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Abstract

Modern software needs to cope with the ever-increasing complexity of sys-
tems, and hence, reducing complexity is a primary objective of software en-
gineering. Notably for engineering tasks that showcase high bridging of ab-
stractions, Domain-Specific Languages (DSL) bear the potential to effectively
amend existing corresponding toolchain techniques, by further assisting soft-
ware engineers in this matter with reduced accidental complexity.
Unfortunately, standard toolchain techniques, which are commonly set on
Model-Driven Engineering (MDE) and Aspect-Oriented Modelling (AOM)
techniques, in particular Concern-Oriented Reuse (CORE), are not easily
amended with DSLs. MDE applies Separation of Concerns by turning soft-
ware development into a process of model production and refinement, and
CORE sets on AOM techniques to improve modularization for crosscutting
concerns. Both techniques usually focus on General Purpose Languages
(GPLs), for additional languages hinder existing MDE processes and AOM
modularization, even though DSL integration would be beneficial to mitigate
accidental complexity.

The interest of this thesis is to investigate what is required to integrate
tailored languages with the existing MDE/CORE techniques and assess the
viability and effectiveness of such an endeavour. The starting point is the
integration of custom languages, next custom transformations to ensure com-
patibility, into CORE concerns, which coins the term Concern-Specific Lan-
guages (CSL).

I start by investigating common DSL challenges and existing Model-
Driven Engineering (MDE) techniques, to derive FIDDLR, a general method-
ological framework for the design of CSL toolchains. Afterwards, I assess in
detail two sample CSL-enabled toolchains, which both target engineering
tasks with inherent high bridging of abstraction, and mismatch on standard
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GPL-provided concepts. Those are RESTify , for the exposure of existing
functionality through a REST API, and AUTHify , to enable additional se-
cure access delegation. Finally, I empirically assess the measurable effects
of one sample toolchain on general software engineering goals “development
time” and “product correctness”.

My research underscores the general viability of CSL-enabled concerns,
which demonstrably allows the creation of advanced toolchains. Empirical
validation shows a significant benefit of such toolchains for a representative
software engineering task. Additionally, I gained valuable insight on factors
to increase user acceptance for such assistive technologies.
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Abrégé

Les logiciels modernes doivent faire face à la complexité toujours croissante
des systèmes et, par conséquent, la réduction de la complexité est un ob-
jectif primordial du génie logiciel. Notamment pour les tâches d’ingénierie
s’étendent sur plusieurs niveaux d’abstraction, les langages spécifiques à un
domaine (DSL) ont le potentiel de completer efficacement les techniques se
reposant sur des ensembles d’outils existants, en assistant les ingénieurs logi-
ciels dans cette tache tout en réduisant la complexité accidentelle. Mal-
heureusement, les ensembles d’outils standards qui se reposent généralement
sur les techniques de MDE et de modélisation orientée aspects (AOM) de
l’ingénierie dirigée par les modèles, en particulier la réutilisation orientée
vers les préoccupations (CORE), ne sont pas facilement entendus par les
DSL.

MDE applique la séparation des préoccupations en transformant le déve-
loppement logiciel en un processus de production et de raffinement de modèles,
et CORE utilise les techniques AOM pour améliorer la modularisation des
préoccupations transversales. Les deux techniques se concentrent générale-
ment sur les langages à usage général (GPL), car des langages supplémentaires
entravent les processus MDE existants et la modularisation AOM, même si
leur intégration serait bénéfique pour atténuer davantage la complexité acci-
dentelle.

L’intérêt de cette thèse est d’étudier ce qui est nécessaire pour intégrer des
langages personnalisés aux techniques MDE/CORE existantes et d’évaluer la
viabilité et l’efficacité d’une telle entreprise. Le point de départ est l’intégra-
tion de langages personnalisés, ensuite des transformations personnalisées
pour assurer la compatibilité, dans les préoccupations CORE, qui définit le
terme Concern-Specific Languages (CSL).

Je commence par étudier les défis DSL courants et les techniques d’ingé-
nierie dirigée par les modèles (MDE) existantes, pour dériver FIDDLR, un
cadre méthodologique général pour la conception de châınes d’outils CSL.
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Ensuite, j’évalue en détail deux exemples de châınes d’outils compatibles
CSL, qui ciblent toutes deux des tâches d’ingénierie avec un large spectre
d’abstractions. Il s’agit de RESTify , pour l’exposition des fonctionnalités
existantes via une API REST, et AUTHify , pour permettre une délégation
d’accès sécurisée supplémentaire.

Enfin, j’évalue empiriquement les effets mesurables d’un ensemble d’outils
sur les objectifs généraux de l’ingénierie logicielle “temps de développement”
et “exactitude du produit”. Mes recherches soulignent la viabilité générale
de l’integration d’un CSL dans une préoccupation, qui permettent mani-
festement la création d’ensembles d’outils avancées. La validation empirique
montre un avantage significatif d’un tel ensemble d’outils pour une tâche
représentative de génie logiciel. De plus, j’ai acquis des informations précieuses
sur les facteurs permettant d’accrôıtre l’acceptation par les utilisateurs de ces
technologies d’assistance.
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Contribution

Significant parts of this thesis are based on published and peer-reviewed
publications. I here provide a brief overview of how these contributions relate
to the thesis content. Unless stated otherwise, all these publications were
written by the student, Maximilian Schiedermeier as the first author. Jörg
Kienzle and Bettina Kemme had a supervisory role in the writing process
and are therefore listed as co-authors.

• General viability of adapting the CORE toolchain by tailored mod-
elling languages, notably in the context of REST was first discussed
in my doctoral symposium contribution: “A concern-oriented software
engineering methodology for micro-service architectures” [Sch20]
Although no content of the paper was directly integrated into the thesis,
the article laid the conceptual foundation for parts I and II of the the-
sis. It described the possibility of integrating custom languages within
a concern to streamline reuse and exemplified beneficial effects using
the BookStore sample application, including an early graphical editor
illustration.

• A second important conceptual foundation for the thesis was the explo-
ration of multi-language support in the CORE reference implementa-
tion, TouchCORE: “Multi-Language Support in TouchCORE” [SLL+21]
The paper was written in collaboration with several students: Bowen
Li, Ryan Languay, Greta Freitag, Qiutan Wu, Hyacinth Ali and Ian
Gauthier. Jörg Kienzle and Gunter Mussbacher had supervisory roles
throughout the writing process. Once more no content of this paper
is directly reflected in this thesis, but the contribution laid important
cornerstones, notably for the technical extension of TouchCORE to
support visual mappings between different modelling languages in a
generic split-view.
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• Bowen Lee’s master thesis on “Concern-Oriented and Model-Driven Mi-
gration of Legacy Java Applications” was written under mentoring of
Maximilian Schiedermeier and supervision of Jörg Kienzle. It explored
technical implications to support various REST frameworks by a sin-
gle concern. The corresponding section in Chapter 8 reflects insights
on transformer reuse between concern variants and the corresponding
Figure 8.1 is taken from Lee’s master thesis.

• Part I and II of the thesis are based on the publication: “FIDDLR:
streamlining reuse with concern-specific modelling languages” [SKK21]
The paper lays out the essentials of the building blocks and CORE
pipeline extension discussion of the first thesis part. Furthermore, most
illustrations on the effects of the RESTify concern, and discussion in
the Background section and RESTify section of part 2 are taken from
this publication.

• Further insights on the nature of CSLs, and CSL concerns, as well as
prospective effects for SE were first discussed in the ACM student re-
search challenge contribution “Pushing the boundaries of planned reuse
with concern-specific modelling languages”
[Sch22a]. Although no content of the paper was directly integrated into
this thesis, the publication provided foundations for Chapter 8.

• The poster “The Horsemen of Empirical Research Apocalypse” [Sch23b]
compiles various challenging aspects experienced throughout the prac-
tical conduct of the experiment described in part III. Once more no
content was directly taken from this publication, but Section 13 is in
parts based on poster insights.

• Part III is based on the publication “Give me some REST: A Controlled
Experiment to Study Domain-Specific Language Effects” [SKK24]. Note
that at the moment of thesis writing the paper is still under peer review.
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1
Introduction

Modern software needs to cope with the ever increasing complexity of sys-
tems [Jam08], and hence, reducing complexity is a primary objective of soft-
ware engineering. This goal is notably relevant in the context of engineering
activities where complexity stems from simultaneously operating at multiple
levels of abstraction. It is easy to imagine how an absence of proficiency with
programming paradigms, architectural configurations or design patterns can
result in engineering flaws that in turn delay development, or reduce software
quality. In the worst case, a series of fatal design flaws can potentially even
jeopardize project success.

Model-Driven Engineering (MDE) advocates the use of models when de-
veloping a system [Ken02, Sch06]. Models describe properties of the system
under development at different levels of abstraction, and model transforma-
tions and code generators connect the different models across layers of ab-
straction, from high-level requirement models down to code. Software tools
that incorporate such models and transformation techniques are also referred
to as “MDE tooling” in this thesis. In MDE, the combined use of multiple
modelling languages allows the developer to express properties of the system
under development at different levels of abstraction and from different points
of view, thus promoting Separation of Concerns (SoC) and reducing com-
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plexity. Model transformations connect models across levels of abstraction,
effectively reusing architectural and design knowledge, or platform-specific
development expertise when generating code.

Despite MDE‘s established effectiveness for SoC, MDE is by itself not free
of complexity-associated challenges. Two central challenges in the context of
models are avoiding accidental complexity, and supporting planned reuse.

• Accidental complexity arises from a conceptual mismatch of targeted
modelling context and available modelling language concepts. When it
is impossible to concisely represent a matter with the limited language
concepts at disposition, models grow overly verbose, which renders their
usage and interpretation overly complex. The established answer to
this challenge is to introduce a dedicated Domain-Specific Language
(DSL)1. As opposed to General Purpose Modelling Languages (GPLs),
like for instance the Unified Modelling Language (UML) [RJB04], DSLs
aim at provisioning concepts precisely tailored to the domain in ques-
tion [AK08]. Historically, MDE relies predominantly on GPLs, which
is partly because DSL tool development has a high overhead. However,
over the recent years, DSLs have been on the rise [TK19].

• Planned reuse, as opposed to opportunistic reuse, targets the creation of
models with the intent for reuse from the start. The designated models
can be partial, i.e. the target unit of reuse may not describe fully op-
erational systems components but focus on selective model fragments.
Compositional approaches, e.g. based on Aspect-Oriented Modelling
(AOM) techniques, allow for declarative mapping and a combination
of such models. Note that the planned creation of partial models, for
ulterior reuse, is a complex activity and requires guidance [KMA+16],
which is, e.g. provided by the Concern-Oriented Reuse (CORE) frame-
work. Throughout the thesis, I will often illustrate concepts on the
example of the reference implementation, TouchCORE [Kie23].

In principle, a combination of the above solutions as illustrated in Fig-
ure 1.1 could counter the aforementioned challenges, and simultaneously fos-
ter mutually beneficial effects. Reusable models could be expressed in the

1Related literature also uses the term Domain-Specific Modelling Language (DSML).
There is no difference between DSLs and DSMLs, for all Domain-Specific Languages are
implicitly likewise Modelling Languages.
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Figure 1.1: Illustration of Conceptional Technology Interplay. AOM Allows
Reuse of Models by Weaving. MDE Provides Language Transformations for
Code Generation

language that prescribes their intent with the least accidental complexity,
transformed to GPL models using MDE model transformations, adapted to
and composed with the reuse context using AOM model weaving techniques,
and finally translated to executable code by MDE language transformations.

Considering these assumed benefits, one would assume that implemented
adherent tooling was already a widespread technological reality. However,
exactly the contrary is the case. So far, a junction of DSLs with model
reuse techniques, such as CORE, has not been attempted. Presumably, this
missed opportunity stems from a fundamental technical intricacy associated
with any such a combination:
AOM-based model composition techniques, or weaving, is only defined within
one modelling language. That is to say existing tooling like CORE allows only
model reuse (and subsequent code generation), when all provided models are
within the same modelling language. Naturally, existing tools focus on GPLs.
In turn, this means that additional DSL models, even if in principle beneficial
to counter accidental complexity, contradict the illustrated pipeline. DSL
models, although simpler and more intuitive to create, cannot be readily
combined with existing GPL models, and hence also not processed by existing
MDE techniques to generate executable code.
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1.1 Research Questions and Contributions

This research challenge (namely, the exploration of means to benefit from the
fused power of DSLs, AOM and MDE) serves as a motivational foundation
for my work.

In this thesis I investigate how a combination of DSLs and CORE could
become a reality. I propose a plan of action for their integration and
collect evidence to determine the viability and effects of corresponding
tooling.

By this rationale, this thesis is structured in three parts, each of which
deals with a key research question. This structure likewise aligns with the
three main contributions of my thesis.

PART I

Research Question: Can we define a generic methodology for the
integration of DSLs with state-of-the-art AOM and MDE techniques,
that effectively eliminates accidental complexity?

Contribution: With FIDDLR, I provide a framework embodying a
generic plan of action for the integration of DSLs with CORE. The
framework contributes a clear methodology, to tame the otherwise
overly complex task of integrating DSLs into reusable concerns.

PART II

Research Question: Is there evidence for the viability of the proposed
framework, for concern creation and reduced accidental complexity?

Contribution: I provide two novel proof of concept concern imple-
mentations. The creation of the sample concerns supports the delin-
eated framework plan of action, and illustrations of their reuse detail
how previously complex engineering tasks turn into an intuitive and
streamlined modelling activity with minimal overhead.
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PART III

Research Question: Is there conclusive evidence for the reference
concerns bringing substantial advantages to Software Engineers?

Contribution: I provide an empiric assessment of a sample concern
toolchain implementation. That is a description of a controlled exper-
iment to measure the effects on software engineers. I detail the ex-
periment layout, methodology, statistical analysis and findings, which
conclusively suggest a beneficial impact on the given software engineer-
ing task.

1.2 Detailed Thesis Outline
In more detail, the objectives and contribution of the individual parts are as
follows:

Part I

In the first part, I investigate how DSLs are best integrated with CORE,
in a reusable manner. As initially stated, the challenge lies in any MDE lan-
guage transformations being tied to the languages they operate on. There-
fore, introducing a new DSL disrupts the process. The goal of the first thesis
part is to identify where in the existing CORE pipeline DSLs are best in-
tegrated, so effects on the existing pipeline are minimally intrusive, as well
as to formally define all pipeline adjustments required for patching. In this
part I first recapitulate the required building blocks (Chapter 2), followed
by an in-depth discussion on the challenges associated with model weav-
ing of DSLs (Chapter 3). The main contribution is the formal definition of
FIDDLR, a F ramework for the Integration of Domain-Specific MoDelling
Languages with concern-oriented Reuse (Chapter 4). FIDDLR provides clear
design instructions on how to integrate and reuse existing MDE, AOM/-
CORE and DSL tooling when creating reusable software artifacts, or con-
cerns. Once defined, a FIDDLR concern leverages reuse, by allowing the
concern user to apply the CSL (that is, a tailored, concern-internal language)
concepts throughout the model reuse process, which streamlines reuse and
mitigates accidental complexity.
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Part II

The second thesis part serves as proof of concept (PoC) validation of
FIDDLR’s viability. On this behalf, I identify and investigate two representa-
tive engineering activities, that is, activities which reflect industrial relevance
but are challenging because of inherent simultaneous operations at multiple
levels of abstraction (Chapter 6/7). More details on the selected activities
follow in the next paragraph. The PoC methodology is nearly identical for
both sample activities:

• I first present the traditional engineering approach and highlight why
it showcases implicit abstractions, hindering a straightforward, manual
task realization.

• Afterwards, I delineate how FIDDLR’s guidelines enable the guided
creation of a tailored, CSL-enabled concern. That is to say, I demon-
strate how the framework specifies the main steps toward an MDE
solution package, specific to the sample activity in question. This solu-
tion package, or concern, will contain a novel, internal language, which
is intended to reify expert knowledge at the moment of concern reuse.

• The PoC then spans out to detailed illustrations of how task solving
occurs when reusing the produced sample concern. Note that an essen-
tial part of this step is the reuse of the concern provided CSL, which
reifies expert domain knowledge. This step illustrates how the activ-
ity’s initially mentioned abstractions are brought to an intuitive level,
allowing a concern user to explicitly bridge from technical to conceptual
solution aspects.

• The degree of intuitiveness of a given solution is not easily quantified.
We therefore apply an action metric, to measure by how far the targeted
engineering activity is simplified by concern reuse.2 The outcome of
this assessment serves as the first evidence of a beneficial effect of the
proposal.

• To this point of the report, the presented PoC occurred exclusively
on paper, that is we conceptually defined FIDDLR and how it mani-
fests into derived concerns. I implemented one sample concern down

2Part three of this thesis is entirely dedicated to empirically assessing CSL effects.
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to the code level to amend the theoretic considerations by a practi-
cal validation. That is to say, I modified the existing CORE refer-
ence implementation TouchCORE, so it supports FIDDLR adherent
concerns. I then followed the FIDDLR ‘s guidelines to derive a fully
operational reference concern implementation. In vast parts, the sug-
gested methodology proved one-to-one applicable. In a final “Lessons
Learned” section I recapitulate the insights gained throughout the ac-
tual concern implementation, notably regarding the complexity of the
individual FIDDLR phases.

With exception to the last point, all the above PoC steps were pursued for
both of the following two sample software engineering activities.

• Conversion of legacy APIs to REST : According to Postman’s 2023
State of the API Report [Pos23b], a survey with 40,000 developers
and API professionals, 86% of all cloud APIs set on the REpresenta-
tional State Transfer (REST) paradigm [Fie00]. The widespread accep-
tance stems mainly from the rise of Micro-Service Architectures (MSA),
where REST is used as de-facto standard for inter-service communica-
tion. In light of this industrial relevance, the shift from legacy systems
to RESTful services is a lasting trend [DGL+17]. In practice, the migra-
tion is hindered by the underlying complex technological stack, but also
misunderstandings of the paradigm itself [FTE+17]. I deem the con-
version of legacy code to REST a perfectly representative engineering
activity. It showcases inherent technological and paradigm complexity,
rendering it a legitimate candidate for a CSL-enabled solution package.

• Securing access delegation with OAuth2 : Likewise in the context of
modern service architectures is the concept of resource ownership and
access delegation. Modern services are built with collaboration in mind.
That is to say, service APIs are designed to support secure interaction
with third-party services. Almost every online service, from Spotify to
the Amazon Marketplace, comes with a notion of resource ownership.
If desired, a resource owner can securely grant third-party services ac-
cess to their resources, i.e. they can enable access delegation without
sharing their credentials. The standard protocol for this inter-service
scenario is OAuth2, supported by most established online services. The
migration of an unsecured service to supporting access delegation is a
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conceptually challenging enterprise, for the security concepts stand or-
thogonal to existing technical service details. This makes API securing
with OAuth2 an interesting second study object, for expert security
knowledge can greatly guide the conversion process.

As part of the two PoC concern implementations, I also crafted two novel
sample CSLs, that is to say, two DSLs intended for use within a given con-
cern. These languages are by themselves interesting study objects, notably
on behalf of the discussion of whether there is a conceptual difference toward
ordinary DSLs. In Chapter 8, I present two strong arguments that speak in
favour of a clear categorical separation and illustrate them on the example
of our two derived sample CSLs.

Part III

In the third part, I collect and assess empirical evidence to determine
the general viability of CSLs or the combination of DSLs and CORE for
the measurable effects for software engineering practitioners. Although the
two previous parts provide honest insights into the theoretic functioning and
reuse of CSLs and derivative concerns, lab internal research always bears a
risk of unconscious bias. An efficient means to fairly evaluate viability is
to conduct a controlled experiment with human test subjects. Precisely, I
sought to better understand the advantages and disadvantages of using a
CSL for addressing a specific concern during software development. I chose
REST as a context for my experiment, in part because of its high industrial
significance, but also because my previous work had already produced an
operational concern reference implementation.
I detail the conducted study, where I asked 28 developers to convert existing
applications to expose their services over a REST interface (also a process
referred to as “RESTification”), once manually and once using a CSL specif-
ically designed for that purpose. I then measured the time required for
task completion and tested the produced code for correctness. My quanti-
tative analysis shows that, regardless of declared skill level, developers using
the CSL were on average faster and produced solutions of higher quality.
Nevertheless, the detailed, qualitative developer feedback confirms sustained
skepticism of using CSLs, stemming from a perceived loss of control.
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Part IV

The thesis concludes with a final recapitulation, inciting a contextual dis-
cussion of the individual parts’ findings. I summarize the initial ratio and
associated challenge and then delineate how FIDDLR, despite perpetuating
technical challenges, is a solid foundation. The framework efficiently guided
the design and implementation of sample CSL concerns. As such, the frame-
work’s viability has been demonstrated both on paper and in practice. Action
metric assessments of the sample concerns suggest a superiority of the MDE
approach, compared to manual code evolution techniques. This trend is con-
clusively confirmed by the empiric user study, which furthermore quantifies
the effects on conversion speed and correctness for the sample RESTify activ-
ity. A side effect of the study is a better understanding of factors that make
developers at once recognize the merits of MDE, but keep them reluctant to
adopt corresponding tools into their everyday developer activities. The latter
are valuable insights for future improvements of toolchain implementations.
In summary, this thesis provides a solid foundation for the development of a
new generation of MDE tooling, employing a clear plan of action and sound
evidence for positive effects on common software engineering goals.
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Part I

Concern Specific Languages and their Integration in
the Model Driven Engineering Pipeline

In this first thesis part, I present the building blocks for combining DSLs and
CORE. This leads to the definition of FIDDLR, a novel MDE framework to
guide the implementation of corresponding tools with clear, separate tasks.



2
Background

In this chapter, I present the design principles and technologies that serve
as building blocks for the first thesis part. For now, the focus lies on their
contribution to Software Engineering, although throughout the remainder
of the first part of the thesis I delve into their combining. In the following
sections, I am first interested in Separation of Concerns (SoC) and Planned
Reuse as engineering objectives. Then I present an overview of the MDE
process pipeline, Domain Specific Languages, and Aspect-Oriented Modelling
on the example of Concern-Oriented Reuse.

2.1 Separation of Concerns and Reuse
SoC has been identified early on as one of the main mechanisms for tackling
complexity during software development [Dij76]. The term was coined by
Dijkstra and refers to the ability to temporarily focus one’s attention solely on
one development concern or issue. There are various means to achieve SoC,
but important ones are e.g., encapsulation and information hiding, which are
likewise key principles of the Object-Orientation paradigm.

Reuse is simply the process of creating software systems from existing
software artifacts rather than creating them from scratch [Kru92]. There is
a clear distinction between opportunistic and planned reuse. Opportunistic
reuse refers to extracting models or code artifacts from existing projects,
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where notably these projects had not been created with reuse in mind. That
is, the act of reusing proven project components takes place in hindsight.
Planned reuse on the other hand refers to the act of intentionally creating
models or programming artifacts for reuse. This is for instance the case with
software libraries, that were not created to be viable in isolation, but from
the start intended for invocation. In this thesis, we are mostly interested in
planned reuse.

2.2 MDE, Modelling Languages and Processes

Model-Driven Engineering (MDE) [Ken02, Sch06] is a unified conceptual
framework in which the whole software life cycle is seen as a process of model
production, refinement and integration. Commonly this also implies that
code is not written by hand, but the final product of such a process. The
individual models are built to represent different views of a software system
using different formalisms, i.e. modelling languages. That is to say, there is
a palette of languages to choose from when creating a model. Notably, this
means that for each model the language is chosen in such a way that the
model concisely expresses the properties of the system that are important
at the current level of abstraction. In paraphrasing terms, this means that
a good language choice allows one to accurately express what is of interest,
with fitting expressiveness and minimal overhead.
Concerning the aforementioned refinement, this means that during develop-
ment, high-level specification models are extended or combined with other
models to include more solution details. That is, as models become less ab-
stract, they pertain to more implementation specifics. The manipulation of
models along this refinement is achieved by utilizing model transformations.
In summary, model refinement and integration continue until a model or code
is produced that can be executed.

When it comes to a palette of commonly used modelling languages, a typ-
ical MDE process makes use of one or several General Purpose (Modelling)
Languages (GPLs). The left side of Fig. 2.1 a) depicts typical software devel-
opment phases found in object-oriented, model-driven development methods
for various development phases. Note that the terms Requirement Phase, De-
sign Phase and Implementation Phase represent the aforementioned levels of
refinement, where abstractness is gradually substituted by implementation-
specific details.
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Figure 2.1: MDE, DSL and AOM at Various Levels of Refinement

Note that the crafted models do not co-exist in isolation. At any given
level of abstraction, consistency constraints ensure that the different models
form coherent views of the system. This is an important detail since oth-
erwise, coexisting models would likely contradict, hindering any subsequent
refinement. In Fig. 2.1 a) these constraints are depicted with black double-
ended arrows. Ultimately, code generation is used to generate a significant
part of the object-oriented implementation from the design models. That
is, the outcome of the process is compiling or interpretable models/code.
Guidelines for refinement, and model transformations that implement par-
tial refinement and code generation are depicted with thick grey arrows in
Fig. 2.1 a).

To put things into relation with the initially stated Separation of Concerns
principle: SoC is at the heart of MDE. Every model created is an abstraction
of the system under development – unnecessary details (considering the cur-
rent level of abstraction) are omitted. When establishing a model, the most
appropriate modelling language is used, focusing the attention of the mod-
eller on the current properties of interest. Finally, each model describes the
system under development from a different point of view, and can therefore
focus on a different development concern.

2.3 Domain-Specific Modelling
The previously described MDE process sets entirely on GPL models for all
stages of modelling. Once more, I’ll use paraphrasing to illustrate the na-
ture of these models. GPLs are languages that comprehend the standard
concepts required for a proper description of object-oriented systems at var-
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ious levels of abstraction. GPLs can be seen as a one-size-fits-most language
palette, and as long as the system under description adheres to standard
requirements, design and implementations, GPL instances like the Unified
Modelling Language (UML) [OMG17] are a meaningful choice.

Domain-Specific Languages (DSLs), on the other hand, stand in stark con-
trast to this general-purpose philosophy. DSLs have been used in computing
since the early days [vDKV00], are typically small, and focus on a particular
aspect of a software system or the development process. A popular DSL
example is “Cascading Style Sheets”, as a textual language to describe visual
properties of elements defined in a markup language document. It is not un-
common for DSLs to be used in combination with general purpose languages
(GPLs) to develop larger software systems [Fow10] and amend the fractions
that are easily covered by GPLs by additional, more specific models. Some
argue that well-designed DSLs are much easier to work with than a general
purpose language [Gra07], as with a DSL, a developer maximally focuses on
the particular task at hand, and the problem can be dealt with using concepts
of the problem domain that are reified in the language. For example, a DSL
for mobile phones would allow modellers to specify high-level abstractions
for the user interface, as well as lower-level abstractions for storing data such
as phone numbers or settings [MV10].

A strong argument for the use of DSLs is their capacity to minimize acci-
dental complexity [AK08]. Accidental complexity arises out of a mismatch of
modelling language and modelled matter. While GPLs such as UML mostly
cover the typical structural and behavioural modelling needs for software de-
velopment, their general purpose nature can imply a (sometimes significant)
semantic gap between a specific application domain and the concepts offered
by GPLs. This gap can be bridged with DSLs [Gra07], which in turn means
their use bears the potential to significantly improve productivity.

An important mention that will play a significant role throughout this
thesis, is that most DSLs come with the tool support that allows combining
the DSL-based artifacts with the remainder of the code base and software
system. This can for instance be the case via DSL specific transformations
that allow translating DSL models into GPL or code counterparts at various
levels of abstraction, which is illustrated in Figure 2.1 b).
As previously mentioned, in MDE, model transformations and consistency
constraints are a key concept, therefore the introduction of novel languages
implicitly also comes with a requirement for additional tools. This is notably
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relevant in the context of Reuse, i.e., the main unit of reuse being a modelling
language: A modeller using a modelling language is reusing knowledge of the
language engineer when building models by instantiating language concepts.
To the aforementioned transformations and language constraints, this means
language reuse is only readily possible if the required tools are likewise built
for reuse.

Finally, despite many reports on the potential of DSLs [KMB+96, Wil03,
KGCM18], the use of DSLs is not widespread in practice, as many developers
favour a known workflow in familiar development languages and tools over
the DSL-based alternative [GFC+08].

