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Abstract

This thesis examines various aspects of integrating learning and control across different fam-
ilies of stochastic systems. This work includes three key aspects: (i) learning the unknown
system parameters from input-output data sequences (i.e., system identification), (ii) inte-
grating learning within the control of dynamical systems (i.e., adaptive control), and (iii)
providing probabilistic guarantees for the developed methodologies, including regret upper
bounds and concentration bounds. The analysis is conducted within three frameworks of
stochastic systems: Markov jump linear systems, finite-state and finite-action Markov Deci-
sion Processes (MDPs), and linear stochastic systems.

In the framework of Markov jump linear systems, two primary problems are addressed.
First, we focus on the full-state observation system identification problem, i.e., learning sys-
tem parameters from observed sequences of discrete and continuous states. We propose a
variant of least squares algorithm called switched least squares. By leveraging classical re-
gression theory, we establish the algorithm’s strong consistency and derive its convergence
rate. Furthermore, we integrate this algorithm into a certainty-equivalence framework tai-
lored for controlling Markov jump linear systems. By leveraging the convergence rate of
switched least squares, a novel regret decomposition, and the concentration properties of
martingale difference sequences, we derive a sub-linear regret upper bound for the proposed
algorithm.

In the second part of this thesis, we investigate the concentration properties of cumu-
lative rewards in Markov Decision Processes (MDPs), focusing on both asymptotic and
non-asymptotic settings. We introduce a unified approach to characterize reward concentra-
tion in MDPs, covering both infinite-horizon settings (i.e., average and discounted reward
frameworks) and finite-horizon setting. The asymptotic results include the law of large num-
bers, the central limit theorem, and the law of iterated logarithm, while the non-asymptotic
results include Azuma-Hoeffding-type inequalities and a non-asymptotic version of the law
of iterated logarithm. Using these results, we show that two alternative definitions of regret
for learning policies in the literature are rate-equivalent. The proofs rely on a novel martin-
gale decomposition of cumulative reward, properties of the solutions of the policy-evaluation
fixed-point equation, and asymptotic and non-asymptotic concentration of martingales.

Finally, the analysis is extended to the case of linear systems, where we establish the
asymptotic normality of the cumulative cost induced by the optimal policies in linear quadratic
regulators (LQRs). These results address some of the key theoretical questions in integrating
learning and control in stochastic systems.

ii



Résumé

Cette thèse examine divers aspects de l’intégration de l’apprentissage et du contrôle dans
différentes familles de systèmes stochastiques. Ce travail comprend trois aspects clés : (i)
l’apprentissage des paramètres du système à partir de séquences de données d’entrée-sortie
(c’est-à-dire, l’identification du système), (ii) l’intégration de l’apprentissage dans le contrôle
des systèmes dynamiques (c’est-à-dire, le contrôle adaptatif), et (iii) la fourniture de garan-
ties probabilistes pour les méthodologies développées, y compris les bornes supérieures de
regret et les bornes de concentration. L’analyse est réalisée dans trois cadres de systèmes
stochastiques : les systèmes linéaires à sauts de Markov, les processus de décision markoviens
à états et actions finis (MDPs), et les systèmes linéaires stochastiques.

Dans le cadre des systèmes linéaires à sauts de Markov, deux problèmes principaux sont
abordés. Tout d’abord, nous nous concentrons sur le problème d’identification du système
avec observation de l’état complet, c’est-à-dire l’apprentissage des paramètres du système à
partir de séquences observées d’états discrets et continus. Nous proposons une variante de
l’algorithme des moindres carrés appelée "moindres carrés commutés". En nous appuyant
sur la théorie classique de la régression, nous établissons la forte consistance de l’algorithme
et dérivons son taux de convergence. De plus, nous intégrons cet algorithme dans un cadre
d’équivalence de certitude spécifiquement conçu pour le contrôle des systèmes linéaires à
sauts de Markov. En utilisant le taux de convergence des moindres carrés commutés, une
nouvelle décomposition du regret, et les propriétés de concentration des suites de différences
de martingales, nous dérivons une borne supérieure de regret sub-linéaire pour l’algorithme
proposé.

Dans la deuxième partie de la thèse, nous investiguons les propriétés de concentration des
récompenses cumulées dans les processus de décision markoviens (MDPs), en nous concen-
trant sur les cadres asymptotiques et non asymptotiques. Nous introduisons une approche
unifiée pour caractériser la concentration des récompenses dans les MDPs, couvrant à la fois
les cadres à horizon infini (c’est-à-dire les cadres de récompenses moyennes et remises) et
à horizon fini. Les résultats asymptotiques incluent la loi des grands nombres, le théorème
central limite et la loi des logarithmes itérés, tandis que les résultats non asymptotiques
incluent les inégalités de type Azuma-Hoeffding et une version non asymptotique de la loi

iii



des logarithmes itérés. En utilisant ces résultats, nous montrons que deux définitions alter-
natives du regret pour les politiques d’apprentissage dans la littérature sont équivalentes en
termes de taux. Les démonstrations reposent sur une nouvelle décomposition martingale des
récompenses cumulées, les propriétés des solutions de l’équation de point fixe d’évaluation
de politique, et la concentration asymptotique et non asymptotique des martingales.

Enfin, l’analyse est étendue au cas des systèmes linéaires, où nous établissons la normalité
asymptotique des récompenses cumulées induites par les politiques optimales dans les régu-
lateurs quadratiques linéaires (LQRs). Ces résultats répondent à certaines des principales
questions théoriques liées à l’intégration de l’apprentissage et du contrôle dans les systèmes
stochastiques.
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Chapter 1

Introduction

1.1 Motivation

Achieving fully autonomous agents has been a long-standing objective in engineering
and computer science. However, realizing full autonomy requires the integration of learning
algorithms into the control of dynamical systems. These systems must be capable of learning
from their evolving environments and adapting accordingly. A key challenge is integrating
adaptive learning algorithms into the control framework along with providing theoretical
guarantees. This issue has been widely explored in fields such as system identification,
adaptive control, and reinforcement learning (RL) [1–3]. Despite significant progress across
these areas, integrating adaptive learning mechanisms into control of dynamical systems
remains a challenging problem both theoretically and practically.

Physical engineering systems operate under various constraints. Stability is a fundamen-
tal requirement for most control systems, while other constraints include energy consumption
and hard limits on physical parameters [4]. As a result, it is often necessary for controllers to
provide certifiable guarantees that satisfy these constraints. While classical control literature
offers a robust set of methodologies with guarantees for stability, robustness, and sensitivity,
deriving similar guarantees becomes significantly more challenging when adaptive learning
mechanisms are integrated into control systems. Moreover, the classical literature on adap-
tive control has primarily focused on ensuring asymptotic stability and asymptotic optimality
of the resulting controllers (see [1] for an overview of these results); however, these guarantees
often prove insufficient to meet the requirements of many practical applications. To better
evaluate the performance of RL and adaptive controllers, new metrics have been introduced
in the literature.
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1.2 Modern Approaches

In RL and adaptive control literature, regret has been introduced as a key metric to
evaluate the quality of an adaptive algorithm. Regret quantifies the cumulative difference
between the cost or reward yielded by a given algorithm and the performance of the opti-
mal policy. An adaptive algorithm shows a better performance if it incurs smaller regret.
Treating regret as a primary objective, substantial effort has been devoted in the literature to
developing reinforcement learning algorithms and proving that they achieve sub-linear regret
(e.g. [5–25]). The majority of these results are established for finite-state and finite-action
Markov Decision Processes (MDPs). While finite-state and finite-action MDP framework
is widely applicable across different domains, it is not suitable for modeling all control sys-
tems. In many practical systems, states and actions are continuous and do not belong to
a compact set. As a result, learning strategies designed for discrete spaces are not appli-
cable in these setups. Furthermore, the non-compactness of these spaces makes the notion
of stability critical, as the resulting policy could potentially destabilize the system. This
has driven significant research toward RL in a different modeling framework that captures
these features, known as Linear Quadratic Regulators (LQRs). Recently there has been a
keen interest in the problem of adaptive learning and control of these systems and providing
regret upper-bounds (e.g. [26–35]). In this model, both states and actions are assumed to
be continuous variables, the system dynamics are assumed to be linear, and the controller’s
goal is to minimize a cost function quadratic in states and actions.

1.3 Categorizing the Literature

The literature on RL with providing regret guarantees can be categorized in various
ways. One key distinction between different works lies in the probabilistic setup used to
define regret. Regret is either computed in the Bayesian setup or frequentist setup. In
the Bayesian setup, a prior distribution is assumed over the unknown system parameters,
and the expected regret is calculated with respect to this prior (e.g. [10, 13, 33]). In con-
trast, in the frequentist setup it is assumed that there exists a fixed, true, unknown system
parameter, and regret is measured with respect to the optimal policy derived from that pa-
rameter (e.g. [26]). Furthermore, the definition of regret itself varies across studies—some
compare the performance of learning policies to the optimal policy on individual sample
trajectories (e.g. [31, 36]), while others evaluate the performance against the optimal policy
averaged over all trajectories (e.g. [6, 26, 37]). Depending on the definitions, regret may be a
deterministic function of time or a random process. In the latter case, two types of guaran-
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tees are commonly studied: (i) almost-sure asymptotic guarantees and (ii) non-asymptotic
high-probability guarantees. The choice between these two often depends on the applica-
tion. Asymptotic bounds (e.g. [31]) provide stronger guarantees for long-term performance
but lack characterization in finite-time, which can be critical for certain applications. Non-
asymptotic bounds (e.g. [6, 8, 26]) characterize the finite-time behavior of the policy with
high probability but may fail to provide long-term guarantees. These different approaches
and results show the richness of the field and the need for further research to unify these
approaches and better address practical requirements.

In both RL and adaptive control, algorithms are generally divided into two categories:
model-free and model-based. Model-free algorithms aim to directly learn a policy through
sequential interactions with the environment (e.g. [32]). In contrast, model-based algorithms
focus on estimating the parameters of the underlying system and subsequently using these
estimated parameters to compute an efficient policy. In the latter case, accurately estimating
system parameters from input-output data becomes a critical task, commonly referred to as
system identification. The system identification problem has been extensively studied in the
control literature for both linear and nonlinear systems (see [1, 2] for an overview of classical
results). Often, there are two requirements for any system identification method. First, the
method should be consistent, i.e., the estimator’s value converges to the true parameter’s
value under an appropriate probabilistic notion of convergence. Second, the estimator should
exhibit a fast rate of convergence, ensuring that the estimated value approaches to the true
parameter efficiently. Similar to the regret analysis, the guarantees provided for system
identification methods can be asymptotic (e.g. [38]) or non-asymptotic (e.g. [39]), and the
choice between these guarantees depends on practical requirements.

1.4 Performance Guarantees

The literature on providing regret guarantees derive sample-path or distributional guar-
antees for adaptive algorithms in terms of the regret. However, providing similar guarantees
for a fixed policy in the planning setup remains a remarkably under-explored problem. In
many practical applications, safety and robustness requirements necessitate a focus not only
on the mean behavior but also on the concentration behavior of the cumulative cost or re-
ward. In these applications, concentration bounds can serve as certifiable guarantees for
hard constraints on the controller. Furthermore, the concentration behavior of policies in
the planning setup is closely related to that of policies in the learning setup. This connection
highlights the importance of understanding concentration behaviors for integrating adaptive
learning methods into control systems while maintaining performance guarantees.
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1.5 Investigated Problems

A practical feature not captured by both MDP and LQR frameworks is time-varying
dynamics. In many applications, system dynamics evolve either gradually or abruptly. To
model abrupt changes, several mathematical frameworks for switching systems have been
proposed in the literature. These switches may depend on states, actions, or occur randomly.
Examples of such frameworks include hybrid systems, switched linear systems, Markov Jump
Systems (MJS), and control affine systems. In these models, the learning and control prob-
lems become significantly more challenging due to the increased complexity.

In this thesis, we aim to address some of the challenges mentioned earlier in integrating
learning into control systems. The problems explored in this work are divided into two main
sections.

In the first section, we examine two key problems: system identification and reinforcement
learning in the framework of Markov Jump Systems. We think that the MJS framework
serves as a suitable transitional step for extending RL algorithms and analyses from linear
systems to more general time-varying systems. For the system identification problem, we
propose a variant of the least squares algorithm and establish its strong consistency and
almost-sure rate of convergence. Building on this, we use the proposed algorithm within
a model-based framework, known as the certainty-equivalence scheme, to design an RL
algorithm for MJS along with almost-sure regret guarantees.

In the second section, we focus on the concentration properties of cumulative rewards in
infinite-horizon and finite-horizon MDP frameworks. This includes deriving both asymptotic
and non-asymptotic concentration results. While this problem is of independent interest in
the planning setup, we also explore their implications in the learning setup. Specifically, we
demonstrate that two distinct expressions for regret are rate-equivalent. Finally, we extend
the methods developed in this section to linear systems, deriving concentration results for
the cumulative cost induced by the optimal policy within the LQR framework.

A detailed description of each chapter is provided in the subsequent sub-sections.

1.5.1 Chapter 2

In this chapter, we investigate the problem of system identification in the Markov jump
linear systems. Markov jump linear system (MJS) is an extension of the linear-time in-
variant framework to systems with abrupt changes in their dynamics. These systems find
applications in various domains such as networked control systems [40] and cyber-physical
systems [41, 42]. There is a rich literature on the stability analysis (e.g., [43–45]) and optimal
control (e.g., [46]) of MJS. However, most of the literature assumes that the system model is
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known. The question of system identification, i.e., identifying the dynamics from data, has
not received much attention in this setup.

The problem of identifying the system model from data is a key component for control
synthesis for both offline control methods and online control methods including adaptive
control and reinforcement learning [2, 47]. There are four main approaches for system iden-
tification of linear systems: (i) maximum likelihood estimation which maximizes the likeli-
hood function of the unknown parameter given the observation (e.g. see [48]); (ii) minimum
prediction error methods which minimize the estimation error (residual process) according
to some loss function (e.g. see [38, 49]); (iii) subspace methods, which find a minimum state
space realization given the input, output data (e.g. see [50, 51]); (iv) least squares method
which estimates the unknown parameter by considering the model as a regression problem
(e.g. see [1, 52]).

These methods differ in terms of structural assumptions on the model (e.g., system order),
hypotheses on the stochastic process, and convergence properties and guarantees.

Structural assumptions require the system to be stable in some sense (e.g., mean square
stable, exponentially stable, etc.), and stochastic hypotheses restrict the noise processes to
be of a certain type, (e.g., Gaussian, sub-Gaussian, or martingale difference sequences).

Convergence properties characterize the asymptotic behavior of system identification
methods. The basic requirements for any system identification method is its consistency,
asymptotic normality and rates of convergence, that is to establish that estimates converge
asymptotically to the true unknown parameter and characterize the rate of convergence. Sys-
tem identification methods can be weakly consistent (i.e., estimates converge in probability)
or strongly consistent (i.e., estimates convergence almost surely). For linear systems, there
is a vast literature that establishes the consistency and rates of convergence for a variety of
methods (e.g. see [1, 2] for a unified overview). Another characterization of the convergence
is finite-time guarantees which provide lower-bounds on the number of samples required so
that estimates have a specified degree of accuracy with a specified high probability (e.g [39]).
As the number of samples grow to infinity, these results establish weak consistency of the
proposed methods.

A modeling framework closely related to Markov jump systems is the general hybrid
systems framework. There is extensive literature on the system identification of various sub-
families of hybrid systems. These models include switched auto-regressive models, piecewise
affine systems, switched affine systems, etc. The problem of system identification in these
systems under various modeling assumptions has been investigated in the literature (e.g.,
[53–63]). For a comprehensive review of these results, see [64].
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System identification of MJS and switched linear systems (SLS) has received less attention
in the literature. There is some work on designing asymptotically stable controllers for
unknown SLS [65–67] but these papers do not establish rates of convergence for system
identification. There are some recent papers which provide finite-time guarantees and rate
of convergence for SLS [68–70], MJS [71], and bilinear systems [72]. System identification
of a globally asymptotically stable SLS with controlled switching signal is investigated in
[69], while the system identification of an unknown order SLS using subspace methods is
investigated in [70]. Both these methods are developed for SLS and are not directly applicable
to MJS. The model analyzed in [71] is an MJS system. Under the assumption that the system
is mean square stable, the switching distribution is ergodic and the noise is i.i.d. subgaussian,
it is established that the convergence rate is O(

√
log T/T ) with high probability, where T

denotes the number of samples. Then a certainty equivalence control algorithm is proposed
and its regret is analyzed. Note that if we let the number of samples go to infinity, these
results imply weak consistency of the proposed methods for MJS systems. As far as we are
aware, there is no existing result which establishes strong consistency of a method for system
identification of MJS.

The contributions of Chapter 2 are summarized as following:

• We propose switched least squares method for system identification of an unknown
(autonomous) MJS and provide data-dependent and data-independent rates of conver-
gence for this method.

• Our assumptions on the noise and stability of the system are weaker than those imposed
in parallel works. We assume noise is a martingale difference process with finite α > 2

moment. For the stability, we introduce the notion of stability in the average sense for
the MJS systems, and assume the system is stable in the average sense. Under these
assumptions, we prove strong consistency of the switched least squares method along
with O(

√
log(T )/T ) rate of convergence. In contrast to the existing high-probability

convergence guarantees in the literature, our results show that the estimates converge
to the true parameters almost surely.

• We highlight the technical difficulties that arise in system identification of MJS systems
(compared to non-switched systems) and their interplay with stability of the systems.
We show how the notion of stability in the average sense circumvents these difficulties.

• We establish that stability in the average sense is a weaker notion of stability com-
pared to the commonly imposed assumptions in the literature. In particular, we show
that if a system is mean square stable, then the system is stable in the average sense.
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Furthermore, we show that the spectral conditions imposed in literature as a sufficient
condition for almost sure stability also imply stability in the average sense. As a conse-
quence, our results are applicable to broader families of the MJS systems investigated
in the literature including mean square stable systems.

1.5.2 Chapter 3

In this chapter, we investigate the problem of reinforcement learning in the Markov jump
linear systems framework. The main goal of reinforcement learning and adaptive control
is simultaneous learning and control of unknown dynamical systems. Due to continuity
and unboundedness of the state and action spaces in control setups, classical reinforcement
learning algorithms do not achieve good performance. Recently, there has been a surge of
interest in designing reinforcement learning algorithms for linear quadratic regulators (LQR)
and analyzing the performance of these algorithms [26, 27, 29, 31, 34, 35, 73]. These results
exploit the linearity, time-invariancy, and structure of the cost function in the proposed
algorithms and analysis.

Markov jump systems are a mathematical formulation which model time-varying dy-
namical systems with abrupt and stochastic changes in the dynamics. These systems find
application in cyber-physical system [40], networked control systems [41, 42], etc. In this
chapter, we investigate the problem of simultaneous learning and controlling an unknown
Markov jump linear system (MJLS). We use the switched least squares method proposed in
Chapter 2 in the closed-loop setup for the system identification and use the system estimates
in a certainty equivalence controller.

The problem of learning and controlling MJLS systems has recently received some at-
tention in the literature. The sensitivity analysis of certainty equivalence controller to the
system parameter is investigated in [74]. Based on the results of [74], a system identification
algorithm and a certainty equivalence controller is proposed in [71] where it is shown that
the proposed method achieves the regret of Õ(

√
T ) with high probability, where T denotes

the time horizon, and notation Õ hides logarithmic factors of T . It is shown in [75] that the
policy gradient method converges to the optimal policy for MJLS systems. The performance
of Thompson sampling algorithm in controlling networked control systems as a special case
of switched linear systems is investigated in [68].

The contributions of Chapter 3 are summarized as following:

• We characterize the almost sure (relative to a certain subset of the noise process and
the algorithm randomization) regret bounds for general class of linear adaptive policies.

• We use switched least squares method for closed-loop system identification of MJLS
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systems, show that this method is strongly consistent, and establish that its rate of
convergence is O(

√
log(T )/T ).

• We propose a version of certainty equivalence controller based on the switched least
squares system identification method and show that this algorithm achieves a regret
of O(

√
T log(T )) relative to a certain subset of the sample space.

• We show that there exists a finite identification horizon T0 for which this algorithm
achieves the almost sure regret of O(

√
T log(T )) on the entire sample space.

1.5.3 Chapter 4

In this chapter, we investigate the concentration properties of cumulative reward in
Markov decision processes. The standard mathematical model for reinforcement learning
is Markov Decision Processes (MDPs). In an MDP, the agent takes an action at each time
step, receives an instantaneous reward, and transitions to the next state based on a Marko-
vian dynamics that depends on the current state and action. In the MDP setup, the main
focus is on maximizing the expected cumulative rewards (aka., return) [3]. However, in many
applications, focusing only on the expected cumulative reward overlooks important aspects
of its distribution, which may lead to undesirable outcomes. As a result, various methods
have been developed to design policies that shape the distribution of cumulative rewards to
have specific characteristics. These include frameworks such as risk-sensitive MDPs ([76]),
constrained MDPs ([77, 78]), and distributional reinforcement learning ([79, 80]).

Another line of research focuses on characterizing the sample path and distributional be-
havior of cumulative rewards in the standard MDP framework. The variance of discounted
cumulative rewards is investigated in [81]. Using Markov chain theory, asymptotic concen-
tration of cumulative rewards, such as the Law of Large Numbers (LLN) , the Central Limit
Theorem (CLT), and the Law of Iterated Logarithms (LIL) are established in the average
cost setting ([82–84]).

In this chapter, we revisit this problem and provide a unified approach for character-
izing both asymptotic and non-asymptotic reward concentration in infinite-horizon average
reward, infinite-horizon discounted reward, and finite-horizon frameworks. Our results cover
asymptotic concentration like LLN, CLT, and LIL, along with non-asymptotic bounds, in-
cluding Azuma-Hoeffding-type inequalities and a non-asymptotic version of the Law of Iter-
ated Logarithms for the average reward setting. Building upon these concentration results,
we explore two of their key implications: (1) the sample path difference of rewards between
two policies, and (2) the impact of these findings on the regret analysis of reinforcement learn-
ing algorithms. We derive similar non-asymptotic upper-bounds for discounted reward and
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finite-horizon setups. To the best of our knowledge, our results are the first non-asymptotic
concentration characteristics of cumulative rewards for MDPs in finite-horizon, discounted
reward and average reward setups.

We also use our results to clarify a nuance in the definition of regret in average reward
infinite-horizon reinforcement learning. In this setting, regret is defined as the difference
between the expected reward obtained by the optimal policy minus the (sample-path) cu-
mulative reward obtained by the learning algorithm as a function of time. The standard
results establish that this regret is lower-bounded by Ω(

√
D|S||A|T ) and upper bounded

by Õ(D|S|
√

|A|T ) [5], where T denotes the horizon, |S| denotes the number of states, |A|
denotes the number of actions, and D denotes the diameter of the MDP. Various refinements
of these results have been considered in the literature [6–25].

There is a more appropriate notion of regret in applications which are driven by an
independent exogenous noise process such as inventory management problems where the dy-
namics are driven by an exogenous demand process and linear quadratic regulation problems
where the dynamics are driven by an exogenous disturbance process. In such applications,
it is more appropriate to compare the cumulative reward obtained by the optimal policy
with cumulative reward obtained by the learning algorithm under the same realization of
the exogenous noise. For example, in an inventory management problem, one may ask how
worse is a learning algorithm compared to the (expected-reward) optimal policy on a spe-
cific realization of the demand process. This notion of regret has received significantly less
attention in the literature [16, 36]. We show that a consequence of our results is that the
two notions of regret are rate-equivalent. A similar result was claimed without a proof in
[16].

The contributions of Chapter 4 are summarized as follows:

• We establish the asymptotic concentration of cumulative rewards in average reward
MDPs, deriving the law of large numbers, the central limit theorem, and the law of
iterated logarithm for a class of stationary policies. Compared to the existing asymp-
totic results in the literature which use Markov chain theory, we provide a simpler
proof which leverages a martingale decomposition for the cumulative rewards along
with the asymptotic concentration of measures for martingale sequences.

• We derive policy-dependent and policy-independent non-asymptotic concentration bounds
for the cumulative reward in average reward MDPs. These bounds establish an Azuma-
Hoeffding-type inequality for the rewards along with a non-asymptotic version of law
of iterated logarithm. Although these results apply to a broad subset of stationary
policies, we show that for communicating MDPs, these bounds extend to any station-
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ary deterministic policy. We use the established concentration results to characterize
the sample path behavior of the performance difference of any two stationary policies.
As a corollary of this result, we show that the difference between cumulative reward of
any two optimal policies is upper-bounded by O(

√
T ) with high probability.

• We investigate the difference between two notions of regret in the reinforcement learn-
ing literature, cumulative regret and interim cumulative regret. By analyzing the
sample path behavior, we establish that both asymptotically and non-asymptotically,
this difference is upper-bounded by Õ(

√
T ). This result implies that, if a reinforcement

learning algorithm has a regret upper bound of Õ(
√
T ) under one definition, the same

rate applies to the other, in both of the asymptotic and non-asymptotic frameworks.
While this equivalency was claimed in the literature without a proof, our concentration
results provide a formal proof for this relation.

• Lastly, we derive non-asymptotic concentration bounds for the cumulative reward in the
infinite-horizon discounted reward and finite-horizon MDP frameworks. These bounds
include an Azuma-Hoeffding-type inequality along with a non-asymptotic version of
the law of iterated logarithm. Using the vanishing discount analysis, we show that
under appropriate conditions, the concentration bounds for discounted reward MDPs
approaches to the concentration bounds for the average reward MDPs as the discount
factor approaches 1.

1.5.4 Chapter 5

In this chapter, we investigate the asymptotic concentration of cumulative cost induced
by the optimal policy in linear quadratic regulators. In Chapter 4, our results are restricted
to the case of finite-state and finite-action MDPs. In this chapter, we extend the results of
Chapter 4 to the case of Linear Quadratic Regulators in which the state and action do not
belong to a compact set. In this chapter, we prove a central limit theorem for the cumu-
lative cost. The Central Limit Theorem (CLT), is one of the most important asymptotic
concentration results in probability theory and mathematical statistics. It establishes that
the distribution of deviation from the mean in the law of large numbers asymptotically con-
verges to a normal distribution. Similar asymptotic normality for the deviations emerges in
other processes as well. For example, in the parameter estimation framework, the asymptotic
normality is established for maximum likelihood estimation (see e.g. [85–87]). In regression
models, asymptotic normality is established for various estimation and prediction methods
(see e.g. [88–93], for a list of such results, see [1]). This property is also established in the
stochastic approximation framework (see e.g. [94, 95]). The importance of asymptotic nor-
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mality results become evident when they are used to derive confidence bounds for different
frameworks.

In the systems and controls literature, there are various characterization of the law of
large numbers (e.g. [83, 84, 96–100]) but the distribution of the deviation from the mean is
less explored. There are some results on CLT for Markov cost/reward process (e.g. [83, 84,
99, 100]) which are derived using advanced tools in Markov chain theory including weighted
geometric ergodicity and weighted uniform ergodicity. These results imply a CLT for the
LQR setting. In this chapter, we revisit the distribution of the deviation from the mean for
LQR setting and establish asymptotic normality using an elementary proof based on first
principles. Our result is different from the existing characterizations in the literature and
uses different and much simpler proof techniques.

The sample path behavior of the cumulative cost has recently also been studied in the
context of regret analysis for adaptive controllers. These analyses are either in the Bayesian
framework (e.g., in [13, 68]) or in terms of high probability guarantees for the frequentist
regret (e.g., in [26, 28, 29, 34, 73, 101–103]) or almost sure guarantees for the frequentist
regret (e.g., in [31, 104]). However, these bounds are not sharp enough to characterize the
distribution of the cumulative cost.

The main contribution of Chapter 5 is to establish asymptotic normality of the cumu-
lative cost in the LQR framework using an elementary argument. Under a mild technical
assumption on the noise distribution, we show the cumulative cost incurred by the optimal
policy converges weakly to a Gaussian distribution. Our analysis uses a completion of square
argument to decompose the cumulative cost to bounded terms plus a Martingale Difference
Sequence (MDS). The convergence argument follows from this decomposition, properties of
the noise sequence with even density, and a version of the CLT for MDS.

1.5.5 Chapter 6

This chapter includes the concluding remarks and future research directions related to
this thesis.

1.6 List of Publications

The following articles are resulting from the work presented in this thesis.
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1.7 Contributions of co-authors

In all chapters the problem formulation is written by Borna Sayedana with inputs from
Aditya Mahajan and Peter Caines. The technical derivations and writing of Chapters 2 and
3 were carried out by Borna Sayedana, with constructive inputs from Mohammad Afshari,
Aditya Mahajan, and Peter Caines. The technical derivations and writing of Chapter 4 and
5 were carried out by Borna Sayedana, with constructive inputs from Aditya Mahajan, and
Peter Caines.

1.8 Notation

Given a vector v, v(i) denotes its i-th component. Given a matrix A, A(i, j) denotes its
(i, j)-th element, λmax(A) and λmin(A) denote the largest and smallest magnitudes of right
eigenvalues, σmax(A) =

√
λmax(A

⊺A) denotes the spectral norm. For a square matrix Q,
Tr(Q) denotes the trace. When Q is symmetric, Q ⪰ 0 and Q ≻ 0 denote that Q is positive
semi-definite and positive definite, respectively. For two square matrices, Q1 and Q2 of the
same dimension, Q1 ⪰ Q2 means Q1−Q2 ⪰ 0. Given two matrices A and B, A⊗B denotes
the Kronecker product of the two matrices. Given a sequence of vectors {xt}t∈T , vec(xt)t∈T

denotes the vector formed by vertically stacking {xt}t∈T .
R and N denote the sets of real and natural numbers and R+ denotes the set of positive

real numbers. For a set T , |T | denotes its cardinality. For a vector x, ∥x∥ denotes the
Euclidean norm. For a matrix A, ∥A∥ denotes the spectral norm and ∥A∥∞ denotes the
element with the largest absolute value. Notation diag(A1, A2, . . . , An) denotes the block
diagonal matrix, where the blocks are matrices A1, A2, . . . , An. 0 denotes the zero-vector in
the appropriate Euclidean space.

The notation limγ↑1 means the limit as γ approaches 1 from below. Given a sequence
of positive numbers {at}t≥0, aT = O(T ) means that lim supT→∞ aT/T < ∞, and aT = o(T )

means that lim supT→∞ aT/T = 0. Given a sequence of positive numbers {at}t≥0, aT ≍ T

means that lim supT→∞ aT/T < ∞, and lim infT→∞ aT/T > 0. When describing values that
are taken by consecutive variables, for example st and st+1, we use s to denote a generic
value of st and s+ to denote a generic values of st+1.

Given a sequence of positive numbers {at}t≥0 and a function f : N → R, the notation
aT = O(f(T )) means that lim supT→∞ aT/f(T ) < ∞ and aT = Õ(f(T )) means there exists
a finite constant α > 0 such that aT = O(log(T )αf(T )). For a function V : S → R, the span
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of the function sp(V ) is defined as

sp(V ) := max
s∈S

V (s)−min
s∈S

V (s).

Given a sequence of random variables {xt}t≥0, x0:t is a short hand for (x0, · · · , xt) and
σ(x0:t) denotes the sigma field generated by random variables x0:t. Given a probability space
{Ω,F ,P}, Ω denotes the sample space, ω ∈ Ω denotes a generic elementary event, P(·)
denotes the probability measure, E[·] denotes the expectation operator, and 1{·} denotes
the indicator of an event. Given a finite set S, ∆(S) denotes the space of probability measures
defined on S. The notation S ∼ ρ denotes that the random variable S is sampled from the
distribution ρ. The standard Gaussian distribution is denoted by N (0, 1). Convergence in
distribution is denoted by

(d)−→, almost sure convergence is denoted by
(a.s.)−−−→, and convergence

in probability is denoted by
(p)−→. The expression almost surely is abbreviated as a.s. and the

expression infinitely often is abbreviated as i.o.

Remark 1.1. There are notational inconsistencies across different chapters of the thesis.
For example in chapters 2, 3, and 5, xt denotes the state of the system, consistent with the
notation used in the systems and control sub-community. However, in Chapter 4, St denotes
the state, aligning with the reinforcement learning sub-community. As far as the notation is
concerned, each chapter should be read independently.
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Chapter 2

Strong Consistency and Rate of
Convergence of Switched Least Squares
System Identification for Autonomous

Markov Jump Linear Systems

2.1 Overview

In this chapter, we investigate the problem of system identification in Markov Jump
Linear Systems (MJLS). The results of this chapter are published in [105, 108].

2.1.1 Organization

This chapter is organized as follows. In Sec 2.2, we present the system model, assump-
tions, and the main results. In Sec. 2.3, we prove the main results. In Sec. 2.4, we explain
the connection of stability in the average sense with mean square stability and almost sure
stability. We present an illustrative example in Sec. 2.5. We conclude in Sec. 2.6.

2.2 System model and problem formulation

Consider a discrete-time (autonomous) MJS. The state of the system has two components:
a discrete component st ∈ S := {1, . . . , k} and a continuous component xt ∈ Rn. There
is a finite set A = {A1, . . . , Ak} of system matrices, where Ai ∈ Rn×n. The continuous
component xt of the state starts at a fixed value x0 and the initial discrete state s0 starts
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according to a prior distribution π0. The continuous state evolves according to:

xt+1 = Astxt + wt+1, t ≥ 0, (2.1)

where {wt}t≥0, wt ∈ Rn, is a noise process. The discrete component evolves in a Markovian
manner according to a time-homogeneous irreducible and aperiodic transition matrix P , i.e.
P(st+1 = j|st = i) = Pij.

Let πt = (πt(1), . . . , πt(k)) denote the probability distribution of the discrete state at
time t and π∞ denote the stationary distribution. We assume π∞(i) ̸= 0 for all i. Let
Ft = σ(x0:t, s0:t) denote the sigma-algebra generated by the history of the complete state. It
is assumed that the noise process satisfies the following:

Assumption 2.1. The noise process {wt}t≥0 is a martingale difference sequence with respect
to {Ft}t≥0, i.e., E[∥wt∥] < ∞ and E[wt+1 | Ft] = 0. Furthermore, there exists a constant
α > 2 such that supt≥0E[∥wt+1∥α | Ft] < ∞ a.s. and there exists a symmetric and positive
definite matrix C ∈ Rn×n such that lim infT→∞

1
T

∑T−1
t=0 wtw

⊺
t = C a.s.

Assumption 2.1 is a standard assumption in the asymptotic analysis of system identifica-
tion of linear systems [1, 52, 89, 109, 110] and allows the noise process to be non-stationary
and have heavy tails (as long as moment condition is satisfied). We use the following notion
of stability for the MJS system (2.1).

Definition 2.1. The MJS system (2.1) is called stable in the average sense if almost surely:

T∑
t=1

∥xt∥2 = O(T ) i.e. lim sup
T→∞

1

T

T∑
t=1

∥xt∥2 < ∞.

Assumption 2.2. The MJS system (2.1) is stable in the average sense.

The notion of stability in the average sense has been used in a few papers in the literature
of linear systems [31],[111]; however, in the MJS literature, the commonly used notions of
stability are mean square stability and almost sure stability of noise-free system. We compare
stability in the average sense with both of these notions in Sec. 2.4. Specifically, we show
that mean square stability implies stability in the average sense. Moreover, we show a
common sufficient condition for almost sure stability of noise-free system implies stability in
the average sense for MJS system (2.1). Therefore, the assumption of stability in the average
sense is weaker than the commonly imposed stability assumptions in the literature.
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2.2.1 System identification and switched least squares estimates

We are interested in the setting where the system dynamics A and the switching transition
matrix P are unknown. Let θ⊺ = [A1, . . . , Ak] ∈ Rn×nk denote the unknown parameters of
the system dynamics matrices. We consider an agent that observes the complete state (xt, st)

of the system at each time and generates an estimate θ̂T of θ as a function of the observation
history (x0:T , s0:T ). A commonly used estimate in such settings is the least squares estimate:

θ̂
⊺
T = argmin

θ⊺=[A1,...,Ak]

T−1∑
t=0

∥xt+1 − Astxt∥2. (2.2)

The components [Â1,T , . . . , Âk,T ] = θ̂⊺T of the least squares estimate can be computed in
a switched manner. Let Ti,T = {t ≤ T | st = i} denote the time indices until time T when
the discrete state of the system equals i. Note that for each t ∈ Ti,T , Ast = Ai. Therefore,
we have

Âi,T := argmin
Ai∈Rn×n

∑
t∈Ti,T

∥xt+1 − Aixt∥2, ∀i ∈ {1, · · · , k}. (2.3)

Let Xi,T denote
∑

t∈Ti,T xtx
⊺
t , which we call the unnormalized empirical covariance of the

continuous component of the state at time T when the discrete component equals i. Then,
Âi,T can be computed recursively as follows:

Âi,T+1 = Âi,T +

[
X−1

i,T xT (xT+1 − Âi,TxT )
⊺

1 + x⊺
TX

−1
i,T xT

]
1{sT+1 = i}, (2.4)

where Xi,T may be updated as Xi,T+1 = Xi,T +
[
xT+1x

⊺
T+1

]
1{sT+1 = i}. Due to the switched

nature of the least squares estimate, we refer to above estimation procedure as switched least
squares system identification.

A common way of estimating the transition matrix P is to use empirical counts, i.e.,

P̂ij,T =

∑T
t=1 1(st−1 = i, st = j)∑T

t=1 1(st−1 = i)
, ∀i, j ∈ S.

