
Causal Inference via Propensity Score
Regression and Length-Biased Sampling

Ashkan Ertefaie

Doctor of Philosophy

Department of Mathematics and Statistics

McGill University

Montreal,Quebec

2011-05-21

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Doctorate of Philosophy

Copyright c©Ashkan Ertefaie, 2011



DEDICATION

To my parents, Maryam and Parviz, and my brother, Aria.

ii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and help

of my supervisors, Dr. Masoud Asgharian and Dr. David A. Stephens. I would

like to offer my sincere gratitude to them who supported me with their patience and

knowledge from the preliminary to the concluding level of this thesis. They were

always accessible and willing to help me with my research, and their insights made

research life smooth and rewarding for me.

I thank Mr. Schulich for his generosity in funding the Schulich Scholarship. I am

much honoured to be recipient of this award during the last two years of my studies.

For her understanding and assistance, a special thanks as well to my girlfriend, Sophie

Mongrain, who inspired my efforts and her love and dedication has taken the load

off my shoulder. She has been by my side every step along these taxing years. I also

thank her for helping me with the French translation of the abstract.

Finally, I offer my regards and blessings to all of those who supported me in any

respect during the completion of my studies.

iii



STATEMENT OF ORIGINALITY
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methods.
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ABSTRACT

Confounder adjustment is the key in the estimation of exposure effect in obser-

vational studies. Two well known causal adjustment techniques are the propensity

score and the inverse probability of treatment weighting. We have compared the

asymptotic properties of these two estimators and showed that the former method

results in a more efficient estimator. Since ignoring important confounders result in

a biased estimator, it seems beneficial to adjust for all the covariates. This, how-

ever, may result in an inflation of the variance of the estimated parameters and

induce bias as well. We present a penalization technique based on the joint likeli-

hood of the treatment and response variables to select the key covariates that need

to be included in the treatment assignment model. Besides the bias induced by

the non-randomization, we discuss another source of bias induced by having a non-

representative sample of the target population. In particular, we study the effect of

length-biased sampling in the estimation of the treatment effect. We introduced a

weighted and a double robust estimating equations to adjust for the biased sampling

and the non-randomization in the generalized accelerated failure time model setting.

Large sample properties of the estimators are established. We conduct an extensive

simulation studies to study the small sample properties of the estimators. In each

Chapter, we apply our proposed technique on real data sets and compare the result

with those obtained by other methods.
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ABRÉGÉ

L’ajustement du facteur de confusion est la clé dans l’estimation de l’effet

de traitement dans les études observationelles. Deux techniques bien connus da-

justement causal sont le score de propension et la probabilité de traitement inverse

pondéré. Nous avons comparé les propriétés asymptotiques de ces deux estimateurs

et avons démontré que la première méthode est un estimateur plus efficace. Étant

donné que d’ignorer des facteurs de confusion importants ne fait que biaiser lestima-

teur, il semble bénéfique de tenir compte de tous les co-variables. Cependant, ceci

peut entrainer une inflation de la variance des paramètres estimés et provoquer des

biais également. Par conséquent, nous présentons une pénalisation technique basée

conjointement sur la probabilité du traitement et sur les variables de la réponse pour

sélectionner la clé co-variables qui doit être inclus dans le modèle du traitement at-

tribué. Outre le biais introduit par la non-randomisation, nous discutons d’une autre

source de biais introduit par un échantillon non représentatif de la population cible.

Plus précisément, nous étudions l’effet de la longueur du biais de léchantillon dans

l’estimation de la résultante du traitement. Nous avons introduit une pondération

et une solide équation d’estimation double pour ajuster l’échantillonnage biaisé et la

non-randomisation dans la généralisation du modéle à temps accéléré échec réglage.

Puis, les propriétés des estimateurs du vaste échantillon sont établies. Nous menons

une étude étendue pour examiner la simulation des propriétés des estimateurs du

petit échantillon. Dans chaque chapitre, nous appliquons notre propre technique sur
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de véritables ensembles de données et comparons les résultats avec ceux obtenus par

d’autres méthodes.
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CHAPTER 1
Introduction

The most reliable statistical inference can be extracted from the data collected

through a randomized experimental design. In the statistical theory of experimen-

tal design, dividing the experimental subjects to the treatment and control groups

randomly is called randomization. Randomized experiments are designed to have

balance between the treatment and control groups; that is, the covariates’ distribu-

tions, measured or unmeasured, are similar in the treatment and control groups. For

many years, most researchers have agreed that a randomized experimental design is

the best method for drawing inference about parameters of interest. However, ethical

standards can be violated using a randomized experiment. When the randomization

is not possible, the experimenter can use a non-randomized experiment, a fact of-

ten practiced in observational studies. During the last two decades, observational

studies have been subject to scrutiny to make the statistical inference as precise as

possible. Estimation of the causal effect of treatment or exposure from observational

data is prone to bias due to confounding of the treatment effect. Typically, in non-

randomized experimental design, the treatment assignment mechanism is outside the

control of the investigator. As a result, there is a potential for bias in the estimation

of the treatment effect. This bias can be corrected by causal adjustment techniques

under reasonable assumptions. Covariate subclassification is one of the methods

that adjusts for the confounding by categorizing the population into several groups
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such that inside each group a coin is tossed to determine who receive the treatment.

In other words, the subclassification technique divides an observational study into

several randomized experiments. However, when we are dealing with a large num-

ber of covariates, covariate subclassification is cumbersome and often impractical.

Rosenbaum & Rubin (1983) introduce a method to adjust for the difference between

covariates’ distributions in the treatment and control groups based on the correctly

specified treatment assignment mechanism called the propensity score, a scalar func-

tion of the covariates. Specifically, let Di denote the treatment arm indicator for

treated, Di = 1, and control, Di = 0 and X denote the p-dimensional vector of

covariates, then the propensity score for binary treatment is given by

π(x) = Pr(D = 1|x).

It has been shown that subclassifying just based on the fitted propensity score

values guaranties the balancing property on the entire collection of observed covari-

ates. There are some other causal estimation methods which are all adjusting for the

potential presence of confounding variables in the collection of covariates X but in

different ways. However, the precise implementation details differ. Two methods of

causal adjustment, inverse probability of treatment weighting (IPTW) and propen-

sity score (PS) methods are commonly used. The two methods are constructed in a

similar fashion; a model for treatment received is proposed and fitted, and then a re-

gression model for the conditional expectation of the response variable is fitted either

using weighting (IPTW) or matching/conditioning (PS). The IPTW method does

not impose any modelling assumption on the response mean model to estimate the
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causal effect consistently. In this method, the fitted propensity score is used to weigh

each observation and create a pseudo-population in which treatment assignment and

covariates are independent (treatment assignment is randomized). Therefore, the

crude difference of the treated and control outcomes in the pseudo-population will

be a consistent estimate of the causal effect. Another causal adjustment method

is Double Robust (DR) estimator which result in a consistent estimate if either the

treatment assignment or the conditional mean response models is correctly specified.

In this thesis, propensity score conditioning or propensity score regression (PSR) is

often used. In the PSR approach, we include a fitted propensity score as a covariate

in the response mean model. As such, the whole vector of covariates will be replaced

by a scalar propensity score value.

As with all models for observational data, causal models require certain mod-

elling assumptions to be appropriately specified (Robins (1997)). Specifically, through-

out this thesis, we make the stable unit treatment value assumption (Rubin (2005)),

which states that a subject’s outcome is not influenced by other subjects’ treatment

allocation. We further assume weak unconfoundedness : for all treatment d ∈ D, the

potential outcome Yi(d) and the treatment received D are conditionally independent

given the covariates X, Y (d) ⊥ D|X. It follows that D and Y (d) are conditionally

independent given the propensity score, Y (d) ⊥ D|π

The theoretical properties of the PSR and IPTW adjustment procedures have

been studied, but rarely directly compared. Hirano et al. (2003) shows that an

estimator based on weighting by the reciprocal of the estimated propensity score

is asymptotically equivalent to an efficient estimator that directly controls for all
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pretreatment variables, such as the estimator of Hahn (1998). On the other hand,

Robins et al. (1992) show that the least-squares estimator based on regressing on the

correctly specified propensity score can have variance no less than the semiparametric

efficiency bound, but possibly larger. In Robins semiparametric setting the exposure

can not interact with the vector of covariates and the model has to be an additive

model.

In Chapter 2, we introduce a new semiparametric approach which generalizes

the Robins setting in different ways. Our proposed model handles the interaction

between the exposure and the covariates and does not need to be an additive model.

Similar to the Robins estimator, our estimator can be used for either binary or

continuous dose. We introduce an efficient influence function corresponding to the

proposed semiparametric model using results from semiparametric estimation, and

obtain a new efficiency bound based on the projection of estimating function onto

the nuisance parameter space that is attained by a propensity score regression es-

timator. We study the performance - specifically, the bias, variance and MSE - of

the proposed estimator for establishing the magnitude of a direct effect of treatment,

that is, the unconfounded and unmediated effect on expected response. We show

that our procedure produces an estimator with lower variance than IPTW and the

DR methods. Our theoretical results are verified by extensive simulation studies. In

simulation, we find that propensity score regression method seems to give estimators

with smaller variance and lower mean square error. We also study the performance

of the PSR and IPTW in longitudinal setting. Note that our focus is on direct ef-

fects, as this is the only setting in which IPTW and PSR can be readily compared,
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although IPTW adjustments also play a role in the estimation of other causal effects,

such as total effect.

All of the results presented so far in the literature are based on the correct

specification of the propensity score. Any model misspecification can result in an

inconsistent estimator. Therefore, before going into any causal effect estimation pro-

cedure, we need to make sure that the key covariates have all been selected to model

the propensity score. The conservative modelling strategy is to keep all the covariates

in the propensity score model. However, adding covariates unrelated to the treatment

can decrease the efficiency of covariates related to the treatment and therefore it can

destroy the balancing property of the propensity score especially when the dimension

of the unrelated covariates is high compared to the related ones. A simulation study

(Brookhart et al. (2006a)) conjectures that variables unrelated to the treatment but

related to the outcome should be always included in the propensity score model.

The inclusion of these variables will decrease the variance of an estimated exposure

effect without increasing bias. Their finding led us to find an optimal model selection

strategy for the construction of propensity score models. Obviously, variable selec-

tion techniques based on prediction of the treatment will miss variables related only

to the outcome and could miss important confounders that have a weak relation to

the exposure but a strong relation to the outcome. Therefore, those variable selection

techniques can result in efficiency loss in causal effect estimation. On the other hand,

response covariate selection based strategies can be dominated by those covariates

strongly related to the outcome and it may ignore confounders. The challenge here
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is that ignoring confounders which are strongly related to the treatment (outcome)

and weakly related to the outcome (treatment) can induce bias.

In Chapter 3, we propose a novel penalized likelihood method to address the

variable selection in the context of causal inference. The proposed variable selection

method is based on penalizing the joint conditional likelihood of the outcome and

treatment given the covariates. As such, each covariate has two chances to be kept

in the model, either through the response or the treatment assignment model. We

modify the tuning parameter of the penalty function such that it imposes heavier

penalty on those covariates which are just related to the exposure. We show that

under certain conditions, our proposed penalized likelihood satisfies the oracle prop-

erties, i.e. probability of choosing variables just related to the treatment tends to

zero as the sample size goes to infinity, which is consistent with Brookhart et al.

(2006a), and the estimators are asymptotically normally distributed. We, therefore,

avoid variance inflation due to adding unrelated covariates to the outcome model

through the fitted propensity score.

In addition to the bias induced by non-randomization, there is often another

source of bias induced by having a non-representative sample from the target popu-

lation. This issue is the subject of Chapter 4. Our study in Chapter 4 is motivated

by a data set from the Canadian Study of Health and Aging (CSHA). CSHA is

aiming to describe the epidemiology of dementia across Canada. Samples are ran-

domly taken from either community or institution and the question of interest is to

estimate the institualization effect on the survival time with dementia. Since in this

particular study the chance of being in the sample is proportional to the survival

6



time, the sample is not a representative sample of the target population. In the sur-

vival literature, this phenomenon is called biased-sampling. Biased sampling often

exercised in observational studies on disease duration when recruiting incident cases

is infeasible, often due to logistic constraints. Based on the accelerated failure time

models, we introduce a weighted and a double robust (DR) estimating equations to

estimate the causal effect consistently. Although the proposed estimating equations

are estimating the same quantity, modelling assumptions are not the same. To ob-

tain a consistent estimator using the weighted estimating equation (WEE) method,

the propensity score model has to be correctly specified while the DR method results

in a consistent estimator if either the propensity score or the failure time model is

correctly specified. Moreover, in general, the DR estimating equation results in a

more efficient estimator compared to the WEE. Our analysis reveals that estimating

the effect of being institutionalized without considering these two sources of bias can

change the treatment/grouping effect from being helpful to harmful. We establish

the large sample properties of the estimators and study small sample behaviour of

the estimators using simulations.

The remainder of this thesis is structured as follows: Chapter 2 introduces our

semiparametric setting and the corresponding efficient influence function to estimate

the causal effect. Theoretical results are followed by an extensive simulation studies

and real data analysis to compare the performance of IPTW and PSR for binary and

continuous treatments. Chapter 3 demonstrates our new model selection method in

causal inference which is based on penalized likelihood regression methods. Chapter 4

introduces the concept of double bias which takes into account the biased-sampling
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as well as the non-randomization to estimate the treatment (grouping) effect. I

conclude the thesis with the discussion of my results in Chapter 5.
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CHAPTER 2
The Semiparametric Efficiency of Propensity Score Adjustment in the

Estimation of Average Treatment Effects

Chapter Summary

We consider the estimation of the total average effect of a dichotomous or

continuously-valued treatment or exposure on outcome in the presence of measured

confounding. For binary treatments, it is typical to adjust for differences between

control and treatment groups using a scalar balancing quantity, the propensity score,

which removes the bias induced by differences between these two groups of units. We

examine optimality properties of propensity score-based adjustments. We utilize a

semiparametric setting which does not impose any restriction on the functional form

of the association between the response and the covariates. We assume a parametric

model for the propensity score, and regard the parameters in this model as nuisance

parameters. Using results from semiparametric inference, we construct an efficient

influence function and estimator to estimate the total causal effect as the residual

from projecting the score function of the parameters of interest onto the nuisance

tangent space. We derive the semiparametric variance bound and demonstrate that it

is lower than others previously obtained for propensity score methods. We illustrate

how the bound for a competing approach, augmented inverse probability of treat-

ment weighting, can be no lower than the propensity score bound. We then extend

the result to continuous-valued treatments. All results are verified in simulation.
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Establishing the causal effect of exposure or treatment D in observational stud-

ies of response Y is complicated because of the potential presence of confounding

variables in the collection of covariates X. We consider the following simple setting

identical to Hahn (1998). Let Di denote the treatment arm indicator for treated,

Di = 1, and control, Di = 0. For a given subject, let Y (1) denote outcome if treated,

and Y (0) outcome if untreated. Then the causal effect of treatment is Y (1)− Y (0).

However, in most cases, just one of the outcomes is observed for each subject. The

parameters that have received lots of attention in the causal literature is the average

treatment effect (ATE) µ = E[Yi(1) − Yi(0)]. One of the methods which yields an

unbiased estimator for the causal effect is based on the propensity score. Rosenbaum

& Rubin (1983) define the propensity score for binary treatment as

π(x) = Pr(D = 1|x),

where π(x) is a known function of covariates. For more details see Rubin (2008) and

Rosenbaum (2010). Denote the corresponding random variable by π = Pr(D = 1|X),

whose distribution depends on the distribution of X and the precise model used to

represent the treatment allocation model. In the usual experimental setting, we

will have access to data {yi, di, xi, i = 1, . . . , n} that we may transform to data

{yi, di, πi, i = 1, . . . , n}, where πi ≡ π(xi).

2.1 Introduction to Semiparametric Theory

Consider the statistical model where V1, ..., Vn are iid random vectors and the

density of a single V is assumed to belong to the class {pV (v; η ∈ Ω)} with respect

to some dominating measure υV . The parameter η can be partitioned in (β, α),
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where βr1×1 is the parameter of interest and α, the finite or infinite dimensional

nuisance parameter. In this chapter, we only deal with the finite dimensional nuisance

parameter, say of dimension r2. Therefore, our parameter space has r = r1 + r2

dimension. In the causal inference setting, α corresponds to the parameters of the

parametric propensity score model and β are the parameters in the response model.

Most of the estimators for β are asymptotically linear; that is, there are a mean zero

r-dimensional measurable function ϕ(V ), such that,

n1/2(β̂n − β0) = n−1/2

n∑
i=1

ϕ(Vi) + op(1), (2.1)

where the last term in the above equation goes to zero in probability as n→∞ and

E(ϕϕ′) <∞.

In this thesis, we restrict ourselves to regular estimators; that is, estimators for

which the limiting distribution of
√
n(β̂n − β) does not depend on the local data

generating process. It has been shown by Hajek (1970) that most of the efficient

estimators are asymptotically linear; hence, it is reasonable to restrict our setting to

the regular and asymptotically linear (RAL) estimators.

We define the score vector, Sη(v, η0), for a single observation V in a parametric

model as follows

Sη(v, η0) =
∂ log pV (v, η)

∂η
|η=η0 ,

it can be partitioned according to β and α, Sη(v, η0) = (Sβ(v, β0), Sα(v, α0)).

We define µ(η) as a smooth q-dimensional function of the r-dimensional param-

eter η. Tsiatis (2006) shows that if there exists an influence function for a regular

11



asymptotically linear estimator µ̂(η) such that E(ϕϕ′) <∞, it will imply that

E{ϕ(V )S ′η(v, η0)} =
∂µ(η)

∂η
. (2.2)

Newey (1990) refers to (2.2) as an indication of the differentiability of µ(η), a q-

dimensional function of parameters η. We will define µ(η) as an average causal effect

and show that it satisfies (2.2).

2.1.1 Efficient Influence Function

The efficient influence function ϕeff(V ) is the influence function with small-

est variance matrix; that is, for any influence function ϕ(V ), ϕ(V ) 6= ϕeff(V ),

var{ϕeff(V ) − ϕ(V )} is negative definite. In order to derive the efficient influence

function, we need to define the nuisance tangent space. As a special case where η can

be partitioned as (β, α), using (2.2) it can be easily shown that E{ϕ(V )S ′α(v, η0)} = 0;

in other words, ϕ(V ) is an element of the Hilbert space orthogonal to the nuisance

tangent space; that is, the linear subspace generated by the nuisance score vector,

namely

Λ = {Br1×r2S ′α(v, η0) for all Br1×r2}.

The efficient influence function can be derived as residual of projecting any

arbitrary influence function ϕ(V ) onto the space orthogonal to the tangent space

(T ), namely

ϕeff(V ) = ϕ(V )−
∏

(ϕ(V )|T ⊥) =
∏

(ϕ(V )|T )

where

T = {Br1×r2S ′η(v, η0) for all Br1×r2}.

12



Therefore, ϕeff(V ) is an element of the tangent space and hence can be expressed as

ϕeff(V ) = Bq×rS ′α(v, η0). On the other hand it has to satisfy,

E{ϕeff(V )S ′η(v, η0)} =
∂µ(η)

∂η
,

thus

ϕeff(V ) =
∂µ(η)

∂η
I−1(η0)S ′η(v, η0),

where I(η) = E{Sη(v, η0)S ′η(v, η0)} (see Tsiatis (2006)). When the parameter η can

be partitioned as (β, α), where β is the parameter of interest and α is the nuisance

parameter, then the efficient influence function can be written as

ϕeff(V ) = {E(SeffS
′
eff)}−1Seff(V, η0)

where

Seff(V, η0) = Sβ(V, η0)−
∏

(Sβ(V, η0)|Λ)

and ∏
(Sβ(V, η0)|Λ) = E(SβS

′
α){E(SαS

′
α)}−1Sα(V, η0).

The semiparametric efficiency bound obtained by ϕeff(V ) is given by

V = {E(SeffS
′
eff)}−1.

The variance bound can be rewritten in terms of the Fisher information elements as

follows,

V = {Iββ − IβαI−1
ααI

′
βα}−1
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where

I =

 Iββ Iβα

I ′βα Iαα

 .
In the rest of this chapter, we use the same argument to derive our efficient

influence function corresponding to propensity score regression adjustment method.

For further detail on semiparametric theory see Tsiatis (2006), Chamberlain (1992)

and Newey (1994) and Newey (1990).

2.1.2 Balancing via the Propensity Score

Rosenbaum & Rubin (1983) demonstrate that π is the coarsest function of covari-

ates that has the balancing property; conditional on the propensity score, treatment

assignment is independent of covariates, D ⊥ X|π, and π is a function of any other

balancing score. The ATE can be computed

µ = E[Y (1)−Y (0)] = EX [E[Y (1)|X]−E[Y (0)|X]] = Eπ[E[Y (1)|π]−E[Y (0)|π]] (2.3)

where Eπ denotes expectation with respect to the distribution of π in the entire

population. That is, under strong ignorability ({Y (δ)}δ∈D ⊥ D |X), or weak uncon-

foundedness (Y (δ) ⊥ D | X, ∀ δ ∈ D, see Imbens (2000)), subjects with the same

value of propensity score but different treatments can be considered as a controls for

each other, in the sense that the (conditional) expected difference in their responses

equals the average treatment effect for that value of π.