2.4 Aspect and Concern-Oriented Reuse
In the previous sections on MDE and DSLs we have mainly considered whole-
some models, that is, models that in isolation define a cohesive and viable
unit. In contrast to this practice stands Aspect-Oriented Modelling (AOM).
In AOM, a modelling language is augmented with advanced language fea-
tures that enable the modularization and composition of model fragments.
Model fragments are models that are not necessarily viable in isolation. That
being said, there is an imminent necessity for a means to bring back together
what is not viable in isolation. This issue is addressed by a so-called model
weaver. A model weaver is a special model transformation that takes as an
input two models and a composition specification and produces a new com-
posed output model in which the two input models have been merged, see
Fig. 2.1 c). Note that weavers only operate on specified input models of the
same language. This detail will play an essential role in the remainder of this
thesis part.

AOM does not guide how models are best decomposed or recombined. As
a result, AOM is at once a powerful, but also overwhelming concept. Notably
concerning maximized planned reuse, AOM does not provide clear instruc-
tions on how to best operate on given models. This problem is addressed by
Concern-Oriented Reuse (CORE) [AKM13]. CORE is an approach based on
AOM that streamlines model reuse by encapsulating model fragments inside
a reusable unit called a Concern. The idea is that a vast collection of con-
cerns serves as an off-the-shelf solution library for most common modelling
challenges, effectively eliminating the need to reinvent the wheel for common
modelling patterns.

15



In CORE, the reuse process, where a concern user accesses the embodied
concern knowledge, is a sequential process of three phases. The interfaces for
these stages must be anticipated and created by the engineer designing the
concern (also called Concern Designer). In detail, a concern designer must
provide three interfaces to guide concern reuse [KMA+16]:

1. The Variation Interface (VI) exposes the different variants of the re-
usable entity with a feature model, and the impact of each variant on
high-level system qualities with an impact model. The latter can e.g.
provide estimations on global design criteria like throughput, energy
consumption, or system security.

2. With the Customization Interface (CI) the concern designer exposes
the generic entities in the concern that have to be adapted to a specific
reuse context.

3. Finally, the Usage Interface (UI) defines how the functionality encap-
sulated by a concern may be used. In this step, the concern user creates
the link between the customized model and the application context.

We can readily illustrate this process with the example of a concern al-
lowing for the reuse of a design pattern. Consider a common situation during
detailed design where some data is modified, and as a result, several graphical
objects that visualize the data have to be updated to reflect the state change.
This feat is easily accomplished using the Observer design pattern [GHJV95].

1. The VI for a concern encapsulating the Observer design pattern would
take the form of a feature model that exposes different variations of the
pattern to the concern user, e.g., the Push or Pull variant. The struc-
ture of the Observer design pattern can be well expressed with a UML
class diagram fragment. The behaviour, namely that all registered
Observer instances should be notified when the state of an observed
Subject changes, can be described with a UML sequence diagram frag-
ment.

2. In this example, the CI would require the concern user to map the Sub-
ject and Observer classes to the appropriate application design classes
and to do the same for their respective modify and update operations.
Throughout this thesis, I often illustrate the aforementioned steps on
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the example of TouchCORE, a state-of-the-art reference implementa-
tion of CORE [Kie23]. TouchCORE renders the described process a
convenient procedure. Eligible subjects can even be loaded dynami-
cally from existing software artifacts.

3. The UI finally is constituted of operations that allow an Observer in-
stance to subscribe to or unsubscribe from a Subject.

In summary, by giving a Concern User access to these three interfaces,
CORE streamlines the reuse process by allowing a concern user to:

(a) Choose a desired variant from the VI.

(b) Adapt the chosen models to the specific reuse context with the CI.

(c) Use the structure and behaviour encapsulated by the concern exposed
in the UI.

Note that behind the scenes, the described process heavily sets on AOM,
that is specification of partial models, composition specifications and subse-
quent model weaving. The information provided by the concern user (i.e., the
selected features designate a set of realization models, in our Observer exam-
ple UML class and sequence diagram fragments., the customization mappings
and the usage dependencies) constitutes model fragments and a composition
specification. A weaver then combines the model/code fragments, using the
provided composition specification. The outcome of the reused concern re-
flects the application context integrated with the selected concern features
and customization. In the last step, using standard MDE transformations,
the woven models can be used as input for code generation.

Although the described CORE reuse process combines AOM (for partial
models and model weaving) and MDE (for model transformations such as
code generation), CORE is not free of limitations. Notably for crosscutting
concerns, that is, concerns that do not align well on one level of abstraction,
the resulting concern models showcase severe accidental complexity. As pre-
viously mentioned, while DLS are the standard response to this challenge,
integration of additional languages into the existing MDE/AOM pipeline is
not trivial. CORE lacks a generic and versatile plan of action to mitigate
accidental complexity.
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2.5 On Building Block Combinations
All of the concepts presented throughout this chapter bear certain advantages
to software engineering. It seems only natural to strive for an uncompromis-
ing combination of all their contributions, lifting software engineering to the
next level. However, this is not easily done, for the characteristics of one
concept often contradict the functioning of another. In the remainder of
this first thesis chapter, I present the challenges associated with combining
building blocks and present a plan of action to overcome hindering factors.
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3
Polyglot Weaving

In the previous chapter, I presented various MDE-related techniques to sup-
port Separation of Concerns and Reuse, which are generally considered ben-
eficial factors to SE. A natural follow-up question is to which extent these
approaches can be combined as building blocks, to likewise combine their
advantages. I will now briefly delineate the potential of such a combination,
and then reason why the challenge of combining multiple modelling languages
represents a key hurdle to this enterprise. Throughout the chapter, I will also
refer to this challenge as polyglot weaving. The chapter closes with a solution
sketch on how to overcome the issue. This sketch will serve as a foundation
for the formal and generic framework proposal discussed in the next chapter.

3.1 Combining Building Blocks
Common motivation to all building blocks presented in the previous chap-
ter is their contribution to Separation of Concerns and Planned Reuse, as
fundamental SE drivers. Unfortunately, there is no clear favourite of the
presented techniques, for every building block, be it MDE, AOM/CORE or
DSLs comes with its advantages and downsides. As such, one could wonder
if we could simply combine those building blocks, and ideally obtain a syn-
ergistic solution where advantages are combined, and individual drawbacks
compensated. More precisely, one would hope for a solution combining the
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SoC power of model-driven abstractions and life-cycle refinements to leverage
language-based SoC, with aspect-oriented modelling techniques and concern-
oriented reuse to foster SoC for crosscutting concerns as well as streamline
reuse. Ideally, on top such a solution would also mitigate any accidental
complexity with DSLs. The outcome of such a fictitious combination would
be a software development tool that places focus on one concern at a time,
maximizes fast reuse of proven solutions, and reaches all that at an intuitive
and to-the-point level of language expressiveness.

Unfortunately, to date, there is no such approach or tool. Because of how
they function, the individual building blocks are not so easily combined. But
that does not necessarily imply a general impossibility.
In the following, I reason why CORE is a meaningful starting point for ex-
ploring the aspired combination, and illustrate the key conceptual challenge
that needs to be solved. Afterwards, I briefly sketch how CORE’s existing
AOM and MDE pipeline could be modified and extended, to conceptually
solve building block compatibility.

3.2 The Polyglot Weaving Challenge
I argue that CORE is a meaningful starting point for the aforementioned
endeavour. CORE as an AOM derivative is built with reuse in mind. Fur-
thermore CORE emphasizes SoC principles: the relevant properties of a
CORE concern are expressed at the appropriate level of abstraction using
the most appropriate GPL. Additionally, CORE showcases great compatibil-
ity with MDE, and selectively already makes use of MDE transformations,
namely code generation. Figure 3.1 illustrates how classic CORE conceptu-
ally combines key advantages of AOM and MDE in a GPL-oriented modelling
pipeline.

GPL Application
Base Model

GPL 
Reused
Model

GPL 
Reused
Model GPL 

Reused
Model

Woven Software
GPL Model

Generated Executable 
Application Code

AOM / Model
Weaving

MDE / Language
Transformation

Figure 3.1: Simplified Illustration of the Classic CORE Pipeline
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However, for concerns that do not align well with GPL concepts, the stan-
dard way of customization and usage offered by CORE introduces significant
accidental complexity. For example, imagine a situation where the design of
an application is modelled using class-, state- and sequence diagrams. Imag-
ine now aWorkflow concern that can be used to define and execute workflows
that are constituted of interdependent and potentially concurrent activities.
Neither state nor sequence diagrams are well suited to model workflows.
While those models can be used to design a workflow execution engine, the
customization of this workflow engine design would be very difficult for a
concern user, who would have to understand the internal design details of
the engine.
In the context of the classic CORE pipeline presented in Figure 3.2 this would
correspond to the outer GPL models growing overly large and complex (for
what they express) due to a mismatch of language concepts. The Xes indi-
cate unreachable or hindered pipeline steps. That is, the entire reuse process
is hindered by the accidental complexity of input models. For a concern user
that means running through the VCU steps becomes overly complex, the
contrived models distract from the relevant decision-making points, and in
the worst case counteract the aspired CORE advantages.

GPL Application
Base Model

GPL Reused
Model

GPL Reused
Model GPL Reused

Model

Woven Software
GPL Model

Generated Executable 
Application Code

AOM / Model
Weaving

MDE / Language
Transformation

ACCIDENTAL
COMPLEXITY x x xx

Figure 3.2: Illustration of Accidental Complexity in Classic CORE

Further examples are easily found, for in essence the SoC power of MDE
is limited whenever it comes to development concerns that do not align with
the levels of abstraction of commonly used GPLs. This is notably the case for
development concerns, e.g., Security, which need to be considered not only
during the requirements phase but also during architecture, design and im-
plementation. As we will see later in this thesis, addressing security properly
requires dealing with security-related structure and behaviour at all phases of
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development. Hence, if only GPLs are used, security-related model elements
end up scattered across multiple models. In this case, the use of modelling
languages that are not aligned with the development concern in question
introduces what is called accidental complexity.

As discussed in the background section, DSLs have the potential to ad-
dress this drawback, for custom languages can define tailored features that
allow a modeller to express properties relating to any level of abstraction of
software development for the targeted domain. It would therefore perfectly
make sense to allow CORE concerns to reify solutions and expert knowledge
utilizing tailored languages, effectively overcoming the aforementioned con-
ceptual mismatch. In principle, this would allow the definition of concerns
that are more convenient to use, and that reflect more accurately the nature
of the unit of reuse and the path toward its contextual integration.

Unfortunately, this combination exposes a conceptual incompatibility.
Although DSLs are a powerful means to mitigate accidental complexity, they
are not readily compatible with CORE’s reuse pipeline. CORE, as an AOM
derivative, sets on model weaving, that is combining several models based
on composition specifications. The weaver consumes the concepts of either
input model, along with a composition specification, to create a new model.
However, this only works as long as both input models are formulated in the
same input language - in a modelling context this translates to: “weaving is
only possible if the inputs adhere to the same metamodel”.
The moment we switch one GPL specification for a DSL, weaving is no
longer possible, regardless of how efficiently accidental complexity has been
mitigated. Figure 3.3 illustrates this incompatibility in the CORE pipeline.

GPL Application
Base Model

DSL
Model

DSL
Model

DSL
Model

Woven Software
GPL Model

Generated Executable 
Application Code

AOM / Model
Weaving

MDE / Language
Transformation

POLYGLOT WEAVING
NOT POSSIBLE x x x

Figure 3.3: Illustration of Polyglot Weaving Challenge
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3.3 Solution Draft
The described incompatibility of model weaver and auxiliary DSLs is hardly
a discovery. Unless DSLs are used for purely illustrative purposes, they nec-
essarily require tailored model transformations to reestablish compatibility
with existing modelling languages, notably GPLs. In the spirit of CORE, the
nearby solution is, therefore, to not only ship concerns along with tailored
languages but also include the transformers needed to restore general com-
patibility. This way CORE concerns maintain their role as first class citizens
when it comes to planned reuse. They provide a cohesive package of models,
language and transformations. In the following, I refer to DSLs, specifically
built for reuse in CORE concerns as Concern-Specific Modelling Languages,
or CSLs. Throughout this thesis, we will see multiple CSL representatives
and the thesis also contains a discussion on conceptual differences between
DSLs and CSLs.
A provision of CSLs, alongside tailored model transformations to ensure com-
patibility with GPLs, allows the following modification to the classic CORE
pipeline: Instead of directly weaving concern-derived models with contex-
tual GPL models, the pipeline begins with concern-provided CSL to GPL
transformations that ensure all weaver inputs are compatible. This step is
illustrated in Figure 3.4

Woven Software
GPL Model

Generated Executable 
Application Code

AOM / Model
Weaving

MDE / Language
Transformation

Extended CORE

GPL Application
Base Model

GPL
Generated

Model

GPL 
Generated

Model GPL 
Generated

Model

GPL Application
Base Model

CSL
Model

CSL
Model

CSL
Model

Concern
Transformations

Classic CORE

Figure 3.4: Extended CORE Pipeline with Concern Transformations

A charming observation of the solution sketch is that from the moment
of model weaving, the remaining CORE pipeline remains untouched. No-
tably, this means that the proposed pipeline extension is fully compatible
with existing CORE reference implementations. This effectively means that
the proposal makes perfect use of the initially discussed AOM and MDE
steps, effectively making good use of all presented building blocks.
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Note that intermediate GPL models may still suffer from accidental complex-
ity. Since we translate lean DSL models to standard GPL models, there is a
substantial risk for the intermediate GPL models to be overly complex and
hard to consume by humans. However, since this is only an intermediate step
in the fully automated CORE/MDE pipeline, this should not be considered
an issue. Even if overly complex, a concern user would never be exposed to
such intermediate models.

On the presented, abstract level, the solution sketch seems justifiable.
However, considering integration with CORE in more detail reveals an abun-
dance of variation points, and it is far but clear how DSLs and their trans-
formations are best integrated with concerns for optimal reuse. A related
challenge is the various levels of abstraction contained in the CORE pipeline,
which likewise means the transformed DSL models may integrate with GPL
models of various stages. In the remainder of this first thesis part I there-
fore delve deeper into the details of the presented solution sketch, to explore
how DSL integration with CORE is best formalized to a generic and reusable
plan of action, taking shape in the form of a framework that integrates MDE,
AOM and DSLs.

24



4
FIDDLR

Throughout this chapter, I will gradually detail the previously sketched in-
tegration of MDE, CORE and DSLs. I describe how the introduction of
CSLs affects perceived concern reuse, and respective implications for Con-
cern Design tasks, notably taking into account models at various stages of
MDE refinement. Ultimately, the contribution of this chapter is to extract a
step-by-step plan of action, allowing the creation of concerns that come with
their own CSL. That is, I will present a framework with clear separate tasks
assisting concern design with maximal reuse of existing CORE and MDE
concepts.

4.1 CORE-MDE Pipeline Extension Details
A central element of this chapter is the aforementioned pipeline extension.
To discuss and understand the implications of such an extension, we need
to delve into the integration with the existing CORE pipeline. CORE is
already by nature complex, and extending the pipeline adds additional com-
plexity, which is why the corresponding Figure 4.1 is at first overwhelming.
Therefore, I first present preliminary guidance on how to read the illustrative
figure. Throughout the remainder of this chapter I will then gradually cover
individual elements in more detail.
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4.2 Concern Reuse
Figure 4.1 has two dimensions. The horizontal axis, from left to right, repre-
sents pipeline progress. On this behalf, the figure is strongly oriented towards
the previously provided sketch in (Figure 3.4). The left column “Applica-
tion” illustrates the standard MDE stages of model refinement for a sample
application. A concern then makes use of these contextual models to amend
them with concern-provided expertise in the form of CSL models. The in-
tegration is achieved with the help of AOM and MDE techniques, until at
the end of the day (on the right side) we have obtained the desired models,
combining context and concern.
What is new, compared to the previous solution sketch, is the vertical dimen-
sion. The three layers from top to bottom represent different levels of MDE
refinement, namely from Requirement to Architecture & Design, to Code.
Throughout the remainder of this chapter, I will now gradually describe all
pipeline elements. I begin with the concern user perspective, that is, how
concern reuse is experienced. Afterwards, I proceed to the concern designer’s
perspective. By the end of the chapter, this allows us to have a good un-
derstanding of not only how extending a CORE pipeline by CSLs affects
the daily business of concern user and designer, but also the extraction of
hands-on concern design guidelines, in the form of a dedicated framework.

From the perspective of a concern user, the main difference lies at the
beginning of the CORE pipeline. Instead of applying the VCU dimensions
exclusively through GPL models, the concern user gains access to novel lan-
guage elements, which are tailored specifically to the given concern’s reuse.
The benefit of these new elements is that it allows a concern user to accu-
rately access and reuse expert knowledge at a meaningful level of abstraction,
which effectively mitigates accidental complexity. By using such language el-
ements, the standard CORE reuse process [KMA+16] is streamlined for the
concern user. In Figure 4.1, the use of the custom language is illustrated by
the blue box, representing a user-defined model in the concern’s CSL.
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Once a CSL model is created, it must be placed in context with the base
application. This is achieved via model mappings that may occur at all levels
of MDE refinement. Note that the mapping phase corresponds to the cus-
tomization and usage dimension in classic CORE, as it involves the linking
of the appropriate model elements from the created CSL model to model
elements of the application. In Figure 4.1, these mappings are indicated as
double-ended blue arrows. Not all levels are necessarily represented in every
concern reuse, or in other words: which mappings are needed highly depends
on the concern’s nature. Throughout the thesis, we will see concern samples
that only cover a subset of all possible user-defined mappings for the three
indicated MDE levels of refinement.
In short, the main difference to classic CORE is that using the extended
pipeline, concerns come packaged with an embedded CSL, and concern users
access the newly available language concepts to more accurately express
concern-related properties and how they are integrated into the context. As
for concern reuse, no more action is required once a custom concern model
has been created and mapped, for the pipeline remainder is executed in an
automated way.

4.3 Concern Design
In CORE, the unit of reuse is the concern. In the spirit of planned reuse,
integration of a concern should therefore be as straightforward an activity as
possible. The previously presented perspective of a CSL concern user, who
applies a custom language to accurately access and apply tailed concepts, is
an illustrative example for streamlined planned reuse.
However, while reuse should be as convenient as possible, the crafting of an
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easy-to-reuse concern is by nature a complex task. If custom languages are to
be part of the process, then concern creation becomes even more complex. At
the end of the previous section, I stated that from a user perspective, the ex-
ecution of the required model transformations, weaving and code generation
are performed in an automated way. In this section I describe what tooling is
required, and therefore must be anticipated by a concern designer, to support
such reuse convenience. Regarding the initial Figure 4.1, we are now zero-
ing in on the continuation of the pipeline, right after the elements described
for Concern Reuse. As a whole, the automatic processing of user-provided
CSL models and mappings requires four concern-provided components, each
of which I now describe in more detail. To visually distinguish the Concern
Designer’s activities from the ones of the Concern User, the components that
have to be provided by the concern designer in Figure 4.1 are visualized in
red. Since the provision of these components falls into the responsibility of
the Concern Designer, I also refer to them as activities.

4.3.1 Realization Models

The first activity is identical to the classic CORE pipeline. As presented
in 2, concerns come in variants, and for each variant supported, a concern
designer must define the associated off-the-shelf models, describing the con-
cern’s static components. These are called Realization Models and their
defining corresponds to Step 1 in Figure 4.1.
The Figure depicts Realization Models at all three MDE refinement stages:
Requirement, Architecture & Design, and Code level. However, which ex-
act models are needed depends on the MDE process being used, and on the
nature of the concern. Some concerns crosscut at all levels of abstraction,
e.g., Security, and therefore such concerns contain many realization models.
Other, more solution-oriented concerns, notably the ones later presented in
this thesis, might primarily affect lower levels of abstraction, e.g. introduc-
ing boilerplate code required to initialize a specific implementation platform.
The concern designer who has to perform this step should be a developer
with expertise in the implementation of the concern, in collaboration with
an expert of the GPL modelling languages used in the MDE process. Once
more, note that this activity is unchanged compared to the classic CORE
pipeline, for all Realization Models are GPL models.
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4.3.2 CSL Design

The main interest of the aspired pipeline extension is the ability to stream-
line the reuse process with an additional, tailored language, that simplifies
customization and usage of a concern. However, for such a language to be
available to a concern user, the language must first be defined. Since the
language is inherently tied to the concern it seeks to streamline, and since it
is shipped as part of the concern, its definition falls under the responsibility
of the concern designer. In Figure 4.1, this is represented by Step 2, the
Concern-Specific (Modelling) Language (CSL) definition. This step should
be performed by a DSL expert collaborating with the concern domain expert,
who would specify the language’s abstract syntax in the form of a metamodel.
Part of this step is also a definition of which CSL model concepts can be re-
lated to existing GPL model elements. These mappings are also referred to as
“Model Element Mappings” (LEMs). Furthermore, model editing operations
should be defined for consistently manipulating model instances.

4.3.3 CSL Model to GPL Model Transformation

The concern user’s CSL to GPL mappings exemplify the aforementioned
polyglot weaving challenge. In pursuit of rendering concern reuse as con-
venient as possible, we allowed the concern user to directly map concepts
of different model types, that is, we allowed the concern user to map from
their concern CSL model to the contextual GPL models (blue-double-ended
arrows in Figure 4.1). As previously discussed, the CORE weaver cannot
readily consume these mappings, for two reasons:

1. The weaver cannot interpret the CSL model, for it is not familiar with
the language definition.

2. The weaver cannot combine models, for they do not share a common
metamodel language definition.

Therefore it is up to the concern designer to include the required tools within
the concern, that is, as part of their concern design activity. The first step
is the provision of a model transformer to convert CSL models into GPL
models. As a reminder, the GPL models will most likely showcase accidental
complexity, which is why from a user perspective direct GPL modelling is to
be avoided. Step 3 in Figure 4.1, red arrows originating from the CSL model
illustrate the model translations, using the transformer provided by a concern

30



designer. Note that possibly multiple transformers are needed, to cover all
levels of MDE refinement, which is why the figure showcases arrows to all
three MDE levels. The produced GPL models are illustrated in speckled
red and blue, for they contain combined expertise of concern user (CSL
model) and concern designer (realization models and model transformations).
This step should involve a model transformation expert, possibly again in
collaboration with a concern implementation expert.

4.3.4 CSL Mapping to Composition Specification

The previously described CSL to GPL model transformers addressed the un-
derlying polyglot weaving challenge. However, the described transformations
are incomplete. The user-provided input was not only a CSL model, it was
a mapped CSL model. Therefore it is insufficient to only translate the CSL
model into GPL models. The transformations must also deal with what-
ever mappings are connected to the original CSL model. Provision of these
mapping translators is indicated as Step 4 in Figure 4.1. The outcome of
this second set of transformations then serves as composition specification
for subsequent model weaving. In Figure 4.1, this output is illustrated in
speckled blue and red, for once more it contains information provided by the
concern user (mappings) and the concern designer (mapping translations).
Note that once more, the translated mappings might need to be provided
for multiple levels of MDE abstraction. The concern realization expert and
the MDE expert need to decide at which level of abstraction the concern-
specific model is best composed with the application’s realization models.
For example, some of a concern’s behaviour might best be composed at the
code level, while other behaviour can better be composed at the level of state
charts or sequence diagrams. A model transformation expert then designs
a transformation that, given a CSL model and mappings provided by the
user as input, produces composition specifications for the customized GPL
models.

In summary, to support the convenient reuse of concerns with an inte-
grated CSL, the concern designer has to provide four concern components.
But notably these steps can be fulfilled by individual experts in their fields.
For example in 1) a DSL expert would collaborate with the concern domain
expert to define the concern-specific language (meta-model and language ac-
tions). Then 2), the concern domain expert and the MDE expert (i.e., the
expert in GPLs, such as UML, that are used in the MDE process and for
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code generation) would figure out at which level of abstraction the concern-
specific model is best composed with the rest of the application. For example,
some behaviours might best be composed at the code level, while other be-
haviours can better be composed at the level of state charts or sequence
diagrams. Finally, for steps 3) and 4), a model transformation expert, again
in collaboration with the concern domain expert, would write the model
transformations from the CSL model to the chosen GPL models/code, and
from the CSL-GPL mappings to the GPL-GPL mappings, if any.

Table 4.1 provides an overview of the respective tasks and which respec-
tive experts are best involved per component.

Step Description Involved Experts
1 Concern Realization Models Definition GPL, Domain
2 CSL Meta-Model Definition DSL, Domain
3 CSL Model to GPL Model Transformer Model Transf.
4 Mapping to Composition Spec. Transformer Model Transf.

Table 4.1: Concern Designer Activities Required for CSL Support

With the above steps, we define FIDDLR: A F ramework for the Integration
of Domain-Specific MoDelling Languages with concern-oriented Reuse.
The contribution of FIDDLR is that it splits the task of designing a con-
cern into smaller, independent steps, namely concern realization, CSL design,
CSL → GPL transformation, and CSL → composition specification. Each
step reuses existing technologies whenever possible, thus simplifying concern
design and reducing the amount of work required significantly. The FIDD-
LR concern design steps can even be distributed over a team of individual
experts in their field.

A closing note is that the convenient use of custom modelling languages
often spans out to graphical editors. However, this is not a hard requirement,
for modelling can likewise occur in textual models, and in some cases is
even the preferable work mode. The FIDDLR framework therefore does not
incorporate a mandatory step for the design of a graphical modelling editor.
Throughout this thesis, I will nonetheless present sample graphical editors
for two reference CSL concerns, for illustration purposes.
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4.4 Concern Composition
Concerning Figure 4.1, with the two previous sections we have now covered
most elements. We’ve seen how CSL model and mappings are provided by
the concern user at the pipeline start.
Taking into account these inputs we’ve then reasoned which generic steps
are required by a concern designer to support and process these inputs,
which lead us further through the pipeline, to GPL models that contain the
application-specific customization mappings and usage of the concern API,
as well as composition specifications that connect the generated models with
the application models at each relevant level of abstraction.
So far not covered is the last pipeline step, the actual combining of GPL
models and composition specifications to a concernified application. This
step notably does not fall into the responsibility of the concern user or
concern designer. In the spirit of reuse, the combining of application and
concern-derived GPL models, following a composition specification is classic
CORE/MDE business, that can be used off-the-shelf as is. In more detail, the
composition specifications and GPL models are simply provided as input to
the CORE model weavers, which then generate the concernified application,
i.e., the GPL models in which the concern-specific and application-specific
structure and behaviour have been combined.
This is followed by the classical MDE step that, for the interest of read-
ability, has not been included in Figure 4.1, is the subsequent generation
of compilable or interpretable code. Ultimately, the interest of all Software
Engineering activities is the execution of the target program. In this case,
the generated code ideally reflects both, the context and the reified concern
knowledge, and is as such in line with the original program requirements.

In summary, in this chapter, we have elaborated FIDDLR, a rigorous
framework that defines a four-step action plan to support the general de-
sign of CSL-enabled concerns. FIDDLR puts forward the idea that DSL
technology can be exploited effectively for implementing and applying con-
cerns that do not align well with standard GPL concepts. In particular,
FIDDLR defines an approach for packaging a DSL with a concern, and as
a framework provides clear tasks to integrate the concern implementation
with MDE tooling, existing GPL models and code. FIDDLR therefore is
beneficial for both concern designers and concern users.
The presumed advantage of FIDDLR is the ability to construct concerns
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with built-in CSL, which in turn allows usage of concerns that otherwise
suffer from accidental complexity throughout reuse. Using FIDDLR extends
the solution space of CORE to concerns that do not align well with GPL
concepts.

However, the definition of FIDDLR is just the beginning. In the second
thesis part, I strive for concrete viability evidence by applying FIDDLR’s
plan of action to construct and assess reuse with two sample concerns, each
showcasing a built-in CSL. Afterwards, in the third thesis part, I extend the
assessment with an empirical component. I perform a controlled experiment
with humans to determine the measurable effects of a sample CSL-based
concern on a representative and relevant engineering task.
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Part II

Two Sample CSL Toolchains

In this second thesis part, I apply the previously defined FIDDLR framework
to create two novel CSL-enabled concerns: the RESTify and the AUTHify
concern. These reference implementations serve as proof of concept for the
plan of action provided by the framework.



5
Background

This chapter provides the contextual background for the two sample CSL-
based concerns that serve as Proof-of-Concept for illustrating FIDDLR’s plan
of action. However, before I delve into the details of their design, I will
now first present the two engineering activities that the sample concerns
address. This background section is also relevant to provide a survey of
existing building blocks reused during concern composition.

