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INTRODUCTION

The purpose of this thesis is to state the
problem of finding a Wedderburn-Artin structure theorem
for semirings. In the now classical case of ring-theory,
a certain ideal - called the radical - plays a fundamen-
tal role in the development of this theorem. We propose
to state in abstract terms what this role is, in order
to facilitate a reasonable generalization of the radical-
concept for semirings. In order to be useful, any
algebraic notion must, of course, possess a characteri-
zation which can be formulated in terms of elements in
an algebraic structure; the radical satisfies this
requirement. In trying to generalize such a notion, we
could therefore proceed by studying various generaligzations
of its intrinsic characterization, and this has indeed
been done in the case of rings (Amitsur (1),Divinsky (1) )
as well as semirings (Bourne (1)). We shall completely
disregard this point of view and produce a radical defined
as a homomorphism which maps a given algebraic structure
onto a certain composition of presumably well-known
structures.

Unfortunately, however, we are yet unable to
characterize such a radical internally, except in very
few cases, in which it nearly coincides with the old

concept.




Nothing in this thesis is essentially new,
and source references will be given wherever we are
aware of sources. In chapter I, we study abstract
algebras in the sense of Birkhoff, and develop our
material as far as possible in this abstraction.
Chapter II treats ring theory as an example where the
outlined method can be carried through completely.
Finally, Chapter III is devoted to semirings about which
we know little indeed.

It may appear that the paper "On a Wedder-
burn-Artin Structure Theory of a Potent Semiring" by
Bourne & Zassenhaus (1) answers our proposed question.
This is not so, since the authors assume the decom-
position which_we are trying to find, and merely point
out its final form. Moreover, as their own example at
the end of the note shows, the theorem has very limited

application even as it stands.




CHAPTER I

UNIVERSAL ALGEBRA

In order to stress the generality of the -
method of investigating aigebraic structures by decom-
position into subdirect unions, we first develop this
method as far as feasible in the setting of universal
'algebra.} Most of the details of this chapter can be
found in Birkhoff (1). The rest are either well-known

or slight generalizations of well-known results.

#1 Subdirect Unions.

By an algebra, we shall mean a set A on which
a class (possibly infinite) of functions f, of n,
variables is defined, such that for x €A, (%, «. X, )€ A,
Two such algebras are similar if they admit similar
: operatlons, i.e.,if there ex1sts a one-to-one correspondencé
between the functions f ‘on one algebra and the functions
fﬂ on the other, the n, belng the same in both cases. '
Thus, for example,. a commutati?e group is similar even to,
a non-commutative one, identlties that are satisfled by

1}

any of the f, are 1rrelevant.; A-- homomorphlsma on an

algebra A is a mapping from A into a,similar'algébra




such that &(f, (x;...xy,) )= f,(0o(x; )ee.0(xpn,) ).
If this mapping is one-to-one, it is an isomorphism. We
shall loosely identify isomorphic algebras.

Now consider a class & of similar algebras
A,.,/MM, and form the Cartesian product m,. ]TA,..
consists of all functions x from M into UA,.. ,such that
x(/‘)é Am. Then, by defining the algebraic operations in
TrAr by letting £, (x,...xn,) =y&[lAn such that ¥ (p)
=f, (x,()u)...x,.,u(/n-) ), we obtain ITA,A as an algebra

similar to all the An. It will be called the direct union

of {Al"} .

Proposition 1: Let B be any subalgebra of n(A/‘ )e

Then the projections, Pt B- Ay so that x-—vx(_,u.), are homo-

morphisms on Bs -
Proof: Let f,(x, ...x,, )=yeB. Then Pu(y)=
y(p) = £y, () e, () )= £, (pulx)ee Bulxn,) ).

Definition’ l If Pp maps B onto Ap for all m

e M, B is called a subdlrect union of the algebras A/‘.

Suppose we are given an algebra A, and, in order
to study its structure, we compare it with a class Ol of
algebras of known structure. A homomorphism 6 on A will

then be referred to as an X-homomorphism if o (A) is

isomorphic to some B€Ol.
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Theorem 1: A is a subdirect union of
K-algebras if and only if for every pair x,y of distinct
elements of A, there exists an 0L _homomorphism O such
that O (x) #F o (y) . |

Proof: Let {.0‘#_{ f«MI be the totality of
OL -homomorphisms on A,' and sét' “On(A)= An . The mapping
T: A—> TTAP , where T (x)= S is ”such that s(,u) = 0;.(x) |

is obviously a,hoﬁomopphism of A into TTAF" But if x#-y,
there exists a }AQM vfor' which U,;(x)#%(y) and hence
T(x)#T(y). Henee T is ‘an_i'sémorphism. T(A) is a
subalgebra of ]T(A/;). Cbnéidéf its projections. If
a€Apu= 0n(A) , there exists an x&A such that Oulx)=a.
Therefore if T(x)=S, S(/;)‘=a; i.e. §SeT(A) for which
p/*(S)=aa. Hence .the projections are onto,‘and A is iso~-
morphic to a subdirect union. ‘

Conversely, if A is a subdirect union of‘some
of the Apm, the projections pu are (l-homomorphisms

and distinguish points of A.

This theorem is fundamental in what is to
follow. In order to classify algebras, which are sub—
direct unions of a certain type of algebra, we nust find
criteria for existence of enough homomorphisms,,whose_range
is of the desired type, to distinguish points. Further,
because of the comparative vagueness of the term "sub-direct
union™ it is desirable to have conditions for such a union

to be the direct union.
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We mention, howevery, one case in which even the notion
of subdirect unioﬁ can give strong results. Suppose
that 0 consists of only one algebra A'. Then if A is
a subdirect union of Ol;élgebras, it can be regarded as
a set of functions from thé'index-set'M into A'., If
A' has a natural topology, M can bé topologized S0 as
to make these functions cohtinuous. Then the topology
of M, now called the "structure‘space" of A can give
information about the structure of A.

This is, of course, the method underlying
Gelfand's representation theory for commutative Banach-

algebras.

#2. The Lattice of Homomorphisms.

Definition 1: Let O° be a homomorphism of

the algebra A. Then x and y in A are indistinguishable

under & (x=y(o) ), if o(x) = o (y).

Proposition 1: The relation x=y(o) is a

congruence relation; i.e., if x;z y; (o) then
fulx, oouxp, )2 'f,(y, «e+Yn,) (03, for any £f,.

