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Abstract
We use molecular dynamics (MD) simulation to probe the non-equilibrium physics of single

nanochannel-confined semi-flexible polymers in a homogeneous flow field. The flow field compresses

the polymer against the end of the nanochannel, simulating an experiment of a nanochannel confined

chain compressed against a slit barrier. The flow-based compression gives rise to a packing of the

chain against the channel end that possesses a striking organization, consisting of interweaving of

folds and circular coils. For stiff chains at low flow, we find that the organization is dominated by

repeated hairpin folds. For stiff chains at higher flow, we observe that circular coils arise along with

the folds, with folding and coiling domains becoming interwoven at the highest flow speeds. Chain

organization is retained even when the chain persistence length is on order of the channel width.

We show that the global polymer organization, consisting of a number of defined folds and coiled

loops, arises from the minimization of the total chain free energy.

I. INTRODUCTION

Highly organized states can arise in confined systems of single semi-flexible macro-

molecules. For example, a single semi-flexible polymer chain confined in a spherical cavity

at high enough density organizes itself into layers of stacked perpendicular spools [1–3].

This spooling phenomenon is highly significant biologically, arising when ∼ 10 − 100 kbp

of phage dsDNA is packaged inside viral capsids ∼ 100nm in diameter. Concentric spools

are observed at low densities, while at higher densities additional morphologies emerge,

resembling topological links [1].

Nanofluidic systems based on nanochannels have emerged that model experimentally the

behavior of DNA at high compression. Nanochannels are well-defined, simple systems where

all parameters can be controlled. Studying polymers in nanochannels is a fruitful method to

understand complex behaviours seen in vivo. In the nanochannel experiments, compression

is induced in a non-equilibrium process via either an optically trapped sliding bead piston or

hydrodynamic flow against a barrier which blocks the polymer but lets the fluid flow through

via a very thin slit. Recent studies using nanochannels have shown that a simple partial

differential equation model can capture the time-dependent concentration profile along the
∗ reisner@physics.mcgill.ca
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channel axis [4, 5]. In addition, knots are generated at high compression; the knot-factory

technique is now used to produce knots for further study of knot dynamics, diffusion, and

interactions in confinement [6–8].

One intriguing question is whether, at sufficiently high compression, the organized states

found in phages can be artificially produced in the nanochannel system. Previous simulation

work has shown that non-equilibrium compression in the presence of confinement can give

rise to organized states of single semi-flexible macromolecules. In the limit of very high

chain rigidity, where the persistence length P is comparable to the contour length L, a

symmetrically compressed chain transitions from a regime of disordered Odijk deflections

to a structured helical state. Upon further compression, the chain folds over itself and

transitions from a disordered deflection state containing two parallel polymer strands to a

double helical state [9]. At lower chain rigidity, but with P still greater than the channel

diameter D, a chain compressed from one end via a sliding piston forms repeated hairpin

folds. The number of folds increases with the sliding velocity v [10]. Scaling relations have

also been studied for semi-flexible polymers in nanochannel confinement under compression

[11].

A full picture has yet to emerge, however, regarding the full spectrum of possible organized

states of a compressed semi-flexible chain, as well an understanding of how these states arise

in a non-equilibrium compression process. So far, while chain organization has been observed

via simulation for the regime where P > D, evidence is lacking that organization might arise

as well in the regime P ≤ D, which is easier to reach in experiments. Here we use molecular

dynamics (MD) simulations to probe the non-equilibrium physics of single nanochannel

confined semi-flexible polymers compressed against a barrier in a homogeneous flow field.

