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Abstract

Graph-based database systems, which use graph structures for data storage and

queries, have been emerging as an interesting alternative to relational database sys-

tems for many applications. In relational systems, a view defines a sub-set of the

database represented through a SQL query, and can but does not need to be mate-

rialized. A view can then later be used in other queries just like a regular table pro-

viding data and query simplicity, security, and sometimes increased performance.

However, while the concept of views has been an important feature for relational

database systems, we are not aware of any graph-based system supporting views.

Graph based database systems have very different query languages, deal with both

nodes and relationships, do not guarantee a fixed return format, and the storage of

data is different from relational databases. Thus, there is no straightforward way of

supporting views in a graph-based system.

This thesis investigates views for graph databases and proposes several ways to

declare and use views for the popular graph-based database system Neo4j. The first

challenge is to define a way for views to be created and used in subsequent queries.

For that, we provide a language to define and use views by extending Neo4j’s query

language Cypher. We then distinguish between views that are materialized and

those that are not and implement both approaches. For the latter we use an au-

tomatic query re-writing approach that integrates the view declaration query into

the query that uses the view. For materialized views, we use internal node and edge

identifiers specific to Neo4j, and store them within a middleware. A second chal-

lenge for materialized views is an efficient view maintenance scheme in the case of

an update to the database. We use different strategies based on the components

of a view and any incoming graph modification queries to evaluate whether a view
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should be re-evaluated or not. We evaluate the system by analyzing the cost of cre-

ating a materialized view by comparing the execution times of queries that use our

view implementations vs a set of equivalent baseline queries, and by analyzing the

effectiveness of our view maintenance. We categorize views according to two pa-

rameters and look for trends in performance within each category. The two ap-

proaches both return promising results, often performing better than the baseline

queries. The materialized approach shows a tendency to benefit views that take a

long time to create.
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Abrégé

Les systèmes de base de données orientée graphe, qui utilisent des structures de

graphes pour le stockage de données et les requêtes, sont devenus une alternative

intéressante aux systèmes de bases de données relationnelles pour de nombreuses

applications. Alors que le concept de vues a été une caractéristique importante

pour les systèmes de bases de données relationnelles, nous ne connaissons, cepen-

dant, aucun système orienté graphe pouvant exploiter les vues. Dans les systèmes

relationnels, une vue définit un sous-ensemble de la base de données représentée

par une requête SQL et peut, mais n’a pas besoin, d’être matérialisée. Une vue peut

ensuite être utilisée dans d’autres requêtes, tout comme une table classique offrant

simplicité et sécurité des données et des requêtes. Les systèmes de base de données

orientée graphe ont, cependant, des langages de requête très différents et traitent à

la fois des nœuds et des relations. De plus, ils ne garantissent pas un format de re-

tour fixe et le stockage de données est différent des bases de données relationnelles.

Ainsi, il n’y a pas de moyen simple d’exploiter les vues dans un système orienté

graphe.

Cette étude aborde ce problème et propose plusieurs façons de déclarer et d’utiliser

des vues pour Neo4j, un système de base de données orientée graphe populaire.

Le premier défi consiste à définir un moyen de créer et d’utiliser les vues dans les

requêtes. Pour cela, nous fournissons un langage pour définir et utiliser des vues

en étendant le langage de requête de Neo4j, Cypher. Nous distinguons ensuite les

vues matérialisées de celles qui ne le sont pas, puis nous mettons en œuvre les deux

approches. Pour ce dernier, nous utilisons une méthode de réécriture automa-

tique des requêtes qui intègre la requête de définition de vue dans la requête qui

utilise la vue. Pour les vues matérialisées, nous utilisons des identifiants internes
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de nœuds et d’arcs spécifiques à Neo4j, puis les stockons dans un système médi-

ateur. Un deuxième défi pour les vues matérialisées est un système de gestion de

vues efficace dans le cas d’une mise à jour de la base de données. Nous utilisons

différentes stratégies basées sur les composants d’une vue et sur toutes les requêtes

entrantes de modification de graphe pour déterminer si une vue doit être réévaluée.

Nous évaluons le système en analysant le coût de création d’une vue matérialisée

en comparant les temps d’exécution des requêtes qui utilisent nos réalisations de

vue par rapport à un ensemble de requêtes de base équivalentes. Nous analysons

aussi l’efficacité de notre gestion de vue. Nous catégorisons les vues en fonction

de deux paramètres et mesurons les tendances dans chaque catégorie. Toutes deux

approches obtiennent des résultats prometteurs qui sont souvent plus performants

que les requêtes de base. L’approche matérialisée démontre une tendance à profiter

des vues qui prennent du temps à se créer.
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Chapter 1

Introduction

1.1 Graph Database Systems

While relational database systems (RBDMs) have been intensely studied for decades,

there has also been continuous growth towards graph database systems. The graph

structure provided by these systems gives us in particular the ability to model net-

works with ease. Whether it is a road network or a social network, as soon as the

model contains plenty of relationships, graph databases might be a better option

to store this information instead of traditional relational database systems. Even

image [6] and video [20] data can be organized efficiently with graph databases. A

large contributor to the growth of graph databases is Neo4j [29][15], a open-sourced

graph-based database management system, that models databases as property graphs,

where nodes and edges can have properties similar to attributes in the relational

model. With Neo4j’s graph query language, Cypher, a wide range of queries on

nodes and edges can be executed to find specific nodes, edges, or entire paths within

the database. In addition, thanks to the graph-like structure, well-known graph

algorithms can be leveraged to improve search speeds for graph-specific queries.

Companies such as Adobe [1], Airbnb [2], and banks are already using a graph database

system.
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1.2 Views

The concept of views is widely used in relational database systems. In relational

database systems, all data is stored within tables, and related data may be spread

across many tables. Often times, users are interested in data that is spread across

tables. Thus, complex queries are written to access such related data. The standard

query language is SQL, where SELECT statements provide features to join tables ac-

cording to various conditions. These queries may potentially be difficult to write

and very expensive to run. For these purposes, relational database systems offer

views. A view is basically a SELECT query that is registered in the database system

with a specific name. As SELECT queries always return a table, a view can then be

re-used in subsequent queries as if it were a real table. A view may be materialized,

in which case the result of the query is physically stored within the database, or

purely virtual, i.e, non-materialized, in which case only the query text is stored and

dynamically executed whenever referenced. Views provide security and simplicity,

and with the materialized type of views, unnecessary re-evaluation of queries can

be avoided, preventing high I/O costs when the underlying view is complicated.

However, to support the materialization of such views, maintenance is necessary to

ensure that the view does not become outdated upon a write on the database.

While view management is well understood for relational systems, we are not

aware of graph databases supporting views. Therefore, this thesis looks at how to

define, use, and manage views in a graph-based database system, and evaluates

their usefulness. Not only do graph database systems usually store data differently

compared to relational systems [28], but the types of queries that can be executed

over these graphs are also different. There is no query language standard such as

SQL for graph-based systems. Instead, each system uses their own query language

or API. Cypher, Neo4j’s query language, allows queries with many different return

types, be it a set of nodes, a set of edges, or a set of paths, which is a combination

of both nodes and edges. As such, it is already difficult to define what a view should

look like for such a system. That is, we must first properly define what a view looks

like for a graph database.
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The second question is then how to use a view. In relational database systems a

view can be the single input for a SQL query, or it can be joined with other views or

tables in the database. Expressing this for graph database views can be challenging,

considering the query language is not similar to SQL.

Finally, we must consider the maintenance of these views. While non-materialized

views require no maintenance, materialized views can become outdated when a

change on the graph occurs, potentially qualifying or disqualifying parts of the graph

for views that already exist. Some sort of maintenance algorithm is needed to en-

sure that all views are up-to-date.

1.3 Contributions

This thesis investigates whether the concept of views developed for relational databases

is applicable and beneficial for graph-based database systems. In this regard the

thesis makes several contributions. First, we augment a graph database query lan-

guage with an extension to declare views. While our proposed language extension

should apply to any graph query language we present a concrete example by aug-

menting the syntax and semantics of Neo4j’s graph query language Cypher. Second,

we provide an implementation of this query extension on top of Neo4j in form of a

middleware. We both define solutions for materialized and non materialized views,

and compare the performance to a system that does not use views.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. We first provide in Chapter 2

the necessary background. In order to provide support for views, it is necessary to

first define what a view means in a graph database context. To understand this,

we must understand what graph databases are made of and what is returned by

a query. In particular, we first discuss the high level concepts of both relational

and graph databases, including how data is organized and what type of data can

be returned by queries from both systems. We introduce the concept of a property
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graph and graph database, and the syntax and semantics of Cypher, which is Neo4j’s

graph database query language. Due to the complexity of graphs, there are several

different forms of data that a graph query can return. We discuss several of these in

order to make sure our extension to provide views can properly handle these cases.

We also have a closer look at how views are managed in relational systems, as we are

guided by these implementations.

We then present in Chapter 3 our language extensions to Cypher and their se-

mantics. In particular, we define how to create views and how to use them in subse-

quent queries. We allow queries to only refer to a view (local) or also to data in the

underlying base graph (global).

Chapters 4 and 5 present two design and implementation options. As men-

tioned before, views in RDBMs can be materialized or non-materialized and we

design a solution for both options. In both cases we use a middleware that offers

the language extension and communicates with the database to retrieve relevant

information when necessary. While the extension is on Neo4j in particular, we do

not change Neo4j itself as all the functionality is implemented in the middleware.

The first approach we consider is the non-materialized approach presented in

Chapter 4. Only the query text of the view is stored, and executed as a sub-query

whenever a subsequent query uses the view. In order to do this, a re-write of the

query which uses the view is necessary, and we discuss how this rewrite is done.

The second approach, discussed in Chapter 5, is a materialized approach which

stores query results in the middleware for future reference. We discuss in detail how

we store the results and how they are used by queries that use the views. Further-

more, we discuss the maintenance algorithm, which identifies which views require

re-evaluations should the underlying database change.

In Chapter 6 we discuss performance results for the two approaches. We create

our own micro-benchmark. We create a set of views over a graph containing social

media data, and then define a set of queries that use these views. We evaluate the

overhead of creating materialized views and also compare the performance of the

queries that use the views for both the materialized and non-materialized options

against equivalent queries that run on the base graph. We present an in-depth per-
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formance comparison highlighting the advantages and disadvantages of the differ-

ent implementations. For materialized views, we then verify the correctness of the

maintenance algorithm and discuss its effectiveness. Finally we provide a summary

and overall guideline for using views.

In Chapter 7 we discuss related works surrounding graph database systems and

views.

In Chapter 8 we give an overall conclusion along with a few avenues for future

work.
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Chapter 2

Background

2.1 Relational Database Systems and Views

2.1.1 Relational Data

A relational database separates the data into different tables. A table most com-

monly groups all data of a certain entity type, e.g. all users. Each row of a table

corresponds to a single entity, and each column corresponds to some attribute be-

longing to the row. Tables may contain a primary key attribute where the value is

unique for each row in the table, e.g. userId in a user table. It may also contain for-

eign key columns, which are references to primary keys of other tables. Tables are

related through these primary and foreign keys, in which case they are often queried

together with a join operator.

Working Example Throughout this thesis we use as a working example the "Stack-

Overflow" dataset [18]. It originally follows the relational model as presented here.

We will later transform it to a graph model to illustrate the differences between re-

lational and graph models. The main entities are Users, Posts, and Tags. They are

related to each other. A User can write many Posts but a Post is written by a sin-

gle User. A Post can have at most one parent Post, but can be parent of many Posts.

Thus both of these relationships are one-to-many relationships. Furthermore a Post
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can have many Tags, and a Tag can be attached to many Posts - thus, a many-to-

many relationship. All this is translated as follows into tables:

• a User table which contains the following attributes: userId, displayName,

aboutme, reputation, upvotes, downvotes, and view.

• a Post table which contains the following attributes: post body, the number of

comments, a postId, and a score, the userId of the user who posted the post,

and a timestamp1.

• a Tag table which contains the tag name, which we may also call the tagId.

• a Post-Parent table, which relates a Post to a parent Post.

• a Post-Tag table that relates a Post to the Tags that are attached to the post.

Tables 2.1 to 2.5 show example instances of these tables. One-to-many relationships

can be expressed in two different ways via tables and foreign key relationships. For

the Users and their Posts, we have embedded the user reference within the post

table as foreign key, but for the Post and its parent, we outsourced this relationship

to a separate table. We made the child postId the primary key, ensuring that a child

can have at most one parent. For many-to-many relationships we must always use

an additional table as shown in the Post-Tag table where every post can have many

tags and every tag can have many posts.

2.1.2 Views in Relational Database Systems

A view is a subset of the relational data that is represented as a SQL query that re-

turns a table, and can be used in subsequent SQL queries as an input table. Thus

the definition and usage of a view are relatively straightforward in relational sys-

tems. As for implementation, a view can be non-materialized or materialized. Non-

materialized views are implemented by storing the text of the query together with

1Timestamps are not part of the original data, but we include this in the description to highlight

the possibility of an attribute which represents a relationship between two tables within the model

(User and Post), once the model is translated into a property graph representation.
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Table 2.1: User table

userId displayname aboutme reputation upvotes downvotes views

1001 foo baz 130 1213 119 18593

1002 bar doe 80 404 71 1099

Table 2.2: Post table

postId body comments score .. . . . . . .userId . . . . . . . . . . . . . .timestamp

10000 loren ipsum 50 3500 1001 2020-08-08

10001 dolor sit amet 10 500 1002 2020-08-09

Table 2.3: Post par-

ent relationship

child . . . . . . . .parent

10000 10001

Table 2.4: Post-tag

relationship

postId tagId

10000 databases

10000 neo4j

10001 databases

10001 python

Table 2.5: Tag table

tagId

databases

java

neo4j

python

a view name. When a query uses a view name as one of its input tables, the query

is rewritten replacing the view name with the SQL query that defines it. For in-

stance, if a view v is created with the view declaration SELECT a,b FROM table,

and a query SELECT * FROM v uses the view, then this query is first rewritten by

replacing v with a subquery as SELECT * FROM (SELECT a,b FROM table). The

query optimizer will then automatically optimize the query and rewrite it to SELECT

a,b FROM table.

Databases also offer materialized views. Upon declaration of a view, the corre-

sponding query is executed and the result is stored in a view table similar to stan-

dard database tables. This prevents re-evaluation of the view declaration query ev-

ery time a view is used, but also leads to several disadvantages. Materialized views

require maintenance in order to prevent views from becoming stale. That is, when-

ever a table which a view is built from undergoes a change - an update, delete, or

insert, this change may affect the view. For instance, a delete on the base table of a

8



row which qualifies for the view requires the corresponding entry in the view to be

deleted as well. There are two options for maintenance. The first is to invalidate and

re-compute the view: when an underlying table is updated, then the view table is

deleted. The query used to create the view is entirely re-executed and the results are

stored into a new table. While this is guaranteed to be correct, frequent updates to

the database will cause views to be recomputed very often, which is computation-

ally expensive. The second option, which circumvents this downside, is to provide

incremental maintenance[9][23]: whenever one of the underlying tables is updated,

the view table is also updated to reflect the change in the underlying table. For incre-

mental view maintenance (IVM), the view does not undergo a full re-computation.

