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Abstract

Dynamic processes in nonequilibrium liquid-solid systems are studied over mesoscopic

time scales and atomistic length scales using phase-field crystal (PFC) models. Vari-

ous freezing and melting transitions are examined in two and three dimensions, and

microscopic phenomena responsible for solid-phase plasticity are investigated. A pri-

mary focus is on the issue of describing atomistic dynamics over time scales that are

generally inaccessible to conventional approaches.

Glass forming dynamics in supercooled liquids near a glass transition are studied

numerically, and the central features of the transition, including a number of be-

haviors previously undemonstrated within PFC / classical density functional theory

simulations, are successfully reproduced. A connection between the liquid dynamic

correlation length and transition fragility is identified, and a physically motivated time

scaling applied to the simulation data is shown to generate qualitative agreement with

basic glass transition phenomenology across 12 orders of magnitude in time.

The competing processes of amorphous precursor nucleation and crystallization

in diffusion-dominated spinodal and non-spinodal simple liquids are also examined.

Melting and premelting transitions in defected body-centered cubic solids are studied

numerically, and a localized melting theory based on defect elastic energies is for-

mulated. Basic features of the dynamic phase separation patterns that develop in

growing heteroepitaxially strained alloy films are also outlined based on numerical

simulations of a binary PFC model. Finally, dislocation dynamics are examined in

strained periodic systems. The central features of dislocation glide, climb, and an-

nihilation are shown to naturally emerge within PFC models, and the dynamics of

individual dislocations are found to reduce to a simple generalized equation of motion.
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Résumé

Des procédés dynamiques dans des systèmes liquide-solide non-équilibrés sont étudiés

au cours d’échelles de temps mésoscopiques et d’échelles de longueur atomistiques en

utilisant des modèles “phase-field crystal” (PFC). Diverses transitions de congélation

et de fusion sont examinées en deux et trois dimensions, et les phénomènes micro-

scopiques responsables de la plasticité des phases solides sont étudiées. Un accent est

mis sur la problématique des dynamiques atomistiques au cours d’échelles de temps

qui sont généralement inaccessibles aux approches conventionnelles.

Les dynamiques de formation vitreuse dans les liquides metastables surfondus

près d’une transition vitreuse sont étudiés numériquement, et les caractéristiques cen-

trales de la transition, y compris un certain nombre de comportements qui n’ont pas

été démontrées précédemment par les modèles PFC / simulations de la théorie clas-

sique densité fonctionnelle, sont reproduites avec succès. Un lien entre la longueur de

corrélation dynamique liquide et la fragilité est identifié, et il est démontré par une

normalisation de temps physiquement motivé, appliquée aux données de simulation,

qu’il y a une correspondance qualitative avec des bases phénomènes de transition

vitreuse sur 12 ordres de grandeurs de temps.

Les procédés concurrentiels de la nucléation de précurseurs amorphes et de la

cristallisation dominées par la diffusion dans les liquides simples spinodaux et non-

spinodaux sont aussi examinés. Les transitions de fusion et pré-fusion dans des solides

cubiques centrés ayant des défauts sont étudiés numériquement, et une théorie de

fusion localisée basée sur les énergies élastiques des défauts est formulée. Des car-

actéristiques de base des motifs de la séparation de phase dynamique qui se développent

pendant la croissance des films tendus heteroepitaxiellement sont également etudiés en

utilisant des simulations numériques d’un modèle binaire PFC. Enfin, les dynamiques

des dislocations sont examinées dans les systèmes périodiques tendus, ainsi il est

démontré que les caractéristiques fondamentales des procédés de glisse, d’escalade, et

d’annihilation émergent naturellement des modèles PFC.
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CHAPTER 1

Introduction

Along with gases, liquids and solids are the most common and familiar states of mat-

ter in nature. It is through the manipulation of materials in and between liquid,

solid, and gaseous states that most aspects of geological, biological, and technological

evolution are realized. Though many natural and man-made materials exist outside

of thermodynamic equilibrium and involve structures too complex to be described as

uniform, unistate systems, our understanding of the fundamental properties and be-

haviors of most materials stems from our understanding of simple liquids, solids, and

gases in or near equilibrium and the phase transitions between such idealized equilib-

rium states. Nonetheless, many properties of relatively simple materials, particularly

properties associated with nonequilibrium conditions, remain poorly understood from

fundamental and/or atomistic viewpoints.

In this dissertation, dynamic processes in classical liquid-solid systems out of equi-

librium are examined using descriptions which apply on atomistic length scales and

over mesoscopic time scales. Solutions are obtained primarily by computational simu-

lations, though analytic results are derived where possible. The relative distance from

equilibrium varies somewhat from topic to topic, but the issue of describing dynamical

processes over long time scales is relevant to each problem addressed. In this sense,

the label of multiscale modeling - multiscale in time - is applicable, as there will be an

underlying goal of moving toward macroscopic times (t & 100 ns) but not necessarily

macroscopic lengths (103 . number of particles . 107).

1
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The motivation for developing atomic-scale models with access to large time scales

can be illustrated through the example of glass formation. This phase transition

poses a major challenge in terms of both numerical modeling and unifying theoretical

descriptions. It involves the rapid dynamical slowing of a liquid, such that the relevant

structural relaxation times vary from initial ∼ ps scales, to the largest measurable

scale of years. At the same time, on the atomic length scale, glass forming liquids

are driven by local caging processes and dynamically correlated atomic clusters with

characteristic lengths on the order of 1 − 1000 atomic units. Thus it can be argued

that one ultimately needs to formulate a description that includes atomistic features

on the appropriate length scales, but accesses the full range of relevant times. This is

of course not possible, and hopefully it will prove unnecessary, but there is currently

a great need to extend the present limitations in time, as access to a wide range

of scales often seems to be a necessary condition for new breakthroughs concerning

this particular transition. In general, numerically economical atomic-level approaches

could provide the basis for an unlimited number of applications in which atomistic

details play some irreducible role in larger scale processes.

The central theoretical tool used in all studies presented here is the phase-field

crystal (PFC) modeling method [3–5], which can be viewed as a simplified form of

classical density functional theory [6–11]. This approach employs nonlinear stochastic

partial differential equations to provide a natural description of slow, diffusive dynam-

ics in interacting systems while still maintaining atomic-level resolution, including

topological defects, elastic behavior, and plasticity. All of the topics addressed are

ones in which the coarse-grained-in-time nature of the PFC approach can be exploited

to gain understanding of physical processes that are difficult to simulate using conven-

tional atomistic approaches. In order of presentation, these topics are grain boundary

melting, dislocation dynamics, amorphous solidification near a spinodal, anomalous

dynamics in glass-forming supercooled liquids, and heteroepitaxial growth of binary

alloy thin films.

For each of these phenomena, current theoretical understanding is incomplete, and

in some cases fundamentally unclear. Each also possesses some degree of practical

relevance to laboratory and industrial applications. One of the primary goals of

this dissertation is therefore to gain new physical insight into these problems, which
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will lead the presentation beyond issues of multiscale modeling and into principles of

equilibrium and nonequilibrium statistical physics, continuum mechanics, and theories

of topological defects. The other primary goal is to clarify the functional validity of

the coarse-grained PFC approach in various scenarios - to better understand its range

of behaviors, which classes of systems it most accurately describes, and the types of

new phenomena that can be predicted.

1.1 Modeling Materials Classically

A large number of simulation-based approaches are used to model condensed matter

systems, far too many to discuss here. A very brief outline of a few selected ap-

proaches should be instructive, though, in framing the present PFC-based studies.

The conventional atomistic approaches attempt to sample the phase space of a given

many-particle system by generating statistical averages at the particle level which can

then be related to thermodynamic, structural, or transport properties of the system.

Large length and time scales cannot be readily accessed with such methods. Most

continuum approaches attempt to reduce the many-particle problem to a generalized

mesoscopic or macroscopic description, by integrating out the microscopic degrees of

freedom and describing only quantities which vary slowly in time and/or space. Such

theories generally include input parameters which must be determined from atomistic

simulations or experiments. Figure 1.1 shows a rough graphical outline of the length

and time scales numerically accessible to selected methods, assuming typical modern

computing power.

1.1.1 Atomistic and discrete approaches

Ab Initio Molecular Dynamics

For our purposes any material can be usefully viewed as a combination of nuclei

and electrons. The nuclei and the tightly bound core electrons can almost always

be treated classically in liquids, but any valence electrons must be treated quantum

mechanically [12]. This applies to systems with highly covalent bonding or strong

hydrogen bonds. In the ab initio molecular dynamics (MD) method one considers an

instantaneous configuration of nuclei, calculates the valence electronic structure quan-
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the renormalized complex amplitude PFC combined with advanced numerical solution
methods. For colloids, multiply L by ∼ 103 and t by ∼ 108 − 1012.

tum mechanically (using electronic density functional theory) to determine the forces

between nuclei, and then updates the positions of the nuclei using classical equations

of motion. The process is iterated to evolve the system in time. Such computations

are demanding, severely restricting maximum system sizes and simulation times, but

certain systems require a full treatment of this type for a realistic description. The

rest of this outline will be limited to classical methods, as quantum mechanical phe-

nomena will not be of particular interest in later chapters.

Classical Molecular Dynamics

The classical approach is usually justified for fluids with filled valence electron

shells. The resulting intermolecular forces are relatively weak and can usually be

treated in a pair-wise additive manner. Thus a fixed, pre-determined electronic po-

tential can be superimposed upon each nucleic center, and the particle positions can be

evolved classically without having to recalculate the quantum valence electronic struc-

ture at each iteration. The time step is nonetheless usually limited to 10−15− 10−14s,
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meaning that a system with ∼ 106 particles can be simulated for roughly 10−9−10−7s

with typical modern computers. Standard classical MD is thus also restricted to the

domain of atomically short length and time scales, though longer times can be de-

scribed in some systems using accelerated MD methods [13].

The basic principle of MD is to map the phase space trajectory of a single system

as it evolves in accordance with the rules of classical mechanics. Statistically averaged

thermodynamic, structural, or transport properties can be calculated from the atomic

level by simulating long times or many independent systems, if it is assumed that er-

godicity holds. Since the dynamic evolution is physically consistent, both equilibrium

and nonequilibrium situations can be modeled.

Monte Carlo Methods

Monte Carlo (MC) is a complementary approach to MD, in that one samples a

system’s phase space using a fundamentally statistical approach rather than by ex-

plicitly evolving a single system in time. Given an initial configuration, a ‘particle’

is chosen at random, and a randomly selected test ‘movement’ is considered from a

predetermined set of options. The move will either be accepted or rejected depending

on how the energy of the system would be affected, in accordance with the specific

MC algorithm employed. Thus configuration space is explored quasi-randomly (the

individual movements should be ‘small’) by repeating the procedure a large number

of times. Thermodynamic and structural properties can be computed by averaging

over the sampled configurations, which appear on average according to their relative

weight in the system’s phase space probability density. Since the sequential evolution

of the system is not necessarily physical, conventional MC is often limited to studies of

static properties in thermodynamic equilibrium. The advantage is that convergence

to equilibrium can be dramatically accelerated relative to MD by the allowance of

unphysical rearrangements.

1.1.2 Continuum approaches

Classical Density Functional Theory

Classical DFT is an advanced theoretical framework for liquid-solid systems that
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has been extensively applied to the investigation of simple and complex inhomoge-

neous fluids and their freezing transitions [6–11]. It has become probably the central

theoretical method for studying first-order transitions in classical systems. Liquid and

solid states are described by a continuum field ρ(~r) which represents the ensemble-

or time-averaged atomic number density. In the liquid state ρ(~r) is uniform, while

in the solid state ρ(~r) is inhomogeneous, with localized peaks corresponding to prob-

able atomic lattice positions. Thus the approach is spatially atomistic but within a

statistically averaged continuum description.

Phase transitions are described by a suitably chosen thermodynamic free energy

functional of ρ(~r), which is constructed from the structural correlations of a refer-

ence liquid state near the freezing transition as the only input. Crystallization occurs

when the inhomogeneous periodic phase becomes energetically favored over the ho-

mogeneous fluid phase below some T , as a result of the preferred correlation structure

encoded in the equilibrium liquid structural data. DFT has been extended to describe

dynamics (dynamical DFT or DDFT), through equations of motion for ρ(~r) [14–17].

The dynamical theories are generally suited to atomistically resolved studies of meso-

scopic dynamic processes, though relatively small system sizes and simulated times

are typically required due to the sharp features in the crystalline density peaks.

Generalized Hydrodynamic and Langevin Theories

Hydrodynamics provides a formal method for describing variables in fluid and

solid systems which vary slowly in space and time. The full microscopic dynamics

is projected onto the space of selected slow variables to obtain a coarse-grained de-

scription in terms of the slow field variables only [18]. The resulting description obeys

the macroscopic conservation laws (for mass, momentum, and energy in the simplest

case) and the symmetries of a given system.

It turns out that hydrodynamic equations often remain accurate to relatively small

scales, with gradual deviations as the scale is reduced. Generalized hydrodynamic

theories incorporate corrections to maintain validity at even smaller scales, often ap-

proaching roughly 10 atomic distances. Hydrodynamic theories require input param-

eters that must be supplied from more microscopic descriptions, but nonetheless can

be applied analytically over a wide range of scales. Numerical implementations are
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discussed further in Chapter 2.

Phase-Field and Field Theory Methods

Continuum phase-field models and field theories are well-established tools for phe-

nomenologically addressing a wide variety of phase transitions and processes with

competing domains separated by interfaces [5, 19–23]. Atomistic lengths and times

are neglected in favor of a description in which order parameter fields assume specific

constant values which correspond to different ‘phases’. The order parameters can

represent local concentrations, crystallinity parameters, grain orientations, etc. The

internally uniform domains evolve dissipatively in time according to nonlinear partial

differential equations, and thus shrink, grow, compete, coarsen, etc, as the thermo-

dynamic driving force is varied (by means of a free energy functional which includes

microscopically determined input parameters).

A major motivation for phase-field modeling is to bypass the problem of interface

tracking boundary conditions in sharp-interface models (the Stefan problem). The

sharp-interface approach also becomes cumbersome when interfaces assume complex

shapes or when multiple interfaces meet and interact, while phase-field models nat-

urally allow interaction and evolution of interfaces to virtually arbitrary complexity.

Phase-field models are typically applicable in the mesoscopic domain, to problems

such as solidification, liquid and solid microstructure pattern evolution, grain growth

and coarsening, thin film growth, and solid-state transformations. The lack of atom-

istic detail excludes certain properties which emerge from small-scale structures, such

as elasticity and plasticity. When such effects are desired, their continuum-level equa-

tions must be explicitly built in, often at considerable expense in terms of model

complexity. Nonetheless, the phase-field approach has considerable value in terms of

providing a practical, materials-science-level description of nonequilibrium processes

on length and time scales inaccessible to virtually all atomistic theories.

1.1.3 Multiscale modeling

Some materials phenomena involve a wide range of characteristic length and time

scales, which may be difficult to reduce to a coarse-grained description without losing

essential elements of the underlying physics. Consider the seemingly simple example
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of a solidifying atomic fluid. The nucleation and growth process involves atomic-scale

structure and dynamics at the level of interfaces and fronts, building into micron-scale

structures in dendrites and microstructure boundaries, which ultimately determine

a sample’s macroscopic features and properties. Equilibrium, even locally, is rarely

achieved, and the range of important scales is too large to handle with a single theory.

Each of the modeling approaches discussed above is restricted to a characteristic,

finite region of frequency-wavenumber space, some more so than others. In numerical

studies, the largest scales accessible to any method are generally limited by available

computational power. Even if one exploits the applicability of hydrodynamic models

at near-atomic scales and performs numerical simulations at such a level, the compu-

tations are too demanding to reach any situation even approaching the macroscopic

hydrodynamic limit.

Thus, given several approaches with relatively fixed practical bounds in terms of

accessible length and time scales, one means of bridging scales is to adopt a mul-

tiscale modeling approach. This could involve a relatively straightforward feeding

of computed input parameters up the chain from small to large scale approaches.

It could also involve explicitly coupling different modeling methods in space and/or

time. Multiscale modeling might also be achieved, though with less likelihood, using

a single method that can be simulated with extreme efficiency and flexibility.

The multiscale aspect of this dissertation is, in effect, a combination of the first

and third scenarios. The intention is to access a broad range of scales in time, more so

than in space, using efficiently simulated atomistic models that are coarse-grained in

time to various degrees. Specific PFC formulations that effectively coarse-grain either

over vibrational time scales or over vibrational and inertial/propagational time scales

are employed. A small number of input parameters must in principle be supplied

from either experiments or conventional atomistic approaches in both cases. A fuller

discussion of the nature of the PFC method and its relation to classical DFT is given

in Chapter 2.
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1.2 Background, Goals, and Main Findings

The research-based chapters to follow (Chapters 3-7) can each be classified within

one of two categories: liquid-solid transitions or crystal plasticity. Some general

discussion of the phenomenology for these two topics is given in this section, along

with a statement of the goals and main findings concerning each of Chapters 3-7.

1.2.1 Liquid-solid transitions

Most transitions between liquid and solid phases are first-order or discontinuous tran-

sitions, though the more complex case of glass formation is also common. First-order

transitions are characterized primarily by latent heat and discontinuities in the first

derivatives of the free energy, but also by coexisting phases and metastability. Fluc-

tuation effects are generally small, such that mean field theories can often be suc-

cessfully applied, as opposed to the case of second order or continuous transitions in

which fluctuations become large. Nonetheless, first-order transitions are not as well

understood as second-order transitions in terms of a robust, widely applicable theo-

retical framework. This is because the principles of universality, scale invariance, etc

which underlie continuous transitions generally do not apply across the spectrum of

first-order processes. One finds considerably more dependence on the details of mi-

croscopic interactions, and though mean field theories may be applicable, they often

need to be carefully constructed for each system if quantitative results are desired.

The first-order transitions of relevance to this dissertation are freezing and bulk

melting. Freezing through nucleation and growth of solid phase droplets from the

melt, in this case near a liquid phase spinodal, is implied. Bulk melting refers to the

corollary of nucleation and growth of liquid phase droplets in a bulk crystal. Due to the

lower symmetry of crystals, liquid nucleation can occur through routes other than bulk

homogeneous or heterogeneous nucleation above the equilibrium melting temperature

Tm. Nucleation (melting) is actually initiated at defects, including surfaces, grain

boundaries, dislocations, and vacancies, below Tm. These effectively heterogeneous,

‘premelting’ routes open the possibility of continuous or partially continuous melting

transitions which begin below the bulk melting temperature and proceed smoothly as

T is raised. Solid phase spinodals may also come into play during melting transitions.

The third type of liquid-solid transition that needs to be discussed here is glass for-
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mation, a process whose fundamental nature is still an open subject of research. It is

not a first-order transition, though certain thermodynamic quantities, such as the spe-

cific heat at constant pressure, do exhibit (cooling rate dependent) semi-discontinuities

at the effective transition temperature Tg (see Fig. 1.2). The glass transition is char-

acterized by a rapid but continuous slowing of the liquid dynamics, while the system

maintains most of its liquid-like atomic structure. At Tg its structural relaxations

become sufficiently slow that the material can be considered a disordered solid or

glass. In many ways this solid still resembles a liquid, but one that relaxes with

effectively infinite slowness. The enormous span of relevant time scales is demon-

strated in Fig. 1.2, where experimental viscosity data for various supercooled liquids

are displayed over roughly 17 orders of magnitude [1]. Theories of glass formation can

generally be classified as either kinetically- or thermodynamically-driven. It is not

clear which picture is most valid, and one possibility is that a successful description

will involve some combination of kinetic and thermodynamic driving forces. A more

referenced discussion of the literature is provided in Chapter 6.

Chapter 3: Melting and premelting

Motivation and Goals

Interest in premelting at crystalline defects has been stimulated recently in part

by visually revealing colloidal studies [2] (Fig. 1.3), but also by traditional materials

science issues such as hot cracking induced failure in high temperature processing of

metal alloys [24]. The formation of liquid regions below the melting temperature,

for example at grain boundaries in polycrystalline materials, can have serious con-

sequences in terms of measurable mechanical properties. There remains a need to

formulate a detailed theory or at least to generate new, insightful simulations of the

localized melting behavior around defects.

The primary goals of the study described in Chapter 3 are to characterize the melt-

ing behavior near dislocations and grain boundaries in a simple three dimensional PFC

model as T → Tm from below, and to take advantage of the quantitative simulation

results to develop a simple theory for localized melting and premelting. Another goal

is to better understand the conditions under which premelting may occur, as opposed

to melting under conditions of liquid-solid coexistence or solid superheating.



1.2. Background, Goals, and Main Findings 11

ANRV308-PC58-09 ARI 21 February 2007 11:40

2. BASIC PHENOMENOLOGY OF THE STRUCTURAL
GLASS TRANSITION
Liquids exhibit a remarkable range of dynamical behaviors within a relatively narrow
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(28). Fifteen minutes of video were recorded at
each temperature.

Sample preparation. The particle sus-
pensions were loaded into the chamber using
capillary forces at 28-C; i.e., just below the
melting temperature. In this process, the sus-
pension was sheared. Initially we found that
well-oriented face-centered cubic (fcc) crys-
tals grew from the glass coverslip surfaces and
that the middle of the sample was fluid-like.
After loading, we annealed the sample at 28-C
for 24 hours, during which the samples crys-
tallized. Bragg diffraction (Fig. 1, inset) from
various parts of the annealed sample, measured
in the microscope with a Bertran lens, exhibited
no detectable change in peak positions. The
crystal had very few defects close to the glass
walls. We never observed premelting near the
walls; it is possible the walls stabilized the
crystal or that the (111) planes near the wall
surfaces were intrinsically stable (19). Interior
crystalline regions had many more defects. A
few defects in the sample interior are shown in
Figs. 2 and 3. Most of the defects we observed
were stacking faults, which caused the forma-
tion of partial dislocations (Fig. 3) (29). We
also observed vacancies. Typically, the crystals
lost their preferential orientation after melting
and recrystallization, displaying large crystal-
line regions with different orientations sepa-
rated by grain boundaries (Fig. 2).

Premelting from grain boundaries. One
of the commonmelting mechanisms exhibited
by our colloidal crystals is illustrated in Fig. 2.
The figure shows a small-angle (È13-) grain
boundary. The grain boundary is composed of
an array of dislocations, one of which is shown
in the inset of Fig. 2A. The number of particle
nearest neighbors along the grain boundary
varies from five to seven (red and blue particles
in the inset). These packing mismatches create
stress in the crystal near the grain boundary. The
dashed line in Fig. 2A shows a Shockley partial
dislocation that continues into the grain bound-
ary. The region to the right of the dashed line is
out of focus, and the particles in this portion of
the image appear darker than average, whereas
the region to the left is in focus and the particles
appear whiter than average.

Figure 2B shows the same region at higher
temperature (lower particle volume fraction). In
order to minimize the interfacial free energy
caused by stress and surface tension, particles
near the grain boundary start to premelt. The
inset of Fig. 2B shows these particles jumping
rapidly from one site to another. In contrast,
melting is not observed near the partial dis-
location (dashed line); its interfacial free energy
is apparently less than that of the grain bound-
ary. In Fig. 2C, the temperature is slightly higher
and melting has erupted along the grain bound-
ary. At this stage, the sample volume fraction is
higher than the bulk melting particle volume
fraction, and the melted region has engulfed the
partial dislocation. The width of the premelted

region continues to increase as the temperature
is raised from 28.0- to 28.2-C (Fig. 2, B to D).

Premelting from dislocations. In addi-
tion to grain boundary premelting, the colloidal
crystals display premelting from partial dis-
locations (Fig. 3). This effect is more apparent
when the grain boundaries are relatively far
from the partial dislocations. Figure 3, A and B,
show images of the 61st layer (green) and the
62nd layer (red and yellow), respectively, of the
colloidal crystal at 25.0-C.

Figure 3C shows a superposition of these
layers. Both of these layers represent (111)
planes in the crystal. The Burger’s circuit in the
61st layer (green) yields a zero Burger’s vector,
indicating no defect in the layer. Because a dis-
location is present in the next layer, some of the
particles are slightly out of focus. The Burger’s
circuit for the 62nd layer (yellow) reveals a
Shockley partial dislocation with a Burger’s vec-

tor of 1
6 ð112Þ (29). The inset contains a 3D il-

lustration of the Shockley dislocation, showing
the 61st layer and the undisplaced particles in the
62nd to 64th layers in green and the displaced
particles in the 62nd to 64th layers in yellow.

In monodisperse nearly hard-sphere colloi-
dal crystals, the difference in the energy be-
tween fcc and hexagonal close-packed (hcp)
structures is very small (30, 31) and stacking
faults are common (32). Shockley partial dis-
locations arise as a result of these stacking
faults. Face-centered cubic crystals stack in the
pattern ABCABC along the (111) direction, and
hcp crystals stack in the pattern ABAB. The
green particles in Fig. 3A are in the A positions,
whereas the red and yellow particles are in the B
and C positions of the next layer, respectively.
This stacking fault opens up gaps between the
two close-packed structures within the crystal
(two gaps are visible in the image and make an

Fig. 1. Bright-field image of the
NIPA particle colloidal crystal
showing no defects; the slice is of
the seventh layer from the cover-
slip. Each bright spot corresponds
to the central region of a 0.75-mm-
diameter particle. Because of sam-
ple preparation and annealing, the
primary defects are partial disloca-
tions that exist in the interior of the
crystal. Scale bar, 5 mm. (Inset)
Bragg diffraction (wavelength 0
405 nm) of the same sample.

25.0oC

AA

θ ~13o

B

θ ~13o

28.0 oC
C

θ ~13o

28.1 oC 28.2 oC

D

27.2 oC

Fig. 2. Premelting of the colloidal crystal at a grain boundary. The figure shows bright-field images at
different temperatures (i.e., particle volume fractions) of two crystallites separated by a grain boundary
(crystallites tilted at an angle q È 13- with respect to one another). (A) Sample at 27.2-C. The solid and
dashed lines show the grain boundary and a partial dislocation, respectively. The grain boundary cuts the
two crystals along two different planes (the yellow line has two slopes). It is composed of an array of
dislocations; the two extra planes are indicated by lines in the inset. (B) Sample at 28.0-C. The grain
boundary starts to premelt; nearby particles undergo liquid-like diffusion (inset). The partial dislocation,
denoted by the dashed line, is not affected. (C and D) The same sample at 28.1- and 28.2-C,
respectively. The width of the premelt region near the grain boundary increases. Scale bars, 5 mm.
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Figure 1.3: Images of premelting at a colloidal crystal grain boundary, from [2]. Scale
bars, 5µm.

Main Findings

Simulation results show that the PFC model captures the basic localized defect

melting behaviors observed in colloidal experiments. Data are presented for the tem-

perature dependence of the local mean square displacement and melt volume at dis-

locations and at grain boundaries as a function of boundary angle. A localized theory

based on continuum elastic energy expressions for isolated dislocations is developed

and shown to describe the simulation results for low to mid angle grain boundaries

with semi-quantitative accuracy. High angle grain boundaries are described using an

elastic screening approximation, with qualitative accuracy. Ensemble-specific effects

are discussed, and the different melting pathways to be expected in the canonical ver-

sus grand canonical ensemble are highlighted. It is also demonstrated that premelting

is generally enhanced as the bulk melting transition becomes more weakly first or-

der. An approximate expression for the critical grain boundary prewetting angle, as

a function of the first-order weakness of the bulk melting transition, is derived.
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Chapter 5: Freezing, amorphous nucleation, and spinodals

Motivation and Goals

Though the PFC approach should be well-suited to long-time studies of glassy

materials, a useful first step in establishing the model’s validity in terms of glass

formation would be to understand how disordered solids are created in the simplest

version of the model and to characterize some of the properties of the disordered

state. Specifically, it is of interest to know whether the transition in the simple model

resembles a glass transition or a first-order nucleation process, whether there are signs

of glassy dynamics in the supercooled liquid phase (regardless of the answer to the

previous point), and whether the resulting glass is suitable for studies of mechanical

and other behaviors in amorphous solids. These initial questions are concerned more

with PFC validation and model building issues than with questions of new physics in

glassy materials. The answers will be useful in Chapter 6, where glass forming (rather

than nucleation and spinodal-driven) dynamics are more closely examined and repro-

duced.

Main Findings

Amorphous solidification is shown to occur through a first-order nucleation and

growth process in the purely diffusive three dimensional PFC model. The critical

droplet size for the amorphous solid is found in general to be slightly smaller than

that of the equilibrium bcc solid. Thus solidification occurs through a two-stage pro-

cess in which an amorphous precursor phase is first nucleated, and from which the

equilibrium bcc phase then nucleates after some cooling rate dependent crystalliza-

tion time. The structure of the disordered solid is nonetheless consistent with that of

known simple glass formers. Critical softening behaviors are also demonstrated as the

disordered solid is reheated toward the melting temperature. Finally, liquid spinodal

effects are shown to give the appearance of glassy dynamics - moderately stretched

exponential decays, a diverging relaxation time, and apparent dynamic heterogeneity

- but also a diverging static correlation length and ultimately a discontinuous solidi-

fication transition. Thus, a true glass transition is not observed within the standard

monatomic PFC model with purely diffusive dynamics.
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Chapter 6: The glass transition

Motivation and Goals

The disordered solid states obtained in Chapter 5 provide proof that the PFC free

energy contains metastable glassy minima. Such configurations should permit long-

time studies of the mechanical properties of glasses, but there would still be great value

in correctly capturing the dynamics of the glass transition itself. This would permit

long-time studies of the inherently difficult-to-model glass formation process, allowing

access to the deeply supercooled regime and contributing to a better understanding

of its nature. The goal of Chapter 6 is to build upon the findings of Chapter 5 to

construct a PFC model with the dynamic features of a true glass transition in the su-

percooled liquid phase. The basic questions concern which classes of free energies and

equations of motion are most appropriate and whether they can be improved upon to

describe Vogel-Fulcher type divergences, two-step relaxation functions, demonstrate

agreement with established theoretical and experimental results, and the ability to

simulate many additional orders of magnitude in relaxation time. If these issues can

be adequately addressed, then one would be in a position to begin investigating some

of the fundamental questions related to the physics of the glass transition itself.

Main Findings

Numerical simulations show that a modified nonlinear PFC functional combined

with an inertial-diffusive equation of motion produces the fundamental dynamic fea-

tures of fragile glass formation. This is the first direct evidence, to our knowledge, that

DFT-based models are capable of describing such behavior in detail. Vogel-Fulcher

divergences, two-step relaxation functions, power law scaling in aging properties, and

agreement with established mode-coupling theory (MCT) and experimental results

are demonstrated. The success of this description is attributed to the introduction of

strong nonlinearities in the free energy and ‘fast’ inertial processes in the dynamics,

both of which lead to caging and enhanced dynamic correlation effects. By applying

a physically motivated time scaling, the ability to simulate many additional orders of

magnitude in relaxation time (12 orders of magnitude in this study) is demonstrated.

The first physical insight provided by this new formulation concerns a correlation
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between liquid fragility and a rapidly growing dynamic correlation length.

Chapter 7: Epitaxial growth

Motivation and Goals

The value of modeling epitaxial growth using the PFC approach was demonstrated

in one of the first applications of the model [4]. The entire process of roughening,

dislocation nucleation, and relaxation can be naturally modeled with atomistic reso-

lution, without the cusp-like divergences which limit the standard continuum elastic

models. The main goal of Chapter 7 is to build upon the findings of these studies

concerning monatomic heteroepitaxy, by extending the description to binary systems.

In this case the focus is shifted toward outlining the spatial and temporal nature of

phase separation in growing alloy films as a function of misfit and relative species

mobilities. Another goal is to probe the behaviors and properties of the proposed

binary PFC model, which was introduced and applied to various phenomena in the

article where much of this work originally appeared [25].

Main Findings

Three general features of phase separation in growing films have been identified

from numerical simulations. These concern either lateral or vertical separations. Lat-

eral patterns emerge on the length scale of the surface roughness in which the lower

misfit component segregates below surface valleys and the higher misfit component

segregates below surface peaks. A vertical separation in which one component ac-

cumulates near the film surface is almost always observed. For the case of equal

species mobilities, the higher misfit component will be driven toward the surface, but

if the lower misfit component has a sufficiently greater mobility, then it will be the

one which accumulates most at the surface. Effects such as vertical phase separation

at the film-substrate interface and around dislocations are also identified. Finally,

selected growth issues in simpler monatomic films are discussed in relation to the pre-

dictions of continuum elastic theories. Significant deviations from the continuum limit

are demonstrated for relatively small deviations from idealized growth conditions.
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1.2.2 Crystal plasticity

Crystalline and polycrystalline solids exhibit a number of generalizable behaviors

when subjected to applied strains, and it turns out that most of these behaviors cannot

be understood in terms of the properties of perfect crystals. The elastic and plastic

responses of crystalline solids are instead a reflection, almost entirely, of internal defect

structures and their dynamics. The most relevant defect in terms of plastic flow is

generally the dislocation line, the two dimensional analogue of which is studied in

Chapter 4.

The multiscale nature of plasticity spans from the relevant structure and dynamics

of individual dislocations (∼10−12s, ∼10−9m) to those that describe the macroscopic

features and responses of the material (∼101s, ∼10−2m). Atomic-level properties

of dislocations and their role in plasticity under extreme deformation rates can be

studied, for example, with molecular dynamics simulations. This input can be fed

into coarse-grained dislocation dynamics (DD) models [26, 27], which describe length

and time scales more relevant to macroscopic materials properties. These models em-

ploy continuum-level descriptions of defect stress fields, phenomenological equations

of motion for the resulting point and line structures, and pragmatic rules for their

interactions with each other. The PFC approach offers an intermediate description

which could be used to validate the phenomenology of conventional DD models or as

a self-contained mesoscopic approach to plastic behavior, which could be useful for

studying specific mesoscale problems at experimentally accessible strain rates.

Chapter 4: Dislocation dynamics

Motivation and Goals

As a model for crystalline solids, the PFC description should capture the basic

physical mechanisms and dynamic features of defect motion. The primary goal of

Chapter 4 is to quantify at a fundamental level how PFC dislocations respond to

applied strains and to the strain fields of other dislocations. The processes of greatest

interest are glide, climb, and annihilation. It would also be useful to classify the dy-

namics of isolated dislocations in terms of simple analytical descriptions, such as the

equations of motion for overdamped point masses. This knowledge should help to lay
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the groundwork for larger-scale plasticity studies, which have since been undertaken.

Main Findings

It is shown that the natural features of dislocation glide, climb, and annihilation are

reproduced without any explicit consideration of elasticity theory or ad hoc construc-

tion of microscopic Peierls potentials. The Peierls barrier for dislocation glide/climb

and the ensuing dynamic behavior are quantified as functions of strain rate, tempera-

ture, and dislocation density. It is shown that the dynamics are accurately described

by simple viscous motion equations for an overdamped point mass, where the dis-

location mobility is the only adjustable parameter. The diffusive dynamical model

employed should produce results most applicable to ‘soft’ systems such as colloidal

crystals.

1.3 Dissertation Outline

An introduction to the fundamental principles and equations of PFC modeling is

provided in Chapter 2. The first application of the standard monatomic PFC model

to melting and premelting at dislocations and grain boundaries is described in Chapter

3. The subject of dislocations is carried into Chapter 4, with an analysis of the diffusive

dynamics of individual and paired edge dislocations under applied strains. Chapter

5 shifts the focus to solidification, describing a study of amorphous solidification and

crystallization in monatomic PFC systems with diffusion dominated dynamics. In

Chapter 6, the dynamics of glass formation in supercooled monatomic and binary

liquids are addressed using inertial dynamics and a modified free energy functional.

Qualitative agreement with mode-coupling theory [28–30] is demonstrated. A study of

strain-driven phase separation in heteroepitaxially grown binary thin films is outlined

in Chapter 7, and a summary of results and suggestions for future work is given in

Chapter 8. The numerical methods used in these studies are outlined in Appendix A,

and several modified PFC formulations, constructed as models for glass formation but

eventually set aside in favor of the model described in Chapter 6, are briefly discussed

in Appendix B.
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1.4 Publications

Much of Chapter 3 has been published in Physical Review B [31]. Most of Chapter 4

has been published in Physical Review E [32]. Most of Chapter 5 has been published

in Physical Review E [33]. Portions of Chapter 6 have been published in Physical

Review Letters [34]. Portions of Chapter 7 have been published in Physical Review B

[25].



CHAPTER 2

An Introduction to Phase-Field Crystal Modeling

The basic elements and properties of PFC models are outlined in this chapter. Ac-

cessible length and time scales are first discussed, followed by an introduction to PFC

free energy functionals. The standard functional is examined both from the conven-

tional phase-field viewpoint and from the perspective of classical DFT, wherein PFC

models are seen as particularly simple DFTs. Then selected properties of the liquid

and solid phases are examined, and extensions to binary systems discussed. Finally,

the standard phenomenological and derivable equations of motion for the PFC den-

sity field(s) are presented and briefly discussed. Some aspects of the treatment in this

chapter are similar to those found in Refs. [5] and [4].

2.1 Relevant Length and Time Scales

Phase-field crystal models are intended to span the spatiotemporal gap in physi-

cal modeling between conventional meso/micron-scale continuum phase-field mod-

els and atomic-scale models such as molecular dynamics and classical density func-

tional theory (see Fig. 1.1). Ideal applications of the PFC approach will exploit

its short-length-scale/long-time-scale description in phenomena where characteristic

scales match those of the method. Significant advantages in describing slow atomic-

level dynamics during glass formation, crystallization, structural transitions, etc, are

in principle obtainable over traditional methods.

