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INTRODUCTION 

The purpose of this thesis is to state the 

problem of finding a Wedderburn-Artin structure theorem 

for semirings. In the now classical case of ring-theory, 

a certain ideal - called the radical - plays a fundamen­

tal role in the development of this theorem. We propose 

to state in abstract terms what this role is, in order 

to facilatate a reasonable generalization of the radical­

concept for semirings. In order to be useful, any 

algebraic notion must, of course, possess a characteri­

zation which can be formulated in terms of elements in 

an algebraic structure; the radical satisfies this 

requirement. In trying to generalize such a notion, we 

could therefore proceed by studying various generalizations 

of its intrinsic characterization, and this has indeed 

been done in the case of rings (Amitsur (l),Divinsky (1) 

as well as semirings (Bourne (1)). We shall completely 

disregard this point of view and produce a radical defined 

as a homomorphism which maps a given algebraic structure 

onto a certain composition of presumably well-known 

structures. 

Unfortunately, however, we are yet unable to 

characterize such a radical internally, except in very 

few cases, in which it nearly coincides with the old 

concept. 



Nothing in this thesis is essentially new, 

and source references will be given wherever we are 

aware of sources. In chapter I, we study abstract 

algebras in the sense of Birkhoff, and develop our 

material as far as possible in this abstraction. 

Chapter II treats ring theory as an example where the 

outlined method can be carried through completely. 

Finally, Chapter III is devoted to semirings about which 

we know little indeed. 

It may appear that the paper "On a Wedder­

burn-Artin Structure Theory of a Potent Semiring" by 

Bourne & Zassenhaus (1) answers our proposed question. 

This is not so, since the authors assume the decom­

position which we are trying to find, and merely point 

out its final form. Moreover, as their own example at 

the end of the note shov1s, the theorem has very limited 

application even as it stands. 
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CHAPTER I 

UNIVERSAL ALGEBRA . 

In arder to stress the genera1ity of the 

method of investigating a1gebraic structures by decom­

position into subdirect unions, we first deve1op this 

method as far as feasib1e in the setting of universal 

a1gebra. Most of the details of this chapter can be 

found in Birkhoff (1). · The rest are either we11-known 

or s1ight genera1izations of we11-known results. 

111. Subdirect Unions. 

By an algebra, we shal1 mean a set A on which 

a c1ass (possib1y infinite} of functions f 11 of n~ 

variables is defined, such that for x a A, r..,(x1 .• •• x,.,) E A •. 

Two such algebras are similar if they admit similar _ 

operations; i.e., i .C thete exista a one-to-one corresp.ondéncè . 
. " . ' .~·., '. '.' ' _. : . .. . . ' ' . 

between the func~ions fv on one algebra and the functiOlliJ 
n . 

f, on the other, the n., bei~g the ··same in both c~ae·s'. 

Thus, for examp1e, . a commùt·ative group is similar even to 

a non-commutative one; ideÏ1tities that are satisfied by 

any of the f., B;;re irre).ev~nt ~ : . k homomorphism tr on an 

algebra A is a mapping from A into a similar algebra 
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such that a-(f 11 (x 1 ••• x.-) ) = r., ( rr (x , ) ••• tr (x"" ) ) • 

If this mapping is one-to-one, it is an isomorphism. We 

shall loosely identify isomorphic algebras. 

Now consider a class (J(, of similar algebras 

Ar, /4'•M, and form the Cartesian product ffi,... 1T A,-. 

consists of all functions x from ]'1.1 into UA,._ , such that 

x(r)E Ar· Then, by defining the algebraic operations in 

TrA,.. by letting f v (x1 •• • x~"') =yeTTAr such that y(r.) 

= f v (x 1 (r) ••• x"'., (r) ) , we ob tain lfAr- as an algebra 

similar to all the A~ • . It wtll be called the direct union 

of {A~} • 

Propositiop 1: Let B be any subalgebra of T1(Ar ). 
Then the projections, p,.: B~A~ so that x-+x(/'), are homo­

morphisms on B • 

Proof: Let fv (x, ••• x k) c: y e B. Then P r(Y) = 

Y (,.. > = f., (x , 'r-> ••• x "". (r > > ~ f 11 Cp~ (x, > ••• P ~ (x ... .., > > • 

Definition 1: If Pr maps B onto Ar for all ~ 

E M, B is called a subdirect union of the algebras A~ 

Suppose we are given an algebra A, and, in order 

to study its structure, we compare it with a class OLof 

algebras of known structure. A homomorphism a- on A will 

then be referred to as an Ot-homomorphism if o- (A) is 

isomorphic to sorne B ~ 0[ • 
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Theorem 1: A is a subdirect union of 

Q-algebras if and only if for every pair x,y of distinct 

elèments of A, there exists an «-homomorphism cr such 

that <r(x)::f:.O"(y) 

Proof: Let . [err-[ 14•MJ be the totality of 

0[..-homomorphisms on A, · ·tirid set · o-r-(A)= A,._ • The mapping 

-c: A_.. ITAr, where ""C (x)= Sis such that s(r) =~(x) 

is obviously a . homomor.phiam of A into IT Ar- • But if x:; y, 

there exists a 14eM for which cr,._(x) :fz~(y) and hence 

-r; (x)~ 't" (y)~ · Hence t is an isomorphism. "'&(A) is a 

subalge:Ora of TT (1~~ t'-). Consider its projections. If 

a E- Ar= Ojt(A) , therè exists an x 4 A such that Oj4(x): a. 

Therefore ift:(x)=S, s{r-)=a; i.e. 3 Se't"(A) for which 

p~(S)=a. Hence the projections are onto, and A is . iao­

morphic to a subdirect union. 

Conversely, if A is a subdirect union of sorne 

of the A~, the projections p~ are 0{-homomorphisms 

and distinguish points of A. 

This theorem is fundamental in what is to 

follow. In order to classify algebras, which are sub­

direct unions of a .certain type of algebra, we must find 

criteria for existence of enough homomorphisms, whose range 

is of the desired type, to distinguish points. Further, 

because of the comparative vagueness of the term "sub-direct 

unionn it is desirable to have conditions for such a union 

to be the direct union. 



' -Ly-

We mention, however,, one case in which even the notion 

of subdirect union can give strong results. Suppose 

that ot consists of only one algebra A'. Then if Ais 

a subdirect union of Ot~algebras, it can be regarded as 

a set of functioQs from the index-set~ into A'. If 

A' has a natura1 topology, M can be topo1ogized so as 

to make these functions continuous. Then the topology 

of M, now called the "structure space" of A can give 

information about the structUre of A. 

This is, of course, the method under1ying 

Gelfand's representation theory for commutative Banach­

a1gebras. 

~· The Lattice of Homomorphisms. 

Definition 1: Let~ be a homomorphism of 

the algebra A. Then x and y in A are indistinguishab1e 

under cr (x • y ( 0") ) , if C1' (x) = CT (y) • 

Proposition 1: The relation x:y(o-) is a 

congruence relation; i.e., if x,s Yt(~) then 

f.,(x, ••• xl\.,)= f"(y, ••• y,.,") (~, for any f.,. 