We approximate the barrier as perfectly porous to the fluid-flow so that flow can be assumed

uniform up to the barrier, an idealization of the experimental slit geometry. Note that, in

this case, a chain pushed against the (stationary) barrier by a homogeneous steady flow

field is equivalent to a chain pushed at constant speed by a moving (piston) barrier in an

immobile fluid (such as performed in Bernier et al.). The latter case (moving piston barrier,

immobile fluid) can be converted to the former case (stationary barrier, uniform flow) by

changing the frame of reference from a frame where the fluid is at rest (and piston moving)

to one co-moving with the piston. For high enough P , we observe two distinct types of

structures: folds, as observed by Bernier et al. [10], and coils, a new phenomenon distinct
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from helices observed by Hayase et al. [9] and also distinct from the spools observed by

Curk et al. [1] (Figure 1). A fold refers to when a strand of polymer folds over itself into

a hairpin, exactly as described by [10] (see Figure 1d-f). A coil is formed when a strand of

polymer forms a loop guided by the circular side walls of the cylindrical nanochannel. The

plane of the loop is typically perpendicular to the channel axis. When multiple loops are

adjacent along the channel axis, they stack compactly side-by-side, rather than forming a

true helix as in Hayase et al. [9], or a thick spool with loops inside loops within the same

spool layer, as in Curk et al. [1] and Petrov et al. [3] (see Figure 1g-i). We find that folds

dominate in the low v regime, while coils dominate in the high v regime. Interestingly, coils

often coexist alongside folds; the coils wrap around the folds, similar to a two-layer spool

observed by Curk et al. [1]. Notably, we also find that coils and folds arise even for P < D.

Transient analysis reveals that for a sufficiently stiff chain at high enough flow, folds and

coils form as soon as the chain end touches the barrier, but for stiff chains at high flow

the initial mixture of folds and coils can be slanted relative to the channel axis. A distinct

time-scale then exists for the chain configuration to decay into an organized series of coils

and folds.

We believe that the global polymer organization, consisting of a number of defined folds

and coiled loops, arises from the minimization of the total chain free energy, which consists of

a bending energy component and a flow potential component. Our theoretical model, based

on a simplified chain configuration with idealized folds and coils, predicts the simulation

results with good agreement for sufficiently high chain rigidity.

A note about terminology: we use the term ‘loop’ to refer to single circular loops per-

pendicular to the channel axis; we use ‘coil’ to refer to the whole aggregate of loops.

II. MODEL AND SIMULATION DETAILS

Our simulations are performed using the MD package ESPResSo [12]. Our implemen-

tation consists of a bead-spring model of a polymer with the monomers interacting via

excluded volume (EV), a finite extension nonlinear elastic (FENE) spring potential, and a

bond-bending potential enabling variation of P . We tested our MD system for chains in bulk

and confined in open channels, and reproduced the scalings for the Flory radius in bulk, and

the chain extension in cylindrical channels in the de Gennes/extended de Gennes regime
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FIG. 1. (a-c) Snapshot of a P = 0 configuration. (d-f) Snapshot of a high P , low v configuration.

(g-i) Snapshot of a high P , high v configuration. (a,d,g) show the 3D representation of the chain,

with (b,e,h) being a longitudinal projection and (c,f,i) a transverse projection.

(P < D) and in the Odijk regime (P > D). We also computed the steady-state density

profile for flow-compressed chains in closed channels and found them comparable with ex-

periment, showing the applicability of the MD simulation method to study non-equilibrium

dynamics of confined polymers.

We keep the channel width D, the monomer size σ, and the number of monomers N

fixed, but allow P and v to vary, so as to explore chains of different stiffness subject to

different flow velocities. The EV interaction between any two monomers separated by a
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distance of r is given by a short-range truncated Lennard-Jones (LJ) potential, also called

the Weeks–Chandler–Andersen (WCA) potential [13]:

UWCA(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)12

+
1

4

]
if r < 21/6σ

= 0 otherwise
(1)

where ϵ is the interaction strength. The successive monomers are connected by a finite

extension nonlinear elastic (FENE) spring potential [14]:

UFENE(r) = −1

2
kR2

0 ln

(
1− r2

R2
0

)
(2)

where k is the interaction strength and R0 is the maximum allowed bond length. The

parameters k, R0, ϵ, and σ determine the bond length. The chain stiffness is controlled by

a three body bond-bending potential:

Ubend = κ[1− cos(θ − θ0)] (3)

where θ, shown in Figure 2a, is the angle between two successive bonds, κ is the interaction

strength, and θ0 is the equilibrium bond angle. In three dimensions, for κ ̸= 0, the persistence

length P of the chain is related to κ via [15]