19
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Micron-level length scales are also becoming PFC accessible with recent appli-

cations of formal spatial coarse-graining techniques (complex amplitude multi-scale

expansions) [35–42], combined with advanced numerical methods [38, 43–49]. The

amplitude representations are spatially uniform except near lattice defects, and can

therefore be simulated over significantly larger length scales. A drawback is that

some of the atomic-level information contained in the full PFC description is lost,

e.g., Peierls barriers for defect motion may be eliminated, faceted surfaces gener-

ally cannot be described, and accuracy is lost near high angle grain boundaries [42].

These amplitude models can in principle be linked with existing phenomenological

phase-field models to guide the construction of more accurate phase-field theories and

provide insight into their input parameters. By taking the sharp interface limits of

the resulting phase-field models, one finally arrives at the fully macroscopic length

and time scales described by sharp interface representations [50]. To fully close this

chain from atomistic to macroscopic scales, many inconsistencies and technical diffi-

culties still need to be addressed, but the outline of a functional multiscale modeling

framework appears to be emerging.

2.2 The PFC Functional

The simplest dimensionless PFC free energy functional for pure systems can be written

FPFC[n(~r)] =

∫
d~r

{
n

2

[
r + (1 +∇2)2

]
n+

n4

4

}
(2.1)

where n→ n(~r)+n̄ is the scaled time- or ensemble- averaged atomistic number density

field, n̄ is the average value of n, ~r is the spatial coordinate vector, and r ∼ (T − Tc)

is a constant which controls the distance from the critical point at temperature Tc or

(r, n̄)= 0. This basic notation will be used in all subsequent chapters.

Equation (2.1), as written, was apparently first studied by Brazovskii [51] as a

model for ordering transitions in cholesteric liquid crystals and antiferromagnets, with

appropriate reinterpretation of the order parameter n. Swift and Hohenberg expanded

on Brazovskii’s theory with a specific focus on Rayleigh-Bénard convection [52]. For

these reasons Eq. (2.1) is often referred to as the Brazovskii or Landau-Brazovskii
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free energy (in two dimensions, usually) or the Swift-Hohenberg model (when evolved

with nonconserved dynamics).

Elder et al. [3, 4] proposed Eq. (2.1) as the basis of a modeling methodology for

liquid-solid systems, akin to classical DFT, and applicable to equilibrium and long-

time nonequilibrium phenomena. The PFC functional provides an economical frame-

work for modeling both inhomogeneous liquids and solids with naturally emerging

elastic and plastic properties. The periodic phases exhibit nonlinear elastic behaviors

with atomic-scale interfaces and defect structures analogous to those of crystals. A

rapidly growing body of publications has demonstrated that many phenomena involv-

ing solids and inhomogeneous liquids are captured by PFC models. These include

• crystal droplet nucleation and growth [38, 53–59],

• dendritic and eutectic solidification [25, 53],

• colloidal solidification [53–55, 60],

• heterogeneous nucleation at walls [61],

• glass formation [33, 34],

• polymorphism and structural phase transformations [53, 62, 63],

• anisotropy in crystalline interfacial energies [37, 53, 54, 56, 64] ,

• heteroepitaxial growth [4, 25, 40, 41, 54, 65–67],

• the Kirkendall effect in binary alloys [68],

• grain boundary energetics [4, 69–71],

• grain boundary melting and premelting [31, 70, 72],

• dislocation pairing in hot grain boundaries [73],

• crystal plasticity and dislocation dynamics [4, 32, 47, 74, 75],

• dislocation avalanches [76],

• dislocation motion in spinodal decomposition [25],

• nonlinear elastic behavior [77, 78],

• structural transformations and sliding friction on atomic surfaces [79–83],

• colloidal patterning on surfaces [55],

• elasticity in liquid crystal-polymer networks [84, 85], and

• phase behavior and dynamics in

– liquid crystals [86, 87],
– nonspherical colloids [61], and
– foams [88].

Further general information on PFC modeling may be found in Refs. [5, 89–91].
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2.2.1 Relation to conventional phase-field models

Phase-field and field theory models were described in Chapter 1. The prototypical ex-

ample is ψ4 or Landau theory, which provides a phenomenological mean-field descrip-

tion of continuous Ising-like phase transitions between phases of differing symmetry

(which are uniform on the level of the order parameter ψ(~r)),

F [ψ(~r)] =

∫
d~r

[
r

2
ψ2 +

u

4
ψ4 +

K

2
(∇ψ)2

]
. (2.2)

Here r, u, and K are constants, where r ∼ (T − Tc) again controls the distance from

the critical point at temperature Tc.

The standard PFC functional is generated by switching the sign of the of gradi-

ent term and adding the next even-order gradient term. The fourth-order gradient

leads to periodic equilibrium solutions for r sufficiently negative, rather than only

uniform phases at, e.g., ψ = 0,±
√
r/u. Figure 2.1 shows the free energy penalty

for inhomogeneities on various length scales for both theories. The ψ4 penalty grows

quadratically with wavenumber q and thus only tolerates relatively large-scale inho-

mogeneities below the critical point. The PFC penalty by construction encourages

structures on the scale of 2π/q0 for sufficiently negative r (q0 is the position of the

first peak in the PFC direct correlation function, as discussed in the following subsec-

tion). The elastic and plastic behaviors which naturally emerge from these periodic

structures on all scales are absent in bare ψ4-like phase-field models.

2.2.2 Derivation from classical density functional theory

Classical DFT, as applied to liquid-solid systems, was introduced in Chapter 1. DFT

free energy functionals are often separated into three parts,

F [ρ(~r)] =

∫
d~r [fid + fexc + fext] (2.3)

where fid = ρ(~r) ln (ρ(~r)/ρl)− δρ(~r) is the exact entropic, one-body or ideal gas com-

ponent of the system’s free energy, fexc accounts for all higher order, many-body

interactions between particles, and fext = ρ(~r)V (~r) describes the effect of external

potentials V (~r) on the system. ρ(~r) is the unscaled averaged atomic number den-
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Figure 2.1: (a) Specific free energy cost for inhomogeneities as a function of wavenum-
ber for hard spheres under the Percus-Yevick (PY) approximation, the corresponding
PFC theory, and an example Landau or ψ4 theory. The PY curve is shown at the
hard sphere liquidus, the PFC curve at r = −0.73, and the Landau curve below the
critical point. The inset shows a wider span in −C2(q). (b) The logarithmic DFT free
energy term and examples of expansions used in PFC models.

sity field, ρl is the reference average number density (at the liquidus, usually), and

δρ(~r) = ρ(~r)− ρl. The nondimensional form of F given here has been scaled by kBT ,

where kB is Boltzmann’s constant, and T is temperature. The variational principle

of DFT states that F is a unique functional of ρ(~r), that is, F [ρ(~r)] is minimized

by the equilibrium density profile ρeq(~r) and F [ρeq(~r)] corresponds to the equilibrium

canonical free energy.

Obtaining an exact F in DFT is equivalent to calculating a system’s partition

function, which cannot be done for most realistic systems. Thus, the unknown portion

of F is shuffled into fexc, and the various formulations of DFT consist in different

approximations for fexc. The form of interest here is a perturbative expansion around

δρ(~r) due to Ramakrishnan and Yussouff (RY) [7],

FRY
exc = Fexc(ρl)−

1

2

∫
d~r′ [δρ(~r)C2(~r, ~r

′)δρ(~r′)] + · · · (2.4)

where C2(~r, ~r
′) = C2(|~r − ~r′|) = C2(r) is the two-point direct correlation function of

the fluid (assumed isotropic). The Fourier transformed function C2(q) is related to
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the structure factor through S(q) = 1/[1 − ρ̄C2(q)], where ρ̄ is the system average

number density. The above expansion about the liquid direct correlation functions

can be continued, but is usually truncated after C2(r) for simplicity. Many extensions

and alternative formulations of DFT exist [8–10, 92, 93], but the RY functional is still

often used as a starting point for semi-quantitative studies.

It has recently been shown that the PFC functional can be viewed as a simplified

form of the RY functional [25]. Two approximations are required. First, C2(q) is

gradient expanded in symmetric or even gradients of n = ρ(~r)/ρl − 1,

C2(q) = Â0 + Â2q
2 + Â4q

4 + . . . (2.5)

where Â0, Â2, and Â4 are negative, positive, and negative constants, respectively.

This is the simplest physically meaningful form for C2(q), as it approximates the two-

body correlations by a single, smooth, isotropic peak near q = q0 (Fig. 2.1). Such an

expansion amounts to a local density approximation, as the full nonlocal C2(r) term

is reduced to a local gradient functional. Next, the ln (ρ/ρl) = ln (n+ 1) term in fid

is expanded in powers of n around n = 0 and truncated at n4. Graphical representa-

tions of both of these approximations are shown in Fig. 2.1. Higher order correlation

functions contribute additional powers of n that will modify the coefficients of the

expanded ln (n+ 1) terms [41]. These coefficients are thus generally left as variable

parameters, which allows additional flexibility in correcting for the approximate na-

ture of FPFC [94]. Note that the n3 term resulting from this expansion can always be

scaled out; the only two independent variables in this formulation are r and n̄.

The single Fourier peak approximation to C2(q) produces relatively sinusoidal

periodic structures, as high-q modes are severely penalized by the PFC C2(q). The full

RY C2(q) permits subtle high-q effects, resulting in equilibrium density profiles with

many contributing modes and much sharper features. DFT crystalline states generally

consist of very narrow, almost non-overlapping Gaussian peaks at the atomic lattice

positions. The PFC description thus captures the basic symmetries of the crystalline

phase but not the small-scale details of the individual density peaks.

The second PFC approximation, the truncated ln (ρ/ρl) expansion, penalizes large

values of n more severely than the logarithm. This caps the optimal amplitude of

periodic structures near 1, as suggested by Fig. 2.1. The truncated ln (ρ/ρl) expansion
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may also permit unphysical occurrences of ρ < 0 unless explicit penalties are imposed

[95] or the density is scaled from ρ to n in such a way that inconsistencies are avoided

[63].

The RY-to-PFC approximation therefore results in solid phases with nearly sinu-

soidal density profiles of amplitude order 1, as opposed to multi-mode, sharply-peaked

Gaussian profiles with amplitude � 1. The advantages are that the properties of the

PFC states are generally much easier to compute analytically and that numerical

studies can be performed on a much coarser simulation grid than that of the corre-

sponding RY states (approximately eight grid units per PFC lattice spacing as com-

pared to 32-64 grid units per RY lattice spacing, per dimension). Three-dimensional

DFT simulations with more than a few hundred or few thousand particles are gener-

ally impractical, while PFC simulations with millions of particles have already been

demonstrated. An additional advantage is that the tools of multiple scale analysis,

developed in the context of pattern formation in Rayleigh-Bénard convection, can

be straightforwardly applied to the PFC theory, but not to the more complex DFT.

This permits development of the coarse-grained complex amplitude PFC models noted

earlier.

The simplified PFC C2(q) tends to favor the most symmetric crystalline structures

– triangular lattices in two dimensions and bcc lattices in three dimensions – but it

has recently been shown that fcc and hcp crystals become the equilibrium states in

the region near −0.75 . n̄ . −0.38 and −1.60 . r . −0.35 [53, 94]. Slightly more

complicated C2(q) approximations, employing two or three peaks rather than one,

have also been shown to produce a wide range of stable crystalline structures [62, 63].

Higher-order correlations (C3, etc) can be used as well to generate more complex

structures, but this approach is in general quite computationally expensive.

The direct connection between PFC and DFT outlined here makes a large number

of methods and applications from the relatively well-developed DFT body of work

accessible to PFC studies. One can now in many cases step in where traditional

DFTs become analytically or numerically intractable and approach problems with

an efficient, simplified framework that still generally contains the essential physics of

periodic and liquid-solid systems.

Modified versions of this basic PFC formulation have also been proposed. These
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include extensions to binary alloys [25] (see Section 2.2.4), a model that incorporates

long-lived vacancies [95] (see Chapter 6), a model motivated by structural transfor-

mations that allows multiple stable crystal structures [62, 63], a higher-order gradient

scheme for more accurate C2(q) matching [58], an anisotropic model for nonspherical

particles [61], and orientational vector/tensor models for liquid crystals [84–87], to

list a few.

2.2.3 Static model properties

Phase behavior

In the limit of vanishing thermal fluctuations, equilibrium or metastable PFC states

may be either constant (homogeneous liquid), periodic (crystalline solid), or aperiodic

(disordered solid). We are interested here in the nature of the PFC phase diagram

and the basic properties of the various phases. The average free energy of the liquid

phase is easily obtained by substituting n(~r) = n̄ into Eq. (2.1),

f` =
r + 1

2
n̄2 +

1

4
n̄4. (2.6)

In the limit r → 0, the equilibrium periodic phases are accurately described by a

simple one-mode approximation, since the PFC free energy is lowered by only a fairly

narrow range of reciprocal lattice vectors near q = 1. A general periodic phase in the

one-mode approximation can be written

n(~r) = n̄+
1∑

m1=0

· · ·
1∑

md=0

am1,··· ,md
ei ~G·~r + c.c. (2.7)

where d is the dimensionality of the structure, am1,··· ,md
are Fourier coefficients of

the reciprocal lattice vectors, ~G = m1
~b1 + · · · + md

~bd, ~bi are the reciprocal lattice

vectors of the lattice structure, and c.c. denotes complex conjugate. In the one-mode

approximation, the summations overmi are taken such that ~G always has length equal

to that of the shortest or primary reciprocal lattice vector of the lattice structure in

question.
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For example, the one-mode two-dimensional triangular lattice is written

ntri(~r) = A

[
cos (qx) cos

(
qy√

3

)
+

1

2
cos

(
2qy√

3

)]
+ n̄ (2.8)

where Aeq = −(4/5)[n̄+ (|n̄| /n̄)(1/3)
√
−15r − 36n̄2] and qeq =

√
3/2 are the equilib-

rium amplitude and wavenumber, respectively. These values are obtained by substi-

tuting ntri(~r) into the free energy and minimizing with respect to A and q separately.

Minimizing the total free energy over a one-mode unit cell then gives the average F

of any basic periodic phase as a function of r and n̄. For the triangular lattice, one

finds

ftri = f` +

(
3(r + 1)

16
− 1

2
q2
eq +

1

3
q4
eq +

9

16
n̄2

)
A2

eq +
3

16
n̄A3

eq +
45

512
A4

eq. (2.9)

Using Maxwell’s equal-area construction, the coexistence boundaries between phases

can be calculated for conserved n̄. Figure 2.2 shows portions of the resulting one-mode

or numerically obtained phase diagrams in one, two, and three dimensions. After fit-

ting C2(q) to match a given set of material parameters, one typically models a known

material within some small portion of one of the phase diagrams displayed in Fig. 2.2.

The order of a given transition between phases of different symmetry is primarily

a function of proximity to the critical point at (r, n̄) = 0, though the addition of

thermal fluctuations described in Section 2.3 can lead to more complex behaviors.

In general, the transition at (r, n̄) = 0 has a second-order mean field nature, and

slightly off-critical regions of parameter space exhibit weakly first-order transitions.

As the distance from the critical point is increased, bulk transitions become more

strongly first-order. Spinodal lines, or boundaries of global instability, also emerge

when standard dynamic equations are employed. These can have important effects

on transition behavior as will be discussed further in Section 2.3.

Elastic properties

The elastic properties of the periodic phases are also of fundamental importance, as

PFC models aim to capture realistic elastic and plastic effects both during crystal

growth and within stabilized solid samples. The average free energy of any periodic

PFC phase is naturally a minimum at some equilibrium periodicity aeq, and for small
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Equations (26), (27), and (28) describe a material with
specific elastic properties. In the next few sections the prop-
erties of this “material” will be discussed in detail. As will be
shown, some of the properties can be adjusted to match a
given experimental system and others cannot be matched
without changing the functional form of the free energy. For
example the periodicity (or lattice constant) can be adjusted
since all lengths have been scaled with q0. The bulk modulus
can also be easily adjusted since the free energy has been
scaled with ! , u, and q0. On the other hand, this free energy
will always produce a triangular lattice in two dimensions
[10,11]. To obtain a square lattice a different choice of non-
linear terms must be made. This is the most difficult feature
to vary as there are no systematic methods (known to the
authors) for determining which functional form will produce
which crystal symmetry. Cubic symmetry can be obtained by
replacing "4 with !!"!4 [25,26].
In the next few subsections the properties of this free

energy and some minor extensions will be considered in one
and two dimensions. The three-dimensional case will be dis-
cussed in a future paper.

B. One dimension

In one dimension the free energy described by Eq. (26) is
minimized by a periodic function when the average value of
"""̄# is small and a constant when "̄ is large. To determine
the properties of the periodic state it is useful to make a
one-mode approximation—i.e., "$A sin"qx#+ "̄, which is
valid in the small-r limit. Substitution of this function into
Eq. (26) gives

Fp

L
=
q
2#
%
0

2#/q

dx&"

2
$""x

2#" +
"4

4 '
=

"̄2

2
&$̂0 +

3A2

2
+

"̄2

2
' + A2

4 &$̂q +
3A2

8 ' , "29#

where $̂q is the Fourier transform of $"!2#—i.e., $̂q=r+ "1
−q2#2. Minimizing Eq. (29) with respect to q gives the se-
lected wave vector q* =1. Minimizing F with respect to A
gives A2=−4"$̂q* /3+ "̄2#. This solution is only meaningful if
A is real, since the density is a real field. This implies that
periodic solutions only exist when r%−3"̄2, since $̂q*=r.
The minimum free-energy density is then

Fp/L = − r2/6 + "̄2"1 − r#/2 − 5"̄4/4. "30#

Equation (30) represents the free-energy density of a periodic
solution in the one-mode approximation. To determine the
phase diagram this energy must be compared to that for a
constant state (i.e., the state for which " c= "̄) which is

Fc/L = $̂0"̄
2/2 + "̄4/4. "31#

To obtain the equilibrium states the Maxwell equal-area
construction rule must be satisfied—i.e.,

%
"̄1

"̄2
d"(&""̄# − &eq) = 0, "32#

where "̄1 is a solution of &p=&eq , "̄2 is a solution of &c

=&eq, and &""̄#=&p"=&c# if Fp%Fc "Fp'Fc# and &

="F /""̄. Using these conditions it is straightforward to show
that for r'−1/4 a periodic state is selected for !"̄!%*−r /3
and a constant state is selected when !"̄!'*−r /3. For r%
−1/4, there can exist a coexistence of periodic and constant
states. If the constant and periodic states are considered to be
a liquid and crystal, respectively, then this simple free energy
allows for the coexistence of a liquid and crystal, which im-
plies a free surface. The entire phase diagram is shown in
Fig. 2.
It is also relatively easy to calculate the elastic energy in

the one-mode approximation. If a+2# /q is defined as the
one-dimensional lattice parameter, then the F can be written

Fp/L = Fmin
p /L + Ku2/2 +O"u3# ¯ , "33#

where u+"a−a0# /a0 is the strain and K is the bulk modulus
and is equal to

K = − ""̄2 + $̂q*/3#,d2$̂q

dq2
,
q=q*

, "34#

or for the particular dispersion relationship used here,
K=−8"r+3"̄2# /3. The existence of such a Hooke’s law rela-
tionship is automatic when a periodic state is selected since
F always increases when the wavelength deviates from the
equilibrium wavelength.

FIG. 2. One-dimensional phase diagram in the one-mode ap-
proximation. The solid line is the boundary separating constant (i.e.,
liquid) and periodic (i.e., crystal) phases. The hatched section of the
plot corresponds to regions of liquid-crystal coexistence.
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sociated with bulk, shear, and deviatoric deformations can be
calculated by considering modified forms of Eq. (37)—i.e.,
!t(x / !1+"" ,y / !1+"")!bulk" , !t!x+"y ,y"!shear", and !t(x!1
+"" ,y!1−"")!deviatoric". In such calculations " represents
the dimensionless deformation, qt=#3/2, and At is obtained
by minimizing F. The results of these calculations are

Fbulk/A = Fmin
t + #"2 + ¯ ,

Fshear/A = Fmin
t + #/8"2 + ¯ ,

Fdeviatoric/A = Fmin
t + #/2"2 + ¯ , !40"

where #= !qtAt"2 /3. These results can be used to determine
the elastic constants by noting that, for a two-dimensional
system [10,28],

Fbulk = Fmin
t + $C11 + C12%"2 + ¯ ,

Fshear = Fmin
t + $C44/2%"2 + ¯ ,

Fdeviatoric = Fmin
t + $C11 − C12%"2 + ¯ . !41"

The elastic constants are then

C11/3 = C12 = C44 = #/4. !42"

These results are consistent with the symmetries of a two-
dimensional triangular system—i.e., C11=C12+2C44. In two
dimensions this implies a bulk modulus of B=# /2, a shear
modules of $=# /4, a Poisson’s ratio of %=1/3, and a two-
dimensional [i.e., Y2=4B$ / !B+$"] Young’s modulus of Y2
=2# /3. Numerical simulations were conducted (using the
parameters and numerical technique discussed in the previ-
ous section) to test the validity of these approximations for
the bulk modulus. The results, shown in Fig. 3, indicate that
the approximation is quite good in the small r limit.
These calculations highlight the strengths and limitations

of the simplistic model described by Eq. (23). On the posi-
tive side the model contains all the expected elastic proper-
ties (with the correct symmetries) and the elastic constants
can be approximated analytically within a one mode analy-
sis. On the negative side, the model as written can only de-
scribe a system where C11=3C12. Thus parameters in the free
energy can be chosen to produce any C11, but C12 cannot be
varied independently.

3. Dynamics

The relatively simple dynamical equation for ! [i.e., Eq.
(28)] can describe a large number of physical phenomena
depending on the initial conditions and boundary conditions.
To illustrate this versatility it is useful to consider the growth
of a crystalline phase from a supercooled liquid, since this
phenomenon simultaneously involves the motion of liquid-
crystal interfaces and grain boundaries separating crystals of
different orientations. Numerical simulations were conducted
using the “method I” as described in the Appendix. The pa-
rameters for these simulations were !r , !̄ ,D ,&x ,&t"
= !−1/4 ,0.285,10−9 ,' /4 ,0.0075" on a system of size
512&x(512&x with periodic boundary conditions. The ini-
tial condition consisted of large random Gaussian fluctua-
tions (amplitude 0.1) covering !10(10" grid points in three
locations in the simulation cell. As shown in Fig. 6 the initial
state evolves into three crystallites, each with a different ori-
entation and a well-defined liquid-crystal interface. The ex-
cess energy of the liquid-crystal interfaces is highlighted in
Fig. 6(d) where the local free-energy density is plotted.
As time evolves the crystallites impinge and form grain

boundaries. As can be seen in Fig. 6 the nature of the grain

FIG. 4. Two-dimensional phase diagram as calculated in a one-
mode approximation. Hatched areas in the figure correspond to co-
existence regions. The small region enclosed by a dashed box is
superimposed on the argon phase diagram in Fig. 5. In this manner
the parameter of the free-energy functional can be chosen to repro-
duce certain aspects of a liquid-crystal phase transition.

FIG. 5. The phase diagram of argon. The hatched regions cor-
respond to the coexistence regions. The points are from the PFC
model.
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Figure 1. Small ε limit of the phase diagram. Crosses show points of
coexistence as obtained from our numerical calculations and the lines
show approximate results based on the single mode approximation.

(appendix A). Examining the results, we find very good
agreement with the small ε analysis of Wu and Karma, which
shows that the asymptotic behavior of liquid–bcc coexistence
lines in the limit of small ε is given by −√

45ε/103, and
the linear terms in their expansions as powers of ε1/2 are
zero [12].

When ε is increased, the difference between one-mode
and numerical results increases accordingly. This becomes
exceedingly important for values of ε exceeding 0.35, because
at that value, we find a triple coexistence of liquid, bcc
and hcp structures. This result is in contradiction with the
prediction from the one-mode approximation that the body-
centered phase should always have a lower free energy than the
close packed ones. Beyond that value, the liquid crystallizes
into a stable hcp solid in the interval ε = 0.35 · · · 0.48. In
the upper end of this interval, we find a triple coexistence,
this time with liquid, hexagonal close packed and fcc phases
coexisting with one another. From ε = 0.48 upwards, the
stable crystalline phase that forms from the liquid has a fcc
structure.

The region of the phase diagram where all 3D crystalline
phases are found, is shown in figure 2. It is seen that the
coexistence gaps between the solid phases are very small, the
difference in ψ0 in the coexisting phases being on the order of
10−3 for bcc–hcp and 10−4 for hcp–fcc. Especially for the hcp–
fcc boundary, a small difference in free energies, and thus a
small coexistence gap, is expected due to the close resemblance
of the two structures. Indeed, the differences in free energy
densities of the two close packed phases in the relevant range
is on the order of 10−5, while the corresponding differences
are on the order of 10−4 between bcc and close packed
phases and 10−2 between crystalline and uniform phases. Due
to the tiny differences in free energies of the fcc and hcp
phases, reproducing the exact regimes of stability shown in
figure 2 requires a numerical precision that is impractical for
many numerical simulations. Therefore, the exact regimes of
stability in a given simulation will, to some extent, depend on
the numerical details of the method. We may also speculate
that due to the tiny differences in free energies of the phases,
including a Langevin noise in the equations of motion could

Figure 2. Part of the phase diagram where the hcp phase is stable.
Symbols show the points obtained from our numerical calculations,
with lines connecting the symbols.

Figure 3. Phase diagram up to ε = 1.8 as obtained from our
numerical calculations. For clarity, the individual points where
calculations were done are not shown.

alter the stability regimes even significantly, although the effect
was not studied in the present work.

The stability regime of the fcc phase finally terminates in
a triple coexistence with the rods phase at ε ≈ 1.6. Above
that point, the stable phase that coexists with the uniform
phase is the two-dimensional hexagonal structure. The total
phase diagram up to ε = 1.8 obtained from our numerical
calculations is shown in figure 3.

The surprising result of finding regions where hcp and fcc
phases are stable may be of great importance for modeling
materials characterized by these structures with the PFC
model. However, we have seen for the case of modeling metals
with bcc structure that fitting the fourth order model studied
with experimental material properties has limitations [13]. For
the hcp and fcc phases, we see no reason to expect this situation
to be better, especially as those phases stabilize even further
away from the presumably physical limit where ε is small.
In order to describe hcp and fcc materials quantitatively with

3

(c) 3D
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agreement with the small ε analysis of Wu and Karma, which
shows that the asymptotic behavior of liquid–bcc coexistence
lines in the limit of small ε is given by −√

45ε/103, and
the linear terms in their expansions as powers of ε1/2 are
zero [12].

When ε is increased, the difference between one-mode
and numerical results increases accordingly. This becomes
exceedingly important for values of ε exceeding 0.35, because
at that value, we find a triple coexistence of liquid, bcc
and hcp structures. This result is in contradiction with the
prediction from the one-mode approximation that the body-
centered phase should always have a lower free energy than the
close packed ones. Beyond that value, the liquid crystallizes
into a stable hcp solid in the interval ε = 0.35 · · · 0.48. In
the upper end of this interval, we find a triple coexistence,
this time with liquid, hexagonal close packed and fcc phases
coexisting with one another. From ε = 0.48 upwards, the
stable crystalline phase that forms from the liquid has a fcc
structure.

The region of the phase diagram where all 3D crystalline
phases are found, is shown in figure 2. It is seen that the
coexistence gaps between the solid phases are very small, the
difference in ψ0 in the coexisting phases being on the order of
10−3 for bcc–hcp and 10−4 for hcp–fcc. Especially for the hcp–
fcc boundary, a small difference in free energies, and thus a
small coexistence gap, is expected due to the close resemblance
of the two structures. Indeed, the differences in free energy
densities of the two close packed phases in the relevant range
is on the order of 10−5, while the corresponding differences
are on the order of 10−4 between bcc and close packed
phases and 10−2 between crystalline and uniform phases. Due
to the tiny differences in free energies of the fcc and hcp
phases, reproducing the exact regimes of stability shown in
figure 2 requires a numerical precision that is impractical for
many numerical simulations. Therefore, the exact regimes of
stability in a given simulation will, to some extent, depend on
the numerical details of the method. We may also speculate
that due to the tiny differences in free energies of the phases,
including a Langevin noise in the equations of motion could

Figure 2. Part of the phase diagram where the hcp phase is stable.
Symbols show the points obtained from our numerical calculations,
with lines connecting the symbols.

Figure 3. Phase diagram up to ε = 1.8 as obtained from our
numerical calculations. For clarity, the individual points where
calculations were done are not shown.

alter the stability regimes even significantly, although the effect
was not studied in the present work.

The stability regime of the fcc phase finally terminates in
a triple coexistence with the rods phase at ε ≈ 1.6. Above
that point, the stable phase that coexists with the uniform
phase is the two-dimensional hexagonal structure. The total
phase diagram up to ε = 1.8 obtained from our numerical
calculations is shown in figure 3.

The surprising result of finding regions where hcp and fcc
phases are stable may be of great importance for modeling
materials characterized by these structures with the PFC
model. However, we have seen for the case of modeling metals
with bcc structure that fitting the fourth order model studied
with experimental material properties has limitations [13]. For
the hcp and fcc phases, we see no reason to expect this situation
to be better, especially as those phases stabilize even further
away from the presumably physical limit where ε is small.
In order to describe hcp and fcc materials quantitatively with
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ansatz by Gránásy and Tóth (Tegze et al 2009b) has been
used for the hcp structure: ψ = A{cos(2qy/

√
3) + cos(qx −

qy/
√

3) − cos(2π/3 − qx + qy/
√

3) + cos(qx + qy/
√

3) −
cos(−4π/3 + qx + qy/

√
3) − cos(−2π/3 + 2qy/

√
3)} ·

cos{(√3/
√

8)qz}. Here q = 2π/a, while the lattice constant
a and the amplitude A have been determined by analytic
minimization of the free energy.

3.1.1. Phase diagrams for the PFC/SH model (from the EL
equation). While in the single-component case the 1D and
2D phase diagrams are fairly well known (Elder et al 2002,
Elder and Grant 2004), and different versions of the 3D phase
diagram have been presented by single-mode computations
(Wu and Karma 2007) and by full free energy minimization
(Jaatinen and Ala-Nissila 2010), we have reexamined the
3D phase diagram using the Euler–Lagrange technique: a
single-mode initial guess has been applied for the scaled
number density ψ in a single cell of the crystal structure,
when solving BVP defined by equation (15) and the no-flux
boundary condition applied at the boundaries of the single-
mode cell. The free energy of the solid thus obtained has
been then minimized with respect to the lattice constant, and
this minimum has been used to compute the driving force
(the grand potential density or pressure difference) relative
to the initial liquid. Finally, iteration has been used to find
the zero limit of the driving force that specifies the fluid–
crystal equilibrium. The equilibrium between two periodic
phases has been found by iterating for equal driving forces.
A refined 3D phase diagram for the single-component case is
shown in figure 1. It is in general agreement with the results
(Jaatinen and Ala-Nissila 2010) obtained previously with a
different method. It consists of a single domain for each of
the bcc, hcp and fcc phases, where the given phase is stable.
The three-phase equilibria (liquid–hcp–bcc, liquid–fcc–hcp,
hcp–bcc–rod, and fcc–hcp–rod) are represented by horizontal
peritectic/eutectoid lines in the phase diagram. Linear stability
analysis of the liquid phase yields an instability region whose
border, ψ = −(−r/3)1/2, is denoted by the heavy gray
line in figure 1. The PFC/SH model predicts a critical
point between the liquid and solid phases at r∗ = 0 and
ψ0 = 0. It is appropriate to mention in this respect that
there is no convincing theoretical or experimental evidence
for the existence of a critical point between crystalline and
liquid phases in simple single-component systems (Skripov
1976, Bartell and Wu 2007). Remarkably, however, a recent
molecular dynamics study relying on a pair potential akin
to the Derjaguin–Landau–Verwey–Overbeek (DLVO) potential
with a secondary minimum (often used for modeling charged
colloids) indicates the presence of a critical point between the
solid and liquid phases (Elenius and Dzugutov 2009). We note
finally that, under the conditions we use in our simulations, the
driving force (the grand potential density difference #ωX =
fX (nX )− ∂ fL/∂n(n0) · [nX − n0]− fL(n0) = −#p relative to
the initial liquid, where nX is the crystal density that maximizes
the driving force, and #p is the pressure difference relative
to the liquid) is comparable for the bcc, fcc and hcp phases,
though bcc is slightly preferred with the exception of a small
region near the equilibrium liquid density, where the hcp phase

Figure 1. Solid–liquid coexistence in the phase diagram of the 3D
PFC/SH model. The coexistence lines have been computed via
solving the Euler–Lagrange equation. The liquid phase is unstable to
the right of the heavy gray line.

has the largest driving force (Tegze et al 2009b). For larger
densities, the hcp and fcc phases are metastable.

Regarding the stable fcc and hcp domains predicted by
Jaatinen and Ala-Nissila (2010) and confirmed by our study
here, it is interesting to note that (Wu et al 2010) have recently
developed a PFC model for fcc crystals. In their paper, they
argue that liquid–fcc coexistence is impossible for diffuse
interfaces because of the absence of triadic interactions for
the basic set of reciprocal lattice vectors of the fcc structure.
Our virtually exact results for liquid–fcc coexistence from a
full numerical treatment of the problem, which avoids the
single-or two-mode approximations, suggest that the effect
of higher-order harmonics cannot be fully neglected. This is
reflected (i) in the substantial difference between the lattice
constants of the fcc phase from the single-mode approximation
and the full numerical treatment, 10.88 and 11.48, respectively
(under the conditions used by Tegze et al (2009b)) and (ii) in
the significantly different interparticle distances that the full
numerical treatment yields for the bcc and close packed
crystalline structures: 7.73 (bcc), 8.11 (fcc) and 8.08 (hcp)
(the data refer to the crystalline states coexisting with the liquid
under conditions used by Tegze et al (2009b)).

In the case of the binary system, we have used the EL
equations to map the thermodynamic driving force

−#p = #F[n(r), δN(r)]
V

− f0 − ∂ I
∂n

∣∣∣∣
(n0,δN0)

(n̄ − n0)

− ∂ I
∂(δN)

∣∣∣∣
(n0,δN0)

[δ N̄ − δN0] (22)

as a function of the initial total reduced particle density (n0)
and the differential reduced particle density (δN0). Here bars
over the quantities denote averaging over the cell, while I is
the integrand of the Helmholtz free energy functional. The
initial guess for the single-cell solution has been taken from
the single-mode approximation for n, while a homogeneous
initial δN has been assumed. The converged fields are
shown in figure 2(a), while the driving force map is displayed
in figure 2(b). Note the narrow region where eutectic
solidification is preferable. Indeed, we have seen coupled
eutectic solidification when solving the equation of motion in
this region.
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(d) 3D section

Figure 2.2: PFC phase diagrams in one, two, and three dimensions. (a) 1D and (b)
2D diagrams, in the one-mode approximation, from Ref. [4]. Crosshatched regions
denote coexistence. The 3D diagrams in (c) and (d) are numerically obtained results
from Refs. [94] and [53], respectively. Unlabeled regions denote coexistence, and the
gray line denotes the liquid spinodal. r = r∗ = −ε, ψ0 = n̄.
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deformations about aeq varies in a Hooke’s law form [F−F0 ∼ (a−aeq)
2]. The relevant

linear elastic constants for a given crystal symmetry can be explicitly calculated in the

one-mode limit by determining how FPFC varies under the appropriate deformations

ε, and relating the O(ε2) coefficients to the system’s linear elastic constants.

This follows from the definition of the elastic energy of a strained solid [96]

Fel =
1

2

∫
ddx [Kijkluijukl] =

∫
ddxfel(uij) (2.10)

where Kijkl is the elastic constant tensor, uij = (∇iuj +∇jui)/2 is the linearized strain

tensor, ~u is the displacement vector, and fel(uij) is the elastic free energy density. A

two dimensional triangular crystal, for example, has two independent elastic constants

in Kijkl, since symmetry considerations require Kijkl = λδijδkl +µ(δikδjl + δilδjk). The

Lamé coefficients λ and µ are related to the bulk modulus by B = λ + µ (µ is also

the shear modulus). The expression for Kijkl implies that K11 = K22 = λ + 2µ,

K12 = K21 = λ, K44 = µ, and all other Kijkl = 0. The standard notation in which

1 = xx, 2 = yy, and 4 = xy has been used. Writing out the full elastic energy density,

fel =
K11

2
(u2

xx + u2
yy) +K12(uxxuyy) + 2K44(uxyuxy), (2.11)

and substituting K12 = K11 − 2K44 from the relations above gives

fel =
K11

2
(u2

xx + u2
yy + 2uxxuyy) + 2K44(uxyuxy − uxxuyy) (2.12)

or equivalently

fel =
λ

2
(u2

xx + u2
yy + 2uxxuyy) + µ(2uxyuxy + u2

xx + u2
yy). (2.13)

Now consider the energy cost of shear and bulk deformations, defined here by

ux = εy (shear) and ux = εx, uy = εy (bulk). The elastic energy density becomes

f shear
el =

K44

2
ε2 =

µ

2
ε2, (2.14)

f bulk
el = 2(K11 −K44)ε

2 = 2Bε2. (2.15)
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Performing the same calculations for the one-mode triangular PFC lattice, by substi-

tuting ntri(x+εy, y) (shear) and ntri(x(1+ε), y(1+ε)) (bulk) into FPFC and minimizing,

one finds

f shear
el =

3A2
eq

32
ε2 +

9A2
eq

128
ε4, (2.16)

f bulk
el =

3A2
eq

4
ε2 +

3A2
eq

4
ε3 +

3A2
eq

16
ε4. (2.17)

Comparing coefficients gives µ = 3A2
eq/16 and B = 3A2

eq/8, fully specifying the small

deformation (linear) elastic behavior of the perfect PFC triangular crystal. Note the

additional higher order nonlinear elastic terms which are present even in the one-mode

approximation of the PFC crystal, including an asymmetric nonlinear ε3 term in f bulk
eq .