Pro of: If xL s yi. ( 0"') then C1"( x._}= <T( yi.) by 

définition. Hence ~ ( f v (x 1 • •• x "'" ) ) =- f v ( 0"' {x 1 ) ••• 

0" (x "" ) J =- f" ( tS' (Y, ) • • • CT (Y n.., ) ) = 0" ( f v (Y 1 • • • Y n 11 ) ) , 

and fLI(x, ••• xtt.,> 1 f 11 (y1 •••Yn.,.J are indistinguishable 

under a- • 
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Definition 2: Let rf,'C" be two homomorphisms 

on A. Then g is said to be .finer tha.n "C ( CT4l; ) if for - . 

all pairs of elements x, y in A x!! y (cf) implies x a y (-c). 

a- and l: are egual if they are equal as congruence rela­

tions; i.e. , if q' ~ -c; and -r 6 a- . 

It is clear that r:r is finer than 1: if and 

only if it distinguishes at least as many elements as 1: • 

In the future we shall make little distinction between 

the ideas "homomorphiSm." and "congruence"• 

Proposition. 2: .The class of distinct homo­

morphisms on A is partially· ordered by ' • 

Pro of: Obviously t:r -' cr. Furthermore , , by 
·: \ " · ~ 

the difinition of 4 , the transitivity of ' follows from 

the transitivity of implication. 

For the purpose of proving that the homomor­

phisms on A form a complete lattice we shall note that 

they have an upper bound and exhibit the infimum of any 

subset. This will require: 

Lemma 1: If P is a partially ordered set 

with upper bound 9 , and if every subset of P has an 

infimum, then P is a complete lattice. 

Proof: Let S be a subset of P and consider 

the set U of upper be.unds of S. Since 8 EU, U has an 

infimdm, which clearly is the supremum of s. 
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We note that the congruence BA ' where X!! y ( e,.) 

for any pair x,y in A, is an upper bound for all homomor­

phisms. Incidentally, the congruence• fA , where x !l y (JA) 

if and only if x= y, is a lower bound. Thus f,-. ~ f:T ~ 9A 

for any homomorphism a on A. 

Proposition 3: ' If H is a set of bomomorphisms 

on A, define x sy( 'f} to mean that x:::y( a) for all Cf H • 

Then \(' is a congruence and y>=inf H. 

Proof: 'P is clearly a congruence, because 

x~:ryi, (<5') for all O"f: H implies f., (x, ••• xn., )~ 

f v (y, ••• y"" } (a) for all OE H. x ::ty ( '(J) implies x=: y(o-) 

·for any 0' E H, so that .'/> ~ 0' • Finally if LtJ ~ r:r for 

allo- fi H then x~y(c.J) implies xay(<jt) and bence X<iàY(f), 

so that W ~ 'f . Hence 'P = inf H. 

We can conclede now from lemma 1 and proposition 

3, that the homomorphisms forma complete lattice. For 

the record, we shall also exhibit the form of the supremum. 

Proposition 4: Let H be a set of homomorphisme, 

and let XE! y(y>) mean that there exists a finite sequence 

x= x 1 ••• x n =y, where x t:: x i.+J ( crd for sorne 0:: E H. Th en 

sup H = "'' . 
Proof: It is easy to see that ~ is an equi-

valence relation, the transitivity following from the fact 

that the union of two finite sequences is finite • 

. , 
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1 "" Now Xt,S y~ ('f>) for i==l ••• n 61 means that Xi_= Xi_••·x~:::yt_, . 
. i+l 

where xl: x;_ ( O'~j} for some O"~j in H. Obviously these 

sequences can have the same length m, if elements are . 
repeated when necessary. Let fv (i,j) mean fl)(x 1 ••• xf ••• x"'

11
), 

and order these lexicographically. Then each member in 

the resulting sequence of length mn 11 is indistinguishable 

from the following one under sorne a'f H, and f 11 (x, ••• x"'");:: 

f 6> (Y, • • • Y tt u ) ( 'P} • 
Again it is not difficult to see that f is an 

upper bound no greater than any other upper bound. Hence 

tp = sup H. 

We can now restate theorem 1.1 by noting: 

Lemma 2: «A =- fA if and only if for any pair 

x,y of distinct points of A, there exists an ot-homomor­

phism a which distinguishes x and y • 

f.!:2.2.f: ·suppose .that D(A =.fA • Then x, y are 

indistinguishable under ~A , that is, under all 

0[-homomorphisms only if they are equal. 

Conversely, if x,y are indistinguishable under 

all OZ.-homomorphisms only if they are equal, x=- y(«A) 

implies x =r y or x .= y( f~). Hence "'A ~ fA , and therefore 

o(A=fA • 
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As a direct consequence we obtain: 

Theorem 1: A is a subdirect union of 07..-algebrae . 

if and only if o(A =- fA • 

Theorem 2: Let ~(A) = B. Then o<a =r fs • 

Proof: We note that, if 0 and 1: are homo-

morphisms on A with cr~~, then 1; induces a homomorphism 

t:.a on B = O'(A), such that for u =- a{x) e B, "'t'.B(u) = 1: (x). 

This is single-valued because O'(x) = l.l =0"( y) implies that 

""C (x) = 1:( y), sin ce 0"' "C • 

Now let u, v be distinct points of B ; ~ (A); i.e., 
A 

u ::a «A(x) and v= 0(4 {y), for x,y, in A. There exists an 

Ot-homomorphism cr su ch that x ; y ( cr ) • Sin ce otA ' f1" , O"'a 

is an Ol. -homomorphism on B su ch tha t o-8 ( u) :: 0' (x) :f d" (y) 

= O"'a (v). Hence the Ot -homomorphisms on B distinguish 

points and o( a ;:: f'& by lemma 2. 

Theorem 3: o(A is the finest homomorphism whose 

range is a subdirect union of ~ -algebras. 

Proof: Let 7: be a homomorphism such that 'Z: (!) 

is a subdirect union of tl-algebras A~. Then the mappings 

p r T: x -+ 'r (x) = u-+ pt' { u) are ()( -homomorphisms of A, and 

r:~ inf(p/'"t'). Since~is the infimum of all Ol-homomor­

phisms, {){A ~ ·r: • 

If A is not decomposable into a subdirect union, 

theorems 2 and 3 yield the :"least blurred" homomorphie 

image of A which is décomposable. 
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ftl. Subdirect Irreducibility. 

Definition 1: An algebra A is subdirectly 

irreducible if it is not isomorphic to any subdirect 

union of · '&lgebras ·.,otber .thu, ~. A ;:tt self. 

Proposition l:Let.'...Ht~ bé thè, set of !li. homo­

morphisms a- :1 fA on A. Tb,en A is subdirectly irreducible 

if and only if inf H 1t fA · • 

Pro of: If inf H = fA , A is a subdirect union 

by theorem 2.1 • On the other hand, if A is a subdirect 

union of A14, then the infimum of the projections p,... is 

already equal to fA • Hence inf H "# fA is impossible. . 

Theorem 1: Every algebra A is a subdirect union 

of subdirectly irreducible algebras. 

Proof: For any distinct pair of points x,y in 

A, we shall exhibit a homomorphism ~ , such that 

O"(x) ::/: CT(y) and o-(A) is subdirectly irreducible. Then 

the theorem follows from theorem 1.1 • 

Let H be the set of all homomorphisms on A 

which distinguish x and y, and -consider any totally 

ordered subset T of H. We prove that r:: : sup T & H. 