Proof: If x;=y; (o) then o(xy)=aly;) by
definition. Hence o (f,(X,ceeXy, ) )= folo(x, ).,
o (xp )= (0 (y,)eee 0(yn,) )= oyl eeevn, ) ),
and fy(x,eeexp ), £,(y, +.07p,) are indistinguishable

under O .
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Definition 2: Let O,T be two homomorphisms
on A. Then © is said to be finer than<T(eo&T) if for
all pairs of elements x,y in A x=5y (¢) implies x=zy (T).
oand T are equal if they are equal as congruence rela-
tions; i.e., if G‘S‘U and T£0 .

It is clear that o is finer than © if and
ohly if it distinguishes at least as many elements asT .
In the future we shall make little distinction between

the ideas "homomorphism" and "congruence".

Propositioni?:, The cléss of distinect homo-

morphisms on A is partially ordered by 4,
- Proof: Obviously o ¢ o. Furthermore, by
the difinition of & , the transitivity of & follows from

the transitivity of implication.

For thevpuquse of proving that the homomor-
phisms on A form a complete lattice we shall note that
they have an upper bound and exhibit the infimum of any
subset. This will require:

Lemma 1: If P is a partially ordered set
with upper bound @ , and if every subset of P has an
infimum, then P is a complete lattice.

Proof: Let S be a subset of P and consider
the set U of upper bounds éf S. Since @€U, U has an

infim#m, which clearly is the supremum of S.




-

We note that the congruence GA » where xz=y (64)
for any pair x,y in A, is an upper bv_ound for all homomor-
phisms. Incidentally, the congr"uence; Fa o where xa8y (_fA)
if and only if x=vy, is a lower bound. Thus fat0s 6
for any homomorphism ©on A,

Proposition ‘3: - If H is a set of homomorphisms

on A, define xsy( V) to rﬁean that x=y(o ) for all o€ H .
Then \p is a congruence and p=inf H.

Proof: W is clearly a congruence, because
x;2yi (6) for all oeH impiies £y (Xesexp, )=
£y (¥ie+e¥n, ) (o) for all e H. x=y (p) implies x=y(o)
‘for any C"€H, so that P < O . Finally if W ¢ O for
all o € H then x=y(w) implies x=y(¢@) and hence xzy(|p),
so that W<E P . Hence Y =inf H.

We can conclfide now from lemma 1 and proposition
3, that the homomorphisms form a complete lattice. For

the record, we shall also exhibit the form of the supremum.

Proposition 4: Let H be a set of homomorphisms,
and let x= y(y) mean that there exists a finite sequen'ce
X=X,eeeXp=y, Where x(=x¢4, (0) for some O: €H. Thén
sup H= ¢ .

Proof': It is easy to see that | is an equi-
valence relation, the trahsitivity following from the fact

that the union of two finite sequences is finite.
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Now x; = y; () for i=1...n, means that x;= x!...xf‘:y‘;,b

&
a
where x:z

L=

xgﬂ (O';j ) for some Oyj in H. Obviously these
sequences can have the same length m, if elements are
repeated when necessary. Let f, (i,j) mean fv(x,...xij...xn”),
and order these lexicographically. Then each member in
the resulting sequehce of length mn, is indistinguishable
from the following one under some O¢H, and f,(X,eeeXn,) =
Fp (¥, eeeYn, ) (P

Again it is not difficult to see that ¢ is an
upper bound no greater than any other upper bound. Hence

(,Oz' sup H.

Definition 3: Let an algebra A be given and

consider a set Olof similar algebras. If H is the totality

of Ol-homomorphisms on A, the Ol-radical of A is defined to

be o(A= inf H.

We can now restate theorem 1.1 by noting:

Lemma 2: ®&p = f‘A if and only if for any pair
x,y of distinct points of A, there exists aﬂ Ol -homomor-
phism ¢ which distinguishes x and v .

Proof': | Suppose that &, = fa . Then x,y are
indistinguishable under" wO(A ,“tvha‘).t is, under all
Ol -homomorphisms only if they are equal.

Conversely, if x,y are indistinguishable under
all Ol-homomorphisms only if they are equal y Xz y(ed,)

implies x=y or x=y(f4). Hence %4 € 4 , and therefore
Aq = fa .
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As a direct consequence we obtain:

Theorem 1: A is a subdirect union of Of-algebras.

if and only if &, = Pa .

Theorem 2: Let &(A)= B. Then Xg=fF5.

Proof: We note that, if O and T are homo-
morphisms on A with ¢°€ T, then T induces a homomorphism
Tp on B =o(A), such that for u= O(x) € B, Tg(u) =T (x).
This is single-valued because d(x) = L=0(y) implies that
T(x) =T(y), since ogT.

Now let u,v be distinet points of B =°‘A(A); i.e.,
u = o, (x) and v = &, (y), for x,y, in A. There exists an
Ol-homomorphism © such that x#y( o). Since &y ¢ o , O
is an Ol -homomorphism on B such that 0’5(u)= olx)# oly)
= Gy (v). Hence the Ot ~homomorphisms on B distinguish
points and g = fp by lemma 2.

Theorem 3: °<A is the finest homomorphism whose
range is a subdirect union of O -algebras.

Proof: Let T be & homomorphism such that T (4)
is a subdirect union of (X-algebras Au. Then the mappings
P T x+T(x)= u+pu(u) are Ot -homomorphisms of A, and
C = inf(p,T). Since & is the infimum of all Jf~homomor-
phisms, &, $ T .

If A is not decomposable into a subdirect union,
theorems 2 and 3 yield the ."least blurred® hémomorphic

image of A which is ’decompbséble.

B .




e

#3. Subdirect Irreducibili&z.

Définition l: An algebfa A is subdirectly

irreducible if it is not isomorphic to any subdirect

union of algebras:.ethér.than'A itsgelf.

PropOsition”l:LetLthé_the,set of all homo-
morphisms 0‘¢.fk on A, Then A is subdirectiy irreducible
if and only if inf H # f5 .

Proof: If inf H= P, , A is a subdirect union
by theorem 2.1 . On the other hand, if A is a subdirect
union of Ap, then the infimum of the projections Pm is

already equal to £, . Hence inf H'#fk is impossible.

Theorem 1l: Every algebra A is a subdirect union
of subdirectly irreducible algebras.

Proof: For any distinct pair of points x,y in
A, we shall exhibit a homomorphism ¢ , such that
O (x)# 0(y) and O(A) is subdirectly irreducible. Then
the theorem follows from theorem 1.1 .

Let H be the set of all homomorphisms on A
which distinguish x and y, and consider any totally
ordered subset T of H., We prove that T =sup T & H.
For if this were not so, x=y(T) could be true, and there

would exist a finite sequence X=X, ...X,=Y such that

!
Xy (o) for some o0 in T. But since the O are

]

XL

comparable and finite in number, there would be a greatest

among them, say O, , and x; = x .,

(] 4 (06) fOI" i=lonono
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Hence x=y(0p) which contradicts the hypothesis that
O, € H.