Analogous calculations can be performed for any crystal symmetry of interest. For

example, the three independent linear elastic constants in a one-mode bcc crystal

are found to be B = (K11 + 2K12)/3 = A2
eq/3, µ′ = (K11 − K12)/2 = A2

eq/8, and

µ′′ = K44 = A2
eq/4, where B is the bulk modulus and µ′, µ′′ are the two shear moduli.

Topological defects and plasticity

Elastically responsive perfect crystals such as those described above provide a start-

ing point for modeling real solids, but the next level of realism requires defects and

their associated strain fields, slip planes, interaction mechanisms, etc. The type of

defect generally most relevant to the mechanical behavior of crystalline solids is the

dislocation. This is a point defect in two dimensions and a line defect of screw, edge,

or hybrid character in three dimensions. Dislocations are represented with atomic-

level detail in PFC solids, and it turns out that their long-range stress and strain

fields match those of continuum elasticity theory quite well, with the advantage of a

more realistic atomistic core region in which stress does not diverge. These defects

automatically interact and respond to applied strains with the appropriate atomistic

glide, climb, and annihilation mechanisms, as will be shown in Chapter 4.

Edge dislocation structures in a triangular PFC crystal are illustrated in Fig. 2.3,

where numerically obtained configurations are compared with those predicted by lin-

ear continuum elasticity theory. Figure 2.3(a) shows the equilibrium one-mode crystal

before and after application of the linear continuum expressions for the displacement



2.2. The PFC Functional 31

fields of an edge dislocation, ux and uy. The result is ntri(x+ ux, y + uy), where

ux =
b

2π

[
φ+

1

2

λ+ µ

λ+ 2µ
sin (2φ)

]
, (2.18)

uy = − b

2π

[
µ

λ+ 2µ
ln r̄ +

1

2

λ+ µ

λ+ 2µ
cos (2φ)

]
, (2.19)

b = 2π/qeq is the dislocation Burgers vector, φ = arctan (y/x), r̄ =
√
x2 + y2, and

the elastic constants λ and µ were calculated above. Figure 2.3(b) shows a simulated

PFC edge dislocation before and after reverse application of ux and uy, which approx-

imately recovers the equilibrium unstrained crystal. The simulated dislocation was

produced by allowing two adjacent crystalline slabs with N and N + 1 atoms/row,

respectively, to equilibrate into a stable configuration. The agreement between auto-

matically generated PFC configurations and continuum elasticity theory is quite good,

even very near the dislocation core where strain ultimately diverges in the continuum

expressions and where nonlinear elastic effects become more pronounced in the PFC

system.

Sequential applications of any continuum defect displacement fields of interest, as

demonstrated in Fig. 2.3(a), can provide a useful method for generating complex

defect structures in PFC simulations. Figure 2.4 shows an example of a perfect

b = a[100] prismatic dislocation loop in a bcc crystal created by a slightly more

complex application of this method. Four symmetric edge dislocation lines compose

the initial boundary of the loop, which results in an extra unit cell plane of self

interstitial atoms in the interior of the loop (a cluster of 392 interstitials in this

case). When allowed to relax by evolving in time, the initially square loop becomes

octagonal or nearly circular and either grows or shrinks by climb, depending on local

strain, temperature, etc. A b = a[100] bcc screw dislocation is illustrated in Fig. 2.5,

and common bcc point defects are shown in Fig. 2.6 (self interstitials in split [110]-

dumbbell and [111]-crowdion configurations). All of these defects were generated by

relaxing an initial PFC state that was created using continuum displacement fields.

Grain boundaries, or periodic arrays of dislocations, also contribute crucially to

the properties of polycrystalline solids. Some sample PFC grain boundary structures

are shown in Fig. 2.7. Two and three dimensional PFC models have been shown to
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(a)

↘ ↗ux

(b)

↙ ↖
uy

Figure 2.3: (a) The one-mode triangular crystal (left) and the resulting b = a[10] edge
dislocation (right) following application of the continuum linear elastic displacement
fields ux and uy. (b) A simulated b = a[10] PFC edge dislocation configuration (right)
and the resulting undislocated state (left) following reverse application of ux and uy.
The black lines are Burgers circuits, and ux and uy are shown as contour plots.

capture known features of grain boundary energetics, such as the low-angle Read-

Shockley boundary energy vs. angle (θ) result and the less tractable high θ behavior

measured in experiments [4, 71]. The continuum elastic description in which long-

range stress fields begin to screen each other as θ is increased, reducing the lateral

stress profile from power law to exponential decay, has also been reproduced [31].

Properties related to grain boundary melting are discussed in Chapter 3.

2.2.4 Binary PFC functionals

This outline of static model properties will end with a brief introduction to binary

free energy functionals. A much more detailed account can be found in Ref. [25]. The
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b
�

b↑

(a) (b)

Figure 2.4: A perfect b = a[100] prismatic dislocation loop in a PFC bcc lattice,
generated using continuum elastic displacement fields. (a) Slightly tilted [100] (top)
and [010] views (bottom) of the PFC density peak configuration. Red atoms represent
self interstitials, gray represents the original unstrained bcc atoms, and all atoms on
one side of the loop plane have been blanked. (b) Cross-sectional [100] (top) and [010]
(bottom) views of n(~r) through the dislocation loop.

RY functional extended to binary alloys of A and B atoms becomes

FRY =

∫
d~r

[
ρA(~r) ln (

ρA(~r)

ρA
l

)− δρA + ρB(~r) ln (
ρB(~r)

ρB
l

)− δρB

]
− (2.20)

1

2

∫
d~rd~r′

[
δρA(~r)CAA

2 (~r, ~r′)δρA(~r′)
]
− (2.21)

1

2

∫
d~rd~r′

[
δρB(~r)CBB

2 (~r, ~r′)δρB(~r′)
]
− (2.22)

1

2

∫
d~rd~r′

[
2δρA(~r)CAB

2 (~r, ~r′)δρB(~r′)
]
+ · · · (2.23)

where ρi is the number density of species i = A or B, δρi = ρi − ρ`,i, ρ`,i is the

reference number density of species i, and Cij
2 (~r, ~r′) specifies the isotropic two-point
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Figure 2.5: Cross sections of n(~r) along one pitch of a b = a[100] screw dislocation in
a bcc PFC lattice.

(a) (b)

Figure 2.6: (a) A (200) cross section of n(~r), rotated 45◦, showing a bcc self interstitial
in the split [110]-dumbbell configuration. (b) A (1̄10) cross section, rotated 35.26◦, of
a [111]-crowdion bcc self interstitial.
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(a) (b)

Figure 2.7: PFC grain boundary configurations. (a) 8.2◦ and (b) 44.1◦ symmetric tilt
grain boundary pairs in a bcc crystal with periodic boundary conditions.

direct correlation function between i and j particles. The same approximations used

to generate the pure PFC functional can be applied to the binary case, giving

FPFC =

∫
d~r [fAA + fBB + fAB] (2.24)

where

fii =
ni

2

[
ri + (q2

i +∇2)2
]
ni +

1

4
n4

i

and

fAB = nA

[
rAB + (q2

AB +∇2)2
]
nB.

The fii terms are simply PFC functionals for independent A and B fields, where

ni = ρi/ρl,i − 1 is the species specific scaled number density, qA and qB set the AA

and BB correlation periodicity, respectively, and ri is a constant analogous to that

of the monatomic model. fAB accounts for AB interactions, with qAB setting the AB

correlation periodicity and rAB the interspecies linear coupling constant. In practice

it is sometimes simpler to employ only a hard-core-like repulsion term of the form
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fAB = rAB(nA + 1)(nB + 1) or fAB = (rAB/2)(nA + 1)2(nB + 1)2.

One can also justify additionalAB interaction terms on phenomenological grounds,

such as (K/2)|∇c|2, where c = nA/(nA + nB) is a species concentration field and K

is a constant. This term enforces an energy cost for large gradients in c, and it arises

naturally when the PFC derivation is performed in terms of, e.g., n = nA +nB and c,

rather than in terms of nA and nB explicitly. Various other levels of approximation

in choosing a binary PFC functional can also be defended for specific studies, several

of which are discussed in Refs. [25] and [5].

2.3 Dynamics

A closed system’s equilibrium thermodynamic information is fully specified by its (ex-

act) free energy functional. A dynamical description requires additional information.

Most generally, the dynamics of a closed system should exhibit relaxation toward

equilibrium through minimization of F or maximization of entropy S, as required

by thermodynamic law. Particle-based theories can be evolved in time through, for

example, explicit, discretized Newtonian equations of motion for each particle. A

coarse-grained theory such as classical DFT requires, in principle, solution of the full

many-body problem at hand to arrive at a coarse-grained, effective equation of motion

for n, the averaged atomic density field.

This is generally not feasible for interesting systems, thus the simplest approach

is often to postulate phenomenological equations of motion for n which obey the fun-

damental thermodynamic principles of F minimization and any known symmetries

or conservation laws. Semi-rigorous derivations can be achieved for some systems by

systematically coarse-graining, for example, a particle-based theory such as Brownian

dynamics or a fluctuating hydrodynamic theory, to derive alternative equations of

motion under relatively controllable limits of approximation. An adiabatic approx-

imation, which assumes a separation of time scales between the (slow) one-particle

density field and all other observables, is generally applied in such cases.

Some of the standard dynamic equations from field theory and classical DFT,

which will be employed in later chapters, are introduced in this section. All are writ-

ten here with stochastic thermal noise terms to allow simulations which incorporate
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activated processes. The question of whether such noise terms are strictly appropri-

ate in an ensemble-averaged theory, which should in principle average all fluctuations

into the free energy functional, is an open one [90, 97, 98]. Considering the ap-

proximate nature of the PFC functional and the common interpretation of n as a

time-averaged, rather than ensemble-averaged, quantity, it seems reasonable at this

point to include small amplitude noise terms when phenomenologically justified. For

more detailed discussions on how to derive the PFC coarse-grained dynamics, see for

example, [15, 50, 60, 82, 99, 100].

With one exception, fluctuating hydrodynamic theories and extensions such as the

generalized Langevin equation are not considered here. These approaches explicitly

include additional variables in the dynamics, such as velocity or momentum fields, and

sometimes energy density and displacement fields. Although such theories in principle

apply in the thermodynamic limit, they are commonly fed with quasi-atomistic free

energies, and thus numerical studies of these models generally probe the same length

scales as PFC. Hydrodynamic and generalized Langevin theories, as a result of the

additional (vector) field variables and more complex equations of motion, are consid-

erably more demanding to simulate and ultimately access shorter time scales than

numerical PFC studies (see Fig. 1.1). The advantage is a more rigorous framework

built on relatively controlled approximations. A goal of PFC modeling is to show

that many of the same behaviors emerge from simpler free energies and equations

of motion, though this often requires phenomena-specific functional validations. To

maintain consistency, the following equations of motion are all written in terms of

n = ρ/ρl − 1.

2.3.1 Nonconserved relaxation: Model A

One of the simplest stochastic phenomenological models for relaxational motion of

the field n, when n need not be conserved, is

∂n

∂t
= −Γµ+ η (2.25)

where t is time, Γ is a mobility constant, µ = δF/δ(n + 1) is the local chemi-

cal potential, and η is a Gaussian stochastic noise variable with 〈η(~r, t)〉 = 0 and

〈η(~r1, t1)η(~r2, t2)〉 = 2ΓkBTδ(~r1−~r2)δ(t1− t2). This equation specifies that the field n
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evolves locally in whichever direction minimizes F , at a rate proportional to the local

chemical potential. This form can be used even when n is conserved to efficiently

locate equilibrium states at known, fixed values of µ̄.

2.3.2 An accelerated Model A

An equation of motion that evolves toward equilibrium even more rapidly and effi-

ciently than Eq. (2.25) for nonconserved n is [101]

∂ ln (n+ 1)

∂t
= −Γµ+ η. (2.26)

Here n relaxes toward local equilibrium super-exponentially rather than exponentially.

One can discretize and take the exponential of both sides of this equation to arrive at

an algorithm that is especially efficient when µ contains a ln (n+ 1) term, as is the

case for the RY functional.

2.3.3 Conserved diffusion: Model B

A conservation law for n implies that

∂n

∂t
= −~∇ · ~J (2.27)

where ~J is the flux. If the flux is assumed to be driven by gradients in µ,

~J = −Γ~∇µ, (2.28)

the resulting equation of motion (for Γ=constant) is known as Model B,

∂n

∂t
= Γ∇2µ+ ~∇ · ~η, (2.29)

where conserved Gaussian stochastic noise has been added. This is the simplest and

probably the most widely used dynamic equation in PFC studies where conserved

dynamics are required and fast or highly nonlinear relaxation processes can be safely

neglected. It is expected to be particularly relevant for colloidal systems, where

relaxation is believed to be dominated by self-diffusion of particles.
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Dynamic instabilities, or spinodals, can be mapped onto the PFC phase diagrams

when either Eq. (2.25) or Eq. (2.29) is employed. A simple linear stability analy-

sis reveals, for example, that the homogeneous phase becomes globally unstable to

perturbations of wavenumber q for r ≤ −(1− q2)2− 3n̄2. Thus the liquid phase spin-

odal begins at rs(q = 1) = −3n̄2, when stochastic noise is ignored. With Eq. 2.29,

the liquid structural relaxation times diverge as [2q2(r + 1− 2q2 + q4)]
−1

when rs is

approached from above. Spinodal instabilities such as these often play a role in tran-

sitions between PFC states, as will be demonstrated in later chapters.

2.3.4 Conserved nonlinear diffusion: Overdamped DDFT

When Γ in the previous scenario is not a constant, but instead depends on position,

one obtains
∂n

∂t
= ∇ · (Γ(~r)∇µ) + ν (2.30)

where 〈ν(~r1, t1)ν(~r2, t2)〉 = 2kBT∇ ·∇ [Γ(~r)δ(~r1 − ~r2)δ(t1 − t2)]. The stochastic noise

term used here must be multiplicative to satisfy detailed balance.

The overdamped equation of DDFT corresponds to the case of Γ(~r) = n(~r) + 1.

Several researchers have proposed and/or derived this equation with noise [16, 102–

104] or without [17, 105, 106], to approximate the dynamics of dense Brownian or

classical fluids. It has been argued that the density-dependent mobility term cre-

ates ‘self-caging’ effects which underlie reversible mode coupling behavior and glassy

dynamics, while these nonlinearities are absent from Model B [16].

2.3.5 Inertial dynamics

Dynamics in supercooled liquids and in crystalline solids are often dominated by

acoustic sound modes or phonons. An equation of motion that incorporates such

propagation effects in a qualitative way, by reintroducing faster inertial or wave-like

processes, is
∂2n

∂t2
+ β

∂n

∂t
= α2∇ · (Γ(~r)∇µ) + ν (2.31)

where α and β are constants related to sound speed and damping rate, respectively.

This equation of motion (with Γ(~r) = 1) was first applied to PFC dynamics by

Provatas et al . with a focus on its application to solid elasticity [74], and its derivation

has since been discussed in other PFC studies [50, 99, 107, 108]. It has been proposed
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or derived in various other contexts without the stochastic noise term [109–114].

The fast, oscillating modes generated by the second time derivative combine with

the diffusive relaxation term to produce a more rigid, quasiphonon-driven mechanical

response than in the overdamped case. These quasiphonons are dissipated over fixed,

relatively short length and time scales relative to physical acoustic phonons.

It may be worth noting that the noiseless version of Eq. (2.31) can be written

in an equivalent form that somewhat resembles that of Eq. (2.30). Specifically, for

Γ(~r) = 1, one can rewrite Eq. (2.31) as

∂n

∂t
= α2∇ ·

(∫ t

−∞
e−β(t−t′)∇µ dt′

)
(2.32)

where β−1 is seen as the memory time constant or the characteristic time for crossing

over from inertial to diffusive dynamics [107].

One might also attempt to extend Eq. (2.31) by noting that the coefficients α and

β are in principle functions of wavenumber q. In Fourier space, the form becomes

∂2n̂

∂t2
+ β(q)

∂n̂

∂t
= α2(q) iq N̂ (2.33)

where n̂ and N̂ are the Fourier transformed versions of n and Γ(~r)∇µ, respectively.

Common forms for α and β from generalized hydrodynamics are α(q) = α0/
√
S(q)

and β(q) = β0 + β1q
2/S(q), where α0, β0, and β1 are constants [18]. In the PFC

model, we have S−1(q) ' 1+ r+3n̄2 +(1− q2)2 or S−1(∇2) ' 1+ r+3n̄2 +(1+∇2)2

for r > −1− 3n̄2. Denoting S−1(∇2) = 1 + ω(∇2), the inertial equation becomes

∂2n

∂t2
+
[
β0 − β1∇2

(
1 + ω(∇2)

)] ∂n
∂t

= α2
0

(
1 + ω(∇2)

)
· ∇ · (Γ(~r)∇µ) . (2.34)

The propagating modes in this equation have velocities and damping rates which

both depend on wavenumber and reproduce the expected behaviors in the low q limit.

Low q waves are weakly damped, with lifetimes ∼ (β0 + S−1(0)β1q
2)−1, and have

somewhat higher propagation speeds than high q waves, which are rapidly damped

out. The specific form of S(q) in the PFC model could lead to singularities since

S(q) → 0 for large q, rather than S(q) → 1. The combination of α(q) and β(q)
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should cancel this effect though, as the important quantity is the ratio α(q)/β(q)

which ∼ 1/q2 in the large q limit. This implies that diverging propagation velocities

will be suppressed by more rapidly diverging damping rates.

The equation obtained in the limit ω(∇2) → 0 has previously appeared in Ref. [99],

∂2n

∂t2
+
(
β0 − β1∇2

) ∂n
∂t

= α2∇ · (Γ(~n)∇µ) . (2.35)

This form maintains a q-dependent damping rate (∼ q2), and neglects short length

scale damping effects due to the structural correlations in S(q) as well as any q de-

pendence of the sound speed. It seems that Eq. (2.35) can also be arrived at from

the generalized Langevin equation of fluctuating nonlinear hydrodynamics, by ignor-

ing off-diagonal terms and terms second order in the velocity field. Finally, the limit

β1 → 0 and ω(∇2) → 0 reproduces the original inertial dynamics of Eq. (2.31).

2.3.6 Higher-order models: Hydrodynamics of isothermal solids

A more general dynamical model, based on linearized hydrodynamics, and from which

the previous equations of motion can be obtained under various approximations, is

[50, 99, 100]

L1
∂2n

∂t2
− νL1∇2∂n

∂t
= γ∇2

(
−∂n
∂t

+ c2∇2n

)
− α2L1∇2n+ L1∇ [Γ(~r)∇µ] , (2.36)

where L1 = ∂/∂t − a2λ∇2, λ is an elastic constant, ν0 is the sum of shear and bulk

viscosities, γ = −λ/ρ̄ + α2, c2 = ρ̄a2α2, a2 is a dissipative prefactor, and α2 is the

linear mass-displacement coupling constant. This equation contains third-order time

derivatives, and though it is more complicated than Eq. (2.31), it nonetheless contains

only one scalar field n and better describes true hydrodynamic phonons. The phonon

damping is correctly proportional to q2 for q → 0, as opposed to Eq. (2.31), but

similar to Eq. (2.35). Predicted limits of validity for this and the preceding conserved

equations of motion are discussed in Refs. [50, 99, 100].
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2.3.7 Binary systems: Coupled dynamics

The generalized nonlinear diffusion equations for binary DDFT read

∂nA

∂t
= ∇ · (ΓA(~r)∇µA) + νA (2.37)

∂nB

∂t
= ∇ · (ΓB(~r)∇µB) + νB (2.38)

where 〈νi(~r1, t1)νi(~r2, t2)〉 = 2kBT∇·∇ [Γi(~r)δ(~r1 − ~r2)δ(t1 − t2)] and typically Γi(~r) =

ni(~r) + 1. The dynamics of A and B are coupled through the cross terms appearing

each species’ chemical potential and through the subsequent feedback in the density-

dependent mobility terms. It is often more convenient to employ the binary version

of Model B when possible,

∂nA

∂t
= ΓA∇2µA + ηA (2.39)

∂nB

∂t
= ΓB∇2µB + ηB (2.40)

where 〈ηi(~r1, t1)ηi(~r2, t2)〉 = 2ΓikBT∇2δ(~r1 − ~r2)δ(t1 − t2).

2.4 Overview and Research Directions

The aim of this chapter has been to provide a sketch of the PFC method by out-

lining its basic features, properties, and some of the successes realized to date. The

approach combining FPFC with coarse-grained Langevin dynamics provides an eco-

nomical framework for modeling equilibruim and long-time nonequilibrium behaviors

of realistic materials systems. Many potential extensions and applications remain

to be explored, while the unresolved issues concerning how to rigorously justify the

approximations involved and how to properly interpret and connect the parameters

of the theory with known observables remain as longer-term challenges. A fuller un-

derstanding of the appropriate limits of the theory’s validity will require continuing

efforts along these lines.

The fundamental approximations inherent to PFC models are introduced during

the static and dynamic coarse-graining procedures. As a result of the static coarse-
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graining, FPFC is not exact. fPFC
id is an approximation of the exact fid and fPFC

exc is an

approximation of the approximate fRY
exc . The dynamic coarse-graining which produces

either Eq. (2.29) or Eq. (2.30) relies on the assumption of adiabatic relaxation dy-

namics. Furthermore, hydrodynamic interactions, which may be particularly relevant

in colloidal systems, are ignored by the simple dynamic theories. To some degree, a

functional validation of the PFC approach must be pursued, based on comparisons of

PFC results with known results from more microscopic theories and experiments.

In the remaining chapters, various formulations of the PFC model are applied

to problems concerning melting, plasticity, and solidification. It is hoped that the

studies presented in the following chapters will help to both assess the capabilities

and limitations of PFC models as well as provide insight into new physics within

problems that are difficult to model with conventional approaches.
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Grain Boundary Melting and Premelting

Dislocation and grain boundary melting are studied in three dimensions using the

phase-field crystal method. Isolated dislocations are found to melt radially outward

from their core, as the localized excess elastic energy drives a power law divergence in

the melt radius. Dislocations within low and intermediate angle grain boundaries melt

similarly until an angle-dependent first order wetting transition occurs when neigh-

boring melted regions coalesce. Analytic results employing linear elasticity are derived

to describe this behavior from the low angle limit. High angle boundaries are treated

within a screening approximation, and issues related to ensembles, metastability, and

grain size are discussed.

3.1 Phenomenology and Literature

Freezing and melting transitions in general do not exhibit the degree of universality

associated with continuous phase transitions and largely for this reason have eluded a

unified theoretical description. The nature of a given melting transition may depend

sensitively on the details of the system and experiment, and can involve many distinct

processes both within and between multiple forms of excitations. For example, melting

may occur abruptly and discontinuously at the melting temperature Tm, or it may

initiate well below Tm at surfaces and/or internal defects and proceed up to Tm.

This process of premelting has been studied extensively for surfaces [115, 116] and

45
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is relatively well understood, but limited and inconsistent experimental evidence for

melting at dislocations and grain boundaries leaves a number of issues unresolved.

Premelting in the broadest sense is a process that occurs in periodic systems near a

phase transition. Defects in the existing periodic phase act as nucleation sites for the

new phase as the transition point is approached, initiating the transition locally before

the bulk transition point is reached. The most common example of this process is

that which occurs in crystalline materials near their melting temperature. As already

described, defects such as vacancies, dislocations, and grain boundaries act as sites for

premelting and may significantly affect the properties of the crystal and the melting

transition. A slightly different example may be observed in the case of structural

phase transitions. Defects in the initial crystal structure will again serve as nucleation

sites, but in this case a second crystal structure will emerge rather than a liquid phase.

Analogous behaviors are also exhibited, for example, during order/disorder transitions

in Raleigh-Bernard convection, magnetic materials, and superconducting systems.

A recent study of colloidal crystals has verified that premelting does occur at

vacancies, dislocations, and grain boundaries, and has provided measurements of the

localized premelting behavior below Tm [2]. The conditions which determine whether

premelting will occur continuously or discontinuously, and whether the width of the

premelted region diverges are not fully understood. Grain boundaries in Al have

been found to liquify very near Tm, and the width of the melted layer appears to

diverge [117]. Discontinuous jumps in grain boundary diffusion coefficients [118, 119],

mobility [120], and shear resistance [121] have been found in other metals.

Theoretical studies have been based on either explicitly atomistic methods such

as molecular dynamics [122, 123] and Monte Carlo [124], or on continuum phase-field

models with uniform phases [24, 125, 126]. Classical DFT has been used to examine

surface melting [116, 127], but not grain boundary melting, presumably due to the

complexity of the solid-solid interface and the more demanding system size require-

ments. In this study, dislocation and grain boundary melting are examined using the

phase-field crystal (PFC) method [4], which extends the phase-field approach to the

level of atomistic resolution and significantly economizes the DFT approach. This

permits straightforward identification of stable equilibrium and metastable nonequi-

librium atomic structures, while inherently including crystal symmetry and orienta-
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tion, elasticity/plasticity, and the individual dislocations which compose the grain

boundaries. The present description will be most applicable to spherical colloid-like

systems and possibly some simple metals.

The melting behavior of dislocation pairs and symmetric tilt grain boundaries of

angle θ ' 4◦, 8◦, 16◦, 24◦, 32◦, and 44◦ are examined numerically for a simple PFC

model with bcc symmetry. Analytic results are derived for isolated dislocations and

low θ boundaries by combining the PFC equations with continuum linear elasticity.

A screening approximation is outlined for high angle boundaries, though somewhat

surprisingly, the low θ description is found to remain reasonably accurate for high θ.

3.2 Model Equations and Notation

The PFC free energy functional used in this study is written

F =

∫
d~r

{
n

2

[
r + (1 +∇2)2

]
n+

n4

4

}
(3.1)

where the relations between model parameters and material parameters as well as

their scaling can be found in previous work [25]. Here n → n(~r) + n̄ is the scaled

time-averaged number density, n̄ is the average scaled number density, and r is a

constant proportional to T − Tc. The dynamics are given in dimensionless form by

∂n

∂t
= ∇2µ+ η (3.2)

where 〈η(~r1, t1)η(~r2, t2)〉 = M∇2δ(~r1−~r2)δ(t1−t2) andM is a constant proportional to

T . This form imposes a constant density and is consistent with the canonical ensemble.

The stochastic term η sets the time scale for crossing free energy barriers from dry

to wet dislocation configurations locally when the wet state has lower free energy.

It may also shift the ‘equilibrium’ melting behavior to some degree since increasing

the fluctuation amplitude M can increase the preferred size of a dislocation core or

premelt radius and effectively lower the melting temperature. A relatively small M

has been used in the simulations presented here, to minimize the effect of noise on

the free energy, yet still allow for barrier crossing.
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The semi-implicit pseudospectral algorithm described in Appendix A.2 was used to

solve Eq. (3.2) for systems containing either a single dislocation pair or a symmetric tilt

grain boundary pair with periodic boundary conditions. The parameters most often

used were n̄ = −0.25 and M = 0.002, with a grid spacing of ∆x = 0.976031 and a time

step of ∆t = 0.5. These values were chosen because the model behavior has already

been well-characterized at this set in previous studies. Effects observed as parameters

vary are discussed in Sections 3.5 and 3.6. A system size V = (512∆x)3 = (56a)3 was

used for the dislocation pair and 4◦ grain boundary pair, while V = (256∆x)3 = (28a)3

was used for all other grain boundary pairs, where a = 8.9237 is the bcc lattice

constant. Finite size effects increase as θ decreases, but were found to be small for all

grain boundaries studied. The temperature is taken to be proportional to r since the

coefficient of the 2nd order term in F has leading temperature dependence and controls

proximity to the critical point at (r, n̄) = 0. For n̄ 6= 0 there is no critical point, and

varying r instead passes the system through a first order liquid-solid transition at

some melting point rm = f(n̄).

3.3 Simulation Results

To quantify the melting behavior at dislocation sites, the Gaussian width or mean

square displacement (D) of each localized density peak was monitored as the temper-

ature r was increased toward the melting point. The local crystallinity φ has been

defined as

φ(~r) =
DL −D(~r)

DL −DX

(3.3)

where DX is the equilibrium D of the crystal phase and DL is that of the liquid phase

for given M . φ = 1/2 is taken to specify a liquid-solid interface.

The radius of melted region around a dislocation core Rm was first measured in

this manner for an edge dislocation pair as the temperature was raised toward the

bulk melting temperature rm at which the liquid and crystal free energies coincide.

The results are shown in Fig. 3.1, where the data are plotted as (Rm +R0)
−2 vs. r to

demonstrate that Rm is consistent with a (rm−r)−1/2 form which will be derived later.

R0 is an offset related to the finite size of the dislocation core at zero temperature.

The fit to this form predicts a bulk melting temperature rm = −0.1407± 0.003 which
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Figure 3.1: (a) Numerically measured local melt radius Rm around an edge dislocation
in a bcc crystal as a function of temperature (units of lattice constant a, r < −0.1442
values obtained by extrapolation of φ(~r)). Inset: cross-sectional images of n(x, y, z)
from simulations at r = -0.15, -0.144, -0.143, -0.142, -0.1415, -0.141 from top left
to bottom right, showing melting at a dislocation core. (b) Same data plotted as
1/(Rm +R0)

2. R0 = 0.2812a is the radius at r = -0.1875, determined by best fit.

is in good agreement with the directly measured value of rm = −0.1395. The upper

inset of Fig. 3.1 shows melting around an edge dislocation as r → rm.

Measurements of the radially and laterally averaged D due to dislocations and

grain boundaries, respectively, are in qualitative agreement with those of Alsayed

et al. [2] for colloidal crystals. We find that the decay can be fit adequately by

either power law or exponential forms, with greater exponential character at large

θ and greater power law character at small θ. The radially averaged D for isolated

dislocation pairs at various temperatures are shown in Fig. 3.2, the laterally averaged

free energies for various grain boundary angles are shown in Fig. 3.3, along with the

laterally averaged D for a 44◦ grain boundary at various temperatures.

Figure 3.4 shows the progression of melting at 8◦ and 44◦ grain boundaries. Low

angle boundaries were found to first melt radially at each dislocation core, until the

melted regions of neighboring dislocations coalesce and a uniform wetting layer is

formed along the boundary. In high angle boundaries individual dislocations cannot

be distinguished and melting in this case was found to proceed by uniform disordering

along the boundary rather than by local radial melting. Similar behaviors are shown



50 Chapter 3. Grain Boundary Melting and Premelting

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10  12

Lo
ca

l M
SD

, D

Distance from core, R [a]

r=-0.200
r=-0.180
r=-0.160
r=-0.150
r=-0.144
r=-0.143
r=-0.142
r=-0.141

(a) (b)
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Figure 3.3: (a) Measurements of the laterally-averaged F away from grain boundaries
of various θ at r = −0.1450. The solid lines are exponential fits. (b) Measurements of
the laterally-averagedD away from a 44◦ grain boundary as the melting temperature is
approached. The notable change in behavior between r = −0.1450 and r = −0.1445
marks a wetting transition where the metastable dry boundary is replaced by an
energetically preferred wet boundary.



3.3. Simulation Results 51

0.0

0.5

1.0

-4 -2 0 2 4
x[a]

!

-4 -2 0 2 4
x[a]

-4 -2 0 2 4
x[a]

-4 -2 0 2 4
x[a]

(a)

0.0

0.5

1.0

-4 -2 0 2 4
x[a]

!

-4 -2 0 2 4
x[a]

-4 -2 0 2 4
x[a]

-4 -2 0 2 4
x[a]

(b)

Figure 3.4: Laterally averaged crystallinity parameter φ and cross-sections of n(x, y, z)
for (a) 8◦ and (b) 44◦ (right) grain boundaries. r = -0.15, -0.142, -0.1415, -0.141 and
r = -0.1455, -0.14475, -0.1435, -0.1415 left to right, respectively.

in Fig. 3.5, where the three dimensional most probable instantaneous configurations

are displayed for 12◦ and 44◦ grain boundaries. Note that Fig. 3.5(a) shows a time

sequence during melting after the temperature is raised above the melting point, while

Fig. 3.5(b) shows stable configurations at various temperatures as the melting point

is approached from below. Interfacial roughening due to thermal fluctuations was

negligible in all simulations.

The dependence of the width of the wetting layer (or the liquid volume fraction of

the system) on r is shown in the inset of Fig. 3.6 for various grain boundary angles.

In all cases the width remains narrow and the boundary relatively dry until above

the solidus, at which point a discontinuous jump is observed at some characteristic

wetting temperature rwet. The dependence of rwet on θ is shown in the main plot of

Fig. 3.6. The fit lines will be discussed in the following, though the axes reveal that

the predicted form will be rwet ∼ sin2 θ.
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Figure 3.5: (a) Most probable instantaneous structures of a crystal with two 12◦ grain
boundaries as melting progresses at r = −0.13. 1) t = 0, 2) t = 90, 3) t = 120, 4)
t = 150. Bulk atoms are shown in gray, atoms without correct bcc coordination in
blue, and empty space between the grains represents liquid. (b) As (a), with 44◦

grain boundaries shown as the melting temperature, rm = −0.1395, is approached.
1) r = −0.145, 2) r = −0.144, 3) r = −0.143, 4) r = −0.14.
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Figure 3.6: (a) Grain boundary wetting temperature vs. θ. (b) Grain boundary
wetting temperature vs. sin2 θ. Inset: liquid volume fraction vs. r for various grain
boundaries. The dashed line corresponds to the liquid volume fraction predicted for
the 8◦ boundary based on Eq. (3.9) only (ignoring coexistence). Fit lines are discussed
in the text.

3.4 Local Melting Equations

Based on these simulation results, we have developed a theory of dislocation-driven

melting, which is easily extended to low angle grain boundaries. The low angle results

are shown to remain accurate for all but the highest θ where the dislocation spacing

d reaches the order of the Burgers vector b. A screening approximation for the spatial

grain boundary energy is found to be more applicable for very large θ, with a gradual

crossover taking place between these two regimes. Our approach to low angle grain

boundaries has similarities to the theory of Glicksman and Vold [128] for ‘heterophase’

dislocations.

3.4.1 Isolated dislocations

One way to analytically describe defects in a PFC system is to assume that the contin-

uum elastic expressions for the strain fields created by a given defect are reproduced

by the PFC model. Then the spatial elastic free energy can in principle be calculated

by inserting the continuum expressions into the PFC free energy and minimizing with

respect to A and q. Such a calculation is bypassed here by assuming instead that
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the continuum elastic expression for dislocation free energy holds, and superimposing

this result directly onto the PFC free energy. Simulation results indicate that the

spatial elastic free energies of PFC dislocations are qualitatively similar to those of

continuum theory.

The elastic energy density, F̄ s
el around a dislocation core is now approximated using

continuum elasticity theory [96]. For a screw dislocation the stress σs
ij and strain us

ij

tensors are given by

us
ij =

 0 0 − b
4π

sin φ
R

0 0 b
4π

cos φ
R

− b
4π

sin φ
R

b
4π

cos φ
R

0

 (3.4a)

σs
ij = 2µus

ij (3.4b)

where uij = 1/2 (∇iuj +∇jui) is the strain tensor in direction i across a surface

oriented in direction j, ui is the displacement vector in the i direction, µ is the shear

modulus of the medium, φ is the angle in the x-y plane for a dislocation line in the

z-direction, and R is the radial distance in the x-y plane from the core. Superscripts

s and e denote screw and edge dislocations, respectively. Eq. (3.4b) holds since a

screw dislocation produces only shear stress. The elastic energy density for a screw

dislocation is then

F̄ s
el(R) =

1

2
σs

iju
s
ij =

µb2

8π2R2
. (3.5)

Similarly for an edge dislocation,

F̄ e
el(R) = F̄ s

el(R)/(1− σ) (3.6)

where σ is the Poisson’s ratio.

If we assume this result to hold for an isolated dislocation in the PFC model,

at distances approaching the core region, then Rm can be calculated by determining

the distance at which F̄el is sufficiently large to destabilize the crystalline phase and

melt the dislocation core (Fig. 3.7). To complete this calculation, we need an expres-
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(a) (b)

Figure 3.7: (a) Schematic of spatial dislocation energy illustrating how Rm is esti-
mated. (b) Schematic of liquid coalesence in a low angle grain boundary, the condition
which defines when complete wetting occurs.

sion for the free energy of the defect-free crystalline PFC phase, upon which we will

superimpose the above local expression for dislocation energy.

