follow a similar logic, and

there will be 2× nx× (ny + 1)× nz and 2× nx× ny × (nz + 1) faces respectively.

4.2.2 Absorption Interpolation

After converting the grid into a mesh consisting of triangles defined by vertices and faces,

we now need to compute the absorption coefficient carried by each vertex.

From the simulation, we obtain a 3D scalar grid with smoke density s at each grid

cell center, with unit ppm (parts per million). We first compute the smoke density at

58

each vertex. Since the mesh’s vertices are just the grid cell corners, we can use tri-linear

interpolation to take the average smoke density of the 8 neighbouring smoke density

values stored at grid cell centers. With these per-vertex smoke densities, we can use

the extinction coefficient parameter Km to compute the absorption coefficient σa at each

vertex using the absorption coefficient Equation (3.31) described in Section 3.4.2.

4.2.3 Smoke Rendering

With the mesh defined and the per-vertex absorption coefficient value computed, we

can now render the smoke. For our renderer, we assume an orthographic camera and

compute the direct absorption for each ray of light hitting the camera. We assume

an incoming backlight of radiance Li down the z-axis and put the smoke between the

backlight and the camera. The incoming light Li traverses through the smoke and gets

partially absorbed, and finally forms the outgoing light Lo that reaches the camera, and

we will render the outgoing light Lo onto the screen. The outgoing light can be computed

using the Beer-Lambert law described in Section 3.4.1. Specifically, we will use the

discretized heterogeneous version of the Beer-Lambert law, described by Equation (3.30).

At a high-level, our renderer first assumes that there is no smoke medium in the

scene and initialize the outgoing light Lo to be equal to the incoming light source Li.

Then, incrementally, starting from the camera, the algorithm marches along the light path

towards the light source. For each segment, we compute the absorption coefficient of the

smoke and reduce the amount of the outgoing light radiance after it has been absorbed by

the smoke in the segment. We accumulate for each light path, and finally, after iterating

over the entire smoke medium, we will obtain the final outgoing light radiance Lo after

absorption.

Programmatically, we use a rendering technique called depth peeling, which is

provided by the NvDiffRast package. This is a common technique used to render semi-

transparent objects in a scene. The method iteratively “peels” the mesh layer by layer,

where each layer is rasterized and processed separately. In our framework, for each

59

Algorithm 6 Absorption Accumulation Rendering

1: procedure ABSORPTION ACCUMULATION RENDERING(s, Li, Km)
2: V, F = CONVERT GRID TO MESH(s)
3: V σa = PER VERTEX COEF(s, Km)
4: Lo = Li

5: while depth peeling not finished do
6: rast out = RASTERIZE NEXT LAYER(V , F)
7: pixel σa = INTERPOLATE(V σ, rast out, F)
8: Lo = Loe

−σa∆x

9: Lo = ANTI ALIAS(Lo, rast out, V , F)
10: return Lo

layer, we first rasterize the mesh layer to obtain the u, v coordinates and the depth

value. Then, we use the rasterization output and the per-vertex absorption coefficients

to interpolate the per-pixel absorption coefficient. We use the per-pixel absorption

coefficient to accumulate the absorption for the outgoing light Lo using Equation (3.31).

After that, we apply anti-aliasing to our computed Lo for a better-looking output and,

most importantly, to allow the gradients to be propagated properly in the backward pass.

Finally, we update the outgoing light accumulated for each pixel.

This absorption accumulation rendering process is shown in Algorithm 6.

4.2.4 Acceleration and Differentiation

NvDiffRast automatically provides GPU-accelerated forward and backward

computations for the rendering algorithm above. One important note is that

although NvDiffRast provides elementary operations including Rasterization,

Interpolation and AntiAlias, these operations are not bundled with their gradient

computations. The Rasterization operation does not propagate gradients related to

occlusion and visibility, because the AntiAlias operation provides these gradients by

smoothing out the discontinuous silhouette edges.

60

NvDiffRast and PyTorch

We make an important note that, unfortunately, NvDiffRast supports only the PyTorch

and TensorFlow backends. To our knowledge, there is no official support for the Jax

backend. As mentioned in Section 4.1.7, there is no official support for converting

between Jax and PyTorch while keeping the gradient information. For this reason, we

only use the PyTorch version of our implementation when we conduct experiments on

the fully differentiable framework. However, we will still run experiments to compare

the performances of Jax and PyTorch backends of the fluid simulators.

4.3 Optimization Methods

In this section, we give a quick overview of the optimization methods used in our work

for solving inverse problems.

For our experiments, we use L2 pixel-wise image losses to compute the loss between

the rendered image L and the target image L̂. The loss is defined as

Limg =
1

N

N∑
i=1

∥∥∥Li − L̂i

∥∥∥2
2
, (4.6)

where N is the number of pixels in the image.

For the optimization method, we use the Adam optimizer [30] with varying epochs

and learning rates depending on the experiment cases. We also implemented a custom

learning rate scheduling scheme that decreases the learning rate over time to prevent the

optimization from overshooting at later time steps. Our learning rate scheduler is defined

by

α(t) = α010
− t

1000 , (4.7)

where α0 is the initial learning rate, and t is the number of epochs.