Since every totally ordered subset of H has an
upper bound in H, it follows from Zorn's lemma that H
contains a maximal element O . Obviously o (x) # o (y).
Now let B = o (A) and consider the two distinct points
u=0(x)and v =o(y). If P# fg is any homomorphism
on B, Y& is a homomorphism on A. Since O is maximal
with respect to distinguishing x and y, it follows that
lPO'(X) = PO(y) or ¥ (u) =A\p(v). Hence B is'no subdirect

union.

Theorem 3.1, which is due to Birkhoff (2), makes
it desirable td study and‘blassifyAsubdirectly irreducible
algebras. This has been done to some extent in ring-theory,

especially in thévéase of commutative rings. (cf. McCoy (1) ).

#,, Conditions for Finite, Direct Unions.

Definition 1: A partially ordered set P

satisfies the descending chain condition (d.c.c.) if

any descending chain of distinct elements of P is

necessarily finite. Similarly, the ascending chain con-

dition (a.c.c.) is defined.

Theorem 1: Let H be a set of homomorphisms on
A, for which inf H=f,, and let P be the totality of

infima of subsets of H. Then A is a finite subdirect .
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union of algebras o;(A) (o;eH) whenever either the
d.c.c. or the a.c.c. holds in P.

Proof: Certainly A is a subdirect union of
On (A) with op€H. Suppose A is no finite subdirect
union of these. Then we can select an infinite sequence
20‘,,5 from H by the foilowing rules: (l.)O'-‘%ianO'.--o 0‘:,-;} .
If it became impossible at any stage i to find such a
homomorphism, A would already be a subdirect union of
'{q;-u iw{ » contrary to our assumption. (2.) After
obtaining the infinite sequence 50;3 satisfying rule 1,
‘we exclude all O for which Oy 2 inf§ Oiy,, - } .
This operatioh does at no stage change inf{cky. Hence
~ if it were to reduce fo'ngto a finite sequence {0‘, u}:
inf 20;---0'~j =inf 50'.\2, so that Op,; would not have been
chosen in the first place because of rule 1. Thus we
are left with an infinite sequence 2°L\gso that
inf fO‘, i-l}¥°i¥infi¢€+l »Tipq ++- § » for all i.
(a) Suppose P satisfies the d.c.c. Let H= {o;...okf,
and consider the chain inf H, 2 inf Hy?» ... . The
elements of this chain are distinct, since inf H; = inf H{s
implies inf {inf Hy , U'ii-t} = inf H; or Oi4y 2 inf H ,
| which violates the first.rule.
(b) Suppose P satisfiesvthe”a.dsc. L&t Hi:’{G}*l;"‘} ’
and consider the chain inf Hy € inf Hy§ ... . Again
inf H; # inf Hy, , this time because of rule (2), and

we get an infinite ascending chain.
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We have purposely avoided the hypothesis that
the chain conditions hold for the partially ordered
system of all homomorphisms. This assumption is much too
strong in the case of semirings, which have 'many more!

homomorphisms than rings.

Definition 2: Two congruences 0, T are per-
mutable if 0';1: = 'E-O",'z where ‘isly{*d'.'c) meané that there
exists a z such that x=z(0) and zzy(T ).

Note \that, O.T is in general not a congruence

relation.

Proposition 1: TIf O and T are permutable

homomorphisms, ©-T =T:C = sup(e,t). In particular,
0. T 1is a congruence.

Proof: x=&y(sup(o,T) ) implies that x=X,...Xp=7,
where x; = x(4, (OCorT). Whenever X; 8 X4 (O,
Xi41Z X4z (o), we can drop x4, by transitivity.
Similarly for repeated T . Thus we can assume that the
congruences connecting x| and X {+; alternate between O
and T . But since these are permutable, the whole sequence
can be collapsed into three elements as in definition 2.

Therefore sup(o,T)=0.T.

Conversely it is obvious that x=y(0.T) implies

that x=y(sup(o,T) ).
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Theorem 2: Let H and P be as in theorem 4.1,
and suppose that H is finite, i.e., H = {‘7.-" %nd.
Then A is the direct union of the Oy (4), if and only if
the elements of P are permutable, and sup i inf(o;...oi),0}”f= QQ
for all (<n . |

| Proof: Let ©:(A)=A;. In order to prove that

A is the direct union ITA;, we must show that for any
n-tuple { x;}:x;e A,,i= l...dl} , there exists an x in
A such that Oj(x)= x{. We proceed by induction.

For x, there must be a %,€A so that 0,(z,) =X,
by definition of subdirect‘union. Suppose we have found
z x € A such that z g = X((oy) for i$k. Again, we can
find a z'cy SO that c;*;{étx*t )= X k+¢) -+ Since the
elements of P permute, 6, = inf(gy... 0% )"'D‘Kﬂ. There-
fore, since z g = Za) (SA), .fh_ere exists a z,,, such that
2 E oz, (inf(o ...O'K’)")‘and Zket = Z%ep ( Okxey )e
Hence z,,, & x(0y) for all i & k+1.

Conversemy,.suppOSe A is the}direct union of
Ajese Ay . Then it is easily verified that the projections

O, : A A; satisfy the conditions of the theorem.

#5 Homomorphisms on Semirings.

In this thesis, a semiring S will be an algebraic
_system with two associative binary operations: addition (+)
and multiplication (°+), where addition is commutative, and

multiplicatioh is left and right distributive over addition.
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Further we postulaté the existence of an additive identity
0, which also kas the property that Ox=X0 = O for all

x€S. (Note that this last property of zero is not always
assumed in defining a semiring.) If o is a homomorphism on
S, the kernel of ¢ will be the set of those elements of

S which are indistinguishable from zero under O .,

Proposition 1l: A subset K of S is the kernel
of some homomorphism if and only if
(1) x,y€K implies that x+ye¢K.
(2) x€ K implies that ax and xa are in K for
any a€S.
(3) x-ﬂ-yeK and x €K implies that y €K.
Proof: Let K be the kernel of a homomorphism O ;
i.e., O (x)= 0 for all x€K and for no others. Then
(1) o(x+y)= O (x)+ O(y)=0+0=20
(2) O(ax) =0(a)o(x) = 0(a)0 =0 and similarly
on the right.
(3) 0=0(x+y)= O(x)+0(y)= 0+0oly)= O(y).
On the other hand, if K is given with properties |
(L) to (3), let us define x=y( 0 ) to mean that xta=y+Db
for some a,b € K., This is a congruence whose kernel is K.
For, let x¢2 y. (0) (L=21,2). Then x;+a;= yi+by (i=1,2).
By summing, (x,+x, )+ (a;+a, )= (y,+ vy, )+ (o+ b, );

lees, X% X, = 71+ ¥, (0) since (a,+ a, ), (b,+ b, )€K by (1).
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Also, by multiplying, (x, x, )+ (x; a;+a, x,+a, a, ) =
(yy y2 )+ (v, by+ b, y;+ b, by ) so that x;, x,=27, ¥, (o)
since the two other terms are in K by (2) and (1). Thus O
is a congruence. Obviously K is indistinguishable from O
under ¢ , and further if x=0 (0 ) then x+a=b for a,bek,

so that x€ K by (3)

We note that only properties (1) and (2) are
needed to construct a congruence. (3) then ensures that
all elements congruent zero are in K.