It will be assumed that n(~r) can be represented in a one mode approximation for

a bcc lattice, i.e., n(~r) = A (cos qx cos qy + cos qx cos qz + cos qy cos qz) + n̄. Substi-

tuting this n into Eq. (3.1) and minimizing with respect to q gives,

∆fX =
3

8

(
r + 3n̄2

)
A2 +

3

4
n̄A3 +

135

256
A4 (3.7)

where ∆fX ≡ (F − FL)/V , FL is the free energy of the liquid, V = (2π/qeq)
3, and

qeq =
√

2/2. The continuum elastic result for F̄el(R) assumes an isotropic medium,

a condition which is not satisfied for bcc symmetry. To proceed, the isotropic shear

modulus µ will be approximated using the average of the two bcc shear moduli re-

ported in Chapter 2, µ̄ ' (µ′ + µ′′)/2 = 3A2/16. µ′ and µ′′ represent upper and lower

bounds on bcc shear response, and the ratio µ′′/µ′ = 2 gives an indication of the

expected deviation from the isotropic limit in which µ′ = µ′′.

The equilibrium value of A under uniform strain varies with the magnitude of

the strain, indicating that A will vary locally near a dislocation core. Ignoring this

generally secondary effect, the (dimensionless) free energy density of the system with
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a dislocation, ∆fX + F̄el, can be written

∆f =
3

8

(
r +

E

R̄2
+ 3n̄2

)
A2 +

3

4
n̄A3 +

135

256
A4 (3.8)

where Es ≡ 1/(16π2) and Ee ≡ Es/(1 − σ) for screw and edge dislocations, respec-

tively, and R̄ ≡ R/b. Equation (3.8) indicates that the elastic energy ‘shifts’ the

effective temperature r by an amount E/R̄2. The implication is that the liquid-solid

transition is shifted and instead of occurring globally at r = rm occurs locally when

r+E/R̄2
m ' rm. The resulting liquid-solid interfacial energy will suppress local melt-

ing, but to maintain a simple description, we proceed in the limit of vanishing surface

tension to derive upper bounds on the local melting behavior. The bare melt radius

is then

R̄m =
√
E/(rm − r) (3.9)

or 1/R̄2
m = (rm − r)/E. A more detailed analysis considering the global F condition

for melting, rather than this local condition, gives essentially the same result in the

limit of zero liquid-solid surface tension.

As shown in Fig. 3.1, this form is consistent with the simulation results for edge

dislocation pairs, though the predicted slope (−1/Ee) is smaller in magnitude by a

factor of roughly two. A more definitive test would require additional data very near

rm, a region increasingly difficult to access due to system size requirements. The

primary source of error in the slope is likely to be overestimation of the strain en-

ergy very near the core or premelt radius in the linear elastic approximation, which

directly reduces the magnitude of the slope −1/Ee. Additional strain energy, inde-

pendent of the dislocation energy, may also be generated if the cylinder of liquid and

the surrounding crystalline matrix have differing densities, an effect neglected in our

calculations. This Eshelby strain energy varies as 1/R2 and can therefore be absorbed

into the prefactor E, though our findings suggest that its contribution is relatively

small.

3.4.2 Low angle boundaries

We would now like to describe the melting behavior at low angle grain boundaries

by straightforwardly extending the above approach to isolated dislocations, which
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combines the equations of continuum linear elasticity with PFC free energies. This

approach exploits the fact that an isolated dislocation is simply the d→∞ or θ → 0

limit of a grain boundary. Such a linear elastic description of grain boundaries there-

fore rests on the assumption that the stress and strain fields of an isolated dislocation

are maintained when that dislocation is part of a larger array, and that these fields

can be straightforwardly summed over all dislocations to give the overall stresses and

strains. This approach has been successfully applied to the calculation of average

energies of low angle grain boundaries [3, 4, 129]. In the following, we first verify the

validity of this approach near dislocation cores, the region of interest for premelting,

and then proceed to derive an expression for low angle grain boundary wetting and

compare with simulation results.

Consider a low angle grain boundary in two-dimensions or a symmetric tilt bound-

ary in three-dimensions, consisting of a periodic array of dislocation lines. The long-

range stress and strain fields of the individual edge dislocations aligned parallel to the

z axis in the yz plane are given by

σGB
xy (x, y) =

2µbπx

d2

∞∑
q=1

q cos

(
2πqy

d

)
e−2πq|x|/d (3.10a)

uGB
xy (x, y) =

bπx

d2

∞∑
q=1

q cos

(
2πqy

d

)
e−2πq|x|/d (3.10b)

where x is the distance from the grain boundary and d is the distance between dislo-

cations. Thus the elastic shear energy, FGB
xy = σGB

xy u
GB
xy /2 is given by,

FGB
xy (x, y) =

µ(bπx)2

d4

∞∑
q=1

∞∑
q′=1

qq′e−2π(q+q′)|x|/d cos

(
2πqy

d

)
cos

(
2πq′y

d

)
. (3.11)

This equation does not lead to a simple analytic solution for the elastic energy, but

a few points are apparent in the limits of large and small distances from the boundary.

For x>d/2, the k = 1 term dominates the sum, indicating that stresses beyond this

point will decay exponentially and stresses beyond x ' d will be negligible. Near

the core, the energy will be dominated by nearby dislocations, meaning that a simple

sum of the stresses and strains of the nearest few dislocations will give an accurate
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Figure 3.8: Radially averaged elastic energy in the premelting region of a dislocation
located within a low angle grain boundary, shown for various dislocation spacings d. In
this figure, the 20 nearest dislocations have been considered in the energy calculation.
Inset: Radially averaged elastic energy in the premelting region of a central dislocation
for increasingly large dislocation arrays. d = 5b to observe the maximum effect from
nearby dislocations.

approximation of the energy in this region. This is illustrated in the inset of Fig. 3.8

where the change in total radial elastic energy is shown as more dislocations in the

array are considered. The change will be greatest for small d so a near-worst-case

of d = 5b is shown. The total energy in the premelting region changes only slightly

from that of an isolated dislocation, and only 1 − 2 additional pairs of dislocations

are needed to accurately determine the modified energy.

Having verified this, the change in energy near the core can be studied as a func-

tion of dislocation spacing d. Figure 3.8 shows the radial elastic energy for various

d, indicating that the energy near the core decreases only slightly with dislocation

spacing. The decay acquires a slight exponential character (Eq. (3.11)) but changes

in magnitude by only a few percent in the region of interest. Closer spacing results

in greater stress cancellation, so that the energy per dislocation decreases while the

energy per unit length of grain boundary still increases as expected. Thus linear

elasticity predicts only a small decrease in the premelt region elastic energy for grain

boundary angles θ . 5 − 10◦. One may therefore reasonably expect the melting be-
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havior of dislocations within low angle grain boundaries to be well approximated by

the isolated dislocation limit.

Exploiting this expectation, we can proceed to estimate the grain boundary wet-

ting temperature rwet where neighboring dislocations coalesce in low angle boundaries

by setting R̄m = d/2 = 1/(2 sin θ). Substituting Eq. (3.9) for R̄m gives

rwet = rm − 4E sin2 θ (3.12)

which is in good agreement with the data shown in Fig. 3.6. As θ → θmax this approx-

imation loses validity due to the gradual deviation of the dislocation energies from

the isolated dislocation result. The observed agreement up to θ ' 32◦ is somewhat

unexpected as the superposition generally loses accuracy for θ & 10◦. The best fit

line predicts rm = −0.1404, again near the measured value.

The solid line in Fig. 3.6 corresponds to the best fit to R̄m in Fig. 3.1 set equal to

1/(2 sin θ) and solved for rwet. The agreement here clearly indicates that the wetting

of low angle and intermediate angle grain boundaries is accurately described by the

coalesence of radially melted regions around nearly isolated dislocations.

3.4.3 High angle boundaries

In the limit of large θ (d → 0), the grain boundary energy becomes increasingly

uniform along its length (see Fig. 3.4) and can no longer be described linearly in

terms of individual dislocations. We expect that elastic fields at long distances are

screened by closely spaced ‘dislocations’, giving rise to exponentially decaying spatial

grain boundary energy. Indeed, direct analysis of free energy data from simulations

indicates that such an exponential form is qualitatively correct. Solving for rwet using

F̄el ∼ e−R̄/`(θ)/R̄2 (3.13)

rather than F̄el ∼ 1/R̄2 gives

rm − rwet ∼ e−(2`(θ) sin θ)−1

sin2 θ, (3.14)
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where the coefficient `(θ) sets the effective screening length. To lowest order in a

one-dimensional dislocation density approximation, `(θ) is proportional to d3/2 =

1/ sin3/2 θ. The wide dashed line in Fig. 3.6 shows that a fit to this general form more

accurately captures the behavior for large θ, though a less approximate expression for

`(θ) is needed to fit accurately across all angles.

3.5 Coexistence and the Canonical Ensemble

Some comments concerning the influence of liquid-solid coexistence and the canonical

ensemble (i.e., conserved density) on grain boundary melting may be helpful at this

point. The equilibrium state for a simple system with a grain boundary is most

generally either dry if Fgb < 2Fls + `(F̄L − F̄X) or wet if Fgb > 2Fls + `(F̄L − F̄X),

where Fgb is the grain boundary energy, Fls is the energy of a liquid-solid interface, and

` is the width of the liquid region in the wet state. If the wet state becomes favorable

below the melting temperature, then a grain boundary wetting transition occurs. In

the canonical ensemble as examined here, the effects of liquid-solid coexistence and

the subsequent shifts in density of the two phases above the solidus rsol modify this

heuristic argument. Now rm, the temperature at which F̄L = F̄X , is straddled by

a coexistence region. As r → rm the system first encounters a solidus above which

some volume fraction of liquid will minimize the overall F̄ in the thermodynamic limit.

For the grain boundary pair geometry, the equilibrium state above rsol is one with a

uniform volume of liquid occupying each boundary region. Therefore, an equilibrium

first order wetting transition will occur at rsol as long as the grain size is not excessively

small. Above rsol, the liquid layer width will be controlled by coexistence rather than

local defect energies, since the elastic fields of the grains largely decouple (F̄el → 0)

upon wetting.

The results presented for n̄ = −0.25 show no wetting or strong premelting for r ≤
rsol, and the equilibrium wetting transition is not observed. Instead, a θ-dependent

discontinuous transition from the metastable dry boundary state to the equilibrium

wet state occurs at rsol < rwet < rm, as shown in the inset of Fig. 3.6. For large θ

this metastability occurs because the uniform wetted state is simply not nucleated

in observable times, due to a non-zero free energy barrier (and possible small finite
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Figure 3.9: (a) PFC phase diagram in the (r, n̄) plane in three dimensions. Hatched
areas designate coexistence regions, the red dot denotes the critical point. (b) Slice
of the phase diagram at simulated value n̄ = −0.25 showing location of coexistence
bounds and rm.

size effects). For small θ, when d/Rm is large, a uniform wetting layer cannot be

realized, so the system must absorb the free energy cost of many localized cylindrical

liquid-solid interfaces. This suppresses the observed liquid volume fraction until Rm

finally grows sufficiently large to coalesce and a uniform wetting layer can be formed.

Thus in all cases, the dislocations and/or grain boundaries act as nucleation sites for

the liquid above rsol, creating well-defined nonequilibrium paths from the metastable

dry state to the F minimizing wet state (which all must conserve n). But the effective

energy barrier between wet and dry boundaries is largest for small θ, exaggerating

small θ metastability.

We can gain some sense of whether wetting will occur below the solidus (canonical

premelting or prewetting) by comparing the predicted value of Rm for an isolated

dislocation at rsol to that required for coalescence and wetting with a given grain

boundary angle, Rcoalesce(θ);

Rm(rsol) = Rcoalesce(θ) (3.15)
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Figure 3.10: (a) Condition for wetting below the solidus in the canonical ensem-
ble (canonical prewetting), estimated from the low angle limit. (b) Dry 44.8◦ grain
boundary at r = rsol, n̄ = −0.25, and prewetted 44.8◦ grain boundary at r = rsol,
n̄ = −0.08.

or √
E

rm − rsol

=
1

2 sin(θw)
. (3.16)

In the one-mode approximation, rm ' cmn̄
2 and rsol ' csoln̄

2 where cm and csol are

constants. Substituting these expressions and solving for θw gives

θw = sin−1

√
cm − csol

4E
n̄2. (3.17)

Thus for any fixed average density it is expected that canonical prewetting will occur

only above the critical grain boundary angle θw. If θw > θmax, then no prewetting is

expected. This behavior can be mapped out as a prewetting phase diagram in (θ, n̄)

space, as shown in Fig. 3.10. This result will be most applicable in the small thermal

noise limit and as before will likely lose accuracy for large θ, but should serve as a

rough guide.

Equation (3.17), as shown in Fig. 3.10, indicates that the likelihood of prewetting

increases as the critical point at n̄ = 0 is approached, or equivalently as the liquid-

solid transition shifts from strongly first order to weakly first order. For example, at

n̄ = −0.25 all grain boundaries should remain dry up to the solidus temperature, while
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at n̄ = −0.08 all grain boundaries with θ & 15◦ are expected to undergo a prewetting

transition below the solidus temperature. The images of dry and wet 44.8◦ solidus

grain boundaries at n̄ = −0.25 and n̄ = −0.08, respectively, shown in Fig. 3.10 are

consistent with this prediction. Thus for n̄ . −0.22 we expect a sharp transition

from nonequilibrium dry boundaries to coexistence satisfying wet boundaries at some

θ dependent temperature above the solidus - as seen in the simulations discussed in

the previous sections. For n̄ & −0.22 we expect to see a weak, possibly truncated

divergence in the boundary premelt width below the solidus, followed by adjustment

to coexistence satisfying widths above the solidus.

The condition for wetting in the canonical ensemble also involves the grain size Lg,

such that wetting can be suppressed to temperatures above rsol when Lg is finite. The

condition can be written as Fgb+Lg∆FX > 2Fls+`∆FC where ∆FX = F̄X [n̄]−F̄X [nX ]

and ∆FC = F̄L[nL]−F̄X [nX ]. Here ` = (nX−n̄)/(nX−nL), n̄ is the conserved average

density, and nX and nL are the shifted coexistence densities of the solid and liquid

phases, respectively. For r ≤ rsol, if we assume that ∆FX = 0 and nL = nX = n̄ (this

is not the case when premelting is strong below rsol), we recover the original inequality

Fgb > 2Fls + `(F̄L − F̄X) and Lg is not a significant factor. In the limit Lg →∞, the

wetting condition will always be satisfied for r > rsol and the equilibrium transition

occurs at rsol. As Lg decreases, the equilibrium wetting transition is shifted to higher

r.

3.6 Grand Canonical Ensemble

Three-dimensional simulations have also been conducted in the grand canonical en-

semble, i.e., nonconserved density, where the complications due to liquid-solid coex-

istence are avoided. In this scenario the dynamics are given by

∂n

∂t
= −

(
δF

δn
+ µ0

)
+ ν (3.18)

where 〈ν(~r1, t1)ν(~r2, t2)〉 = Mδ(~r1 − ~r2)δ(t1 − t2). As the average chemical potential

µ0 is increased, rather than temperature, we find in general for the parameter values

chosen that the ‘equilibrium’ behavior for fixed grain boundaries of all angles is to
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remain essentially dry up to the melting point µ∗0, above which the free energy is min-

imized by complete melting of the solid. This corresponds to a very weakly increasing

grain boundary width and discontinuous melting at µ∗0. The energy barrier to melt

the crystal is sufficiently large that considerable superheating is instead observed in

the simulations.

The melting behavior at grain boundaries is also influenced by whether the equi-

librium bulk melting transition is weakly or strongly first order. For large |n̄| the bulk

melting transition is strongly first order and the energy of a liquid-solid interface is

prohibitively large to allow any boundary wetting below µ∗0. Thus the grain boundary

melting transition is also strongly discontinuous. As n̄ → 0 the bulk transition be-

comes more weakly first order, both the grain boundary and the liquid-solid interface

become increasingly diffuse or ‘soft’ as shown in Fig. 3.11. This allows greater growth

in the width of the grain boundary and potentially a weak divergence in width very

near µ∗0 before complete melting occurs. Thus, a more weakly discontinuous grain

boundary melting transition is observed. This diverging width for small |n̄| may re-

flect increasing delocalization of the ‘soft’ solid phase rather than the emergence of a

fully liquid layer.

It is also apparent from the simulations that many states from dry to varying

degrees of wet become metastable for long times near µ∗0, such as those shown in

Fig. 3.11. The states obtained near the melting point may therefore depend on the

initial state of the system and the waiting time and may not correspond to the state

of lowest free energy. In our simulations, the dry states were found to have lowest free

energy up to µ∗0 for all parameter values examined.

We can still quantify the growing width w of a grain boundary, especially for

weakly first order systems, regardless of whether the boundary interior can clearly

be considered liquid. Such data is shown in Fig. 3.12 for a 44.8◦ boundary at r =

−0.02. A weak divergence up to the transition point is apparent, and the form of the

divergence is consistent with either a logarithmic form w/b ∼ ln (µ∗0 − µ0) or a power

law form w/b ∼ (µ∗0 − µ0)
−δ, where δ is a positive constant.

Premelting at grain boundaries has also been studied in the grand canonical ensem-

ble by Mellenthin et al using the two-dimensional PFC model [72]. Their approach

is to compute the effective ‘disjoining potential’ of prewetted grain boundaries as a
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(a) (b) (c)

Figure 3.11: Cross-sections of the time-averaged number density field n(x, y, z) for dry
(top) and wet (bottom) 44◦ grain boundaries simulated with nonconserved density.
The images illustrate the increase in boundary/interface diffuseness and loss of dis-
tinction between wet and dry states as the transition becomes more weakly first order.
(a) n̄ = −0.44, r = −0.50, µ0 = 0.17585, (b) n̄ = −0.25, r = −0.14, µ0 = 0.06339, (c)
n̄ = −0.066, r = −0.01, µ0 = 0.01596.
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Figure 3.12: Premelting in the grand canonical ensemble at a 44.8◦ boundary, r =
−0.02. (a) Raw data with a logarithmic fit. Tests of (b) logarithmic and (c) power
law divergences, showing consistency with both.
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function of premelt region width, to determine whether the effective interaction at

the interface is repulsive (wet) or attractive (dry) as the melting point is approached.

They find a similar weak logarithmic divergence for high angle boundaries and super-

heating with localized liquid pools for low angle boundaries. Grain boundaries above

some critical angle are thus shown to have purely repulsive disjoining potentials for all

premelt widths, while lower angle boundaries switch from repulsive at small widths

to attractive at large widths, cutting off any divergence. The degree of premelting

appears to be slightly enhanced in two dimensions, which may be due to proximity

to the critical point (r = −0.1 in their study), purely dimensional effects, or some

combination of the two. The disjoining potential approach provides a natural frame-

work for high angle grain boundaries which wet uniformly, while the localized radial

melting equations presented in this chapter provide a natural description of low angle

boundaries with nonuniform melting pathways.

3.7 Conclusions

Three dimensional dislocation and grain boundary melting in PFC bcc crystals have

been examined numerically and described in terms of local melting criteria. Isolated

dislocations, driven by an excess core elastic energy, melt radially according to a

power law in T . Dislocations within low and intermediate angle grain boundaries

melt similarly until an angle-dependent first order wetting transition occurs when

neighboring melted regions coalesce. A localized theory based on continuum elastic

energy expressions for isolated dislocations has been developed in the low angle limit

and shown to describe the simulation results for low and mid angle grain boundaries.

High angle boundaries have been treated within an elastic screening approximation.

Ensemble-specific effects have been discussed, and the different melting pathways to

be expected in canonical and grand canonical ensembles highlighted. Premelting has

been shown to be generally enhanced as the bulk melting transition becomes more

weakly first order, and an approximate low-to-mid angle expression for the critical

grain boundary prewetting angle has been derived.



CHAPTER 4

Dislocation Dynamics

The fundamental dislocation processes of glide, climb, and annihilation are studied on

diffusive time scales using a two dimensional phase-field crystal (PFC) model. Glide

and climb are examined for single edge dislocations subjected to shear and compres-

sive strain, respectively, in a two dimensional triangular lattice. It is shown that the

natural features of these processes are reproduced without any explicit consideration

of elasticity theory or ad hoc construction of microscopic Peierls potentials. Particular

attention is paid to the Peierls barrier for dislocation glide/climb and the ensuing dy-

namic behavior as functions of strain rate, temperature, and dislocation density. It is

shown that the dynamics are accurately described by simple viscous motion equations

for an overdamped point mass, where the dislocation mobility is the only adjustable

parameter. The critical distance for the annihilation of two edge dislocations as a

function of separation angle is also presented.

4.1 Phenomenology and Literature

Plastic flow in periodic systems is typically mediated by the motion of line defects

or dislocations. The largest challenge in developing a meaningful theory of plastic-

ity is often linking the microscopic behavior of individual, discrete dislocations to

the macroscopic plastic behavior of the system. In atomic and molecular crystals

for example, understanding the effect of dislocations on mesoscopic and macroscopic

67
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material properties involves the treatment of length and time scales that capture the

relevant dynamics of individual dislocations (∼10−12s,∼10−9m) through those that

describe the macroscopic response of the material (∼101s,∼10−2m). An important

approach to the problem of spanning this large range of scales has been to measure the

dynamics of individual dislocations and/or small numbers of interacting dislocations

on the shortest time scales from molecular dynamics (MD) simulations [130–133].

These results are then used as input into coarse-grained, mesoscopic simulations such

as dislocation dynamics (DD) [26, 27], which can provide information on systems with

large numbers of dislocations under the action of experimentally accessible strains and

strain rates.

In this study, dislocation dynamics are examined on length scales comparable

to those encountered in MD simulations, but over diffusive time scales and using

experimentally accessible strain rates. This approach provides a single framework

that removes the vibrational time scales, while large length scales can potentially

be reached using complex amplitude multi-scale expansions of PFC models [35–42]

and/or advanced simulation methods [38, 43–49]. In addition to atomic crystals, the

results presented here may be interpreted in terms of other periodic systems such

as Abrikosov vortex lattices in superconductors [134], magnetic thin films [135, 136],

block copolymers [137], oil-water systems with surfactants [138], and colloidal crystals.

4.2 Model Equations and Notation

Some of the basic principles of PFC modeling were discussed in Chapter 2, where the

dimensionless free energy functional was introduced,

FPFC[n(~r)] =

∫
d~r

{
n

2

[
r + (1 +∇2)2

]
n+

n4

4

}
(4.1)

n → n(~r) + n̄ is the scaled atomic number density order parameter, n̄ is the scaled

average number density, and r is a constant related to temperature. The dynamics of

n are assumed here to be given by

∂n

∂t
= ∇2µ+ η (4.2)
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where η is a Gaussian random noise variable (〈η(~r1, t1)η(~r2, t2)〉 = M∇2δ(~r1−~r2)δ(t1−
t2). M is a constant proportional to T , which will be largely neglected in this chapter,

as will be discussed in Section 4.4.

The objective of this chapter is to uncover the dynamic behavior of dislocations

as described by Eqs. (4.1) and (4.2) and to show that basic characteristics of the

known dynamics are automatically and realistically reproduced. Rigorous connec-

tions between PFC models and traditional microscopic models such as molecular or

Brownian dynamics are subjects of current research. That being noted, a few relevant

points about the connections can be made on general grounds.

First, the geometry of a given periodic PFC structure ensures, for example, that

any energy barriers arising from localized spatial variations in atomic position can

be qualitatively represented by the PFC model. In principle this description provides

rigorous methods for calculating various quantities associated with dislocation motion,

such as saddle point and activation energies, for specific atomic models.

The connection between microscopic and PFC dynamics is a bit more difficult

to access. The present PFC model maintains only the slow, diffusive part of the

dynamics, averaging out collision and phonon time scales for example. This implies

that any physical mechanisms that occur on fast time scales (such as brittle fracture)

cannot be described by the PFC method. Methods for reintroducing faster time scales

were discussed in Chapter 2, and plastic behaviors under such alternative dynamic

conditions have since been examined by others [25, 47, 74, 76].

In Section 4.3, the details of how the PFC model is adapted to numerical simulation

are outlined, and in Section 4.4 the simulation results for glide, climb, and annihilation

are presented and analyzed. Section 4.5 includes a summary, comparison with other

recent phase field simulations of dislocations, and discussion of further developments.

4.3 Simulation Method

4.3.1 Discretization, initial and boundary conditions

Equation (4.2) was solved numerically in two dimensions using the ‘Spherical Lapla-

cian’ approximation for ∇2 [139] and a forward Euler discretization for the time

derivative (see Appendix A.1 for details). Periodic boundary conditions were applied
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in all directions for glide simulations and mirror boundary conditions were used per-

pendicular to the climb direction in climb simulations. To create a system with a

single edge dislocation, an initial condition consisting of a triangular one-mode solu-

tion for n(x, y) was applied with N atoms/row in the lower half and N+1 atoms/row

in the upper half. The triangular state is expressed analytically as

n(x, y) = A

[
cos (qx) cos (

qy√
3
) +

1

2
cos (

2qy√
3

)

]
+ n̄ (4.3)

where

A = −4

5

(
n̄+ (|n̄| /n̄)

1

3

√
−15r − 36n̄2

)
, (4.4)

and q here is the numerically determined equilibrium wavenumber for a triangular

state at a given value of r. In glide simulations, the triangular state was bounded

at its upper and lower edges by a constant, or liquid, state of width approximately

4ay, where ay is the equilibrium lattice parameter in the y-direction (Fig. 4.1). The

same approach was used in climb simulations, except that the liquid was placed along

the lateral boundaries. Before applying strain, all systems were allowed to equilibrate

until their free energy no longer changed with time.

At a given value of r, the value of n̄ for the triangular portion of the simulation

was set to fall on the phase boundary between the triangular and triangular/constant

coexistence regions. The value of n̄ for the liquid portion of the simulation was

set to fall on the boundary between the triangular/constant coexistence region and

the constant phase region. This was necessary to make the interfaces between the

triangular and constant phases stable, with no preference toward crystallization or

melting. A drawback is that this makes any comparison of results at different r

values indirect, since n̄ must vary with r. For this reason the boundary conditions

were changed when the r dependence of the dynamics was of interest. Details are

discussed in the following section.

4.3.2 Strain application

Two methods were used to apply strain to the system. In both, n(x, y) was coupled

to an external field along the outer two rows of particles bounding the liquid phase on

each side of the system. This external field was set to the one-mode solution given in
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Figure 4.1: Schematic of (111) plane in a FCC crystal corresponding to the 2D system
of interest.

Eq. (4.3), and for glide (climb) was moved in the positive x-direction along the lower

(left) rows and in the negative x-direction along the upper (right) rows, both at the

same constant velocity. The particles in the system are energetically motivated to

follow the motion of these fields, giving the effect of a physically applied strain.

In the first method, which will be called rigid displacement, Eq. (4.2) was solved in

the presence of the external fields, but in addition, the particles between the external

fields were rigidly displaced along with the motion of the fields to ensure a linear strain

profile across the width of the system. In the second method, this rigid displacement

was not enforced, allowing the strain profile to take whichever form the dynamics of

Eq. (4.2) dictate. This method will be called relaxational displacement. In Section 4.4,

it will be shown that the dynamic behavior of the dislocations can be significantly

influenced by which method is used and that the two methods may be viewed as

limiting cases of rigid and diffusive response. From this viewpoint, rigid displacement

describes atomic crystals and relaxational displacement applies to ‘softer’ systems

such as colloidal crystals, superconducting vortex lattices, magnetic films, oil-water

systems containing surfactants, and block copolymers.

4.3.3 Symmetries and time scales

The crystalline symmetry here is equivalent to the {111} family of planes in a FCC

lattice or the {0001} family of planes in a HCP lattice, for example. These close
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packed planes and the subsequent glide directions compose the primary slip systems

in many common types of ductile, metallic crystals. Using the FCC lattice as a

reference, application of shear in this geometry results in glide along a 〈110〉 direction

within a {111} slip plane, as shown in Fig. 4.1. The directions in a HCP lattice would

fall in the 〈112̄0〉 family. Climb in this geometry was made to occur along a 〈1̄1̄2〉
direction. Shear and compression were also applied over various other rotations as

will be discussed briefly in the following.

System sizes ranging from 676 to 56,952 particles were examined, and strain rates

ranging from 2×10−7/t to 1×10−2/t were used, where t is the dimensionless time

introduced in Eq. (4.2). These strain rates can be expressed in physical units by

matching the time scales of the model to those of typical metals near their respective

melting temperatures. This is done by equating vacancy diffusion constants, Dv,

which have been calculated analytically for this model in [4], and which range from ∼
10−8–10−13cm2/s for typical metals [140]. Lattice constants, a, must also be equated

to return to physical units. Using Cu at 1063◦C as a reference (Dv ' 10−9cm2/s,

a ' 0.361nm), and matching to the model at r = −0.8 (Dv = 1.78a2/t), the range

of strain rates used converts to .09/s–4500/s. Using these same parameters, the

dislocation velocities observed are on the order of 10−7–10−4m/s, a range well below

the acoustic limit and accessible by experiment. The dislocation densities range from

approximately 1010–1012/cm2.

4.3.4 Simulation output: A preliminary example

Before presenting the analysis of all simulation data, the output from a single glide

simulation will be presented to clarify various definitions and results that will be of

importance in interpreting the data. The collective results from all simulations will

be analyzed further in the following section.

Four primary types of output were generated in each simulation, from which all

properties of interest were extracted. The variables are the instantaneous position and

velocity of the dislocation, and the strain and change in free energy of the system, all

recorded as functions of time as shown in Fig. 4.2. The gray lines represent theoretical

results which will be presented in Section 4.4. Note that all figures in the following

use dimensionless units, though some quantities will be labeled with units of ax, ay,
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Figure 4.2: One set of simulation data (black lines) and the corresponding theoretical
results (gray lines) for glide. Parameters are r = −0.4, (Lx, Ly)=(60,56), and γ̇ =
2×10−6/t The inset in the upper left corner of the upper left plot shows a magnification
of the position vs. time data at early times to emphasize the stick-slip nature of the
motion at low velocities.

and t for clarity.

The position was determined by locating all maxima of n(x, y) (which will be con-

sidered the discrete particle locations) and counting the number of nearest neighbors

for each. Any maxima with more or less than six nearest neighbors must be near the

dislocation core, and by averaging the positions of all maxima identified in this way,

an overall dislocation position was inferred. The velocity was then calculated from

the slope of the position versus time data.

The average shear strain in the system, γ̄, was measured by again locating the

peaks in n(x, y), and noting that in equilibrium, each particle will have another parti-

cle located a distance of 2ay away in the positive y-direction. If this particle is found

to be offset some distance, dxi, in the x-direction, then the local shear strain is equal

to dxi/2ay. The average shear strain in the system is then given by

γ̄ =
1

2Nay

N∑
i=1

dxi (4.5)

where N is the number of particles in the system. The fourth variable, the average

free energy F , was simply calculated from Eq. (4.1) at regular intervals of time.
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(60, 56) for various values of γ̇. The strain at which γP is defined has been highlighted
on each curve.

The Peierls barrier is a measure of the resistance to the onset of motion in a

periodic system. In these simulations, the barrier is defined as the amount of strain

that has been applied at the instant that the dislocation has precessed a distance of

one lattice constant. γP and εP will denote the Peierls barriers for glide and climb,

respectively. For clarity, Fig. 4.3 shows γ̄ as a function of time for a few different

values of γ̇. The strain corresponding to this definition of γP is indicated on each

curve and can be seen to correspond to the point where the measured strain begins

to deviate from the applied strain. The deviation is due to the strain relieved by the

motion of the dislocation, as will be discussed in the next section.

4.4 Results and Analysis

4.4.1 Equilibrium dislocation geometry

Following equilibration as described in the previous section, the dislocations were

found to reach one of the two stable configurations shown in Fig. 4.4. Which of

the two configurations is selected depends sensitively on the details of the boundary

conditions as well as on the system size. Systems larger in the x-direction tend to favor

Config. 1, and systems larger in the y-direction tend to favor Config. 2, apparently due
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Figure 4.4: (a) Stable dislocation configurations: The greyscale represents n(x, y) and
the particles around the dislocation core have been highlighted for clarity. Left: Con-
fig. 1. Right: Config. 2. (b) Equilibrium elastic strain, γ̄, due to an edge dislocation
plotted as a function of inverse system size in the y-direction. Lx was fixed at 56
particles for the data shown.

to the greater strain relief available at larger extensions. Systems with approximately

equivalent x and y dimensions that were equilibrated with thermal noise oscillated

between Configs. 1 and 2, indicating that the two states are approximately equivalent

energetically. It will be shown in the following section that the initial configuration

affects γP but not the subsequent velocity of the dislocation.

The average shear strain, γ̄, in each system was measured and the values recorded

following equilibration have been plotted in Fig. 4.4 as a function of 1/Ly, where Ly

is the number of particles in the y-direction. A simple analysis reveals that the total

γ̄ due to an edge dislocation in this geometry should be equal to
√

3b/(4Ly), where

b is the Burgers vector of the dislocation. This result agrees well with the measured

values shown in Fig. 4.4, indicating that the measurement technique is reliable.

4.4.2 Glide: Constant applied shear rate dynamics

Simulations were conducted using steady shear over a range of applied shear rates (γ̇),

temperatures (r), and system sizes (Lx, Ly). The dependence of the Peierls barrier

and the velocity vs. γ̄ behavior on these variables will be discussed in the following
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subsections.

Peierls barrier for glide

To test for finite size effects, γP was measured as a function of system size, or inverse

dislocation density. Within estimated errors, no change was observed under rigid

displacement as the system size was increased from 676 to 56,952 particles. Under

relaxational displacement, a slight increase with Ly was noted, and is linked to the time

required for the strain applied at the edges to diffuse inward to the dislocation core.

Diffusion is fast compared to the inverse shear rates required to apply relaxational

displacement (rows of particles slip relative to each other at all but the lowest values

of γ̇), so the increase of γP with Ly cannot be very large. The nonlinear shear profile

that is produced may exaggerate this lag between the applied strain and the strain

near the dislocation, but the overall effect was nonetheless found to be relatively small.

Next, the barrier was examined as a function of r, which is proportional to the

distance in temperature from Tc. To do this consistently, the boundary conditions

were changed to mirror rather than periodic at the top and bottom, and the constant

phase was entirely removed from the simulation. This made it possible to vary r at

a single value of n̄, isolating the temperature dependence in a more realistic manner.

Results are shown in Fig. 4.5.

The decrease in γP as the melting point is approached is expected since the trian-

gular phase amplitude decreases near Tc. A decreases with increasing r according to

Eq. (4.4), and even without thermal fluctuations a distinct temperature dependence

is produced. This decrease in A corresponds to an increase in the effective width of

the dislocation which, according to the Peierls-Nabarro model [141], lowers the Peierls

barrier for glide. With thermal fluctuations, these results did not change significantly,

though at low γ̇, which is where the change would be greatest, it was not possible

to include fluctuations and maintain reasonable computation times. Similar linear

decreases in γP as some effective Tc is approached have been found in experiment

[142, 143] and theory [144, 145], along with increases in γP with γ̇ much like those

shown in Fig. 4.5.

At temperatures closer to the melting point (r ' −0.18), the dislocations began

to climb at very low strains before any glide had occurred. This is the first evidence

that climb is the dominant process at high temperatures, as in real crystals. Further
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Figure 4.5: (a) Temperature dependence of the Peierls strain barrier for glide without
thermal fluctuations. Data shown is at n̄ = 0.25 and (Lx, Ly)=(56,56) under rigid
displacement. (b) Measured Peierls strain barrier for glide, γP , as a function of applied
strain rate for the cases of rigid and relaxational displacement. The fits to the rigid
data are power laws as indicated in the image. The dotted line shows a linear γ̇
dependence for reference. Note that γP is consistently lower for Config. 2 than for
Config. 1, even with the differing r’s working toward the opposite effect.

evidence will be presented with the climb results.

The dependence of γP on γ̇ was also explicitly measured (Fig. 4.5). Both methods

of shear application result in what appears to be a power law increase in γP as the

shear rate is increased, where the relaxational displacement data are nearly linear and

the rigid displacement data appear to approach a limit γP at high γ̇. The transition to

no γ̇ dependence for large γ̇ under rigid displacement can be understood by studying

the evolution of F under an applied shear. In [4], the change in F for a one-mode

approximate triangular solution under the action of shear was found by minimizing

F when n(x, y) is replaced with n(x+ γ̄y, y). The resulting equation, valid for small

γ̄, is

∆FShear =
q4
eqA

2

6
γ̄2. (4.6)

In principle, this represents a rigid displacement of n(x, y) at infinitely large γ̇. In



78 Chapter 4. Dislocation Dynamics

this limit, γP has no explicit dependence on γ̇;

γP =

√
6∆FGlide

P (n̄, r)

q4
eqA

2
. (4.7)

Dislocation dynamics in soft structures such as colloidal crystals are reasonably

expected to correspond to the case of relaxational displacement. These systems typ-

ically exhibit very little rigidity associated with sound modes or phonons, thus their

relative softness. Conversely, dynamics in atomic crystals are believed to better cor-

respond to the case of rigid displacement at large γ̇. A more constructive way to

model atomic crystals would be to explicitly consider a phonon or wave term in the

dynamics, as has been done by other authors [47, 74]. When such modes are consid-

ered, the collective motion of particles in response to an applied force is enhanced,

more closely resembling the case of rigid displacement. It is argued in this sense that

the methods of rigid displacement in the large γ̇ region and relaxational displacement

represent limiting cases of response, and that a more rigorous description including

effective phonon dynamics would fall between these limits.