61

In order to save GPU memory, we also adapted the checkpointing technique to our

simulation. The checkpointing technique works by saving the intermediate results to the

disk, and only loading them back to the GPU memory when needed. In our case,for each

time step of the simulation, we save the simulated states and their gradients to the disk.

This allows us to run the simulation and compute the gradients in smaller batches of

time steps. This technique alleviates the GPU memory bottleneck and allows us to run

the simulation with a larger resolution, but at the cost of slower simulation time because

operations need to be re-evaluated, and the gradient and results need to be saved to the

disk and loaded back to the GPU memory.

62

Chapter 5

Experiments and Results

This chapter details the experiments we ran on our framework and their results. The

experiments were run on both the simulation and the full pipeline for forward and

backward tasks. For each experiment, we will discuss the setup, results, runtime, and

memory performances.

For all our experiments, unless otherwise specified, we run the JIT compiled

simulation with Intel Gold 6148 Skylake CPU and Nvidia V100SXM2 (16GB) GPU on

the Compute Canada Beluga compute cluster. Each runtime and memory measurement

is computed by taking 3 independent runs and averaging the results.

5.1 Differentiable Fluid Simulation

First, since one of our contributions is the implementation of the differentiable fluid

simulator using both the Jax and PyTorch packages and the evaluation between them,

we run our simulator on a few scenes to verify its correctness and performance, and also

perform some learning tasks to show case how the gradients can be propagated from 3D

simulated states to the 3D initial states. For these experiments, the differentiable renderer

is not included. The rendering follows a similar logic to the direct absorption computation

63

described in Section 4.2.2, but without rasterization, using a non-differentiable Python

library Matplotlib.

5.1.1 Forward Simulation

First, we run the forward simulation without any external force or initial velocities. We

run the experiment using both Jax and PyTorch backends on different resolutions, and

we compare the results and their performances. All simulations are run for 60 time steps,

with time step size ∆t of 0.5. The smoke is injected at the center bottom of the grid with a

fixed radius.

A few key frames of the PyTorch simulation with resolution 128×128×128 can be seen

in Figure 5.1. Each row corresponds to the starting frame of the smoke, the frame where

the smoke forms a plume, the frame where the smoke plume hits the top of the grid, and

the end frame of the plume. The left column corresponds to the absorption accumulation

viewed from the front (xy-plane), the middle column corresponds to the absorption

accumulation viewed from the top (xz-plane), and the right column corresponds to the

absorption accumulation viewed from the side (zy-plane). From the results, we can see

that the smoke rises naturally and forms a plume with a considerable amount of detail.

As the plume hits the top and side of the grid, it does not go past the domain, and the

velocity is divergence free and also conforms with the boundary conditions. The results

are stable and physically accurate.

The Jax version of the simulation produces the same results as the PyTorch version

because the simulation logic is the same despite the package-specific semantic differences.

As for runtime and memory performances, we compare the performances between

different resolutions and between the Jax and PyTorch backends in Table 5.1. The

measurements are made by taking the average for multiple simulation passes in order

to account for the initial JIT compilation run. In general, as the resolution doubles, the

number of cells in the grid increases by a factor of 8, and the runtime and memory

requirements increase by roughly the same magnitude as well.

64

x

y

Simulation Smoke Front t=0

x

z

Simulation Smoke Top t=0

z

y

Simulation Smoke Side t=0

(a) 1st frame of the simulation

x

y

Simulation Smoke Front t=20

x

z

Simulation Smoke Top t=20

z

y

Simulation Smoke Side t=20

(b) 20th frame of the simulation

x

y

Simulation Smoke Front t=40

x

z

Simulation Smoke Top t=40

z

y
Simulation Smoke Side t=40

(c) 40th frame of the simulation

x

y

Simulation Smoke Front t=60

x

z

Simulation Smoke Top t=60

z

y

Simulation Smoke Side t=60

(d) 60th (final) frame of the simulation

Figure 5.1: Forward simulation with resolution 128 × 128 × 128. Yellow indicates low

absorption and high light intensity, and blue indicates high absorption and low light

intensity.

65

Table 5.1: Forward Simulation Runtime and Memory Performance

Resolution PyTorch Jax
Runtime (s) Memory (GB) Runtime (s) Memory (GB)

32× 32× 32 4.0 0.0302 3.8 0.0288
64× 64× 64 4.2 0.2308 4.1 0.2250

128× 128× 128 29.1 1.8055 22.3 1.7617
256× 256× 256 215.4 14.2843 160.3 13.7764

Comparing the two backends, the Jax version of the implementation runs significantly

faster than the PyTorch version. For JIT compilation, Jax compiles the simulation much

faster than PyTorch, and the compiled Jax function also runs faster than the compiled

PyTorch function. As for memory, the two implementations do not differ significantly.

5.1.2 Simulation Learning

We conduct a learning example to verify the gradients are propagated from the 3D

simulated smoke state to the simulation parameters correctly. The optimization goal is

to make the final frame of the simulated smoke state match a target smoke state as much

as possible by adjusting the initial velocity parameter while keeping all other parameters

the same. The target smoke state is generated by running the forward simulation with a

different inflow injection location. Note that because the injection location is different, the

learned simulation state will never be able to match the target state perfectly.

The simulation is run on different resolutions (323, 643 and 963) for the same physical

domain size. The simulation is run for 30 time steps, with time step size ∆t of 0.5, so that

the smoke reaches the top of the box to form a plume and does not fill the box excessively.