For if this were not so, xay("'C) could be true, and there 

would exist a fini te sequence x-= x 1 ••• xtt =y such that 

x~.:: x ~ ... 1 (où for sorne o-" in T. But sin ce the 0'".: are 

comparable and finite in number, there would be a greatest 

among them, say~, and xi :1 xc:., 1 (OO) for i=l ••• n. 
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Renee x:: y ( OO) which contradicts the 1 hypothesis that 

O'"o t: R • 

Since every totally ordered subset of H has an 

upper bound in R, it follows from Zorn's lemma that R 

con tains a maximal element r:r • Obviously a- (x) :F 0" (y). 

Now let B = a- (A) and consider the two distinct points 

u = a (x) and v = cr (y). If 'P =F fa is any homomorphism 

on B, 'fa' is a homomorphism on A. Sin ce o- is maximal 

with respect to distinguishing x and y, it follows that 

"O'"(x)-= 'f>O'(y) or '('(u) ='('(v). Renee Bis no subdirect 

union. 

Theorem 3.1, whi~h is due to Birkhoff (2), makes 

it desirable to study and ·class .. i'fy subdirectly irreducible 

algebras. This has been done to sorne extent in ring-theory, 

especially in the case of.commutative rings. (cf. McCoy (1) ). 

~ Conditions for Finite, Direct Unions. 

Definition 1: A partially ordered set P 

satisfies the descending chain condition (d.c.c.) if 

any descending chain of distinct elements of P is 

necessarily finite. Similarly, the ascending chain con­

dition (a.c~c.) is defined. 

Theorem 1: Let R be a set of homomorphisms on 

A, for which inf H =fA, and let P be the totality of 

infima of subsets of H. Then A is a finite subdirect 
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union of a1gebras 0"~ (A) ( cr~(: H) whenever ei ther the 

d.c~c. or the a.c.c. holds in P. 

Proof: Certain1y A is a subdirect union of 

(}l" (A) with ~EH. Suppose A is no fini te subdirect 

union of these. Then we can select an infinite sequence 

~ 0"" j from H by the following rules: ( 1.} O'"i. t inf { (T, • • • Cft-• j • 
If it became impossible at any stage i to find such a 

homomorphism, A wou1d already be a subdirect union of 

f <:Tl • • • (Ti ... , J , contrary to our assumption. ( 2. ) After 

obtaining the infinite sequence ~ 0"" l satisfying rule 1, 

we exclude all CT· 
" 

for which <Tt~ inf { <Ti_,.. 1 1 • • • J • 

This operation does at no stage change inf{~~J. Hence 

if it were to reduce f o-h j to a fini te sequence fOi··· 0"14} 1 

irif [cr;··· CTHj .: inf {CT"' j, so that a-N-t-l would not have be en 

chosen in the first place because of rule 1. Thus we 

are left with an infinite sequence ! 0"~ j so /that 

inffCT,···Oi-a}f~tinf{.<r'-+•)crt,. 1 ••• J , for alli. 

(a) Suppose P satisfies the d.c.c. Let H t= \a; .. o t1'i ~, 

and consider the chain inf Ha ~ inf H2 ~ • • • o The 

elements of this chain are distinct, since inf Hi= inf Hi?r 

impliès inf { inf H ;. , Olt-1 J :::: inf H ~ or 

wh'ich vi~lates the f .irst.rule. 

01,..1 ~ inf H , 

(b} Suppose P satisfies t .he a. ç. co Lèt Hi.::: 1 O'"i+l J • • • J , 
and consider the chain . Û1f H 1 ' . inf H·1 ~ ••• 0 A gain 

inf H 4 1= inf H t+l , this time because of rule (2), and 

we get an infinite ascending chain. 
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We have purposely avoided the hypothesis that 

the chain conditions hold for the partially ordered 

system of all homomorphisms. This assumption is much too 

strong in the case of semirings, which have 'many more' 

homomorphisms than ring~. 

Definition 2: Two congruences (j, 1: are per­

mutable if tS.l: = 1: • (J'-; where x=: t{ <T. "C) means that the re 

exists a z such t .hat x=: z (CT) and z: ·y( t: ) • 

Note that <T.~ is in general not a .congruence 

relation. 

Proposition 1: 'If cr ahd l:' are permutable 

homomorphisms, CT· "'t' = 1:• 0'" = sup ( cr;t). In particular, 

(j. 1: is a congruence. 

Proof: xsy(sup(cr,t:).) implies that x:x1 ••• xnay, 

where xi. a: x ~+• (a or "t ) • Whenever xi :: xi.+ 1 ( 0"'), 

Xi.+a = x i+a. (cr), we can drop x.:+1 by transitivity. 

Similarly for repeated ~ • Thus we can assume that the 

congruences connecting xi. and x i+l alternate between cr 

and~. But since these are permutable, the whole sequence 

can be collapsed into three elements as in definition 2. 

Therefore sup (a- , 1: ) • (J". l:' • 

Conversely it is obvious that x!! y { <T-1:) implies 

that x ::y ( sup ( Oj 't' ) ) • 
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Theorem 2: Let H and P be as in theorem 4.1, 

and suppose that H is finite, l.. e H : { 0" 1 • • • 0" ... /. o o J n 

Then Ais the direct union of the crc(A), if and only if 

the elements of Pare permutable, and sup { inf(Oj•ooO"i.),o-.:+ 1~= 9A 

for all i, < tt • 

Proof: Let <T&:(A):A~o In order to prove that 

A is the direct union TTA~, we must show that for any 

n-tuple { :x:;,]xiEA~,i•loo•on}, there exists an x in 

A su ch tha.t Oi (x) = x.:~ We proceed by induction. 

For x 1 there must be a !t 1EA so that 0"1 (z 1 ) = X1 

by definition of subdirect union. Suppose we have found 

z ~~; ·~ A such that z K: X~( o-\) for i 4 k. Again, we can 

find a z'k+l so that Ok,.;fz'k+a· )=:x: K+l • Since the 

elements of P permute, 64 = ~nf (Oj •• o ~ ) • (TK+•• There­

fore, since z k. : . z 'k-tl ( 84}, .th~re exists a z l<1-l such that 

z k :: z k+l (inf( cr, ••• <Tj\) · )and zK+I =: z'ki'l ( O"K+I ). 

Hence z K1'l ::: x~ ( 01) for a:ll i.' k +1. 
Converseiliy, suppose A is the direct union of 

A 1 • o o A 11 • Then it is easily verified that the projections 

t$~ : A~ A; satisfy the conditions' of the theoremo 

fi.2 Homomorphisms on Semiringso 

In this thesis, a semiring 2 will be an algebraic 

system with two associative binary operations: addition (+) 

and multiplication (•), where addition is commutative, and 

multiplication is left and right distributive over addition. 
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Further we postulat~ the existence of an additive identity 

0, which also pas the pro pert y that OX:::: XO = 0 for all 

xE' S. {Note that this last property of zero is not al ways 

assurned in defining a semiring.) If~ is a homornorphism on 

s, the kernel of ~ will be the set of those elements of 

S which are indistinguishable from zero under cr • 

Proposition 1: A subset K of S is the kernel 

of sorne homornorphism if and only if 

{1) x,ye K implies that x-+y,K. 

{2) x~ K implies that ax and xa are in K for 

any a E> S. 

{3) x+ y € K and xE K implies that y E K. 

Proof: Let K be the kernel of a homomorphism a' ; 

i.e., a- {x)= 0 for all xE K and for no ethers. Then 

{1) 0" {x+y) = CT {x)+ cr{ y)= 0-t- 0 = 0 

{2) (j (ax) = <T{a) o-{x) ._ o-{a)O .:r 0 and similarly 

on the right. 