Definition 1: A subset of S is called a semi-

ideal if it satisfies properties (1) and (2) above; it
is an ideal if it satisfies (3) as well. If I is a semi-
ideal, O as constructed above is called the natural

homomorphism associated with I. ¢ (8) is sometimes

written §/I, and called the difference-semi-ring of S

modulo I.

We shall presently show that the correspondence
between homomofphisms and ideals is in general many—toéone.
Clearly every hqmomorphism has ohly oﬁe kernel, but many
different homomorphisms might have the same. First some

observations of a different nature.
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Definition 2: .. The ring of S is defined as
R(S)=§xeS) x+y= 0 for some yes} . If R(S)= s,

S is called a ring; if R(S) =0, it will be called pure.
| The proof that this coincides with the usual
definition of "ring" is omitted. Also tnproved are the
well-known facts concerning the uniqueness of additive

inverse and the operation of subtraction in such a system.

Proposition 2: R(S) is an ideal in S, and the

_difference-semiring modulo R(S) is pure.

| Proof: The verification of the first part of

this proposition is easy.

| Let x+'y§ O mod R(3); i.e., X+ y+a = Db with

a,b € R(S). Since a has an inverse c€R(S), x+y=b+ c€R(S).
Hence, for some z €R(S), xty+ 2=0; i.e.,

x+* (y+z)= y+(x+2)=0, and x,y€R(S).

Proposition 3: If R is a ring with a homomorphism

O,0C(x~-y)= o(x)~ o(y) for all x,y € R.

Proof: Since o (0)+u =u for all u € o(R), we
have in particular O©O(0)+ 0 = ¢ (0)= 0. Now if x+y = 0
in R, O(x)+ O(y) = 0(0) =0. Hence O: y=-x-»-0(x).

Theorem 1: The lattice of homomorphisms on a ring
R is isomorphic to the lattice of ideals, where inf {I‘uzr-ﬂ I
and sup { Ir}-_-{Za;‘ a; € I, , and the sums are finiteffor

ideals.
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Proof: Let O be a homomorphism, K its kernel.
It is always true that x££y mod K implies x=y(o), and if
R is a ring, the converse holds also, because O (x)=0(y)
implies @ (x~y)= 0 and x-y € K so that x= y mod K. It
follows that ideals and homomorphisms correspond to one
another uniquely. The rest of the proof is direct computation.
It follows from the form of'supremum for ideals that

Cordllary: Homomorphisms on a ring are permutable.

Now a counterexample is due to show that this is
not generally true in semirings.

Example 1: Let S be a pure semiring without zero
divisors (such as the non-negative integers), Then S can
be mapped homomorphically onto the lattice (0,I) , where
addition and multiplication correspond to taking the supremum
and the infimum respectively.
| For, let T (x)= I if and only if x#0 in S*.
Then T is a homomorphism, since x+y = 0 implies x=y=0
by purity, and xy = 0 impliéé tﬁétbeither X or y be zero.
Its kernel: is simply r Q0; but the isémorphiém fs also has
this kernei. | |

| T is what Boufne in (2) calls a "semi-isomorphism",

demonstrating that this term is often of little use.
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CHAPTER II

THEORY OF RINGS.

As an application of the preceding abstractions,
we shall now derive the classical Wedderburn-Artin theorem
for "semi-simple™ rings. If we dwelt on detail in Chaptef
I, it was necessary for an intuitive grasp of the point of
view taken there; in the sequel we shall omit all standard
definitions for the sake of brevity. The material of this
chapter is contained explicitly in either Jacobson (1) or
Brown and McCoy (1).

It should be noted that theorem 5.1 of chapter
I enables us to substitute the notion of ideal for that

of homomorphism.

#1 Irreducible Modules.

Definition 1: If A is a ring, M a (right) A-module,

the centralizer C(A,M) of M is the ring of module-endomorphisms

of M (8 is a module-endomorphism if @ (m,+ m, )= 6 (m, )+ 6(m,)

and 6(ma)= (6(m) )a, where m,m,,m, € M and ae A).

Proposition 1: If M is an irreducible A-module

(i.e., contains no proper A-submodule), C(A,M) is a division-

ring.
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Proof: Let © € 6(A,M). It is clear that the
kernel of 9, K(6), as well as its range, ©(M), are sub-
modules of M. Since M is irreducible, either (1) 6(M)=M,
so that K(8)=0 or (2) 6 (M)= 0, so that K(6)=M. In case
(2), © is obviously the zerb;endomorphism. In case (1),
since K(8)=0, and theacorrespondence,between kernels and
homomorphisms is unique, é,ié an automorphism. 6~ is
certainly an automorphism of the additive group of M.
Further, ma = (8 8 'm)a = 9 (Q"m)g),‘so that
6~ (ma) = (6~'m)a, and "' € GC(A,M).

This propositioh or a variant thereof usually -
goes under the name of Séhur?s Lemma. It enables us to
conclude that M is a vectorspace (free module) over
"= C(A,M) and that, if M is a faithful A-module, A

corresponds to a ring of linear transformations on M,

The so-called Density Theorem which follows shows
that a certain class of linear transformations on the
vectorspace M are always induced by A.

Theorem 1: Let M be an irreducible A-module,

[T its centralizer. Given two finite sequences in M,
{x:] and f{yi{ (i=1....n), where the {x;} are linearly
independent over [~ , there always is an a €A such that
Xt a=sye .

Proof: For any subset N&M, N* will mean the
annihilator of N in A. Conversely, S¥, for SSA, will be

the set of all elements of M annihilated by S.
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I, If N = 2:;:.r§¢ ;‘wé shall first prove that
(N%)%* =N, Obviously N €& (N*)* go that it remains to show
that uN*¥= 0 implies ue N, for any ué M.