There is no external force applied to the smoke. Training is done with the Adam optimizer

with learning rate scheduling described in Section 4.3. The loss function is the 3D voxel-

wise L2 loss between the final frame of the simulated and reference smoke state grids.

In order to benchmark the implementations’ performances, we run the learning tasks on

different resolutions. Because the resolution of the experiments is different, the learning

rate and epochs are tuned and adjusted for each resolution.

66

Figure 5.2 shows the optimization results of the Jax implementation with a simulation

resolution of 64 × 64 × 64. The PyTorch version produces similar results. Figure 5.2a

shows the reference smoke state. We place the reference inflow location at the corner of

our simulation domain. The smoke rises at the corner and hits the top while conforming

with the boundary conditions. Figure 5.2b shows the smoke state of the simulation with

a different inflow location and unlearned initial velocity. The inflow location is placed at

the bottom center of the grid. Figure 5.2c shows the of the simulated smoke state using

the learned initial velocity for the center inflow location. From the results, we can see

that even though the inflow location is different, the learned velocity still produces a final

smoke state that tries to match the reference smoke state as much as possible. For this

experiment, a learning rate of 0.5 was used, and the initial velocity was trained for 500

epochs. The loss plot can be seen in Figure 5.3.

As for the performance for the learning task, we compare the runtime and memory

performances between the PyTorch and Jax backends in Table 5.2 and Table 5.3.

Because the epochs differ for different resolutions, the runtime is computed as the per

epoch runtime. The general trend is similar to the forward performance. The Jax

implementation is faster than the PyTorch implementation, and the runtime and memory

requirements increase as the resolution and number of time steps increase. We make

an observation that compared to the runtime, the memory requirements for the learning

task are much higher than the forward task. This is because the backward computation

requires the computation graph or operation tape to be stored in memory. Depending on

the learning task, the size of the computation graph increases non-linearly with respect

to the resolution. Note that a resolution of 128 × 128 × 128 is not included in the table

because the GPU ran out of memory.

67

x

y

Reference Smoke Front

x

z

Reference Smoke Top

z

y

Reference Smoke Left

(a) Final state of the reference simulation

x

y

Unlearned Smoke Front

x

z

Unlearned Smoke Top

z

y

Unlearned Smoke Left

(b) Final state of the simulation with unlearned initial velocity

x

y

Learned Smoke Front

x

z

Learned Smoke Top

z

y

Learned Smoke Left

(c) Final state of the simulation with optimized initial velocity

Figure 5.2: Optimizing initial velocity with resolution 64× 64× 64

Table 5.2: Optimization runtime and memory performance against resolution for 30 time

steps

Resolution PyTorch Jax
Runtime (s) Memory (GB) Runtime (s) Memory (GB)

32× 32× 32 1.3 0.2644 1.2 0.2630
64× 64× 64 1.6 2.1159 1.5 2.0271
96× 96× 96 2.7 6.8530 2.3 6.3560

68

0 100 200 300 400 500
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lo
ss

Loss History
Loss

Figure 5.3: Loss values over training epochs

Table 5.3: Optimization runtime and memory performance against time steps for 64 ×
64× 64 resolution

Time steps PyTorch Jax
Runtime (s) Memory (GB) Runtime (s) Memory (GB)

15 1.0 1.1543 0.9 1.1388
30 1.6 2.1159 1.5 2.0271
60 3.1 3.9420 2.7 3.7338

69

5.2 Fully Differentiable Pipeline

This section presents the experiments and results of the fully differentiable simulation

and rasterization pipeline described in Section 4. We first present the results of the

forward simulation and rendering experiments in Section 5.2.1. Then we present the

results of the simulation and rendering optimization experiments in Section 5.2.2. Since

the differentiable renderer we use (NvDiffRast) does not support the Jax backend, we will

only use the PyTorch backend for the full pipeline experiments.

For our scene setup, we use an orthographic projection with a near plane of 1 unit

away from the camera for simplicity. We would like to place the center of the smoke

grid at the center of the viewing frustum. We’d also like the viewing frustum to be 2nx×

2ny×2nz large so that no matter how we rotate the camera, the smoke grid will always be

fully contained in the viewing frustum and the rendered image will have some paddings

around the smoke box. To satisfy the requirements above, we first place the smoke grid

center at the world space origin. Then, we place the camera at nz units away in the

negative z axis in the world space. To position the grid center at the viewing frustum

center, we set the far plane 2nz + 1 units away from the camera, the left and right planes

nx units away from the camera in the x-axis, and the top and bottom planes ny units away

from the camera in the y-axis. As for the light scenario, for simplicity, we use a first order

lighting setting, where we have a directional back light that points towards the camera,

and we only compute the direct absorption described in Section 3.4. To simplify matters

further, We assume the backlight Li = 1.0 and render the outgoing light reaching the

camera, Lo, after the light traverses through the smoke.

5.2.1 Simulation and Rendering

In this experiment, we test the rendered result of the fully connected differentiable

simulation and rendering pipeline and analyze the runtime and memory performance.