The two targeted software engineering activities of interest are: “Exposing
existing functionally through a REST interface” and “Securing services for
access delegation support”. This chapter is structured in two sections: For
each activity, I first present the underlying paradigms, followed by evidence
and illustrations on the activity’s industrial relevance. Afterwards, I provide
a brief survey of existing contextual DSL approaches and, where applicable,
code generators or code samples, used for those two activities. This chapter
lays the foundations for the subsequent definition of tailored CSLs, CORE
mappings and code generation strategies, which are the main steps laid out by
FIDDLR. The actual concern design is then discussed in detail in Chapters 6
and 7, respectively.
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5.1 Representational State Transfer

Representation State Transfer (REST) is an API design paradigm, where
the actual service functionality is hidden behind a representative abstraction.
The API is designed to maintain an illusion of working on file-system-like,
hierarchically structured resources, the state of which can be altered with
CRUD operations [Fie00] (Create, Read, Update, Delete). Performing such
an operation invokes service functionality, which to the outside is perceived
as querying or transferring resource state.
Those operations are commonly invoked over HTTP as Put, Get, Post and
Delete requests. Clients interact with a service that is adherent to the REST
style (i.e., a RESTful service) uniquely over those selectively enabled CRUD
operations. Having a RESTful service therefore constitutes a strong layer
of abstraction, as it strictly conceals service implementation details. This
notably distinguishes REST from simple Remote Procedure Calls, where an
existing API is exposed as is, and only the communication channel changes.

Throughout the next chapters, I will often use a simple Java desktop ap-
plication as an illustration. It is a tiny e-commerce like BookStore [Sch21]
application, which can be refactored to a RESTful service, illustrating the
common challenges when re-exposing service functionality through REST.
Table 5.1 illustrated the aforementioned REST concepts on the example of
the BookStore, that is, one column for the HTTP CRUD operation, one
column for the file-system-like location in a resource tree, and finally the
original BookStore method represented by this abstraction.

Operation Resource Path (/bookstore prefix omitted) BookStore Method (Parameters omitted)

GET /isbns Assortment.getEntireAssortment()

GET /isbns/{isbn} Assortment.getBookDetails()

PUT /isbns/{isbn} Assortment.addBookToAssortment()
GET /isbns/{isbn}/comments Comments.getAllCommentsForBook()
POST /isbns/{isbn}/comments Comments.addComment()
DEL. /isbns/{isbn}/comments Comments.removeAllCommentsForBook()
POST /isbns/{isbn}/comments/{commentid} Comments.editComment()
DEL. /isbns/{isbn}/comments/{commentid} Comments.deleteComment()
GET /stocklocations GlobalStock.getStoreLocations()
GET /stocklocations/{location} GlobalStock.getEntireStoreStock()
GET /stocklocations/{location}/{isbn} GlobalStock.getStock()
POST /stocklocations{location}/{isbn} GlobalStock.setStock()

Table 5.1: CRUD Operations and Resource Paths for BookStore Methods

The BookStore database holds sample book metadata, reviewer com-
ments and inventory of individual stores. In its original state, the BookStore
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offers a set of public methods that allow for local querying and manipulation
of the BookStore data. Adding a REST interface is a representative engi-
neering activity because it allows clients to consult or modify the database
remotely. I will explain the sample REST API layout, and how it relates to
the existing BookStore functionality in the next Chapter 6.

Note that a proper definition of REST interfaces is subject to strict design
rules, notably concerning resource arrangement and naming. Those were
initially described by the paradigm creator [Fie00], but have also been con-
densed into dedicated design rulebooks [Mas11]. An essential thought is the
classification into different resource types, notably collections, variables and
static resources. Some tools use visual symbolic conventions to indicate the
type, e.g., variables are indicated by enclosing curly brackets, collections are
annotated with a circle symbol in 5.1.

5.1.1 Relevance and Success Factors

Over the last decade, RESTful service interfaces gained widespread accep-
tance for modern web architectures and component-based systems, notably
in a Micro-Service context [vKES+18]. This is mainly due to the efficient
abstraction from implementation details, but also due to the versatility of
HTTP, which provides a free choice of implementation language for commu-
nicating software components. Yet the design of a proper REST interface for
a given functionality remains a challenging task. For one, correct interface
engineering is subject to a variety of design rules. Secondly, the underly-
ing web technology that enables the execution of a RESTful service imposes
a complex technological stack. A side effect of this complexity is that real-
world services often showcase misuse or even anti-patterns to the REST style
[FTE+17].

5.1.2 REST DSLs

There exist already several DSLs that allow the specification of REST inter-
faces.

The nowadays most widespread interface specification language for HTTP
services is OpenAPI/Swagger (OAS) [Sma23]. However, OAS is notably an
umbrella language for all HTTP service interface descriptions and is not
explicitly tied to the REST paradigm. This means the language does in no
way enforce or foster the design of REST-adherent interfaces.
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The Web Application Description Language (WADL)1 was designed to
describe HTTP resource behaviour in a machine-readable manner. It has
been shown that WADL can be used to express the contractual interfaces
of REST service implementations [FS15]. However, since WADL does not
require the use of the base concepts of the REST style, it does by itself not
assist or guarantee REST-compliant interface design [RR08].

The Web Resource Modeling Language (WRML) [Mas23] proposed by
Masse in [Mas11] is a REST-specific modelling approach based around re-
sources. In contrast to WADL, it therefore partially enforces the REST style.
To the best of my knowledge, WRML is currently the only REST DSL pro-
posal that considers a graphical editor that implicitly organizes resources
into a tree structure 5.1.

Figure 5.1: Graphical Editor for WRML’s Hierarchical Resource Layout, as
Proposed in Masse’s REST API Design Rulebook [Mas11]

The RESTful API Modeling Language (RAML) is a textual modelling
language that adheres closely to the REST principles [Mul21]. Interface
specifications provided in RAML can be converted into OAS specifications,
and from there into a variety of server and client-side stub implementations.
A fundamental difference to the language provided by our concern (presented

1WADL is not to be confused with the Web Service Description Language (WSDL),
designed for Simple Object Access Protocol (SOAP) and Remote Procedure Call (RPC)
specifications.
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in the next chapter) is that the inherent tree structure of a REST interface is
not prominent in RAML specifications. Furthermore, with OAS-based code
generation, it is not possible to generate meaningful working services, only
service stubs. In particular, exposing already existing legacy functionality
is not trivial, because the generated stubs must still integrate with existing
functionality.

In summary, there are already several DSLs that allow the specification of
REST interfaces. These languages focus on different aspects of the targeted
services, from a technical HTTP-oriented approach (OAS) to REST-specific
models with graphical support (WRML).

5.1.3 REST Annotations and Technologies

There are various ways to create a RESTful service. REST as a style only
refers to the arrangement of resources and operations on them. Using Java
it is perfectly possible to use JDK-provided network functionality to create a
program that listens to inbound HTTP calls, analyzes their target resource
and then decides how to best reply to adhere to the REST style. Technically
this would already represent a RESTful service. However, this would consti-
tute a severe mingling of technical aspects with conceptual design questions.
Most REST implementations therefore draw a strict separation between the
component dealing with HTTP network communication, and the resolving
of resource operations and functions. In more detail, the separation is made
between an application server and the RESTful service. This separation is
fully in line with SoC and well established in the java eco-system, which is
why there is a dedicated artifact format for web services. Where standard
desktop applications can be assembled to a JAR file (Java Archive), web ap-
plications, and hence also REST services can be assembled to a WAR (Web
Archive) file, for subsequent deployment on an application server. Note that
there are multiple web server options, but in their functioning, they are all
alike. Whether it is a Tomcat, Jetty, Grizzly or Glassfish web server, at the
end of the day they all serve as platforms for hosting standardized WAR web
applications.

A consequence of this separation is that the exposure of functionality over
REST becomes a pure configuration task. That is, if there is already a web
server, capable of dealing with inbound HTTP requests and their answering,
the only missing piece is a configuration that advises the web server on how
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to map inbound HTTP requests on existing Java functions. REST is exclu-
sively about this configuration aspect.
There are different ways to establish these mapping instructions, where a web
server is instructed to invoke a specific Java method in the web application,
for access on a given REST resource. One of the earliest means to achieve
this in the Java ecosystem is the aforementioned WADL files, which are XML
files. These files can not only describe resource structure but also mapping
on target functions [Bur09].
An orthogonal approach that has gained huge popularity over the last decade,
and nowadays has become the preferred method, is the integration of map-
ping instructions via annotations. Annotations are short strings, starting
with an "@" character, that can be placed before certain program element def-
initions, namely Classes, Methods, Parameters and Packages. Annotations
are in general used for reflection, that is, they are interpreted at runtime, to
modify program behaviour. In the context of REST, this means annotations
can be used to substitute textual web-server configuration files. More pre-
cisely, we can annotate Java methods with mapping details for REST, such
as a method to be invoked whenever a certain web resource is accessed by
HTTP GET. Similarly we can map details of the HTTP request on method
inputs. This is covered in more detail in the next chapter, alongside code
examples.
Note that the annotations alone are only instructions, the configuration is
only achieved by some component that translates them into web-server con-
figurations, using reflection.

There is a subtle distinction between the annotation syntax, and the tech-
nology consuming the annotations via reflection. Regarding syntax, there are
only two big players: Spring and JAX-RS. The annotation syntax is close
to equivalent. For example, the annotation to expose a Java method over
HTTP GET in Spring is “@GetMapping("path/to/resource")”, whereas
the JAX-RS equivalent is a combination of two annotations: “@GET” and
“@Path("path/to/resource")”. Concerning the technology, however, there
are multiple choices for the JAX-RS syntax. That is, multiple libraries readily
consume annotations in JAX-RS syntax and translate them into web server
configurations, namely: Eclipse Jersey, Apache CXF, JBoss RESTEasy [Hat23,
Fou21a, Fou21b].

Finally, one reason for Spring’s popularity is the default integration of a
preconfigured web-server [Wal22] (also called application-server). Setup and
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maintenance of a web server is usually a time-consuming and error-prone
task that requires proficiency with the involved network stack. However,
without an application server, there simply is no platform to deploy the
created web service. The success of Spring is in part due to the decision to
compile by default to a JAR with a built-in web server, rather than a WAR
that requires subsequent deployment. This significantly lowered the barrier
to service development for less experienced developers.

5.1.4 Code Generators

There are various tools for generating server-side and client-side REST API
code. The most prominent players altogether set on OAS as a specification
language.

PostMan [Pos23a] and the Advanced REST Client [Mul23] (ARC) are
visual tools for fast definition, testing, and client code generation of HTTP
services. Internally the API model is stored as an OAS model and can be
likewise exported. The standard use case is the one-by-one definition of sam-
ple endpoint requests, specifying resource location, HTTP method, header
and body parameters. Notably, both suites allow client code generation for
a plethora of programming languages.

Figure 5.2: Capture of Request Specification, Code Generation, and Probing
using the Advanced REST Client ’s User Interface
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OAS comes with a default API specification and backend code generation
tool called Swagger Codegen [Swa23]. The tool generates deployable Spring
Boot projects that come with a readily usable maven project build configura-
tion. The generated REST services accept requests on all specified resource
access, and answer with sample replies.

An important closing comment on existing code generators is that all afore-
mentioned technologies only produce stub code. That is, the output is a code
skeleton implementation, which contains no contextual client or server busi-
ness logic. As such, the generated code must be manually edited to integrate
with the application’s business logic implementation. In the case of an evolv-
ing interface generation, this often implies a tedious and error-prone process,
because REST-related code must be re-generated, which easily overrides pre-
vious manual changes.

5.2 Delegating Resource Access
The key paradigm behind authorized access is the notion of resource own-

ership. In the most common case, the owner is a platform end user, i.e. a
legal person as assumed owner of a set of resources. By default, there is only
one owner with operative access to the owned resources. Authorized access
does, however, also consider scenarios, in which the owner desires delega-
tion to other agents, who then act on their behalf. In that case, this third
party requires formal authorization from the notional resource owner. The
common protocol to achieve this securely for RESTful services (which is the
most widespread cloud API paradigm) is the OAuth2 security protocol. At
heart, the motivation for this protocol is to eradicate any need for credential
sharing between the resource owner and third party.

A common illustration is the case of a car (resource) owned by a person
(user, resource owner) [JR17]. The car is a protected resource, access and
operating of which is subject to security measures (car key). In the simplest
case, borrowing the car from a third party means passing on all authorizations
(car keys) to the third party. The third-party can henceforth act on behalf of
the resource owner. However, there is no efficient means to restrict or revoke
this authorization. It is a model entirely based on trust. In the spirit of the
OAuth2 protocol, the answer to this scenario is a valet car key [JR17], that is
to say, a means of delegated access that comes with restrictions (speed limit,
no access to trunk), and fixed expiry (borrowed car key only works for a day,
then becomes useless).
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It is important to note that ownership, in the context of access delegation,
is a paradigm. While the application context must showcase a relation that
can be interpreted as ownership, outside the OAuth2 context this association
is usually not semantically equivalent to “giving the right to delegate access”.
Also, access delegation must be built on top of some form of authentication
or access control. Coherent to this, we will see shortly that OAuth2 always
includes a service component, specifically for user authentication.

5.2.1 Relevance and Success Factors

Nowadays, almost every established online platform features a notion of users
and resource ownership, including the option of access delegation to third-
party services. This spans from the integration of Instagram posts in dating
app profiles [Bum23] to authorizing automated bank deposits for tax return
purposes [CRA23], to authorizing external CI services for automated build
pipeline execution on code commits [Git23, Cir23].

The OAuth2 protocol gained its status as a standard access delegation
mechanism with the rise of Micro-Service Architectures [AZKA11]. The idea
of service interplay lies at the heart of MSA implementations, and hence most
of the well-established services would be unthinkable without a secure way
of access delegation. Following the MSA context, the OAuth2 terminology
is as follows: The protected resource is governed by a Resource Server
(RS), which applies strict rules to decide on granting or denying operation
access. By default, an end user holds notional ownership, this entity is there-
fore called the Resource Owner (RO). Finally, the protected resource is
accessed by a third-party service, acting on behalf of the Resource Owner.
The party that accesses the Resource Server is called the Client. Note that
the client is not the Resource Owner’s web browser, but a third-party service.
To avoid password sharing, the authorization process includes communica-
tion with a dedicated entity, acting as a security broker that issues tokens
to the Client, after successful authorization by a Resource Owner. This en-
tity is likewise a deployed service and called the Authorization Server
(AS) [For12].

Figure 5.3 depicts an illustration of the low-level protocol flow, based on
the official specification. It has been modified to represent the request-reply
nature of the underlying HTTP requests, as HTTP is the standard protocol
in an MSA / RESTful context [Sch23d]. Note that the main motivation for
the protocol is to achieve authorization without credential sharing.
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Figure 5.3: Augmented Version of the Official Default OAuth2 Protocol Con-
trol Flow [For12]

Therefore the main control flow is as follows:

• (A): After an initial rejected attempt to directly access a protected RS
resource, the Client (third party service) requests authorization from
the RO.

• (B): The RO does not simply return their credentials, but uses its
credentials to create a temporary Authorization Code at the AS, which
is persisted, and communicated back to the Client.

• (C/D): The Client then contacts the AS to trade the Authorization
Code for an Access Token. This Access Token contains the RO’s iden-
tifier, as well as the privileges that were granted.

• (E/F): Using this Access Token, the Client can henceforth access the
RS, on behalf of the RO and interact with Protected Resources, owned
by the RO.

Note that OAuth2’s token-based delegated access authorization, although
often sharing some implementation details with other security mechanisms,
is not to be confused with e.g. single-sign-on with a platform ID, or user-
to-user resource sharing. Also, integration of OAuth2 access protection does
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not necessarily span out to all service resources, or in case of successful
authorization grant access to all owned resources More fine-grained access
is possible with a concept called “Scopes”, which I will further detail in the
remainder of this chapter.

For illustration purposes, I will now briefly illustrate the standard protocol
flow, on the example of the Obscurify service [Obs23]. Obscurify accesses the
Spotify music streaming API on behalf of a Spotify user and then creates
statistical reports on the user’s taste in music. That is, Obscurify accesses the
user-owned resources for playlists, liked songs and play counts, and compares
this information to other users of the same region or country. Figure 5.4
depicts the positioning of my all-time taste obscurify positioning, relative to
the collected Canadian reference distribution.

Figure 5.4: A Spotify User’s Relative Taste Ranking, Compared to the Cana-
dian Profile Distribution.

This is possible because Spotify’s API adheres to the OAuth2 protocol,
i.e. the API holds a notion of ownership for certain resources, and foresees
authorized access on behalf of a user, without the need for password sharing.
An important characteristic is that the Spotify API is agnostic to the nature
of the external service, most likely even not knowing about their philosophy or
purposes at the time of API definition. The Spotify developers only provided
documentation [Spo23] of the authorization control flow, which in turn allows
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third-party services to integrate with their API, in the spirit of an MSA
interplay.

Figure 5.5: Official Spotify API Illustration for Requesting Authorized ac-
cess. “Application” Represents a Third-Party Service (OAuth2 Client), such
as Obscurify, Requesting Permission to Act on Behalf of a Spotify User (RO)

Note that the control flow defined by Spotify is perfectly compliant with
the OAuth2 protocol specification [For12], which means that at no point
the user reveals their credentials to the third-party Obscurify service.2. The
initial informed and consented authorization request (steps (A)/(B) in Fig-
ure 5.3) is not contained in the Spotify API illustration Figure 5.5.

In this initial step, the user is prompted with the effects of the authoriza-
tion. In the case of Obscurify this corresponds to requesting access to the
user’s playlists, play counts, liked songs, etc. An integral part of the protocol
is the grouping of resource operation access into so-called “scopes”. A service
acting on behalf of a user in general is not granted access to all user-owned

2Request (1) in Figure 5.5 corresponds to steps (A-C) in the formal protocol specifi-
cation. Request (2) corresponds to step (E)
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resource operations, but only to the ones covered by the granted scopes. In
other words: “[...] scopes represent a subset of access rights, tied to a specific
authorization delegation” [JR17].
The requested authorization sample in Figure 5.6, for instance, requests three
scopes, each one comprising access to a set of resource operations. Note that
the provision of predefined scopes is the responsibility of the RS developer.
A third-party service can only request and obtain grating of a combination
of existing scopes, not define new ones [JR17].

Figure 5.6: Consented Informing of the Requested Privileges, when Acting
on Behalf of the Spotify User

Another key aspect of OAuth2’s success is the design for compatibility
with REST and therefore implicitly HTTP. As the security protocol was
purposefully crafted for an MSA context, most implementations perfectly
integrate with the REST paradigm and HTTP.
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5.2.2 OAuth2 DSLs

Alike Spotify, most established service providers offer illustrations of their
intended API usage and the designated authorization message control flow.
These illustrations are often visual and model-oriented. Furthermore, the
official protocol definition contains flowchart illustrations for various proto-
col variants. However, these illustrations are altogether neither based on
a formal model definition, nor use a common, universal illustration syn-
tax. There appears to be no generally accepted modelling notation, or even
a domain-specific language, specifically created for OAuth2. Furthermore,
most illustrations focus on the protocol flow, i.e. the message exchange at
protocol execution time, rather than involved entities, such as agents, re-
sources, operations and notional ownership. Nonetheless, there are several
related modelling approaches to consider:

SecPAL [BFG10] is a DSL modelling approach for general decentralized
authorizations. The language was proposed before the emergence of MSA
and is notably not tailored to the OAuth2 context. It sets on formal definition
of transitive permissions for resource access. The proposal suggested formal
processing by datalog or prolog rule checkers. However, the language has not
found industrial acceptance.

Several languages have been suggested for Role Based Access Control
(RBAC) contexts, which are related. RBAC does not reflect the notion
of access delegation or per-user resource ownership. However, it does con-
sider the definition of privilege hierarchies as base criteria for granting or
denying resource access. Microsoft’s legalease [SGD+14] language provides a
modelling context for these concepts. However, the language does not fore-
see the possibility of role or privilege multi-inheritance, which motivated the
HAPI extension [JHL+21], a modified version to provide this missing fea-
ture. Figure 5.7 depicts an illustration of key concepts in HAPI, which are:
(a) textual definition of Actions, Resources and Actors, and visualizations
for (b) hierarchically arranged resource access operations, (c) hierarchically
arranged resources, (d) hierarchically arranged user roles including multiple
inheritance.
However, HAPI has likewise not found adaptation in industry. Yet HAPI is
an interesting study candidate in the context of OAuth2, for it showcases a
strong orientation on hierarchically arranged resources and hierarchical or-
ders of access rights, and user roles with optional multiple-inheritance (Fig-
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Figure 5.7: Visualized Language Model of HAPI Concepts [JHL+21]

ure 5.7), which are all language features required for representing an OAuth2
context, with a dedicated DSL.

5.2.3 Code Samples

Due to the lack of DSLs for OAuth2, there are also no code generators for
interacting parties, not even for the generation of off-the-shelf stub code snip-
pets. In the context of OAuth2, most code generators serve for the generation
of test tokens, that is JSON files that comply with a given data structure
of authorizations, optionally with the requested encoding and cryptographic
protections [Okt23]. Figure 5.8 shows a screen capture of an online service
to easily decode and encode such tokens, next illustrations of token fragmen-
tation into header, payload and cryptographic signature.
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The exact token format used is a technical variation point that has im-
plicit consequences on the control flow. For instance, tokens can contain the
RO’s signature, which means the RS does not need to verify validity at the
moment of Client access. Unsigned tokens, however, need an extra validation
step on every use. Otherwise, token revocation would not be possible. That
is, the protocol flow changes depending on which token characteristics are
configured. Depending on the security requirements, one or the other token
characteristics may be mandated. For example, if token revocation is a valid
scenario, signed tokens should not be used, for they are valid until expiry is
surpassed (if a token expiry has been configured).

Figure 5.8: JWT.io’s Online JSON Web Token Encoder/Decoder [Okt23]

Established web frameworks like Spring Boot provide mechanisms to con-
veniently verify token contents, by annotating existing REST resources with
an additional security annotation. In the example below, a REST resource is
secured by comparing a dynamic identifier in its resource path to the autho-
rizer (RO) information contained in the access token. Note that the Spring
framework here automatically extracts the requested field of the decoded to-
ken. Comparisons can be simple String comparisons, or complex functions,
encoded in a dedicated DSL, the Spring Expression Language (SpEL).
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@PreAuthorize(”#city.equals(authentication.name)”)
@PostMapping(”/bookstore/stocklocations/{stocklocation}/{isbn}”)
public void s e tStock (@PathVariable(”stocklocation”) S t r ing c i ty ,

↪→ @PathVariable(”isbn”) Long isbn ,@RequestBody In t eg e r
↪→ amount ) {
GlobalStockImpl . g e t In s tance ( ) . s e tStock ( c i ty , isbn ,

↪→ amount ) ;
}
Listing 5.1: Spring Annotated, Secured BookStore REST Operation. Allows
Modification of Copies in Stock, if the Token’s Authorizer String Matches
the Store Location (city, Corresponding to {stocklocation} Path Variable)”
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6
RESTify

In Chapter 5, I presented the essential background for the REST paradigm
and provided references for its unmatched cloud API relevance, notably in
an MSA context. Like any API, RESTful interfaces are the access point to
service functionality, which in turn imposes strong requirements for a proper
implementation. Poorly realized APIs, on the other hand, can easily expose
sensitive service functionality or data, result in performance bottlenecks, or
simply break functional correctness.

Unfortunately, the REST paradigm itself is a frequent hurdle, for many
developers expose existing functionality in direct Remote Procedure Call
(RPC) style over HTTP, falsely believing the protocol itself would imply
coherence to the REST API design paradigm [FTE+17]. A second source of
complexity is the deep technological stack, comprehending various network
protocol layers, and complex deployment technology, e.g. application servers
and their configuration.
The resulting development challenges and frequent engineering flaws in real-
world REST service engineering are an undeniable issue and have inspired
me to design a CSL-enabled RESTify concern that addresses these issues.
At the same time, the design of such a concern serves as PoC validation of
FIDDLR.
The previously presented CSL philosophy appears to apply to the RESTify
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concern, as the expert knowledge provisioned by a domain-specific language
could allow a streamlined REST resource layout design, and the CORE-
provided model-weaving could be used to efficiently integrate newly created
interface models with existing legacy functionality.

Throughout this chapter, I will first recapitulate the challenges associated
with the manual conversion of legacy Java code to RESTful services. After-
wards, I explore the creation and reuse of RESTify , a concern to re-expose
existing functionality, with the help of an internal CSL. Throughout the pro-
cess, I apply FIDDLR, to validate the framework’s designated concern design
stages. The chapter concludes with a numeric comparison of the developer
effort required by the two RESTification methodologies based on an action
metric. I conclude with a final summary of lessons learned while implement-
ing a functional prototype of the RESTify concern.

In the remainder of this chapter, I will frequently illustrate aspects of the
conversion process on the example of the BookStore [Sch21] (introduced in
Chapter 5), a reference sample Java application.
The BookStore imitates data models and allows access on the example of
a fictitious bookstore chain. This constitutes a representative case study,
for e-commerce is the original and most prominent application context for
RESTful services. In more detail, the targeted resource-oriented abstraction
offers the following access points:
Assortment, that is, information on all books indexed in the system are
accessible at the /bookstore/isbns collection resource, and sub-resources.
This allows adding new books to the system and lookup of previously in-
dexed book details. Furthermore, the BookStore has a small database of
user comments for indexed books. Those are represented by sub-resources
of the /bookstore/isbns/{isbn}/comments resource. Operations include
lookup of existing user comments, as well as deletion and adding of com-
ments. Finally, the BookStore stores information regarding the amount
of book copies for individual store branches. Those are accessible via the
/bookstore/stocklocations/{stocklocation} resource and correspond-
ing sub-resources for individual books.
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6.1 Manual REST Conversion Challenges
The process of manually creating a REST interface for a Java application
can be abstracted into three sequential activities:

1. Preparatory selection of a REST technology. REST can in principle
be implemented exclusively using JDK internals. However, in practice,
developers most often use external frameworks, in a Java context no-
tably the Spring Boot framework. Using Spring Boot requires build
system configuration file changes, framework-imposed boilerplate code
and several structural code changes.

2. Exposure of functionality via annotations. This is the key activity of
interest, as the actual re-exposure of existing functionality as operations
on REST resources take place in this phase.

3. Deployment of the compiled service. Depending on the build process
this can be either direct launching or deployment on an existing appli-
cation server.

6.1.1 Variation Point Illustration

Figure 6.1 illustrates this three-phased workflow. In the remainder of this
section I provide more details on each step, including sample code where
applicable.

-Import legacy code into IDE
-Update build-sys. config

-Replace launcher class
-Add REST boilerplate code

Prepare
-Place annotation-strings for:
 Resource hierarchy & types,

 

CRUD-mappings, Parameter-
mappings, Payload-encodings

Expose

-Build project
-Deploy

Deploy

Modified 
Bookstore 

Code

RESTful 
Bookstore

Code
Bookstore 

Service
Legacy 

Bookstore 
Code

Figure 6.1: Manual Steps Required for Adding a REST Interface to Existing
Code

The manual RESTification process begins with a technical choice. If a de-
veloper were to RESTify the BookStore, the first step would be the integra-
tion of a framework or library that implements the runtime communication
infrastructure and protocols required for REST. Chapter 5 already listed sev-
eral Java REST technologies. In the illustrations here, I assume that a devel-
oper favours Spring Boot over various implementations of the Jakarta REST-
ful Webservices specification (JAX-RS) [Fou21c, JBo21, Fou21b, Fou21a],
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which constitute other viable alternatives. The focus on Spring is a fair
choice due to the framework’s high industrial relevance. However, any alter-
native could have been used for this study object.
Spring is a JDK-external artifact and therefore can only be invoked if ref-
erenced by the system’s classpath. Thus, our developer modifies the Book-
Store’s existing build system configuration, declaring a dependency on Spring
Boot, and exchanging the default build settings by a Spring-specific plugin.
Next, the developer replaces the original Java launcher class with one that
initializes the Spring framework during startup. These preliminary steps are
summarized in the Prepare stage of Fig. 6.1.

As a next step, the application API needs to be re-exposed as REST
resources. Using Spring, Java methods can be mapped on CRUD operations
of REST resources using Spring-specific Java annotations. An annotation
parameter then specifies the resource location. An example of this syntax
is shown in Listing 6.1. Spring annotations are highlighted in green. For
a listing of all resource mappings for the sample BookStore application, see
Table 5.1 in Chapter 5.

