
 
i 

 

 

 

 

Stochastic Long-Term Production Scheduling 

of the LabMag Iron Ore Deposit in Labrador, Canada 

 

by 

Michael Spleit 

 

Department of Mining and Materials Engineering, 

McGill University, Montréal 

October, 2014 

 

A thesis submitted to McGill University as partial fulfillment of the 

requirements of the degree of Master of Engineering 

 

 

 

© Michael Spleit, 2014 



 

ii 
 

Dedication 

I dedicate this work to Virginia Konchan. The most uncertainty is not found 

in the earth sciences or engineering, but rather in affairs of the heart. The 

uncertainty that can arise in love defies management and is never fully 

resolved. Instead, you must accept the unknown and simply do the best 

you can, blindly giving your utmost.   

 

“I think it's much more interesting to live not knowing than to have answers 

which might be wrong. I have approximate answers and possible beliefs 

and different degrees of uncertainty about different things, but I am not 

absolutely sure of anything and there are many things I don't know 

anything about, such as whether it means anything to ask why we're here. 

I don't have to know an answer. I don't feel frightened not knowing things, 

by being lost in a mysterious universe without any purpose, which is the 

way it really is as far as I can tell.”  

― Richard P. Feynman 

 

“As far as the laws of mathematics refer to reality, they are not certain; 

and as far as they are certain, they do not refer to reality.”  

― Albert Einstein 



 

iii 
 

Acknowledgements 

I would like to thank the people at New Millennium Iron Corp. who gave 

me the opportunity to learn and grow in the field of mining and who 

supported me with their wealth of knowledge and experience. Thiagarajan 

Balakrishnan, Chief Geologist, was very helpful explaining geological 

concepts and discussing them with me. Moulaye Melainine, Senior Vice 

President – Development, has been my supervisor at New Millennium Iron 

for the last 5 years, and has served as a role model to me in his diligence, 

ethics, and kindness. Robert Martin and Dean Journeaux, both of whom 

served as President & CEO of New Millennium at various points, were 

instrumental in my development in the field of mining and are role models 

to me in their shared vision of the development of the Millennium Iron 

Range. They gave me great freedom to explore and learn, approved the 

use of technical data and approved the company support of this Master’s 

Degree. I thank Roussos Dimitrakopoulos for introducing me to stochastic 

mine planning and helping me to research and explore this field. Finally, 

the biggest thanks goes to Zeidane Moulaye Zeine for his technical 

assistance in putting together the models, charting results, his in-depth 

technical assistance, as well as his input to all the discussions we had 

while performing this study. 



 

iv 
 

Contribution of Authors 

The author of this thesis is the primary and sole author of both papers that 

as served the basis for this thesis. Professor Roussos G. Dimitrakopoulos 

was the supervisor of the author’s Masters of Engineering program and 

participated in technical editing of both papers. 



 

v 
 

Abstract 

In long-term production scheduling, which is of vital importance to a 

project’s success and profitability, the goal is to determine a feasible 

extraction sequence that maximizes the discounted cash flows of a mine 

while also ensuring the target ore quantities and qualities are met. There 

is risk of the actual production deviating from what is planned due to 

geological variability, which is not considered by conventional mine 

designs and production schedules that are based on a single estimated 

ore body model. In order to address this issue, multiple simulations of an 

orebody can be created to represent its geological variability and allow for 

quantifying expected bounds, instead of single estimates, for grades, 

tonnages, and financial results. Beyond simply quantifying the geological 

uncertainty, a mine production schedule can be optimized while directly 

considering simulations in order to manage the geological risk. 

In this study, a set of geological simulations of the LabMag iron ore 

deposit in Labrador, Canada is generated in order to quantify the 

geological variability in an existing mining schedule and assess the 

schedule’s performance. The ‘DBMAFSIM’ algorithm is used to provide 

joint geostatistical simulation of spatially correlated variables of interest. 

First, a novel application of the method is used to jointly simulate the 
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thicknesses of seven lithological layers, and then four correlated grades 

within each lithology are jointly simulated. The variability in an existing 

production schedule, designed based on a single deterministic geological 

model, is then evaluated using the simulations. This evaluation quantifies 

the potential deviations from expected production target grades and 

tonnages as well as the associated financial impact of these deviations.  

Subsequently, a production schedule optimization based on stochastic 

integer programming (SIP) is presented that aims to improve mine 

profitability while simultaneously managing the risk of production tonnage 

and quality deviations. In addition, the formulation has components for 

equipment and waste material management: the truck fleet requirements 

are minimized while ensuring that the number of required trucks is an 

increasing function to avoid unnecessary peaks; and the evolution of the 

pit is controlled so that space within the mined out pit is continuously 

provided to allow for tailings and waste rock to be replaced, thus 

minimizing the project’s environmental footprint.  

The results of the study demonstrate the need for stochastic mine 

planning in order to ensure production targets and financial expectations 

are met. The simulation methodology presented can be generalized to 

sedimentary deposits with correlated lithology thicknesses and/or multiple 

correlated qualities, and in the case of LabMag, the method yielded good 
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results in terms of the reproduction of data statistics. A set of ten 

simulations were created in order to quantify the uncertainty in grade and 

tonnage in an existing mine plan and significant variations were found 

within the first 10 periods, which have an impact on the project NPV. This 

motivated the development of an SIP formulation that produced a 

production schedule with an NPV 16.9% higher than that of the 

conventional schedule. The stochastic schedule reduces the required 

number of trucks by 15 (previous total of 35 trucks) to 20 total trucks and 

the required number of shovels by 1 to 5 shovels total. This has a 

corresponding impact of 23.7% reduction in capital costs, and 26.2% 

reduction in operating costs over the first ten years. The stochastic 

schedule also achieves the desired progressively deepening sequencing 

of the pit, which maintains a larger working area at any given time that 

permits the eventual disposal of dry tailings and waste inside the pit in 

order to reduce the environmental footprint.  

Future work could consider more selectivity in the mining process in order 

to better capture the short-range variability of the deposit and to provide 

the optimizer with greater flexibility. In this study, the optimization was 

broken down into four sub-optimizations in order to have optimization 

problems that could be solved in a reasonable amount of time. A stronger 

problem formulation could allow for solving the initial problem in one pass, 
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finding a truly optimal result in a reasonable amount of time. An alternate 

approach to take could be to use a heuristic method such as simulated 

annealing, which would not find the optimal result, but could find a near-

optimal result for the problem without the need for breaking the problem 

down into sub-problems. Finally, future work could consider semi-mobile 

crushers located within the pit instead of one fixed crusher, which would 

further reduce the truck haulage distances and number of trucks needed. 

The optimization formulation could also be built to determine the ideal 

crusher locations for each period. 
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Résumé 

L'établissement du calendrier de production minière à long terme est 

d'importance vitale pour le succès et la rentabilité d'un projet. Son but est 

de déterminer une séquence d'extraction réalisable qui maximise les flux 

de trésorerie actualisés d'une mine tout en assurant les quantités et 

qualités visées de minerai. La production réelle risque de s’écarter des 

prévisions à cause de la variabilité géologique, qui n'est considérée ni 

dans les conceptions de mine ni dans les calendriers de production 

conventionnels car ils sont basés sur un modèle d’évaluation unique du 

corps minéralisé. Pour y remédier, de multiples simulations peuvent être 

créées plutôt qu’une évaluation unique pour représenter la variabilité 

géologique d’un corps minéralisé et permettre de mesurer les limites 

escomptées pour les teneurs, tonnages et résultats financiers. Au-delà de 

la simple mesure d'incertitude géologique, un calendrier de production 

minière peut être optimisé en tenant compte directement des simulations 

pour gérer le risque géologique. 

Cette étude comporte un ensemble de simulations géologiques du 

gisement de minerai de fer LabMag au Labrador, Canada, générées afin 

de mesurer la variabilité géologique d’un calendrier de production minière 

existant et d’évaluer la valeur de celui-ci. L'algorithme « DBMAFSIM » est 
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utilisé en géostatistique pour simuler conjointement des  variables qui sont 

spatialement corrélées. D'abord, la méthode est appliquée d’une nouvelle 

façon pour simuler conjointement les épaisseurs de sept couches 

lithologiques. Ensuite, quatre teneurs corrélées sont simulées 

conjointement dans chaque lithologie. La variabilité d’un calendrier 

existant de production conçu sur base d’un modèle géologique 

déterministe unique est ensuite évaluée en fonction des simulations. Cette 

évaluation mesure les écarts possibles avec les teneurs et tonnages 

initialement visés dans les prévisions de production, de même que 

l'impact financier associé à ces écarts. 

Une optimisation du calendrier de production basée sur la programmation 

stochastique en nombres entiers (« SIP ») est ensuite présentée. Elle a 

pour but d’améliorer la rentabilité de la mine tout en gérant le risque 

d’écarts pour le tonnage et la qualité de production. De plus, la formulation 

contient des éléments de gestion d’équipements et de déchets miniers. 

Ainsi, les besoins de la flotte de camions sont réduits au minimum tout en 

maintenant une fonction croissante pour calculer le nombre de camions 

nécessaires et éviter les pics inutiles. De même, l'évolution de la mine à 

ciel ouvert est contrôlée afin que la mine épuisée procure toujours 

l’espace nécessaire pour replacer les résidus et stériles miniers, réduisant 

ainsi l'empreinte environnementale du projet. 
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Les résultats de l'étude démontrent le besoin de planification minière 

stochastique pour assurer l’atteinte des objectifs de production et des 

attentes financières. La méthode de simulation présentée peut être 

généralisée aux dépôts sédimentaires présentant des épaisseurs 

lithologiques corrélées et/ou des qualités corrélées multiples. Dans le cas 

de LabMag, la méthode a donné de bons résultats en termes de 

reproduction des données statistiques. Un ensemble de dix simulations a 

été créé afin de mesurer l'incertitude au niveau de la teneur et du tonnage 

dans un plan de mine existant. Comme des variations importantes ont été 

trouvées dans les dix premières périodes, qui ont un impact important sur 

la valeur actualisée nette du projet, une formulation SIP a été développée 

et a produit un calendrier de production avec une valeur actualisée nette 

de 16,9% supérieur à celle obtenue par le calendrier conventionnel. Le 

calendrier stochastique réduit de 15 unités le nombre requis de camions 

(le total précédent de 35 camions passe à 20) et réduit d’une unité le 

nombre requis de pelles (pour un total final de 5 pelles). L’impact 

correspondant est une réduction de 23,7% sur les dépenses en capital 

des équipements miniers, et une réduction de 26,2% sur les dépenses 

d'exploitation durant les dix premières années. Le calendrier stochastique 

permet aussi d’établir la séquence progressive souhaitée 

d’approfondissement de la mine, afin de maintenir en tout temps une zone 
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plus vaste de travail permettant l’élimination future des résidus du 

concentrateur et des stériles à l'intérieur de la mine à ciel ouvert, réduisant 

ainsi l'empreinte environnementale du projet. 

Une considération future serait d’être plus sélectif dans le processus 

minier, en saisissant mieux la variabilité à courte portée du gisement et en 

offrant une plus grande flexibilité à l'optimiseur. Dans cette étude, 

l'optimisation a été décomposée en quatre sous-optimisations afin de 

pouvoir résoudre chacun des problèmes d’optimisation dans un délai 

raisonnable. Renforcer la formulation du problème permettrait de résoudre 

le problème initial en une seule opération et de trouver un résultat optimal 

dans un délai raisonnable. Une approche alternative pourrait être 

d'employer une méthode heuristique telle que le recuit simulé, qui ne 

trouverait pas le résultat optimal, mais pourrait trouver une solution 

presqu’optimale au problème sans devoir diviser le problème en sous-

problèmes. Enfin, une autre considération future serait de remplacer le 

concasseur fixe situé hors de la fosse minière par des concasseurs semi-

mobiles, ce qui réduirait encore les distances de transport par camion et le 

nombre requis de camions. La formulation d'optimisation pourrait aussi 

inclure la détermination de l’emplacement idéal du concasseur et les 

déplacements optimaux selon les coûts de déplacements et de 

camionnage. 
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  Chapter 1

Introduction and Literature Review 

 Stochastic Mine Planning  1.1.

Stochastic mine planning seeks the most profitable configuration of a 

mining operation while considering uncertainty in the geology and/or any 

of the other scheduling inputs. The full-scale problem consists of global 

asset optimization, which integrates mining and processing of multiple 

deposits, multiple mined materials, stockpiles, blending options, and 

alternative processing streams to yield distinct products. Part of this 

problem is production scheduling, which determines the optimal feasible 

extraction sequence of a mineral resource. Production scheduling can be 

considered at varying levels of time resolution from life-of-mine (LOM) or 

long-term production scheduling down to daily scheduling. It is long-term 

production scheduling, which usually considers time periods on the order 

of years, that determines a project’s cash flows and thus the project’s 

value. The cash flows of a mining project depend heavily on the mine 

production schedule because the mined material determines the quantity 

and qualities of products available to be sold to the market in each period. 

In addition, the mining equipment capital and operating costs can vary 

significantly based on the sequence of extraction. Mining projects require 
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large capital investments, which are risky because they involve large, up-

front expenditures on assets intended for many years of service and that 

will take a long time to pay for themselves. Iron ore projects in particular 

are heavily dependent upon capital-intensive infrastructure and four recent 

technical studies of magnetite iron ore projects in northern Canada have 

estimated capital expenditures ranging from $1.3 billion to $12.9 billion 

(Grandillo, et al. 2012, Bertrand, et al. 2012, SNC-Lavalin 2014, Boilard, et 

al. 2011). Vallée (2000) refers to a study by Harquail (1991), wherein a 

review of nearly 50 North American projects showed only 10% achieved 

their commercial aims with 38% failing within about one year. To make the 

high-stake decision to invest in such mining projects, the highest degree of 

profitability must be sought while also minimizing project risks. One of the 

key risks in a mining project is geological uncertainty because the 

understanding of the geology, spatial distribution, and variability of the ore 

qualities can only be inferred from limited data, which is not necessarily 

representative of the entire deposit. Since mine production scheduling 

depends on the underlying geological resource model for the forecasting 

of tonnages and material qualities, geological uncertainty implies a risk of 

deviations from the planned production schedule. However, by assessing 

and quantifying geological uncertainty, the minimum acceptable level of 

risk can be determined, the risk can be minimized, and the residual risk 
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can be managed (Dowd 1994, 1997). A method for capturing geological 

uncertainty is to create stochastic simulations (multiple equally-probable 

scenarios) of the resource model, where the term ‘stochastic’ means that 

the properties of the model are variable or uncertain (Birge and Louveaux 

1997). Each simulation reproduces the input data and its spatial variability, 

but the local values throughout the model are varied randomly according 

to probability distributions that are inferred from the surrounding data. 

Simulations capture the full range of possible grades, whereas estimated 

models, although potentially locally accurate, exhibit smoothing of the 

values: estimated models are based on weighted averaging, so they 

generally underestimate high grades and overestimate low grades (David 

1977, 1988). A set of such simulations allows for assessing and 

quantifying the uncertainty in a mine production schedule: a single 

schedule can be evaluated separately for each simulation, and the 

distribution of results provides probabilistic bounds for each property of the 

model (David 1977, Ravenscroft 1992, Dimitrakopoulos et al. 2002). 

Understanding the risk in the production schedule makes for a more 

informed investment decision, but ideally production scheduling methods 

take these simulations directly into account in order to mitigate the 

uncertainty and create a schedule whose expectations in terms of mined 

material have the highest probability of being met.  
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Stochastic production scheduling does precisely this, and studies have 

shown that stochastic production schedules not only have a higher chance 

of meeting production targets, but can produce a higher economic value 

than deterministic schedules (Dimitrakopoulos et al. 2002, Albor 

Consuegra and Dimitrakopoulos 2010, Leite and Dimitrakopoulos 2014, 

Godoy and Dimitrakopoulos 2011). Stochastic scheduling produces a 

higher economic value when scheduling the same material as a 

conventional schedule (i.e. same ultimate pit limit) because it is able to 

determine groups of mining blocks that, when mined together, have an 

upside potential in ore tonnage and quality. Conventional scheduling only 

considers a single orebody model, and so is unable to recognize upside 

potential or downside risk. When stochastic scheduling is used to 

determine the ultimate pit limit, an even higher economic value is found 

because a larger pit with more metal/mineral is typically established 

through more efficient blending. Stochastic scheduling thus also 

maximizes the utility of a resource and contributes to more sustainable 

development. 

The stochastic mine schedule optimization methods developed herein are 

for a specific case-study site: the LabMag iron ore deposit in northern 

Labrador, Canada, which is controlled by New Millennium Iron. Iron ore 

occurs in two common types of mineral iron oxide: hematite and 
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magnetite. LabMag is composed of seven stratigraphic units of magnetite 

and is a taconite deposit, which is similar to banded iron formations (BIFs) 

and is the name given to magnetite in the Lake Super region. Whereas 

hematite typically has iron grades in excess of 50%, Taconite only has 

about 30% iron naturally, and contains a significant amount of host waste 

rock composed of quartz, chert, and carbonates. Taconite is very hard 

compared to hematite, and requires energy-intensive crushing to be 

ground very fine in order to liberate the iron. A benefit in grinding the ore 

very fine, however, is that there is better liberation of the iron and of the 

common impurities that are of concern for hematite (phosphorus, 

magnesium, alumina, organics, and silica), only silica is commonly of any 

significance for taconite. Magnetic separation is typically used to extract 

the iron particles from the waste, but any iron in the form of hematite is lost 

without additional beneficiation, which is typically not cost-effective for the 

quantity of hematite contained in taconite. Therefore, an important quality 

of taconite is the expected process plant magnetite weight recovery. This 

is commonly estimated in a laboratory setting using what is known as the 

Davis Tube test (Schulz 1964), which produces a clean concentrate of 

magnetic material that can then be analyzed for iron grade as well as 

silica. There are thus four highly correlated qualities of interest: the head 

iron grade (FeH), the Davis Tube weight recovery (DTWR), the Davis 
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Tube iron concentrate grade (FeC), and the Davis Tube concentrate silica 

grade (SiC).  

The fine iron concentrate that is produced through beneficiation can be 

sold, but preferably it is pelletized because pellets receive a premium in 

price over concentrate. In fact, pellet plants can produce two types of 

pellets: blast furnace (BF) pellets and direct reduction (DR) pellets. DR 

pellets receive an additional premium because they must meet more 

stringent impurity tolerances. In crushing iron ore, excessive fines can be 

generated that are not in the required size range for pelletization and are 

then exported as concentrate, which is sold at a less attractive price. In 

order to meet the pellet grade specifications, the average silica grade must 

be kept beneath a certain level for each pellet type. The LabMag process 

flow sheet is designed to balance profitability and recovery, and is 

optimized for a specific DTWR. Within a tolerance range around this target 

DTWR, the plant can be adjusted on-the-fly, but larger deviations would 

result in a degraded plant efficiency. 