Instead, the changes on the base tables are evaluated to determine whether they

affect the views, and if so, the changes are applied as well onto the view. However,

it can be quite complicated to determine how the view needs to be updated. Thus,

incremental view maintenance is often only supported when the view declaration

queries are simple. Complex queries such as joins usually require a recomputation

upon invalidation.

2.2 Graph Databases

While relational databases are organized based on the relational model of the data,

graph databases are often used when the relationships between the data are partic-

ularly important.

2.2.1 Property Graphs

We look specifically at graph databases that follow a property graph model. A prop-

erty graph consists of nodes and relationships. While relational databases represent

entities as rows in a table, property graphs represent entities as nodes. These nodes

may also have attributes, which are represented by key-value pairs called properties.

A property of a node is similar to an attribute for relational databases. In addition to

properties, nodes can also be optionally tagged with one or more labels. A label in a

graph database is often used analogous to the table name in a relational database,
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identifying for each entity what type of entity it is. However, labels and properties

are not necessarily non-empty. That is, a node or edge may have no label and they

may contain null property values. A relationship is an edge between two nodes. In a

property graph, relationships may be unidirectional in which case they have a start

and an end node, or non-directional, in which case the edge simply connects two

nodes. Like nodes, relationships may also contain properties and a label to identify

what kind of relationship it is.

A powerful feature of graph databases is a constant time cost for edge traver-

sals [24]. Due to the storage of nodes and relationships internally, graph traversals

are typically efficient. This, along with the existence of graph algorithms, such as

search or shortest-path, makes it efficient to look for common patterns inside data

represented by graph databases.

Translated Working Example To show an example of such a graph, we translate

the StackOverflow data presented in the previous section to a property graph. See

Figure 2.1 for a visual representation of the graph. We categorize nodes with three

possible labels, Users, Posts, and Tags. As for relationships, a User can post a Post,

indicated by a POSTED relationship, a Post can contain one or more tags, indicated

by a HAS_TAG relationship, and a Post can be a child of another Post, indicated by

a PARENT_OF relationship. While in the relational model the relationships were

represented by foreign key references to other tables, all relationships are explicit

in graphs. As with the attributes in the relational database, each type of node and

the POSTED relationship also contains different attributes. In fact for User, Tag,

PARENT_OF, and HAS_TAG the attributes are the same as the ones in the corre-

sponding tables. However, we split the Post table into a Post node, and maintain

the poster information (originally embedded in the Post table as a foreign key) as a

relationship from the User node. In our example all relationships are directed.
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Figure 2.1: StackOverflow data translated into a property graph representation

2.2.2 Cypher Query Language

While SQL is a standard language for relational databases that basically all relational

systems have adopted, there is no such standard for graph databases. Thus, in this

thesis we take Cypher [14][15], the query language for Neo4j, as an example. A

Cypher query can be used to fetch information from the graph database. Queries

can have different return types: from a single attribute of a node to a set of nodes

to a set of paths within the graph. This makes it more complex than SQL SELECT

queries that always return a table. Cypher queries are visually intuitive, and use pat-

terns to match onto the graph. In a query we may specify particular types of nodes

or relationships that we wish to match on.

We now introduce three types of queries. Note that this categorization is not part

of Cypher’s official definitions but will be useful later when we discuss view details.

Node Queries We call a query a node query if it only returns nodes. The most basic

form of a node query returns all nodes:

MATCH (n) RETURN n

A set of parentheses indicates a node within the graph. We do not necessarily need

to enclose a variable within the parentheses, but in order to return something a
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variable must be included in the match pattern. Therefore, we use n to refer to the

node. In this query, we search for all nodes in the graph, meaning that this query

will return Users, Posts, and Tags. A node is returned in its entirety, including all its

properties and labels.

Cypher allows us to indicate conditions that a node must fulfill to be returned.

The condition can be the specification of a label or a restriction on attributes and

their values. For instance, we may include a label condition on n to match only on

nodes labeled with User with the following query:

MATCH (n:User) RETURN n

By appending a colon along with the label to the node variable, we add a condition

to the query. Referring to SQL, this query is similar in nature to SELECT * FROM

Users. A node in the pattern may also contain only a label, but like with the previous

example, we require a variable in order to return something.

Aside from the label condition, we may also include conditions on the attributes

of the nodes. Like in SQL, attribute conditions are specified with a WHERE key-

word, and can be used to access and compare attributes. Similarly to SQL, where

attributes are referred to with tableName.attribute, we refer to attributes with

node.attribute. The following query filters Users with a condition to only return

those whose reputation property is above a certain value.

MATCH (n:User) WHERE n.reputation > 120 RETURN n

Within the conditions that may be specified, the IN operator indicates member-

ship. Given a list or set S and an element e, the IN operator will evaluate to true if

S contains e and they share the same datatype, otherwise it will evaluate to false.

For example, consider the following query, which will only return User nodes which

contain a userId attribute whose value is between 1 and 5:

MATCH (n:User)

WHERE n.userId IN [1,2,3,4,5]

RETURN n
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Node queries with paths

The next type of query is one which includes a path in its pattern matching.

MATCH (n:User)-[:POSTED]->(p:Post) RETURN n

We see that as with nodes, edges can also have label or attribute conditions. This

query matches on patterns where there exists a directed edge from any User node

to any Post node, where said edge is labeled as POSTED. In SQL, such semantics often

lead to joins between tables, as we see in the following SQL query which returns the

same information from the relational model:

SELECT n.userId, n.aboutme, ..., n.views

FROM User n, Post p

WHERE n.userId == p.userId

A relationship in Cypher is indicated by square brackets surrounded by a dash on

both sides: -[]-. The relationship may be unidirectional (-[]-> or <-[]-), bidirec-

tional (<-[]->), or nondirectional (-[]-) (functionally the same as bidirectional).

Like with nodes and parentheses, a relationship does not need to have a variable nor

a label assigned to it within the pattern; it may contain either, none, or both. In fact,

had we used -[]- in this example, the result would have been identical, since 1) all

User-Post relationships are already POSTED relationships according to the model

and 2) there is only one type of User-Post or Post-User relationship. For the same

reasons, it would also be correct to omit p:Post in the second pair of parentheses.

We can omit p because we have no attribute condition for it nor do we return it.

Note while the query contains a path constraint it still has as a return set only

nodes. This time, it only returns Users that have posted at least one Post. We may

also choose to return multiple nodes (per pattern match). For example, if we are

interested in returning both n and p, we may do so by specifying RETURN n,p.

Relationship queries

A query with a path pattern can also return relationship information. In fact, in

order to return a relationship, a path must be specified. We can then return a re-
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lationship if we assign a variable to it. For example, using a simple query we can

return all POSTED relationships:

MATCH (n:User)-[r:POSTED]->(p:Post)

RETURN r

Path queries

Finally we look at the same query but we change the return type from sets of nodes

or edges to a set of paths. This can be done by assigning a variable to the entire

pattern:

MATCH p = (n:User)-[r:POSTED]-() RETURN p

This returns a set of paths: for each path which satisfies the pattern, we get a User

node, a POSTED relationship, and a Post node.

Other types of queries

A query can also return both nodes and relationships. For example, in the above

query we could return n,s. Furthermore, we may also choose to return a specific

attribute of a node or relationship. An example of returning an attribute of a node

is:

MATCH (n:User) RETURN n.userId

An example of returning an attribute of a relationship would be:

MATCH (n:User)-[r:POSTED]-(p:Post) RETURN r.timestamp

While queries that return attributes, and queries that return both nodes and rela-

tionships are allowed in Cypher, our language extension to define views introduced

in Chapter 3 does not allow these forms of queries as input.
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Graph Changes

Finally we look at Cypher statements that update the graph. We limit updates to

three different types: additions of nodes or edges, deletions of nodes or edges, and

modifications of node or edge properties. A node or edge may be added at any time

with the CREATE keyword. A node may be deleted only if it has no edges with any

other nodes2, while an edge may be deleted at any time with the DELETE statement.

Finally, a node or edge property can be changed at any time with the SET keyword to

set a property, or the REMOVE keyword to remove a property. Syntactically, these key-

words must come after the MATCH pattern and conditions, and replaces the RETURN

statement:

MATCH (n:User)-[:POSTED]-(p:Post)

WHERE n.userId=100

SET n.reputation=150

We note that studies have been done and inconsistencies have been found regard-

ing Cypher’s lack of atomicity in graph update statements [16]. However, these cases

are very specific and we go with general semantics and do not consider queries with

unpredictable behavior.

Unique identifiers in Neo4j

Neo4j has a particular way of storing nodes and relationships. Each node is as-

signed an identifier unique in regard to all other nodes, and each relationship is

assigned an identifier unique in regard to all other relationships. That is, a node

with a User label cannot have the same identifier as a node with a Post label, and

a relationship with a POSTED label cannot have the same identifer as a relation-

ship with the PARENT_OF label. However, any node can have the same identifier

as any relationship. Neo4j also has an internal index on these identifiers, which is

used whenever the function ID(n), which returns the identifier of n, is called from

a query. This makes queries on identifiers particularly efficient.

2Cypher also supports a DETACH DELETE which automatically deletes edges attached to a node to

be deleted, but our current implementation does not support this statement.
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2.2.3 Additional Cypher Functions and Clauses

Cypher provides many more language features. We do not support them within

queries that define views, but we use several of them in our implementation to sup-

port non-materialized views. In particular, Cypher works with the graphs and query

return values in various formats, and distinguishes between rows and lists. In most

parts of the thesis we ignore the subtle differences but when we rewrite queries for

non-materialized views we have to use some of Cypher’s special functions to trans-

form return values in the formats we need and to pipeline results across several

queries. We shortly outline these functions here.

Functions on path variables

Cypher provides NODES and RELATIONSHIPS functions. Both of these functions

map from a given path variable to a list of nodes and relationships respectively

which belong to the path variable. When more than one path is returned, the list

returned contains all nodes (resp., relationships) from all paths.

COLLECT. Any result a Cypher query returns as we have seen in the previous sec-

tion (nodes, edges, attributes, paths) is represented as a collection of rows. This is

very similar to relational systems where we get a table-like representation where

each row represents a record that matches the pattern. For example, looking at

COLLECT(ID(n)), with n referring to nodes, ID(n) returns the identifiers of these

nodes (in row format) and COLLECT then returns a list that contains all these identi-

fiers.

UNWIND. UNWIND transforms any list into rows. For example, consider the follow-

ing UNWIND usage:

MATCH p = (:User)-[]-(:Post)

UNWIND NODES(p) as n

UNWIND RELATIONSHIPS(p) as r

We first use the functions NODES and RELATIONSHIPS to get a list of nodes and rela-

tionships of all qualifying paths, and then transform these lists into rows. In Chapter
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4 we see how this becomes helpful in rewriting queries.

WITH... WITH pipelines results from one query to the next. Instead of returning

from the first query, WITH can be used to bring any result from the first query to

the next. WITH can be combined with all previous functions, so graph data can be

transformed or modified before pipelining it to the next query, much like SQL’s WITH

clause. We can also use this to specify additional constraints, such as a uniqueness

constraint onto data.

DISTINCT Using the DISTINCT keyword, we ensure the node and relationship sets

do not contain duplicates. Assume n to be a set of nodes and r to be a set of rela-

tionships that were determined by some Cypher MATCH. Then we can pipeline them

in the following way:

WITH DISTINCT n, r

MATCH (a)-[rel]-(b)

WHERE a IN n AND rel IN r

RETURN ...

With WITH, we pipeline DISTINCT n,r to the next query, which can use the mem-

bership conditions with n and r.
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Chapter 3

Language Extensions for View

Creation and Usage

In a relational database, a view becomes conceptually equivalent to a table and can

be re-used in queries or even to define further views. Views can be used in combi-

nation with original tables in the database, or with other views. We want a similar

concept for graph databases. However, this is more challenging, as graph query re-

sults can have various types as we have seen in the previous chapter. The query

language we propose is an extension of Cypher, with added features used to specify

whether the query is meant to declare a view (view declaration query), or use a view

(view use query). In this chapter we discuss the syntax for the language and the se-

mantics for creating and using views. We use a stepwise approach first introducing

simple views, which do not re-use previously defined views in their own definition,

and only later in the chapter we extend to view declaration queries that use existing

views in their definition. We define three categories that a view can belong to; a view

is one of a node view, a relationship view, or a path view, depending on the result

of the view declaration query. We then introduce the language extensions to use an

already defined view in a view use query. Finally we introduce the concept of scope

with respect to queries using views, and its semantics.

18



3.1 Creation of Simple Views

We start by discussing how a simple graph view is created. We define a simple view

to be one where the view declaration query is entirely on the base graph. We will

look later at complex views where the corresponding query refers not only to the

base graph, but also to other views that have already been defined.

A view creation command looks as follows:

〈viewInit〉 ::= ’CREATE VIEW AS’ 〈viewContents〉

〈viewContents〉 ::= 〈name〉 〈scope〉? 〈query〉

We indicate a view creation with the CREATE VIEW AS keyword. A view creation

must contain a name to associate the view with. This is followed by scope (in the

following example, the GLOBAL keyword), which we ignore for now but we discuss

in detail later, and finally the Cypher query that defines the result to which the view

refers to. We refer to this part as the view declaration query. For example, suppose

we want to define a view that refers to all User nodes that have a reputation greater

than 1000. We do so with the following:

CREATE VIEW AS rep1000users

GLOBAL

MATCH (n:User)

WHERE n.reputation > 1000

RETURN n

3.2 Types of Views

In a relational system a view is always represented by a table, whether it is virtual

or not. In a graph database system we can always think of a view as sets of ele-

ments, but we make the distinction of what kind of elements are in each set. Here

we categorize views with a type depending on the type of data that is returned by

the query. As we have already indicated before not all query constructs allowed in

Cypher can be used for view declaration queries. Instead only queries that return
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nodes, or only return relationships, or only return paths are supported. Thus, we

distinguish between three different types: node views, relationship views, and path

views:

• A view is a node view if the query that defines the view only returns nodes.

• A view is a relationship view if the corresponding query only returns relation-

ships (i.e, edges).

• A view is a path view if the corresponding query returns paths (which contain

both nodes and relationships).

Furthermore, we specify restrictions on how these queries must be structured.

Node Views

A node view creation must end with a return statement which only refers to node

variables in the query. The query itself may contain paths and relationships, but

the return type must be only nodes. Using the working example from Chapter 2,

we define a node view which returns all User nodes that have POSTED a Post which

contains a "neo4j" Tag:

CREATE VIEW AS usersThatPostedAboutNeo4j

GLOBAL

MATCH (n:User)-[:POSTED]-(:Post)-[:HAS_TAG]-(t:Tag)

WHERE t.tagId = ’neo4j’

RETURN n

If we also wanted to return the corresponding posts, then we would have to provide

a variable for this and return it (i.e, ..-[p:Post]-.....RETURN n,p).