70

Table 5.4: Full pipeline forward performance

Simulation Resolution Rendering Resolution Runtime (s) Memory (GB)

32× 32× 32
512× 512 3.8 0.1628
1024× 1024 4.5 0.1688

64× 64× 64
512× 512 6.3 0.6241
1024× 1024 8.4 0.6431

128× 128× 128
512× 512 15.4 4.5265
1024× 1024 18.5 4.5617

For rendering, we use the setup described above. For simulation, we use the same

simulation setup as described in Section 5.1.1. We experimented with combinations of

different grid resolutions and image resolutions. Figure 5.4 shows the result of different

stages of a 64 × 64 × 64 grid simulation rendered on a 1024 × 1024 resolution screen.

Compared to Figure 5.1, the rasterization renders the image in a much higher resolution

with less pixelation and aliasing artifacts. All details of the fluid simulation are preserved,

and the rendered image is stable and physically accurate.

The runtime and memory performance for the forward simulation and rendering

pipeline is shown in Table 5.4. The runtime is computed taking into account both the

simulation and rendering. The memory is computed as the peak memory usage during

the simulation and rendering process. Note that NvDiffRast supports batched rendering,

and the memory used for rendering depends on the batch size. For our experiment, we

fixed a batch size of 16 for all our test cases. The results show that the most significant

factor of the runtime and memory requirement is the simulation resolution. Increasing

the rendering resolution has a relatively smaller effect on the runtime and memory

requirements compared to increasing the simulation resolution.

5.2.2 Simulation and Rendering Learning

In this section, we present learning experiments using the fully differentiable pipeline. We

will show how the gradient information can be propagated from 2D rendered image back

to 3D simulation and rendering parameters. We will first show the result of a learning

71

0 200 400 600 800 1000

0

200

400

600

800

1000

Smoke Frame t=0

(a) Rendered 1st frame

0 200 400 600 800 1000

0

200

400

600

800

1000

Smoke Frame t=20

(b) Rendered 20th frame

0 200 400 600 800 1000

0

200

400

600

800

1000

Smoke Frame t=40

(c) Rendered 40th frame

0 200 400 600 800 1000

0

200

400

600

800

1000

Smoke Frame t=60

(d) Rendered Final frame

Figure 5.4: Experiment 3: simulation and rendering with grid resolution 64× 64× 64 and

image resolution 1024× 1024

72

task that uses the gradient information to learn 3D simulation parameters. Then, we will

show a more complex learning task that optimizes for both simulation and rendering

parameters.

Inflow Location Optimization

In this experiment, we try to learn the 3D coordinate of the inflow location of the smoke,

but base on only the 2D rendered image. This task requires the gradient to be propagated

from the rendered 2D image through the renderer and the simulator and finally to the

input inflow location. The learning goal is to find an inflow location that gives an image

as close to the rendered image using the reference inflow location as possible.

The initial setup is similar to that of Section 5.1.2. The simulation is run for 30 time

steps with time step size ∆t of 0.5, with no external forces or initial velocity applied to the

smoke. The rendering process is the same as described in Section 5.1.1, and the resolution

used in this experiment is 512 × 512. The loss function this time is the L2 pixel-wise

difference between the rendered 2D final images of the simulations with the learned and

reference inflow locations. The learning method is the same as described in Section 5.1.2,

and the learning rate is set to 1.0, and trained for 100 epochs.

Figure 5.5 shows the learning results. Each row shows the rendered simulation using

the reference, unlearned, learned inflow locations respectively. Each column shows the

10th, 20th and 30th (final) time step of the simulation respectively. We can see that the

learned inflow location is very close to the reference inflow location, and the rendered

images are almost identical.

Figure 5.6a shows the history of the learning process. We make an observation that

the learned inflow location moves in the upper-left direction first before moving down

to reach the reference location, instead of intuitively moving directly in the bottom left

direction towards the reference location, as suggested by Figure 5.6b. This happens due

to the non-linear nature of fluid simulation. Moving the inflow location in the negative y

direction will reduce the size of the plume reaching the top, thus reducing the absorption

73

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=30

(a) Rendered final state of the reference simulation

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=30

(b) Rendered final state of the unlearned simulation

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=30

(c) Rendered final state of the learned simulation

Figure 5.5: Optimizing inflow location

74

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 0

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 20

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 60

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 100

(a) Learning history at different epochs

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 0

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 10

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 20

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 30

(b) Manually Adjusted Inflow Location at Different Epochs

Figure 5.6: A comparison between the learning history and the manually forced “linear”

history

image. Because the images overlaps less, the loss will also not decrease effectively, even

though the inflow location is moving towards the correct location.

Figure 5.7a shows the loss plot comparison of the learning process against the

manually adjusted inflow location. We can clearly see that although the starting and

ending losses for the two plots are the same, the loss plot for the learning process makes

a faster descent initially by moving the inflow location to the top left corner to reduce the

pixel-wise L2 loss.

Inflow and Camera Location Learning

Finally, we present a more complex experiment that optimizes both the inflow location

and the camera location. The goal of this experiment is to show that the proposed

75

0 20 40 60 80 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05
Lo

ss

Loss History
Loss

(a) Optimization Loss

0 5 10 15 20 25 30
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

Manual Loss History
Loss

(b) Manual Loss

Figure 5.7: A comparison of the loss plot between the learning history and the manually

forced “linear” history

method can be used to optimize multiple parameters, including simulation and rendering

parameters, simultaneously.