Using [112, Lemma 7] and Borel-Cantelli Lemma, it is straight-forward to show that the
empirical estimator P̂ij,T converges almost surely. In particular,

∥P̂ij,T − Pij∥ ≤ O
(√

log2(T )/T
)

a.s., ∀i, j ∈ S.

So, in the rest of the chapter, we focus on the convergence of the switched least squares
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estimator.

2.2.2 The main results

A fundamental property of any sequential parameter estimation method is strong consis-
tency, which we define below.

Definition 2.2. An estimator θ̂T of parameter θ is called strongly consistent if

lim
T→∞

θ̂T = θ, a.s.

Our main result is to establish that the switched least squares estimator is strongly con-
sistent. We do so by providing two different characterization of the rate of convergence. We
first provide a data-dependent rate of convergence which depends on the spectral properties
of the unnormalized empirical covariance. We then present a data-independent character-
ization of rate of convergence which only depends on T . All the proofs are presented in
Sec. 2.3.

Theorem 2.1. Under Assumptions 2.1 and 2.2, the switched least squares estimates {Âi,T}ki=1

are strongly consistent, i.e., for each i ∈ S, we have:

lim
T→∞

∥∥Âi,T − Ai

∥∥
∞ = 0, a.s.

Furthermore, the rate of convergence is upper bounded by:

∥∥Âi,T − Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

The proof is presented in Sec. 2.3.3.

Remark 2.1. Theorem 2.1 is not a direct consequence of the decoupling procedure in the
switched least squares method. The k least squares problems have a common covariate process
{xt}t≥1. Therefore, the convergence of the switched least squares method and the stability
of the MJS are interconnected problems. Our proof techniques carefully use the stability
properties of the system to establish the consistency of the system identification method.

We simplify the result of Theorem 2.1 and characterize the data dependent result of
Theorem 2.1 in terms of horizon T and the cardinality of the set Ti,T .

Corollary 2.1. Under Assumptions 2.1 and 2.2, for each i ∈ S, we have:

∥∥Âi,T − Ai

∥∥
∞ ≤ O

(√
log(T )/|Ti,T |

)
, a.s.
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Remark 2.2. The assumption that π∞(i) ̸= 0 implies that for sufficiently large T , |Ti,T | ≠ 0

almost surely, therefore the expressions in above bounds are well defined.

The result of Corollary 2.1 still depends on data. When system identification results are
used for adaptive control or reinforcement learning, it is useful to have a data-independent
characterization of the rate of convergence. We present this characterization in the next
theorem.

Theorem 2.2. Under Assumptions 2.1 and 2.2, the rate of convergence of the switched least
squares estimator Âi,T , i ∈ S is upper-bounded by:

∥∥Âi,T − Ai

∥∥
∞ ≤ O

(√
log(T )/π∞(i)T

)
, a.s.

where the constants in the O(·) notation do not depend on Markov chain {st}t≥0 and horizon
T . Therefore, the estimation process {θ̂T}T≥1 is strongly consistent, i.e., limT→∞

∥∥θ̂T−θ
∥∥
∞ =

0 a.s. Furthermore, the rate of convergence is upper bounded by:

∥∥θ̂T − θ
∥∥
∞ ≤ O

(√
log(T )/π∗T

)
, a.s.

where π∗ = minj∈S π∞(j).

The proof is presented in Section 2.3.5.
Theorem 2.2 shows that Assumptions 2.1 and 2.2 guarantee that the switched least

squares estimator for MJS has the same rate of convergence of O(
√
log(T )/T ) as non-

switched case established in [52]. Moreover, the upper bound in Theorem 2.2 shows that the
estimation error of Âi,T is proportional to 1/

√
π∞(i); therefore, the rate of convergence of θ̂T

is proportional to 1/
√
π∗, where π∗ is the smallest probability in the stationary distribution

π∞.

Remark 2.3. Switched Linear System (SLS) is a special case of MJS in which the discrete
state evolves in an i.i.d. manner. The results presented in this section are valid for the SLS
after substituting stationary distribution π∞ with the i.i.d. Probability Mass Function (PMF)
of switching probabilities defined over discrete state.

2.3 Proofs of the main results

2.3.1 Preliminary results

We first state the Strong Law of Large Numbers (SLLN) for Martingale Difference Se-
quences (MDS) .
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Theorem 2.3. (see [113, Theorem 3.3.1]) Suppose {Xτ}τ≥1is a martingale difference se-
quence with respect to the filtration {Fτ}τ≥1 . Let aτ be Fτ−1 measurable for each τ ≥ 1 such
that

0 < aτ → ∞ as τ → ∞, a.s.

If for some p ∈ (0, 2], we have:

∞∑
τ=1

E[|Xτ |p|Fτ−1]/a
p
τ < ∞,

then:

lim
T→∞

T∑
τ=1

Xτ/aT = 0 a.s.

Lemma 2.1. The assumptions on the process {st}t≥0 imply that limT→∞ |Ti,T |/T = π∞(i),
a.s.

Proof. {st}t≥0 is an aperiodic and irreducible Markov chain, hence, by the Ergodic Theorem
(Theorem 4.1, [114]), {st}t≥0 is ergodic and therefore limT→∞ |Ti,T |/T = π∞(i) a.s.

Lemma 2.2. Assumption 2.1 and 2.2 imply:

∞∑
τ=1

∥xτ∥2/τ 2 < ∞ a.s.

Proof. The result is a direct consequence of Abel’s lemma. Let ST :=
∑T

τ=1 ∥xτ∥2, then we
have:

T∑
τ=1

∥xτ∥2

τ 2
=

T∑
τ=1

Sτ − Sτ−1

τ 2

=
ST

T 2
− S0

1
+

T∑
τ=2

Sτ−1

( 1

(τ − 1)2
− 1

τ 2

)
(a)
=

ST

T 2
− S0

1
+

T∑
τ=2

O(τ − 1)
( 2τ − 1

τ 2(τ − 1)2

)
=

ST

T 2
− S0

1
+

T∑
τ=2

O
(

1

τ 2

)
< ∞,

where (a) follows from Assumption 2.2.
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Lemma 2.3. We have the following:

∥∥∥ T∑
τ=1

Asτxτw
⊺
τ+1 + wτ+1x

⊺
τA

⊺
sτ

∥∥∥ = o(T ) a.s.

Proof. We prove the limit element-wise. The (l, p)-th element of the matrix Asτxτw
⊺
τ+1 is[∑n

j=1 Asτ (l, j)xτ (j)
]
wτ+1(p).

We calculate the term:

E
[( n∑

j=1

Asτ (l, j)xτ (j)wτ+1(p)
)2∣∣∣Fτ

]
. (2.5)

Let A∗ = maxi∈S ∥Ai∥∞, then

E
[( n∑

j=1

Asτ (l, j)xτ (j)
)2

w2
τ+1(p)

∣∣∣Fτ

]
(a)

≤ A2
∗ sup

τ
E[w2

τ+1(p)
∣∣Fτ ]

( n∑
j=1

xτ (j)
)2

(b)

≤ nA2
∗ sup

τ
E
[
w2

τ+1(p)
∣∣Fτ

]
∥xτ∥2,

where (a) uses the fact that sτ and xτ are Fτ− measurable and that |Asτ (l, j)| ≤ A∗ and
(b) is by Cauchy-Schwarz’s inequality. Therefore:

T∑
τ=1

E
[([∑n

j=1Asτ (l, j)xτ (j)
]
wτ+1(p)

)2∣∣∣Fτ

]
τ 2

≤ nA2
∗ sup

τ

{
E[w2

τ+1(p)|Fτ ]
} T∑

τ=1

∥xτ∥2

τ 2

(c)

≤ ∞.

Since α > 2 in Assumption 2.1, and finiteness of higher order moments imply finiteness of
lower order moments, we get E

[
w2

τ+1(p)
∣∣Fτ

]
is uniformly bounded. This fact along with

Lemma 2.2 imply (c). The result then follows by applying Theorem 2.3 by setting at = t

and p = 2.

We characterize the asymptotic behavior of the matrix Xi,T .

Proposition 2.1. Under Assumptions 2.1 and 2.2, the following hold a.s. for each i ∈ S:
(P1) λmax(Xi,T ) = O(T ), a.s.
(P2) lim infT→∞ λmin(Xi,T )/|Ti,T | > 0, a.s.

22



Remark 2.4. Property (P1) shows that when the system is stable in the average sense,
λmax(Xi,T ) cannot grow faster than linearly with time. Therefore, the stability of the system
controls the rate at which Xi,T can grow. Property (P2) shows that when the noise has a
minimum covariance, λmin(Xi,T ) cannot grow slower than linearly with time.

Proof of (P1). The maximum eigenvalue of a matrix can be upper bounded as follows:

λmax

( ∑
t∈Ti,T

xtx
⊺
t

) (a)

≤ Tr
( ∑

t∈Ti,T

xtx
⊺
t

)
=

∑
t∈Ti,T

∥xt∥2

≤
T∑
t=1

∥xt∥2 = O(T ),

where (a) follows from the fact that trace of a matrix is sum of its eigenvalues and all
eigenvalues of xtx

⊺
t are non-negative.

Proof of (P2). For τ ≥ 1, we have:

xτx
⊺
τ =(Asτ−1

xτ−1 + wτ )(Asτ−1
xτ−1 + wτ )

⊺

=Asτ−1
xτ−1x

⊺
τ−1A

⊺
sτ−1

+Asτ−1
xτ−1w

⊺
τ + wτx

⊺
τ−1A

⊺
sτ−1

+ wτw
⊺
τ .

Since Asτ−1
xτ−1x

⊺
τ−1A

⊺
sτ−1

is positive semi-definite, we have:

xτx
⊺
τ ⪰ Asτ−1

xτ−1w
⊺
τ + wτx

⊺
τ−1A

⊺
sτ−1

+ wτw
⊺
τ .

By summing over τ ∈ Ti,T , we get:

∑
τ∈Ti,T

xτx
⊺
τ ⪰

∑
τ∈Ti,T

wτw
⊺
τ + x0x

⊺
01{s0 = i}

+
∑

τ∈Ti,T

[
Asτ−1

xτ−1w
⊺
τ + wτx

⊺
τ−1A

⊺
sτ−1

]
(a)

⪰
∑

τ∈Ti,T

wτw
⊺
τ + o(T ) a.s.,

where (a) follows from Lemma 2.3 and x0x
⊺
01{s0 = i} ⪰ 0. Furthermore, since limT→∞ |Ti,T |/T =
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π∞(i) a.s. by Lemma 2.1 and π∞(i) ̸= 0 by assumptions on {sτ}τ≥0, we have:

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

⊺
τ

|Ti,T |
⪰ lim inf

|Ti,T |→∞

∑
τ∈Ti,T wτw

⊺
τ

|Ti,T |
(b)
= C ≻ 0 a.s.,

where (b) holds by Assumption 2.1 and independence of {wτ}τ≥0 and {sτ}τ≥0 processes.
Therefore

lim inf
|Ti,T |→∞

λmin

(∑
τ∈Ti,T xτx

⊺
τ

|Ti,T |

)
≻ 0.

2.3.2 Background on least square estimator

Given a filtration {Gt}t≥0, consider the following regression model:

yt = β
⊺
zt + wt, t ≥ 0, (2.6)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-measurable covariate process, yt
is the observation process, and wt ∈ R is a noise process satisfying Assumption 2.1 with Ft

replaced by Gt. Then the least squares estimate β̂T of β is given by:

β̂T = argmin
β⊺

T∑
τ=0

∥yτ − β
⊺
zτ∥2. (2.7)

The following result by [89] characterizes the rate of convergence of β̂T to β in terms of
unnormalized covariance matrix of covariates ZT :=

∑T
τ=0 zτz

⊺
τ .

Theorem 2.4 (see [89, Theorem 1]). Suppose the following conditions are satisfied: (S1)
λmin(ZT ) → ∞, a.s. and (S2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least squares
estimate in (2.7) is strongly consistent with the rate of convergence:

∥β̂T − β∥∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

Theorem 2.4 is valid for all the Gt−1-measurable covariate processes {zt}t≥0. For the
switched least squares system identification if we take Gt to be equal to Ft and verify con-
ditions (S1) and (S2) in Theorem 2.4, then we can use Theorem 2.4 to establish its strong
consistency and rate of convergence. As mentioned earlier in Remark 2.1, the empirical
covariances are coupled across different components due to the system dynamics.
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2.3.3 Proof of Theorem 2.1

To prove this theorem, we check the sufficient conditions in Theorem 2.4. First require-
ment that Xi,T is measurable w.r.t. FT−1, follows by the definition of Xi,T . Conditions (S1)
and (S2) are verified in the following.

(S1) By Proposition 2.1-(P2), we see that λmin(Xi,T ) → ∞ a.s.; therefore, (S1) in Theo-
rem 2.4 is satisfied.

(S2) Proposition 2.1-(P1) and (P2) imply that there exist positive constants C1, C2, such
that :

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )
≤ lim sup

T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s.,

where the last equality follows by Lemma 2.1 (i.e. |Ti,T | = O(T ), a.s.). Therefore, the
second condition of Theorem 2.4 is satisfied.

Therefore, by Theorem 2.4, for each i ∈ S, we have:

∥∥Âi,T − Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s. (2.8)

which proves the claim in Theorem 2.1.

2.3.4 Proof of Corollary 2.1

Corollary 2.1 is the direct consequence of Theorem 2.1 and Proposition 2.1. Propo-
sition 2.1-(P1) implies that λmax(Xi,T ) = O(log(T )). By substituting λmax(Xi,T ) with
O(log(T )) in the right hand side of Eq. (2.8), we get that for each i ∈ S, the estimation
error ∥Âi,T − Ai

∥∥
∞ is upper-bounded by O

(√
log(T )/|Ti,T |

)
, a.s.

2.3.5 Proof of Theorem 2.2

We first establish the strong consistency of the parameter θ̂T . By Theorem 2.1 and the
fact that k < ∞, we get:

∥∥θ̂T − θ
∥∥
∞ ≤ max

i∈S
O
(√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Therefore, the result follows by applying Theorem 2.1 to the argmax of above equation. For
the second part notice that by Lemma 2.1, we know limT→∞ |Ti,T |/T = π∞(i), a.s. Now, by
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Corollary 2.1, we get:

∥∥Âi,T − Ai

∥∥
∞ ≤ O

(√
log(T )

|Ti,T |

)
= O

(√
log T

π∞(i)T

)
a.s.

which is the claim of Theorem 2.2.

2.4 Discussion on stability in the average sense

The main results of this chapter are derived under Assumption 2.2 i.e., the MJS sys-
tem (2.1) is stable in the average sense. In this section, we discuss the connection between
this notion of stability and more common forms of stability in MJS systems, i.e., mean square
stability and almost sure stability.

2.4.1 Stability on the average sense and mean square stability

A common assumption on the stability of MJS systems (e.g., [115] and [70]) is mean
square stability defined as following:

Definition 2.3. The MJS system (2.1) is called mean square stable (MSS) if there exists a
deterministic vector x∞ ∈ Rn and a deterministic positive definite matrix Q∞ ∈ Rn×n such
that for any deterministic initial state x0 and s0 , we have: limτ→∞

∥∥E[xτ ]− x∞
∥∥ → 0, and

limτ→∞
∥∥E[xτx

⊺
τ ]−Q∞

∥∥ → 0.

Proposition 2.2 (see [45, Theorem 3.9]). The system is MSS, if and only if

λmax

(
(P

⊺ ⊗ In2) diag(A1 ⊗ A1, . . . , Ak ⊗ Ak)
)
< 1.

We now show that stability in the average sense is a weaker notion of stability than MSS.

Proposition 2.3. If the MJS system (2.1) is mean square stable, then the system is stable
in the average sense.

Proof. Since the system is MSS, there exists a positive definite matrix Q∞ ∈ Rn×n such that
limτ→∞E[xτx

⊺
τ ] = Q∞, which implies limτ→∞Tr(E[xτx

⊺
τ ]) = Tr(Q∞). Since Tr(E[xx⊺]) =

E[Tr(xx⊺)] = E[x⊺x], MSS implies that the sequence of real numbers {E(∥xτ∥2)}τ≥0 con-
verges to Tr(Q∞) and therefore:

lim
T→∞

1

T

T∑
τ=1

E(∥xτ∥2) = Tr(Q∞) < ∞. (2.9)
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Define events

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
}
, ∀n ∈ N

and

E =
∞⋃
n=0

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 < ∞
}
.

Now, by the continuity of probability measure from below, we have:

P(E) = P(
∞⋃
n=0

En) = lim
n→∞

P(En). (2.10)

Note that

P(En) = P
(
lim sup
T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
)

(a)

≥ lim sup
T→∞

P
( 1
T

T∑
τ=1

∥xτ∥2 ≤ n
)

(b)

≥ 1− lim sup
T→∞

(∑T
τ=1E∥xτ∥2

)
Tn

(c)

≥ 1− Tr(Q∞)

n
,

where (a) follows from reverse Fatou’s lemma, (b) follows from the Markov inequality and
(c) follows from Eq. (2.9). Substituting the above in equation (10), we get

P(E) ≥ lim
n→∞

(
1− Tr(Q∞)

n

)
= 1.

Therefore P(E) = 1, and the system is stable in the average sense.

Remark 2.5. Proposition 2.3 shows that MSS implies Assumption 2.2. Therefore, the results
of Theorem 2.1 and 2.2 also hold when Assumption 2.2 is replaced by the assumption that
the system is MSS.

2.4.2 Stability on the average sense and almost sure stability

Consider the noise free version of the MJS system (2.1) with the following dynamics:

xt+1 = Astxt, t ≥ 0. (2.11)
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Definition 2.4. The system (2.11) is called almost surely stable if, for any deterministic
initial state x0 and s0, we have:

lim
t→∞

∥xt∥ = 0, a.s.

A common sufficient condition to check the almost sure stability of MJS system (2.11) is
given below.

Proposition 2.4 (see [45, Theorem 3.47]). If the stationary distribution π∞ = (π∞(1), . . . , π∞(k))

satisfies (C1) π∞(i) ̸= 0 for all i and (C2)
∏k

i=1 σmax(Ai)
π∞(i) < 1, then the system (2.11)

is almost surely stable.

We now show that (C1) and (C2) are also sufficient conditions for stability in the average
sense.

Proposition 2.5. If the MJS system (2.1) satisfies (C1) and (C2), then the system is stable
in the average sense.

Proof. To simplify the notation, we assume that x0 = 0 which does not entail any loss of
generality. Let Φ(t − 1, τ + 1) = Ast−1

· · ·Asτ+1
denote the state transition matrix where

we follow the convention that Φ(t, τ) = I, for t < τ . Then we can write the dynamics in
Eq. (2.1) of the continuous component of the state in convolutional form as:

xt =
t−1∑
τ=0

Φ(t− 1, τ + 1)wτ+1. (2.12)

where ∥Φ(t− 1, τ + 1)∥ = ∥Ast−1
. . . Asτ+1

∥, and

∥Ast−1
. . . Asτ+1

∥ ≤ σst−1
· · ·σsτ+1

=: Γt−1,τ+1 (2.13)

where σst = σmax(Ast). In the following lemma, it is established that the conditions (C1) and
(C2) in Prop. 2.5 imply that the sum of norms of the state-transition matrices are uniformly
bounded.

Lemma 2.4. Under the conditions (C1) and (C2) in Prop. 2.5, there exists a constant
Γ̄ < ∞ such that for all T > 1,

∑T−1
τ=0 ∥Φ(T − 1, τ + 1)∥ ≤ Γ̄, a.s.

The proof is presented in Appendix 2.A. The following Lemma shows the implication of
Assumption 2.1 on the growth rate of energy of the noise process.
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Lemma 2.5 ([52, Eq. (3.1)]). Under Assumption 2.1, we have

T∑
τ=1

∥wτ∥2 = O(T ), a.s.

Using the convolution formula in Eq. (2.12), we can bound the norm of the state ∥xt∥2

as following:

∥xt∥2 =
(∥∥ t−1∑

τ=0

Φ(t− 1, τ + 1)wτ+1

∥∥)2

(a)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)wτ+1∥
)2

(b)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)∥∥wτ+1∥
)2

(c)

≤
( t−1∑

τ=0

Γt−1,τ+1∥wτ+1∥
)2

, (2.14)

where (a) follows from triangle inequality and (b) follow from sub-multiplicative property of
the matrix norm, and (c) follows from Eq. (2.13). Now for a fixed i, i ∈ S, we have:

T∑
t=1

∥xt∥2 ≤
T∑
t=1

( t−1∑
j=0

Γt−1,j+1∥wj+1∥
)2

(d)

≤
T∑
t=1

( t−1∑
j=0

Γt−1,j+1

)( t−1∑
j=0

Γt−1,j+1∥wj+1∥2
)

(e)

≤ Γ̄
T∑
t=1

( t−1∑
j=0

Γt−1,j+1∥wj+1∥2
)

(f)

≤ Γ̄
T−1∑
j=0

( T∑
t=j+1

Γt−1,j+1

)
∥wj+1∥2

(g)

≤ Γ̄2

T−1∑
j=0

∥wj+1∥2 = O(T ) a.s.,

where (d) follows from Cauchy-Schwarz’s inequality, (e) follows from Lemma 2.4, (f) follows
from changing the order of summation, and (g) follows from boundedness of sub-sums of∑T−1

τ=0 ΓT−1,τ+1, and Lemma 2.4.
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Remark 2.6. Proposition 2.5 shows that (C1) and (C2) imply Assumption 2.2. There-
fore, the results of Theorem 2.1 and 2.2 also hold when Assumption 2.2 is replaced by the
assumption that the system satisfies (C1) and (C2).

2.4.3 Discussion on Non-Comparable Stability Assumption

The following examples illustrate that neither MSS nor conditions (C1) and (C2) in
Proposition 2.5 is stronger than the other.

Example 2.1. Let θ⊺ = {A1, 0}, and p = (p1, p2) be an i.i.d. probability transition, with
λmax(p1A1) > 1 and x0 ̸= 0. Then E[xτ+1] = E[Aστ

xτ + wτ+1] = p1A1E[xτ ] = · · · =

(p1A1)
τE(x0) , which implies limτ→∞E(xτ ) = ∞. Therefore, this system is not mean square

stable. However, this system satisfies conditions (C1) and (C2) in Prop. 2.5 and therefore
is stable in the average sense.

Example 2.2. Consider non-switched system with matrix A, with λmax(A) < 1 and σmax(A) >

1. This system is mean square stable, but it does not satisfy the conditions (C1) and (C2)
in Proposition 2.5.

2.5 Numerical Simulation

In this section, we illustrate the result of Theorem 2.1 via an example. Consider a MJS
with n = 2, k = 2,

A1 =

[
1.5 0

0 0.2

]
, A2 =

[
0.01 0.1

0.1 0.1

]
,

probability transition matrix

P =

[
0.5 0.5

0.75 0.25

]
and i.i.d. {wt}t≥0 with wt ∼ N (0, I). Note that the example satisfies Assumptions 2.1 and
conditions (C1) and (C2) of Proposition 2.5 (and, therefore, Assumption 2.2), but it is not
mean square stable. We run the switched least squares for a horizon of T = 106 and repeat
the experiment for 100 independent runs. We plot the estimation error ei,T = ∥Âi,t − A1∥∞
versus time in Fig. 2.1a. The plot shows that the estimation error is converging almost
surely even though the system is not mean square stable. In Fig. 2.1b, logarithm of the
estimation error versus logarithm of the horizon is plotted. The linearity of the graph along
with approximate slope of −0.5 shows that ei,T = Õ(1/

√
T ).
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(a) Error vs time. (b) Log-error vs log-time.

Figure 2.1: Performance of switched least squares method for the example of Sec. 2.5. The
solid line shows the mean across 100 runs and the shaded region shows the 25% to 75%
quantile bound.

2.6 Conclusion and Future Directions

In this chapter, we investigated system identification of (autonomous) Markov jump linear
systems. We proposed the switched least squares method, showed it is strongly consistent
and derived the almost sure rate of convergence of O(

√
log(T )/T ). This analysis provides a

solid first step toward establishing almost sure regret bounds for adaptive control of MJS.
We derived our results assuming that system is stable in the average sense and we showed

that this is a weaker assumption compared to mean square stability.
The current results are established for autonomous systems with Markov switching when

the complete state of the system is observed. Interesting future research directions include
relaxing these modeling assumptions and considering controlled systems under partial state
observability and unobserved jump times.
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Appendices to Chapter 2

2.A Proof of Lemma 2.4

Proof. Let σi = σmax(Ai), i ∈ {1, . . . , k}. Define γt = σst . Then, by sub-multiplicative
property of the matrix norms, we have:

∥Φ(t− 1, τ + 1)∥ = ∥Ast−1
. . . Asτ+1

∥

≤ γt−1 · · · γτ+1 =: Γt−1,τ+1. (0.15)

Given numbers m1, . . . ,mk, define f(m1, . . . ,mk) = σm1
1 · · ·σmk

k . Let mi(t − 1, τ + 1) =
t−1∑

t′=τ+1

1{st′=i}
t−τ−1

denote the number of times the discrete state equals i in [τ + 1, t− 1]. Then,

Γt−1, τ + 1 = γt−1 · · · γτ+1

= f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1.

Since {st}t≥0 is aperiodic and irreducible Markov chain, by the Ergodic Theorem (Theo-
rem 4.1 in [114]) we know that for any initial distribution π0, limt→∞ mi(t − 1, τ + 1) =

π∞(i), a.s. Therefore, there exists a N(ϵ, π0) such that for all t − τ − 1 ≥ N(ϵ, π0),
|mi(t − 1, τ + 1) − π∞(i)| < ϵ a.s. for all i. Define N∗(ϵ) = supπ0∈∆k

N(ϵ, π0), where
∆k denotes the k-dimensional simplex. Let π∗ denote the corresponding arg sup (which lies
in ∆k due to compactness). Then, N∗ = N(ϵ, π∗) is finite due to the Ergodic Theorem.
Therefore, for t− τ − 1 ≥ N∗(ϵ), |mi(t− 1, τ + 1)− π∞(i)| < ϵ.

Furthermore, the rate of convergence of mi(t− 1, τ + 1) to π∞(i) only depends on τ + 1

and t− 1 only through their difference. By the continuity of f(·), for any ϵ′ > 0, there exists
a N ′(ϵ′) such that for all t − τ − 1 ≥ N ′(ϵ′), |f(m1(t − 1, τ + 1), · · · ,mk(t − 1, τ + 1)) −
f(π∞(1), · · · , π∞(k))| < ϵ′ a.s. Hence, almost surely we have:

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))

< f(π∞(1), . . . , π∞(k)) + ϵ′

By (C1) and (C2) conditions, we know f(π∞(1), . . . , π∞(k)) < 1. Now we can pick ϵ′ such
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that f(π∞(1), . . . , π∞(k)) + ϵ′ =: β∗ < 1. Then for all t ≥ 1,

t−1∑
τ=1

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

≤
t−N(ϵ′)−1∑

τ=1

β∗t−τ−1+

t−1∑
τ=t−N ′(ϵ′)

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

<
β∗N ′(ϵ′)

1− β∗ +
t−1∑

τ=t−N ′(ϵ′)

F t−τ−1
∗ ,

where F∗ = max
π(1),...,π(k)∈∆k

f(π(1), . . . , π(k)), which is clearly bounded. As a result, both terms

in the right hand side are bounded which implies the statement in the claim.
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Chapter 3

Relative Almost Sure Regret Bounds for
Certainty Equivalence Control of

Markov Jump Systems

3.1 Overview

In this chapter, we investigate the problem of Reinforcement Learning (RL) in the Markov
Jump Linear Systems framework. The results of this chapter are published in [107].

3.1.1 Organization

This chapter is organized as follows. In Sec 3.2, we review some standard results about
Markov Jump Linear Systems (MJLS) that are useful in our analysis. In Sec. 3.3, we
characterize the notion of almost sure regret criteria. In Sec. 3.4, we present an upper bound
on the regret of adaptive linear policies. In Sec. 3.5, we present our system identification
method and reinforcement learning algorithm. The main results are presented in Sec. 3.6.
We conclude this chapter in Sec. 3.7.

3.2 Background on Markov Jump Linear Systems

We start by a review of stability of autonomous MJLS and the basic results for optimal
control of MJLS.

3.2.1 Stability of Autonomous Markov Jump Linear Systems

Consider an autonomous discrete-time MJLS with continuous state xt ∈ Rn and the
discrete state st ∈ S = {1, 2, . . . , d}. The system starts with a known initial state (x1, s1).
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The continuous state evolves over time according to

xt+1 = Astxt, t ≥ 1, (3.1)

where the set {As ∈ Rn×n}s∈S consists of the system dynamics matrices. The discrete state
evolves in a time-homogeneous Markov manner according to a transition matrix H. We will
refer to the above system as MJLS system ({As}s∈S , H).

We assume that the Markov chain {st}t≥1 is irreducible and aperiodic, and therefore, has
a stationary distribution {ρs}s∈S .

Definition 3.1. The MJLS system (3.1) is called Mean Square Stable (MSS) if for any
initial state (x1, s1), limt→∞ ∥E[xt]∥ = 0, and limt→∞ ∥E[xtx

⊺
t ]∥ = 0.

It can be shown that the two definitions of MSS in Chapter 2 and 3 are equivalent. The
following characterizations of MSS follow from [45, Theorem 3.9].

Proposition 3.1. The following conditions are equivalent:

1. The MJLS system in (3.1) is MSS.

2. Transition probability matrix H and matrices {As}s∈S satisfy:

λmax

(
(H

⊺ ⊗ In2) diag(A1 ⊗ A1, . . . , Ad ⊗ Ad)
)
< 1.

3. The MJLS system (3.1) is exponentially stochastically stable , i.e., there exists β ≥ 1

and 0 < ζ < 1 such that for any initial state (x1, s1), we have

E[∥xt∥2] ≤ βζt∥x0∥2, t ≥ 1.

4. The MJLS system (3.1) is stochastically stable (SS), i.e., for all initial state (x1, s1),
we have

∞∑
t=0

E[∥xt∥2] < ∞.

3.2.2 Optimal Control of Markov Jump Linear Systems

Consider a discrete-time MJLS with continuous state xt ∈ Rn, discrete state st ∈ S,
control input ut ∈ Rm, and disturbance wt ∈ Rn. The system starts with a known initial
state (x1, s1). The continuous state evolves over time according to:

xt+1 = Astxt +Bstut + wt, t ≥ 1, (3.2)
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where {As ∈ Rn×n}s∈S and {Bs ∈ Rn×m}s∈S are the system dynamics matrices, and {wt}t≥1

is an i.i.d. process with E[wt] = 0 and E[wtw
⊺
t ] = σ2

wI. The discrete state evolves in a time-
homogeneous Markov manner, independent of {wt}t≥1, according to a transition matrix H.
We assume that the Markov chain {st}t≥1 is irreducible and aperiodic, and therefore, has a
stationary distribution {ρs}s∈S .

The system incurs a per-step cost

c(xt, st, ut) := x
⊺
tQstxt + u

⊺
tRstut, (3.3)

where {Qs ∈ Rn×n}s∈S and {Rs ∈ Rm×m}s∈S are positive definite matrices. The objective is
to design a controller which observes the state of the system and chooses control inputs to
minimize the long term average cost given by

lim
T→∞

1

T
E

[ T∑
t=1

c(xt, st, ut)

]
. (3.4)

3.2.2.1 Stochastic Stabilizability and Stochastic Detectability

We now define two important properties of MJLS systems:

Definition 3.2. The MJLS system (3.2) is stochastically stabilizable, if there exists gain
matrices {Fs ∈ Rm×n}s∈S such that the autonomous MJLS system ({As − BsFs}s∈S , H) is
MSS.

Definition 3.3. The MJLS system (3.2) is stochastically detectable , if there exists gain
matrices {Ks ∈ Rn×n}s∈S such that the autonomous MJLS system ({As−KsQ

1/2
s }s∈S , H) is

MSS.

Note that one can check stochastic stability and stochastic detectability via Linear Ma-
trix inequalities (LMIs). For instance, a check for stochastic stabilizability is given by [45,
Proposition 3.42].

Proposition 3.2. The MJLS system (3.2) is stochastically stabilizable if and only if there
exist matrices {W (2)

s ∈ Rn×m}s∈S and positive semi-definite matrices {W (1)
s ∈ Rn×n}s∈S and
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{W (3)
s ∈ Rm×m}s∈S such that:∑
s∈S

Hss′(AsW
(1)
s A

⊺
s +Bs(W

(2)
s )

⊺
A

⊺
s + AsW

(2)
s B

⊺
s +BsW

(3)
s B

⊺
s ) < W

(1)
s′ ∀s′ ∈ S, W

(1)
s W

(2)
s

(W
(2)
s )⊺ W

(3)
s

 ≥ 0, ∀s ∈ S,

W (1)
s > 0, ∀s ∈ S.

A similar test for stochastic detectability follows by replacing Bs by (Q
1/2
s )⊺ in the above

proposition.

3.2.2.2 Optimal Control of MJLS

We assume that the system satisfies the following assumption.

Assumption 3.1. The MJLS system in (3.2) is stochastically stabilizable and stochastically
detectable.

The following result follows from [116, Theorem 45 and Theorem 51].

Theorem 3.1. Under Assumption 3.1, the minimum value of the average cost (3.4) is

σ2
w

∑
s∈S

∑
s+∈S

ρsHss+
Tr(Ps+

) (3.5)

and is achieved by the feedback policy

ut = −Lstxt, t ≥ 1, (3.6)

where the gains {Ls}s∈S are given by

Ls = (Rs +B
⊺
s P̄sBs)

−1B
⊺
s P̄sAs, s ∈ S (3.7)

and {Ps}s∈S is the solution of the following set of algebraic Riccati equations:

P̄s =
∑
s+∈S

Hss+
Ps+

, s ∈ S, (3.8)

Ps = Qs + A
⊺
sP̄sAs − A

⊺
sP̄sB

⊺
s (Rs +B

⊺
s P̄sBs)

−1B
⊺
s P̄sAs, s ∈ S. (3.9)

As established in [116, Theorem 45], the optimal control law is stabilizing in the following
sense.
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Proposition 3.3. The autonomous MJLS system ({As −BsLs}s∈S , H) is MSS.

Remark 3.1. The result of Proposition 3.3 in [116, Lemma 45] states that the system
({As − BsLs}s∈S , H) is stochastically stable. As established in Proposition 3.1, stochastic
stability is equivalent to MSS, so we have stated Prop. 3.3 in terms of MSS.

3.3 The Learning Problem

3.3.1 Some Remarks on Notation

3.3.1.1 Notation for Probability Spaces

We need a somewhat elaborate notation to describe our notion of regret. The MJLS
system described above is a stochastic system with two stochastic inputs: the noise process
{wt}t≥1 and the switching process {st}t≥1. In addition, the learning algorithm may randomize
while choosing control actions as well. We assume that the noise process and randomization
done by the algorithm are defined on a probability space (Ω1,F1, µ1) and the switching
process is defined on a separate probability space (Ω2,F2, µ2). Since the processes {wt}t≥1

and {st}t≥1 and the randomization done by the algorithm are independent, we consider the
probability space

(Ω,F , µ) = (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2),

where F1 ⊗ F2 is the product sigma algebra given by σ(D1 × D2 : D1 ∈ F1, D2 ∈ F2),
and µ1 ⊗ µ2 is the product measure on F1 ⊗ F2, i.e., for any D1 ∈ F1, D2 ∈ F2, we have
µ(D1 × D2) = µ1(D1)µ2(D2). We will use the tuple (Ω,F , µ) as the probability space to
define all the system variables. We abbreviate almost surely with respect to measure µ(·) as
µ-a.s. and almost surely with respect to measure µ1(·) as µ1-a.s.

3.3.1.2 Notation for Policy Dependent Sample Paths

To avoid confusion, we also use a slightly elaborate notation to indicate sample paths
of state and action corresponding to a specific policy. Let θ = {As, Bs}s∈S denote the
parameters of the system dynamics. Suppose the control input ut is chosen as a function
of the history of states and actions (x1:t, s1:t, u1:t−1) according to a possibly randomized
history-dependent measurable policy π. Then for any ω = (ω1, ω2) ∈ Ω, we use the notation
{xπ

t (ω), st(ω2), u
π
t (ω)}t≥1 to denote the states and the control actions along the sample path

ω for the system when the controller is following policy π. Note that the discrete component
of state, st(ω2) only depends on ω2 and does not depend on the policy π.
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When it is clear from the context, we will not explicitly indicate the dependence on θ, π,
and ω.

3.3.2 Regret Definition

We are interested in the setting where the system parameters θ are unknown and the cost
parameters {(Qs, Rs)}s∈S and transition matrix H are known. A learning agent observes the
state (xt, st) of the system and chooses the control input ut according to a possibly history-
dependent randomized measurable policy π. For any fixed realization ω1 ∈ Ω1 of the system
noise and possible randomization done by the algorithm, let

Jπ
T (ω1) =

∫
Ω2

T∑
t=1

c(xπ
t (ω1, ω2), st(ω2), u

π
t (ω1, ω2))µ2(dω2)

denote the performance of policy π along the sample path ω1 for the horizon T averaged
over the realizations of mode switching.

The (frequentist) regret of policy π is given by

Rπ
T (ω1) = Jπ

T (ω1)− J
π∗
θ

T (ω1),

where π∗
θ is the optimal policy corresponding to parameters θ.