Relationship Views

As with node views, a relationship view’s return statement must refer only to rela-

tionships. In the following example, we store all POSTED relationships in a view:
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CREATE VIEW AS postRelationships

GLOBAL

MATCH ()-[r:POSTED]-()

RETURN r

Path Views

Finally, a path view may only return path variables. Take the previous view cre-

ation, which was a relationship view. Let us now store the entire path in the view -

that is, for every User-Post relationship, we store the User node, the Post node, and

the POSTED relationship:

CREATE VIEW AS postPaths

GLOBAL

MATCH p = ()-[:POSTED]-()

RETURN p

3.3 Simple View Usage

We now look at how a view is used. We start with simple usage, i.e., with queries that

only refer to a single view and nothing else. We will later see complex usage, where

a query refers to also data in the base graph, or to multiple views. View usage syntax

is as follows:

〈viewUse〉 ::= ’WITH VIEWS’ 〈name〉+ 〈scope〉? 〈query〉

where name refers to the view to be used and query refers to the Cypher query to

be executed over the view. We refer to this as a view use query. The query itself is

almost identical to a standard Cypher query, with small restrictions that we discuss

shortly. We ignore "scope" for now. An example for a simple view usage is as follows:

WITH VIEWS rep1000users

LOCAL

MATCH (n)
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WHERE n.name = "Smith"

RETURN n

In this example, we return all nodes in the view rep1000users defined in the previ-

ous section, where users have the name Smith. Since we only refer to one view, it is

obvious that we only wish to return nodes from that view.

3.4 Complex View Usage and Scope

With simple view creations, we use view declaration queries that only refer to the

base graph. With simple view usages, we refer to a single view, and restrict the query

to search only within the data contained in that view. However, a query should also

be able to refer to several views at once, or to a view and data from the underly-

ing base graph, just like how a SQL query on relational data can refer to one and

more views and original tables in the database. We refer to these queries as com-

plex queries and we need the concept of scope to make clear which parts of the

query belong to which data.

Scope can take two possible arguments: LOCAL and GLOBAL. LOCAL is used when

we only care about data in the view(s) that are referenced in the query but we do not

need any data from the underlying base graph for the query. That is, any node or re-

lationship mentioned in the query must be in one of the views. In contrast, GLOBAL

is used when any part of the query can refer to the original graph. Furthermore, we

impose two restrictions on the query:

• a LOCAL query must be followed by a membership condition for each node

or relationship in the query. That is, for each node and relationship we must

indicate to which view it belongs. However, if only one view is referred to, then

these conditions need not be specified. We have seen examples of this when

we looked at simple view usage.

• a GLOBAL query refers also to the underlying graph, along with one or more

existing views. It must use a membership condition for all nodes or relation-
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ships that are intended to belong to a particular view. Nodes and edges that

do not have such a membership condition refer to the base graph.

Indicating view membership We use the membership condition with the IN key-

word discussed in Chapter 2 to indicate whether a node/relationship in the graph

should belong to a view. The syntax is as follows: any variable in the query may

be used as the left-hand side of the IN operator with the right-hand side being the

name of the view to which it is intended to belong to.

3.4.1 Example Queries

For an example, consider the following GLOBAL view usage, given the same rep1000users

view defined earlier:

WITH VIEWS rep1000users

GLOBAL

MATCH (n)-[:POSTED]-(p)

WHERE n IN rep1000users

RETURN n

In this example, the POSTED relationship and the nodes p (from Posts) refer to ele-

ments of the underlying base graph, but n must also be in the specific view. That is,

this query selects those users of the view that have posted at least one post. As such,

this query represents a join between information in the base graph and the view.

Now consider the following example, which uses two arbitrary views, v1 and v2,

along with the base graph to return all relationships that exist in the base graph

between nodes in v1 that are Users and nodes in v2:

WITH VIEWS v1 v2

GLOBAL

MATCH (n:User)-[r]-(m)

WHERE n IN v1 AND m IN v2

RETURN r
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This time, both n and m are part of existing views, and the GLOBAL keyword indicates

that r may be a relationship that belongs to the original graph; that is, it does not

necessarily need to belong to either v1 nor v2. Additionally, we impose a label con-

dition onto n such that n must now also be a User node. That is important, as the

view v1 may possibly contain nodes that are not User nodes, but also other types of

nodes (e.g. Tags or Posts).

The LOCAL keyword restricts all nodes and relationships inside the query to the

view(s) specified at the start. As such, all of these nodes or relationships must be

part of at least one membership condition, since LOCAL queries do not refer to the

base graph. For example, we look at the following view usage which uses two views

v1 and v2. In the query, we look for all node-to-node relationships that either are

contained entirely in v1 or contained entirely in v2 and return the pair of nodes for

each match.

WITH VIEWS v1 v2

LOCAL

MATCH (n)-[r]-(m)

WHERE (n IN v1 AND r IN v1 AND m IN v1)

OR (n IN v2 AND r IN v2 AND m IN v2)

RETURN n,m

3.5 Complex View Creation

View creation becomes equally more expressive with scope. We can create views

that do not only refer to the base graph, but also to other views. Consider the fol-

lowing GLOBAL node view creation, given an arbitrary view exView:

CREATE VIEW AS exampleInit WITH VIEWS exView

GLOBAL

MATCH (n)-[]-(p)

WHERE n IN exView

RETURN p
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In this example, we wish to use exView and join it with a part of the existing graph

database. In order to restrict n to belong to exView, we use the membership con-

dition. Since only n is subject to the condition, the unnamed relationship and the

node pmay refer to data in the original graph. Semantically, this is a view for a query

which returns all nodes which have some relationship with any node who belongs

to the view exView.

Furthermore, we can also create views that refer to other views but not the base

table. Consider as an example the following LOCAL view creation, which returns all

nodes of exView into a new view:

CREATE VIEW AS exampleInit WITH VIEWS exView

LOCAL

MATCH (n:Post)

WHERE n.score > 700

RETURN n

Because only one view (exView) is specified, then all nodes (and edges, if the query

includes any) are by default associated with it. However, if another view, exView2

were to be included alongside exView, then it is necessary to specify to which view

each of the nodes and relationships belongs to:

CREATE VIEW AS exampleInit WITH VIEWS exView exView2

LOCAL MATCH (n)

WHERE n IN exView AND n IN exView2

RETURN n

The requirement for the membership condition may be many-to-many with regards

to the number of views being referred to. In this example, we specify that n must

belong to both exView and exView2, meaning that we return nodes that belong to

both views.
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Chapter 4

Non-materialized Views

In Chapter 3, we proposed and described a language extension for Cypher to be able

to define and use views in graph database systems. In this section, we discuss the

implementation of this language extension in form of non-materialized views.

We maintain a middleware system which accepts Cypher queries and our lan-

guage extensions as input, rewrites queries as necessary, and communicates with

the Neo4j database. The middleware also keeps some meta-information.

Figure 4 shows the overall architecture. Parts of the figure also refer to mate-

rialized views and we explain them in the next chapter. We can see that the mid-

dleware has a parser. Normal queries are simply forwarded to Neo4j. When view

extensions are used, they are forwarded to the query rewriter. In the context of non-

materialized views, all view management tasks are implemented within this query

rewriter.

4.1 View Creation

For non-materialized views, upon receiving a view declaration query, we simply

have to store the query text. Therefore we maintain a query table within the mid-

dleware which keeps track of all views and their declaration queries. When a view is

instantiated, this information is stored inside the table.
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Figure 4.1: Overall Architecture. Arrows indicate communication from one compo-

nent to another component.

4.2 View Usage

When receiving a view use query, the middleware has to rewrite the query so that

the view declaration query is included in the rewritten query. When we re-write

queries for non-materialized views, we do so by inserting sub-queries into the view

use query. The sub-query, when executed, can be considered a temporary "on-the-

fly" materialization of the view. We must be able to handle the rewriting of any view

use query, whether it uses a node, relationship, or path view. In particular, path

queries are represented in a different way within Neo4j, so we will make proper ad-

justments for path views. Thus, we look at the rewriting process with these concerns

in mind.

To re-write view use queries we translate any of the queries following the syn-

tax in Chapter 3 back into a query that is fully understandable by Cypher and does

not include any of our language extensions. We do this in the following way: for
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each view referred to in the view use query, we execute a variation of the original

view declaration query as a sub-query and hold the results in a set S. Recall from

Chapter 2 the built-in index on node and relationship identifiers within Neo4j. We

take advantage of this index while re-writing the query, such that each sub-query

only returns the identifiers of the resulting nodes and edges rather than the entire

result. Then, we replace all membership conditions "n IN viewName" in the view

use query with ID(n) IN S.

We now illustrate this process through some examples. We first begin with a

simple example using only node views. Let us have two node views, view1 and

view2 with their declarations as follows:

CREATE VIEW as view1

MATCH (n:User) WHERE n.upvotes > 250

RETURN n

CREATE VIEW as view2

MATCH (n:User) WHERE n.reputation < 1000

RETURN n

Using only one view

Suppose we wish to return all nodes from view1 with an additional condition on

reputation being lower than 100. We first execute the view declaration query for

view1 and replace the return statement with the function, COLLECT. Recall from

Chapter 2 that COLLECT is a function on any "row-like" data which aggregates all

results pointed to by the original return variable into a set.

MATCH (n:User) WHERE n.upvotes > 250

WITH COLLECT(ID(n)) as view1

The WITH clause saves the set we call view1 and allows us to pipeline it to the next

part of the query. The next step is to re-write the view use query. Let the following

be the view use query:

WITH VIEWS view1 LOCAL MATCH (n:User)
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WHERE n.reputation < 100 RETURN n

We remove the language extensions we introduced to use a view, i.e. everything

in the query up to the MATCH, and add the membership conditions, completing the

rewrite.

MATCH (n:User) WHERE n.reputation < 100

WHERE ID(n) IN view1

RETURN n

Multiple views in the same view use query

Now consider a view use query that refers to multiple views. In this case, we use

one WITH clause per sub-query. Additionally, each time the WITH clause is used it

must include not only the set returned by the current sub-query, but all sets from

previous sub-queries. Thus given n views referred to in the view use query, we use n

WITH clauses, and the i th WITH clause contains i sets to be pipelined to the next. As

for the view use query itself, the same rules apply as before, with no modifications.

As an example, we join view1 and view2 using the following view use query:

MATCH (n:User) WHERE n IN view1 AND n IN view2. Given this view use query,

we first create a sub-query to replace the first view:

MATCH (n:User)

WHERE n.upvotes > 250

WITH COLLECT(ID(n)) as view1

As we have another view to use, we use another sub-query. This time, in addition to

the result set generated from the current sub-query, we also pipeline the previous

results:

MATCH (n:User)

WHERE n.upvotes < 1000

WITH view1, COLLECT(ID(n)) as view2

Finally we reach the view use query itself, and our last step is to rewrite it with the

appropriate set conditions:
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MATCH (n:User)

WHERE ID(n) IN view1 AND ID(n) IN view2

RETURN n

While our examples only show view use queries that use node views, the same prin-

ciples hold for relationship views.

Using a path view

The re-writing follows a different rule when path views are involved. We explain

the steps first along an example. For that, consider the following path view declara-

tion query:

CREATE VIEW AS pathView

MATCH p = (n:User)-[:POSTED]-(:Post) WHERE n.reputation < 1000

RETURN p

The result of this query are all the nodes and edges in the matching paths. Now as-

sume the simple use query MATCH (n:User) WHERE n IN pathView that wants to

have only the user nodes in the view. To allow this, we break down the path vari-

able of the view declaration query into nodes of the path and relationships of the

path. Recall that there exist two functions to group nodes and relationships for a

given path: the NODES and RELATIONSHIPS functions. Using these functions we can

rewrite the view use query to embed a sub-query for the view as follows:

MATCH p = (n:User)-[:POSTED]-(:Post) WHERE n.reputation < 1000

UNWIND NODES(p) as pathViewN

UNWIND RELATIONSHIPS(p) as pathViewR

WITH DISTINCT pathViewN, pathViewR

WITH COLLECT(ID(pathViewN)) as

pathViewNid, COLLECT(ID(pathViewR)) as pathViewRid

MATCH (n:User) WHERE n.upvotes < 100 AND ID(n) IN pathViewNid

RETURN n

We use the extra functions and clauses of Neo4j that were introduced in Chapter 2

to transform the path data of the view declaration query into two sets that can be
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fed to the view use query. The COLLECT and ID functions only work on row-like data

hence the need to UNWIND in a previous step. In summary, the exact steps taken to

rewrite a view use query that uses a path view are as follows:

1. Execute original view declaration query as a sub-query.

2. Unwind both the nodes and relationships of the resulting path variable.

3. Ensure the sets do not contain duplicate values (for space and performance

optimizations).

4. Get all identifiers and collect them into a set for both the node and relation-

ship sets.

5. Execute view use query, rewriting the membership condition.

LOCAL vs GLOBAL

In Chapter 3 we impose several restrictions to queries. LOCAL must include at

least one membership condition for all nodes and relationships that are referenced

as part of the view use query, and GLOBAL queries assume any node or relationship

without such a condition may belong to the underlying graph. The resulting rules

that we described above hold for both LOCAL and GLOBAL view use queries.

4.3 View Maintenance

Non-materialized views do not require view maintenance. Every view-use query ex-

ecutes the view declaration query on the latest instance of the graph. Thus, Cypher

modification statements are simply forwarded to Neo4j for execution without any

extra actions at the middleware.
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Chapter 5

Materialized Views

We implement materialized views by executing the view declaration query once it is

submitted and storing the result in the middleware. We will see that we actually do

not store the full result, but only the identifiers of the nodes and edges in the result

set. When a query uses the view it has to be again re-written to take advantage of the

information stored in the middleware. Finally, when updates change the graph, we

have to be able to determine whether that change might affect the result of a view

and if yes, take appropriate actions. In the following we describe all that in more

detail. Figure 4.1 shows the extra data-structures we need for materialized views.

5.1 View Creation

When a materialized view is declared, the underlying query is first executed, and

the result materialized. However, we do not actually execute the original view dec-

laration query, but instead rewrite it to only return the node and edge identifiers of

the nodes and edges in the result set. That is, instead of a full materialization, we ac-

tually build something like an "index" that is then used when a query uses the view.

These identifiers are stored in the middleware. For that, we maintain two hashta-

bles: a table which maps each view to a set of node identifiers referencing the nodes

that are in the view’s result set, which we call the node table, and a corresponding

table which maps each view to a set of relationship identifiers, which we call the
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edge table. Recall that we have categorized views as node views, relationship views

and path views. For node views, there is no entry in the edge table, for relationship

views, there is no entry in the node table. Since a path view may contain both nodes

and relationships, path views will have entries in both tables.

Working Example Throughout this section we work with an example to help illus-

trate the data structures mentioned. Node and relationship views follow the same

re-writing order. For example, a view:

CREATE VIEW as myView

MATCH (n:Label1)-[:REL1]-(m:Label2)-[:REL2]-(p:Label3)

WHERE {n-condition} AND {m-condition} AND {p-condition}

RETURN p

is rewritten to

MATCH (n:Label1)-[:REL1]-(m:Label2)-[:REL2]-(p:Label3)

WHERE {n-condition} AND {m-condition} AND {p-condition}

RETURN ID(p)

and the result is stored in the node table. A path view is handled slightly differ-

ently: a path view’s query is not rewritten. Instead, the path itself is returned to

the middleware and the middleware itself unwinds each path to extract the unique

identifiers for the nodes and edges. These are then added to the respective tables.