@GetMapping(value = “/bookstore/stocklocations/{stocklocation}”, produces =
“application/json; charset=utf-8”)

public Map<Long , Integer> ge tEnt i r eS to r eStock (
↪→ @PathVariable(“stocklocation”) S t r ing c i t y ) {
return s tocksPerCi ty . get ( c i t y ) . ge tEnt i r eStock ( ) ; }

Listing 6.1: Spring Annotated BookStore Method. Accessible by HTTP
GET Request, e.g. “/bookstore/stocklocations/montreal”

Similarly, individual parameters can be annotated where needed to resolve
method arguments to details of the mapped resource query. This can be ei-
ther a dynamic fragment of the resource path, an HTTP query parameter or
the parsed HTTP body. Regarding the BookStore, our developer therefore
identifies the existing Java methods that must be exposed and decorates their
signatures with the required Spring annotations. This step is represented by
the Expose stage in Fig. 6.1.

The modified code only becomes of practical use for remote clients, if
built and deployed on a server. Building is uncomplicated, as the configured
build system compiles the modified BookStore into a self-contained JAR file
that can be executed as-is on any system with a compatible Java Runtime

56



Environment. Self-containment means that the JAR includes Spring and its
transitive dependencies. If executed, the launcher class invokes Spring, which
in turn powers up an embedded web server. Using reflection, Spring detects
the added annotations and ensures that inbound HTTP queries are delegated
to the decorated methods and that parameters are correctly resolved. The
BookStore has hereby effectively become a RESTful service. This final step
is illustrated by the last stage, Deploy, in Fig. 6.1.

In the Expose stage, the placed annotations implicitly encode an entire
REST interface, that represents the design of an entire resource tree with
selectively enabled CRUD operations and parameter mappings. This is illus-
trated in Table 5.1, showing resource locations and operations for a RESTi-
fied BookStore. The resource paths (second column) form a tree structure,
which emphasizes the characteristic nature of the file-system-like abstraction
of the REST paradigm.

The developer has to implicitly define this tree by placing annotations
that encode individual branches of the tree using URLs on the exposed meth-
ods. In the case of the BookStore, the REST interface was expressed with
only 28 annotations, which are scattered over the code base. For reference,
a fully operational sample implementation of the RESTify outcome is avail-
able as Git project [Sch23a]. This conceptual mismatch – building a tree
by writing URLs sprinkled over several source files – imposes a high mental
load on the developer. Furthermore, the developer must have a thorough
knowledge of the Spring annotation syntax. Hence the manual Expose stage
is not at all straightforward and is therefore illustrated as a twirly arrow in
Fig. 6.1. Only the “build and deployment” phase of the refactored code base
are straightforward and illustrated as a straight arrow in the Deploy stage.

6.1.2 Source Lines Of Code Changes

An interesting observation about the described code conversion is that the
development complexity does not stem from the amount of lines changed, but
from the annotation syntax and the fact that annotations are scattered over
the codebase. In the following, I present three tables to illustrate the issue
in more detail, using the BookStore sample application, and a conversion to
REST with Spring Boot.

When measuring how many Source Lines Of Code (SLOC) must be mod-
ified by a developer to convert the BookStore to a RESTful service, the over-
all number is relatively low, and likewise, only a low fraction of the code
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has been touched. Yet, these modifications require significant expertise. In
pure SLOC numbers, most changed lines affect the Prepare stage in Fig. 6.1.
When a developer chooses a REST framework technology, boilerplate modi-
fications are required that are barely application-specific. Yet this task is not
straightforward and requires detailed framework knowledge (curved arrow in
red box, Fig. 6.1).

Annotation Amount
Parameter-Mapping 17
Resource CRUD Mapping 12
Boilerplate 4

Table 6.1: Annotations Added to BookStore

We can argue that the essence of the RESTification process is the correct
placement of Spring annotations, sprinkled all over the codebase. Once more,
the factual amount of annotations is low, as shown in Table 6.1. What renders
the process challenging is identifying the target lines and the correct use of the
annotation payload syntax. Concerning the last point, there is an additional
challenge: When specifying resource paths, the annotations list the absolute
path (unless the same root path is shared across all annotations, which then
can be summarized by the Rest-Controller itself).

Resource String replications
isbn (isbns subresource) 13
bookstore 12
isbns 8
stocklocation 6
comments 5
commentid 4
stocklocations 4
isbn (stocklocation subresource) 4

Table 6.2: Resources String Replications across Annotations

Replication is an issue, because on top of an implicit and scattered REST
interface design process, the described procedure is prone to errors, simply
due to the misspelling of frequently repeated fragment strings. Already on
the relatively small example of the BookStore, we observe how path elements
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closer to the root are replicated as Strings in annotation parameters of lower-
level resource mappings. Additionally, parameter mappings may refer to
resource path elements and therefore further increase String replication.

Table 6.2 shows the string replication counters for the manually con-
verted BookStore. Unfortunately, inconsistent spelling of path segments is a
real-world issue - annotation payloads are string-encoded and exempt from
consistency-verification at compile time. As a result, typographic mismatches
will not be detected unless the service is deployed and (hopefully) tested.

To summarize, even adding a REST interface to simple applications is sub-
ject to a tedious introduction of boilerplate code and requires sophisticated
knowledge of the applied technologies. The process involves implicit design
choices, scattered over the code base. We argue that existing GPLs cannot
accurately capture the essence of the above design choices, i.e., the selection
of a REST framework, the design of a tree-shaped resource layout and the
mapping of CRUD methods and parameters on existing functionality. In
the next section, we demonstrate how the above challenges can be addressed
with a concern built according to the FIDDLR approach.

6.2 Designing the RESTify Concern
The purpose of the RESTify concern is to maximally streamline the process
of adding a REST interface to expose application functionality. When ap-
plied, the concern must guide the user through the essential design choices,
hide implementation details and automate any repetitive development tasks.
Designing and implementing the RESTify concern itself, however, is not
straightforward. This is where the guidance of FIDDLR helps. In this sec-
tion, I provide a detailed overview of how the RESTify concern was inte-
grated with MDE and CORE technology, following the FIDDLR guidelines.
The illustrations below are scoped on the Spring framework, which is only
one technical possibility. I later point out variation points to the process,
when other technologies are used. The main concern integration steps are
likewise reflected in the structure of this section, that is: The definition of
concern Variants and Design Models (6.2.1), CSL Definition (6.2.2), and fi-
nally Model and Mapping Transformer definitions (6.2.3). Concerning the
FIDDLR framework definition, these translate to the respective steps 1, 2,
and 3 in Figure 4.1.
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6.2.1 RESTify Variants

In the first step, the concern designer has to decide on the REST technologies
the concern shall support (step 1 in Figure 4.1). Considering the implemen-
tation details seen in the previous section, the associated concern design
models change at two levels:

1. Build Configuration Template: Depending on the technology used,
different dependency statements must be included in the maven config-
uration. For instance, for the Spring framework, the pom.xml (which
is an xml and therefore a tree-structured model) must contain an addi-
tional dependency node referring to Spring as compile time dependency.
Listing 6.2 shows an excerpt of the design model equivalent, stating the
build system dependency toward Spring.

2. Annotation Syntax: Depending on the REST technology, different
RESTful Java code must be generated at the end of the day. For
instance, while all JAX-RS derivatives share a common annotation
syntax, Spring comes with its own notation. That means the Spring
concern variant requires other concern-internal model transformations
than its JAX-RS counterparts.

From the above, we can see that the concern variants will require different
model transformations to be implemented by the concern designer.

<dependency>
<groupId>org . springframework . boot</groupId>
<a r t i f a c t I d>spr ing−boot−s t a r t e r−web</ a r t i f a c t I d>
<version>2 . 3 . 0 .RELEASE</version>

</dependency>

Listing 6.2: Maven Dependency Statement for Spring Boot

Note that the reference implementation I implemented supports four dif-
ferent REST technologies. That is, all concern variants are fully operational.
This is illustrated in more detail in the later section on concern reuse.

6.2.2 CSL Definition

The second step for a concern designer is to provide a custom language, tai-
lored to the RESTification decision-making, that is, a language that allows
targeted expression of the REST interface semantic (step 2 in Figure 4.1).
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In the manual conversion illustration, I illustrated how the REST interface
structure is implicitly defined as a consequence of REST annotations placed
in the codebase. The purpose of the CSL definition is now to make the in-
terface design an explicit process. That is, the concern designer needs to
define a language that allows targeted description of the REST interface tree
structure, solely by using the novel CSL and connecting it to existing legacy
functionality. As a reminder, the reason why we are using a novel language
for this purpose is that existing GPLs are not made for modelling resource
trees. For our concern reference implementation, we therefore elaborated the
Resource Tree Language (ResTL), a CSL designed for the specification of
hierarchically arranged resources and basic CRUD operations. An illustra-
tion of how the ResTL language is used by the concern user follows in the
next Section, Figure 6.6. For now, we are only interested in the language
definition. Note that the structure of a REST API is entirely independent
of the concern variant selected. This is a supportive argument for the SoC
concern power of FIDDLR- the decision-making for API design is detached
from decision-making on orthogonal technical intricacies.

Figure 6.2 depicts the CSL meta-model for the ResTL language. Note
that the language is less expressive, and hence also smaller than existing
REST DSLs. This is because the language has been designed to streamline
RESTification. It essentially provides the language concepts to express the
tree paradigm not available in other GPLs, thus allowing the user to focus
maximally on the design of the resource tree. This can be also interpreted as:
the purpose of the ResTL is RESTification, that is ResTLmodels gain expres-
siveness when placed in context with existing, classic API structures, whereas
traditional REST DSLs are built for use in isolation. The main language con-
cept to point out is the hierarchical PathFragment concept, which allows the
user to model a tree structure. The inheritance hierarchy under PathFrag-
ment allows for the distinction of static path fragments (segments in classic
REST jargon) and dynamic fragments. An example of the latter would be the
{stocklocation} segment, earlier in this chapter, which is a path variable.
A second noteworthy concept in the meta-model is the parameter inheritance
hierarchy, which accurately reflects the main possibilities to pass parameters
in an HTTP request: Body payload, HeaderParameter, RequestParameter
and PathVariable (represented by a DynamicFragment). Finally, the meta-
model foresees the option to access resources via the four standard CRUD
access MethodTypes intended by the resource-oriented REST paradigm: Get,
Put Post and Delete.
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6.2.3 ResTL to Design Model Mappings

Since the purpose of the CSL is to wrap around existing API structures (we
are building a RESTify-for-legacy-software concern, not a REST-service-out-
of-thin-air concern), the concern designer next has to specify how the CSL
concepts align with the existing GPL API definitions of the application.
In the spirit of FIDDLR, this is done using Language Element Mappings
(LEMs). Note that the concern designer does not need to define a novel
language just for defining the mappings. With LEMs, CORE already pro-
vides a generic artifact for 1:1 model element mappings, which allows the
concern user to map CRUD operations to functional elements of the base
application, i.e., the methods our sample BookStore offers. An illustration
of how the mappings manifest in a graphical editor is depicted in the subse-
quent section on concern reuse, Figure 6.6. For now, we are only interested
in defining which concept mappings must be considered.

In principle, FIDDLR does not enforce LEM definitions to occur at a
specific level of abstraction. Regarding the framework, this decision was
made with the maximized reuse of existing MDE and CORE concepts in
mind. The concern designer can autonomously decide at which MDE-level of
abstraction a novel CSL is best integrated with existing GPL models and code
of the base application. For RESTify we decided to perform the integration
at the design level only, e.g., using class diagrams and sequence diagrams, and
rely on standard MDE code generation to produce the running application.

For RESTify , the LEMs allowed by the concern for mapping the novel
ResTL language on existing contextual GPL models are as follows:

1. ResTL Access Methods can be mapped to GPL Object method signa-
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tures. That is, Get, Put, Post, or Delete operations on a REST resource
can be associated with method signatures of classes.

2. ResTL Dynamic Fragments can be mapped on GPL Object method
signature parameters. That is, a path variable placeholder can be asso-
ciated with a primitive input parameter to an existing method signature
function. Note that non-string primitives are automatically converted
to the target primitive type, where possible.

Note that the concern foresees a mechanism for body payloads. If a
mapped GPL class method signature showcases exactly one unmapped sig-
nature parameter, then it is considered as mandatory Body Payload of the
associated REST operation. This notably means that mappings, and even
the absence of mappings, carry more implicit semantics than in traditional
CORE approaches, where mappings are simply model weaver instructions of
equivalent concepts. This is explicitly not the case with CSL concerns.

Note that the concern designer may optionally need to create a graphical
editor, that can express both the artifacts created by he newly defined lan-
guage (resource tree defined by ResTL) and the mappings. However, textual
model editors are common practice and not every new language may need
such visual tools.

6.2.4 Transformers

Following FIDDLR, the concern designer’s third and final activity is to pro-
vide one or several model transformations that transform the CSL model into
GPL design models, i.e., that convert the mapped ResTL models into class
diagrams and sequence diagrams. Throughout this chapter, I proceed with
illustrations for the Spring framework. In this case, apart from annotations
we also need to generate models to trigger the Spring launcher behaviour
during the startup of the application. Other REST technologies, as specified
through the Variation Interface, explicitly require slightly different transfor-
mations. I delve into this subject in more detail in Chapter 8.

Per variant, we are now interested in a language transformer, that con-
verts models defined in the ResTL CSL to GPL models (step 3 in Figure 4.1).
Such a transformer must likewise take the given mappings from CSL to GPL
models into account (step 4 in Figure 4.1). For every REST resource oper-
ation, mapped on a GPL method signature, the transformer creates a stub
GPL class with the same signature and the corresponding REST annotation.
Notably the annotation syntax changes, depending on the concern variant
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previously selected. In addition to that, the transformer generates a GPL
sequence diagram model for the method stub. This model also describes
a GPL method call, which serves as the connection point to the original,
unrestified codebase. A newly generated mapping from the generated GPL
model to the original GPL model serves as composition specification. This
composition specification, when given to the CORE weaver, composes the
GPLs of the base application with the generated GPL models containing the
REST-specific information.
Additionally, the already described conversions, the transformer must also
encode Spring annotations for mapped parameters, which can be either seg-
ment variables or body parameters, depending on the mapping context.

No further work is necessary. Notably, it is not required to implement
an adapted weaver or code generator. The outcome of the described trans-
formers is pure GPL models, which in turn means that the standard CORE
weaver is used to compose the design models, and a standard MDE code
generator can generate the executable. In our case, this tooling is provided
by the CORE reference implementation, TouchCORE [Lab21].

In summary, from the perspective of a concern designer, when following
FIDDLR, several things must be provided: Concern variants and associated
design models, a novel concern-specific language and the two model trans-
formations, generating the GPL models and the composition specification.
Reused technologies are the mappings and the weaver provided by CORE,
the code generator provided by MDE, and the Spring framework (and po-
tentially other REST technologies) itself.
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Figure 6.3: FIDDLR Applied to the RESTify Concern
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In the case of RESTify , we can illustrate the described concern designer
activities by highlighting the aforementioned activities in the overall FIDD-
LR design process diagram. This is visualized in Figure 6.3.

In summary, the concern designer activities are:

1. Provision of Variants and variant-specific Design Models: spring launcher
design models

2. Definition of a custom concern-specific language, including LEMs: resource-
tree language

3. Definition of CSL to GPL transformers: automated class and sequence
diagram generation

4. Definition of LEM to composition specification transformers: GPL
model weaver instructions generation

Table 6.3 maps these concern designer activities directly on the original
framework steps, as illustrated in Figure 4.1.

FIDDLR Step RESTify Concern Designer Element
Step 1: Realization Models Spring Launcher Class, Maven Code
Step 2: CSL Definition Provide ResTL Meta Model
Step 3: Model Transformers ResTL to Java Annotations
Step 4: Mapping Transformers ResTL Mappings to Weaver Instruction

Table 6.3: Mapping RESTify Design Actions on FIDDLR

6.3 Applying the RESTify Concern
So far we have seen what technical intricacies occur for a developer in a
manual conversion to REST and how a concern designer can develop a CSL-
enabled concern to address these challenges by following the FIDDLR frame-
work. The purpose of this section now is to illustrate how adding a REST
interface to an existing application is experienced from the perspective of a
concern user, that is a developer who seeks to RESTify legacy code, by using
the concern instead of pursuing a manual conversion.
In essence, the reuse process reflects the key stages of classic CORE reuse,
that is, guided decision-making in the three dimensions of reuse [KMA+16]. I
will now illustrate this process in more detail, on the example of the initially
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presented BookStore. Throughout concern reuse, every stage is facilitated by
a dedicated graphical model editor, to allow explicit, but assisted decision-
making for all essential design question. Where applicable, I also highlight
the differences between the model-oriented process compared to the classic,
manual approach.

6.3.1 Variant Selection

Equivalent to manual conversion to REST, the process starts with selecting
the desired REST technology. Where in the classic conversion a developer
needs expert knowledge on viable alternatives and the technical proficiency
to realize their integration, RESTify offers this choice through a CORE-
based variation interface (VI) that captures the technologies considered by
the concern designer as shown in Fig. 6.4. Note that the graphical interface
for variant selection is a standard TouchCORE component and does not
need to be redeveloped by the concern designer. In full compliance with
the previous section, the available options are arranged hierarchically. This
makes sense because various technologies internally make use of the same
JAX-RS annotation syntax.

RESTify

Spring Boot JAX-RS

Apache CXFEclipse Jersey JBoss 
RESTEasy

Figure 6.4: Variation Interface of the RESTify Concern

Variation Interfaces (VI) can also contain information on the impact of
user-made choices on resulting software qualities of the outcome, such as per-
formance, security, etc. This information stems from an optional goal model
provided by the concern developer. In the context of REST technologies,
this could for instance provide general insights of decision impacts on service
security or projected throughput.
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6.3.2 CSL Modelling

Once the desired technology is selected, the user is brought to the ResTL
model editor. The concern user then models a possible resource layout as
shown below in Figure 6.5, assisted by the editor that enforces a coherent
layout. Thanks to the ResTL CSL provided by the concern designer, the
concern user is maximally focused on this REST-specific design task. In
the case of RESTify , the spotlight is on the definition and organization of
resources in the form of a tree and exposing CRUD operations. Detailed
REST interface information, e.g., input and return parameters, or meta-
information, such as preferred HTTP payload encoding, is purposely omitted
at this stage.

Figure 6.5: BookStore Resource Layout Designed with the ResTL Editor.
Circled Letters Below a Resource Represent Enabled CRUD (Get, Put,
Post, Delete) Operations

This illustrates one of the key differences between a standard DSL and a
CSL. While a REST-DSL would have to specify detailed parameter informa-
tion, the ResTL language does not. It integrates perfectly into the concern
reuse workflow and in its function as a wrapper language only provides con-
cepts complementary to the GPL given application context.
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6.3.3 Mapping to Application Context

The last step consists of connecting the newly created CSL model with the
existing BookStore application logic, that is, the concern user must now es-
tablish mappings that turn the defined resource structure with CRUD oper-
ations into a wrapper for the existing BookStore application interface. Note,
that it is not necessary for the concern user to manually redefine models for
the BookStore application. CORE comes with a built-in automatic signature
extraction from existing artifacts, e.g. JAR files. From the perspective of a
concern user, the starting point is a split view with the CSL resource model
to the left and the existing BookStore method interface to the right. The sole
task is to create point-to-point mappings (or in easier terms: lines) between
these two models.

Figure 6.6: TouchCORE Screenshot Showing Split View in Action. Mappings
can be Highlighted Selectively to Improve Visibility

Larger interfaces can easily result in many overlapping lines, which makes
it difficult to follow individual mappings. This is why the reference imple-
mentation provides a simple mechanism to maintain a good overview. Only
mappings for concepts visible in the current zoom level are displayed. By
zooming in or out, mappings can be conveniently created and inspected more
selectively.
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Once the mappings are defined, operational code can be generated with
the press of a button. The concern provided transformers automatically con-
vert from the CSL model and mapping information to standard GPL models
and weaver instructions, that are readily consumed by the existing CORE
MDE pipeline. The outcome is maven / Java code, that can be compiled
and deployed with minimal effort, and effectively exposes functionality as a
RESTful service.

Note that in coherence to the LEM definition provided by the concern
designer, RESTify considers two types of mappings: links between individual
CRUD operations and existing BookStore methods, and mappings between
signature parameters and intermediate dynamic resources. These mappings
originate from dynamic path segments (denoted as a placeholder enclosed by
curly brackets) and are indicated in blue in Figure 6.6.

Finally, a reminder that not all target signature parameters need to be
mapped. The remaining unmapped parameters are assumed to represent
body payloads. Note that in REST there are also query parameters, which
are parameters passed as an appendix to the URL, separated by a question
mark. Currently, this parameter type is not supported by RESTify .

Compared to the original, manual code conversion, we can retain that
the described concern reuse process provides a substantial streamlining of
decision-making. This is summarized in Figure 6.7, indicating how the con-
cern reuse activities improve on the original conversion challenges.
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Figure 6.7: Application of the RESTify Concern. Preliminary Tasks are
Reduced to a Minimum. Decision-Making is Explicit

It is no longer up to the developer to identify technological alternatives
(and subsequently figure out the sometimes time-consuming integration at
the code level). All supported technologies are specified as features in the
variation interface, and can be conveniently selected by the concern user. Af-
terwards, the developer no longer has to sprinkle complex annotation all over
the code base in a time-intensive and error-prone process but benefits from a
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tailored modelling syntax to express the exact nature of a meaningful REST
wrapper in the form of a mapped tree. Finally, since not only source code
but also build configuration specifications are generated, service deployment
remains a straightforward activity.

A final, unmatched advantage of the RESTify concern is the built-in pos-
sibility for belated decision-making. In the manual approach, it is not easily
possible1 to revert a decision on the REST technology, once a legacy project
has been diligently converted. In the worst case, a belated technology switch
not only affects boilerplate code changes and build configuration modifica-
tions but also affects the REST annotation syntax itself. If e.g. the task is to
switch from Spring to a JAX-RS derivative, every REST annotation needs
to be rewritten. Listing 6.3 shows the JAX-RS semantical equivalent of the
previously presented Spring annotations in Listing 6.1 (Spring-Boot syntax).
The technology change would require manual rewriting of all code shown in
orange.

@Path(“stocklocations”)
public class GlobalStockImpl {

[ . . . ]
@GET
@Path(“{stocklocation}”)
@Produces(“application/json”)
public Response ge tEnt i r eS to reStock (

↪→ @PathParam(“stocklocation”) S t r ing c i t y ) {
return Response

. s t a tu s ( Response . Status .OK)

. en t i t y ( s tocksPerCity . get ( c i t y ) . ge tEnt i r eStock ( ) )

. bu i ld ( ) ; } }
Listing 6.3: JAX-RS Annotated BookStore Method. Accessible by HTTP
GET Request, e.g. “/bookstore/stocklocations/montreal”

Using the concern, however, a technology switch can be achieved within
seconds. The concern user simply loads the already finished concern models
and reverts the choice made in the initial VI. Since the CSL and mappings are
independent of the selected variant, new code can be generated and deployed
without any further actions needed.

1Most developers would actually consider such a request an utter nightmare.
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6.4 Qualitative and Quantitative Comparison
In this section, I briefly contrast the two approaches concerning several high-
level software engineering goals. In more detail, I do so regarding Separation
of Concerns, redundancy, and prospective potential for service evolution.
Finally, I provide a brief action metric to quantify the efforts associated with
either approach.

Regarding separation of activities, RESTify efficiently offsets the convo-
luted choices embodied in the manual approach: Adding a REST interface
to an application is done in three separate steps – selecting a technology,
designing the resource layout, and establishing the mappings to the appli-
cation. Each step is as simple as possible, performed at the right level of
abstraction supported by the right modelling notations. No expert REST
knowledge is required by the concern user. The manual approach however
mingles decision-making with a need for advanced technical details, e.g.,
framework-specific boilerplate code, annotation syntax or intricate configu-
ration file modifications.
The main difference is that in the manual approach, the developer spends a
significant fraction of their overall efforts on preliminary or boilerplate tasks
and implicit decision-making (implicit design of an API layout utilizing scat-
tered annotations). With RESTify the process is guided and straightforward
with explicit decision-making and minimal overhead. Fig. 6.7 illustrates how
the gains manifest in the three main restification stages.
Furthermore, from a modelling SoC perspective, it can be considered bene-
ficial to have some aspects of a REST interface, i.e. the resource structure,
visible at a glance in a dedicated tree model.

Redundant or duplicated configurations are a common engineering pitfall.
In the case of manual refactoring to REST, the most prominent form of
redundancy occurs in the resource path specifications. As previously dis-
cussed, and illustrated in Table 6.2, notably resources closer to the resource
tree’s root have a high likeliness for string replication, and hence also in-
coherent spelling. Where the manual BookStore conversion showcased this
severe replication of resource strings (scattered over annotations in multiple
files), the RESTify models define every resource name exactly once, hence
eliminating this error source in the first place.

If there is one thing guaranteed in SE, it is software evolution [FRBS04].
For instance, the API of a restified service may expand or restructure, or
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Element Occurrences in BookStore Actions
Technology select 1 1
Resources 8 24
CRUD Operations 12 12
CRUD Mappings 12 12
Parameter Mappings 13 13

Table 6.4: Atomic Actions to Convert BookStore with RESTify

changed design requirements can require a restructuring of the modelled
REST API. In a purely code-based approach, this can be tricky, for the
overall interface is not visible at a glance. RESTify however facilitates in-
terface evolution, which is an effect of changes occurring at a meaningful
level of abstraction. For example, restructuring the REST interface’s URL
tree is as simple as rearranging the resource tree layout in the ResTL edi-
tor. But even more complex evolution scenarios are considerably simplified.
As previously mentioned, the RESTify concern supports belated technology
switching, e.g. switching from the Spring Boot-based implementation to a
JAX-RS-based implementation. Using RESTify , this is as simple as select-
ing a different feature from the variation interface of the RESTify concern.
A manual migration from one technology to the other would constitute a
considerable effort because here the annotation syntax differs between REST
frameworks. In summary RESTify greatly improves the overall potential for
service evolution, compared to the manual approach.

By nature, it is hard to define a quantitative metric for comparing a mod-
elling approach to a code-based approach. We applied an action-based metric
to estimate the efforts required for a concern-based conversion of the Book-
Store. That means, we defined atomic actions for all individual modelling
activities and counted the number of such actions needed to add a REST
interface to the BookStore.
The atomic modelling actions that need to be performed in RESTify are as
follows: The desired technology has to be selected in the VI with a single
click. Creation of the tree model in the provided reference editor requires
three interactions for each modelled resource: one create instruction, one
interaction to specify the resource type, and a third interaction to enter
its name. Finally Exposure of an available CRUD operation for subsequent
mapping is achieved with a single click.
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In addition to the previous activities, every resource or parameter map-
ping requires an additional action. For the BookStore we end up with a total
of 62 modelling actions, as shown in Table 6.4. This represents a greatly
reduced effort when compared with the over 100 lines of source code that
have to be written, modified or removed in the manual approach. We believe
the comparison and conclusion drawn is fair, if not underselling the concern’s
potential. The numbers show that when comparing both approaches, there
are more textual code changes required than graphical interactions. Further-
more, every textual modification can be considered more complex than any
atomic action (which is just a mouse click). This first quantification there-
fore suggests a simplification of the RESTification process by the RESTify
concern.

6.5 Lab Validation
On paper, the RESTify concern definition served as a first proof of concept
for the FIDDLR framework. It validated the feasibility of defining a concern
with integrated CSL that efficiently connects with existing CORE and MDE
tools, hence maximizing tool reuse. Considering the FIDDLR concern design
activities, the transformer definitions constituted by far the greatest effort,
followed by finding a meaningful level of expressiveness for the RESTify lan-
guage.

Furthermore, I implemented an operational reference implementation of
the RESTify concern that supports all major four Java REST technologies.
This more technical step served as validation that the language definition
and transformations are purposeful and implementable.

On a side note, the RESTify language also proved useful as a simplified,
graphical way of explaining and communicating REST interface overviews in
a classroom setting. Although the language does not suffice on its own as
a wholesome REST interface definition language, the students embraced the
language as a helpful support when manually adding REST interfaces to stu-
dent projects. Most developers perceive modelling languages and modeling-
related activities mainly as sketching, or exploratory activities, not code
equivalent development [DEPC21].
Furthermore, the concern reference implementation was tested with several
sample applications and allowed flawless generation of read-to-deploy back-
end code. In lab internal experiments concern-based software conversion was
significantly faster than comparative manual activities. This is to a huge part
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due to the seamless integration with the TouchCORE workbench, which gave
access to a sophisticated model weaver and code generator. The integration
worked as expected.