P =
κσ

kBT
(4)

where kBT is the thermal energy. The confining walls of the cylindrical nanochannel, includ-

ing its ends, interact with the monomers also via the WCA potential, but with interaction

strength ϵwalls = 20ϵ and interaction length σwalls = 0.2σ. As for the applied flow field, it is

defined by a force on each monomer

F⃗ = −γv(v⃗ − u⃗) (5)

where γv = γ is a friction factor, v⃗ is the flow velocity, and u⃗ is the monomer velocity. There

are no hydrodynamics involved in the simulations as they are expensive to compute, and

their effect can be taken into account by normalizing the friction factor [10].

The MD simulation propagates forward using the Langevin dynamics equation of motion.

For monomer i,

mr̈i = −∇(UWCA + UFENE + Ubend + UWCAwall) + F⃗ − γṙi +
√

6γkBTηi(t) (6)
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FIG. 2. (a) Diagram showing a bead-spring model chain with the angle between bonds θ, from

which the bending energy is calculated. (b) Diagram showing a bead-spring model chain with the

angle between each bond and the channel axis ϕ, which we use in our analysis.

where m is the monomer mass, ri is the monomer position, γ is the friction coefficient, kBT

is the thermal energy, and ηi(t) is a Gaussian random force with zero mean and variance of

one.

For all our simulations, we set σ = 1, N = 150, D = 6, m = 1, γ = 1, and kBT = 0.2. For

the WCA potential, we set ϵ = 1; for the FENE potential, we set k = 10 and R0 = 2; and

for the bending potential, we set θ0 = π. We vary κ between 0.24 and 3.2, corresponding to

persistence lengths of 1.2 and 16. We also perform simulation with no bending energy, or

P = 0. Finally, we vary v (v⃗ = (v, 0, 0)) by two orders of magnitude, between 0.002 and 0.2.

For a given simulation run, we initialize our polymer in a straight line in the center, along

the axis of the cylindrical channel. We set a fixed amount of time for the system to reach

equilibrium (t = 1×106, corresponding to 5×108 iterations of ∆t = 0.002 each). We ensure

that equilibrium is reached by observing when the chain extension stabilizes (which usually

happens within half of the fixed preset time). We then apply the homogeneous flow field to

compress the chain (for another t = 1× 106). We save the polymer configuration (x, y, and

z positions for each monomer) every time interval ∆t = 50. We run such simulations over a

range of 6 bending energies and 12 flow velocities, with 3 independent simulations run for

each set of parameters v and κ, for a total of 216 runs of about 15-20 hours each. These
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simulations were run on Compute Canada’s supercomputer cluster Beluga.

III. SIMULATION RESULTS

In order to better visualize the chain conformation, we introduce two representations in

addition to simple 2D or 3D position plots. These include longitudinal position plots, or

monomer position along the channel axis x vs monomer number s, and angular plots, or

bond angle with respect to the channel axis vs bond number s′. Examples of longitudinal

position plots are shown in Figure 3d,i,n for a completely disordered regime, a folded regime,

and a regime containing co-existing coils and folds. Figure 3d shows an example longitudinal

position plot for a chain with zero bending energy, giving rise to the disordered behavior

expected for a confined self-avoiding chain. Figure 3i shows an example longitudinal position

plot for a chain with high bending energy and low flow velocity; zigzag like structures are

observed in the plot, indicative of hairpin folds and comparable to those observed by Bernier

et al. [10]. The line segments on either side of the zigzag’s v-shaped edge represent chain

portions undergoing Odijk deflections with no-backfolding, i.e. that basically propagate in

a directed fashion down the channel axis. Finally, Figure 3n shows an example longitudinal

position plot for a chain with high bending energy and high flow velocity. This plot contain

staircase like structures along with the zigzags folds. Examining the 3D configuration plot for

this chain (Figure 3k) suggests that these staircase like structures are indicative of repeated

loops around the cylindrical confining surfaces.