5.2 View Usage

When a view is used in a query, the view use query is first parsed to find which views

are referenced, and where the IN keyword appears. Suppose that we have the node

and edge tables shown in Tables 5.1 and 5.2, and the following view use query:

WITH VIEWS view1 view2

GLOBAL MATCH (n:Label1) WHERE n IN view1 AND n IN view2

RETURN n
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Table 5.1: Node Table

view identifiers

view1 [1,3,5,7,9]

view2 [1,2,3,4,5]

Table 5.2: Edge Table

view identifiers

view1 [1,2,3,4]

view2 [3,4,5,6]

For all instances of "<variable> IN <viewName>", we replace it with

"ID(<variable>) IN <identifierSet>". Therefore the re-written use query that

is forwarded to Neo4j is as follows:

MATCH (n:Label1) WHERE ID(n) IN [1,3,5,7,9] AND ID(n) IN [1,2,3,4,5]

RETURN n

Now suppose a view use query that matches on a relationship of view2 as well:

WITH VIEWS view1 view2

LOCAL MATCH (n)-[r]-(m)

WHERE n IN view1 AND m IN view2 AND r IN view2

RETURN n

Like with the previous query, we perform the same re-writing, but we re-write the

membership for the relationship r as well:

MATCH (n)-[r]-(m)

WHERE ID(n) IN [1,3,5,7,9] AND ID(m) IN [1,2,3,4,5]

AND ID(r) IN [1,2,3,4]

RETURN n

As Neo4j manages indices for node and edge identifiers, finding the matching nodes

during the execution of the rewritten view use query should be very fast. From there,

the conditions in the MATCH phase of the use query are only executed on the relevant

nodes and edges and not all nodes or edges of the base graph. Overall, the rewrite

process is much simpler than with non-materialized views. However, the middle-

ware has to store extra information.
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5.3 Maintenance

When the base graph is updated, a view result might become outdated. We ap-

proach view maintenance with reevaluation rather than incremental updates. That

is, the challenge is to detect with as much precision as possible whenever a view re-

quires reevaluation. Upon a graph change, the middleware must decide for each

view whether or not it should be re-evaluated. In this section we introduce the

building blocks for the maintenance algorithm. The basic idea is to keep track of

the relevant information in the view declaration query. We then discuss the differ-

ent types of graph changes and how they affect views in different ways.

Recall that a graph change can be of three different types:

1. A node or relationship creation. A node or relationship can be created along

with attributes.

2. A node or relationship deletion. A relationship can be deleted at any time

while a node can only be deleted if it has no relationships with other nodes.

3. A node or relationship attribute modification: an attribute may be set to a

value or removed to contain no value.

Given this, we ask ourselves how different kinds of views are affected by each of the

above changes. We describe our solution in two steps. We first outline a simple so-

lution that is based solely on the labels of nodes and relationships. At a high level,

if a graph modification adds/deletes/updates a node/relationship with a label that

is also referenced in the view declaration, then the view is invalidated. This is con-

ceptually similar to a view invalidation in a relational system, where a modification

on a table invalidates all views that reference that table - a very common approach

in existing systems. However, this simple solution might lead to many unnecessary

invalidations, or false positives. We have a false positive if we decide to invalidate a

view, but the graph modification did not change the result of the view declaration

query. Therefore we refine the solution to also consider the attribute conditions de-

fined in the view declaration queries in order to reduce the number of unnecessary

invalidations.
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Our solution stores additional meta-information in the middleware in a depen-

dency table, which is a hashtable where the key is a label (either label of a node or a

relationship), and the value will guide us to which views to invalidate. Upon a mod-

ification, this dependency table is consulted to determine the set of views that need

to be invalidated. For simplicity of description we maintain a single dependency

table that keeps track of both nodes and relationships. This requires nodes and re-

lationships to have disjoint labels. We can simply remove this restriction by having

separate dependency tables for relationships and nodes.

5.3.1 Invalidation based on Labels

In this section, our invalidation mechanism only looks at nodes and relationship

labels.

5.3.1.1 Dependency Table

Any Cypher query must contain at least a node. Whether the node is returned or

not does not matter, but a pattern to query the graph cannot exist without a starting

point for the query. Likewise, any Cypher query that contains a path must obviously

also contain a relationship.

The dependency table is initially empty. Whenever a view is created, the depen-

dency table is updated on-the-fly as follows. For each node and relationship label

in the view declaration query, we look in the table to find an entry corresponding

to the label, and create the entry if it does not already exist. Furthermore, for nodes

and relationships in a view declaration which do not have a corresponding label, we

create an entry with key node* (and respectively edge*). All values corresponding to

that entry will be view names that depend on it. If any key already exists in the table,

then there is no need to re-create it, however we do update the value to include the

newly created view name.

Assume now as an example a graph that contains nodes with labels Label1 and

Label2 and relationships with label REL1, and some nodes with no labels. We start

with a simple node view as the only view in the system:
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CREATE VIEW as V1

MATCH (n:Label1)

WHERE n.id < 50

RETURN n

Assuming that this is the only view in the system, this translates to two updates to

the table: an entry for the view itself will be created and the entry for Label1 will

be created. For the entry corresponding to the view itself, it will become relevant

if other views use that view in their declaration. Because if view V1 needs to be

invalidated, then the dependant views need to be invalidated as well. For the entry

for Label1 we keep track of the fact that V1 depends on nodes with label Label1.

That is, V1 is added to the dependent sent of the entry with key Label1, resulting in

the table shown in Table 5.3.

Table 5.3: Dependency table after V1 is created

Label (Key) Dependents

:Label1 V1

V1 none

Eventually, each entry of the table can contain many dependents. If we create

another view that also uses Label1, then that view will also be added to the depen-

dent list of the entry corresponding to Label1. If we create a view that refers to V1,

then that view is added to the dependent list of the entry with key V1.

5.3.1.2 Deletes, Inserts, and Updates

What we invalidate upon a graph change depends on the type of graph change. For

now, when we only consider label conditions, the way we handle deletions, inser-

tions, and updates will be very similar.

For deletions and updates we are concerned only about the node or relationship

that is being deleted. For example, with the dependency of Table 5.3 above, suppose

we receive the following deletion: "MATCH (n:Label2)-[]-(m:Label1) DELETE n",

which only deletes nodes with Label2. We look in the dependency table and there
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is no entry for Label2. Thus no view is invalidated. Even though a node with con-

dition Label1 is along the path in the query, the view V1 is unaffected since the

deletion will only potentially affect views that involve Label2 nodes. That is, given

a deletion graph change, we only look for matches in the dependency table for the

node or relationship being deleted.

We go through the identical process for updates on nodes or relationships. Sup-

pose the graph change were "MATCH (n:Label2)-[]-(m:Label1) SET m.value

= 30". We determine that m refers to a node with Label1 and find V1 as a depen-

dent of Label1 in the dependency table. Thus, we need to reevaluate V1.

Insertions are a different case due to the structure of an insert statement. Also,

there are three types of insertions that we must consider. First is the creation of a

new node with no relationship: in this case, there is no "MATCH" statement in the

graph change query, and we purely look at the newly created node and any label

condition it may contain. For example, we have the following insertion which cre-

ates a node with label condition Label1:

CREATE (n:Label1)

Since the newly created node contains the label Label1, we search the dependency

table and find the corresponding match: this node may qualify for V1, so we must

re-evaluate. Note that we might invalidate views unnecessarily, namely when the

view is only interested in nodes that have relationships. A newly created node does

not have a relationship, thus will not qualify. However, we do not keep track of this.

The second type of insertion we may have to deal with is an insertion of a rela-

tionship between two existing nodes, and the third type of insertion is an insertion

of an entirely new path. That is, some or all nodes and relationships along the path

are newly created upon insertion. For these types of insertion, to refer to these ex-

isting nodes, a MATCH statement must precede the CREATE keyword.

Consider the following insertion queries: the first inserts a relationship between

all pairs of nodes n and m for which n has label Label1 and m has label Label2 and

there already exists a REL1 relationship between the pair, and the second creates a

single new node and for all nodes with label condition Label1, creates a new rela-

tionship between that node and the newly created node.
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MATCH (n:Label1)-[:REL1]-(m:Label2)

CREATE (n)-[:REL2]-(m)

MATCH (n:Label1)

CREATE (n)-[:REL2]-(m:Label2)

We must be careful here, as for both queries, if we only consider the path indicated

in the CREATE statement, we do not know whether n and m already belong to the

existing graph (the second type), or if they are also newly created nodes (in which

case this would be the third type of insertion!). However we can make certain ob-

servations: in the first query, we know that the only real change is an insertion of

relationship REL2. n and m already exist in the graph so no entry in the dependency

table corresponding to Label1 or Label2 will be affected. For the second query, m

is a new node, and all entries corresponding to Label2 will be affected. In general,

we look for the set difference between the nodes and relationships referred to in the

CREATE statement and those referred to in the MATCH statement. All nodes or re-

lationships belonging to this difference must be checked in the dependency table.

For example, in the first query we find n and m in both statements, but the REL2 rela-

tionship is found in the CREATE statement, but not the MATCH statement. Therefore

we look up entries in the table corresponding to REL2. In this particular case REL2

does not even have an entry in the table. In the second query, this is the case with

both the REL2 relationship and the node m, with condition Label2. Therefore we

look up entries in the table corresponding to REL2 and Label2, and all matching

entries have their dependents invalidated.

Furthermore, for each view listed, independently of the type of graph change,

once a view V is invalidated because of a node or relationship dependency, we also

invalidate all dependent views. That is, we look at the entry for view V in the ta-

ble and also invalidate all its dependents. We do this second step recursively until

there are no further dependents, in which case we will have found the original user-

defined view(s) that are affected by the graph change.

There are several special cases. First, it is possible to receive a graph change that

refers to nodes without a label condition. In that case, we cannot be sure which

nodes will be affected. Therefore, we must reevaluate all views as all views refer
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to at least one node. When a graph change refers to a relationship without a label

condition, we must invalidate all views that refer to at least one relationship. Fur-

thermore, it is possible that the view itself contains nodes (resp. relationships) not

specified with label conditions. Those views must be listed under the entry node*

(resp. edge*). Whenever any change to a node (resp edge) occurs, all dependents of

node* (resp. edge*) must be invalidated.

5.3.2 Invalidation based on Conditions

If we only consider labels, then a view may be flagged too quickly since a graph

might not have many different node and relationship labels. In this case many

queries that change the graph are likely to already contain many of these labels. To

avoid too many false positives, we can use the property or attribute condition con-

tained in the views as well. For example, a graph change that modifies one property

of a node may not affect a view if the view has a condition on a different property of

the node.

5.3.2.1 Dependency Table

To accommodate conditions, we change the structure of the dependency table. The

value of an entry consists now of two lists: a dependency list and a conditions list.

The dependency list contains, as before, the views affected. The conditions list is

the same size as the dependents list and contains for each view in the dependents

list all conditions the view has on nodes/edges with this specific label. If a view

refers to a node with the specific label without condition, then we mark it with a

special "none" condition. Looking now at view V1 of the previous section, the new

dependency table looks as in Table 5.4. The dependents and conditions list for label

Label1 each have one entry: for the dependents list it is V1 and for the conditions

list it is the condition V1 has for nodes with Label1, namely that id < 50.

Overall, we may have views that contain conditions on all attributes, views that

contain conditions on some attributes, or views that contain no attribute conditions

at all.
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Table 5.4: Table Structure

Label (Key) Dependents List Conditions List

V1 none

:Label1 (1) V1 (1) id < 50

To better understand the structure of the dependency table, let us look at a vari-

ety of views. We create V2, a view involving two nodes and a relationship where an

attribute condition exists for all nodes involved, and V3, a view involving two nodes

and a relationship where there are two attribute conditions for one node, and no

conditions for the other. View V4 contains no label or attribute conditions at all,

which will fall under the node* entry. Finally, V5 is a more complex view with more

conditions. Their view declaration queries are as follows:

CREATE VIEW as V2

MATCH (n:Label1)-[:REL1]-(m:Label1)

WHERE n.id > 30 AND m.id > 30

RETURN m

CREATE VIEW as V3

MATCH (n:Label1)-[:REL1]-(m:Label2)

WHERE n.id > 30 AND n.name = ’foo’

RETURN n

CREATE VIEW as V4

MATCH (n)

RETURN n

CREATE VIEW as V5

MATCH (n:Label1)-[:REL1]-(m:Label2)-[:REL1]-(p:Label1)

WHERE n.name = ’bar’ AND m.id = 35 AND m.name = ’foo’

AND p.id < 10 AND p.name = ’baz’

RETURN n

41



Table 5.5 shows the dependency table after the creation of all of these views. For

V2, we have three total graph elements to consider: two nodes and one relation-

ship. The two nodes in this case have the exact same label and attribute conditions:

"Label1" as the label condition and "id > 30" as the attribute condition. As a re-

sult, they belong to the same entry for Label1 in the dependency table and create

only one element in the two lists., i.e., V2 and id > 30. Additionally, an entry for

the relationship REL1 will also be created with REL1 as key with V2 and "none" in

the dependency and condition lists. For V3, we have to add elements for Label1,

Label2, and REL2, creating the entry for Label2 on the fly. The entry for Label1

contains a specific condition that is added to the condition list. For Label2 there

is no condition, so "none" is added to the condition list. The value for the entry

REL1 is also updated, and as the condition is the same as an existing one ("none"),

we add V3 to the element in the dependent list that refers to the "none" condition.

We then have for V4 a node with no label nor attribute conditions, which must be

placed under the node* entry, as it returns all nodes no matter what label. Finally, V5

adds two elements in the dependency and condition list under the entry for Label1.

Although n and p both have label Label1, they must be distinct entries under that

label, as their conditions are not the same. This view also includes a node with la-

bel Label2, so we add V5 and "name = ’foo’ & id = 35" as elements to Label2’s

dependency and condition list. Finally, for the entry REL1 we again find an existing

element with the same conditions in the condition list, therefore we do not create

a new element and instead add V5 to the corresponding element in the dependent

list.

We also see with V3 and V5 that if there are several conditions on a node con-

nected with an AND, we create an entry that covers all these conditions, concate-

nated with AND. Note that when conditions are connected with an OR, in contrast,

we treat them as if there are no conditions. That is, we replace the actual conditions

with "none". We will see later that if there is only one condition or all conditions are

connected with ANDs, there is a reasonable potential that a graph change does not

affect the view. Thus, keeping this extra information is worthwhile. However, once

there are OR conditions, invalidations are much more likely, and thus, we consider

it not worth keeping track of the information.
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Table 5.5: Example dependency table after creating V2, V3, V4, and V5

Label (Key) Dependents List Conditions List

:Label1

(1) V1

(2) V2

(3) V3

(4) V5

(5) V5

(1) id < 50

(2) id > 30

(3) id > 30 & name = ’foo’

(4) name = ’bar’

(5) id < 10 & name = ’baz’

:Label2 (1) V5 (1) id = 35 & name = ’foo’

:REL1 (1) V2, V3, V5 (1) none

V1 none

V2 none

V3 none

V4 none

V5 none

node* (1) V4 (1) none

5.3.2.2 Inserts, deletions, updates

Given the dependency table shown in Table 5.5, we now look at examples of graph

changes and how each view may be affected, and the process used to detect it. We

will first start with all cases for deletions, then insertions, and then updates.