However, running a lab-internal case study is naturally biased. As a
developer of the reference implementation, I am not a representative test
subject for an objective evaluation. Therefore, to gain insight into the ques-
tion of whether a concern implementation based on FIDDLR can accelerate
the development of REST interfaces for applications, I designed and con-
ducted an extensive empirical experiment with 28 participants. The details
and outcome of this experiment are presented in Part III of this thesis.
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7
AUTHify

In chapter 5, I’ve presented the main control flow of the OAuth2 access del-
egation protocol and listed references to existing tools and the protocol’s
industrial relevance. Like most security aspects, ensuring correct compliance
with the protocol at the application context level is an engineering activity
that requires diligent precision. Even little implementation flaws may repre-
sent a threat to system integrity and security. In the case of OAuth2, software
engineers consider even now in 2023, years after the protocol’s emergence,
that correct integration and configuration of the OAuth2 protocol is a lasting
challenge [Gul23]. This impression is consistent with continuous reports of
incorrect protocol applications, even in well-established online services like
Grammarly. In the latter case, a seemingly small configuration inconsistency
affected thousands of users and exposed their private data [Car23]. On the
bright side, this renders the OAuth2 protocol an interesting study object for
concernification and CSL toolchain support. If accurately expressed through
a CSL, security expert knowledge could be readily shaped around existing,
unsecured REST APIs, and effectively mitigate the present implementation
challenges. Guided mapping of security paradigms from a custom delegation
language on existing API models could be an elegant way to sidestep protocol
configuration pitfalls.
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In this chapter, I discuss AUTHify , a novel CSL concern, tailored for
applying the OAuth2 protocol to REST APIs, and enabling fine-grained
authorization of third-party services without a need for password sharing.
An important detail about the AUTHify concern is, that it builds on top
of RESTify . While in general, access delegation is relevant for all RESTful
services, regardless of how they were created, I was particularly interested in
how CSL-concerns perform when stacked. Therefore, I decided to investigate
the AUTHify concern as an extension to the RESTify concern. That means,
AUTHify only allows the securing of services that have been previously built
with RESTify . Other services, e.g., REST services that were manually built
are not considered by the AUTHify concern. We do, however, provide a short
discussion of means to mitigate this limitation in the future work section of
Chapter 14.

Also, note that the concern is strictly limited to the access delegation
aspect. Potential extension to other security concepts is discussed in Chap-
ter 14.3. I now will first recapitulate error sources on the example of a man-
ual OAuth2 integration approach, then demonstrate the conceptual design of
AUTHify with FIDDLR, and finally demonstrate how concern usage is per-
ceived from a reuse perspective and how this eases the protocol integration
activity, compared to the manual approach. Note that while the OAuth2 pro-
tocol defines several roles, this concern only deals with the Resource Server,
that is, the server providing the REST API to be protected.

Throughout the remainder of this chapter, I will illustrate technical details
on the example of a modified version of the BookStore [Sch21]. In this
version, we assume a part of the REST interface under the ownership of
respective bookstore managers, who in turn wish to grant access to various
external services (Clients) acting on their behalf. I will first present the
modified BookStore API, then illustrate the definition of sample Scopes for
three exemplary OAuth2 Clients. For completeness, I also provide functional
reference implementations for several Clients [Sch23d]. The referenced code
is based on an OAuth2 sample setup by Baeldung [Bae21], which has been
adapted to the BookStore context, to maintain continuity throughout this
thesis.
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7.1 Manual Service Securing Challenges
I start by presenting a slightly modified version of the BookStore API. Fig-
ure 7.1 illustrates the changes made, compared to the ResTLmodel presented
in the previous Chapter 6.

Figure 7.1: Illustration of the Modified BookStore’s REST API

For now, we are only interested in the structural API changes, not yet
the access restrictions or scopes (fat circles and turquoise fills). Note that
only the right half of the resource tree has been modified, everything left of
the root resource is unchanged.

The main change is that locations now do not exclusively describe stock
information, but represent details of a specific location. The following break-
down describes the presented resource operations details, relative to the
/bookstore/locations/ sub-resource:

• /{location}: represents the store location. We consider this resource
and everything below conceptually owned by a store manager. A public
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Get operation enables the lookup of opening hours and address infor-
mation. Put allows the caller to update the information.

• /{location}/events: represents public events taking place at a given
bookstore location. Get returns a public list of events.

• /{location}/events/{event}: makes it possible to invoke CRUD op-
erations on individual events. Customers can look up event details
with a Get operation, and a store manager can create, update or delete
individual event descriptions with respective Post, Put or Delete op-
erations.

• /{location}/stock/: represents all books in stock. A Get does how-
ever only provide a list of all books currently available, not the actual
number of copies.

• /{location}/stock/{isbn}: represents the number of book copies
available in store. A book manager can look up the exact number with
a Get operation, or change the number using a Put operation.

We can easily imagine how several of the above resource operations should
be restricted. For instance, modifying details of local events, like book read-
ings, should only be done by the bookstore manager. All operations that we
consider protection-worthy are indicated by bold circles in Figure 7.1. How-
ever, the interest of this chapter is not classic access securing, but OAuth2
authorization scenarios. That is to say, we are interested in scenarios where
external online services access the API, authorized on behalf of a given man-
ager. Before I delve into the details of API securing, I will first present three
representative external services, or OAuth2 Clients, to access the presented
API on behalf of a manager:

1. Event Checker Service: The interest of this service is to verify the
currently advertised upcoming event descriptions and ensure their tex-
tual description is free of typos. Not a very complicated service, but we
can imagine how a bookstore manager has an interest in authorizing
such a service to act on their behalf.

2. Low Stock Alert Service: From the perspective of a bookstore man-
ager, nothing is more frustrating than a client who would like to spend
some money, but the book they are looking for is out of stock. Luckily
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there’s a third-party service that can be configured to send an alert
email when the number of remaining copies for the bestseller books are
below a critical threshold.

3. Auto Stock Replenish: Finally, the bookstore manager regularly
orders new copies for the books that ran out of stock. Of course, when
some days later a truck arrives, the manager could manually check
which book copies were delivered, and update the stock information
accordingly. But the delivery service can also take care of that directly,
on behalf of the manager, since they know the delivery details.

Whatever the service, the bookstore manager could of course simply pass
their credentials to each contractor and hope they only use it for the requested
purpose. The more common approach for modern service architectures is
access delegation with the OAuth2 protocol. In that case, the manager can
conveniently authorize each service to act on their behalf, without password
sharing - and notably restrict service access to only the functionality needed
for the use case in question, using access scopes.

Note that the definition of scopes falls under the RS developer’s responsi-
bilities. That is to say, whoever decides on scopes may anticipate, but is not
familiar with the exact services requiring API access. For illustration pur-
poses, I here assume that the designer happened to foresee the same services
as listed above.
The following enumeration lists for each OAuth2 Client, which resource op-
erations are minimally needed:

1. Event Checker Service:
Modification access (Put) on /{location}/events/{event}

2. Low Stock Alert Service:
Read access (Get) on /{location}/stock/{isbn}

3. Auto Stock Replenish Service:
Read and write access (Get and Put) on /{location}/stock/{isbn}

With these services in mind, an RS developer could define one scope for
read and write access to events, one scope for read access to stock informa-
tion, and one scope for write access to stock information. Note that in this
example, the Auto Stock Replenish Client requires a combination of two
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scopes to function. According to the OAuth2 protocol definition, overlap-
ping scopes are a technical possibility, but for the design of this concern they
were intentionally restricted. This is discussed in more depth in Section 7.4.1.

Code Complexity

With the OAuth2 Client, RS and scopes defined, I now provide technical
illustrations of the code modifications needed to support the aforementioned
access delegation scenarios.

Regarding the RS, securing a REST endpoint for access delegation comes
down to two separate security checks. Both are performed each time an
OAuth2 Client (third-party service) accesses a secured API endpoint on be-
half of a RO:

1. Matching of the Resource Owner: The authorizing entity must
match the resource owner. That is when a protected operation of a
specific store location is accessed, the access delegation authorizer must
be the owner of that store.

2. Verification of granted Scopes: The OAuth2 Client must addi-
tionally hold the required scopes, that is, they must be authorized to
access the requested resources. Holding scopes is required, because au-
thorizing a Client to perform delegated access on some operations, is
not equivalent to granting them access on all operations. Scopes grant
access to a reduced subset of all access restricted operations.

Using Spring Security, these two checks are implemented with two sepa-
rate protection mechanisms: @PreAuthorize annotations for ownership ver-
ification, and FilterChains for scope verification.

Both mechanisms set conditions that restrict access, and both must be
evaluated positively, for a third-party Client to gain access. I will now illus-
trate the security checks on the example of the read operation, namely lookup
of the exact number of copies in stock for a given book. Listing 7.1 shows
how a regular Spring Boot Get operation on /{location}/stock/{isbn} is
secured with @PreAuthorize:
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@PreAuthorize(”T(GlobalStockImpl)
.getInstance().getStoreManager(#location)
.equals(authentication.name)”)

@GetMapping(”/bookstore/locations/{location}/stock/{isbn}”)
public void getStock (@PathVariable(”location”) S t r ing location ,

↪→ @PathVariable(”isbn”) Long isbn , @RequestBody In t eg e r
↪→ amount ) {

return GlobalStockImpl . g e t In s tance ( ) . getStock ( l o ca t i on ,
↪→ i sbn ) ;

}
Listing 7.1: Spring Security Annotation to Verify Delegated Access Occurrs
on Behalf of the Legit Owner

The red parts in Listing 7.1 are interpreted as follows: Before invoking
the REST operation, Spring Security inspects the Json Web Token (JWT)
sent along with the HTTP request. This token was issued to the Client by
the AS, at the moment the RO granted delegated access. The token is a
JSON file, which contains an authentication field, the value of which is the
UserId of the RO who authorized the Client to access the REST operation
on their behalf. Depending on how the user management is implemented,
this can be a unique name, a number, an email address, or any other unique
identifier.
The interest of the @PreAuthorize annotation payload is now to ensure that
the RO who granted access owns the requested resource. The annotation’s
payload is an expression, which resolves to a boolean value. Access is granted
or rejected, based on the evaluation of the expression. Here the expression
‘‘T(GlobalStockImpl).getInstance().getStoreManagerName(#location)

.equals(authentication.name)" accesses the BookStore’s internal database,
to verify if the provided username is the valid owner of the requested lo-
cation. The value of #location is given by the request’s corresponding
PathVariable.

As previously mentioned, allowing a third party to act on behalf of the
owner by granting access to some operations is not equivalent to unlimited
impersonation. Scopes make it possible to restrict authorized third-party
clients to specific subsets of operations. A client without any granted scope
cannot interact with the RS REST API, even if correctly authorized by the
RO. In the most extreme case, this can be exemplified with a token that does
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not list any scopes. It was obtained by legitimately following the protocol
flow, but does not grant access to any protected resource.
Next to the @PreAuthorize annotation, Spring Security therefore provides
a concept called FilterChains, which allows additional testing for Scopes.
FilterChains function very much like Unix firewall rules, e.g. iptables [Pur04].
They define a list of matcher rules for endpoints, in this case, operations on
REST resources. The list is processed from top to bottom, and the first
matching rule is applied (the remainder of the list is not processed). If
none of the specified rules applies, a default policy is applied. Note that
FilterChains can be held in whitelist or blacklist mode, that is the default
policy can be accept, or reject. In general, blacklists are considered good
practice, for newly added or changed endpoints then are by default protected.
Since we are here only dealing with an authorization concern, which would
be most likely combined with an additional restrictive mechanism for direct
user access, the subsequent code illustrations reflect a whitelist (otherwise
public endpoints would be no longer reachable at all).

In contrast to @PreAuthorize annotations, FilterChains are configured
outside of the REST Controller classes, that is, in a separate file, as a Spring
configuration bean. Listing 7.2 illustrates the securing of a REST operation
for a given OAuth2 scope, this corresponds to a single rule, securing a single
operation.

@Bean
Secu r i t yF i l t e rCha in [ . . . ] {

http [ . . . ] . author izeHttpRequests ( ( au tho r i z e ) −>
↪→ author i z e . requestMatchers (

HttpMethod.GET ,
”/bookstore/locations/{location}/stock/{isbn}”)
.hasAuthority(”SCOPE stock.read”)
.permitAll())

[ . . . ]
// Wh i t e l i s t d e f a u l t ru le , f o r a l l remaining
// unpro tec ted REST opera t i ons .

. author izeHttpRequests ( ( au tho r i z e ) −> author i z e .
↪→ anyRequest ( ) . permitAl l ( ) )

}
Listing 7.2: Spring Configuration to Enable Scope Verification via
FilterChain
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The parts in red in Listing 7.2 illustrate the matching of a resource
(/bookstore/locations/{location}/stock/{isbn}) operation (Get) on a
given required scope (stock.read).
The default blacklist policy is shown at the end, for completeness. Note that
usually, the file would contain not only a single but a series of operation-
specific scope requirements.

7.1.1 Variation Point Illustration

Next to the previously discussed definition of access restrictions (ownership
and scopes), securing an existing REST service for OAuth2 also requires
some initial boilerplate changes and configuration changes:

• For one, the application’s build configuration (in the case of the sam-
ple application a maven pom.xml file) must be modified to declare de-
pendencies to the OAuth2 technology used (Spring Security), so the
aforementioned security annotations and FilterChain configurations are
correctly interpreted.

• Secondly, the link to the Authorization Server (AS) must be configured.
In essence, this simply corresponds to choosing between an existing,
proprietary AS, e.g. provided by Google, GitHub, Meta, etc., or a
reference to a self-configured and self-hosted AS. Spring does provide
an off-the-shelf AS, a configuration of which is illustrated in the sample
implementation repository.1

Similar to the variation point illustration in Chapter 6, we can capture the
main decisions to be made throughout the conversion process of an existing,
unsecured REST service as a three-stage process, as illustrated in Figure 7.2.

In summary, the process comes down to:

1. Orange: Build system boilerplate changes and initial AS configuration.

2. Red: Definition of Scopes and their operation coverage. Specification
of ownership verification.

3. Blue: Service build and deployment.

The goal is now to build a CSL concern to streamline this process.

1Different ASs imply different token formats, which affect protocol security parameters.
Tokens can e.g. be opaque, that is they require an extra introspection step on every RS
API call. However, this is not the main interest of this concern, because Spring is by itself
able to handle most common token formats.
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Figure 7.2: Manual Steps Required for Adding an OAuth2 Restricted Client
Support to Existing REST Service Code

7.2 Designing the AUTHify Concern
In this section, I lay out how FIDDLR’s 3-staged plan of action is applied to
the creation of the AUTHify concern. That is, I show the CSL meta-model,
I define which mappings to existing model artifacts are allowed, and I define
the model and mapping transformations needed to connect to the existing
CORE and MDE pipeline.

Note that in contrast to the RESTify concern, the described steps for
AUTHify have not been implemented, that is, AUTHify has not been inte-
grated into the reference workbench TouchCORE due to time constraints.
However, the bookstore sample code, which serves as sample concern output
is fully implemented, functional, and validates the described pipeline stages.

7.2.1 AUTHify Variants

Similarly to RESTify , the first concern activity consists of creating a vari-
ation interface to capture the various AS options (step 1 in Figure 4.1).
Implicitly, this means the concern creator also has to define the associated
design models. As previously mentioned, depending on which configuration
is selected, a corresponding RS configuration file (in yaml format) changes.
This file notably contains information on how to connect to the AS.

7.2.2 CSL Definition

The main activity throughout concern creation is the provision of a new lan-
guage definition, that is, the definition of the concern-contained CSL (step 2
in Figure 4.1). Once more this takes place using a meta-model. The interest
of the language we propose, AuthL, is to provide a concise set of concepts
needed to embody the characteristics of service securing with OAuth2. Note
that the focus here lies on adding OAuth2 security concepts around an ex-
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isting, unsecured service, not a full definition of a fully secured service from
scratch. I will now briefly go over the language essentials, as depicted in the
meta-model shown in Figure 7.3

Figure 7.3: CSL Meta-Model for AuthL, of the AUTHify Concern

Since the meta-model’s purpose is reduced to additional security con-
cepts, it is relatively small. Still, it includes all additional concepts required
for enabling OAuth2-based access delegation to an existing service. That is
notably a notion for Resources, under the governance of an Owner, and of
course Delegatable Operations on resources, which can be selectively covered
by Scopes.
Note that the meta-model does not showcase scope overlap for a single op-
eration, which is a design choice to enforce Resource Owner privacy. This is
discussed in more detail in Chapter 8.

7.2.3 Mappings

Besides design models for all concern variants and the CSL language defini-
tion, a concern designer must also define how CSL concepts integrate with
existing application contexts. This link is established by defining which con-
cepts of the source and target language can be associated by Language Ele-
ment Mappings (LEMs) [AMK22].
Compared to the previously presented RESTify concern, we now have to
deal with two conceptual novelties. I will briefly point out each of them in
more detail, and argue why the novelties are still in line with the FIDDLR
framework.
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1. The first LEM type to inspect in more detail are mappings from scopes
to REST resource operations. As mentioned at the beginning of this
chapter, we assume the service to secure has been previously restified,
using the RESTify concern, and hence the unsecured interface to in-
tegrate with is a REST interface, partially expressed in the ResTL
language. This means that our LEMs are now no longer from a CSL to
a GPL, but from a CSL to another CSL. Namely, we are dealing with
mappings from the AUTHify language’s concepts to REST operations.
For the mapping definitions, this is not an issue, as LEMs allow a link-
age of any two target languages. But this consideration will come into
play when it comes to model transformations, which I discuss in more
detail in Chapter 8.

2. The second LEM type is for binding the notion of ownership to con-
cepts of the application domain. In essence, this means we create a link
between the CSL provided Owner concept and some entity in the appli-
cation’s domain model - typically expressed as GPL class diagram. The
novelty here is that, along with the mappings to the ResTL language,
we now deal with a concern that showcases polyglot mappings, that is
coexisting mappings to models expressed in different target modelling
languages: ResTL and class diagrams.

An additional consideration on LEMs in this concern mapping context is
that they do not only define what can be mapped. The absence of LEMS can
also serve as mapping information. The latter is just as important, as pre-
venting concept mappings that cannot be meaningfully combined is a strong
guiding factor for subsequent concern reuse. The LEMs discussed above for
instance do not allow associating the CSL’s resource identifier with a REST
operation - simply because there is no meaningful semantic interpretation in
establishing such a mapping.

7.2.4 Transformers

With the variants’ design models, the CSL and the LEMs defined, the miss-
ing piece is model transformations. Those are needed to translate mapped
models created in the previously defined AuthL language to standard GPL
models, alongside composition specifications, so the existing standard CORE
pipeline can take care of weaving (models of the same kind) and subsequent
code generation. This is perfectly doable, following the FIDDLR plan of
action, for the framework foresees two kinds of transformations:
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CSL to GPL language transformations: Translation of AuthL con-
cepts to GPL models (step 3 in Figure 4.1). For every secured REST opera-
tion, the transformer creates a stub class with the same method signature as
the operation to secure and a @PreAuthorize annotation. The annotation
payload is a generated SpEL expression, resulting from the mapping between
the identifier resource, owner, and the intermediate path through the appli-
cation’s domain model (a visual illustration is provided in the next section on
concern reuse). Note that this step requires deep mapping inspection. That
is to say not only information from the target ResTL model is needed, but
also information from the application context the ResTL model itself inter-
nally maps to (this has been described in the previous Chapter 6. Namely,
the information needed is the exact GPL method signature to create, and
the method parameter serving as the ownership identifier in the generated
SpEL expression. The matching of the SpEL identifier on the operation pa-
rameter is illustrated by the red characters in Listing 7.1, where location

is an identifier extracted from deep mapping inspection. The same holds
for the getStock method signature, which is not contained in the ResTL
model, but the GPL model the underlying RESTify concern itself maps to.
Figure 7.4 illustrates the generated models and mappings, and how they are
subsequently consumed by a standard GPL weaver.
Furthermore, the transformer must translate the scope coverage definition
into a GPL model. This simply means the generation of a complete security
configuration Spring bean, with the entire FilterChain. Every FilterChain
entry reflects one secured operation, restricted to the required scopes.

Mapping transformations: The interest of the produced mappings is
to consume the original CSL-CSL mapping information and produce GPL-
GPL mapping information consumable by the CORE model weaver (step 4
in Figure 4.1). An important insight is that the sets of input and output
mappings are not necessarily of the same size. This is for two reasons:

1. Some of the mappings are e.g. already consumed throughout the Res-
TL CSL to GPL conversion, described in the previous section. This
is notably the case for the generated SpEL expression, which requires
deep mapping inspection.2

2Note that CORE-provided GPL meta-models do not foresee semantics for annotation
payloads. This is why the SpEL expressiveness, and notably the ownership notifier cannot
be captured with a dedicated concept for ulterior mapping and weaving. In CORE’s
meta-model, all annotation payloads are static strings, which implicitly means they must
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2. Some of the mapped CSL model concepts do not require mapping,
once converted to GPL. This is for instance the case with GPL models
for FilterChains. Models of FilterChain configurations do not require
model weaving, as their existence in the generated class code is detected
by Spring’s annotation scan and interpreted.

In summary, the only output mappings required for AUTHify are operation
mappings. Namely, these are method mappings, from all the previously cre-
ated method signatures of stub classes to the corresponding REST annotated
methods (so the weaver can combine the annotations), and mappings from
the SpEL fragments representing method parameters to the corresponding
method parameters in the target REST method.

GPL Model Created by AUTHify CSL Transformer GPL Model Created by RESTify CSL Transformer

CORE Weaved GPL Model

@PreAuthorize(…SpEL String…) @GetMapping(“…/{location}/…/{isbn}”)

public List<Long> int getLocalCopies(…)
{
…
}

public List<Long> int getLocalCopies(…)
{
    GlobalStock gs = GlobalStock.getInstance();
    return gs.getLocalCopies(location, isbn)
}

public List<Long> int getLocalCopies(…)
{
    GlobalStock gs = GlobalStock.getInstance();
    return gs.getLocalCopies(location, isbn)
}

GPL Concept Mapping
C

O
RE

 W
ea

ve
r

@PreAuthorize(…SpEL String…)
@GetMapping(“…/{location}/…/{isbn}”)

Figure 7.4: Illustration of CSL Transformer Generated GPL Models and
Mappings

Figure 7.4 illustrates the code and mapping information generated for
@PreAuthorize annotations, and how it is consumed by the weaver, to gen-
erate the GPL model of a fully secured REST operation. These operations
occur entirely on the GPL models. The code listed in Figure 7.4 is semanti-
cally equivalent.

As a final note, the above transformer description also demonstrates why
AUTHify ’s mapping on a CSL language is not relevant for the concern-
internal transformations. Model weaving is not provided by the concern,

be fully generated by the CSL to GPL transformer. Thus, this distribution of tasks is not
FIDDLR derived, but rather a result of CORE.
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but reused from the standard tools offered by CORE. As long as source and
target models are of the same GPL model type and there is a valid map-
ping in between, the existing CORE toolchain can be reused as is. Since the
target CSL stems from a previously defined concern, which in turn contains
the required model transformation toward GPL models, this can be safely
excluded from the AUTHify concern. Specifically, RESTify already contains
a description of how ResTL concepts (which the AUTHify concern maps to)
are translated to GPL concepts. This translation description can be readily
reused. Additional illustrations for this process are depicted in Chapter 8.

Figure 7.5 illustrates how the described concern design activities integrate
with the reusable tooling provided by the FIDDLR framework.
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Figure 7.5: FIDDLR Applied to the AUTHify Concern

Namely, the four concern designer activities are:

1. Provision of Variants and variant-specific Authorization Server config-
urations: Spring Security AS Config

2. Definition of a custom concern-specific language, including LEMs: Auth
Language

3. Definition of CSL to GPL transformers: automated model generation

4. Definition of LEM to composition specification transformers: GPL
model weaver instructions generation

Table 7.1 maps these concern designer activities directly on the original
framework steps, as illustrated in Figure 4.1.
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FIDDLR Step RESTify Concern Designer Element
Step 1: Realization Models Design Classes, Maven Code
Step 2: CSL Definition Provide AUTHify Meta Model
Step 3: Model Transformers AUTHify to Annotations + Filterchain
Step 4: Mapping Transformers AUTHify Mappings to Weaver Instr.

Table 7.1: Mapping AUTHify Design Actions on FIDDLR

7.3 Applying the AUTHify Concern
Reuse of the AUTHify concern follows CORE’s standard three dimensions of
reuse [KMA+16]: VCU, or Variation, Customization, Usage. Similar to the
section equivalent for RESTify , I now present how these steps are perceived
from a concern user perspective.

7.3.1 Variant Selection

The first choice to make when securing an existing REST API with the
AUTHify concern, is which Authorization Server (AS) variant to use. As
previously mentioned, the choice pertains to either going with an existing,
already deployed proprietary AS, or starting with an off-the-shelf spring-
provided implementation for self-hosting. While AS code generation is not
within the scope of this concern, the choice matters, for the token format
(and therefore the security standards) and communication strategy to apply
by the Resource Server (RS) is reflected in an RS configuration file. Figure 7.6
illustrates the selection choices, as experienced throughout initial Variation
Interface usage.

Spring AS

Google GitHub Facebook

AUTHify

Proprietary AS

Figure 7.6: AUTHify Variation Interface Definition
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7.3.2 CSL Modelling and Mapping

Independent of which AS has been chosen as a token provider, the next step
consists of defining which operations on the REST tree are access protected,
with a notion of ownership, which scopes exist, and how those scopes cover
the protected resource operations. Here the concern provided CSL comes into
play, to actively guide the user to express the required security constraints.
Visually, the choices are represented by a triple-split view. Note that generic
split-views have been developed as part of this PhD Thesis, a triple split view
can be decomposed to a series of two individual split-views [SLL+21]. Figure
7.7 shows a conceptual editor for scope definition and operation mapping of
the BookStore example. An important note here is, that in the classic manual
process, Scopes are only defined in the FilterChain as string values, with no
safety mechanism to prevent misspelling across repeated filterchain entries.
This is notably not the case here, since a single scope concept is associated
with multiple REST operations. What in the classic, code centrist approach
relies on the correct, unchecked spelling of annotation payload strings, turns
through the MDE approach into a semantic-first, visual activity.by

The upper part of the illustration defines scopes (left) and how they map
to protected resource operations (right). Furthermore, the left side provides
a concept for the resource owner (represented as stickman), who is eligible to
delegate access to the defined scopes. Also, the left side depicts a concept rep-
resenting resource owner governance (Resource box). This resource concept
connects to a fraction of the resource tree on the right. The mapping defines
for which fraction of the resource tree ownership is defined. For illustra-
tion purposes, I additionally highlighted the corresponding resource sub-tree
with a pink contour and labelled it location owned. The lower split-view part
represents the BookStore’s domain model, which is either extracted or orig-
inates a base application model. Both, the resource owner concept, and the
resource concept connect to the domain model, which defines a traversal. By
passing through the domain model, we define how resource owner identity
correlates to ownership, and therefore a resource on the ResTL model. This
traversal can be translated into a SpEL expression, to verify if the resource
owner matches on a targeted resource. Finally, the “+” element allows the
concern user to create additional mappings, and the “i” serves as a popup
for contextual information on the operation purpose.

The final step is unchanged, the service must be compiled and deployed.
Just like in the previous RESTify example, this is very straightforward, as
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Figure 7.7: Conceptual Split View for Mapping Instance of the AUTHify
CSL to the Application Context

long as the build system has been sufficiently configured to produce a self-
contained executable. This step completely reuses the efforts already made
for the RESTify concern, for it relies on the identical build system mecha-
nism.

In summary, the described process greatly simplifies the key decision-
making steps of the securing process, for the technical intricacies are con-
cealed behind intuitive model representations. For the individual steps,
AUTHify ’s concern’s contribution can be visualized as a simplification, as
illustrated in Figure 7.8.

Notably the first two phases, which in the manual approach are tedious
and error-prone, have been significantly streamlined, thanks to the concern
provided variation interface, CSL, mappings, and model transformations.
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Figure 7.8: Application of the AUTHify Concern. Preliminary Tasks are
Reduced to a Minimum. Decision-Making is Explicit

Unlike in the previous chapter, I do not provide a purely SLOC-based break-
down of the refactoring process. The SLOC metric would be out of place in
this case, for e.g. the @PreAuthorize payloads are just a single line but can
become arbitrarily complex in length.