Within only roughly 30% iron content, the majority of the mined material is 

waste (tailings) and must be managed. Tailings from the process plant 

typically contain some amount of water, and impoundments are necessary 

to contain them, which can be expensive. An alternative option is to 

remove the moisture, which then permits the tailings to be dry-stacked 
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within the mined-out pit. Preventive measures must be taken to avoid the 

tailings wall from caving and waste from sliding into working areas of the 

pit, but this risk is minimal with dry-stacking because the stratigraphic 

layers of the LabMag deposit are inclined at a shallow dip angle of only 

about six degrees, daylighting on the south-west side of the deposit. The 

shallow dip is also highly advantageous in terms of designing the ultimate 

pit because the bottom of the ore can serve as the pit floor and exit ramp, 

which results in a low waste/ore stripping ratio. However, fully loaded 

trucks operate at slower speeds when exiting the pit than on even ground, 

which means haulage cycle times are dependent on both distance and 

depth of the ore from the process plant.  

Overlying the economic ore layers are two types of waste: a thin cover of 

overburden and a layer of Menihek shale (MS). The deepest portions of 

the orebody have the most overlying MS, but this occurs progressively 

moving away from the process plant location and on the side of the 

deposit near the process plant, there is no MS and the ore is often 

exposed at surface. The MS layer contains some amount of sulphur and 

has the potential for creating acid rock drainage when exposed to air and 

water. This environmental concern requires special management, and it 

would be preferable to avoid mining it during the start of operations if 

sufficient quantities of ore within desired quality target ranges can be 
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mined without mining this waste unit. Stochastic simulations of the geology 

can capture the uncertainty in the ore tonnages and qualities, and 

stochastic scheduling is necessary to create plans that can ensure that 

targets are likely to actually be met. 

In simulating the LabMag deposit, a joint-simulation framework known as 

‘DBMAFSIM’ (Boucher and Dimitrakopoulos 2012) is used to preserve the 

spatial correlations (Goovaerts 1997) between the thicknesses of each 

lithology and between the ore qualities. A set of simulations is generated 

and then used to quantify the uncertainty in an existing mine production 

schedule that was designed based on a single orebody estimate. This 

procedure highlighted periods in this existing schedule in which target 

tonnages and qualities would potentially fail to be met, which motivates the 

need for stochastic production scheduling methods in order to control the 

uncertainty. The production schedule derived in this thesis uses a type of 

mathematical programming called stochastic integer programming (SIP) to 

address geological uncertainty and increase the chance of meeting target 

production quantities while also seeking to maximize discounted cash 

flows.  Further considerations are given to equipment and waste 

management. In terms of equipment, the formulation ensures a smooth 

and increasing truck haulage fleet and seeks to delay equipment 

purchases as much as possible by seeking greater truck productivity in 
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earlier periods, which is accounted for by haul cycle times that are specific 

for the depth and distance to the crusher of each block within the pit. In 

terms of waste management, the problematic Menihek shale layer is 

almost completely avoided while still meeting production targets and part 

of the scheduling formulation ensures that the mining of the pit evolves in 

such a way so as to continually create space in the pit in each period for 

the placement of dry-stacked tailings.  

This chapter presents an overview of the current trends in stochastic mine 

planning and optimization. The incorporation of stochastic simulation into 

the mine planning process has evolved from risk analysis to direct 

incorporation within the design process, now referred to as stochastic 

mine planning. The benefits of existing stochastic mine planning 

methodologies are presented, along with their limitations and short-

comings, leading up to the definition of the specific goals and objectives of 

this thesis.  

 Stochastic Production Scheduling 1.2.

Stochastic production scheduling, which is the current state of the art, 

consists of techniques aimed at determining the ideal extraction sequence 

from the initial state of a deposit to the ultimate pit limit while considering 

geological uncertainty, and more recently demand uncertainty as well 

(Sabour and Dimitrakopoulos 2011, Asad and Dimitrakopoulos 2013). The 
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optimal extraction sequence should forecast the greatest profit while 

having the greatest probability that the mined material will meet production 

forecasts. The most recent research treats the geology with Monte-Carlo 

methods in order to quantify and manage the degree to which the actual 

mined material may vary from forecasts. Orebody models are typically 

discretized into mining ‘blocks’ to make them suitable for numerical 

evaluation and Monte-Carlo methods are used to generate multiple 

simulations in order to obtain a distribution of possible material types as 

well as a distribution of possible values for each material property that are 

possible for each block. Stochastic schedulers incorporate the joint local 

uncertainty in the values of mining blocks in order to derive a probabilistic 

assessment. Typical estimation (as opposed to simulation) methods 

consist of interpolation algorithms that smooth out local details of the 

spatial variation of the estimated attribute; extreme values are dampened 

and only middle-range values are preserved. Stochastic conditional 

simulation overcomes this problem, and provides a measure of the joint 

uncertainty about attribute values at several locations taken together 

(David 1988, Journel and Huijbregts 1978, Goovaerts 1997). 
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 Early work 1.2.1.

Ravenscroft (1992) first showed a probabilistic assessment of geological 

uncertainty in production scheduling that uses a set of stochastic 

simulations. Using his method, a production schedule is evaluated 

separately for each scenario, which provides a range of values for the 

quantities and qualities of mined material in each period. An example of 

this is shown in Fig. 1, which involves a schedule of 50 periods where 

each period is represented by a separate zone within a resource model. 

The schedule was evaluated with a single estimated (Kriged) model as 

well as a 100 times using alternative simulated models. To assess the 

probability of error in the value for each period, the 5 lowest and 5 highest 

values (5% on either end of the distribution) of the simulated values were 

discarded. The new outer bounds thus reflect a 90% confidence interval 

for the value of each period. The probability limits are plotted as a 

percentage difference from actual production and should enclose the zero 

difference line 90% of the time. It can be seen that this is generally true, 

meaning that the actual production falls within the expected bounds of the 

probabilistic forecast. The deviations of the dotted line, however, represent 

deviations of actual production from the estimated model, of which no 

indication is given by the estimated model alone. This methodology 

provides a more informed understanding of the production schedule, but 
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offers no way of incorporating ore variability into the production scheduling 

process. 

 

Fig. 1 Simulation Deviations from actual production grade, kriging estimate 

(dotted line) and 90% confidence limits (solid lines), after Ravenscroft 

(1992) 

Using the same type of framework, Dimitrakopoulos et al. (2002) tested 

the performance of the conventionally “optimal” production schedule by 

evaluating the schedule using each of a set of 50 stochastic simulations. 

The study showed variability in the financial projections, i.e. a range of 

possible values rather than the single estimate obtained using a 

deterministic orebody model, and that there was a low probability of the 

single estimate being accurate.  Using a low-grade gold deposit as a case 
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study, Fig. 2 and Fig. 3 show that the average mill feed tonnage and grade 

have a range of possible values by evaluating the mine plan using the 50 

simulations. The annual mine production given by the “optimal” production 

schedule associated with each simulation differs, which creates a range of 

possible cash flows. Therefore, a different NPV is associated with each 

simulation (Fig. 4) and 80% of the outcomes are shown to cover a range 

of $AUS 5 million, which represents 20-25% of the single estimated NPV 

found using a single estimated orebody model. There was also a 95% 

probability of the project returning a lower NPV than that predicted using 

the estimated orebody model. This methodology has the ability to 

demonstrate the risk in a schedule, but is unable to manage it. 

 

Fig. 2 Range of possible average mill feed grades (Dimitrakopoulos et al. 

2002) 
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Fig. 3 Range of possible average ore tonnes (Dimitrakopoulos et al. 2002) 

 

Fig. 4 NPV risk analysis showing the different responses using the 

conventionally optimal LOM schedule and testing its performance using 

equally probable models of the deposit to be mined (Dimitrakopoulos et al. 

2002) 
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A framework for geological risk analysis is described by Godoy and 

Dimitrakopoulos (2011) that quantifies the impact of grade uncertainty to 

four different cases. The first case is an uncertainty analysis of 

conventionally optimal pit limit using the same concept as Dimitrakopoulos 

et al. (2002). The second case is an analysis of the impact to the definition 

of the ultimate pit limit when different equally probable orebody models are 

used in the conventional pit optimization process. This demonstrated that 

the conventional ultimate pit limit based on a single estimated orebody 

model is not actually optimal. The third case quantifies the impact of grade 

uncertainty to a given pushback similar to the procedure in the first case. 

The fourth case quantifies the impact of grade uncertainty to the 

incremental tonnage between two successive pushbacks. These methods 

allow a mine planner to have a better understanding of the risk in a 

schedule, but do not address how to create a schedule that can manage 

risk. 

Dimitrakopoulos et al. (2007) introduces a more systematic approach to 

selecting an open pit mine design amongst a set by quantifying the upside 

potential and the downside risk for key project performance indicators, 

such as the periodical discounted cash flows and the amount of ore 

tonnes and metal production. The reference point that defines upside 

versus downside potential is the minimum acceptable return (MAR) on 
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investment, which usually differs from the expected value (or average or 

median value). Fig. 5 shows the range of possible DCF values for each of 

two pit designs for the same orebody with the MAR defining the difference 

between upside and downside potential. The upside potential is the 

expected value of simulations with an economic value greater than the 

MAR whereas the downside potential is the expected value of simulations 

with a value less than the MAR. 

 

Fig. 5 Upside potential and downside risk for two pit designs for the same 

orebody (Dimitrakopoulos et al. 2007) 

Although this approach can also be easily implemented using traditional 

and commercially available optimization tools, it is operationally tedious 

and does not find an optimal solution; it just finds the best solution in a set 

generated from nested pits for each orebody model. 

The work of Sabour and Dimitrakopoulos (2011) is based on the maximum 

upside / minimum downside approach described above, but includes 
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stochastic models of prices and foreign exchange rates as well as a ‘real 

options’ approach that revises the ultimate pit limits if the continuing value 

of the project is less than zero. The ‘real options’ approach models the 

ability of a company to decide to stop mining if a project becomes 

unprofitable. Using a copper deposit as a case study, Sabour ranks a set 

of different mine designs using several different measures: 1) 

conventionally estimated NPV;  2) an indicator called “total rankings 

indictor” (TRI) that takes into account upside potential, downside risk, and 

statistics of the estimated values; 3) real options valuation (ROV) that 

provides the flexibility to revise the pit limits; and 4) an ROV indicator that 

takes into account upside potential, downside risk, statistics of the 

estimated values, and additionally includes ROV.  

The results show that under the conditions of uncertainty, design values 

based on actual market data can be significantly different from those 

estimated at the planning time. Consequently, using the expected value to 

rank possible mine designs may result is sub-optimal decisions. The 

ranking that integrates the flexibility to revise the originally taken decisions 

regarding the ultimate pit limits have a more efficient selection process 

that more closely matched the ranking based on actual market data. 

Although providing for a better ranking system to select a design from a 
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set, this study is still based on only one model that is not guaranteed to be 

optimal. 

Ramazan and Dimitrakopoulos (2004) use a conventional MIP approach 

applied to simulated orebody models to build a set of schedules based on 

a set of stochastic geological simulations where each schedule is based 

on one simulation. They then use a new MIP formulation to derive a 

schedule where the blocks have maximum combined probability of being 

mined in their selected periods. An additional term in the objective function 

is used to smooth out the schedule to ensure a practical excavation 

sequence with minimal equipment movement. Their formulation reduces 

the risk of deviations from production targets, but does not guarantee an 

optimal solution. 

A multi-stage stochastic approach is presented by Godoy and 

Dimitrakopoulos (2004, 2011) that maximizes the expected NPV by first 

determining the optimal feasible annual mining rates while considering 

geological uncertainty, and then makes adjustments to minimize the risk of 

deviations from production targets. A schematic representation of their 

algorithm is shown in Fig. 6. The first step is to determine what Godoy 

calls the stable solution domain (SSD), which considers a set of equally 

probable orebody models S1 to SN (simulations) to determine the range of 

mining rates and stripping ratios that can be definitely be achieved despite 
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geological uncertainty. The SSD is the range of possible annual ore and 

waste  tonnages that can be supported by all simulations, and is the 

intersection of the feasible domain for each separate simulation. A graph 

of the feasible domain for one orebody model is shown in Fig. 7, which 

shows the minimum and maximum cumulative waste tonnage that must be 

mined in order to mine any given cumulative ore tonnage.  

 

Fig. 6 Schematic representation of the multi-stage optimization algorithm 

presented by Godoy and Dimitrakopoulos (2004, 2011) 

 

Fig. 7 Feasible domain of ore production and waste removal (Godoy 2003) 
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Next, Godoy uses a linear programming formulation (called OPDPS in Fig. 

6, which stands for open pit design and production scheduling) that 

considers net revenue along with equipment purchasing and carrying 

costs to define the economically optimal mining rate that is feasible for all 

geological simulations (i.e. within the SSD). A conventional scheduling 

algorithm is then used to create a separate mining sequence for each 

geological simulation where the mining rate for each sequence is the 

previously defined optimal rate. The result is a set of solutions where the 

NPV of each solution has been maximized for the associated geological 

simulation, and each solution is also supposed to be likely to be feasible 

when considering geological uncertainty. However, although a mining rate 

and stripping ratio may be feasible for all the simulations, a different 

physical mining sequence may be needed for each simulation in order to 

actually achieve these results. This is due to local variations in the 

orebody, which has not been accounted for by the OPDPS stage. The 

production of a schedule that follows this optimal mining rate has 

uncertainty in the recovered metal, as shown in Fig. 8. This uncertainty in 

recovered metal creates uncertainty in the cash flows and the cumulative 

NPV of the project, which is shown in Fig. 9. The deviations on the bottom 

of the charts reflect the overestimations of traditional analysis that are 

based on a single deterministic orebody model. The expected NPV of the 
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OPDPS schedule is $492M, but could range anywhere between ~$450M 

to ~$540M.  

 

Fig. 8 Uncertainty in recovered metal in the OPDPS schedule  (Godoy 

2003) 

 

Fig. 9 Uncertainty in the cumulative NPV of the OPDPS schedule (Godoy 

2003) 
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To directly consider the geological uncertainty in the scheduling process, 

Godoy (2003) uses a combinatorial optimization technique known as 

‘simulated annealing’ to generate a final optimal schedule. In simulated 

annealing, a suboptimal configuration (i.e. an initial mine sequence) is 

continuously perturbed until it matches some pre-defined characteristics 

as coded into an objective function (Kirkpatrick et al. 1983). In this study, 

the objective function is a measure of the difference between the desired 

ore and waste production and those of a candidate mining sequence. 

Each perturbation is accepted or rejected based on whether it improves 

the value of the objective function. To avoid local minima, some 

undesirable perturbations are accepted based on a probability distribution 

(Metropolis, et al. 1953). The initial mining sequence is created such that 

blocks with maximum probability of belonging to a given period are frozen 

for that period. The probability of each block belonging to a given period is 

inferred from a set of conventionally optimized schedules based on the 

equally probable orebody models, where the mining rates and stripping 

ratios for each schedule are those determined by the OPDPS stage of the 

algorithm. Blocks whose schedule period varies across the different 

schedules are assigned to candidate periods according to their probability 

rank, and it is these remaining blocks that are randomly swapped between 

candidate periods in each perturbation. Godoy’s implementation of 
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simulated annealing is called ‘XSCHED’, and a comparison of the 

uncertainty in recovered metal between the base case conventional 

schedule and the final risk-based optimized schedule using the algorithm 

in Fig. 6 is shown in Fig. 10. This figure shows that despite uncertainty in 

the recovered metal, the final risk-based schedule (XSCHED) has the 

same total recovered metal as the base schedule, but it consistently 

schedules greater amounts of recovered metal in earlier periods and so 

has a mine-life that is two years shorter. The conventional base schedule 

forecasts less annual recovered metal because it does not consider the 

stochastic simulations – it only considers a single deterministic orebody 

model with smoothed grades and thus cannot take advantage of potential 

high-grade areas of the deposit. The financial implications to capitalizing 

on grade uncertainty and waste deferral are shown for the optimal risk-

based schedule in Fig. 11, which shows an expected NPV of $634M and 

risk profile range between $586M and $655M. This corresponds to an 

increase in expected NPV of 28.3% from that of the base schedule. Note 

that even the lower end of possible NPVs for the optimal risk-based 

schedule ($586M) is greater than the higher end of possible NPVs for the 

base schedule ($540M), demonstrating that robustness of the optimal risk-

based schedule. 
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Fig. 10 Comparison of uncertainty in recovered metal between the base 

case and final risk-based optimized schedule (Godoy 2003) 

 

 

Fig. 11 Uncertainty in the cumulative NPV of the final risk-based optimized 

schedule (Godoy 2003) 
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Combinatorial optimization is dependent on the initial sequence and 

Godoy uses a randomly selected initial sequence from the generated set 

as input to the combinatorial optimization: a different initial sequence could 

potentially yield a better result. Another drawback of this procedure is that 

the optimal mining rate is defined prior to the final optimization, rather than 

being included in one holistic optimization. 

Godoy’s methodology was applied by Leite (2007) at a copper deposit, 

where an NPV 26% higher than that of the conventional schedule was 

found despite the relatively low grade variability of the deposit. The risk 

analysis of the stochastic schedule showed that it had low chances of 

significantly deviating from production targets, while the probability of the 

conventional schedule deviating from production targets was quite high. 

Besides noting the need for defining ultimate pit limits and optimizing 

pushbacks under uncertainty, Leite points out that further study of the 

impact of cut-off grade selection under uncertainty is needed. 

An extension to Godoy’s work by Albor Consuegra (2009) explores the 

sensitivity of the final result to several different aspects. As previously 

described, in the final combinatorial optimization step, blocks are swapped 

between candidate periods but Godoy freezes blocks with 100% 

probability of being in a given period. Albor Consuegra allows all blocks to 

be available for swapping but concludes that there is no benefit and that 
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freezing blocks is thus more efficient. Another parameter tested was the 

number of input schedules to the simulated annealing algorithm. For the 

copper deposit case study used, it was found that a set of ten schedules 

was needed in order to meet production targets but that more than ten had 

no added benefit. Furthermore, with ten schedules as input to the 

simulated annealing algorithm, it was found that the result was insensitive 

to the initial scheduled used. Albor Consuegra also found that selecting a 

different ultimate pit from the available pit shells and using simulated 

annealing to schedule found a result with an NPV 10% greater than that of 

the optimized schedule for conventional pit limits. This study was further 

confirmation that stochastic pit limits are larger than those of conventional 

pit limits, which means that stochastic scheduling can yield more metal 

and more value from the same orebody and thus offers a better utilization 

of natural resources. 