Note that the notion of regret can be defined at different degrees of granularity. In
particular, regret may be defined as a random variable which depends on the realization of
the noise sequences and the randomizations done by the algorithm. Alternatively, it may be
defined in terms of expectation over noise and algorithm randomization. In this chapter, we
take an intermediate approach: we define regret as a random variable which depends on the
realization of the process noise and the randomizations done by the algorithm, but take the
expectation over the discrete switching sequence.

3.4 An Upper Bound on Regret for Adaptive Linear Policies with

Persistence of Excitation

Let Ft = σ(x1:t−1, s1:t−1, u1:t−1) denote the sigma algebra generated by the observations of
the history of states and actions of the learning agent at the beginning of time t. Motivated
by the structure of the optimal policy presented in Theorem 3.1, we restrict attention to
adaptive linear policies defined below.

Definition 3.4 (Adaptive linear policy). An adaptive linear policy π with persistence of
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excitation is characterized by a sequence of gains {L̂s(t) ∈ Rm×n}s∈S,t≥1, where {L̂s(t)}s∈S
is Ft-measurable, and an independent noise process {νt}t≥1, νt ∈ Rn, where νt ∼ N (0, σ2

t I).
The control input chosen by policy π at time t is given by ut = −L̂st(t)xt + νt.

Theorem 3.2. Consider an adaptive linear policy π with persistence of excitation with gains
{L̂s(t)}s∈S,t≥1 and noise-level {σ2

t }t≥1. The regret of policy π may be decomposed as follows

Rπ
T (ω1) = O

(
Rπ

1,T (ω1)
)
+O

(
Rπ

2,T (ω1)
)
+Rπ

3,T (ω1) (3.10)

where

Rπ
1,T (ω1) =

∫
Ω2

T∑
t=1

rπ1,t(x
π
t (ω1, ω2), st(ω2))µ2(dω2)

with rπ1,t(xt, st) given by

x
⊺
t (L̂st(t)− Lst)

⊺
[Rst +BstP̄stBst ](L̂st(t)− Lst)x

⊺
t ,

and

Rπ
2,T (ω1) =

∫
Ω2

T∑
t=1

rπ2,t(νt(ω1), st(ω2))µ2(dω2)

with rπ2,t(νt, st) given by ν⊺
t [Rst +BstP̄stBst ]νt, and

Rπ
3,T (ω1) =

∫
Ω2

rπ3,t(x
π
T+1(ω), x

π∗
θ

T+1(ω), sT+1(ω2))µ2(dω2)

with ω = (ω1, ω2) and rπ3,t(xT+1, x
π∗
θ

T+1, sT+1) given by (x
π∗
θ

T+1)
⊺PsT+1

x
π∗
θ

T+1 − x⊺
T+1PsT+1

xT+1,

where recall that xπ∗
θ denotes the state corresponding to the optimal policy π∗

θ .

The proof is presented in Appendix 3.A.

3.5 A Certainty Equivalence Based Learning Algorithm

3.5.1 Overview of the Learning Algorithm

We consider a specific type of certainty equivalence-based learning algorithm and analyze
its regret by using Theorem 3.2. The algorithm consists of two phases: a system identification
phase which lasts for a fixed time T (0); and an adaptation phase, which last for the remainder
of the time that the system is running. The adaptation phase runs in episodes, and the length
of k-th episode is ⌊αkT (0)⌋, where α > 1 is a constant. We use t(k) to denote the start time
of episode k and use T (k) to denote the length of episode k.
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Before describing the two phases in detail, we need to define the notion of stabilizing
gains.

Definition 3.5. A set of gain matrices {L̄s ∈ Rm×n}s∈S is said to be stabilizing for the
MJLS system (3.2) if the autonomous system ({As −BsL̄s}s∈S , H) is MSS.

We make the following assumption:

Assumption 3.2. The learning agent has access to a set of stabilizing controllers {L̄s}s∈S .

Assumption 3.2 is a common assumption in the literature of reinforcement learning for
LQR systems [27, 29, 31, 34, 71]. During the system identification phase, the control input
is chosen as ut = −L̄stxt + νt, where νt is i.i.d., zero mean Gaussian random noise with
covariance I/

√
T (0). We then use the system identification algorithm used in the next section

to generate an initial estimate θ̂(0).
During episode k of the adaption phase, at time t(k), we pick control gains {L̂(k)

s }s∈S
to be the optimal control gains corresponding to the estimate θ̂(k−1). During the episode,
we choose the control input as ut = −L̂

(k)
st xt + νt, where νt is i.i.d., zero mean Gaussian

random noise with covariance I/
√
T (k). At the end of the k-th episode, we use the system

identification algorithm described in the next section to generate a new estimate θ̂(k) based
on all the data seen in episode k.

A detailed description of the learning algorithm is presented in Algorithm 1.

3.5.2 The System Identification Algorithm

In this section, we describe the system identification algorithm used in both phases.
This algorithm is a variation of the switched least squares system identification algorithm
presented in Chapter 2 for autonomous system.

For uniformity of notation, we allow k = 0 to mean the system identification phase and
set t(0) = 1 and L̂

(0)
s = L̄s for s ∈ S. Now consider a generic k-th episode, k ∈ {0, 1, . . . },

which is of length T (k). During this episode, the control input is chosen as

ut = −L̂(k)
st xt + νt,

where νt is random noise chosen as νt ∼ N (0, σ2
(k)I), where σ2

(k) = 1/
√
T (k). Thus, Eq. (3.2)

may be written as
xt+1 = Astxt −BstL̂

(k)
st xt +Bstνt + wt (3.11)

or, equivalently,
xt+1 = η(k)st zt + wt. (3.12)
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Algorithm 1: Certainty equivalence based learning algorithm
input : A set of stabilizing controllers {L̄s}s∈S

Time T (0); Scaling factor α > 1.

System ID :
1 Initialize L̂

(0)
s = L̄s, for all s ∈ S.

2 Initialize t(0) = 1.
3 for time t ∈ {t(0), . . . , t(0) + T (0) − 1} do
4 Sample νt ∼ N (0, σ2

(0)I), where σ2
(0) = 1/

√
T (0).

5 Apply control input ut = L̂
(0)
st xt + νt.

6 Generate estimate θ̂(0) using (3.13) and (3.14).

Adaptation:
7 for episode k = 1, 2, . . . do
8 Initialize t(k) = t+ 1; T (k) = ⌊αkT (0)⌋.
9 Choose {L̂(k)

s }s∈S using (3.7) for system θ̂(k−1).
10 Set σ2

(k) = 1/
√
T (k).

11 for time t ∈ {t(k), . . . , t(k) + T (k) − 1} do
12 Sample νt ∼ N (0, σ2

(k)I).
13 Apply control input ut = L̂

(k)
st xt + νt.

14 Generate estimate θ̂(k) using (3.13) and (3.14)

where {η(k)s ∈ Rn×(n+m)}s∈S is given by

η(k)s := [As −BsL̂
(k)
s , Bs], s ∈ S,

and z⊺t := [x⊺
t , ν

⊺
t ] ∈ Rn+m.

At the end of the episode, we generate estimates η̂(k) := {η̂(k)s ∈ Rn×(n+m)}s∈S by solving
the following switched least squares problem:

η̂(k) = argmin
η(k)={η(k)s :s∈S}

t(k)+T (k)−1∑
t=t(k)

∥xt+1 − η(k)st zt∥2. (3.13)

We then compute estimates {B̂(k)
s }s∈S and {Â(k)

s }s∈S as:

B̂(k)
s = η̂(k)s

[
0n×n

Im×n

]
, Â(k)

s = η̂(k)s

[
In×n

L̂
(k)
s

]
, s ∈ S. (3.14)

We denote the estimated parameters as θ̂
(k)
s := [Â

(k)
s , B̂

(k)
s ], s ∈ S and use θ̂(k) := {θ̂(k)s }s∈S
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to denote the estimated parameters of the model.

3.6 The Main Results

3.6.1 Asymptotic Regret of Certainty Equivalence Algorithm

In our analysis, we need to assume that the proposed learning algorithm at all times
generates estimates such that the gains corresponding to those estimates stabilize the original
system.

Definition 3.6. Given the set of stabilizing controllers {L̄s}s∈S , time T0 and scaling factor
α, let A0 be the set of all sample paths ω1 ∈ Ω1 such that for almost all ω2 ∈ Ω2 and k ≥ 1

the gains {L̂(k)
s (ω1, ω2)}s∈S are stabilizing for MJLS system (3.2).

Assumption 3.3. We assume µ1(A0) > 0.

In our results below, we restrict attention to the sample paths ω1 ∈ A0. Note that the
process {st}t≥0 remains Markov on the set A0×Ω2 with the same transition probabilities. We
assume that µ1(A0) > 0, which is weaker than the stability assumption implicitly imposed
in [31] for (non-switching) LQR model, where it was assumed that µ(A0) = 1.

By an argument similar to that used in Chapter 2 for autonomous systems, we can show
that if the controller used in an episode is stable and the episode is asymptotically large,
the estimates generated by switched least squares system identification algorithm described
in Sec. 3.5.2 converge almost surely to the correct parameters. We can also characterize the
rate of convergence, as shown below:

Theorem 3.3. On the set A0, the estimate θ̂(k) is strongly consistent, i.e.

lim
k→∞

∥θ̂(k) − θ∥ = 0, µ1 − a.s.

Furthermore, the error of the system identification method is upper bounded by:

lim sup
k→∞

∥θ̂(k) − θ∥√
log(T (k))/σ(k)T (k)

< ∞, µ1-a.s. (3.15)

The proof is presented in Appendix 3.B.
Following theorem establishes the regret bound for Algorithm 1. This regret matches with

the regret of LQR problems established in [26, 29, 31, 34, 73] and the regret of MJLS-LQR
established in [71].
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Theorem 3.4. On the set A0, the regret of Algorithm 1 is given by:

Rπ̂
T ≤ O(

√
T log(T )) µ1-a.s.

The proof is presented in Appendix 3.C.

3.6.2 Sufficient Conditions for Stability

In characterizing the almost sure regret of adaptive control problems, ensuring the stabil-
ity of the system is a challenging problem. Our results in Theorems 3.3 and 3.4 are derived
on the set A0. In this section, we try to weaken this requirement by characterizing a set
which is larger than A0. For the MJLS system in (3.2) with parameters θ, let Lθ = {Lθ

s}s∈S
denote the set of optimal control gains. Define:

Bϵ(L
θ) :=

{
{L̂s}s∈S : ∥L̂s − Lθ

s∥ ≤ ϵ,∀s ∈ S
}
,

as a ball in the space of gain matrices with radius ϵ centered at Lθ.

Lemma 3.1. [71, Lemma C.1] For the MJLS in (3.2), there exists a radius ϵθ such that all
the gains {L̂s}s∈S ∈ Bϵθ

(Lθ) are stabilizing for θ.

We define Bδ(θ) :=
{
{θ̂s}s∈S : ∥θ̂s − θs∥ ≤ δ, ∀s ∈ S

}
. Now let δθ be the radius such that

if θ̂ ∈ Bδθ
(θ) then Lθ̂ ∈ Bϵθ

(Lθ) .
We now characterize the connection between the assumptions on the stability and length

of the identification phase T (0). Consider a system identification setup in which we use
adaptive linear policy {L̊s}s∈S with persistent of excitation νt ∼ N (0, σ̊2I), where {L̊s}s∈S is
a stabilizing controller. We get xt+1 = η̊stzt + wt, where η̊s := [As − BsL̊s, Bs]. We estimate
ˆ̊ηT := {ˆ̊ηs,T ∈ Rn×(n+m)}s∈S by solving:

ˆ̊ηT = argmin
η̊={η̊s:s∈S}

T∑
t=1

∥xt+1 − η̊stzt∥
2. (3.16)

We generate the estimate θ̂T from ˆ̊ηT similarly to (3.14). To explicitly emphasize the func-
tional dependence of θ̂T on L̊ = {L̊s}s∈S and ω ∈ Ω, we use the notation θ̂T (L̊, ω). By
Theorem 2.2, we have that if {L̊s}s∈S is a stabilizing controller, then

lim
T→∞

∥θ̂T (L̊, ω)− θ∥ = 0, µ− a.s. (3.17)
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and the error of the system identification is upper bounded by:

lim sup
T→∞

∥θ̂T (L̊, ω)− θ∥√
log(T )/σ̊2T

< ∞, µ-a.s. (3.18)

Now for any generic stabilizing gain L̃ = {L̃s}s∈S , define

Tδθ
(L̃, ω) := inf{T ∈ N : ∀t ≥ T, ∥θ̂T (L̃, ω)− θ∥ ≤ δθ},

T̄δθ
(ω) := sup

L̃∈Bϵθ
(Lθ)

Tδθ
(L̃, ω).

A consequence of the result in (3.18) is that for any stabilizing L̃, P(Tδθ
(L̃, ω) < ∞) = 1

and consequently P(T̄δθ
(ω) < ∞) = 1. For any T > 0, define

Aδθ
(T ) := {ω ∈ Ω : T̄δθ

(ω) ≤ T − 1}.

Proposition 3.4. The set Aδθ
(T ) satisfies following properties:

1. If T < T ′, we have Aδθ
(T ) ⊆ Aδθ

(T ′).

2. For any ω ∈ Ω, there exists a T0 such that: ω ∈ Aδθ
(T0) ⊆ Ω, µ-a.s.

3. There exists a T0 < ∞ such that Ω = Aδθ
(T0), µ-a.s.

Proof. The first statement follows from the definition of Aδθ
(T ). The second statement is a

consequence of Theorem 2.2. To prove that, we use contradiction. Suppose there exists a
subset Ω′ ⊂ Ω with a non-zero measure µ(Ω′) > 0 such that T0 does not exist. This implies
that the switched least squares algorithm is not convergent on the set Ω′. Since we assumed
that µ(Ω′) > 0, this implies that switched least squares is not a strongly consistent estimator
and that contradicts Theorem 2.2. As a result, any sample path ω ∈ Ω for which T0 does
not exist should have a zero measure. To show the third statement, similarly assume there
exists a subset Ω′ ⊂ Ω with a non-zero measure µ(Ω′) > 0 such that T0 is not finite. This
implies that the convergence rate in (3.18) is violated infinitely often on the set Ω′; however,
this is in contradiction with the convergence rate established in Theorem 2.2.

Theorem 3.5. (Sufficient condition for stability) Suppose the initial stabilizing con-
troller {L̄s}s∈S ∈ Bϵθ

(Lθ), then the results of Theorem 3.3 and 3.4 are valid on the set
Aδθ

(T (0)).

The proof is presented in Appendix 3.D.
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3.7 Conclusion and Future Directions

In this chapter, we investigated the problem of simultaneous learning and control of a
Markov jump linear system using complete state observation. We derived an almost sure
regret decomposition for the general class of adaptive linear policies with persistence of
excitation. We proposed a version of certainty equivalence controller which uses the switched
least squares method for the closed-loop system identification. Our analysis shows that the
error of the system identification method is O(

√
log(T )/T ), and the regret of certainty

equivalence controller is upper-bounded by O(
√
T log(T )) almost surely. Our guarantees are

stated for specific subset of Ω. We show we can make this subset arbitrary large by increasing
T (0). Finding an algorithm with performance guarantees independent of the set Aδθ

(T (0)),
extending these results to the case of partial observation and analyzing algorithms such as
Thompson sampling with the tool developed in Theorem 3.2 is left for future works.
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Appendices to Chapter 3

3.A Proof of Theorem 3.2

We start with the following completion of squares lemma, which is adapted from [117,
Lemma 6.1].

Lemma 3.2. For x ∈ Rn and u ∈ Rm and matrices A,B, S,R with appropriate dimensions,
we have

u
⊺
Ru+ (Ax+Bu)

⊺
P (Ax+Bu) + x

⊺
Qx =

(u+ L(P,R,A,B)x)
⊺
[R +B

⊺
PB](u+ L(P,R,A,B)x) + x

⊺
K(P,A,B,R,Q)x,

where

L(P,R,A,B) := −(R +B
⊺
PB)−1B

⊺
PA.

K(P,A,B,R,Q) := Q+ A
⊺
PA− A

⊺
PB(R +B

⊺
PB)−1B

⊺
PA.

Remark 3.2. Notice that in (3.8), we have:

Ls = L(P̄s, Rs, As, Bs), Ps = K(P̄s, As, Bs, Rs, Qs). (0.19)

We assume that π and ω1 are fixed and do not explicitly include their dependence on
the terms. Instead, we will use xt as a short-hand for xπ

t (ω) and x∗
t as a short-hand for

x
π∗
θ

t (ω). We also use s̃t instead of st(ω2), where we use the superscript tilde to highlight the
fact that we are not referring to a specific realization of the discrete state at time t rather
marginalizing over all possible realizations. By recursively applying completion of squares
(Lemma 3.2), we can show the following:

Lemma 3.3. For any policy π we have

∫
Ω2

[ T∑
t=1

c(xt, st, ut) + x
⊺
T+1PsT+1

xT+1

]
µ2(dω2)

=

∫
Ω2

[
x
⊺
1P̄s̃1

x1 +
T∑
t=1

(ut + Ls̃txt)
⊺
[Rs̃t +B

⊺
s̃tP̄s̃tBs̃t ](ut + Ls̃txt)

+
T∑
t=1

[
2w

⊺
t P̄s̃t(As̃txt +Bs̃tut) + w

⊺
t P̄s̃twt

]]
µ2(dω2). (0.20)
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The proof is presented in Appendix 3.E. Using the decomposition in (0.20) in the expres-
sion for regret, and substituting ut = −L̂s̃t(t)xt+νt for policy π and substituting ut = −Ls̃txt

for policy π∗, we get the following:

Lemma 3.4. For any adaptive linear policy π with persistence of excitation, we have

Rπ
T (ω1) =

∫
Ω2

[ T∑
t=1

x
⊺
t (L̂s̃t(t)− Ls̃t)

⊺
[Rs̃t +B

⊺
s̃tP̄s̃tBs̃t ](L̂s̃t(t)− Ls̃t)xt

+
T∑
t=1

[
ν
⊺
t [Rs̃t +B

⊺
s̃tP̄s̃tBs̃t ]νt + 2ν

⊺
t [Rs̃t +B

⊺
s̃tP̄s̃tBs̃t ](L̂s̃t(t)− Ls̃t)xt

]
+

T∑
t=1

2w
⊺
t P̄s̃t

[
(As̃t −Bs̃tLs̃t)(xt − x∗

t )−Bs̃t(L̂s̃t(t)− Ls̃t)xt +Bs̃tνt
]

+ [(x∗
T+1)

⊺
P̄s̃T+1

x∗
T+1 − x

⊺
T+1P̄s̃T+1

xT+1]

]
µ2(dω2). (0.21)

We first recall the following result [52, Corollary 10].

Lemma 3.5. Given a filtration {Ft}t≥1, suppose wt is a martingale difference process adapted
to {Ft}t≥1 and yt+1 is Ft-measurable. Then,

T∑
t=1

y
⊺
twt = O

(√
YT log(YT )

)
, a.s.

where YT =
∑T

t=1 y
⊺
t yt.

An implication of Lemma 3.5 is that

∫
Ω2

[ T∑
t=1

w
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

= O
(√

Rπ
1,T (ω1) logRπ

1,T (ω1)
)
, (0.22)

where Rπ
1,T (ω1) is defined in Theorem 3.2. By the same argument, we also have

∫
Ω2

[ T∑
t=1

ν
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

= O
(√

Rπ
1,T (ω1) logRπ

1,T (ω1)
)
, (0.23)
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and ∫
Ω2

[ T∑
t=1

2w
⊺
t P̄s̃tBs̃tνt

]
µ2(dω2)

= O
(√

Rπ
2,T (ω1) logRπ

2,T (ω1)
)
. (0.24)

Now, by Prop. 3.3, the autonomous MJLS system ({As − BsLs}s∈S , H) is MSS. Based on
the fact that MSS implies exponential stochastic stability (Prop. 3.1), we can show that

∫
Ω2

[ T∑
t=1

w
⊺
t P̄s̃t(As̃t −Bs̃tLs̃t)(xt − x∗

t )

]
µ2(dω2)

= O
(∫

Ω2

[ T∑
t=1

w
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

)
(0.25)

which is therefore also upper bounded by the right hand side of (0.22). The result of
Theorem 3.2 then follows from substituting (0.22)–(0.25) in Lemma 3.4.

3.B Proof of Theorem 3.3

The proof of this theorem is based on a notion of stability in the average sense defined
in Chapter 2.

Definition 3.7. Let {xt}t≥1 denote the state process corresponding to the MJLS system
Astxt+wt. We say this system is stable in the average sense, if:

∑T
t=1 ∥xt∥2 = O(T ) µ-a.s.,

We recall Proposition 2.3 from Chapter 2.

Proposition 3.5. If the MJLS system ({As}s∈S , H) is MSS, then the MJLS system: Astxt+

wt is stable in the average sense.

Proof. By the assumptions in Theorem 3.3, we know ({As−BsLs}s∈S , H) is MSS; therefore,
by Proposition 3.5, and the fact that σ2

t is finite, we get that MJLS xt+1 = (Ast−BstL̂
(k)
st )xt+

Bstνt + wt is stable in the average sense. Recall that η
(k)
st :=

[
Ast −BstL̂

(k)
st , Bst

]
, and

zt :=

[
xt

νt

]
, and we have:

xt+1 = η(k)st zt + wt. (0.26)

Let T (k)
i,T = {t(k) ≤ t < t(k) + T : st = i} denote the time indices until the time T , when the

discrete state of the system equals i at the k-th episode. Note that for t ∈ T (k)
i,T , ηst = ηi.
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Therefore, we have:

η̂
(k)
i,T := argmin

η

∑
t∈T (k)

i,T

∥xt+1 − ηizt∥2, ∀i ∈ {1, . . . , d}.

Let Zi,T denote
∑

t∈T (k)
i,T

ztz
⊺
t , which we call the unnormalized empirical covariance of the aug-

mented state process when st = i. Now we look at λmax(
∑

t∈T (k)
i,T

ztz
⊺
t ) and λmin(

∑
t∈T (k)

i,T
ztz

⊺
t ).

We have:

λmax(
∑

t∈T (k)
i,T

ztz
⊺
t ) ≤ tr(

∑
t∈T (k)

i,T

ztz
⊺
t )

=
∑

t∈T (k)
i,T

∥zt∥2 ≤
T∑
t=1

∥zt∥2

By Proposition 3.5, we know
∑T

t=1 ∥xt∥2 = O(T )µ-a.s. and by [52, Eq. 3.1] we know∑T
t=1 ∥νt∥2 = O(T )µ-a.s., which implies:

λmax(
∑

t∈T (k)
i,T

ztz
⊺
t ) = O(T ) µ-a.s.

On the other hand, we have:

ztz
⊺
t =

[
xtx

⊺
t xtν

⊺
t

νtx
⊺
t νtν

⊺
t

]
Similar to Lemma 2.3, we can show

∑
t∈T (k)

i,T
∥xtν

⊺
t + νtx

⊺
t ∥ = o(T )µ-a.s.; therefore,

λmin(
∑

t∈T (k)
i,T

ztz
⊺
t ) = o

(
min

{
λmin(

∑
t∈T (k)

i,T

xtx
⊺
t ), λmin(

∑
t∈T (k)

i,T

νtν
⊺
t )
})

µ-a.s.

By Proposition 2.1, we know lim infT→∞ λmin(
∑

t∈Ti,T xtx
⊺
t )/T

(k)
i,T ≥ 0 µ-a.s., and since

σ2
(k) > 0, we get lim infk→∞ λmin(

∑
t∈T (k)

i,T
νtν

⊺
t )/T

(k)
i,T ≥ σ2

(k) µ-a.s. Therefore,

λmin(
∑

t∈T (k)
i,T

ztz
⊺
t ) > σ2

(k)Ti,T µ-a.s.

Given a filtration {Gt}t≥0, consider the following regression model:

yt = β
⊺
zt + wt, t ≥ 0, (0.27)
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where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-measurable covariate process, yt is
the observation process, and wt ∈ R is a noise process. Then the least squares estimate β̂T

of β is given by:

β̂T = argmin
β⊺

T∑
τ=0

∥yτ − β
⊺
zτ∥2. (0.28)

Theorem 2.4 characterizes the rate of convergence of β̂T to β in terms of unnormalized
covariance matrix of covariates ZT :=

∑T
τ=0 zτz

⊺
τ . Therefore, by Theorem 2.4, and the fact

that σ2
(k)Ti,T = O(σ2

(k)T ) we get that:

lim
k→∞

∥θ̂(k) − θ∥ = O
(√

log(T (k))/σ(k)T (k)
)

µ1-a.s.

3.C Proof of Theorem 3.4

Lemma 3.6. The regret in the k-th episode satisfies:

lim sup
k→∞

∫
Ω2

[∑t(k)+T (k)−1
τ=t(k) c(xτ , sτ , uτ )

]
µ2(dω2)

(T (k−1))1/2 log(T (k−1))
< ∞ µ-a.s.

Proof. In the k-th episode, L̂(k)
s is computed based on the estimate θ̂(k−1). Assumption 3.3

implies that on the set A0, the set of the gains {L̂(k)
s }s∈S is stabilizing for all k ≥ 0. Setting

σ2
(k−1) = 1/

√
T (k−1) in Theorem 3.3 implies:

lim sup
k→∞

∥θ̂(k−1) − θ∥√
log(T (k−1))/(T (k−1))1/4

< ∞, µ-a.s. (0.29)

By the continuity of the gains L̂
(k)
s in the parameter θ̂(k−1) we get,

lim sup
k→∞

∥L̂(k)
s − Ls∥√

log(T (k−1))/(T (k−1))1/4
< ∞, µ-a.s. (0.30)

In the proof of Theorem 3.3, we established that

t(k)+T (k)−1∑
τ=t(k)

∥xt∥2 = O(T (k)) µ-a.s.

The gain L̂
(k)
s is fixed during the episode. Therefore by substituting in ∥L̂(k)

s −Ls∥,
∑t(k)+T (k)−1

τ=t(k) ∥xt∥2

51



in the Rπ
1,T (ω1), and

∑t(k)+T (k)−1
τ=t(k) ∥νt∥2 = O(

√
T (k)) in Rπ

2,T , we get the desired result.

Let T (m) =
∑m

i=0 T
(i) = T (0)(αi+1 − 1)/(α− 1), which implies

m = O(logα(T̃
(k)/T (0)). (0.31)

Since T0 is finite, the regret incurred by the controller is also finite. As a result, we compute
the regret starting from episode 1.

Proof. We have

Rπ
T (ω1) =

m∑
i=1

∫
Ω2

[ t(k)+T (k)−1∑
τ=t(k)

c(xτ , sτ , uτ )
]
µ2(dω2)

(a)
=

m∑
i=1

O(
√
T (i−1) log(T (i−1)))

(b)
=

m∑
i=1

O(
√
αi−1T0 log(α

i−1T0))

=
m∑
i=1

O(
√
αi−1 log(αi−1))

=
m−1∑
i=0

O(
√
αi log(αi))

=
m−1∑
i=0

O((i)(
√
α)i)

(c)
= O((m− 1)

√
α
m−1

), (0.32)

where (a) follows from Lemma 3.6, (b) follows from definition of T (i), and (c) follows from:

m−1∑
i=0

√
α
i
=

√
α
m − 1√
α− 1

m−1∑
i=0

i
√
α
i
=

√
α

d

d
√
α

(m−1∑
i=0

√
α
i
)
=

√
α

d

d
√
α

(√α
m − 1√
α− 1

)
=

(m− 1)
√
α
m+1 −m

√
α
m
+
√
α

(
√
α− 1)2

= O((m− 1)
√
α
m−1

).

The result of this theorem follows by substituting the expression of m from (0.31), in (0.32).
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3.D Proof of Theorem 3.5

Proof. We prove this result by induction. We show that on the set Aδθ
(T (0)) if θ̂(k) ∈ Bδθ

(θ),
then θ̂(k+1) ∈ Bδθ

(θ). As the basis of induction, since {L̄s}s∈S ∈ Bϵθ
(Lθ), then Theorem 3.3

and the definition of Aδθ
(T (0)) imply that θ̂(0) ∈ Bδθ

(θ).
Now assume that θ̂(k) ∈ Bδθ

(θ). Lemma 3.1 implies that {L̂(k)
s }s∈S is stabilizing. More-

over, since T (k) ≥ T (0), Theorem 3.3 and definition of Aϵθ
(T (0)) imply that ∥θ̂(k+1)− θ∥ ≤ ϵθ.

Hence θ̂(k+1) ∈ Bδθ
(θ). This completes the proof of the induction step.

3.E Proof of Lemma 3.3

Proof. We start by adding and subtracting
∫
Ω2

[
x⊺
TPsT

xT

]
µ2(dω2) to

∫
Ω2

[∑T
t=1 c(xt, st, ut)

]
(dω2),

we have ∫
Ω2

[ T∑
t=1

c(xt, st, ut)
]
(dω2) =∫

Ω2

[ T−1∑
t=1

x
⊺
tQstxt + u

⊺
tRstut + x

⊺
TPsT

xT − x
⊺
TPsT

xT

]
µ2(dω2). (0.33)

On the other hand, using the telescopic series, we can rewrite
∫
Ω2

[
x⊺
TPsT

xT

]
µ2(dω2) as

following

∫
Ω2

[
x
⊺
TPsT

x
⊺
T

]
(dω2) =

∫
Ω2

[
x
⊺
1Ps1

x
⊺
1 +

T−1∑
t=1

(
x
⊺
t+1Pst+1

x
⊺
t+1 − x

⊺
tPstx

⊺
t

)]
µ2(dω2) (0.34)

By substituting (0.34) in (0.33), we get

∫
Ω2

[ T∑
t=1

c(xt, st, ut)
]
µ2(dω2) (0.35)

=

∫
Ω2

[
x
⊺
1Ps1

x1 − x
⊺
TPsT

xT +
T−1∑
t=1

(
x
⊺
tQstxt + u

⊺
tRstut + x

⊺
t+1Pst+1

xt+1 − x
⊺
tPstxt

)]
µ2(dω2)

=

∫
Ω2

[
x
⊺
1Ps1

x1 − x
⊺
TPsT

xT +
T−2∑
t=1

(
x
⊺
tQstxt + u

⊺
tRstut + x

⊺
t+1Pst+1

xt+1 − x
⊺
tPstxt

)]
µ2(dω2)

+

∫
Ω2

∑
sT∈S

HsT−1,sT

(
x
⊺
T−1QsT−1

xT−1 + u
⊺
T−1RsT−1

uT−1 + x
⊺
TPsT

xT − x
⊺
T−1PsT−1

xT−1

)
µ2(dω2)

(0.36)
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By substituting xt+1 = Astxt +Bstut +wt, in (0.36), we can simplify the last term of (0.36)
as following∫

Ω2

∑
sT∈S

HsT−1,sT

[
x
⊺
T−1QsT−1

xT−1 + u
⊺
T−1RsT−1

uT−1 − x
⊺
T−1PsT−1

xT−1

+
(
AsT−1

xT−1 +BsT−1
uT−1 + wT−1

)⊺
PsT

(
AsT−1

xT−1 +BsT−1
uT−1 + wT−1

)]
µ2(dω2)

=

∫
Ω2

[
x
⊺
T−1QsT−1

xT−1 + u
⊺
T−1RsT−1

uT−1 − x
⊺
T−1PsT−1

xT−1 + w
⊺
T−1

∑
sT∈S

HsT−1,sT
PsT

wT−1

+
(
AsT−1

xT−1 +BsT−1
uT−1

)⊺ ∑
sT∈S

HsT−1,sT
PsT

(
AsT−1

xT−1 +BsT−1
uT−1

)
+ 2w

⊺
T−1

∑
sT∈S

HsT−1,sT
PsT

(
AsT−1

xT−1 +BsT−1
uT−1

)]
µ2(dω2)

=

∫
Ω2

[
x
⊺
T−1QsT−1

xT−1 + u
⊺
T−1RsT−1

uT−1 − x
⊺
T−1PsT−1

xT−1

+
(
AsT−1

xT−1 +BsT−1
uT−1

)⊺
P̄sT−1

(
AsT−1

xT−1 +BsT−1
uT−1

)
+ 2w

⊺
T−1P̄sT−1

(
AsT−1

xT−1 +BsT−1
uT−1

)
+ w

⊺
T−1P̄sT

wT−1

]
(dω2). (0.37)

By Lemma 3.2, we can simplify (0.37) as following∫
Ω2

[
(uT−1 + L(P̄sT−1

, RsT−1
, AsT−1

, BsT−1
)xT−1)

⊺

[RsT−1
+B

⊺
sT−1

P̄sT−1
BsT−1

](uT−1 + L(P̄sT−1
, RsT−1

, AsT−1
, BsT−1

)xT−1)+

x
⊺
T−1K(P̄sT−1

, AsT−1
, BsT−1

, RsT−1
, QsT−1

)xT−1 − x
⊺
T−1PsT−1

xT−1 + w
⊺
T−1P̄sT−1

wT−1

+ 2w
⊺
T−1P̄sT−1

(
AsT−1

xT−1 +BsT−1
uT−1

)]
(dω2)

(a)
=

∫
Ω2

[
(uT−1 + L(P̄sT−1

, RsT−1
, AsT−1

, BsT−1
)xT−1)

⊺
(dω2)

[RsT−1
+B

⊺
sT−1

P̄sT−1
BsT−1

](uT−1 + L(P̄sT−1
, RsT−1

, AsT−1
, BsT−1

)xT−1)

+ 2w
⊺
T−1P̄sT−1

(
AsT−1

xT−1 +BsT−1
uT−1

)
+ w

⊺
T−1P̄sT−1

wT−1

]
(dω2),
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where (a) follows from the fact that Pst is the fixed point solution in (0.19). By repeating
the same arguments for other time indices in (0.35), we get

∫
Ω2

[ T∑
t=1

c(xt, st, ut)
]
(dω2) =

=

∫
Ω2

[
x
⊺
1Ps1

x1 − x
⊺
TPsT

xT

]
+∫

Ω2

T−1∑
t=1

[
(ut + Lstxt)

⊺
[Rst +B

⊺
stP̄stBst ](ut + Lstxt)

+ 2w
⊺
t P̄st

(
Astxt +Bstut

)
+ w

⊺
t P̄stwt

]
(dω2).
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Chapter 4

Concentration of Cumulative Reward in
Markov Decision Processes

4.1 Overview

In this chapter, we investigate the concentration properties of cumulative reward in finite-
state and finite action Markov decision processes. The results of this chapter are available
in [118].

4.1.1 Organization

The rest of this chapter is organized as follows. The problem formulation, along with
the underlying assumptions, are presented in Section 4.2. The main results for the average
reward setting are presented in Section 4.3. The main results for the discounted reward
setting are presented in Section 4.4. The main results for the finite-horizon setting are
presented in Section 4.5. Our concluding remarks are presented in Section 4.6. Moreover,
Appendix 4.A presents a background discussion on Markov chain theory. Appendix 4.B
presents a background discussion on concentration of martingale sequences. Proofs of main
results are presented in the remaining sections: Appendix 4.C for the average reward MDPs,
Appendix 4.D for the discounted reward MDPs, and Appendix 4.E for finite-horizon MDPs.

4.2 Problem Formulation

4.2.1 System Model

Consider a Markov Decision Process (MDP) with state space S and action space A. We
assume that S and A are finite sets and use St ∈ S and At ∈ A to denote the state and

56



action at time t. At time t = 0, the system starts at an initial state S0, which is a random
variable with probability mass function ρ. The state evolves in a controlled Markov manner
with transition matrix P , i.e., for any realizations s0:t+1 of S0:t+1 and a0:t of A0:t, we have:

P(St+1 = st+1|S0:t = s0:t, A0:t = a0:t) = P (st+1|st, at).

In the sequel, we will use the notation E[f(S+)|s, a] to denote the expectation with respect
to P , i.e.,

E
[
f(S+)|s, a

]
=

∑
s+∈S

f(s+)P (s+|s, a).

At each time t, an agent observes the state of the system St and chooses the control action
as At ∼ πt(S0:t, A0:t−1), where πt : St × At−1 → ∆(A) is the decision rule at time t. The
collection π = (π0, π1, . . .) is called a policy. We use Π to denote the set of all (history
dependent and time varying) policies.

At each time t, the system yields a per-step reward r(St, At), where r : S×A → [0, Rmax].
Let Rπ

T denote the total reward received by policy π until time T , i.e.

Rπ
T =

T−1∑
t=0

r(St, At), where At ∼ π(S0:t, A0:t−1).

Note that Rπ
T is a random variable and we sometimes use the notation Rπ

T (ω), ω ∈ Ω, to
indicate its dependence on the sample path. The long-run expected average reward of a
policy π ∈ Π starting at the state s ∈ S is defined as

Jπ(s) = lim inf
T→∞

1

T
Eπ

[
Rπ

T |S0 = s
]
, ∀s ∈ S,

where Eπ is the expectation with respect to the joint distribution of all the system variables
induced by π. The optimal performance J∗ starting at state s ∈ S is defined as

J∗(s) = sup
π∈Π

Jπ(s), ∀s ∈ S.

A policy π∗ is called optimal if

Jπ∗
(s) = J∗(s), ∀s ∈ S.

4.2.2 The Average Reward Planning Setup

Suppose the system model M = (P, r) is known.
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Definition 4.1. Given a model M = (P, r), define ΠSD ⊆ Π to be the set of all stationary
deterministic Markov policies, i.e., for any π = (π0, π1, . . .) ∈ ΠSD, we have πt : S → A (i.e.,
At = πt(St)), and πt is the same for all t.