An important note at this point is that, for lack of an actual concern
implementation, the described advantages are prospective. Unlike RESTify ,
which has been incorporated into TouchCORE as a reference CSL-concern
implementation, I was not able to test the prospective model transformations
or generate code. Yet, I was able to validate the concern outcome, since I
achieved a manual AUTHification of AUTHify the BookStore, which served
as the target point for all code generations, and implicitly also all model
transformations described throughout this chapter. A statement that can be
made with confidence is that manually securing the bookstore was a complex,
error-prone, time-intensive, and challenging task. Any model-driven help I
could have had along the way would have been greatly appreciated. This
first-hand experience is a strong argument in favour of the AUTHify concern.

7.4 Modelling Considerations
Service authorization mechanisms, and notably the OAuth2 protocol are in-
herently complex and must deal with many corner cases. While defining the
AUTHify sample concern, and AuthL language, I oriented on the most com-
mon use cases. However, throughout the concern design two decision points
were particularly debatable. In this final section I reiterate the choices made,
and provide reasons that speak in favour or against the presented meta-
model.
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7.4.1 Scope Overlaps and Hierarchies

An interesting observation about the meta-model is the zero-to-one associa-
tion between operations and scopes. Technically the OAuth2 protocol does
not prohibit a definition of overlapping or nested scopes. Why would hence
the CSL not allow for more complex scenarios like scope inheritance or multi-
inheritance? Notably, why prevent such models, when established existing
APIs with OAuth2 support, e.g. the GitHub API [Git23] showcase such
scope hierarchies?
From a technical perspective, it would be little effort to modify the pre-
sented meta-model to support such scope inheritance scenarios, e.g. a Read
& Write scope, extending an existing Read scope. Likewise generating the
corresponding FilterChain code would be straightforward, for in case of an
overlap, any scope would be accepted and Springs security syntax provides
a mechanism, specifically for this purpose, as shown in Listing 7.3.

@Bean
Secu r i t yF i l t e rCha in [ . . . ] {

http [ . . . ] . author izeHttpRequests ( ( au tho r i z e ) −>
↪→ author i z e . requestMatchers (

HttpMethod.GET ,
”/bookstore/locations/{location}/stock/{isbn}”)
.hasAnyAuthority(”SCOPE stock.read”,

”SCOPE stock.read-and-write”))
.permitAll())

[ . . . ]
}

Listing 7.3: Illustration of Spring Security hasAnyAuthority Validation

Regarding the privilege outcome, there is no semantic loss in expres-
siveness between combinations of finer-grained scopes, compared to allowing
equivalent inherited scopes. This is illustrated in Figure 7.9.3From a purely
technical perspective, the lower model allows the expression of all combina-
tions covered by the upper.

There is, however, a non-technical consideration to rule out scope overlap,
and that is protecting the Resource Owner Privacy. While the protocol does
foresee an option for the Resource Owner to reduce the set of requested scopes

3Granting B, which contains A is equivalent to granting A and C, which complement
another to the same outcome.
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Figure 7.9: Illustration of Semantic Equivalence: A Client with Scopes A+C
has the Same Access Rights as a Client with only B

at the moment of authorization4, the protocol does not allow redefinition of
scopes by the Resource owner [JR17]. That is to say, the only option from a
RO perspective, is to turn down a subset of the requested scopes. In the worst
case, this comes down to an all-or-nothing choice, e.g. if a Client requests
full permission, by a corresponding scope at the lowest inheritance level, the
RO can only entirely turn down the entire request, most likely resulting in
a dysfunctional service. If on the other hand, the scopes are fine-grained
enough to selectively disable inappropriate scope requests, a privacy-aware
RO can maintain their interest.

7.4.2 Shared Resource Owners

The vast majority of OAuth2-ready Resource Servers consider the Resource
Owner a single physical person. This holds, e.g., for a social media account,
or web account, where a set of resources is under the strict governance of a
single user. In that case, verifying ownership is rather straightforward, the
RS simply compares the user’s account name or identifier against the root of
the owned resource sub-tree. In Section 7.2 I have shown examples of SpEL
expressions to support this comparison.
However, there are cases where ownership is not restricted to a single user.
The GitHub API is once more a prominent example, for GitHub supports

4This protocol option was not implemented by the sample dialogue of Obscrify, shown
in Figure 5.6. A privacy-aware RO should be able to turn down the request for Create,
edit and follow playlists, requested by a service that only serves for analytic activity.
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organization accounts, with several members who each may or may not hold
a notion of ownership in the spirit of OAuth2 [Git23]. We considered this
scenario for the BookStore example, and the AUTHify concern can handle
this use case. Similar to the GitHub organization reference, we considered
that a BookStore location could be associated with multiple employees, each
holding the right to delegate access authorizations on behalf of the organi-
zation. Regarding the previously presented editor, this does not require any
changes, as illustrated in Figure 7.10.

Figure 7.10: Conceptual Split View for Mapping Instance of the AUTHify
CSL to the Application Context
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Compared to the original sample editor capture, the changes are only
marginal. Yet they reflect an important semantic difference in the applica-
tion domain meta-model. Instead of iterating from one entity to the next,
using a strict 1:1 mapping of the manager concept to the store location
(serving as identifier resource in Figure 7.7), the association in Figure 7.10
showcases a 1..* multiplicity, which in turn reflects the potentially shared
ownership across multiple location employees.
The solution is once more to translate the domain model path into a SpEL
expression, wrapped into a Spring Security @PreAuthorize(...) annota-
tion: "T(GlobalStockImpl)
.getInstance().getAllEmployeesForStore(#city)

.contains(authentication.name)"

This string simply uses SpEL to traverse the domain model exactly as indi-
cated by the red path in the split-view editor. The one-to-many association
is reflected as a contains statement, meaning that any employee is accepted,
as long as they are associated with the target store location.

Finally, it is noteworthy that ownership is a paradigm, that is, any criteria
can be defined as a notion of ownership. This means the SpEL expressions
(which otherwise need to be manually typed) can easily become arbitrarily
long, and error-prone as the application domain grows. I argue that in this
case, a visual representation of the actual domain model traversal path is a
welcomed support for most software developers.

The takeaway message from this final section is, that when it comes to
meta-modelling there is not one ground truth. Defining a guiding language
that guides concern reuse is implicitly bound by user goals, ultimately re-
sulting in a trade-off. The privacy vs. convenience example, when it comes
to scope definitions is a strong example.
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8
Takeaways from CSL

Proof-of-Concept
Implementations

The exploration of the two previously presented proof of concept CSL con-
cerns, RESTify and AUTHify , kindled passionate discussions regarding the
implicit nature and good design principles of CSLs. In this Chapter, I sum-
marize the most outstanding observations and considerations.

8.1 Variants and Weaving
Throughout the previous chapters, we’ve seen several examples where the
concern user’s VI selection implies the inclusion of different design models
and transformers. In this section, I illustrate this in more detail on the
example of RESTify .

In Chapter 5, I have briefly mentioned the existence of various Java REST
technologies, and that the same RESTful functionality can be reached in
different means. Later, in Chapter 6, I have shown how one technology
choice, namely choosing Spring Boot requires the integration of specific
concern-provided realization models and transformations, notably to ensure
the framework is integrated into the build system configuration, the launcher
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boilerplate code is reflected in the design models, but also that the correct
REST annotations are generated.
An essential observation is that the exact set of build a configuration, design
models and transformer behaviour is tied to the technology selected in the
VI. That is to say, when the concern user selects a different concern variant,
the build configuration slightly changes, other design models are reused, and
the transformers may need to generate annotations in a different syntax.
Especially regarding the build configuration the difference is subtle, for we
do not simply need to generate an entirely different build configuration - it
is rather that huge parts of the build configuration stay the same and only
selected parts differ, depending on the REST technology chosen.
This incites reflection on how to best express reuse, based on the overlaps
and similarities in the concern transformers for individual concern variants.

In the case of RESTify , we therefore tested model and transformer reuse
across different concern variants. That is to say, we attempted to encapsu-
late commonalities between different concern variants and implemented the
reuse pipeline to weave common, reusable parts with concern-specific model
fragments. Figure 8.1 illustrates how this AOM technique manifested in the
RESTify reference implementation. The different concern variants (colours)
influence which design models (boxes) and which model transformations (ar-
rows) are used for concern reuse. Black arrows indicate the reuse of generic
design models, that are shared across all concern variants.

The left half represents the integration of design models and model gener-
ations for specific REST annotation syntaxes. The outcome of this first step
is weaved RAM models (Reusable Aspect Models), which are a file format
of the CORE reference implementation used. Note that these models, while
adhering to a specific annotation syntax do not encode REST technology
specifics.
The right half of the figure then indicates how partial build configuration
models (of specific REST technologies) or woven with common build config-
uration ingredients. The outcome is technology-specific launcher configura-
tions and technology-specific build system configurations.

Although we did not test the AUTHify concern to the implementation
level, we validated the same effect on our reference authorization sample
application. In the case of AUTHify , the generated Resource Server code
showcases a configuration file that differs in specific lines, depending on which
Authorization Server configuration is selected. The remainder of the file is
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Figure 8.1: Illustration of Various Design Models and Transformers for Dif-
ferent Concern Variants. This Figure was Created by Bowen Lee as part of
his Master thesis under the supervision of Maximilian Schiedermeier

identical. In short, this means, that in AUTHify , too, there is evidence for
variant-specific configuration changes to justify configuration file weaving at
the moment of concern reuse.

8.2 Abstraction Level
Common to both samples, RESTify and AUTHify , is the provision of a novel
language, which allows the creation of tailored models to map on the existing
application context. However, a substantial difference is that models created
in ResTLmap on GPL models, namely class diagrams, whereas AuthLmodels
map on ResTL, which is itself a CSL. This implicitly means, AUTHify cannot
be used without access to ResTL language definition, or the custom language
tooling. This is illustrated in Figure 8.2.
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Almost certainly this also means the AUTHify concern is bound to reuse
the RESTify concern [1a] and is not viable in isolation. Internally, weaving
the information from AuthL concepts into an application context works the
same way, the CSL model is first translated to a GPL version [2a] (alongside
mappings [2b]). The subsequent weaving however takes only place after GPL
weaving with the RESTify ’s intermediate GPL models, before the final code
generation takes place.

AuthL CSL Model ResTL CSL Model GPL Models
AUTHify Mappings RESTify Mappings

RESTify Transformer
Generated GPL Models GPL Models

RESTify Transformer
Generated MappingsAUTHify Transformer

Generated GPL Model

AUTHtify Transformer
Generated Mappings

Weaved RESTified
GPL Models

AUTHify Transformer
Generated GPL Model

AUTHtify Transformer
Generated Mappings

Double Weaved 
AUTHified & RESTified

GPL Models

Generated
AUTHified & RESTified

Code

[2a] [1a][2b] [1b]

[3b][3a]

[0a]

Figure 8.2: Cascading CSL Model Transformations and Weaving

8.3 Paradigm Mappings and Transformations
A peculiar observation in both sample concerns is the complexity of included
transformers. Especially for annotation payload, we can observe that map-
ping transformations are more than simple one-by-one processing of input
mappings to output mappings, to enable subsequent weaving. It is rather
that some mappings are directly consumed by the CSL to GPL model con-
version itself, and others completely disappear when creating the mapping
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information required for weaving. While this is uncommon in the light of
classic CORE concerns, this showcases a stunning coherence to the original
CSL motivation: The philosophy that CSL concerns unfolds its full potential
in the context of paradigm mappings.
This observation can be explained when we reconsider that semantic, or ab-
stract equivalence is not the same as technical or implementation equivalence.
A CLS concern targets the first, that is, it sets on visual paradigm mappings,
ultimately creating a visual illusion of semantic equivalence, where there is no
technical equivalence. REST interfaces are APIs so there is semantic equiva-
lence to existing API structures, but that does not mean they are technically
equivalent to classic Java method APIs.
Taking a step further is even the very nature of competing paradigms to
be inherently incompatible at a technical level, which means they can only
be readily mapped at a conceptual level. To give an example: a for-loop
in an object-oriented language can be considered semantically equivalent to
a recursive function call. Subsequently, we can create a visual mapping,
to graphically represent a paradigm mapping. But that does not mean the
underlying concepts are identical, or even readily compatible for direct weav-
ing. CSL concerns require complex transformers because they must bridge
semantic equivalence to actual technical compatibility.

8.4 CSL Design Principles
Several philosophies can be considered when it comes to defining a CSL meta-
model. As discussed in the previous section, depending on which priorities
are set, CSLs, and their corresponding editor change in size and apparel. CSL
design can be guided either by striving for minimal, lean languages tailored
to the CSL task, or the design can be guided by future language reuse and
CSL extensions in mind. It is not clear if one philosophy is necessarily better.

• In the spirit of the original motivation, the focus can be set on SoC
and model reuse as paradigm interests. Following that philosophy,
CSL models should be viable in isolation, without the information ex-
pressed by mappings on one or more target models. Reuse scenarios
here consider e.g. the possibility of reusing a part of a ResTL model,
or a given arrangement of AuthL scopes, from one context to the other.
To some extent this means information must be replicated, e.g. in a
ResTL model. Replication was avoided in the case of ResTL, i.e. Res-
TL is only viable after additional mappings are provided, to infer e.g.
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type information on parameters, and even body payloads. Inclusion of
these concepts in the CSL itself would have been possible, and would,
in turn, have rendered the CSL more self-contained. But likely a more
wholesome CSL introduces also a need for additional checks during
mapping, to ensure model and mapping consistency.

• Another consideration is to strive for lean languages, that by design
sidestep replication of information. That is, language design can be
guided by the philosophy that a CSL should not reify information al-
ready contained in the target model’s concepts, to avoid inconsistencies
upon mapping. Ultimately this allows the concern user to focus exclu-
sively on the novel paradigm information that needs to be mapped,
leading to simpler user interfaces, which is generally considered a fun-
damental design goal [Joh24]. The result is a smaller language, that fo-
cuses only on the concepts needed to achieve the given engineering task
of interest for the present concern. Following this philosophy, RESTify
should not provide type information for REST parameters, and AuthL
should not provide information on operations covered by scopes - sim-
ply because this information can be inferred from mappings established
to an existing target model.

It is unclear which of the two philosophies should be preferred. For our
two sample CSL, RESTify tends to orient more toward the second ratio (it
showcases only minimal replication and mappings to an application context
provide additional semantics and are not just mappings of identical con-
cepts). AUTHify is more influenced by the first philosophy, the replication
of target concepts, namely operations and their semantics is part of the CSL
meta-model, while the mappings to a target application context are merely
matching instructions and provide no additional semantics. Both CSL are
part of valid PoC concern samples. Finding a meaningful trade-off is de-
pendent on the notion of a unit of reuse. If reuse of complete or partial
CSL models is as primary goal, then CSL should be self-expressive to an
extent, where mapping on a target model provides only contextual weaving
information, but carries no inherent semantic. If the CSL and not the cre-
ated models are considered the actual unit of reuse (because alongside the
specification for legal mappings, they reify an expert’s ability to create and
explore models for a given paradigm), then the CSL should be held minimal.
Means to further investigate this rather philosophical question are discussed
in Chapter 14.3.
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Part III

Empiric Assessment of CSL Effects

This third thesis part targets an empirical validation of initially presumed
CSL toolchain benefits. I describe layout and results of a controlled experi-
ment with humans to measure the effects of a sample CSL concern in action.



9
Background

Empirical research originates in a medical context, i.e., the testing of drug
treatments on patients to gain insights on the drug’s effects [CCS01, CS11].
Over the last decades, established methodologies have been adopted by Com-
puter Science researchers, leading to a series of best practices and frame-
works for the correct application of empirical research methods in our field.
Nonetheless, the shortness of empirical evidence is an acknowledged ongo-
ing issue in the MDE community [HWRK11, MCM14, HWR14, CMH19].
However, due to the origins, the medical terminology is still widely applied,
which often renders empirical computer science research hard to consume for
the broader community. For this reason, I now provide the fundamentals
and terminology background needed for the empirical methodology applied
in this last thesis part.

9.1 Crossover Layouts
Empirical studies usually follow a categorized design, that is in simpler terms
to say a dedicated arrangement of participants and tasks. If chosen with
care, a fitting design facilitates the entire experimental conduct, observation
and later analysis and interpretation of observations. Throughout this last
thesis part, I will be working with a design variant of the so-called crossover
layout [CCS01].
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In a crossover layout study, subsequent phases of treatments and obser-
vations (measures) are conducted on the same subject (study participant).
These phases are also called periods. In the medical context, this corresponds,
e.g., to testing two different drugs on a patient. Obtaining more samples from
a population of a given size can be beneficial for the subsequent analysis -
simply because there is more data collected. Insufficient data may not allow
to conclusively confirm an effect, even if in reality it exists (this problem is
also known as type-II error) [CCS01]. Another motivation in the medical
context is the implicit pairing of data. Since multiple observations come
from the same patient, i.e., the same biological organism, the paired sam-
ples are easily compared. Finally, since the order of treatments may matter,
studies following a cross-over design usually consider all possible sequences
of periods.

9.2 Carryover, Blocking Variables and Facto-

rial Design
An important consideration for any repeated measures experiment is carry-
over. Carryover means unintentionally measuring the effects of the treatment
of the previous period. If, e.g., first an experimental drug and afterwards a
placebo were used as treatments, the observation for the placebo period can
be influenced by lasting effects of the previous drug treatment. In medicine,
this is handled with a washout delay, which simply means waiting some time
for the organism to reliably recover from any effects of a previous treatment.
Unfortunately washout does not exist in Computer Science, because humans
do not reliably forget knowledge [VAJ16].

A common strategy to overcome this issue is the introduction of a block-
ing variable [CS11]. In the context of crossover layouts, this is referred to
as a contextual object that changes over time. For instance, Ceccato et
al.[CDPF+13] investigated two software obfuscation strategies (treatments).
Each strategy was applied to a different software application (object), so that
the knowledge obtained in the first period did not have a persisting influence
on the second period. This combination of treatment and object is called a
factorial crossover design. The object (or application to work with) appears
in blocks in the layout table. If it takes two values, it is furthermore called a
two level blocking variable. Table 9.1 illustrates the resulting experimental
design. Note that the introduction of a blocking variable also increases the
number of sequences to 4.
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Experimental Design Period 1 Period 2
Sequence I Treatment A, Object 1 Treatment B, Object 2

Sequence II Treatment B, Object 1 Treatment A, Object 2
Sequence III Treatment A, Object 2 Treatment B, Object 1
Sequence IV Treatment B, Object 2 Treatment A, Object 1

Table 9.1: Two-Treatment Factorial Crossover Design with Object as Two-
Level Blocking Variable

9.3 Statistical Analysis
Best practices for crossover layouts also cover guidelines for the analysis of ob-
servations regarding the use of legitimate statistical tests [VAJ16]. Typically,
an experiment seeks to determine relationships between variables (e.g., does
taking the tested drug improve subject health). To do so, a null hypothesis
is formulated, which in the vast majority of cases assumes a non-correlation
of treatment and effect. If the outcome of the statistical test rejects the hy-
pothesis, then there is a significant correlation. Note that only rejection is a
conclusive result - failure to reject a null hypothesis does in return not mean
that the hypothesis is true (it might, e.g., be that there is simply insufficient
data for a statistically significant conclusion) [WHH03].

A further consideration is the eligibility of tests for the given data. Data
from experiment observations can showcase several attributes, e.g., it can be
paired or independent, the samples can be normally distributed or in the
worst case, there is no knowledge about the underlying distribution. It is
crucial to select tests that are compatible with the properties of collected
data [VAJ16]. Some tests do, for instance, require paired data to operate
on. In that case, they cannot be applied to experiment layouts that do not
produce paired data.

Finally, in the case of factorial crossover layouts, it is recommended to
consider and investigate the effect of all potential explanatory factors, not
just that of the treatment. Linear models are a common choice for this
purpose, for they allow correlation testing of multiple factors simultaneously,
to compare how individual design factors contribute proportionally to the
observed effects.
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10
Experimental Design

In this section, I will now place the previously presented background on
empirical research in the context of the RESTify Experiment, which is a
study I performed to empirically assess the efficiency of the RESTify CSL.

As with all empirical experiments, the first step consists of defining the
experimental design to use for our experiment. For this purpose, I start
with translating the previously presented general crossover terminology to
concrete study parameters. Namely, I delineate how the crossover layout is
applied to assess the effects of ResTL on the conversion of legacy applica-
tions to REST.1 Table 10.1 illustrates the experiment layout. At the centre of
the experiment lies the comparison of two orthogonal conversion techniques.
One of them is based on the ResTL CSL in combination with its tooling, the
other is the manual software conversion approach, where subjects (partici-
pants) directly modify provided source code using an IDE. In our study, the
alternative drug treatment of a medical context translates to the conversion
technique applied.

As briefly mentioned in the background section, in contrast to the original
medicine context, we cannot apply a washout period, where we wait for the
effects of a previous treatment to disappear, before we run a second task and

1The exact study tasks are explained shorty when I delve into the individual experiment
sequences.
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repeat the measurement. Hence our participants must not work in the same
context for their two respective tasks. Related work, e.g. a study on software
obfuscation techniques by Ceccato et al. [CDPF+13] uses a factorial design
with two different applications as objects (two-level blocking variable), which
is a fair choice, for it eliminates the risk for carryover. We therefore apply
the same design for our purposes.
This combination of a conversion technique paired with an application to
convert now defines a software development task. One period of the study
consists of the participant performing the task and us obtaining data from the
process. Each participant partakes in two periods, which corresponds to two
subsequent conversion tasks. Finally, as we want to combine each conversion
technique with either application and since we want each series of tasks to
be different in both factors (technique and application), we end up with a
total of four sequences. For fairness, we want to attribute the same number
of participants to each sequence, which is why we divide our population into
four equally sized groups (labelled red, green, blue and yellow).

Experimental Design Task 1 Task 2
Group I (Red) CSL Conversion, BookStore Manual Conversion, Xox
Group II (Green) Manual Conversion, BookStore CSL Conversion, Xox

Group III (Blue) CSL Conversion, Xox Manual Conversion, BookStore
Group IV (Yellow) Manual Conversion, Xox CSL Conversion, BookStore

Table 10.1: Two-Treatment Factorial Crossover Design as Applied in Our
Study

10.1 Treatments (Conversion Techniques)
In this experiment, treatment is defined as the conversion technique applied
by study participants. Our experimental design showcases two techniques:
CSL-based conversion and manual conversion.

• CSL-based Conversion: The CSL-oriented approach does not re-
quire any manual coding. The project’s legacy sources are interpreted
by the TouchCORE modelling tool, which then visualizes the program
structure as class diagrams. This corresponds to the concern reuse pro-
cess detailed in Chapter 6. The developer then uses the REST-specific
ResTL CSL editor to graphically design the desired REST resource
tree. Afterwards, they graphically map those resource operations to
individual methods of the legacy code. No additional action is required
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from the developer, for the tool applies model transformation and com-
position techniques to combine the provided information and generate
source code and configuration files.

• Manual Conversion: Manual conversion involves modifying legacy
sources by hand. The developers open the existing project in their
Integrated Developer Environment (IDE) and then import the REST
technology of their choice. For the study, participants were encour-
aged, but not mandated, to use the same IDE as used in the task il-
lustration material, namely the IntelliJ IDEA. After importing, REST-
technology-specific annotations must be added to the code to expose
operations. For our experiment, we only considered Spring Boot, which
is a reasonable choice due to its widespread use. According to the
2018 JVM Ecosystem Report, a survey based on 10,200 questionnaires,
Spring Boot is the most popular Java web framework [MB18]. Correct
integration of Spring also requires writing some boilerplate code and
adjustment of project configuration files.

10.2 Objects (Sample Applications)
In our study, the objects correspond to two vanilla Java sample applications:

• Object 1: The BookStore We reused the source code for the previ-
ously presented Bookstore application [SKK21] that indexes books by
ISBN and keeps reader feedback and stock information for stores.

• Object 2: Xox The second is an implementation of the simple board
game Tic Tac Toe (referred to as “Xox”, paraphrasing the X es and Os
on the board). Xox is publicly available as an open source application
[Sch22c].

We argue that both applications are representative study object candi-
dates, as modern e-commerce applications as well as turn-based online games
are predominantly implemented with RESTful backends. The two applica-
tions furthermore showcase a reasonable level of code complexity and size.
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10.3 Periods (Tasks)
Each period consists of a conversion-to-REST task, defined by a combination
of technique and application, allowing for an observation. That is, partici-
pants are presented with one conversion strategy, and one sample applica-
tion, and we assess their task-solving. For the participants to perform a task
unbiased, it is crucial to accurately and fairly describe what is expected.
Therefore each period begins with a short task familiarization phase, where
subjects only consume task material. Only afterwards they perform the
requested conversion, where we collect data for a later analysis. We now
describe task material presentation and data collection.

10.3.1 Material

The participants received the instructions for performing a conversion task in
textual form, i.e., as a structured and easy-to-navigate website, and addition-
ally through a video tutorial. Each video illustrates the expected conversion
steps utilizing a third, independent example application. The steps are also
explained in text and images on the website. Sound task material is im-
portant to give all participants the minimum required knowledge to perform
the tasks. E.g., without detailed instructions, using the Spring framework
could be daunting for inexperienced participants. Likewise, the instructions
also contained textual documentation as well as a class diagram explaining
the structure and functionality offered by the Bookstore, respectively Xox.
Finally, the instructions describe the desired target state, i.e., details on the
expected REST API behaviour after task completion.

A pilot study has shown that the two conversion tasks can be completed
within two hours. We therefore allowed discontinuation after a minimum
effort of 1 hour per task, including familiarization with task material.

10.3.2 Observations

We gathered two kinds of data for each task: produced source code and
screen recordings.

• Source code, including build system configurations, represents the out-
come of the application conversion. Depending on the conversion tech-
nique used, the source code is either the product of manual modifica-
tions or code generation.
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• Screen recording covers all on-screen activity throughout the entire
task. This notably covers familiarization with the instructive mate-
rial, including watching the provided videos.

We also solicited participants to provide feedback after the completion of
both study tasks. We asked the participants to fill out a text form, allowing
them to provide comments on perceived complications, task complexity, and
personal preferences.

10.4 Sequences (Groups)
A fair experimental crossover layout requires equally sized groups. In our
case, this means that the same number of participants should perform the
same tasks in the same sequence. In the remainder of this article we use the
colours red, green, blue and yellow, to refer to the four equally-sized groups
in our experiment.

To ensure group comparability we must also avoid any bias regarding de-
veloper skills. Experiments with a large number of participants usually rely
on randomization to balance groups [CS11]. Larger sample sizes are also
desirable because they reduce the risk of failing to conclude what is true
due to insufficient samples (i.e., type-II errors). We did not perform a pre-
liminary sample size estimation concerning this risk, because in our study
the population size was in either case limited by the available funding. Our
experiment with 28 participants is in line with comparative controlled exper-
iments [KLB15]. Nonetheless, we applied additional measures to reach fair
group partitioning.

10.4.1 Partitioning into Groups

Crossover experiments often include a preliminary observation to prevent
potential group biases before task executions [CCS01]. We requested the
participants to fill in a textual self-assessment form regarding experiment-
related skills as part of the recruitment. Note that self-reported assessments,
although by nature subjective, are common practice. Specifically, applicants
were asked to declare their proficiency regarding the Spring framework, the
Maven build system, the MDE tool TouchCORE, Command Line usage, the
REST paradigm, the Singleton pattern, and Reflection (i.e., the program-
ming language concept).
All these skills were potentially relevant for the study, and also potential pre-
dictors for success. We provided a textual metric to bring some objectiveness
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to the declared level of proficiency on a scale of one to five. Listing 10.1
illustrates the process by presenting the questions regarding the Singleton
pattern:

How much do you know about the s i n g l e t o n pattern ?
1 . [ ] I don ’ t know what i t i s .
2 . [ ] I know what i t i s , but have never used i t .
3 . [ ] I have a l r eady used i t in one o f my p r o j e c t s .
4 . [ ] I could v e r i f y a provided implementation .
5 . [ ] I could implement i t r i g h t away from sc ra t ch .