Menabde et al. (2007) use an integer programming model similar to that of 

Caccetta and Hill (2003) but generalized to include stochastic simulations 

and variable cut-off grades. Their formulation has an objective function to 

maximize the expected NPV and allows a different cut-off grade from a 

discrete set to be selected for each mining period. As shown in Fig. 12, the 

schedule using a variable cut-off grade based on a single estimated 

orebody model produced an NPV of $(485 ± 40) million, an increase of 
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20% over the base case schedule with a marginal cut-off $(404 ± 31) 

million. The schedule using a variable cut-off grade that considers the full 

set of simulations through their formulation generated an NPV of $(505 ± 

43) million, a further increase of 4.1%. Although the increase of 4.1% in 

NPV may be seen as unsubstantial, the authors note that the orebody 

model under study did not have very high variability. Their method clearly 

demonstrates the benefit of a variable cut-off grade based on stochastic 

simulation, but does not offer the ability to control variability in the 

production and so targets may fail to be met.  

 

 

Fig. 12 Cumulative NPV for mining schedules with different cut-off grade 

strategies (Menabde et al. 2007) 
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A production scheduling formulation under conditions of orebody 

uncertainty is introduced by Dimitrakopoulos and Ramazan (2004). Their 

formulation uses a mathematical programming formulation (Linear 

Programming) to integrate orebody uncertainty in respect of grade, ore 

quality and quantity and risk quantification as well as equipment access 

and mobility and other typical operational requirements. The key part of 

the formulation evaluates the probability of the material in each period 

having the desired properties and penalizes deviations from 100% 

probability. They also introduce the concept of geological risk discounting 

(GRD), which uses a parameter akin to a financial discount rate to place 

more emphasis on meeting grade targets in earlier periods. In order to 

avoid disjunctive impractical mining, their formulation also checks what 

percent of blocks surrounding a given block are mined concurrently and 

penalizes deviations from 100%. Using this formulation and comparing the 

results to a schedule produced through conventional optimization that 

does not consider geological uncertainty, they showed that the stochastic 

optimization approach produced a schedule with 6% less risk of not 

meeting grade targets. The conventional schedule had a 2% higher total 

NPV, but it is important to note that the stochastic approach did not 

explicitly attempt to maximize the NPV and that given the risk of not 

meeting production targets, the higher NPV result is misleading. This 
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suggested that integration of orebody uncertainty in production schedule 

optimization formulations might have further benefit.  

 Stochastic Integer Programming 1.2.2.

Stochastic integer programming (SIP) is a type of mathematical 

programming and modelling that considers multiple equally probable 

scenarios and generates the optimal result for a set of defined objectives 

within the feasible solution space bounded by a set of constraints. SIP is 

an extension of mixed integer programming (MIP) with uncertainty in one 

or more of the related coefficients (Escudero 1993). Different approaches 

to SIP formulations are discussed in Birge and Louveaux (1997); however, 

these approaches and other existing developments in the technical 

literature are not directly applicable to mining problems (Dimitrakopoulos 

and Ramazan 2008). 

Ramazan and Dimitrakopoulos (2007) introduce a stochastic integer 

programming (SIP) formulation that directly maximizes the NPV while 

minimizing deviations from production targets by penalizing deviations 

within the objective function. Penalizing the deviations rather than setting 

hard constraints is an important concept because when considering many 

different goals and constraints, setting absolute constraints can make a 

problem infeasible and it prohibits the scheduler from using blending to 

manage risk, which is a major source of value in SIP models. The relative 
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value of the penalties determines their priority, whose selection is a 

management decision in the absence of actual dollar values (ex. impurity 

penalties in sales agreements). Empirical testing for specific problems can 

be used to determine appropriate penalties, and it is the relative 

magnitude of the costs for deviations rather than their precise value. The 

scheduling method developed here allows for a management decision of 

defining a risk profile based on the existing uncertainty quantified by 

simulated orebody models. The decision-maker has the option of 

minimizing the risk in each of the production periods, or tolerating some 

risk in some or all periods. In the traditional scheduling model, geological 

risk is randomly distributed over the periods and can be significantly large. 

The new SIP model allows the selection of the best mine design based on 

the resultant NPV and the risk profile defined. 

In Dimitrakopoulos and Ramazan (2008), the previous stochastic 

framework was tested in two applications, demonstrating the value of the 

stochastic solution: a gold deposit had a 10% higher NPV than 

conventional schedule optimization and a copper deposit had a 25% 

higher NPV, both with greater chance of meeting production expectations 

than conventional scheduling. Also discussed are the concepts of 

Expected Value of Perfect Information (EVPI) and the Value of Stochastic 

Programming (VSP), that provide respectively the maximum economic 
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value a decision maker should be willing to pay for complete and accurate 

information about the deposit, and the difference between the value of the 

stochastic solution and the expected value (under uncertainty) of the 

conventional solution.  

Ramazan and Dimitrakopoulos (2013) formalize their previous work and 

provide the complete formulation (providing full details of the objective 

function and all constraints) of a full two-stage SIP framework that 

maximizes the NPV of a production schedule while minimizing the risk of 

not meeting production targets. The formulation also provides for 

stockpiling and stockpile retrieval to further aid in the blending of material 

to meet production targets, which is a common employed mining practice. 

The results clearly indicate that the SIP model is a powerful tool for 

controlling the distribution of risk between production periods and is able 

to control both the magnitude and probability of the risk within individual 

production periods. The SIP model also generates a schedule with greater 

expected economic value by delaying risk to later production years, 

ensuring that production targets are met in the earlier years that most 

affect the NPV. This model serves as the basis of several other studies 

that are discussed next. 

Leite and Dimitrakopoulos (2014) use the SIP framework in an application 

at a copper deposit that yields an NPV 29% higher than that of a 
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conventional scheduler. In addition, the stochastic schedule forecasts a 

shorter mine life (seven years vs. eight years for the conventional 

schedule) because the conventional schedule based on a single orebody 

model overestimates the amount of ore above the 0.3% Cu cut-off that is 

applied.  

Albor Consuegra and Dimitrakopoulos (2010) use the SIP framework to 

examine the selection of pushback designs (mining phases). Pushbacks 

are intermediate pit configurations designed to guide the sequence of 

extraction up to the point where the ultimate pit limits are reached. Each 

pushback may consist of several actual mining periods and a mining 

period could extend across two pushbacks. The conventional method of 

designing pushbacks is based on grouping nested pits, a process that 

does not consider geological uncertainty and thus the pushbacks may 

have risk of not meeting production targets. Albor Consuegra and 

Dimitrakopoulos select a set of pushback sequences where each 

sequence has a different total number of pushbacks and each sequence 

has the maximum NPV for that number of pushbacks. An SIP framework 

is then used to create a schedule based on each pushback sequence and 

then a geological risk analysis is performed to evaluate which sequence 

has the highest NPV but also meets the production targets. Conceptually, 

this is a convoluted approach with many steps and a better approach to 
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pushback design under uncertainty is to simply use an SIP framework in 

two stages: once for scheduling pushbacks, and once for scheduling the 

periods following the pushback sequence.  

Benndorf and Dimitrakopoulos (2013) use an SIP formulation to create a 

long-term production schedule for a hematite iron ore deposit. The case 

study deposit involves geological uncertainty with multiple correlated 

elements: iron, phosphorus, silica, alumina, and loss on ignition. Although 

the financial risk associated with the schedules is not presented, the 

results demonstrated the ability of the stochastic approach to jointly control 

the risk of multiple quality-defining elements deviating from targets as well 

as control the risk of ore tonnage production deviations.  

In cases where production scheduling requires scheduling hundreds of 

thousands or more blocks, there are a large number of integer variables in 

the SIP model, which can translate to computational issues for 

conventional solvers like CPLEX (IBM 2009). In such cases, the 

production schedule optimization solve time can be impractical, and so 

some research has gone into meta-heuristic methods such as Tabu 

Search and Variable Neighbourhood Search to efficiently generate strong 

solutions in reasonable computation times (Lamghari and Dimitrakopoulos 

2012, 2014). 
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The SIP methods discussed thus far are all long-term planning 

approaches to production scheduling that are based on geological models 

created using exploration data only. Should a mine go into production, 

new high-density data becomes available and would ideally be 

incorporated into the existing models so that stochastic production 

scheduling could be based on the best information available. Jewbali 

(2006) and Dimitrakopoulos and Jewbali (2013) present a methodology for 

inferring better short-scale spatial statistics from initial production grade-

control data in order to simulate possible future grade-control data. The 

simulated grade-control data is used to update the existing geological 

models using the method of conditional simulation by successive residuals 

introduced by Vargas-Guzman and Dimitrakopoulos (2002). Vargas-

Guzman’s setup is not computationally possible, however, which Jewbali 

and Dimitrakopoulos address using a column and row decomposition of 

the correlation matrix. Jewbali applies an SIP framework at the Sunrise 

Dam gold deposit in Western Australia to create production schedules 

based on the original geological models (that are based only on 

exploration data) and the updated models (that are based on exploration 

data as well as grade-control data). The approach was shown to create a 

schedule that more closely matched the mine’s actual reconciliation data, 
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even though the majority of grade-control data used was only simulated 

based on some initial production data. 

Boland et al. (2008) propose a multistage optimization model that 

incorporates stochastic geological simulations and in which decisions 

made in one period can depend on information obtained from the mining in 

earlier periods. Processing decisions are made assuming full knowledge 

of the mined material, which creates a scenario-based solution that cannot 

be used for long-term planning prior to mining. Applying this framework to 

globally optimize a mine complex is complicated because the optimized 

destination policy is based on linear assumptions that imply partial blocks 

can be sent to a given destination, which is not practical since after 

extraction periods of blocks are determined, it is very hard to change the 

extraction sequence because of slopes, roadways and equipment 

movement. 

 Global optimization of mining assets 1.2.3.

With the advances in mine production scheduling, a larger problem that is 

now being tackled is the strategic optimization of entire mining complexes. 

This means considering not just mining and production scheduling, but all 

the activities of a mining operation, which include blending, different 

processing streams, transportation, and product creation and sales. In 

optimization of an entire mining complex, processing path decisions are an 
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important aspect. For a given processing path, there may even be multiple 

alternative operational configurations (fine and coarse grinding for 

example). If a process plant is used for more fine grinding, energy 

consumption is typically much higher, which results in higher processing 

costs and longer process times. For more coarse grinding, energy 

consumption is typically less, which results in lower processing costs and 

shorter process times, but the weight recovery suffers. When in different 

operating modes, the tolerable amount of various impurities could be 

different: more coarse grinding of an iron ore for instance may not be able 

to liberate as much iron from the host silica. Traditionally, the process 

plant is optimized separately from the mining, but studies have shown that 

there can be significant benefit from globally optimization that considers 

both jointly. 

In the late 1990s, Newmont Mining Corporation identified a need to co-

ordinate mine planning efforts between multiple mines, stockpiles,  and 

processing facilities (Hoerger et al. 1999). Their operation in northern 

Nevada identified more than 90 metallurgical ore types and has over 60 

defined gold-recovery process options. Since costs and processing 

options can be shared across multiple sites, a holistic optimization is able 

to determine a better plan for their operation than multiple and separate 

site optimizations. They develop an MIP model to maximize the NPV by 
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selecting the optimal flow of materials from mine sources to plant 

processes and stockpiles, and from stockpiles to plant processes. Their 

optimization process lead to decisions that increased the company’s 

overall profitability and also helped eliminate promising scenarios that 

were, in fact, unattractive. As an example, their optimization found that 

treating ore from the high-grade Deep Star mine at the Twin Creeks mine 

autoclave (a processing technique that uses pressure oxidation to liberate 

metal) rather than the original destination at the Carlin mine roaster (a 

processing technique that burns off impurities). Although this decision 

incurred a higher transportation cost due to an additional distance of 160 

km, the cost was offset by an increase in recovery at the autoclave and 

there was a net benefit. An optimization of the Deep Star mine and nearby 

processing options alone would not have identified this option.  

A practical implementation of an MIP framework was developed as an 

“intuitive and flexible” software tool called “Blasor” by BHP Billiton 

(Menabde et al. 2007). The complexities of optimization frameworks 

usually require a great deal of specialized knowledge, and so packaged 

planning tools like Blasor are important for mine planners to be able to 

perform pit development optimizations without assistance.  This was also 

one of the first packaged tools capable of optimizing the life-of-mine 

development plan, including ultimate pit and mining phase designs, for 
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blended-ore multi-pit operations. This is proprietary software, however, so 

full details of the framework are not disclosed. 

G. Whittle (2010) discusses the typical characteristics of a globally 

optimized mine plan in detail and how to model these characteristics. Due 

to the large number of aspects to consider, Whittle points out that solving 

for optimized solutions often exceeds the capabilities of readily available 

mining tools. To address this issue, he proposes that mine production 

sequencing use material aggregation techniques. This reduces the 

problem size significantly, but also restricts the ability of the optimizer to 

take advantage of material and risk blending benefits, which are of 

extreme importance especially when considering geological uncertainty. 

The methods Whittle uses to solve his problem formulations are heuristic 

in nature: they search for good solutions but cannot guarantee a globally 

optimal solution. 

J. Whittle (2010) goes into more detail on the development and 

performance of the optimization algorithms used by G. Whittle. He 

specifically cites the problem of local maxima, which often arises with 

heuristic methods because they typically make small adjustments to each 

variable and stop when no further improvements can be found. Although 

the solution found might be the best for the current range the variables are 
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in, if a large change is made to one or more of the variables, an entirely 

different optimal solution could be found, possibly higher than the first.  

Goodfellow and Dimitrakopoulos (2014) propose a two-stage stochastic 

mining complex optimization model that can accommodate non-linear 

aspects of the supply chain and also does not require simplifying 

assumptions to generate high-quality solutions. Their model creates 

destination policies that are robust with respect to geological uncertainty, 

avoids using a-priori cut-off grade policies, and addresses blending, 

stockpiling and multiple processing streams. 

Montiel and Dimitrakopoulos (2014) also addresses mining complex 

optimization with multiple of each of the following: pits, material types, 

stockpiles, process destinations, process operating configurations, 

transportation systems, and final products. This is shown diagrammatically  

 

Fig. 13 Flexibility within a mining complex (Montiel 2014) 
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in Fig. 13. In order to optimize this large number of variables, a heuristic 

algorithm based on simulated annealing is used. An initial scheduling 

solution is fed into a three-stage hierarchy of perturbation cycles. In the 

outermost cycle, perturbations occur on the block scale, modifying the 

periods and destinations of each block. In the second level, perturbations 

to the operational alternatives at each given destination are made. In the 

third level, perturbations are made to the proportion of output material 

transported using the available transportation systems. Since changes to 

any activity within the mining complex affects the others as well, the 

algorithm cycles through the three levels of perturbations iteratively within 

a predetermined computational time or until a desired quality of solution is 

obtained. 

Optimization of entire mining complexes demonstrates value over 

separate individual optimizations that when combined do not make for a 

globally optimal solution. Research continues to focus on methods to 

efficiently model and solve the full-scale problems faced by mining 

operations in order to generate greater profitability while also reducing 

risk.  

 Iron ore case studies 1.2.4.

This thesis addresses production schedule optimization at an iron ore 

mine, and so the existing literature specifically addressing applications at 
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iron ore deposits is now briefly reviewed. The majority of production 

scheduling methods discussed up until now are general in that they can be 

adapted for any type of open pit mine, but it is worth noting the few iron 

ore case studies exist. This is probably primarily due to the fact that the 

iron ore market is dominated by only a few very large companies: 75% of 

seaborne shipments are controlled by Vale of Brazil, Rio Tinto, and BHP 

Billiton (Kakela 2014). The existing research focuses on two specific 

mines: BHP Billiton’s Yandi mine in Western Australia, and the Kiruna 

mine in Sweden controlled by LKAB, a smaller producer in terms of total 

tonnes of delivered iron ore, but a company that is remaining competitive 

by careful management of its resources through implementation of the 

more recent approaches to mine planning. 

Stone et al. (2004) use the Blasor software tool described in Section 1.2.c. 

in an application at the Yandi iron ore deposit to ensure that all market 

tonnage, grade and impurity constraints are observed while maximizing 

the discounted cash flows generated by the schedule. However, this tool 

uses block aggregations that can lead to sub-optimal design and there is 

also significant risk of not meeting production targets during actual 

production, as demonstrated by Benndorf and Dimitrakopoulos (2013), 

who studies the same deposit but while considering geological uncertainty. 
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Benndorf applies an SIP model with an objective function that also seeks 

to maximize the discounted economic value, but also minimizes deviations 

from production targets in terms of ore tonnage and quality as well as 

minimizing the costs of non-smooth mining. This can be clearly seen in 

Fig. 14, which shows the risk profiles for two impurity grades (silica and 

alumina) for the stochastic schedule and for the E-type schedule (a non-

risk-based conventional schedule that is based on a single estimated 

orebody model). The graphs show the uncertainty in the grades for each 

period through the distribution of possible values that could be obtained by 

each schedule. The solid horizontal lines indicate the target tolerance 

limits. It is evident that the E-type based schedule is not able to account 

for geological uncertainty. Although the mean values of the element 

grades produced per period are inside the production targets, there are 

considerable deviations from upper and lower production limits for both 

grades. In the stochastic schedule silica deviates just slightly in periods 

two and five with a probability of 5% and 20%, respectively. The E-type 

schedule shows silica deviations from targets in every period with an 

average probability of 30%. The probabilities of deviating from upper and 

lower limits are almost twice high for the E-type schedule compared to the 

stochastic based schedule, especially for alumina. The stochastic 
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schedule shows a higher probability of meeting production targets, which 

diminishes project risk and can increase project value. 

 

Fig. 14 Risk profiles for impurity grades (silica and alumina) for a 

stochastic schedule (left) and a conventional non-risk-based schedule 

(right) (Benndorf and Dimitrakopoulos 2013) 

The majority of production schedule optimizations do not explicitly model 

waste handling. Typically, formulations decide what destination to which to 

send waste material, where a ‘destination’ is usually a waste dump of 

stacked material. They do not usually specify the exact locations within the 

dump to place the material, as this is often not of importance. However, 

there are operations where the space available outside of the pits for 

waste rock dumping may be very limited. In such cases it eventually 

becomes necessary to dump waste back into the pit into the voids created 
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by the extractions. This may also be required at some sites due to 

environmental concerns. The standard version of Blasor does not explicitly 

model waste handling, but a specialized version of Blasor called Blasor-

InPitDumping (BlasorIPD) was developed for this reason (Zuckerberg, et 

al. 2007). In BlasorIPD, a space can only be classified as available for 

dumping if all blocks within a user defined radius have already been 

cleared, and if additionally all spaces within the ore body that lie below the 

dumping location have been refilled such that maximum pit slope angles 

are respected. Additionally, a space cannot be made available for 

dumping if that space sits atop material classified as ore that has not yet 

been cleared. An alternative implementation could allow dumping to take 

place on top of ore, thereby sterilizing that ore. BlasorIPD uses material 

aggregation to ensure problem tractability and the authors allude to other 

relaxations to the problem that they make to reduce the problem size, but 

do not go into details.  