With a slight abuse of notation, given a decision rule π : S → A, we will denote the
stationary policy (π, π, π, . . .) by π and interpret Rπ

T and Jπ as R(π,π,...)
T and J (π,π,...), respec-

tively. A stationary policy π ∈ ΠSD induces a time-homogeneous Markov chain on S with
transition probability matrix

P π(st+1|st) := P (st+1|st, π(st)), ∀st, st+1 ∈ S.

Definition 4.2 (AROE Solvability). A Model M = (P, r) is said to be AROE (Average
Reward Optimality Equation) solvable if there exists a unique optimal long-term average
reward λ∗ ∈ R and an optimal differential value function V ∗ : S → R that is unique up to
an additive constant that satisfy:

λ∗ + V ∗(s) = max
a∈A

[
r(s, a) + E

[
V ∗(S+)

∣∣s, a]], ∀s ∈ S. (AROE)

Definition 4.3. Given a model M = (P, r), a policy π ∈ ΠSD is said to satisfy ARPE
(Average Reward Policy Evaluation equation) if there exists a unique long-term average re-
ward λπ ∈ R and a differential value function V π : S → R that is unique up to an additive
constant that satisfy:

λπ + V π(s) = r(s, π(s)) + E
[
V π(S+)|s, π(s)

]
, ∀s ∈ S. (ARPE)

Definition 4.4. Given a model M = (P, r), define ΠAR ⊆ ΠSD to be the set of all stationary
deterministic policies which satisfy (ARPE).

The next two propositions follow from standard results in MDP theory.

Proposition 4.1 ([119, Prop. 5.2.1.]). Suppose model M = (P, r) is AROE solvable with a
solution (λ∗, V ∗). Then:

1. For all s ∈ S, J∗(s) = λ∗.

2. Let π∗ ∈ ΠSD be any policy such that π∗(s) is an argmax of the RHS of (AROE). Then
π∗ is optimal, i.e., for all s ∈ S, Jπ∗

(s) = J∗(s) = λ∗.

3. The policy π∗ in item 2 belongs to ΠAR. In particular, it satisfies (ARPE) with a
solution (λ∗, V ∗).
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Proposition 4.2 ([119, Prop. 5.2.2]). For any policy π ∈ ΠAR, we have Jπ(s) = λπ, for all
s ∈ S.

We assume that model M satisfies the following assumption.

Assumption 4.1. The model M = (P, r) is AROE solvable. Hence, there exists an optimal
policy π∗ ∈ ΠAR.

Proposition 4.1 implies that under Assumption 4.1, J∗(s) is constant. In the rest of this
section we assume that Assumption 4.1 always holds and denote J∗(s) by J∗.

4.2.3 Classification of MDPs

We present the main results of this chapter for the policy class ΠAR under Assumption 4.1.
However, by imposing further assumptions on M, we can provide a finer characterization
of the set ΠAR and provide sufficient conditions to guarantee Assumption 4.1. We recall
definitions of different classes of MDPs. Depending on the properties of states following the
policies in ΠSD, we can classify MDPs into various classes.

Definition 4.5 ([120]). We say that M is

1. Recurrent (or ergodic) if for every policy π ∈ ΠSD, the transition matrix P π consists
of a single recurrent class.

2. Unichain if for every policy π ∈ ΠSD, the transition matrix P π is unichain, i.e., it
consists of a single recurrent class plus a possibly empty set of transient states.

3. Communicating if, for every pair of states s, s′ ∈ S, there exists a policy π ∈ ΠSD

under which s′ is accessible from s.

4. Weakly Communicating if there exists a closed set of states Sc such that (i) for
every two states s, s′ ∈ Sc, there exists a policy π ∈ ΠSD under which s′ is accessible
from s; (ii) all states in S \ Sc are transient under every policy.

See Appendix 4.A for the details related to the definitions of Markov chains. The following
proposition shows the connections between the MDP classes defined above.

Proposition 4.3 ([121, Figure 8.3.1.]). The following statements hold:

1. If M is recurrent then it is also unichain.

2. If M is unichain then it is also weakly communicating.
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3. If M is communicating then it is also weakly communicating.

By definition, we know that ΠAR ⊆ ΠSD. However, providing a finer characterization
of the set ΠAR requires further assumptions on the model M. The following proposition
presents a sufficient condition for M under which ΠAR = ΠSD, as well as conditions guaran-
teeing that ΠAR is non-empty, showing the existence of an optimal policy π∗ ∈ ΠAR.

Proposition 4.4 ([121, Table 8.3.1.]). The following properties hold:

1. If M is recurrent or unichain, then ΠSD = ΠAR.

2. If M is recurrent, unichain, communicating, or weakly communicating, then there
exists an optimal policy π∗ ∈ ΠAR. Hence ΠAR is non-empty.

4.2.4 The Average Reward Learning Setup

We now consider the case where the system model M = (P, r) is not known. In this
case, an agent must use a history dependent policy belonging to Π to learn how to act.
To differentiate from the planning setting, we denote such a policy by µ and refer to it as
a learning policy. The quality of a learning policy µ ∈ Π is quantified by the regret with
respect to the optimal policy π∗. There are two notions of regret in the literature, which we
state below.

1. Interim cumulative regret1 of policy µ at time T , denoted by R̄µ
T (ω), is the

difference between the average cumulative reward (i.e., TJ∗) and the cumulative reward
of the learning policy, i.e.,

R̄µ
T (ω) := TJ∗ −Rµ

T (ω). (4.1)

2. Cumulative regret of policy µ at time T , denoted by Rµ
T (ω), is the difference

between the cumulative reward of the optimal policy and the cumulative reward of the
learning policy along the same sample trajectory, i.e.,

Rµ
T (ω) := Rπ∗

T (ω)−Rµ
T (ω). (4.2)

Cumulative regret compares the sample path performance of the learning policy with the
sample path performance of the optimal policy on the same sample path, while the interim
cumulative regret compares the sample path performance of the learning policy with the
average performance of the optimal policy.

1In the stochastic bandit literature, this definition is sometimes being refereed to as the pseudo regret
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In this chapter, we characterize probabilistic upper-bounds on the difference between
the regret and the interim regret and establish that up to Õ(

√
T ), these two definitions are

rate-equivalent under suitable assumptions.
Let Dµ

T (ω) denote the difference between the cumulative regret and the interim cumulative
regret, i.e., Dµ

T (ω) := Rµ
T (ω)− R̄µ

T (ω). It follows from (4.1)–(4.2) that

Dµ
T (ω) = Rπ∗

T (ω)− TJ∗, (4.3)

which implies that Dµ
T (ω) is not a function of the learning policy µ and it only depends on

the cumulative reward received by the optimal policy. Therefore, we drop the dependence on
µ in our notation and denote the difference between the cumulative regret and the interim
cumulative regret by DT (ω). In this chapter, we characterize asymptotic and non-asymptotic
guarantees for the random sequence {DT (ω)}T≥1.

Remark 4.1. Let Π∗ ⊂ ΠAR denote the set of all optimal policies that satisfy AROE.
Assumption 4.1 implies that Π∗ ̸= ∅ but in general, |Π∗| may be greater than 1. If that is the
case, our results are applicable to all optimal policies in Π∗.

4.3 Main Results for the Average Reward Setup

We first define statistical properties of the differential value function which is induced by
any policy π ∈ ΠAR.

4.3.1 Statistical Definitions

For any policy π ∈ ΠAR, define the following properties of the value function V π.

1. Span Hπ, which is given by

Hπ := sp(V π) = max
s∈S

V π(s)−min
s∈S

V π(s). (4.4)

2. Conditional standard deviation σπ(s), which is given by

σπ(s) :=
[
E
[(
V π(S+)− E

[
V π(S+)|s, π(s)

])2∣∣s, π(s)]]1/2.
3. Maximum absolute deviation Kπ, which is given by

Kπ := max
s,s+∈S

∣∣∣V π(s+)− E
[
V π(S+)

∣∣s, π(s)]∣∣∣. (4.5)
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For any optimal policy π∗ ∈ ΠAR, we denote the corresponding quantities by H∗, σ∗(s), and
K∗.

Remark 4.2. As mentioned earlier, the solution of (ARPE) is unique only up to an additive
constant. Adding a constant to V π does not change the values of Hπ, Kπ, and σπ. Therefore
it does not matter which specific solution of (ARPE) is used to compute Hπ, Kπ, and σπ.

Definition 4.6 ([37]). Let the expected number of steps to transition from state s to state s′

under a policy π ∈ ΠSD be denoted by T π(s, s′). The diameter of M is defined as

D = diam(M) := max
s,s′∈S
s ̸=s′

min
π∈ΠSD

T π(s, s′).

Lemma 4.1. Following relationships hold between the quantities Hπ, Kπ, and σπ:

1. For any policy π ∈ ΠAR, we have

σπ(s) ≤ Kπ ≤ Hπ < ∞, ∀s ∈ S. (4.6)

2. If M is communicating, then for any policy π ∈ ΠAR, we have Hπ ≤ DRmax. There-
fore,

σπ(s) ≤ Kπ ≤ Hπ ≤ DRmax, ∀s ∈ S. (4.7)

3. If M is weakly communicating, then for any optimal policy π∗ ∈ ΠAR, we have H∗ ≤
DRmax. Therefore,

σ∗(s) ≤ K∗ ≤ H∗ ≤ DRmax, ∀s ∈ S. (4.8)

The proof is presented in Appendix 4.C.1.3.
This section presents three families of results. In Section 4.3.2, we present a set of

sample path properties for Rπ
T (ω) for any policy π ∈ ΠAR, depicting both asymptotic and

non-asymptotic concentration of Rπ
T (ω) around its ergodic mean. In Section 4.3.3, we apply

these concentration results to characterize the sample path behavior of the difference between
any two policies belonging to ΠAR, while in Section 4.3.4, we apply these results to the optimal
policy π∗ to derive the properties of the difference between the cumulative regret and the
interim cumulative regret DT (ω).

4.3.2 Sample Path Characteristics of Any Policy

In this section, we derive asymptotic and non-asymptotic sample path properties of Rπ
T (ω)

for any policy π ∈ ΠAR. The following theorem characterizes the asymptotic concentration
rates of Rπ

T (ω), establishing LLN, CLT and LIL.
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Definition 4.7. Let {Σπ
t }t≥0 denote the random process defined as

Σπ
0 = 0, Σπ

t =
t−1∑
τ=0

σπ(Sτ )
2.

Corresponding to this process, define the set Ωπ
0 as

Ωπ
0 :=

{
ω ∈ Ω : lim

t→∞
Σπ

t (ω) = ∞
}
.

Theorem 4.1. For any policy π ∈ ΠAR and any initial state s0 ∈ S, we have following
asymptotic characteristics:

1. (Law of Large Numbers) The empirical average of the cumulative reward converges
almost surely to Jπ, i.e.,

lim
T→∞

Rπ
T (ω)

T
= Jπ, a.s. (4.9)

2. (Central Limit Theorem) Assume that P(Ωπ
0 ) = 1. Let the stopping time νt be defined

as νt := min
{
T ≥ 1 : Σπ

T ≥ t
}
. Then

lim
T→∞

Rπ
νT
(ω)− νTJ

π

√
T

(d)−→ N (0, 1). (4.10)

3. (Law of Iterated Logarithm) For almost all ω ∈ Ωπ
0 , we have

lim inf
T→∞

Rπ
T (ω)− TJπ√
2Σπ

T log log Σπ
T

= −1, lim sup
T→∞

Rπ
T (ω)− TJπ√
2Σπ

T log log Σπ
T

= 1. (4.11)

The proof is presented in Appendix 4.C.2.

Corollary 4.1. For any optimal policy π∗ ∈ Π∗, the cumulative reward Rπ∗
T (ω) satisfies the

asymptotic concentration rates in (4.9)–(4.11), where in the LHS, Jπ is replaced with J∗.

Proof. Since π∗ is in ΠAR, by Theorem 4.1, the optimal policy should satisfy the asymptotic
concentration rates in (4.9)–(4.11).

The proof of Theorem 4.1 relies on the finiteness of Kπ. However, due to the asymptotic
nature of this result, the exact sample complexity dependence of these bounds on properties
of the differential value function V π is not evident. The following theorem establishes the
concentration of cumulative reward around the quantity TJπ −

(
V π(ST )− V π(S0)

)
.

Theorem 4.2. For any policy π ∈ ΠAR, the following upper-bounds hold:
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1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣Rπ
T − TJπ −

(
V π(S0)− V π(ST )

)∣∣ ≤ Kπ

√
2T log

2

δ
. (4.12)

2. For any δ ∈ (0, 1), for all T ≥ T π
0 (δ) :=

⌈173
Kπ

log
4

δ

⌉
, with probability at least 1− δ, we

have

∣∣Rπ
T − TJπ −

(
V π(S0)− V π(ST )

)∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
.

(4.13)

The proof is presented in Appendix 4.C.3.
Theorem 4.2 establishes a sample path dependent concentration result. The following

theorem establishes a sample path independent finite-time concentration of Rπ
T (ω) as a func-

tion of the statistical properties of V π.

Theorem 4.3. For any policy π ∈ ΠAR, following upper-bounds hold:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣Rπ
T − TJπ

∣∣ ≤ Kπ

√
2T log

2

δ
+Hπ. (4.14)

2. For any δ ∈ (0, 1), for all T ≥ T π
0 (δ) :=

⌈173
Kπ

log
4

δ

⌉
, with probability at least 1− δ, we

have

∣∣Rπ
T − TJπ

∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
+Hπ. (4.15)

The proof is presented in Appendix 4.C.4.

Corollary 4.2. For any optimal policy π∗ ∈ Π∗, the cumulative reward Rπ∗
T (ω) satisfies the

non-asymptotic concentration rates in (4.14)–(4.15), where in the LHS, Jπ is replaced with
J∗ and in the statement and RHS, (Kπ, Hπ) are replaced with (K∗, H∗).

Proof. Since π∗ is in ΠAR, by Theorem 4.3, the optimal policy should satisfy the non-
asymptotic concentration rates in (4.14)–(4.15).

Corollary 4.3. If M is unichain or recurrent, then any policy π ∈ ΠSD satisfies asymptotic
concentration rates in (4.9)–(4.11) and non-asymptotic concentration rates in (4.14)–(4.15).
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Proof. By Prop. 4.4, for the unichain or recurrent model M, we have ΠAR = ΠSD. As a
result, any policy π which belongs to ΠSD also belongs to ΠAR. Therefore, by Theorem 4.1,
the asymptotic concentration rates in (4.9)–(4.11) hold for the policy π and by Theorem 4.3,
the non-asymptotic rates in (4.14)–(4.15) hold for the policy π.

Corollary 4.4. If M is recurrent, unichain, communicating, or weakly communicating,
then every optimal policy π∗ ∈ Π∗ satisfies asymptotic concentration rates in (4.9)–(4.11)
and non-asymptotic concentration rates in (4.14)–(4.15). (Prop. 4.4 shows that there exists
at least one such policy.)

Proof. By Prop. 4.4, for any model M which is recurrent, unichain, communicating, or
weakly communicating, there exists an optimal policy π∗ belonging to ΠAR. As a result,
by Corollary 4.1, the asymptotic concentration rates in (4.9)–(4.11) hold for every optimal
policy π∗ ∈ ΠAR. Furthermore, by Corollary 4.2, the non-asymptotic concentration rates in
(4.14)–(4.15) hold for every optimal policy π∗ ∈ ΠAR.

In Theorem 4.3, the upper-bounds are established in terms of Kπ and Hπ. To compute
Kπ and Hπ, one must solve the corresponding (ARPE) equation. As a result, these bounds
are policy-dependent upper-bounds. At the cost of loosening these bounds, we derive policy-
independent upper-bounds. These bounds are in terms of the diameter of the MDP D and
the maximum reward Rmax.

Corollary 4.5. Suppose M is communicating. For any policy π ∈ ΠAR, following upper-
bounds hold:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣Rπ
T − TJπ

∣∣ ≤ DRmax

√
2T log

2

δ
+DRmax. (4.16)

2. For any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈ 173

DRmax

log
4

δ

⌉
, with probability at least 1− δ,

we have

∣∣Rπ
T − TJπ

∣∣ ≤ max
{
DRmax

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (DRmax)

2
}
+DRmax. (4.17)

The proof is presented in Appendix 4.C.5.

Corollary 4.6. If M is communicating or weakly communicating, then for any optimal
policy π∗ ∈ Π∗, the cumulative reward Rπ∗

T (ω) satisfies the non-asymptotic concentration
rates in (4.16)–(4.17), where in the LHS, Jπ is replaced with J∗.

65



The proof is presented in Appendix 4.C.6. In the Corollary 4.5, the dependence of
upper-bounds on the parameters of M are reflected through DRmax. This implies that if
the diameter of M or maximum reward Rmax increases, these upper-bounds loosen with a
linear rate.

4.3.3 Sample Path Behavior of the Performance Difference of Two Stationary
Policies

As an implication of the results presented in the Section 4.3.2, we characterize the sample
path behavior of the difference in cumulative rewards between any two stationary policies.
As a consequence, we derive the non-asymptotic concentration of the difference in rewards
between any two optimal policies. These concentration bounds are presented in the following
two corollaries.

Corollary 4.7. Consider two policies π1, π2 ∈ ΠAR. The following upper-bounds hold for
the difference between the cumulative reward received by the two policies.

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣∣Rπ1
T −Rπ2

T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤ Kπ1

√
2T log

4

δ
+Hπ1 +Kπ2

√
2T log

4

δ
+Hπ2 .

(4.18)

2. For any δ ∈ (0, 1), for all T ≥ T π
0 (δ) := max

{⌈ 173
Kπ1

log
8

δ

⌉
,
⌈ 173
Kπ2

log
8

δ

⌉}
, with proba-

bility at least 1− δ, we have

∣∣∣∣∣Rπ1
T −Rπ2

T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤max

{
Kπ1

√
3T

(
2 log log

3T

2
+ log

4

δ

)
, (Kπ1)2

}
+Hπ1

+max
{
Kπ2

√
3T

(
2 log log

3T

2
+ log

4

δ

)
, (Kπ2)2

}
+Hπ2 .

(4.19)

The proof is presented in Appendix 4.C.7.

Corollary 4.8. Consider two optimal policies π∗
1, π

∗
2 ∈ Π∗. Then for the difference between

cumulative rewards received by the two optimal policies
∣∣Rπ∗

1
T −R

π∗
2

T

∣∣, we have

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣Rπ∗
1

T −R
π∗
2

T

∣∣ ≤ 2
(
K∗

√
2T log

4

δ
+H∗

)
. (4.20)
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2. For any δ ∈ (0, 1), for all T ≥ T π∗
0 (δ) :=

⌈173
K∗ log

8

δ

⌉
, with probability at least 1 − δ,

we have

∣∣Rπ∗
1

T −R
π∗
2

T

∣∣ ≤ 2
(
max

{
K∗

√
3T

(
2 log log

3T

2
+ log

4

δ

)
, (K∗)2

}
+H∗

)
. (4.21)

Proof. Since both policies π∗
1, π

∗
2 ∈ ΠAR are optimal policies, by the definition, we have

Jπ∗
1 = Jπ∗

2 = J∗ and therefore, T
∣∣Jπ∗

1 −Jπ∗
2

∣∣ = 0. As a result, by Corollary 4.7, the difference∣∣Rπ∗
1

T − R
π∗
2

T

∣∣ satisfies the non-asymptotic concentration rates in Corollary 4.7 with the RHS
of (4.18)–(4.19) being simplified to RHS of (4.20)–(4.21).

Remark 4.3. Similar to the Corollary 4.5, by imposing the assumption that M is com-
municating or weakly communicating, we can derive the counterpart of (4.18)–(4.19) and
(4.20)–(4.21) in terms of DRmax respectively. For brevity, we omit this result.

4.3.4 Implication for Learning

In this section, we present the consequences of our results on the regret of learning
algorithms. We characterize the asymptotic and non-asymptotic sample path behavior of
the difference between cumulative regret and interim cumulative regret. Recall that for
any learning policy µ, this difference is defined as DT (ω) = R̄µ

T (ω) − Rµ
T (ω). Similar to

Theorem 4.1, we characterize the asymptotic concentration rates of {DT (ω)}T≥1, establishing
LLN, CLT and LIL.

Definition 4.8. Let {Σ∗
t}t≥0 denote the random process defined as

Σ∗
0 = 0, Σ∗

t =
t−1∑
τ=0

σ∗(Sτ )
2.

Corresponding to this process, we define the set Ω∗
0 as

Ω∗
0 :=

{
ω ∈ Ω : lim

t→∞
Σ∗

t (ω) = ∞
}
.

Theorem 4.4. For any learning policy µ, the difference DT (ω) of cumulative regret and
interim cumulative regret satisfies following properties.

1. (Law of Large Numbers) The difference almost surely grows sub-linearly, i.e.

lim
T→∞

DT (ω)

T
= 0, a.s.
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2. (Central Limit Theorem) Assume that P(Ω∗
0) = 1. Let stopping time νt be defined as

νt := min
{
T ≥ 1 : Σ∗

T ≥ t
}
. Then

lim
T→∞

DνT
(ω)

√
T

(d)−→ N (0, 1).

3. (Law of Iterated Logarithm) For almost all ω ∈ Ω∗
0, we have

lim inf
T→∞

DT (ω)√
2Σ∗

T log log Σ∗
T

= −1, lim sup
T→∞

DT (ω)√
2Σ∗

T log log Σ∗
T

= 1. (4.22)

Proof is presented in Appendix 4.C.8.
In addition to the asymptotic results presented in Theorem 4.4, we present non-asymptotic

guarantees for the sequence {DT (ω)}T≥1. Similar to Theorem 4.3, we characterize the non-
asymptotic concentration of DT (ω) as a function of statistical properties of V ∗ (i.e., K∗ and
H∗).

Theorem 4.5. The difference of cumulative regret and interim cumulative regret DT (ω)

satisfies:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣DT (ω)
∣∣ ≤ K∗

√
2T log

2

δ
+H∗.

2. For any δ ∈ (0, 1), for all T ≥ T ∗
0 (δ) :=

⌈173
K∗ log

4

δ

⌉
, with probability at least 1− δ, we

have ∣∣DT (ω)
∣∣ ≤ max

{
K∗

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (K∗)2

}
+H∗.

Proof is presented in Appendix 4.C.9. As mentioned earlier, the difference DT (ω) does
not depend on the learning policy µ. Therefore, the results of Theorem 4.5 do not depend
on the choice of the learning policy either.

In Theorem 4.5, the upper-bounds are established in terms of K∗ and H∗. Similar to
Corollary 4.5, we can derive upper-bounds in terms of model parameters D and Rmax at the
cost of loosening the upper-bounds. These bounds are presented in the following Corollary.

Corollary 4.9. Suppose M is recurrent, unichain, communicating, or weakly communicat-
ing, then DT (ω) satisfies following properties.
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1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣DT (ω)
∣∣ ≤ DRmax

√
2T log

2

δ
+DRmax.

2. For any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈ 173

DRmax

log
4

δ

⌉
, with probability at least 1− δ,

we have

∣∣DT (ω)
∣∣ ≤ max

{
DRmax

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (DRmax)

2
}
+DRmax.

Proof is presented in Appendix 4.C.10.

Remark 4.4. Notice that conditions of Corollary 4.9 are weaker than the conditions of
Corollary 4.5. As a result, Corollary 4.9 can be applied to broader classes of M. This
difference originates from the difference between items (2) and (3) in Lemma 4.1.

In this section, we established probabilistic upper-bounds for the difference between
cumulative regret and interim cumulative regret. We showed, asymptotically and non-
asymptotically, the growth rate of this difference is upper-bounded by Õ(

√
T ). This implies

that if we establish a regret rate of Õ(
√
T ) for a learning algorithm µ using either of the

definitions, similar regret rate hold for the algorithm µ using the other definition. This result
is presented in the following theorem.

Theorem 4.6. For any learning policy µ we have:

1. The following statements are equivalent.

(a) Rµ
T (ω) ≤ Õ(

√
T ), a.s.

(b) R̄µ
T (ω) ≤ Õ(

√
T ), a.s.

2. The following statements are true.

(a) Suppose for a learning algorithm µ and any δ ∈ (0, 1), there exists a T0(δ) such
that for all T ≥ T0(δ), with probability at least 1 − δ, we have Rµ

T (ω) ≤ Õ(
√
T ),

where Õ(·) notation functionally depends upon constants related to M and δ.
Then for any δ ∈ (0, 1), there exists T1(δ) such that for all T ≥ T1(δ), with
probability at least 1− δ, we have R̄µ

T (ω) ≤ Õ(
√
T ).

(b) Suppose for a learning algorithm µ and any δ ∈ (0, 1), there exists a T0(δ) such
that for all T ≥ T0(δ), with probability at least 1 − δ, we have R̄µ

T (ω) ≤ Õ(
√
T ),
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where Õ(·) notation functionally depends upon constants related to M and δ.
Then for any δ ∈ (0, 1), there exists T1(δ) such that for all T ≥ T1(δ), with
probability at least 1− δ, we have Rµ

T (ω) ≤ Õ(
√
T ).

Proof is presented in Appendix 4.C.11.

4.4 Main Results for the Discounted Reward Setup

In this section, we extend the non-asymptotic concentration results that we established
for the average reward setup to the discounted reward setup.

4.4.1 System Model

Consider a discounted reward MDP with state space S and action space A. Similar to
Section 4.2, we assume that S and A are finite sets. The state evolves in a controlled Markov
manner with transition matrix P and at each time t, the system yields a per-step reward
r(St, At) ∈ [0, Rmax]. Let γ ∈ (0, 1) denote the discount factor of the model. The definitions
of policies and policy sets Π and ΠSD are similar to Section 4.2. The discounted cumulative
reward received by any policy π is given by

Rπ,γ
T (ω) :=

T−1∑
t=0

γtr(St, At), where, At = π(S0:t, A0:t−1), ω ∈ Ω.

Note that Rπ,γ
T (ω) is a random variable. For this model, the long-run expected discounted

reward of policy π ∈ ΠSD starting at the state s ∈ S is defined as

V π
γ (s) := E

π
[
lim
T→∞

Rπ,γ
T

∣∣ S0 = s
]
, ∀s ∈ S,

where Eπ is the expectation with respect to the joint distribution of all the system variables
induced by π. We refer to the function V π

γ as the discounted value function corresponding
to the policy π. The optimal performance V ∗

γ starting at state s ∈ S is defined as

V ∗
γ (s) = sup

π∈Π
V π
γ (s), ∀s ∈ S.

A policy π∗ is called optimal if

V π∗

γ (s) = V ∗
γ (s), ∀s ∈ S.

Definition 4.9. A discounted model M is said to satisfy DROE (Discounted Reward Op-
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timality Equation) if there exists an optimal discounted value function V ∗
γ : S → R that

satisfies:
V ∗
γ (s) = max

a∈A

[
r(s, a) + γE

[
V ∗
γ (S+)

∣∣ s, a]], ∀s ∈ S. (DROE)

Definition 4.10. Given a discounted model M, a policy π ∈ ΠSD is said to satisfy DRPE
(Discounted Reward Policy Evaluation equation) if there exists a discounted value function
V π
γ : S → R that satisfies:

V π
γ (s) = r(s, π(s)) + γE

[
V π
γ (S+)

∣∣ s, π(s)], ∀s ∈ S. (DRPE)

Proposition 4.5 ([119, Prop. 1.2.3–1.2.5]). For a discounted model M, following statements
hold:

1. Any policy π ∈ ΠSD satisfies (DRPE).

2. Let π∗ be any policy such that π∗(s) is an argmax of the RHS of (DROE). Then π∗ is
optimal, i.e., for all s ∈ S, V π∗

γ (s) = V ∗
γ (s).

3. The policy π∗ in step 2 belongs to ΠSD. In particular, it satisfies (DRPE) with a
solution V ∗

γ .

4.4.2 Sample Path Characteristics of Any Policy

For any policy π ∈ ΠSD, we define following statistical properties of the discounted value
function V π

γ .

1. Span of the discounted value function V π
γ given by

Hπ,γ := sp(V π
γ ) = max

s∈S
V π
γ (s)−min

s∈S
V π
γ (s). (4.23)

2. Maximum absolute deviation of the discounted value function V π
γ is given by

Kπ,γ := max
s,s+∈S

∣∣∣V π
γ (s+)− E

[
V π
γ (S+)

∣∣ s, π(s)]∣∣∣. (4.24)

For any optimal policy π∗ ∈ ΠSD, we denote these corresponding quantities by H∗,γ, and
K∗,γ. Similar to the results in Theorem 4.2 for the average reward setup, we can derive
non-asymptotic concentration results for the discounted reward setup. These results are
presented in the following theorem. To simplify the notation, let

fγ(T ) :=
T∑
t=1

γ2t =
γ2 − γ2T+2

1− γ2
.
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An immediate implication of the definitions of Rπ,γ
T and V π

γ (s) is that

E
[
Rπ,γ

T + γTV π
γ (ST )− V π

γ (S0)
]
= 0.

In this section, we show that with high-probability Rπ,γ
T concentrates around V π

γ (S0) −
γTV π

γ (ST ) and characterize the concentration rate.

Theorem 4.7. For any policy π ∈ ΠSD and any s ∈ S, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣Rπ,γ
T −

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣ ≤ Kπ,γ

√
2fγ(T ) log

2

δ
. (4.25)

2. For any δ ∈ (0, 1), if limT ′→∞ fγ(T ′) >
173

Kπ,γ
log

4

δ
, then for all T ≥ T0(δ) := min

{
T ′ ≥

1 : fγ(T ′) >
173

Kπ,γ
log

4

δ

}
, with probability at least 1− δ, we have

∣∣∣Rπ,γ
T −

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣

≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log

(3
2
fγ(T )

)
+ log

2

δ

)
, (Kπ,γ)2

}
. (4.26)

The proof is presented in Appendix 4.D.1.

Corollary 4.10. For any policy π ∈ ΠSD and any s ∈ S, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣Rπ,γ
T − V π

γ (S0)
∣∣∣ ≤ Kπ,γ

√
2fγ(T ) log

2

δ
+

γT

1− γ
Rmax. (4.27)

2. For any δ ∈ (0, 1), if limT ′→∞ fγ(T ′) >
173

Kπ,γ
log

4

δ
, then for all T ≥ T0(δ) := min

{
T ′ ≥

1 : fγ(T ′) >
173

Kπ,γ
log

4

δ

}
, with probability at least 1− δ, we have

∣∣∣Rπ,γ
T − V π

γ (S0)
∣∣∣

≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log(

3

2
fγ(T )) + log

2

δ

)
, (Kπ,γ)2

}
+

γT

1− γ
Rmax.

(4.28)

The proof is presented in Appendix 4.D.2.
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Corollary 4.11. For any optimal policy π∗ ∈ ΠSD, the discounted cumulative reward Rπ∗,γ
T (ω)

satisfies the non-asymptotic concentration rates in (4.25)–(4.28), where in the LHS, V π
γ (s)

is replaced with V ∗
γ (s) and in the statement and RHS, Kπ,γ is replaced with K∗,γ.

Proof. Since π∗ is in ΠSD, by Theorem 4.7 and Corollary 4.10, the optimal policy satisfies
the non-asymptotic concentration rates in (4.25)–(4.28).

4.4.3 Sample Path Behavior of Performance Difference of Two Stationary Poli-
cies

As an implication of the results presented in the Section 4.4.2, we characterize the sample
path behavior of the difference in discounted cumulative rewards between any two stationary
policies. As a consequence, we derive the non-asymptotic concentration of the difference in
rewards between any two optimal policies. These concentration bounds are presented in the
following two corollaries.

Corollary 4.12. Consider two policies π1, π2 ∈ ΠSD. Let {Sπ1
t }t≥0 and {Sπ2

t }t≥0 denote
the random sequences of the states encountered by policy π1 and π2 respectively. Following
upper-bounds hold for the difference between the discounted cumulative reward received by the
two policies.

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣∣∣Rπ1,γ
T −Rπ2,γ

T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤ Kπ1,γ

√
2fγ(T ) log

4

δ
+Kπ2,γ

√
2fγ(T ) log

4

δ
. (4.29)

2. For any δ ∈ (0, 1), if limT ′→∞ fγ(T ′) >
173

Kπ,γ
log

4

δ
, define T πi

0 ( δ
2
) as

T πi
0 (

δ

2
) := min

{
T ′ ≥ 1 : fγ(T ′) >

173

Kπi,γ
log

8

δ

}
, i ∈ {1, 2}. (4.30)

Then, for all T ≥ T π
0 (δ) := max

{
T π1
0 ( δ

2
), T π2

0 ( δ
2
)
}
, with probability at least 1 − δ, we

have ∣∣∣∣∣Rπ1,γ
T −Rπ2,γ

T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤max
{
Kπ1,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

4

δ

)
, (Kπ1,γ)2

}
+max

{
Kπ2,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

4

δ

)
, (Kπ2,γ)2

}
. (4.31)
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The proof if presented in Appendix 4.D.3.

Corollary 4.13. Consider two optimal policies π∗
1, π

∗
2 ∈ ΠSD. Let {Sπ∗

1
t }t≥0 and {Sπ∗

2
t }t≥0

denote the random sequences of states encountered by optimal policies π∗
1 and π∗

2. To simplify
the expression, we assume the system starts at a fixed initial state, i.e., S

π∗
1

0 = S
π∗
2

0 . Then
for the difference between discounted cumulative rewards received by the two optimal policies∣∣Rπ∗

1 ,γ
T −R

π∗
2 ,γ

T

∣∣, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣∣Rπ∗
1 ,γ

T −R
π∗
2 ,γ

T

∣∣− γT
∣∣V ∗

γ (S
π∗
2

T )− V ∗
γ (S

π∗
1

T )
∣∣∣∣∣ ≤ 2

(
K∗,γ

√
2fγ(T ) log

4

δ

)
. (4.32)

2. Consider T π∗
0 ( δ

2
) defined in (4.30). For any δ ∈ (0, 1), for all T ≥ T π∗

0 ( δ
2
), with proba-

bility at least 1− δ, we have∣∣∣∣∣Rπ∗
1 ,γ

T −R
π∗
2 ,γ

T

∣∣− γT
∣∣V ∗

γ (S
π∗
2

T )− V ∗
γ (S

π∗
1

T )
∣∣∣∣∣

≤ 2
(
max

{
K∗,γ

√
3fγ(T )

(
2 log log

(3
2
fγ(T )

)
+ log

4

δ

)
, (K∗,γ)2

})
. (4.33)

Proof. Since both policies π∗
1, π

∗
2 ∈ ΠSD are optimal policies, by the definition, we have

V π∗
1

γ (s) = V π∗
2

γ (s) = V ∗
γ (s), ∀s ∈ S, ∀γ ∈ (0, 1).

As a result, by the assumption that S
π∗
1

0 = S
π∗
2

0 we have∣∣∣V ∗
γ (S

π∗
1

0 )− V ∗
γ (S

π∗
2

0 )
∣∣∣ = 0.

In addition, we have
Kπ∗

1 ,γ = Kπ∗
2 ,γ = K∗,γ, ∀γ ∈ (0, 1).

As a result, by Corollary 4.12, the difference
∣∣Rπ∗

1 ,γ
T − R

π∗
2 ,γ

T

∣∣ satisfies the non-asymptotic
concentration rates in Corollary 4.12 with the RHS of (4.29) and (4.31) being simplified to
RHS of (4.32)–(4.33).

4.4.4 Vanishing Discount Analysis

In order to observe the connection between the upper-bounds established in Theorem 4.2
and Theorem 4.7, we investigate the asymptotic behavior of these two upper-bounds as the
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discount factor γ goes to 1 from below (i.e., γ ↑ 1). This characterization is stated in the
following Corollary.

Corollary 4.14. For any policy π ∈ ΠAR, we have the following asymptotic relations between
the bounds in Theorem 4.2 and Theorem 4.7.

1. As γ goes to 1 from below, the quantity in the LHS of (4.25)–(4.26) converges to the
LHS of (4.12), i.e.,

lim
γ↑1

∣∣∣Rπ,γ
T −

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣ = ∣∣∣Rπ

T − TJπ +
(
V π(S0)− V π(ST )

)∣∣∣.
2. As γ goes to 1 from below, the RHS in (4.25) converges to the RHS in (4.12), i.e.,

lim
γ↑1

[
Kπ,γ

√
2fγ(T ) log

2

δ

]
= Kπ

√
2T log

2

δ
.

3. As γ goes to 1 from below, the RHS in (4.26) converges to the RHS in (4.13), i.e.,

lim
γ↑1

[
max

{
Kπ,γ

√
3fγ(T )

(
2 log log(

3

2
fγ(T )) + log

2

δ

)
, (Kπ,γ)2

}]
=max

{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
.

Proof is presented in Appendix 4.D.4.

Remark 4.5. The non-asymptotic characterizations are established in Theorem 4.7. Since
the discounted cumulative return Rπ,γ

T is finite for M, we cannot provide any asymptotic
characterization for this quantity. However, Corollary 4.14 shows that as the discount factor
γ goes to 1 from below, the non-asymptotic concentration behavior of Rπ,γ

T resembles the
non-asymptotic concentration of Rπ

T . This gives a complete picture of concentration rate of
Rπ,γ

T and Rπ
T .