Listing 10.1: Excerpt of Participant Skill Self-Assessment

Figure 10.1: Skill Distributions Across Groups

I then implemented a heuristic to find a balanced group allocation. The
algorithm minimized the distance in average skill proficiency between groups.
Such algorithm is generally referred to as MiniMax heuristic, and while it
does not produce the optimal participant allocation, it is less computation-
ally intense than testing and ranking all possible allocations. With the given
28 participants brute force testing was not possible, for the amount of possi-
bilities to test grows exponentially to the number of participants.
A severe challenge in this process was the repeated fluctuation of partici-
pants, i.e. participants retracting from the study after enrolment. The final
allocation is the result of repeated recruitment iterations, and hence not the
exact allocation initially proposed by the heuristic. Nonetheless, we obtained
reasonably balanced groups as shown in Figure 10.1. Boxplots of the same
colour represent the distribution of our four groups for a given skill. We
observe that groups are reasonably comparable on all assessed skills. We
further note that this balancing procedure is by nature not objective, for the
initial data stems from a self-assessment.
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10.5 Conduct
Recruitment and study conduct were carried out from June to August 2022.
We launched an extensive recruitment campaign where we reached out to
various targets: industrial engineers, engineering students and academic col-
leagues. We used various mailing lists, sent invitations directly, and recruited
using a dedicated web page. Recruitment and experiment conduct was real-
ized in full compliance with the experiment approval by McGill’s Research
Ethics Board (REB).2

We accepted all respondents, except when the preliminary self-assessment
suggested insufficient programming skills for the successful conduct of the
tasks. In the end, the 28 recruited participants come in approximately equal
shares from academic, student and industrial backgrounds and showcased
highly diverse skill sets. Participants were allowed to use their computer
setup and participate remotely, with the option to access a lab-provided
workstation as a fallback. Participation was rewarded with a 100 Canadian
Dollar Amazon gift card.

2REB reference code: REB-21-03-009
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11
Experimental Conduct and

Analysis

Previously I have provided the experiment background, participant tasks and
how groups were allocated. In this chapter, I present how I collected data,
the statistical tests performed and which numeric results were obtained.

11.1 Preamble: Replication Package
An important preliminary note is that I have from the start worked toward
transparency and easy replication of the entire experiment. Controlled ex-
periments are subject to a plethora of parameters, and further research can
only compare to this study if all parameters are known, and all analysis
is easily replicable. To fulfil this goal I have created a detailed replication
package [Sch23c]. The package contains, but is not limited to:

• Copy of recruitment material.

• Transcripts of all participant activity.

• Time measurements for all participant activity.

• All participant produced artifacts, notably their submissions, self-assessments
and feedback.
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• Indicators for outliers and submission patches.

• Task instructions, including original code, models and video material.

• Software used for testing of submissions.

• Interactive jupyter notebook to replicate all analysis and generated
figures.

11.2 Data Collection
As presented in the previous Chapter, the experiment showcases two peri-
ods, which in this case simply means that each participant performed two
subsequent tasks. I therefore obtained a total of 56 observations. Each ob-
servation consists of a screen recording and the produced source code or
software models of the given task. When the outcome was a software model,
I immediately generated the corresponding code to unify subsequent analy-
sis. In the remainder, I also refer to screen recordings and software artifacts
as raw submission data.

I carefully analyzed the raw data for two quantitative metrics: correctness
of the produced software (by testing against the requested target REST in-
terface), and time needed for execution of the task. Correctness is measured
by the fraction of passed tests, a normalized metric. I refer to this metric as
test pass ratio. Note that we are also interested in qualitative findings. In
the following, I describe how I analyzed the produced source code and screen
recordings.

11.2.1 Submission Testing

The task instructions contained a precise textual description of the expected
target REST interface. This allows for automated testing of submissions.
Note that RESTful services are stateful, therefore tests are interdependent.
For example, a failed invocation of a “Delete” endpoint on a resource affects
the result of a subsequent “Get” on the same resource. I avoided this issue
by rebooting the tested service between every test call. Furthermore, tests
that alter state require verification. It is not sufficient to check the HTTP
return code of a “Put” request and assume that the service correctly modi-
fied the application’s state. A subsequent “Get” is required to validate the
behaviour. Finally, when verification using a subsequent “Get” fails, it does
not necessarily mean that the initial state transfer failed. The failure can
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also be due to an incorrect implementation of the “Get” request. I therefore
invoked all state-modifying operations twice, once with verification and once
without, to determine the cause of failure with certainty. Finally, in the one
case where the read operation was determined to be incorrect, a manual code
inspection had to be performed.

Figure 11.1 depicts the distributions of the pass rates per task. Groups
are represented using colours, the conversion technique, the application and
task order are shown as labels (“#1” = first period, “#2” = second period,
whereas “#*” shows the distribution of the two groups combined). Turquoise
and Orange elements indicate combined distributions of groups where only
task order differs.

Figure 11.1: Distributions of Task Outcome Pass Rates

11.2.2 Screen Recording Analysis

I collected more than 72 hours of screen recordings, which I analyzed to
determine: 1) the time the participant spent on task familiarization and task
solving, and 2) unusual behaviour, task deviations, struggles and blocking
errors.

Task familiarization time and task solving time were measured as follows:
Any activity related to watching the instructive videos, as well as replication
of the provided sample application (which was not part of the task) is counted
toward familiarization time. However, as soon as a participant has completed
a first pass of the instruction video, we consider all further watching of the
video as targeted lookup and hence counted it toward task-solving time. The
actual time spent on task preparation varies from participant to participant,
for they often modified the playback speed and sometimes (although not
requested) fully replicated the sample application before commencing the
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actual task. Also, almost half the subjects deviated from linear order and
interleaved familiarization and solving, i.e., pausing the video instructions
prematurely to begin application conversion, switching back and forth be-
tween the two. In such cases, I manually measured the time for interleaved
intervals to reconstruct the actual time spent on task familiarization and task
solving. Luckily, task order was always respected.

Also, TouchCORE (the DSL tool) crashed in several recordings, which
forced the participants to recreate the models already made, resulting in
time losses. Note that we only use the task-solving times for the remaining
analysis, as the purpose of this study is to measure DSL effects on software
conversion, not on task familiarization.

Figure 11.2: Distributions of Conversion Times

Figure 11.2 illustrates the measured conversion time distributions for each
task.

11.3 General Linear Models
As mentioned in Chapter 9, it is recommended practice to begin analysis of
data from a crossover experiment with a linear model [VAJ16]. I therefore
started with dedicated models to investigate the effect of conversion tech-
nique and task order on the pass rate of the outcome and time needed for
conversion. The general linear models (GLMs) used assume as null hypothe-
ses that there are no effects of technique and order (also called explanatory
variables) on pass rate and time (called dependent variables). We can then
assess the likelihood of a non-correlation reported by the linear models, and
ideally reject the assumed non-correlation for the conversion technique fac-
tor.
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Note that our GLMs do not contain a dimension for the converted application
(object). Instead, we have a separate GLM per application.1 Consequently,
I created two GLMs for time and two for pass rate, each based on a total
of 27 independent sampling points.2 Table 11.1 shows the outcomes for the
resulting four GLMs, with ordinance least squares as regression fitting metric.

Dependent Var. App Prob. F-Stat Explanatory Var. Coef. Std.Error p-value

Pass Rate

BS 0.018
constant 53.90 9.94 74.41
order 13.76 11.62 0.248
treatment 32.67 11.62 0.010

Xox 0.020
constant 64.21 9.52 0.000
order -3.43 11.14 0.761
treatment 33.79 11.14 0.006

Task Time

BS 1.97e-05
constant 5332 449.9 0.000
order -292 526.3 0.584
treatment -3095 526 0.000

Xox 0.059
(constant) (3263) (279.8) (0.000)
(order) (-762) (327.4) (0.029)
(treatment (-288) (327.4) (0.388)

Table 11.1: General Linear Model Results for the four OLS Regressions

The first value to investigate is the reported F-Statistic probability, in-
dicated as “P. F-Stat”. It reports the goodness of our obtained model. The
exact null hypothesis for this test is that a model with no independent vari-
ables fits the samples equally well or better. If the P. F-Stat value is below
0.05, we can reject that assumption and in return retain the model present
model sufficiently good for interpretation.

We first look at the two models (one per application) for pass rate. Both
report a sufficiently good fit, we can therefore continue the interpretation of
the individual factors. The coefficient for the “const” explanatory variable
is not relevant for our interpretation as it only defines the overall offset of
the determined linear regression. The coefficients for the other two variables
order and technique however are interesting, as they define to which extent
these factors contribute to the observed pass rate. We see that in both cases
technique has a higher coefficient than order, which means that according

1This is necessary, because the samples from repeated measures are paired, and other-
wise an additional factor would have been required to represent the participant, or at least
group. In principle this would have been possible with a mixed linear model, however we
did not have enough sampling points to reliably use this model type.

227, because one submission was a scam and not usable. Every GLM only deals with
one application and, therefore only uses one sample per participant. Samples from the
same participant are dependent, and we did not have enough samples to obtain a sound
regression for two additional dimensions (participant and application) in a single model.
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to the model, the conversion technique is a stronger predictor for pass rate
than the task order. The coefficients alone are however not sufficient to con-
clude significance. We also have to investigate the probability that each factor
correlates to pass rate (our explanatory variable). The linear model auto-
matically performs a test for non-correlation and reports the probability for
this null hypothesis as “P >|t|”. Once more we can reject the assumption if
the reported value lies below the “0.05” threshold, which holds for technique,
but not order in both cases. In summary, we can conclude from the first two
linear models that technique is a significant predictor for the measured pass
rate.

Interpretation of the GLMs for time works the same. However, we notice
that only the model for the BookStore reports an F-Statistic probability
below 0.05, while the model for Xox does not. This means the Xox model
is not a good enough fit to continue interpretation. Only the model for
the BookStore can be safely interpreted (since the reported value is only
marginally above the threshold we will still interpret it, for completeness).
The BookStore model is fairly similar to the two previously discussed models
for pass rate. Once more, technique reports a higher coefficient compared to
task order, and the technique factor is likewise the only explanatory variable
for which the p-value rejects the null hypothesis of non-correlation.
While I am hesitant to consider the results for the remaining Xox time GLM,
I still report the model interpretation for completeness. Interestingly this
model lists the period (task order) variable with a higher coefficient than
technique, and likewise only rejects non-correlation for period (order), but
not for technique.

In summary, based on the model’s self-reported “goodness”, only three of
the four linear models should be interpreted. These three models altogether
suggest technique as a relevant predictor for the dependent variables pass rate
and time. Likewise, these GLMs report a comparatively weaker coefficient
for order, and also fail to reject the null hypothesis of non-correlation for the
order explanatory variable.

11.4 Wilcoxon Rank Sum & Effect Size
Next, I perform an additional test to further investigate the significance of
conversion technique as a significant predictor for pass rate and conversion
time. Here I only focus on the conversion technique, and explicitly disregard
a potential effect of order (note that order is not necessarily an irrelevant
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factor, for the three sound GLMs only failed to reject a non-correlation, and
the last GLM was rejected).

The methodology for this second test is as follows. Per application, we
assume as a null hypothesis that matching sample distributions are identical,
regardless of which conversation technique is applied. To illustrate this, we
compare for instance the time distributions of all participants who manually
converted the BookStore, to the time distributions of all participants who
did the same using the DSL technique. If the null hypothesis is rejected, we
know these distributions are different and have additional evidence that the
conversion technique matters. We run a total of four comparisons, where we
compare pass rate distributions and time distributions for both applications.
Visually this corresponds to comparing pairs of orange and turquoise boxplot
distributions (we ignore task order) in Figure 11.1 and Figure 11.2.

We applied the Wilcoxon Rank Sum test for these comparisons. This test
was chosen because it is robust for small sample sizes, and does not make
assumptions on the sample distribution [VAJ16] (we do not know the sample
distribution, other than the preliminary boxplot visualization).

The p-values, in order of appearance of the above null hypothesis, are:
0.000016 (time, bookstore), 0.35 (time, xox), 0.00489 (passrate bookstore),
0.00389 (passrate xox). The corresponding interpretation is that for pass-
rate measurements of BookStore and Xox, as well as for time measurements
of the BookStore, the migration technique (treatment) causes a significant
effect.

These p-values mean that the null hypothesis is rejected for all com-
parisons except conversion time of the Xox application. This means three
distribution pairs should be considered different, whereas, for the last one,
we cannot conclude distinctiveness. In return we can retain that conversion
technique matters for the outcome pass rate (both applications) and likewise
matters for the required time (for the BookStore).

These findings are sound, however, the tests only determined the dis-
tinctiveness of three distribution pairs but did not quantify their differences.
Table 11.2 lists the numeric boxplot information for all compared sample
distributions for pass rate and time.

A numeric comparison of the distributions serves as effect size estimation,
i.e., a quantification of the measured offsets. In numeric comparison, we
observe a relative improvement of averages whenever the DSL technique is
applied instead of a manual code conversion. The numeric differences in
distribution averages are as follows: For the BookStore an average pass rate
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BS: DSL (#∗) BS: Manual (#∗) Xox: DSL (#∗) Xox: Manual (#∗)
(Orange) (Turquoise) (Turquoise) (Orange)

Q4: Max 100.0% / 100.0% / 100.0% / 100.0% /
(Upper whisker) 3060s 8615s 3602s 5084s
Q3: 100.0% / 91.7% / 100.0% / 87.5% /
75% Quartile 2439s 5835s 3043s 3619s
Q2: Median 100.0% / 83.3% / 100.0% / 75.0% /
(Black Bar) 2021s 5069s 2357s 2754s
Average 93.5% / 60.3% / 96.2% / 62.5% /
(White Square) 2091s 5197s 2564s 2881s
Q1: 100.0% / 16.7% / 87.5% / 34.4% /
25% Quartile 1769s 3789s 2096s 2250s
Q0: Min 100.0% / 0.0% / 87.5% / 0.0% /
(Lower Whisker) 1167s 2651s 1955s 1251s

Table 11.2: Distribution Quartiles, Disregarding Order (#∗)

improvement from 60.3% to 93.5% (33.2% higher pass rate), at an average
task speedup from 5197 to 2031 seconds (3166 seconds faster). For Xox an
average pass rate improvement from 62.5% to 96.2% (34.3% higher pass rate),
at an average task speedup from 2881 to 2500 seconds (381 seconds faster).
In all cases, we also observe a lower variability of the distributions whenever
the DSL technique is applied.

In conclusion, both analysis techniques (GLMs and Wilcoxon Rank Sum
test) as well as the final effect size estimation draw a consistent picture.
Both analyses suggest a measurable positive effect of the DSL technique for
conversion times and test pass rates of the BookStore, as well as the test
pass rates of the Xox application. Note that the null hypothesis of GLM and
Wilcoxon Rank Sum has not been rejected for the Xox conversion time. This
does not mean there is no effect, it only means we were not able to prove or
disprove such an effect with the tests applied. The effect size estimation still
shows a weak positive effect of the DSL technique for the resulting average
Xox conversion time.
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12
Interpretations and Discussion

In this chapter, I delve into an interpretation of the previously presented
quantitative results. This notably means I will take into account contex-
tual knowledge and additional qualitative observations. The latter stems
from a thorough analysis of screen recordings and feedback forms. Note that
this discussion only reports on the most outstanding findings. Afterwards, I
discuss an observed discrepancy between the measured benefits of the DSL
technique, compared to critical study feedback in Section 12.2. The chapter
concludes with a compilation of several recommendations for DSL-based soft-
ware development, suggesting how tools could mitigate existing drawbacks
and improve practical DSL acceptance.

12.1 Understanding the Offsets
In the following, I discuss several factors that explain the performance offsets
of the previous analysis. Specifically, I take a closer look at explanations for
why the manual code conversion showcases a lower test pass rate than the
comparative MDE-assisted counterpart. Secondly, I reason why we observe
a slower manual code conversion for the BookStore, but not for Xox.
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12.1.1 Lower Test Pass Rate for Manual Conversion

The previous statistical tests determined the conversion technique as a sig-
nificant predictor of the pass rate. In other words, the source code produced
by participants using the DSL approach is more likely to be correct.

The screen recordings showed that the participants had difficulties with
Spring’s annotation syntax. We often observed participants confusing @Put

Mapping with @PostMapping, or simply forgetting an intermediate resource
in the URL path. This suggests, that the DSL approach is more intuitive,
mainly because of the global resource visualization in the form of a tree and
the automated generation of the annotations, which avoids the aforemen-
tioned errors. Most participants also reported the DSL approach as more
intuitive in their feedback form. I provide a more detailed breakdown of the
corresponding statistics in Section 12.2.

I also noticed issues related to the mapping of request parameters. Sev-
eral subjects performed online searches for the correct annotation syntax and
subsequently invoked study-unrelated parameter types. In more detail: The
study only included resource parameters and body parameters, but no query
parameters. Yet some participants, when searching for external resources,
came across the query parameter syntax, and mistakenly added query param-
eters to their implementation. The effect is a deviation from the requested
target API and consequently results in test failures.

Finally, we need to consider that generated code (automatically created
by the DSL approach) is always syntactically correct. Manually created
submissions could potentially not compile, which then implicitly means that
all tests fail. However, all participants decided to work longer on the code
until it compiles, than submitting code with compilation errors.1

12.1.2 Slower Manual Conversion for the BookStore

Similar to the test pass rate, our tests show a significant task speedup for
one application (BookStore) when the DSL approach was used. Interestingly,
the speedup is almost marginal for the second application (Xox). This ob-
servation is likewise coherent with the statistical test results. I first provide
general reasons to explain a slower manual conversion, and then argue why
the observed effect is lower for Xox.

1The only exception is the identified scammer, which has been excluded from the data
used for statistical analysis.
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In principle, time is a censored variable, because the participants were
allowed to discontinue the study once the minimum time had passed. As
previously mentioned, all participants simply continued their work until their
code compiled. The vast majority also selectively tested REST access before
submission. Code syntax errors occurred in all manual task-solving, and
resolving the errors required additional time.

A second important factor that influenced completion time is the config-
uration of the Maven build system. The manual conversion requires textual
modifications of the build system’s pom.xml configuration file. This required
adding a dependency statement to the Spring framework and updating the
Launcher class information. Although the required changes were detailed
in the instructions and available as copy-paste-ready configuration snippets,
many participants reported issues with this step.

Likewise, the screen recording footage confirmed that participants fre-
quently overlooked the Launcher class information, simply starting their sub-
mission using the IDE launcher symbol during development. Notably, this
means their submitted solution was technically not compiled using maven at
development time, for the launcher symbol by default does not invoke the
build system configuration. While technically this causes all tests to fail, we
decided to patch submissions that had this mistake, as this particular step
is a pure boilerplate activity. Wherever we patched, I included a note in
the manual submissions (part of the replication package). In contrast, the
toolchain support of the DSL performs these configurations automatically,
and the developer does not need to be concerned with them. This implicitly
means that this build configuration challenge does not influence the measured
pass rate statistics, but only the measured time.

Footage has also revealed a second issue related to the build system:
changes to the configuration file are in some cases not automatically detected
by the IDE. In those cases, since the build system also handles runtime de-
pendencies, calls to the Spring framework, e.g., are highlighted as errors in
the code editor. Although the code is correct, the IDE still bombards the
developer with errors and warnings until a manual configuration refresh is
done. For some participants, this slowed down the conversion progress.

Finally, I want to comment on why the difference in conversion time is
larger for the BookStore than for Xox. I believe this can be well explained
by a subtle (and unintended) difference in the nature of the two sample ap-
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plications that drastically affected the complexity of the manual application
conversion. The manual conversion requires applying Spring’s Dependency
Injection mechanism: if one class needs another class, Spring annotations
can be added to highlight which dependency should be injected where. In
the case of Xox, all functionality to expose over REST resides in a single
class, which in turn meant there was no dependency injection to resolve. In
the case of the BookStore, however, the functionality is distributed over three
classes. These classes need to be wired using Spring’s dependency injection.
Although the concept is explained in the video instructions, 7 participants
mentioned this issue in their form, and the screen recordings show that even
more participants were struggling. Problems with dependency injection are
critical, for incorrect configurations stall the application startup. Conse-
quently, when dependency injection is not resolved, all tested endpoints fail.
However, the screen recordings show that participants resolve this error in
their manual conversion by investing additional time. As a result, only three
manually converted submissions of the BookStore exhibited this issue. It
is a fair assumption that all Spring applications above a certain size show-
case dependency injection. Therefore, we think the offset measured for the
BookStore reflects reality better than the one of Xox. The issue of Xox not
requiring the use of dependency injection is further discussed in the threats
to validity Chapter 13.

In several of the previous explanations, we connected the better results
for the DSL technique to toolchain-related benefits, in particular to code
generation, where boilerplate steps and modifications of configuration files
are performed automatically by the toolchain. A fair question is to which
extent the positive impact should be attributed to the DSL, rather than to
the MDE toolchain. I argue that since DSLs are rarely viable in isolation,
their benefits should not be disassociated from the general observed MDE
effects, notably code generation. However, we would also like to point out
that the tree-based DSL and the visual mapping of REST endpoints with
methods in the source code led to fewer mistakes and lower conversion time
compared to the manual insertion of annotations across the source code.
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12.2 Perceptions and Bias
Overall, the participant feedback is consistent with observations from the
screen recordings. However, there are interesting contrasts between the ob-
served issues, reported issues, and measured offsets in the statistical analysis.
That is to say, the issues mentioned by participants in their final comment
forms do not perfectly align with qualitative and quantitative observations.
There is an offset between subjectively perceived and objectively observed
engineering challenges.

12.2.1 Issues with the DSL Conversion Technique

A frequent, but non-critical issue with the DLS toolchain technique was the
TouchCORE tool itself. Participants repeatedly noted difficulties navigating
the tool’s menus and reported accidental deletion of already modelled solu-
tions, which was confirmed by the recordings. This can be interpreted by
insufficient intuitiveness of the tool’s user interface.2 For some participants
this resulted in data loss. All participants eventually learned how to navigate
the tool, and the time loss was never significant when parts of a solution were
reestablished after a crash. To avoid biases we did not remove crash-inflicted
slowdowns from the measurements. For completeness, I did however quantify
the exact losses and included them in the replication package. Overall, we
consider that the main challenges with the DSL technique were instability
and usage of the tool’s user interface. Both challenges could be resolved by
improving the tool’s reliability through additional testing and an interface
revision guided by user studies. Nevertheless, despite these drawbacks, us-
ing the ResTL DSL led to overall faster task completion than the manual
alternative.

12.2.2 Perceived Time Loss

As previously discussed, the major time losses observed and reported are
problems with Spring’s Dependency Injection, Maven’s configuration file edit-
ing and using the DSL tool’s user interface. However, interestingly a frequent
mention was the task instructions themselves, notably the task illustration
videos. More than two-thirds of the participants either skipped parts of the

2A strong argument for this hypothesis is the fact that TouchCORE was originally
developed for touchscreen interfaces, and only later adapted for desktop use. The graphical
interface, and especially user input handlers still showcase touch-oriented relics, e.g. a tap-
and-hold gesture, which is very uncommon for desktop interfaces.
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video, increased playback speed, or interleaved task solving with watching
the video instructions. While the instructions were created with great care,
video material naturally provides a one-size-fits-all level of detail. Very likely
the instructions were perceived as overly lengthy by some participants, lead-
ing to the described effects. I will discuss in the next Chapter 13 how this
affects the validity of our study.

12.2.3 Preference for Manual Conversion

We analyzed the final participant feedback regarding their preferences con-
cerning both migration techniques. While the majority of participants deemed
the DSL-driven approach easier (+25/1/-1) or more intuitive (+24/0/-3), the
confidence towards a better performance of the DSL solution concerning our
unit tests was balanced (+13/1/-13), and a majority of participants would
not use the DSL technique for their own future projects (+6/6/-15). These
statistics are illustrated in Figure 12.1.

Figure 12.1: Participant Feedback on Individual Techniques

The trust in correctness significantly deviates from the measured correct-
ness, and the stated preference seemingly contradicts the initial statement
for intuitiveness. Yet, in the light of additional participant feedback, there
is a plausible explanation for this trend. Several developers associated the
manual approach to feeling more in control:

Green Unicorn: “(I prefer) the manual solution, because it gives more control over the source code.”
Green Turtle: “I will most likely stick with IntelliJ as I feel more comfortable coding everything
manually where I have more control.”
Yellow Turtle: “Because the code generation process is unknown to me, I’d be more confident in the
manual methodology [...], where I had total control and knew the code that would run against the tests.”
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At the same time, the main reasons for mistrust in the DSL toolchain
seemed to be the opacity of the model transformation and code generation.
In some cases, the feedback would even first acknowledge the advantages of
the DSL approach, but then state a preference for manual refactoring:

Yellow Fox: “I’m always suspicious of auto-generated code”
Yellow Zebra: “(I’m more likely to apply) IntelliJ because it feels more natural [...].”
Green Zebra: “TouchCORE (DSL technique) is more intuitive as it is more visual, but the IntelliJ
(manual) approach helps better to understand the underlying mechanism.” and: “(With the manual
approach) I know clearer what is going on behind the scenes compared with the second (DSL) approach.”
Blue Zebra: “There’s a lot of boilerplate code in RESTifying a legacy application, TouchCORE (the
DLS tool) makes this easier and less error-prone.” and: “(I’m more likely to apply) manual, I’ve had
problems with code generation tools in the past”

In summary, the developers acknowledge the merits of the DSL approach,
yet tend to prefer the manual approach. The main reasons are 1) the asso-
ciation of coding with “being in control” paired with overconfidence in their
coding skills in comparison to their actual test results, and 2) a general mis-
trust in opaque transformations, especially in code generators.

12.3 Towards Practical DSL Acceptance
I believe the insights from the discussions are an important finger post to-
wards further improvement of DSL-based approaches. The user feedback
suggests acceptance is not exclusively a matter of benefits, but also of tool-
ing apparel. Based on the full feedback received, and observations from the
video, this bias could be mitigated with the following action plan:

12.3.1 Traceability and Transparency

Any SE toolchain should be as transparent as possible. Developers trust the
compiler, partially due to the obvious link from code statements to execution
instructions. Using a debugger, that link is highly transparent, and users tend
to forget the existence of implicit transformations. In comparison, the model
transformation and code generation taking place in ResTL are opaque, and
thus hard to follow by the user. A more advanced implementation should
provide clearer, immediate traceability of modelling choices to the generated
code, to re-establish the developer’s perception of control.

12.3.2 Integration over Disruption

Developers consider their preferred IDE a trusted environment and are nat-
urally reluctant to abandon their comfort zone. Rather than proposing an
orthogonal approach that effectively replaces the entire IDE, a DSL toolchain
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Figure 12.2: Imitating the ResTL DSL in a Text Editor

should integrate with the existing, trusted terrain. Multiple participants
voiced they were more likely to embrace the benefits of the DSL-based ap-
proach if the toolchain were integrated as an IDE plugin, rather than a
standalone software. This option combines well with the previous point, as
a plugin could more easily highlight the impact of modelling on generated
code. Interestingly, we collected anecdotal evidence about a participant’s de-
sire to have the ResTL language available within their IDE. The participant
in question, who had used the DSL-based technique for the first task, created
an ASCII imitation of the ResTL DSL while working on the second, manual
conversion. Figure 12.2 shows a capture of their recorded activity.

12.3.3 Trust through UX

While the DSL and mapping process was predominantly perceived as highly
intuitive, the user interface and stability of the toolchain were criticized. Es-
pecially the crashes and the gesture-based user interface were perceived as
tedious. While this did not diminish the outcome of the DSL-based con-
version process, I believe that the instability of the tool influenced trust in
the generated outcome. In comparison to an industrial-grade IDE, a DSL
toolchain can only gain acceptance if stability and usability are excellent.

In summary, we believe the mistrust is not due to the DSL and the
associated modelling and model transformation mechanisms themselves, but
due to the way they are presented. Developers consider IDEs as their trusted
workmode, so the most straightforward way to improve on acceptance would
be to develop an IDE plugin that also includes mechanisms to visualize the
resulting transformations in the source code. Such a tool could offset the
factors that we associate with the observed developer bias and would allow
us to leverage the DSL‘s currently dormant potential.
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13
Threats to Validity

This section enumerates factors that potentially weaken the validity of the
presented empirical findings, as well as the measures taken for mitigation.
I structure the discussion according to four types of validity, i.e., construct
validity, internal validity, conclusion validity and external validity [WRH+12].

13.1 Construct Validity
Duration of a software task and test pass-ratio are both established and
common constructs to measure the success and efficiency of a software de-
velopment task [Kan03, DEPC21]. We are only aware of one participant,
who did not try to follow the instructions in a meaningful way. We consid-
ered the corresponding data and outlier and excluded it from analysis and
interpretation.

13.2 Internal Validity
Internal validity concerns the degree of confidence that there are no hidden
variables or factors affecting our measured pass rate and completion time.
This aspect has been treated with great care, using multiple GLMs.
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13.2.1 Varying Developer Skills

The varying skill levels of developers introduce bias to our measurements.
I ran additional Pearson tests that did not report a statistically significant
correlation between any of the self-reported skill levels and the measured
time or pass rate.