In the classical method of propensity score matching, subjects in the study hav-

ing the same propensity score are, by the balancing property, suitable for direct

comparison in terms of response. In equation (2.3), the internal expectation can be
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estimated for any fixed π = t from sample data by

µ̂(t) =
1

n

n∑
i=1

I({1},{t})(Di, πi)Yi −
1

n

n∑
i=1

I({0},{t})(Di, πi)Yi = µ̂1(t)− µ̂0(t)

say, where µ̂j(t) is the estimator of the group-specific conditional mean at π = t,

µ̂j(t), and I({a},{b})(d, π) = 1 if d = a and π = b and zero otherwise. The resulting

estimator of µ is the average of µ̂(π) over the distribution of π; with K strata of

propensity score matched individuals at matching scores t1, . . . , tK , the estimator is

µ̂ =
K∑
k=1

(µ̂1(t)− µ̂0(t))f̂π(tk) (2.4)

where f̂π is the estimated distribution of π; in the case fπ is known, it can replace

f̂π in equation (2.4). We presume for the moment that fπ is known.

Let β denote a generic parameter utilized to parameterize the (conditional)

distribution of response Y , either in the control or treatment groups. The average

treatment effect, µ = µ(β) is defined as

µ(β) =

∫ ∫
yf1(y|x, β)f(x) dy dx−

∫ ∫
yf0(y|x, β)f(x) dy dx

=

∫ ∫
yf1(y|π, β)fπ(π) dy dπ −

∫ ∫
yf0(y|π, β)fπ(π) dy dπ (2.5)

where f0 and f1 are the conditional densities of response in the untreated and treated

groups respectively.

In this Chapter, we treat the parameters of the propensity score as the nuisance

parameters, and using results from semiparametric inference, obtain the efficiency

bound based on the projection of estimating function onto the nuisance parameter
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space that is defined by a propensity score-based estimator. We show that variance

bound obtained from this method is smaller than those already presented in the

literature for other propensity score-based methods.

2.1.3 Assumptions

As with all models for observational data, causal models require certain mod-

elling assumptions to be appropriately specified (Robins (1997)). Throughout this

paper, we make the standard assumptions. Specifically, we make the stable unit

treatment value assumption (Rubin (2005)), which states that a subject’s outcome

is not influenced by other subjects’ treatment allocation. We also assume weak un-

confoundedness given the covariates X: it follows from this assumption that D and

Y (d) are also conditionally independent given the propensity score π. Finally, for the

binary treatment case, we make the experimental treatment assignment assumption

that 0 < π(X) < 1.

2.2 Variance Bounds for Propensity Score Methods

We focus on consistent estimators of µ(β) and their variance; in particular, as

we discussed above, we consider regular and asymptotically linear (RAL) estimators

that take the form

1√
n

n∑
i=1

ϕ(Yi)

which, under regularity conditions, are consistent and asymptotically normally dis-

tributed. Properties - in particular, the asymptotic variance - of RAL estimators

are characterized by influence function, ϕ(.). We work in a semiparametric context

- parameterizing the conditional mean of Y , but leaving the conditional distribution

specified nonparametrically - and consider the so-called semiparametric variance or
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efficiency bounds for such estimators. To develop the semiparametric theory, and

to define the semiparametric variance bound, we typically start with a finite dimen-

sional model, the parametric submodel, which contains the density that generates the

data, and every density in this set belongs to the semiparametric model. See, for

example, Newey (1990) for discussion. We begin by considering previous attempts

to compute the variance bound for semiparametric estimation of a treatment effect.

2.2.1 The Variance Bound in Semiparametric Regression

In pioneering work, Robins et al. (1992) consider the following model

Yi = βDi + h(Xi) + εi E[εi|Di, Xi] = 0, (2.6)

to examine the effect of dose D on Y , where h(Xi) is an unknown real-valued function

of the confounders. They show that least-squares estimators of β based on models

for h(Xi) will always be at least as efficient as any estimator of β based on models for

the propensity score. In other words, the least-squares estimator of the parameter β

based on regressing on the correctly specified propensity score can have variance no

smaller than the semiparametric efficiency bound.

Robins et al. consider a parametric submodel h(X;α), such that h(X;α0) =

h0(X) for some α0, and develop a two-stage estimator that achieves the semipara-

metric variance bound corresponding to the semiparametric model. The consistency

of this two-stage estimator is based on the relatively restrictive assumption that the

exposure does not interact with the vector of covariates.
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The semiparametric variance bound for estimators of β was shown by Cham-

berlain (1987) to equal{
ED,X

[
D2/σ2

D,X

]
− EX

[
ED

[
D/σ2

D,X |X
]2

ED

[
1/σ2

D,X

] ]}−1

where σ2
D,X = Var[Y |D,X], which under homoscedasticity, with σ2 = Var[Y |D,X]

independent of D and X, reduces to

{
σ−2

EX

[
ED|X

[
D2|X

]]
− σ−2

EX

[
ED [D|X]2

]}−1
=

σ2

EX [Var[D|X]]

See Robins et al. (1992) for further discussion and illustrations.

2.2.2 Previous Bounds for Propensity Score Models

In considering causal adjustment methods based on the propensity score, Hahn

(1998) and Heckman et al. (1998) show that matching based on the known propensity

score (that is, where the treatment assignment model is presumed known, and no

parameters are estimated) can result in efficiency loss compared to adjusting for all

pre-treatment variables. Hirano et al. (2003) introduce the estimator based on the

estimated propensity score, and demonstrate that it is fully efficient for estimation of

average treatment effects. They show that their semiparametric estimator achieves

the semiparametric efficiency bound obtained in Hahn (1998).

The likelihood utilized by Hahn (1998) is constructed by considering the original

data, that is, the random sample {yi, di, xi, i = 1, . . . , n}. We study this likelihood
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here: based on a specific parametric submodel, the likelihood is

LH(η; y,d,x) =
n∏
i=1

{f1(yi|xi, β)p(d|xi, α)f(xi|α)}di

{f0(yi|xi, β)(1− p(d|xi, α))f(xi|α)}1−di . (2.7)

where α is an r2-dimensional vector containing parameters that appear in the model

for D|X and X respectively. Thus η = (β, α) is an r-dimensional vector, r =

r1 + r2. Using this parametric submodel, Hahn (1998) deduces the variance bound

on estimators of the ATE µ to be

EX

[
σ2

1(X)

π(X)
+

σ2
0(X)

1− π(X)
+ (µ(X)− µ)2

]
(2.8)

where the expectation is over the distribution ofX, for j = 0, 1 σ2
j (X) = Var[Y (j)|X],

and

µ(X) = E[Y (1)− Y (0)|X].

In the homoscedastic case, where σ2
0 = σ2

1 = σ2 say, the bound reduces to

EX

[
σ2

π(X)(1− π(X))
+ (µ(X)− µ)2

]
which can be written as the sum

Eπ

[
σ2

π(1− π)

]
+ EX

[
(µ(X)− µ)2

]
where both terms are non-negative.

19



2.3 The Efficiency of the Propensity Score Approach

2.3.1 The proposed semiparametric setting

The exposure effect can be estimated via different semiparametric models and

the optimum choice of the semiparametric model depends on the existing information

about the different components of the model. For example, suppose we do not know

the functional form of the association between the covariates, confounders, with the

response but we know that the true conditional mean model is additive with respect

to the exposure and the unknown function. Then Robins et al. (1992) show that the

optimum choice of the semiparametric model is given by equation (2.6). This additive

semiparametric model was introduced originally by Engle et al. (1986) and consists

of a parametric component β and a nonparametric component h(X). As indicated

above, we can assume a parametric submodel h(X;α), such that h(X;α0) = h0(X)

for some α0 where h0(X) is the true function. Note that the propensity score is a

reasonable candidate for parametric submodel for the h(.). Hahn (1998) proposes

another semiparametric estimator which does not depend on any modelling assump-

tion for the response, constructing a complete data likelihood using nonparametric

imputation, and shows that this estimator achieves the semiparametric bound which

was introduced in Begun et al. (1983) and Bickel et al. (1993a).

We consider a generalized version of the semiparametric model used by Robins

et al. (1992) by assuming the following possibly non-linear, non-additive model

Yi = µ(Di, h(Xi, α), β) + εi, (2.9)
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where µ(.) is an unknown function of the exposure and the known parametric model

h(Xi;α) and the disturbance is a zero mean random variable. This model does not

impose any restriction, for example, on having interaction between the exposure

and the covariates. In general, the function µ(.) is unknown and investigators need

to perform some model-checking to examine the adequacy of the different possible

candidates. Little & An (2004) and Robinson (1988) incorporate nonparametric re-

gression to model the conditional mean response given the fitted propensity score.

Huber et al. (1981) introduce a regression model in which the number of the con-

founders can increase by the sample size.

To obtain a consistent estimator of the exposure effect, we assume a paramet-

ric submodel µ(Di, h(Xi;α), β); depending on being treated or untreated, we write

µ1(h(Xi, α), β) or µ0(h(Xi;α), β), respectively. We replace the h(Xi;α) by π(Xi;α)

and construct our proposed semiparametric bound based on the known parametric

model π(.). In the case of binary exposure, the propensity score can be fitted using

a logistic regression,

Pr(D = 1|X) =
exp{α′X}

1 + exp{α′X}
.

We will show that when assuming additivity as in equation (2.6), our established

variance bound is equivalent by the one obtained to Robins et al. (1992) and Cham-

berlain (1992), and lower than the one obtained by Hahn (1998).

2.3.2 Efficient Semiparametric Inference for Propensity Score Models

In order to guarantee that the semiparametric efficiency/variance bound is well-

defined, we need to check the differentiability of the parameter of interest in our

parametric submodel (see, for example Tsiatis (2006, Chap. 4)). This assumption is
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usually assumed to hold implicitly; in Appendix 5.1, we verify this assumption for

the average treatment effect.

Consider an alternative likelihood formulation to equation (3.2), where the xi are

replaced by πi, so that the data are {di, yi, πi, i = 1, . . . , n}. Consider the following

parametric likelihood for these (transformed) data:

LPS(η; y,d, π) =
n∏
i=1

{f1(yi|πi, β)p(di|π, α)fπ(πi|α)}di (2.10)

{f0(yi|πi, β)p(di|π, α)fπ(πi|α)}(1−di). (2.11)

In this equation, suppose that the form of π ≡ π(X) is known up to a parametric

model whose parameters are to be estimated from the data, that is, we assume that

π and fπ are functions of a finite dimensional parameter vector, and collate those

parameters in α.

We study the additive error case. Let εij = yi − µj(πi, β) for j = 0, 1 and each

i, where

µj(π, β) = E[Y (j)|π, β]

is a scalar function of β, π and possibly other covariates. We can rewrite LPS in

terms of ε and the propensity score, π, as follows:

n∏
i=1

{f1(εi1|β)p(di|πi, α)fπ(πi|α)}di {f0(εi0|β)p(di|πi, α)fπ(πi|α)}(1−di)

=
n∏
i=1

{f1(yi − µ1(πi, β)|β)p(di|πi, α)fπ(πi|α)}di

{f0(yi − µ0(πi, β)|β)p(di|πi, α)fπ(πi|α)}(1−di)
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In this formulation, β are the parameters of interest, and α are the nuisance param-

eters that parameterize f0, f1 and fπ.

Using subscripts to denote partial derivatives with respect to β and α (evaluated

at the true parameters), and dropping the dependence on i for convenience, the score

functions corresponding to this likelihood are

Sβ = dS1β(ε1|π, β)µ1β(π, β) + (1− d)S0β(ε0|π, β)µ0β(π, β)

Sα = dK1(ε1) + (1− d)K0(ε0) + A(d, π)K2(d|π) +K3(π̂)

where

A(d, π) =
p(d = 1|π)(d− p(d = 1|π))

p(d = 1|π)p(d = 0|π)
=
π(d− π)

π(1− π)
,

and

Kj(εj) =
fjη(εj|α)

f(εj|α)
K2(d|π) = pα(d|π, α) K3(π) =

fα(π|α)

f(π|α)

are all k × 1 vector functions of a scalar argument, and where the double subscripts

denote partial derivatives evaluated at the true parameter for each j.

2.3.3 The efficient score function and influence function

In order to construct the efficient score in this nuisance parameter setting, by

standard geometric arguments (see Tsiatis (2006)), consider the projection of the

score function for parameters of interest onto the nuisance parameter tangent space,

that is, the efficient score function lies perpendicular to the nuisance tangent space.

In the model described above, the nuisance tangent space, denoted T , is constructed
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by inspecting Sα, that is

T = {dK1(ε1) + (1− d)K0(ε0) + a(π)K2(d|π) +K3(π)} (2.12)

that is, the sum of four orthogonal components, where a(π) is any square integrable

measurable function of π. By ancillarity, the projection of Sjβ on K2(d|π), K3(π)

and εj′ for j 6= j′ is zero. The efficient score function, which is the residual after

projecting the score function onto the nuisance tangent space for β, is given by

Seff = S1β − E[S1β|ε1] + S0β − E[S0β|ε0] (2.13)

From Newey (1990) and Tsiatis (2006),the space orthogonal to the nuisance tangent

space is {g(X)ε} where g(X) is a (k × 1) vector of arbitrary functions of X and

ε = dε1 + (1−d)ε0. Since the T is a linear space, the projection (in the Hilbert space

with the covariance inner product) of Sβ onto T exists, and the unique g(X) satisfies

E[(Sβ − g(X)ε)ε|X] = 0 (see Newey (1990)), which yields

g(X) =
E[Sβε|X]

E[ε2|X]

(by assumption, the conditional expectation E[ε2|X] is strictly positive). In the

Appendix 5.2, we show that

E[Sβε|π] =
∂µ∗(π, β)

∂β
= µ∗β(π, β) where µ∗(π, β) = dµ1(π, β)+(1−d)µ0(π, β).

Therefore, substituting into equation (2.13) yields

Seff =
µ∗β(π, β)

E[ε2|π]
ε =

dε1µ1β(π, β) + (1− d)ε0µ0β(π, β)

πσ2
1(π) + (1− π)σ2

0(π)
.
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Following standard results (Tsiatis, 2006)), the efficient influence function for µ(β)

is

ϕeff = µ′β(β)E[SeffS
′
eff]−1Seff

We can expand this expression as follows

ϕeff = µ′β(β)BV −1{dµ1β(π, β)(y − µ1(π, β)) + (1− d)µ0β(π, β)(y − µ0(π, β))}

(2.14)

where

V = E[ε2|π] = πσ2
1(π)+(1−π)σ2

0(π) W = W (π) = µ∗β(π, β) B = E[W (π)V −1W (π)′]−1.

Again by standard results from semiparametric inference, the semiparametric vari-

ance bound is given by

VPS = µ′β(β)E[SeffS
′
eff]−1µβ(β)

= µ′β(β)E[W (π)V −1W (π)′]−1µβ(β)

= µ′β(β)E

[
πσ2

1(π)µ1β(π, β)µ1β(π, β)′ + (1− π)σ2
0(π)µ0β(π, β)µ0β(π, β)′

[πσ2
1(π) + (1− π)σ2

0(π)]2

]−1

µβ(β)

(2.15)
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Inspection of (2.14) yields

ϕeff = µ′β(β)E[SeffS
′
eff]−1Seff

= µ′β(β)I−1
µ∗β(π, β)ε

E[ε2|π]

=
I−1

E[ε2|π]
(dµ1β(π, β)(y − µ1(π, β)) + (1− d)µ0β(π, β)(y − µ0(π, β))) (2.16)

where

I = E

[
πσ2

1(π)µ1β(π, β)µ1β(π, β)′ + (1− π)σ2
0(π)µ0β(π, β)µ0β(π, β)′

[πσ2
1(π) + (1− π)σ2

0(π)]2

]
.

We refer to the estimator obtained using this influence function as a Propensity Score

Regression (PSR) estimator of the causal effect. The next theorem summarizes the

asymptotic behaviour of the proposed semiparametric estimator; it gathers together

the results from the previous two subsections:

Theorem 2.1 The propensity score regression estimator of the causal effect µ(β),

estimated using the efficient influence function (2.16) has the following asymptotic

properties
√
n(µ(β̂)− µ(β)) ∼ N (0,VPS)

where VPS is given in (2.15).

Proof The parameter µ(β) is a differentiable parameter in the sense of Newey (1990);

the estimator is RAL with influence function given by (2.14). Therefore, by results

from Newey (1990) (see also Tsiatis (2006)), the estimator is asymptotically normal

with asymptotic variance VPS.
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2.3.4 Example: Propensity Score Regression

Here, we assume that the semiparametric mean model has an additive form

similar to (2.6) and show that by imposing the additivity our bound will be equivalent

to Chamberlain (1992). Suppose the true conditional mean model is E[Y |D,X] =

β1d+β2X, where X is a continuous covariate, and assume that σ2
1(π) = σ2

0(π) = σ2.

Using the propensity score regression approach, we have

µ1(π, β) = β1 + β2π µ0(π, β) = β2π

and µ(β) = β1. Further, we have

µ?(π, β) = dµ1(π, β) + (1− d)µ0(π, β) = dβ1 + πβ2

so that

µ?β1(π, β) = d µ?β2(π, β) = π W (π) =

 d

π


and E[WV −1W ′]−1 = σ2

E[WW ′]−1. Now,

[WW ′] =

 D2 Dπ

Dπ π2


so conditional on π, taking conditional expectations,

ED|π[WW ′] =

 π π2

π2 π2


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and taking expectations wrt π, setting E = E[π], E2 = E[π2].

E[WW ′] =

 E E2

E2 E2

 =⇒ E[WW ′]−1 =
1

EE2 − E2
2

 E2 −E2

−E2 E


and therefore the variance bound for θ1 is the upper left entry in this matrix, that is

σ2

(E[π]− E[π2])
=

σ2

E[π(1− π)]

Under the linearity and homoscedasticity assumptions the variance bound of propen-

sity score regression is σ2/E[π(1−π)]. This is identical to the semiparametric variance

bound in Chamberlain (1992), and the form

σ2

EX [Var[D|X]]

given by Robins et al. (1992). In Appendix 5.3, we demonstrate that this results also

holds for score stratification, another common propensity score adjustment method.

2.4 The Semiparametric Bound for Inverse Probability Weighting

We now demonstrate that propensity score regression and stratification are su-

perior, in terms of asymptotic variance, compared to another common causal adjust-

ment procedure based on the propensity score construction.
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2.4.1 Inverse Probability of Treatment Weighting

Inverse Probability of Treatment Weighting (IPTW) is a widely used approach

to causal adjustment. For estimating the ATE of a binary treatment, the estimator

µ̂IPTW =

(
n∑
i=1

DiYi
πi

)
(

n∑
i=1

Di

πi

) −

(
n∑
i=1

(1−Di)Yi
1− πi

)
(

n∑
i=1

1−Di

1− πi

) = µ̂IPTW (1)− µ̂IPTW (0) (2.17)

is commonly used. It is the difference of weighted means in the treated and non

treated subjects, with weights proportional to Pr(Di = di|Xi) for the observed di.

In the case of coarsened data, the class of weighted (full data) influence functions

represented by (2.17) is

G =

{
DY

π(X)
− (1−D)Y

1− π(X)
− µ

}
where µ is the average treatment effect. The weighted full data influence function

includes fully observed individuals, and its efficiency can be improved by contributing

individuals with some missing data in an augmentation term. As shown by Tsiatis

(2006), this efficient influence function is equal to

Geff =

{
DY

π(X)
− (D − π(X))µ(1, X)

π(X)
− (1−D)Y

1− π(X)
− (D − π(X))µ(0, X)

1− π(X)
− µ

}
or equivalently

Geff =

{
D(Y − µ(1, X))

π(X)
− (1−D)(Y − µ(0, X))

1− π(X)
+ (µ(1, X)− µ(0, X))− µ

}
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where µ(j,X) = E[Y |D = j,X] for j = 0, 1. The estimator corresponding to this

influence function is called an Augmented Inverse Probability Weighed Complete Case

(AIPWCC) estimator. The asymptotic variance of this estimator is the variance of

the efficient influence function. The asymptotic variance of the AIPWCC estimator

is given by

E[ϕ2
eff] = E

{
(Y − µ(1, X))2

π(X)
+

(Y − µ(0, X))2

1− π(X)
+ (µ(1, X)− µ(0, X)− µ)2

}
which is equivalent to the variance bound introduced by Hirano et al. (2003) and

can be estimated using a sandwich estimator given in Tsiatis (2006, Chap. 9).

The AIPWCC estimator is referred to as a doubly robust (DR) estimator in the

sense that it is consistent if either the treatment mechanism or the response mean

models are correctly specified. This estimator depends on the unknown response

mean model, E[Y |D = 1, X], which can be estimated by positing a parametric

model. If the posited mean model is the correct model, the AIPWCC results in an

efficient estimator; it will lead to a “locally efficient” estimator if the posited model

is misspecified.

Now, we want to show that the IPTW estimator (2.17) is the efficient estimator

in the nonparametric setting: that is, when there is no restriction on the class of

density functions. Let (Yi, Di, Xi) for i = 1, ..., n be independent and identically

distributed random vectors with a joint density f(Yi, Di, Xi). By Tsiatis (2006,

Thm. 4.4), the tangent space for nonparametric model is the entire Hilbert space.

The space orthogonal to the tangent space, the nuisance tangent space, is empty.