To add further insight into the chain configuration, we introduce angular plots, depicted

in Figure 3e,j,o (a schematic defining the angle ϕ is shown in Figure 2b). The angular

plots are generated by calculating the bond vector between consecutive monomers, and then

finding the angle the bond vector makes with the channel axis (there are 150 monomers, and

therefore 149 bonds, each at position s′i = (si+ si+1)/2). The angles range between 0 and π,

with a value of π/2 indicating a bond perpendicular to the channel axis. For the disordered

chain configuration in Figure 3e, the values of ϕ are distributed randomly as expected. In

Figure 3j, the ϕ values alternate between values close to 0 and values close to π; this arises

because the straight edges flanking the v-shaped edge in the corresponding longitudinal

position plot (Figure 3i) represent polymer segments directed in opposite directions along

the channel axis (corresponding to ϕ = 0 and ϕ = π). Finally, in Figure 3o, the coiled part of
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FIG. 3. (a-e) Snapshot of a P = 0 configuration. (f-j) Snapshot of a high P , low v configuration.

(k-o) Snapshot of a high P , high v configuration. (a,f,k) show the 3D representation of the chain,

with (b,g,l) being a longitudinal projection and (c,h,m) a transverse projection. (d,i,n) show the

monomer number s vs the channel axis position x (barrier position at dashed line), while (e,j,o)

show the bond number s′ vs bond angle ϕ.

the chain (staircase section in Figure 3i) have values close to π/2 as loops are perpendicular

to the channel axis.

These longitudinal position and angular plots give information on the configuration of

the chain in two ways. As they are more compact, they can be plotted for consecutive

snapshots to understand the history of the chain configurations (which will be investigated

further in subsection A, Chain History). Moreover, as coils and folds take different angular

values in the angular plots, these values can be extracted to calculate an order parameter,

which indicates the level and type of ordering of each steady-state configuration (this will

be investigated further in subsection B, Order Parameter).
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A. Chain History

Chain histories are represented by plotting longitudinal positions snapshots taken at incre-

mentally increasing times. Each line in Figure 4 and 5 represents a snapshot, and consecutive

snapshots over time are shifted by a small horizontal distance for better visualization.

x

s

D/P = 0.375; v = 0.08D/P = 0.375; v = 0.01

x

s

x x x xϕ ϕ ϕ ϕ

steady-statesteady-state

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j) (k) (l) (m) (n)

FIG. 4. Diagrams showing the transient chain history, with the formation of folds in (a), and forma-

tion of coils and folds in (b). Each line in a subplot shows a single snapshot of the monomer number

s vs monomer channel axis position x. Lines from left to right represent snapshots at increasing

time. An increasing x shift is added to the lines for increasing time for better visualization. (c-f)

Snapshots of chain configuration at different times in transient chain history, with (g,i,k,m) showing

expanded longitudinal position plots and (h,j,l,n) showing angular plots for each snapshot.

Transient chain histories show us that configurations with folds form exactly the same

way as described by Bernier et al [10], with repeated folds arising as V-shaped kinks in the

longitudinal position plot (see Figure 4a). For higher flow values, coils can form in addition

to folds. Figure 4(b-n) shows an example compression event where folds and coils both form,

including longitudinal positions plots over the compression history (Figure 4b), configuration

snapshots (Figure 4c-f) and angular plots (Figure 4h,j,l,n). Note that the coils form early in

the compression process and arise close to the barrier, corresponding to the portion of the
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chain feeling the greatest compressive force. Also, note that the coils are initially slanted

(Figure 4d-e), yet eventually in a sudden fashion get pulled flat (Figure 4f), suggesting that

the slanted coil configuration represents an intermediate in the compression process (and

the perpendicular configuration is the final state). Note that the slanted coil intermediate

lasts < 10% of the total simulation run. For the rest of the manuscript we choose to focus

on the long-time steady-state behaviour (shown as dashed boxes in Figure 4a-b), leaving the

details of the transient behavior involving combined folds and coils for a future study.