We use the same setup as the previous experiment, except that on top of the different

inflow locations, we also initialize the learning process with a different camera location.

The reference and unlearned inflow locations are initialized the same as the previous

experiment. The reference camera position sits on the negative z-axis in the world space,

where as the unlearned initial camera position is shifted off-axis. For the learning process,

we continue to use the L2 pixel loss of the rendered final frame. We use a learning rate of

1.0 and train for 100 epochs.

Figure 5.8 shows the results of the learning experiment. Similar to Section 5.2.2, each

column represent the rendered smoke at a different time step, and each row represent the

simulation using the reference, unlearned and learned inflow and camera parameters. We

can see that the learned inflow and camera locations are able to produce a rendered image

that is very similar to the reference image.

Figure 5.9 shows the learning history at different epochs.

76

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Reference Inflow t=30

(a) Rendered final state of the reference simulation

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Unlearned Inflow t=30

(b) Rendered final state of the unlearned simulation

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=10

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=20

0 100 200 300 400 500

0

100

200

300

400

500

Learned Inflow t=30

(c) Rendered final state of the Learned Simulation

Figure 5.8: Optimizing inflow and camera locations

77

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 0

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 20

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 60

0 100 200 300 400 500

0

100

200

300

400

500

Epoch 100

Figure 5.9: Learning history at different epochs

0 20 40 60 80 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lo
ss

Loss History
Loss

Figure 5.10: Loss curve of the learning process

Figure 5.10 shows the loss curve of the learning process. We can see that the loss

decreases quickly at the beginning of the learning process, and then slowly converges to

a local minimum.

78

x
100

50
0

50
100

150

y

100
50
0
50
100

z

150
100

50
0

Eye and Inflow

Figure 5.11: A visualization of the learned inflow and camera location trajectories

Figure 5.11 shows the reference and learned inflow and camera locations. The

transparent box represents the simulation domain in the world space. The green point in

the simulation domain represents the reference inflow location, where as the green point

outside the simulation domain represents the reference camera location. The blue points

represent the unlearned initial inflow and camera locations. The blue lines represent the

learned inflow and camera locations throughout the training process. We can see that

the learned inflow location is very close to the reference inflow location, but the learned

camera location is not quite the same because the z-axis is different from the reference

location. However, because we use an orthographic camera, the rendered image is not

affected by the z-axis of the camera location, and the learned rendered image is very

similar to the reference rendered image.

79

Chapter 6

Conclusion

In this work, we built a fully differentiable fluid simulation and rendering pipeline.

We implemented a differentiable grid-based fluid simulator using Jax and PyTorch and

compared performances for both implementations. We conducted experiments to show

that the differentiable fluid simulator can be used to optimize the simulation parameters.

By connecting the 3D output from the simulator to a differentiable renderer (NvDiffRast),

we showed further that even with the loss of information by projecting 3D states to 2D

rendered images, the gradient information can still be propagated to 3D fluid simulation

and rendering control parameters.

6.1 Advantages and Limitations

Our framework is fully differentiable, which means that gradients can be passed from

the rendered image to both the renderer and the fluid simulator. The framework

allows users to optimize multiple parameters for both components simultaneously to

achieve a desired rendered image. This replaces the traditional trial-and-error process

of manually tuning parameters. Furthermore, our framework is physically accurate. The

simulator solves the Navier-Stokes equations, which are the governing equations for fluid

dynamics. The renderer also uses a physically accurate scheme to compute and render the

80

absorption of light by the smoke. Finally, our framework is flexible and easy to use. The

implementation is modular, and the simulation is generalized to allow various parameter

configurations. Users can easily create physically realistic fluid simulations for different

scenarios.

Our work also has limitations. First, the simulator is not optimized for runtime.

The main bottleneck is the Conjugate Gradient solver for the PyTorch implementation,

which has a runtime a lot slower than the Jax implementation. This is because the

implementation uses a Python for-loop, which is extremely slow compared to other

lower-level languages such as C++. Secondly, the simulator does not scale well with

the simulation resolution. Because the simulation solve is non-linear, the memory

requirement for backpropagation increases non-linearly as the resolution increases. This

is a common problem for most differentiable physics-based simulators and is an active

research field in the community. Also, our simulation currently only supports a box-

shaped domain and boundary because of the padding and convolution implementation

mentioned in Section 4.1.6. This limits the possibility of learning smoke parameters in a

more complex environment or even learning the boundary condition itself.

6.2 Future Work

There are many possible future directions for this work. First, we can improve the runtime

of the simulator. As mentioned in Section 6.1, the simulator is not optimized for runtime.

We can improve the runtime by implementing the conjugate gradient solver in a lower-

level language such as C++ before wrapping it with Python.

We also plan to combine existing optimization and training methods into our

framework. The adjoint method [15] can provide custom gradients for the fluid

simulation operations instead of storing all elementary operations on the computation

tape, thus potentially reducing the computation time and memory requirement. Multi-

grid and Alternating direction method of multiplier (ADMM) [31] can improve our

81

training method by optimizing parameters with reduced spatial and temporal resolutions

before up-sampling and optimizing for the full resolution parameters. The lower

resolution parameters can be used as a good initialization for the full resolution

parameters, potentially reducing the training time.