Atomistic glide mechanism

The nature of the dislocation motion in these simulations (Fig. 4.6) is stick-slip at low

velocities with a transition to a more continuous character at high velocities. This

is expected, as the lattice barrier leads to thermally activated motion when ∆FShear

approximately equals ∆FGlide
P , while at large values of ∆FShear the barrier becomes

secondary and the motion assumes a damped character. The shear rate dictates the

maximum velocity and therefore the extent to which the motion becomes continuous.

Three regimes of motion were observed, with selection depending on the ratio

vss =
γ̇

ρdb
(4.8)

where ρd is the dislocation density dictated here by the system size. The reason for

labeling this quantity vss will soon become apparent.

For large vss (& 0.016a/t), the dislocation quickly reaches the overdamped regime

and adjacent layers of particles begin to slip relative to each other along the x-direction
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Figure 4.6: Atomistic glide mechanism under constant applied shear rate (the particles
around the dislocation core have been highlighted for clarity). From left to right,
n(x, y) is shown at t=0, 500, 1000, and 1500, corresponding to γ̄=1%, 2%, 3%, and
4%. The arrows indicate relative strain magnitudes and directions.

before a steady-state velocity is achieved. Slipping usually occurs when the strain

exceeds approximately 20% in rigid displacement or 10–15% in relaxational displace-

ment. At moderate values of vss (0.06γP . vss . 0.016a/t), the dislocation approaches

a continuous glide motion and eventually reaches a steady-state velocity. This velocity

can be calculated by equating the Orowan equation

γ̇Plastic = ρdbv (4.9)

to the applied shear rate, giving the quantity vss defined in Eq. (4.8). This is the

glide velocity required to plastically relieve strain at exactly the same rate at which

it is being applied. Fig. 4.7 shows vss versus γ̇ as measured from simulations. The

measured values follow a linear trend as Eq. (4.8) predicts, with the slopes in good

agreement with the theoretical values. This again shows that the plastic strain relief

due to glide is correctly reproduced and that the proper steady-states are achieved.

At low values of vss (. 0.06γP ), a more surprising type of motion occurs in which

the dislocation overcomes the Peierls barrier, glides a short distance, and then comes

to a stop. The cycle then repeats itself once enough strain is re-accumulated to
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overcome the barrier again. This oscillatory motion will occur whenever the velocity

assumed just above the Peierls barrier is greater than the theoretical vss for the system.

The rate at which the dislocation glide relieves strain is temporarily greater than the

applied strain rate, so the energy falls below the Peierls barrier and glide is no longer

possible until the strain energy again increases sufficiently.

Viscous dynamics

Empirically, dislocation glide velocity is described by the following equation:

v = vs(τeff/τs)
m (4.10)

where vs is the shear wave velocity, τeff is the effective shear stress on the dislocation, τs

is the material stress constant, and m is the stress exponent [26]. The stress exponent

has been found to range from less than 1 to over 100 in some cases. For typical pure

metals such as aluminum or copper, m ' 1–5. These values may change significantly

depending on temperature, stress range, and local defect densities. For example, in

iron, m falls into one of three regions (m<1, m=1, m>1) depending on the conditions

examined [26]. As will be shown in this subsection, the dislocation velocity was found

to be approximately linear in both stress and strain (m ' 1) for all parameter ranges

studied. This is not unexpected, as higher values of m are often attributed to effects
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such as jogs, impurities, and other defects which modify the dynamics from those

expected for pure, two-dimensional crystals.

The dynamics of a single gliding dislocation are well described by the equation of

motion for a point mass in a damped medium,

meff v̇(t) = F0 − βv(t) (4.11)

where meff is an effective dislocation mass, F0 is a constant proportional to γ̇, and β

is a damping constant.

Equations for v(t), x(t), and γ̄(t) can easily be derived from this starting point,

but first the Orowan equation will be used to write meff , F0, and β in terms of more

meaningful parameters. It will be shown that the velocity is linear in γ̄, but assuming

this from the start, one can write

v(γ̄) = Mγ(γ̄(t)− γ̄0) (4.12)

where Mγ is the slope, which can be interpreted as an effective mobility for glide.

Next note that γ̄(t) is a function of the applied strain and the strain relieved by the

gliding dislocation;

γ̄(t) = γ̇t− ρdbx(t). (4.13)

Substituting Eq. (4.13) into Eq. (4.12) and differentiating gives

v̇(t) = Mγ γ̇ −Mγρdbv(t) (4.14)

and equating terms in Eqs. (4.14) and (4.11) shows that

F0

meff

= Mγ γ̇ (4.15)

and
β

meff

= Mγρdb. (4.16)

This analysis indicates that the damping experienced by the dislocation is a result

of the strain relief connected to the glide process and is not directly linked to the
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dynamics of Eq. (4.2). That is, if the second term on the right hand side of Eq. (4.13)

were removed then both the velocity and the strain would be linear functions of time,

without any effective damping. Including this term means that the effective damping

can be controlled by changing ρd, with larger values of ρd corresponding to increased

damping.

Solving Eq. (4.11) in terms of these new parameters, and applying the initial

conditions v(0) = 0 and x(0) = 0 gives

v(t) = vss(1− e−Mγρdbt) (4.17)

and

x(t) = vss

(
t+

1

Mγρdb
e−Mγρdbt

)
− γ̇

Mγρ2
db

2
. (4.18)

Substituting Eq. (4.18) into Eq. (4.13) then gives

γ̄(t) =
vss

Mγ

(
1− e−Mγρdbt

)
+ γ̄0. (4.19)

Finally, comparing Eqs. (4.19) and (4.17) produces the desired linear relation assumed

in Eq. (4.12) and the similar relation vss = Mγ γ̄ss, where γ̄ss = γ̇/Mγρdb. The data

shown in Figs. 4.9 and 4.7 verify that these linear relations are observed.

In all of these equations, the only adjustable parameter isMγ, the effective mobility

of the dislocation. Using values of Mγ measured from simulations, Fig. 4.2 shows

excellent agreement between these analytic results and the simulation data for one

parameter set, and Fig. 4.8 shows similar agreement for various other parameter sets.

If it is assumed that the free energy obeys the relation to γ̄ given in Eq. (4.6), then

Eq. (4.19) can be substituted into Eq. (4.6) to give

∆FShear =
1

6

[
q2
eqAγ̇

Mγρdb

(
1− e−Mγρdbt

)]2

(4.20)

which agrees relatively well with the high shear rate data, as shown in Fig. 4.8. The

inset in the lower right of Fig. 4.8 shows how the agreement begins to fail at lower

shear rates. This anomaly in the low γ̇ glide data is not fully understood.

It is worth examining the strain dependence of the velocity further. In gradient
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Figure 4.8: Additional comparisons between simulation data (black lines) and viscous
motion equations (gray lines) for glide where where Mγ is the only adjustable param-
eter. From left to right in each plot curves are shown for γ̇ = 2 × 10−5, 6 × 10−6,
2×10−6, 1×10−6, 5×10−7, and 2×10−7/t except for the lower right which shows data
for γ̇ = 2×10−4, 1.2×10−4, 8×10−5, 4×10−5, and 2×10−5/t. The inset in the lower
right corner of the lower right plot shows data for lower shear rates, γ̇ = 6 × 10−6,
2 × 10−6, and 5 × 10−7/t where Eq. (4.20) begins to fail. In all plots r = −0.8 and
(Lx, Ly)=(56,46).

systems, the velocity of finite structures is expected to be proportional to the driving

force applied FD, which in this case can be interpreted as the derivative of the change

in free energy due to the application of shear;

v ∼ FD =
d∆FShear

dγ̄
'
q4
eqA

2

3
γ̄. (4.21)

Additionally, Eqs. (4.11)–(4.19) indicate that velocity is in general linear in γ̄ for this

type of overdamped system. All simulations resulted in approximately linear velocity

(v) vs. γ̄ behavior for dislocation glide, as shown in Fig. 4.9. It is important to correct

the overall strain shown in Fig. 4.9 for that relieved by the glide of the dislocation

(Eq. (4.9)), especially when using small system sizes.

Both methods of displacement produce nearly the same value of Mγ under all

conditions, though it is more difficult to determine the local strain around the dis-
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Figure 4.9: Dislocation glide velocity under rigid displacement as a function of the
measured average shear strain, γ̄. A number of system sizes, temperatures, and shear
rates are shown to illustrate the uniformity of the dynamics. The heavy line is a
representative linear fit. Inset: Dislocation glide velocity under relaxational displace-
ment at various shear rates and two values of r. The strain values are overestimated
due to the nonlinear shear profile produced by this type of shearing, but the slopes
are relatively unchanged. The heavy line is the same linear fit as in the larger graph.

location for the case of relaxational displacement, due to the nonlinear shear profile.

For rigid displacement, the free energy follows the expected form (∆FShear ∼ γ̄2) and

the velocity appears to be linear for γ̄ less than ∼ 10%. For relaxational displacement,

the anomaly in the free energy behavior noted above complicates the results, but the

velocity remains linear in γ̄ with values of Mγ similar to those found for rigid displace-

ment. An analytic calculation of Mγ would complete this analysis of the dynamics,

but since the simulation results indicate no strong dependencies on any variables,

Mγ = 0.06ax/t is believed to be a reasonable estimate for most cases of interest.

Shear was also applied along directions not lying on one of the axes of symmetry

with predictable results. As the angle θR is increased (with 0◦ denoting alignment

with a symmetry axis), the Peierls barrier grows but the slip direction remains along

the nearest symmetry axis. Once θR becomes large enough, approximately 10 − 30◦

depending on the value of r, the dislocation prefers to climb rather than glide, with

motion in the general direction of the applied shear.
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Figure 4.10: A small sample climb simulation setup where n(x, y) has been plot-
ted. The extra row of particles terminating at the core of the dislocation has been
highlighted.

A similar analysis to that presented in Eqs. (4.11)–(4.20) can be applied to the

case of constant strain by removing the external force from Eq. (4.11). The resulting

equations were also found to agree well with simulation data. It is also worth noting

that the velocity vs. γ̄ behavior is essentially the same as that shown in Fig. 4.9 when

the shear condition is one of constant strain.

4.4.3 Climb: Constant applied strain rate dynamics

Climb simulations were conducted using steady compression over a range of parameter

values similar to those used for glide simulations. Before presenting the results, a

caveat on this portion of the study is in order. It was found that the results varied

systematically (i.e. the Peierls barrier decreased) with the grid spacing ∆x, apparently

due to the decrease in relevant dimensions with compression. A grid spacing small

enough to overcome this effect could not be reached since the time step must be

dramatically decreased with ∆x. But the nature of the results and the essential

physics remain the same; the data are only shifted by this effect. An example of the

climb simulation geometry is shown in Fig. 4.10.
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Peierls barrier for climb

The dependence of εP on ρd is of the same nature as that found for γP . No change

was found under rigid displacement as Lx and Ly were increased, but an increase with

Lx was observed under relaxational displacement, again in proportion to the diffusion

time from the edge of the sample to the dislocation core.

The r dependence of εP is shown in Fig. 4.11 for various strain rates. Comparison

with the glide Peierls barrier data in Fig. 4.5 confirms the same general linear behavior.

εP is quite large at low r but decreases toward Tc such that there is a crossover close to

Tc where εP becomes less than γP . Thus climb is predominant at high temperatures,

in agreement with the accepted phenomenology [26]. This was also confirmed in the

glide simulations where climb was found be preferred near Tc, even at very low values

of applied shear. Note that the data shown in Fig. 4.11 was obtained using modified

boundary conditions of mirror on all sides with no liquid phase.

Following [4], the change in F under compression can be calculated by substituting

n(x/(1 + ε̄), y) into Eq. (4.1) and minimizing with respect to A. The result is similar

to that for shear;

∆FComp. =
q4
eqA

2

2
ε̄2. (4.22)

In this limit, as was also the case for glide, εP can be written in the form

εP =

√
2∆FClimb

P (n̄, r)

q4
eqA

2
. (4.23)

The strain rate dependence is also similar to that for glide, as shown more clearly

in Fig. 4.11. The results show that γP ∼ γ̇0.30, which is similar to the dependence

γP ∼ γ̇0.37 measured for glide at the same r. The absolute values of εP are significantly

higher than those for glide in this case because of the low value of r that was used.

Atomistic climb mechanism

Dislocation climb is a nonconservative process. It requires either the diffusion of

particles away from the dislocation core or toward it, unlike glide which involves only

rearrangements of particles around the core. The mechanism of climb is shown in Fig.

4.12, where in these simulations mass diffuses away from the core since the strain is
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Figure 4.11: (a) Temperature dependence of the Peierls strain barrier for climb with-
out thermal fluctuations. Data shown is at n̄ = 0.25 and (Lx, Ly)=(52,103) under
rigid displacement. (b) Measured Peierls strain barrier for climb and the subsequent
mobilities under rigid displacement at r = −1.2 and (Lx, Ly)=(52, 166).

applied through compression.

Again, similar to what was found for glide, the motion has a stick-slip character at

low velocities and becomes more continuous at higher velocities. The motion proceeds

by alternating between configurations 1 and 2 (Fig. 4.4). Starting from Config. 2, as

shown in the upper left image of Fig. 4.12, the particle marked with an ‘X’ diffuses

away, leaving the core in Config. 1 as shown in the next image. The two particles

marked with arrows then merge together, returning the dislocation to Config. 2 as

shown in the subsequent image. The process repeats as long as there is sufficient strain

energy to maintain motion. For climb in the opposite direction, particles diffuse in

and split rather then diffuse away and merge, respectively. This merging and splitting

of particles may seem unphysical, but in a time-averaged sense these motions simply

represent diffusion of mass away from or toward the dislocation core, which is the

fundamental limiting process in dislocation climb.

Viscous dynamics

The dynamics of a single climbing dislocation are well described by the same damped

equation of motion used to describe glide (Eq. (4.11)). Again, the only adjustable

parameter is Mε, the effective mobility for dislocation climb. Fig. 4.13 shows the
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Figure 4.12: Atomistic climb mechanism under constant applied strain rate. From top
left to bottom right, n(x, y) is shown at t=300, 600, 800, and 900, corresponding to
ε̄=2.4%, 4.8%, 6.4%, and 7.2%. The particles around the dislocation core have been
highlighted and the rows near the core have been labeled for clarity. The particles
marked with an ‘X’ are those which diffuse away between subsequent images, and
those marked with arrows merge together.

agreement between these analytic results and typical sets of simulation data.

The velocity versus ε̄ behavior shown in Fig. 4.13 appears to be slightly nonlin-

ear, but this is due to the relatively short range of motion that could be captured

with computationally tractable system sizes. An approximate Mε can nonetheless be

extracted, and the results indicate first of all that the values of Mε are an order of

magnitude higher than those measured for Mγ (Mε ' 0.5). The slopes of the v versus

ε̄ curves are much steeper for climb than for glide, but at the same time the velocities

remain zero to much higher strains due to the larger values of εP (except near Tc).

Also, Mε is not quite as unchanging as Mγ, in that relatively weak, though measurable

dependencies on r and ε̇ were found. The data indicate a slight decrease in Mε with

increasing r and an increase with ε̇ that goes like
√
ε̇ (Fig. 4.11).

To calculate the dynamics of F , Eq. (4.19) can be substituted into Eq. (4.22) to
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give

∆FComp. =
1

2

[
q2
eqAε̇

Mερdb

(
1− e−Mερdbt

)]2

(4.24)

which agrees reasonably well with the data shown in Fig. 4.13. The difference is mostly

due to the low value of r used, since the one mode approximation loses accuracy away

from Tc. No anomaly in F like that found in the glide data was observed in the climb

simulations. All curves of the change in F under compression fall onto approximately

the same curve when plotted versus ε̄.

Compression was also applied along directions not lying on one of the axes of

symmetry at r = −0.8. As the angle θR is increased, the dislocation first glides some

distance proportional to θR in a direction along the nearest symmetry axis. Then

climb begins along the same lattice direction as in the unrotated case, with the value

of εP increasing only slightly with θR. Nearer Tc it would be reasonable to expect less

tendency toward the initial gliding, as climb becomes the preferred type of motion.

Generally, the application of strain along irregular directions relative to the lattice

symmetry results in a mixed motion of glide and climb.
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Figure 4.14: Measured critical radii for annihilation at r = −0.25 and n̄ = 0.25. The
configuration shown in the center is the reference dislocation at (0, 0) from which θ0

was measured. The inset shows a schematic of the expected behavior as the temper-
ature is increased above the crossover r at which climb becomes dominant.

4.4.4 Annihilation

Annihilation occurs when two dislocations having opposite Burgers vectors merge

and eliminate each other. There exists a critical separation, dc, at a given angle,

θ0, below which annihilation will occur, and this separation is in principle a function

of the crystal symmetry, type of dislocation, temperature, relative velocity, and the

local strain field. Results were obtained here for the static case (v = 0) at a single

temperature and under no applied strain, for two perfect edge dislocations.

Consider one dislocation at some location (0, 0) and another at (dx, dy) with op-

posite Burgers vector. In radial coordinates the separation can be expressed in terms

of a distance d0 and an angle θ0. At θ0 = 0◦, annihilation occurs by pure glide, and

as θ0 is increased a mixed motion of glide and climb is required, until θ0 = 90◦ where

annihilation occurs by pure climb. dc was determined as a function of θ0 by increasing

the initial separation until annihilation no longer occurred. Periodic boundary condi-

tions were used in all directions and the parameters chosen were n̄ = 0.25, r = −0.25,

and (Lx, Ly) = (56, 43). The equilibrium wavenumber at this n̄ and r would require

56.5 particles in the x−direction, so placing 56/row in the bottom half and 57/row in

the top half produces a dislocation with minimal preset bias toward climb in either

direction. The results are shown in Fig. 4.14.



4.5. Conclusions 91

Despite the unbiasing, dc is asymmetric with a preference toward climb in the

−y direction. This is apparently a consequence of the asymmetry of the strain field

across the x−axis of the dislocation core, where there is an enhancement of strain

in the lower half-plane. The particle positions around the core clearly reflect this

asymmetry. Note that the details of the strain field will be slightly different for a

dislocation in Config. 1, but the same argument should nonetheless hold.

The elliptical shape of dc(θ0) is expected since γ0
P < ε0P for this parameter set. As

r is increased, eventually ε0P < γ0
P , and the primary axis of the ellipse should coincide

with the y−axis (climb axis), becoming more elliptical as Tc is approached. This

expected behavior is shown schematically in the inset of Fig. 4.14. Moving from the

inner to the outer ellipse corresponds to increasing r.

Extending the elliptical approximation and assuming that dc is directly propor-

tional to the Peierls strain, one can write a temperature dependent equation for dc;

dc(θ0, r) '
|AγAεr|√

A2
γ sin2 θ0 + A2

ε cos2 θ0

(4.25)

where Aγ and Aε are the slopes of the Peierls strain versus r curves for glide and climb

respectively.

4.5 Conclusions

Three fundamental dislocation processes have been numerically examined in ideal-

ized two dimensional settings using a phenomenological PFC model. The diffusive

dynamics were measured over a range of temperatures, dislocation densities, and ex-

perimentally accessible strain rates. In equilibrium, two stable edge dislocation con-

figurations were found to exist, with one resulting in a slightly lower Peierls barrier

for glide than the other. The Peierls barriers for glide and climb, γP and εP respec-

tively, were found to have little or no dependence on dislocation density, and both

showed approximately linear decreases with increasing temperature (in the absence

of thermal fluctuations). Near Tc, εP < γP verifying the expectation that climb is

dominant at high temperatures. A crossover temperature was identified below which

γP < εP and glide becomes the preferred type of motion. Both strain barriers also
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showed essentially power law increases with the applied strain rate, where the expo-

nents are similar for glide and climb at equal r’s. Under relaxational displacement

(no phonons), γP is nearly linear in γ̇, while under rigid displacement at high strain

rates (strong phonons) the deviation from linear is much greater (γP ' γ̇0.38) with

relatively little change in the barrier strain at high strain rates. Physical arguments

and some mathematical arguments were given for all of these behaviors.

The motion of a gliding or climbing edge dislocation was found to be stick-slip in

character at low velocities and nearly continuous at high velocities. Three possible

regimes of motion were observed for glide, depending on the expected steady-state

velocity of the dislocation defined in Eq. (4.8). These involve an oscillatory glide, a

steady-state glide, and slipping rows of particles, in order of increasing vss.

A simple viscous dynamic model has been formulated to describe the results ob-

tained for gliding and climbing dislocations, where the only adjustable parameter is

Mγ or Mε. Excellent agreement is obtained between these equations and the simu-

lation results, both of which indicate that velocity is linear in strain for both glide

and climb. The slope of the v versus γ̄ curve for glide, Mγ was found to be nearly

unchanging across all parameter ranges. The slope for climb, Mε, which is an order

of magnitude greater than Mγ, was found to increase approximately as
√
ε̇.

A critical distance for the annihilation of two edge dislocations was also measured,

and an asymmetry with preference toward annihilation in the −y direction was found.

dc(θ0) approximately takes the form of an ellipse whose major axis is predicted to be

along the glide direction at low temperatures and along the climb direction at high

temperatures.

Traditional uniform phase-field models have also been used to study dislocation

dynamics [144, 146–148]. These approaches differ from the PFC method in that they

do not naturally contain atomistic detail. The domains in these models typically dif-

ferentiate dislocation loops and the interfaces represent dislocation lines. Coarsening

of large arrays of lines etc. can be efficiently studied, but atomistic detail is either

lost or must be explicitly added through postulated Peierls potentials. The relevant

equations of elasticity must also be rigorously applied, unlike in the PFC model which

naturally exhibits elastic behavior as well as Peierls potentials.

Other phenomena relevant to dislocation dynamics, such as obstacle and impurity
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effects, could be studied with a similar approach, and more complicated dynamics

involving screw dislocations, dislocation loops, multiplication processes, etc. could be

examined in three dimensional simulations. Alternatively, the two dimensional model

could provide interesting insights into the problem of dislocation-mediated melting in

two dimensions.





CHAPTER 5

Diffusion-Driven Amorphous Solidification and

Crystallization

The thermodynamics and dynamics of freezing and glass formation in diffusion-driven

three dimensional monatomic liquids are studied using phase-field crystal simulations.

At low cooling rates bcc crystals are formed by nucleation and growth from the melt.

At large cooling rates a kinetically driven first-order transition from supercooled liquid

to a disordered glasslike solid occurs. Though this amorphous solidification process

is not dynamically consistent with a true glass transition, the structure and proper-

ties of the resulting disordered solid are shown to strongly resemble those of a typ-

ical glass. A secondary transition from the amorphous solid precursor phase to the

equilibrium crystalline state occurs after some cooling rate dependent waiting time.

Consequences of pseudo-critical behavior and heterogeneity near the liquid spinodal

are also discussed.

5.1 Phenomenology and Literature

When a simple liquid is cooled below its freezing temperature, a crystalline solid typi-

cally becomes the state of lowest free energy and a first-order crystallization transition

may occur. If the liquid is cooled very rapidly crystallization can be avoided, with the

liquid instead undergoing a characteristic rapid but continuous slowing accompanied

by very little two-point structural change – a glass transition. A few introductory

95
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notes on the glass transition were provided in Chapter 1. In this section, a brief sum-

mary of some of the literature concerning classical DFT and the dynamics of glass

formation is given, to outline known results and the general behaviors for which we

will be searching. A more thorough discussion is reserved for Chapter 6 where the

primary dynamic signatures are observed and reported.

The PFC approach taken here is related to the classical density functional theory

of freezing [8, 10] and to the variously proposed dynamical extensions of density func-

tional theory [17, 103, 104, 149–152], as discussed in Chapter 2. The expected utility

of dynamic density approaches in modeling the glass transition lies in their combi-

nation of coarse-grained free energies with mesoscopic equations of motion, which

together provide a thermodynamic description of atomic structure and dynamics over

long time scales.

Most density functional studies of glass-formation have focused on the static prop-

erties of the free energy functional, using various analytic or numerical approxima-

tions to locate and characterize metastable minima with aperiodic or glass-like density

structures at large supercoolings [153–159]. Early dynamical simulations of the weakly

inhomogeneous supercooled liquid were performed using nonlinear fluctuating hydro-

dynamics [160]. Despite the insights gained from these DFT studies, results involving

dynamics have been limited and there remains a need for advancement in terms of

finding less restricted solutions, studying larger systems, and thoroughly examining

dynamic behavior in both the ergodic and non-ergodic regimes.

PFC models, when viewed as simplified DFTs, should not suffer from many of these

applied limitations and may therefore provide a means of realizing significant advances

in terms of late-time modeling of glass formation. Initial work toward this objective

is reported upon in this chapter, outlining the first demonstrations of metastable

glass-like minima in PFC models and the nature of the transitions by which they

are reached. Freezing behavior is studied in three dimensions with simple diffusional

dynamics, while more nonlinear free energies and equations of motion are examined

in Chapter 6.

The standard PFC free energy evolved with Model B dynamics can be numerically

simulated at system sizes several orders of magnitude larger than previous density

functional studies and over simulation times on the order of 106 or more typical



5.2. Model Equations and Notation 97

liquid relaxation times. This corresponds to time scales several orders of magnitude

longer than those accessible to typical molecular dynamics simulations. The simulated

glass-like metastable states are obtained here in a physically meaningful way with no

explicit restrictions on the solution set. The packing structure and local density

profiles are naturally optimized and are found to exhibit heterogeneity in local mean

square displacements.

5.2 Model Equations and Notation

The PFC free energy functional used in this chapter is the same as that examined in

Chapters 3 and 4,

F =

∫
d~r

{
n

2

[
r + (1 +∇2)2

]
n+

n4

4

}
(5.1)

where n → n(~r) + n̄ is the scaled atomic number density order parameter, n̄ is the

average density, and r is a constant related to temperature. The relation of this model

to classical DFT was discussed in Chapter 2. Essentially, Eq. (5.1) corresponds to a

specific approximate parametrization of the full density functional form. As will be

demonstrated, this simplified form exhibits the same qualitative freezing behavior as

its DFT counterpart, but is considerably simpler to manipulate and simulate numeri-

cally. A consequence of the approximations used may be a restriction on the number

of systems and the range of conditions which can be quantitatively described.

The appropriate dynamics for a glass-forming liquid described by a DFT-type

free energy has been debated among practitioners of the various forms of dynamic

density functional theory and other related field theories. This initial study will focus

primarily on the simplest form potentially capable of capturing the relevant behavior,

∂n

∂t
= ∇2µ+ η (5.2)

where η is a Gaussian stochastic noise term with 〈η(~r1, t1)η(~r2, t2)〉 = M∇2δ(~r1 −
~r2)δ(t1 − t2), M is a constant used to vary the relative magnitude of the thermal

fluctuations to the free energy topology, and t is the dimensionless time. This equation

describes a conserved density field n(~r) undergoing a purely diffusive free energy

minimization in the presence of random thermal fluctuations.
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The most common dynamic density functional equation of motion also maintains

density conservation and diffusive free energy minimization, but introduces a local

density-dependent mobility and multiplicative thermal noise. With the rescaled den-

sity n, it has the form
∂n

∂t
= ∇ · ((n+ 1)∇µ) + ν (5.3)

where 〈ν(~r1, t1)ν(~r2, t2)〉 = M∇·∇((n+1)δ(~r1−~r2)δ(t1−t2)). For a small-n expansion,

if n � 1, one has n + 1 ' 1 and Eq. (5.3) reduces to Eq. (5.2), including the noise

term. For highly inhomogeneous states the differences may become significant, but all

monatomic simulations employing Eq. (5.3) have to this point produced qualitatively

similar results to those described in the following for Eq. (5.2).

A semi-implicit pseudospectral algorithm was used to solve Eq. (5.2) in three

dimensions with periodic boundary conditions (see Appendix A.2 for details). The

parameters used were n̄ = −1/4, ∆x = 1, and ∆t = 1/2, while system sizes were

varied from V = 643 to V = 5123 (∼686 to ∼390,224 atoms). Sizes of V & 1283−2563

are generally required to overcome the finite size effects discussed in Section 6.4.4.

5.3 Freezing Transition

At high temperatures the equilibrium phase for the time-averaged number density n(~r)

is a spatially uniform fluid state. For off-critical average densities, as the dimensionless

temperature parameter T ≡ r + 1 is lowered, the liquid passes through a first order

phase transition point below which the equilibrium phase is one with periodic density

modulations, corresponding to a bcc crystalline state. Due to the nucleation barrier

between liquid and solid phases, the liquid can be supercooled until the spinodal

temperature Ts is approached and the free energy barrier eventually vanishes.

5.3.1 Coexistence region (nonspinodal)

Previous density functional studies [153–158] and others [161, 162] find that for suffi-

ciently large supercooling, a large number of metastable states with aperiodic density

modulations and with Fcryst < F < Fliquid become accessible by a first-order transi-

tion. The simulations described in this chapter show that this discontinuous transition

to a glass-like state occurs in the monatomic PFC system and also demonstrate that
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Figure 5.1: (a) Free energies of various phases vs. T . Disordered solid F is a repre-
sentative result from a single rapid quench, as F varies significantly only for Ṫ near
Ṫc. Example fast and slow quenches are overlaid to illustrate the effect of cooling
rate. (b) Disordered solid at V = 1283, where local peaks in n(~r) are represented by
spheres, and the highlighted central plane is shown to improve perspective.

the structure of the resulting solid phase depends primarily on the cooling rate Ṫ .

Very low cooling rates lead to bcc structures, generally through a two-stage nucle-

ation process involving an initial disordered solid which quickly rearranges into a bcc

crystal. As Ṫ is increased, the stability of the initial disordered solid grows and it

persists for longer and longer times. Finally, at cooling rates above the critical cooling

rate Ṫc, the amorphous solid is relatively stable for times longer than the time scale

of the simulations. Here the system is kinetically limited and becomes trapped in

the metastable disordered state, unable to organize with the symmetry of lowest free

energy.

This cooling rate effect is illustrated in Fig. 5.1, where two examples of the free

energy change with temperature are shown, one for high Ṫ and one for low Ṫ . Sample

configurations obtained at various cooling rates are also shown in Fig. 5.2, where

the gradual shift toward bcc order is evident. There appears to be no Kauzmann

temperature at which the entropies (S = −∂F/∂T ) of the amorphous and bcc phases

would cross.

Since the disordered solid forms through a nucleation process, classical nucleation

theory should be applicable to some extent near the liquid-bcc coexistence region.
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(a) 7.5× 10−8T/t (b) 3.75× 10−8T/t

(c) 1.5× 10−8T/t (d) 3.75× 10−9T/t

Figure 5.2: Sections of n(~r) from systems quenched at various cooling rates. Light
areas correspond to high density, dark areas to low density. Tinit = 0.816, Tfinal =
0.810, and V = 2563. Each cube shown contains a region V = 963, or ∼ 5% of its
system’s overall volume.
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Figure 5.3: Measured critical radii of disordered solid and bcc phases in liquid at
various T , in units of the equilibrium one-mode bcc lattice constant a. The dashed
line is a fit to classical nucleation theory where Rc ∝ (Tm − T)−1. Inset: Calculated
ratio of bcc to disordered solid free energy barriers from classical nucleation theory.

Atomistic modifications to the uniform droplet picture are naturally captured by the

PFC description, which should remain meaningful at droplet sizes smaller than those

below which uniform theories break down. Critical radii Rc have been measured for

bcc and disordered solid droplets in liquid at various temperatures, as shown in Fig.

5.3. These measurements were made by evolving various initial spherical seeds of solid

with radii R surrounded by liquid, and defining Rc as the initial value of R below which

the seed droplet melts and above which the seed droplet grows. The disordered solid

results represent an average over several different disordered seeds. The two structures

are found to have essentially equivalent Rc, except near the equilibrium bcc melting

temperature Tm, where the disordered solid phase is increasingly unstable and tends

to crystallize in very short times. For small Rc, the critical radii are discretized to

values corresponding approximately to atomic neighbor distances, while the larger Rc

diverge more smoothly, following Rc ∝ (Tm−T )−1 as predicted by classical nucleation

theory.

These results indicate that the free energy barrier between liquid and disordered

solid is consistently 10% to several times smaller than the barrier between liquid and

bcc (Fig. 5.3 inset). The predicted nucleation times tn ∝ e∆F/kBT are at least one

order of magnitude smaller for the disordered solid than for the bcc structure. Thus
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the initial presence of disordered droplets in all quenching simulations is tentatively

attributed to droplet energetics. Since the bulk energy of a disordered solid droplet

is always higher than that of a bcc droplet, this would imply that the interfacial

energy between liquid and amorphous solid is significantly smaller than the overall

liquid-crystal interfacial energy.

5.3.2 Spinodal effects

The preceding discussion of freezing applies to the general case in which the first-

order liquid to disordered solid transition occurs at low to moderate supercooling

(weak-coupling regime, M not too small). When the liquid can be supercooled very

deeply, near its spinodal temperature Ts, pseudo-critical effects emerge due to the

underlying continuous instability. Similarities between the near-spinodal liquid and

glass-forming liquids have been examined by other authors [161, 163, 164]. Here it is

found that, despite the appearance of the onset of glass-formation near Ts – signaled

by a diverging relaxation time, stretched exponential decay, and spatial heterogeneity

in local relaxations – the pseudo-critical effects play only a secondary role in the

freezing process. They have little bearing on whether the resulting solid is disordered

or crystalline, and therefore do not appear to be associated with a true glass transition

in this system, as discussed in the following.

The liquid intermediate scattering function or density autocorrelation relaxation

function F(q, t) = 〈δn(q, 0)δn∗(q, t)〉/F(q, 0) can be calculated at the linear level by

solving the equation of motion for the linearized chemical potential (δF/δn) in Fourier

space, giving

F(q, t) ' e−t/τ (5.4)

where τ = [2q2(T − 2q2 + q4)]
−1

is the density autocorrelation relaxation time. This

solution for τ is plotted in Fig. 5.4 along with measurements from numerical simula-

tions. Without fluctuations, τ diverges at T = Ts for q = 1. The Vogel-Fulcher fitting

function, widely used to characterize glass forming liquids,

τ = τ0e
B/(T−Ts) (5.5)

where τ0 and B are constants, is reasonably accurate near Ts, but the spinodal analysis
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Figure 5.4: (a) Divergence of the density autocorrelation relaxation time for two-
and three-dimensional systems. Relaxation data taken near the first peak in S(q) at
q = 1. Inset: Stretching relaxation functions as T decreases from left to right. The
dashed line corresponds to normal exponential decay (β = 1). (b) Variance in the
distribution of local relaxation times and the resulting average stretching exponent β
as T → Ts. The dashed-line fit to the variance data is of the form (T − Ts)

−1, while

that to the β data follows β ∼ 1 + exp [A/(T − T0)]/T
2−1/2

. The inset shows sample
distributions on a log-scale at three values of T .

clearly points to a power law a divergence of the form τ ∼ (T − Ts)
−1.

Measurements of F(q, t) also indicate that the PFC liquid exhibits increasingly

stretched exponential decay as Ts is approached. Fits to the form

F(q, t) = e−(t/τ)β

(5.6)

indicate that the stretching exponent β decreases from ∼ 1 to ∼ 0.76 near Ts (Fig.

5.4). This apparent stretching coincides with, and is in part caused by, the onset of

increasing dynamic heterogeneity near the liquid spinodal, as shown in Fig. 5.4(b).

Well above Ts, the local relaxation times τ` are fairly homogeneous across all regions

of the liquid. Near Ts the width of the τ` distributions increases dramatically (along

with the average relaxation time), approximately following a (T − Ts)
−1 divergence.

This signifies growing heterogeneity, as different regions in the system are relaxing

with a larger and larger disparity of rates. Spatial correlations of local relaxation

times will require further examination to discuss conclusively, but it is noted that the

most mobile regions tend to be arranged in string-like clusters which surround the
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less mobile regions.

The preceding pseudo-critical behaviors appear to indicate that the supercooled

liquid near Ts is undergoing a continuous transition toward an effectively frozen state,

somewhat resembling the behavior of a fragile glass former. Thermal fluctuations

eventually truncate this pseudo-critical behavior and near Ts the initially continuous

slowing of dynamics is overridden by a clear first-order freezing transition. Therefore,

even when spinodal effects are strong, the transition from liquid to disordered solid

is ultimately first order in this system, and the suggestive pseudo-critical behavior

has relatively little bearing on whether the resulting solid is glass-like or crystalline.

Global instability to nucleation for T . Ts seems to be one way in which a near-

spinodal liquid differs from a glass-forming liquid, which by contrast remains robust

to first order discontinuities at all temperatures (for sufficiently rapid quenches).

The appearance of an amorphous solid rather than a crystalline solid upon quench-

ing below the spinodal in two dimensions has been discussed in a similar context [162].

Deep quenches below Ts were shown to generate instability across a broad range of

wave vectors, preventing the growing droplets from selecting a single wave vector cor-

responding to the ordered structure. This picture is consistent with simulation results

for sub-spinodal quenches presented here, and it is found additionally that sufficiently

slow quenches facilitate formation of the equilibrium crystal structure, regardless of

proximity to Ts.