Therefore, for this model, the class of influence functions consists of just one element
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and this influence function must be the efficient influence function. Let function

ξIP (Di, Yi, Xi) be defined by

ξIP (d, y, x) =
d

t
(y − µ1(x))− 1− d

1− t
(y − µ0(x)) (2.18)

and consider the following score function corresponding to any parametric submodel

f(Yi, Di, Xi; β)

Sβ(d, y, t|β) = dS1β(y|x, β) + (1− d)S0β(y|x, β). (2.19)

It follows that

E[ξIP (D, Y,X)s(D, Y,X|β)] =
∂µ(β)

∂β
(2.20)

and hence µ(β) is a differentiable parameter. Since ξIP (Di, Yi, Xi) satisfies (2.20),

following Newey (1990), it is an influence function. By uniqueness of the influence

function for nonparametric models, ξIP (Di, Yi, Xi) must be the efficient influence

function. Therefore, the semiparametric efficiency bound is

E[ξ2
IP (D, Y,X)] = E

[
E

{
D

π(X)2
(Y − µ1(X))2 +

1−D
(1− π(X))2

(Y − µ0(X))2|X
}]

= E

[
σ2

1(X)

π(X)
+

σ2
0(X)

1− π(X)

]
(2.21)

which is the same as Hahn (1998) when the covariate distribution is known. The

variance bound introduced by Hirano et al. (2003) is equivalent to (2.21) if treatment

does not interact with covariates and the response mean model is linear.
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The propensity score variance bound in (2.15) is lower than the bound in equa-

tion (2.21). From equation (2.8), in the case of homoscedasticity, we have

E

[
σ2

π(X)(1− π(X))
+ (µ(X)− µ)2

]
≥ σ2

Eπ

[
1

π(1− π)

]
≥ σ2

Eπ[π(1− π)]

by Jensen’s inequality. Because it can be easily shown by the law of total variance

that if all confounders are integrated out first, and then the variance bound com-

puted, the resulting bound will be bigger than that obtained by first finding the

conditional variance bound, and then integrating out the confounders. The Hahn

(1998) variance bound is valid for inverse probability of treatment weighting, because

in this method outcomes are regressed on the received treatment using weighted re-

gression therefore there is no need to integrate out the confounders before or after

obtaining the variance bound.

2.5 Continuous Treatments

2.5.1 Generalized Propensity Score

In this section we define the Generalized Propensity Score which is the gener-

alization of the classical binary treatment propensity score. We first examine the

single interval case. When treatment is a continuous random variable, it is possible

to construct a balancing score using an approach based on the Generalized Propen-

sity Score (GPS). Following Imbens (2000) and Hirano & Imbens (2004), we define

the (observed) GPS, π(d, x) for dose d and covariate x by

π(d, x) = fD|X(d|x) (2.22)
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that is, the conditional mass/density function for D given X = x evaluated at

D = d. Additionally π(d,X) and π(D,X) are corresponding random quantities. It

has been shown by Hirano & Imbens (2004) that GPS random quantity π(d,X) acts

as a balancing score, in that D and X are conditionally independent given π(d,X).

Secondly, for any d, the allocation of the treatment dose is conditionally independent

of the potential response, given the propensity score, Y (d) ⊥ D | π(d,X), that is,

we have unconfoundedness of Y (d) and D given π(d,X). Therefore π(d,X) breaks

the dependence between D and X, and hence the causal effect of D on X can be

estimated by conditioning on π(d,X) for each d in turn, and then averaging over

the distribution of π(d,X). The role of the GPS in estimating the Average Potential

Outcome (APO) is made clear by identity given in Imbens (2000)

µ(d) = E[Y (d)] = EX [E[Y (d)|π(d,X)]] = Eπ(d,X)[E[Y (d)|π(d,X)]]

We used the same algorithm to estimate the APO as Moodie & Stephens (2010)

here:

I Form the GPS Model: Using the regression approach, construct the propen-

sity model for D given X, π(d, x) = fD|X(d|x, α). Estimate parameters α using

data {(di, xi), i = 1, . . . , n}.

II Compute the Fitted GPS Model: Compute the estimated GPS,

π̂i = fD|X(di|xi, α̂).
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III Form the Observable Model: Using the regression approach, construct a

predictive model for the conditional expectation density fY |D,π(d,X)(y|d, π(d, x), β).

Estimate parameters β using data {(yi, di, π̂i), i = 1, . . . , n}.

IV Estimate the APO: Estimate the APO for each d by

µ̂(d) = Ê[Y (d)] =
1

n

n∑
i=1

EY |D,π(d,X)[Yi(d)|d, π̂i, β̂]

then µ̂(d) is the GPS-adjusted estimated dose-response function.

An alternative approach proposed by Hirano & Imbens (2004) suggests that

the APO may be approximated by estimating the dose-response effect within strata

defined by the linear predictor of the treatment density function, and then combining

these estimates to form a single, weighted average. This approach is straightforward

to implement and often provides an estimate of the dose-response relationship that

has little or no residual bias, although it may be less efficient than the regression

approach described above.

We are interested in deriving a semiparametric variance bound for average po-

tential outcome estimated using the GPS. The joint likelihood function of (yi, di, π)

is given by
n∏
i=1

{fdi(yi|π, β)f(d|π, α)f(πi|α)}Id(di)

Using subscripts to denote partial derivatives with respect to θ and η, the score

functions corresponding to this likelihood are

Sβ = Sdβ(y|π, β)µdβ(π, β) Sα = K1(εd) +K2(d|π) +K3(π)
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where

K1(εd) =
fdα(y − µd(π, β)|α)

fd(y − µd(π, β)|α)
K2(d|π) =

fα(d|π, α)

f(d|π, α)
K3(π) =

fα(π|α)

f(π|α)

and εd = yi − µd(π, β). By ancillarity, the projection of Sβ on K2(d|π), K3(π) and

εj′ for j 6= j′ is zero. Thus, the efficient score function is given by

Seff = Sβ − E[Sβ|εd]

By simple adaptation to the binary treatment case, we can show that

Seff =
εdµdβ(π, β)

σ2
d(π)

. (2.23)

Thus, the semiparametric variance bound in continuous treatment case is given by

VGPS = µβ(d, β)′E

[
µdβ(π, β)µdβ(π, β)′

σ2(π)

]−1

µθ(d, β), (2.24)

where µ(d, β) is a parametrized APO.

2.5.2 Inverse Probability Treatment of Weighting

For a continuous treatment one can still obtain the unbiased estimates of the

causal parameter via IPTW by fitting the regression model for D given X = x to

obtain stabilized weights

wsi ∝
f(di)

f(di|xi)

where, for doses on R, f(di|xi) can be estimated by using a linear regression model

to yield

f̂(d|x) = (2πσ̂2)−1/2 exp(−(d− (α̂0 + α̂1x))2/(2σ̂2)).
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To estimate the numerator f(d), one might specify normal density with the average

of observed D and empirical variance as a mean and variance of the density.

Analogous to the established semiparametric bound for nonparametric models

in the binary treatment case, the variance bound for continuous treatment case can

be obtained as follows. Let functions εd(Di, Yi, X) and Sβ(d, y,X|β) be defined by

εd(d, y, t) =
1

t
(y − µd(X)) Sβ(d, y, t|β) = Sdβ(y|X, β).

It can be shown that

E[εd(D, Y,X)s(D, Y,X|β)] =
∂µ(β)

∂β

and hence µ(θ) is a differentiable parameter. Therefore the efficient score function

is given by

Seff =
µdβεd/π

E[ε2|X]
(2.25)

and the variance bound corresponding to the IPTW estimator is

V
C
IPTW = µβ(d, β)′ E[SeffS

′
eff]−1µβ(d, β) = µβ(d, β)′E

[
µdβµ

′
dβ

π2σ2(X)

]−1

µβ(d, β), (2.26)

where µ(d, β) is a parametrized APO. The following theorem states the asymptotic

behaviour of the continuous treatment effect estimators based on the IPTW and the

propensity score regression approaches.
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Theorem 2.2 The causal effect, µ(β), estimated using the efficient score functions

(2.23) and (2.25) have the following asymptotic properties

√
n(µGPS(β̂)− µ(β)) ∼ N (0,VGPS)

√
n(µCIPTW (β̂)− µ(β)) ∼ N (0,VCIPTW )

where VGPS and VCIPTW are defined in (2.24) and (2.26), respectively.

2.6 Simulation Studies

2.6.1 Simulation study I: Binary Treatment

To illustrate the differences between the variance bounds, we perform two Monte

Carlo simulation experiments. The first simulation study examine the performance of

the PS and IPTW methods, and compares the standard deviations of the estimators

with the bounds developed in this paper under homogeneity and heterogeneity of

variance. In this simulation, the structural relationship of interest is defined by

• Homogeneous Case: Y ∼ N (d+ x1 − 0.5x2 + dx1, 5
2)

• Heterogeneous Case: Y ∼ N (d+ x1 − 0.5x2, | d+ x1|2)

where X1, X2 are normally distributed with mean 2 and variance 1 and D is the

treatment arm indicator with the chance of [1+exp(0.5−x1 +x2)]−1 for being in the

treated group, d = 1. In this simulation study, we assume that the exposure interact

with one of the covariates, X1. Therefore, the estimator introduced in Robins et al.

(1992) can not be used. Table 2–1 shows the results of this simulation based on

1000 datasets of sizes 500 and 10,000. The SVB column is defined as the square

root of variance bounds for PS, IPTW and DR methods (computed using Monte

Carlo). As expected, the variance of the estimator obtained by PS is smaller than
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Table 2–1: Binary treatment simulation study under homogeneity and heterogeneity
of variance. SVB is the square root of variance bounds related to PS or IPTW
methods estimators.

σ = 5 n = 500 n = 10000

Bias s.d. MSE SVB Bias s.d. MSE SVB

PS 0.006 0.563 0.316 0.537 0.000 0.122 0.015 0.120
IPTW 0.016 0.681 0.464 0.632 0.004 0.148 0.022 0.140

DR 0.030 0.660 0.436 0.632 0.001 0.143 0.020 0.140

σ = |d+ x1| n = 500 n = 10000

Bias s.d. MSE SVB Bias s.d. MSE SVB

PS 0.001 0.546 0.298 0.268 0.004 0.123 0.015 0.056
IPTW 0.022 0.642 0.412 0.385 0.001 0.148 0.022 0.084

DR 0.002 0.633 0.401 0.385 0.007 0.143 0.021 0.084

DR. The DR estimator results in an estimator with a smaller variance than IPTW, as

it corresponds to the projected IPTW influence function onto the tangent space. In

summary, we observe that the variance of the PS estimator is lower than the variance

of the DR estimator, which in turn is lower than the IPTW estimator. Moreover, the

mean square error (MSE) of the IPTW and DR estimators are always larger than

that for the PS.

2.6.2 Simulation Study II: Continuous Treatment

We conduct a simulation study to explore the attainability of the introduced

variance bound by the estimated APO using GPS and IPTW. We assume Y ∼

N(d+x1 +x2, 5
2), where Xj for j = 1, 2 are exponentially distributed with E[Xi] = 1

and, conditionally, D has an exponential distribution with

E[D|X1, X2] =
1

x1 + x2
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Table 2–2: Continuous treatment simulation study. APO is estimated using GPS
method. SVB is the square root of the derived variance bound.

σ = 5 n = 500 n = 10000

Bias s.d. MSE SVB Bias s.d. MSE SVB

d = 0.4 0.091 0.251 0.071 0.224 0.046 0.057 0.005 0.050
d = 0.5 0.137 0.246 0.079 0.227 0.080 0.060 0.010 0.051
d = 0.7 0.073 0.239 0.062 0.227 0.060 0.053 0.006 0.051
d = 1.0 0.001 0.230 0.053 0.222 0.001 0.052 0.003 0.050

d = 2.5 0.060 0.307 0.098 0.262 0.048 0.062 0.006 0.050
d = 3.0 0.073 0.359 0.134 0.309 0.054 0.068 0.008 0.056
d = 4.0 0.135 0.488 0.256 0.426 0.080 0.085 0.014 0.073
d = 5.0 0.252 0.644 0.478 0.554 0.129 0.109 0.028 0.093

Here we fit the true generalized propensity score model, f(d|x1, x2). Table 2–2 sum-

marizes the results for estimated APO using the true GPS for d ∈ {0.4, 0.5, 1, 2.5, 3, 4, 5}.

Our simulation study reveals that the GPS technique results in a consistent efficient

estimator which touches the asymptotic variance bound established in this paper.

Table 2–3 reflects the result of APO estimation using the IPTW method. Compar-

ing these two tables shows that even for the continuous treatment, the GPS approach

produces the estimator with lower variance and MSE.

2.7 Causal Inference in the Longitudinal Setting

In the previous section, we discussed about asymptotic behaviour of two main

methods of causal adjustment, inverse probability of treatment weighting (IPTW)

and propensity score (PS) in a single interval setting. In this section, we briefly review

this two methods and compare the performance of them using some simulations and

real data analysis in longitudinal settings. We start with the binary treatment and
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Table 2–3: Continuous treatment simulation study. APO is estimated using IPTW
method. SVB is the square root of the derived variance bound.

σ = 5 n = 500 n = 10000

Bias s.d. MSE SVB Bias s.d. MSE SVB
d = 0.4 0.133 0.258 0.084 0.236 0.083 0.064 0.011 0.053
d = 0.5 0.140 0.253 0.083 0.233 0.087 0.064 0.012 0.053
d = 0.7 0.157 0.254 0.089 0.229 0.093 0.066 0.013 0.052
d = 1.0 0.172 0.259 0.097 0.224 0.102 0.069 0.015 0.052

d = 2.5 0.010 0.369 0.125 0.366 0.095 0.070 0.014 0.063
d = 3.0 0.157 0.480 0.226 0.471 0.058 0.077 0.009 0.075
d = 4.0 0.463 0.713 0.722 0.670 0.080 0.163 0.033 0.110
d = 5.0 0.702 0.957 1.408 0.795 0.300 0.301 0.180 0.158

then extend it to continuous dose in multi-interval setting. We look at the bias,

variance and MSE of the estimators of a direct effect of treatment obtained by these

two methods.

We consider a longitudinal study with treatment doses Dij, responses Yij, and

covariates Xij for subjects i = 1, 2, . . . , n on repeated observation j = 1, . . . , Ki.

All variables including dose can be binary, categorical or continuous. A directed

acyclic graphic (DAG) representation of the data generating processes we consider

is depicted below:
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Note that Xi confounds the effect of Di on Yi. We also admit the possibility that

the confounder, treatment and response sequences exhibit autocorrelation. Under

an assumption of time-homogeneity, the direct effect of D on Y can be assessed.

We address direct effects of treatment, but this may not reflect the inferential

objective of the study in all cases. In longitudinal studies, treatment regimes fol-

lowed over time may have different effects on overall outcome, that is, some response

measured only at the end of the study. Marginal structural models (MSMs) are a

class of causal models for the estimation from observational data, of the causal effect

of a time-dependent exposure in the presence of time-dependent covariates. Typi-

cally, MSMs are utilized to estimate the total (causal) effect of treatment on an end

of study outcome. The parameters of MSMs can be consistently estimated using

IPTW, but not by PS methods, as conditioning on the propensity score explicitly

blocks (in DAG terms) the path between treatment and subsequent response.

2.8 Estimation of Direct and Indirect Effect

When the effect of exposure on outcome is mediated by an intermediate variable,

the total exposure effect can be decomposed into direct and indirect effects. Multi-

variate regression of the outcome on the exposure and the intermediate variable as

predictors been often used to estimate the direct effect and the difference between

the direct and total exposure effect is called indirect effect. However, Kaufman et al.

(2004) show that when the exposure and intermediate variable interact to cause the

outcome, subtracting the direct effect from the total effect does not give the indirect

effect. In this section, we briefly explain the difference between these two causal

effects and the conditions needed to identify them.
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The direct effect can be defined as the effect of exposure on the outcome after

blocking the exposure effect on an intermediate variable. The indirect effect is a

part of exposure effect on the outcome passing through an intermediate variable.

Petersen et al. (2006) show that when the exposure and intermediate variable interact

to cause the outcome, multivariate regression estimates just a part of direct effect

called controlled direct effect. Therefore, they suggested to split the direct effect

into controlled and natural direct effect. The exposure effect on an outcome when

the intermediate is controlled at a specific level is called controlled direct effect and

the natural direct effect is defined as a part of the exposure effect on an outcome

while blocking the intermediate effect, but allow the intermediate vary as it would in

the absence of exposure. Note that the former can be estimated by blocking all the

causal effects on the intermediate, whereas in the later just the effect of exposure on

the intermediate is blocked.

The natural and controlled direct effect can be explained through the counter-

factual framework. Under the presence of intermediate variable, Z, there are two

types of counterfactual values: one for outcome and one for intermediate variable

denoted by Yd (an outcome if treatment were set to d) and Zd (an intermediate if

treatment were set to d), respectively. The controlled direct effect is the difference in

the counterfactual outcomes if treated at level D = d versus treated at level D = d∗

while the intermediate value is set to Z = z. Therefore, the average controlled direct

effect is E[Ydz−Yd∗z] in which Ydz is an counterfactual outcome value when exposure

and the intermediate are set to d and z, respectively. On the other hand, the nat-

ural direct effect can be defined as a difference between a counterfactual outcome if
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treated at level D = d versus treated at level D = d∗ while the intermediate is set

to its counterfactual value at D = d, Ydzd∗ − Yd∗zd∗ .

VanderWeele (2009) introduces a novel technique to estimate the direct and

indirect effects by fitting one marginal structural model for outcome and one for

an intermediate variable. As noted by VanderWeele , the consistent estimation of

controlled direct effect needs the following no unmeasured confounders assumptions:

1) no unmeasured confounders for exposure-outcome relationship 2) no unmeasured

confounders for intermediate-outcome relationship. These two assumptions can be

summarized as follows (X and W are the exposure and intermediate confounders,

respectively):

Y ⊥ D|X

Ydz ⊥ Z|D,X,W

where A ⊥ B|C means A is independent of B given C. In other words, we assume

that there is no residual confounding of the effect of exposure and the intermediate

variable on the outcome after including the measured covariates in the model. Joffe

& Colditz (1998) and Kaufman et al. (2005) introduce methods to estimate the

control direct effect in the presence of unmeasured confounders. Under these two

assumptions, the parameters of a marginal structural model E[Ydz] = g(d, z) can be

consistently estimated using inverse probability of treatment weighting methods and

the controlled direct effect is given by E[Ydz − Yd∗z] = g(d, z)− g(d∗, z).

To estimate the natural direct effect, VanderWeele (2009) suggests to fit an ad-

ditional marginal structural model on the exposure-intermediate, thus an additional
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no unmeasured confounders assumption is needed for the exposure and intermediate

relationship. More specifically

Zd ⊥ D|X.

We also require

Ydz ⊥ Zd∗|X.

The last condition states that there is no intermediate confounder that is affected by

the exposure.

Under the above assumptions an unobserved counterfactual outcome can be

estimated using the observed outcomes and the average counterfactual outcome is

given by

E[Ydz] =
∑
x

E[Y |D = d, Z = z,X = x]p(X = x),

and the average natural direct effect is estimated by

E[Ydzd∗ − Yd∗zd∗ ] =
∑
x

[g(d, h(d∗, x), x)− g(d∗, h(d∗, x), x)]p(X = x)

where E[Ydz|X] = g(d, h(d, x), x) and E[Zd|X] = h(d, x). Note that, in contrast

to controlled direct effect, for natural direct effect the counterfactual outcome is

estimated using the conditional marginal structural model.

The natural indirect effect compares the counterfactual outcomes when the ex-

posure level is set to D = d and the intermediate is set to what would it had been if

the exposure is set to d versus the intermediate value that would had been observed

if the exposure were set to d∗, YdZd−YdZd∗ . VanderWeele (2009) decomposes the total
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direct effect to natural direct and indirect effect even if the outcome model involves

the interaction between exposure and intermediate variable and nonlinear models.

Therefore, the total exposure effect of d versus d∗ is given by

Yd − Yd∗ = (YdZd − YdZd∗ ) + (YdZd∗ − Yd∗Zd∗ )

where the first part is the natural indirect effect and the second part is the natural

direct effect.

Pioneers work on the identifiability of direct and indirect effect impose some

stronger assumptions than those presented in VanderWeele (2009). For instance,

Robins & Greenland (1992) impose the assumption of no interaction between expo-

sure and intermediate which can be very unrealistic in some settings. In fact, if there

is no interaction between exposure and intermediate variable the controlled and nat-

ural direct effect will be equivalent because Ydz − Yd∗z will be free of z. For further

detail on the direct and indirect causal effects see Robins et al. (2010), Hafeman

& VanderWeele (2010), Robins & Richardson (2010), VanderWeele (2010) and Van

Der Laan & Petersen (2004).

2.9 Simulation Study: Binary treatment with a mediating variable

Another case where PS performs better than IPTW in terms of MSE is in the

presence of mediating variable, and it also appears that PS method is more successful

in removing bias. In this section we report results of a small simulation study with a

mediating variable. We have one time independent covariate Xi, one posttreatment

intermediate variable Mi that may serve as a mediator for the treatment outcome, a
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treatment indicator Di and response Yi. We use the following densities:

Xi ∼ N (2, 10)

Mi ∼ N (di, 5)

Di ∼ Bernoulli(p(xi)) p(xi) =
1

1 + expit{−2− 0.2xi}
Yi ∼ N (−di + xi +mi, 5)

for i = 1, ..., n. Note that M can be written as di +N (0, 5) so the true ATE is zero.