Finally, we plan on expanding our implementation to support more boundary

conditions. By doing so, we can make boundary conditions a parameter and perform

optimization tasks. This will give us more degrees of freedom and enable us to explore

more applications using our framework.

82

References

[1] Francis H. Harlow and J. Eddie Welch. “Numerical Calculation of Time-Dependent

Viscous Incompressible Flow of Fluid with Free Surface”. In: The Physics of Fluids

8.12 (1965), pp. 2182–2189. DOI: 10.1063/1.1761178.

[2] D. J. Tritton. “Thermal Flows: Basic Equations and Concepts”. In: Physical Fluid

Dynamics. Dordrecht: Springer Netherlands, 1977, pp. 127–134. DOI: 10.1007/

978-94-009-9992-3_13.

[3] W. T. Reeves. “Particle Systems—a Technique for Modeling a Class of Fuzzy

Objects”. In: ACM Trans. Graph. 2.2 (Apr. 1983), pp. 91–108. DOI: 10 . 1145 /

357318.357320.

[4] J. U. Brackbill and H. M. Ruppel. “FLIP: A Method for Adaptively Zoned, Particle-

in-Cell Calculations of Fluid Flows in Two Dimensions”. In: Journal of Computational

Physics 65.2 (Aug. 1, 1986), pp. 314–343. DOI: 10.1016/0021-9991(86)90211-

1.

[5] Larry Yaeger, Craig Upson, and Robert Myers. “Combining Physical and Visual

Simulation—Creation of the Planet Jupiter for the Film “2010””. In: SIGGRAPH

Comput. Graph. 20.4 (Aug. 1986), pp. 85–93. DOI: 10.1145/15886.15895.

[6] Karl Sims. “Particle Animation and Rendering Using Data Parallel Computation”.

In: SIGGRAPH Comput. Graph. 24.4 (Sept. 1990), pp. 405–413. DOI: 10.1145/

97880.97923.

83

https://doi.org/10.1063/1.1761178
https://doi.org/10.1007/978-94-009-9992-3_13
https://doi.org/10.1007/978-94-009-9992-3_13
https://doi.org/10.1145/357318.357320
https://doi.org/10.1145/357318.357320
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1145/15886.15895
https://doi.org/10.1145/97880.97923
https://doi.org/10.1145/97880.97923

[7] John Hart. “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing

of Implicit Surfaces”. In: The Visual Computer 12 (June 13, 1995). DOI: 10.1007/

s003710050084.

[8] Nick Foster and Dimitris Metaxas. “Controlling Fluid Animation”. In: Proceedings of

the 1997 Conference on Computer Graphics International. CGI ’97. USA: IEEE Computer

Society, 1997, p. 178.

[9] Nick Foster and Dimitris Metaxas. “Modeling the Motion of a Hot, Turbulent Gas”.

In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive

Techniques. SIGGRAPH ’97. USA: ACM Press/Addison-Wesley Publishing Co.,

1997, pp. 181–188. DOI: 10.1145/258734.258838.

[10] Jos Stam. “Stable Fluids”. In: Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-

Wesley Publishing Co., 1999, pp. 121–128. DOI: 10.1145/311535.311548.

[11] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. “Visual Simulation of Smoke”.

In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive

Techniques. SIGGRAPH ’01. New York, NY, USA: Association for Computing

Machinery, Aug. 1, 2001, pp. 15–22. DOI: 10.1145/383259.383260.

[12] Nick Foster and Ronald Fedkiw. “Practical Animation of Liquids”. In: Proceedings

of the 28th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’01. New York, NY, USA: Association for Computing Machinery, 2001,

pp. 23–30. DOI: 10.1145/383259.383261.

[13] Jos Stam. “A Simple Fluid Solver Based on the FFT”. In: J. Graph. Tools 6.2 (Sept.

2002), pp. 43–52. DOI: 10.1080/10867651.2001.10487540.

[14] Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. “Keyframe

Control of Smoke Simulations”. In: ACM Trans. Graph. 22.3 (July 2003), pp. 716–723.

DOI: 10.1145/882262.882337.

84

https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/258734.258838
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/383259.383260
https://doi.org/10.1145/383259.383261
https://doi.org/10.1080/10867651.2001.10487540
https://doi.org/10.1145/882262.882337

[15] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. “Fluid Control

Using the Adjoint Method”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 449–456.

DOI: 10.1145/1015706.1015744.

[16] Andrew Selle, Alex Mohr, and Stephen Chenney. “Cartoon Rendering of Smoke

Animations”. In: Proceedings of the 3rd International Symposium on Non-Photorealistic

Animation and Rendering. NPAR ’04. Annecy, France: Association for Computing

Machinery, 2004, pp. 57–60. DOI: 10.1145/987657.987666.

[17] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. “A Vortex Particle Method for

Smoke, Water and Explosions”. In: ACM Trans. Graph. 24.3 (July 2005), pp. 910–914.

DOI: 10.1145/1073204.1073282.

[18] Y. Zhu and R. Bridson. “Animating Sand as a Fluid”. In: ACM Transactions on

Graphics. Vol. 24. 3. 2005, pp. 965–972. DOI: 10.1145/1073204.1073298.

[19] Morgan McGuire and Andi Fein. “Real-Time Rendering of Cartoon Smoke and

Clouds”. In: Proceedings of the 4th International Symposium on Non-Photorealistic

Animation and Rendering. NPAR ’06. Annecy, France: Association for Computing

Machinery, 2006, pp. 21–26. DOI: 10.1145/1124728.1124733.