{3) Q:O"{x;-y)= O"{x)+O"{y)= O+O"(y)=o-{y). 

On the other hand, if K is given with properties 

{1) to {3), let us define Xi!" y{ CT) to mean that x't a= y+ b 

for sorne a,b E K. This is a congruence whosè kernel is K. 

For, let xè.a y~ {0') (i •1,2). Then xt 1- aè..:: YL+bi, {i• 1,2). 

By summing, {x 1 -t- x 1 )i- {a 1 + a:z. ) = {y1 ? Yl. ) + {b 1+ bL ); 

i.e., x,+ x~=:: Y1+ Ya. {0") since {a 1-r a:z. ), {b 1+ b2. )4! K by {1). 
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Also, by multiplying, (x, x 2 )+ (x 1 a~;. a, x 2 -ra 1 a~ ) = 
(yl y1 ) + (y1 b.:t+ b 1 Y.z+ b 1 b2. ) so that x 1 x4 : y 1 y1 ( u) 

sin ce the two other terms are in K by ( 2) and ( l). Th us CT 

is a congruence. Obviously K is indistinguishable from 0 

un der 0" , and further if x !l! 0 ( 0' ) then x+ a = b for a, b t K, 

so that xE K by (3 ) 

We note that only properties (1) and (2) are · 

needed to construct a congruence. (3) then ensures that 

all elements congruent zero are in K. 

Definition 1: A subset of S is called a semi­

ideal if it satisfies properties (1) and (2) above; it 

is an ideal if it satisfies (3) as well. If I is a semi­

ideal, a- as constructed above is called the natural 

homomorphism associated with I. ~ (S) is sometimes 

written S/I, and called the difference-semi-ring of S 

modulo I. 

We snall presently show · t.~at the correspondence 

between homomorphisms and ideals is ·in general many-to-one. 

Clearly every homomorphism has only one kernel, but many 
1 - .. • 

different homomorphisms migbt have the same. First some 

observations of a differen~ nature. 



-16-

Definition 2: The ring of S is defi~ed as 

R ( S) = ~ xE S } x+ y = 0 for ·sorne y E S J . If R ( S) .:::: S, 

S is called a ring; if R(S) =-0, it will be called pure. 

The proof that this coiricides with the usual 

definition of ."ring" is omitted. Also ùnproved are the 

well-known facts concerning the uniqueness of additive 

inverse and the operation of subtraction in such a system. 

Proposition 2: R(S) is an ideal in S, and the 

difference-semiring modulo R(S) is pure. 

Proof: The verification of the first part of 

this proposition is easy. 

Let x+ y ar 0 mod R ( S ) ; i • e • , x-+ y + a -= b wi th 

a, b E R ( S). Sin ce a has an inverse c E R ( S) , x+ y = b + c E: R ( S} • 

Hence, for some z~R(S), x-ty+ z=O; i.e., 

x + (y + z ) = y + (xi' z ) =- 0, and x, y ~ R ( S ) • 

Proposition 3: If R is a ring with a homomorphism 

0", O'(x-y}= O'(x)- cr(y) for allx,yER. 

Proof: Since a(O)+ u • u for all u E c:r(R), we 

have in particular C1(0)+0 = a(O)=- O. Now if x+y= 0 

in R, CT(x) + O"(y) = CT(O) • O. Hence U: y= -x-+-O'(x). 

Theorem 1: The lattice of homomorphisms on a ring 

R. is isomorphic to the lattice of ideals, where inf fI~ j =()Ir­

and sup { IrJ=fl'a~ J a.: E Ii, , and the sums are finite}for 

ideals. 
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Proof: Let a- be a homomorphism, K i ts kernel. 

It is always true that x=: y mod K implies x: y( fT), and if 

R is a ring, the converse holds also, because 0"' (x)= O'"(y) 

implies a (x- y)= 0 and x- y~ K so that x: y mod K. lt 

follows that ideals and homomorphisms correspond to one 

another uniquely. The rest of the proof is direct computation. 

It follows from the form of supremum for ideals that 

Corollary: Homomorphisms on a ring are permutable. 

Now a counterexample is due to show that this is 

not generally true in semirings. 

Example 1: Let S be a pure semiring without zero 

divisors (such as the non,;_negative integers), Then S can 

be mapped homomorphically onto the lattice (O,I) , where 

addition and multiplication correspond to taking the supremum 

and the infimum respectively. 

For, let t' (x).: I if and only if x:l-0 in S'. 

Then 1: is a homomorphism, · Slnce :x.+ y = 0 implies x ;;;z y.: 0 

by purity, and xy = 0 implies that either x or y be zero. 

Its kernel : is simply 0; but the isomorphism fs also has 

this kernel. 

T is what Bourne in ( 2) calls a 11 semi-isomorphism", 

demonstrating that tbis term is often of little use. 
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CHAPTER II 

THEORY OF .RINGS. 

As an application of the preceding abstractions, 

we shall now derive the classical Wedderburn-Artin theorem 

for "semi-simale" rings. If we dwelt on detail in Chapter 

I, it was necessary for an intuitive grasp of the point of 

view taken there; in the sequel we shall omit all standard 

definitions for the sake of brevity. The material of this 

chapter is contained explicitly in either Jacobson (1) or 

Brown and McCoy (1). 

It shou1d be noted that theorem 5.1 of chapter 

I enab1es us to substitute the notion of ideal for that 

of homomorphism. 

!! Irreducib1e Modules. 

Definition 1: If A is a ring, Ma (right) A-module, 

the centra1izer C{A,M) of M is the ring of module-endomorphisms 

of M ( 9 is a module-endomorphism if 9 (m, + m 2. ) = 9 (m 1 ) i' 9(m1 } 

and 9(ma)::: (9(m) )a, where m,m 1 ,m4 E Mandat A). 

Proposition 1: If M is an irreducib1e A-module 

(i.e., contains no proper A-submodule), C(A,M) is a division­

ring. 
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Proof: Let 9 E O(A,M). It is clear that the 

kernel of.~,-~(~), as well as its range, 9(M), are sub­

modu1es of M. Since Mis irreducib1e, either (1) Q(M)~M, 

so that K(9)= 0 or (2) 9 (M)= 0, so that K(9)=M. In case 

(2), 9 is obviously t'he zero-endomorphism. In case (1), 

since K(Q) = 0, and the correspondance between kernels and 

homomorphisms is unique, 9. is an automorphism. Q -• is 

certainly an automorphism of the additive group of M. 

Further, ma • .(9 g-' m)a =- 9( (Q-1m)a), so that 

9-1 (ma)= (9-1 m)a, and Q- 1 ~ C(A,M). 

This proposition or a variant ·thereof usually 

goes under the name of Schur's Lemma. It enables us to 

conclude that M is a v.ectorspace (free module} over 

Ï = C(A,M} and that, if M is a faithfu1 A-module, A 

corresponds to a ring of linear transformations on M. 

The so-called Density Theorem which follows shows 

that a certain class of linear transformations on the 

vectorspace M are always induced by A. 

Theorem 1: Let M be an irreducible A-module, 

rits centralizer. Given two finite sequences in M, 

{x~J and {y~~ (i•l •••• n), where the {xiJ are 1inear1y 

independant over r , there always is an a e- A such that 

Proof: For any subset N S.M, N* will mean the 

annihila tor of N in A. Conversely, S*, for S S A, will be 

the set of all elements of M annihilated by S. 
1 
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1'\. ~· 
I. If N ~ Z:. ~=•' x.:. ~ we shall first prove that 

(N* )* = N. Obviously N S (N* )* so that it remains to show 

that uN*= 0 implies u f N, for any u E M. 