1. Node deletion with no conditions

In this simple case, we delete a node with no conditions at all:

MATCH (n)

DELETE n

This is the special case where all views must be reevaluated, as each view depends

on at least one node, regardless of their label condition. In this case, we do not

even need to look at the dependency table as long as we have somewhere a list of all

defined views.
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2. Node deletion with only a label condition

For this, we consider the following node deletion where the deletion query con-

tains only a label condition and no attribute conditions.

MATCH (n:Label2)

DELETE n

Following the same steps as in the previous section we look at the entry for Label2

in the dependency table. This is the special case where all entries corresponding

to Label2 must be reevaluated, regardless of the attribute conditions as the delete

affects all nodes of Label2. In this case, all elements in the dependency list under

Label2 will be marked, leading to the invalidation of V3 and V5. Furthermore, V4

is also invalidated since the graph change affects nodes, and V4 considers nodes

without consideration of labels. We detect V4 by looking at the entry node* in the

dependency table. V1 and V2 are not invalidated because they do not reference

Label2.

3. Node deletion with one attribute and label condition

Let us now have a look at deletions for nodes with a specific label and a single

attribute condition:

MATCH (a:Label1)

WHERE a.id = 1

DELETE a

The idea here is that we now have a closer look at the conditions list for entry

Label1 and only invalidate when the condition in the delete and the condition of

the view overlap, meaning the set of nodes deleted possibly intersects with the result

set returned by the condition found in the view declaration. If they do not intersect,

then there is no need to invalidate the view as its result will not change. For each el-

ement in the conditions list, we first look whether it is on the same condition as the

delete statement, i.e., on id. If yes, then we check whether the conditions overlap.
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In this case, there are two elements where the condition in the delete and view have

common attributes. For those we check whether the conditions overlap and if yes

we invalidate the corresponding views. The first is the one with dependent V1 and

condition id < 50, because if a node with "id = 1" exists, then it is in the result

set of V1 and the delete statement will delete it. Note that it might be possible that

no node with id = 1 exists, and then V1 would not be affected. But by only looking

at the conditions we cannot see that, and therefore we talk about a possible overlap

and invalidate. V1 is marked for invalidation, as well as all its dependents (in this

particular case, none). The second element that is affected is the final element in

the lists with dependent V5 and conditions id < 10 & name = ’baz’, because if

a node with "id = 1" exists, then it could also be in the result set of V5. We invali-

date V5 and its dependents (none) due to the possibility of overlap within the graph

database.

In addition to this, the fourth element in the condition list indicates name =

’bar’, that is, it is on a different attribute and does not have a condition on id.

In this case, the result sets might also overlap, and we need to invalidate. Note that

if the condition were "none" (no example shown) then we would also need to inval-

idate because of overlap.

Furthermore, we have the node* entry in the table: this entry is affected as long

as the graph change affects any node. This special case is checked separately, and

since the graph change does affect nodes, V4 is also marked as invalidated as a con-

sequence.

Note that V2 is not affected by this graph change, which is reflected in this pro-

cess as well. As the second element in the condition list for Label1 was the condi-

tion "id > 30", it is guaranteed to have no overlap with the condition in the delete,

and thus V2 is not re-evaluated.

A special case is an element in the conditions list with several conditions con-

catenated with an AND, in our example the third and fifth condition. As long as one

of the conditions creates an empty intersection with the conditions in the delete,

invalidation is not needed. The third element in the condition list does not cause

invalidation as id > 30 does not intersect with id > 1. We don’t care about the

other condition (name = ’foo’) as it is sufficient to find one condition in the AND
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clause that is not fulfilled. On the other hand, the fifth element has potential over-

lap: as id < 10 overlaps with id = 1, the only way to avoid invalidation is if there

is an empty intersection on the name attribute. However, the delete statement con-

tains no conditions on it, so a node which has id = 1 and name = ’baz’ might be

affected. Thus V5 must be invalidated.

4. Node deletion with label condition and multiple attribute conditions

We move into cases where more than one attribute condition exists within the

deletion query - these can either be joined with AND clauses or OR clauses. For the

former, consider the following example:

MATCH (n:Label1)

WHERE n.id < 10 AND n.name = ’foo’

DELETE n

With AND clauses, we bundle the conditions for each node together. In this ex-

ample, we have nodes with Label1 with both "id < 10" and "name = ’foo’". We

now search the dependency table for Label1, and look in the condition list for con-

ditions that overlap with the conditions in the change. As with the case with a node

deletion with a single attribute condition, we consider a change condition to overlap

with the view condition if the sets produced by the conditions are potentially non-

disjoint. Only then invalidation is needed. For example, consider the third element

in the condition list. This contains the conditions "id > 30" and "name = ’foo’".

Although the condition on the attribute name matches with the one in the change,

the condition on id does not: id > 30 and id < 10 guarantees to produce disjoint

sets. Therefore invalidation is not triggered due to this condition.

However, it is again possible that the graph change contains conditions on at-

tributes that a view does not contain conditions on. For instance, we look at both

the first and second conditions for entry Label1. The first has a potential overlap,

and thus triggers invalidation. The second does not overlap.

From here, we can derive the general formula to determine overlap. Let Cg c be

the conditions in the delete statement for a node with label L (all concatenated with

AND), and let Cvc be the conditions listed in one of the elements in the condition list
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for entry L (again only with ANDs). If Cg c and Cvc have a condition on at least one

common attribute (e.g. id) and the conditions don’t overlap, then we know there

is no overlap overall and no invalidation is needed. Otherwise, that is, when they

overlap on all attributes they have in common, or if they don’t have an attribute

in common at all, then they potentially overlap, and the corresponding view and

dependents must be invalidated.

Handling OR clauses is more difficult. A graph change that contains OR clauses

on its attribute conditions can be split and treated as separate graph changes - an

extra graph change per OR clause. For instance, the graph change

MATCH (n:Label1)

WHERE n.id < 10 OR n.name = ’foo’

DELETE n

can be separated into the following two graph changes, and then processed indi-

vidually.

MATCH (n:Label1)

WHERE n.id < 10

DELETE n

MATCH (n:Label1)

WHERE n.name = ’foo’

DELETE n

As a result any condition in the condition list that contains an attribute condition on

only name or only id will lead to invalidation through one of the two deletes, which

is the correct behavior. The only type of view that would not be affected would be

one which contains an attribute condition on both of these attributes, concatenated

with AND, and whose conditions do not overlap with either of these.

As shown in the example a created view might contain multiple conditions on

multiple nodes or relationships. In our examples, this is the case for V2, V3, and V5

whereby V5 has even two entries for a single node label. In those cases, as soon as
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a graph change leads to an invalidation due to one of the conditions, the view must

be reevaluated.

For instance, given the graph change:

MATCH (n:Label1)

WHERE n.name = ’bar’ AND id = 35

DELETE n

Looking at the entry for Label1 the fourth condition name = ’bar leads to invali-

dation but the fifth condition does not. Still, V5 needs to be reevaluated.

5. Relationship deletions

We treat relationships identically to nodes when considering their entries in the

dependency table and graph changes. Each relationship gets a corresponding en-

try in the table, and that entry also has dependency and condition lists. There are,

however, additional aspects that can be considered. For example the left-hand and

right-hand sides (that is, the nodes to the left and right) of a relationship give context

to when the relationship should be under consideration for invalidation. However

due to the complexity of these cases, we forego considering these possibilities.

6. Node insertions without label

If a node without a label is inserted then we only look under the node* entry as

we compare conditions. The steps that we take as we make these comparisons are

identical to the ones already described in the previous cases.

7. Node insertions with labels

Consider the following node insertion with a label which also includes certain

attributes on the node:

CREATE (n:Label1 {id:3, name:’foo’} )

For these insertions, we may have one of two possibilities:
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1. The insertion includes an attribute for which a view contains an attribute con-

dition on.

2. The insertion does not include any attributes for which a view contains an

attribute condition on.

For the first possibility, this node insertion may affect the view in question. Thus

we must check within the dependency table and compare the inserted attributes

with the conditions. We use the same deciding criteria as described before: as long

as there is one attribute where the conditions do not overlap, then we do not need

to invalidate the associated view. Using the same example dependency table (Ta-

ble 5.4), this case occurs for the second and third elements because the condition

id > 30 does not intersect with id = 3, and for the fourth and fifth elements be-

cause of the name attribute . On the other hand, we see that this can overlap with

the condition id < 50 of the first element, thus view V1 becomes invalidated. Fi-

nally, following the same rule described in the previous section with basic inser-

tions, all dependents under the node* entry must also be reevaluated, since it is a

node that is being inserted into the graph. Thus, view V4 is invalidated.

For the second possibility, there are two sub-cases of possibilities. First, the view

may have zero attribute conditions - in this case we invalidate it because the new

node might now belong to the result set of the views. Second, the view may contain

other attribute conditions that are not on the same attributes that were included

during the insertion - in this case, we may safely assume that the view in question

does not require reevaluation, as a node that does not have an attribute that is part

of a condition in a view can not fulfill the condition.

8. Relationship and path insertions

Recall from Section 5.3.1.2 that a path insertion can include already existing nodes

or relationships within the CREATE block. Therefore, we use again the same process

to find the nodes and relationships that are truly inserted and do not already exist:

we take the set of variables specified in the CREATE statement and the set of vari-

ables in the MATCH statement; their set difference will be all newly inserted nodes

and relationships. From here, we can treat relationship insertions in the exact same
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way as node insertions considering attribute overlap, as we have just discussed in

the previous subsection: the same possibilities can occur for both the node and re-

lationships, and we deal with them in the exact same way.

9. Node and relationship updates

With updates we are now concerned with the new values for attributes that are

updated. As a reminder, there are two parts to an update query that we must con-

sider, shown below in the example update:

MATCH (n:Label1)

WHERE n.id = 1

SET n.name = ’foo’

The first part to the update is the MATCH query, where we identify the graph portion

which contains the node (or relationship) that we wish to update. For simplification

we assume that nodes and relationships have their label conditions specified in the

query. The second part is the update itself, which follows the SET keyword. We are

interested in anything that is mentioned in the second part, but we need the first

part in order to associate all variables with the proper entries in the dependency

table. We continue with two phases of checking: after we find the entries for a la-

bel, we look for any conditions in the MATCH part of the graph change and compare

to the conditions in the condition list: the overlap considerations follow the exact

same steps as discussed before. This phase looks for all elements which may pos-

sibly be affected by the change. For all elements with possible overlap, we perform

the second phase which checks whether the updated attribute will actually affect

the condition in the condition list. For example, "id = 1" is the condition in the

MATCH part of the above change, which overlaps with the first condition id < 50.

However setting "name = ’foo’" will not affect the condition because it does not

care about the particular value of the name. However, we also have the fifth element

with condition id < 10 and name = ’baz’. Again, id = 1 and id < 10 overlap

and the view has now also a condition on the attribute to be updated. In this case

we must invalidate. There might have been a node with id = 1 and name = ’baz’

in the view and after the change, it should no longer be in the result set. Note that
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if the view’s condition were id = 10 and name = ’foo’, then invalidation is also

needed because that node might now be added to the result of the view. Therefore,

our criteria becomes the following: given that the check passes the first phase, as

long as the attribute which is updated is part of the condition for an element in the

entry of the dependency table, it leads to invalidation of the dependent views.
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Chapter 6

Evaluation

In this chapter we present a performance analysis of the view management solu-

tions proposed in the previous chapters. The objectives of the tests are:

1. To evaluate the feasibility of our solution in a realistic environment. The use of

our system should be practical in a real-world scenario, and we test to ensure

that our system provides an overall benefit compared to not using views.

2. To compare the non-materialized and the materialized view methods. In par-

ticular we are interested in looking at common use cases where these methods

will excel or under-perform.

3. To identify what variables can speed up or slow down performance, for all

three steps of a given approach (view creation, usage, and maintenance).

In the following we first present the setup, and then discuss the performance of view

creation, view usage, and view maintenance.

6.1 Test Setup

While there exist popular benchmarks for relational database systems such as the

TPC-H benchmark [22], we are not aware of a standard benchmark for graph database

systems. In order to fairly evaluate our system with sufficient breadth, we create our
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own graph database and a set of queries that are meant to encapsulate a wide range

of possible use cases on this graph database. We use the StackOverflow database

mentioned throughout the thesis as our working example, and we have created a

set of view declarations and view use queries, of varying complexity. The details

of these queries are provided in the following sections. Furthermore we create 3

instances of the database and vary their sizes as follows:

1. The large database contains 11.4 million nodes and 24 million relationships.

2. The medium database contains 9 million nodes and 17.7 million relation-

ships.

3. The small database contains 5.6 million nodes and 10.2 million relationships.

The complete database is from the data described in [18]. We scaled this down to

our three databases which are smaller by truncating the csv files which contain the

data.

For the hardware, all tests are run on a machine equipped with an AMD 1700

processor with 16GB of RAM. As for the software, the databases are running on

Neo4j 4.0.4 with Java version 11.0.7 for the middleware, and with Windows 10 as

the operating system. All values in this chapter are taken as an average of 5 runs

after an initial warm-up run. These tests are also run in a random order, in order

to prevent cached values, as such caching would unlikely occur in real-life environ-

ments. Finally, we note that there are no indexes on the database for any properties,

except for the natural index on node and relationship identifiers.

6.2 View Creation

In this section we look at view creation performance. For that purpose we have

designed a set of 20 views. The complexity of the view declaration queries ranges

from simple MATCH (n) with a single condition, to queries with multiple conditions

on one or more attributes. Some are node queries, and others are path queries. The

details are summarized in Table 6.1, listing views V1, V2, V3, etc., together with their

view declaration queries.
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6.2.1 Materialized Views

When using the materialized view approach, the middleware executes the view dec-

laration query but only in a way that the node and edge identifiers of the result set

are returned, and stores these identifiers within the middleware.

6.2.1.1 View Creation time

The overhead for this materialization can be measured by two performance metrics

that quantitatively reflect the complexity of the queries: the time needed to execute

the view declaration query and the size of the result set that must be stored in the

middleware. We have measured the time taken to materialize each view in each of

the three differently-sized databases, shown in Table 6.2. The values reflected in this

table correspond to the execution time of the queries corresponding to each view.

We also measured the time needed to store all identifiers within the tables in the

middleware, but it was insignificant.
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Table 6.1: View Declaration Queries

Declaration Details

V1
MATCH (n:Post) WHERE n.score >350

RETURN n
Query involves a node with a filter on a single attribute.

V2
MATCH (n:Post) WHERE n.score <800 AND n.score >350

RETURN n
Query involves a node with a range filter on a single attribute.

V3
MATCH (n:User) WHERE n.upvotes>1000

RETURN n
Query involves a node with a filter on a different attribute.

V4
MATCH (n:User) WHERE n.reputation >90000

RETURN n
Query involves a node with a filter on a different attribute.