A DAG representation of the data generating processes is as follows:
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~~}}
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We generated 1000 data sets of size 300 and 5000. We have used the following models

for response variable using PS and IPTW and propensity score:

logit{πi} = logit{p(Di = 1|X)} = α0 + α1xi

yi = β0 + β1di + β2πi + εi (PS)

w−1
i =

exp{Di(α0 + α1Xi)}
1 + exp{(α0 + α1Xi)}

yi = β′0 + β′1di + β′2mi + εi (IPTW)

We also utilize the truncated version of IPTW, IPTW.t, in which we have retained

only those observations with either 0.05 ≤ πi ≤ 0.95, where πi = w−1
i . Although,

in general, truncation may result in a biased estimate, it reduces the variance by
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Table 2–4: ATE estimates based on IPTW, IPTW.t and PS for causal parameter
β∗ = 1.

n = 300 n = 5000
ATE s.d. MSE ATE s.d. MSE

IPTW 1.729 4.083 19.657 0.207 2.017 4.113
IPTW.t 0.174 1.907 3.667 0.015 0.435 0.190
PS 0.088 1.402 1.973 0.001 0.332 0.110

deleting those observation with a weight close to the boundaries zero or one. Using

the idea in VanderWeele (2009) we fitted another model considering M as a response

variable to deal with counterfactuals in M ,

m̂i = λ0 + λ1di

so that the total causal effect using IPTW is β′1+β′2λ1. Table 2–4 shows the estimated

ATE based on IPTW, IPTW.t and PS. Under the assumption of correct model

specification for the probability of treatment, IPTW has larger bias and standard

deviation compared to PS for n = 300 and n = 5000. In the presence of the mediator,

the PS method is more successful in removing the bias and also has smaller variance

than the IPTW methods.

2.10 Causal Adjustment for Repeated Measures Data

2.10.1 The Multivariate GPS (MGPS)

In the case of dose response estimation from repeated measures or multi-interval

data because of correlation structure in the data the potential patterns of time-

varying confounding are more complex that can be dealt with using a univariate GPS

approach. The GPS approach introduced in this section is suitable for the analysis
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of repeated measures response data with interval-dependent dosing. We denote Yij

as a response of ith unit, i = 1, ..., n in interval j, j = 1, ..., ni; dose and covariate

variables are similarly subscripted. Furthermore, sequential weak unconfoundedness

can be defined as

Yij(d) ⊥ Dij|Xi1, ..., Xij.

That is, at each interval, assignment to dose Dij is weakly unconfounded with the

response during interval j given covariates, previous response, and dose values mea-

sured up to the start of the jth interval. Moodie & Stephens (2010) shows that if

we define X̄ij = (X1j, ..., Xij) as a history of covariates, response and previous doses

and let πij(d, X̄ij) be the multivariate GPS then, for every dose d,

Yij(d) ⊥ Dij|πij(d, X̄ij)

that is, for d ∈ D, current potential response Yij(d) is conditionally independent of

the distribution of dose received Dij given the MGPS πij , for all i and j. In the same

paper, it has also been shown that the APO obtained by averaging E[Yij(d)|π(d, X̄ij)]

over the distribution of the covariates X̄ij, is an unbiased estimator of the dose

response function µ(d) = E[Yij(d)]. Note that a univariate GPS analysis that does

not construct π by conditioning on X̄ij = x̄ij for each j does not necessarily achieve

bias removal.

We have carried out extensive testing of the MGPS approach and performed

comparisons with non-causal and standard GPS (MGPS) methods. Our examples

demonstrate the importance of the use of the multivariate extension of the GPS. We

have also compared the performance of the GPS and IPTW estimators for estimating
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the direct treatment effect. Our simulation studies show that the MGPS introduced

by Moodie & Stephens (2010) outperforms the IPTW in terms of both bias and

variance reduction. We have discussed some of the limitations of the MGPS in the

conclusion section of this Chapter.

2.10.2 The IPTW Estimator for Repeated Measure Data

To implement IPTW in the repeated measures setting, the following model is

fitted for response variable to estimate the total treatment effect,

E[Yij|Dij = dij] = β0 + β1dij

with the stabilized weights

wsij =
p(Dij = dij|Di(j−1) = di(j−1))

p(Dj = dij|Di(j−1) = di(j−1), Xk = xij)

where D−1 = 0. Thus the outcome at interval j is weighted with the inverse prob-

ability of treatment at that interval, modelled as a function of previous covariates,

responses and doses. This is the natural extension of IPTW to the time-homogeneous

repeated measures setting.

Note that the difference between the fitted models in this section and MSM

approach used in Robins & Brumback (2000) is that here we do not have a single

response at the end of follow up, but several responses and weights corresponding to

each interval. In other word, our weighted model produces the pseudo-intervals based

on observed treatment doses at each time point rather than the pseudo-population

through received treatment doses path up to end of follow-up.
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Table 2–5: ATE estimates based on IPTW, IPTW.t and PS for causal parameter
β∗ = 1

n = 300 n = 5000
ATE s.d. MSE ATE s.d. MSE

IPTW 0.536 1.511 2.499 0.949 0.589 0.349
IPTW.t 0.946 0.952 0.910 1.004 0.235 0.055

PS 0.948 0.910 0.627 0.997 0.193 0.037

2.11 Longitudinal Setting: Simulation Studies and Examples

2.11.1 Binary treatment

In this section we report results of a small longitudinal simulation study carried

out to evaluate the performance of the IPTW and PS explained. We have one time

dependent covariate Xij, treatment indicator Dij and response Yij with the following

densities:

Xij ∼ N (1, 2)

Dij ∼ Bernoulli(expit{I{j = 1}(2− xij) + I{j > 1}(2− 0.2Yi(j−1) − xij)})

Yij ∼ N (Dij + 2Xij, 5)

for i = 1, ..., n and j = 1, ..., 5, where expit{x} = exp(x)/(1 + exp(x)) and I{.} is

an indicator function. We generated 1000 data sets of size 300 and 5000. Table 2–5

shows the estimated ATE based on IPTW and PS.

Under the assumption of correct model specification for weights and propensity

score, IPTW has larger bias and standard deviation compared to PS for n = 300 and

n = 5000. Although weight truncation helps the IPTW method to reduce the MSE,
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it still has a slightly larger MSE than PS method. As we expected both methods are

successful in removing the bias in the large sample size, n = 5000.

2.11.2 Simulation: Nonlinear, nonadditive treatment effect

Here, we use the same simulation study as in Moodie & Stephens (2010) which

is the extended version of Hirano & Imbens (2004) to a two interval setting.

Data Generation: Suppose that at first and second interval, have

Y1(d)|X11, X12 ∼ N (d+ (X11 +X12) exp(−d(X11 +X12)), 1)

Y2(d)|X21, X12 ∼ N (d+ (X21 +X12) exp(−d(X21 +X12)), 1)

The marginal distribution of each of X11, X12, and X21 are all unit exponential

and the marginal mean of the response in both intervals is identical. Let D1 ∼

Exp(X11 +X12), D2 ∼ Exp(X21 +X12). The APO at dose d, µ(d), can be obtained

by integrating out the covariates analytically, yielding

µ(d) = d+
2

(1 + d)3
.

In this section we want to compare the performance of estimators of APO based

on IPTW, GPS and MGPS. As suggested by Robins & Brumback (2000), stabilized

weights are estimated using a normal density for the IPTW analysis, and weighted

splines has been used to fit the model for responses on dose. In GPS analysis, a

multivariate GPS analysis, involves the GPS vector πM = (π1, π2):

π1 = (X11 +X12) exp(−d(X11 +X12))

π2 = (X21 +X12) exp(−d(X21 +X12))
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Table 2–6: Pointwise bias estimates for causal curve based on IPTW using splines
and GPS

IPTW MGPS
µ(d)− µ̂(d) Var MSE µ(d)− µ̂(d) Var MSE

d = 0.05 -0.595 0.063 0.417 0.001 0.043 0.043
d = 0.10 -0.519 0.030 0.300 0.001 0.030 0.030
d = 0.20 -0.350 0.019 0.141 0.000 0.016 0.016
d = 0.55 -0.037 0.018 0.020 0.000 0.005 0.005
d = 0.65 -0.016 0.023 0.024 0.000 0.005 0.005
d = 1.00 -0.012 0.030 0.030 0.000 0.006 0.006
d = 2.50 -0.053 0.102 0.105 0.001 0.006 0.006
d = 5.50 -0.023 0.317 0.317 0.000 0.009 0.009

where consists of correctly specified models. A univariate GPS analysis might fail

to include information from the previous interval and hence the GPS used would be

πU = (π1, π
∗
2) where π1 is as before, but π∗2 = X21 exp(−dX21).

We generated 1000 data sets of size 250. The estimated APO using MGPS are

exactly correct, while the UGPS and IPTW analysis are clearly biased. The general

shape of the UGPS and IPTW APO are correct, however these estimators do not

catch the curve (see Figure 2–1). Table 2–6 shows the bias, variance and MSE’s of

the estimated APO using IPTW and MGPS. The bias and MSE obtained by MGPS

are significantly smaller.

As pointed out by Hirano et al. (2003), the efficiency of the GPS estimator

can be improved by using the estimated GPS. In this simulation, the GPS can be

estimated using a Gamma generalized linear model, for example.

2.11.3 Example: The MSCM Study

Alexander & Markowitz (1986) studied the relationship between maternal em-

ployment and paediatric health care utilization. The investigation was motivated by
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the major social and demographic changes that have occurred in the US since 1950.

The Mothers’ Stress and Children’s Morbidity Study (MSCM) enrolled 167 preschool

children between the ages of 18 months and 5 years that attended an inner-city pae-

diatric clinic. Each individual provided information regarding their family and work

outside the home. Daily measures of maternal stress and child illness were recorded

during 4 weeks of follow-up. We use these data to determine casual effect of stress on

child illness. We used logistic regression to fit the model for weights and propensity

score over each interval with employment (e), married (m), previous stress (s) and

previous illness (i) as covariates, as follows:

logit{p(si1 = 1)} = α0 + α1e+ α2m

logit{p(sit = 1)} = α′0 + α′1si(t−1) + α′2ii(t−1) + α′3e+ α′4m

for t = 1 and t > 1 respectively. Since our response, illness, is a dichotomous random

variable we fitted the following logistic models for IPTW and PS methods:

logit{p(iit = 1)} = γ0 + γ1sit (IPTW)

logit{p(iit = 1)} = γ′0 + γ′1sit + γ′2πi(x) (PS)

where π(x) is the propensity score. In order to see the effect of sample size in our

estimators, we estimate the ATE for different sample sizes by randomly deleting

individuals. Results are presented in Table 2–7.

As the sample size increases estimators become more similar, and for each sample

size the IPTW standard errors are slightly smaller. Since there is a large overlap

between estimated parameter confidence intervals using IPTW and PS, neither is
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Table 2–7: Parameter estimates based on IPTW and MGPS for MSCM study

γ̂1 s.e.(γ̂1) θ̂1 s.e.(θ̂1)
n = 50 0.708 0.144 0.622 0.205
n = 70 0.644 0.129 0.617 0.189
n = 100 0.520 0.109 0.576 0.150
n = 167 0.547 0.083 0.537 0.115

preferable to the other one in this example. We have also checked the truncated

weights, IPTW.t, estimators, but the results are omitted because they were fairly

similar.

In the next example we have a longitudinal data set with continuous response

and treatment dose and we will compare the performance of univariate GPS, multi-

variate GPS and IPTW approaches.

2.11.4 Example: MOTAS Amblyopia Study

Amblyopia is the most common childhood vision disorder, and is characterized

by reduced visual function in one eye. A standard treatment for the condition is

occlusion therapy (patching) of the properly functioning eye. Until recently, the

apparent beneficial effect of occlusion therapy had not been well quantified, partly

due to difficulty in the accurate measurement of the occlusion dose. The Moni-

tored Occlusion Treatment of Amblyopia Study (MOTAS) (Stewart et al. (2004))

was the first clinical study aimed at quantifying the dose response relationship of

occlusion, facilitated by the use of an electronic occlusion dose monitor, consisting of

an eye patch with two electrodes attached to its undersurface connected to a battery-

powered data-logger powered by battery from which patch use was read by clinicians

at follow-up visits.
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The MOTAS design and a full description of the study base have been published

previously (Stewart et al. (2002), Stewart et al. (2004)). At study entry, all children

who required spectacles entered the refractive adaptation phase; the remainder en-

tered the occlusion phase directly. Children still considered amblyopic after refractive

adaption began occlusion and were prescribed six hours of occlusion daily. Visual

acuity was measured on the logarithm of Minimum Angle of Resolution (logMAR)

scale; improvement is indicated by a decrease in logMAR. Visual function and mon-

itored occlusion dose were recorded at approximately two-week intervals until acuity

ceased to improve, at which point children exited the study and returned to usual

care. A total of 116 children were enrolled in MOTAS; we analyze data of the 68 who

took part in the occlusion phase (whether they participated in the refractive adap-

tion phase of the study or not) who, although prescribed six hours of occlusion daily,

received varying occlusion doses because of incomplete concordance. Our notation is

as follows: for child i, the response, Yij , is the change in visual acuity during interval

j, and Dij is the random occlusion dose (in hours) received in interval j. Intervals

are approximately two weeks in length, thus a child who concorded perfectly with

prescribed treatment would be have a dose of 84 hours in an interval (that is, six

hours daily for 14 days). However, children typically did not follow the prescribed

occlusion dose, and both higher and lower than prescribed doses were observed.

In the study, dose is a continuous variable, but 60 out of 404 (about 15%) of

intervals in the occlusion phase had a zero dose. In order to acknowledge the mixture

nature of the dose distribution in the GPS or IPTW, we assume that

Dij
L
= ψ(x̄ij, γ)I{d = 0}+ (1− ψ(x̄ij, γ))I{d 6= 0}D+

ij
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where D+
ij is strictly positive random variable and 0 < ψ(x̄ij, γ) < 1 is a mixing

weight which can be estimated using logistic model on binary (Dij = 0/Dij > 0)

dose data.

Following the fitted model by Moodie & Stephens (2010), we included the visual

acuity at start of interval, age, sex, interval number, length of interval (in days), and

amblyopic type (anisometropic, strabismic, mixed) as a covariate in the GPS or

IPTW model and if we add the previous dose to these covariates MGPS can be

fitted. These covariates were used to predict both the probability of having any

occlusion at all (D/D > 0) in a logistic model and the probability of receiving a

particular dose (greater than zero) of occlusion in a Gamma model. The UGPS used

is

π̂(d, xij) = ψ̂(xij, γ̂)I{d = 0}+ (1− ψ̂(xij, γ̂))I{d 6= 0}f(d|xij, φ̂, α̂)

where f(d|xij, φ̂, α̂) is a Gamma density with shape φ and scale determined by α.

We used the same model to assign the weights for each individual in IPTW method.

The fitted model model for MGPS is identical with xij replaced by x̄ij which includes

the previous dose.

π̂(d, xij, di(j−1)) = ψ̂(xij, di(j−1), γ̂)I{d = 0}

+(1− ψ̂(xij, di(j−1), γ̂))I{d 6= 0}f(d|xij, di(j−1), φ̂, α̂)

As response in the MOTAS is the vector of changes in visual acuity, there is little

observed serial correlation in the data. The observable model for change in visual

56



Table 2–8: Estimated parameters in APO models based on UGPS and MGPS, esti-
mated variances are in bracket

UGPS MGPS
β1 -0.107(0.031) -0.135(0.046)
β2 9.00e-6(1.84e-4) 1.740e-4(2.28e-4)
β3 2.917(1.580) 5.668(2.264)
β4 0.080(0.047) 0.069(0.066)

acuity, Y , in the GPS method is modelled via the expectation

EY |D,π[Y |D = d, π, β] = β0 + I{π < 0.05}(β1 + β2d+ β3π + β4d.π)

and in order to decrease the bias in IPTW estimator, we have used the semipara-

metric regression using weighted splines to fit the model for Y on D. A plot of

the dose-response curve is presented in Figure 2–2. The MGPS, univariate GPS

and IPTW APO’s are plotted for comparison with 95% confidence interval based on

MGPS. As Figure 2–2 shows, there is no significant difference between the estimated

APO using either IPTW or GPS method. Numerical values of the estimated param-

eters using least square estimates, β1, ..., β4, are presented in Table 2–8 for UGPS

and MGPS.

The plot indicates that the direct effect of dose on visual acuity, when con-

founding between dose and the responses is adjusted for using the GPS approach, is

appreciable; the average potential effect on change in visual acuity measurement Yij

is significantly negative (corresponding to vision improvement) over the entire range

of positive doses considered.
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Figure 2–1: Simulated Example: The dose-response APO curves for the IPTW and
GPS analyses.

2.12 Conclusion

In this Chapter, our primary focus has been on the use of the propensity score

in a model based adjustment, where propensity score replaces the whole vector of co-

variates named as propensity score regression adjustment. We derived the semipara-

metric variance bound of the estimated causal effect using propensity score regression

adjustment, and showed that the obtained bound is equal to the efficiency bound

introduced in the literature on semiparametric regression. A parametric model was

assumed for the propensity score and the parameters of this model are treated as
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nuisance parameters. The nuisance tangent space was built based on the parameters

in the treatment mechanism model. Using the theory of semiparametric inference,

the efficient influence function corresponding to the estimator of interest has been

constructed as a residual from projecting any influence function onto the nuisance

tangent space. In a simple example, we have shown that the propensity score strat-

ification estimator also attains the semiparametric efficiency bound.

The semiparametric variance bound obtained is lower than the bound for doubly

robust estimator. Therefore, the propensity score regression/stratification dominates

IPTW and doubly robust estimators in terms of efficiency. The drawback, of course

is that both treatment assignment and the mean models have to be correctly specified

to result in consistent estimator, which is not the case in doubly robust estimators.

Our studies clearly demonstrate that in a range of simulation studies in sin-

gle and multiple interval settings, PS methods outperform IPTW in terms of MSE.

Therefore, in the context of moderate to high-dimensional covariate/confounder vec-

tors, the scalar propensity score provides a straightforward causal adjustment ap-

proach which seems to have superior finite dimensional performance.

We outlined the Generalized Propensity Score, a generalization of the classical

binary treatment propensity score, and showed that since the confounding pattern

is more complex in longitudinal data, the GPS needs to take into account the cor-

relation between observations. We explained how the GPS can be modified to keep

the balancing property in the context of repeated measures data. We compared

the performance of the IPTW and GPS approach to estimate the average potential

outcome through simulation studies, MSCM and MOTAS data. Our studies reveal
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that the ATE estimator using propensity score regression adjustment has a smaller

variance and is more successful in removing bias than corresponding methods that

use weighting, under correct model specification.

As noted by Rubin, before running any regression model, which considers a

propensity score as a single covariate, and looking at the coefficients to estimate the

causal effect certain criteria have to be checked to make sure that there is enough

information in data to be extracted and used to estimate the causal parameter of

interest (see Rubin (2004b, 2008)).

One limitation of PS methods at this stage is that they have only been developed

for use in the estimation of direct effects, and cannot be used for the estimation of

total effects, whereas the marginal structural models approach that utilizes IPTW

does allow the estimation of total effects. Hernán et al. (2004) also show that in the

presence of time varying confounders if there exist an unmeasured common effect

of a confounder and the response, then covariate adjustment techniques such as

propensity score regression result in bias treatment effect estimate.

In the next Chapter, we use a slight modification of the propensity score re-

gression as a causal adjustment method which has the double robust property and

introduce a novel confounder selection technique using the penalization. We also

show that one may gain efficiency by adjusting just for the key confounders selected

by our proposed technique.
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Figure 2–2: MOTAS data: The estimated average potential change in visual acuity
(APO) vs dose for multi-interval IPTW (MIPW), UGPS and MGPS. Pointwise 95%
confidence interval (light dashed) computed for MGPS.
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CHAPTER 3
Variable Selection in Causal Inference

Chapter Summary

We address the common problem faced by practitioners of how to select variables

for the propensity score model commonly used to correct for confounding in observa-

tional data. We construct a double robust regression procedure which incorporates

the treatment assignment model as well as the response mean model for estimating

the treatment effect. In an analytic example, we show that selecting important co-

variates can increase efficiency of estimation of the causal parameter while retaining

consistency. We demonstrate that treatment-only variable selection techniques may

ignore important covariates which are strongly related to the outcome but not to the

treatment. We introduce a novel covariate selection technique based on penalized

likelihood which considers the response and treatment assignment models simulta-

neously. The selected covariates via our proposed method can then be used in other

causal adjustment techniques as well as our proposed regression estimator. We de-

rive the asymptotic properties of the estimators, and illustrate their small-sample

behaviour using simulation. We apply the proposed method to analyze the National

Supported Work Demonstration (NSWD) data.

62



3.1 introduction

In the analysis of observational data, when attempting to establish the mag-

nitude of the effect of treatment (or exposure) in the presence of confounding, the

practitioner is faced with certain modelling decisions that facilitate the estimation of

the causal effect of treatment. Specifically, in the majority of cases, two statistical

models must be proposed;

(i) the conditional mean model that models the expected response as a function

of predictors, and

(ii) the treatment allocation model that describes the mechanism via which treat-

ment is allocated (or, at least, received) by individuals in the study, again as a

function of the predictors.

Predictors that appear in the data generating mechanisms for (i) and (ii) are

termed confounders, and the omission of confounders from model (ii) is typically

regarded as a serious error, as it leads to inconsistent estimators of the treatment

effect. Because of this, practitioners usually adopt a conservative approach, and

attempt to ensure that they do not omit confounders by fitting a richly parameterized

treatment allocation model. The danger with this strategy is that it can lead to non-

confounders, that is, predictors that predict treatment allocation, but not response,

being included in the treatment allocation model.