Let R#0 be a right ideal in A, L be I'x (for
some arbitrary x€ M), and L' the annihilator of L in R.
Suppose uL'= (0, and define a corresvpondence T ¢ xR>uR
by T(xa)= ua, for a€R. T is a function since x a=x b
implies a—~b € L' and ua = ub. Since xR, uR are A<submodules
of M and hence equal to M, T maps M into M. It can also be
- seen that T is a module-endomorphism; i.e. T € r .'
Since T(xa)= ua, (Tx-u)a=0 for all a€R and
Tx=-u € R¥ so that ue R*+ L,

To prove (N*)*=N by induction on n, let NK -'-'.AZ;ilrx; .
The case n=1 follows directly from the above by setting‘ ’R'-‘A
and x=x,. Suppose we know that (N *)¥= Ny A‘gain we
apply the preceding argument, setting R==I\I=§=< and X=X ky Yo
Suppose u N’ﬂ"(_H = 0. Then uL'=0; for if a € L' then sincée
a€R, it annihilates Ny , and since it also annihilates L,
it must be in N%, . Hence u € R* + L. But by the induélion_
hypothesis R¥* = NK and so u € Ny, . |

II. Let My be the subspace spanned by §x; {1i'k]
Then xké My = (M¥ )* . Hence some ey € A annihilates My
, without annihilating x, . Thus Xje = O for i#k and
Xgex=u, #0. OSince uy A cannot be a proper submodule of M, |

L ag=y, for some ay € A, Hence a = Z e

ax has the
K=]

K
property promised in the theorem.
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Corollary: If M is an irreducible A-module,

finite-dimensional over its centralizer, A induces all

linear transformations on M as a vectorspace.

#2 The Jacobson Radical

Aiming ét'a representation of rings in terms of
linear transformations oh'g vectorspace, we are prompted
by the results of section 1 to make the following

Definition 1l: ‘A ring A is primitive if there

exists a faithful,‘irreducible A-module. An ideal P in
a ring A is primitive if A/® is a primitive ring

" Because of the corollary to theorem 1.1 we have
already:

Proposition 1: If A is primitive it is isomorphic

to a ring of linear transformations.

If OU is the class of primitive rings, the
Ol -radical of A can be characterized by its kernel,
namely the intersection of all primitive ideals of A. This

ideal will be called the Jacobson radical, J(A).

Corresponding to theorem I.2.1, we then obtain

Theorem 1: If J(A) = 0, A is a subdirect sum
of primitive rings.

Before investigating the consequences of this
'result, we shall give some effective characterizations of

J(a).
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It turns out that every irreducible A-module can
be found as a homomorphic image of A regarded as an A-module
(regular representation).

Definition 2: A right ideal I€A is modular if

there exists an e € A such that a-eca el for every a€ A,

e is called a left identity modulo I.

Proposition 2: M is an irreducible A-module

if and only if M is isomorphic to the difference module
A—-TI, where I is some modular maximal right ideal.

Proof: If M is an irreducible A-module and
O#x e M, xXA= M. At the same time xA 2 A -x* (annihilator
of x in A). Now x* is a modular right ideal since xeM
and hence x = xe for some e€ A, so that x(a~ea)= 0 and
a=—eca € x¥ for all ae€eA, x* is maximal since the image in
A—=x* of any right ideal containing x* would be a proper:
sub-module. |

Conversely, let M=A -1, where I is a modular
maximal right ideal. M consists of all cosets a-+I='(e+-I)’a ‘
(by modularity). So M=(e+I)A; also I={e+l)*, We obserVe |
that M contains no submodules because I is maximal. Tb show
that M is not annihilated by all of A( this having been a
tacit assumption about modules, so far), we note that

M* € (e+I)*=1I, so that M* % A,

Proposition 3: P is a primitive ideal if and

only if P=M%¥, for some irreducible A-module M.
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Proof :P is primitive only if there exists a
faithful irreducible:A/E-modﬁle>M. If we make M into an
A-module by setting fna:lrﬁ(a.x-l.-P) for a€A, then M is an
irreducible A-module and.M*= P. On the other hand, if
an irreducible A-module M is.given, it becomes faithful

if converted into an A/P-module, where P is taken as Mx.

Theorem 2: J(A) is the intersection of all mod-

ular maximal right ideals of A.
| Proof: Let I be a modular maximal right ideal.

Then by pfopositions 2 and 3, (A -I)* is a primitive ideal.
From the proof of proposition 2 it also appears that (A -I)*gI.
Hence J(A), the intersection of all primitive ideals, is
contained in the intersection of the modular maximal right
ideals I.

Conversely, let P be a primitive ideal. Then P= M¥
= Nx* for all 0+ x€M. But by the proof of proposition 2,
x* is a modular maximal right ideal. Hence the intersection

of all such right ideals is contained in J(A).

With each element x €@ A we can associate a minimal
modular right ideal I,= § a-xa | a€A} modulo which x is
a left identity. It follows easily from Zorm's lemma, that
a proper modular right ideal is always contained in a maximal
modular right ideal (with the same left identity). Thus when-
ever I » 1is proper, it can be guaranteed that x is excluded

from at least one maximal modular right ideal, and hence x:¢.J(A).
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It follows that x € J(A) implies that I, is not proper,
i.e.., I,= A (unless x= 0). Hence there exists an a€ A
such that a~xa = -x or x+a- xa=0, We shall say that

such an x is quasi-regular. We can now give a second

characterization of J(A):

Theorem 3: J(A) is an ideal in which every
element is quasi-regular and which contains all right ideals
with that property.

Proof: Let I be a right ideal in which every
element is quasi-regular, and let x€I. Suppose x¢ P= Mk
for some primitive ideal P. There exists me€M such that
mx # 0. Hence (mx)A=M and m(xa)=m for some a €A, Since
xa€I, we have a y such that xa+y - (xa)y=0, so that
m=m-mO=m-m(xa+y ~xay)=(m - mxa) - (m - mxa)y=0 which

makes mx # O impossible. Hence X€/\YP = J(A).

#3 The Wedderburn-Artin Theorem.

In order to see more clearly what the structure

of primitive rings is, we now restrict ouselves to rings A

in which the descending chain condition holds for right
ideals. There shouldvbe:nb confusion} although the d.c.c.
for two-sided ideals is sufficient to ensure a finite
decomposition in case J(A)= 0, the present condition is
introduced in order to féfée‘the structure of each component

to be "finite" in some sense.

Proposition 1: If A is primitive, the corresponding

A-module M is finite-dimensional over r'.
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Proof: If this were false, we could find an infinite,
linearly independent sequence {xh; in M. Let M= §x, ...xk}
and bonsider the chain of right ideals MX > M2 ... By
theorem 1.1, there exists ai €A such that a;eM;, a; € M;,, .
'Hence‘the chain is properly descending and thus finite.