4.5 Main Results for the Finite-Horizon Setup

In this section, we extend the non-asymptotic concentration results that we established
for the average reward and discounted reward setups to the case of finite-horizon setup.
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4.5.1 System Model

Consider an MDP with state space S and action space A. Similar to Section 4.2, we
assume that S and A are finite sets. The state evolves in a controlled Markov manner with
transition matrix P and at each time t, the system yields a per-step reward r(St, At) ∈
[0, Rmax]. Let h ∈ R denote the horizon of the problem. The definitions of policy and policy
set Π are similar to Section 4.2.

Definition 4.11. Given a model M = (P, r, h), define ΠFD to be the set of finite-horizon
deterministic policies, i.e., for any π = (π0, π1, . . . , πh) ∈ ΠFD, we have πt : S → A (i.e.,
At = πt(St)), but πt may depend upon t.

The cumulative reward received by any policy π ∈ Π up to time T (T is not necessarily
equal to h) is given by

Rπ,h
T (ω) :=

T−1∑
t=0

r(St, At), where, At = π(S0:t, A0:t−1), ω ∈ Ω, T ≤ h+ 1.

Note that Rπ,h
T (ω) is a random variable. For this model, the expected total reward of any

policy π ∈ Π starting at the state s ∈ S is defined as

Jπ,h(s) := Eπ
[
Rπ,h

h+1

∣∣ S0 = s
]
, ∀s ∈ S,

where Eπ is the expectation with respect to the joint distribution of all the system variables
induced by π. The optimal performance J∗,h(s) starting at state s ∈ S is defined as

J∗,h(s) = sup
π∈Π

Jπ,h(s), ∀s ∈ S.

A policy π∗ is called optimal if

Jπ∗,h(s) = J∗,h(s), ∀s ∈ S.

Definition 4.12. The sequence of finite-horizon optimal value functions
{
V ∗,h
t

}h+1

t=0
: S → R

is defined as follows
V ∗,h
h+1(s) = 0, ∀s ∈ S,

and for t ∈ {h, h− 1, . . . , 0}, recursively define V ∗,h
t (s) based on the FHDP (Finite-Horizon

Dynamic Programming equation) given by

V ∗,h
t (s) = max

a∈A

[
r(s, a) + E

[
V ∗,h
t+1(S+)

∣∣ s, a]], ∀s ∈ S. (FHDP)
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Definition 4.13. Given a policy π ∈ ΠFD, the sequence of finite-horizon value functions{
V π,h
t

}h+1

t=0
: S → R corresponding to the policy π is defined as follows

V π,h
h+1(s) = 0, ∀s ∈ S,

and for t ∈ {h, h− 1, . . . , 0}, recursively define V π,h
t (s) based on the FHPE (Finite-Horizon

Policy Evaluation equation) given by

V π,h
t (s) = r(s, πt(s)) + E

[
V π,h
t+1 (S+)

∣∣ s, πt(s)
]
, ∀s ∈ S. (FHPE)

Proposition 4.6 ([122]). Let π∗ = (π∗
0, π

∗
1, . . . , π

∗
h) ∈ ΠFD be a policy such that π∗

t (st)

denote the argmax of (FHDP) at stage t. Then the policy π∗ is optimal, i.e., for all s ∈ S,
Jπ∗,h(s) = J∗,h(s).

4.5.2 Sample Path Characteristics of Any Policy

For any policy π ∈ ΠFD, we define following statistical properties of the sequence of
finite-horizon value functions {V π,h

t }h+1
t=0 .

1. Span of the finite-horizon value function V π,h
t is given by

Hπ,h
t := sp(V π,h

t ), ∀t ∈ {0, 1, . . . , h}. (4.34)

2. Maximum absolute deviation of the finite-horizon value function V π,h
t is given by

Kπ,h
t := max

s,s+

∣∣∣V π,h
t (s+)− E

[
V π,h
t (S+)

∣∣ s, πt(s)
]∣∣∣, ∀t ∈ {0, 1, . . . , h}. (4.35)

Similar to the results in Theorem 4.3 and Theorem 4.7 for the average reward and discounted
reward setups, we derive non-asymptotic concentration results for the finite-horizon setup.
These results are presented in the following theorem. To simplify the notation, let

K̄π,h
T = max

0≤t≤T
Kπ,h

t , H̄π,h
T = max

0≤t≤T
Hπ,h

t , (4.36)

and let

gπ,h(T ) :=

∑T
t=1(K

π,h
t )2(

K̄π,h
T

)2 . (4.37)

For any optimal policy π∗ ∈ ΠFD, we denote these corresponding quantities by H∗,h
t , K∗,h

t ,
H̄∗,h

T , K̄∗,h
T , and g∗,h(T ). An immediate implication of the definitions of Rπ,h

T and V π,h
T (s) is
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that
E
[
Rπ,h

T + V π,h
T (ST )− V π,h

0 (S0)
]
= 0.

In this section, we show that with high-probability Rπ,h
T concentrates around V π,h

0 (S0) −
V π,h
T (ST ) and characterize the concentration rate. Following theorem is analogous to the con-

centration bounds in average reward setup given in Theorem 4.2 and concentration bounds
in discounted reward setup given in Theorem 4.7.

Theorem 4.8. For any policy π ∈ ΠFD, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣Rπ,h
T −

(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣ ≤ K̄π,h

T

√
2gπ,h(T ) log

2

δ
.

2. For any δ ∈ (0, 1), if gπ,h(h) ≥ 173 log 4
δ
, define T π,h

0 (δ) to be

T π,h
0 (δ) := min

{
T ′ ≥ 1 : gπ,h(T ′) ≥ 173 log

4

δ

}
. (4.38)

Then with probability at least 1− δ, for all T π,h
0 (δ) ≤ T ≤ h+ 1, we have∣∣∣Rπ,h

T −
(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣

≤ max

{
K̄π,h

T

√
3gπ,h(T )

(
2 log log(

3

2
gπ,h(T )) + log

2

δ

)
, (K̄π,h

T )2
}
. (4.39)

The proof is presented in Appendix 4.E.1.
Following Corollary establishes the finite-time concentration of Rπ,h

T around the quantity
V π,h
0 (S0). This results is analogous to the concentration bounds in the average reward setup

given in Theorem 4.3 and concentration bounds in the discounted reward setup given in
Corollary 4.10.

Corollary 4.15. For any policy π ∈ ΠFD, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣Rπ,h
T − V π,h

0 (S0)
∣∣∣ ≤ K̄π,h

T

√
2T log

2

δ
+ H̄π,h

T .

2. For any δ ∈ (0, 1), if gπ,h(h) ≥ 173 log 4
δ
, define T π,h

0 (δ) as specified in (4.38). Then
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with probability at least 1− δ, for all T π,h
0 (δ) ≤ T ≤ h+ 1, we have

∣∣∣Rπ,h
T − V π,h

0 (S0)
∣∣∣ ≤ max

{
K̄π,h

T

√
3T

(
2 log log

(3T
2

)
+ log

2

δ

)
, (K̄π,h

T )2
}
+ H̄π,h

T .

The proof is presented in Appendix 4.E.2.

4.5.3 Sample Path Behavior of Performance Difference of Two Policies

As an implication of the results presented in Section 4.5.2, we characterize the sample path
behavior of the difference in cumulative rewards between any two policies. As a consequence,
we derive the non-asymptotic concentration of the difference in rewards between any two
optimal policies. These concentration bounds are presented in the following two corollaries.

Corollary 4.16. Consider two policies π1, π2 ∈ ΠFD. Let {Sπ1
t }ht=0 and {Sπ2

t }ht=0 denote
the random sequences of the states encountered by policy π1 and π2 respectively. Following
upper-bounds hold for the difference between the cumulative reward received by the two policies∣∣Rπ1,h

T −Rπ2,h
T

∣∣.
1. For any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤ K̄π1,h
T

√
2gπ1,h(T ) log

4

δ
+ K̄π2,h

T

√
2gπ2,h(T ) log

4

δ
. (4.40)

2. For any δ ∈ (0, 1), if min
{
gπ1,h(h), gπ2,h(h)

}
≥ 173 log 8

δ
, define T π,h

0 (δ) as specified in
(4.38) and let

T h
0 (δ) := max

{
T π1,h
0 (

δ

2
), T π2,h

0 (
δ

2
)
}
.

Then, with probability at least 1− δ, for all T h
0 (δ) ≤ T ≤ h+ 1, we have∣∣∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤ max

{
K̄π1,h

T

√
3gπ1,h(T )

(
2 log log(

3

2
gπ1,h(T )) + log

4

δ

)
, (K̄π1,h

T )2
}

+max

{
K̄π2,h

T

√
3gπ2,h(T )

(
2 log log(

3

2
gπ2,h(T )) + log

4

δ

)
, (K̄π2,h

T )2
}
. (4.41)

The proof is presented in Appendix 4.E.3.
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Corollary 4.17. Consider two optimal policies π∗
1, π

∗
2 ∈ ΠFD. Let {Sπ∗

1
t }ht=0 and {Sπ∗

2
t }ht=0

denote the random sequences of states encountered by optimal policies π∗
1 and π∗

2. To simplify
the expression, we assume the system starts at a fixed initial state, i.e., Sπ∗

1
0 = S

π∗
2

0 . Then for
the difference between the cumulative rewards received by the two optimal policies

∣∣Rπ∗
1 ,h

T −
R

π∗
2 ,h

T

∣∣, we have:

1. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣∣Rπ∗
1 ,h

T −R
π∗
2 ,h

T

∣∣− ∣∣V ∗,h
T (S

π∗
2

T )− V ∗,h
T (S

π∗
1

T )
∣∣∣∣∣ ≤ 2

(
K̄∗,h

T

√
2g∗,h(T ) log

4

δ

)
. (4.42)

2. For any δ ∈ (0, 1), if g∗,h(h) ≥ 173 log 4
δ
, define T π∗,h

0 (δ) as specified in (4.38). Then
with probability at least 1− δ, for all T π∗,h

0 (δ) ≤ T ≤ h+ 1, we have∣∣∣∣∣Rπ∗
1 ,h

T −R
π∗
2 ,h

T

∣∣− ∣∣V ∗,h
T (S

π∗
2

T )− V ∗,h
T (S

π∗
1

T )
∣∣∣∣∣

≤2
(
max

{
K̄∗,h

T

√
3g∗,h(T )

(
2 log log(

3

2
g∗,h(T )) + log

4

δ

)
, (K̄∗,h

T )2
})

. (4.43)

Proof. Since both policies π∗
1, π

∗
2 ∈ ΠFD are optimal policies, by the definition, we have

V
π∗
1 ,h

t (s) = V
π∗
2 ,h

t (s) = V ∗,h
t (s), ∀s ∈ S, ∀t ∈ {0, 1, . . . , h+ 1}.

As a result, by the assumption that S
π∗
1

0 = S
π∗
2

0 , we have∣∣∣V ∗,h
0 (S

π∗
1

0 )− V ∗,h
0 (S

π∗
2

0 )
∣∣∣ = 0.

In addition, we have

K̄
π∗
1 ,h

T = K̄
π∗
2 ,h

T = K̄∗,h
T and gπ

∗
1 ,h(T ) = gπ

∗
2 ,h(T ) = g∗,h(T ).

As a result, by Corollary 4.16, the difference
∣∣Rπ∗

1 ,h
T − R

π∗
2 ,h

T

∣∣ satisfies the non-asymptotic
concentration rates in Corollary 4.16 with the RHS of (4.40)–(4.41) being simplified to RHS
of (4.42)–(4.43).

4.6 Conclusion

In this chapter, we investigated the sample path behavior of cumulative rewards in
Markov Decision Processes. In particular, we established the asymptotic concentration of
rewards, including the Law of Large Numbers, the Central Limit Theorem, and the Law
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of Iterated Logarithm. Moreover, non-asymptotic concentrations of rewards were obtained,
including an Azuma-Hoeffding-type inequality and a non-asymptotic version of the Law
of Iterated Logarithm, all applicable to a general class of stationary policies. Using these
results, we characterized the relationship between two notions of regret in the literature,
cumulative regret and interim cumulative regret. We showed that, in both the asymptotic
and non-asymptotic settings, the two definitions are rate equivalent as long as either of the
regrets is upper-bounded by Õ(

√
T ). Lastly, we extended the non-asymptotic concentration

results to the case of discounted reward MDPs and finite-horizon setup. The contributions
of this work are twofold: (i) It unifies two sets of literature, showing that if an algorithm
achieves a regret of Õ(

√
T ) under one definition, the same rate applies to the other. (ii)

The asymptotic and non-asymptotic concentration bounds found in this work can be used
to evaluate the probabilistic performance of a policy, allowing for the assessment of risk and
safety in the MDP setup. A natural future research direction is to establish similar results
for MDPs with non-compact state and action spaces.
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Appendices to Chapter 4

4.A Background on Markov Chain Theory

Consider a time-homogeneous Markov chain defined on a finite state space S. Let P

denote the state transition probability and P k denote the k-step state transition probability.
Then we use the following terminology.

• Given s, s′ ∈ S, state s′ is said to be accessible from s, if there exists a finite time
k ≥ 0 such that P k(s′|s) > 0.

• States s and s′ in S are said to communicate if s is accessible from s′ and s′ is accessible
from s.

• Communication relation is reflexive, symmetric, and transitive. Therefore, communi-
cation relation is an equivalence relation, and it generates a partition of the state space
S into disjoint equivalence classes called communication classes [114].

• Let Ts denote the hitting time of state s. State s is called recurrent if

P
(
Ts < ∞

∣∣ S0 = s
)
= 1,

and otherwise it is called transient.

• A recurrent class is a communication class where every state within the class is recur-
rent.

• A transient class is a communication class where every state within the class is tran-
sient.

4.B Background on Martingales

Let (Ω,F ,P) be a probability space. A filtration {Ft}t≥0 is a non-decreasing family of
sub-sigma fields of F . A random sequence {Xt}t≥0 is called integrable if E[|Xt|] < ∞ for
all t ≥ 0. A random sequence {Xt}t≥0 is called adapted to the filtration {Ft}t≥0 if Xt is
Ft-measurable for all t ≥ 0.

Definition 4.14. An integrable sequence {Xt}t≥0 adapted to the filtration {Ft}t≥0 is called
a martingale if

E[Xt+1|Ft] = Xt, a.s. ∀t ≥ 0.
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Definition 4.15. Let {ct}t≥1 be a sequence of real numbers and C be a positive real number.
A real integrable sequence {Yt}t≥1 adapted to the filtration {Ft}t≥0 is called:

1. Martingale Difference Sequence (MDS) if

E[Yt|Ft−1] = 0, a.s. ∀t ≥ 1.

2. Sequentially bounded MDS with respect to the sequence {ct}t≥1 if it is an MDS and

|Yt| ≤ ct, a.s. ∀t ≥ 1.

3. Uniformly bounded MDS with respect to the constant C if it is an MDS and

|Yt| ≤ C, a.s. ∀t ≥ 0.

There is a unique MDS corresponding to a martingale and vise versa. In particular, given
a martingale {Xt}t≥0, the corresponding MDS {Yt}t≥1 is defined as

Yt := Xt −Xt−1, ∀t ≥ 1.

Moreover, given an MDS {Yt}t≥1, the corresponding martingale sequence {Xt}t≥0 is defined
as

X0 = 0, XT =
T∑
t=1

Yt, ∀T ≥ 1.

Consider a martingale {Xt}t≥0 such that {X2
t }t≥0 is integrable. The increasing process

{At}t≥1 associated with the sequence {X2
t }t≥0 is defined as

A1 = E[X
2
1 |F0]−X2

1 , At = E[X
2
t |Ft−1]−X2

t−1 + At−1, ∀t ≥ 2.

Let {Yt}t≥0 be the MDS corresponding to {Xt}t≥0. Then, we can express {At}t≥0 in terms
of {Y 2

t }t≥0. In particular, we have

At = E[X
2
t |Ft−1]−X2

t−1 + At−1

= E[X2
t−1|Ft−1] + 2E[Yt|Ft−1]Xt−1 + E[Y

2
t |Ft−1]−X2

t−1 + At−1

= E[Y 2
t |Ft−1] + At−1.
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As a result, we have

AT =
T∑
t=1

E[Y 2
t |Ft−1], ∀T ≥ 1.

Therefore, we sometimes say that {At}t≥1 is the increasing sequence associated with {Y 2
t }t≥0.

Martingale sequences are an important class of stochastic processes. Both asymptotic
and non-asymptotic concentration of martingale sequences have been well studied. In Ap-
pendices 4.B.1 and 4.B.2, we present the asymptotic and non-asymptotic concentration char-
acteristics of martingales with bounded MDS.

4.B.1 Asymptotic Concentration

4.B.1.1 Strong Law of Large numbers

The first asymptotic results presented in this section is a version of strong Law of Large
numbers for Martingale Difference sequences.

Theorem 4.9 (see [113, Theorem 3.3.1]). Let {Yt}t≥1 be an MDS and {at}t≥1 be a sequence
of positive and Ft−1-measurable real numbers such that lim

t→∞
at = ∞. If for some 0 < p ≤ 2,

we have:
∞∑
t=1

E
(
|Yt|p|Ft−1

)
apt

< ∞.

Then: ∑T
t=t Yt

T
→ 0, a.s.

4.B.1.2 Central Limit Theorem

Following theorem characterizes a version of Central Limit Theorem for Martingale Se-
quences with corresponding bounded MDS.

Theorem 4.10 (see [123, Theorem 35.11]). Let {Yt}t≥1 be a sequentially bounded MDS with
respect to the sequence {ct}t≥1. Let {At}t≥1 be the increasing process associated with {Y 2

t }t≥1,
i.e.

AT =
T∑
t=1

E[Y 2
t |Ft−1], ∀T ≥ 1.

Define the stopping time νt as

νt := min
{
T ≥ 1 : AT ≥ t

}
.

84



Let Ω0 = {ω ∈ Ω : limT→∞ AT = ∞}. If P(Ω0) = 1, then

1√
T

νT∑
t=1

Yt

(d)−→ N (0, 1).

4.B.1.3 Law of Iterated Logarithm

Following theorem characterizes a version of Law of Iterated Logarithm for uniformly
bounded MDS.

Theorem 4.11 (see [124, Proposition VII-2-7]). Let {Yt}t≥1 be a uniformly bounded MDS
with respect to the constant C. Furthermore, let {At}t≥1 and Ω0 be as defined in Theorem 5.2.
Then, for almost all ω ∈ Ω0, we have

lim inf
T→∞

∑T
t=1 Yt√

2AT log logAT

= −1, lim sup
T→∞

∑T
t=1 Yt√

2AT log logAT

= 1.

Non-asymptotic high-probability bounds with similar functional dependence on the hori-
zon T also exist for martingales. These bounds are presented in Appendix 4.B.2.

4.B.2 Non-Asymptotic Concentration

4.B.2.1 Azuma-Hoeffding Inequality

A famous non-asymptotic concentration for martingale sequences is Azuma-Hoeffding
inequality.

Theorem 4.12 (see [125, Theorem 2.2.1]). Let {Yt}t≥1 be a sequentially bounded MDS with
respect to the sequence {ct}t≥1. Then for all T ≥ 1 and for all ϵ > 0, we have

P

(∣∣∣∣ T∑
t=1

Yt

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−ϵ2

2
∑T

t=1 c
2
t

)
.

By rewriting the statement of Theorem 4.12, we get following equivalent form of Azuma-
Hoeffding inequality.

Corollary 4.18. We have following statements

1. Let {Yt}t≥1 be a sequentially bounded MDS with respect to the sequence {ct}t≥1. For
any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣ T∑
t=1

Yt

∣∣∣∣ ≤
√√√√2

T∑
t=1

c2t log
2

δ
.
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2. Let {Yt}t≥1 be a uniformly bounded MDS with respect to the constant C. For any
δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣ T∑
t=1

Yt

∣∣∣∣ ≤ C

√
2T log

2

δ
.

The proof of Part 1 follows by equating the RHS of Theorem 4.12 to δ and solving for ϵ.
The proof of Part 2 follows by substituting the sequence {ct}t≥1 with the constant C in the
RHS of Part 1.

4.B.2.2 Non-Asymptotic Law of Iterated Logarithm

The following result is a finite-time analogue of the Law of Iterated Logarithm. This
result shows that for a large enough horizon T , the growth rate of a Martingale sequence is
of the order O

(√
T log log(T )

)
with high probability.

Theorem 4.13 (see [126, Theorem 4]). Let {Yt}t≥1 be a sequentially bounded MDS with

respect to the sequence {ct}t≥1. For any δ ∈ (0, 1), for all T ≥ T0(δ) := min
{
T :

∑T
t=1 c

2
t ≥

173 log
4

δ

}
, with probability at least 1− δ, we have

∣∣∣ T∑
t=1

Yt

∣∣∣ ≤
√√√√3

( T∑
t=1

c2t

)(
2 log log

3
∑T

t=1 c
2
t

2
∣∣∑T

t=1 Yt

∣∣ + log
2

δ

)
. (0.44)

For the simplicity of the analysis, we state a slightly simplified version of this theorem in
the following corollary.

Corollary 4.19. Let {Yt}t≥1 be a uniformly bounded MDS with respect to the constant C.

For any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈173
C

log
4

δ

⌉
, with probability at least 1− δ, we have

∣∣∣ T∑
t=1

Yt

∣∣∣ ≤ Cmax

{√
3T

(
2 log log

3T

2
+log

2

δ

)
, C

}
. (0.45)

Proof. This corollary follows from Theorem 4.13, by substituting the sequence {ct}t≥1 with

the constant C on the RHS of (0.44). There are two cases: either
∣∣∣∑T

t=1 Yt

∣∣∣ ≤ C2 or∣∣∣∑T
t=1 Yt

∣∣∣ ≥ C2. If
∣∣∣∑T

t=1 Yt

∣∣∣ ≥ C2, by Theorem 4.13, with probability at least 1 − δ, we
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get:

∣∣∣ T∑
t=1

Yt

∣∣∣ ≤ C

√
3T

(
2 log log

3TC2

2
∣∣∑T

t=1 Yt

∣∣ + log
2

δ

)
≤ C

√
3T

(
2 log log

3T

2
+log

2

δ

)
.

Otherwise, we have
∣∣∣∑T

t=1 Yt

∣∣∣ ≤ C2. As a result, we can summarize these two cases and get
that with probability at least 1− δ, we have

∣∣∣ T∑
t=1

Yt

∣∣∣ ≤ max

{
C

√
3T

(
2 log log

3T

2
+log

2

δ

)
, C2

}
. (0.46)

4.C Proof of Main Results for the Average Reward Setup

4.C.1 Preliminary Results

4.C.1.1 Martingale Decomposition

We first present a few preliminary lemmas. To simplify the notation, we define following
martingale difference sequence.

Definition 4.16. Let filtration F = {Ft}t≥0 be defined as Ft := σ(S0:t, A0:t). For any policy
π ∈ ΠAR, let V π denote the corresponding differential value function. We define the sequence
{Mπ

t }t≥1 as follows

Mπ
t := V π(St)− E

[
V π(St)

∣∣ St−1, π(St−1)
]
, ∀t ≥ 1, (0.47)

where {St}t≥0 denotes the random sequence of states encountered along the current sample
path.

Lemma 4.2. Sequence {Mπ
t }t≥1 is an MDS.

Proof. By the definition of {Ft}t≥0, we have that St−1 is Ft−1-measurable. As a result, we
have

E
[
Mπ

t

∣∣ Ft−1

]
= E

[
V π(St)− E

[
V π(St)

∣∣ St−1, π(St−1)
] ∣∣ Ft−1

]
= E

[
V π(St)

∣∣ Ft−1

]
− E

[
V π(St)

∣∣ St−1, π(St−1)
]
= 0,

which shows that {Mπ
t }t≥0 is an MDS with respect to the filtration {Ft}t≥0.
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We now present a martingale decomposition of the cumulative reward Rπ
T (ω).

Lemma 4.3. Given any policy π ∈ ΠAR, we can rewrite the cumulative reward Rπ
T as follows

Rπ
T = TJπ +

T∑
t=1

Mπ
t + V π(S0)− V π(ST ). (0.48)

Proof. Since π ∈ ΠAR, (ARPE) implies that along the trajectory of states {S1:t} induced by
the policy π, we have

r
(
St, π(St)

)
= Jπ + V π(St)− E

[
V π(St+1)

∣∣∣ St, π(St)
]
, ∀t ≥ 1.

As a result, we have

Rπ
T = TJπ +

T−1∑
t=0

[
V π(St)− E

[
V π(St+1)

∣∣ St, π(St)
]]

(a)
= TJπ +

T−1∑
t=0

[
V π(St)− E

[
V π(St+1)

∣∣ St, π(St)
]]

+ V π(ST )− V π(ST )

(b)
= TJπ +

T−1∑
t=0

[
V π(St+1)− E

[
V π(St+1)

∣∣ St, π(St)
]]

+ V π(S0)− V π(ST )

(c)
= TJπ +

T∑
t=1

Mπ
t + V π(S0)− V π(ST ),

where (a) follows from adding and subtracting V π(ST ), (b) follows from re-arranging the
terms in the summation, and (c) follows from the definition of {Mπ

t }t≥0 in (0.47).

4.C.1.2 A Consequence of The Union Bound

Lemma 4.4. Suppose for any δ1 ∈ (0, 1), for all T ≥ T1(δ1), with probability at least 1− δ1,
the random sequence {XT}T≥0 satisfies

|XT | ≤ h1(T, δ1).

Moreover, suppose for any δ2 ∈ (0, 1), for all T ≥ T2(δ2), with probability at least 1− δ2, the
random sequence {YT}T≥0 satisfies

|YT | ≤ h2(T, δ2).
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Then for any δ ∈ (0, 1), for all T ≥ T0(δ) := max{T1(
δ
2
), T2(

δ
2
)}, with probability at least

1− δ, the random sequence {XT + YT}T≥0 satisfies

|XT + YT | ≤ h1(T, δ/2) + h2(T, δ/2).

Proof. For a given δ ∈ (0, 1), by the lemma’s assumption, for all T ≥ T1(δ/2), we have

P
(
|XT | > h1(T, δ/2)

)
<

δ

2
. (0.49)

Similarly, for all T ≥ T2(δ/2), we have

P
(
|YT | > h2(T, δ/2)

)
<

δ

2
. (0.50)

Now |XT +YT | ≥ h1(T, δ/2)+h2(T, δ/2) implies that |XT | > h1(T, δ/2) or |YT | > h2(T, δ/2).
As a result, by applying the union bound and (0.49)–(0.50), we get

P
(
|XT + YT | ≥ h1(T, δ/2) + h2(T, δ/2)

)
≤ δ.

4.C.1.3 Proof of Lemma 4.1

Proof of Part 1 Recall that for any policy π ∈ ΠAR, the claim is the following chain of
inequalities

σπ(s)
(a)

≤ Kπ
(b)

≤ Hπ
(c)

≤ ∞, ∀s ∈ S. (0.51)

Proof of Part 1-(a): By the definition of Kπ in Eq. (4.5), we have∣∣∣V π(S+)− E
[
V π(S+)

∣∣ s, π(s)]∣∣∣ ≤ Kπ, ∀s ∈ S, a.s.

As a result, we have

E
[(
V π(S+)− E[V π(S+)

∣∣ s, π(s)])2 ∣∣ s, π(s)]
=

∑
s′∈S

(
V π(s′)− E

[
V π(S+)

∣∣ s, π(s))])2P (s′|s, π(s)) ≤ (Kπ)2, ∀s ∈ S.

Proof of Part 1-(b): By the definition of expectation operator, we have

min
s∈S

V π(s) ≤ E[V π(S+)|s, π(s)] ≤ max
s∈S

V π(s).
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As a result, we have

V π(s)−E[V π(S+)|s, π(s)] ≤ V π(s)−min
s∈S

V π(s) ≤ max
s∈S

V π(s)−min
s∈S

V π(s), ∀s ∈ S. (0.52)

Similarly, we have

E[V π(S+)|s, π(s)]−V π(s) ≤ max
s∈S

V π(s)−V π(s) ≤ max
s∈S

V π(s)−min
s∈S

V π(s), ∀s ∈ S. (0.53)

Therefore (0.52)–(0.53) imply that

∣∣V π(S+)− E[V π(S+)
∣∣ s, π(s)]∣∣ ≤ sp(V π) = Hπ.

Proof of Part 1-(c): Since policy π ∈ ΠAR, by (ARPE), we know V π : S → R is a real-
valued function and therefore, Hπ < ∞.

Proof of Part 2 We prove that if M is communicating, then for any policy π ∈ ΠAR, we
have Hπ ≤ DRmax. Consider s, s′ ∈ S where s ̸= s′. By [121], we have:

V π(s) = E
[ ∞∑

t=0

[r(St, At)− Jπ]
∣∣∣ S0 = s

]
. (0.54)

Now consider the stopping time τ0 where S = s′ for the first time. We can rewrite V π(s) as
follows

V π(s)
(a)
= E

[ τ0−1∑
t=0

[r(St, At)− Jπ] +
∞∑

t=τ0

[r(St, At)− Jπ]
∣∣ S0 = s

]
.

(b)
= E

[ τ0−1∑
t=0

[r(St, At)− Jπ]
∣∣ S0 = s

]
+ E

[ ∞∑
t=τ0

[r(St, At)− Jπ]
∣∣ S0 = s

]
(c)
= E

[ τ0−1∑
t=0

[r(St, At)− Jπ]
∣∣ S0 = s

]
+ E

[ ∞∑
t=τ0

[r(St, At)− Jπ]
∣∣ Sτ0

= s′
]

(d)
= E

[ τ0−1∑
t=0

[r(St, At)− Jπ]
∣∣ S0 = s

]
+ V π(s′),

where (a) follows from splitting the summation with the stopping time τ0; (b) follows from
linearity of expectation and the fact that first and second term of RHS of (b) are finite; (c)
follows from the strong Markov property and (d) follows from definition of V π(s′). Therefore,
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we have

V π(s)− V π(s′) = E
[ τ0−1∑

t=0

[r(St, At)− Jπ]
]
≤ E

[ τ0−1∑
t=0

[r(St, At)]
] (e)

≤ T π(s1, s2)Rmax

(f)

≤ DRmax,

where (e) follows from the definition of T π(s1, s2) and (f) follows by the fact that M is
communicating. Since one can repeat the same argument with any two pairs of (s, s′), it
implies that Hπ ≤ DRmax.

Proof of Part 3 The result of this part follows from [8, Theorem 4], where it is shown
that for weakly communicating M, we have H∗ ≤ DRmax.

4.C.2 Proof of Theorem 4.1

4.C.2.1 Proof of Part 1

By Lemma 4.3, for any policy π ∈ ΠAR, we can rewrite the cumulative return Rπ
T as

follows

Rπ
T = TJπ +

T∑
t=1

Mπ
t + V π(S0)− V π(ST ).

By (4.5) and Lemma 4.1 we have

∣∣Mπ
t

∣∣ ≤ Kπ < ∞, ∀t ≥ 1.

Therefore
∞∑
t=1

(Mπ
t )

2

t2
≤ Kπ

∞∑
t=1

1

t2
< ∞.

As a result by choosing p = 2 and at = t in Theorem 4.9, we have

lim
T→∞

∑T
t=1M

π
t

T
= 0, a.s.

Furthermore, Lemma 4.1 implies that random variable V π(St) has bounded support, there-
fore,

lim
T→∞

V π(S0)− V π(ST )

T
= 0, a.s.

As a result, we have

lim
T→∞

Rπ
T

T
= lim

T→∞

∑T
t=1M

π
t + V π(S0)− V π(ST ) + TJπ

T
= Jπ, a.s.

91



4.C.2.2 Proof of Part 2

To prove this part, we verify the conditions of Theorem 5.2 for the MDS {Mπ
t }t≥0. By

Lemma 4.1, we have ∣∣Mπ
t

∣∣ ≤ Kπ < ∞, ∀t ≥ 1.

As a result, the MDS {Mπ
t }t≥0 is a uniformly bounded MDS with respect to the constant

Kπ. By the theorem’s assumption we have P(Ωπ
0 ) = 1, as a result,

∞∑
t=1

E
[(
Mπ

t

)2 ∣∣ Ft−1

]
= ∞, a.s.

Therefore, for the stopping time {νt}t≥0 defined in Theorem 4.1, we have∑νT
t=1 M

π
t√

T

(d)−→ N (0, 1). (0.55)

Since by Lemma 4.1, V π(St) has bounded support for all t ≥ 1, we get

V π(S0)− V π(ST )√
T

→ 0, a.s. (0.56)

By combining (0.55) and (0.56) and by using Theorem 4.14, we get

lim
T→∞

Rπ
νT
(ω)− νTJ

π

√
T

(d)−→ N (0, 1).

4.C.2.3 Proof of Part 3

We verify the conditions of Theorem 4.11 for the MDS {Mπ
t }t≥0. By Lemma 4.1, we have

∣∣Mπ
t

∣∣ ≤ Kπ < ∞, ∀t ≥ 1.

As a result, MDS {Mπ
t }t≥0 is a uniformly bounded MDS with respect to the constant Kπ.

On the set Ωπ
0 , we have

∞∑
t=1

E
[(
Mπ

t

)2 ∣∣ Ft−1

]
= ∞.

As a result, by using the definition of increasing process {Σπ
t }t≥0 and Theorem 4.11, we get

lim inf
T→∞

∑T
t=1M

π
t√

2Σπ
t log log Σ

π
t

= −1, lim sup
T→∞

∑T
t=1M

π
t√

2Σπ
t log log Σ

π
t

= 1. (0.57)
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Since by Lemma 4.1, V π(St) has bounded support for all t ≥ 1, we get

lim
T→∞

V π(S0)− V π(ST )√
2Σπ

t log log Σ
π
t

= 0, a.s. (0.58)

By combining (0.57) and (0.58), we get

lim inf
T→∞

Rπ
T (ω)− TJπ√
2Σπ

T log log Σπ
T

= −1, lim sup
T→∞

Rπ
T (ω)− TJπ√
2Σπ

T log log Σπ
T

= 1.

4.C.3 Proof of Theorem 4.2

4.C.3.1 Proof of Part 1

By Lemma 4.3, for any policy π ∈ ΠAR, we can rewrite the cumulative return Rπ
T (ω) as

follows

Rπ
T (ω) = TJπ +

T∑
t=1

Mπ
t + V π(S0)− V π(ST ).

As a result, we have

∣∣Rπ
T (ω)− TJπ −

(
V π(S0)− V π(ST )

)∣∣ = ∣∣ T∑
t=1

Mπ
t

∣∣. (0.59)

In order to upper-bound the term
∣∣∑T

t=1 M
π
t

∣∣, we verify the conditions of Corollary 4.18.
By (4.5) and Lemma 4.1 we have

∣∣Mπ
t

∣∣ ≤ Kπ < ∞, ∀t ≥ 1.

As a result, MDS {Mπ
t }t≥1 is a uniformly bounded MDS with respect to the constant Kπ.

Therefore, Corollary 4.18 implies that for any δ ∈ (0, 1), with probability at least 1− δ, we
have ∣∣∣ T∑

t=1

Mπ
t

∣∣∣ ≤ √
2T (Kπ)2 log(

2

δ
). (0.60)

By combining (0.59) and (0.60), with probability at least 1− δ, we have

∣∣Rπ
T (ω)− TJπ −

(
V π(S0)− V π(ST )

)∣∣ ≤ Kπ

√
2T log

2

δ
.
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4.C.3.2 Proof of Part 2

Similar to the proof of Part 1, by lemma 4.3, we have

∣∣Rπ
T (ω)− TJπ −

(
V π(S0)− V π(ST )

)∣∣ = ∣∣∣ T∑
t=1

Mπ
t

∣∣∣ (0.61)

Moreover, MDS {Mπ
t }t≥0 is a uniformly bounded MDS with respect to the constant Kπ.

Therefore, Corollary 4.19 implies that for any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈173
Kπ

log
4

δ

⌉
,

with probability at least 1− δ, we have

∣∣∣ T∑
t=1

Mπ
t

∣∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
. (0.62)

By combining (0.61) and (0.62), with probability at least 1− δ, we have

∣∣Rπ
T (ω)− TJπ −

(
V π(S0)− V π(ST )

)∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
.

4.C.4 Proof of Theorem 4.3

4.C.4.1 Proof of Part 1

By lemma 4.3, for any policy π ∈ ΠAR, we can rewrite the cumulative return Rπ
T (ω) as

follows

Rπ
T (ω) = TJπ +

T∑
t=1

Mπ
t + V π(S0)− V π(ST ).

As a result, we have

∣∣Rπ
T (ω)− TJπ

∣∣ = ∣∣∣ T∑
t=1

Mπ
t + V π(S0)− V π(ST )

∣∣∣
(a)

≤
∣∣∣ T∑
t=1

Mπ
t

∣∣∣+ ∣∣∣V π(S0)− V π(ST )
∣∣∣

(b)

≤
∣∣∣ T∑
t=1

Mπ
t

∣∣∣+Hπ, (0.63)

where (a) follows from the triangle inequality and (b) follows from the definition of Hπ. In
order to upper-bound the term

∣∣∑T
t=1 M

π
t

∣∣, we verify the conditions of Corollary 4.18. By
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(4.5) and Lemma 4.1 we have

∣∣Mπ
t

∣∣ ≤ Kπ < ∞, ∀t ≥ 1.

As a result, MDS {Mπ
t }t≥1 is a uniformly bounded MDS with respect to the constant Kπ.