Despite the proven risk to mine plans and financial forecasts, there are 

other recent examples of iron ore operations that use deterministic MIP 

frameworks  for production scheduling of an underground iron ore mining 

operation at the Kiruna mine in Sweden (Kuchta et al. 2003, Newman and 

Kuchta 2007). They design a heuristic based on solving a smaller, more 

tractable model in which periods are aggregated; they then solve the 
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original model using information gained from the aggregated model. By 

computing a bound on the worst-case performance of this heuristic, they 

demonstrate empirically that this procedure produces good-quality 

solutions while substantially reducing computation time. 

These iron ore studies demonstrate that recent production schedule 

optimization of iron ore mines are still mostly using deterministic 

approaches that do not incorporate geological uncertainty and thus mine 

production could have significant risk of deviation from targets and 

significant financial risk. With respect to iron ore mining, only the work by 

Benndorf (2013) is based on stochastic mine production scheduling, which 

demonstrates that there is a clear need for more case studies to 

demonstrate the benefits of stochastic production scheduling methods and 

that such methods can be practically implemented. 

 Stochastic Simulation  1.3.

Incorporation of geological uncertainty via simulated orebody models in 

stochastic mine planning and optimization requires the generation of 

multiple realizations of the orebody. A common technique for creating 

multiple realizations is through geostatistical simulation. Geostatistics is a 

branch of statistics that can be used to predict probability distributions of 

the spatial datasets acquired by mining operations.  
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Two of the most commonly used forms of geostatistical simulation for 

deposits are sequential Gaussian simulation (SGS) for continuous 

variables and sequential indicator simulation (SIS) for continuous variables 

through a set of cut-offs as well as for categorical variables (Goovaerts 

1997). These methods require computation of the inverse of a covariance 

matrix, which can be very computationally intensive. As an example, 

generating 50 simulations of an orebody model discretized by 100 million 

nodes would require 135 x 1012 floating point operations (135 Tera Flops). 

Memory usage is an additional consideration. Using the same example, if 

the simulated values are stored as double precision floating point numbers 

(8 Bytes) and spatial coordinates as single precision floating point 

numbers (4 Bytes), then the total memory allocation required to store the 

simulation grid would be approximately 2 Giga Bytes. 

Implementations of SGS were developed that are highly computationally 

efficient and can manage the limitations of finite memory. The generalized 

sequential Gaussian simulation, or GSGS is a general form of SGS that 

replaces the node-by node sequential process in SGS with a group of 

nodes and the simulation is carried out for groups of nodes simultaneously 

(Dimitrakopoulos and Luo 2004). Fig. 15 shows four nodes to be simulated 

(numbered in white) along with surrounding data (in black). A hatched 

circle around each node to be simulated represents the neighborhood 
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from which data is considered for informing the simulation process. For 

nodes that are close to one another, the neighborhoods overlap. By using 

one common neighborhood for a set of close nodes rather than separate 

neighborhoods, a more computationally efficient algorithm can be derived.  

 

Fig. 15 Shared neighborhoods of group-nodes (Dimitrakopoulos and Luo 

2004) 

There is a trade-off between computational efficiency and accuracy that 

depends on the size of the neighborhood used. In order to measure this 

trade-off, Dimitrakopoulos and Luo introduce the screen-effect 

approximation loss (SEA loss) defined as the mean-square difference 

between the simulated value conditioned on the neighborhood and the 

simulated value conditioned on the complete data set. This measure can 

be used to determine a neighborhood size with an acceptable trade-off, 

although the study suggests that in most situations, a relatively small 

neighborhood can be used without significant loss of accuracy. A 

drawback of this algorithm (and traditional SGS) is that a change of 
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support is needed to change the point-support scale simulations to the 

block-support scale needed for mine planning. 

A further improvement to the algorithm was the direct block support 

simulation method (Godoy 2002). The algorithm simulates point values 

within each block using the GSGS concept, then calculates the block 

average of the point values before discarding them. The algorithm uses a 

joint-simulation integrating points and blocks, which sees a reduction in 

calculations needed as well as a significant reduction in the amount of 

data stored in memory. Additionally, no change of support is needed at the 

end of simulation. In a comparison study between GSGS (with a group 

configuration of 2x2x2 nodes and a neighborhood size of 45) and DBSIM 

(Benndorf and Dimitrakopoulos 2007), DBSIM took 7% less time than 

GSGS to run, and only required 1% of the memory requirements of 

GSGS. 

Variants of SGS can only be used to simulate one variable at a time, 

which is problematic for simulating multi-element deposits that have 

correlations between the elements. Individual simulation of each element 

would not result in the correlations being preserved in the simulations and 

so in such cases, a method for joint multi-element simulation is required.  

One approach to joint multi-element approach is to use a procedure 

known as max/min autocorrelation factors (MAF) (Switzer and Green 
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1984), (Desbarats and Dimitrakopoulos 2000) to transform a set of 

correlated variables into uncorrelated factors, which can then be 

independently simulated. The MAF technique allows for transforming the 

factors back to the original data space with the original data correlations 

preserved. An algorithm was developed by Boucher and Dimitrakopoulos 

(2009) that combined MAF with the direct block approach to create the 

DBMAFSIM algorithm for an efficient joint simulation framework. They use 

this procedure to simulate the grades of the Yandi iron ore deposit in 

Western Australia (Boucher and Dimitrakopoulos 2012) demonstrating the 

method is practical and able to reproduce the spatial correlations between 

multiple elements. 

Although structural aspects of geological modeling are often treated as 

categorical (i.e. a discrete set of different lithologies), Eggins (2006) 

demonstrated a technique that represents a set of lithologies in a 

stratiform deposit as discontinuous geological layer thicknesses. The layer 

thicknesses are treated as correlated variables and the MAF technique is 

used to simulate them throughout a deposit. In the case of a stratiform 

deposit with multiple correlated variables whose distributions are 

approximately normal, the DBMAFSIM algorithm is the most efficient 

existing method of stochastically simulating both structural and quality 

elements such that correlations are preserved. 
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Although unable to account for multiple correlated variables, a number of 

multi-point and higher-order stochastic simulation frameworks have been 

developed in the last two decades in order to account for higher order 

spatial relations and connectivity. This is because past conventional 

practice for stochastic simulation of spatial random fields is only based on 

the first two orders of statistics (histograms and variograms) (David 1988, 

Goovaerts 1997, Chiles and Delfiner 1999), which is limited in that such 

two-point methods are unable to characterize curvilinear features and 

complex geometries that are common in geological environments. An 

example of this is shown in Fig. 16 where three patterns that are 

completely different all result in essentially the same variogram.  

 

Fig. 16 Vastly different patterns resulting in the same variogram (after 

Journel 2007) 



 

51 
 

Multiple-point statistics consider the joint neighborhood of any number of n 

points. A template of any size n can be used along with different shapes to 

capture data events surrounding a central value (see Fig. 17). Whereas  

 

Fig. 17 A 4-point data event template around a central value (after 

Osterholt and Dimitrakopoulos 2007) 

variograms can only consider 2-point statistics in one direction in 2D, 

multiple-point templates can be built in 3D. 

Guardiano and Srivastava (1993) first introduced the concept of multiple-

point statistics. Their algorithm depends on a training image from which 

they infer the probability of a given data configuration occurring and then 

simulate values based on the conditional probability of the data 

configuration around the point to be simulated. An extension of their work 

is presented by Strebelle (2002) as the snesim (single normal equation 

simulation) algorithm, which is much more efficient because it builds a 

search tree of the different data events in the training image. The snesim 
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algorithm requires an exact match of the conditioning data event by the 

training image, so if no such pattern is found, the conditioning data is 

reduced by dropping the furthest data event. This is an intensive approach 

requiring a training image that is large and rich enough to contain the 

majority of possible conditioning data events that could be found during 

simulation. To take advantage of more recent computer hardware such as 

multiple-processor computers, multiple-core processing units and graphics 

processing units (GPU), Huang et al. (2013) develop a parallel 

implementation of snesim that runs more efficiently. Strebelle and 

Cavelius (2014)propose several improvements to the snesim algorithm 

that further increase speed and reduce memory requirements. However, 

for large three-dimensional problems with numerous facies, large 

templates may not be possible due to memory limitations. An alternative 

algorithm called impala is proposed by Straubhaar et al. (2011) that uses a 

list instead of a tree to store the statistics inferred from the training image. 

This approach allows for a significant reduction in memory requirements 

and the algorithm can also be easily parallelized. Both snesim and impala 

use a multiple-grid approach (Tran 1994) to capture features at different 

scales. 

Another approach to multiple-point simulation is to simulate patterns 

directly rather than points within patterns using statistics. However, these 
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methods are based on heuristic arguments rather than any formal theory 

and so it is difficult to verify performance other than through visual checks.  

Arpat and Caers (2007) select the pattern from a pattern database in two 

steps by distinguishing the hard data from the previous simulated nodes. 

An algorithm called filtersim (Zhang et al. 2006, Wu et al. 2008) uses 

weighted distances to give more importance to previously simulated 

nodes. This algorithm trades the exact data event reproduction for an 

approximate reproduction, which has the benefit of not needing to drop 

data and having a loss of conditioning information. Tahmasebi et al. (2012, 

2014) use a raster simulation path rather than using a multiple grid 

approach. Their algorithm uses a cross-covariance function to express the 

similarity of patterns, and deals with the hard data by splitting the pattern 

into smaller regions. Several recent methods look to reduce the 

dimensionality of the pattern classification problem. Honarkhah and Caers 

(2010) introduced a distance-based method for efficiently classifying the 

pattern database and kernel space mapping to reduce the dimensionality. 

Chatterjee et al. (2012) classify the pattern database using wavelet 

approximate sub-band coefficients of each pattern to reduce the 

dimensionality yet still capture most of the pattern variability.  They then 

use k-means clustering for classification of the pattern database. 

Mustapha et al. (2014) build cumulative distribution functions of the one-
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dimensional patterns that are then used to classify the patterns. During the 

simulation process, a conditioning data event is compared to the class 

prototype, and a pattern is randomly drawn from the best matched class. 

Mustapha and Dimitrakopoulos (2009), Dimitrakopoulos et al. (2010), and 

Mustapha et al. (2011) introduce the concept of spatial cumulants to 

model and simulate continuous variables, where spatial cumulants are 

simply combinations of lower- or equal-order spatial moments. A moment 

is quantitative measure of the shape of a set of points, where the first raw 

moment is the mean, the second central moment is the variance, the first 

two commonly known higher-order standardized moments are skewness 

and kurtosis, and any number of higher order moments can be computed.  

Mustapha and Dimitrakopoulos (2010, 2011) propose a high-order 

sequential simulation algorithm called hosim for continuous variables, 

which has been shown to accurately reproduce many orders of spatial 

statistics on sparse data sets. Methods using cumulants are different from 

the previously mentioned multiple-point geostatistics algorithms because 

they attempt to quantify spatial interactions using maps of high-order 

statistics that are able to characterize non-linear and non-Gaussian 

stationary and ergodic spatial random fields.  

Despite the advantages of these more recent developments in reservoir 

modeling, computational efficiency remains a problem for large full-field 
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simulations and another limitation of all the previously mentioned 

simulation techniques is that none of them is able to jointly simulate 

multiple correlated variables. However, as discussed, techniques exist 

based on older two-point statistical methods for efficiently jointly simulating 

multiple correlated variables. 

 Goals and Objectives of this thesis 1.4.

The aim of this study is to document how geological risk can be quantified 

and to apply a stochastic mine planning framework at the LabMag open pit 

iron ore deposit in order to document improved profitability as well as 

reduced risk of not meeting production targets. 

The specific goals of this thesis are as follows: 

1. Review the technical literature related to stochastic geological 

modeling and stochastic mine production scheduling. 

2. Model the LabMag deposit using stochastic joint simulation of 

multiple attributes and evaluate the effects of geological variability 

on an existing mine production schedule. 

3. Create a stochastic long-term mine production schedule framework 

and apply it at the LabMag open pit iron ore deposit with the aim of 

demonstrating an increased value of stochastic production 

scheduling over deterministic production scheduling. 



 

56 
 

4. Draw conclusions from the study and make recommendations for 

future work. 

 

 Thesis Outline 1.5.

This thesis is organized according to the following chapters: 

Chapter 1: The technical literature related to the topics in this thesis is 

reviewed. The goals and objectives of this thesis are stated. 

Chapter 2: The stochastic joint simulation of the multi-element LabMag 

deposit using the DBMAFSIM algorithm is presented and the effects of 

geological variability on an existing production schedule are evaluated 

based on these simulations. 

Chapter 3: A SIP formulation for the stochastic optimization of a multi-

element life-of-mine production schedule is used to stochastically optimize 

the LabMag deposit in order to minimize risk of deviation from production 

targets and to maximize the mine’s expected discounted cash flows. 

Chapter 4: Conclusions are made based on this study and 

recommendations are provided for further work. 
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  Chapter 2

Modelling Geological Variability in the LabMag Iron Ore 

Deposit and Effects on the Long-Term Production Schedule 

 Introduction 2.1.

Mining projects require very large financial investments and having reliable 

data is critical to making decisions that will lead to economic success 

(Dowd 1994, 1997, Vallée 2000). One of the main sources of risk in a 

mining project is the modeling of the orebody because the primary data 

used for modeling is usually sparse (usually consisting primarily of 

expensive sub-surface drilling) and there is inherent uncertainty in any 

estimation method used.   

Conventional approaches to orebody modeling and mine planning are 

based on a deterministic orebody model and result in single, often biased, 

forecasts (Dowd 1994, David 1977, Dimitrakopoulos et al. 2002). A 

deterministic geological model assumes fixed lithological boundaries and 

has a single estimated set of qualities such as mineral grades, but does 

not provide for measurement of the associated variability of those 

properties. Subsequent work in mine design and production scheduling 

typically assumes that the deterministic model is 100% accurate and is 

optimized on that basis. However, given the inherent in situ variability in 

the resource model, variability in the materials being scheduled to be 
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mined in the long-term plan (and thus in financial forecasts) can also be 

expected.  

Geological variability is evaluated using stochastic conditional simulation, 

a Monte Carlo-type simulation approach used to model variability in 

spatially distributed attributes such as pertinent characteristics of mineral 

deposits. The concept behind stochastic simulation is to generate equally 

probable representations of the in-situ orebody variability in both grade 

and material types. All realizations of the orebody are equally probable 

and reproduce the available data, their distribution and spatial continuity. A 

collection of conditionally simulated deposits captures the variability of the 

orebody and attributes of interest (David 1988, Goovaerts 1997). The 

computationally efficient method used here is a direct block support 

simulation method that discards point values as block values are 

calculated, and performs a joint simulation. The algorithm provides the 

means to simulate several hundreds of points per second (Godoy 2002).  

Ore mineralizations frequently contain more than one quality of interest 

that are spatially related. As a result, they require the use of joint 

geostatistical simulation techniques that generate models conserving this 

correlation. In order to jointly simulate multiple variables, an effective 

technique is to de-correlate the variables. De-correlated variables can be 

independently simulated and then back-transformed in order to preserve 
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the correlations between the original variables. Decorrelation of geological 

attributes was first introduced by David (1988) using principal component 

analysis (PCA) at a Uranium deposit. This approach is limited in that it 

ignores cross-correlations at distances other than zero, which typically 

exist in mineral deposits. A decorrelation procedure called 

minimum/maximum autocorrelation factors (MAF) was introduced by 

Switzer and Green (1984) for the processing of multi-spectral remote 

sensing imagery and later applied in a geostatistical context by Desbarats 

and Dimitrakopoulos (2000). The MAF approach is based on PCA, but 

spatially decorrelates the variables involved to non-correlated factors. The 

independent MAF factors are individually simulated and then back-

transformed to conditional simulations of the correlated deposit attributes. 

These simulations reproduce the cross-correlations of the original 

variables. The MAF approach is applied by Dimitrakopoulos and Fonseca 

(2003) at an oxide copper deposit located in northern Brazil. They show 

the successful reproduction of the original data spatial characteristics in 

stochastic simulations of the deposit and show the uncertainty in the 

grade-tonnage curves. Eggins (2006) applies the MAF approach to a 

silver/lead/zinc stratiform deposit located in northern Australia. Besides 

addressing the issue of simulating multiple correlated elements, his 

approach also addresses two further complications: folding in some areas 
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of the deposit, and missing data (the MAF transformation requires all 

variables at each location to be populated). An extension by Boucher and 

Dimitrakopoulos (2009) combined MAF with the direct block approach to 

create an efficient joint simulation framework. They use this procedure to 

simulate the grades of the Yandi iron ore deposit in Western Australia 

(Boucher and Dimitrakopoulos 2012), without treating different lithological 

domains separately as in the present study. In iron ore deposits, 

geological domains may include weathering, ore and contaminant 

envelopes, and domains could also be required for other physical 

properties such as density, hardness, and lump-fines yield. The variability 

in possible boundary locations translates to variability in ore 

volumes/tonnages and can lead to inconsistencies between mine planning 

and realized production. Besides allowing for quantification of uncertainty 

in existing mine production schedules, geological simulations can serve as 

input to stochastic mine planning in order to significantly improve the NPV 

and to reduce the risk of not meeting production targets, as was done for 

the Yandi iron ore deposit (Benndorf and Dimitrakopoulos 2013).  

This paper presents a full-field application of a MAF procedure that 

simulates directly at the block-support scale. Firstly, multiple conformable 

lithological surfaces are jointly simulated based on thickness. Secondly, 

multiple ore qualities are jointly simulated within each controlling lithology. 
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The application of block simulation with MAF to surfaces successfully 

reproduces the inter-dependence between the thicknesses of the various 

lithologies, which is an issue that is often ignored.  

The application is at the LabMag deposit controlled by New Millennium 

Iron Corp., located in a 210 kilometer belt of taconite in northern Québec 

and Labrador (see Fig. 18). The iron formation in the MIR (Millennium Iron 

Range) is of the Lake Superior type, which consists of banded sedimentary 

 

Fig. 18 Location of the Millennium Iron Range and the LabMag deposit 

rocks composed principally of iron oxides, magnetite, and hematite within 

quartz/chert-rich rocks with variable amounts of silicate and carbonate 

lithofacies. Taconite is the name given to a particular type of sedimentary 

iron formation whose iron content is commonly present as finely dispersed 

magnetite (generally 25-30%). 