Corollary 1: If A is primitive, it is isomorphic

to a matrix ring over a division ring.
Proof: It follows from the corollary of theorem
1.1 and some elementary vectorspace theory.

Corollary 2: If A is primitive, it is simple.

Proof: Let I #0 be an ideal in A. Then take
O%x€I; x corresponds to a non-zero matrix, >which by -
appropriate left and right multiplications and additions
can be transformed into the identity matrix e. Hence

e€1 and I=A,

Theorem 1 (Wedderburn-Artin): If J(A)=0 and A

satisfies the d.c.c. for right ideals, then A=R, ® ...®R,

is the ring of all matrices

@s a finite direct sum, where R ;

of order mi over a division-ring..

Conversely, if A has this form, it satisfies the
conditions of the thec;reem.--»w o

Proof: By theoreéms I.2.1 and I.4.1, A is a
finite subdirect sum of matrix-rings Rj . To prove the
first part of this ﬁheoreﬁ; wé'mﬁst verify the conditions
of theorem I.L4.2, where ﬁhe{primitive ideals P, ...P, take
the place of the o . Buplﬁy corollary 2 above, P; is

maximal (A/P; being simple), and (P,n ..;r\PL-,) + Py = A.
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For the converse, we note that the ring A of
linear transormations on a vector-space M is always primitive.
If N&M were an A-submodule, then even xA=M for any O xéN,
so that M= xA ¢ N, which is impossible. Hence M is a faithful,
irreducible A-module.

Now it follows, again by theorem I.2.1, that J(A)=0
since A is the direct sum of primitive rings. It remains to
prove the d.c.c. Every right ideal I is the direct sum of
its components I; < R , which are right idealsl in R ;_A. We
can therefore restrict the problem to proving the d.c.c. in
a matrix-ring A over a division-ring. It is easily seen fhat
eii A is a minimal right ideal of A (ei; being a matrixsunit
with 1 in position (i,i) and O elsewhere) and that
A= e A+ ez A+ ... + emmA, if considered as a right
A-module, is a direct sum of these. If I is any right ideal
of A, then I is the direct sum of some of the e ;; A. For,

I= AnI= (e ANI)+ -+r 4 (epymh N I), where e ;i AnI is
either O or equal to e ; A, since it is an ideal contained
in the latter. It is obvious now that no descending c¢hain

of partial direct sums of the e ;i A could be infinite.

The development finishing in this theorem is a
complete realization'of‘thé[plaﬁ expounded in chapter I.
We defined a class 01- of _rings (;;rimitive rings) whose |
structure is fairly well‘determined, found a characterization
of the OU -radical, énd‘finallé obtained a structure theorem

in terms of a_direct union.
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#4 The Radical of Brown and McCoy.

The notion of a primitive ring was conceived as
a generalization of a matrix-ring over a division-ring, for
a more general form of the Wedderburn-Artin theoremn.
Another point of view, taken by Brown and McCoy in (1), is
to consider simple rings with identity. It must be
observed that a simple ring with identity, satisfying the
d.c.c. for right ideals, is necessarily a matrix-ring over

a division-ring.

Lemma 1: If e is a left identity for a simple
ring A, then e is the identity element.

Proof: ©Since ex =x for all xe A, the set
S={xe -x| xeA}] is a two-sided ideal I. If I=A,
e = ye-y for some y€A, and x=ex=y(ex-x)= O for all
x€A, If I=0, it follows that xe=x for all x €A and
e is a right identity.

Theorem 1: P is a maximal modular (two-sided)
ideal in A if and only if A/P is simple and has an identity.

Proof: If P is maximal modular, A/P is simple
and has a left identity. Lemma 1, then leads to the desired
conclusion,

Conversely, let A/P be simple with identity e,
and let T be the natural homomorphism mapping A onto A/P.
Since A/P is simple, P is maximal. Let a be any element
such that T (a)=e. Then, for any x € A, x-ax € P because

T (x =~ax) = T(x) - e T(x) = 0.
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If OU is the class of all simple rings with
identity, let the 0t -radical of A be called simply
the radical, R(A). It follows immediately that:

Theorem 2: R(A) is the intersection of all
maximal modular two-sided ideals.

It is obviots now that J(A) € R(A) because
all maximal mod#lar ideals are, in particular, right
ideals. The two radicals are generally unequal: if A
is the ring of bounded operators on a Hilbert space,

J (A)=0 whereas R(A) consists of all completely con-

tinuous operators (cf.McCoy (1)).

Again we can give a second characterization.
With every a€ A we associate a minimal modular ideal Iq ,
modulo which a is a left identity, namely the two-sided
ideal generated by the set S = fx-ax | x eAz . We call

a pseudo-regular 1if I, = A.

Theorem 3: R(A) contains only pseudo-regular
elements, and every two-sided ideal with that property is
contained in R(A).

Proof: Let I be an ideal all of whose elements
are pseudo-regular. Take a maximal modular»ideal P, and
let T be its natural homomorphism. If O#x eI, where
x¢P, then T(x)#0 and the two-sided principal ideal
generated by x will be mapped onto a non-zero ideal I' £ A/P.
Obviously psuedo-regularity is preserved under homomorphism,

and so I'= A/P is composed entirely of pseudo-regular elements.
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Of course, the identity e cannot be pseudo-regular, and

thus x must be in P.

The Wedderburn-Artin theorem follows as in section
3. However, in this setting we can clarify the role of the
d.c.c. in the following:

Theorem 4: If R(A)=0 and A satisfies the d.c.c.
for two-sided ideals, then A is a finite direct sum of |
simple rings with identity element.

Proof: The proof is analogous to that of theorem
3.1l. We observe, however, that we do not need the d.c.c.
for right ideals to establish the maximality of the kernels
of our OUl-homomorphisms (in proving that the conditions

of theorem I.4.2 hold.)

Now it is clear that the d.c.c. for right ideals
is postulated only to make the components of this direct

sum into rings of finite matrices.
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CHAPTER III.

REMARKS ON SEMIRINGS.

As observed earlier, ideals do not determine
homomorphisms in the general case of semirings, and as
other methods are yet unavailable, we restrict ourselves
to types of semirings in which consideration of ideals
can be justified; specifically, to halfrings and distri-
butive lattices. References to various sources will be

given throughout the chapter.

#1 General Propertiesy

To clarify the relation between semi-ideals and

ideals, we introduce:

Definition 1: The closure I of a semi~-ideal I

is the smallest ideal containing I (cf. Bourne & Zassenhaus

(1) ).

Proposition 1: If I is a semi-ideal in a semi-

ring S, then I = ixeS|x+a=b;a,b€I§.
Proof: Any ideal containing I must contain the
set E = §x€S ’ Xx+a=b; a,bel ? (cf. proposition I.5.1.)