V5
MATCH (n:Tag) WHERE n.tagId = ’java’ OR n.tagId = ’html’

RETURN n

Query involves a node with an OR clause

on a single attribute.

V6

MATCH p = (n:User)-[:POSTED]-(po:Post)

WHERE n.reputation <500

RETURN p

Query involving a path with a single condition

on a single attribute.

V7

MATCH (n:Post)-[:PARENT_OF]-(m:Post)

WHERE m.score >100 AND m.score <600

RETURN n

Query involves a path with a range filter

on a single attribute

V8

MATCH (n:User)-[:POSTED]-(po:Post)-[:PARENT_OF]-(po2:Post)

WHERE n.upvotes >800 AND po.comments >10

RETURN po2

Query involving a path with conditions

on several attributes.

V9

MATCH (n:User)-[:POSTED]-(p:Post)

WHERE n.userId = 19

RETURN p

One-hop query centered around a single node.

V10

MATCH (betterPost:Post)-[:PARENT_OF]-(worstPost:Post)

WHERE worstPost.score <10 AND betterPost.score >worstPost.score * 10

RETURN betterPost

Query involving a path with complex condition

on an attribute.

V11

MATCH (n:User)-[:POSTED]-(p:Post)

WHERE n.upvotes >1000 OR p.score >350

RETURN p

Query involves a path with more than one condition

on different attributes.

V12

MATCH (p1:Post)-[:HAS_TAG]-(t:Tag)

WITH p1, COUNT(t) as numberOfTags WHERE numberOfTags >20

RETURN p1

Query involving aggregate functions and pipelined results,

with a condition on the aggregation.

V13

MATCH (n:User)-[:POSTED]-(p:Post)-[:HAS_TAG]-(t:Tag)

WITH n,t, COUNT(*) as numberOfPosts

WITH n, COLLECT(t) as tags, COLLECT(numberOfPosts) as counts,

MAX(numberOfPosts) as highestTagCount

WITH n,highestTagCount,

[i IN range(0, size(counts)-1) | CASE WHEN counts[i] = highestTagCount

THEN tags[i] ELSE NULL END] AS finalVal

RETURN n,finalVal

Query involving many functions and aggregations.

V14

MATCH (n:User)-[:POSTED]-(p:Post)-[:PARENT_OF]-(p2:Post)-[:POSTED]-(m:User)

WHERE n.userId<50

RETURN m

Query with a 3-hop path.

V15

MATCH (p:Post)-[:HAS_TAG]-(t:Tag)

WHERE t.tagId=’html’

RETURN p

Query centered around a single node (tag whose tagId=’html’).

V16

MATCH p =(n:User)-[:POSTED]-(p:Post)

WHERE n.reputation<50000

RETURN p

Similar to V6, but with a higher selectivity.

V17

MATCH (n:User)-[:POSTED]-(p:Post)-[:PARENT_OF]-(p2:Post)-[:POSTED]-(m:User)

WHERE n.userId<m.userId AND n.reputation>m.reputation

RETURN m

Similar to V14 but with a more complex set of conditions.

V18

MATCH (n:User)-[:POSTED]-(p:Post)-[:PARENT_OF]-(p2:Post)

WHERE n.upvotes>0 AND p.comments>10 AND p2.comments<10

RETURN p2

Two-hop query with high selectivity at each node.

V19

MATCH (n:Post)-[:PARENT_OF]-(m:Post)

WHERE n.score =15 AND m.score = 50

RETURN n

One-hop query with very low selectivity at both nodes.

V20

MATCH (n:Post)-[:HAS_TAG]-(t)

WHERE n.postId = ’1065111’

RETURN t

Similar to V15, but centered on a Post node instead.
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Table 6.2: Time taken (ms) to execute view declaration queries

View Small Medium Large

V1 2376 3916 7088

V2 8358 9370 11895

V3 37 149 487

V4 39 102 536

V5 81 89 147

V6 63 785 34144

V7 14136 133694 247722

V8 161064 343122 1160022

V9 32 93 442

V10 54541 290013 1225093

V11 5837 647623 1151968

V12 6868 11317 15674

V13 3645 249845 624538

V14 146 1429 10356

V15 3004 8427 20088

V16 2005 5178 10573

V17 32552 101127 202168

V18 4123 579645 1346992

V19 2548 14311 65218

V20 3000 5004 8238

We can notice immediately that some queries take much less time than others to

execute, even when they appear to be equally complex. For some of these, there is

no clear reason why. For instance, V6 is a one-hop path query, but executes almost

instantly on even the largest database while V7, another query that only contains

a one-hop path, takes much longer. On the other hand, we can explain other re-

sults, such as V8 taking an order of magnitude longer than V7, independent of the

database size. The reason for this is likely due to the length of the path involved in

each query; the longer the path, the more "branching out" must be done for each
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potential match on the pattern. Thus we expect a view involving a two-hop path (in

the case of V8) to take significantly longer than one with a one-hop path (V7). With

all of these different types of queries, we are confident that we encompass many

possible use-cases for the system.

Additionally, we notice that the creation time increases as the size of the database

increases. In general, this increase tends to be exponential, which makes sense es-

pecially for the views for which the query matches onto a path.

6.2.1.2 View Size

Table 6.3 shows the size of the result set returned by the view declaration queries. We

can see that there is a big difference in result sizes. The smallest result sets are those

that first pre-select a single node as the start base of the query (V9, V20) or those

which simply have very restrictive selections (V5). Otherwise, it is not straightfor-

ward to determine from the query itself whether its result set is small or large.

6.2.1.3 Categorization

In order to determine whether view creation time and/or view size affect the perfor-

mance of a query which uses a view, we create four categories of view declaration

queries. We set a cut-off threshold over which we consider a query to be fast or slow

to materialize, and we set a cut-off threshold to decide whether a result set size is

small or large. For the large database, we select a cut-off of 100,000 records and

100,000 milliseconds. That is, any view that takes longer than 100,000 milliseconds

to create is considered a slow view, otherwise it is fast. And any view that returns

more than 100,000 records is a large view, otherwise it is small. Depending on the

cut-off that we choose, a view may be categorized differently, thus it is likely that

these cut-offs should be different for different database sizes. However if we scale

down the same views appropriately and take smaller cut-offs for smaller databases

(such that the views remain in the same category), then we should expect the rela-

tive performance to remain consistent. Table 6.4 shows the category of each view

on the large database. Most small views have fast execution times and many large

views take long to execute, but there are views where this correlation does not hold.
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Table 6.3: View Sizes for V1-V20 in each database

View Large Medium Small

V1 14847 13661 11388

V2 10733 9799 8012

V3 6570 5139 2341

V4 29799 17503 4929

V5 2 2 2

V6 44036 36213 8605

V7 169677 150683 118846

V8 31176 24240 11465

V9 14 14 13

V10 2776312 2210293 1406036

V11 2152189 1674982 766993

V12 10736017 8026777 4856056

V13 3698662 2467985 793076

V14 6778 5784 4256

V15 443357 106750 58015

V16 4408322 1909170 730811

V17 1677752 715684 214768

V18 95511 38221 16752

V19 101 48 37

V20 3 3 3
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Table 6.4: Categorization of the view declaration queries on the large database.

Small view,

Slow time

Small view,

Fast time

Large view,

Slow time

Large view,

Fast time

V8, V18

V1, V2, V3, V4

V5, V6, V9, V14

V19, V20

V7, V10, V11, V13

V17
V12, V15, V16

6.2.2 Non-Materialized Views

We have no measurements for the non-materialized method since a non-materialized

method has no such view creation time, since there is nothing to persist. Therefore

we may effectively treat the ’creation time’ of these views as zero since there is no

work to be done at this step, apart from storing the query text in the middleware.

6.3 View Usage

In this section we look at the performance of when views are used in further queries.

We discuss the performance of the materialized views versus the non-materialized

views, and compare them with a baseline which we introduce in Section 6.3.1.

We have a total of three sets of experiments; the first aims to determine whether the

category of the used views affects performance. For this, we write queries that use

the views of the 4 categories we defined, i.e., using views that we define as small

or large, and slow to materialize or fast to materialize. For these queries, we also

aim to determine whether performance is consistent across queries that use the

same view. The second set of experiments targets special case queries that display

behavior that can be explained by different factors, and for this we write a few spe-

cial queries for which we expect special or interesting results. Finally, our third set

of experiments is to ensure that we can expect consistent results as the size of the

database changes. For this we dig deeper into a subset of the queries used for the
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previous two.

Overall, we also compare the view-based approaches to the baseline that does not

use views.

6.3.1 Introducing a baseline

The baseline to which we compare the materialized and non-materialized approaches

does not use any views, but represents a user who writes a query directly on the base

graph that has the same result as a query which uses a view - we call these equiva-

lent queries "baseline queries". Note that they are different from the queries that are

created by our rewrite mechanism for non-materialized views. Recall from Chapter

3 that our middleware automatically rewrites queries that use views. For instance,

assume the following view use query:

WITH VIEWS V1 V8

LOCAL MATCH (n) WHERE n IN V1 AND n IN V8

RETURN n

The rewritten non-materialized query would be the following, after following the

steps outlined in Chapter 4:

MATCH (n:Post)

WHERE n.score > 350

WITH COLLECT(ID(n)) as V1

MATCH (n:User)-[:POSTED]-(po:Post)-[:PARENT_OF]-(po2:Post)

WHERE n.upvotes > 800 AND po.comments > 10

WITH V1, COLLECT(ID(po2)) as V8

MATCH (n) WHERE ID(n) IN V1 AND ID(n) IN V8

RETURN n

This, however, may not be the most optimal, as we perform two separate queries

for the :Post nodes that are common to both nodes, plus a final query to join the
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results of the previous two. A more natural query, which returns the same values

while both reducing the number of sub-queries needed to execute and allowing us

to check each condition in fewer steps would be the following (recall that V8 returns

po2, so the condition score > 350 must be on po2 and not po):

MATCH (n:User)-[:POSTED]-(po:Post)-[:PARENT_OF]-(po2:Post)

WHERE n.upvotes > 800 AND po.comments > 10 AND po2.score > 350

RETURN n

The query is equivalent because n IN V1 and n IN V8 correspond to :Post labeled

nodes, so we may join all conditions regarding that particular node together. Ad-

ditionally, if the two views both contain paths then we may also join these paths

together into a single path, again allowing us to reduce the number of sub-queries,

though this may increase the run-time if the resulting path is many hops long. We

believe these queries are written in the same way as how a developer would have

written it, which would be different from the non-materialized method that follows

a systematic and automated approach to rewrite queries.

6.3.2 View Use Queries

We have two types of view use queries; categorized use queries and special use

queries. They are detailed in Table 6.5. For the categorized queries, recall that we

created four categories of view declaration queries, based on their result size and

creation time. To find trends from these two characteristics, we write 16 queries

which use views in each of these categories, and denote them as U i
Va ,...,Vz

, where

Va , ...,Vz corresponds to the view(s) used, and i indicates that it is the ith use query

which uses views Va , ...,Vz . For example, U 1
V15

and U 2
V15

are two different queries

that both use V15. We categorize these use queries by the creation time and size of

the underlying views. We look for trends within each category when we compare

the performance of these queries between the materialized, non-materialized, and

baseline methods. Table 6.6 summarizes the creation times and size of the views for

views involved in the use queries that we evaluate in the next section.

In addition to the categorized queries, we have two additional special queries
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for which we expect interesting results, due to the complexity of the use query itself.

We call these two queries U 1
S and U 2

S .

Note that for the categorized queries, our focus is not the complexity of the use

queries, but rather the complexity of the underlying views used, as the former is

much more difficult to quantify. Thus, for these queries it does not matter that many

of them are simple and only recall the view that is used. On the other hand, U 1
S and

U 2
S are chosen due to the complexity of the use query itself, thus we expect special

behavior that cannot be explained solely through categorization.

Table 6.5: Use Query Details.

Use Query Query Body

U 1
V1,V8

WITH VIEWS V1 V8 LOCAL MATCH (n) WHERE n IN V1 AND n IN V8

RETURN n

U 1
V4

WITH VIEWS V4 LOCAL MATCH (n) RETURN n

U 1
V5

WITH VIEWS V5 LOCAL MATCH (n) RETURN n

U 2
V5

WITH VIEWS V5 GLOBAL MATCH (n)-[:HAS_TAG]-(p:Post) WHERE n

IN V5 RETURN p

U 1
V6

WITH VIEWS V6 LOCAL MATCH (n) RETURN n

U 1
V7

WITH VIEWS V7 LOCAL MATCH (n) RETURN n

U 1
V8

WITH VIEWS V8 LOCAL MATCH (n) RETURN n

U 1
V15

WITH VIEWS V15 LOCAL MATCH (n) RETURN n

U 2
V15

WITH VIEWS V15 GLOBAL MATCH (n)-[:POSTED]-(m:User) WHERE

n IN V15 RETURN m

U 1
V16

WITH VIEWS V16 LOCAL MATCH (n) RETURN n

U 1
V17

WITH VIEWS V17 LOCAL MATCH (n) RETURN n

U 1
V18

WITH VIEWS V18 LOCAL MATCH (n) RETURN n

U 1
V18,V19

WITH VIEWS V18 V19 LOCAL MATCH (n) WHERE n IN V18 AND n IN

V19 RETURN n

U 1
V19

WITH VIEWS V19 LOCAL MATCH (n) RETURN n

U 1
V20

WITH VIEWS V20 LOCAL MATCH (n) RETURN n

U 2
V20

WITH VIEWS V20 GLOBAL MATCH (n)-[:HAS_TAG]-(p:Post) WHERE

n IN V20 RETURN p
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U 1
S WITH VIEWS V8 V6 GLOBAL MATCH (p1:Post)-[:HAS_TAG]-(t:Tag)-

[:HAS_TAG]-(p2:Post) WHERE p1 IN V8 AND p2 IN V6 RETURN t

U 2
S WITH VIEWS V7 V3 GLOBAL MATCH (n:User)-[:POSTED]-(p:Post)

WHERE n IN V3 AND p IN V7 AND n.reputation >2*p.score OR

n.downvotes <p.score RETURN n

Table 6.6: Creation time, size, and category of the views used in our view use queries

View Creation Time (ms) Size Type

V1 7088 14847 Fast/Small

V4 536 29799 Fast/Small

V5 148 2 Fast/Small

V6 34144 44036 Fast/Small

V7 247722 169677 Slow/Large

V8 1160022 31176 Slow/Small

V15 20088 443357 Fast/Large

V16 10573 4408322 Fast/Large

V17 202168 1677752 Slow/Large

V18 1346992 95511 Slow/Small

V19 65218 101 Fast/Small

V20 8238 3 Fast/Small

6.3.3 Expectations

Recall that for the materialized method, we retrieve all identifiers from the middle-

ware and rewrite the incoming query to refer to those identifiers. In contrast, the

non-materialized method re-executes each view referred to as a sub-query. There-

fore, we expect the materialized method to outperform the non-materialized method

as the non-materialized method has to execute an additional sub-query, while the

materialized method can rely on Neo4j’s indices on node and relationship identi-

fiers for fast referral to relevant nodes and relationships. Also, we expect the non-
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materialized method to take at least as long as the creation times of the underlying

views as seen in Table 6.2.