Let R :P 0 be a right ideal in A, L be rx (for 

some arbitrary xE M), and L' the annihilator of L in R. 

Suppose uL' • 0, and define a correspondance r : xR~ uR 

by t'(xa) =ua, for a eR. "t' is a function since x a=x b 

implies a-bE L'and ua=- ub. Since xR, uR are Awsubmo9,ules 

of M and hence equal to M, 1:' maps M into M. It can also be · 

sean that "C is a module-endomorphism; i.e. "'t' E r . 
Since "Z:'(xa):::. ua, (-ex- u)a = 0 for all a~ R and 

1: x-u ~ R* so that ue R*.,..L. 
. ' . 

To prove (N* )*:aN by induction on n, let N K = z;._w .. rx ~ . 
The case p.= 1 follows directly from the above by setting 'R:: A 

and x= x 1 • Suppose we know that (NK* )*:e Nk·,-. Aga in we 

apply the preceding argument, set ting R =Nt and x=r x ktl : . 

Suppose u N*K+I = O. Then uL' = 0; for if a' L' then since 

a ER, it annihilates NK , and since it also annihilates L, 

it must be in N*~+l • Hénce u e R* + L. But by the in4uêloion 

hypothesis R* :::: N k and s o u E- N ktl • 

II. Let M K be the subspace spanned by 1 xt f i ~ k 1 • 
Then x k • M IC ::: (M*K )* • Hence some e K ~ A annihila tes M K 

wi th out annihila ting x K' • Th us xi eK ::: 0 for i + k and 

x K eK::: uk*O· Since u kA cannot be a proper submodule of M1 " . 

ul< al< :-yi< for some a k' € A. Hence a = L el( ak has the 
le •J 

property promised in the theorem. 
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Corollary: If M is an irreducible A-module, 

finite-dimensional over its centralizer, A induces all 

linear transformations on M as a vectorspace. 

111:..· The Jacobson Radical 

Aiming à.t a representation of rings in terms or · . . . 
i . • 

linear transformations on a vectorspace, we are prompted 

by the resu,lts of section l _to make the following 

Definition 1: ·A ring A is primitive if there 

exists a faithfu!, irreducible A-module. An ideal P in 

a ring A is primitivé if A/' l:S a primitive ring 

Because of the corollary to theorem 1.1 we have 

already: 

Proposition 1: If A is primitive it is isomorphic 

to a ring of linear transformations. 

If Ot is the class of primitive rings, the 

Ct-radical of A can be characterized by its kernel, 

namely the intersection of all primitive ideals of A. This 

ideal will be called the Jacobs on radical, J(A). 

Corresponding to theorem I.2.1, we then obtain 

Theorem 1: If J (A) = 0, A is a subdirect sum 

of primitive rings. 

Before investigating the consequences of this 

result, we shall give sorne effective characterizations of 

J (A) • 
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It turns out that every irreducible A-module can 

be found as a homomorphie image of A regarded as an A-module 

(regular representation). 

Definition 2: A right ideal I ~A is modular if 

there exists an e 4i A such tliat a- ea e I for every a e A. 

e is called a left identity modulo I. 

Proposition 2: M is an irreducible A-module 

if and only if M is isomorphic to the difference module 

A - I, where I is sorne modular maximal right ideal. 

Proof: If M is an irreducible A-module and 

0 ':ix e M, xA = M. At the same time xA ~ A- x* (annihila tor 

of x in A). Now x* is a modular right ideal since xe- M 

and hence x =xe for sorne eEA, so that x(a-ea).:::-0 and 

a- ea E x* for all a~ A. x* is maximal sin ce the image in 

A- x* of any right ideal containing x* would be a proper 

sub-module. 

Converse ly, let M =-A - I, where I is a modular 

maximal right ideal. M consists of all cosets a + I • ( e + I) a 

(by modularity}. So M = ( e + I )A; also I = ( e+I }*. We observe 

that M contains no submodules because I is maximal. To show 

that M is not annihilated by all of A( this having been a 

tacit assumption about modules, so far}, we note that 

M* S (e -+ I)* =I, so that M* *A. 

Proposition J: ~. is a primitive ideal if and 

only if P =- M*, for s.ome irreducible A:..-module M. 

! 
.1 



-23-

Proof P is primitive only if there exists a 

faithful irreducible :A/P-mod:Ule M. If we make M into an 

A-module by set ting ma= m(a + P) for a E A, then M is an 

irreducible A-module and M* = P. On the ether hand, if 

an irreducible A-module M is given, it becomes faithful 

if converted into an A/P-module,. where P is taken as M*. 

Theorem 2: J(A} is the intersection of all mod­

ular maximal right ideals of A. 

Proof: Let I be a modular maximal right ideal. 

Then by propositions 2 and 3, (A-I)* is a primitive ideal. 

From the proof of proposition 2 it also appears that (A -I)*si. 

Hence J(A), the intersection of all primitive ideals, is 

contained in the intersection of the modular maximal right 

ideals I. 

Conversely, let P be a primitive ideal. Then P:M* 

: n x* for all 0 o:t xE fJl. But by the proof of proposition 2, 

x* is a modular maximal right ideal. Hence the intersection 

of all such right ideals is contained in J(A). 

Wi th each element x~ A we can associa te a minimal 

modular right ideal Ix= f a-xa / a fi A J modulo which x is 

a left identity. It follows easily from Zora's lemma, that 

a proper modular right ideal is always contained in a maximal 

modular right ideal (with the same left identity). Thus when­

ever Ix is proper, it can be guaranteed that x is excluded 

from at least one maximal modular right ideal, and hence x:; .J{A). 

\ . 
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It follows that xE J(A} implies that I~ is not proper, 

i.e., Ix== A (unless x= 0). Hence there exists an aE A 

such that a-xa = -x or x-+ a- xa =O. Vie shall say that 

such an x is guasi-regular. ~ve can now gi ve a second 

characterization of J(A): 

Theo rem 3 : J (A) is an ideal in \'lhich every 

element is quasi-regular and which contains all right ideals 

with that property. 

Proof: Let I be a right ideal in wpich every 

element is quasi-regular, and let x E I. Suppose x; P:: M* 

for sorne primitive ideal P. There exists IitEM such that 

mx -:j: O. Hence (mx )A ;aM and m {xa} .am for seme a E A. Sin ce 

xa E I, we have a y such that xa +y- (xa }y= 0, so that 

m = m-mO :a m-rn{xa +y - xay} = (rn - rnxa) - {rn - mxa )y= 0 which 

makes mx :1= 0 impossible. Hence ~ E' nP = J (A). 

tl The Wedderburn-Artin Theorem. 

In order to see more clearly what the structure 

of primitive rings is, we now restrict ouselves to rings A 

in which the descending chain condition holds for right 

ideals. There should be no confusion: although the d.c.c. 

for two-sided ideals is sufficient to ensure a finite 

decomposition in case J(A)~O, . the present condition is 

introduced in order to force the structure of each componeot 

to be "finite" in sorne sense. 

Proposition 1: If. A is primitive, the corresponding 

A-module M is finite-dimensional over r . 
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Proof: If this were false, we could find an infinite, 

linearly inde pendent sequence {x" J in M. Let M k:: {x, ••• x k J 
and consider the chain of right ideals M'i ~ M*a ~ • • • By 

theorem 1.1, there exists ai. E A such that aiE Mi, a~~ Mt+l • 

Hence the chain is properly descending and thus finite. 