The inclusion of such “spurious” variables in model (ii) is usually regarded as

harmless. However, it is reasonable to assume that there must be some inferential

penalty for failing to fit the correct model, and this penalty usually takes the form of

inflation of variance of the estimator. This problem is still present for the conditional
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mean model, but better understood, and in practice less problematic as practitioners

seem to be more concerned with adjustment for confounding, and therefore more

likely to introduce the spurious variables in model (ii). Other than limited simulation

evidence, little formal guidance as to how the practitioner should act in this setting

has been provided by statisticians.

This Chapter addresses these issues. We demonstrate the variance inflation

caused by the inclusion of spurious variable, and provide a technique based on pe-

nalization that provides automatic consistent variable selection for both conditional

mean and treatment allocation models.

A common strategy in causal inference with large number of covariates has

so far been through dimension reduction using the propensity score method. We

therefore focus on propensity score adjustment, and estimation of the direct causal

effect (Rubin (2004a)). In many applications, particularly in the clinical sciences,

ethical considerations often result in covariate imbalance at the intervention stage.

As such, only few covariates usually form the basis for an assignment to the control

or treatment group. We encounter the same situation in most observational studies

too, i.e. a small number of covariates often suffices to explain the observed imbalance

in groups. It therefore seems that a more reasonable line of attack should involve

variable selection rather than dimension reduction. However, to minimize the risk

of ignoring confounders, it seems beneficial to adjust for all the covariates by fitting

a “rich” propensity score model. This, however, may result in an inflation of the

variance of the estimated parameters and induce bias as well (Greenland (2008) and

Schisterman et al. (2009)). A variable selection approach can in practice lead to
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significant efficiency gain. Our analytic example in Section 3.3 indicates that this

issue is not only confined to applications with a large number of attributes. Even

with a small number of variables, removing spurious variables can result in significant

efficiency gain. This point has also been conjectured by Brookhart et al. (2006a) and

studied by means of simulations.

Confounder selection methods based on either the propensity score or the re-

sponse model may result in failure to account for important confounders which

barely predict the treatment or the response, respectively (Crainiceanu et al. (2008)).

Vansteelandt et al. (2010) show that confounder selection procedures based on AIC

and BIC can be sub-optimal and introduce a method which targets the treatment

effect by minimizing the mean square error of the estimated treatment effect. The

latter is closely related to the cross-validation method introduced by Brookhart &

Van Der Laan (2006).

In this Chapter, we present a penalization technique based on the joint likeli-

hood of the treatment and response variables to select the key covariates that need

to be included in the treatment assignment/PS model for estimation of the causal

effect. Section 3.2 contains some preliminaries on penalized estimation technique.

We present an analytic example in Section 3.3 that illustrates how variable selection

can lead to efficiency gain. We then develop the appropriate methodology and study

the theoretical properties of the method in Sections 3.4. The methodology is then

tested using simulation in Section 3.5, before being applied to a real data set in Sec-

tion 3.6. As shown by Robins & Greenland (1992), in the presence of mediation, the

treatment and the intermediate variables interact to cause the outcome, and hence
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the direct and indirect effect may not be identifiable in general (see Petersen et al.

(2006), Robins et al. (2010), and Hafeman & VanderWeele (2010)). To avoid such

non-identifiability issues, we focus on estimation of the unmediated causal effect.

3.2 Preliminaries

In this section we present some preliminaries on different covariate types and

penalized estimation that are needed in the sequel.

3.2.1 Different Types of Covariates

The strong ignorability condition is key in causal inference; it follows automat-

ically from the correct specification of the treatment allocation model. Therefore, if

important confounders are omitted, this assumption may be violated and lead to an

inconsistent estimator. On the other hand, adding all the unrelated covariates in the

treatment assignment model may inflate the variance of the estimator of the causal

effect. Therefore, before proposing a causal effect estimation procedure, the correct

covariates must be selected to be entered into the propensity score model.

We assume that there are three types of covariates: (I) those which are just re-

lated to the treatment, (II) which are related to the outcome as well as the treatment

(confounders), and (III) which are just related to the outcome variable. In standard

causal inference problems (without mediation), it is often assumed that all the co-

variates related to the treatment are also related to the outcome. In this situation,

all covariates related to the treatment have to be included in the propensity score

model which can be achieved by any treatment allocation-based covariate selection

techniques. In the directed acyclic graph (DAG) in Figure 3–1, Type-I and Type-III

are covariates either related just to the outcome or just to the treatment.
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Figure 3–1: Covariate types: Type-I: X3, Type-II: (X1, X2) and Type-III: X4.

In this situation, model selection techniques which only consider the treatment

mechanism ignore covariates that are related to the outcome but not treatment

and hence lead to inefficient estimators. In contrast, our proposed model selection

technique involves the treatment and the outcome models at the same time to keep

the important covariates in the model.

Brookhart & Van Der Laan (2006) introduced a technique based on a cross-

validation criterion to select a model for the treatment mechanism in marginal struc-

tural models. Cross-validation has, however, some drawbacks. For example, it can be

extremely variable, and is not readily applicable in high-dimensional cases when the

number of covariates is larger than the sample size. The simulation study Brookhart

et al. (2006a) suggests that variables unrelated to the treatment, but related to the

outcome, should always be included in the propensity score model. The inclusion

of these variables will decrease the variance of an estimated exposure effect without

increasing bias. Our penalized estimation technique confirms the simulation-based

results of Brookhart et al. (2006a).

In the section 3.3, we explain through a simple example why including covariates

related only to the outcome can improve the efficiency of the estimator without
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imposing any bias, whereas including covariates merely related to treatment does

not introduce bias, but does lead to variance inflation in the estimator of the causal

effect.

3.2.2 Penalized Estimation

Several methods for choosing the most important covariates in the regression

of an outcome Y on covariates X in terms of response prediction include stepwise

and subset selection. When the dimension of X is large, however, these methods are

computationally expensive and unstable. Tibshirani (1996) proposed the LASSO,

which shrinks some coefficients and sets the others to zero by adding a penalty

function to the sum-of-squares function. The penalized least-squares estimator η̂ls is

η̂ls = arg min
η

{
||y −Xη||2 + n

p∑
j=1

pλ(|ηj|)

}
,

where η is a p-dimensional regression coefficient and pλ(.) is a penalty function. This

is readily generalized to likelihood based models, where the maximum penalized

likelihood estimator (MPLE) is given by

η̂ml = arg min
η

{
lm(η) + n

p∑
j=1

pλ(|ηj|)

}
,

and lm(η) is the minus log-likelihood. We note that MPL estimators are shrinkage

estimators. As such, they have more bias, though less variation. Over the past

decade, many other shrinkage methods have been introduced using other penalty

functions. Some of the most well-known of these penalty functions are:
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• LASSO (Tibshirani (1996)):

pλ(|βj|) = λ|βj|

• SCAD (Fan & Li (2001)): for a > 2

pλ(|βj|) =



λ|βj| if |βj| < λ

−(|βj|2 − 2aλ|βj|+ λ2)

2(a− 1)
if λ < |βj| < aλ

(a+ 1)λ2

2
if |βj| > aλ

so that the first derivative takes the form

p′λ(|βj|) = λ

{
I(|βj| < λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

}
• EN (Zou & Hastie (2005)):

pλ(|βj|) = λ1|βj|+ λ2β
2
j

• HARD (Antoniadis (1997)):

pλ(|βj|) = λ2 − (|βj| − λ)2I(|βj| < λ)

A penalty function pλ(.) serves its purpose if the corresponding MPLE possesses the

sparsity property (sets true zero coefficients to zero) and behaves like the MLE for

large samples. While LASSO exhibits sparsity, it does not behave like the MLE

when n → ∞. Fan & Li (2001) introduced the SCAD penalty function to avoid

these deficiencies. The HARD penalty is important because it corresponds to the
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best subset selection in certain cases and it exhibits the oracle properties i.e., it

satisfies the sparsity property and asymptotic normality simultaneously. Finally,

Zou & Hastie (2005) presented the Elastic Net (EN) penalty which is a mixture of

LASSO and RIDGE to effectively select grouped variables in large datasets.

The remainder of this paper is organized as follows. In Section 3.3, we show

analytically how the variable selection can reduce the variance of the estimator. Sec-

tion 3.4 introduces a penalized (pseudo-) causal likelihood and defines the penalized

estimator corresponding to the derived likelihood. In Section 3.5, we study the large

sample behaviour of the MPLE. The performance of the proposed method is studied

via simulation in Section 3.5. We analyze the NSWD data in Section 3.6. The last

section contains some concluding remarks.

3.3 An Analytic Example: Propensity Score Regression

As a simple example, assume the true structural conditional mean model is given

by

E[Y |D = d,X = x] = βd+ β1x1 + β2x2,

with propensity score model logit(π(x)) = α1x1 where X1 and X2 are continuous

covariates and β is the causal parameter. Using the PS regression approach, the

following model will be fitted

E[Y |D = d,X = x] = βd+ θπ(x), (3.1)

where X is the vector of covariates.

In this regression setting, the usual sum of squares decomposition applies; the to-

tal sum of squares (SST ) can be decomposed into the residual sum of squares (SSE)
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and the regression sum of squares (SSR), SST = SSE + SSR. Adding X2 into the

fitted propensity score model in equation (3.1) increases the covariance between the

modelled π and Y , which decreases SSE, and hence increases SSR which is indeed

Var[D|X] in our setting. Therefore, it decreases the variance of the estimated causal

effect, which explains the results obtained by Brookhart et al. (2006a). Clearly,

adding X2 to the propensity score model will not harm the balancing property and

thus the estimator remains unbiased.

Conversely, consider the effect of including a spurious covariate in the propensity

score model, that is, a covariate that is not related to Y (even if it is related to D).

Suppose for simplicity the data generating model has

E[Y |D = d,X = x] = βd+ β1x1

and suppose that the fitted conditional model for Y is

E[Y |D = d,X = x] = βd+ θπ(x)

as before. For simplicity of exposition, suppose π(X) is constructed using a linear

(rather than logistic) model, with π(x) = E[D|X = x] = α1x1 + α2x2, with D

modelled using additive zero mean errors, D = π(x) + ε1 say. In reduced form,

substituting the model for π into the conditional mean model for Y , the fitted model

for Y given X = x is

Y = βd+ θπ(x) + ε = βd+ θ(α1x1 + α2x2) + ε = βd+ β?1x1 + β?2x2 + ε,
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say. Thus, comparing this with the data generating model, X2 is a spurious covariate

unless α2 = 0. Write the fitted model

Y = [Z1 Z2][γ1 γ2]′ + ε

where Z1 = cbind(D,X1) and Z2 = X2, γ1(β, β?1), γ2 = β?2 . The OLS estimator of

[γ1 γ2]′ is straightforward to derive and is an unbiased estimator of γ1 = (β, β?1), and

the estimator of γ2 = β?2 has expectation zero. The variance of the OLS estimator is

Var[γ̂] = VarZ1,Z2 [E[γ̂|Z1, Z2]] + EZ1,Z2 [Var[γ̂|Z1, Z2]]

From above, the first term is zero. In the second term, Var[Y |Z1, Z2]σ21n, so

Var[γ̂|Z1, Z2] = σ2

 Σ−1
11 + Σ−1

11 Σ12MΣ21Σ−1
11 −Σ−1

11 Σ12M

−MΣ21Σ−1
11 M


where M = (Σ22 − Σ21Σ−1

11 Σ12)−1, Σij = Z ′iZj. Thus the variance of γ̂1 is the (1, 1)

element after taking expectations, if EZ1

[
Σ−1

11

]
is the variance if Z2 ≡ X2 is omitted

from the model,

EZ1,Z2

[
Σ−1

11 + Σ−1
11 Σ12MΣ21Σ−1

11

]
≥ EZ1

[
Σ−1

11

]
in general. The inequality holds as M is positive definite, as is Σ12MΣ21. Therefore,

the inclusion of X2 inflates the variance of the estimator of β. The exception to this

case is where Σ12 = Z ′1Z2 is near zero, or when X2 is uncorrelated with D and X1.

If X2 is a predictor of D, it certainly is correlated with D.
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These simple examples suggest that if our aim is to decrease the mean square

error (MSE) of the estimator, we should include in the propensity score model those

variables that are just related to the response, and not merely to the treatment mech-

anism. It also suggests that the common strategy of building rich (saturated) models

for the propensity score will lead to inefficiency if covariates that are not confounders

are included. Excluding confounders, of course, leads to bias and inconsistency; how-

ever, the impact on MSE is difficult to quantify from these calculations.

3.4 Penalized Estimation for Causal Parameters

In the spirit of Robins et al. (1992), we proposed a slight modification of the

conventional PSR. We define the conditional response mean model as follows:

E[Yi|Si = si,Xi = xi] = β0 + β1Si + g(x;α),

where Si = Di − E[Di|xi] = Di − π(xi), g(x;α) is a function of covariates and π is

the propensity score. The quantity Si is used in the mean model in place of Di; if

Di is used the fitted model may result in a biased estimator for β1 since g(x) might

not be the true function of covariates in the mean model. Fitting the incorrect g(.)

would not affect the consistency of the exposure effect if the treatment assignment

were randomized, when cor[D,Xj] = 0 for j = 1, 2, .., p. By defining Si = Di−π(xi),

we restore cor[S,Xj] = 0 for j = 1, 2, .., p if π(xi) = E[Di|xi] is correctly specified,

as π(xi) is the (fitted) expected value of Di, and hence x′j(D− π(x)) = 0. Therefore

misspecification of g(.) will not result in an inconsistent estimator.
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In general, this model is doubly robust since it results in a consistent exposure

effect estimator β1 if either the propensity score or the functional form of the as-

sociation between the outcome and the covariates g(.) is correctly specified. In our

model, we use a linear function of covariates as g(.). When the propensity score

and the posited response mean models are correctly specified, it results in the most

efficient estimator (Tsiatis (2006)). Some other forms of DR estimators can be found

in Davidian et al. (2005), Schafer & Kang (2005) and Bang & Robins (2005). For

additional details on the asymptotic and the small sample behaviour of DR estima-

tors see Kang & Schafer (2007), Neugebauer & van der Laan (2005), van der Laan

& Robins (2003) and Robins (1999).

3.4.1 Likelihood construction

In likelihood-based penalized estimation, a proper likelihood is required. Con-

sider the following parametric likelihood (based on a specific parametric submodel)

L(η; y,d,x) =
n∏
i=1

{f1(yi|xi, β)p(d = 1|xi, α)f(xi)}di

{f0(yi|xi, β)(p(d = 0|xi, α))f(xi)}1−di

=
n∏
i=1

{f1(yi|πi, g(x;α), β)p(d = 1|xi, α)}di

{f0(yi|πi, g(x;α), β)p(d = 0|xi, α)}1−di f(xi).

In general, the counterfactual densities fj(yi|πi, g(x;α), β), j = 1, 2, are unknown.

Using the assumption of no unmeasured confounders, this density can be replaced
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by the observed conditional density, f(yi|D = j, πi, g(x;α), β),

L(η; y,d,x) ∝
n∏
i=1

f(yi|D = d, πi, g(x;α), β)p(d = 1|xi, α)dip(d = 0|xi, α)1−di , (3.2)

where β is an r1-dimensional vector and α is an r2-dimensional vector containing

parameters that appear in the model for Y |X and D|X respectively. Thus η = (β, α)

is an r-dimensional vector, where r = r1 + r2. Since our goal is to select covariates

for the propensity score model, we just impose a penalty on the propensity score

parameters. Therefore, using (3.2) the penalized log likelihood can be written as

l̃n(η) = lny(η) + lnd(η)− npλn(α) (3.3)

where

lny(η) =
n∑
i=1

logf(yi|di, πi, g(x;α), β)

lnd(η) =
n∑
i=1

{
di log

p(d = 1|xi, α)

p(d = 0|xi, α)
+ log p(d = 0|xi, α)

}
.

Thus, the penalized (pseudo-) density for each sample point is

fp(zi, η) = f(zi; η)f(α),

where Zi = (yi, di,xi) and f(α) = exp{−pλn(α)}. The maximum penalized likelihood

estimator, η̂n, is defined by

η̂n = arg sup
η

n∏
i=1

fp(zi; η) = arg sup
η

n∑
i=1

log fp(zi; η).
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Since α appears in both models Y |X and D|X, not just the model D|X, its estimate

is not the same as the parameters in the PS model. We do not require differentiability

of the likelihood.

3.4.2 Omission of confounders

Missing confounders which are weakly related to the outcome (treatment) but

strongly related to the treatment (outcome) may impose bias in the estimation of

causal effect. Thus, any covariate selection technique must take into account both

outcome and treatment assignment models simultaneously. By using the joint like-

lihood, we give the covariates a chance to represent their contribution twice, once

in the conditional mean model and once in the treatment assignment model. This

strategy then gives an equal chance to Type-I and Type-III covariates for selection

as key covariates. To deal with this problem, we introduce the boosting parameter ν

which boosts covariates Type-III relative to Type-I. The boosting parameter can be

defined as ν = 1/|α̃Y |, where α̃Y is the least-squares estimate of the parameters in the

response mean model. Our penalty function is proportional to the boosting param-

eter, pλn(.) = νp∗λn(.), where p∗λn(.) is the conventional penalty function. Therefore,

the magnitude of penalty on each parameter is proportional to its contribution to

the response and treatment model. A similar argument can be found in the adaptive

LASSO (Zou (2006)).

3.4.3 Main Theorems

The following conditions on penalty functions guarantee a consistent penalized

estimating procedure which sets the small coefficients to zero for covariate selection.
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P1. For all n, pλn(0) = 0 and pλn(α) is symmetric and nonnegative. Moreover, it

is twice differentiable with derivatives p′λn(.) and p′′λn(.) and nondecreasing for

α 6= 0 with at most a few exceptions.

P2. As n→∞, maxα 6=0{p′′λn(α)} → 0 and maxα 6=0{
√
np′λn(α)} → 0.

P3. For Nn ≡ (0,Mn), lim inf
α∈Nn

√
np′λn(α) =∞, where Mn → 0 as n→∞.

Assumption P1 is used to prove theorem 3.1, while P2 prevents the jth element of the

penalized likelihood from being dominated by the penalty function since it vanishes

when n → ∞. If αj = 0, condition P3 allows the penalty function to dominate the

penalized likelihood which leads to the sparsity property (Khalili & Chen (2007)).

Without loss of generality, we reorder the r-dimensional vector of parameters, η,

to η = (η1, η2) such that η2 = (ηj) for j = s, ..., r corresponds to the zero coefficients.

The true parameter values denoted by η0 = (η01, 0). Note that since there is no

penalty on the βs, η2 consists of those α that should be shrunk to zero (αj = 0 for

j = s′, ..., r2). The following Theorem states the existence of the consistent penalized

maximum likelihood estimator under certain conditions. It assumes certain regularity

conditions (C1-C4) that are common in the study of the asymptotic behaviour of

likelihood-based estimates; see Appendix B, and Ibragimov & Has’ Minskii (1981).

Proofs are given in the Appendix.

Theorem 3.1 Suppose assumptions C1-C4 and P1-P2 are fulfilled. There exists a

penalized maximum likelihood estimator η̂n → η0 as n→∞ almost surely.

Lemma 5.2 in the Appendix shows that the proposed penalized estimation technique

is able to detect zero coefficients and shrink them to zero through the penalized
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maximum likelihood estimation procedure. In the next theorem, we show that the

proposed method asymptotically sets the detected zero coefficients to zero.

Theorem 3.2 Under conditions C1-C4 and P1-P3, Pr(η̂2 = 0)→ 1 as n→∞.

The next result presents asymptotic normality of the score function. Let I(η)

be the Fisher information matrix, where

I(η) =

∫
z:f(z,η)6=0

[
∂ log f(z, η)

∂η

] [
∂ log f(z, η)

∂η

]′
f(z, η)dz

Theorem 3.3 Suppose assumptions C1-C5 and P1-P3 are fulfilled and further det[I(η)] 6=

0 for η ∈ Ξ. Then

1√
n

n∑
i=1

[
∂ log f(z, η01)

∂η01

]
−
√
np′λn(α01)

d−→ N(0, I(η01))

where η01 = (β, α01) and α01 is the true vector of non-zero coefficients.

The proof is omitted since it is similar to the proof of Theorem 2.1.1 in Ibragimov

and Hes’ Minskii (1981).

The asymptotic distribution of the MPL estimator is presented in the following

Corollary which is the direct result of Theorem 3.3 and Theorem 2.5.2 in Bickel et al.

(1993b).

Corollary 3.4 Under the assumptions of Theorem 3.3, we have

√
n(η̂01 − η01)

d−→ N(0, I−1(η01)).

Corollary 3.4 states that asymptotically, under P2 the penalized estimator is as

efficient as the ML estimator when the important covariates are known a priori.
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Remark 1. By Theorem 3.3, the estimator obtained by the LASSO penalty function

will be a
√
n consistent estimator for non-zero coefficients if

√
nλn → 0, whereas it

achieves the sparsity property if
√
nλn →∞. Therefore, the LASSO penalty function

cannot satisfy both sparsity and consistency simultaneously. However, in adaptive

LASSO, the sparsity property will be achieved if nλn →∞; therefore, it exhibits the

oracle properties. For the HARD and SCAD penalties, P2 and P3 hold if λn → 0

and
√
nλn →∞.