Therefore, Corollary 4.18 implies that for any δ ∈ (0, 1), with probability at least 1− δ, we
have ∣∣∣ T∑

t=1

Mπ
t

∣∣∣ ≤ √
2T (Kπ)2 log(

2

δ
). (0.64)

By combining (0.63) and (0.64), with probability at least 1− δ, we have

|Rπ
T (ω)− TJπ| ≤ Kπ

√
2T log

2

δ
+Hπ.

4.C.4.2 Proof of Part 2

Similar to the proof of Part 1, by lemma 4.3, we have

∣∣Rπ
T (ω)− TJπ

∣∣ ≤ ∣∣∣∣ T∑
t=1

Mπ
t

∣∣∣∣+Hπ. (0.65)

Moreover, MDS {Mπ
t }t≥0 is a uniformly bounded MDS with respect to the constant Kπ.

Therefore, Corollary 4.19 implies that for any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈173
Kπ

log
4

δ

⌉
,

with probability at least 1− δ, we have

∣∣∣ T∑
t=1

Mπ
t

∣∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
. (0.66)

By combining (0.65) and (0.66), with probability at least 1− δ, we have

∣∣Rπ
T (ω)− TJπ

∣∣ ≤ max
{
Kπ

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, (Kπ)2

}
+Hπ.

4.C.5 Proof of Corollary 4.5

4.C.5.1 Proof of Part 1

Since M is communicating, by Lemma 4.1, for any policy π ∈ ΠAR, we have

∣∣Mπ
t

∣∣ ≤ Kπ ≤ DRmax, ∀t ≥ 1. (0.67)
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As a result, the MDS {Mπ
t }t≥1 is a uniformly bounded MDS with respect to the constant

DRmax. Therefore, by repeating the arguments of the proof of Theorem 4.3, Part 1, and
substituting Hπ with DRmax in the RHS of (0.63) and replacing Kπ with DRmax in the RHS
of (0.64), we get that with probability at least 1− δ, we have:

∣∣Rπ
T (ω)− TJπ

∣∣ ≤ DRmax

√
2T log

2

δ
+DRmax.

4.C.5.2 Proof of Part 2

Since M is communicating, by Lemma 4.1, for any policy π ∈ ΠAR, we have

∣∣Mπ
t

∣∣ ≤ Kπ ≤ DRmax, ∀t ≥ 1. (0.68)

As a result, the MDS {Mπ
t }t≥1 is a uniformly bounded MDS with respect to the constant

DRmax. Therefore, by repeating the arguments of the proof of Theorem 4.3, Part 2, and
substituting Hπ with DRmax in the RHS of (0.65) and substituting Kπ with DRmax in the

RHS of (0.66), we prove the claim, i.e, for any δ ∈ (0, 1), for all T ≥ T0(δ) :=
⌈ 173

DRmax

log
4

δ

⌉
,

with probability at least 1− δ, we have

∣∣Rπ
T (ω)− TJπ

∣∣ ≤ max
{
DRmax

√
3T

(
2 log log

3T

2
+ log

2

δ

)
, D2R2

max

}
+DRmax.

4.C.6 Proof of Corollary 4.6

In the case of communicating M, since π∗ ∈ ΠAR, by Corollary 4.5, we get that Rπ∗
T (ω)

satisfies the non-asymptotic concentration rates in (4.16)–(4.17).
In the case of weakly communicating M, by Lemma 4.1, for any optimal policy π∗ ∈ ΠAR,

we have

∣∣Mπ∗

t

∣∣ = ∣∣∣V ∗(St)− E
[
V ∗(St)

∣∣ St−1, π(St−1)
]∣∣∣ ≤ K∗ ≤ DRmax, ∀t ≥ 1. (0.69)

As a result, the MDS {Mπ∗
t }t≥1 is uniformly bounded MDS with respect to the constant

DRmax. Therefore, by repeating the arguments of the proof of Corollary 4.5, Part 1 and
Part 2 for the optimal policy π∗ ∈ ΠAR, we prove that

∣∣Rπ∗
T (ω) − TJ∗

∣∣ satisfies the non-
asymptotic concentration rates in (4.16)–(4.17).
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4.C.7 Proof of Corollary 4.7

4.C.7.1 Proof of Part 1

Consider two policies π1, π2 ∈ ΠAR. Then we have

∣∣Rπ1
T −Rπ2

T

∣∣ =∣∣Rπ1
T − TJπ1 + TJπ1 − TJπ2 + TJπ2 −Rπ2

T

∣∣
(a)

≤
∣∣Rπ1

T − TJπ1
∣∣+ ∣∣TJπ1 − TJπ2

∣∣+ ∣∣TJπ2 −Rπ2
T

∣∣, (0.70)

where (a) follows from the triangle inequality. Similarly, we have

∣∣TJπ1 − TJπ2
∣∣ =∣∣TJπ1 −Rπ1

T +Rπ1
T −Rπ2

T +Rπ2
T − TJπ2

∣∣
(b)

≤
∣∣TJπ1 −Rπ1

T

∣∣+ ∣∣Rπ1
T −Rπ2

T

∣∣+ ∣∣Rπ2
T − TJπ2

∣∣, (0.71)

where (b) follows from the triangle inequality. (0.70)–(0.71) imply that∣∣∣∣∣Rπ1
T −Rπ2

T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤ ∣∣Rπ1

T − TJπ1
∣∣+ ∣∣Rπ2

T − TJπ2
∣∣. (0.72)

By Theorem 4.3, we know that for any δ1 ∈ (0, 1), with probability at least 1− δ1, we have

∣∣Rπ1
T − TJπ1

∣∣ ≤ Kπ1

√
2T log

2

δ1
+Hπ1 .

Similarly, we have that for any δ2 ∈ (0, 1), with probability at least 1− δ2, we have

∣∣Rπ2
T − TJπ2

∣∣ ≤ Kπ2

√
2T log

2

δ2
+Hπ2 .

As a result, by applying Lemma 4.4 and (0.72), we get that for any δ ∈ (0, 1), with probability
at least 1− δ, we have∣∣∣∣∣Rπ1

T −Rπ2
T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤ ∣∣Rπ1

T − TJπ1
∣∣+ ∣∣TJπ1 − TJπ2

∣∣
≤ Kπ1

√
2T log

4

δ
+Hπ1 +Kπ2

√
2T log

4

δ
+Hπ2 .
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4.C.7.2 Proof of Part 2

As we showed in the proof of part 1, for any two policies π1, π2 ∈ ΠAR, we have∣∣∣∣∣Rπ1
T −Rπ2

T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤ ∣∣Rπ1

T − TJπ1
∣∣+ ∣∣Rπ2

T − TJπ2
∣∣.

By Theorem 4.3, for any δ1 ∈ (0, 1), for all T ≥ T π1
0 (δ) :=

⌈ 173
Kπ1

log
4

δ1

⌉
, with probability at

least 1− δ1, we have

∣∣Rπ1
T − TJπ1

∣∣ ≤ max
{
Kπ1

√
3T

(
2 log log

3T

2
+ log

2

δ1

)
, (Kπ1)2

}
+Hπ1 .

Similarly, for any δ2 ∈ (0, 1), for all T ≥ T π2
0 (δ) :=

⌈ 173
Kπ2

log
4

δ2

⌉
, with probability at least

1− δ2, we have

∣∣Rπ2
T − TJπ2

∣∣ ≤ max
{
Kπ2

√
3T

(
2 log log

3T

2
+ log

2

δ2

)
, (Kπ2)2

}
+Hπ2 .

As a result, by applying Lemma 4.4 and (0.72), we get that for all T ≥ T0(δ) := max
{⌈ 173

Kπ1
log

8

δ

⌉
,
⌈ 173
Kπ2

log
8

δ

⌉}
, with probability at least 1− δ, we have

∣∣∣∣∣Rπ1
T −Rπ2

T

∣∣− ∣∣TJπ1 − TJπ2
∣∣∣∣∣ ≤ ∣∣Rπ1

T − TJπ1
∣∣+ ∣∣TJπ2 −Rπ2

T

∣∣
≤ max

{
Kπ1

√
3T

(
2 log log

3T

2
+ log

4

δ

)
, (Kπ1)2

}
+Hπ1

+max
{
Kπ2

√
3T

(
2 log log

3T

2
+ log

4

δ

)
, (Kπ2)2

}
+Hπ2 .

4.C.8 Proof of Theorem 4.4

By Corollary 4.1, for any optimal policy π∗ ∈ ΠAR, the quantity Rπ∗ satisfies the asymp-
totic concentration rates in (4.9)–(4.11). On the other hand, by (4.3), for any learning policy
µ, we have

DT (ω) = Rπ∗

T − TJ∗.

As a result, by substituting DT (ω) in the LHS of (4.9)–(4.11), we get that for any learning
policy µ, these asymptotic concentration rates also hold for the difference DT (ω) of cumula-
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tive regret and interim cumulative regret.

4.C.9 Proof of Theorem 4.5

By Corollary 4.2, for any optimal policy π∗ ∈ ΠAR, the quantity |Rπ∗
T − TJ∗| satisfies

the asymptotic concentration rates in (4.14)–(4.15). On the other hand, by (4.3), for any
learning policy µ, we have

DT (ω) = Rπ∗

T − TJ∗.

As a result, by substituting DT (ω) in the LHS of (4.14)–(4.15), we get that for any learning
policy µ, these non-asymptotic concentration rates also hold for the difference DT (ω) of
cumulative regret and interim cumulative regret.

4.C.10 Proof of Corollary 4.9

By Corollary 4.6, for the weakly communicating M, for any optimal policy π∗ ∈ ΠAR,
the quantity |Rπ∗

T − TJ∗| satisfies the non-asymptotic concentration rates in (4.16)–(4.17).
On the other hand, by (4.3), for any learning policy µ, we have

DT (ω) = Rπ∗

T − TJ∗.

As a result, by substituting DT (ω) in the LHS of (4.16)–(4.17), we get that for the weakly
communicating M, for any learning policy µ, these non-asymptotic concentration rates also
hold for the difference DT (ω) of cumulative regret and interim cumulative regret. At last
by Prop. 4.3, we have that if M is recurrent, unichain, or communicating it is also weakly
communicating. As a result, these non-asymptotic concentration bounds hold for all the
cases.

4.C.11 Proof of Theorem 4.6

4.C.11.1 Proof of Part 1

This part of the theorem is a consequence of Theorem 4.4. Recall that by definition, we
have

DT (ω) = Rµ
T (ω)− R̄µ

T (ω). (0.73)

On the other hand, we can rewrite the law of iterated logarithm in Theorem 4.4 using the
Õ(·) notation as follows

DT (ω) ≤ Õ(
√
T ), a.s. (0.74)
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As a result, for any learning policy µ that satisfies Rµ
T (ω) ≤ Õ(

√
T ), almost surely, (0.73)–

(0.74) imply that R̄µ
T (ω) ≤ Õ(

√
T ). Similarly, for any learning policy µ that satisfies R̄µ

T (ω) ≤
Õ(

√
T ), almost surely, (0.73)–(0.74) imply that Rµ

T (ω) ≤ Õ(
√
T ). Therefore, statements 1

and 2 are equivalent.

4.C.11.2 Proof of Part 2

Proof of this part is a consequence of Theorem 4.5. By the theorem’s hypothesis, for any
δ1 ∈ (0, 1), there exists a pair of functions (T1(δ1), h1(δ1, T )), such that for all T ≥ T1(δ1),
with probability at least 1− δ1, we have

Rµ
T (ω) ≤ h1(δ1, T ), (0.75)

where for a fixed δ1, we have h1(δ1, T ) = Õ(
√
T ). Moreover, by Theorem 4.5, we have that for

any δ2 ∈ (0, 1), there exists a pair of functions (T2(δ2), h2(δ2, T )), such that for all T ≥ T2(δ2),
with probability at least 1− δ2, we have

DT (ω) ≤ h2(δ2, T ), (0.76)

where for a fixed δ2, we have h2(δ2, T ) = Õ(
√
T ). As a result, by (0.73), (0.75)–(0.76),

and Lemma 4.4, we get that for any δ ∈ (0, 1), for all T ≥ max
{
T1(δ/2), T2(δ/2)

}
, with

probability at least 1− δ, we have

R̄µ
T (ω) ≤ h1(δ/2) + h2(δ/2).

At last since for a fixed δ, both h1(δ/2) and h2(δ/2) satisfy

h1(δ/2) ≤ Õ(
√
T ), and, h2(δ/2) ≤ Õ(

√
T ),

we get that R̄µ
T (ω) ≤ Õ(

√
T ). By repeating the similar arguments, we can prove the 2nd

statement.
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4.D Proof of Main Results for Discounted Reward Setup

4.D.1 Proof of Theorem 4.7

4.D.1.1 Preliminary Results

We first present a few preliminary lemmas. To simplify the notation, we define following
martingale difference sequence.

Definition 4.17. Let filtration F = {Ft}t≥0 be defined as Ft := σ(S0:t, A0:t). For any policy
π ∈ ΠSD, let V π

γ denote the corresponding discounted value function. We define the sequence
{Nπ,γ

t }t≥1 as follows

Nπ,γ
t :=

[
V π
γ (St)− E

[
V π
γ (St)

∣∣ St−1, π(St−1)
]]
, ∀t ≥ 1, (0.77)

where {St}t≥1 denotes the random sequence of states encountered along the current sample
path.

Lemma 4.5. Sequence {γtNπ,γ
t }t≥1 is an MDS.

Proof. By the definition of {Ft}t≥0, we have that St−1 is Ft−1-measurable. As a result, we
have

E
[
γtNπ,γ

t

∣∣ Ft−1

]
= E

[
γt
(
V π
γ (St)− E

[
V π
γ (St)

∣∣ St−1, π(St−1)
]) ∣∣ Ft−1

]
= γtE

[
V π
γ (St)

∣∣ Ft−1

]
− γtE

[
V π
γ (St)

∣∣ St−1, π(St−1)
]
= 0,

which shows that {γtN
π,γ
t }t≥0 is an MDS with respect to the filtration {Ft}t≥0.

We now present a martingale decomposition for the discounted cumulative reward Rπ,γ
T (ω)

for any policy π ∈ ΠSD.

Lemma 4.6. Given any policy π ∈ ΠSD, we can rewrite the discounted cumulative return
Rπ,γ

T as follows

Rπ,γ
T (ω) =

T∑
t=1

γtNπ,γ
t + V π

γ (S0)− γTV π
γ (ST ). (0.78)

Proof. Since π ∈ ΠSD, (DRPE) implies that along the trajectory of states {St}Tt=0 induced
by the policy π, we have

r
(
St, π(St)

)
= V π

γ (St)− γE
[
V π
γ (St+1)

∣∣ St, π(St)
]
.

101



Repeating similar steps as in the proof of Lemma 4.3, we have

Rπ,γ
T (ω) =

T−1∑
t=0

γtr(St, π(St))

=
T−1∑
t=0

γt
[
V π
γ (St)− γE

[
V π
γ (St+1)|St, π(St)

]]
(a)
=

T−1∑
t=0

γt
[
V π
γ (St)− γE

[
V π
γ (St+1)|St, π(St)

]]
+ γTV π

γ (ST )− γTV π
γ (ST )

(b)
=

T−1∑
t=0

γt+1
[
V π
γ (St+1)− E

[
V π
γ (St+1)|St, π(St)

]]
+ V π

γ (S0)− γTV π
γ (ST )

(c)
=

T−1∑
t=0

γt+1Nπ,γ
t+1 + V π

γ (S0)− γTV π
γ (ST )

=
T∑
t=1

γtNπ,γ
t + V π

γ (S0)− γTV π
γ (ST ),

where (a) follows from adding and subtracting the term γTV π
γ (ST ), (b) follows from re-

arranging the terms in the summation, and (c) follows from the definition of {Nπ,γ
t }t≥0.

4.D.1.2 Proof of Theorem 4.7

Proof of this theorem follows from the martingale decomposition stated in Lemma 4.6
and the concentration bounds stated in Corollary 4.18 and Theorem 4.13.
Proof of Part 1 By Lemma 4.6, we have

Rπ,γ
T (ω) =

T∑
t=1

γtNπ,γ
t + V π

γ (S0)− γTV π
γ (ST ).

As a result, we have

∣∣∣Rπ,γ
T (ω)−

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣ = ∣∣ T∑

t=1

γtNπ,γ
t

∣∣. (0.79)

In order to upper-bound the term
∣∣∑T

t=1 γ
tNπ,γ

t

∣∣, we verify the conditions of Corollary 4.18.
By (4.24) and Lemma 4.1, we have

∣∣γtNπ,γ
t

∣∣ ≤ γtKπ,γ < ∞, ∀t ≥ 1.
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As a result, MDS {γtNπ,γ
t }t≥1 is a sequentially bounded MDS with respect to the sequence

{γtKπ,γ}t≥1. Therefore, Corollary 4.18 implies that for any δ ∈ (0, 1), with probability at
least 1− δ, we have

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤
√√√√2

T∑
t=1

(Kπ,γ)2γ2t log
2

δ

= Kπ,γ

√√√√2
T∑
t=1

γ2t log
2

δ

= Kπ,γ

√
2fγ(T ) log

2

δ
. (0.80)

As a result, by combining (0.79) and (0.80), we get that with probability at least 1− δ, we
have ∣∣∣Rπ,γ

T (ω)−
(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣ ≤ Kπ,γ

√
2fγ(T ) log

2

δ
. (0.81)

Proof of Part 2: Similar to the proof of Part 1, by Lemma 4.6, we have

∣∣∣Rπ,γ
T (ω)−

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣ = ∣∣ T∑

t=1

γtNπ,γ
t

∣∣. (0.82)

Moreover, MDS {γtNπ,γ
t }t≥1 is a sequentially bounded MDS with respect to the sequence

{γtKπ,γ}t≥1. Therefore, Theorem 4.13 implies that for any δ ∈ (0, 1), for all T ≥ T0(δ) :=

min
{
T ≥ 1 : fγ(T ) >

173

Kπ,γ
log

4

δ

}
, with probability at least 1− δ, we have

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤
√√√√3

( T∑
t=1

(Kπ,γ)2(γt)2
)(

2 log log
(3∑T

t=1(K
π,γ)2(γt)2

2
∣∣∑T

t=1 γ
tNπ,γ

t

∣∣ )
+ log

2

δ

)
.

Now there are two cases: either |
∑T

t=1 γ
tNπ,γ

t | ≤ (Kπ,γ)2 or |
∑T

t=1 γ
tNπ,γ

t | ≥ (Kπ,γ)2. If
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|
∑T

t=1 γ
tNπ,γ

t | ≥ (Kπ,γ)2, we get:

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤
√√√√3

( T∑
t=1

(Kπ,γ)2(γt)2
)(

2 log log
(3∑T

t=1(K
π,γ)2(γt)2

2
∣∣∑T

t=1 γ
tNπ,γ

t

∣∣ )
+ log

2

δ

)

≤

√√√√3
( T∑

t=1

(Kπ,γ)2(γt)2
)(

2 log log
(3∑T

t=1(K
π,γ)2(γt)2

2(Kπ,γ)2
)
+ log

2

δ

)
(a)
= Kπ,γ

√
3fγ(T )

(
2 log log

(3
2
fγ(T )

)
+ log

2

δ

)
,

where (a) follows from the geometric series formula and the definition of fγ(T ). Otherwise,
we have |

∑T
t=1 γ

tNπ,γ
t | ≤ (Kπ,γ)2. As a result, we can summarize these two cases as follows

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

2

δ

)
, (Kπ,γ)2

}
. (0.83)

By combining (0.82)–(0.83), with probability at least 1− δ, we have∣∣∣Rπ,γ
T (ω)−

(
V π
γ (S0)− γTV π

γ (ST )
)∣∣∣

≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log(

3

2
fγ(T )) + log

2

δ

)
, (Kπ,γ)2

}
. (0.84)

4.D.2 Proof of Corollary 4.10

Proof of Part 1: By Lemma 4.6, we have

Rπ,γ
T (ω) =

T∑
t=1

γtNπ,γ
t + V π

γ (S0)− γTV π
γ (ST ).

As a result, we have

∣∣∣Rπ,γ
T (ω)− V π

γ (S0)
∣∣∣ (a)

≤
∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣+ ∣∣∣γTV π
γ (ST )

∣∣∣, (0.85)

where (a) follows from the triangle inequality. In the proof of Theorem 4.7, Part 1, we
showed that with probability at least 1− δ, we have

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤ Kπ,γ

√
2fγ(T ) log

2

δ
. (0.86)
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Moreover, we have

γTV π
γ (ST ) = γTEπ

[
lim
T→∞

T−1∑
t=0

γtr(St, At)
∣∣ S0 = ST

]
= γTEπ

[
lim
T→∞

T−1∑
t=0

γtRmax

∣∣ S0 = ST

]
≤ γT

1− γ
Rmax. (0.87)

By combining (0.85)–(0.87), with probability 1− δ, we have

∣∣∣Rπ,γ
T (ω)− V π

γ (S0)
∣∣∣ ≤ Kπ,γ

√
2fγ(T ) log

2

δ
+

γT

1− γ
Rmax.

Proof of Part 2: Similar to the proof of Part 1, by Lemma 4.6, we have

∣∣∣Rπ,γ
T (ω)− V π

γ (S0)
∣∣∣ ≤ ∣∣∣ T∑

t=1

γtNπ,γ
t

∣∣∣+ ∣∣∣γTV π
γ (ST )

∣∣∣. (0.88)

Moreover, we have ∣∣∣γTV π
γ (ST )

∣∣∣ ≤ γT Rmax

1− γ
. (0.89)

In addition, from proof of Theorem 4.7, Part 2, for any δ ∈ (0, 1), for all T ≥ T0(δ) :=

min
{
T ′ ≥ 1 : fγ(T ′) >

173

Kπ,γ
log

4

δ

}
, with probability at least 1− δ, we have

∣∣∣ T∑
t=1

γtNπ,γ
t

∣∣∣ ≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

2

δ

)
, (Kπ,γ)2

}
. (0.90)

By combining (0.88)–(0.90), with probability at least 1− δ, we have∣∣∣Rπ,γ
T (ω)− V π

γ (S0)
∣∣∣

≤ max

{
Kπ,γ

√
3fγ(T )

(
2 log log(

3

2
fγ(T )) + log

2

δ

)
, (Kπ,γ)2

}
+

γT

1− γ
Rmax. (0.91)
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4.D.3 Proof of Corollary 4.12

4.D.3.1 Proof of Part 1

Consider two policies π1, π2 ∈ ΠSD. Let {Sπ1
t }t≥0 and {Sπ2

t }t≥0 denote the random se-
quences of states encountered by following policies π1 and π2. We have∣∣∣Rπ1,γ

T −Rπ2,γ
T

∣∣∣ (a)
=
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
+
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]

−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]
+
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]
−Rπ2,γ

T

∣∣∣
(b)

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣[V π2

γ (Sπ2
0 )− γTV π2

γ (Sπ2
T )

]
−Rπ2,γ

T

∣∣∣
+
∣∣∣[V π1

γ (Sπ1
0 )− γTV π1

γ (Sπ1
T )

]
−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣, (0.92)

where (a) follows by adding and subtracting
[
V π1
γ (Sπ1

0 ) − γTV π1
γ (Sπ1

T )
]

and
[
V π2
γ (Sπ2

0 ) −
γTV π2

γ (Sπ2
T )

]
and (b) follows from the triangle inequality. Similarly, we have∣∣∣[V π1

γ (Sπ1
0 )− γTV π1

γ (Sπ1
T )

]
−

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣ (a)

=∣∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−Rπ1,γ

T +Rπ1,γ
T −Rπ2,γ

T +Rπ2,γ
T −

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣

(b)

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,γ

T −
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣

+
∣∣∣Rπ1,γ

T −Rπ2,γ
T

∣∣∣, (0.93)

where (a) follows by adding and subtracting Rπ1,γ
T and Rπ2,γ

T and (b) follows from the triangle
inequality. (0.92)–(0.93) imply that∣∣∣∣∣Rπ1,γ

T −Rπ2,γ
T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,γ

T −
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣. (0.94)

By Theorem 4.7, we know that for any δ1 ∈ (0, 1), with probability at least 1− δ1, we have

∣∣∣Rπ1,γ
T −

[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣ ≤ Kπ1,γ

√
2fγ(T ) log

2

δ1
. (0.95)

Similarly, for any δ2 ∈ (0, 1), with probability at least 1− δ2, we have

∣∣∣Rπ2,γ
T −

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣ ≤ Kπ2,γ

√
2fγ(T ) log

2

δ2
. (0.96)
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As a result, by applying Lemma 4.4 and (0.94)–(0.96), we get that for any δ ∈ (0, 1), with
probability at least 1− δ, we have∣∣∣∣∣Rπ1,γ

T −Rπ2,γ
T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,γ

T −
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣

≤ Kπ1,γ

√
2fγ(T ) log

4

δ
+Kπ2,γ

√
2fγ(T ) log

4

δ
.

4.D.3.2 Proof of Part 2

As we showed in the proof of part 1, for any two policies π1, π2 ∈ ΠSD, we have∣∣∣∣∣Rπ1,γ
T −Rπ2,γ

T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,γ

T −
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣. (0.97)

By Theorem 4.7, for any δ1 ∈ (0, 1), for all T ≥ T π1
0 (δ1) := min

{
T ′ ≥ 1 : fγ(T ′) >

173

Kπ1,γ
log

4

δ1

}
, with probability at least 1− δ1, we have:

∣∣∣Rπ1,γ
T −

[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣

≤ max
{
Kπ1,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

2

δ1

)
, (Kπ1,γ)2

}
.

Similarly, for any δ2 ∈ (0, 1), for all T ≥ T π2
0 (δ2) := min

{
T ′ ≥ 1 : fγ(T ′) >

173

Kπ2,γ
log

4

δ2

}
,

with probability at least 1− δ2, we have:∣∣∣Rπ2,γ
T −

[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣

≤ max
{
Kπ2,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

2

δ2

)
, (Kπ2,γ)2

}
.
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As a result, by applying Lemma 4.4, we get that for all T ≥ T π
0 (δ) := max

{
T π1
0 ( δ

2
), T π2

0 ( δ
2
)
}
,

with probability at least 1− δ, we have∣∣∣∣∣Rπ1,γ
T −Rπ2,γ

T

∣∣− ∣∣[V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]
−
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,γ

T −
[
V π1
γ (Sπ1

0 )− γTV π1
γ (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,γ

T −
[
V π2
γ (Sπ2

0 )− γTV π2
γ (Sπ2

T )
]∣∣∣

≤max
{
Kπ1,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

4

δ

)
, (Kπ1,γ)2

}
+max

{
Kπ2,γ

√
3fγ(T )

(
2 log log

3

2
fγ(T ) + log

4

δ

)
, (Kπ2,γ)2

}
.

4.D.4 Proof of Corollary 4.14

Since policy π ∈ ΠAR, we know the pair (Jπ, V π) exists and Jπ is constant for all s ∈ S.
We first prove the following preliminary lemma.

4.D.4.1 Preliminary Lemma

Lemma 4.7. For any policy π ∈ ΠAR, as γ goes to 1 from below, following statements hold.

1. For any two states s1, s2 ∈ S, we have

lim
γ↑1

[
V π
γ (s1)− V π

γ (s2)

]
= V π(s1)− V π(s2).

2. For any two states s1, s2 ∈ S, we have

lim
γ↑1

[
V π
γ (s1)− γTV π

γ (s2)

]
= TJπ + V π(s1)− V π(s2).

3. We have
lim
γ↑1

f(T, γ) = T. (0.98)

4. We have
lim
γ↑1

Rπ,γ
T = Rπ

T . (0.99)

Proof. of Part 1: From the Laurent series expansion ([119, Proposition 5.1.2], for any policy
π ∈ ΠSD, we have

V π
γ (s) =

Jπ

1− γ
+ V π(s) +O(|1− γ|), ∀s ∈ S.
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As a result, we have

lim
γ↑1

[
V π
γ (s1)− V π

γ (s2)

]
= lim

γ↑1

[
Jπ

1− γ
+ V π(s1) +O(|1− γ|)−

[ Jπ

1− γ
+ V π(s2) +O(|1− γ|)

]]
= lim

γ↑1

[
V π(s1)− V π(s2)

]
= V π(s1)− V π(s2).

Proof of Part 2: Again from the Laurent series expansion ([119, Proposition 5.1.2], for any
policy π ∈ ΠSD, we have

V π
γ (s) =

Jπ

1− γ
+ V π(s) +O(|1− γ|), ∀s ∈ S.

As a result, we have

lim
γ↑1

[
V π
γ (s1)− γTV π

γ (s2)

]
= lim

γ↑1

[
Jπ

1− γ
+ V π(s1) +O(|1− γ|)−

[γTJπ

1− γ
+ γTV π(s2) +O(γT |1− γ|)

]]
= lim

γ↑1

[
(1− γT )

1− γ
Jπ + V π(s1)− γTV π(s2)

]
= TJπ + V π(s1)− V π(s2).

Proof of Part 3: From the definition, we have

lim
γ↑1

f(T, γ) = lim
γ↑1

[γ2 − γ2T+2

1− γ2

]
= lim

γ↑1

[ T∑
t=1

γ2t
]
= T.

Proof of Part 4: From the definition, for any finite T ≥ 1, we have

lim
γ↑1

[
Rπ,γ

T

]
= lim

γ↑1

[ T−1∑
t=0

γtr(St, At)
]
=

T−1∑
t=0

r(St, At) = Rπ
T .
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4.D.4.2 Proof of Corollary 4.14

Proof of Part 1: By Lemma 4.7, Part 4, for all T ≥ 1, we have

lim
γ↑1

[
Rπ,γ

T

]
= Rπ

T . (0.100)

Moreover, we have

lim
γ↑1

[
V π
γ (S0)− γTV π

γ (ST )
]
= lim

γ↑1

[
V π
γ (S0)− V π

γ (ST ) + V π
γ (ST )− γTV π

γ (ST )
]

(a)
= V π(S0)− V π(ST ) + TJπ + V π(ST )− V π(ST )

= TJπ + V π(S0)− V π(ST ), (0.101)

where (a) follows from Lemma 4.7, Parts 1 and 2. The result of this part follows by substi-
tuting (0.100)–(0.101) on the LHS of (4.25).
Proof of Part 2: By Lemma 4.7, Part 2, for all s1, s2 ∈ S, we have

lim
γ↑1

[
V π
γ (s1)− V π

γ (s2)
]
= V π(s1)− V π(s2).

This implies that
lim
γ↑1

[
Kπ,γ

]
= Kπ. (0.102)

Moreover, by Lemma 4.7, Part 3, we have

lim
γ↑1

fγ(T ) = T. (0.103)

The result of this part follows by substituting (0.102)–(0.103) on the RHS of (4.25).
Proof of Part 3: The result of this part follows by substituting (0.102)–(0.103) on the RHS
of (4.26).

4.E Proof of Main Results for Finite-Horizon Setup

4.E.1 Proof of Theorem 4.8

4.E.1.1 Preliminary Results

We first present a few preliminary lemmas. To simplify the notation, we define following
martingale difference sequence.

Definition 4.18. Let filtration F = {Ft}ht=0 be defined as Ft := σ(S0:t, A0:t). For any policy
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π ∈ ΠFD, let {V π,h
t }h+1

t=0 denote the corresponding finite-horizon value function. We define
the sequence {W π,h

t }h+1
t=0 as follows

W π,h
t :=

[
V π,h
t (St)− E

[
V π,h
t (St)

∣∣ St−1, πt−1(St−1)
]]
, ∀t ∈ {1, . . . , h+ 1}, (0.104)

where {St}ht=0 denotes the random sequence of states encountered along the current sample
path.

Lemma 4.8. Sequence {W π,h
t }h+1

t=0 is an MDS.

Proof. By the definition of {Ft}ht=0, we have that St−1 is Ft−1-measurable. As a result, we
have

E
[
W π,h

t

∣∣ Ft−1

]
= E

[
V π,h
t (St)− E

[
V π,h
t (St)

∣∣ St−1, πt−1(St−1)
] ∣∣ Ft−1

]
= E

[
V π,h
t (St)

∣∣ Ft−1

]
− E

[
V π,h
t (St)

∣∣ St−1, πt−1(St−1)
]
= 0,

which shows that {W π,h
t }h+1

t=0 is an MDS with respect to the filtration {Ft}ht=0.

We now present a martingale decomposition for the cumulative reward Rπ,h
T (ω) for any

policy π ∈ ΠFD.

Lemma 4.9. Given any policy π ∈ ΠFD, we can rewrite the cumulative reward Rπ,h
T as

follows

Rπ,h
T (ω) =

T∑
t=1

W π,h
t + V π,h

0 (S0)− V π,h
T (ST ). (0.105)

Proof. (FHPE) implies that along the trajectory of states {St}Tt=0 induced by the policy π,
we have

r(St, π(St)) = V π,h
t (St)− E

[
V π,h
t+1 (St+1)

∣∣ St, π(St)
]
.
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For any 1 ≤ T ≤ h+1, by repeating similar steps as in the proof of Lemma 4.3, we have

Rπ,h
T =

T−1∑
t=0

[
V π,h
t (St)− E

[
V π,h
t+1 (St+1)

∣∣ St, πt(St)
]]

(a)
=

T−1∑
t=0

[
V π,h
t (St)− E

[
V π,h
t+1 (St+1)

∣∣ St, πt(St)
]]

+ V π,h
T (ST )− V π,h

T (ST )

(b)
=

T−1∑
t=0

[
V π,h
t+1 (St+1)− E

[
V π,h
t+1 (St+1)

∣∣ St, πt(St)
]]

+ V π,h
0 (S0)− V π,h

T (ST )

(c)
=

T−1∑
t=0

W π,h
t+1 + V π,h

0 (S0)− V π,h
T (ST )

=
T∑
t=1

W π,h
t + V π,h

0 (S0)− V π,h
T (ST ),

where (a) follows from adding and subtracting V π,h
T (ST ), (b) follows from re-arranging the

terms in the summation, and (c) follows from the definition of {W π,h
t }h+1

t=0 in (0.104).

4.E.1.2 Proof of Theorem 4.8

Proof of this theorem follows from the martingale decomposition stated in Lemma 4.9
and the concentration bounds stated in Theorem 4.12 and Theorem 4.13.
Proof of Part 1 By Lemma 4.9, we have

Rπ,h
T (ω) =

T∑
t=1

W π,h
t + V π,h

0 (S0)− V π,h
T (ST ).

As a result, we have

∣∣∣Rπ,h
T (ω)−

(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣ = ∣∣∣ T∑

t=1

W π,h
t

∣∣∣. (0.106)

In order to upper-bound the term
∣∣∑T

t=1 W
π,h
t

∣∣, we verify the conditions of Corollary 4.18.
By (4.35), we have

∣∣W π,h
t

∣∣ = ∣∣V π,h
t (St)− E

[
V π,h
t (St)

∣∣ St−1, πt−1(St−1)
]∣∣ ≤ Kπ,h

t < ∞, ∀t ∈ {1, . . . , T}.

As a result, MDS {W π,h
t }h+1

t=1 is a sequentially bounded MDS with respect to the sequence
{Kπ,h

t }h+1
t=1 . Therefore, Corollary 4.18 implies that for any δ ∈ (0, 1), with probability at least
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1− δ, we have

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤
√√√√2

T∑
t=1

(Kπ,h
t )2 log

2

δ

(a)
= K̄π,h

T

√
2gπ,h(T ) log

2

δ
, (0.107)

where (a) follows from (4.37). By combining (0.106) and (0.107), we get that with probability
at least 1− δ, we have

∣∣∣Rπ,h
T −

(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣ ≤ √

2gπ,h(T ) log
2

δ
. (0.108)

Proof of Part 2: Similar to the proof of Part 1, by Lemma 4.9, we have

∣∣∣Rπ,h
T −

(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣ = ∣∣∣ T∑

t=1

W π,h
t

∣∣∣. (0.109)

Moreover, MDS {W π,h
t }h+1

t=1 is a sequentially bounded MDS with respect to the sequence
{Kπ,h

t }h+1
t=1 . Therefore, Theorem 4.13 implies that for any δ ∈ (0, 1), if gπ,h(h+1) ≥ 173 log 4

δ
,

define T π,h
0 (δ) to be

T π,h
0 (δ) := min{T ′ ≥ 1 : gπ,h(T ′) ≥ 173 log

4

δ
}.

Then with probability at least 1− δ, for all T π,h
0 (δ) ≤ T ≤ h+ 1, we have

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤
√√√√3

( T∑
t=1

(Kπ,γ
t )2

)(
2 log log

(3∑T
t=1(K

π,γ
t )2

2
∣∣∑T

t=1W
π,h
t

∣∣ )+ log
2

δ

)
.
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Now there are two cases: either |
∑T

t=1W
π,h
t | ≤ (K̄π,h

T )2 or |
∑T

t=1 W
π,h
t | ≥ (K̄π,γ

T )2. If
|
∑T

t=1W
π,h
t | ≥ (K̄π,γ

T )2, we get:

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤
√√√√3

( T∑
t=1

(Kπ,h
t )2

)(
2 log log

(3∑T
t=1(K

π,h
t )2

2
∣∣∑T

t=1 W
π,h
t

∣∣ )+ log
2

δ

)

≤

√√√√3
( T∑

t=1

(Kπ,h
t )2

)(
2 log log

(3∑T
t=1(K

π,h
t )2

2(K̄π,h
T )2

)
+ log

2

δ

)
(a)
= K̄π,h

T

√
3gπ,h(T )

(
2 log log

(3
2
gπ,h(T )

)
+ log

2

δ

)
,

where (a) follows from the definition of gπ,h(T ). Otherwise, we have |
∑T

t=1W
π,h
t | ≤ (K̄π,γ

T )2.
As a result, we can summarize these two cases as follows

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤ max

{
K̄π,h

T

√
3gπ,h(T )

(
2 log log

(3
2
gπ,h(T )

)
+ log

2

δ

)
, (K̄π,h

T )2
}
. (0.110)

By combining (0.109)–(0.110), with probability at least 1− δ, we have∣∣∣Rπ,h
T (ω)−

(
V π,h
0 (S0)− V π,h

T (ST )
)∣∣∣

≤ max

{
K̄π,h

T

√
3gπ,h(T )

(
2 log log(

3

2
gπ,h(T )) + log

2

δ

)
, (K̄π,h

T )2
}
. (0.111)

4.E.2 Proof of Corollary 4.15

Proof of Part 1 By Lemma 4.9, we have

Rπ,h
T (ω) =

T∑
t=1

W π,h
t + V π,h

0 (S0)− V π,h
T (ST ).