Corollary 1: If A is primitive, it is isomorphic 

to a matrix ring over a division ring. 

Proof: It follows from the corollary of theorem 

1.1 and sorne elementary vectorspace theory. 

Corollary 2: If A is primitive, it is simple. 

Pro of: Let I :1: 0 be an ideal in A. Then take 

0:; xE I; x corresponds to a hon-zero mat rix, which by · 

appropriate left and right multiplications and additions 

can be transformed into the identity matrix e. Hence 

e. E I and I a A. 

Theorem 1 (Wedderburn-Artin): If J (A)= 0 and A 

satisfies the d. c. o. for right ideals, then A • R 1 $ ••• e Rh 

tils a finite direct sum, where R t is the ring of all matrices 

of order m ~ over a di vision-ring •. 

Conversely, if A has this form, it satisfies the 

conditions of the theorem. ,,. 

Proof: By theorèins I.2.1 and I.4.1, A is a 

finite subdirect sum of matrix-rings R;. • To prove the 
.... 

first part of this theorem, we must verify the conditions 

of theo rem I. 4. 2, where ;th.e1 ·primitive ideals P, ••• P" take 

the place of the a-i. • Bu:t .by corollary 2 above, Pi. is · 

maximal (A/Pt. being simple), and (P11'\ ••• "Pa: ... , ) + Pi.:: A. 
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For the converse, we note that the ring A of 

linear transormations on a vector-space M is always primitive. 

If N ~ M were an A-submodule, then even xA = M for any O:f xe N, 

so that M: xA sN, which is impossible. Hence M is a faithful, 

irreducible A-module. 

Now it follows, aga in by theo rem I. 2.1, that J (A).: 0 

since A is the direct sum of primitive rings. It remains to 

prove the d.c.c. Every right ideal I is the direct sum of 

its components Ii. S. R ~ , which are right ideals in R ~ • We 

can therefore restrict the problem to proving the d.c.c. in 

a matrix-ring A over a division-ring. It is easily seen that 

etL Ais a minimal right ideal of A (eii being a matrix~unit 

with 1 in position (i,i) and 0 elsewhere) and that 

A = e LI A+ e2 a A t ... + e mrnA, if considered as a right 

A-module, is a direct sum of these. If I is any right ideal 

of A, then I is the direct sum of sorne of the e i.i. A. For, 

I = A 1\ I = ( e 11 A" I) t · · · .f. (emmA f"' I), where e iL A" I is 

either 0 or equal to eii A, since it is an ideal contained 

in the latter. It is obvious now that no descending chain 

of partial direct sums of the eii A could be .infinite. 

The development finishing in this theorem is a 

complete realization 'or the, plan expounded in chapter I. 

We defined a class Ot. of .rings (primitive rings) whose 

structure is fairly well determined, found a characterization 
,;: 

of the Ot -radical, and finally obtained a structure theorem , 

in terms of ~ direct union. 
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~ The Radical of Brown and McCoy. 

The notion of a primitive ring was conceived as 

a generalization of a matrix-ring over a division-ring, for 

a more general form of the Wedderburn-Artin theorem. 

Another point of view, taken by Brown and McCoy in (1), is 

to consider simple rings with identity. It must be 

observed that a simple ring with identity, satisfying the 

d.c.c. for right ideals, is necessarily a matrix-ring over 

a division-ring. 

Lemma 1: If e is a left identity for a simple 

ring A, then e is the identity element. 

Pro of: Sin ce ex .: x for all xe A, the set 

S = f xe -x 1 x E A 1 is a two-sided ideal I. If I = A, 

e = ye-y for sorne y E A, and x:: ex= y( ex-x)= 0 for all 

xE A. If I:::: 0, it follows that xe= x for all xE A and 

e is a right identity. 

Theorem 1: P is a maximal modular (two-sided) 

ideal in A if and only if A/P is simple and has an identity. 

Proof: If P is maximal modular, A/P is simple 

and has a left identity. Lemma 1, then leads to the desired 

conclusion. 

Conversely, let A/P be simple with identity e, 

and let -c. be the natural homomorphism mapping A onto A/P. 

Since A/P is simple, P is maximal. Let a be any element 

such that 1: (a)= e. Then, for any x E A, x-axE P because 

t: (x -ax ) = 1: (x ) - e 't" (x ) = 0 • 



-28-

If ot is the class of all simple rings with 

identity, let the Ot -radical of A be called simply 

the radical, R{A). It follows immediately that: 

Theorem 2: R{A) is the intersection of all 

maximal modular two-sided ideals. 

It is obvioûs now that J{A) S R{A) because 

all maximal modûlar ideals are, in particular, right 

ideals. The two radicals are generally unequal: if A 

is the ring of bounded operators on a Hilbert space, 

J {A)=O whereas R{A) consists of all completely con­

tinuous operators {cf.McCoy (1)). 

Again we can give a second characterization. 

With every a E. A we associate a minimal modular ideal Ia. , 

modulo which a is a left identity, namely the two-sided 

ideal generated by the set S = f x-ax \ xE A 1 . We call 

a pseudo-regular if I ~ = A. 

Theorem 3: R(A) contains only pseudo-regular 

elements, and every two-sided ideal with that property is 

contained in R(A). 

Proof: Let I be an ideal all of whose elements 

are pseudo-regular. Take a maximal modular ideal P, and 

let t be its natural homomorphism. If 0:;. x E I, where 

x tl. P, then "l'"(x) #: 0 and the two-sided principal ideal 

generated by x will be mapped onto a non-zero ideal I' S A/P. 

Obviously psuedo-regularity is preserved under homomorphism, 

and so I'= A/P is composed entirely of pseudo-regular elements. 
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Of course, the identity e cannot be pseudo-regular, and 

thus x must be in P. 

The Wedderburn-Artin theorem follows as in section 

3. However, in this setting we can clarify the role of the 

d.c.c. in the following: 

Theorem 4: If R(A) =0 and A satisfies the d.c.c. 

for two-sided ideals, then A is a finite direct sum of 

simple rings with identity element. 

Proof: The proof is analogous to that of theorem 

3.1. We observe, however, that we do not need the d.c.c. 

for right ideals to establish the maximality of the kernels 

of our Ot-homomorphisms (in proving that the conditions 

of theorem 1.4.2 hold.) 

Now it is clear that the d.c.c. for right ideals 

is postulated only to make the components of this direct 

sum into rings of finite matrices. 
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CHAPTER III. 

REMARKS ON SEMIRINGS. 

As observed earlier, ideals do not determine 

homomorphisms in the general case of semirings, and as 

other methods are yet unavailable, we restrict ourselves 

to types of semirings in which consideration of ideals 

can be justified; specifically, to halfrings and distri­

butive lattices. References to various sources will be 

given throughout the chapter. 

tl General Properties~ 

To clarify the relation between semi-ideals and 

ideals, we introduce: 

-Definition 1: The closure I of a semi-ideal I 

is the smallest ideal containing I (cf. Bourne & Zassenhaus 

( 1) ) • 

Proposition 1: If I is a semi-ideal in a semi-

ring s, then I = fx€S 1 xta=b;a,bEI~. 

Proof: Any ideal containing I must con tain the 

set E = l x' s J x+a=-b; a,b ~ I 1 (cf. proposition I.5.1.) 