13.2.2 Parameter Information

We noticed that the DSL toolchain in one aspect behaved differently on
the Windows operating system. When mapping resources to methods, the
participants using Windows would not see identifiers of target signature pa-
rameters, i.e., they would see the method identifier, the number and types
of parameters, but not the names of the parameters. We deem this issue to
be negligible because the missing information was provided in the task doc-
umentation. As confirmed by consulting the video footage, the slowdown for
Windows participants is negligible. More precisely, video footage showed that
participants rapidly consulted the provided source code or documentation to
overcome any ambiguity.

13.2.3 Task Deviations

The experiment was carefully designed to guide participants in their en-
deavours. As mentioned in Chapter 12, the majority of participants did
not consume the video instructions as intended, increasing playback speed,
skipping parts or even interleaving listening to the video instructions with
solving the task. As a result, some participants initially started to convert
the illustrative Zoo application that was used for explanation purposes in the
video. Others experienced slowdowns because they had to deal with technical
problems whose solutions were clearly explained in the instructions.

It is hard to quantify to which extent this phenomenon influenced our
findings. Additional Pearson tests (which I provide in my replication pack-
age) did not report a significant correlation between task familiarization and
task-solving time or pass rate. Although not statistically significant, we ob-
served in a few cases that sloppy task familiarization suggests negative effects
on both techniques.
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13.2.4 Fair Task Description

The task instructions should not favour one of the conversion techniques. To
ensure that, we could neither provide the REST interface description visually
in tree form (as this would have favoured the DSL approach), nor as textual
URLs (as this would have simplified the manual approach). We therefore
used an intermediate textual representation that we deem unbiased.

13.2.5 Fair Task Context

We acknowledge an unintentional difference in task complexity because Xox
did not exhibit the aforementioned dependency injection challenge. Luckily,
this drawback does not weaken the relevance of our findings, because with
increased complexity the performance of the manual conversion could have
only been lower. For all other metrics, e.g. magnitude of interface size or
code base complexity, the Bookstore and Xox are highly comparable.

13.3 Conclusion Validity
Conclusion validity concerns the statistical analysis of results. Small popu-
lations jeopardize significance, for outliers gain impact. We countered this
threat with intense recruitment, having a population of 28 participants, re-
spectively 7 participants per experiment group. Regarding our hypothesis,
we have consistently employed tests and followed best practices to ensure
that the assumptions of the used statistical analysis techniques are met.

13.4 External Validity
The largest threat to the external validity, that is, the generalization of our
experiment results to other contexts, is the recruited population. Skill dis-
tributions of students and professions are known to differ, and the use of
experiments only with students is often debated regarding external valid-
ity [FZB+18]. We mitigated this risk with efforts to recruit diverse developer
profiles, i.e., we were sending out invitations to developers from various back-
grounds. Some factors are beyond our control, e.g. industrial engineers might
feel less attracted by the compensation offered. We considered that this may
cause our participants to be younger than average software developers, and
thus possibly less experienced. However, the collected self-assessment forms
do not reflect such a bias.
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Part IV

Conclusion, Discussion and Future Work

In this fourth and last thesis part I recapitulate the previous contributions
and findings. I place the individual conclusions into context and sketch the
bigger picture of CSLs as a promising novel MDE concept.



14
Conclusion, Discussion and

Future Work

In this final discussion, I pertain to the cornerstones of my thesis, present
a fair summary of limitations to my work, and indicate how future research
could further extend the aforementioned boundaries.

14.1 Conclusion
This section summarizes the main contents and insights from the first three
thesis parts, in order of appearance. That is, I begin with summarizing
the key takeaways from the FIDDLR framework, followed by lessons learned
from crafting the two sample concerns and finally, the insights gained from
my controlled RESTify experiment.

In the first part I presented FIDDLR, a framework to streamline reuse
and promote separation of concerns that integrates MDE, DSLs and CORE.
FIDDLR augments the unit of reuse of CORE, the concern, with the possibil-
ity of including a modelling language that is specifically designed to express
the concern’s properties and integration most appropriately. In other words,
the concern designer can now define a Concern-Specific Modelling Language
to maximally focus the concern user on the relevant concepts of the concern
and facilitate the concern’s customization and usage. Just like DSLs, doing
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this can significantly reduce accidental complexity as well as integration com-
plexity, in particular for concerns that are not easily expressed with a GPL
or that crosscut several abstraction levels or phases of software development.

In the second part, I delved into two sample CSL-driven Proof-of-Concept
concerns. RESTify streamlines a state-of-the-art development activity: ex-
posing application functionality as RESTful services. Thanks to FIDDLR,
the concern designer implementing RESTify can reuse the existing MDE,
DSL and AOM technology and tools at various levels in the development
process. I showed how RESTify greatly facilitates the task of exposing appli-
cation functionality as RESTful services for the concern user, compared to
a manual refactoring activity. The second sample concern, AUTHify , builds
on top of RESTify and allows securing unprotected REST services for access
delegation of resource owners to third-party services, following the OAuth2
protocol. Similarly to RESTify , I showed how the concern-driven approach
eliminates the majority of technical intricacies and guides the concern user
toward explicit decision-making. Both concerns show convincing evidence
that FIDDLR bears great potential and merits further investigation.

In the third part, I presented the details of a controlled experiment with
28 software developers that shed light on the impact of using a CSL for
converting a legacy application to REST, and how using such a CSL was
perceived by developers. We quantitatively compared two orthogonal con-
version techniques: using a CSL and corresponding toolchain vs. manual
code conversion. We observed a superior effectiveness of the CSL approach
in terms of conversion speed and correctness of the outcome. We then dis-
cussed plausible explanations for the observed difference based on a thorough
analysis of the recorded task activity and participant feedback. The devel-
opers encountered technical difficulties in the manual approach, in particular
with the dependency injection mechanism of the Spring framework. Further-
more, some developers had trouble with boilerplate steps, i.e., updating the
Maven configuration files and modifying the launcher class. This accounted
for significant additional development time and reduced the correctness of the
outcome sometimes significantly. These technical details are completely au-
tomated and hidden from the developers in the CSL approach. Furthermore,
we found evidence that the developers considered the visual representation
of the REST resources in the form of a tree as beneficial and intuitive. In
contrast to the numeric findings, the analysis of the qualitative developer
feedback revealed low acceptance of the CSL approach. We identified con-
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fidence in code, and general mistrust of MDE transformations, especially
code generators, as the main factors for preferring the manual approach. We
used these insights to formulate recommendations for developers of CSLs and
associated tools.

14.2 Discussion and Limitations
Although the presented contributions serve as convincing evidence for the
general feasibility of CSL-enabled concerns, and their potential for the SE
community, I also discovered several hindering factors that currently set lim-
itations to what can be achieved with CSLs. This section explains the three
most outstanding challenges in more detail.

14.2.1 On FIDDLR Limitations

FIDDLR streamlines reuse by reduction to four essential steps:

1. Choose a concern variant from the concern’s VI.

2. Model the concern-specific properties of the application using the CSL.

3. Specify mappings that connect the concern-specific properties with the
application-specific models.

As a result, the concern user is shielded from solution-specific design
choices and technical intricacies. Furthermore, the complex transformation
pipeline that FIDDLR is based on – CSL to GPL model and mapping gen-
eration, weaving, and code generation (see Fig. 2) – is also hidden from the
concern user. This fundamental operating mode of FIDDLR is inherently
linked to a general limitation: low traceability between what a concern user
models and the generated code. The feedback from study participants and
the general mistrust voiced regarding black box code generators fall in line
with this drawback. Furthermore, low traceability hinders debugging seri-
ously and can make it very difficult for the concern user to apply corrective
actions at the CSL level in situations where the generated outcome does
not produce the expected behaviour. While traceability and debugging are
well-known issues with generative approaches as well as with compositional
approaches, the problem is even more pronounced in FIDDLR because it
uses generation and composition technologies. A further limitation of our
implementation of FIDDLR is that it was built on top of the CORE tooling
infrastructure and therefore inherits all its technical limitations, i.e., CSLs
have to be EMF-based, and code generation targets Java and Maven only.
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14.2.2 On CSL Limitations

A severe drawback of CORE and especially CSL concerns is the level of ex-
pert knowledge required to craft new concerns. While concerns are intended
to streamline reuse and make their application as simple as possible, their
crafting naturally requires considerable domain expertise. This notably holds
for CSLs, as in this case the concerns are not limited to mostly static off-the-
shelf models but comprise entire languages. The PoC samples and following
discussions in the second part of this thesis revealed that language design is
indeed a complex enterprise. Also, the definition of transformers, to trans-
late from mapped CSL models to mapped GPL models requires proficiency
with domain and implementation details, to ensure the transformer output
is sound for subsequent model weaving and code generation.
From previous practical experience with REST interfaces, the design of REST-
ify came easier as the following exploration of a second AUTHify concern.
I see the amount of practical expertise and domain sovereignty required as
a major hindering factor for the creation of new CSL concerns. Notably,
meta-modelling in that context is a multi-scholar discipline, as it requires
expertise in MDE and the targeted domain. Another observation is that
meaningful CSL candidates are not easily identified. Following our insights
from Chapter 8, it seems the most eligible candidates for CSL-supported con-
cerns are engineering activities that showcase an inherent paradigm mapping
(such as mapping resource-oriented API structures on existing signatures, or
mapping of access limiting scopes as masks on operations). This observation
is in line with the initial assumption that CSLs unfold their full potential in
the context of crosscutting concerns, as paradigm mappings naturally bridge
multiple levels of abstraction.

14.2.3 On PoC Implementation Limitations

Whatever the costs, striving for an industrial-grade implementation, and run-
ning a large-scale study, is in my perception the only way to fairly assess the
potential of CSLs. Unfortunately, it seems that reaching an industrial-grade
implementation is also almost certainly an extremely resource-intensive and
pricey avenue. Even with the considerable amount of time invested through-
out this thesis, the most advanced PoC implementation, RESTify , made
it barely beyond what was minimally required to run a fairly limited user
study in a mostly controlled setup. Pushing the envelope would require sev-
eral iterations of user studies, and massive investment into general software
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stability. The latter is a concern that is easily ignored in academic settings.
The shortcut to declaring implementation issues as trivial or not relevant to
research should not be made. A sophisticated analysis of present stability
issues could likely reveal a series of fundamental limitations.

14.2.4 On Study Limitations

The quality of empirical validations is tightly dependent on the underlying
sampling quality. That is for one, a large enough sample population size (or
enough participants), but also a population that somewhat represents reality.
Empirical research references provide protocols to ensure that these criteria
are met. Namely, sample size estimations can be run preemptively, to ensure
the population is large enough to ensure conclusive probability margins for
the anticipated results. Additionally, it is common practice to capture popu-
lation features like demographics or skills. In reality, the available funding is
often the limiting factor to population size and constitution. The same holds
for the experiment described in Chapter 8.4. I hired as many participants
as possible with the available funding, and I did my best to ensure a diverse
population, e.g., by including industrial engineers outside of academia. In
retrospect, one mistake was to offer the same compensation for all target
audiences, simply because the 100 CAD Amazon gift card was more attrac-
tive to undergraduate students than to industrial engineers, which by itself
could already have constituted a biasing factor. And yet, in the end, the
population obtained was larger and more diverse than what I had hoped for.
Nonetheless, there were drawbacks, e.g. we could not follow some recommen-
dations, such as using a mixed linear model, for lack of sufficient sampling
points. To some extent, I was able to compensate for these drawbacks, e.g.
by ensuring balanced groups instead of random assignments and selecting
statistical tests that were compatible with our data. Overall the study was
diligently performed, within the given limitations.

14.3 Future Work
In this final section, I provide several ideas on how the presented research
could be taken further. The proposals are sorted by order of appearance of
the corresponding item in the thesis outline.

14.3.1 Exploring the Nature of CSL Reuse

Throughout the design of RESTify and AUTHify , we mostly applied simplic-
ity as the main design criteria for the concern-provided CSLs. As discussed
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in Chapter 8, this is a justifiable rationale for decision-making, because lean
languages are less prone to overwhelm the user, are faster to learn, and hence
often perceived as more intuitive for the creation of on-point models.
A fundamental question throughout CSL design was whether CSLs should
or should not replicate concepts that already exist in the target application
context. An argument against concept replication is that CSLs are designed
to unfold their full potential in combination with mappings to existing model
contexts, and replication of information is not in the concern user’s interest
and potentially causes consistency challenges. On the other hand, overly
reduced CSLs can hinder reuse scenarios, for isolated models (without map-
pings to an application context) do not carry enough semantics for reuse in
different contexts. We could for instance imagine a scenario where a partial
ResTL model fits well in a reusable context (e.g., common board game con-
cepts), and could be a candidate for reuse across applications.
Although these two philosophies stand in stark contrast, it is hard to justify
one over the other, for the advantages and inconveniences of either approach
depend on the trajectory of future CSL concerns. With a growing CSL con-
cern library, a focus on CSL reuse, possibly even across related concerns
could be a fostering factor, whereas even our empirical research has shown
that concern users long for easy-to-use and intuitive interfaces.
An interesting thought experiment on RESTify is, why a novel REST CSL
needed to be defined in the first place. Any existing REST modelling lan-
guage presented in 5 would have served, as any REST language would have
readily provided the concepts for hierarchically arranged resources to be
mapped. Notably, the outcome of RESTify is, next to deployable code,
an interface description in one of these languages, namely OAS (the build
instructions carry an instruction to analyze the target code’s Spring anno-
tations and generate the OAS interface specification). If the product of a
reused concern is a complete REST interface description, there is no justifi-
cation for a CSL of identical expressiveness. In future work, I would like to
further investigate the differences between CSLs compared to regular DSLs.
The philosophies on the ideal wholesomeness of CSLs turn the discussion
into a chicken-and-egg problem: More concern reference implementations
are needed, and this could be simpler by putting an eye mark on CSL reuse.
However, concern implementation is primarily justified by simplicity to the
concern user, which speaks in favour of leaner CSLs. Further research could
begin with a survey of multiple representative CSL candidates, to better
assess the legitimacy of either design criteria and potential compromises.
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14.3.2 Layered CSL Concerns

The AUTHify concern serves by definition a very specific purpose. As ex-
plained in Chapter 5, AUTHify ’s use case is authorizing third party services,
to access user-owned resources on their behalf. The reference implementation
presented in Chapter 7 does for instance only deal with access delegated to
authorized clients, but ignores the access control task, to authorize the ac-
tual owner to access their resource. This is because usually access delegation
is not viable in isolation, but integrates with other, more standardized API
security concepts, such as user roles (RBAC), ownership hierarchies and even
shared ownership. The presented concern correctly supports the key proto-
col scenario. But to gain more viability it should probably be considered
in combination with other prominent security concerns, possibly bringing in
additional CSLs. Further research is needed to explore the model weaving
required to support such CSL concern combinations.

14.3.3 Extended AUTHify Concern

Another consideration regarding the AUTHify concern is that in its current
form, it only allows the securing of RESTful services crafted with the REST-
ify concern. This limitation stems from the fact that the required model
mappings are defined from the AUTHify to the RESTify language. While
from an academic point of view, it is a reasonable choice to investigate the
effects of stacked CSL concerns, there is no real-world argument for this
limitation. A versatile AUTHify concern should be able to readily secure
any REST interface, regardless of how the service was created. In principle,
the required modifications are very feasible. Similar to how we extract GPL
models from existing code, we can extract OAS specifications from existing
REST services. Consequently, it is very thinkable to modify the AUTHify
concern, so it maps from the AuthL to an OAS model, sidestepping any
dependency on the RESTify concern. However, there remains the challenge
of tailored models and mapping transformers. It is not clear how such a
revised concern could achieve the subsequent weaving process from mapped
and extracted OAS models to produce secured RESTful service GPL models.
More research is required to implement such a (more versatile) AUTHify
concern.
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14.3.4 CSL-IDE Integration

In Chapter 12, I showed statistics that many participants acknowledged the
intuitiveness and convenience of the RESTify Concern, but simultaneously
voiced reluctance to apply the tool for their own or future projects. A main
reason was a stated preference for working with a trusted IDE, and the
MDE approach being perceived as too disruptive. A seamless integration
of RESTify with existing IDEs could not only leverage user acceptance but
also unfold new potential. E.g. IntelliJ already offers a built-in class diagram
editor, which always reflects the current code state. A redesigned version of
RESTify could embed directly into the IDE as a freely available plugin, and
integrate with the existing diagram editors. This would also allow enhanced
mapping modes, where the ResTL model is alternatively mapped to class di-
agrams or directly on existing code signatures. Afterwards, the plugin could
extract GPL models from the mapped code and apply the same transforma-
tion and weaving pipeline as the current RESTify concern implementation.
Notably a freely available, open-access plugin could provide large-scale teleme-
try data, to gain further insight on common use cases and preferred usage
scenarios for the concern.
Figure 14.1 shows a mockup of how the ResTL CSL could be used as assistive
visualization, directly linking to parsed program code.

14.3.5 In-Depth Validation of AUTHify

Throughout this thesis, I evaluated the RESTify concern in significantly
greater depth than the second concern candidate, AUTHify . Concentrat-
ing on RESTify is a straightforward choice, as AUTHify builds on top of the
RESTify concern. But also, evaluating a second concern to this extent would
have gone beyond the resources available for this thesis. Already conduct-
ing a single controlled experiment with RESTify required an advanced and
notably sufficiently stable concern toolchain implementation. Also, running
a second study, from recruitment to crafting the material, to the statistical
analysis was not possible within the given time constraints of this thesis.
And yet, a second fully operational concern implementation, next to a thor-
oughly conducted second controlled experiment bears the potential to further
validate the insights of this thesis. Future research could, the same way it
has been performed with RESTify , apply the step-by-step concern integra-
tion projected in Chapter 7 as a second validation of the FIDDLR guidelines.
Afterwards, this concern toolchain implementation could be used to perform
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Figure 14.1: Conceptual Mockup of ResTL IntelliJ IDE Plugin

a second controlled experiment, following the same crossover layout as for
RESTify . That is, participants could be hired to secure two sample appli-
cations for delegated access, compliant with the OAuth2 protocol. It would
be interesting to compare the user feedback for this second concern to the
one collected throughout the RESTify controlled experiment. Also, follow-
up tests and time measurements could be analyzed to compare performances
by methodology. It would be highly interesting to compare the outcome to
the statistics presented in Chapter 12. Finally, in the spirit of the previ-
ous section, it would be likewise exciting to directly target an IDE plugin
implementation of an AUTHify toolchain.

14.3.6 RESTify Error Categorization

Throughout the RESTify Controlled Experiment Chapter 9, we collected
detailed data on the quality of individual participant submissions, i.e. we
measured REST API correctness with unit tests. For the study, I was mainly
interested in overall statistical trends, that is, whether a certain methodology
would on average provide a significant advantage, regarding test pass rates.
Also, we were more interested in the average submission qualities than in
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the test outcome of individual tests. However, we still collected detailed test
data. This data could be analyzed to gain deeper insights into the difficulty
of individual REST endpoints. Figure 14.2 and Figure 14.3 illustrate how
this could take place. These radar charts illustrate the average test pass rate
on a per-endpoint basis. The four coloured contours describe the average
group test success rates per endpoint. Contours lying further outside indicate
higher pass rates and contours closer to the centre represent lower pass rates.

Figure 14.2: Radar Chart of Error Frequencies per REST Operation and
Group, for the Xox Application

The statistical tests performed so far were only comparing the groups’
overall performances, that is to say, whether contours on average were fur-
ther to the outside or closer to the centre, in correlation to which methodology
was applied.
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Figure 14.3: Radar Chart of Error Frequencies per REST Operation and
Group, for the BookStore Application

We could also imagine investigating which individual tests showcase signifi-
cantly higher or lower test pass rates. This translates to spikes in the con-
tours, where results for an individual test are on average lower or higher
than expected for a group. For instance BsTest03 was significantly below
the group average for the green and blue contours. Both were manual sub-
missions. It would be interesting to inspect the code submissions for this
endpoint and investigate if there is a common mistake that explains the
lower pass rate. Similarly, the red and yellow groups performed unevenly
well for different tests. In turn, it would be interesting to investigate if the
advantages of the CSL methodology are dependent on the nature or complex-
ity of specific REST operations. That is, it would allow us to investigate if
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the general advantages associated with CSLs have a stronger effect on some
specific engineering challenges.
A better understanding of endpoints that were statistically more error-prone
could allow for the creation of improved guidance techniques, to offset com-
mon mistakes.

14.3.7 Revised Study

The RESTify Controlled Experiment was designed, performed and analyzed
with diligence. However, as with every project, several essential insights
occurred only throughout the study conduct. A revision of the study would
certainly allow to offset several drawbacks.

Usually, empirical research is performed with a sample size estimation, that
is to say, a preliminary calculation to estimate the minimum population size
required, to run the intended statistical tests and analyze the collected data.
Sample size estimations often require an educated guess on the expected data
distributions, which can, e.g., stem from a pilot study. We did not perform
a sample size estimation. This was mainly because of the limited funding. It
was clear from the start that we should hire as many participants as possible
with the available funding as a limiting factor.
The GLMs are an example of models that were on the verge of significance
with the given sample sizes. Notably, the amount of sampling points pre-
vented me from following some best practice recommendations for crossover
experiments, notably the application of Linear Mixed Models (LMM), which
internally perform multiple nested linear regressions and therefore require
more sampling data. The study could significantly gain conclusiveness if
performed with more participants, which in turn allows the use of LMMs.

Good practice for any controlled experiment is to only set control for either
the experiment setup (i.e., the applications to work with), or the methodolo-
gies to assess (CSL concern) - but not both at the same time. The RESTify
reference implementation allows conversion of applications to REST, how-
ever, technical intricacies cause some technical assumptions on the sample
applications, for instance, that all functionality must be provided by singleton
classes. This prevented us from performing the study on sample applications
outside our control, e.g. sample applications created by other developers on
GitHub.

In general, experiment instructions should be held in a way that favours
neither experiment approach. Therefore we presented the expected target
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REST interface textually, that is to say as human-readable text, describing
the structure, from resource root to bottom. We decided on this presentation
because testing against an interface is significantly easier than testing against
the correct adaptation of a paradigm. However, technically we should have
provided the instructions in a more abstract form, which would allow the
participants to determine the target interface structure on their own. Instead
of canonic unit testing, the submissions could have then been verified by a
paradigm checker, that is a program that verifies if the submitted resource
structure corresponds to common REST paradigms and if there is a way to
correctly invoke the target methods. However, to the best of my knowledge,
no such paradigm checker exists to date. It would be an exciting first step to
develop a paradigm checker prototype and assess the submissions collected
so far.

14.3.8 Testing Pathological Inputs with Fuzzing

Related to the previous point is the exploration of more advanced ways of
testing RESTful services. As mentioned before, testing in the context of
the RESTify study was straightforward, for we stipulated a target interface
and knew exactly which test requests to send to the participant submis-
sions. However, testing of valid inputs alone is insufficient. Sophisticated
testing must also verify the handling of faulty requests or in the worst case
pathological tests. In the context of REST, pathological tests correspond
to inputs that cause internal server errors, server crashes, or high resource
consumption that reduces responsiveness. A revised repetition of the REST-
ify controlled experiment should, notably if the target API is not stipulated,
include advanced testing mechanisms that only verify the correct handling
of sane inputs, but also test handling of pathological inputs.
Commonly these inputs are determined by two orthogonal approaches: sym-
bolic testing, which is a formal approach that requires knowledge of the testing
target, or fuzzing, which bombards the testing target with mutations of sane
inputs [LPSS18]. In this context, fuzzing is the more promising approach, as
it does not require knowledge of the testing target internals, and is in general
considered more effective in detecting implementation issues than symbolic
execution.
Most fuzzing frameworks are built for classic software libraries, written in
C/C++ or Java. However, there are fuzzing frameworks specifically for
REST [AGP19]. Once more, the already collected submissions could be
tested concerning their robustness against pathological inputs. Note that

148



the RESTification process likely adds new vulnerabilities, notably due to
implicit parameter conversions and en/decodings, and a generally higher re-
source consumption per API call due to the integrated web-server stack.

14.3.9 Reusable Crossover Experiment Suite

Empirical research is, just like software engineering, subject to a plethora
of pitfalls, but also best practices. In my case, the correct conduct and de-
sign of the RESTify controlled experiment required thorough familiarization
with existing literature. Notably, [VAJ16] was an insightful reference. Hence
comes the idea of supporting the conduct of certain experiment types with
reusable software models, similar to concerns.
Throughout the RESTify experiment, I set on a fully programmatic ap-
proach, that is to say, the entire experiment analysis can be replicated with
the execution of a structured script, which executes one statistical test after
the other. All tests and figure generators were written in a single, well-
structured Python project, which was a reasonable choice for data analysis
purposes [Sch22b]. Originally the motivation for this approach was also a
strong interest in a sound replication package, which would allow any other
research team to validate our data and analysis with minimal effort.
However, the more I developed with reuse in mind, I noticed that most of
my modules would qualify for other crossover experiments, either with none
or only minimal code changes.

Figure 14.4: Blue Turtle (Sampling Point in Bottom-Left Corner was Iden-
tified as Scammer). They Spent the Least Time, Not a Single Test Passed.
Further Indicators Confirmed Suspicion

At some point, I even pushed things to the extreme. The program had
a clear categorization of all measured parameters, which allowed the decla-
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ration of a simple loop to combine any two metrics and create a scatter plot
with all participants. Note that in contrast to “fishing for results” (mas-
sive application of statistical tests on random data subsets, until some test
happens to reflect the wished-for results), data exploration, especially visual
techniques, is explicitly considered good practice for empirical software ex-
periments [KPP+02]. This turned out to be useful, as it allowed the detection
of an outlier in the scatter with “least time spent” and “worst test results”,
as shown in Figure 14.4.

Although the analyzer project still showcases many implementation de-
tails specific to our experiment, it would be an interesting enterprise to at-
tempt to elaborate a general framework for crossover-controlled experiments.
This could not only greatly speed up the creation of further, sound replica-
tion packages, but also serve as a best practice guide, with a set of modules
tailored for this experiment category. Such a code refactoring project would
by itself constitute an interesting case study, and in the best case be bene-
ficial to the empirical research community, notably since to the best of my
knowledge no such tool exists.
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Acronyms

List of acronyms used in this thesis:

- AOM: Aspect-Oriented Modelling

- AOP: Aspect-Oriented Programming

- AS: (OAuth2) Authorization Server

- CI: (CORE) Customization Interface

- CORE: Concern-Oriented REuse

- CSL / CSML: Concern-Specific (Modelling) Language

- DevOps: Development and Operations

- DSL / DSML: Domain-Specific (Modelling) Language

- FIDDLR:Framework for the Integration of Domain-Specific MoDelling
Languages with Concern-Oriented Reuse

- GLM: General Linear Model

- GPL / GPML: General-Purpose (Modelling) Language

- GUI: Graphical User Interface

- LEM: Language Element Mapping

- LMM: Linear Mixed Model

- MDE: Model-Driven Engineering

- MSA: Micro-Service Architecture
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- OAS: OpenAPI / Swagger

- PoC: Proof of Concept

- SoC: Separation of Concerns

- RAML: RESTful API Modelling Language

- RBAC: Role Based Access Control

- REST: REpresentational State Transfer

- RO: (OAuth2) Resource Owner

- RPC: Remote Procedure Call

- RS: (OAuth2) Resource Server

- SLOC: Source Lines Of Code

- SOAP: Simple Object Access Protocol

- SpEL: Spring Expression Language

- UI: (CORE) Usage Interface

- UML: Unified Modelling Language

- VI: (CORE) Variation Interface

- WADL: Web Application Description Language

- WRML: Web Resource Modelling Language
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Simões, and Fernando Pereira. Hapi: A Domain-Specific Lan-
guage for the Declaration of Access Policies. In 25th Brazilian
Symposium on Programming Languages, pages 9–16, Joinville
Brazil, September 2021. ACM.

[Joh24] Jeff Johnson. Designing with the Mind in Mind :: UXmatters.
Morgan Kaufmann, 2024.

[JR17] Antonio Sanso Justin Richer. OAuth 2 in Action. Manning,
2017.

[Kan03] Stephen H. Kan. Metrics and Models in Software Quality Engi-
neering. Addison Wesley, second edition edition, 2003.

157



[Ken02] Stuart Kent. Model Driven Engineering. In Michael Butler,
Luigia Petre, and Kaisa Sere, editors, Integrated Formal Meth-
ods, Lecture Notes in Computer Science, pages 286–298, Berlin,
Heidelberg, 2002. Springer.
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