5.4 Disordered Phase Structure and Properties

The structure of the PFC disordered solid phase is consistent with that of many

known glass formers, having a structure factor SP (q) and radial distribution function

gP (R) that are liquid-like and exhibit the characteristic split second peak. SP (q) and

gP (R) are the spherically averaged structure factor and radial distribution function,

respectively, of the most probable atomic configuration. Examples of SP (q) are shown

in Fig. 5.5 for various cooling rates Ṫ . The disordered structures obtained at large

Ṫ are qualitatively similar to but quantitatively different from the Bernal packing

scheme. As Ṫ is decreased the structure factor of the resulting solid develops more

prominent peaks all corresponding to diffraction peaks in a bcc crystal (see Fig. 5.5
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Figure 5.5: (a) Most probable instantaneous solid structure factors SP (q) at various
cooling rates. Data for systems shown in part in Fig. 5.2. Wavenumbers corresponding
to bcc peaks are labeled with letters. Inset: bcc and disordered solid SP (q). (b) Coor-
dination number vs. coordination sphere radius for most probable atomic structures
of representative disordered and bcc systems, in units of the equilibrium one-mode
bcc lattice constant a. Inset: Histogram of coordination numbers at RCN = 1.18.

inset), and visual inspection reveals that sizable regions with bcc order have formed,

as is clearly seen in Fig. 5.2.

Analysis of local, short-range order was performed on many amorphous configura-

tions, and representative data for the average coordination number z as a function of

coordination sphere radius RCN is shown in Fig. 5.5(b). The bcc result exhibits clear

steps at values of z = 8, 14, 26, . . ., as required. The disordered solid result shows a

much more gradual rise in z, to a near plateau at z ' 13, and then further increase.

A histogram of coordination numbers at RCN = 1.18abcc is shown in the inset of Fig.

5.5(b). These results compare favorably with values for various binary metallic glasses

obtained using ab initio molecular dynamics [165].

An effective packing fraction σ can also be defined as

σ =
N

Nbcc

σbcc (5.7)

where N is the number of density peaks in the system, Nbcc is the number that would

be found in an ideal bcc system of the same size, and σbcc = 0.68 is the ideal bcc
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packing fraction. Measurements indicate that σ ' 0.63 − 0.64, with 0.64 being the

apparent limiting value for the disordered phase. This is compared to σ = 0.61 for

the Bennett hard-sphere glass [166] and σ = 0.6366 for dense randomly packed ball

bearings [167]. Thus in many respects, the structure of the disordered solid phase is

consistent with that of simple structural glasses as observed experimentally and in

atomistic computer simulations.

As noted, the PFC disordered solid also exhibits spatial heterogeneity in local

mean square displacements (MSDs), with a distribution of local MSDs several times

broader than that of the bcc phase (Fig. 5.6 inset). The variance of this distribution,

as shown in Fig. 5.6, is found to diverge approximately as (Tm−T )−1 as the disordered

solid is heated, while the bcc phase shows a much weaker increase in heterogeneity

before melting. This behavior is related to the phenomenon of critical softening in

glasses, where the relative solidity of a glass, as measured by the Debye-Waller factor,

decreases with strong nonlinearity at high temperatures [168].

5.5 System Size and Aging

For relatively small systems (V . 1283−2563) the gradual sequence of structures lead-

ing from the maximally disordered state to the perfect bcc state becomes increasingly
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restricted. Only highly disordered or highly ordered states are generally observed

below this range. Such a restriction on the possible states has significant effects on

the relaxation of the disordered solid toward the lower-energy crystalline state. Very

little aging of a disordered system is possible when the intermediate phases of mixed

character are inaccessible, and the disordered solid is effectively frozen in or near its

initial minima for times longer than the simulations. In sufficiently large systems, a

more systematic aging behavior is observed. Thermal fluctuations lead to small local

rearrangements in n(~r), sometimes cascades of rearrangements, which lower F incre-

mentally toward that of the bcc state. The rate of relaxation is strongly dependent

on Ṫ .

Therefore, even though the structural correlation lengths in a glass-like system

are expected to be only on the order of a few atomic spacings, the system size here

must be considerably larger to avoid finite size effects in the relaxational dynamics of

the non-equilibrium state. By comparison, the more homogeneous supercooled liquid

phase exhibits finite-size effects only near Ts, where the correlation length becomes

large.

5.6 Discussion and Conclusions

Direct numerical simulations have been used to demonstrate that the monatomic

PFC model exhibits a range of freezing behaviors which depend primarily on the

quench rate and proximity to the liquid spinodal temperature. When freezing occurs

well above Ts, the transition is strongly first order and in qualitative agreement with

classical nucleation theory. Simulations indicate that the initial nucleites are relatively

disordered with high probability, regardless of the cooling rate. As the nucleites grow

and coalesce, they either remain disordered and glasslike if the quench is sufficiently

rapid, or rearrange locally into the equilibrium bcc structure if the quench is slow.

Thus glass formation in this regime is kinetically driven but strongly first order, with

no accompanying continuous slowing of liquid dynamics as is characteristic of a typical

glass former.

When freezing occurs near Ts, the supercooled liquid exhibits pseudo-critical be-

haviors which somewhat resemble the onset of a glass transition. These include a
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diverging relaxation time, stretched exponential decay, and apparent dynamic hetero-

geneity. These appear not to be associated with a true glass transition in this system,

as the kinetically driven first-order transition ultimately intervenes near Ts, and the

preceding pseudo-critical effects serve only to alter the critical cooling rate and not

the qualitative nature of glass formation as described above.

Despite the fact that formation of the disordered solid phase stems from a kinet-

ically driven first-order transition rather than a clear glass transition, the structure

and properties of the disordered solid appear to be consistent with those of simple

glasses. The monatomic PFC free energy clearly contains inherent glasslike minima

but the diffusive model accesses them by a dynamic pathway that does not resemble

a glass transition. This could be a peculiarity of simple monatomic systems, which

have not been shown to undergo a glass transition experimentally, and which typi-

cally exhibit only initial signs of a glass transition on short time scales before rapidly

crystallizing in most atomistic simulations. It is possible that the relevant short time

scales in this scenario are inaccessible to the coarse-grained PFC description, or that

purely diffusive dynamics simply do not capture the localized and highly nonlinear

caging processes which are believed to drive the glass transition. If a suitable size

and/or mobility difference between species is fundamental to glass formation, or at

least strongly enhances glass formability, then the lack of a clear glass transition here

would not be surprising.

The primary dynamic signatures of the glass transition are shown in the next

chapter to emerge when highly nonlinear free energies are combined with equations

of motion which also consider inertial dynamics. The path from these initial results,

outlined in Chapter 5, to those presented in the next chapter was not a direct one.

Freezing dynamics were examined within several modified PFC models in which the

free energy functional and/or equation of motion were/was altered with the aim of

generating glassy behavior. Several of these abandoned, though in some cases not en-

tirely unsuccessful, models are recorded in Appendix B. They are all less satisfactory

for present purposes than the model described in Chapter 6.



CHAPTER 6

Supercooled Liquid Dynamics and the Glass

Transition

The dynamics of glass forming supercooled monatomic and binary liquids are studied

numerically using phase-field crystal simulations. A nonlinear stochastic framework

combining modified phase-field crystal free energies and inertial dynamic density func-

tional theory is shown to successfully describe several aspects of glass formation over

multiple time scales. Agreement with the central predictions of mode coupling theory

is demonstrated for underdamped liquids at moderate supercoolings, and a rapidly

growing dynamic correlation length is found to be associated with fragile behavior.

Aging properties are also examined and shown to scale with time in the same man-

ner as many known experimental and simulated glass forming systems. A postulated

time scaling procedure results in a qualitatively correct description of experimentally

observed relaxation phenomenology over 12 orders of magnitude in time.

6.1 Phenomenology and Literature

Phenomenology

Any liquid rapidly quenched to a sufficiently low temperature will undergo a glass

transition, though the precise meanings of ‘rapidly’ and ‘low’ can vary enormously

from material to material. Rather than nucleating crystallites and freezing discontin-

uously into an ordered crystalline solid, the glass forming liquid slows continuously

109
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but very rapidly while the system maintains most of its liquid-like atomic structure.

At Tg the structural relaxations become sufficiently slow that the material can be

considered a disordered solid or glass. In many ways this solid still resembles a liquid,

but one that relaxes with effectively infinite slowness.

Figure 1.2 shows a compilation of viscosity data for several glass formers, high-

lighting the strong versus fragile classification scheme proposed by Angell [1]. Strong

liquids are those which retain an Arrhenius temperature dependence, and therefore

constant activation energy, across the full measurable viscosity range. Such systems

typically have strongly covalent interactions. Fragile liquids on the other hand are

typically dominated by van der Waals or ionic interactions, and are characterized by a

region of more rapid super-Arrhenius viscosity growth. This temperature dependence

can often be accurately described by the Vogel-Fulcher fitting function introduced in

Chapter 5, (viscosity ηv ∼ τ = τ0e
B/(T−T0) where τ0 and B are constants).

Another important feature of glass forming liquids is the stretched exponential re-

laxation function, also introduced in Chapter 5 (F(q, t) = e−(t/τ)β
where β < 1). This

feature is generally associated with a distribution of roughly exponential relaxation

functions spread throughout the system. It is common as well for glass forming liquids

slightly above Tg to exhibit two-step relaxation functions, characterized by rapid (β)

relaxation to a non-zero plateau correlation value followed by slower (α) relaxation

toward zero correlation. Anomalies in thermodynamic quantities also emerge at the

laboratory glass transition temperature Tg, due to a sudden inability to widely sample

phase space over the measurement time scale. First order thermodynamic quantities

such as entropy show a rapid change in slope in the vicinity of Tg, while second or-

der quantities undergo ‘smeared’ jumps in value. For example, the specific heat drops

rapidly at Tg as shown in Fig. 1.2, with the location of the drop (and thus Tg) strongly

dependent on the quench rate.

Glasses, and systems out of equilibrium in general, also usually display aging

behaviors. That is, their physical properties vary with time as the system evolves

irreversibly through phase space toward lower energy configurations. Such behaviors

are most often quantified through dynamic correlation functions. The intermediate

scattering function, for example, can be generalized to include a waiting time tw,
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which is irrelevant in equilibrium, but becomes important out of equilibrium,

F(q, tw + t, tw) = 〈exp {iq[n(tw + t)− n(tw)]}〉. (6.1)

Such relaxation functions can often be separated into two components,

F(q, tw + t, tw) = Ffast(q, t) + Faging(q, tw + t, tw), (6.2)

where Ffast contains rapid processes which do not depend on tw, and Faging contains

the slower processes which do depend on tw. The aging component often obeys a

simple scaling such that

F(q, tw + t, tw) = Ffast(q, t) + Faging(q, t/t
µ
w) (6.3)

where µ ≤ 1. A simple explanation for this type of behavior is that the free energy

landscape in aging systems is roughly divided into two scales, such that the distri-

bution of free energy barriers assumes a bimodal character with a group of relatively

small and a group of relatively large barriers. The fast relaxations reflect jumps over

the small barriers, which can always be readily overcome and are thus independent of

tw. The slower relaxations are set by the scale of the large barriers and thus exhibit

a dependence on tw as the system gradually evolves within and between the larger

scale basins.

Theories of glass formation

A unified theoretical framework within which the glass transition may be under-

stood does not currently exist. Thus many independent approaches continue to be

developed and examined, each generally applicable to some finite region of the tran-

sition. Some approaches can be classified as thermodynamic or equilibrium theories,

while others are based on purely dynamic or nonequilibrium arguments. Since no

single theory has proven adequate, it is not yet clear whether the structural glass

transition is driven primarily by an underlying thermodynamic transition, by pro-

cesses of purely dynamic origin, or by some combination of the two scenarios (as was

found to be the case for spin glasses).

Two notable early theories include the free-volume model [169] and the Adam-
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Gibbs configurational entropy model [170]. The free-volume approach attributes the

increase in viscosity to a decrease in the available free-volume distributed throughout

the system. The self-diffusion coefficient is related to the free-volume vf by

Ds = ga∗uv exp (−γ0v
∗/vf ), (6.4)

where g is a geometrical factor, a∗ is a molecular diameter, uv is the gas kinetic velocity,

1/2 < γ0 < 1 is an overlap factor, and v∗ is the critical free volume below which

transport ceases. Specific relations bewteen vf and T generally lead to expressions

such as

Ds = ga∗uv exp

(
−γ0v

∗

v̄mαT (T − T0)

)
(6.5)

where v̄m is the mean molecular volume, αT is the mean thermal expansion coefficient,

and T0 is the T at which free volume disappears. This is the Vogel-Fulcher equation,

derived here from a scenario based on intuitive physical assumptions. Various aspects

of the glass formation process can be reasonably well described with the free-volume

approach, but its main drawbacks seem to be that it does not address the specific

microscopic dynamic processes associated with rearrangements of vf and that an

unambiguous definition of vf itself is unavailable.

Thermodynamic approaches generally postulate a vanishing configurational en-

tropy density sc in glass forming liquids below some critical temperature T0. sc is a

reflection of the number of disordered microstates accessible to the system at a given

T , and this number is assumed to control the time scale for liquid-like relaxation.

Dynamic arrest is then driven by an underlying thermodynamic singularity at T0,

when the number of possible states goes to one. Essentially, the system is viewed as a

mosaic of cooperatively rearranging regions, wherein the average cooperative volume

approaches the system volume at T0 and further rearrangements become impossible.

Relaxation times can be predicted by applying the Adam-Gibbs hypothesis, which

states that τ is related to sc as

τ = τ0 exp
B

Tsc(T )
(6.6)

where τ0 and B are constants. When sc ∼ T − T0, a Vogel-Fulcher equation is
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again obtained. Both of these early models provide physical insight into the types of

microscopic features and thermodynamic scenarios that may drive glass formation,

especially in the deeply supercooled regime, but they are not rigorously justified from

a statistical mechanical viewpoint.

The most significant modern theoretical advances have been concentrated near the

early stages of slowing. Mode coupling theory [28–30] (MCT) and molecular dynamics

[13, 171–173] (MD), for example, have provided insight into the initial regime of

slowing above the so-called crossover temperature Tc, but are ineffective when applied

to the slower regimes that occupy roughly ten orders of magnitude in time between

Tc and the glass transition temperature Tg. MCT provides self-consistent equations

of motion for the liquid correlation functions from first principles. The relaxation

functions can be shown to obey a non-linear memory equation of the form

F̈(q, t) + Ω2
0(q)F(q, t) +

∫ t

0

M(q, t− s)Ḟ(q, s)ds = 0 (6.7)

where Ω2
0(q) = kBTq

2/(mS(q)) is the sound wave vibrational dispersion andM(q, t−s)
is the (generally unknown) memory function. If certain simplifying approximations

are made, these equations can be solved numerically and have been shown capable of

describing the early stages of glass formation in many liquids with excellent accuracy.

The MCT transition is purely dynamical, driven by a non-linear feedback mechanism

in the relaxation functions. Roughly, the relaxation time of a given dynamic correla-

tion function diverges as its correlation magnitude approaches some critical value at

temperature Tc.

A sharp dynamical transition is thus predicted at Tc, with relaxation times di-

verging as τ ∼ (T − Tc)
γ. Just above Tc, the correlation functions exhibit two-step

relaxations, and the slow α relaxations eventually diverge at Tc. The fast β relaxations

(decay toward plateau) are asymptotically described by the so-called MCT critical de-

cay power law, F(q, t) = f +At−a, where f is the nonergodicity parameter or plateau

height and A and a are constants. The late β relaxations (initial decay after plateau)

are asymptotically described by the von Schweidler law, F(q, t) = f−B(t/τ)b, where B

and b are constants. The exponents γ, a, and b are related through γ = 1/(2a)+1/(2b).

The slow α relaxations are generally well-described by stretched exponentials, with
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typical values for β near 0.6. These predictions are fulfilled with excellent accuracy

during the onset of glass formation in many liquids, but the sharp singularity at Tc is

not observed. The liquid instead continues to relax through activated hopping events

that are not accounted for in idealized MCT. Thus extending MCT to the later stages

of the glass transition remains an open subject of research.

MD simulations have also proven fruitful when applied to the early stages of the

transition, but this method reaches its computational limits many orders of magnitude

below the time scales relevant to most of the glass formation process. One of the

enduring missions of glass modeling has therefore been to extend the reach of atomistic

models – through brute force or conceptual advances – further in time and deeper into

the slow regimes of the transition.

Time- or ensemble-averaged dynamic density functional theories [17, 102–106, 109–

112, 149–152, 174] (DDFTs) have been proposed as an efficient means of describing

slow dynamics in dense liquids below Tc, but several key issues concerning such the-

ories remain unresolved: which of the proposed equations of motion are most appro-

priate, whether the details of the free energy significantly influence the dynamics, and

whether the detailed predictions of MCT can be reproduced and eventually improved

upon by such theories.

The early classical DFTs of freezing were developed to describe equilibrium prop-

erties of discontinuous liquid to crystal transitions, and they typically center on postu-

lated free energy functionals of the ensemble-averaged or time-averaged atomic num-

ber density field [7, 8, 10]. Explicit equations of motion for the density field were

introduced with the aim of building a coarse-grained dynamical framework for in-

homogeneous fluids and liquid-solid systems, now sometimes referred to as DDFTs.

Some of the common Langevin equations have been explicitly derived from microscopic

dynamics, others are simply plausible phenomenological approximations. These the-

ories in general are considered more fundamental than MCT in that the equations of

idealized MCT can be derived from a generic DDFT starting point, and their time-

averaged nature means that in principle they can describe dynamics beyond the early

stages of the transition, into the proposed activation dominated regime. The simplest,

most efficiently simulated variation of this approach, to our knowledge, is the PFC

class of free energy functionals [4, 25] which will be examined in this chapter.
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Mean field DFT functionals are known to typically produce multivalley free energy

landscapes in which an exponential number of aperiodic solid states coexist below a

certain T [33, 153–159]. These states have average free energies intermediate between

those of the mobile liquid and the underlying crystalline phase. However, the nature

of the transition by which a liquid evolves toward and between these aperiodic solid

states upon quenching is influenced heavily by the microscopic dynamics and thus,

in DDFT, by the equation of motion employed. Approximate analytic results [110,

149, 150] indicate that two DDFT equations of motion may describe a MCT-type

glass transition. Numerical confirmations of stretched exponential decay and super-

Arrhenius slowing have been reported for related models [151, 160], but no such

numerical studies of a proper DDFT seem to exist, and no evidence of plateauing

correlators or tests of the associated MCT scaling predictions have been reported for

any such models to our knowledge.

Here the results of direct numerical simulations of a candidate DDFT that con-

siders both inertia and damping, and utilizes the PFC class of free energy functionals

are presented. The equation of motion for the time-averaged density field contains

three dynamic components; ‘slow’ diffusive damping, ‘fast’ inertial propagation, and

additive stochastic noise. This is the so-called MPFC form first proposed by Provatas

et al [74], and used here in combination with a modified highly nonlinear free energy

functional due to Chan et al [95], which will be denoted as the Vacancy or VPFC

form.

This particular stochastic PFC-DDFT framework is shown to successfully describe

several aspects of the glass formation process over multiple time scales while sensi-

bly capturing the underlying competition between vitrification and crystallization in

both monatomic and binary systems. In Section 6.2 the model is introduced and

some connections with other DDFTs of glass formation are briefly established. Issues

related to defining and controlling temperature in the given model are discussed, and

a minimal temperature quenching procedure is outlined. Results for monatomic sys-

tems are presented in Section 6.3, while binary systems are treated in Section 6.4.

Monatomic systems are found to exhibit early signs of glass formation at intermedi-

ate temperatures and times but ultimately to crystallize unless rapidly quenched to a

low temperature. Binary systems are shown to be much less prone to crystallization
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and to display a rich and accessible range of characteristically glassy dynamics. The

nature of the resulting glass transition (strong vs. fragile) is characterized as a func-

tion of the balance of inertial and damping terms, and links between the degree of

fragility and cooperativity, extended correlations, and memory effects are discussed.

It is verified here for the first time that DDFT can describe a fragile MCT-type glass

transition in detail, over multiple time scales, and that relatively simple PFC free

energies express the relevant physics of dense supercooled liquids. It is hoped that

these findings will encourage further study toward determining the degree to which

such theories can ultimately extend the temporal reach of atomistic models of glass

formation.

6.2 Model Equations and Notation

The dimensionless Helmholtz potential of a two component PFC system can be written

F =

∫
d~r [fAA + fBB + fAB] (6.8)

where here the specific forms are given by [175]

fii =
ni

2

[
ri + (q2

i +∇2)2
]
ni +

1

4
n4

i +Hi(|ni|3 − n3
i )

and

fAB =
nA

2
(q2

AB +∇2)2nB +
rAB

2
n2

An
2
B.

In this notation i = A or B, ni → ni(~r, t) + n̄i is the scaled time averaged number

density of i particles, n̄i is the species average number density, ri is related to the

liquid bulk modulus, qi sets the equilibrium distance between particles of the same

species, qAB sets that between A and B particles, and Hi and rAB are constants

(see Refs. [4, 25] for further discussion of how these parameters relate to material

properties). The terms multiplied by Hi discourage ni < 0 and are the distinguishing

feature of the Vacancy or VPFC model [95, 175]. A hard ni ≥ 0 cutoff enforces

the physical interpretation of ni as a constrained number density and in doing so

produces a range of highly nonlinear responses. The resulting solutions take the form
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of interacting time-averaged density peaks, with local regions of ni ' 0 representing

unoccupied, or vacancy, sites.

As a first approximation for the dynamics of the density fields, diffusive relax-

ations can be described through a direct minimization of the local free energy, and all

dynamic processes on shorter time scales can be absorbed into an additive stochastic

noise term, giving Model B dynamics,

∂ni

∂t
= ∇2µi +

√
Miηi. (6.9)

Here t is the dimensionless time, Mi is a constant proportional to temperature, and ηi

is a gaussian stochastic noise variable with 〈ηi(~r1, t1)ηi(~r2, t2)〉 = ∇·∇δ(~r1−~r2)δ(t1−
t2). The PFC simulations reported in Chapter 5 indicate that Eq. (6.9) supports

metastable glass-like states but in general produces a discontinuous, nucleation-driven

liquid to glass transition [33]. The dynamic correlators often exhibit stretching, but

clear two-step relaxations and Vogel-Fulcher divergences are not readily observed. An

earlier study employing non-conserved dynamics and conserved MC-type dynamics

similarly concluded that super-Arrhenius slowing does occur but that the overall na-

ture of the slow relaxations are in many ways dissimilar to those of a glass forming

liquid [176].

The equation of overdamped DDFT also considers only diffusive time scales but

with a spatially varying mobility function and multiplicative noise,

∂ni

∂t
= ∇ · (Γi(~r)∇µi) +

√
Miνi (6.10)

where Γi(~r) is generally set to ni(~r) + 1 and

〈νi(~r1, t1)νi(~r2, t2)〉 = ∇ · ∇ [(ni(~r) + 1)δ(~r1 − ~r2)δ(t1 − t2)] .

This equation’s connection with the MCT of glass formation has been studied by

Kawasaki et al [149] and by Andreanov et al [150]. As noted in Chapter 2, Kawasaki

et al have suggested that the non-constant mobility term ni(~r) + 1 in Eq. (6.10)

gives rise to caging effects and is therefore essential for describing dense glass forming

liquids. In fact, their calculations indicate that the standard equations of the MCT
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glass transition can be derived from Eq. (6.10) but not from Eq. (6.9). A recent

derivation of Eq. (6.10) relevant to PFC colloidal models has been given [60], as well

as discussion of its application to binary PFC systems [41].

A third equation reintroduces a ‘fast’ time scale through an added inertial or

wave-like term,
∂2ni

∂t2
+ βi

∂ni

∂t
= α2

i∇ · (Γi(~r)∇µi) +
√
Miνi (6.11)

where αi and βi are constants. The introduction of Eq. (6.11) to PFC modeling was

discussed in Chapter 2. In the realm of DDFT and glass formation, Archer [109, 110]

and Marconi and Tarazona [111, 112] have derived the noiseless version of Eq. (6.11)

to describe dense fluids with both inertia and damping, as an extension of the simpler

overdamped dynamics of Eq. (6.10). Recent analyses of Eq. (6.11) suggest that it

too may recover the class of MCT equations for the liquid dynamic correlators that

successfully describe a wide range of glass forming behaviors [110].

In this chapter Eq. (6.11) with Γi(~r) = 1 is numerically investigated, without

approximation. Note that inclusion of stochastic noise implies an interpretation of

DDFT in the time-averaged sense rather than in the ensemble-averaged sense [97, 98].

Equations of motion that explicitly consider additional fields such as momentum or

energy density are not considered, as the single field description is significantly more

tractable in terms of direct simulation, analytic solution, and connection to MCT.

An explicit Euler finite difference algorithm was used to solve Eq. (6.11) in three

dimensions with periodic boundary conditions (see Appendix A.3).

Since the PFC free energy is generated through a truncated expansion of the

Ramakrishnan-Yussouff functional [7], every variable PFC parameter may in princi-

ple have some degree of temperature dependence when associated with a particular

molecular system. But for the sake of simplicity and of demonstration, tempera-

ture will here be associated with only one variable, that specifying the magnitude of

stochastic thermal noise, T = TNMi. This minimal temperature quenching procedure

induces all of the glass forming behaviors that have been selected for study. Equi-

librium liquid states at high Mi were thus quenched by lowering T = TNMi at some

rate Ṫ , and the freezing transition was analyzed for onset of vitrification or crystal-

lization. Similar results have been obtained by increasing the average density rather

than lowering Mi, as is generally done with hard sphere liquids.
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The noise-based method of varying T emphasizes the stochastic nature of the

present model, whereas the deterministic versions of DDFT describe a glass transition

associated with the temperature dependence of the free energy alone. The effect of

varying Mi should be similar to that of varying the effective free energy functional

generated by renormalization over the stochastic noise contributions.

6.3 Results: Monatomic Liquids

Simple monatomic systems generally have low barriers to crystallization, a property

which limits their utility as models for glass formation. Signs of glass formation may

nonetheless be observable near the freezing temperature of the crystal, Tf , before the

onset of crystallization. Glass states may also be stable for long times when the liquid

is quenched very rapidly to temperatures well below Tf , producing a characteristic

‘nose’ feature in the system’s time-temperature-transformation (TTT ) diagram. The

results presented in this section confirm that these are precisely the freezing behaviors

produced by the monatomic VPFC model.

Simulation data relevant to glass formation are shown in Fig. 6.1 for a repre-

sentative monatomic system. For T & 1.6 the structure and dynamics are those

of a normal liquid. The measured intermediate scattering functions, Fij(q, t) =

〈δni(q, 0)δn∗j(q, t)〉/Fij(q, 0), decay exponentially, the corresponding average relax-

ation times show an Arrhenius T dependence, and the structure factors are char-

acteristic of an equilibrium liquid state. The function SP (q) quantifies the structural

correlations of the localized peaks in the density field: SP
ij(q) = 〈δnP

i (q)δnP∗
j (q′)〉,

where δnP
i (r) is a binary map of the positions of the local number density peaks.

Below T ' 1.6, the liquid begins to show signs of nonequilibrium behavior and

the onset of glass formation. F(q, t) becomes increasingly stretched and begins to

exhibit a shoulder, the average relaxation time briefly begins to grow with a super-

Arrhenius T dependence, and a split second peak emerges in SP (q). But signs of

glass formation persist only to the freezing temperature of the crystal, Tf . Below this

point crystallization interrupts the apparent glass transition unless the liquid is rapidly

quenched well below Tf . The time-temperature-transformation (TTT ) diagram shown

in Fig. 6.1(d) demonstrates this behavior. The profile of the nose feature is typical of
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but have chosen to focus on equation (1) here due to its
relative robustness and low maintenance nature in terms
of parameter tuning.

As a first approximation for the dynamics of the den-
sity fields, one may write

∂ni

∂t
= ∇2 δF

δni
+
√

Diηi (2)

where t is the dimensionless time, Di is a constant pro-
portional to temperature, and ηi is the gaussian stochas-
tic noise variable with 〈ηi($r1, t1)ηi($r2, t2)〉 = ∇ ·∇δ($r1 −
$r2)δ(t1 − t2). A second form is the overdamped equation
of DDFT,

∂ni

∂t
= ∇ ·

(
n($r, t)∇ δF

δni

)
+
√

Diνi (3)

where 〈νi($r1, t1)νi($r2, t2)〉 = ∇ ·
∇ [n($r, t)δ($r1 − $r2)δ(t1 − t2)] and n($r, t) is gener-
ally set to ni($r, t). A third equation reintroduces some
of the faster, sub-diffusive dynamics by also including
an inertial or wave-like term,

∂2ni

∂t2
+ βi

∂ni

∂t
= α2

i∇ ·
(

n($r, t)∇ δF

δni

)
+
√

Diνi (4)

where αi and βi are constants. This equation of motion
(with n($r, t) = 1) was first applied to PFC dynamics with
a focus on its application to solid elasticity19.

Previous PFC simulation studies indicate that equa-
tion (2) supports metastable glassy states but in gen-
eral produces a discontinuous, nucleation driven liquid
to glass transition15. Equations (3) and (4) have been

proposed within DDFT, and approximate analytic cal-
culations indicate that both, when employed with stan-
dard free energies, will describe a MCT-like glass transi-
tion upon quenching6–8. It may be worth noting that
the noiseless version of equation (4) can be rewritten
as a diffusion equation with an exponentially decaying
history-dependence20, somewhat analagous to the space-
dependent diffusion of equation (3). In this study we
will present results of a numerical investigation of equa-
tion (4) with n($r, t) = 1. The combination of equations
(1) and (4) is referred to as the Modified Vacancy PFC
(MVPFC) model. Note that inclusion of stochastic noise
implies an interpretation of DDFT in the time-averaged
sense rather than in the ensemble-averaged sense21,22.

Equilibrium liquid states at high Di were quenched
by lowering the stochastic noise amplitude T = T0Di at
some rate Ṫ , and the freezing transition was analyzed
for signs of glass formation and/or crystallization. This
method of varying T emphasizes the stochastic nature of
our model, whereas the deterministic versions of DDFT
describe a glass transition associated with the tempera-
ture dependence of the free energy alone. The effect of
varying Di should be similar to that of varying the ef-
fective free energy functional describing our system after
renormalization over the stochastic noise.

We begin with results for monatomic systems, out-
lined in figure 1. For T ! 1.6 the structure and
dynamics are those of a normal liquid. The mea-
sured intermediate scattering functions (Fij(q, t) =
〈δni(q, 0)δn∗

j (q, t)〉/Fij(q, 0)) decay exponentially, the
corresponding average relaxation times show an arrhe-
nius T dependence, and the structure factors are char-
acteristic of an equilibrium liquid state. The function

e

Figure 6.1: Glass formation and crystallization in the monatomic VPFC model. (a)
F(q∗, t) at various T where q∗ corresponds to the first peak maximum in SP (q). (b)
SP (q) at same T as in (a), offset vertically by 0.5n with n = 0, 1, .... (c) Arrhenius plot
of τ ∗ from F(q∗, t), Inset: stretching exponent β∗ from fit to F(q∗, t) = exp [−(t/τ ∗)β∗ ].
(d) TTT diagram: samples quenched from T = 1.6 at various Ṫ , points denote
where crystallization occurred, the solid line is a guide to the eye. (e) Representative
n(~r) configurations for three states, averaged over 4, 000t. Unless specified otherwise,
n̄A = 0.15, rA = −0.9, qA = 1, HA = 1500, TN = 1000, αA = 1, βA = 0.01,
fBB = fAB = 0, ∆x = 1.0, ∆t = 0.02, and V = 1283.

materials with relatively marginal glass forming ability, such as metallic glasses. Since

long-lived glassy states are not supported in the region 0.6 . T . Tf , one cannot

study a gradual dynamic transition from liquid to glass.

Before moving on, it may be worth noting that this example demonstrates one of

the advantages of the PFC-DDFT approach to glass formation; that all fundamental

aspects of phase behavior in liquid-solid systems are naturally incorporated. The

crystallization process is crucial to any description of freezing when the relevant energy

barriers are low, and such models automatically account for it. Idealized MCT, for

example, does not. It predicts an uninterrupted divergence of the liquid relaxation

time below Tf for this system. Even when crystallization does not play an important

role, access to thermodynamic variables for liquid, glass, and crystal phases as well

as a tangible description of the transformation dynamics between each makes the
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PFC-DDFT approach an appealing framework for this problem.

6.4 Results: Binary Liquids

The binary system studied here contains equal number densities of A and B atoms

(n̄A = n̄B = 0.075), and the equilibrium spacing of A atoms is 20% smaller than

that of B atoms (qB/qA = 0.8). Other size and concentration ratios have also been

examined, but the discussion here will be limited to the qB/qA = 0.8, n̄A = n̄B = 0.075

system. The other model systems show similar qualitative behaviors.

6.4.1 Inertia versus damping

The results presented in the previous section were limited to a single, highly under-

damped dynamic condition, αA/βA = 100. In this section the qualitative behavior of

the chosen binary model is outlined for a range of dynamic conditions, from highly un-

derdamped (αi/βi = 100) to highly overdamped (αi/βi = 0.01). Then results for the

highly underdamped case are presented in greater detail, as this condition produces

the widest range of glass forming behaviors.

Only the NN correlations are plotted in Figs. 6.2(a)-(c), where N denotes the

full density field nA + nB. When damping dominates, an effectively stable glass

with dynamics resembling those of a strong glass former is generated. The dynamic

correlators are generally best fit as a single exponential decay for all accessible T , with

increased stretching as T is lowered, but any plateaus are absent or ill-defined in the

αi/βi . 1 data. The relaxation times exhibit a nearly Arrhenius T -dependence over

the entire accessible T -range.

At the opposite extreme, when inertia dominates, a transition with dynamics char-

acteristic of fragile liquids is generated. The dynamic correlators show both stretching

and clear plateauing as T is lowered, and the divergence of the relaxation time is well

fit by the Vogel-Fulcher form (τ = τ0 exp [B/(T − T0)]). This divergence becomes in-

creasingly super-Arrhenius at higher T as αi/βi grows. The underdamped transition

at this level of detail qualitatively resembles that described by MCT.

The fragility of the PFC liquid therefore appears to be strongly linked with the

balance of inertial and damping terms in Eq. (6.11), αi/βi. The degree of fragility is



122 Chapter 6. Supercooled Liquid Dynamics and the Glass Transition

 0
 0.2
 0.4
 0.6
 0.8

 1

10-210-1100101102103104105106

F N
N

(q
=q

*)

Time, t

a
1.557 
1.225 
1.012 
0.784 
0.648 
0.540 

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

F
N

N
(q

=
q
*)

Time, t

b

0.900 
0.729 
0.541 
0.380 
0.324 
0.281 

 0
 0.2
 0.4
 0.6
 0.8

 1

10-210-1100101102103104105106

F N
N

(q
=q

*)

Time, t

c
1.225 
0.900 
0.729 
0.625 
0.541 
0.473 
0.420 
0.400 

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0.5  1  1.5  2  2.5  3

!
* ij

1 / T

d AA BB NN

.01
.1
1

10
100

1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0 0.25 0.50 0.75 1.0

!
* N

N

T* / T

e

.01
.1
1

10
100

1  1.5  2  2.5

10
2

10
4

10
6

10
8

(!
2 i 
/ 
"

i)
 #

* N
N

SP
NN(q*)

FIG. 1:

 0
 1
 2
 3
 4
 5
 6

 0.5  1  1.5  2  2.5

SP N
N

(q
)

q

f

Figure 6.2: Binary VPFC results for various damping conditions. FNN(q∗, t) at various
T are shown for αi/βi of (a) 0.01, (b) 1, and (c) 100. (d) Arrhenius plot of the
structural relaxation times τ ∗ij. (e) the same data (NN only) scaled as an Angell plot
to clarify strong vs. fragile behaviors, with Vogel-Fulcher fits shown as solid lines and
power law fits as dashed lines. Inset: (α2

i /βi)τ
∗
NN vs. SP

NN(q∗), demonstrating scaling
of overdamped systems and deviation from this scaling when inertial effects become
large. (f) SP

NN(q) for αi/βi = 100. n̄A = n̄B = 0.075, ri = −0.9, qA = 1, qB = 0.8,
Hi = 1500, TN = 1000, qAB = 8/9, rAB = 100, ∆x = 1.0, ∆t = 0.025, and V = 643,
1283, or 2563.

in turn correlated with the nominal spatial extent of cooperative dynamic behavior,

which is set by an inherent length scale associated with the inertial term. This term

generates wave modes which propagate over a fixed length scale in a crystal before

being damped, and the resulting dynamic correlation length follows ξcrystal
D ∼ αi/βi

[74]. In a normal liquid these correlations are largely suppressed by the low density

and weak structural correlations, so that ξliquid
D � ξcrystal

D and cooperativity is limited.

But with greater supercooling, as the system becomes increasingly dense and solid-

like, the inertial correlations survive over length scales which likely approach ξcrystal
D .

Roughly, ξliquid
D → ξcrystal

D ∼ αi/βi as T → Tg. (This behavior may signal the onset

of a percolation-type transition, wherein the growing correlation volumes eventually

form a continuous rigid network persisting over all accessible t. See for example Refs.

[177–179].)
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The effects of this growing dynamic length scale are therefore especially prominent

in highly underdamped systems, where its properties can be observed and quantified

through finite size effects in F(q, t). Its effects are apparent only upon the slow

relaxation processes in the glass-like liquid, with the fast, pre-plateau processes re-

maining effectively independent of system size. As an example, when αi/βi = 100

finite size effects in the post-plateau relaxations become numerically insurmountable

below T ' 0.4. Measurements indicate that the average two point liquid static corre-

lation length ξliquid
S grows slowly, approximately as 1/T , while the dynamic correlation

length grows more rapidly, as ξliquid
D ∼ (T − T0)

−1±0.35 (see Fig. 6.5(c)). This distinc-

tion indicates that the supercooled liquid exhibits heterogeneous dynamics driven by

strong inertial effects. Similar links between slowing dynamics and growing dynamic

correlation lengths have been discussed within the random first order theory (RFOT)

[180], the Adam-Gibbs-DiMarzio entropic theory [170], MCT [181], MD simulations

[171, 182, 183], and colloidal experiments [184, 185], to name a few. Thus, the growing

ξliquid
D that we have identified in underdamped DDFT is consistent with known results

from theory and experiment. Whether such a length scale can generally be associated

with inertial effects is for now unclear.