3.4.4 Choosing the Tuning Parameter

Choosing the right tuning parameter λ is essential in penalized likelihood esti-

mation. Small values of λ result in an overfitted model, while large values can set

important coefficients to zero. We select the tuning parameter using the General-

ized Cross Validation (GCV) method suggested by Tibshirani (1996) and Fan & Li

(2001). The GCV measure is defined as

GCV (λ) =
RSS(λ)/n

{1− d(λ)/n}2
,

where RSS(λ) = ||y − β̂0 − β̂1S −Xα̂||2, d(λ) = trace{X(XTX + nΣλ(η̂))−1)XT} is

the effective number of parameters and

Σλ(η) = diag{p′λ(|η1|)/|η1|, ..., p′λ(|ηp|)/|ηp|},

The selected tuning parameter λ̂ is defined by λ̂ = arg minλGCV (λ).

3.4.5 Estimation Procedure

The penalized exposure effect estimation process can be summarized as follows:
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I. Fit a saturated (that is, rich) propensity score model by including all the vari-

ables in the model π(X). This is to ensure no confounders are omitted, and to

attempt to ensure that π(X) = E[D|X] is correctly specified.

II. Define a new random variable Si = Di− π(X) and fit the response conditional

mean model

E[Yi|d,x] = β0 + β1si + g(x;α),

where g(x;α) = α′x and x is the whole vector of covariates. A richer condi-

tional mean model can also be fitted by including the interaction and/or higher

order terms of g(.).

III. Estimate the vector of parameters η = (β, α) such that

η̂n = arg sup
η

n∏
i=1

fp(yi, si, πi; η) = arg sup
η

n∑
i=1

log fp(yi, si, πi; η),

where fp(.) is the joint penalized density of (Y, S, π). Note that in prac-

tice, the penalized counterfactual density fjp(y|π) for j = 0, 1 is unknown.

Thus, it needs to be replaced by the observed penalized conditional density

fp(yi|si, πi; η̂n).

We develop a one-step estimation procedure; parameters of the response and the

function g(.) are estimated simultaneously in one step (III).

3.5 Simulation Studies

3.5.1 Simulation Study: The joint penalized likelihood approach

In this section, we represent a simulation study based on 1000 data sets of sizes

500 and 5000 to check the performance of the proposed penalized covariate selection
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Table 3–1: Penalized ATE estimators based on the SCAD and LASSO penalty
functions.

σ = 2 n = 500 n = 5000
Method ρ Bias S.D. MSE Bias S.D. MSE
SCAD 0 0.012 0.230 0.053 0.000 0.065 0.004

0.5 0.003 0.233 0.055 0.005 0.064 0.004
LASSO 0 0.003 0.254 0.065 0.002 0.065 0.004

0.5 0.023 0.246 0.061 0.005 0.064 0.004
ORACLE 0 0.006 0.195 0.038 0.000 0.065 0.004

0.5 0.010 0.187 0.035 0.001 0.064 0.004
Saturated 0 0.001 0.326 0.106 0.002 0.123 0.015

0.5 0.031 0.329 0.109 0.003 0.125 0.016
σ = 4 n = 500 n = 5000
SCAD 0 0.025 0.541 0.29 0.006 0.127 0.016

0.5 0.009 0.537 0.288 0.007 0.124 0.016
LASSO 0 0.055 0.618 0.385 0.003 0.127 0.016

0.5 0.090 0.562 0.316 0.008 0.124 0.015
ORACLE 0 0.021 0.387 0.150 0.008 0.127 0.016

0.5 0.012 0.372 0.139 0.002 0.121 0.015
Saturated 0 0.039 0.899 0.810 0.008 0.332 0.111

0.5 0.026 0.902 0.814 0.014 0.343 0.118

method. We assume the following model:

D ∼ Bernoulli

(
exp{0.2x1 − x2 + 3x8 − x9 + x10}

1 + exp{0.2x1 − x2 + 3x8 − x9 + x10}

)
Y ∼ Normal(d+ 2x1 + 0.5x2 + 5x3 + 5x4, σ)

where Xk for k = 1, ..., 10 are normal random variables with parameters (µ = 1, σ, ρ).

Table 3–1 summarizes the results based on the LASSO and SCAD penalty functions

for two sets of different values of standard deviation (σ) and correlation (ρ). ORA-

CLE refers to the proposed model by Brookhart et al. (2006a) which includes just

covariates related to the response in the propensity score model and “Saturated”
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Table 3–2: Penalized ATE estimators based on the SCAD and LASSO penalty
functions.

Method ρ MRME Correct Incorrect MRME Correct Incorrect
σ = 2 n = 500 n = 5000
SCAD 0 0.583 5.5 0.0 0.401 6 0

0.5 0.596 5.4 0.0 0.413 6 0
LASSO 0 0.622 5.2 0.0 0.394 6 0

0.5 0.538 5.3 0.0 0.316 6 0
σ = 4 n = 500 n = 5000
SCAD 0 0.355 5.1 0.03 0.240 6 0

0.5 0.346 5.2 0.03 0.215 6 0
LASSO 0 0.377 5.1 0.02 0.220 6 0

0.5 0.339 5.2 0.00 0.212 6 0

refers to the propensity score model including all the covariates (X1, ..., X10). The

fitted propensity score model in ORACLE and Saturated are

π(x) = p(D = 1|x1, x2, x3, x4),

π(x) = p(D = 1|x1, x2, ..., x10).

Table 3–1 confirms that our proposed technique converges to the ORACLE

model as sample size increases. For moderate sample size, the covariate selection

technique results in a lower MSE than the Saturated model, decreasing both bias

and standard error. In fact, the standard error of the treatment effect obtained by the

saturated model is roughly twice that obtained using the penalized technique. Table

3–2 summarizes the performance of LASSO and SCAD in terms of the median of

relative model errors (MRME). The MRME is defined as the median of the following

quantity

RME =
(β̂ − β)TE[X′X](β̂ − β)

(β̂sat − β)TE[X′X](β̂sat − β)
,
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where β̂ is the estimator obtained from the penalized method and β̂sat is the one

obtained from the saturated model. The average number of coefficients set to zero

correctly or incorrectly are also reported in Table 3–2. For moderate sample size,

SCAD outperforms LASSO when covariates are independent, while LASSO performs

better when there is correlation between covariates. However, for large sample size,

LASSO outperforms SCAD in terms of the MRME for both correlated and uncorre-

lated covariates and both noise levels. In both cases, increasing the variance from 2

to 4 with moderate sample size reduces the MRME.

3.5.2 Simulation Study: The joint and conditional penalized likelihood
approaches

Here, we want to compare the proposed joint penalized likelihood approach with

the conditional response penalized likelihood approach. Our simulation study in this

section reveals that missing a confounder which is weakly related to the response but

strongly related to the treatment may lead to an inconsistent estimator. This type

of confounder can be ignored by applying the penalized covariate selection methods.

Assume the following data generating process

D ∼ Bernoulli

(
exp{0.2x1 − 2x2 + 3x8 − x9 + x10}

1 + exp{0.2x1 − 2x2 + 3x8 − x9 + x10}

)
Y ∼ Normal(d+ 2x1 + 0.05x2 + 5x3 + 5x4, σ),

where Xk for k = 1, ..., 10 are independent normal random variables with parameters

(µ = 1, σ = 4).
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Table 3–3: Comparing the joint and conditional penalized likelihood approaches.
LASSO1 represents the results based on the proposed penalized joint likelihood ap-
proach. LASSO2 represents the results based on the conditional response penalized
likelihood approach using the adaptive LASSO.

Method Bias S.D MSE Bias S.D MSE
σ = 4 n = 5000 n = 30000

LASSO1 0.003 0.122 0.015 0.002 0.050 0.002
LASSO2 0.121 0.117 0.028 0.118 0.047 0.016

Saturated 0.014 0.288 0.083 0.002 0.119 0.014

Table 3–3 indicates that missing x2 which is weakly related to the response

produces a bias and as sample size increases, the bias dominates the variance, which

results in an inconsistent estimator.

3.6 Application to Real Data

The National Supported Work Demonstration (NSWD) aimed to provide work

experience to individuals who lacked basic skills. In 1970, a total of 6,616 workers

were sampled at random from different cities across the United States by the Man-

power Demonstration Research Corporation (MDRC). Qualified individuals were

assigned to a treatment group to receive training provided by the NSW program.

Some baseline variables such as age (X1), education (X2), African American (X3),

Hispanic (X4), married status (X5), no degree (X6) and earnings in 1975 (X7) were

recorded for each participant. As in LaLonde (1986), we focus on the male workers

among the participants and consider their earnings in 1978 as the response variable.

Our treated observations group consists of a subset of the NSW with 297 workers
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Figure 3–2: The NSWD data: Estimated propensity score overlap in treated and
control groups before and after truncation.

and the control group includes individuals from the Panel Study of Income Dynam-

ics (PSID) with 2490 workers. Additional details are provided in Dehejia & Wahba

(1999).

The initial propensity score is estimated using logistic regression including all

the covariates. The first step in the propensity score causal adjustment method is

to check for sufficient overlap between treatment and control groups (Rubin (2008)).

The two plots on the left side of Figure 3–2 reveal that there are some subclasses

(bins) that include only treated or control individuals which may result in a poor
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Figure 3–3: The NSW data: The left and right plots are the estimated coefficients us-
ing the LASSO and SCAD, respectively. The horizontal axis represents the effective
number of coefficients (df).

causal effect estimate. More precisely, the treatment effect can not be estimated in

those empty bins without some response model assumptions relating the counterfac-

tuals to the covariates. To overcome this problem, we truncated those individuals

who fall in empty bins. The right side of Figure 3–2 shows that sufficient overlap

can be achieved by truncating the empty bins. Therefore, there are both treated and

untreated workers in all the propensity score subclasses, which means that in each
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Table 3–4: Penalized ATE estimators based on the SCAD and LASSO penalty
functions.

Method ATE S.D. C.I. X1 X2 X3 X4 X5 X6 X7

SCAD -0.552 0.091 (-0.734,-0.370) –
√

–
√ √ √

–
LASSO -0.565 0.094 (-0.753,-0.377) –

√
–

√ √ √
–

Saturated -0.502 0.107 (-0.716,-0.288)
√ √ √ √ √ √ √

Unadjusted -1.376 0.072 (-1.520,-1.232) – – – – – – –

bin the distributions of all the covariates are nearly the same for both treated and

untreated workers.

After ensuring that the randomized experiments can be reconstructed inside

each propensity subclass, we need to find the conditional expectation E[Y (j)|d, π(x)].

Heckman et al. (1997) and Hardie & Linton (1994) suggested the use of nonparamet-

ric techniques to find the conditional expectation of the response given treatment and

the propensity score. Here, we fit the following regression model for the observable

response

Y = β0 + β1s+ g(x;α),

where β1 is the treatment effect parameter. The interaction or the higher order of

the propensity score can be added to the response model if needed.

Rubin (1997) stressed the importance of including all the confounders in the

propensity score model. Accordingly, if there is any variable which is related to the

response and not to the treatment, it will be excluded from the treatment mechanism

model. In other words, Rubin believes that the propensity score should be used as a

diagnostic tool for design rather than analysis and we should not look at the response

variable while fitting a model for the propensity score. In their simulation studies
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Brookhart & Van Der Laan (2006), however, suggested that by adding covariates

that are related only to the response and not treatment, we can gain efficiency.

We applied our penalized technique to the NSWD data, with results as sum-

marized in Table 3–4. Saturated and unadjusted rows in this Table refer to the

propensity score model including all the variables and none of the variables, respec-

tively. Figure 3–3 shows how estimated coefficients vary by changing the tuning

parameter. Note that the maximum(minimum) effective number of coefficients (df)

corresponds to λ = 0(1). The constructed penalized covariate selection technique

keeps “Education”, “Hispanic”, “Married Status” and “No degree” as the only sig-

nificant confounders in the propensity score model. Although we do not have a large

number of covariates in this example, our variable selection technique results in more

than 27% variance reduction compared with the saturated model.

3.7 Future Directions

In this Chapter, we use a regression model to estimate the treatment effect

by modelling the conditional expectation of the response given treatment and the

propensity score. We establish a Maximum Penalized Likelihood Estimator (MPLE)

which satisfies the oracle properties under certain assumptions. The proposed tech-

nique involves the treatment and the outcome models simultaneously such that it

does not ignore covariates which are just related to the outcome and not to the

treatment. Our covariate selection approach reduce the variance while attaining no

residual confounding.

Although we have discussed the time point treatment case, the penalized tech-

nique can be used to estimate the direct treatment effect in longitudinal setting as
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well. However, in longitudinal setting, if the total effect is the parameter of inter-

est other causal adjustment techniques such as IPTW need to be used. One of the

drawbacks of propensity score regression based models is that any nonlinear term in

the true response model has to be added in the propensity score model to ensure the

consistency of the treatment effect estimator which is not easily detectable in some

cases. Moreover, it is well-known that in the presence of time varying-confounders

and treatments PSR adjustment may result in a biased estimator. In particular,

when there is a unmeasured covariate which causes the outcome and a confounder,

conditioning on the confounder results in a biased estimator of the treatment. In this

case, the IPTW technique is a great alternative to solve the problem. So, adopting

our proposed technique for longitudinal setting can be very helpful to reduce the bias

of the estimator obtained by the IPTW. It seems reasonable to apply the cofounder

selection method for the baseline covariates. It might, however, be risky to apply any

covariate selection technique on the time varying confounders because of the possible

causal path complications.

In general, confounding might not be the only source of bias in the estimation

of the treatment effect. In some cases, we do not have a representative sample of the

target population and it needs to be considered as another source of bias. In the next

Chapter, we consider one of well-known biased sampling cases called length-biased

sampling and present a weighted estimating equation which adjust for the length-

biased sampling as well as the confounding effect for estimating the treatment effect

on the survival time.
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CHAPTER 4
Double Bias

Chapter Summary

Biased sampling is often exercised when logistic or other constraints preclude the

possibility of having a representative sample from the population of interest. It is, in

particular, a common phenomenon in observational studies on disease duration when

recruiting incident cases is infeasible. A second type of bias is a bias induced when

we use classified sampling and the goal is to compare a response variable between

different subpopulations. An example of such is encountered when comparing sur-

vival with dementia among institutionalized elderly citizens and those recruited from

the community. From a slightly different perspective, this scenario may be viewed

as estimating a causal effect of treatment when in addition to the lack of treatment

randomization, the sample we is not a representative sample from the target popu-

lation. While there is a vast literature addressing these two types of bias separately,

there is no methodology to address them both simultaneously. We introduce two

estimating equations, a weighted and a double robust for estimating grouping effect

that can handle both types of bias. Large sample properties of the estimators are

established and then small sample behaviour is studied using simulations. We apply

the proposed method to a set of prevalent cohort survival data collected as a part of

the Canadian Study of Health and Aging (CSHA) to compare survival with dementia

among institutionalized patients versus those recruited from the community.
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4.1 Introduction

Survival or failure time data typically comprise an initiating event, say onset of a

disease, and a terminating event, say death. In an ideal situation, recruited subjects

have not experienced the initiating event, the so called incident cases. These cases

are then followed to a terminating event, say death, or censoring, say loss to follow

up. It frequently happens, however, that recruiting the incident cases is infeasible,

due to logistic or other constraints. As such, subjects who have experienced the ini-

tiating event prior to the start of the study, so called prevalent cases, are recruited.

It is well-known that these cases tend to have a longer survival time, and hence they

do not constitute a representative sample from the population of interest, the target

population. When the initiating events are generated by a stationary Poisson pro-

cess, the induced bias is called length-biased (Cox & Lewis (1966), Zelen & Feinlein

(1969)). In other words, the probability of being observed for individuals in the

population is proportional to their survival time.

Studies on length-biased sampling can be traced as far back as Wicksell (1925)

and his corpuscles problem. Such phenomenon was later noticed by Fisher (1934)

in his article on methods of ascertainment. Neyman (1955) discussed length-biased

sampling further and coined the terminology incidence prevalence bias. Cox (1969)

studied length-biased sampling in industrial applications and quality control, while

Zelen & Feinlein (1969) observed the same bias in screening test for disease preva-

lence. Patil & Rao (1978) provide several other interesting examples of length-biased

sampling. Vardi and his collaborators systematically studied nonparametric statis-

tical inference when data are subject to length-biased sampling (Vardi (1982), Vardi
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(1985), Gill et al. (1988), Vardi (1989), Vardi & Zhang (1992), and Gilbert et al.

(1999) ). Asgharian et al. (2002) and Asgharian & Wolfson (2005) studied NPMLE

from right censored prevalent cohort survival data. More recently, Shen et al. (2009)

and Qin & Shen (2010) studied analysis of covariates under biased sampling.

Length-biased sampling can affect the sampling distribution of the covariates

such that those covariates which are related to the longer survival have a higher

chance of being selected. Bergeron et al. (2008) pointed out this issue and suggested

the joint likelihood estimation based rather than the conventional conditional ap-

proach if either the the failure time distribution is parametrically specified or the

covariate distribution in the target population is known. Note that when the sample

is representative of the population, the marginal distribution of the covariates does

not contain any information about the relationship between the survival and the

covariates. As such, joint likelihood estimation does not add any extra information

to the estimation procedure and it performs as well as conditional inference. An-

other source of bias often encountered in observational studies is the nonrandomized

grouping assignment which is discussed in detail in Chapter 1.

To adjust for both types of bias simultaneously, we propose a modified version

of the estimating equations introduced by Shen et al. (2009). This modified version

in conjunction with IPTW or PSR can adjust the two types of bias discussed above.

The IPTW based estimating equation does not need the response mean model to be

correctly specified and it results in a consistent estimator if the grouping assignment

model, the conditional probability of being in a group given the covariates, is cor-

rectly specified. The PSR estimating equation; however, needs both grouping and
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the response mean model to be correctly specified to estimate the grouping effect

consistently. This stronger modelling assumption results in an estimator which has

a lower variance than the IPTW method.

4.2 Preliminaries

4.2.1 Notations

Let T pop be the time measured from the onset to failure time in the population

with distribution FU , and T obs be the same measured time for observed subjects with

distribution FLB. It is well-known that

FLB(t) =
1

µ

∫ t

0

sdFU(s),

where µ =
∫∞

0
sdFU(s) if the onset times are generated by a stationary Poisson

process (the so-called stationarity assumption). The observed event time r. v., T obs,

can be decomposed into the time from the onset of the disease to the recruitment

time, say A, and the residual life time which covers the time from recruitment to

the event, R, also called backward and forward recurrence times, respectively. When

the individuals are also subject to right-censoring, the observed survival time is

Y = A + min(R,C) where C is the censoring time measured from the recruitment

to loss to follow up.

4.2.2 The Likelihood Based Approach

In the propensity score regression adjustment technique, the propensity score

plays the role of the whole vector of covariates, and as noted by Bergeron et al.

(2008), the left-truncation affects the distribution of the covariates/propensity score

as well as the conditional distribution of the response. For example, if those who
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have a higher chance of being in the control group live longer then they will be

over represented in the length-biased sample. Under the uniform truncation and the

independency of T pop and A, it can be shown that

fLBjπ (π) =
µj(π(x), θ)fπ(π)

µj(θ)

where µj(π(x), θ) = E[T pop(j)|π] and µj(θ) = E[µj(π(x), θ)] for j = 0, 1. Hence,

when the individuals are subject to left-truncation and right censoring, the first part

of the (2.5) can be written as (Bergeron et al. (2008));

E−1[T pop(1)] = µ1(θ)−1 =

∫
f1LB(t|π, θ)

t
fLB1
π (π) dt dπ,

where f1LB(.) is the length-biased conditional density of the survival time given

covariates if treated(Bergeron et al. (2008)).

The joint parametric likelihood of (di, yi, πi) for i = 1, ..., n is given by

L(θ; y,d, π) =
n∏
i=1

{f1(yi|πi, β)p(di|π, α)fπ(πi)}di {f0(yi|πi, β)p(di|π, α)fπ(πi)}(1−di) ,

(4.1)

where f0 and f1 are the conditional densities of the variable response in the untreated

and treated groups respectively, and under no unmeasured confounders assumption

it can be written as

L(θ; y,d,x) ∝
n∏
i=1

f(yi|D = d, πi, β)p(d = 1|xi, α)dip(d = 0|xi, α)1−di . (4.2)

where θ = (β, α).
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Therefore, when observations are subject to length-biased sampling and right-

censoring, we have

LLB(θ; w,d, π) =
n∏
i=1

f(wi, d, πi; θ), (4.3)

where w = (a, r, δ) and

f(w, d, π; θ) =

[
fU(a+ r|d, π, θ)

µ(π, θ)

]δ [
SU(a+ c|d, π, θ)

µ(π, θ)

]1−δ

×
[
µ(π, θ)f(d, π)

p(T pop ≥ A, π)

] [
p(T pop ≥ A, π)

µ(θ)

]
=

[
fU(a+ r|d, π, θ)

µ(θ)

]δ [
S(a+ c|d, π, θ)

µ(θ)

]1−δ

f(d, π).

Note that by uniformity of the left-truncation

pB(d = 1|π, θ) = p(d = 1|π, T pop ≥ A, θ) =
p(T pop ≥ A|D = 1, π, θ)f(d, π)

p(T pop ≥ A, π, θ)
,

fB(π, θ) = f(π|T pop ≥ A, θ) =
p(T pop ≥ A, π, θ)

µ(θ)
.

where µ(θ) = E[E[T pop|D, π]] and µ(D, π, θ) = E[T pop|D, π]. The vector of parame-

ters of the derived joint likelihood can be estimated by MLE. Often, the joint density

is unknown which makes the likelihood-based approach not possible. To cope with

this problem, in the next section, we introduce estimating equation based approaches

which do not depend on the information about the joint density function.