(b) (c) (d) (e)(a)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

s

s

s

x x x x x

D/P = 0.375; v = 0.002 D/P = 0.375; v = 0.01 D/P = 0.375; v = 0.05 D/P = 0.375; v = 0.08 D/P = 0.375; v = 0.15

D/P = 1; v = 0.002 D/P = 1; v = 0.01 D/P = 1; v = 0.05 D/P = 1; v = 0.08 D/P = 1; v = 0.15

D/P = 2.5; v = 0.002 D/P = 2.5; v = 0.03 D/P = 2.5; v = 0.15 D/P = inf; v = 0.002 D/P = inf; v = 0.15

FIG. 5. (a-e) Histories for P > D from low v to high v. (f-j) Histories for P = D from low v to high

v. (k-m) Histories for P < D from low v to high v. (n-o) Histories for P = 0 for low v and high v.

Each line in a subplot shows a single snapshot of the monomer number s vs monomer channel axis

position x. Lines from left to right represent snapshots at increasing time. An increasing x shift is

added to the lines for increasing time for better visualization.

Figure 5 shows the long-time steady-state behaviours for different P and v values. For
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the highest P and lowest v value (Figure 5a), only a single fold forms and the fold position

shows only a small degree of fluctuation along the chain contour. For a slightly higher v

(Figure 5b), three folds form, with the same degree of fluctuation in fold position. For

intermediate v values (Figure 5c,d), one or more loops form originating from the chain end

that is closest to the barrier and feels the greatest compressive force. Finally, for high v

values (Figure 5e), loops form interspersed with folds. For different equivalent runs in this

parameter regime, the total numbers of loops and folds remain constant, but their relative

position along the chain contour vary.

For D = P (Figure 5f-j), the same trend holds, but we can see that the position of the

folds and coils along the chain contour fluctuates to a greater degree. For D > P (Figure 5k-

m), folds and coils continually form, dissolve, and move along the chain contour. However,

the total numbers of loops and folds remain more or less constant over time. Finally, for

P = 0 (Figure 5n-o), as expected the configurations become completely disordered.

These observations suggest that the chain adopts a fixed number of folds and loops for a

given set of parameters (P ̸= 0).

B. Order Parameter

We can use our angle plots to introduce an order-like variable η to quantify the type

and degree of organization experienced by the compressed chain (i.e. folded or coiled). We

define the order parameter by summing the angle ϕ relative to π/2 for all bonds:

η =
N−1∑
i=1

|ϕi − π/2|. (7)

We expect η to be close to 0 for coiled configuration and close to π/2 when folds dominate.

For a random configuration or for a combination of folds and coils, η should be somewhere

in between 0 and π/2.

We plotted η for variable v and D/P values in Figure 6a. We observe that for P = 0, η is

roughly constant as a function of v and has a value of approximately 0.6. As P increases, the

slopes of each η vs v plot become steeper and more negative. In particular, we observe that

lower v values have corresponding η values that are higher than 0.6, while higher v values

have η’s below 0.6. Evidently, as we expect low P values correspond to more disordered

states (constant η ≈ 0.6) while higher P values have folded configurations at low v (high η)
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FIG. 6. (a) Order parameter η as defined by Equation 7 plotted for different v and D/P values.

Error bars give error on the mean for three independent runs. (b) Order parameter η vs bending

energy κ and vs v visualized as a 3D plot.

and coiled configurations at high v (low η). The critical η-value η = 0.6 acts as a natural

boundary between pure folded and coiled regimes. In addition, notice that organization

starts appearing even for D/P > 1 (corresponding to κ < 1.2 in Figure 6b). While chain

organization can be readily quantified as consisting of a certain number of folds and loops for

D/P ≤ 1, which will be explored in the next section, such methods break down for D/P > 1

where the number of folds and coils are not well-defined due to high chain fluctuations. In

this case, the order parameter still reveals a small degree of residual organization.

IV. FREE ENERGY MODEL TO QUANTIFY CHAIN ORGANIZATION

Global chain organization can be inferred from the longitudinal position plot. Folds show

up as sharp bends in the plot while loops show up as staircase-like segments (Figure 7a-b).

We have been able to directly extract the number of folds and loops for all simulation runs

for which D/P ≤ 1. The clear trend is that both the number of folds and loops increase

for increasing v and decreasing P . Note that that the number of loops grows abruptly at a

critical v.