Hence we need to prove only that E is an ideal. 
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If x + a = b and y + c = d, th en (x + y ) + (a + c ) .:: b + d ; 

therefore E is closed under addition. If x+ a= b, then 

xy + (ay) = (by), and so on. The third ideal property is 

automatically satisfied by E. 

Evidently the definition as well as the proposition 

apply also to left and right ideals. 

Examples: (1) Let p and q be prime numbers and 

consider the semi-ideals (p) and (q) generated by them in 

the semiring of non-negative integers Z. ( p) + ( q) is a semi­

ideal property contained in Z, but (p) + ( q) = Z. 

(2) Let I be a semi-ideal in a finite 

distributive lattice. If u = 2:Ix (the notation of addition 
.x~ 

being substituted for that of union; that of multiplication 

substituted for that of intersection), then xE- I implies 

x~u, and, conversely x.$ u implies x= xu EI. Thus I .. fx} x ~uJ. 

Obviously, x+ a =- b means that x~ b $ u so that x E- I. Hence 

I == I. 

In order to see how "ring-like" a given semiring 

S is, we consider the Carte sian product S x S wi th operations 

of addition and multiplication defined as follows: 

(a,b)+(c,d) = (a+c, b+d) 

(a, b) ( c, d) = (ac 1- bd, ad+ be). 

It is trivial to verify that this is a semiring, A. 
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Proposition 2: Consider the set I::: fxE.A /x= (a,a) 

for sorne a~ S f . I is a semi-ideal, and R .: A/I is a ring. 

Proof: I is closed under addition. Moreover if 

(a,a) E- I, (x,y) (a,a)= (xa4-ya, xa+ ya) E I, and similarly 

on the right. 

Ris obviously a semiring. For any (x,y)eA, 

(y,x) is in A, and (x, y)+ (y,x) = (x +y, y +x).s 0 modulo I. 

Hence R is closed under subtraction. 

S is obviously isomorphic to the subsemiring of 

A which consists of all pairs of the form (x,O). The 

natural homomorphism "t' : A...,. A/I thus maps S into the 

ring R. 

Proposition 3: (a) 1:. is the finest homomorphism 

from S into a ring. 

(b) ~ is an isomorphism if and 

only if S satisfies the cancellation law for addition. 

Proof: (a) We observe that a :erb ( -c:) if and 

only if a+ x = b + x for sorne x E S. For if a = b ("t:), then 

(a,O) + (x,x)= (b,O)+ (y,y) or (a+x,x)= (b+y,y), so that 

a+x=b+x. Conversely, if a'tx=b+x, (a,O)+(x,x):: 

(b,O) + (x,x). 

Now let u be any homomorphism from S into a ring 

P. Then a:: b ( "t: } implies a+ x = b +x and CT (a) + o- (x) 

.: O'(b) + CT(x). Since Pis a ring, 0" (a)= o-(b). Thus 

a = b ( Ci) and 't: f 0' • 
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(b) If 1: is an isomorphism, a+ x= b +x 

( which me ans 1: (a) = 1: ( b ) ) implies a =b. Convers ely, 

if the cancellation law holds, 1: (a) = L (b) implies 

a-+ x = b + x, and th us a = b. 

Corollarr: S obeys the cancellation law for 

addition if and only if it can be embedded in a ring. 

Definition 2: If a semiring H can be embedded 

in a ring, it is called a halfring. The embedding ring 

H* is the ring of all formal differences of elements of H; 

more generally, we shall write E* for the formal differences 

of any subset E of H. If R is a ring, H a halfring such 

that R::: H*, then H is called a genera ting halfring for R. 

~ The Semi-radical. 

One might hope to gain a few ideas about the 

structure of a semiring by regarding it as the inverse 

image of a halfring under the natural mapping 1: • Just 

how blurred this image may be, is shown by the example of 

a lattice L with upper bound I. Here 1:(1) =- 0 is a one­

element halfring, because I -t- x= I for all xE. L. However, 

following Bourne & Zassenhaus (2), we give the 

Definition 1: Let -c { S) = H. Then the semi­

radical Z ( S) is the totali ty of x ~ S su ch that 1: (x) E J ( H*). 

Proposition 1: Z(S) is a two-sided ideal. 
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Proof: Let ~ be the compound homomorphism 

(J :S -+H..-.H/J(H), where J(H) is simply J(H*)A H. Clearly 

Z(S) is the kernel of this homomorphism. 

Now we state a description of Z(S) analogous 

to theorem II.2.3: 

Theorem 1: Z(S) is the maximal right ideal I 

of s, such that for x 1 , x~ ~ I there exist y, ,y~ in S 

for which x,-t y,+ x.y1 + X.zYa.= Xa. + Ya.+ X.tYr + x,y2 • 

Proof: Notice that this relation is just a 

translation of the idea of quasi-regularity into semiring 

language. 

Writing x'= 't (x), we note that for every pair 

x, ,x'2. E Z(S), (x 1
1 - x 1

1
) 4: J(H*) is quasi-regular. This 

means that there exist Z,Z 2 ~ s, such that (x 1
1 - x'2 ) + 

(Z 1
1 - Z~) +(x~ -x~) (Z',- Z~)=O (in H*), or x'1+ZI+xrz~ 

+xiZi = x 1
1 +- Z~+ x_iZ~ + x!Zb or 1: (x 1-rZ 1+x 1 Z1-tx2.Z2.) 

= 't: (x 2 + Z2 .... x~ Z 1 -t x 1 Z 2 ); implying that for sorne y tES, 

x 1-tZ 1+x 1 Z11-Xa.Z.z+Y = x.2+Za.+x 2 Z1 + x 1Z2.-TY• Adding 

x 1 y+ x 2 y to both sides of the last relation, we obtain 

the one sta ted in the theo rem by se tt ing y 1 :::: Z 1 + y, 

Y~= Z2.+y. 

Conversely, let I be a right ideal with the 

property in question. We must prove that ( 1: ( I) )* f J (H*}, 

for which it suffices to show that in (~ (I) )* every ele-

ment is quasi-regular. 
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This is easily checked by following the above argument 

backward. 

In the next section we shall study those 

semirings to which this notion of radical is strictly 

applicable. 

tl Structure of Halfrings. 

Although halfrings are known to be subsets of 

rings, it is of interest to ask what part of the ring­

structure is made up of the generating halfring. The 

present section is devoted to this question. 

Broposition 1: Let H be a halfring, I a semi­

ideal in H. Th en I* is an ideal in H~< and I*" H = Ï. 

Proof: Since I* is the collection of all 

differences of elements of I, it is closed under sub­

traction as well as under multiplication by differences of 

elements in H. Hence I* is an ideal. Further I*~ H = 

Î x E H J x = a - b; a, b e= I }=[x E- H j X+ b ::: a; a, b E I j = I. 

Clearly, proposition 1 applies to left, right, 

or two-sided ideals. In the following proposition we 

shall mean by the word "ideal" any one of these three 

classes. 

Proposition 2: Let L* be the lattice of ideals 

of H*, L that of H. Then L*~L under the correspondences 

I*HI=I*AH. 
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Proof: By proposition 1, the indicated 

correspondance is one-to-one. To verify that it is an 

isomorphism, we observe: 

( 1) (\ I*r-+ n I~ " H = n ( rr." H} ~ n I,... 