[20] Tamás Umenhoffer, László Szirmay-Kalos, and Gábor Szijártó. “Spherical

billboards and their application to rendering explosions”. In: vol. 2006. Jan. 2006.

DOI: 10.1145/1143079.1143089.

[21] Robert Bridson. Fluid Simulation. USA: A. K. Peters, Ltd., 2008.

[22] Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. “Fast Animation

of Turbulence Using Energy Transport and Procedural Synthesis”. In: ACM

SIGGRAPH Asia 2008 Papers. SIGGRAPH Asia ’08. Singapore: Association for

Computing Machinery, 2008. DOI: 10.1145/1457515.1409119.

[23] Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. “Articulated Swimming

Creatures”. In: ACM Trans. Graph. 30.4 (July 2011). DOI: 10.1145/2010324.

1964953.

85

https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/987657.987666
https://doi.org/10.1145/1073204.1073282
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1124728.1124733
https://doi.org/10.1145/1143079.1143089
https://doi.org/10.1145/1457515.1409119
https://doi.org/10.1145/2010324.1964953
https://doi.org/10.1145/2010324.1964953

[24] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015.

[25] Zhanpeng Huang, Ladislav Kavan, Weikai Li, Pan Hui, and Guanghong Gong.

“Reducing numerical dissipation in smoke simulation”. In: Graphical Models 78

(2015), pp. 10–25. DOI: https://doi.org/10.1016/j.gmod.2014.12.002.

[26] Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. “OmniAD: Data-Driven

Omni-Directional Aerodynamics”. In: ACM Trans. Graph. 34.4 (July 2015). DOI:

10.1145/2766919.

[27] Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. “An Implicit

Viscosity Formulation for SPH Fluids”. In: ACM Trans. Graph. 34.4 (July 2015). DOI:

10.1145/2766925.

[28] Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey

Mark Siskind. “Automatic Differentiation in Machine Learning: A Survey”. In: J.

Mach. Learn. Res. 18.1 (Jan. 2017), pp. 5595–5637.

[29] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D Mesh Renderer.

Nov. 20, 2017. DOI: 10.48550/arXiv.1711.07566. preprint.

[30] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: (2017).

86

https://doi.org/https://doi.org/10.1016/j.gmod.2014.12.002
https://doi.org/10.1145/2766919
https://doi.org/10.1145/2766925
https://doi.org/10.48550/arXiv.1711.07566

[31] Zherong Pan and Dinesh Manocha. “Efficient Solver for Spacetime Control of

Smoke”. In: ACM Trans. Graph. 36.5 (July 2017). DOI: 10.1145/3016963.

[32] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin.

“Accelerating Eulerian Fluid Simulation with Convolutional Networks”. In:

Proceedings of the 34th International Conference on Machine Learning - Volume 70.

ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 3424–3433.

[33] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of

Python+NumPy programs. Version 0.3.13. 2018.

[34] Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning

programs via high-level tracing. 2018.

[35] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. “Differentiable

Monte Carlo Ray Tracing through Edge Sampling”. In: ACM Transactions on

Graphics 37.6 (Dec. 4, 2018), 222:1–222:11. DOI: 10.1145/3272127.3275109.

[36] Nobuyuki Umetani and Bernd Bickel. “Learning Three-dimensional Flow for

Interactive Aerodynamic Design”. In: ACM Transactions on Graphics (SIGGRAPH

2018) 37.4 (2018). DOI: 10.1145/3197517.3201325.

[37] Xiangyun Xiao, Cheng Yang, and Xubo Yang. “Adaptive learning-based projection

method for smoke simulation”. In: Computer Animation and Virtual Worlds 29.3-4

(2018). e1837 cav.1837, e1837. DOI: https://doi.org/10.1002/cav.1837.

[38] Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. “An advection-

reflection solver for detail-preserving fluid simulation”. In: ACM Transactions on

Graphics 37 (July 2018), pp. 1–8. DOI: 10.1145/3197517.3201324.

[39] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. “Soft Rasterizer: A Differentiable

Renderer for Image-Based 3D Reasoning”. In: 2019 IEEE/CVF International

87

https://doi.org/10.1145/3016963
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3197517.3201325
https://doi.org/https://doi.org/10.1002/cav.1837
https://doi.org/10.1145/3197517.3201324

Conference on Computer Vision (ICCV) (Oct. 2019), pp. 7707–7716. DOI: 10.1109/

ICCV.2019.00780.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran

Associates, Inc., 2019, pp. 8024–8035.

[41] Charles R. Harris, K. Jarrod Millman, Stéfan J.van der Walt, Ralf Gommers, Pauli

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew

Brett, Allan Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson,

Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer

Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array programming with

NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-

020-2649-2.

[42] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to Control PDEs with

Differentiable Physics. 2020.

[43] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan

Ragan-Kelley, and Frédo Durand. DiffTaichi: Differentiable Programming for Physical

Simulation. 2020.

[44] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and

Timo Aila. “Modular Primitives for High-Performance Differentiable Rendering”.

In: ACM Transactions on Graphics 39.6 (2020).