We then develop a model for determining theoretically the number of folds and loops
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FIG. 7. (a-b) Example configurations where folds are marked in red and loops are marked in blue.

In (a), there are 3 folds and 0 loops; in (b), there are 6 folds and 4 loops. (c-e) Number of folds

vs. v, for increasing P ; (f-h) number of loops vs. v, for increasing P . In (c-h), simulation results

averaged over 3 − 12 runs shown in black, with error bars representing the standard error on the

mean, and fitted theoretical model shown in red.

for a given set of parameters v and P . The model relies on calculating the free energy of

idealized chains with different numbers of folds and loops. The theoretical number of folds

and loops associated with a set of v and P are the ones that minimizes the free energy.

We assume the chain free energy has two components: the bending energy component

and the flow potential component. In the P ≥ D regime, the entropy makes a minimal

contribution to the total free energy, and we believe it can be safely ignored. The total chain

bending energy is the sum over all bonds of the bending energy per bond (Equation 3). In

the steady-state configuration, a chain segment will be immobile (on average). The force

exerted by the flow on the segment will then be given by Equation 5 with u⃗ = 0, so that

the segment will experience a constant flow force F⃗flow = −γvv⃗. This situation is analogous

to a particle in a constant gravitational potential. The potential energy per monomer will

be simply Uflow = F⃗flow · x⃗ where x⃗ is the longitudinal vector between the monomer and

the closed end of the cylindrical channel. The total flow potential is therefore the potential

energy per monomer summed over all monomers.
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We calculate the chain free energy using an idealized chain configuration. We first note

that a loop consists of ∼ 16 monomers, given our channel dimensions (D = 6) and monomer

size (σ = 1). We assume each of these 16 monomers have about the same bond angle

on average, which we call ϕavg. Therefore, the contribution due to bending energy of a

loop is 16κ[1− cos(ϕavg − ϕ0)]. Since each loop is in a plane perpendicular to the flow (our

simulations show that the coiled region is not a 3D helix, and each loop is really in a 2D plane,

as seen in Figure 3l), each monomer of the loop has the same potential energy. Therefore,

the contribution to the flow potential of a loop is 16γvvxloop where xloop is the longitudinal

position of the loop with reference to the end of the channel. xloop = 0, 1σ, 2σ, 3σ... for the

first, second, third loop, and so on, as each loop is assumed to be stacked on top of the

previous one.

Once the free energy contribution of the loops have been calculated, we calculate the free

energy of the rest of the chain, which is in folded configuration. We calculate the number

of monomers in folded configuration Nfold = N −Ncoil where N is the number of monomers

of the whole chain, and Ncoil is the number of the monomers in coil configuration. We then

approximate a configuration of nf folds as having nf sections of half-loops (8 monomers at

the same angle ϕavg) and nf +1 straight sections in the longitudinal direction. The bending

energy contribution per fold is therefore 8κ[1− cos(ϕavg − ϕ0)] while the potential energy of

each segment of length Lseg = Nfoldσ/(nf + 1) is γvv(Lsegσ + 1)Lsegσ/2, using the formula

for the sum of consecutive integers.

Using these approximate formulas, we can calculate the total free energy for different

numbers of loops and folds if parameters v, P , and ϕavg are known. The theoretical numbers

of loops and folds for a set of parameters are the numbers that minimize the total free

energy. Notice that these numbers of loops and folds are discrete in our model. In practice,

we set ϕavg as a fitting parameter as we fit the 2D curves for loop and fold numbers to the

simulation results. We also tried using two other fitting parameters: γv and ϵpen, which

adds an increasing penalty to the bending energy of a fold for increasing numbers of folds.