A correlation between fragility and the length scale for cooperativity is consistent

with existing interpretations of strong and fragile liquids [186]. The cooperative dy-

namics permitted when oscillations are weakly damped appears to be fundamental

to the fragile glass transition or at least sufficient for its existence. A link to recent

experiments on colloidal glasses which demonstrate a transition from strong to fragile

behavior as the elastic properties of the colloidal particles become increasingly stiff

[187] also appears relevant. When overdamped, Eq. (6.11) describes a very soft, visco-

elastic solid, while elastic stiffness and fragility both increase as damping is reduced.

This is because αi ∼ vs ∼
√
E, where vs is a sound speed and E is the relevant elastic

modulus. Greater elastic stiffness should therefore correspond to reduced effective

damping and an expectation of increased fragility. This agrees with the trend found

in Ref. [187]. (Links between fragility and elastic properties have also been discussed

in Ref. [188])

A slightly different physical picture can be invoked by considering Eq. (2.32), which

suggests that αi/βi controls the dynamic memory time rather than the dynamic length
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scale. Less damping then corresponds to enhanced memory effects, which leads to

increased caging and a more rapid slowing of relaxations. This argument is probably

limited to the range of dynamics in which cooperativity or memory effects are non-

negligible, αi/βi & 3, wherein the dynamics become steadily more fragile as damping

is reduced. For much smaller αi/βi, relaxations become slower in general, presumably

due to the loss of a discernible oscillatory relaxation channel, but lose their two-stage

and super-Arrhenius features.

6.4.2 Inertia dominated dynamics

The case of αi/βi = 100 will now be examined in greater detail. Figures 6.3 and 6.4

show simulation images of N(~r) = nA(~r)+nB(~r) for this system averaged over various

times at T = 1.225, 0.541, and 0.420. Caging is apparent at short times for all T ,

as the peaks oscillate locally but rarely move large lateral distances. Eventually the

time-averages of the smaller A peaks begin to spread as the majority have escaped

their initial cages, and the larger B peaks evolve similarly at slightly later times. In

the intervening period, the B particles are effectively caged by the A particles. When

averaged over very long times, both density fields approach a structureless state with

density n̄i.

As T is lowered and the liquid becomes glass-like, the long time averages retain

more of their original structure as the peaks exhibit less translational freedom. It is

important to note that time averages are shown at equal multiples of each liquid’s

relaxation time, not at equal t, so that time scales remain normalized as T is varied.

The continuous but rapid decline in translational freedom as T is lowered signals

a smooth transition from liquid-like to activated dynamics. This is consistent with

the postulated crossover at Tc, below which relaxations are expected to be limited

by increasingly rare, heterogeneously correlated cage escape events. This transition

coincides with the emergence of the plateau in Fij(q, t) and the split second peak in

SP
NN(q) below T ' 0.6, as shown in Figs. 6.2(c) and (f).

6.4.3 Comparison with MCT

Figure 6.5 shows data for the αi/βi = 100 system relevant for comparison with the

predictions of MCT. The nonergodicity parameter, fij(q) (height of the plateau in

Fij(q, t)), is plotted in Figure 6.5(a) for T = 0.420. It follows the normal MCT
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Figure 6.3: Time-averaged density evolution in the supercooled binary liquid. Binary
number density field at T = 1.225 (top), 0.541 (middle), and 0.420 (bottom) averaged
over the indicated multiples of each system’s relaxation time. A sub-cubic section
of each cell has been removed to reveal a portion of the inner simulation box. nA(~r)
time averages are displayed with a black-orange color scheme, nB(~r) with black-white.
2D cross-sections from the t = 5.7τ ∗NN images are displayed toward the bottom right.
Each shows nA(~r) time averages (left), overlay of nA(~r) and nB(~r) time averages
(middle), and nB(~r) time averages (right).
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T=1.225

T=0.541

t = τ ∗NN

T=0.420

t = 5.7τ ∗NN t = 38.5τ ∗NN

Figure 6.4: 2D cross-sections of the binary number density field at three temperatures,
averaged over the indicated multiples of each system’s relaxation time. The left half of
each image shows nA(~r) time averages (black-orange) and the right half shows nB(~r)
time averages (black-white).

behavior in which fij(q) decays while oscillating in phase with Sij(q).

Some of the dynamic scaling behaviors predicted by MCT are tested in Fig. 6.5(b).

The von Schweidler law for late β-relaxations (initial decay after plateau) is an asymp-

totic approximation of the full MCT master relaxation curve. Present results indicate

that the von Schweidler scaling, F(q, t) = f−B(t/τ)b, is obeyed reasonably well over 2-

3 orders of magnitude in time. The measured von Schweidler exponent b ' 0.45±0.15

is comparable to typical values. To within statistical error b is independent of q and

T , consistent with asymptotic MCT, though the data suggests a moderate decrease

in b with T . The initial decay to the plateau is best fit at intermediate T by a simple
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Figure 6.5: Comparison of the highly underdamped model with MCT and other the-
ories. (a) fNN(q) shown with SP

NN(q)/2.7. (b) FNN(q, t/τ ∗NN) with various MCT scal-
ing functions. Dashed: von Schweidler law, Dotted: stretched exponential, Dashed-
Dotted: (1−fNN) exp [−t/τβ]+fNN exp [−(t/τα)β]. (c) Static and dynamic correlation
lengths vs. 1/T . Inset: same data plotted vs. 1/(T−T0) on a log-log scale. The dashed
red line has a slope of 1, corresponding to ξD ∼ (T − T0)

−1.

exponential, though the MCT critical decay power law, F(q, t) = f + At−a, becomes

the better fitting function once the plateau is well-defined. The measured critical

decay exponents vary somewhat with ij, T , and q, but on average a ' 0.3± 0.1.

The late α-relaxations predicted by MCT are generally well-approximated by a

stretched exponential decay. The VPFC data are fit quite well by this form, as

shown in Fig. 6.5(b), but with a stretching exponent β that decreases with T from

approximately 1 to 0.6. MCT also predicts that the initial divergences of the fast

and slow relaxation times follow power laws, τβ ∼ (T − Tc)
−1/(2a) and τα ∼ (T −

Tc)
−γ, respectively, where γ = 1/(2a) + 1/(2b). Fits to these forms are shown in

Fig. 6.2(e), and though the Vogel-Fulcher fits are superior, the power law fits are

reasonably accurate through the early stages of super-Arrhenius growth. The resulting

parameters, γ ' 2.25±0.75 and a ' 0.33±0.1, both agree with the values determined

from fits to the relaxation functions within estimated error.

6.4.4 Aging properties

The effect of waiting time tw on the supercooled liquid relaxations is shown in Fig.

6.6. Samples were quenched instantly from T = 0.9 to the indicated temperatures,

and the Fij(q, tw + t, tw) were then measured for values of tw=100, 101, 102, 103, 104,

and 105. The normal liquid at T = 0.729 exhibits only very minor signs of aging, even

for values of tw much smaller than the equilibrium relaxation time. This suggests that
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Figure 6.6: Aging behavior in the underdamped binary VPFC supercooled liquid.
Samples quenched from T = 0.9 and monitored after various waiting times tw. (a)
FNN(q∗, tw + t, tw) for various tw, T , and system sizes. (b) Measured relaxation time
vs. tw showing the various scalings with tw.

the free energy landscape in the normal liquid state is relatively flat, such that any

initial liquid-like state will already be close to equilibrium and will very rapidly lose

any small initial history dependence.

At T = 0.4, well into the glass-like regime, clear aging effects emerge for all values

of tw smaller than the structural relaxation time. The general behavior is very similar

to that observed in MD simulations [189] and colloidal experiments [12]. There is

an initial range of small tw values for which the relaxation functions show little or

no tw dependence. This behavior is apparently associated with the fastest possible

relaxation process for a given T in this model, which effectively cuts off all faster time

scales. Above this T -dependent cutoff, a systematic tw-dependence becomes apparent,

with very good adherence to the predicted Ffast + Faging decomposition. Short time

scales remain independent of tw, while slow relaxations scale quite well with t/tµw.

The measured values of µ are in the range of 0.5 to 1, with possible dependences on

system size and T .

All of the tw scalings break down at large tw as the ‘equilibrium’ relaxation function

is eventually obtained and aging ceases. The ‘equilibrium’ relaxation function depends

on system size when finite size effects are present, as in the T = 0.4 and T = 0.2

data. Another interesting feature of the data is the long-time tail that appears for
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small tw. This seems to be a reflection of the sudden introduction of slow processes

and significant local trapping. The slow time scale is immediately evident in the

relaxations for all tw, but takes some finite amount of time to reach a steady state as

the system settles into the new, more restrictive free energy landscape.

6.4.5 Bridging time scales

The issue of connecting these PFC results with physical time scales, by defining an

effective coarse-graining time, has not yet been discussed in any detail. One way to

make this connection, when the model describes two characteristic dynamic scales, is

to define the coarse-graining time in terms of the relative separation of the two scales.

In the inertial equation of motion, the chosen separation between phononic and

dissipative time scales can be interpreted to set the physical time scales being modeled.

Consider the case in which α = 1. When β � 1, the two processes are relatively

close in time, and the shortest time that can be described by the model should be

near the characteristic phononic times. The longest time, given finite computational

power, will likely be three to six orders of magnitude above phonon times. When

β � 1, the two time scales become widely separated, and the shortest time that can

be described should eventually become longer than the characteristic phononic times.

Fast processes are effectively integrated out or neglected in such cases, and the longest

time described then increases in proportion to β. If the characteristic phononic times

are regarded as relatively fixed (in physical units), then increasing β can be interpreted

as increasing the physical coarse-graining time. Thus, for the inertial PFC model in

the limit of fixed T , the time over which a system is coarse-grained should be roughly

proportional to the chosen damping rate β [tactual ∼ βtPFC ]. One can also show

that linear vacancy diffusion times in the inertial model scale as βt in the long time

limit, which further supports the idea that physical times enter the model through

the damping rate.

This simple picture becomes more complicated when T is varied and/or when

more realistic phonon dynamics are considered, but it should serve as one possible

basis for connecting with physical times. It is also probably reasonable to assume

that the accuracy of the description decreases as the coarse-graining time grows, but

this should be less of a concern for some systems than for others. For example, the
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situation described above is similar to that known to occur in glass forming liquids.

The characteristic relaxation times grow rapidly over a narrow T range, and the

separation between ‘fast’ and ‘slow’ processes becomes quite large. Thus, the proposed

ability to telescope our description across time scales should be most valid for systems

like glass forming liquids, where there are rapidly varying, well-separated dynamic

processes, with late time dynamics dominated by diffusive dissipation.

Figure 6.7 shows the application of these arguments to the binary VPFC glass

forming liquid. Scaling t with β spreads the measured relaxation times out over eight

orders of magnitude. If T is also scaled such that the curves converge, the envelope of

the resulting data set can be well described by a Vogel-Fulcher fit. The corresponding

F(q, βt) results can be superimposed in the same way to span 12 complete orders

of magnitude in time. A further assumption is made here, that the large β results

describe only the post-plateau relaxations and can thus be set to begin from the

plateau height measured from small β simulations. Comparison with experimental

data from a colloidal glass forming liquid shows striking qualitative agreement in

terms of the universal relaxation features of fragile liquids. Quantitative agreement is

not expected since the PFC model used here is not intended to describe a polydisperse

hard sphere system. It should also be noted that the experimental data shows the

self-part of the intermediate scattering function, while the PFC data shows the full

F(q, t). Both forms generally show the same qualitative behaviors in glassy liquids.

Simulating 12 orders of magnitude (or more!) in time in three dimensions is a

significant, previously undemonstrated capability and worth emphasizing. If phononic

times are O(10−10s), it is implied that the longest times on the PFC scale approach

fully macroscopic values. For colloidal systems, this scale is shifted upward. It would

clearly be of interest to examine more closely the accuracy of this description as a

function of the coarse-graining time, and to determine more precisely when such a

β-scaling might be valid.

An initial test of validity is shown in Fig. 6.7(c), where the MCT time-temperature

superposition principle is applied to the scaled data. The detailed MCT functional

form is relatively well obeyed by the dynamic correlators for all T and β, when time

is scaled by β. This fact and the accurate Vogel-Fulcher envelope fit constitute an

initial data-based justification of the proposed time scaling, though further study is
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Average dynamics and dynamical heterogeneity in the supercooled regime xix

Fig. 0.4 Intermediate scattering functions for colloidal hard spheres (Brambilla et al., 2009;

Brambilla et al., 2010). Data are labeled by the volume fraction ϕ. The lines are stretched
exponential fits to the final decay of fs(q, τ ). Adapted from (Brambilla et al., 2009) with

permission

0.3 Average dynamics and dynamical heterogeneity in the
supercooled regime

0.3.1 Structural relaxation time

The average dynamics of colloidal hard spheres in the supercooled regime (ϕ < ϕg) has
been thoroughly studied in a series of works on PMMA-based systems (Pusey and van Megen, 1987;
van Megen and Underwood, 1994; van Megen et al., 1998; Brambilla et al., 2009; El Masri et al., 2009).
Figure 0.4 shows typical ISFs measured for a variety of volume fractions at a scat-
tering vector q = 2.5/a (a = 100 nm) (Brambilla et al., 2009; Brambilla et al., 2010),
below the first peak of the static structure factor [we quote here the more precise
determination of a reported in (Brambilla et al., 2010), slightly smaller than that
in (Brambilla et al., 2009)]. These experiments are performed close to the best index
matching conditions for a PMMA sample with size polydispersity σ = 12.2% (Brambilla et al., 2010).
Under these conditions the sample is optically polydisperse, as discussed in Sec. 0.2.3;
thus, the self part of the ISF, fs, is probed (El Masri et al., 2009). At low volume
fractions, the decay of fs is well fitted by a single exponential, as expected for diluted
Brownian particles. As ϕ increases, the ISFs develop a two-step relaxation. The initial
decay depends weakly on ϕ and corresponds to the motion of a particle in the cage
formed by its neighbors. The final decay corresponds to the relaxation of the cage; its
characteristic time, τα, increases by almost 7 decades in the range of ϕ investigated,
where all samples equilibrate.

Figure 0.5 shows τα(ϕ), as obtained by fitting the final relaxation of the ISF to a
stretched exponential:

fs = B exp[−(τ/τα)β ] , (0.9)

with β ≈ 0.56 in the glassy regime. In the range 0.517 < ϕ < 0.585, corresponding to
about three decades in relaxation time, the volume fraction dependence of τα agrees

(d)

Figure 6.7: Binary VPFC glass formation in the β-scaled time limit and comparison
with experimental colloid data. (a) Arrhenius plot of scaled relaxation times (offset in
T ) and the envelope Vogel-Fulcher fit (solid line). (b) Dynamic correlators FNN(q, βt)
scaled by β. The lines are fits to superimposed stretched exponentials. (c) Same as
(b) except with the MCT t/τ scaling, to demonstrate general adherence to the time-
temperature superposition principle. The pre-plateau fit for large β is assumed from
the small β results. (d) Dynamic correlators for a hard sphere colloidal glass former
[190].
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clearly in order, considering the implications of such a scale bridging procedure.

6.5 Conclusions

These results confirm that the DDFT equation of motion with inertia does in fact

describe a glass transition, and that when damping is weak this transition strongly

resembles both the structural glass transition observed for fragile glass formers as well

as that predicted by MCT. Relatively simple PFC free energies have also been shown

to contain sufficient physics to produce a wide range of glassy behaviors, while still

permitting efficient simulation. The necessary ingredients for a comprehensive glass

transition in PFC-DDFT models therefore appear to be 1) sufficiently strong local

nonlinear effects which act to suppress crystallization, naturally achieved through

a simple repulsive coupling of A and B fields with lattice constants that differ by

∼ 10 − 25%, and 2) an equation of motion with two well-separated characteristic

times, such as the underdamped inertial formulation. The highly nonlinear VPFC

penalty term acts to further enhance glassy behaviors by highlighting packing and

free volume effects.

Monatomic systems exhibit early signs of glass formation but eventually crystal-

lize unless rapidly quenched to a very low temperature. Binary systems circumvent

the crystallization problem and display a range of characteristically glassy behaviors.

With overdamped dynamics, the observed relaxations exhibit stretching and the struc-

ture becomes increasingly glass-like as T is lowered, but the temperature dependence

of the relaxation time is nearly Arrhenius. As the balance in the equation of motion

is shifted toward the inertial term, or equivalently, as the propagation length scale is

increased or the dynamic memory time is increased, the system becomes increasingly

fragile. Plateauing relaxation functions are obtained due to the strong caging effect

(a separation of cage rattling and cage escape time scales) as well as a Vogel-Fulcher

temperature dependence for the slow relaxations. The transition is accompanied by

increased cooperativity in the supercooled liquid and a growing correlation length,

which may eventually saturate before Tg is reached.

The findings outlined here are consistent with a picture in which fragility is driven

by a large dynamic correlation length, which in some cases can be associated with large
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elastic moduli. A direct test of this association could be performed using colloidal

systems such as those of Ref. [187]. By varying the degree of confinement, one could

compare the relative magnitudes and growth rates of any dynamic correlation length

as behavior is varied from strong to fragile.

A conservative numerical algorithm was used in this work to demonstrate with

maximum confidence that the simulation results are accurate and unbiased, and that

the model does in fact produce a glass transition. Thus, the maximum accessible

distance below Tc has not yet been probed, but preliminary results obtained using

more advanced algorithms indicate that significant improvements in efficiency are

at hand. The inclusion of an inertial term in the equation of motion, which allows

one to study faster processes and the MCT plateau in the dynamic correlators, may

inevitably impact the theory’s ability to simulate extremely long relaxation times, but

if the proposed time scaling remains valid with overdamped dynamics, then studies

examining behavior well below Tc appear to be possible.





CHAPTER 7

Binary Heteroepitaxial Thin Film Growth

The characteristic spatial concentration patterns that develop in growing strained

alloy films are outlined from simulation results for a two dimensional binary PFC

model. These patterns are either lateral peak-to-valley variations or vertical surface-

substrate variations, and the specific behaviors are shown to vary with misfit strain

and species mobility ratio. Selected growth issues in simpler monatomic films are

also discussed in relation to the predictions of continuum elastic theories. Significant

deviations from the continuum limit are observed for relatively small deviations from

idealized growth conditions.

7.1 Phenomenology and Literature

A potentially useful application of the PFC model is in the technologically important

process of thin film growth. Heteroepitaxy, the growth of a crystalline film exhibiting

atomic coherency with a crystalline substrate of differing lattice constant, is a widely

encountered type of film growth for which the PFC approach is particularly well-

suited. One may define three general stages in the growth of a film from the melt

under uniaxial strain. The first is an initial surface roughening stage, described in the

continuum limit by the Asaro-Tiller-Grinfeld (ATG) instability [191–193]. The second

stage is characterized by strain relief through nucleation of dislocations at locations

of strain concentration, typically on the roughened surface. During the third stage,

135
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the film surface relaxes back toward a planar morphology and uniform growth, as the

initial misfit strain has been relieved by the dislocations.

The ATG theory describes the initial roughening process in terms of a chemical

instability in solid films growing under uniaxial lateral strain. The instability is driven

by a competition between surface energy and the rising elastic strain energy in the

growing solid. Above some threshold, the amount of strain energy relieved by a

rough surface will be greater than the corresponding increase in surface energy, so

roughness becomes preferred at wavelengths above some critical value. The resulting

surface corrugations generally grow unstably – a protuberance at the surface lowers

the local chemical potential, increasing the local film growth rate, while a surface

valley raises the local chemical potential, either slowing the local film growth rate

or encouraging melting. The linear result is a divergence in surface roughness which

eventually leads in real films to dislocation nucleation at valleys, followed finally by

relaxation of surface roughness.

The ATG theory describes only the onset of the initial morphological instability,

not dislocation nucleation and not the subsequent relaxation. It provides predictions

for the thickness at which a film initially becomes unstable to roughening hunstable, and

above this thickness, the linear growth rates σ(q) of all unstable surface perturbation

wavenumbers q, including the fastest growing wavenumber qc and the largest unstable

wavenumber q0. All of these results, being linear, apply to the onset of morphological

instability and may not provide an accurate description of much of the roughening

process.

Heteroepitaxy has been examined in previous PFC studies of monatomic films

[3, 4]. These initial works showed that the three general growth stages of morpho-

logical instability, dislocation nucleation at the film surface, and relaxation are all

naturally reproduced without the numerical singularities at cusp tips encountered in

most continuum models. Another important effect in alloy films, compositional in-

stability (phase separation in the growing film), requires consideration of multiple

atomic species and their interaction. The purpose of this chapter is to illustrate how

the binary PFC model addresses such compositional effects in alloy heteroepitaxy,

focusing on the spatial dynamics of phase separation over diffusive time scales.

In traditional applications, crystal growers desire flat, uniform film surfaces with a
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minimal number of dislocations and a homogeneous composition throughout the film.

In other cases, such as the epitaxial growth of quantum dots, it is important to care-

fully control the surface morphology and composition profile to produce the desired

spatial patterns. Some devices incorporate continuous or discontinuous compositional

grading so that electronic properties can be customized to meet a specific need. In all

of these cases, it is important to understand the individual and cooperative roles of

misfit strain (ε), solute expansion (η), and species mobilities (ΓA,ΓB) in the dynamic

evolution of the phenomena listed above.

To date, a number of models of single component film growth incorporating surface

roughening, dislocation nucleation, or both have been proposed [191, 192, 194–211],

and models of binary film growth incorporating surface roughening and phase sepa-

ration have been proposed as well [212–224]. However, there appear to be no existing

models of binary film growth which capture all of the above important phenomena,

and it would be reasonable to expect that new insights into the nature of film growth

could be gained through the simultaneous investigation of all of these growth charac-

teristics.

A unified treatment of this sort is justified for the following reasons. There is

clearly a strong link between surface roughening and dislocation nucleation, as dislo-

cations nucleate at surface cusps when the film becomes sufficiently rough. It is also

known that phase separation in the film is significantly influenced by local stresses,

which are inherently coupled to surface morphology and dislocation nucleation. The

dynamics of the growth process must then be influenced by the cooperative evolu-

tion of all three of these phenomena. Numerical simulations will be presented in this

chapter which show that the binary PFC model produces all of the growth charac-

teristics described above, and that each is influenced by misfit strain and atomic size

and mobility differences between species.

7.2 Model Equations and Notation

The binary PFC free energy used in this study is a simplified version of the general

binary PFC formulation outlined in [25]. With a slight change in notation relative to
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Chapter 6, it can be written in the form
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where F is the dimensionless Helmholtz potential, N = nA + nB is the scaled total

number density field, c = nA − nB is the scaled concentration field, ni → ni(~r, t) + n̄i

is the scaled density field for i particles, n̄i is the average scaled number density of i

particles, r + 1 = T is proportional to an offset temperature, RAB = 1 + ηc sets the

relative lattice constants of A and B particles, η is the solute expansion coefficient

which defines the relative size difference of the two atomic species (a positive value of

η corresponds to larger A atoms than B atoms), and v, w, L, and A0 are additional

constants. The system evolution is given by

∂nA

∂t
= ΓA∇2µA (7.2)

∂nB

∂t
= ΓB∇2µB (7.3)

where ΓA and ΓB are the diffusive mobilities of species A and B, respectively.

The physical problem recreated in these simulations is that of growth of a sym-

metric (i.e. 50/50 mixture, or average density difference c0 = n̄A − n̄B = 0) binary

alloy film from a liquid phase or from a saturated vapor phase above the bulk co-

herent spinodal temperature. Growth at temperatures above the miscibility gap is

typical of experimental conditions and should ensure that phase separation is driven

by local stresses and is not due to spinodal decomposition. Initial conditions consisted

of a binary, unstrained crystalline substrate, eight atoms in thickness, placed below

a symmetric supercooled liquid of components A and B. A typical phase diagram

produced using parameters representative of those used in the present study is shown

in Fig. 7.1, and the location of the supercooled liquid has been noted.

In all results presented, parameters are the same as in Fig. 7.1 except η, ΓA,

and ΓB are varied as specified. T = 0.89 is used throughout. In what follows the

misfit strain is defined as ε = (afilm − asub)/asub, where afilm ≈ aA(1 + ηc) in the

constant concentration approximation. For a symmetric mixture of A and B atoms

(i.e., c0 = 0) afilm = (aA + aB)/2.
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Figure 7.1: Binary PFC phase diagram for (η, v, w, L, A0)=(0.25, 0.16, 4, 1, 0.9).
Crosshatched areas correspond to regions of coexistence.

Periodic boundary conditions were used in the lateral directions, while a mirror

boundary condition was applied at the bottom of the substrate. A constant flux

boundary condition was maintained along the top boundary, 120∆x above the film

surface, to simulate a finite deposition rate. Misfit strain was applied to the system

by setting RAB = 1 in the substrate and RAB = 1 + ε+ ηc in the film. This approach

yields a film and substrate that are essentially identical in nature except for this shift in

lattice parameter in the film. Complexities resulting from differing material properties

between the film and substrate are therefore eliminated, isolating the effects of misfit

strain, solute strain, and mobility differences on the film growth morphology. The

substrate was permitted to strain elastically, but was prevented from decomposing

compositionally except near the film/substrate interface.

7.3 Simulation Results

7.3.1 Roughening, dislocation nucleation, and relaxation

One advantage of using the PFC method to simulate film growth is that singularities

at cusp tips are suppressed, allowing simulations to continue to and beyond the point
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Figure 7.2: (a) Sample plots of average film thickness (upper) and RMS surface
roughness (lower) vs. time. (b) Plots of the smoothed local free energy showing the
progression of the buckling instability, dislocation nucleation and climb toward the
film/substrate interface. From a) to f) times shown are t=150, 600, 1050, 1200, 1500,
and 2550. Note the nearly planar film surface in the last frame, after the dislocations
have relieved most of the misfit strain. ε = 0.04, η = −1/4 and ΓA = ΓB = 1.

of defect nucleation. This allows us in the present case to systematically investigate

the effects of misfit strain, solute strain, and mobility differences on the critical height

hc of growing films. Here hc is linked to dislocation nucleation and will be defined

as the average height of the film at the time of maximum average defect height. In

simulations exhibiting more than one wave of dislocation nucleation, the maximum

average defect height during the first wave is used.

The well-documented evolution of film surface morphology due to the ATG mor-

phological instability is naturally reproduced by the binary PFC model, resulting in

the destabilization of planar films for nearly all non-zero values of misfit strain. Figure

7.2(a) shows typical plots of the mean film thickness and RMS surface roughness as

functions of time, where the time corresponding to the critical height has been noted.

Figure 7.2(b) shows the corresponding spatial progression of the local free energy as

a growing film exhibits instability, dislocation nucleation, and relaxation.
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Figure 7.3: Plot of the local density field N showing loss of coherency between film
and substrate, resulting from dislocation nucleation and climb.

Typically, several dislocations (perfect edge dislocations in this system) are nu-

cleated at approximately the same time, relieving nearly all stress due to misfit with

the substrate and/or differing species sizes. Following nucleation, the dislocations

climb toward the film/substrate interface, locally relieving stress in the layers above

(Fig. 7.2). In the present model, with a triangular lattice structure, this motion is

purely climb and is largely perpendicular to the interface (and opposite the growth

direction). Once the dislocations reach the film/substrate interface, coherency of the

film with the substrate is lost (Fig. 7.3).

7.3.2 Phase separation

The nature of phase separation within the bulk film and at the film surface was found

to vary with model parameters, but a number of generalizations applicable to all

systems studied have been identified. For the case of equal mobilities (ΓA=ΓB) it is

found that, in the presence of misfit strain and solute strain, the component with less

misfit relative to the substrate preferentially segregates below surface valleys, while

the component with greater misfit relative to the substrate preferentially segregates

below surface peaks (see Fig. 7.4(a)). This lateral segregation is logical when one

considers the physical coupling of the ATG instability with the compositional insta-

bility. According to the ATG theory, valleys become regions of stress concentration as

the roughening instability proceeds, while the film relaxes near peaks, allowing larger

film growth rates in these preferred regions. Larger (smaller) atoms will be driven
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Figure 7.4: (a) Top: Plot of the smoothed local concentration field c showing lateral
phase separation between surface peaks and valleys. White: Component A (large,
fast), Black: Component B (small, slow). ε = −0.02, η = 0.4, ΓA = 1, ΓB = 1/4, and
t = 3500. See text for discussion of the numbered arrows. In this case, the greater
misfit component (B) does not accumulate at the film surface because of the greater
mobility of the lower misfit component (A). Bottom: Same as Top, but highlighting
the nature of phase separation under opposite signs of ε. Here η=0.25, ΓA=1, ΓB=1,
a) ε=0.04, b) ε=-0.025. In both cases, the component with greater misfit is driven
toward the film surface and below surface peaks, while the lower misfit component
segregates below surface valleys. (b) Same as (a), but highlighting the complementary
phase separation at the film/substrate interface and around defects (η=0.25).

toward regions of tensile (compressive) stress, which correspond to peaks (valleys) in

a compressively strained film and to valleys (peaks) in a film under tensile strain.

This coupling creates a lateral phase separation on the length scale of the surface

instability and has been predicted and verified for binary films [212–220, 225–229],

and analogous behavior has been predicted and verified in quantum dot structures

[230–232]. The extent of this type of phase separation is of course dependent upon

the relative atomic size and mobility differences of the two components.

Second, again for the case of equal mobilities, the component with greater misfit

relative to the substrate is driven toward the film surface (see Fig. 7.4(a)). This
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behavior can also be explained in terms of stress relaxation and is somewhat analogous

to impurity rejection in directional solidification. The greater misfit component can be

viewed as an impurity that the growing film wishes to drive out toward the interface.

Experimental evidence from SiGe on Si [225] and InGaAs on InP [226, 227] verifies

this behavior as an enrichment of the greater misfit component was detected at the

film surface in both systems. Other models [213, 214, 217, 220] have not produced

this type of vertical phase separation, possibly a result of neglecting diffusion in the

bulk of the film.

The third generalization that can be made is that, in the case of sufficiently unequal

mobilities, the component with greater mobility accumulates at the film surface (see

Fig. 7.4(a)). It was found that when the two components have a significant mobility

difference, typically greater than a 2:1 ratio, the effect of mobility is more important

than the combined effects of misfit and solute strains in determining which component

accumulates at the surface. Since Ge is believed to be the more mobile component

in the SiGe system, the findings of Ref. [225] for SiGe on Si provide experimental

support for this claim. They find a significant enrichment of Ge at the film surface, a

result that is likely due to a combination of this mobility driven effect as well as the

misfit driven effect described in the second generalization.

Experimental evidence also indicates that segregation of substrate constituents

into the film may occur during film growth [233, 234]. Binary PFC simulations sim-

ilarly reveal a vertical phase separation near the film/substrate interface, which is

complemented by a phase separation mirrored in direction near defects (Fig. 7.4(b)).

The extent of this phase separation is controlled largely by the bulk mobilities of the

two constituents, and to a lesser degree by η. The complementing phase separation

near climbing defects is a transient effect, any traces of which are dulled once the

defect reaches the film/substrate interface.

7.3.3 Additional findings

Growth temperature and deposition rate also have important effects on the growth

characteristics of these systems. In Molecular Beam Epitaxy (MBE), it is expected

that higher (lower) temperatures will result in decreased (increased) values of hc

[206, 207]. Though a detailed study spanning a wide range of temperatures was
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not conducted in the present work, it was found, as a general rule, that lowering

the growth temperature (increasing the film growth rate) does result in increased

values of hc, while increasing the growth temperature (decreasing the film growth

rate) results in decreased values of hc. This behavior has been seen experimentally

[206, 207, 235] and can be explained in terms of the dynamics, where one can argue

that slower film growth rates allow additional time to relax toward an equilibrium

state, which according to the ATG instability will be a state in which the surface

roughness has increased. This translates to increased roughening at a given height

for a system growing at a higher temperature or slower rate. Defect nucleation is

then energetically favorable at a lower film height in comparison to a film grown at a

lower temperature. The energy barrier for dislocation nucleation also decreases with

increasing temperature, which can only strengthen the preceding argument.

7.4 Aside: Monatomic Heteroepitaxy – Beyond

Linear Continuum Theory

The results presented in this chapter give a qualitative overview of the concentration

patterns that emerge when strain and composition fields are coupled in growing alloy

films. The quantitative details of this process are bound to be richly complex, with

strong dependences on several variables. In fact, there is sufficient complexity in

terms of the morphological instability alone, that a number of issues within the scope

of monatomic heteroepitaxy remain relatively unexplored. A few additional points

concerning the morphological instability in heteroepitaxially grown monatomic films

will be briefly examined here, with the modest intent of emphasizing some of the open

issues and presenting a few initial results.

Of particular interest is whether the predictions of continuum theory are relevant

under non-idealized growth conditions. For example, how does a finite substrate with

distinct elastic properties influence the instability? How does the instability change

as the film growth rate increases from the quasi-static limit toward relatively large

values? How does the simultaneous interaction of many perturbation wavemodes at

the film surface, combined with the preceding complications, modify the evolution of

the instability near the regime of dislocation nucleation?
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7.4.1 Linear continuum predictions

The linear instability predictions of continuum theory were discussed in Section 7.1.

Specifically, it has been shown that qc ∼ ε2 and σ(qc) ∼ q2γ
c in the linear regime

[236], where γ assumes integer values for specific dominant transport mechanisms

(2 for evaporation-condensation, 3 for bulk diffusion, 4 for surface diffusion). The

continuum result for hunstable depends on the properties of the substrate. Two specific

cases will be considered here: a perfectly rigid substrate (hunstable ∼ 1/ε2 [236]), and

a substrate with elastic properties identical to those of the growing film (hunstable = 0

[236]). Thus the effect of a rigid substrate is in general stabilizing within continuum

theory. The effect of a non-zero film growth rate kv on the predictions of continuum

theory is unclear but is generally expected to be stabilizing as well [236].

The first PFC studies of film growth outlined the natural progression and cou-

pling of surface instability, dislocation nucleation, and relaxation in two dimensions,

focusing on the implications of this coupling in terms of hc [3, 4]. Huang and El-

der have since applied the PFC amplitude equation approach to systematic studies

of morphological instability and island wavelength selection, also in monatomic two

dimensional films [40, 65]. They examined strained, free-standing, static films (no

substrate, kv = 0) perturbed at a single wavenumber at a time. The evolution of

instability is thus relatively slow and nearly linear, conditions valid for comparison

with the predictions of ATG theory. Their results showed that even under idealized

conditions the continuum theory is not always valid. In particular, the prediction for

dominant wavenumber selection was found to break down at sufficiently large misfits

due to atomistic effects and/or non-zero interface widths [77]. They also found that the

maximum instability growth rate has a somewhat more complicated dependence on

misfit than indicated by ATG-type theories, especially for large misfits. Interestingly,

instability growth rate dispersions consistent with simple bulk diffusion have been

obtained from direct (non-amplitude) PFC simulations [77]. Thus, the continuum

predictions for perturbation growth rates and wavenumber selection at sufficiently

small ε seem to be at least approximately correct in idealized PFC simulations. It

will be shown in the following that this agreement is quickly destroyed by non-ideal

growth conditions, such as non-zero film growth rates, explicit finite-size substrates,

and highly nonlinear evolution dynamics.
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7.4.2 Simulation results

For this study, monatomic film growth was simulated using a substrate eight monolay-

ers thick, with periodic lateral and mirror horizontal boundary conditions. Equations

(2.1) and (2.29) with r + 1 = T were used. Temperatures of T = 0.835, 0.826, and

0.818 were used to produce three distinct film growth rates kv, and small thermal

noise perturbations were applied to the inital liquid region. Misfit strain was applied

by varying the substrate lattice parameter from the equilibrium value at each T , while

keeping the film properties constant. The rigid substrate condition was simulated by

strongly coupling the substrate to an external field with appropriate periodicity. Other

numerical parameters used were ∆x = 0.65, ∆t = 0.002, Lx = 8198∆x, n̄ = −0.25,

and Γ = 1.

Critical film thickness for onset of instability

Initial simulation results are shown in Fig. 7.5. First consider the case of an

elastically matched film and substrate, where continuum theory predicts hunstable = 0.

hunstable is defined here as h at which the film surface RMS roughness first begins to

grow exponentially, typically near a RMS value of 1.0. The continuum predictions

in general should be most valid in the regime of small ε and small kv. The data

in this regime indicate that hunstable does approach a constant at small ε, but that

this constant is much larger than zero. This limiting value in fact appears to be

associated with a Mullins-Sekerka (MS) dendritic instability, without which hunstable

would apparently continue to grow rapidly as ε→ 0. A similar MS-ATG coupling at

slow film growth rates has been found in previous PFC simulations [54].

For small ε and small kv, the film surface morphology is dominated by the MS

instability, which presumably selects a wavenumber based on kv rather than ε. Simula-

tions show that dendrite-like morphologies emerge for small ε and small kv, in which

the spacing approaches a constant value independent of ε. Thus more dislocations

are nucleated than required to relieve the misfit strain in the MS-dominated regime.