We also expect the relative performance of the materialized views to be better if

the underlying view(s) used take longer to create. That is, a query which uses a view

with a large time in Table 6.6 will benefit from materialization more than a query

which uses a view with a short time. This is because the materialization will avoid

the long re-execution of the underlying query associated with the view. Similarly,

we would like to find out if the size of the result set of the underlying view affects

the performance of a query which uses the view.

Finally, we are interested in the consistency of the performance when using the

same view. If a query uses a view V and benefits from materialization, will any query

that also uses V also benefit, regardless of its complexity? We have no hypothesis for

this, but our evaluation will attempt to locate this trend as well, if it exists.

6.3.4 Performance Results

For the categorized queries, we run all of them on the large database and record

their results in Table 6.7 below. We separate these into individual tables for each

category, and show the run-time of the queries in milliseconds for the materialized,

non-materialized, and baseline approaches. Some of these queries did not termi-

nate, in which case we write "[too high]" to indicate it. Note we categorize U 1
V1,V 8

as a query which uses a small view with a slow creation time even though it uses V1

because it still uses V8. All values are in milliseconds.
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Table 6.7: Performance on the large database for each of the three approaches.

Small view,

slow creation time
Materialized Non-materialized Baseline

U 1
V1,V8

3270 186325 1284654

U 1
V8

8388 205039 205370

U 1
V18,V19

1958 34335 659781

U 1
V19

17 11811 95846

Small view,

fast creation time
Materialized Non-materialized Baseline

U 1
V4

16392 2701 2409

U 1
V5

4061 227 163

U 2
V5

1093283 1108458 1113844

U 1
V6

52059 47390 44786

U 1
V18

27281 195381 1684268

U 1
V20

13 9121 9540

U 2
V20

49972 24006 215

Large view,

slow creation time
Materialized Non-materialized Baseline

U 1
V7

112674 219116 203660

U 1
V17

36569 [too high] 6679643

Large view,

fast creation time
Materialized Non-materialized Baseline

U 1
V15

84105 103167 106144

U 1
V16

40946621 [too high] [too high]

U 2
V15

1213140 20323 59894
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In order to understand the impact of database size a bit better, we have run

a subset of the use queries (U 1
V1,V8

, U 1
V5

, U 1
V8

, U 2
V15

, U 1
V18,V19

, and U 2
S ) on all three

database sizes. The results are shown in Figure 6.1.

6.3.5 Analysis for Materialized Approach

6.3.5.1 Categorized Queries

We see immediately that queries which use views that take a long time to materi-

alize benefit significantly with respect to both the non-materialized approach and

the baseline queries. On the other hand, queries that use views which are fast to

materialize do not seem to have a trend in either direction; for some, materializa-

tion benefits the performance and for others it is worse. This result does not seem

to depend on the size of the view either, as we see materialization can either benefit

fast large views (U 1
V15

, U 1
V16

) or hinder them (U 2
V15

). Similarly, we see that material-

ization can benefit small fast views (U 1
V18

, U 1
V20

) and also hinder them as well (U 1
V4

,

U 1
V5

). This means that for fast views, there must be more variables that contribute

to the effectivity of materialization.

6.3.5.2 Special Queries

Upon executing U 1
S we find that the query fails to terminate. The execution time is

too long even on the smallest database, and does not complete with any of the three

methods. Upon investigating this, we find an interesting detail about the execution

plan for this query. We find that in Neo4j, subsequent NodeByIdSeek searches after

the first one become less efficient when the query involves paths. The execution

planned by Neo4j for the queries U 1
S and U 2

S can be seen in Figure 6.2. Recall that

query U 1
S contains two membership conditions, p1 IN V8 and p2 IN V6. These are

rewritten into ID(p1) IN {V8} and ID(p2) IN {V6}, where {V8} and {V6} indi-

cate the sets returned by the views V8 and V6. Additionally, the use query contains

a two-hop path (p1−→t−→p2). When we check the execution plan for this query, we

do find two NodeByIdSeek steps; one for each view. However Neo4j decides that

instead of exploring all two-hop paths between p1 and p2, it is more efficient to ex-
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Figure 6.1: Execution time comparison for the three methods for several queries

on the three different databases (log-scale). Any method which does not have a

corresponding bar in the chart indicates that it is too small to be visible.
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plore all sets of one-hop paths between p1 and t1, all sets of one-hop paths between

p2 and t2, and to join the latter two results when t1 equals t2. The main cost of this

is the expensive join, since we expect a lot of results for both one-hop matches. With

the NodeByIdSeek search only filtering out results on the first step, then as long as

V6 and V8 are relatively large, we still incur the large cost of the join. Though the

text-based method would suffer for the same reasons, this is a case where we expect

that materialized views do not provide a significant benefit.

As for U 2
S , the materialized approach does not outperform the others. It is a

query which only contains a one-hop path,and also has an interesting detail in its

execution plan: there is only one NodeByIdSeek despite there being two views used.

Since the query only involves a single hop, then a second NodeByIdSeek would pro-

vide zero additional benefit, since there is no way to avoid searching for all single-

hops from either n or p. As a result, view use queries that contain only one hop but

reference several views benefit less from materialization, compared to those that

either only use one view or those that do not contain paths in the query.

6.3.5.3 Queries across database size

As expected, in most cases execution time for use queries increases with database

size as we can see in Figure 6.1. In terms of consistency, we observe that in general

queries do seem to perform consistently across the three databases. For instance,

the materialized approach is always better for U 1
V1,V8

, U 1
V8

, and U 1
V18,V19

on all three

databases, while it is worse for U 1
V5

and U 2
V15

. There is an exception which is U 2
S

where the relative performance differs slightly; the materialized approach is equal

to the non-materialized approach for the large and medium databases, but is worse

for the small database.

6.3.5.4 Queries with the same underlying views

We refer back to Table 6.7 which also shows us the performance of queries that use

the same views. We already observed that for views that are slow to create, queries

are always faster with materialization. We see this for U 1
V1,V8

and U 1
V8

, which both

use V8, and U 1
V18,V19

and U 1
V19

, which both use V19. On the other hand, for fast views
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Figure 6.2: Execution plans for U 1
S (left) and U 2

S (right)

we see that some use queries perform differently even if they use the same view.

For instance, the materialized approach for U 1
V5

is worse by an order of magnitude

compared to the other approaches, while performance for U 2
V5

is roughly the same

for all approaches. Similarly, U 1
V15

is better with materialization but U 2
V15

is much

worse, and we see the same difference between U 1
V20

and U 2
V20

.

6.3.6 Analysis of Non-Materialized Approach

Since using non-materialized views requires the execution of a sub-query for each

view used, we should be able to estimate the execution time for each query. In par-
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ticular, we expect the time taken for each of these queries to be at least (at mini-

mum) the sum of the time taken to create the views that the query uses, from Table

6.2. We can see this in Figure 6.3, which shows the expected minimum time for

query execution versus the actual time for the three databases.
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Figure 6.3: Expected minimum time taken versus actual time taken for non-

materialized queries on each database (log-scale). For the small database, all

queries are shown and for the medium and large databases U 1
V16

and U 1
V17

are omit-

ted as these queries did not terminate within a reasonable time.
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For most of the queries, the actual time taken is equal to or higher than the min-

imum values. For some of these, the difference is little, like U 1
V5

, U 1
V7

and U 1
V20

, and

for others, the difference is very large. For instance, U 2
V5

, U 1
V6

, and U 1
V16

take many

orders of magnitude longer than the minimum. Aside from the latter queries, the

run-time of the non-materialized queries seems to remain within one order of mag-

nitude of the expected run-time, but there are enough queries for which this is not

the case, the reason for which we are not sure.

However, there are queries that execute faster than executing the underlying

views, such as U 1
V1,V8

, and U 1
V8

for the small database, and with an even more sig-

nificant difference for the larger databases. It appears the rewrite of the query leads

to a different execution plan that is beneficial in some cases.

We see a consistent result for most queries as the size of the database changes.

For some queries, however, the non-materialized method improves relative to the

minimum time as we increase the size of the database. For instance, U 1
V18

and

U 1
V18,V19

take the minimum amount of time on the small database but both pull

ahead by an order of magnitude for the medium and large databases.

6.3.6.1 Categorized Queries

While we mainly focus on materialized views when considering the categorization

of use queries, there also seems to be a similar trend with non-materialized views to

the one we observed earlier with materialized views. The difference is that instead

of the view creation time being the leading variable, here we benefit more when

the underlying view used is small. For these cases, the non-materialized approach

is at least on par with the baseline queries, and significantly outperforms baseline

queries in some cases (U 1
V1,V 8, U 1

V18,V19
, U 1

V19
, and U 1

V18
). While in these cases the

non-materialized approach still performs worse than the materialized one, it never

performs worse than the baseline.

6.3.6.2 Queries across database sizes

Unlike with the materialized approach, we see less consistency across the three

databases when we compare the non-materialized approach with the baseline ap-
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proach. While for most queries (U 1
V1,V 8, U 1

V8
, U 2

V15
, and U 2

S ) the non-materialized ap-

proach performs consistently better on all three databases, there are some queries

for which it is better on the large database but worse on the medium or small ones,

or vice-versa (such as with U 1
V5

and U 1
V18,V19

).

6.3.6.3 Comparison against baseline queries and materialized approach

Comparing the non-materialized approach with the baseline queries, we see from

Figure 6.1 that the execution time for the non-materialized views is much better

than expected. We expected a large overall performance loss due to the additional

sub-queries that are executed, but it turns out that the pipeline in these queries are

quite efficient - sometimes performing on-par to or even better than the material-

ized approach on fast views.

Furthermore, non-materialized views never significantly under-perform rela-

tive to the baseline queries, such as with U 1
V5

, and actually outperform baseline

queries in several cases (U 1
V1,V8

, U 2
V15

, and U 1
V18,V19

, and U 2
S ). We see similar results

from Table 6.7, where the non-materialized approach performs equal or better than

the baseline queries, with the only exception being U 1
V17

. In general, filtering and

limiting branch searches of a path using the "WITH .. as" keywords leads to a very

optimal execution plan as it reduces the cardinality at a very early step [8], which

the baseline queries may not be able to do. Of course, this depends both on who is

writing the query and also in many cases on the nature of the path involved in the

query. It turns out that the optimization we had thought we made when designing

some baseline queries ended up slowing them down! This is particularly the case

for U 1
V1,V8

which we described in section 6.3.1, but also U 1
V18,V19

and U 2
S to a lesser

degree. Our automated rewriting approach for non-materialized views provides

consistently good performance that one may consider that method as a fall-back

implementation for when the execution time of a view creation is very low, as it is

better or equal than queries that a "human would write", but also not burdened by

any maintenance that the middleware would be subject to for materialized views.
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6.4 View Maintenance

In this section we discuss the performance of the view maintenance for materi-

alized views. That is, we ensure that (1) the detection method is correct, (2) we de-

termine the effectiveness of the algorithm, and (3) we determine and discuss which

types of graph updates will most likely produce a false positive result (i.e, unneces-

sary invalidations) and why. We create a set of graph queries Ci which change the

graph, and measure the frequency of correct vs unnecessary invalidations given by

the middleware for each query. In particular, we keep track of the views which a

query actually do affect, that is the views that must be re-evaluated. Additionally,

we count the views that the middleware decides to re-evaluate.

For (1) we look at false negatives. A false negative is a view that our algorithm

does not pick to be re-evaluated but the update did affect the view result. If the

maintenance algorithm is correct in detecting all views that require re-evaluation,

then there are no false negatives. If this is the case, then we know that the algorithm

is at least correct for the changes we consider.

For (2), we are interested in how effective the algorithm is. After all, even if we

know it is correct, it is not a proper sole indicator of how effective it is, as we can

trivially achieve correctness by deciding to always re-evaluate every view on every

graph change. Therefore to measure effectiveness, we look at false positives. A false

positive is a view that is re-evaluated but does not need to be re-evaluated because

its result set does not change due to the graph change.

For (3) we categorize graph changes into three types: deletions, insertions, and

update changes.

6.4.1 Graph Changes

We now describe each query Ci along with the list of all views that are affected by it.

Furthermore, we categorize these by the type of graph change. There are a total of

12 changes, and the summary of these graph changes are found in Table 6.8.

The objective of this set of graph changes is to encompass a wide range of possi-

ble cases. For example C10 should invalidate V1 since their set of conditions overlap,
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Table 6.8: Graph Change Details

Graph Change Query Query Detail Views Affected Change Type

C1
MATCH (n:User)

WHERE n.upvotes <100 SET n.upvotes = 0
V18 Update

C2
MATCH (n:Post)

WHERE n.score <50 SET n.score = 0
V10, V19 Update

C3
MATCH (n:User) WHERE n.userId = 19

SET n.upvotes = 1 + n.upvotes
V3, V8, V11, V18 Update

C4
MATCH (n:Post)

WHERE n.score <500 SET n.comments = 30
V8, V18 Update

C5
MATCH (n:User)-[:POSTED]-(p:Post)

WHERE n.userId = 18 REMOVE p.score
V1, V2, V7, V10, V11, V19 Update

C6

MATCH

(n:User)-[:POSTED]-(p:Post)-[:HAS_TAG]-(t:Tag)

WHERE n.userId=19 OR p.score<0 OR t.tagId=’java’

REMOVE t.tagId

V5, V15 Update

C7 CREATE (n:Post) None Insert

C8 CREATE (n:Tag {tagId:’html’}) V5 Insert

C9
MATCH (t:Tag) WHERE t.tagId = ’html’

CREATE (p:Post{score:500})-[:HAS_TAG]-(t)
V1, V2, V5, V12, V15 Insert

C10
MATCH (n:Post)

WHERE n.score >800 DELETE n
V1 Deletion

C11
MATCH (n:User)

WHERE n.upvotes <100 DELETE n
V4 Deletion

C12
MATCH (n:Tag)

WHERE n.tagId = ’java’ DELETE n
V5 Deletion

C13
MATCH (t:Tag) WHERE t.tagId = ’html’

DELETE t
V5 Deletion

and it should not invalidate V2 because their set of conditions does not overlap. We

have a total of 6 update queries, 3 insert queries, and 4 deletion queries. There are

more update queries because there are more cases to consider for updates, since

our invalidation scheme is more specific for these. In general, there are different

levels of complexity to the changes. For instance, the insertions begin with a simple

node insert with no attribute, to one with a single attribute, to a path insertion. On

the other hand, deletions only delete single nodes and not paths, which we discuss

later.
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6.4.2 Correctness and False Positive Rates

Over the 20 views that we have defined at the beginning of this chapter, we run

the 13 graph changes. Overall, for correctness we confirm that there are no false

negatives, i.e there are no views that are wrongfully skipped in the re-evaluation

step.