The rationale of the penalty term is that the larger the number of folds, the tighter the

space that each fold occupies, hence the angle of each bond inside the fold becomes sharper

and the bending energy per fold increases. However, fitting the model to simulation data

revealed that the two additional fitting parameters were not necessary to capture the chain

behaviour.
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We find that our free energy model captures the observed trends in fold and loop number

from simulations (Figure 7c-h). The detailed shape of the curves for simulation and theory

do differ at lower P and higher v, for which there are the highest numbers of folds and

loops, and the larger the numbers of folds and loops, the larger the error in our free energy

estimate, which is calculated using approximations. However, for high P and low v, the

model follows the simulation values quite well. In particular, note that the model captures

the abrupt onset of coil formation at a critical flow velocity. Note that the theoretical free

energy calculation takes only integer numbers of folds and loops, hence the discrete output

of the theoretical model in Figure 7c-h.

As for the fitting parameters, we recover ϕavg = 139±2◦ or 2.42±0.04 rad. In comparison,

a regular nonagon has interior angles of 140◦, while a regular 16-sided polygon has interior

angles of 157.5◦. We believe the discrepancy is small, and due to the fact that the actual

average configurations of the chains in the simulations are tighter than the largest allowed

loop in the channel, a fact that was also reported by Odijk and ascribed to entropic depletion

effect [16].

V. DISCUSSION AND CONCLUSION

In summary, we have established that under non-equilibrium compression in a cylindrical

nanochannel, a semi-flexible chain will self-organize into a complex interweaving of folds and

coils. In particular, we have shown that such organization arises even in the case of mildly

stiff chains (P < D), in contrast to previous findings [10]. Our simulation results take place

at an intermediate position in parameter space compared to previous studies. Studies of

stiffer chains at lower compression obtained hairpin folds configurations [10], which we have

also found. As we increase the compressive flow however, we observe coiling, a new result.

These coiled configurations, where loops form along the side walls of the cylindrical channel

wrapping around folds in the center of the channel, start resembling the layers of spools

observed in high density spherical cavities [1, 3]. Preliminary data indicates that increasing

compression further in our simulations could reproduce the multi-domain spools observed

by Curk et al. and Petrov et al.

One interesting question is why Bernier et al. did not observe coiled organization. Note

that Bernier et al. performed their simulations using nanochannels with square cross section
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for similar values of stiffness and flow. We find that compression in a square nanochannel

does not produce a configuration consisting of multiple stacked coils as does compression

in circular cross-section channels (Figure 8a-e). Interestingly, simulations in half-cylindrical

nanochannels (cross-section is a half-disk) yield half-loops on the curved side of the channel

instead of full loops as in cylindrical nanochannels (Figure 8f-j). These results suggest

that configurations are geometry-dependent. While having the chain conform roughly to

the outer boundary of the channel minimizes the total free energy in every geometry, local

regions of high curvature (i.e. sharp corners), give rise to an energy barrier for coil formation.

This energy barrier prevents the formation of complete coils for channel cross-sections that

possess distinct corners (such as square and half-cylinder channels). Note that cylindrical

nanochannels can be made experimentally from silica or other materials, either using a laser-

assisted mechanical pulling process [17], or by using a polymeric fiber as a template around

which a deposited coating forms a tube [18].

We believe that folds and coils configurations emerge in stiffer chains because they lower

the total free energy. We have shown using a simplified model that this explanation is plausi-

ble. However, a more detailed free energy model, including the fluctuation of configurations

around the energy minimum, more realistic modeling of folds and coils, and the entropic

wall-depletion effects, could yield further insights. Moreover, including the energy barrier

to coil formation in the model would be necessary to understand configurations in square

and semi-circular cross-section channels. There is rich physics in transient behaviours as

well, e.g. how coils form and evolve over time; this could be explored in a future study.

Finally, future work could more comprehensively map out the compression phase space of

where folds, coils, and other possible configurations appear.
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FIG. 8. (a-e) Snapshot of a square prism nanochannel configuration. (f-j) Snapshot of a half-cylinder

nanochannel configuration. (k-o) Snapshot of a cylinder nanochannel configuration (identical to

Figure 3k-o, reproduced for comparison purposes). (a,f,k) show the 3D representation of the chain,

with (b,g,l) indicating a longitudinal projection and (c,h,m) a transverse projection. (d,i,n) show

the monomer number s vs the channel axis position x (barrier position at dashed line), while (e,j,o)

show the bond number s′ vs bond angle ϕ.
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