 

62 
 

To liberate the iron in taconite, which is a hard rock, requires very fine 

crushing. Magnetic separation can then be used to separate the ore from 

the waste. The Davis Tube test is a method for measuring the quantity of 

magnetic iron recoverable from an ore. Traditional chemical analysis 

shows total iron content, whether magnetic or non-magnetic. However, 

since the typical processing of taconite uses magnetic separation, the non-

magnetic iron is lost. The Davis Tube test thus gives a good approximation 

of the expected recovery by weight, although there is usually also some 

additional loss in the real plant. Clean concentrate of magnetic material 

can then be analyzed for iron grade as well as the primary impurity, silica.  

The two overlying waste-types for the LabMag deposit are overburden 

(OB) and Menihek Shale (MS). The OB covers the entire deposit but is 

minimal (the underlying rock is commonly exposed at surface). The MS 

layer is present on the north-east side of the deposit, overlying the iron 

layers and dipping parallel to them. A typical cross-section of the LabMag 

deposit is shown in Fig. 19. 

 

Fig. 19 LabMag typical cross-section 
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In the next sections, firstly the MAF-based block simulation algorithm is 

reviewed. Then an application at LabMag consisting of two parts is 

presented. In the first part, the lithological units of the deposit are jointly 

simulated based on layer thickness; and in the second part, the four 

metallurgical qualities of interest in this deposit are jointly simulated: 

• Head iron grade of the material fed into the Davis Tube process (FeH) 

• Davis Tube Weight Recovery (DTWR) 

• Concentrate iron grade from the Davis Tube process (FeC) 

• Concentrate silica grade form the Davis Tube process (SiC) 

Then the quantification of an existing mining schedule follows using the 

full-field simulations in order to quantify the geological and financial risk. 

Finally, conclusions  and recommendations from this study follow and are 

discussed. 

 Joint Simulation at Block Support-Scale Revisited 2.2.

 Min/Max Autocorrelation Factors at point support 2.2.1.

The Min/Max Autocorrelation Factors (MAF) procedure is to transform a 

multivariate observation vector, such as metal grades or thicknesses in 

geological layers, to a new set of variables that are linear combinations of 

the original vector. These linear combinations are specifically chosen so 

as to be orthogonal, and to exhibit increasing spatial correlation. Consider 
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the stationary vector random function (RF)  ( )  *  ( )     ( ) } 

transformed into its Gaussian equivalent  

Y( )  *  ( 
 ( ))     (  ( ))}. (1) 

The MAF are then defined as a new vector RF  ( )  *  ( )     ( )}, 

where the K  RFs are independent and obtained from the multi-Gaussian 

vector RF Y( ) using the co-efficients A such that  

M(u) = AT Y(u) (2) 

The matrix of coefficients A that are used to orthogonalize Y(u) is 

generated from 

   ( )          (3) 

with 

B = cov[Y(u), Y(u)] (4) 

   ( )       ( )    (   )  ( )   (   )  (5) 

 

where B is the variance/covariance matrix of Y(u), and   ( )  is the 

variogram matrix at lag h. This derivation of A is equivalent to performing 

two successive principle component (PCA) decompositions (Desbarats 

and Dimitrakopoulos 2000). 
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 Direct block simulation with MAF 2.2.2.

The point values (see A, Fig. 20) within a search neighborhood are used 

to simultaneously simulate the points in each block using an LU algorithm 

(see B, Fig. 20).  

Consider a block at location v discretized with a vector of N points of the 

kth MAF service variable  

  
  = {  (  ), . . . ,   (  )} with    ⊂ v, i=1 to K and with a neighborhood 

made of MAF factors and previously simulated blocks   
 . 

 

 

Fig. 20 Search neighbourhood for the multivariate direct block simulation, 

after (Boucher and Dimitrakopoulos 2009) 

then 

  
     

   
   

  
     

    (6) 

where    is the covariance matrix of the conditioning data comprised of 

the drill-hole data and the previously simulated blocks;    
  is the matrix of 
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point and point-to-block covariance between the discretizing points and 

the known values (drill holes and previously simulated blocks); and  

  
    are vectors determined by a Cholesky decomposition (Boucher and 

Dimitrakopoulos 2012). 

The simulated point values within a block are averaged to find the MAF at 

the block-support scale (see C, Fig. 20). Once block-scale MAF values are 

calculated, they are introduced to the data set used for the simulation 

process rather than the discretized points. The final block values in the 

original data space are obtained by back-transforming the point support 

data and averaging them for each MAF k=1 to K using Eq. (7). 

  
  

 

 
∑(   (     

 )

 

) (7) 

 

where A is the matrix of MAF coefficients derived previously. This allows 

extending the direct block simulation (Godoy 2002) to the joint direct block 

simulation outlined in (Boucher and Dimitrakopoulos 2009).  

 DBMAFSIM algorithm 2.2.3.

The DBMAFSIM algorithm proceeds as follows: 

2. The data is transformed to normal scores. 

3. The normal scores are transformed to MAF factors as previously 

described, which is the data set used during simulation. 
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4. The N groups of points for each block are sequentially simulated 

with the LU decomposition method. Independent simulations are 

carried out for each MAF factor. 

5. The group points for each MAF factor are averaged to obtain block-

support values. These block values are introduced to the data set 

created in step 2 and used for further conditioning. 

6. The simulated variables are back-transformed from MAF-space to 

normal scores. 

7. The normal scores are back-transformed to the original data space. 

8. The simulated data points are re-blocked to a final block support 

model. 

9. Steps 3-8 are repeated in order to produce each additional 

simulation. 

An important step in addition to the above process is a validation of the 

final results, which consists of visual inspection, and comparison for the 

reproduction of the histograms, variograms and cross-variograms between 

the data and the simulations.  

 Two-stage Joint Simulation of the LabMag Deposit 2.3.

 Study area and data 2.3.1.

The data set (Fig. 21) consists of the diamond drilling logs for 271 drill 

holes, drilled in four main campaigns. Each drillhole log consists of a set of 
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intervals coded by lithology and with the associated lab-determined 

qualities. The average drilling spacing is 370 m, which is large but 

common for taconite orebodies due to low variability over this distance. 

 

Fig. 21 LabMag drilling and study zone 

Physical and chemical properties of ore are often controlled by the 

geology, and so modeling the spatial distribution of the deposit lithologies 

is critical to modeling the deposit (King, et al. 1986, David 1988, Sinclair 

and Blackwell 2002). The LabMag iron formation can be divided into three 

main members, as shown in Fig. 19: upper, middle, and lower. The iron 

formation dips more steeply to the east-northeast under the Menihek 

Shale formation. Overburden is slight over the deposit zone, with many 
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visible outcroppings. The entire iron formation rests on an Archean 

basement of granite gneiss. 

Table 1 Lithological codes used in LabMag 

Strata Lithology Code Iron Formation 

1 Overburden OB n/a 

2 Menihek Shale MS n/a 

3 Lean Chert LC 

Upper 4 Jasper Upper Iron Formation JUIF 

5 Green Chert GC 

6 Upper Red Cherty URC 

Middle 
7 Pink-Grey Cherty PGC 

8 Lower Red Cherty LRC 

9 Lower Red-Green Cherty LRGC 

10 Lower Iron Formation LIF Lower 

The iron formation is approximately 120 m thick and all the sub-member 

units show variation in thickness as observed from drilling. The economic 

units are shown in Table 1 as strata 3 to 9, and are identified on the basis 

of chert colour and oxide texture. The LRGC units, and to some extent the 

JUIF units, show the most pronounced thickness variation. However, the 

total thickness of the iron formation remains relatively constant in the 

drilled area. The iron formation plunges slightly along the strike at 

approximately 1.4 degrees. Folds, where present, are broad monoclonal 

flexures with low amplitude and shallow dipping limbs (Geostat Systems 

International Inc. 2007). 
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The simulation approach is to treat the discontinuous layer thicknesses as 

correlated variables and use the MAF approach discussed earlier to 

simulate the layer thicknesses throughout the deposit. This method has 

been shown to be valid for stratiform deposits (Eggins 2006).   

Table 2 and Table 3 show the Pearson’s an Spearman’s correlations 

between layer thicknesses respectively, with the absolute values greater 

than 0.3 highlighted in blue. Spearman’s correlation is a rank correlation, 

which is important because the normal score transformation is a rank 

transformation and thus tends to only preserve the rank correlation. This 

has an impact when the two correlations differ significantly, which is not 

the case here. The relatively strong correlations between layers 

rationalizes the need for MAF in order to preserve those correlations within 

the simulations. Most of the correlations with |R|>0.3 are negative and 

between two successive layers, which is intuitive because if a marginal 

composite is added to one layer then it is likely removed from the next 

layer. 

In terms of the metallurgical properties, spatial continuity is established 

based on analysis from 6m drilling composites because that is the length 

of the majority of drilling sample intervals. Since most of the lithological 

units are not sufficiently thick, there is insufficient data for individual 

variogram analysis. Therefore, it is more appropriate to analyze the spatial 
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Table 2 Pearson’s correlation coefficients matrix for layer thickness 

  LC JUIF GC URC PGC LRC LRGC LIF 

LC  1.00 -0.33 0.11 -0.02 -0.05 0.00 -0.08 0.12 

JUIF -0.33  1.00 -0.13 0.24 -0.33 -0.03 0.11 -0.16 

GC 0.11 -0.13  1.00 -0.20 0.18 0.07 -0.21 0.17 

URC -0.02 0.24 -0.20  1.00 -0.35 -0.04 -0.02 -0.09 

PGC -0.05 -0.33 0.18 -0.35  1.00 0.03 -0.47 0.35 

LRC 0.00 -0.03 0.07 -0.04 0.03  1.00 -0.49 -0.02 

LRGC -0.08 0.11 -0.21 -0.02 -0.47 -0.49  1.00 -0.57 

LIF 0.12 -0.16 0.17 -0.09 0.35 -0.02 -0.57  1.00 

Table 3 Spearman’s correlation coefficients matrix for layer thickness 

  LC JUIF GC URC PGC LRC LRGC LIF 

LC  1.00 -0.25 0.05 -0.01 -0.05 0.00 -0.08 0.13 

JUIF -0.254  1.00 -0.17 0.28 -0.31 -0.01 0.10 -0.17 

GC 0.046 -0.17  1.00 -0.25 0.17 0.11 -0.18 0.11 

URC -0.012 0.28 -0.25  1.00 -0.39 0.00 -0.01 -0.14 

PGC -0.051 -0.31 0.17 -0.39  1.00 0.07 -0.49 0.38 

LRC 0.001 -0.01 0.11 0.00 0.07  1.00 -0.51 0.02 

LRGC -0.085 0.10 -0.18 -0.01 -0.49 -0.51  1.00 -0.58 

LIF 0.133 -0.17 0.11 -0.14 0.38 0.02 -0.58  1.00 

 

continuity using a model based on one structure. Since the variograms 

that need to be modeled for MAF are based on the MAF factors, one MAF 

transformation is established based on compositing that ignores lithology 

and then applied to the data set for each individual lithology. The 
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variograms modeled are then used for each lithology, but only the 

composites belonging to each respective lithology are used. 

The standard MAF procedure is carried out for each of the 7 economic 

iron units (LC, JUIF, GC, URC, PGC, LRC, LRGC). The data is 

composited, this time considering lithology in order to keep the samples 

from each domain separate.  

The Pearson’s and Spearman’s correlations between variables for the LC 

layer are shown in Table 4 and Table 5 respectively, with the absolute 

values greater than 0.3 highlighted in blue. The relatively strong 

correlations between variables rationalizes the need for MAF in order to 

preserve those correlations within the simulations. 

Table 4 Pearson’s correlation coefficient matrix for LC qualities  

 
FeH DTWR FeC SiC 

FeH 1.00 0.553 0.426 -0.423 

DTWR 0.553 1.00 0.606 -0.484 

FeC 0.426 0.606 1.00 -0.852 

SiC -0.423 -0.484 -0.852 1.00 

Table 5 Spearman’s correlation coefficient matrix for LC qualities 

  FeH DTWR FeC SiC 

FeH   0.517 0.192 -0.117 

DTWR 0.517   0.380 -0.278 

FeC 0.192 0.380   -0.892 

SiC -0.117 -0.278 -0.892   
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 MAF transformation 2.3.2.

Separate MAF transformations are required for each of the two stages of 

simulation. In the first simulation stage, the lithological layer thicknesses 

are simulated; in the second stage, the metallurgical properties are 

simulated.  

The MAF transformation requires all variables at each location to be 

populated. This is an issue for the MAF transformation of layer thickness 

variables for LabMag because shallow holes do not intersect all layers and 

due to the dip of the deposit and the erosion at surface, drillholes located 

further west-southwest intersect fewer of the layers. In these two cases, 

missing layers are referred to ‘externally missing’. In addition, if a middle 

layer like LRC is not observed in the drilling sequence, it is referred to as 

‘internally missing’. Missing internal intervals are populated by simply 

setting the top elevation to that of the underlying layer. Missing external 

intervals are populated by fitting planes to each layer using linear least 

squares, calculating statistics of the deviations of the drillhole layer 

intercepts from these planes, and randomly sampling a deviation value 

using these statistics. Adjustments are made to clip values that would 

result in overlapping surfaces. The thicknesses of all layers can then be 

calculated at each drilling location using the fitted planes and the deviation 

values. 
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To validate this process, the histograms for the augmented data set that 

includes the simulated missing intervals is compared to that of the initial 

drilling data set. An example is shown in Fig. 22, showing the range of 

values, mean, and standard deviation of the two data sets are all 

consistent. For the rest of this study, the data set will refer to the 

augmented data set.  

  

Fig. 22 Histogram comparison between original data and augmented data 

set with simulated missing intervals 

The transformation matrix A from Eq. (2) must be determined twice: once 

for the layer thicknesses and once for the metallurgical properties. The 

MAF factors in Table 6 are used to transform the eight layer thicknesses 

into min/max autocorrelation factors for the first stage of simulation. The 

MAF factors in Table 7 are used to transform the four metallurgical 

properties into min/max autocorrelation factors for the second stage of 

simulation.  
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MAF are calculated by multiplying the vector of original data by the vector 

of MAF loadings, which are the rows of the transformation matrix. Fig. 23 

shows a few cross-variogram examples between MAF factors in this 

study, demonstrating the variable decorrelation. 

Table 6 MAF factors for lithology thickness variables 

 LC JUIF GC URC PGC LRC LRGC LIF 

MAF1 0.158 0.395 -0.013 -0.010 -0.176 0.139 -0.357 0.358 

MAF2 0.560 0.329 0.077 -0.148 0.409 -0.041 0.225 -0.178 

MAF3 -0.312 -0.010 -0.160 -0.794 0.200 0.022 0.088 -0.110 

MAF4 -0.131 0.076 0.464 -0.207 -0.052 -0.768 0.273 0.065 

MAF5 -0.169 0.030 0.759 -0.187 0.107 0.606 -0.272 -0.136 

MAF6 0.447 0.034 0.127 -0.010 -0.650 0.020 0.639 -0.098 

MAF7 0.563 -0.760 0.353 -0.392 0.272 0.089 -0.467 0.208 

MAF8 0.045 0.388 -0.188 0.340 -0.501 0.114 0.196 -0.867 

 

Table 7 MAF factors for metallurgical property variables 

 FeH DTWR FeC SiC 

MAF1 0.416 0.942 -0.418 0.331 

MAF2 0.702 -0.931 0.014 -0.085 

MAF3 0.147 0.478 1.353 -0.501 

MAF4 -0.094 0.252 1.422 0.520 

 

  



 

76 
 

 

 

Fig. 23 Selected cross-variograms of MAF factors for thickness variables 

showing decorrelation 

 Joint simulation 2.3.3.

Within each of the two stages, variography on each MAF is performed. 

Model variograms are fitted to the experimental variograms of each of the 

MAF. MAF variograms are then used in the simulation of each factor and 

can be used in the validation of the MAF simulation results. For brevity, 

the MAF simulation variography validation is omitted and only the final 

back-transformed simulation variography is validated against the data 

variography. 

To simulate the lithology thicknesses, the study zone of 46,216 blocks (25 

m by 50 m discretized by 5x10 points per block) is separately simulated 

using the DBMAFSIM algorithm 10 times for each of the eight MAF 

variables. For comparison, at the point-support scale this corresponds to 

1,155,400 points per realization. Albor Consuegra and Dimitrakopoulos 

(2009) show that for the given example, the results converge when the 
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number of orebody simulations is increased past 10-15. This is an 

indicator that 10 orebody simulations are sufficient for schedule 

optimization because they capture near the full range of geological 

uncertainty. 

Once the MAF are all simulated, they are transformed back to simulated 

normal score variables by multiplying a column vector of simulated MAF at 

each grid point with the corresponding inverse matrix of the MAF loadings. 

Then, the normal score layer thicknesses are back-transformed to the data 

space to produce eight lithology thicknesses: LC, JUIF, GC, URC, PGC, 

LRC, LRGC, and LIF. In (Eggins 2006), the bottom contact is a fully 

surveyed surface that can act as a reference, but for LabMag, no 

reference surface exists. Therefore, an artificial LIF surface serves as the 

reference surface, which is a 2D plane derived from the average of the 

planar fits to each layer surface, lowered by an arbitrary 50m in elevation. 

The real bottom LIF contact cannot be used because LIF continues at 

depth. The arbitrary choice of 50m beneath the LRGC-LIF surface ensures 

the simulated LRGC-LIF contact will not intersect the reference surface. 

The thicknesses of the waste layers are not correlated with those of the 

ore layers, so these layers are constructed separately. The MS layer is 

created by intersecting the topographic surface with the LC contact and 

the OB surface is generated with a SGS simulation.  
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To simulate the metallurgical properties, the DBMAFSIM algorithm is used 

to jointly simulate the MAF factors of the four qualities for blocks 100 m by 

100 m x 15 m, discretized by 3x3x3 points/block. The modeled area of the 

deposit is 55 by 106 by 26 blocks along the strike, dip, and vertically with a 

total of 151,580 blocks. 

 Results and validation 2.3.4.

In addition to visual inspection, the simulations are subsequently validated 

by: histogram comparisons between data and simulated point-support 

values; variogram and cross-variogram validation between data and 

simulated point-support values. 

In the first stage, the deposit is modeled as a discretized 2D grid of 

thicknesses. The DBMAFSIM algorithm is used to jointly simulate the layer 

thicknesses for blocks 25 m by 50 m, discretized by 5 x 5 points per block. 

The histograms of the source data are compared to the simulation 

histograms. The histogram reproduction in the simulations is reasonable, 

and a typical example is shown in Fig. 24 for the JUIF layer thickness. 