4.3 Accelerated Failure Time (AFT) Models

Inspired by AFT models introduced by Cox & Oakes (1984), we consider a

general form of AFT models when we do not assume any functional form for the

association of the confounders with the log scaled outcome nor do we assume a
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known error distribution. We, therefore, have the following model

log(T pop) = βD + g(x) + ε, E[ε|D,X] = 0. (4.4)

where ε has a unknown distribution. One may replace the function g(.) by the

conditional expectation of the exposure given the confounders, π(X), and fit the

following model

log(T pop) = βD + θπ(X) + ε.

We refer to this model as the AFT Propensity Score Regression Model (AFTPSR).

Robins et al. (1992) discuss about the possible efficiency loss in the estimation of

treatment effect, β, when the g(.) is replaced by the propensity score. The higher

order and interaction terms can also be included in the model if needed. While

AFT models may suffer from lack of robustness w.r.t. the transformation, being

the logarithmic function, they are more advantageous than other models such as

transformation models when parameter interpretability is the concern (Kalbfleisch

& Prentice (1980)).

In the next section, we introduce a weighted estimating equation which estimate

the treatment effect without specifying any functional form for the association of the

confounders and the log response.

4.3.1 Weighted Estimating Equation

Recall that inverse probability weighting is efficient when no restriction is im-

posed on the joint distribution of (Y,D,X) (see, Rotnitzky et al. (2010)). This

estimator adjusts for the bias induced by confounders using appropriate weights, it

associates to each observed outcome.
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We generalize the IPTW estimator to account for length-biased sampling as well

as non-randomization. In our setting, those weights reflect the inverse of the chance of

being in the group that the individuals actually belong to. Unlike the conventional

estimating equations in AFT models, our Weighted Estimating Equation (WEE)

does not rely on the correct model specification of the response mean model to

estimate the treatment effect consistently.

Let

w(y) =

∫ y

0

SC(s) ds,

where SC(s) is the survivor function of the censoring variable. Assuming that cen-

soring time is independent of the covariates and under the conditional independence

assumption of the exposure and the counterfactual response given measured covari-

ates among uncensored subjects, the class of influence functions corresponding to

the equation for estimating the grouping effect when π(X) and w(Y ) are known is

given by

G1 =

{
δ

w(Y )

[
D log(Y )

π
− (1−D) log(Y )

(1− π)
− β

]}
, (4.5)

This is a modified version of the influence function introduced by Tsiatis (2006). We

define

M(s) = 1(Y − A < s, δ = 0)−
∫ s

0

1(Y − A > u) dΛC(u),

where ΛC(.) is the cumulative hazard function of the censoring variable. M(s) can

be estimated by replacing the ΛC(.) by its estimate, Λ̂C(.).

It is well known (Hirano et al. (2003)) that estimating π(x) using a parametric

model results in an efficiency gain in estimating the treatment effect. The class of
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influence functions when w(Y ) is known and π(x) is replaced by π̂(x) is

G(AFT)
2 =

{
δ

w(Y )

[
D[log(Y )− µ1(X, θ)]

π̂(X)
− (1−D)[log(Y )− µ0(X, θ)]

(1− π̂(X))

+µ1(X, θ)− µ0(X, θ)− β
]}

, (4.6)

where µj(x, θ) for j = 0, 1 is the posited response mean model for untreated and

treated, respectively. The causal effect estimator corresponding to G2 is called a

Double Robust (DR) estimator in the sense that G2 results in a consistent estimator

if either the propensity score or the conditional response mean models are correctly

specified (see Tsiatis (2006), Neugebauer & van der Laan (2005), Robins (1999)

and van der Laan & Robins (2003)). When the propensity score and the posited

response mean models are correctly specified, the G2 results in the most efficient

estimator (Tsiatis (2006)).

4.3.2 Asymptotic Properties of the WEE estimator

The following theorem presents the asymptotic properties of the double robust

treatment effect estimator obtained by (4.6) in the presence of length-biased sampling

using the AFT models when both the treatment assignment and w(.) are replaced

by their estimated values.

Theorem 4.1 Let β̂AFTDR be a double robust estimator corresponding to the class of

influence functions G(AFT)
2 . Then under regularity conditions C.1− C.5,

n1/2(β̂AFTDR − β)
d−→ N (0, η(θ)),
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where

η(θ) = E{V̂ 2
0 (θ) + V̂ 2

1 (θ) + V̂ 2
2 (θ) + V̂0(θ)V̂2(θ) + V̂1(θ)V̂2(θ)}

and

V̂j(θ) = 1(d = j)δ

[
log(Y )− µj(X, θ)
p(D = j|π̂(X))w(Y )

]
+

∫ Y

0

κj(t)

SC(t)SR(t)
dM(t), j = 0, 1

κj(t) = E

{
1(D = j)δ1(Y > t)[log(Y )− µj(X, θ)]

∫ Y
t SC(v)dv

p(D = j|π̂(X))w2(Y )

}

V̂2(θ) =
δ

w(Y )
[µ1(X, θ)− µ0(X, θ)− β] +

∫ Y

0

κ(t)

SC(t)SR(t)
dMi(t),

κ(t) = E

{
δ1(Y > t)[µ1(X, θ)− µ0(X, θ)− β]

∫ Y
t SC(v)dv

w2(Y )

}
.

4.3.3 Propensity Score Estimation

In most of cases, the propensity score is unknown and it needs to be estimated.

It has been also shown that even if the propensity score is known, one may gain

efficiency by estimating it using the data available (Hirano et al. (2003)). In this

section, we construct an unbiased estimating equation for estimating the parameters

of the propensity score, α.

We have that if fU(y|X, D) and FU(d|X) are the unbiased conditional density of

the survival time given the covariates and the unbiased distribution of the exposure

given the covariates, and

µ(θ,X) =

∫
p(T pop ≥ a|X, θ) da,
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then

E

[
δ
(D − π(X, α))

w(Y )

∣∣∣∣X] = E

[
E

{
δ
(D − π(X, α))

w(Y )
|D,X

}]
=

∫
[D − π(X, α)]

∫
fU (y|X, D)w(y)

w(y)µ(θ,D,X)
dy

× µ(θ,D,X)dFU (D|X)

µ(θ,X)

=
1

µ(θ,X)

∫
[D − π(X, α)]FU (D|X)

= 0.

The last equality holds, since fU(y|X, D) is a proper density and

π(X, α) =

∫
d dFU(d|X).

An unbiased estimating equation for α is therefore

n∑
i=1

δixi
(di − π(xi, α))

w(yi)
= 0,

which is equivalent to the weighted logistic regression among the uncensored subjects.

In the simulation studies and the real data analysis, we use the above estimating

equation to estimate the parameters of the treatment assignment model.

4.4 Simulation Studies

In the this section, we conduct a simulation study to examine the performance

of the proposed estimating equations under the accelerated failure time. We simulate

1000 datasets consisting of 200, 400 and 800 observations to study the performance

of the proposed estimating equations for estimating the unmediated causal effect.
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We generated the failure times using the following model,

log(T pop) = 2.5d+
x2

1 + 2x2 + x1

+ exp{−x1/2} − 3dx2 + ε,

where ε is uniformly distributed on (-1,1), X1 is uniformly distributed on (0,1), X2

is a Bernoulli random variable with 0.5, and

D ∼ Bernouli

(
exp{2− x1 − 3x2}

1 + exp{2− x1 − 3x2}

)
.

The estimated treatment effects and their standard errors are listed in Table 4–1. We

consider three different unadjusted scenarios: Unadjustedlc is an estimator for which

neither the length-biased nor the non-randomization is adjusted, Unadjustedc is ob-

tained by adjusting for the length-biased sampling but the non-randomization left

unadjusted, and Unadjustedl is carried out by adjusting for the non-randomization

while the length-biased sampling left unadjusted. We have used a correct condi-

tional mean model in the DR estimating equation. The DR estimator dominates the

two other estimators in terms of the standard deviation and the MSE. Increasing

the censoring proportion, increases the bias in the PSR, IPTW and DR estimators

while maintaining the unbiasedness. As we expected all the unadjusted estima-

tors are biased and in our parameter setting it seems that the failure to account

for the length-biased sampling leads to a more biased estimator comparing to the

Unadjustedc.

4.5 Real Data Analysis

The Canadian Study of Health and Aging (CSHA), initiated in 1989, is a nation-

wide study on aging. One of the objects of CSHA is to study dementia in Canada.
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The CSHA included phases in 1991, 1996 and 2001. In the first phase, 10,263 in-

dividuals aged 65 or over were sampled at random across Canada, from both rural

and urban areas, from communities and institutions for the elderly. Among the par-

ticipants, 1,132 people were diagnosed with dementia. The ages of dementia onset

were assessed from each individual’s medical history. We analyze the data collected

during the first phase of the study which began in 1991 by sampling prevalent cases

and examining their types of dementia mainly, probable Alzheimer’s disease, possi-

ble Alzheimer’s disease and vascular dementia. The age of death or censoring were

recorded for each subject from the time of screening, while the of onset was ascer-

tained retrospectively using CAMDEX from care givers (Wolfson et al. (2001)).

One of the collected covariates is the dichotomous institutionalization (exposure)

indicator which is one if being institutionalized at the time of sampling and zero

otherwise. Since there are some covariates which confound the effect of the exposure

on the survival time, the crude difference estimator will be biased. The challenge is to

estimate the institutionalization effect on the survival time while having confounding

and length-biased sampling as two sources of estimator bias. Our data includes 818

subjects after excluding patients with missing information; of which 180 subjects

were right censored (Wolfson et al. (2001)). The validity of stationarity assumption

has been verified by Addona & Wolfson (2006) and Asgharian et al. (2006).

Table 4–2 presents the estimated institution effect on the survival time using

different estimating equations proposed in this Chapter under the AFT modelling

assumptions. Similar to our simulation study, we also consider three different un-

adjusted scenarios: Unadjustedlc, Unadjustedc and Unadjustedl. The results reveal
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that the institutionalization has a positive effect on the survival time at the 10%

level while the unadjusted estimators show a small negative effect. In other words,

without adjusting for either the length-biased sampling or the treatment adjustment,

we might conclude institutionalized subjects may tend to have shorter survival time.

4.6 Future Directions

We introduce a set of weighted estimating equations based on the AFT models

which obtain an unbiased estimator of the exposure effect in the presence of length-

biased sampling without assuming any functional form for the association of the

confounders and the outcome. This method can be generalized to the longitudinal

setting in the presence of time-varying confounders. Hernan et al. (2005) introduce a

method called Structural Accelerated Failure Time Models (SAFTM) which accounts

for time-dependent confounders and treatments (Robins (1992)). They, however,

assum that the samples are representative sample of the target population. The

SAFTM can be generalized to adjust for the length-biased sampling as well as the

time-varying confounders.

In AFT models, we assume that the survival time is linearly related to the co-

variates under log transformation. Cheng et al. (1995) weaken this assumption by

introducing the transformation models which leave the transformation function com-

pletely unknown. In particular, they assume that there exists an unknown function

increasing function, g(.), of the population failure times which is linearly related to

the vector of covariates. Specifically,

g(T pop) = θ1D + θ2X + ε
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where the distribution of ε is known. Shen et al. (2009) introduce an estimating equa-

tion for estimating based on the transformation models assumption which account

for the length-biased sampling. Adopting our proposed weighted estimating equation

for the transformation models seems very helpful. The collapsibility issues, however,

may arise under some transformation functions; that is, the marginal association

of the exposure effect with the survival time may not be the same as conditional

association given the covariates (Greenland et al. (1999), Gail et al. (1984) and Gail

(1986)).
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Table 4–1: Accelerated failure time simulation study. Unadjustedlc: neither the
length-biased nor the non-randomization are adjusted for. Unadjustedc: The length-
biased is adjusted whereas non-randomization left unadjusted. Unadjustedl: The
non-randomization is adjusted whereas the length-biased left unadjusted.

Censored(%)=0 n = 200 n = 400 n = 800
Method Bias S.D. MSE Bias S.D. MSE Bias S.D. MSE

PSR 0.023 0.246 0.061 0.004 0.182 0.033 0.001 0.134 0.018
DR 0.014 0.203 0.042 0.003 0.150 0.022 0.001 0.109 0.012

IPW 0.007 0.220 0.048 0.009 0.170 0.029 0.008 0.123 0.015
Unadjustedlc 0.730 0.107 0.544 0.738 0.078 0.551 0.740 0.057 0.550
Unadjustedc 0.354 0.194 0.163 0.366 0.142 0.154 0.368 0.105 0.147
Unadjustedl 0.511 0.122 0.277 0.525 0.089 0.284 0.529 0.062 0.284

Censored(%)=20 n = 200 n = 400 n = 800
PSR 0.018 0.226 0.051 0.011 0.164 0.027 0.011 0.113 0.013
DR 0.022 0.219 0.049 0.012 0.158 0.025 0.013 0.110 0.012

IPW 0.002 0.245 0.060 0.003 0.176 0.031 0.005 0.125 0.016
Unadjustedlc 0.713 0.127 0.525 0.722 0.089 0.529 0.724 0.062 0.529
Unadjustedc 0.344 0.214 0.164 0.355 0.150 0.148 0.348 0.107 0.132
Unadjustedl 0.490 0.141 0.260 0.503 0.098 0.262 0.512 0.067 0.269

Censored(%)=30 n = 200 n = 400 n = 800
PSR 0.060 0.223 0.053 0.057 0.166 0.031 0.052 0.116 0.016
DR 0.069 0.216 0.051 0.063 0.161 0.030 0.058 0.113 0.016

IPW 0.046 0.230 0.054 0.044 0.180 0.034 0.043 0.132 0.019
Unadjustedlc 0.556 0.128 0.326 0.556 0.095 0.318 0.565 0.064 0.323
Unadjustedc 0.287 0.207 0.126 0.279 0.161 0.104 0.288 0.110 0.095
Unadjustedl 0.333 0.145 0.132 0.349 0.103 0.132 0.360 0.069 0.135
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Table 4–2: CSHA data analysis: Estimation of the institutionalization effect on the
survival time. Unadjustedlc: neither the length-biased nor the non-randomization are
adjusted for. Unadjustedc: The length-biased is adjusted whereas non-randomization
left unadjusted. Unadjustedl: The non-randomization is adjusted whereas the
length-biased left unadjusted.

AFT
Method Inst. Eff. S.D. CI 95% CI 90%

PSR 0.185 0.106 (-0.027 , 0.397) (0.011 , 0.359)
DR 0.192 0.121 (-0.050 , 0.434) (-0.006 , 0.390)

IPW 0.208 0.125 (-0.042 , 0.458) (0.003 , 0.413)
Unadjustedlc -0.212 0.074 (-0.360, -0.064) (-0.333 , -0.090)
Unadjustedc -0.079 0.085 (-0.249 , 0.091) (-0.218 , 0.060)
Unadjustedl 0.084 0.103 (-0.122 , 0.290) (-0.085 , 0.252)
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CHAPTER 5
Concluding Remarks

Drawing inference about the possible effect of a treatment must often be done

without the benefits of randomization. As a result, one needs to take into account

the potential for bias in the estimation of the treatment effect. In this thesis, we

focus on Propensity Score Regression (PSR) as a tool to adjust for the confounding

bias where propensity score replaces the whole vector of covariates. In the PSR

method, the exposure effect can be estimated by regressing the response variable on

the exposure and the fitted propensity score. It is not hard to show that under the

assumption of no unmeasured confounders the PSR method results in a consistent

estimator.

Two other well-known causal adjustment methods are Inverse Probability Treat-

ment Weighting (IPTW) and Augmented Inverse Probability Weighed Complete Case

(AIPWCC). In the first Chapter, we derived the semiparametric variance bound for

the estimated causal effect using propensity score regression adjustment, and showed

that the obtained bound is equal to the efficiency bound introduced in the literature

on semiparametric regression. A parametric model is assumed for the propensity

score and the parameters of this model are treated as nuisance parameters. The

nuisance tangent space is built based on the parameters in the treatment mechanism

model. Using the theory of semiparametric inference, the efficient influence function

corresponding to the estimator of interest has been constructed as a residual from

107



projecting any influence function onto the nuisance tangent space. We compared the

obtained efficiency bound with those already exist in the literature on IPTW and

AIPWCC, and showed that the variance of the PSR estimator is lower than the one

obtained by the IPTW or AIPWCC. We described an alternative approach to the

classical binary treatment propensity score termed the Generalized Propensity Score

(GPS) and extended the semiparametric result to continuous-valued treatments. We

also discussed the treatment effect estimation in a multi-interval setting.

In longitudinal studies the covariates can vary during time since they depend on

the previous assigned treatment. The treatment effect is decomposed to direct and

indirect effect in such studies. Roughly speaking, the indirect effect is the effect of

the treatment on the outcome through other time varying covariates and the direct

effect is the effect of treatment which goes directly to the response. We conducted

extensive simulation studies to assess the performance of the three causal effect

estimators in longitudinal setting for estimating the magnitude of the direct effect of

treatment. Our simulation studies reveal that the direct treatment effect estimator

using propensity score regression adjustment has a smaller variance and is more

successful in removing bias than corresponding methods that use weighting, under

correct model specification.

In causal inference framework, choosing the right covariates to adjust for is a

challenging problem which is discussed in Chapter 2. In general, ignoring important

covariates leads to residual confounding and results in an inconsistent estimator. It,

therefore, seems beneficial to adjust for all the covariates by fitting a rich propensity
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score model. Including both related and unrelated covariates in the treatment assign-

ment model may, however, affect the efficiency of important covariates and inflate

the variance of the estimators. Confounder selection methods based on either the

propensity score or the response model may result in failure to account for impor-

tant confounders which barely predict the treatment or the response, respectively.

Moreover, it has been shown that the confounder selection procedures based on AIC

and BIC can be sub-optimal. To overcome these issues, we presented a penalization

technique based on the joint likelihood of the treatment and response variables to

select the key covariates that need to be included in the treatment assignment/PS

model for estimation of the causal effect. We further developed the appropriate

methodology and studied the theoretical properties of the proposed method and

showed that it satisfies the oracle properties under certain assumptions. Our simu-

lation studies reveals that taking the confounder selection approach can in practice

lead to significant efficiency gain. Although we discussed the time point treatment

case, the penalized technique can be used to select the key baseline covariates for

estimating the direct treatment effect in a longitudinal setting as well. However,

in a longitudinal setting if the total effect is the parameter of interest, other causal

adjustment techniques such as IPTW in a marginal structural models need to be

used. In general, in multi-interval settings, selecting time-varying confounders can

be quite involved and needs to be carried out cautiously because of the complicated

confounding patterns.

In Chapters 1-3, we assumed that samples are representing the target popu-

lation. In many cases, however, our sample is not a representative sample of the
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population of interest. Biased sampling is, in particular, a common phenomenon in

observational studies on disease duration where the recruited subjects are prevalence

cases. In particular, when the initiating events are generated by a stationary Pois-

son process, the induced bias is called length-bias. In length-biased sampling the

observed individuals are more likely to be sampled from the right tail of the true

density function. As such, leaving it unadjusted may result in overestimating the

survival time. Chapter 4 is motivated by the Canadian Study of Health and Aging

(CSHA) data to study dementia across Canada. One of the collected covariates is the

dichotomous institutionalization (exposure) indicator which is one if being institu-

tionalized at the time of sampling and zero otherwise. Since there are some covariates

which confound the effect of the exposure on the survival time, the crude difference

estimator will be biased. The challenge is to estimate the institutionalization effect

on the survival time while having confounding and length-biased sampling as two

sources of bias. We have focused on the stationary case, i.e., length-biased sam-

pling, the methodology presented in this manuscript can be extended to the general

left-truncation using Wang (1991) and references cited therein. This latter approach

is, of course, robust against departure from stationarity, though it is less efficient

when the stationarity assumption holds (Wang (1991), Asgharian et al. (2002)). We

presented two estimating equations called weighting and double robust estimating

equations. Unlike the regression-based version, the weighted estimating equation

does not require the correct specification of the failure time model to estimate the

exposure effect consistently; it just requires that the PS model be correctly specified.

The double robust estimating equation obtains the consistent estimator if either the
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failure time or the PS models are correctly specified. We also studied the asymptotic

properties of the estimators obtained by the estimating equations. The proposed

estimating equations are applied to the CSHA data to estimate the institutionaliza-

tion effect on the survival time of patients with dementia. Our real data analysis

results highlights the importance of adjusting for the two sources of bias. Omitting

either the length-biased sampling or the non-randomization may lead to a misleading

results.
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Appendix A

5.1 Differentiability of the Causal Effect

Following Newey (1990), we term the parameter µ(β) a differentiable parameter

if there exists a random quantity ξ such that E[ξ2] is finite and for all parametric

submodels

∂µ(β)

∂β
= E[ξ(D, Y, π)Sβ(D, Y, π|β)].

where Sβ is the (k × 1) score function in the parametric submodel based on θ

Sβ(D, Y, π|β) =
∂

∂β
{log f(Y |D, π, β)}

These definitions extend to the case of a p-dimensional differentiable parameter, but

the scalar case suffices here, as µ(β) represents the causal parameter.

Consider the function ξ(Di, Yi, t) defined by

ξ(d, y, t) =
d

t
(y − µ1(t))− 1− d

1− t
(y − µ0(t))

and the function

Sβ(d, y, t|β) = dS1β(y|t, β) + (1− d)S0β(y|t, β) (5.1)

where, for j = 0, 1,

Sjβ(y|t, β) =
∂ log fj(y|β)

∂β
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are the score functions derived from the density fj of subjects that received (j = 1)

and did not receive (j = 0) treatment. Now

ξ(d, y, t)Sβ(d, y, t|β) =
d2

t
(y − µ1(t))S1β(y|t, β)− (1− d)2

(1− t)
(y − µ0(t))S0β(y|t, β)

+
d(1− d)

1− t
(y − µ1(t))S0β(y|t, β)− d(1− d)

t
(y − µ0(t))S1β(y|t, β)

Given π, D and Y are independent by weak unconfoundedness. By elementary

calculation,

E[D2|π] = π E[(1−D)2|π] = (1− π) E[D(1−D)] = 0.