Hence we need to prove only that E is an ideal.




-31-

If x+a=b and y+c=d, then (x+y)+ (a+c)= b+d;
therefore E is closed under addition. If x+a=Db, then
xy + (ay) = (by), and so on. The third ideal property is
automatically satisfied by E.

Evidently the definition as well as the proposition

apply also to left and right ideals.

Examples: (1) Let p and q be prime numbers and
consider the semi-ideals (p) and (q) generated by them in
the semiring of non-negative integersz. (p)+ (q) is a semi-
ideal properfy contained in Z, but M"‘ Z.

(2) Let I be a semi-ideal in a finite
distributive lattice. If u = gz&ac (the notation of addition
being substituted for that of union; that of multiplication
substituted for that of intersection), then xeI implies
x£u, and, conversely x<€u implies x=xu&I. Thus I=§x]| x ¢uf.
Obviously, x+a =b means that x€b<u so that x €eI. Hence

I=1I.

In order to see how "ring-like"™ a given semiring
S is, we consider the Cartesian product Sx S with operations
of addition and multiplication defined as follows:
(a,b)+(c,d) = (a+c, b+d)
(a,b) (¢,d) = (ac +bd, ad+bec).

It is trivial to verify that this is a semiring, A
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Proposition 2: Consider the set I = Z xeA ]x: (a,a)
for some a€S{. I is a semi-ideal, and R=A/I is a ring.
Proof: I is closed under addition. Moreover if
(a,a)e I, (x,y) (a,a)= (xa+vya, xa+ya)el, and similarly
on the right.
R is obviously a semiring. For any (x,y)€A,
(y,x) is in A, and (x,y)*+ (y,x) = (x+y, y+x)= 0 modulo I.

Hence R is closed under subtraction.

S is obviously isomorphic to the subsemiring of
A which consists of all pairs of the form (x,0). The
natural homomorphism T : A-A/I thus maps S into the
ring R.

Proposition 3: (a) T 1is the finest homomorphism

from S into a ring.
(b) T 4is an isomorphism if and

only if S satisfies the cancellation law for addition.

Proof: (a) We observe that a=b ( T) if and
only if a+x=b +x for some x €3, For if a=b(t), then
(a,0) * (x,x)=(b,0)+ (y,y) or (a+x,x)= (b+¥,y), so that
a+x=b+x. Conversely, if a+x=b+x, (a,0)+ (x,x) =
(b,0) +(x,x).

Now let O be any homomorphism from S into a ring
P, Then a=b(T) implies a+x =b +x and O(a) + o(x)
=0{(b)+ o(x). Since P is a ring, & (a)=0o(b). Thus

asb (o) and T £ 0,
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(b) If T is an isomorphism, a+ X=b+Xx
(which means T(a) = T(b) ) implies a=b. Conversely,
if the cancellation law holds, T(a) = T (b) implies
a+ x=b+x, and thus a=b.

Corollary: S obeys the cancellation law for

addition if and only if it can be embedded in a ring.

Definition 2: If a semiring H can be embedded

in a ring, it is called a halfring. The embedding ring

H¥* is the ring of all formal differences of elements of H;
more generally, we shall write E* for the formal differences
of any subset E of H, If R is a ring, H a halfring such

that R=H*, then H is called a generating halfring for R.

#2 The Semi-radical.

One might hope to gain a few ideas about the
structure of a semiring by regarding it as the inverse
image of a halfring under the natural mapping T . Just
how blurred this image may be, is shown by the example of
a lattice L with upper bound I. Here T(L)=0 is a one-
element halfring, because I+x=1 for all xeL. However,
following Bourne & Zassenhaus (2), we give the

Definition 1: Let T(S)=H. Then the semi-

radical Z(S) is the totality of x €S such that T (x)é& J (H*),

Proposition 1: Z(S) is a two-sided ideal.
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Proof: Let o be the compound homomorphism
o :S->H->H/J(H), where J(H) is simply J(H%)n H. Clearly

Z(3) is the kernel of this homomorphism.

Now we state a description of Z(S) analogous
to theorem IT.2.3:

Theorem 1: Z(S) is the maximal right ideal I
of S, such that for x,, X, € I there exist y, ,y, in S
for which X \+ ¥, + X,7, + X, ¥, X+ YofF X0+ X, Vg

Proof: Notice that this relation is just a
translation of the idea of quasi-regularity into semiring
language.

Writing x!'=1(x), we note that for every pair

X,,X, € Z(3), (x!

- x', ) € J(H*) is quasi-regular. This

means that there exist Z,,Z, € 5, such that (x% - x', ) +
(2% - ZY) +(x! - x1) (2% - 2%)=0 (in H%), or x'+Zl+x!Z"
+x32] = x%+ Zh+ xJZV+ x12), or T (x,+Z +x,Z,+%x,2,)
=T (x,+Z,+ X, Z,+ X,2,); implying that for some y €3,
X A2+ X2+ X,2,%Y = X,#Z,+X, 2+ Xx,Z,ty. Adding
X, Yy + X,y to both sides of the last relation, we obtain
the one stated in the theorem by setting y, =2 ,+y,
y;= Z,+7.

Conversely, let I be a right ideal with the
property in question. We must prove that (T(I) )*g J(H*),
for which it suffices to show that in (T (I) )* every ele-

ment is quasi-regular.
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This is easily checked by following the above argument

backward.

In the next section we shall study those
semirings to which this notion of radical is strictly

applicable.

#3 Structure of Halfrings.

Although halfrings are known to be subsets of
rings, it is of interest to ask what part of the ring-
structure is made up of the generating halfring. The

present section is devoted to this question.

Broposition 1: Let H be a halfring, I a semi-

ideal in H., Then I* is an ideal in H* and I*n H=T1.
Proof: OSince I* is the collection of all
differences of elements of I, it is closed under sub-
traction as well as under multiplication by differences of
elements in H. Hence I* is an ideal. Further I*n H =

fxeH ) x=a - b; a,belf=fxeH| xtb=a; a,beI}=T.

Clearly, proposition 1 applies to left, right,
or two-sided ideals. In the following proposition we
shall mean by the word "ideal™ any one of these three

classes.

Proposition 2: Let L* be the lattice of ideals

of H¥*, L that of H. Then L*¥=L under the correspondences

I* & 1 =T%nH.
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Proof: By proposition 1, the indicated
correspondence is one-to-one. To verify that it is an
isomorphism, we observe:

(1) /\I*,“')/\ IX n H= ﬂ(I’f.n H) =N 1.

(2)UI=}1=ZI>;—7 (Z I )n H

= {er{l X= X+ «ootX, , X € Iﬁ&g

= fxeH| x=(a, =b, )+ .e.4 (ap =bn ),
ay, by € I ?