88

https://doi.org/10.1109/ICCV.2019.00780
https://doi.org/10.1109/ICCV.2019.00780
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[45] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and

Timo Aila. “Modular Primitives for High-Performance Differentiable Rendering”.

In: ACM Transactions on Graphics 39.6 (Nov. 27, 2020), 194:1–194:14. DOI: 10.1145/

3414685.3417861.

[46] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis. Aug. 3, 2020. DOI: 10.48550/arXiv.2003.08934. preprint.

[47] Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti,

Linda Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin

Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja

Fidler. gradSim: Differentiable simulation for system identification and visuomotor control.

2021.

[48] Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novák. “An Unbiased

Ray-Marching Transmittance Estimator”. In: ACM Transactions on Graphics 40.4

(July 19, 2021), 137:1–137:20. DOI: 10.1145/3450626.3459937.

[49] Yunzhu Li, Shuang Li, V. Sitzmann, Pulkit Agrawal, and A. Torralba. “3D Neural

Scene Representations for Visuomotor Control”. In: ArXiv (July 8, 2021).

[50] Daqi Lin, Chris Wyman, and Cem Yuksel. “Fast Volume Rendering with

Spatiotemporal Reservoir Resampling”. In: ACM Transactions on Graphics 40.6

(Dec. 10, 2021), 279:1–279:18. DOI: 10.1145/3478513.3480499.

[51] Shigenao Maruyama and Shuichi Moriya. “Newton’s Law of Cooling: Follow up

and Exploration”. In: International Journal of Heat and Mass Transfer 164 (Jan. 2021),

p. 120544. DOI: 10.1016/j.ijheatmasstransfer.2020.120544.

[52] Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and

Kiwon Um. Physics-based Deep Learning. WWW, 2021.

[53] Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-

Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. 2021.

89

https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.1145/3450626.3459937
https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544

[54] Cheng Zhang, Zihan Yu, and Shuang Zhao. “Path-Space Differentiable Rendering

of Participating Media”. In: ACM Transactions on Graphics 40.4 (July 19, 2021),

76:1–76:15. DOI: 10.1145/3450626.3459782.

[55] Li-Wei Chen and Nils Thuerey. Towards high-accuracy deep learning inference of

compressible turbulent flows over aerofoils. 2022.

[56] Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. NeuroFluid: Fluid

Dynamics Grounding with Particle-Driven Neural Radiance Fields. June 17, 2022. DOI:

10.48550/arXiv.2203.01762. preprint.

[57] Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert

Chern. “Covector Fluids”. In: ACM Trans. Graph. 41.4 (July 2022). DOI: 10.1145/

3528223.3530120.

[58] N. Passalis, S. Pedrazzi, R. Babuska, W. Burgard, D. Dias, F. Ferro, M. Gabbouj,

O. Green, A. Iosifidis, E. Kayacan, J. Kober, O. Michel, N. Nikolaidis, P. Nousi,

R. Pieters, M. Tzelepi, A. Valada, and A. Tefas. “OpenDR: An Open Toolkit for

Enabling High Performance, Low Footprint Deep Learning for Robotics”. In: 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Oct. 2022).

DOI: 10.1109/iros47612.2022.9981703.

[59] Sebastian Weiss and Rüdiger Westermann. “Differentiable Direct Volume

Rendering”. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (Jan.

2022), pp. 562–572. DOI: 10.1109/TVCG.2021.3114769.

[60] K. Arnavaz, M. Kragballe Nielsen, P. G. Kry, M. Macklin, and K. Erleben.

“Differentiable Depth for Real2Sim Calibration of Soft Body Simulations”. In:

Computer Graphics Forum 42.1 (2023), pp. 277–289. DOI: 10.1111/cgf.14720.

[61] Jinxian Liu, Ye Chen, Bingbing Ni, Jiyao Mao, and Zhenbo Yu. Inferring Fluid

Dynamics via Inverse Rendering. 2023.

90

https://doi.org/10.1145/3450626.3459782
https://doi.org/10.48550/arXiv.2203.01762
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1109/iros47612.2022.9981703
https://doi.org/10.1109/TVCG.2021.3114769
https://doi.org/10.1111/cgf.14720

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Overview

	Related Work
	Fluid Simulation
	Fluid Control
	Differentiable Simulation
	Differentiable Fluid Rendering
	Fully Differentiable Frameworks
	Deficiencies of State of the Art

	Background
	Automatic Differentiation
	AutoDiff
	AutoDiff Modes

	Fluid Simulation
	The Incompressible Navier-Stokes Equation
	Advection
	External Forces
	Pressure Projection

	Rasterization Pipeline
	Vertex Processing
	Rasterization
	Fragment Processing

	Smoke Absorption
	Beer-Lambert Law
	Absorption Coefficient

	Methodology
	Differentiable Fluid Simulator
	Data Structures
	Simulation Parameters
	Advection
	Inflow Injection
	External Forces
	Pressure Projection
	Jax and PyTorch Backends

	Differentiable Renderer
	Mesh Conversion
	Absorption Interpolation
	Smoke Rendering
	Acceleration and Differentiation

	Optimization Methods

	Experiments and Results
	Differentiable Fluid Simulation
	Forward Simulation
	Simulation Learning

	Fully Differentiable Pipeline
	Simulation and Rendering
	Simulation and Rendering Learning

	Conclusion
	Advantages and Limitations
	Future Work

	References