Although the simulation mean in Fig. 24 is 11% higher than the data 

mean, this can be explained by the dominance of data higher than the 

mean on the eastern edge of the deposit that are used to simulate the 

lower right portion of the study zone shown in Fig.21. For the complete set 

of histograms, refer to Appendix A. 
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Fig. 24 Histogram comparison between the data set and a simulation 

 

Fig. 25 PGC thickness variogram reproduction 

The reproduction of variograms is also reasonable, and an example is 

shown in as shown in Fig. 25. Although the nugget effect of simulated 

thicknesses is roughly half that of the nugget effect of sampled 

thicknesses, this was a modeling decision due to the limited data available 

at lags less than 150m due to the drillhole spacing. The complete set of 

variograms can be  found in Appendix B. The azimuth of the variograms 

shown is the direction of major continuity of approximately 315 degrees, 

which is roughly along the strike. A tolerance of 45 degrees was used for 

the data and 5 degrees for the simulations. A lag separation of 200m with 

a tolerance of 100m yielded the best results. Two selected cross-
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variograms are shown in Fig. 26 and Fig. 27 for LC-JUIF and LGC-LRGC. 

The correlations between these variables in the drilling data were -0.57 

and -0.53 respectively. Overall, the simulations reproduce spatial features 

of the original data.  

  

Fig. 26 LC-JUIF thickness cross-

variogram 

Fig. 27 PGC-LRGC thickness cross-

variogram 

An oblique view of a full manually constructed model of 3D solids is shown 

in comparison to a stochastically generated model in Fig. 28. Note the 

unlikely overly smoothed boundaries.  

 

Fig. 28 Manual lithological model (left) vs. simulation (right) 

In Fig. 29, a typical cross-section is shown through the manually 

constructed geological model. Note the smooth straight lines that connect 
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the lithological contacts between drill holes. An example of a simulation in 

cross-section is shown in Fig. 30 in comparison and shows two of the ten 

simulations. Each simulation features different variations in the areas 

between drill holes, but precisely meets the contacts at the drilling 

locations. In this manner, the simulations account for possible variations in 

the surface contacts.  

 

 

 

Fig. 29 Manual thickness model - typical cross-section and zoom 
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Fig. 30 Thickness simulation results - typical cross-section and zoom 

In the second stage, the study zone is separately simulated 10 times for 

each of the 7 economic units. Each realisation contains 151,580 blocks 

with simulated values for each of FeH, DTWR, FeC, and SiC. For 

comparison, at the point-support scale this corresponds to 4,092,660 

points per realization. The quality simulation points are on a grid 3x3x3 (27 

points spaced out within each block of 100x100x15m). Given that the 

block height (15m) is greater than most layer thicknesses, there is a 

mixture of layers in most blocks. However, the layers are ignored during 

quality simulation: for each layer, block values are determined for each 

quality using all 27 points. Weighted block averages for each quality are 

then determined using the layer quantities. The simulations are 

Solid lines are Simulation 1 

Dotted lines are Simulation 2 

200 m 

400 m 

600 m 

400 m 

500 m 
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subsequently validated as before by histogram comparisons between data 

and simulated point-support values, and by variogram and cross-

variogram validation between data and simulated point-support values. 

The histograms of the ore quality data are well-reproduced in the 

simulations: within a few percent, the simulations have the same range of 

values, mean, and standard deviation. As an example, a comparison for 

the LC layer of the grade data histograms to the simulation histograms is 

shown in Fig. 31 and Fig. 32. The complete set of histograms can be 

found in Appendix C. 

An example of the variograms for both data and simulations are shown in 

Fig. 33. They are unit-scaled for the purpose of comparison to one 

another. The complete set of variograms can be found in Appendix D. The 

simulation variograms are reasonably consistent with the data with higher 

short-range correlation and a range of approximately 700m. A selected 

cross-variogram is shown in Fig. 34 for the LC layer. Overall, the 

simulations reproduce spatial features of the original data. 
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Fig. 31 Data histograms of grades for LC layer 

  

  

Fig. 32 Simulation 1 histograms of grades for LC layer 
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Fig. 33 Simulation variograms of grades for LC layer 

 

Fig. 34 FeC-SiC cross-variogram for LC 

 Mining Schedule: Quantification of Variability 2.4.

In this section, the effect of geological variability on production and 

financial aspects of a 25 year mine schedule is quantified. The pit 

optimization is based on a deterministic geological model constructed 

using economic criteria to determine the cut-off grade and to what extent 

0

0.5

1

1.5

0 500 1000 1500 2000

V
ar

io
gr

am
 γ

(h
) 

Lag Distance h (m) 

LC - FeH 

0

0.5

1

1.5

0 500 1000 1500 2000

V
ar

io
gr

am
 γ

(h
) 

Lag Distance h (m) 

LC - DTWR 

0

0.5

1

1.5

0 500 1000 1500 2000

V
ar

io
gr

am
 γ

(h
) 

Lag Distance h (m) 

LC - FeC 

0

0.5

1

1.5

0 500 1000 1500 2000
V

ar
io

gr
am

 γ
(h

) 

Lag Distance h (m) 

LC - SiC 



 

86 
 

the deposit can be profitably mined. The MineSight® (Mintec 2010) 

software implementation of the 3D Lerchs-Grossman algorithm was used 

to determine the economic pit limits based on inputs of mining and 

processing costs and revenue per block.   

For the deterministic schedule (based on the conventional model), an 

upper cut-off of SiC of 4.0% and a lower cut-off of 21.5% DTWR were 

applied to the resource model. The intent of these cut-offs is to produce a 

concentrate with an average SiC of 2.1% and average DTWR of 27.9% 

(near the desired 27% for which the concentrator was designed). Material 

that does not meet these cut-offs or that is classified as an inferred 

resource (i.e. it has a lower level of confidence) is stockpiled, and does not 

contribute to the cash flows during the 25 year mine plan. The simulations 

consider inferred resources as ore, however, since the purpose of this 

study is to quantify the variability and to provide confidence levels on 

qualities and tonnages. 

The mine plan is established annually for the first 10 years of production 

and in 3 year periods for the remaining 15 years. The plan is based on an 

annual production target of 22 Mt of concentrate. The mine plan 

incorporates a ramp up of 60% in Year 1 (13.2 Mt of concentrate) and 

85% in Year 2 (18.7 Mt of concentrate) before reaching full capacity. In 

order to minimize the variations of material hardness that is sent to the 
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plant, the different rock types are blended during each period of the mine 

plan. There are typically 4 active ore mining faces planned during the 

operation to allow for blending. 

  Deterministic Model 2.4.1.

The deterministic model consists of 25 m x 50 m x 15 m blocks. The 

lithological model was created manually based on sectional interpretations 

and the qualities interpolated independently for each lithology using 

inverse distance squared weighting (IDW2). Block averages of each 

quality were calculated, weighted by the tonnage of each lithology. The 

annual DTWR in the mine plan fluctuates between a low of 25.8% to a 

high of 28.9% with an average of 27.1%. The annual run of mine feed to 

the plant, when in full production, ranges from 80.8 Mt to 114.2 Mt with an 

average of 93.6 Mt. The ore fluctuates so much here mostly because 

inferred resources are being considered as processed ore, whereas the 

schedule was created assuming inferred resources are waste or 

stockpiled.  The annual SiC content in the concentrate fluctuates between 

1.6 % and 2.5 % with an average of 2.1 %. For the first 6 years of the mine 

plan, the average SiC in the concentrate averages 1.7 %. The mine plan 

was intentionally designed to supply a lower silica concentrate in the initial 

years. The annual total material moved ranges from 78 Mt in Year 1 to 130 

Mt in Year 3 with an average of 113 Mt per year for  the 25 year mine plan.  
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 Stochastic Simulations 2.4.2.

The results of evaluating the 25 year mine plan with the stochastic 

simulations are shown in Fig. 35 to Fig. 40. The tonnages and qualities for 

each period are separately evaluated with each simulation in order to 

evaluate the variability in each period. All resources within the OB, MS, 

and LIF layers are considered waste, and all resources within the LC, 

JUIF, GC, URC, PGC, LRC, and LRGC layers are considered ore. The 

P10 and P90 bars indicate the range in which there is an 80%  probability 

the true value lies and consist of second lowest and second highest values 

from the set of ten simulations. The expected value indicates the weighted 

average across all ten simulations. Note that a traditional, non-risk-based, 

approach may not provide average assessments of key project indicators 

in the presence of geological uncertainty (Dimitrakopoulos et al. 2002). 

The points marked ‘Deterministic’ show the pit results using the 

deterministic geological model. 

The key elements to look for in analyzing these graphs are: the range 

covered by the P10 and P90, which indicate the degree of variability; 

expected values that differ significantly from the predicted deterministic 

model; and P10-P90 ranges that have a significant portion of their range 

below the tonnage or DTWR targets, or above the SiC targets.  



 

89 
 

In general, the variability is higher in the earlier periods, which can be 

partially explained by Fig. 39, which shows the pit design for the first ten 

years of production along with the drilling locations. Note that the drilling is 

the most sparse in this region, which means this region is the most greatly 

affected by local variability, which can only be estimated due to a lack of 

drillhole pairs separated by short distances.  Error! Reference source not 

found. shows that for Periods 1, 2, and 5, a short-fall in production is likely. 

This is related to the possible short-falls in scheduled ore (Error! 

Reference source not found.) as well as the likely short-falls in weight 

recovery (Fig. 37). In fact, the expected average DTWR for the whole 25 

year mine plan is 26.3%, which is slightly below the plant design of 27%. 

This indicates that in general, having a DTWR that meets the target of 

27% in some periods is not possible without a trade-off of some periods 

being less than the target. Fig. 38 shows that Period 8 to 11 and Period 14 

and 15 are all likely to have a product silica above the target of 2.1%. 

Looking at the ore tonnes (Error! Reference source not found.), the 

expected tonnage is consistent with the deterministic model for periods 2 

and 3.  However, for periods 1, 4, 5 and 6 to 15, the expected tonnage is 

less than what is predicted by the deterministic model. This means there 

will likely be a short-fall of tonnage in those periods.  Conversely, in period 
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3 the expected tonnage is greater than what is predicted by the 

deterministic model.  

Looking at the DTWR (Fig. 37), the expected weight recovery is generally 

consistent with the deterministic model (in particular, periods 10 and 13). 

However, for periods 1, 2, 3, 5, 6, 7, 11, 12 a lower DTWR than predicted 

by the deterministic model is probable. For periods 4, 8, 9, 14, and 15, 

there is a probability of realizing a higher DTWR than predicted by the 

deterministic model. Similarly, the expected SiC is generally consistent 

with the deterministic model (Fig. 38). The expected SiC in periods 4, 6, 

and 13 is relatively higher than the deterministic model and the expected 

SiC in periods 8 and 9 is relatively lower than the deterministic model. 

For some periods, the deterministic prediction is outside the probable 

range of tonnage based on the simulations. This can be explained by 

looking at grade-tonnage curves for those periods.  In Fig. 35 and Fig. 36, 

the grade-tonnage curves for periods 5 and 6 are presented, which are 

two periods in which the deterministic tonnage in Error! Reference source 

not found. was out, or on the edge, of the predicted range. The grade-

tonnage curves drop fairly steeply at a range of cut-off grades slightly 

below the 18% DTWR cut-off used for ore classification. This indicates 

that there is a significant amount of material just below 18% DTWR in 
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some simulations (between 16-18%). This highlights the danger of 

determining cut-off grades based on  

 

Fig. 35 Grade-tonnage curve for Period 5 
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Fig. 36 Grade-tonnage curve for Period 6
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deterministic models: production tonnages and ore qualities will not likely 

be those expected.  

In order to evaluate the financial consequences, a detailed financial model 

that includes operating costs, capital costs, taxes, impact and benefit 

agreements, and interest on loans was used to evaluate each of the 

simulation production schedules. Evaluating the production schedule with 

different geological scenarios results in different revenue streams as well 

as affecting some elements of the operating cost that are variable with 

respect to the tonnages of mined, processed, and transported material. 

The cumulative DCF of the project when considering each of the different 

simulations, relative to the deterministic model results, is shown in Fig. 40. 

The expected NPV is 5.8% less than the NPV predicted with the 

deterministic model. Furthermore, there is an 80% probability that the true 

NPV realized is between +1.8% and -13.4% of the deterministic value, 

indicating relatively low chance of a higher NPV, and a strong probability 

of a lower than expected NPV. However, given other studies such as 

(Dimitrakopoulos et al. 2002) that have shown possible worst case 

scenarios with NPVs as low as -45%, the variability in this deposit is 

relatively low. 
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Fig. 37 DTWR variations 

 

Fig. 38 SiC variations 
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Fig. 39 Drilling locations, pit limit for the first 10 years of the production 

schedule 

 

 

Fig. 40 Cumulative project DCF 
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 Conclusions 2.5.

A methodology for stochastically simulating the LabMag iron ore deposit 

was shown that uses MAF transformation to de-correlate variables of 

interest within a framework and direct block simulation to independently 

simulate each MAF factor. This procedure was implemented in two-

stages, once for lithology simulation, and once for simulation of ore 

qualities.  The application of the DBMAFSIM algorithm to the simulation of 

lithology is novel, and yielded good results in terms of the reproduction of 

data statistics. A set of ten simulations were created in order to quantify 

the uncertainty in grade and tonnage in an existing mine plan. The 

variability is relatively low for this deposit in general. In the existing mine 

plan, the layers have been purposely blended, so even when considering 

the uncertainty of the location of contact layers, the grades are generally 

well-blended, which results in low variability. Also, the block size has some 

effect on this variability: a smaller block size for the simulations could 

potentially increase the variability. Nonetheless, there are significant 

variations for some of the first 10 periods, which have an impact on the 

NPV of the project.   

The results from this study indicate that the current mine plan is robust 

due to the relatively low variability of taconite compared to that of precious 

metals or hematite. However, significant improvements to the NPV could 
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be realized by performing a stochastic optimization of the mine plan using 

the simulations to schedule better quality material in earlier periods, 

potentially without the need to stockpile ore, while simultaneously 

managing the risk profile of the grades and tonnages.   
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  Chapter 3

Stochastic Long-Term Production Scheduling of the LabMag 

Iron Ore Deposit in Labrador, Canada 

 Introduction 3.1.

The LabMag iron ore deposit is part of the Millennium Iron Range, a 210 

kilometer belt of taconite in northern Québec and Labrador, Canada. 

Taconite is a sedimentary rock in which the iron minerals are interlayered 

with quartz, chert, or carbonate and the iron content is commonly present 

as finely dispersed magnetite between 20-35% Fe. Although the majority 

of steel production is supported by iron ore sourced from high-grade  

hematite deposits (typically around 60% Fe), the long-term growing 

demand for steel has led to higher raw material prices that allow for 

comparatively lower grade magnetite deposits (typically 20-35% Fe) to 

also be developed. LabMag has significant economic potential: it contains 

3.7 billion tonnes of measured resources at an average total iron content 

of 29.8% and a low average silica of 2.1%. However, the capital 

expenditure needed to build this project is estimated at over 5 billion 

dollars (SNC-Lavalin 2014), which necessitates careful evaluation of all 

sources of risk. Resource estimation is one of the main sources of risk in a 

mining project since knowledge of the orebody is primarily based on 
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drilling, which is often sparse because it is expensive. If the expected ore 

tonnages and qualities are not obtained when mining, the project cash 

flows are directly affected. The expected quantities and qualities of ore 

and waste are defined by the mine production schedule, which specifies 

the sequence of extraction and is dependent on the resource estimation. 

The goal of mine production scheduling is thus to maximize the expected 

profit (while also meeting all production targets and constraints) by 

creating an extraction schedule that is robust in the face of geological risk 

and has the highest chance possible of actually being realized.  

Conventional mine planning optimization methods are based on a single 

deterministic orebody model and can yield misleading results because 

they do not account for the likely deviation from the model in reality 

(Ravenscroft 1992, Dowd 1997, Dimitrakopoulos et al. 2002, Godoy and 

Dimitrakopoulos 2004). In order to consider the geological risk of an 

orebody, a set of different scenarios can be created that are all equally 

probable representations of the orebody, and which all reproduce the 

orebody’s spatial variability (Goovaerts 1997). Such geostatistical 

simulations can be used to quantify the various elements of risk 

associated with a mining project: operating costs, capital costs, royalties, 

commodity price, taxation, tonnage, and grade (Dowd 1997, Godoy and 

Dimitrakopoulos 2011). Previous studies (Albor Consuegra and 
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Dimitrakopoulos 2009) have shown that a set of 10-15 orebody 

simulations captures the variability of a deposit since the results converge 

when more are added. Geological uncertainty can then be managed by 

directly incorporating stochastic simulations with the mine scheduling 

framework.  

Dimitrakopoulos and Ramazan (2004) introduce a framework that 

considers grade uncertainty in a mixed integer programming (MIP) 

formulation that produces a schedule with ore grades within a selected 

range of probability. The concept of geological risk discounting (GRD) is 

introduced, which is akin to financial discounting and generates schedules 

with less geological risk in the earlier periods. Another approach is 

presented and applied at the Fimiston gold mine in Western Australia that 

uses a simulated annealing algorithm (Godoy 2002, Godoy and 

Dimitrakopoulos 2004). This approach perturbs an initial schedule with an 

optimized net present value (NPV) based on a single orebody model by 

swapping blocks between different periods in order to reduce geological 

risk to the schedule. Using this approach, the study achieved a 28% 

higher expected NPV than a conventional schedule and also had a greater 

probability of meeting production targets. Variants of this approach were 

applied to copper deposits where improvements to the NPV of 10% (Albor 

Consuegra and Dimitrakopoulos 2009) and 26% (Leite and 
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Dimitrakopoulos 2007) were also seen relative to conventional schedules. 

In each of these studies, when the optimization was not constrained to the 

conventional ultimate pit limits, a larger pit limit was found to contain more 

metal and generate an even higher NPV. A more flexible method for long-

term production scheduling is based on stochastic integer programming 

(SIP) (Birge and Louveaux 1997), a type of mathematical programming 

and modelling that considers multiple equally probable scenarios and 

generates the optimal result for a set of defined objectives within the 

feasible solution space bounded by a set of constraints. SIP for mine 

scheduling is introduced in Ramazan and Dimitrakopoulos (2004, 2008). 