To analyze effectiveness, we define as a false positive rate the number of false

positives over the number of negatives. In other words, it is the ratio between the

number of wrongly re-evaluated views and the number of views that do not need

re-evaluation. We first bring an overall false positive rate for updates, insertions,

and deletions. This average rate is calculated as the total number of false positives

over the total number of negatives for all graph changes of that type. In regard to

false positives rates, Table 6.9 shows the rate for each change query. Categorizing it

by the change type we have:

1. For updates the average false positive rate is 5.8%.

2. For insertions the average false positive rate is 55.56%.

3. For deletions the average false positive rate is 42.11%.

We see that updates on existing nodes and edges give an overall low positive

rate, which only wrongly marks a view as outdated with a rate of 5.8%. While up-

dates and deletes consider conditions in the same way, an update only invalidates a

view if the attribute updated is in the condition set of the view declaration or if the

view declaration has no condition. This extra requirement for invalidation does not

exist with insertions and deletions. Furthermore the probability for overlap clearly

depends on the selectivity of the conditions. For several of our updates we refer to

a single node, such as in C5, so we can more precisely find the views that need to

be invalidated. Generally, the larger the interval of condition, the more likely we are

to encounter a case where we assume an overlap and invalidate, but the database

does not contain nodes that are actually in the intersection.
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Table 6.9: False positive rates for each query

Graph Change Query Change Type False Positives Total Negatives False Positive Rate

C1 Update 1 19 5.2%

C2 Update 1 18 5.55%

C3 Update 1 16 6.25%

C4 Update 3 18 16.67%

C5 Update 0 14 0%

C6 Update 0 18 0%

C7 Insert 13 20 65%

C8 Insert 5 19 26.31%

C9 Insert 12 15 80%

C10 Deletion 14 19 73.6%

C11 Deletion 10 19 52.63%

C12 Deletion 4 19 21.05%

C13 Deletion 4 19 21.05%

6.4.2.1 Insertions and deletions versus updates

Updates have a lower false positive rate than insertions and deletions. This is not

surprising, as updates perform the extra check on the changed attribute. Again,

our insertions and deletions might also be less specific, requiring us to be more

conservative in invalidation. Apart from the condition checks, however, there is

an additional reason for the higher false positive rate for insertions and deletions.

Recall from Chapter 4 that during maintenance we always check conditions stored

in the entries of the dependency table. If an entry is evaluated as affected (i.e the

node or edge in question might be affected by the graph change) then all dependent

views of that entry will be re-evaluated. However, there is an extra check that we do

not make, which is whether or not a dependent view contains path conditions. To

demonstrate this, consider the following 1-hop view declaration query:

CREATE VIEW AS 1hopView

MATCH (n:User)-[:POSTED]-(p:Post)

RETURN p

77



and consider the following deletion-type graph change:

MATCH (n:User) WHERE n.displayname = ’foo’ DELETE n

We know that this graph change should not actually affect the view, since any User

node which belongs to the view must contain at least one edge, which connects

itself and a Post node. Thus a simple DELETE will never delete any node which be-

longs to the view. However, we never make this check because all the dependency

table knows is that the User entry contains 1hopView in its dependent list, therefore

it will (incorrectly) decide that the view must be re-evaluated. Any deletion will en-

counter this issue, possibly contributing to a higher false positive rate. For instance,

C10 leads to an unnecessary invalidation of views that contain a Post node, but the

Post node is part of a path. A similar problem arises with insertions that only in-

sert nodes but not edges. As for C8, since this is an insertion that does not insert

attributes, the middleware will re-evaluate all queries which contain a Post node

without any conditions; in most cases this Post node is part of a path, in which case

we get a false positive.

We note that if we replace all the DELETE with DETACH DELETE, then these views

would actually be affected, and the resulting false positive rate would be much

lower, as the same views would be invalidated, but it would be a correct invalida-

tion. In a sense, our implementation might be more suited for considering the latter

type of deletion change. Nevertheless we propose this as an improvement to the in-

validation algorithm; for regular deletions and insertions, an additional check can

be made to see whether in the affected view, the node is part of a path or not. If so,

then there is no need to reevaluate.

6.5 Summary

Finally, we summarize the results from this chapter and discuss the feasibility of

using views in general. We have created a set of views and evaluated the perfor-

mance of queries that use these views with both the materialized and non-materialized

approach, and compared it to a set of equivalent baseline queries that work on the
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base graph instead of views. By categorizing these views by two parameters - cre-

ation time and view size, we found that the best performance for materialized views

was found for queries that use views that are take long to materialize. Furthermore,

we find that non-materialized views perform surprisingly well, with the majority of

the queries performing on-par or better than the baseline queries, and we observe

this to be the case especially with queries that use small views. However, further

research into the parameters for classification is required to fully understand what

really affects the performance, for both materialized and non-materialized views.

Finally, we verify the correctness of our maintenance algorithm and discuss the false

positive rates for different types of graph changes.

As a general guideline, it is safe to say that if one expects to create views with

complex queries that have slow execution time, then it would be highly benefi-

cial to use the materialized approach. On the other hand, if one expects to cre-

ate small views, then it would be more beneficial to use the non-materialized ap-

proach, as the materialized approach may be worse than not using views at all (i.e.,

the baseline queries). In fact, when the nature of the views is unknown, the non-

materialized approach is the safest approach, as it always performs as well as or bet-

ter than baseline queries. The most optimal approach may be a hybrid approach,

where the default is the non-materialized approach, but to switch to the material-

ized approach for especially complex queries that take a long time to execute.

Furthermore, the nature of the database application matters too; if the database

is read-only then the overhead of maintenance becomes a non-factor; since a read-

only database does not expect updates, then one would be able to benefit from

materialization without any extra overhead, aside from the initial materialization.

On the other hand, if the database undergoes changes often, then the constant re-

execution of queries will far outweigh any benefits gained from materialization, es-

pecially if these graph changes consist of insertions. However, if the changes consist

mostly of updates, then it may be possible with a low enough read/write ratio that

views are still worth materializing.
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Chapter 7

Related Work

In this section we discuss existing works surrounding query languages in general,

views in relational database systems, and views for graph database systems.

7.1 Views in Relational Databases

Databases such as MySQL1 and PostgreSQL2 offer non-materialized views. In MySQL

these are MERGE algorithm views, and in PostgreSQL, these are known as Rules. For

these views, no result is stored and submitting a query that contains references to

the view leads to a rewrite of the query.

MySQL offers the TEMPTABLE algorithm for views, which creates an actual table

to store query results for later reference. However, these tables can not be updated,

meaning that they are fixed upon declaration. Should the underlying tables change,

the view simply becomes outdated.

PostgreSQL supports materialized views and persists the view query result for

re-use. However, updates to each view must be manually invoked by calling REFRESH

MATERIALIZED VIEW on the view, which results in a full re-computation of the view.

PostgreSQL has not implemented IVM yet as a feature.

Details about Oracle’s incremental materialized view maintenance are discussed

1mysql https://dev.mysql.com/doc/refman/8.0/en/view-algorithms.html
2psgrsql https://www.postgresql.org/docs/9.3/rules-views.html
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in [5], though they also focus on deferred-mode maintenance, which is an alter-

nate approach that does not update materialized view tables immediately upon a

change on the base table, but rather only when the view is used. A deferred-mode

maintenance can be a simple refresh command which re-computes the full view, or

incremental, in which case auxiliary tables are needed to hold information about

the tables since the last update.

IBM’s DB2 database also provides materialized views which they call automatic

summary tables [21]. Automatic summary tables can be synchronized with their

base or master tables, or they can use a deferred maintenance mode like with Or-

acle’s materialized views. When possible, these summary tables are incrementally

updated, but still perform full re-computations of queries when necessary.

7.2 Graph Query Languages

We mention that for graph databases there is no standard query language. In rela-

tional systems, relational algebra [10] and SQL are closed query languages used to

query database tables, which leads to very structured nesting and linking of queries,

with clear semantics. Graph-based languages are typically complex. As graphs con-

tain paths, graph query languages have the option to support navigational graph

queries [4], which allows queries to contain regular expressions that cannot all be

expressed by a first-order language [26], such as relational algebra. Below is an

overview of a few query languages that may be of interest.

G-CORE is a closed graph query language which is simple but less expressive than

Cypher. G-CORE is a unique query language proposed by [3] which uses graphs as

the input and output of graph queries. They extend the property graph model to

a path property graph model, and treat paths within the graphs as first-class citi-

zens, allowing them to have their own identifiers, labels, and properties that may

be stored within the base graph. They only allow queries to return graphs, just like

how SQL queries always return tables. Therefore, we believe building a view man-

agement system for G-CORE might be easier than for Cypher. In fact, views are sup-

ported within G-CORE, where a view is a sub-graph of the original graph. In fact that
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is conceptually similar to what our views return (nodes, or edges, or paths). How-

ever [3] does not provide details about view implementation. Furthermore, there

is no notion of using the base graph together with the view with G-CORE - all their

queries must be on nodes or relationships that exist in the input graph(s), making

them more similar to our LOCAL queries.

GraphQL is another closed graph query language which extends relational algebra

and generalizes the selection operator to graph pattern matching. [17] details the

language with the majority of the work focused on optimizing the time complexity

with various heuristics.

SPARQL [27] is another navigational graph query language with many similarities

to Cypher. As with Cypher, SPARQL works on a property graph model and is naviga-

tional, which allows for more complex path queries.

XQuery and XPath XML data can also be enabled within relational database sys-

tems, or stored within a native XML database. XML data may also represent paths

due to its tree-like structure. XPath [12] and XQuery [25] are two different languages

used to query these trees, with XPath using similar constructs to Cypher, such as

pattern matching within paths.

The inherent existence of paths in graph-based systems makes it challenging

to construct views, and we can imagine that this complexity is not limited only to

graph databases but also to any database which expresses data with paths.

The work that this thesis presents may be extendable and in principle, we would

be able to use views with all of the above languages.

7.3 Existing Works for Views in Graph Databases

Currently there has been very little work done towards views in graph database sys-

tems. [7] use a rule-based system with a Rete network [13], along with a modified

network, to create view models on deductive graph databases. A Rete network is a
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system of nodes that represents all rules of a rule-based system and typically uses

working memory to store data that match on the rules. It is optimized to process

changes in working memory to unlink data with rules once they no longer match.

In particular, they transform Neo4j queries through several layers until it reaches a

form that can be understood by graph transformation rules in their network. How-

ever, as they use a rule-based system the space overhead is expected to be very high.

[11] proposes a theoretical approach to produce view models queries from MAT-

LAB Simulink models. The maintenance of these models involves reading model

changes as notifications that can be detected by rules in a Rete network. Their pro-

cess, like with [7], also involves several steps of model translation before a graphical

representation can be produced. However, this work is very specific to Simulink

model views and is not a general solution to property graph views.

Oracle also provides property graph views, but only as a mapping from standard

RDF data to a property graph [19], rather than a view as a sub-graph of an existing

graph database.
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Chapter 8

Final Conclusions and Future Work

8.1 Conclusion

In this thesis we explored the concept of views in a graph database system. We first

extended the existing graph query language that Neo4j uses. In doing so, we defined

three different types of views - node views, relationship views, and path views - and

restrict the return types to nodes, edges, or paths, and added the language for the

creation of these views and queries that use the views.

We then discussed the implementation of materialized and non-materialized

approaches for these views. For the materialized approach, we use Neo4j’s inter-

nal node identifiers to materialize the data, and re-write incoming queries that use

views with these node identifiers, speeding up the queries thanks to the index within

Neo4j. As for the maintenance, we create a dependency table structure, which store

components of a view, including the conditions on the nodes and/or edges rele-

vant to the view. We create a step-by-step maintenance scheme for any incoming

graph changes to determine whether a view in the system should be re-evaluated

or not, and we described how we use the dependency table to do so. For the non-

materialized approach, we automatically re-write queries to pipeline view declara-

tion sub-query results into the view use query.

For our evaluation, we mainly focus on the performance of using materialized

and non-materialized views, and we gauged this by comparing their performance
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against an equivalent set of baseline queries. We created a benchmark with a wide

range of view declaration queries, view use queries, and graph changes to evalu-

ate our approaches. By categorizing views with certain parameters, we successfully

identified trends for both materialized views and non-materialized views. For the

maintenance evaluation, we verified the correctness of our maintenance scheme

and also look at the false positive rates for each different type of graph change: up-

dates, insertions, and deletions. While we did discover a high false positive rate for

insertions and deletions, the updates in our benchmark tend to cause a very low

percentage of false positives.

In general, our performance evaluations show that both materialized and non-

materialized views are very promising for graph-based databases. In particular, ma-

terialized views can be extremely effective when the underlying view takes long to

materialize, and non-materialized views are almost always better than the baseline

queries. We suggest a hybrid approach to use non-materialized views by default,

and to materialize it when we know the underlying view declaration query will be

slow to execute.

8.2 Future Works

8.2.1 Support for Other Features in Cypher

In this thesis, we have not looked in detail at aggregations that can be used at various

locations in a Cypher query. In commercial RDBMs, simple aggregations such as

COUNT, SUM, MAX,.. etc. are allowed in materialized view declarations. It may

be worth exploring if there are simple aggregations that can be covered easily for

graph-based views.

Furthermore, we have not looked at variable-length paths. While we have ex-

plored explicit paths in a query, Cypher also allows queries to contain variable length

paths between nodes. The length of such a path may be unbound (in which case,

it will return as long as there is some path between the nodes), or within a spec-

ified range. Adding support for these paths would improve the practicality of the

language extension.
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In general, we have not looked at all the features that Cypher provides but fo-

cused on the constructs that we believe are generally important for queries on nodes,

covering predicates similar to those found in relational database systems and paths.

Looking into detail into all the language features Cypher provides could be in-

teresting specifically for the Neo4j database system.

8.2.2 Integration of Approach in Database Engine

The work in this thesis is done only at the middleware layer. That is, we do not

modify Cypher itself, nor do we modify the internals of the Neo4j database which

we used. An improvement would be to integrate our system with the database en-

gine. It would be especially useful when using views; we would be able to leverage

our data structures and directly pass the lists of node/edge identifiers to the query,

rather than rewriting the query.

8.2.3 Materialized Views Maintenance Algorithm for Views Involv-

ing Paths

In Chapter 6 we observe that part of the reason why deletions and insertions might

suffer from unnecessary invalidations is because the maintenance does not care

about paths within a view declaration query. That is, a deletion or insertion of a

node will not affect any view with a path, but the middleware may still invalidate

such a view purely because it looks at nodes and relationships of a view declara-

tion query independently. That is, our dependency table does not contain any no-

tion of a view depending on a path. For instance, if we can store the context of a

view, then we would be able to easily determine that a graph change which inserts

(:Label1)-[:REL1]-(:Label2) will never affect a view that only contains a path

involving (:Label2)-[:REL2]-(:Label2). This quickly becomes very complex,

but remains as a possible improvement to the maintenance scheme.
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8.2.4 More Information on Parameters which affect Performance

As we only focus on two parameters - execution speed of the underlying view decla-

ration query, and the size of the return set of that query, there is a lot of information

we do not yet know. There are likely many more parameters that contribute to the

complexity of a view declaration query, which affects the performance of any query

which uses that view. A detailed study on that would be essential to pinpoint exactly

what variables affect performance the most.

Furthermore, there is the challenge of determining a guideline for the best thresh-

olds for these parameters. We chose an arbitrary threshold of 100,000 milliseconds

and 100,000 records for the large database, but these should change depending on

the size of the database. Thus, it is necessary to determine which factors affect the

thresholds as well, if it is not only the database size.
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