For sufficiently large kv the MS instability is suppressed and the ATG-like instability

dominates. Nonetheless, the regime in which continuum ATG results should be most

valid is obscured by a separate phenomena, limiting its relevance to these simulations.

Elastically matched film/substrate systems at large misfits appear to obey the
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Figure 7.5: (a) Film critical height for roughening onset vs. misfit strain at various
T . The solid line has a slope of −2. (b) Film critical height for dislocation nucleation
vs. misfit strain at various T . The solid line has a slope of −2. Inset: Film RMS
roughness growth rate vs. misfit strain at various T . The solid line has a slope of +2.

rigid substrate prediction in which hunstable ∼ 1/ε2. For small ε and large kv, hunstable

appears to grow with a stronger than 1/ε2 dependence, but the detailed behavior

at large h has not been accessed in these initial simulations. The results for rigid

substrates are qualitatively similar to those for matched substrates, with a slightly

enhanced stability. Thus, the predicted 1/ε2 dependence is observed only for large

misfits, which may be coincidental. The linear ATG predictions for hunstable therefore

do not appear to be satisfied in most PFC systems with non-infinite substrates, non-

zero film growth rates, and fully nonlinear dynamic evolution. The expectation of

kinetic stabilization [236], resulting in larger values of hunstable for large kv is observed

to a modest degree, as is the prediction of enhanced stability when rigid substrates

are employed.

Critical film width for onset of instability

There are in general lower limits on the film lateral dimension Lx and ε, below

which the ATG instability is predicted to not occur. Simulations confirm that there

is indeed no instability below some critical value L∗
x, where L∗

x is generally the value

of Lx at which the ideal number of dislocations required to perfectly relieve the misfit

strain is 0.5. There may be a weak divergence in hc as Lx → L∗
x from above, but
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further simulations would be required to confirm the nature of any such divergence.

Instability growth rate

The overall growth rate of the morphological instability is reflected in the RMS

surface roughness. An average rate for each film can be extracted from an exponential

fit in time, over the period spanning from initial instability to dislocation nucleation.

This average rate as a function of ε is shown in Fig. 7.5(b). All films are found to

roughen with nearly the same ε2 rate dependence, except possibly in the MS regime

where the ε dependence tends to vanish. The maximally unstable growth rate from

the linear analysis for the onset of roughening under ideal conditions has a much

stronger ε2γ ' ε6 form. Thus, if one attempts to compare the ATG predictions with

the large ε simulation data, the growth rate of the morphological instability appears

to be significantly suppressed by non-zero film growth rates, surface mode coupling

effects, and explicit substrates. The small ε regime is again obscured by the MS in-

stability.

Critical film thickness for dislocation nucleation

The results to this point indicate that the simulated conditions, though not terribly

extreme, place us well beyond the regime in which the linear ATG description of

morphological instability is valid. A nonlinear dynamic description appears necessary

to capture the full range of roughening from onset to dislocation nucleation. There

could potentially be agreement with linear ATG in the small ε, small kv region, but

the MS instability dominates this regime in the diffusive PFC model. Obviously then,

an extrapolation of the linear theory to predict hc, the critical height for dislocation

nucleation, is bound to fail. However, if the linear predictions are replaced with the

general forms inferred from Fig. 7.5, a reasonable, though incomplete, description is

easily written down.

Generally, hc ' hunstable+hdisloc, where hdisloc is the amount of film growth between

initial instability and dislocation nucleation. Simulations indicate that hunstable ∼ ε−2

for sufficiently large ε, and hdisloc ∼ ln [σ̄∗ + 1]/σ̄ where σ̄∗ ∼ k−1
v is the observed

average film roughness at nucleation and σ̄ ∼ ε2 is the observed roughness growth

rate. Therefore we expect that hc ∼ 1/ε2 roughly, for large misfits, as found in the
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simulations. For small ε and small kv, hunstable and hdisloc both approach constant

values due to MS dominance, and hc must necessarily approach a constant value as

well. For small ε and large kv, a possible accelerated divergence in hunstable causes hc

to grow rapidly out of measurement range.

This variety of behavior as a function of film growth rate, misfit strain, and

substrate properties highlights the complexity of dynamic heteroepitaxy when non-

idealized growth conditions are considered. The 1/ε2 dependences at large misfits do

appear consistently and hint at some unity for Volmer-Weber or island growth pro-

cesses, but the intervening MS instability at small misfits and growth rates obscures

the layer-by-layer growth regime. In general, linear continuum theories tend to break

down quickly when non-infinite substrates are employed and as the evolution of the

surface profile becomes highly nonlinear, with coupling between surface modes and

stabilizing kinetic effects at non-zero kv. Atomistic effects also become important at

large misfits, further limiting the applicability of continuum theories.

7.5 Conclusions

Three general features of phase separation in growing films have been identified from

the simulation results outlined here, as a function of misfit strain and species mobil-

ity ratio. Lateral patterns emerge on the length scale of the surface roughness, with

the lower misfit component segregating below surface valleys and the higher misfit

component below surface peaks. A vertical separation also occurs, with one compo-

nent accumulating at the film surface. When both species have the same mobility,

the higher misfit component will be driven toward the film surface, but if the lower

misfit component is sufficiently mobile, then it will tend to accumulate most at the

surface. Vertical phase separation patterns at the film-substrate interface and around

dislocations have also been identified.

A few issues that arise in simpler monatomic films have also been discussed relative

to the predictions of continuum elastic theory. In addition to atomistic causes, signifi-

cant deviations from the linear continuum limit appear at large misfits, apparently due

to nonlinear coupling of surface modes, kinetic effects, and non-infinite substrates. For

low film growth rates, a Mullins-Sekerka-type dendritic instability is found to dom-
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inate the morphological evolution of growing films in the diffusion-dominated PFC

model.



CHAPTER 8

Summary and Future Work

It is hoped that the studies described in this dissertation provide useful physical

insights into the various phenomena addressed, but also that they serve in exploring

and validating the capabilities of PFC modeling. The problem of extending the time

scale in atomistic simulations is a fundamental and challenging topic, with far-reaching

implications for any successful methodologies. Our understanding of nonequilibrium

processes in hard and soft liquid-solid systems has been and will continue to be closely

linked with an ability to model across time scales.

The PFC approach, as demonstrated here as well as by many others, appears to

have much promise in this regard, and has now advanced from a conceptual validation,

proof-of-concept stage toward targeted, applied research. Nonetheless, many open

issues and unexplored applications remain on both the fundamental and applied levels.

Brief summaries of the findings concerning each of Chapters 3-7 are included in the

following, along with lists of issues which remain open to various degrees and/or

suggestions for future work.

8.1 Melting and Premelting

Summary

Both the localized and generalized nature of dislocation and grain boundary melt-

ing have been examined in Chapter 3. Numerical and analytical results are provided

151



152 Chapter 8. Summary and Future Work

for the spatial features of defect melting, along with outlines of some of the general

transition features to be expected as a function of ensemble and order of the bulk

transition. Since premelting is expected to proceed only logarithmically as T → Tm,

it is generally difficult to conclusively detect its existence in experiments. Measurable

effects only occur very near Tm, which leads to difficulty in distinguishing between

true premelting and uncertainty in the value of Tm (even in colloids). Thus, both the

metastable pathway (superheating) and premelting scenarios examined in Chapter

3 may aid in understanding experiments, but conclusive experimental data will be

needed to determine which scenario is most relevant in a given system.

Future Work

A more detailed treatment of interfacial energies in the local melting analysis

should produce more accurate results. High angle grain boundaries are often reduced

to a continuum description in which a uniform disjoining potential is used to char-

acterize the local melting behavior. It would be interesting to connect the low-mid

angle description developed in Chapter 3 with the disjoining potential approach. This

might help to address another eventual need, which would be to refine the expression

for the critical prewetting angle, perhaps by approaching the calculation from the

opposite, high angle side. Application of the three dimensional bcc complex ampli-

tude formulation to premelting would allow larger scale simulations and also provide

a means of comparing and validating specific amplitude equation models.

8.2 Dislocation Dynamics

Summary

It is shown in Chapter 4 that defect motion under applied strain in the diffusion-

dominated PFC model can be accurately described in terms of simple viscous motion

equations for overdamped point masses. The natural features of glide, climb, and

annihilation, including Peierls barriers and elastic defect interactions, automatically

emerge from the theory. These behaviors are characterized across various tempera-

tures, applied strains, applied strain rates, and dislocation densities.
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Future Work

The diffusion-dominated model describes a relatively soft, viscoelastic crystalline

state, much like that created by colloids. More rigid atomic and molecular crystals

are better described by the inertial PFC model, which has been shown to produce

effectively instantaneous long-range elastic interactions. It may be useful to repeat

the characterization of Chapter 4 using the inertial model. It might also be interesting

to examine the effects of the VPFC formulation on dislocation dynamics and/or to

take a closer look at grain boundary effects in monatomic and binary polycrystalline

materials. Larger-scale problems such as nanoindentation could also be addressed in

future studies.

8.3 Freezing, Amorphous Nucleation, and Spin-

odals

Summary

Freezing in diffusion-dominated monatomic PFC systems is shown in Chapter 5

to occur with high probability through a first-order nucleation transition to an amor-

phous solid precursor state in three dimensions. Crystalline states are then obtained

through a subsequent first-order amorphous crystallization transition, wherein the

lifetime of the amorphous solid is correlated with the cooling rate. The structure of

the disordered PFC solid is consistent with that of known simple glass formers. Liquid

spinodal effects are shown to produce apparent glassy dynamics in the supercooled

liquid, but are ultimately not associated with a true glass transition.

Future Work

The amorphous precursor phase is shown to emerge away from the liquid spinodal

for primarily energetic reasons - the free energy barrier for nucleating an amorphous

critical droplet is smaller than that of the critical crystalline droplet. Since the bulk

free energy of the equilibrium crystal is always lower than that of the amorphous

solid, this result implies that liquid-amorphous solid interfacial energy is significantly
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smaller than the liquid-crystal interfacial energy. A closer quantification of interfacial

energies in small solid phase droplets might provide interesting insights into solid

phase nucleation.

Near the liquid spinodal, amorphous solids appear to be preferred for primarily

kinetic reasons. One might expect the supercooled liquid free energy minima to be

‘closer’ to the amorphous solid minima than to the crystalline minima, leading to a

kinetic trapping effect. An investigation of the reasons for this behavior might lead

to some interesting analogies between glass forming liquids and spinodal systems.

It is not entirely clear whether inertial dynamics significantly change the behavior

reported in Chapter 5. It may also be worthwhile to perform a closer examination

of freezing and nucleation behavior in the monatomic VPFC model, where spinodal

effects are avoided and free volume effects are enhanced. Finally, there would also be

value in extending the amplitude equation formulation to amorphous solids, to enable

large scale simulations of glassy materials.

8.4 The Glass Transition

Summary

The results presented in Chapter 6 demonstrate clearly for the first time that PFC

and DDFT models can describe the dynamics of glass forming liquids to the level of

two-step relaxation functions, Vogel-Fulcher divergences, and agreement with estab-

lished MCT and experimental results. The success of this description is associated

with strong local nonlinearities in the free energy and the combination of inertial

and dissipative dynamic processes, all of which lead to strong caging and enhanced

dynamic correlations. A physically motivated time scaling extends the reported sim-

ulation results to a span of 12 orders of magnitude in time, providing access to nearly

the entire glass formation process. A correlation between liquid fragility and a rapidly

growing dynamic correlation length is also established.

Future Work

The results established in Chapter 6 open the door to a number of potential PFC
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studies of glass forming materials. These include aging properties, annealing/melting

behaviors, mechanical response to strain, nongaussian dynamics, and dynamic hetero-

geneity in the deeply supercooled regime. It should also be possible now to formulate

PFC models of well-known glass forming systems for comparative studies. It may be

worthwhile as well to examine two dimensional liquids for the potential of reaching

longer times in both the underdamped and overdamped descriptions. Fully optimized

numerics, employing operator splitting methods, filtered spectral operators, and an

appropriate stochastic noise wavenumber cutoff, would also assist to this end. Open

issues regarding the specific results of Chapter 6 include better quantifying how and

why the dynamic correlation length grows in the supercooled liquid, clarifying the

thermodynamic behavior near Tg, and determining to what degree the results depend

on the form of the VPFC cutoff term. Other equations of motion, such as Eqs. (2.36)

and (2.34), may prove necessary for studies of selected dynamic behaviors.

8.5 Epitaxial Growth

Summary

The characteristic spatial concentration patterns that develop in growing strained

alloy films are outlined in Chapter 7 as a function of misfit strain and species mo-

bility ratio. These patterns are either lateral peak-to-valley variations or vertical

surface-substrate variations. Significant deviations from the continuum limit appear

for relatively small deviations from idealized growth conditions. These may stem

from atomistic effects (at large misfits), nonlinear coupling of surface modes, kinetic

effects, non-infinite substrates, or crossover to a Mullins-Sekerka dendritic instability

dominated regime (at small misfits and growth rates).

Future Work

The findings summarized above highlight certain challenges in modeling monatomic

heteroepitaxy. Effects due to growth rate, substrate elastic properties, substrate thick-

ness, large misfit strains, and combined ATG-Mullins-Sekerka instabilities need fur-

ther characterization and connection with the continuum limit. More detailed atom-
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istic phase separation effects in binary heteroepitaxy might also be well-described by

VPFC models.



APPENDIX A

Numerical Methods

A.1 Method 1: Diffusive PFC, Euler Real Space

The simplest, most direct scheme for simulating the diffusive PFC model is the for-

ward Euler, real space finite difference method. This method was used for the two-

dimensional simulations presented in Chapters 4 and 7. The discretization of the

monatomic model, Eqs. (2.1) and (2.29), can be written

nt+1 = nt + ∆t
(
Γ∇2µt + ~∇ · ~η

)
µt =

[
r + (1 +∇2)2

]
nt + (nt)3

where ∆t is the time step, and nt and µt are n(~r) and the chemical potential, respec-

tively, at time step t on a given grid location.

Laplacians can be calculated quasi-isotropically in two dimensions as [139]

∇2ni,j = [−3ni,j + 0.5(ni+1,j + ni−1,j + ni,j+1 + ni,j−1)+

0.25(ni+1,j+1 + ni−1,j+1 + ni+1,j−1 + ni−1,j−1)]/(∆x)
2
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and in three dimensions as

∇2ni,j,k =
−24ni,j,k + 2

∑′ ni′,j′,k′ +
∑′′ ni′′,j′′,k′′

6(∆x)2

where
∑′ and

∑′′ represent summations over nearest neighbor and next nearest

neighbor grid points, respectively.

When a gaussian stochastic noise term ~η is used, it is applied to the updated

density field at each time step. It can be calculated by producing d independent

gaussian random numbers at each grid point and operating on each point with ~∇·. In

three dimensions, a simple discretization for ~∇· gives

~∇ · ~ηi,j,k =
η

(1)
i+1,j,k − η

(1)
i,j,k + η

(2)
i,j+1,k − η

(2)
i,j,k + η

(3)
i,j,k+1 − η

(3)
i,j,k

∆x

where

〈η(a)
i,j,k(p)η

(b)
l,m,n(q)〉 =

M∆t

(∆x)d
δi,lδj,mδk,nδp,qδa,b.

A.2 Method 2: Diffusive PFC, Semi-Implicit Pseu-

dospectral

In three dimensions, a semi-implicit pseudospectral algorithm results in potentially

several orders of magnitude improvement in computational efficiency compared to

the real space finite difference Euler scheme. This method was used in the three

dimensional simulations presented in Chapters 3 and 5. The noiseless algorithm for

the monatomic model of Eqs. (2.1) and (2.29) is written in Fourier space as

n̂t+1 =
n̂t − Γq2∆tn̂3

t

1 + Γq2∆t [r + 1− 2q2 + q4]

where n̂t is the Fourier transform of n(~r) at time step t and q is wavenumber. Stochas-

tic noise can be applied as described in Method 1, after the updated density field is

transformed back into real space.
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A.3 Method 3: Inertial PFC, Euler Real Space

A real space finite difference scheme was used to solve the inertial PFC models of

Chapter 6 in three dimensions, allowing direct implementation of quasi-isotropic ∇,

∇·, and ∇2 operators. This was done to prevent both drift effects and the directional

preferences along the simulation cell axes sometimes observed with less isotropic op-

erators. Relaxations in the liquid state were found to be slower in general when less

isotropic first and second order operators were used, but to converge in the vicinity of

the order employed below. The method used for the binary model of Eqs. (6.8) and

(6.11) with Γi(~r) = 1 is written

nt+1
i = nt

i + ∆tgt
i

gt+1
i = (1−∆tβi)g

t
i + ∆tα2

i∇2µt
i + ∆t~∇ · ~ηt

i

µt
A =

[
rA + (q2

A +∇2)2
]
nt

A + (nt
A)3 + 3HA(|nt

A| − nt
A)nt

A+

rABn
t
A(nt

B)2 +
1

2
(q2

AB +∇2)2nt
B

µt
B =

[
rB + (q2

B +∇2)2
]
nt

B + (nt
B)3 + 3HB(|nt

B| − nt
B)nt

B+

rABn
t
B(nt

A)2 +
1

2
(q2

AB +∇2)2nt
A

where nt
i is ni(~r) at time step t and grid location (i, j, k), gi = ∂ni/∂t is a local average

velocity, and ∆t is the time step. Laplacians were calculated quasi-isotropically as in

Method 1.

The gaussian stochastic noise terms ~ηi were calculated as in Method 1, except with

a quasi-isotropic discretization for ~∇·:

~∇ · ~ηi,j,k =
3∑

m=1

4
∑′ ∆η(m) +

∑′′ ∆η(m)

16∆x

where ∑
′∆η(1) = η

(1)
i+1,j,k − η

(1)
i−1,j,k,
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∑
′∆η(2) = η

(2)
i,j+1,k − η

(2)
i,j−1,k,

∑
′∆η(3) = η

(3)
i,j,k+1 − η

(3)
i,j,k−1,

∑
′′∆η(1) = η

(1)
i+1,j+1,k − η

(1)
i−1,j−1,k + η

(1)
i+1,j−1,k − η

(1)
i−1,j+1,k +

η
(1)
i+1,j,k+1 − η

(1)
i−1,j,k−1 + η

(1)
i+1,j,k−1 − η

(1)
i−1,j,k+1 ,

∑
′′∆η(2) = η

(2)
i+1,j+1,k − η

(2)
i−1,j−1,k + η

(2)
i−1,j+1,k − η

(2)
i+1,j−1,k +

η
(2)
i,j+1,k+1 − η

(2)
i,j−1,k−1 + η

(2)
i,j+1,k−1 − η

(2)
i,j−1,k+1 ,

∑
′′∆η(3) = η

(3)
i+1,j,k+1 − η

(3)
i−1,j,k−1 + η

(3)
i−1,j,k+1 − η

(3)
i+1,j,k−1 +

η
(3)
i,j+1,k+1 − η

(3)
i,j−1,k−1 + η

(3)
i,j−1,k+1 − η

(3)
i,j+1,k−1 .

Simulations unintentionally included an extra weighting factor of 2 on the next-

nearest-neighbor terms, which leads to a slight biasing toward diagonal differences

and an underreporting of the actual effective noise strength by a factor of 3/2.

A.4 Method 4: Nonlinear Diffusive PFC, Euler

Real Space

The overdamped nonlinear diffusion equation of DDFT, examined in three dimensions

in Chapter 6, was also discretized using a forward Euler real space finite difference
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method. The algorithm used for the monatomic version of Eqs. (6.8) and (6.10) is

written

nt+1 = nt + ∆t
[
∇
(
Γt(~r)∇µt

)
+ ~∇ ·

(√
MΓt(~r)~η

)]
µt =

[
r + (q2

i +∇2)2
]
nt + (nt)3 + 3H(|nt| − nt)nt.

On the grid, with lowest order operators, this becomes

nt+1
i,j,k = nt

i,j,k +∆t
[Γt

i+1,j,k + Γt
i,j,k

2

(
µt

i+1,j,k − µt
i,j,k

)
−

Γt
i,j,k + Γt

i−1,j,k

2

(
µt

i,j,k − µt
i−1,j,k

)
+

Γt
i,j+1,k + Γt

i,j,k

2

(
µt

i,j+1,k − µt
i,j,k

)
−

Γt
i,j,k + Γt

i,j−1,k

2

(
µt

i,j,k − µt
i,j−1,k

)
+

Γt
i,j,k+1 + Γt

i,j,k

2

(
µt

i,j,k+1 − µt
i,j,k

)
−

Γt
i,j,k + Γt

i,j,k−1

2

(
µt

i,j,k − µt
i,j,k−1

) ]
/(∆x)2+

√
∆t
[√

M

∣∣Γt
i+1,j,k + Γt

i,j,k

∣∣
2

η
(1)
i+1,j,k −

√
M

∣∣Γt
i,j,k + Γt

i−1,j,k

∣∣
2

η
(1)
i,j,k+√

M

∣∣Γt
i,j+1,k + Γt

i,j,k

∣∣
2

η
(2)
i,j+1,k −

√
M

∣∣Γt
i,j,k + Γt

i,j−1,k

∣∣
2

η
(2)
i,j,k+√

M

∣∣Γt
i,j,k+1 + Γt

i,j,k

∣∣
2

η
(3)
i,j,k+1 −

√
M

∣∣Γt
i,j,k + Γt

i,j,k−1

∣∣
2

η
(3)
i,j,k

]
/∆x

where η
(a)
i,j,k is defined as in Method 1.



APPENDIX B

Freezing Transitions in Selected PFC and DFT

Models

Several PFC and DFT models that were investigated but not reported upon in Chap-

ters 5 and 6 are noted here. The basic aim was to begin formulating general conditions

under which PFC systems exhibit the central dynamic features of glass forming liq-

uids, and with this end in mind several approaches were adopted. These involve

modifications to the basic free energy functional, the purely diffusive equation of mo-

tion, or both. The models studied are described in the following, along with brief

discussions and illustrations of some of the characteristic results. Unless specified

otherwise, the results apply to three dimensional systems.

B.1 Monatomic Liquids

A progressive introduction of nonlinearities into the free energy functional and equa-

tion of motion for monatomic PFC liquids is outlined in this section.

B.1.1 Free energy functional

Weak-coupling regime

Freezing behavior in the standard monatomic PFC model for various n̄ and r appears

to remain qualitatively similar to that outlined in Chapter 5. The transition becomes

more strongly first order away from the critical point, but in the small noise amplitude
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limit remains a spinodal-driven nucleation process. The resulting disordered solids

evolve too slowly to measure any significant relaxations, making numerical studies of

glassy dynamics impractical. The other parameter that may be tuned in the basic PFC

model is the noise amplitude, which effects the phase diagram as well as the dynamic

evolution. For sufficiently large noise amplitude, the liquid relaxations begin to deviate

from the predictions of the linear spinodal analysis, and nucleation barriers may be

efficiently overcome at nearly any point from coexistence down. Significant nonlinear

effects due to stochastic noise could conceivably modify the freezing dynamics, or

could speed relaxation processes in the disordered solid states such that their full

dynamic range becomes more accessible. Two-stage relaxations might also emerge if

the noise effects generate a significant ‘fast’ evolution component which superimposes

onto the ‘slow’ diffusive relaxations.

Simulation results indicate that the freezing transition remains nucleation-driven

with large noise amplitudes and that disordered solids exhibit one-stage, though

highly-stretched relaxation functions. Crystallization also continues to intervene over

significnat portions of the potential glass transition region. Freezing behaviors asso-

ciated with modified free energy functionals are therefore discussed in the following

subsections, to demonstrate the degree to which nucleation persists and to which rel-

atively simple relaxation processes dominate in simple monatomic models with Model

B dynamics.

PFC/DFT comparison

The monodisperse hard sphere (HS) liquid was modeled to examine effects of the basic

PFC functional form on freezing behavior. Two-body correlations were assumed to

be given by the analytic Percus-Yevick (PY) result for the HS C2,

C2(q) =
4π

q3
[a(y cos y − sin y) +

6ηb

y
(y2 cos y − 2y sin y − 2 cos y + 2)+

ηa

2y3
(y4 cos y − 4y3 sin y − 12y2 cos y + 24y sin y + 24 cos y − 24)]

where y = qσ, σ is the hard sphere radius, η = πn/6 is the hard sphere packing

fraction, n is the average number density, a = (1 + 2η)2/(1 − η)4, and b = −(1 +

η/2)2/(1 − η)4. This C2 was inserted into the RY-DFT functional, Eq. (2.4), and
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Figure B.1: DFT and PFC hard sphere simulation results for supercooled liquid
dynamics. (a) Relaxation time versus wavenumber at various densities. (b) Arrhenius
plot of relaxation time at the structure factor first peak maximum versus average
density.

simulated using both Model B and overdamped DDFT dynamics.

Some results concerning the liquid relaxations are shown in Fig. B.1. As density is

increased through the liquid-solid coexistence region, the relaxation time grows with a

weakly super-Arrhenius form, but no strong divergence at or near the predicted glass

transition density is observed. The relaxation functions are somewhat stretched at

high densities but do not plateau. As shown in the figures, the DFT simulation results

are well-described by the corresponding linearized PFC model, in which the relaxation

time does not diverge until the unphysical PY singularity at η = 1 is reached.

Since the PY approximation loses accuracy at high densities, more appropriate

high density forms for the HS C2, calculated using Monte Carlo (MC) simulations,

were also examined [237]. These produced no noteworthy qualitative changes to

the freezing behavior described above. The two functionals intermediate between

RY-DFT and standard PFC (RY-DFT with expanded logarithm and PFC with un-

expanded logarithm) have also been simulated, with similar results for supercooled

liquid dynamics. The same can be said concerning dynamics when the PFC gradient



B.1. Monatomic Liquids 165

expansion is continued to higher order,

C2(q) = −r −

(∑̀
m=0

a2m(iq)2m

)2

or is substituted with the alternate analytic form

C2(q) =
−a0

1 + a1 exp (−q/qd) sin (q0q + d)
, q & 1

where ` ≥ 1 is an integer and ai, qi, and d are constants. Together, these findings

indicate that the PFC approximations in this case (with weakly nonlinear Model

B or DDFT evolution) do not significantly modify the supercooled liquid dynamics

from the RY-DFT model. This suggests that monatomic glass formation requires

qualitatively different free energy functionals from the standard RY-DFT and PFC

forms, and/or that qualitatively different equations of motion are needed.

Three-body correlations

Three-body correlations are known to have important consequences in some glass

forming materials, especially those with highly directional bonding. The RY-DFT

free energy with three-body interactions is given by

F

kBT
=

∫
d~r [ρ(~r) ln (ρ(~r)/ρ`)− δρ(~r)]−

1
2

∫
d~r1d~r2δρ(~r1)C2(~r1, ~r2)δρ(~r2)−

1
6

∫
d~r1d~r2d~r3δρ(~r1)C3(~r1, ~r2, ~r3)δρ(~r2)δρ(~r3).

To extend three-body effects to the PFC model in a numerically efficient scheme,

an effective three-body term has been added to the free energy which encourages or

discourages certain bond angles around a ring (in 2D) or a sphere (in 3D) of radius

R ' at centered at each grid point (at is the equilibrium lattice constant of the

two-dimensional triangular lattice). This approach is more efficient than considering

interactions over the entire system at each grid point. The discretized free energy in
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two dimensions then takes the form

F ′(i, j) = F (i, j) + n(i, j)
N∑

n=1

cn
∑
〈R〉

n(R)n(R + θn)

where (i, j) denotes coordinates on the discretized grid, F (i, j) is the unmodified PFC

free energy, N is the number of bond angles being either penalized or encouraged, θn

are the values of the bond angles, and cn is the constant specifying the strength of the

penalty or encouragement for θn. 〈R〉 implies summation around a ring of radius R,

n(R) is the number density at the current location on the ring, and n(R + θn) is the

number density at the point on the ring θn degrees away from the current location.

This functional form for three-body interactions was first introduced in Ref. [238].

To generate a disordered structure, bond angles of θ1 = 60◦ are penalized ener-

getically (c1<0) to discourage the equilibrium triangular lattice, and bonds of some

irregular angle such as θ2 = 41◦ are made energetically favorable (c2>0). When the

cn are tuned properly, a relatively disordered solid is produced upon quenching of the

liquid, as shown in Fig. B.2(a). Nonetheless, the observed freezing transition remains

discontinuous and the large computational demands make such simulations generally

impractical.

B.1.2 Equation of motion

Nonlinear diffusion equations

Standard PFC functionals evolved with the overdamped equation of DDFT appear to

produce supercooled liquid relaxations similar to those found with Model B dynam-

ics. The region of liquid metastability is increased in some cases, but the transtion

remains discontinuous and the relaxation processes continue to be described by highly

stretched single exponentials.

Several related classes of equations with highly nonlinear density- and space-

dependent mobilities, including

∂n

∂t
= ∇ ·

(
(n+ 1)`∇µ

)
+ ν, (B.1)
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Figure B.2: (a) Density configuration n(~r) after quenching a liquid with three-body in-
teractions. θ1 = 60◦, θ2 = 41◦, c1 = −0.0185, and c2 = 0.0185. (b) Pinning transition:
density configurations n(~r) at various pinning strengths. V0 = 0.005,0.015,0.02,and
0.035 in a), b), c), and d) respectively.

∂n

∂t
= ∇ ·

(
(n+ 1)(1− exp [−(n/n̄)`])∇µ

)
+ ν, (B.2)

and
∂n

∂t
= ∇ ·

(
(n+ 1) exp [−(n/n̄)`]∇µ

)
+ ν, (B.3)

where ` is an integer greater than or equal to 1, have also been simulated and found

not to produce behavior indicative of a glass transition.

Inertial dynamics

Standard monatomic PFC liquids evolved using the inertial equation of motion, Eq.

(2.31), do seem to exhibit a nearly continuous transition from liquid to glass, with signs

of plateauing correlators, but suffer from rapid crystallization as in the non-inertial

case. Heavily oscillating relaxation functions also tend to appear under the conditions

required for continuous glass formation. Thus, the introduction of two well-separated

time scales into the equation of motion appears to promote dynamics characteristic

of glass forming liquids, but simple monatomic systems suffer from pathologies which
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limit their utility as models for glass formation.

B.1.3 Quenched disorder

Stochastic pinning potentials

Certain physical systems, such as weakly adsorbed quasi-two-dimensional monolay-

ers on periodic or amorphous substrates [239, 240] or charge-density waves in solids

[241, 242], can be modeled as thermodynamic systems driven by sources of quenched

or externally imposed disorder. Though the structural glass transition is controlled

by mechanisms distinct from quenched disorder, useful insights may come from com-

parison of the two scenarios.

PFC systems pinned to disordered external fields exhibit dynamical arrest into

structurally disordered ‘pinned’ states as the magnitude of the coupling to the external

field is increased. The free energy is modified by terms of the form

F = FPFC +HP (~r, t)n(~r, t) (B.4)

where H is a constant and P (~r, t) is the pinning field, which here is given at any

point in space by a Gaussian random number, 〈P (~r1)P (~r2)〉 = δ(~r1 − ~r2). P (~r, t)

may in principle be governed by its own dynamic behavior, but in the limit of zero

t-dependence, arbitrarily slow relaxations can be generated by simply increasing the

magnitude of H, and/or a transition from the periodic lattice to a disordered solid

can be induced as shown in Fig. B.2(b).

Quenched cage models

Slow relaxations in glass forming liquids are driven by caging effects at the level of

individual particles. These cages are formed by neighboring particles and are thus

transient and self-organized, but quenched cage structures can be used to mimic

this behavior in PFC liquids. Stretched and plateauing correlators can be shown to

emerge when the liquid is partitioned into boxes separated by pinned walls at which

H > 0, or when the mobility coefficient Γ is given a spatial dependence wherein each

box is assigned a mobility chosen at random from a superposition of ‘fast’ and ‘slow’

distributions. It is somewhat interesting that such crude reconstructions of the caging

mechanism generate the primary relaxation features of glass forming liquids, but this
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schematic type of approach is only useful as an illustrative exercise.

B.1.4 Overview

These results indicate that monatomic glass-like structures are generally accessible

and often quite stable, but that a comprehensive monatomic glass former in terms

of dynamic and thermodynaic behavior is not easily obtained without the use of

unsatisfactory complications such as quenched disorder. Other modifications such as

anisotropic unit structures or interactions may produce the desired behaviors, but the

somewhat simpler route through binary systems is instead pursued in the following

section.

B.2 Binary Liquids

Most systems with two or more atomic species are known to have greatly enhanced

glass forming ability relative to monatomic systems. It is shown in this section that a

minimal binary PFC model with Model B dynamics and purely repulsive interspecies

interactions produces many of the central dynamic and thermodynamic behaviors

of glass forming liquids. This result indicates that a simple coupling between two

diffusively relaxing fields with slightly different equilibrium periodicities is a sufficent

condition for the appearance of a glass transition. A different model binary glass

former is also investigated and shown to lack a glass transition when the repulsive

coupling is weak and stochastic noise is minimized.

B.2.1 Free energy functional

Minimal mutually repulsive binary model

Perhaps the simplest possible binary PFC model is a combination of standard monatomic

models for A and B atoms, coupled by a single repulsive-type interaction term,

FPFC =

∫
d~r [fAA + fBB + fAB] (B.5)

where

fii =
ni

2

[
ri + (q2

i +∇2)2
]
ni +

1

4
n4

i



170 Appendix B. Freezing Transitions in Selected PFC and DFT Models

and

fAB =
rAB

2
(nA + 1)2(nB + 1)2.

The constant rAB sets the strength of the mutual repulsion, which discourages peaks

in either field from overlapping with those in the other field. When qA = qB, in-

terpenetrating bcc lattices are quite easily nucleated upon quenching with Model B

dynamics (Eq. (2.40)). When qB/qA = 0.8, the time required to nucleate the equi-

librium crystalline structure becomes very large, and the system freezes rapidly but

continuously into a disorder solid phase. This is the case for quenches in which only

the noise amplitude is decreased (non-spinodal) and for quenches in which only ri is

decreased (spinodal), as shown in Fig. B.3.

The structure factors of the resulting disordered states are glass-like, and the

relaxation times appear to diverge smoothly rather than with the sharp increase

that indicates a nucleation-driven freezing transition. The relaxation functions do

not clearly plateau, but become highly stretched or weakly shouldered. Thus, other

than plateauing correlation functions, this simple coupling of geometrical frustration

(due to inefficient crystalline packing) with simple dissipative evolution generates a

significant range of glass forming behaviors.

The importance of the hard-sphere-type repulsive interaction in terms of glass for-

mation becomes apparent when either rAB is small or other expressions for fAB, such

as the RY-DFT form of Eq. (2.23), are used. The binary PFC liquid of Chapter 7, for

example, appears to freeze very much as the monatomic PFC liquid studied in Chapter

5. The binary RY-DFT model and its direct PFC approximation (Eq. 2.24) have been

simulated as well using Model B dynamics, with parameters chosen to match those of

a known MD model glass former. The model is a binary Lennard-Jones system with

σAA = 1, σBB = 0.88, σAB = 0.8, εAA = 1, εBB = 0.5, εAB = 1.5, and a concentration

of NA/(NA + NB) = 0.8 [243]. This parameter set suppresses crystallization in MD

simulations, allowing uninteruppted access to the glass-like moderately supercooled

liquid.

The Cij
2 (q) terms were taken directly from MD simulation data, with first peak

fits used to construct the PFC interaction terms. No qualitative differences were ob-

served between the RY-DFT and PFC results, with both systems exhibiting first order

freezing transitions to disordered solid states. The weakly nonlinear binary models
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Figure B.3: Transition behavior of the minimal mutually repulsive binary PFC glass
former. (a) Free energy vs. temperature during glass formation, (b) Emergence of
glassy structure factors, (c) Glassy relaxations, (d) Arrhenius plot of relaxation times.
rAB = 0.2, qA = 1, qB = 0.8, and ri = −0.16 (unless specified otherwise).
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Figure B.4: Two-body relaxations in the binary LJ RY-DFT supercooled liquid. In-
termediate (a) AA and (b) BB scattering functions for various mobility ratios.

therefore appear to lack complex glass forming dynamics, much like the standard

monatomic models.

B.2.2 Equations of motion

Anomalous mobility ratios

Glassy dynamics can be produced within the binary LJ model described above by

imposing a large difference in species mobilitiesM = ΓA/ΓB � 1. The BB relaxations

begin to exhibit plateaus as M becomes small, as shown in Fig. B.4. The nominally

mobile B field is effectively caged by the slow A field, which as M → 0 amounts to a

source of quenched disorder and is therefore not justifiable as a model for structural

glass formation.

Inertial dynamics

The results for monatomic systems evolved with inertial dynamics indicate that cer-

tain glass forming behaviors are promoted in the underdamped regime. Unfortunately,

crystallization and oscillating correlators prevented a clean study of the glass transi-

tion region for the monatomic liquid. It thus seems likely that the repulsive binary

model described earlier in this section would offer more suitable framework for testing

the effects of inertial dynamics on glass formation. Simulations of this model will be

the subject of a future study.
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B.2.3 Overview

Two primary ingredients for glass formation are suggested by the models studied

in this appendix: underdamped inertial dynamics and strong local nonlinear free

energy components, such as a binary hard-sphere-type repulsion term. A model which

combines these two components, along with an additional highly nonlinear barrier

term, is studied in Chapter 6. A wide range of glass forming behaviors are shown to

naturally emerge from such a description, with little need for parameter tuning.
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