As a result, we have

∣∣∣Rπ,h
T (ω)− V π,h

0 (S0)
∣∣∣ (a)

≤
∣∣∣ T∑
t=1

W π,h
t

∣∣∣+ ∣∣∣V π,h
T (ST )

∣∣∣, (0.112)
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where (a) follows from the triangle inequality. In the proof of Theorem 4.8, Part 1, we
showed that with probability at least 1− δ, we have

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤
√√√√2

T∑
t=1

(Kπ,h
t )2 log

2

δ

(b)

≤ K̄π,h
T

√
2T log

2

δ
, (0.113)

where (b) follows by Kπ,h
t ≤ K̄π,h

T , for all t ≤ T . Moreover, by definition, we have

V π,h
T (ST ) ≤ H̄π,h

T , ∀t ≤ T. (0.114)

By combining (0.112)–(0.114), with probability at least 1− δ, we have

∣∣∣Rπ,h
T (ω)− V π,h

0 (S0)
∣∣∣ ≤ K̄π,h

T

√
2T log

2

δ
+ H̄π,h

T .

Proof of Part 2: Similar to the proof of Part 1, by Lemma 4.9, we have

∣∣∣Rπ,h
T (ω)− V π,h

0 (S0)
∣∣∣ ≤ ∣∣∣ T∑

t=1

W π,h
t

∣∣∣+ ∣∣∣V π,h
T (ST )

∣∣∣, (0.115)

Moreover, we have
V π,h
T (ST ) ≤ H̄π,h

T . (0.116)

In addition, from proof of Theorem 4.8, Part 2, we have for any δ ∈ (0, 1), for all T ≥
T0(δ) := min{T ≥ 1 : gπ,h(T ) ≥ 173 log 4

δ
}, with probability at least 1− δ, we have

∣∣∣ T∑
t=1

W π,h
t

∣∣∣ ≤ max

{
K̄π,h

T

√
3gπ,h(T )

(
2 log log

(3
2
gπ,h(T )

)
+ log

2

δ

)
, (K̄π,h

T )2
}

(c)

≤ max

{
K̄π,h

T

√
3T

(
2 log log

(3T
2

)
+ log

2

δ

)
, (K̄π,h

T )2
}
, (0.117)

where (c) follows from the fact that gπ,h(T ) ≤ T . By combining (0.115)–(0.117), with
probability at least 1− δ, we have

∣∣∣Rπ,h
T (ω)− V π,h

0 (S0)
∣∣∣ ≤ max

{
K̄π,h

T

√
3T

(
2 log log

(3T
2

)
+ log

2

δ

)
, (K̄π,h

T )2
}
+ H̄π,h

T .
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4.E.3 Proof of Corollary 4.16

4.E.3.1 Proof of Part 1

Consider two policies π1, π2 ∈ ΠSD. Let {Sπ1
t }t≥0 and {Sπ2

t }t≥0 denote the random se-
quence of states encountered by following policies π1 and π2. We have∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣∣ (a)
=
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
+
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]

−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]
+
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]
−Rπ2,h

T

∣∣∣
(b)

≤
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]∣∣∣+ ∣∣∣[V π2,h

0 (Sπ2
0 )− V π2,h

T (Sπ2
T )

]
−Rπ2,h

T

∣∣∣
+
∣∣∣[V π1

0 (Sπ1
0 )− V π1

T (Sπ1
T )

]
−
[
V π2
0 (Sπ2

0 )− V π2
T (Sπ2

T )
]∣∣∣, (0.118)

where (a) follows by adding and subtracting
[
V π1,h
0 (Sπ1

0 ) − V π1,h
T (Sπ1

T )
]

and
[
V π2,h
0 (Sπ2

0 ) −
V π2,h
T (Sπ2

T )
]

and (b) follows from the triangle inequality. Similarly, we have∣∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−

[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣ (a)

=∣∣∣[V π1
0 (Sπ1

0 )− V π1
T (Sπ1

T )
]
−Rπ1,h

T +Rπ1,h
T −Rπ2,h

T +Rπ2,T
T −

[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣

(b)

≤
∣∣∣Rπ1,h

T −
[
V π1
0 (Sπ1

0 )− V π1
T (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,h

T −
[
V π2
0 (Sπ2

0 )− V π2
T (Sπ2

T )
]∣∣∣

+
∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣∣, (0.119)

where (a) follows by adding and subtracting Rπ1,h
T and Rπ2,h

T and (b) follows from the triangle
inequality. (0.118)–(0.119) imply that∣∣∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,h

T −
[
V π2,h
0 (Sπ2

0 )− V π2,h
γ (Sπ2

T )
]∣∣∣. (0.120)

By Theorem 4.8, we know that for any δ1 ∈ (0, 1), with probability at least 1− δ1, we have

∣∣∣Rπ1,h
T −

(
V π1,h
0 (S0)− V π1,h

T (ST )
)∣∣∣ ≤ K̄π1,h

T

√
2gπ1,h(T ) log

2

δ1
. (0.121)

Similarly, we have that for any δ2 ∈ (0, 1), with probability at least 1− δ2, we have

∣∣∣Rπ2,h
T −

(
V π2,h
0 (S0)− V π2,h

T (ST )
)∣∣∣ ≤ K̄π2,h

T

√
2gπ2,h(T ) log

2

δ2
. (0.122)
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As a result, by applying Lemma 4.4 and (0.120)–(0.122), we get that for any δ ∈ (0, 1), with
probability at least 1− δ, we have∣∣∣∣∣Rπ1,h

T −Rπ2,h
T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,h

T −
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣

≤ K̄π1,h
T

√
2gπ1,h(T ) log

4

δ
+ K̄π2,h

T

√
2gπ2,h(T ) log

4

δ
.

4.E.4 Proof of Part 2

As we showed in the proof of part 1, for any two policies π1, π2 ∈ ΠFD, we have∣∣∣∣∣Rπ1,h
T −Rπ2,h

T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,h

T −
[
V π2,h
0 (Sπ2

0 )− V π2,h
γ (Sπ2

T )
]∣∣∣. (0.123)

By Corollary 4.16, for any δ1 ∈ (0, 1), if gπ1,h(h) ≥ 173 log 4
δ1

, let

T π,h
0 (δ1) := min

{
T ′ ≥ 1 : gπ,h(T ′) ≥ 173 log

4

δ1

}
. (0.124)

Then with probability at least 1− δ1, for all T π1,h
0 (δ1) ≤ T ≤ h+ 1, we have∣∣∣Rπ1,h

T −
(
V π1,h
0 (S0)− V π1,h

T (ST )
)∣∣∣

≤ max

{
K̄π1,h

T

√
3gπ1,h(T )

(
2 log log(

3

2
gπ1,h(T )) + log

2

δ1

)
, (K̄π1,h

T )2
}
. (0.125)

Similarly, for any δ2 ∈ (0, 1), if gπ2,h(h) ≥ 173 log 4
δ2

, with probability at least 1− δ2, for all
T π,h
0 (δ2) ≤ T ≤ h+ 1 we have∣∣∣Rπ2,h

T −
(
V π2,h
0 (S0)− V π2,h

T (ST )
)∣∣∣

≤ max

{
K̄π2,h

T

√
3gπ2,h(T )

(
2 log log(

3

2
gπ2,h(T )) + log

2

δ2

)
, (K̄π2,h

T )2
}
. (0.126)

As a result, by applying Lemma 4.4, for any δ ∈ (0, 1), if min
{
gπ1,h(h), gπ2,h(h) ≥ 173 log 8

δ

}
,

let
T0(δ) := max{T π1,h

0 (
8

δ
), T π1,h

0 (
8

δ
)}.
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Then, with probability at least 1− δ, for all T0(δ) ≤ T ≤ h+ 1, we have∣∣∣∣∣Rπ1,h
T −Rπ2,h

T

∣∣− ∣∣[V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]
−
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣∣∣

≤
∣∣∣Rπ1,h

T −
[
V π1,h
0 (Sπ1

0 )− V π1,h
T (Sπ1

T )
]∣∣∣+ ∣∣∣Rπ2,h

T −
[
V π2,h
0 (Sπ2

0 )− V π2,h
T (Sπ2

T )
]∣∣∣

≤max

{
K̄π1,h

T

√
3gπ1,h(T )

(
2 log log(

3

2
gπ1,h(T )) + log

4

δ

)
, (K̄π1,h

T )2
}

+max

{
K̄π2,h

T

√
3gπ2,h(T )

(
2 log log(

3

2
gπ2,h(T )) + log

4

δ

)
, (K̄π2,h

T )2
}
. (0.127)

4.F Miscellaneous Theorems

4.F.1 Slutsky’s Theorem

Theorem 4.14 (see [127, Theorem 7.7.1]). If Xt

(d)−→ X and Yt

(d)−→ c, where c ∈ R (equiva-
lently Yt

(P )−−→ c) then we have

1. Xt + Yt

(d)−→ X + c.

2. XtYt

(d)−→ cX.

3.
Xt

Yt

(d)−→ X

c
, if c ̸= 0.

Remark 4.6. Since convergence in the almost-sure sense implies convergence in probability,
same results hold when Yt

(a.s.)−−−→ c.
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Chapter 5

Asymptotic Normality of Cumulative
Cost in Linear Quadratic Regulators

5.1 Overview

In this chapter, we investigate the asymptotic normality of cumulative cost in Linear
Quadratic Regulator (LQR) framework. The results of this chapter are published in [106].

5.1.1 Organization

The rest of this chapter is organized as follows. In Section 5.2, we present the system
model, assumptions, and the main results. In Section 5.3, we present preliminary results on
the cost decomposition, implications of our assumption on the noise process, a preliminary
on the central limit theorem for martingale difference sequences, and the proof of the main
result. Our concluding remarks are presented in Section 5.4.

5.2 Problem Formulation and Main Result

5.2.1 System Model

Consider a discrete-time linear time-invariant system with full state observation. Let
xt ∈ Rn and ut ∈ Rd denote the state and control input at time t. The system starts at a
known initial state x0 and it evolves according to the following dynamics:

xt+1 = Axt +But +Dvt+1, t ≥ 0, (5.1)

where A ∈ Rn×n, B ∈ Rn×d, and D ∈ Rn×n are the system dynamic matrices and {vt}t≥1,
vt+1 ∈ Rn, is an independent and identically distributed (i.i.d.) zero-mean noise process
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with unit covariance I. At each time t, the system incurs a per-step cost of

c(xt, ut) = x
⊺
tQxt + u

⊺
tRut,

where Q ⪰ 0 and R ≻ 0.
We assume that the control inputs are chosen according to a time-homogeneous (and

measurable) policy π : Rn → Rd, i.e.,

ut = π(xt).

Let Π denote the set of all such policies. For a fixed policy π ∈ Π, let {xπ
t }t≥0 and {uπ

t }t≥0

denote the sequence of states and control inputs generated over time. Let

C(π, T ) :=
T−1∑
t=0

c(xπ
t , u

π
t ),

denote the cumulative cost incurred by policy π up to time T . Note that our definition of
C(π, T ) does not include an expectation, so C(π, T ) is a random variable. The long-term
average performance of policy π ∈ Π is given by

J(π) := lim sup
T→∞

1

T
E[C(π, T )],

where the expectation is with respect to the noise process {vt}t≥1. Let

J∗ = inf
π∈Π

J(π),

denote the optimal performance. A policy π∗ ∈ Π is called optimal if J(π∗) = J∗.
We impose the following standard assumption on the model.

Assumption 5.1. The pair of matrices (A,B) is controllable, and the pair of matrices
(A,Q1/2) is observable.

It is well known (e.g., see [1]) that under Assumption 5.1, the optimal policy exists, is
unique, and is given by

π∗(xt) = −L∗xt, (5.2)

where the optimal gain L∗ is given by

L∗ = (R +B
⊺
SB)−1B

⊺
SA, (5.3)
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where S is the unique fixed point of the Discrete Algebraic Riccatti Equation (DARE) given
by:

P = A
⊺
PA− A

⊺
PB(R +B

⊺
PB)−1B

⊺
PA+Q. (5.4)

Moreover the optimal value J∗ is given by:

J∗ = Tr(SDD
⊺
). (5.5)

5.2.2 Main Result

The classical result described above characterizes the behavior of the expected value of
C(π∗, T ); in particular,

lim
T→∞

1

T
E[C(π∗, T )] = Tr(SDD

⊺
) = J∗. (5.6)

Our main result characterizes a much stronger distributional behavior of C(π∗, T ). In par-
ticular, we will show that under a mild assumption, loosely speaking, the stochastic process
C(π∗, T ) converges in distribution to a Gaussian random variable. We will present this
statement more precisely in this section.

For our analysis, we impose the following additional assumption on the noise process
{vt}t≥1.

Assumption 5.2. In addition to being i.i.d. across time and having a unit covariance, the
noise sequence {vt}t≥1 satisfies the following conditions for each time t:

(A1) The components of vt are independent and admit a density fv that is even.

(A2) vt is uniformly bounded, that is, there exists a Kv ∈ R+ such that ∥vt∥ ≤ Kv almost
surely.

(A3) For matrices D and S, we have Var(v⊺tD
⊺SDvt) ̸= 0.

For the ease of notation, let {(x∗
t , u

∗
t )}t≥0 denote the (stochastic) trajectory {(xπ∗

t , uπ∗
t )}t≥0

of the optimal policy, wt = Dvt denote the noise at time t, and A∗ = A − BL∗ denote the
closed loop dynamics under the optimal policy. Define:

M := E[w
⊺
t Swtw

⊺
t Swt]−

(
E[w

⊺
t Swt]

)2
which is a scalar constant. We now define a process {NT}T≥1 where:

NT :=
T−1∑
t=0

[
M + 4(A∗x∗

t )
⊺
SDD

⊺
SA∗x∗

t

]
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and let {νT}T≥1 be a stopping time corresponding to {NT}T≥1 given by

νT := min
τ≥1

{
τ :

τ∑
t=1

Nt ≥ T

}
. (5.7)

Our main result is the following theorem.

Theorem 5.1. We have that

C(π∗, νT )− νTJ
∗

√
T

(d)−→ N (0, 1) as T → ∞.

The proof is presented in Section 5.3.
Above theorem is presented in terms of the stopping time in Eq. (5.7). In the following

lemma, we establish the growth rate of this stopping time in the almost sure sense.

Lemma 5.1. The stopping time {νT}T≥1 satisfies:

νT ≍ T, a.s.

The proof is presented in Appendix 5.A.
Theorem 5.1 and Lemma 5.1 together give a complete picture of distributional behavior

of C(π∗, νT ), which in the order, matches with the asymptotic normality results in other
frameworks.

5.3 Proof of Theorem 5.1

In this section we present the proof of Theorem 5.1. Our proof relies on three techniques:
(i) a completion of square argument to establish a decomposition of the cumulative cost,
similar to one used in [117]; (ii) some implications of noise having an even density; and
(iii) the CLT for bounded martingale difference sequences [128].

5.3.1 Decomposition of Cumulative Cost

The following lemma provides a decomposition of the cumulative cost of any arbitrary
policy π.

Lemma 5.2. For any π ∈ Π, we have

C(π, T ) = x
⊺
0Sx0 − (xπ

T )
⊺
Sxπ

T
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+
T−1∑
t=0

[
(uπ

t + L∗xπ
t )

⊺
(R +B

⊺
SB)(uπ

t + L∗xπ
t )

+
T−1∑
t=0

[
2(Axπ

t +Buπ
t )

⊺
Swt+1 + w

⊺
t+1Swt+1

]
,

where matrices L∗ and S are given by (5.3) and (5.4).

The proof is similar to the decomposition of E[C(π, T )] presented in [117] and is presented
in Appendix 5.B for completeness.

In the following Lemma, we use Lemma 5.2 to characterize the cumulative cost function
induced by the optimal policy C(π∗, T ).

Lemma 5.3. For the optimal policy π∗, we have

C(π∗, T ) = x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+
T−1∑
t=0

[
2(A∗x∗

t )
⊺
Swt+1 + w

⊺
t+1Swt+1

]
.

Proof. The result follows by substituting u∗
t = −L∗x∗

t in Lemma 5.2, and substituting xπ∗
t

with x∗
t .

5.3.2 Implications of the Assumption on the Noise

The assumed symmetry on the components of vt (i.e., the components of vt admitting a
density fv that is even) has important implications in our analysis. We show this structure
implies that a certain cubic transformation of the noise has zero mean. Following lemma
summarizes these structures.

Lemma 5.4. Under Assumption 5.2, we have the following for any time t:

1. For any odd k ∈ N and any component i ∈ {1, . . . , n}, E[vt(i)k] = 0.

2. For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)vt(j)2] = 0.

3. For any arbitrary matrix M , let yt = Mvt, then E[yty
⊺
t yt] = 0.

Proof is presented in Appendix 5.C.
Furthermore, the boundedness assumption on the noise sequence {vt}t≥1 implies the

boundedness of optimal state trajectory {x∗
t}t≥0. This is presented in the following lemma.
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Lemma 5.5. Under Assumption 5.2, there exists a universal constant Kx ∈ R+ (which
depends only on Kv and x0) such that

∥x∗
t∥ ≤ Kx, a.s., ∀t ≥ 0.

This is a classic result and its proof exists in many resources. We included a proof in
Appendix 5.D for completeness.

5.3.3 CLT for Martingale Difference Sequences

The usual CLT for martingale difference sequences is the Lindeberg-Levy CLT for tri-
angular array of martingale difference sequences. In our analysis, we use an implication of
Lindeberg-Levy CLT stated in [128]. Since this version of the CLT is not as well known, we
restate it below for completeness.

Let {δt}t≥1, δt ∈ R, be a martingale difference sequence adapted to some filtration
sequence {Gt}t≥0, i.e.:

E[δt|Gt−1] = 0.

In addition, for all t ≥ 1, let ∆t :=
∑t

τ=1 δτ denote the martingale process corresponding to
{δt}t≥1. Let ρ2t := E[δ2t |Gt−1] denote the conditional variance of δt. For any T ≥ 0, define the
stopping time µT as:

µT = min
τ≥1

{
τ :

τ∑
t=1

ρ2t ≥ T

}
.

The following theorem states a version of central limit theorem for the martingale se-
quence {∆t}t≥1.

Theorem 5.2 (see [128, Theorem 35.11]). Suppose the martingale difference sequence {δt}t≥1

satisfies the following conditions:

(C1) For all t ≥ 1, |δt| is uniformly bounded, i.e., there exists a Kδ ∈ R+, such that:

|δt| ≤ Kδ, a.s.

(C2) We have:
∞∑
t=1

E[δ2t |Gt−1] = ∞.

Then we have:
∆µT√
T

(d)−→ N (0, 1) as T → ∞.
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In the subsequent subsection, we show some of the terms in the cumulative cost C(π∗, T )

satisfy martingale difference property. We then use Theorem 5.2 to derive the distribution
of the cumulative cost.

5.3.4 Preliminary Results

Define the filtration to be the sigma field generated by the sequence of states and control
actions, i.e., Ft := σ(x∗

0:t, u
∗
0:t). Using Lemma 5.3 and the fact that J∗ = E[w⊺

t+1Swt+1], we
rewrite C(π∗, T )− TJ∗ as following:

C(π∗, T )− TJ∗ = x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+
T−1∑
t=0

[
2(A∗x∗

t )
⊺
wt+1 + w

⊺
t+1Swt+1 − E[w

⊺
t+1Swt+1]

]
.

To simplify the algebra, we define following intermediate variables for t ≥ 0:

at+1 := w
⊺
t+1Swt+1, (5.8)

bt+1 := 2(A∗x∗
t )

⊺
Swt+1, (5.9)

ct+1 := E[w
⊺
t+1Swt+1], (5.10)

zt+1 := at+1 + bt+1 − ct+1. (5.11)

As a result of above reparametrization, we have:

C(π∗, T )− TJ∗ =
T−1∑
t=0

zt+1 + (x0)
⊺
S(x0)− (x∗

T )
⊺
S(x∗

T ).

We show that the sequence {zt}t≥1 is a martingale difference sequence satisfying conditions
(C1) and (C2) in Theorem 5.2. We first establish the properties of variables at+1, bt+1, and
ct+1 in the following proposition.

Proposition 5.1. For all t ≥ 0, we have:

(P1) E[bt+1|Ft] = 0.

(P2) E[at+1|Ft] = ct+1.

(P3) E[a2t+1|Ft] = E[a
2
t+1].

(P4) E[ct+1at+1|Ft] = c2t+1.

(P5) E[ct+1bt+1|Ft] = 0.
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(P6) E[at+1bt+1|Ft] = 0.

Proof. These properties are the consequences of the assumption on the noise process.

(P1) Follows by the fact that x∗
t is Ft-measurable and based on Assumption 5.2, wt+1 =

Dvt+1 is zero mean and independent of Ft.

(P2) Follows from independence of wt+1 from Ft, and the definition of ct+1.

(P3) Follows from independence of wt+1 from Ft.

(P4) Follows from following equations:

E[ct+1at+1|Ft]
(a)
= ct+1E[at+1|Ft]

(b)
= c2t+1,

where (a) follows from the fact that ct+1 is not a random variable and (b) follows from
Property (P2).

(P5) Follows from following equations:

E[ct+1bt+1|Ft]
(c)
= ct+1E[bt+1|Ft]

(d)
= 0,

where (c) follows from the fact that ct+1 is not a random variable and (d) follows from
Property (P1).

(P6) Follows from Lemma 5.4. To show this, let:

yt+1 := S1/2Dvt+1 = S1/2wt+1

we have:

E[at+1bt+1|Ft]
(e)
= E[2(x∗

t )
⊺
(A∗)

⊺
S1/2S1/2wt+1w

⊺
t+1S

1/2S1/2wt+1|Ft]

(f)
= 2(x∗

t )
⊺
(A∗)

⊺
S1/2E[yty

⊺
t yt]

(g)
= 0,

where (e) follows from the fact that S ≻ 0, (f) follows from the fact that S1/2 is
symmetric, and (g) follows from Lemma 5.4 part (3).
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5.3.5 Proof of Theorem 5.1

To prove the theorem, we first verify the conditions of Theorem 5.2 for the sequence
{zt}t≥1. First, recall that by definition, zt+1 = at+1 + bt+1 − ct+1. We have:

E[zt+1|Ft] = E[at+1 − ct+1|Ft] + E[bt+1|Ft]
(a)
= 0,

where (a) follows from Properties (P1) and (P2) in Proposition 5.1. We now verify conditions
(C1) and (C2) in Theorem 5.2.

5.3.5.1 Verifying (C1)

We know at+1 and ct+1 are uniformly bounded by (A2) in Assumption 5.2. By Lemma 5.5
and (A2) in Assumption 5.2, we know |bt+1| is uniformly bounded. As a result, |zt+1| is
uniformly bounded almost surely.

5.3.5.2 Verifying (C2)

We compute the conditional expectation of z2t+1 given the filtration Ft as following:

E[z2t+1|Ft] = E[(at+1 + bt+1 − ct+1)
2|Ft]

=E[a2t+1|Ft] + E[b
2
t+1|Ft] + E[c

2
t+1|Ft]

+2E[at+1bt+1|Ft]− 2E[ct+1at+1|Ft]− 2E[ct+1bt+1|Ft]

(b)
=E[a2t+1|Ft] + E[b

2
t+1|Ft] + E[c

2
t+1|Ft]− 2E[at+1ct+1|Ft]

(c)
=E[a2t+1]− c2t+1 + E[b

2
t+1|Ft] (5.12)

where (b) follows from properties (P5) and (P6) in Proposition 5.1 and (c) follows from
properties (P3) and (P4). Now the term E[a2t+1]− c2t+1 is independent of t and depends only
on the density fv. Therefore, by Jensen’s inequality and (A3) in Assumption 5.2, we know
that there exists an ϵ > 0, such that:

E[a2t+1]− c2t+1 > ϵ, (5.13)

for all t ≥ 0. By definition, we know E[b2t+1|Ft] ≥ 0 for all t ≥ 0. As a result, we have:

T−1∑
t=0

zt+1 ≥ Tϵ.
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Implying that: limT→∞
∑T−1

t=0 E[z
2
t+1|Ft] = ∞, almost surely, verifying the condition (C2).

5.3.5.3 Concluding the proof

Since the conditions (C1) and (C2) hold for the sequence {zt}t≥1, by Theorem 5.2, we
have: ∑νT

t=1 zt√
T

(d)−→ N (0, 1).

By Lemma 5.5, we know (x∗
T )

⊺S(x∗
T ) is almost surely bounded for all T ≥ 0. Moreover

xT
0 Sx0 is a constant. Therefore, we have:

lim
T→∞

x⊺
0Sx0 − (x∗

T )
⊺Sx∗

T√
T

−→ 0, a.s.

As a result, by using Slutsky’s Theorem (see [127, Theorem 7.7.3]), we get:

C(νT , π∗)− νTJ
∗

√
T

(d)−→ N (0, 1).

Remark 5.1. In the proof of Theorem 5.1, each of the two sequences {at+1 − ct+1}t≥0 and
{bt+1}t≥0 is a martingale difference sequence. However, these two sequences are dependent,
and therefore, the fact that each of them converges in distribution does not trivially imply that
their summation also converges in distribution. As a result, applying Theorem 5.2 on each
of these sequences individually would not imply the desired result. Therefore, characterizing
the behavior of the sequence {at+1 + bt+1 − ct+1}t≥0 similar to the approach in our proof is
necessary.

5.4 Conclusion

In this chapter we have established the asymptotic normality of the cumulative cost in the
LQR framework. We have shown that under mild assumptions on the noise process, asymp-
totic normality holds for the distribution of the cumulative cost only using first principles.
Our result gives a complete description of the cost distribution induced by the optimal pol-
icy. We believe this analysis opens new doors to understanding the distributional behavior
of the cumulative cost and may pave the way to derive confidence bounds for this frame-
work. These confidence bounds can be used in risk-averse or distributional reinforcement
learning within this setup. A natural extension of this work is to derive similar results for
larger classes of policies or to weaken the assumption on the noise sequence to be Gaussian
or sub-Gaussian.
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Appendices to Chapter 5

5.A Proof of Lemma 5.1

Using Eq. (5.12), we have:

E[z2t+1|Ft] = E[a
2
t+1]− c2t+1 + E[b

2
t+1|Ft].

By (A3) in Assumption 5.2 and Jensen’s inequality, we know there exists a ϵ > 0 such that
E[a2t+1]− c2t+1 > ϵ. Since E[b2t+1|Ft] > 0, we have:

lim inf
T→∞

NT

T
= lim inf

T→∞

∑T−1
t=0 E[z

2
t+1|Ft]

T
≥ ϵ > 0, a.s.

From the definition of bt+1, it is clear that there exists a constant C ∈ R+ such that
E[b2t+1|Ft] ≤ C∥xt∥2 for all t ≥ 0. As a result, by following arguments similar to the
proof of Proposition 2.5, we have:

lim sup
T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
< ∞, a.s.

Since the term E[a2t+1]− c2t+1 is independent of t and only depends on the density fv, there
exists an ϵ̄ > 0, such that:

E[a2t+1]− c2t+1 < ϵ̄.

As a result,

lim sup
T→∞

NT

T
= lim sup

T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
+ ϵ̄ < ∞,

almost surely, implying that NT ≍ T and therefore νT ≍ T , almost surely.

5.B Proof of Lemma 5.2

5.B.1 Preliminary Result

The proof of this lemma is similar to the regret decomposition in Chapter 3. Following
algebraic lemma is adapted from [129, Lemma 6.1].

Lemma .6. We have following statements:
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1. (Algebraic completion of square) For x ∈ Rn and u ∈ Rd and matrices A,B, S,R with
appropriate dimensions, we have

u
⊺
Ru+ (Ax+Bu)

⊺
P (Ax+Bu) + x

⊺
Qx

=[u+L(P,R,A,B)x]
⊺
[R+B

⊺
PB][u+L(P,R,A,B)x]

+ x
⊺
K(P,A,B,R,Q)x, (0.14)

with L(P,R,A,B) := −[R +B⊺PB]−1B⊺PA, and K(P,A,B,R,Q) defined as:

K(P,A,B,R,Q) = Q+ A
⊺
PA− A

⊺
PB(R +B

⊺
PB)−1B

⊺
PA.

2. The Discrete Algebraic Riccati Equation (DARE) in Eq. (5.4), i.e. K(P,A,B,R,Q) = P

has a unique positive definite fixed point solution S ⪰ 0. As a result, we have:

u
⊺
Ru+ (Ax+Bu)

⊺
S(Ax+Bu) + x

⊺
Qx

=[u+L(S,R,A,B)x]
⊺
[R+B

⊺
SB][u+L(S,R,A,B)x] + x

⊺
Sx

5.B.2 Proof of Lemma 5.2

Proof. The proof follows by applying Lemma .6. We start by adding and subtracting the
term (xπ

T )
⊺S(xπ

T ) to the expression. Recall that {xπ
t }t≥0 and {uπ

t }t≥0 denote the sequences
of states and actions induced by the policy π. We have:

C(π, T ) =
T−1∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
+ (xπ

T )
⊺
S(xπ

T )− (xπ
T )

⊺
S(xπ

T )

=
T−2∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
Sxπ

T

+
[
(xπ

T−1)
⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1) + (xπ
T )

⊺
S(xπ

T )
]

=
[ T−2∑

t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
S(xπ

T )

+ (xπ
T−1)

⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1)

+ (Axπ
T−1 +Buπ

T−1 + wT )
⊺
S(Axπ

T−1 +Buπ
T−1 + wT )

(a)
=

[ T−2∑
t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
+ (xπ

T−1)
⊺
S(xπ

T−1)− (xπ
T )

⊺
S(xπ

T )

+
[
(uπ

T−1 + L∗xπ
T−1)

⊺
(R +B

⊺
SB)(uπ

T−1 + L∗xπ
T−1)
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+ w
⊺
TSwT + 2(Axπ

T−1 +Buπ
T−1)

⊺
SwT

]
,

where (a) follows from Lemma .6, with L∗ being the RHS of Eq. (5.3). By repeating the
same argument, we get:

C(π, T ) = x
⊺
0Sx0 − x

⊺
TSxT

+
T−1∑
t=1

[
(uπ

t + L∗xπ
t )

⊺
(R +B

⊺
SB)(uπ

t + L∗xπ
t ) + 2(Axπ

t +Buπ
t )

⊺
Swt+1 + w

⊺
t+1Swt+1

]
.

5.C Proof of Lemma 5.4

For an odd n, Assumption 5.2, implies that for all 1 ≤ i ≤ n and for all t ≥ 0, we have:

E[vt(i)
k] =

∫ Kv

−Kv

vkfv(v)dv.

1) Proof of part (1): The Probability Density Function (PDF) fv is an even function and for
odd k ∈ N, vk is an odd function . As a result, vkfv is an odd function, and integrating an
odd function from −Kv to Kv is 0.
2) Proof of part (2): For all i ̸= j, we have:

E[vt(i)vt(j)
2]

(a)
= E[vt(i)]E[vt(j)

2]
(b)
= 0,

where (a) follows from the independence of the components of vt, and (b) follows from part (1)
of this lemma.
3) Proof of part (3): Let m(i, j) denote the (i, j)-th component of M . Then Recall that we
have

yt(i) = [Mvt](i) =
n∑

j=1

m(i, j)vt(j).

It is clear that E[yt(i)] = 0 for all t ≥ 0 by the linearity of the expectation operator. We show
that for all i ∈ {1, . . . , n} and all t ≥ 0, we have: E[yt(i)3] = 0. By multinomial theorem, we
have:

E
[
yt(i)

3
]
= E

[( n∑
j=1

m(i, j)vt(j)
)3
]

=E

[ ∑
k1+···+kn=3

(
3

k1,. . .,kn

)
(m(i, 1)vt(1))

k1 . . . (m(i, n)vt(n))
kn

]
.
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Where the notation
∑

k1+···+kn=3 denotes all possible tuples (k1, . . . , kn) such that k1 + · · ·+
kn = 3. Let the tuple (k′

1, . . . , k
′
n) be a decreasing permutation of (k1, . . . , kn), i.e.,

k′
1 ≥ k′

2 ≥ · · · ≥ k′
n.

Since k1 + · · ·+ kn = 3, there are only 3 choices for the tuple (k′
1, . . . , k

′
n). These choices are

(3, 0, . . . , 0) or (2, 1, . . . , 0) or (1, 1, 1, 0, . . . , 0). By Parts (1) and (2), we get:

1. For any i ∈ {1, . . . , n}, E[vt(i)3] = 0.

2. For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)2vt(j)] = 0.

3. For any i, j, k ∈ {1, . . . , n}, i ̸= j ̸= k, E[vt(i)vt(j)vt(k)] = 0.

This implies that all the permutations which are mapped to the tuples (3, 0, · · · , 0) or
(2, 1, · · · , 0) or (1, 1, 1, 0, · · · , 0) have zero expected value; therefore, E[yt(i)3] = 0. Next
we show for all i, j ∈ {1, . . . , n} such that i ̸= j, we have: E[yt(i)2yt(j)] = 0. By using the
multinomial theorem, we have:

E
[
yt(i)

2
]
= E

[( n∑
j=1

m(i, j)vt(j)
)2
]

=E

[ ∑
k1+···+kn=2

(
2

k1,. . .,kn

)
(m(i, 1)vt(1))

k1 . . . (m(i, n)vt(n))
kn

]
.

Again let the tuple (k′
1, . . . , k

′
n) be a decreasing permutation of (k1, . . . , kn). Since k1 + · · ·+

kn = 2, there are only 2 choices for the tuple (k′
1, . . . , k

′
n). These choices are (2, 0, . . . , 0) or

(1, 1, 0, . . . , 0). Now since yt(j) =
∑n

k=1 m(j, k)vt(k), expanding yt(i)
2yt(j) and ordering the

permutations we again end up with 3 choices for (k′
1, . . . , k

′
n), i.e., (3, 0, . . . , 0) , (2, 1, . . . , 0) ,

and (1, 1, 1, 0, . . . , 0). By repeating the arguments similar to the previous part, we have that
E[y(i)2y(j)] = 0. At last, since

E[yy
⊺
y] =


y(1)

...
y(n)

(
y(1)2 + · · · y(n)2

)
, (0.15)

all the terms are either of the form E[y(i)3] or E[y(i)2y(j)], i ̸= j, implying that:

E[yy
⊺
y] = 0.
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5.D Proof of Lemma 5.5

Given that ∥vt∥ ≤ Kv, we have that ∥wt∥ ≤ ∥D∥∥vt∥ =: Kw. Let ρmax = λmax(A
∗) < 1

(recall A∗ = A − BL∗) since L∗ is a stabilizing controller gain. Pick an ε > 0 such that
ρmax + ε < 1. Then, by Gelfand’s formula, we know that there exists a T0 such that for
all t > T0, ∥(A∗)t∥ < ρmax + ε. By the convolutional form of the output, we have that for
T > T0,

∥xT∥ = ∥(A∗)Tx0∥+
∥∥∥∥ T∑
τ=1

(A∗)τwT−τ

∥∥∥∥
≤ ∥(A∗)T∥∥x0∥+

T∑
τ=1

∥(A∗)τ∥∥wT−τ∥

≤ ∥(A∗)T∥∥x0∥+Kw

T∑
τ=1

∥(A∗)τ∥

≤ (ρmax + ε)T∥x0∥+Kw

T∑
τ=1

(ρmax + ε)τ

(a)

≤ (ρmax + ε)T0∥x0∥+
Kw

1− (ρmax + ε)
=: Kx

where (a) uses the fact that ρmax + ε < 1.
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Chapter 6

Conclusions and Future Research

6.1 Conclusion

In this thesis, we investigated fundamental challenges in the learning and control of
Markov Jump Linear Systems (MJLS) and analyzed the concentration of cumulative re-
wards in Markov Decision Processes (MDP) and linear systems. Our work focused on (i)
solving the problem of system identification in MJLS and establishing theoretical conver-
gence guarantees, (ii) integrating the identification algorithms into a model-based reinforce-
ment learning framework, along with deriving theoretical sub-linear regret bounds for the
proposed approach, and (iii) examining the concentration properties of cumulative rewards
under various planning policies and explored their implications for the learning process. We
believe these contributions are essential for advancing our understanding of the challenges
in integrating learning into control of the dynamical systems.

Beyond the immediate results of this thesis, the auxiliary and intermediate results es-
tablished here may be of independent interest. The decompositions for cumulative regret
and cumulative reward introduced in this work can be leveraged to derive guarantees for
other algorithms in comparable settings. Additionally, the decomposition of some of the
investigated problems into martingale structures, combined with the application of martin-
gale convergence and concentration techniques, can be leveraged to derive new results in
stochastic systems, control theory, and learning algorithms.