Their formulation maximizes the NPV while minimizing deviations from 

production targets using a different penalty for each target. Leite and 

Dimitrakopoulos (2014) apply the same formulation at a copper deposit 

and produce a risk-robust NPV 29% higher than that of a conventional 

schedule. Benndorf and Dimitrakopoulos (2013) applies a SIP formulation 

at an iron ore deposit with a formulation that integrates joint multi-element 

geological uncertainty. Additional considerations are easily incorporated 

into the modeling framework: two other relevant studies use SIP to 

optimize the NPV while simultaneously optimizing the cut-off grades 

(Menabde et al. 2007) and incorporating simulated future grade control 

data at a gold deposit (Jewbali 2006). Boland et al. (2008) demonstrate 
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stochastic formulations for mine production scheduling with endogenous 

uncertainty, in which decisions made in later time periods can depend on 

observations of the geological properties of the material mined in earlier 

periods, and most recently they characterize the minimal sufficient 

constraints for such formulations so that solving them is more efficient 

(Boland et al. 2014).  

In this study, an SIP formulation similar to Benndorf and Dimitrakopoulos 

(2013) is presented to control the risk profiles of the mine production in 

terms of four underlying metallurgical properties: the head iron (FeH), 

Davis Tube (Schulz 1964) weight recovery (DTWR), the product 

concentrate iron (FeC) and silica (SiC) grades. Additional consideration is 

given to truck haulage requirements and tailings management. The 

formulation seeks to minimize haulage costs by considering a truck 

haulage operating cost that varies with distance of the mined material from 

the processing plant. The optimization decides dynamically to which of two 

destinations to send each block: the waste dump or the process plant. 

Constraints are also included to smooth the annual haul truck fleet 

requirements in order to avoid purchases that lead to under-utilized 

equipment. The formulation in this study also seeks to maximize the space 

available for in-pit tailings disposal. The LabMag tailings (roughly two 

thirds of the mined ore) can be returned to the mined out pit in order to 
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reduce the environmental footprint. LabMag is a stratigraphic deposit and 

its layers come to the surface at a low dip of only six degrees, which 

makes it amenable to this type of tailings management strategy. 

In the following sections, an SIP formulation for long-term production 

scheduling with equipment and tailings management is presented. The 

case study at LabMag follows, and the scheduling results are compared to 

conventionally scheduled results. Finally, the results are discussed and 

conclusions follow. 

 SIP Formulation 3.2.

The following objective function is defined as the maximisation of the NPV 

minus various penalty terms that control the geological risk profile, 

minimize fleet requirements, and promote mining adjacent blocks in the 

same period in order to generate a practical schedule.  

 Notation 3.2.1.

The constant and variable factors used in the SIP model are defined 

below: 

        Number of periods 

       Number of blocks in the orebody model  

D     Number of destinations 

        Number of simulations 

Q     Number of metallurgical qualities 
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         Value of block i in simulation s going to destination d in time period t 

       Total truck hours in period t for destination d 

Small differences in tonnage (and thus truck hours) can be expected due 

to variations in the lithology and thus the density but are ignored here for 

simplicity. 

  
      Operating Cost ($/hour) for trucking, discounted by period t 

             Binary variable with a value 1 if block i is mined in period t and 

sent  to destination d; and 0 otherwise.      

         The penalty per tonne deviation ($/t concentrate) from the target 

concentrate production in each period; constant 

     The penalty per tonne of quality content ($/t quality q) in each period 

above or below the associated upper or lower limits respectively; constant 

   ̅̅ ̅̅ ̅
 
      Concentrate tonnes in excess of the upper limit 

    
     Concentrate tonnes less than the lower limit 

   ̅̅ ̅̅
 ̅
 
 Tonnes of metal or mineral q in excess of the upper limit, where 

q=1,…,Q considered qualities  

    
 
 Tonnes of metal or mineral q less than the lower limit  

   
 

(   )   
  A function for discounting profits and costs with the 

discounting factor r according to the period t when the block is mined  
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(     )      A function for discounting geological risk with the 

discounting factor GRD according to the period t when the block is mined  

 Mining block economic value 3.2.2.

The undiscounted value for each block is defined as: 

      

  {
                                                             

  (            )                                         
 

(8) 

given that 

        =        *        (9) 

where for block i and simulation s,       represents the net revenue,       

and WCost the mining cost of ore and waste respectively (excluding truck 

haulage, which is penalized directly in the objective), PCost  the 

processing cost (considers crushing, concentration, filtration, pelletization, 

transportation, administration, etc.),     the run-of-mine tonnage from the 

iron-bearing lithologies,   the tonnage from waste rock, and eWR the 

effective weight recovery (considers ideal Davis Tube Weight Recovery as 

well as plant efficiency parameters). 

Note that by having trucking costs in the objective function as opposed to 

the block value, it is possible to consider trucking costs for a block that 

vary depending on the period that block is scheduled to be mined. In 

future research, if mobile crushers are considered rather than a fixed plant 
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location, the haulage cost could also be dependent on the variable 

distance to the crusher.  

 Objective function 3.2.3.

The objective function of the SIP model is constructed as the maximization 

of a profit function, defined as the total expected net present value minus 

penalties for deviations from planned production targets and penalties for 

not mining the blocks adjacent to a mined block (Benndorf and 

Dimitrakopoulos 2013).  

             =   

∑∑
 

 
∑ ∑               
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  ∑∑                  

 

   

 

 

   

 (9d) 

 

This objective function includes four distinct terms. The term (9a) is the 

primary term and represents the net present value of all blocks mined in 
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the optimization. The term (9b) represents the trucking operating cost, 

which is minimized. The term (9c) acts to penalize deviations from target 

concentrate tonnes, and the target silica grade and weight recovery (see 

the next section for more details). The variables for the deviations are 

determined by the optimization process, based on the corresponding 

constraints that are set. The term (9d) is a penalty for not mining adjacent 

blocks. It is desirable to mine blocks in groups in order to generate a 

practical schedule. There is a trade-off between the penalty terms, and it is 

the relative size of the penalties that determine this trade-off.  

 Constraints 3.2.4.

Reserve constraints 

Reserve constraints ensure a block cannot be mined more than once: 

∑ ∑           

 

   

 

   

 
    
          (10) 

Slope and sequencing constraints 

Each block can only be mined if the blocks above are mined in the same 

or an earlier period in order to maintain the maximum geotechnical slope 

angle in all directions.  In order to accommodate in-pit tailings disposal as 

mentioned in the introduction, each block was set to be mined only if the 

block to the south-west (cross-dip, towards where the deposit daylights at 

surface) is mined in the same or an earlier period.  
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For each i, where j ϵ { predecessors blocks of block i } 

∑(         ∑        

 

   

)

 

   

    (11) 

 

 

Fig. 41 Predecessor blocks for slope and sequencing constraints 

Haulage capacity constraints 

The objective function has a term that seeks to minimize truck operating 

costs by minimizing haul distances. This term competes with the need to 

meet blending constraints, so it is possible to obtain a schedule that has a 

given number of trucks in one year that then decreases in the subsequent 

year. This effectively means a truck is purchased and then left unused, or 

that an extra truck must be leased. It is more desirable to have the number 

of trucks only be an increasing function, where more trucks are bought as 

they are needed, and then fully used in subsequent periods. To allow for 

small numerical deviations, here the number of trucks required in a given 

period must be more than the previous period (with leeway of half the 

available working hours of one truck). That is to say the total number of 
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truck hours (ore, stockpile, waste) required in a given period cannot be 

less than the previous period’s truck hours minus half of one truck’s 

working hours for a year. 

∑ ∑         

 

   

 

   

  ∑ ∑        (   )

 

   

 

   

  
 

 
                                                          

(12) 

where  t = 2,...,P  ;    is the total time (hours) required for transportation of 

a block to destination d (the cycle time for one truck is on the order of 

minutes, but since each block can contain approximately half a million 

tonnes, many truck cycles are needed).    

Processing capacity constraints 

The total tonnage of concentrate produced is penalized if in excess or less 

than the target product tonnage for that period.  

For each t = 1,…,p; and each s = 1,…,S  

(d=1 for grade/tonnage constraints, since there are no target waste 

amounts)  

              ∑             

 

   

     ̅̅ ̅̅ ̅
  
           

      
 

(13) 

 

              ∑             

 

   

       
           

      
 

(14) 
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where      
      

 is the target quantity (tonnes) of concentrate that is to be 

produced in period t. 

Quality constraints 

For each period, the average grade or value of each metallurgical quality 

has to be less than or equal to a maximum value and greater than or equal 

to a minimum value. 

For each t = 1,…,P; and q = 1,…,Q 

                      ∑                         

 

   

     ̅̅ ̅̅
 ̅  
  

 ∑                 
     

  

 

   

 

 

(15) 

                      ∑                         

 

   

        
  

 ∑                 
     

  

 

   

 

 

(16) 

where           is the tonnage of ore or concentrate used to weight each 

quality;            is the value of quality q for block i, simulation s;         
    

is the maximum value or grade of quality q allowed in period t (constant); 

        
    is the minimum concentrate product grade allowed in period t 

(constant). 
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Equipment access & mobility constraints 

Without specific constraints for smooth mining, the optimization may tend 

to schedule isolated blocks rather than blocks that are grouped together. 

Conceptually, the way each mobility constraint operates for a given block i 

is to sum the binary variables for the surrounding blocks and to penalize 

the amount of surrounding blocks that are not mined in the same time 

period as block i. This introduces a cost-element to not mining adjacent 

blocks, which is balanced with a factor for the relative importance of this 

constraint to the other goals. 

 

For every time period t and block j (every 3rd in each direction): 

         

  
  -∑

       

  

 

   
  -         0 

 

(17) 

or: 

W*     -∑     
 

   
  -        0 

 
(18) 

Where W  is the total number of blocks in the window excluding the central 

block; k is an index to the W blocks in the window;      is the smoothing 

deviation for block j,  time period t. 

The      variables are included in the objective function, which will tend to 

minimize these values. Combined with these constraints, they will be 
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forced to exactly the difference in number of surrounding blocks versus the 

number of surrounding blocks that are mined in the same period (i.e. the 

deviations). The objective function then penalizes these amounts in order 

to promote mining the blocks grouped together. Note that this is a 

simplification of the formulation in (Dimitrakopoulos and Ramazan 2004), 

where the actual tonnages are used rather than just the number of blocks 

since some blocks could have only a small tonnage. However, in the case 

of relatively large blocks of consistent tonnage, as in taconite iron ore 

deposits, the different in formulations would not have a large impact. 

 Application at LabMag iron ore deposit 3.3.

The formulation in the previous section is applied at the LabMag taconite 

iron ore deposit in northern Labrador, Canada in order to create a mine 

production schedule that considers multi-element grade uncertainty as 

well as equipment and tailings requirements. 

 Stochastic orebody models at LabMag 3.3.1.

Mine production scheduling here considers geological variability by using 

ten stochastic conditional simulations. Each realization consists of a joint 

simulation of the seven correlated layer thicknesses as well as the joint 

simulation of four correlated ore characteristics in each layer. Each model 

consists of 13,400 blocks (100m x 100m x 15m). Since all ore lithologies 
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are processed in the plant in the same manner, scheduling considers the 

average qualities of all layers in each block. 

The two primary waste-types for the LabMag deposit are overburden (OB) 

and Menihek Shale (MS). The OB overlies the entire deposit and is 

minimal (the underlying rock is commonly exposed at surface). The MS 

layer is present on the north-east side of the deposit, overlying the iron 

layers and dipping parallel to them at approximately 6 degrees (see Fig. 

42).  

 

Fig. 42 Typical cross-section 

 Implementation 3.3.2.

The SIP model described above was implemented in Visual C++ using the 

ILOG CPLEX API. The initial attempts to solve the full orebody model for 

all 10 periods proved to be unsolvable in a reasonable amount of time (the 

optimization had made little progress after several days, running on a 64-

bit Dell Precision M6500 Intel I7 quad-core @ 1.73 GHz and 16 GB of 

RAM). The initial 13,400 blocks considered are the blocks contained within 

the ultimate pit derived using the nested Lerchs-Grossman algorithm. 
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Since only the first ten years are scheduled within the optimization and the 

LabMag ultimate pit contains more than twenty-five years of ore at the 

planned capacity, the precise pit limit need not be discussed further here. 

To reduce the number of blocks, a new pit was designed that takes as 

many blocks as possible but avoided the MS waste layer. Since the 

optimization targets the first 10 years and tries to minimize  trucking hours 

as well as unnecessary waste, it was evident that the optimization would 

avoid the MS region of the deposit anyway. This brought the number of 

blocks down to 8,411. The optimization is broken down into four sub-

optimizations (see Fig. 43) each set to stop once there was less than 1% 

gap between the solution and the optimal solution.  

 

Fig. 43 Schematic representation of four-stage schedule optimization 

Table 8 Annual concentrate production targets 

Year 1 2 3-10 

Production level 60% 85% 100% 

Target concentrate 13.2 18.7 22.0 

Table 9 Grade targets and penalties 
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Optimization 
 

#1 #2 #3 #4 

DTWR 
Max % 29 

Min % 23 

SiC 
Max % 2.5 2.2 2.2 2.2 

Min % 1.8 2.2 2.2 2.2 

Concentrate tonnage 
Excess Penalty $/t 800M 

Shortage Penalty $/t 1000M 

SiC  
Penalty on % above max 100M 

Penalty on % below min 100M 

DTWR 
Penalty on % above max 1M 

Penalty on % below min 1M 

Smoothing Penalty per block 1000 

Table 8 shows the annual targets for the concentrate production, with a 

ramp-up of the process plant. Table 9 shows the DTWR and SiC targets 

that are used in the optimization along with the various penalties. The 

process plant is designed for 27% DTWR, but an range around this target 

that the plant can still handle is permitted to allow the optimization to 

select the most economic material when also considering haul cycle times 

and the other constraints. The silica range is selected to be within the 

plant tolerance levels. The average silica of the single period (10 year) 

optimization is 2.2%, so this became the new target for subsequent 

optimizations because a consistent silica blend is desired across all 

periods. The DTWR range is kept the same to allow for scheduling higher 

DTWR material whenever possible. Scheduling higher DTWR has a trade-
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off with haul distance however, because most of the higher grade DTWR 

material is located in the north end of the deposit, which is further from the 

crusher. 

Deviations from the targets are penalized in the objective function, and it is 

the relative magnitude and not the exact values of the penalties that 

control how they are balanced in the objective function. The highest weight 

penalty is given to the concentrate tonnage, with a slightly higher penalty 

for shortages than excess tonnage. Due to the discrete nature of the 

blocks being scheduled, an even tonnage equal to the target is unlikely, 

and this promotes scheduled tonnages slightly higher than the target 

rather than slightly lower. The value is determined by increasing it until the 

expected scheduled concentrate tonnages meet the targets. The other 

quality penalties are then set relative to the concentrate tonnage 

deviations penalty. The second highest weighting is given to silica 

deviations to enforce a consistent blend. The third and fourth highest 

weightings are given to DTWR deviations and non-smooth mining. The 

penalty for non-smooth mining is determined last. As discussed in 

Benndorf and Dimitrakopoulos (2013), high penalties for tonnage and 

quality deviations relative to non-smooth mining penalties tend to yield 

schedules with more dispersion of the scheduled blocks. The non-smooth 

mining penalty here are determined by setting it to zero initially, and then 
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slowly increasing it until the number of scattered blocks in each period are 

few enough that a feasible schedule could be manually designed without 

too much difficulty. 

 Results 3.4.

The results of the optimization are shown in Fig. 44 and provide the 

optimal period in which to mine each block, and whether to send the block 

for processing or to the waste dump. An interesting result is that the only 

blocks sent to the waste dump are located at the surface of the deposit 

and contain mostly OB, and/or MS waste, which means that all scheduled 

material within the 7 iron-bearing units is sent to the plant. Had ore blocks 

with a low DTWR been sent to the dump, this would have promoted the 

concept of stockpiling ore with a low weight recovery. However, this is not 

the case. Given the cost of mining and low DTWR economic break-even 

cut-off, the only reason to stockpile ore would be to restrict the silica 

levels. In the optimized schedule, the silica levels are managed without the 

need for such a restriction. 
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Fig. 44 Blocks colored by period in the stochastic optimization schedule 

A practical mining schedule (Fig. 45) was designed based on the block-

scale optimization. The optimization considers the first 10 years, and an 

additional 15 years were scheduled manually to allow for full comparison 

against a previous deterministic schedule. The pit designs use a 15 m 

bench height, 45 degree slope angle for the pit sides and hanging wall, 

and the pit bottom follows the natural inclination of the orebody at 

approximately 6 degrees (10.5%). Although this slope is not optimal for the 

haul trucks, various truck manufacturers were consulted and they agreed 

that it is manageable. Catch berms of 9.5 m with a face angle of 70 

degrees were included for additional safety considerations. Since the 

orebody daylights at surface, the ultimate pit does not require the design 

Process plant 
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Fig. 45 End of period mine designs based on the stochastic optimization 

schedule (Year 5, 10, 25) 

of a permanent access ramp to the pit bottom. The benches will be mined 

flat and the pit access will be developed along the floor as the pit wall 

advances towards the East. 

A previous conventional design is shown in Fig. 46. For this schedule, the 

pit is divided into 8 slots that are roughly 1,000 m wide at surface. There is 

Process 

Plant 
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an opening slot, 4 slots on the North side and 3 slots on the South side. 

The slots are mined from West to East (to the full-width extent of the 

defined resources) and developed down to the final pit floor. Once a slot is 

completely mined out additional coarse tailings can be placed in the pit.   

 

Fig. 46 End of period mine designs based on the deterministic schedule 

(Year 5, 10, 15) 

Process 

Plant 
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The evolution of the pit in the stochastic optimization schedule (Fig. 45) is 

along the full length of the deposit, progressively deepening perpendicular 

to the strike.  This  means that compared to the deterministic schedule, 

shorter haul times are required in earlier periods and less trucks since the 

trucks can travel at near top-speed (30-35 km/h on a straight-away), 

whereas on an incline of 8% with 2-3% rolling resistance, they are limited 

to 15 km/h or less. Another advantage of mining along the length of the 

deposit is that the grades vary primarily along the strike: higher DTWR 

material is found to the north, but with higher SiC as well.  Having open 

faces along the full length of the deposit allows for more flexibility during 

operations to achieve the necessary blend.   

Fig. 47 shows that the truck productivity of the optimized schedule is at its 

maximum in the earlier periods, and steadily declines with each period as 

the pit is deepened and the cycle times increase. For the deterministic 

schedule, the productivity moves up and down as each full-width slot is 

mined. The optimized schedule ensures higher productivity in earlier  

periods and thus lower corresponding operating costs. 

In Fig. 48 to Fig. 53, the previous results from the conventionally derived 

schedule based on a deterministic geological model are contrasted with 

the results from the stochastic optimization schedule. Besides showing the 
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Fig. 47 Truck productivity for the conventional and optimized schedules 

tonnages and qualities of each schedule, the risk profiles of each are also 

shown. The red bars shown correspond to the P10 and P90 values, which 

show an 80% confidence interval within which to expect the true value. 