= {er, x# (b;+...+b, )= a,+.n+aK2

= 7 IP=UI,“

It follows now that decomposition of halfrings
can be studied in the same way as that of rings, provided
that the Cl-homomorphisms are natural homomorphisms of
ideals. In particular:

Theorem 1: If a halfring H has zero semi-radical
and satisfies the d.c.c. for right ideals, then
H=H ® ...®H, , where H{ is a generating half-ring of
a matrix-ring over a division-~-ring.

Proof: 1If H has zero semi-radical, then J(H*)= 0.
Also, since for any right ideal R* & H* , R=R¥nH is a
right ideal in H, H* satisfies the d.c.c. Hence H* =
H* @& ...eH*, , where H¥ 1is a matrix-ring over a division-

ring, and H=H, ® ...®H, , where H_ = H% nH.

It remains to investigate generating halfrings
Hy of matrix rings. Now H* is a simple ring, and hence

so is Hi by proposition 2. Since the ring of H; is an ideal




-37-

in H (proposition I.5.2), there appear only two cases:
(1) H; is a ring. Then H{ = H* and thus
its structure is determined.
(2) H,; is pure. This raises difficult
questions, which we shall discuss, though not answer, in

the remainder of this section.

Proposition 3: Let H be a pure generating half-

ring of a ring R. Then H is contained in a maximal pure
generating halfring (m.p.g.h.)

Proof: Consider the set S of all pure generating
halfrings containing H, partially ordered by inclusion.
If T is any totally ordered subset, its union is a pure
generating halfring. The proposition therefore follows

from Zorn's lemma.

We shall denote the half-ring of left operators
(cf. Bourne & Zassenhaus (1) ) of a halfring H by H, .

Lemma 1l: If H is an m.p.g.h., H*nH = H,

Proof: Certainly HSH _  n H*¥ , thus leaving us
to prove only that H AH* is pure. If € ,f € H, ,
©+¥P=0 implies P(x)+ O(x)=0 and hence VY (x)= 6(x)=0
for all x €H. Therefore Y=0=0.

Theorem 2: If H is a pure generating halfring
of a matrix-ring over a division-ring D, D must be of

characteristic zero.
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Proof: By proposition 3, H* contains an
m.p.g.h. H' . The identity of H% , ¢ € H¥AH, = H'.
Hence ne= 0 for all n, since H' is pure. It is there-
fore necessary only to study matrix-rings over division-

rings of characteristic zero.

In the field R of rational numbers any set of
the form S = § X€R , X»7T> O? is a pure generating
halfring. However, there is only one m.p.g.h., namely
the halfring of non-negative rationals. Suppose a halfring
He R contains a negative number -p/q. (p,q being natural
numbers). Then pq (-p/q)e€ H; ie., -p-€ H. But (-p/q)z
= p?/q%, and thus p?e¢ H. Hence H is not pure. In general,
the question of what m.p.g.h.'s are contained in an

arbitrary division ring is not so easily answered.

Now let M be the ring of all n by n matrices
over R, and consider the subset_H consisting of the zero
matrix plus all matrices with positive entries. H is a
pure generating halfring of M, but is not maximal. We
conclude this section by stating the conjecture that if
H is an m.p.g.h. of a matrix-ring over a division-ring D,
then (with perhaps some minor additional assumption) H is
the set of all matrices with entries in a generating half-
ring of D. This, unfortunately, we are unable to prove,

although no counterexample seems available.
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#4 Distributive Lattices.

A distributive lattice is obviously a semiring
in which the product of two elements is simply their
infimum, the sum their supremum. We shall investigate
such lattices by studying the homomorphisms induced by
maximal ideals.

Let L be the given lattice, and henceforth

suppose that L has a lower bound O and an upper bound I.

Lemma 1l: If M is a maximal ideal in L, L/M %
(0,I), the lattice of two elements.

Proof: L/M has to be simple since M is maximal.
But if L/M contained a third element a , then fx|[x<¢af

would be an ideal.

If o is the infimum of all homomorphisms on L
induced by maximal ideals, then, by the results of chapter
I, L is a semiring of functions from 3, the set of maximal
ideals, into (0,I), provided that «&,_ = f.. If «, =4 ,
we shall call L a reduced lattice.

Theorem 1: A reduced lattice L is isomorphic with
a semiring of subsets of the collection of its maximal ideals,
.

Proof: We have remarked that L is a class of
functions from WM into (0,I). With each such function f

we associate the subset of Mt on which f(x)=1I, and observe

that the pointwise addition and multiplication of these
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functions corresponds precisely to the unions and

intersections of the respective sets.

Proposition 1: If x=1 (&), then x=1.

Proof: If x+#1I, the set § zeL| z<x{
is an ideal in L, which is easily seen (Zorn's lemma)
to be contained in some maximal ideal M. Hence

x = 0(mod M).

Proposition 2: A lattice L is reduced if

and only if for any pair x,y €L, the relation x=y is
equivalent to
(%) z+x = 1 implies z+y=1I, for all zel.

Proof: Since x=y always implies (*), we need
only prove that (*) implies x=y.

If L is reduced and (*) holds, then (*) holds
among the components of x,y, and z in every L/M % (0,I)
where it implies that x=y (mod M). Since L is reduced,
this means that x=y.

Conversely, suppose L is not reduced. Then
there exists a pair x,ye€L such that x#y but x =y (mod M)
for all M€ #, Thus for every M, x+z=y+ z(mod M), If
x+2z2=1, y+ z=2I(mod M) for all M, and hence y+ 2z =1 by

proposition 1.

We are now able to derive a form of Stone's

theorem., It will be recalled that a Boolean algebra
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is a complemented distributive lattice with O and I,
and that complements are unique.

Theorem 2: Every Boolean algebra is isomorphic
to a field of subsets of a set.

Proof: We should remark that by a "field" a
system of sets is meant, which is closed under union,
intersection, and complementation.

The theorem follows at once from theorem 1,
if we observe that a Boolean algebra satisfies the

condition of proposition 2 and hence is a reduced lattice.

The foregoing is a drastic specialization of
the treatment of "positive semirings" given by SYowikowski
and Zawadowski in (l1). In that paper, which touches on
the present subject only incidentally, the authors also
define the "radical" to be the intersection of all maximal
ideals. We wish to point out that this radical is not an
Ql-radical in our sense except in the case of reduced
lattices. Neither is it a special case of the semi-radical
defined in section 2, for any distributive lattice with
identity I contains proper maximal ideals while the semi-
radical is clearly the whole lattice since x+I=y+1I for

any x,y in the lattice.
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