6.2 Summary of Results

6.2.1 Learning in Markov Jump Linear Systems

We investigated the problem of system identification (or learning) in autonomous Markov
jump linear systems. We proposed a variant of least squares algorithm called switched
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least squares specifically tailored for this framework. We proved strong consistency of this
algorithm and derived its almost-sure rate of convergence. Our analysis involves using the
notion of stability in the average sense in MJLS and establishing that it is a sufficient
condition for the convergence of the switched least squares algorithm. Additionally, we
explored the relationships between stability in the average sense and other notions of stability,
such as mean square stability and almost-sure stability, providing other sufficient conditions
for the convergence of switched least squares algorithm. The proof techniques in this chapter
rely on classical regression convergence arguments, the relationship between the growth rate
of the covariate process and system stability, and the results on growth rate of martingale
difference sequences.

6.2.2 Learning and Control in Markov Jump Linear Systems

We investigated the problem of model-based reinforcement learning within the framework
of Markov jump linear systems (MJLS). In this context, we first derived a general regret
decomposition for the class of adaptive linear state-feedback policies. We then introduced
a model-based reinforcement learning algorithm based on certainty-equivalence algorithm
that uses the switched least squares method for system identification. For this algorithm,
we provided almost-sure sub-linear upper bounds on regret.

As part of our analysis, we established convergence guarantees for the switched least
squares algorithm in the closed-loop system identification setting. The proof techniques
used in this chapter are based on a novel regret decomposition, the convergence rate of the
system identification method, and convergence of martingale sequences. Our results hold
on a specific subset of the sample space, and we further explored the relationship between
system stability, the duration of the initial system identification phase, and the properties
of this subset.

6.2.3 Concentration of Reward in Markov Decision Processes

We investigated the problem of cumulative reward concentration in finite-state and finite-
action Markov decision processes (MDPs). In the average reward framework, we established
both asymptotic and non-asymptotic concentration properties of cumulative rewards. In
the asymptotic setup, we established the law of large numbers, the central limit theorem,
and the law of iterated logarithm for cumulative rewards. In the non-asymptotic setup,
we derived Azuma–Hoeffding-type inequalities and a non-asymptotic version of the law of
iterated logarithm. While our results are initially established for a subset of stationary
policies, through analyzing different categories of MDPs, we proposed sufficient conditions to
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extend these concentration results to broader subsets of stationary policies, expanding their
application. In addition, we investigated two implications of our results, (i) we provided a
concentration result for the difference between the cumulative reward of any two stationary
policies, and (ii) we proved that two common notions of regret defined in the reinforcement
learning literature are rate-equivalent.

In addition, we extended the non-asymptotic concentration results to two other MDP
setups (i.e., finite-horizon setup and the infinite-horizon discounted setup) and investigated
their implications. Our proof techniques rely on a novel martingale decomposition of the
cumulative reward, the properties of the solutions of policy evaluation fixed-point equation
and asymptotic and non-asymptotic concentration of martingale sequences.

6.2.4 Concentration of Cost in Linear Quadratic Regulators

We investigated the asymptotic concentration properties of cumulative cost in the frame-
work of Linear Quadratic Regulators (LQRs). Since in the LQR framework, the state and
action spaces are continuous and non-compact, the concentration results established in the
finite-state and finite-action MDP setup are not directly applicable to this framework. By
using a different approach, we established a central limit theorem for the cumulative cost
of the optimal policy. Our proof techniques rely on a decomposition of cumulative cost for
the LQR problem, properties of i.i.d. noise sequences with even densities, and central limit
theorem for martingale sequences.

6.3 Future Work

This thesis explored some of the key challenges in integrating learning with the control
of dynamical systems. The methodologies and theoretical findings in this thesis establish
a solid basis for further research in this domain. In the sequel, we outline several future
research directions closely related to this work.

6.3.1 System Identification

The results presented in Chapter 2 are focused on the system identification of Markov
jump linear systems in a full-state observation framework, where both continuous and dis-
crete states are directly observed by the agent. However, in some applications, this assump-
tion may not be practical. Investigating the system identification problem for Markov jump
linear systems in a partial state observation framework is both a challenging and important
direction for future research. Furthermore, investigating the performance of switched least
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squares system identification in settings where switching is not necessarily governed by a
Markov process is another interesting direction. Applying the system identification algo-
rithm proposed in this thesis to practical scenarios, such as network control systems and
other dynamical systems with abrupt changes in their dynamics can show the potential of
this algorithm in industry. Moreover, most current system identification results, including
those in this thesis, rely on stability as a sufficient condition. Exploring ways to relax these
assumptions or establish their necessity represents another valuable area for future research.

6.3.2 Control of Dynamical Systems

Model-based and model-free reinforcement learning within the framework of linear quadratic
regulators has been extensively studied. However, extending these approaches to a broader
range of nonlinear and time-varying systems remains an open challenge. In this thesis, we
focused on reinforcement learning in Markov jump linear systems as an example of such sys-
tems. A natural extension of this work is to adapt the developed algorithms and guarantees
to other classes of complex systems, such as Markov jump nonlinear systems, control-affine
systems, and bilinear systems. These systems have diverse applications, and advancing rein-
forcement learning techniques in these settings is both theoretically significant and practically
important.

One of the key challenges in our analyses was ensuring the almost sure stability of sys-
tems throughout the learning process, i.e., guaranteeing that the system remains stable at
all times during learning. This is particularly challenging because the underlying system
parameters are unknown. Ensuring such a notion of stability is a fundamental requirement
in many safety-critical applications. Although existing literature offers algorithms and guar-
antees for sub-linear regret and stability with high probability, it remains unclear whether
these approaches can ensure an almost surely stable controller. We believe that proposing
algorithms with guarantees on the almost sure stability of systems is of significant practical
importance and a critical direction for further research.

6.3.3 Concentration of Cumulative Reward in MDPs

In Chapter 3, we derived the concentration properties of cumulative reward in finite-state
and finite-action MDPs. A key research direction is to explore the applications of these con-
centration bounds in areas such as safe, robust, and risk-averse planning and reinforcement
learning. High-probability concentration bounds can provide essential safety or robustness
guarantees for various algorithms, paving the way for combining learning and control in
safety-critical systems and high-stakes applications.
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A potential improvement to the current results is the derivation of sharper non-asymptotic
upper bounds. The results in this chapter are obtained using the Azuma–Hoeffding inequal-
ity and the non-asymptotic version of the law of the iterated logarithm. By introducing
additional assumptions on the underlying MDP and reward function, it may be possible to
apply more refined martingale concentration bounds, leading to tighter upper-bounds.

In this chapter, we primarily focused on deriving concentration bounds within the plan-
ning setup. In the literature, non-asymptotic concentration bounds have been derived for
estimation and the effects of model perturbation. An interesting research direction would
be to integrate these two families of results, providing a complete picture of the concentra-
tion behavior of algorithms in reinforcement learning and adaptive control. Developing such
bounds would significantly enhance the practical applicability of these methods by offering
robust theoretical guarantees.

The main assumptions in this chapter are the assumptions on the underlying MDP,
i.e., (i) the state and action spaces are discrete spaces, and (ii) these spaces are finite. A
promising research direction is to extend our results to more general MDP frameworks with
non-compact continuous state and action spaces. This type of extension is partially explored
in the context of linear quadratic regulators in Chapter 5. Generalizing these results to
broader MDP frameworks represents a significant and valuable challenge for future research.

6.3.4 Asymptotic Normality of Cost in LQR

In Chapter 5, we derived a central limit theorem for the cumulative cost in linear quadratic
regulators by imposing specific assumptions on the noise sequence, including bounded sup-
port. A valuable research direction would be to explore relaxing these assumptions and
extending the results to light-tailed noise sequences. Another promising line of research is
to examine the application of the established theorem in safe or risk-averse planning and
learning in Linear Quadratic Regulators.

138



Bibliography

[1] P. E. Caines, Linear stochastic systems. SIAM, 2018.

[2] L. Ljung, System identification. Springer, 1998.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd. Cam-
bridge, MA: MIT Press, 2018, isbn: 978-0-262-03924-6.

[4] N. S. Nise, Control systems engineering. John Wiley & Sons, 2020.

[5] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for reinforcement
learning”, Journal of Machine Learning Research, vol. 11, no. 51, pp. 1563–1600,
2010.

[6] P. Auer and R. Ortner, “Logarithmic online regret bounds for undiscounted reinforce-
ment learning”, in Advances in Neural Information Processing Systems, vol. 19, MIT
Press, 2006.

[7] S. Filippi, O. Cappé, and A. Garivier, “Optimism in reinforcement learning and
Kullback-Leibler divergence”, in 2010 48th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), IEEE, 2010, pp. 115–122.

[8] P. L. Bartlett and A. Tewari, “Regal: A regularization based algorithm for reinforce-
ment learning in weakly communicating mdps”, arXiv preprint arXiv:1205.2661, 2012.

[9] D. Russo and B. Van Roy, “Learning to optimize via posterior sampling”, Mathematics
of Operations Research, vol. 39, no. 4, pp. 1221–1243, 2014.

[10] I. Osband, D. Russo, and B. Van Roy, “(More) efficient reinforcement learning via
posterior sampling”, in Advances in Neural Information Processing Systems, vol. 26,
Curran Associates, Inc., 2013.

[11] K. Lakshmanan, R. Ortner, and D. Ryabko, “Improved regret bounds for undis-
counted continuous reinforcement learning”, in International Conference on Machine
Learning, PMLR, 2015, pp. 524–532.

139



[12] I. Osband, B. V. Roy, and Z. Wen, “Generalization and exploration via randomized
value functions”, in Proceedings of The 33rd International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, vol. 48, New York, New
York, USA: PMLR, 20–22 Jun 2016, pp. 2377–2386.

[13] Y. Ouyang, M. Gagrani, A. Nayyar, and R. Jain, “Learning unknown Markov deci-
sion processes: A Thompson sampling approach”, in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

[14] G. Theocharous, Z. Wen, Y. Abbasi-Yadkori, and N. Vlassis, “Posterior sampling for
large scale reinforcement learning”, arXiv preprint arXiv:1711.07979, 2017.

[15] S. Agrawal and R. Jia, “Optimistic posterior sampling for reinforcement learning:
Worst-case regret bounds”, in Advances in Neural Information Processing Systems,
vol. 30, 2017.

[16] M. S. Talebi and O.-A. Maillard, “Variance-aware regret bounds for undiscounted rein-
forcement learning in MDPs”, in Algorithmic Learning Theory, PMLR, 2018, pp. 770–
805.

[17] R. Fruit, M. Pirotta, A. Lazaric, and R. Ortner, “Efficient bias-span-constrained
exploration-exploitation in reinforcement learning”, in International Conference on
Machine Learning, PMLR, 2018, pp. 1578–1586.

[18] Z. Zhang and X. Ji, “Regret minimization for reinforcement learning by evaluating
the optimal bias function”, in Advances in Neural Information Processing Systems,
vol. 32, Curran Associates, Inc., 2019.

[19] J. Qian, R. Fruit, M. Pirotta, and A. Lazaric, “Exploration bonus for regret min-
imization in discrete and continuous average reward MDPs”, in Advances in Neu-
ral Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.

[20] R. Fruit, “Exploration-exploitation dilemma in reinforcement learning under various
form of prior knowledge”, Ph.D. dissertation, Université de Lille 1, Sciences et Tech-
nologies; CRIStAL UMR 9189, 2019.

[21] A. Zanette and E. Brunskill, “Tighter problem-dependent regret bounds in reinforce-
ment learning without domain knowledge using value function bounds”, in Interna-
tional Conference on Machine Learning, PMLR, 2019, pp. 7304–7312.

[22] R. Fruit, M. Pirotta, and A. Lazaric, “Improved analysis of UCRL2 with empirical
bernstein inequality”, arXiv preprint arXiv:2007.05456, 2020.

140



[23] H. Bourel, O. Maillard, and M. S. Talebi, “Tightening exploration in upper confidence
reinforcement learning”, in International Conference on Machine Learning, PMLR,
2020, pp. 1056–1066.

[24] Z. Zhang and Q. Xie, “Sharper model-free reinforcement learning for average-reward
Markov decision processes”, in The Thirty Sixth Annual Conference on Learning The-
ory, PMLR, 2023, pp. 5476–5477.

[25] V. Boone and Z. Zhang, “Achieving tractable minimax optimal regret in average
reward MDPs”, in The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

[26] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive control of
linear quadratic systems”, in Proceedings of the 24th Annual Conference on Learning
Theory, 2011, pp. 1–26.

[27] M. Abeille and A. Lazaric, “Improved regret bounds for Thompson sampling in lin-
ear quadratic control problems”, in International Conference on Machine Learning,
PMLR, 2018, pp. 1–9.

[28] H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for linear quadratic
control”, Advances in Neural Information Processing Systems, vol. 32, 2019.

[29] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic regulators efficiently
with only

√
T regret”, in International Conference on Machine Learning, PMLR, 2019,

pp. 1300–1309.

[30] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample complexity of
the linear quadratic regulator”, Foundations of Computational Mathematics, vol. 20,
no. 4, pp. 633–679, 2020.

[31] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On adaptive linear–quadratic
regulators”, Automatica, vol. 117, p. 108 982, 2020.

[32] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of policy gradient
methods for the linear quadratic regulator”, in International Conference on Machine
Learning, PMLR, 2018, pp. 1467–1476.

[33] Y. Ouyang, M. Gagrani, and R. Jain, “Control of unknown linear systems with
Thompson sampling”, in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2017, pp. 1198–1205.

[34] M. Simchowitz and D. Foster, “Naive exploration is optimal for online LQR”, in
International Conference on Machine Learning, PMLR, 2020, pp. 8937–8948.

141



[35] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Logarithmic regret
bound in partially observable linear dynamical systems”, Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 20 876–20 888, 2020.

[36] Y. Abbasi-Yadkori, P. Bartlett, K. Bhatia, N. Lazic, C. Szepesvari, and G. Weisz,
“Politex: Regret bounds for policy iteration using expert prediction”, in International
Conference on Machine Learning, PMLR, 2019, pp. 3692–3702.

[37] P. L. Bartlett and A. Tewari, “Regal: A regularization-based algorithm for reinforce-
ment learning in weakly communicating MDPs”, in Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI), AUAI Press, 2009, pp. 35–42.

[38] L. Ljung, “On the consistency of prediction error identification methods”, in Mathe-
matics in Science and Engineering, vol. 126, Elsevier, 1976, pp. 121–164.

[39] S. Oymak and N. Ozay, “Non-asymptotic identification of LTI systems from a single
trajectory”, in 2019 American Control Conference (ACC), IEEE, 2019, pp. 5655–5661.

[40] G. S. Deaecto, M. Souza, and J. C. Geromel, “Discrete-time switched linear systems
state feedback design with application to networked control”, IEEE Transactions on
Automatic Control, vol. 60, no. 3, pp. 877–881, 2014.

[41] C. De Persis and P. Tesi, “Input-to-state stabilizing control under denial-of-service”,
IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 2930–2944, 2015.

[42] A. Cetinkaya, H. Ishii, and T. Hayakawa, “Analysis of stochastic switched systems
with application to networked control under jamming attacks”, IEEE Trans. Autom.
Control, vol. 64, no. 5, pp. 2013–2028, 2018.

[43] Y. Fang, K. A. Loparo, and X. Feng, “Almost sure and δ-moment stability of jump
linear systems”, International Journal of Control, vol. 59, no. 5, pp. 1281–1307, 1994.

[44] Y. Fang, “A new general sufficient condition for almost sure stability of jump linear
systems”, IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 378–382, 1997.

[45] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time Markov jump linear
systems. Springer Science & Business Media, 2006.

[46] H. J. Chizeck, A. S. Willsky, and D. Castanon, “Discrete-time Markovian jump linear
quadratic optimal control”, International Journal of Control, vol. 43, no. 1, pp. 213–
231, 1986.

[47] G. Goodwin, P. Ramadge, and P. Caines, “Discrete-time multivariable adaptive con-
trol”, IEEE Transactions on Automatic Control,, vol. 25, no. 3, pp. 449–456, 1980.

142



[48] J. Rissanen and P. Caines, “The strong consistency of maximum likelihood estimators
for ARMA processes”, Annals of Statistics, pp. 297–315, 1979.

[49] P. E. Caines and L. Ljung, “Prediction error estimators: Asymptotic normality and
accuracy”, in IEEE Conference on Decision and Control, IEEE, 1976, pp. 652–658.

[50] B. Ho and R. E. Kálmán, “Effective construction of linear state-variable models from
input/output functions”, at-Automatisierungstechnik, vol. 14, no. 1-12, pp. 545–548,
1966.

[51] A. Lindquist and G. Picci, “State space models for Gaussian stochastic processes”,
in Stochastic Systems: The Mathematics of Filtering and Identification and Applica-
tions, M. Hazewinkel and J. C. Willems, Eds., Dordrecht: Springer Netherlands, 1981,
pp. 169–204, isbn: 978-94-009-8546-9.

[52] T. L. Lai and C. Z. Wei, “Asymptotic properties of multivariate weighted sums with
applications to stochastic regression in linear dynamic systems”, Multivariate Analysis
VI, pp. 375–393, 1985.

[53] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering technique
for the identification of piecewise affine systems”, Automatica, vol. 39, no. 2, pp. 205–
217, 2003.

[54] F. Lauer and G. Bloch, “A new hybrid system identification algorithm with automatic
tuning”, IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10 207–10 212, 2008.

[55] R. Vidal, “Recursive identification of switched arx systems”, Automatica, vol. 44, no. 9,
pp. 2274–2287, 2008.

[56] J. Roll, A. Bemporad, and L. Ljung, “Identification of piecewise affine systems via
mixed-integer programming”, Automatica, vol. 40, no. 1, pp. 37–50, 2004.

[57] N. Ozay, C. Lagoa, and M. Sznaier, “Set membership identification of switched linear
systems with known number of subsystems”, Automatica, vol. 51, pp. 180–191, 2015.

[58] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric approach to
the identification of a class of linear hybrid systems”, in 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No. 03CH37475), IEEE, vol. 1,
2003, pp. 167–172.

[59] A. L. Juloski, S. Weiland, and W. M. H. Heemels, “A bayesian approach to identifi-
cation of hybrid systems”, IEEE Transactions on Automatic Control, vol. 50, no. 10,
pp. 1520–1533, 2005.

143



[60] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach
to piecewise affine system identification”, IEEE Transactions on Automatic Control,
vol. 50, no. 10, pp. 1567–1580, 2005.

[61] F. Lauer and G. Bloch, “Switched and piecewise nonlinear hybrid system identifica-
tion”, in International workshop on hybrid systems: computation and control, Springer,
2008, pp. 330–343.

[62] N. Ozay, C. Lagoa, and M. Sznaier, “Robust identification of switched affine systems
via moments-based convex optimization”, in Proceedings of the 48h IEEE Confer-
ence on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, IEEE, 2009, pp. 4686–4691.

[63] F. Lauer, G. Bloch, and R. Vidal, “A continuous optimization framework for hybrid
system identification”, Automatica, vol. 47, no. 3, pp. 608–613, 2011.

[64] F. Lauer, G. Bloch, F. Lauer, and G. Bloch, “Hybrid system identification”, Hybrid
System Identification: Theory and Algorithms for Learning Switching Models, pp. 77–
101, 2019.

[65] P. E. Caines and H.-F. Chen, “Optimal adaptive LQG control for systems with finite
state process parameters”, IEEE Transactions on Automatic Control, vol. 30, no. 2,
pp. 185–189, 1985.

[66] P. E. Caines and J.-F. Zhang, “On the adaptive control of jump parameter systems
via nonlinear filtering”, SIAM Journal on Control and Optimization, vol. 33, no. 6,
pp. 1758–1777, 1995.

[67] F. Xue and L. Guo, “Necessary and sufficient conditions for adaptive stablizability
of jump linear systems”, Communications in Information and Systems, vol. 1, no. 2,
pp. 205–224, 2001.

[68] B. Sayedana, M. Afshari, P. E. Caines, and A. Mahajan, “Thompson-sampling based
reinforcement learning for networked control of unknown linear systems”, in 2022
IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 723–730. doi: 10.
1109/CDC51059.2022.9992565.

[69] S. Shi, O. Mazhar, and B. De Schutter, “Finite-sample analysis of identification of
switched linear systems with arbitrary or restricted switching”, IEEE Control Systems
Letters, vol. 7, pp. 121–126, 2023. doi: 10.1109/LCSYS.2022.3187511.

[70] T. Sarkar, A. Rakhlin, and M. Dahleh, “Nonparametric system identification of stochas-
tic switched linear systems”, in 2019 IEEE 58th Conference on Decision and Control
(CDC), IEEE, 2019, pp. 3623–3628.

144

https://doi.org/10.1109/CDC51059.2022.9992565
https://doi.org/10.1109/CDC51059.2022.9992565
https://doi.org/10.1109/LCSYS.2022.3187511


[71] Y. Sattar, Z. Du, D. A. Tarzanagh, L. Balzano, N. Ozay, and S. Oymak, “Identification
and adaptive control of Markov jump systems: Sample complexity and regret bounds”,
arXiv preprint arXiv:2111.07018, 2021.

[72] Y. Sattar, S. Oymak, and N. Ozay, “Finite sample identification of bilinear dynamical
systems”, in 2022 IEEE 61st Conference on Decision and Control (CDC), IEEE, 2022,
pp. 6705–6711.

[73] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Optimism-based adaptive reg-
ulation of linear-quadratic systems”, IEEE Trans. Autom. Control, vol. 66, no. 4,
pp. 1802–1808, 2020.

[74] Z. Du, Y. Sattar, D. A. Tarzanagh, L. Balzano, S. Oymak, and N. Ozay, “Certainty
equivalent quadratic control for Markov jump systems”, arXiv preprint arXiv:2105.12358,
2021.

[75] J. P. Jansch-Porto, B. Hu, and G. E. Dullerud, “Policy optimization for Markovian
jump linear quadratic control: Gradient method and global convergence”, IEEE Trans-
actions on Automatic Control, vol. 68, no. 4, pp. 2475–2482, 2022.

[76] A. Ruszczyński, “Risk-averse dynamic programming for Markov decision processes”,
Mathematical Programming, vol. 125, pp. 235–261, 2010.

[77] F. J. Beutler and K. W. Ross, “Optimal policies for controlled markov chains with
a constraint”, Journal of Mathematical Analysis and Applications, vol. 112, no. 1,
pp. 236–252, 1985.

[78] E. Altman, Constrained Markov Decision Processes. New York: Routledge, 2021, isbn:
978-1-351-45082-3. doi: 10.1201/9781315140223.

[79] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on rein-
forcement learning”, in Proceedings of the 34th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, vol. 70, PMLR, Jun. 2017,
pp. 449–458.

[80] M. G. Bellemare, W. Dabney, and M. Rowland, Distributional Reinforcement Learn-
ing. MIT Press, 2023, http://www.distributional-rl.org.

[81] M. J. Sobel, “The variance of discounted Markov decision processes”, Journal of Ap-
plied Probability, vol. 19, no. 4, pp. 794–802, 1982.

[82] M. Duflo, Random Iterative Models (Applications of Mathematics). Berlin, Heidel-
berg: Springer Science & Business Media, 2013, vol. 34, isbn: 978-3-662-03203-0.

145

https://doi.org/10.1201/9781315140223
http://www.distributional-rl.org


[83] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability (Cambridge
Mathematical Library). Cambridge: Springer Science & Business Media, 2012, isbn:
978-1-4612-4244-9.

[84] O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov
Control Processes (Applications of Mathematics). Berlin, Heidelberg: Springer Science
& Business Media, 2012, vol. 42, isbn: 978-1-4612-7067-1.

[85] R. A. Fisher, “On the mathematical foundations of theoretical statistics”, Philosoph-
ical transactions of the Royal Society of London. Series A, containing papers of a
mathematical or physical character, vol. 222, no. 594-604, pp. 309–368, 1922.

[86] H. Cramér, Mathematical methods of statistics. Princeton university press, 1999,
vol. 26.

[87] P. J. Huber, “The behavior of maximum likelihood estimates under nonstandard
conditions”, in Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, Berkeley, CA: University of California Press, vol. 1, 1967, pp. 221–
233.

[88] F. Eicker, “Asymptotic normality and consistency of the least squares estimators for
families of linear regressions”, The Annals of Mathematical Statistics, vol. 34, no. 2,
pp. 447–456, 1963.

[89] T. L. Lai and C. Z. Wei, “Least squares estimates in stochastic regression models with
applications to identification and control of dynamic systems”, Annals of Statistics,
vol. 10, no. 1, pp. 154–166, 1982.

[90] L. Lennart and P. E. Caines, “Asymptotic normality of prediction error estimators
for approximate system models”, Stochastics, vol. 3, no. 1-4, pp. 29–46, 1980.

[91] L. Ljung and P. E. Caines, “Asymptotic normality of prediction error estimators
for approximate system models”, in 1978 IEEE Conference on Decision and Control
including the 17th Symposium on Adaptive Processes, 1978, pp. 927–932. doi: 10.
1109/CDC.1978.268066.

[92] T. W. Anderson and N. Kunitomo, “Asymptotic distributions of regression and au-
toregression coefficients with martingale difference disturbances”, Journal of Multi-
variate Analysis, vol. 40, no. 2, pp. 221–243, 1992.

[93] S. Borovkova, H. P. Lopuhaä, and B. N. Ruchjana, “Consistency and asymptotic nor-
mality of least squares estimators in generalized star models”, Statistica Neerlandica,
vol. 62, no. 4, pp. 482–508, 2008.

146

https://doi.org/10.1109/CDC.1978.268066
https://doi.org/10.1109/CDC.1978.268066


[94] V. Fabian, “On asymptotic normality in stochastic approximation”, The Annals of
Mathematical Statistics, pp. 1327–1332, 1968.

[95] J. Sacks, “Asymptotic distribution of stochastic approximation procedures”, The An-
nals of Mathematical Statistics, vol. 29, no. 2, pp. 373–405, 1958.

[96] P. H. Algoet, “The strong law of large numbers for sequential decisions under un-
certainty”, IEEE Transactions on Information Theory, vol. 40, no. 3, pp. 609–633,
1994.

[97] R. van Handel, “Ergodicity, decisions, and partial information”, Séminaire de Proba-
bilités XLVI, pp. 411–459, 2014.

[98] B. Hajek, “Ergodic process selection”, in Open Problems in Communication and Com-
putation, Springer, 1987, pp. 199–203.

[99] M. Duflo, Random Iterative Models. Berlin-Heidelberg: Springer, 1997.

[100] N. Maigret, “Théorème de limite centrale fonctionnel pour une chaıne de Markov
récurrente au sens de Harris et positive”, in Annales de l’institut Henri Poincaré.
Section B. Calcul des probabilités et statistiques, vol. 14, 1978, pp. 425–440.

[101] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds for robust adaptive
control of the linear quadratic regulator”, Advances in Neural Information Processing
Systems, vol. 31, 2018.

[102] A. Cassel, A. Cohen, and T. Koren, “Logarithmic regret for learning linear quadratic
regulators efficiently”, in International Conference on Machine Learning, PMLR,
2020, pp. 1328–1337.

[103] F. Wang and L. Janson, “Exact asymptotics for linear quadratic adaptive control”,
The Journal of Machine Learning Research, vol. 22, no. 1, pp. 12 136–12 247, 2021.

[104] Y. Lu and Y. Mo, “Almost surely
√
T regret bound for adaptive LQR”, arXiv preprint

arXiv:2301.05537, 2023.

[105] B. Sayedana, M. Afshari, P. E. Caines, and A. Mahajan, “Strong consistency and
rate of convergence of switched least squares system identification for autonomous
Markov jump linear systems”, IEEE Transactions on Automatic Control, vol. 69,
no. 6, pp. 3952–3959, 2024. doi: 10.1109/TAC.2024.3351806.

[106] B. Sayedana, P. E. Caines, and A. Mahajan, “Asymptotic normality of cumulative
cost in linear quadratic regulators”, in 2024 IEEE 63rd Conference on Decision and
Control (CDC), 2024, pp. 1856–1862. doi: 10.1109/CDC56724.2024.10886506.

147

https://doi.org/10.1109/TAC.2024.3351806
https://doi.org/10.1109/CDC56724.2024.10886506


[107] B. Sayedana, M. Afshari, P. E. Caines, and A. Mahajan, “Relative almost sure regret
bounds for certainty equivalence control of Markov jump systems”, in 2023 IEEE
62nd Conference on Decision and Control (CDC), 2023, pp. 6629–6634. doi: 10.
1109/CDC49753.2023.10383246.

[108] B. Sayedana, M. Afshari, P. E. Caines, and A. Mahajan, “Consistency and rate of
convergence of switched least squares system identification for autonomous Markov
jump linear systems”, in 2022 IEEE 61st Conference on Decision and Control (CDC),
2022, pp. 6678–6685. doi: 10.1109/CDC51059.2022.9993169.

[109] H.-F. Chen and L. Guo, “Convergence rate of least-squares identification and adap-
tive control for stochastic systems”, International Journal of Control, vol. 44, no. 5,
pp. 1459–1476, 1986.

[110] H.-F. Chen and L. Guo, “Optimal adaptive control and consistent parameter estimates
for armax model with quadratic cost”, SIAM Journal on Control and Optimization,
vol. 25, no. 4, pp. 845–867, 1987.

[111] T. E. Duncan and B. Pasik-Duncan, “Adaptive control of continuous-time linear
stochastic systems”, Mathematics of Control, signals and systems, vol. 3, no. 1, pp. 45–
60, 1990.

[112] A. Zhang and M. Wang, “Spectral state compression of Markov processes”, IEEE
Transactions on Information Theory, vol. 66, no. 5, pp. 3202–3231, 2019.

[113] W. F. Stout, Almost Sure Convergence. Academic Press, 1974.

[114] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer
Science & Business Media, 2013, vol. 31.

[115] Y. Sattar and S. Oymak, “Non-asymptotic and accurate learning of nonlinear dynam-
ical systems”, arXiv preprint arXiv:2002.08538, 2020.

[116] A. Czornik, On control problems for jump linear systems. Wydawn. Politechniki
Śląskiej, 2003.

[117] K. J. Åström, Introduction to Stochastic Control Theory. Dover, 1970.

[118] B. Sayedana, P. E. Caines, and A. Mahajan, “Concentration of cumulative reward in
Markov decision processes”, arXiv preprint arXiv:2411.18551, 2024.

[119] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume II, 4th. Bel-
mont, MA: Athena Scientific, 2012, isbn: 978-1-886529-44-1.

[120] L. Kallenberg, “Classification problems in MDPs”, in Markov Processes and Controlled
Markov Chains, Boston, MA: Springer, 2002, pp. 151–165.

148

https://doi.org/10.1109/CDC49753.2023.10383246
https://doi.org/10.1109/CDC49753.2023.10383246
https://doi.org/10.1109/CDC51059.2022.9993169


[121] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Hoboken, NJ: John Wiley & Sons, 2014, isbn: 978-1-118-62013-9.

[122] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume I, 4th. Belmont,
MA: Athena Scientific, 2012, isbn: 978-1-886529-44-1.

[123] P. Billingsley, Convergence of Probability Measures (Wiley Series in Probability and
Statistics), 2nd. Hoboken, NJ: John Wiley & Sons, 2013, isbn: 978-1-118-12237-2.

[124] J. Neveu, Discrete-Parameter Martingales (North-Holland Mathematical Library),
trans. by T. Speed. Amsterdam: North-Holland, 1975, vol. 10, isbn: 978-0-7204-2830-
5.

[125] M. Raginsky and I. Sason, Concentration of Measure Inequalities in Information The-
ory, Communications, and Coding (Foundations and Trends in Communications and
Information Theory). Now Publishers Inc., 2014, vol. 10, pp. 1–246, isbn: 978-1-
60198-839-5.

[126] A. Balsubramani, “Sharp finite-time iterated-logarithm martingale concentration”,
arXiv preprint arXiv:1405.2639, 2014.

[127] R. B. Ash, B. Robert, C. A. Doleans-Dade, and A. Catherine, Probability and measure
theory. Academic press, 2000.

[128] P. Billingsley, Probability and measure. John Wiley & Sons, 2017.

[129] K. J. Åström, Introduction to stochastic control theory. Courier Corporation, 2012.

149


	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Modern Approaches
	Categorizing the Literature
	Performance Guarantees
	Investigated Problems
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	List of Publications
	Contributions of co-authors
	Notation

	Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems
	Overview
	Organization

	System model and problem formulation
	System identification and switched least squares estimates
	The main results

	Proofs of the main results
	Preliminary results
	Background on least square estimator
	Proof of Theorem 2.1 
	Proof of Corollary 2.1
	Proof of Theorem 2.2

	Discussion on stability in the average sense
	Stability on the average sense and mean square stability
	Stability on the average sense and almost sure stability
	Discussion on Non-Comparable Stability Assumption

	Numerical Simulation
	Conclusion and Future Directions
	Proof of Lemma 2.4

	Relative Almost Sure Regret Bounds for Certainty Equivalence Control of Markov Jump Systems
	Overview
	Organization

	Background on Markov Jump Linear Systems
	Stability of Autonomous Markov Jump Linear Systems
	Optimal Control of Markov Jump Linear Systems
	Stochastic Stabilizability and Stochastic Detectability
	Optimal Control of MJLS


	The Learning Problem
	Some Remarks on Notation
	Notation for Probability Spaces
	Notation for Policy Dependent Sample Paths

	Regret Definition

	An Upper Bound on Regret for Adaptive Linear Policies with Persistence of Excitation
	A Certainty Equivalence Based Learning Algorithm
	Overview of the Learning Algorithm
	The System Identification Algorithm

	The Main Results
	Asymptotic Regret of Certainty Equivalence Algorithm
	Sufficient Conditions for Stability

	Conclusion and Future Directions
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Lemma 3.3

	Concentration of Cumulative Reward in Markov Decision Processes
	Overview
	Organization

	Problem Formulation
	System Model
	The Average Reward Planning Setup
	Classification of MDPs
	The Average Reward Learning Setup

	Main Results for the Average Reward Setup
	Statistical Definitions
	Sample Path Characteristics of Any Policy
	Sample Path Behavior of the Performance Difference of Two Stationary Policies
	Implication for Learning

	Main Results for the Discounted Reward Setup
	System Model
	Sample Path Characteristics of Any Policy
	Sample Path Behavior of Performance Difference of Two Stationary Policies
	Vanishing Discount Analysis

	Main Results for the Finite-Horizon Setup
	System Model
	Sample Path Characteristics of Any Policy
	Sample Path Behavior of Performance Difference of Two Policies

	Conclusion
	Background on Markov Chain Theory
	Background on Martingales
	Asymptotic Concentration
	Strong Law of Large numbers
	Central Limit Theorem
	Law of Iterated Logarithm

	Non-Asymptotic Concentration
	Azuma-Hoeffding Inequality
	Non-Asymptotic Law of Iterated Logarithm


	Proof of Main Results for the Average Reward Setup
	Preliminary Results
	Martingale Decomposition
	A Consequence of The Union Bound
	Proof of Lemma 4.1

	Proof of Theorem 4.1
	Proof of Part 1
	Proof of Part 2
	Proof of Part 3

	Proof of Theorem 4.2
	Proof of Part 1
	Proof of Part 2

	Proof of Theorem 4.3
	Proof of Part 1
	Proof of Part 2

	Proof of Corollary 4.5
	Proof of Part 1
	Proof of Part 2

	Proof of Corollary 4.6
	Proof of Corollary 4.7
	Proof of Part 1
	Proof of Part 2

	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Corollary 4.9
	Proof of Theorem 4.6
	Proof of Part 1
	Proof of Part 2


	Proof of Main Results for Discounted Reward Setup
	Proof of Theorem 4.7
	Preliminary Results
	Proof of Theorem 4.7

	Proof of Corollary 4.10
	Proof of Corollary 4.12
	Proof of Part 1
	Proof of Part 2

	Proof of Corollary 4.14
	Preliminary Lemma
	Proof of Corollary 4.14


	Proof of Main Results for Finite-Horizon Setup
	Proof of Theorem 4.8
	Preliminary Results
	Proof of Theorem 4.8

	Proof of Corollary 4.15
	Proof of Corollary 4.16
	Proof of Part 1

	Proof of Part 2

	Miscellaneous Theorems
	Slutsky's Theorem


	Asymptotic Normality of Cumulative Cost in Linear Quadratic Regulators
	Overview
	Organization

	Problem Formulation and Main Result
	System Model
	Main Result

	Proof of Theorem 5.1
	Decomposition of Cumulative Cost
	Implications of the Assumption on the Noise
	CLT for Martingale Difference Sequences
	Preliminary Results
	Proof of Theorem 5.1
	Verifying (C1)
	Verifying (C2)
	Concluding the proof


	Conclusion
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Preliminary Result
	Proof of Lemma 5.2

	Proof of Lemma 5.4
	Proof of Lemma 5.5

	Conclusions and Future Research
	Conclusion
	Summary of Results
	Learning in Markov Jump Linear Systems
	Learning and Control in Markov Jump Linear Systems
	Concentration of Reward in Markov Decision Processes
	Concentration of Cost in Linear Quadratic Regulators

	Future Work
	System Identification
	Control of Dynamical Systems
	Concentration of Cumulative Reward in MDPs
	Asymptotic Normality of Cost in LQR