The dotted blue lines show the expected value, which is the mean of the 

values from each simulation. The dotted black lines represent the 

evaluation of each push-back using the deterministic model. Any 

differences between the confidence levels derived using the simulations 

and the values derived using the deterministic model demonstrate where 

relying on the deterministic model can be misleading. 

 Risk management in the stochastic optimization schedule 3.4.1.

The analysis in this section pertains exclusively to the lower charts in Fig. 

48 to Fig. 53, which show the results from the optimized schedule. Fig. 48 

shows that the predicted annual ROM ore tonnes (with ramp-up of 60% 

and 85% target product tonnage in years 1-2 respectively) will be achieved 

with little risk. Although the ROM varies up to 10 million tonnes year-to-
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year, with peaks in years 5 and 7 in particular, this is not problematic in 

and of itself: achieving the target concentrate tonnages is the primary 

scheduling goal, which depends on the DTWR and FeC as well as the 

ROM tonnage. Another concern could be that these fluctuations indicate 

fluctuations in fleet requirements, but the fleet requirements depend not 

only on the ROM tonnes, but the haul distance and the waste tonnages as 

well. The deterministic model systematically over-estimates the quantity of 

concentrate tonnes. The is due to differences in the head iron (FeH) in the 

simulations compared to the FeH in the deterministic model. The densities 

of each lithology are dependent (and calculated using regressions) on the 

FeH in each layer as determined in a previous study on density (Milord 

2012). The fact that the deterministic model predicts slightly higher ROM 

tonnages per period indicates that the averaged FeH values of the 

deterministic model  result in overestimation of the tonnages. 

Fig. 49 shows that the predicted annual concentrate tonnes will meet the 

target of 22 mtpy in all years with a high degree of probability. Although 

the ROM tonnes fluctuate annually, this is balanced by the DTWR (i.e. a 

year with less ROM has a greater average weight recovery) and/or by a 

greater FeC. Even though there may be variability in the individual 

qualities for a given period, their combined interplay results in low 

variability in concentrate tonnes. This non-intuitive result highlights the 
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necessity of the SIP formulation for managing the variability of all four 

qualities. Furthermore, when evaluating the stochastic schedule with the 

deterministic model, we see 1-2 million tonnes more per year than the 

mean of the simulations. In general, the deterministic model over-

estimates the DTWR by 1-2%, which has a significant impact on the 

expected concentrate tonnage.  

The annual waste tonnages are shown in Fig. 50. The optimization was 

performed on a pit that purposely excluded the MS, so little MS was 

expected. There is some very small amount of MS due to variations in the 

surfaces between the various simulations. The waste in the schedule 

consists mostly of OB only and is low in all years. The overlying OB is very 

thin, so fluctuations of the amounts of OB within each simulation were 

relatively small and so the risk profiles for the waste here are relatively 

low. The very low amount of waste mining was intended, and is a crucial 

component to minimizing costs in the first 10 years.  

The annual DTWR values (Fig. 51) vary by only 0.4% on average. An 

interesting result was that the DTWR was not higher in earlier periods as 

expected. This was expected because a greater weight recovery means 

less ore must be mined to produce the same tonnage of concentrate,  

which means lower costs. This result can be explained by the benefit of a 

higher DTWR compared to a higher cost of mining at depth. The 
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optimization seeks the greatest profit, so lower DTWR ore can be mined 

as long as the benefit of mining nearer to the surface offsets the benefit of 

any potential material with a higher DTWR. However, this may be an 

artificial result: processing costs and plant efficiencies are variable with 

respect to feed material, yet they are assumed fixed in this study. With the 

inclusion of more detailed variable processing costs and efficiencies, it is 

likely that higher DTWR material would be scheduled in earlier periods 

before the process plant is fully commissioned and operating consistently. 

Fig. 52 shows that the FeC varies very little year to year, although its slight 

variation does have an impact on the concentrate tonnes. The annual SiC 

values (Fig. 53) are all less than the maximum specified silica of 2.5%, 

and is relatively constant around a mean of 2.2%.  

 Schedule comparison 3.4.2.

The stochastic optimization schedule is now compared to the 

conventionally derived deterministic schedule to demonstrate the benefit 

of stochastic modeling.  

The reduction in the risk of tonnage deviation is seen immediately in 

comparing the two schedules in Fig. 48 to Fig. 50. The 80% confidence 

range in the stochastic schedule for ROM ore, concentrate tonnes, and 

waste tonnes is significantly less than that of the pre-existing deterministic 

schedule. In addition to a reduced range of tonnage variation, the  
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Fig. 48 ROM ore tonnes in deterministic schedule (above) and stochastic 

schedule (below) 
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Fig. 49 Product tonnes in deterministic schedule (above) and stochastic 

schedule (below) 
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Fig. 50 Stockpile and waste tonnes in the deterministic 

schedule (above 2) and waste tonnes in the stochastic 

schedule (below) 
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Fig. 51 DTWR of ore in deterministic schedule (above) and stochastic 

schedule (below) 
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Fig. 52 FeC of ore in deterministic schedule (above) and stochastic 

schedule (below) 
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Fig. 53 SiC of ore in deterministic schedule (above) and stochastic 

schedule (below) 
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expected product tonnage is centered precisely around the target values. 

This is not the case for the deterministic schedule, which potentially has 

both shortfalls and excesses of product tonnes. Although more tonnes 

need to be mined in the stochastic schedule in order to meet the product 

targets, it is important to note this is due to the trade-off with haulage 

costs: the net profit is in fact larger because the location of the material 

mined is nearer to both the surface and to the process plant.  

Compared to the stochastic optimization schedule, Fig. 50 shows that the 

deterministic schedule mines a significant amount of MS waste as well as 

additional ore that is stockpiled instead of being sent to the plant. These 

two materials account for a large difference in equipment requirements, 

which translates to higher costs than those for the stochastic schedule. 

Less variation is expected in the DTWR of the optimized schedule 

compared to that of the deterministic schedule, although not for all 

periods. As previously explained, this relates to the interplay of DTWR, 

FeC, and FeH in determining the concentrate tonnes. Although the 

deterministic schedule had a target of 27% DTWR, this target was often 

not met. The stochastic schedule did not have a target DTWR, only hard 

upper and lower bounds, which are met for all periods. 

The silica (SiC) range for each year in the stochastic schedule can be 

seen to fall within the specified upper and lower limits of 2.5% and 1.8% 
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respectively, hovering around the target of 2.2% and demonstrating the 

ability of the stochastic modeling to reduce risk of not meeting targets. 

Some values are slightly higher than the target, and this occurs because 

the weighting of the silica constraints (Eq. 9 and 10) are lower than the 

weighting of the concentrate tonnage constraints (Eq. 7 and 8). This also 

explains why there is no significant reduction in the range of variability of 

SiC from the range in the deterministic schedule. Note that the 

deterministic schedule had no hard upper and lower limits: it just had a 

target of 2.1% silica. However, the deterministic schedule silica varies 

considerably from this target, with much lower values in earlier periods, 

and much higher values in later periods. 

Fig. 54 shows the previous truck and cable shovel fleet along with the 

required equipment based on the schedule in this study. Equipment 

calculations take into account a variety of factors including mechanical 

availability, utilization, job efficiency, operating delays, payload, spot times, 

dump times, load times, and cycle times. The new maximum number of 

trucks required over the 10 year period is 20 trucks, as opposed to the 

previous 35 trucks. Less trucks are needed because the haul cycle times 

are shorter, so the trucks are more productive. In addition, there is less 

waste mining (almost no mining of the waste MS layer), which also 

contributes to the reduced number of equipment. The necessary cable  
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Fig. 54 Major equipment fleet comparison between that of the current 

optimization study and that of a conventional production schedule 

 

Fig. 55 Cumulative DCF of optimized schedule relative to that of a 

conventional schedule 

 

0

10

20

30

40

1 2 3 4 5 6 7 8 9 101112131415

Equipment 
(#) 

Period 

Major Equipment Fleet 

Manual Schedule (Trucks)

Optimized Schedule (Trucks)

Manual Schedule (Shovels)

Optimized Schedule (Shovels)

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

150%

Y
-4

Y
-3

Y
-2

Y
-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
um

ul
at

iv
e 

D
C

F 
($

) 

Period 

Cumulative DCF 

Simulations (Optimized Schedule)

Expected Value (Optimized Schedule)

Deterministic Model (Optimized Schedule)

Deterministic Model (Conventional Schedule)

Optimized Schedule relative to 

Conventional Schedule: 

Expected NPV = +16.9% 

P90 NPV         = +18.1% 

P10 NPV         = +15.6% 



 

135 
 

shovels was reduced by one, which is significant because each cable 

shovel costs almost four times as much as one truck. Fig. 54 shows a 

comparison between the fleet requirements of the two schedules for haul 

trucks and the primary cable shovels. The change in fleet requirements 

reduces the capital cost requirements by 23.7% and a corresponding 

reduction in the operating costs by 26.2%.   

The impact of these cost reductions and the reduction of geological 

variability can be seen together in a comparison of discounted cash flows 

for both schedules (Fig. 55). Compared to the deterministic schedule, the 

optimized schedule has an expected NPV that is +16.9%. The 80% 

confidence range is 2.5%, ranging from a P10 value for the NPV of +15.6 

to a P90 value of +18.1% of the deterministic schedule. 

 Conclusions 3.5.

A feasible mining schedule was derived for the LabMag iron ore deposit 

using a SIP formulation that minimizes the risk of deviation of concentrate 

tonnages and product silica grades from their targets. The optimized 

schedule also yielded an expected NPV 16.9% higher than that of a 

conventional schedule and has a higher chance of being realized due to 

the reduced risk in concentrate tonnages. These benefits are obtained 

because stochastic scheduling uses multiple simulations to assess the risk 

of different block groupings, which is ignored by conventional scheduling 
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based on a single estimated orebody model. The SIP framework used 

here also allows for easily balancing multiple goals simultaneously, which 

is otherwise a challenging task. An even higher NPV could potentially be 

achieved if the optimization used a block selectivity closer to that of the 

equipment selectivity, as there would be greater flexibility in the 

combinations of blocks for scheduling purposes.  

The presented scheduled formulation accounts for haulage distances by 

minimizing trucking costs while also ensuring a smooth truck fleet with no 

sudden jumps or drops in requirements. In comparison to the first ten 

years of the previous life-of-mine schedule, the proposed schedule 

reduces the required number of trucks by 15 (previous total of 35 trucks) 

to 20 total trucks and the required number of shovels by 1 to 5 shovels 

total. This has a corresponding impact of 23.7% reduction in capital costs, 

and 26.2% reduction in operating costs over the first 10 years. The 

proposed schedule mines the orebody in a progressively deepening 

fashion, maintaining a larger working area at any given time, rather than 

mining a slot that reaches the full depth of the deposit. This also permits 

the eventual disposal of dry tailings and waste inside the pit in order to 

reduce the environmental footprint.  
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  Chapter 4

Conclusions and Recommendations 

 Conclusions 4.1.

This thesis addresses mine planning of the LabMag deposit, controlled by 

New Millennium Iron, in northern Labrador, Canada. LabMag has a mine 

life of over 39 years at the proposed rate of production of 22 million tonnes 

of concentrate per year. According to the feasibility study on LabMag, the 

required capital expenditure is estimated at over 5 billion dollars and the 

average annual operating cost is estimated at approximately 1 billion 

dollars (SNC-Lavalin 2014). With so much at stake, it is crucial that the 

highest degree of profitability be sought and that decision-makers have the 

best information available and an understanding of all risks involved in the 

development of this project. One of the key risks in a mining project is 

geological uncertainty because the understanding of the geology, spatial 

distribution, and variability of the ore qualities can only be inferred from 

limited data. This thesis thus addresses the optimization of LabMag’s long-

term mine production schedule while considering geological uncertainty. 

A critical review of the technical literature documented that mine plans that 

do not consider geological uncertainty have significant risk of not meeting 

production targets, and that optimized mine production schedules based 
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on single orebody estimates can in fact be severely sub-optimal. Methods 

for stochastic geological simulation were presented in the technical 

literature that result in a set of equally probable geological scenarios, 

which capture the related uncertainty. Methods for stochastically 

optimizing mine production scheduling were presented that incorporate the 

scenarios in order to manage risk while seeking an optimal extraction 

sequence. A mathematical modeling framework known as stochastic 

integer programming (SIP) was discussed and shown to be a viable 

method of stochastic production scheduling. 

With the motivation to consider geological risk, the LabMag deposit was 

stochastically simulated and the variability in an existing mine production 

schedule was quantified. LabMag has seven economic iron-bearing layers 

whose thicknesses are correlated and there are four primary metallurgical 

properties of interest (head iron, Davis Tube weight recovery, Davis Tube 

concentrate iron and silica), which are also strongly correlated. Preserving 

these correlations is important for creating simulations that correspond to 

the input data. A methodology for stochastically simulating the LabMag 

iron ore deposit was shown that is able to preserve the correlations that 

exist between the ore qualities as well as the correlations between 

lithology thicknesses. The joint simulation was accomplished using an 

algorithm (DBMAFSIM) that consists of a MAF transformation to de-
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correlate the variables of interest, and direct block simulation to 

independently simulate each MAF factor. This procedure was 

implemented in two-stages: once for lithology simulation, and once for 

simulation of ore qualities. The application of the DBMAFSIM algorithm to 

the simulation of lithology is novel, and yielded good results in terms of the 

reproduction of data statistics. A set of ten simulations were created to 

represent the LabMag deposit. 

The simulations were then used to quantify the uncertainty in grade and 

tonnage in an existing mine design and production schedule. It was shown 

that actual production tonnages and qualities could significantly vary from 

what was forecast using a single orebody model. These deviations also 

affect the discounted cash flows of the project. The expected NPV was 

shown to be 5.8% less than the NPV predicted with the deterministic 

model. Furthermore, there is an 80% probability that the true NPV realized 

is between +1.8% and -13.4% of the deterministic value, indicating 

relatively low chance of a higher NPV, and a strong probability of a lower 

than expected NPV.  

A subsequent stochastic optimization of the production schedule used an 

SIP framework that was developed specifically for LabMag. The SIP 

framework maximizes the expected value of the discounted cash flows by 

managing the geological risk. It reduces risk in the earlier years, which 
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have the greatest effect on NPV, by minimizing the risk of deviation of 

target concentrate tonnages and product silica grades from their targets. 

The formulation also accounts for haulage distances by minimizing 

trucking costs while also ensuring a smooth truck fleet with no sudden 

jumps or drops in requirements. In comparison to the first ten years of the 

previous life-of-mine schedule, the proposed schedule reduces the 

required number of trucks by 15 (previous total of 35 trucks) to 20 total 

trucks and the required number of shovels by 1 to 5 shovels total. This has 

a corresponding impact of 23.7% reduction in capital costs, and 26.2% 

reduction in operating costs over the first 10 years. The proposed 

schedule mines the orebody in a progressively deepening fashion, 

maintaining a larger working area at any given time, rather than mining a 

slot that reaches the full depth of the deposit. This also permits the 

eventual disposal of dry tailings and waste inside the pit in order to reduce 

the environmental footprint. The application of the SIP framework yielded 

an NPV 16.9% higher than that of the traditional schedule. This is an 

important result, because taconite iron orebodies have relatively low 

variability (compared to higher grade hematite iron, copper, or gold 

orebodies. 
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 Recommendations 4.2.

The block size for the geological simulations in this study was 100 m x 100 

m x 15 m in order to compare with a conventional schedule using the 

same level of selectivity. This block size is appropriate for an estimated 

model but for simulations, a smaller block size could be potentially 

important for capturing variability at the scale of equipment selectivity. 

Ideally, more drilling would be performed to increase the number of 

drillhole pairs at shorter distances from one another, which would better 

inform the short-range variability of the variogram models used for 

simulation. 

Due to the large problem size, it was not possible to obtain an optimal 

result for the SIP formulation in a reasonable amount of time. The 

optimization was broken down into four sub-optimizations set to stop once 

there was less than 1% gap between each solution and the optimal 

solution. A stronger problem formulation could allow for solving the initial 

problem in one pass, finding a truly optimal result in a reasonable amount 

of time. An alternate approach to take could be to use one of a number of 

heuristic methods developed in recent years (Lamghari and 

Dimitrakopoulos 2012, 2014). Heuristics may not find the optimal result, 

but could find a near-optimal result for the problem without the need for 

breaking the problem down into sub-problems. 
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Beyond optimizing just the production schedule, global optimization 

strategies could be applied to holistically optimize multiple aspects of the 

mining project. This could include managing the tonnage and qualities of 

waste as well as ore, integrating social elements, and including processing 

considerations. For example, rather than hauling all mined material to a 

fixed plant location, it could be economically beneficial to consider semi-

mobile crushers located within the pit. In this case, the trucks would only 

need to travel as far as the closest crusher, which could further reduce the 

number of trucks required. There are costs and time-delays associated 

with moving a crusher, but these could be modeled and added to the 

formulation in order to let the optimization determine the ideal crusher 

locations in each period. Another consideration for global optimization 

would be the inclusion of variable processing costs and plant efficiencies 

that depend on the quality of the ore being processed.  
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Appendix A – Layer Thickness Histograms: Data vs Simulation 

 

 

 

 
Left: Source data, Right: Simulation 1 results 
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Left: Fully populated data, Right: Simulation 1 results 
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Appendix B – Layer Thickness Simulation Variogram Reproduction 
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Appendix C – Ore Quality Data and Simulation Histograms 

 

 

Data histograms of grades for LC layer 

 

 

Simulation 1 histograms of grades for LC layer 
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Data histograms of grades for JUIF layer 

 

 

 

Simulation 1 histograms of grades for JUIF layer 
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Data histograms of grades for GC layer 

 

 

 

 

Simulation 1 histograms of grades for GC layer 
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Data histograms of grades for URC layer 

 

 

 

 

Simulation 1 histograms of grades for URC layer 
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Data histograms of grades for PGC layer 

 

 

 

Simulation 1 histograms of grades for PGC layer 
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Data histograms of grades for LRC layer 

 

 

 

Simulation 1 histograms of grades for LRC layer 
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Data histograms of grades for LRGC layer 

 

 

 

 

 

Simulation 1 histograms of grades for LRGC layer 
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Appendix D – Ore Quality Simulation Variogram Reproduction 

 

 

Ore quality simulation variograms of grades for LC layer

 

Ore quality simulation variograms of grades for JUIF layer 
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Ore quality simulation variograms of grades for GC layer 

 

Ore quality simulation variograms of grades for URC layer 
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Ore quality simulation variograms of grades for PGC layer 

 

Ore quality simulation variograms of grades for LRC layer 
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Ore quality simulation variograms of grades for LRGC layer 
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