(2) U I~= ~ I~ ~ (Z: I):.. }1"1 H 

= f x ~ H j x= x 1 + ••• +X" , x t fi I~i. ~ 
=fxeHix-=(a1 -b 1 )+ ••• +(a~-bt\), 

a~ 1 b&.Elr;. f 
= t xE- H J x+ (b 1 -+ ••• ~ b"" ) = a 1 + ••• -ta"" J 
= Z. Ir= Ur,... . 

It follows now that decomposition of halfrings 

can be studied in the same way as that of rings, provided 

that the ~-homomorphisms are natural homomorphisms of 

ideals. In particular: 

Theorem 1: If a halfring H has zero semi-radical 

and satisfies the d.c.c. for right ideals, then 

H = H1 $ ... e Hn , where Hi. is a generating half-ring of 

a matrix-ring over a division-ring. 

Proof: If H has zero semi-radical, then J(H*)= O. 

Also, sin ce for any right ideal R* s H* , R = R* 1'\ H is a 

right ideal in H, H* satisfies the d.c.c. Hence H*= 

H* 1 œ •.• œ H*ll'\. , where H*.: is a matrix-ring over a division­

ring, and H = H 1 9 ••• e H K , where H l. = H*c: " H. 

H . 
(. 

It remains to investigate generating halfrings 

of matrix rings. Now H~ is a simple ring, and hence 

so is H ~ by proposition 2. Since the ring of Hi is an ideal 
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in HL (proposition 1.5.2), there appear only two cases: 

(1) HL is a ring. Then H ~ = H*· and thus 
L 

its structure is determined. 

(2) Hi. is pure. This raises difficult 

questions, which we shall discuss, though not answer, in 

the remainder of this section. 

Proposition 3: Let H be a pure generating half­

ring of a ring R. Then H is contained in a maximal pure 

generating halfring (m.p.g.h.) 

Proof: Consider the set S of all pure generating 

halfrings containing H, partially ordered by inclusion. 

If T is any totally ordered subset, its union is a pure 

generating halfring. The proposition therefore follows 

from Zorn's lemma. 

We shall denote the half-ring of left operators 

(cf. Bourne & Zassenhaus (1) ) of a halfring H by HL • 

Lemma 1: If H is an m.p.g.h., H*" HL= H. 

Proof: Certainly H f H t. "' H* , thus leaving us 

to prove only that HL 1'\ H* is pure. If 6 , 'f e H L , 

9+'f=O implies f(x)+ Q(x)=O and hence 'f(x) = 9(x)=O 

for all x E H. Therefore t..p = 9 c 0 . 

Theorem 2: If H is a pure generating halfring 

of a matrix-ring over a division-ring D, D must be of 

characteristic zero. 
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Proof: By proposition 3, H* contains an 

m.p.g.h. H1 
• The identity of H* 

1 1 
e E- H* /\ H t.. = H • 

Hence ne=O for all n, since H' is pure. It is there-

fore necessary only to study matrix-rings over division-

rings of characteristic zero. 

In the field R of rational numbers any set of 

the form S - f xE R J x ::,. ~ ~ 0 J is a pure genera ting 

halfring. HO\rfever, there is only one m.p.g.h., namely 

the halfring of non-negative rationals. Suppose a halfring 

H $ R contains a negative number -p/q. {p,q being natural 

numbers). Then pq (-p/q}E H; ie., -p2.e H. But (-p/q)-a.. 

= p 2jq2., and thus p 2
E H. Hence H is not pure. In general, 

the question of what m.p.g.h.'s are contained in an 

arbitrary division ring is not so easily answered. 

Now let M be the ring of all n by n matrices 

over R, and consider the subset H consisting of the zero 

matrix plus all matrices with positive entries. H is a 

pure generating halfring of M, but is not maximal. We 

conclude this section by stating the conjecture that if 

H is an m.p.g.h. of a matrix-ring over a division-ring D, 

then (with perhaps some minor additional assumption) H is 

the set of all matrices with entries in a generating half­

ring of D. This, unfortunately, we are unable to prove, 

although no counterexample seems availabl e. 
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~ Distributive Lattices. 

A distributive lattice is obviously a semiring 

in which the product of two elements is simply their 

infimum, the sum their supremum. We shall investigate 

such lattices by studying the homomorphisms induced by 

maximal ideals. 

Let L be the given lattice, and henceforth 

suppose that L has a lower bound 0 and an upper bound I. 

Lemma 1: If M is a maximal ideal in L, L/M ~ 

(O,I), the lattice of two elements. 

Proof: L/M has to be simple since M is maximal. 

But if L/M contained a third element a , then f x / x ~ a f 
would be an ideal. 

If «l is the infimum of all homomorphisms on L 

induced by maximal ideals, then, by the results of chapter 

I, Lis a semiring of functions from ln, the set of maximal 

ideals, into ( 0, I), provided that o< L = fL • If « L. = f,_ , 

we shall call L a reduced lattice. 

Theorem 1: A reduced lattice L is isomorphic with 

a semiring of subsets of the collection of its maximal ideals, 

11l. 

Proof: We have remarked that L is a class of 

functions from 31t into ( O, I}. With each such function f 

we associa te the subset of m on which f (x) = I, and observe 

that the pointwise addition and multiplication of these 
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functions corresponds precisely to the unions and 

intersections of the respective sets. 

Proposition 1: If x=: I ( oc'1_), then x= I. 

Proof: If x -:1: I, the set f z E- L 1 z ~ x f 
is an ideal in L, which is easily se en {Zorn' s : .. lemrna) 

to be contained in sorne maximal ideal M. Hence 

x= O(mod M}. 

Pro2osition 2: A lattice L is reduced if 

and only if for any pair x, y~ L, the relation x= y is 

equivalent to 

( *} z +x = I implies z +y = I, for all z e L. 

Proof: Since x= y al ways implies { *), we need 

only prove tha t { *} implie s x= y. 

If L is reduced and (*) holds, then (*} holds 

among the components of x,y, and z in every L/M ~ {O,I} 

where it implies that x= y (mod M}. Since L is reduced, 

this me ans tha t x = y. 

Conversely, suppose L is not reduced. Then 

the re exists a pair x, y E-L su ch that x :1: y but x!! y (mod M) 

for all M'= m. Thus for every r-1 , x+ z =y+ z (mod M). If 

x+ z •I, y+ z a I(mod M) for all M, and hence y+ z -=I by 

proposition 1. 

We are now able to derive a form of Stone's 

theorem. It will be recalled that a Boolean algebra 
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is a complemented distributive lattice with 0 and I, 

and that complements are unique. 

Theorem 2: Every Boolean algebra is isomorphic 

to a field of subsets of a set. 

Proof: We should remark that by a "field" a 

system of sets is meant, which is closed under union, 

intersection, and complementation. 

The theorem follows at once from theorem 1, 

if we observe that a Boolean algebra satisfies the 

condition of proposition 2 and hence is a reduced lattice. 

The foregoing is a drastic specialization of 

the treatment of "positive semirings" given by Siowikowski 

and Zawadowski in (1). In that paper, which touches on 

the present subject only incidentally, the authors also 

define the "radical" to be the intersection of all maximal 

ideals. We wish to point out that this radical is not an 

ct-radical in our sense except in the case of reduced 

lattices. Neither is it a special case of the semi-radical 

defined in section 2, for any distributive lattice with 

identity I contains proper maximal ideals while the semi­

radical is clearly the whole lattice since x+ I = y+ I f'or 

any x,y in the lattice. 
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