Thus, conditional on π,

E

[
D(1−D)

1− π
(Y − µ1(π))S0β(Y |π, β)

∣∣∣∣π] = E

[
D(1−D)

π
(Y − µ0(π))S1β(Y |π, β)

∣∣∣∣π]
= 0

so therefore

E[ξ(D, Y, π)Sβ(D, Y, π|β)] = E

[
D2

π
(Y − µ1(π))S1β(Y |π, β)

−(1−D)2

(1− π)
(Y − µ0(π))S0β(Y |π, β)

]
In addition,

E[(Y − µ1(π))S1β(Y |π, β)|π] =

∫
(y − µ1(π))S1β(y|π, β)f1(y|π, β) dy

E[(Y − µ0(π))S0β(Y |π, β)|π] =

∫
(y − µ0(π))S0β(y|π, β)f0(y|π, β) dy
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Now, note from (2.5) that

∂µ(β)

∂β
=

∫ ∫
yS1β(y|π, β)f1(y|π, β)fπ(π) dy dπ

−
∫ ∫

yS0β(y|π, β)f0(y|π, β)fπ(π) dy dπ

and hence

E[ξ(D, Y, π)Sβ(D, Y, π|β)] =
∂µ(β)

∂β

as, by the usual manipulation, for j = 0, 1,∫
µj(π)Sj(y|π, β)fj(y|π, β) dy = µj(π)

∂

∂β

{∫
fj(y|π, β) dy

}
= 0.

Thus µ(β) is a differentiable parameter; this ensures that the efficient score can be

constructed for µ(β), using the techniques outlined in Newey (1990), and hence that

the semiparametric efficiency bound is well-defined and can be achieved.

The likelihood that corresponds to (5.1) can be obtained by undoing the construction

of the score function. It is proportional to

{f1(y|π, β)p(d|π, α)}d{f0(y|π, β)p(d|π, α)}(1−d)

This likelihood forms the basis for our subsequent efficient influence function. In fact,

to cover the most general setting where fπ is not known, we will use the likelihood

{f1(y|π, β)p(d|π, α)fπ(π)}d{f0(y|π, β)p(d|π, α)fπ(π)}(1−d) (5.2)

and allow for the possibility that fπ(π) contains unknown parameters.
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5.2 Deriving the Efficient Score

Here we show that

E[Sβε|π] =
∂µ∗(π, β)

∂β
= µ∗β(π, β) = dµ1β(π, β) + (1− d)µ0β(π, β),

say. Let Sβ = dS1β + (1 − d)S0β and ε = dε1 + (1 − d)ε0. As E[ε] = E[ε|π] =∫
ε dF (y|d, π) = 0, we have

∂

∂β

∫
ε f(y|d, π)dy = 0

where f(y|d, π) = {f1(y|π, β)}d{f0(y|π, β)}(1−d) is the conditional density of Y given

d and π. Thus∫
εf(y|d, π) dy =

∫
dε1f1(y|π, β) dy +

∫
(1− d)ε0f0(y|π, β) dy = 0

hence

∂

∂β

∫
ε dy =

∂

∂β

∫
dε1f1(y|π, β) dy +

∂

∂β

∫
(1− d)ε0f0(y|π, β) dy

= d

∫
−µ1θ(π, β)f1(y|π, β) dy + (1− d)

∫
−µ0β(π, β)f0(y|π, β) dy

+ d

∫
ε1S1βf1(y|π, β) dy + (1− d)

∫
ε0S0βf0(y|π, β) dy = 0.

Therefore,

dµ1β(π, β) + (1− d)µ0β(π, β) = d

∫
ε1S1βf1(y|π, β) dy + (1− d)

∫
ε0S0βf0(y|π, β) dy

= E[Sβε|d, π].
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5.3 Propensity Score Stratification

In propensity score stratification, we have

E[Y |D, π] = βD +
K∑
k=1

θkIBk(π)

where B1, . . . , BK form a (presumed fixed) partition of (0, 1). In the above notation,

we have

µ1(π, β, θ) = β +
K∑
k=1

θkIBk(π) µ0(π, β, θ) =
K∑
k=1

θkIBk(π)

and µ(β, θ) = β. Further, we have

µ?(π, β, θ) = dµ1(π, β, θ) + (1− d)µ0(π, β, θ) = dβ +
K∑
k=1

θkIBk(π)

so that

µ?β(π, β, θ) = d µ?θk(π, β, θ) = π W (π) =



d

IB1(π)

IB2(π)

...

IBK (π)


and E[WV −1W ′]−1 = σ2

E[WW ′]−1. We have

[WW ′] =



D2 DIB1(π) DIB2(π) · · · DIBK (π)

DIB1(π) I2
B1

(π) IB1(π)IB2(π) · · · IB1(π)IBK (π)

DIB2(π) IB1(π)IB2(π) I2
B2

(π) · · · IB2(π)IBK (π)

... · · · · · · . . .
...

DIBK (π) IB1(π)IBK (π) IB2(π)IBK (π) · · · I2
BK

(π)


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which can be rewritten

[WW ′] =



D DIB1(π) DIB2(π) · · · DIBK (π)

DIB1(π) IB2(π) 0 · · · 0

DIB2(π) 0 IB2(π) · · · 0

... · · · · · · . . .
...

DIBK (π) 0 0 · · · IBK (π)


Taking expectations with respect to the joint pdf of D and π, we have

E E1 E2 · · · EK

E1 P1 0 · · · 0

E2 0 P2 · · · 0

... · · · · · · . . .
...

EK 0 0 · · · PK


where E = E[π], Ek = E[πIBk(π)] and Pk = P(π ∈ Bk). We need to access the

(1, 1) element of the inverse of this matrix. Note that Ek = E[πIBk(π)] = E[π|π ∈

Bk]P(π ∈ Bk) = ẼkPk say. Using the inversion formula, we have that the required

expression is (
E −

K∑
k=1

E2
kP
−1
k

)−1

(5.3)

Note that by the theorem of total probability

E = E[π] =
K∑
i=1

E[π|π ∈ Bk]P(π ∈ Bk) =
K∑
i=1

ẼkPk
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and thus the variance bound for θ is from equation (5.3)

σ2

K∑
k=1

PkẼk(1− Ẽk)

Note that

E[π(1− π)] =
K∑
k=1

∫
Bk

π(1− π)fπ(π) dπ

=
K∑
k=1


∫

Bk

π(1− π)fπ(π) dπ∫
Bk

fπ(π) dπ


∫

Bk

fπ(π) dπ

=
K∑
k=1

E[π(1− π)|π ∈ Bk]P(π ∈ Bk) =
K∑
k=1

E[π(1− π)|π ∈ Bk]Pk

=
K∑
k=1

Ẽk(1− Ẽk)Pk

so the bound for propensity score stratification is identical to that for propensity

score regression.
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Appendix B

In this appendix, we prove the results stated in the text. Lemma 5.1 is an

adaptation of the results given by Ibragimov & Has’ Minskii (1981). It holds under

the following assumptions:

• C1. The parameter space Ξ is a bounded open set in Rp.

• C2. The joint penalized density fp(z; η), where zi = (yi, di, xi) is a continuous

function of η on Ξc for almost all z ∈ Z, where Z and Ξc represent the sample

space (yi, di,xi) and the closure of the parameter space Ξ, respectively.

• C3. For all η ∈ Ξ and all γ > 0,

κη,n(γ) = inf
||η−η∗||>γ

r2(η, η∗),

where

r2(η, η∗) =

∫
Z
{f 1/2(z; η)− f 1/2(z; η∗)}2dτ

• C4. For η ∈ Ξc

wη(δ) =

[∫
Z

sup
||h||≤δ

{f 1/2(z; η)− f 1/2(z; η + h)}2dτ

]
→ 0 as δ → 0.

• C5. The joint density f(z; η) has a finite Fisher’s information at each point

η ∈ Ξ.

Assumption C3 is the identifiability condition, essentially requiring the distance be-

tween the averaged densities over the response and the covariates for two different

values of the parameters η and η∗ be positive. Assumption C4 is referred to as the
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smoothness condition; it states that the distance of the joint densities over η and η∗

when η → η∗ should approach zero as the sample size goes to infinity.

Lemma 5.1 Suppose assumption C1-C4 are satisfied. Then for any fixed η ∈ Ξ

Eη

[
sup

Γ

n∏
i=1

f
1/2
p (zi; η + b)

f
1/2
p (zi; η)

]
≤ exp

{
−n

2

[
κη,n(

γ

2
)− 2wη+b0,n(δ)

+pλn(|η + bm|)− pλn(|η|)
]}
, (5.4)

where Γ is the sphere of radius δ, situated in its entirely in the region ||b|| > γ/2, b0

is the center of Γ and infΓ pλn(|η + b|) = pλn(|η + bm|).

Proof The proof follows from the proof of Theorem 4.3 in Ibragimov & Has’ Minskii

(1981). Let

Rn(b) =
n∏
i=1

fp(zi; η + b)

fp(zi; η)
=

n∏
i=1

f(zi; η + b)e−pλn (|η+b|)

f(zi; η)e−pλn (|η|) .

We want to find an upper bound for the expectation Eη

[
supΓ R

1/2
n (b)

]
, where Γ is

the sphere of a radius δ situated in its entirety in the region ||b|| > 1
2
γ. If b0 is the

centre of Γ, then

sup
Γ
R1/2
n (b) = sup

Γ

n∏
i=1

(
f(zi; η + b)e−pλn (|η+b|)

f(zi; η)e−pλn (|η|)

)1/2

≤
n∏
i=1

sup
Γ
e

1
2
pλn (|η|)− 1

2
pλn (|η+b|)

n∏
i=1

f−1/2(zi; η)

(
f 1/2(zi; η + b0) + sup

h≤δ
|f 1/2(zi; η + b0 + h)− f 1/2(zi; η + b0)|

)
.
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Thus,

Eβ

[
sup

Γ
R1/2
n (b)

]
≤

n∏
i=1

sup
Γ
e

1
2
pλn (|η|)− 1

2
pλn (|η+b|)

(∫
Z
f 1/2(zi; η)f 1/2(zi; η + b0)dτ

+

∫
Z

sup
|h|≤δ

f 1/2(zi; η)|f 1/2(zi; η + b0 + h)− f 1/2(zi; η + b0)|)ndτ

)
.

We further note that∫
Z
f 1/2(z; η)f 1/2(z; η + b0)dτ =

1

2

(∫
Z
f(z; η)dτ +

∫
Z
f(z; η + b0)dτ (5.5)

−
∫
Z

[f 1/2(z; η)− f 1/2(z; η + b0)]2dτ

)
≤ 1− 1

2
r2(η + b0) ≤ 1−

κη(
γ
2
)

2

and ∫
sup
|h|≤δ

f 1/2(zi; η)|f 1/2(zi; η + b0 + h)− f 1/2(zi; η + b0)|dτ ≤ wb0(δ). (5.6)

The last inequality follows from the Cauchy-Schwarz inequality. Finally, using the

inequality 1 + a ≤ ea,

Eβ

[
sup

Γ
R1/2
n (b)

]
≤ exp

{
−n

2

[
κη(

γ

2
)− 2wb0(δ) + pλn(|η + bm|)− pλn(|η|)

]}
where supΓ e

−pλn (|η+b|) = e−pλn (|η+bm|).

Lemma 5.2 Let Z1, ..., Zn be independent and identically distributed with a density

f(Z, η) that satisfies the conditions of lemma 5.1. If the penalty function satisfies

P3, then

Rn(η2) =
n∏
i=1

(
fp(zi; η1, η2)

fp(zi; η1, 0)

)
< 1. (5.7)
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Proof Rn(η2) can be written as

n∏
i=1

(
f(zi; η1, η2)e−

∑p
j=s pλn (|ηj |)

f(zi; η1, 0)

)

By theorem 1.1 in Chapter II of Ibragimov & Has’ Minskii (1981), it can be written

as

Rn(η2) = exp

{[
n∑
i=1

∂ ln fp(zi; η1, 0)

∂η2

]
||η2|| − n

p∑
j=s

p′λn(|ηj|)−
1

2
η2I(η1, 0)η2 + ψn(η2)

}
,

where p(|ψn(η2)| > ε) → 0. Since
∑n

i=1 ∂ ln f(zi; η1, 0)/∂η2 = Op(
√
n), the desired

inequality holds if
√
n

p∑
j=s

p′λn(|ηj|) > ||η2||Op(1),

which is equivalent to the condition P3.

Proof of Theorem 3.1: For fixed γ > 0, the exterior of the sphere ||b|| ≤ γ can

be covered by N spheres Γk, k = 1, ..., N of radius δ with centers bk. The small

value δ is chosen such that all the N spheres are located in the |b| > γ/2 and also
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2wbk ≤ κη(γ/2)/2. In view of the inequality (5.4), we have

P (|η̂n − η0| > γ) ≤
N∑
k=1

P (|η̂n − η0| ∈ Γk)

≤
N∑
k=1

P (sup
Γ
Rn(bk) ≥ R(0))

≤
N∑
k=1

exp
{
−n

2

[
κη(

γ

2
)− 2wbk(δ) + pλn(|η + bm|)− pλn(|η|)

]}
(Since pλn(0) = 0) ≤ N exp

{
−n

2

[
1

2
κη(

γ

2
) +

s∑
j=1

pλn(|ηj + bmj |)− pλn(|ηj|)

]}
,

where the second inequality follows from lemma 5.1 and Markov’s inequality. We

need to show that κη(
γ
2
)/4 dominates

∑p
j=s pλn(|ηj + bmj |)− pλn(|ηj|). Using Taylor’s

expansion, we have

s∑
j=1

pλn(|ηj + bmj |)−pλn(|ηj|) =
s∑
j=1

p′λn(ηj)sign(ηj)b
m
j +

1

2
pλn(ηj)(b

m
j )2

≤ smax
ηj 6=0
{p′λn(|ηj|)}||b||+

s

2
max
ηj 6=0
{p′′λn(|ηj|)}||b||2

≤ sγmax
ηj 6=0
{p′λn(|ηj|)}+

sγ2

2
max
ηj 6=0
{p′′λn(|ηj|)} (5.8)

By choosing λn such that condition P2 holds, κη(
γ
2
)/4 dominates the RHS of (5.8).

Thus,

P (|η̂n − η0| > γ) ≤ N exp
{
−n

4
κη(

γ

2
)
}
,

and hence

P

(
∞⋃
m=n

|η̂2m|

)
≤

N exp
{
−n

4
κη(

γ
2
)
}

1− exp
{
−1

4
κη(

γ
2
)
} → 0 as n→∞.
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This completes our proof of strong consistency of the penalized maximum likelihood

estimator.

Proof of Theorem 3.2: Consider ηt = (ηt1, 0) and partition η = (η1, η2). We need to

show that in the neighbourhood ||η − ηt|| < O(hn) where hn → 0 as n→∞,

n∏
i=1

fp(zi; η1, η2)

fp(zi; η̂1, 0)
< 1.

It can be written as

n∏
i=1

fp(zi; η1, η2)

fp(zi; η̂1, 0)
=

n∏
i=1

(
fp(zi; η1, η2)

fp(zi; η1, 0)

)(
fp(zi; η1, 0)

fp(zi; η̂1, 0)

)
<

n∏
i=1

fp(zi; η1, η2)

fp(zi; η1, 0)
< 1.

By the result of Lemma 5.2, the last inequality holds with probability one as n→∞.
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Appendix C

In this section, we present the assumptions, proofs of the main and other aux-

iliary results. The regularity conditions required in this paper are as follows:

C.1 µj(.) for j = 0, 1 is a twice continuously differentiable function.

C.2 π(.) is not on the boundaries (γ < π(.) < 1− γ where γ > 0).

C.3 sup[t : p(R > t) > 0] ≥ sup[t : p(C > t) > 0] and p(δ = 1) > 0.

C.4
∫ s

0
[(
∫ s
t
SC(v)dv)2/(S2

C(t)SV (t))]dSC(t) <∞.

C.5
∫ s

0
κ2
j(t)/(S

2
C(t)SR(t))dSC(v) <∞ and

∫ s
0
κ2(t)/(S2

C(t)SR(t))dSC(v) <∞ where

κj(t) = E

[
I(D = j)δI(Y > t)[log(Y )− µj(X, θ)]

∫ Y
t
SC(v)dv

π(X)w2(Y )

]
,

κ(t) = E

[
δI(Y > t)[µ1(X, θ)− µ0(X, θ)− β]

∫ Y
t
SC(v)dv

π(X)w2(Y )

]
.

Condition C.1 is a smoothness assumption of the mean function. C.1-C.2 are termed

positivity assumptions, meaning that there is a positive chance that a subject falls

in either the treatment or the control groups and being not censored, respectively.

C.3 is an identifiability condition (Wang (1991)) and C.4-C.5 are required to obtain

an estimator with a finite variance.

Proof of Theorem 4.1. The class of efficient influence functions is

G(AFT)
2 =

{
δ

ŵ(Y )

[
D[log(Y )− µ1(X, θ)]

π̂(X)
− (1−D)[log(Y )− µ0(X, θ)]

(1− π̂(X))

+µ1(X, θ)− µ0(X, θ)− β
]}

.
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Let G(AFT)
2 = {V̂0(θ)− V̂1(θ) + V̂2(θ)} where

V̂0(θ) =
Dδ[log(Y )− µ1(X, θ)]

π̂(X)ŵ(Y )

V̂1(θ) =
(1−D)δ[log(Y )− µ0(X, θ)]

(1− π̂(X))ŵ(Y )

V̂2(θ) =
δ

ŵ(Y )
[µ1(X, θ)− µ0(X, θ)− β].

In order to show that G(AFT)
2 results in an unbiased estimator, we need to show that

E[V̂0(θ)] = E[V̂1(θ)] = E[V̂2(θ)] = 0. For the first expectation, we have

E [V0(θ)|X] ∝ E

[∫ ∞
0

∫ ∞
0

f(Y = y, A = a, δ = 1, D = 1|X)

×D[log(Y )− µ1(X, θ)]

π̂(X)w(Y )
da dy

]
∝ E

[
D

π̂
|X
]
E

[∫ ∞
0

∫ y

0

fU(Y = y|D = 1,X)Sc(y − a)

× [log(Y )− µ1(X, θ)]

w(Y )
da dy

]
∝ E

[
1

µ(1,X)

∫ ∞
0

fU(y|X, D = 1)[log(Y )− µ1(X, θ)]dy

]
= 0,

where µ(1,X) =
∫
yfU(y|D = 1,X) dy. If we replace the Sc(.) by its estimate, we

can show that E[V̂0(θ)] = 0. Similarly, we can show that E[V̂1(θ)] = E[V̂2(θ)] = 0.

It can be shown that V̂0(θ) and V̂1(θ) are uncorrelated. Then using the strong

consistency of ŵ(y) to w(y) (Pepe & Fleming (1991)) and following the martingale

integral representation
√
n(ŵ(y) − w(y)) introduced by Shen et al. (2009), we can
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write the asymptotic variance of the corresponding estimator as

E

[
V̂ 2

0 (θ)
]

= E

[{
Dδ[log(Y )− µ1(X, θ)]

π(X)w(Y )

}2{
1 +

w(Y )− ŵ(Y )

w(Y )

}2
]

= E

[{
Dδ[log(Y )− µ1(X, θ)]

π(X)w(Y )
+

∫ Y

0

κ1(t)dMi(t)

SC(t)SR(t)

}2
]
,

and similarly the second and third parts are

E

[
V̂ 2

1 (θ)
]

= E

[{
(1−D)δ[log(Y )− µ0(X, θ)]

(1− π(X))w(Y )
+

∫ Y

0

κ0(t)dMi(t)

SC(t)SR(t)

}2
]
,

E

[
V̂ 2

2 (θ)
]

= E

[{
δ

w(Y )
[µ1(X, θ)− µ0(X, θ)− β] +

∫ Y

0

κ(t)dMi(t)

SC(t)SR(t)

}2
]
,

where

κj(t) = E

[
I(D = j)δI(Y > t)[log(Y )− µj(X, θ)]

∫ Y
t
SC(v)dv

π(X)w2(Y )

]

κ(t) = E

[
δI(Y > t)[µ1(X, θ)− µ0(X, θ)− β]

∫ Y
t
SC(v)dv

w2(Y )

]
,

and

E

[
V̂1(θ)V̂2(θ)

]
= E

[{
(1−D)δ[log(Y )− µ0(X, θ)]

(1− π(X))w(Y )
+

∫ Y

0

κ0(t)dMi(t)

SC(t)SR(t)

}
×
{

δ

w(Y )
[µ1(X, θ)− µ0(X, θ)− β] +

∫ Y

0

κ(t)dMi(t)

SC(t)SR(t)

}]
,

E

[
V̂0(θ)V̂2(θ)

]
= E

[{
δ

w(Y )
[µ1(X, θ)− µ0(X, θ)− β] +

∫ Y

0

κ(t)dMi(t)

SC(t)SR(t)

}
×
{

δ

w(Y )
[µ1(X, θ)− µ0(X, θ)− β] +

∫ Y

0

κ(t)dMi(t)

SC(t)SR(t)

}]
.
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